Shastry, Abhay; Stafford, Charles A.
2015-12-01
We consider a question motivated by the third law of thermodynamics: Can there be a local temperature arbitrarily close to absolute zero in a nonequilibrium quantum system? We consider nanoscale quantum conductors with the source reservoir held at finite temperature and the drain held at or near absolute zero, a problem outside the scope of linear response theory. We obtain local temperatures close to absolute zero when electrons originating from the finite temperature reservoir undergo destructive quantum interference. The local temperature is computed by numerically solving a nonlinear system of equations describing equilibration of a scanning thermoelectric probe with the system, and we obtain excellent agreement with analytic results derived using the Sommerfeld expansion. A local entropy for a nonequilibrium quantum system is introduced and used as a metric quantifying the departure from local equilibrium. It is shown that the local entropy of the system tends to zero when the probe temperature tends to zero, consistent with the third law of thermodynamics.
Fast, Computer Supported Experimental Determination of Absolute Zero Temperature at School
Bogacz, Bogdan F.; Pedziwiatr, Antoni T.
2014-01-01
A simple and fast experimental method of determining absolute zero temperature is presented. Air gas thermometer coupled with pressure sensor and data acquisition system COACH is applied in a wide range of temperature. By constructing a pressure vs temperature plot for air under constant volume it is possible to obtain--by extrapolation to zero…
Momentum Distribution and Ground-State Energy of Liquid 4He at the Absolute Zero Temperature
Nishiyama, T.; Watanabe, Y.
1980-11-01
In the scheme of the density and phase operator approach, the momentum distribution nk and the ground-state energy E0 are obtained by employing the structure factor and the radial distribution function calculated by Chang and Campbell for the Morse dipole-dipole potential. The condensate fraction, the ratio of the occupation number of the single-particle zero-momentum state N0/N amounts to 0.096. The momentum distribution diverges as k-1 in the low-wave number limit. The ground-state energy becomes E0=-6.9NK at the mean density ρ0=0.02185Å-3.
Momentum distribution and ground-state energy of liquid /sup 4/He at the absolute zero temperature
Nishiyama, T.; Watanabe, Y. (Osaka Univ., Toyonaka (Japan). Coll. of General Education)
1980-11-01
In the scheme of the density and phase operator approach, the momentum distribution nk and the ground-state energy E/sub 0/ are obtained by employing the structure factor and the radial distribution function calculated by Chang and Campbell for the Morse dipole-dipole potential. The condensate fraction, the ratio of the occupation number of the single-particle zero-momentum state N/sub 0//N amounts to 0.096. The momentum distribution diverges as k/sup -1/ in the low-wave number limit. The ground-state energy becomes E/sub 0/ = -6.9 NK at the mean density rho/sub 0/ = 0.02185 A/sup -3/.
Decoherence at zero temperature
Most discussions of decoherence in the literature consider the high temperature regime but it is also known that, in the presence of dissipation, decoherence can occur even at zero temperature. Whereas most previous investigations all assumed initial decoupling of the quantum system and bath, we consider that the system and environment are entangled at all times. Here, we discuss decoherence for a free particle in an initial Schroedinger cat state. Memory effects are incorporated by use of the single relaxation time model
Zero Temperature Hope Calculations
The primary purpose of the HOPE code is to calculate opacities over a wide temperature and density range. It can also produce equation of state (EOS) data. Since the experimental data at the high temperature region are scarce, comparisons of predictions with the ample zero temperature data provide a valuable physics check of the code. In this report we show a selected few examples across the periodic table. Below we give a brief general information about the physics of the HOPE code. The HOPE code is an ''average atom'' (AA) Dirac-Slater self-consistent code. The AA label in the case of finite temperature means that the one-electron levels are populated according to the Fermi statistics, at zero temperature it means that the ''aufbau'' principle works, i.e. no a priory electronic configuration is set, although it can be done. As such, it is a one-particle model (any Hartree-Fock model is a one particle model). The code is an ''ion-sphere'' model, meaning that the atom under investigation is neutral within the ion-sphere radius. Furthermore, the boundary conditions for the bound states are also set at the ion-sphere radius, which distinguishes the code from the INFERNO, OPAL and STA codes. Once the self-consistent AA state is obtained, the code proceeds to generate many-electron configurations and proceeds to calculate photoabsorption in the ''detailed configuration accounting'' (DCA) scheme. However, this last feature is meaningless at zero temperature. There is one important feature in the HOPE code which should be noted; any self-consistent model is self-consistent in the space of the occupied orbitals. The unoccupied orbitals, where electrons are lifted via photoexcitation, are unphysical. The rigorous way to deal with that problem is to carry out complete self-consistent calculations both in the initial and final states connecting photoexcitations, an enormous computational task. The Amaldi correction is an attempt to address this problem by distorting the
Cosmology with negative absolute temperatures
Vieira, J. P. P.; Byrnes, Christian T.; Lewis, Antony
2016-08-01
Negative absolute temperatures (NAT) are an exotic thermodynamical consequence of quantum physics which has been known since the 1950's (having been achieved in the lab on a number of occasions). Recently, the work of Braun et al. [1] has rekindled interest in negative temperatures and hinted at a possibility of using NAT systems in the lab as dark energy analogues. This paper goes one step further, looking into the cosmological consequences of the existence of a NAT component in the Universe. NAT-dominated expanding Universes experience a borderline phantom expansion (w < ‑1) with no Big Rip, and their contracting counterparts are forced to bounce after the energy density becomes sufficiently large. Both scenarios might be used to solve horizon and flatness problems analogously to standard inflation and bouncing cosmologies. We discuss the difficulties in obtaining and ending a NAT-dominated epoch, and possible ways of obtaining density perturbations with an acceptable spectrum.
Cosmology with Negative Absolute Temperatures
Vieira, J P P; Lewis, Antony
2016-01-01
Negative absolute temperatures (NAT) are an exotic thermodynamical consequence of quantum physics which has been known since the 1950's (having been achieved in the lab on a number of occasions). Recently, the work of Braun et al (2013) has rekindled interest in negative temperatures and hinted at a possibility of using NAT systems in the lab as dark energy analogues. This paper goes one step further, looking into the cosmological consequences of the existence of a NAT component in the Universe. NAT-dominated expanding Universes experience a borderline phantom expansion ($w<-1$) with no Big Rip, and their contracting counterparts are forced to bounce after the energy density becomes sufficiently large. Both scenarios might be used to solve horizon and flatness problems analogously to standard inflation and bouncing cosmologies. We discuss the difficulties in obtaining and ending a NAT-dominated epoch, and possible ways of obtaining density perturbations with an acceptable spectrum.
Absolute zero and the conquest of cold and the conquest of cold
Shachtman, Tom
2000-01-01
In a sweeping yet marvelously concise history, Tom Shachtman ushers us into a world in which scientists tease apart the all-important secrets of cold. Readers take an extraordinary trip, starting in the 1600s with an alchemist's air conditioning of Westminster Abbey and scientists' creation of thermometers. Later, while entrepreneurs sold Walden Pond ice to tropical countries -- packed in ""high-tech"" sawdust -- researchers pursued absolute zero and interpreted their work as romantically as did adventurers to remote regions. Today, playing with ultracold temperatures is one of the hottest fro
Evaluation of the absolute regional temperature potential
D. T. Shindell
2012-09-01
Full Text Available The Absolute Regional Temperature Potential (ARTP is one of the few climate metrics that provides estimates of impacts at a sub-global scale. The ARTP presented here gives the time-dependent temperature response in four latitude bands (90–28° S, 28° S–28° N, 28–60° N and 60–90° N as a function of emissions based on the forcing in those bands caused by the emissions. It is based on a large set of simulations performed with a single atmosphere-ocean climate model to derive regional forcing/response relationships. Here I evaluate the robustness of those relationships using the forcing/response portion of the ARTP to estimate regional temperature responses to the historic aerosol forcing in three independent climate models. These ARTP results are in good accord with the actual responses in those models. Nearly all ARTP estimates fall within ±20% of the actual responses, though there are some exceptions for 90–28° S and the Arctic, and in the latter the ARTP may vary with forcing agent. However, for the tropics and the Northern Hemisphere mid-latitudes in particular, the ±20% range appears to be roughly consistent with the 95% confidence interval. Land areas within these two bands respond 39–45% and 9–39% more than the latitude band as a whole. The ARTP, presented here in a slightly revised form, thus appears to provide a relatively robust estimate for the responses of large-scale latitude bands and land areas within those bands to inhomogeneous radiative forcing and thus potentially to emissions as well. Hence this metric could allow rapid evaluation of the effects of emissions policies at a finer scale than global metrics without requiring use of a full climate model.
An All Fiber White Light Interferometric Absolute Temperature Measurement System
Jeonggon Harrison Kim
2008-01-01
Recently the author of this article proposed a new signal processing algorithm for an all fiber white light interferometer. In this article, an all fiber white light interferometric absolute temperature measurement system is presented using the previously proposed signal processing algorithm. Stability and absolute temperature measurement were demonstrated. These two tests demonstrated the feasibility of absolute temperature measurement with an accuracy of 0.015 fringe and 0.0005 fringe, resp...
Note on Zero Temperature Holographic Superfluids
Guo, Minyong; Niu, Chao; Tian, Yu; Zhang, Hongbao
2016-01-01
In this note, we have addressed various issues on zero temperature holographic superfluids. First, inspired by our numerical evidence for the equality between the superfluid density and particle density, we provide an elegant analytic proof for this equality by a boost trick. Second, using not only the frequency domain analysis but also the time domain analysis from numerical relativity, we identify the hydrodynamic normal modes and calculate out the sound speed, which is shown to increase with the chemical potential and saturate to the value predicted by the conformal field theory in the large chemical potential limit. Third, the generic non-thermalization is demonstrated by the fully non-linear time evolution from a non-equilibrium state for our zero temperature holographic superfluid. Furthermore, a conserved Noether charge is proposed in support of this behavior.
Note on zero temperature holographic superfluids
Guo, Minyong; Lan, Shanquan; Niu, Chao; Tian, Yu; Zhang, Hongbao
2016-06-01
In this note, we have addressed various issues on zero temperature holographic superfluids. First, inspired by our numerical evidence for the equality between the superfluid density and particle density, we provide an elegant analytic proof for this equality by a boost trick. Second, using not only the frequency domain analysis but also the time domain analysis from numerical relativity, we identify the hydrodynamic normal modes and calculate out the sound speed, which is shown to increase with the chemical potential and saturate to the value predicted by the conformal field theory in the large chemical potential limit. Third, the generic non-thermalization is demonstrated by the fully nonlinear time evolution from a non-equilibrium state for our zero temperature holographic superfluid. Furthermore, a conserved Noether charge is proposed in support of this behavior.
Passive absolute age and temperature history sensor
Robinson, Alex; Vianco, Paul T.
2015-11-10
A passive sensor for historic age and temperature sensing, including a first member formed of a first material, the first material being either a metal or a semiconductor material and a second member formed of a second material, the second material being either a metal or a semiconductor material. A surface of the second member is in contact with a surface of the first member such that, over time, the second material of the second member diffuses into the first material of the first member. The rate of diffusion for the second material to diffuse into the first material depends on a temperature of the passive sensor. One of the electrical conductance, the electrical capacitance, the electrical inductance, the optical transmission, the optical reflectance, or the crystalline structure of the passive sensor depends on the amount of the second material that has diffused into the first member.
Absolute brightness temperature measurements at 2.1-mm wavelength
Ulich, B. L.
1974-01-01
Absolute measurements of the brightness temperatures of the Sun, new Moon, Venus, Mars, Jupiter, Saturn, and Uranus, and of the flux density of DR21 at 2.1-mm wavelength are reported. Relative measurements at 3.5-mm wavelength are also preented which resolve the absolute calibration discrepancy between The University of Texas 16-ft radio telescope and the Aerospace Corporation 15-ft antenna. The use of the bright planets and DR21 as absolute calibration sources at millimeter wavelengths is discussed in the light of recent observations.
Mamajek, E. E.; Torres, G.; Prsa, A.;
2015-01-01
The XXIXth IAU General Assembly in Honolulu adopted IAU 2015 Resolution B2 on recommended zero points for the absolute and apparent bolometric magnitude scales. The resolution was proposed by the IAU Inter-Division A-G Working Group on Nominal Units for Stellar and Planetary Astronomy after...... consulting with a broad spectrum of researchers from the astronomical community. Resolution B2 resolves the long-standing absence of an internationally-adopted zero point for the absolute and apparent bolometric magnitude scales. Resolution B2 defines the zero point of the absolute bolometric magnitude scale.......828e26 W) adopted by IAU 2015 Resolution B3 corresponds approximately to $M_{\\rm Bol}$(Sun) = 4.74, the value most commonly adopted in recent literature. The nominal total solar irradiance (1361 W/m$^2$) adopted in IAU 2015 Resolution B3 corresponds approximately to apparent bolometric magnitude $m...
Mamajek, E E; Prsa, A; Harmanec, P; Asplund, M; Bennett, P D; Capitaine, N; Christensen-Dalsgaard, J; Depagne, E; Folkner, W M; Haberreiter, M; Hekker, S; Hilton, J L; Kostov, V; Laskar, J; Kutz, D W; Mason, B D; Milone, E F; Montgomery, M M; Richards, M T; Schou, J; Stewart, S G
2015-01-01
The XXIXth IAU General Assembly in Honolulu adopted IAU 2015 Resolution B2 on recommended zero points for the absolute and apparent bolometric magnitude scales. The resolution was proposed by the IAU Inter-Division A-G Working Group on Nominal Units for Stellar and Planetary Astronomy after consulting with a broad spectrum of researchers from the astronomical community. Resolution B2 resolves the long-standing absence of an internationally-adopted zero point for the absolute and apparent bolometric magnitude scales. Resolution B2 defines the zero point of the absolute bolometric magnitude scale such that a radiation source with $M_{\\rm Bol}$ = 0 has luminosity L$_{\\circ}$ = 3.0128e28 W. The zero point of the apparent bolometric magnitude scale ($m_{\\rm Bol}$ = 0) corresponds to irradiance $f_{\\circ}$ = 2.518021002e-8 W/m$^2$. The zero points were chosen so that the nominal solar luminosity (3.828e26 W) adopted by IAU 2015 Resolution B3 corresponds approximately to $M_{\\rm Bol}$(Sun) = 4.74, the value most com...
Testing and evaluation of thermal cameras for absolute temperature measurement
Chrzanowski, Krzysztof; Fischer, Joachim; Matyszkiel, Robert
2000-09-01
The accuracy of temperature measurement is the most important criterion for the evaluation of thermal cameras used in applications requiring absolute temperature measurement. All the main international metrological organizations currently propose a parameter called uncertainty as a measure of measurement accuracy. We propose a set of parameters for the characterization of thermal measurement cameras. It is shown that if these parameters are known, then it is possible to determine the uncertainty of temperature measurement due to only the internal errors of these cameras. Values of this uncertainty can be used as an objective criterion for comparisons of different thermal measurement cameras.
Absolute Temperature Monitoring Using RF Radiometry in the MRI Scanner.
El-Sharkawy, Abdel-Monem M; Sotiriadis, Paul P; Bottomley, Paul A; Atalar, Ergin
2006-11-01
Temperature detection using microwave radiometry has proven value for noninvasively measuring the absolute temperature of tissues inside the body. However, current clinical radiometers operate in the gigahertz range, which limits their depth of penetration. We have designed and built a noninvasive radiometer which operates at radio frequencies (64 MHz) with ∼100-kHz bandwidth, using an external RF loop coil as a thermal detector. The core of the radiometer is an accurate impedance measurement and automatic matching circuit of 0.05 Ω accuracy to compensate for any load variations. The radiometer permits temperature measurements with accuracy of ±0.1°K, over a tested physiological range of 28° C-40° C in saline phantoms whose electric properties match those of tissue. Because 1.5 T magnetic resonance imaging (MRI) scanners also operate at 64 MHz, we demonstrate the feasibility of integrating our radiometer with an MRI scanner to monitor RF power deposition and temperature dosimetry, obtaining coarse, spatially resolved, absolute thermal maps in the physiological range. We conclude that RF radiometry offers promise as a direct, noninvasive method of monitoring tissue heating during MRI studies and thereby providing an independent means of verifying patient-safe operation. Other potential applications include titration of hyper- and hypo-therapies. PMID:18026562
Jing, Xingjian; Wang, Yu; Li, Quankun; Sun, Xiuting
2016-09-01
This study presents the analysis and design of a novel sensor system for measuring the absolute vibration displacement of moving platforms based on the concept of quasi-zero-stiffness (QZS). The sensor system is constructed using positive- and negative-stiffness springs, which make it possible to achieve an equivalent QZS and consequently to create a broadband vibration-free point for absolute vibration displacement measurement in moving platforms. Theoretical analysis is conducted for the analysis and design of the influence of structure parameters on system measurement performance. A prototype is designed which can avoid the drawback of instability in existing QZS systems with negative stiffness, and corresponding data-processing software is developed to fulfill time domain measurements. Both the simulation and experimental results verify the effectiveness of this novel sensor system.
Transverse susceptibility of the 1D isotropic XY-model at zero temperature
An exact expression is obtained for the dynamic transverse susceptibility Xxx (w,i,j) of the one-dimensional isotropic XY-model both on an open and on a closed chain with arbitrary number of sites at zero temperature, when the transverse field is greater than the absolute value of the exchange constant. The dynamic transverse wave-vector-dependent susceptibility for the closed infinite chain is also determined, and it is shown that in all cases the isothermal susceptibility is identical to the static susceptibility. (Author)
Synthesizing SMOS Zero-Baselines with Aquarius Brightness Temperature Simulator
Colliander, A.; Dinnat, E.; Le Vine, D.; Kainulainen, J.
2012-01-01
SMOS [1] and Aquarius [2] are ESA and NASA missions, respectively, to make L-band measurements from the Low Earth Orbit. SMOS makes passive measurements whereas Aquarius measures both passive and active. SMOS was launched in November 2009 and Aquarius in June 2011.The scientific objectives of the missions are overlapping: both missions aim at mapping the global Sea Surface Salinity (SSS). Additionally, SMOS mission produces soil moisture product (however, Aquarius data will eventually be used for retrieving soil moisture too). The consistency of the brightness temperature observations made by the two instruments is essential for long-term studies of SSS and soil moisture. For resolving the consistency, the calibration of the instruments is the key. The basis of the SMOS brightness temperature level is the measurements performed with the so-called zero-baselines [3]; SMOS employs an interferometric measurement technique which forms a brightness temperature image from several baselines constructed by combination of multiple receivers in an array; zero-length baseline defines the overall brightness temperature level. The basis of the Aquarius brightness temperature level is resolved from the brightness temperature simulator combined with ancillary data such as antenna patterns and environmental models [4]. Consistency between the SMOS zero-baseline measurements and the simulator output would provide a robust basis for establishing the overall comparability of the missions.
Lattice NRQCD study of quarkonium at non-zero temperature
Kim, Seyong; Rothkopf, Alexander
2015-01-01
To study the in-medium modification of quarkonium properties, charmonium correlators at $140.4 (\\beta =6.664) \\le T \\le 221 (\\beta = 7.280)$ (MeV) are calculated using the NRQCD formalism on $48^3 \\times 12$ gauge configurations with dynamical $N_f = 2 + 1$ flavors of Highly Improved Staggered Quarks (HISQ). To determine the "zero energy shift" for these lattices, we perform a fine zero temperature scan ($\\beta =6.664, 6.740, 6.800, 6.880, 6.950, 7.030, 7.150$ and $7.280$). We find that the temperature dependence of charmonium correlators is stronger than the temperature dependence of bottomonium correlators in a given channel. This fits into the expected pattern of sequential quarkonium melting.
Quantum and classical vacuum forces at zero and finite temperature
In this diploma thesis the Casimir-Polder force at zero temperature and at finite temperatures is calculated by using a well-defined quantum field theory (formulated in position space) and the method of image charges. For the calculations at finite temperature KMS-states are used. The so defined temperature describes the temperature of the electromagnetic background. A one oscillator model for inhomogeneous dispersive absorbing dielectric material is introduced and canonically quantized to calculate the Casimir-Polder force at a dielectric interface at finite temperature. The model fulfils causal commutation relations and the dielectric function of the model fulfils the Kramer-Kronig relations. We then use the same methods to calculate the van der Waals force between two neutral atoms at zero temperature and at finite temperatures. It is shown that the high temperature behaviour of the Casimir-Polder force and the van der Waals force are independent of ℎ. This means that they have to be understood classically, what is then shown in an algebraic statistical theory by using classical KMS states. (orig.)
Zero Temperature Holographic Superfluids with Two Competing Orders
Li, Ran; Zhang, Hongbao; Zhao, Junkun
2016-01-01
We initiate the investigation of the zero temperature holographic superfluids with two competing orders, where besides the vacuum phase, two one band superfluid phases, the coexistent superfluid phase has also been found in the AdS soliton background for the first time. We construct the complete phase diagram in the $e-\\mu$ plane by numerics, which is consistent with our qualitative analysis. Furthermore, we calculate the corresponding optical conductivity and sound speed by the linear response theory. The onset of pole of optical conductivity at $\\omega=0$ indicates that the spontaneous breaking phase always represents the superfluid phase, and the residue of pole is increased with the chemical potential, which is consistent with the fact that the particle density is essentially the superfluid density for zero temperature superfluids. In addition, the resulting sound speed demonstrates the non-smoothness at the critical points as the order parameter of condensate, which indicates that the phase transitions c...
First Sound in Holographic Superfluids at Zero Temperature
Esposito, Angelo; Penco, Riccardo
2016-01-01
Within the context of AdS/CFT, the gravity dual of an s-wave superfluid is given by scalar QED on an asymptotically AdS spacetime. While this conclusion is vastly supported by numerical arguments, here we provide an analytical proof that this is indeed the case. Working at zero temperature, we explicitly find the quadratic action for the superfluid phonon at the boundary in an arbitrary number of dimensions, recovering the known dispersion relation for conformal first sound.
Zero-temperature criticality in a simple glass model
Head, David
1999-01-01
We introduce the strongly-interacting trap model, a version of Bouchaud's trap model for glasses [Bouchaud J-P 1992 {\\em J. Phys. I France {\\bf 2}} 1705]. At finite temperatures the model exhibits glassy relaxation over intermediate timeframes but reaches a steady state at finite times. In limit of zero temperature and with a suitably renormalised timescale the model maps onto the Bak-Sneppen model, widely studied in the context of self-organised criticality [Bak P and Sneppen K 1993 {\\em Phy...
Repulsive Casimir force at zero and finite temperature
We study the zero and finite temperature Casimir force acting on a perfectly conducting piston with arbitrary cross section moving inside a closed cylinder with infinitely permeable walls. We show that at any temperature, the Casimir force always tends to move the piston away from the walls and toward its equilibrium position. In the case of a rectangular piston, exact expressions for the Casimir force are derived. In the high-temperature regime, we show that the leading term of the Casimir force is linear in temperature and therefore the Casimir force has a classical limit. Due to duality, all these results also hold for an infinitely permeable piston moving inside a closed cylinder with perfectly conducting walls.
Repulsive Casimir force at zero and finite temperature
Lim, S C [Faculty of Engineering, Multimedia University, Jalan Multimedia, Cyberjaya, 63100 Selangor Darul Ehsan (Malaysia); Teo, L P [Faculty of Information Technology, Multimedia University, Jalan Multimedia, Cyberjaya, 63100 Selangor Darul Ehsan (Malaysia)], E-mail: sclim@mmu.edu.my, E-mail: lpteo@mmu.edu.my
2009-01-15
We study the zero and finite temperature Casimir force acting on a perfectly conducting piston with arbitrary cross section moving inside a closed cylinder with infinitely permeable walls. We show that at any temperature, the Casimir force always tends to move the piston away from the walls and toward its equilibrium position. In the case of a rectangular piston, exact expressions for the Casimir force are derived. In the high-temperature regime, we show that the leading term of the Casimir force is linear in temperature and therefore the Casimir force has a classical limit. Due to duality, all these results also hold for an infinitely permeable piston moving inside a closed cylinder with perfectly conducting walls.
Zero-Temperature Fluctuations in Short-Range Spin Glasses
Arguin, L.-P.; Newman, C. M.; Stein, D. L.; Wehr, J.
2016-06-01
We consider the energy difference restricted to a finite volume for certain pairs of incongruent ground states (if they exist) in the d-dimensional Edwards-Anderson Ising spin glass at zero temperature. We prove that the variance of this quantity with respect to the couplings grows proportionally to the volume in any d ≥ 2. An essential aspect of our result is the use of the excitation metastate. As an illustration of potential applications, we use this result to restrict the possible structure of spin glass ground states in two dimensions.
Ye, Liming; Yang, Guixia; Van Ranst, Eric; Tang, Huajun
2013-01-01
A generalized, structural, time series modeling framework was developed to analyze the monthly records of absolute surface temperature, one of the most important environmental parameters, using a deterministicstochastic combined (DSC) approach. Although the development of the framework was based on the characterization of the variation patterns of a global dataset, the methodology could be applied to any monthly absolute temperature record. Deterministic processes were used to characterize th...
Chiral properties of two-flavour QCD at zero and non-zero temperature
Lattice Quantum Chromodynamics (LQCD) is the preferred tool for obtaining non-perturbative results from QCD in the low-energy regime. It has by now entered the era in which high precision calculations for a number of phenomenologically relevant observables at the physical point, with dynamical quark degrees of freedom and controlled systematics, become feasible. Despite these successes there are still quantities where control of systematic effects is insufficient. The subject of this thesis is the exploration of the potential of todays state-of-the-art simulation algorithms for non-perturbatively O(a)-improved Wilson fermions to produce reliable results in the chiral regime and at the physical point both for zero and non-zero temperature. Important in this context is the control over the chiral extrapolation. This thesis is concerned with two particular topics, namely the computation of hadronic form factors at zero temperature, and the properties of the phase transition in the chiral limit of two-flavour QCD. The electromagnetic iso-vector form factor of the pion provides a platform to study systematic effects and the chiral extrapolation for observables connected to the structure of mesons (and baryons). Mesonic form factors are computationally simpler than their baryonic counterparts but share most of the systematic effects. This thesis contains a comprehensive study of the form factor in the regime of low momentum transfer q2, where the form factor is connected to the charge radius of the pion. A particular emphasis is on the region very close to q2=0 which has not been explored so far, neither in experiment nor in LQCD. The results for the form factor close the gap between the smallest spacelike q2-value available so far and q2=0, and reach an unprecedented accuracy at full control over the main systematic effects. This enables the model-independent extraction of the pion charge radius. The results for the form factor and the charge radius are used to test
Chiral properties of two-flavour QCD at zero and non-zero temperature
Brandt, Bastian Benjamin
2012-11-22
Lattice Quantum Chromodynamics (LQCD) is the preferred tool for obtaining non-perturbative results from QCD in the low-energy regime. It has by now entered the era in which high precision calculations for a number of phenomenologically relevant observables at the physical point, with dynamical quark degrees of freedom and controlled systematics, become feasible. Despite these successes there are still quantities where control of systematic effects is insufficient. The subject of this thesis is the exploration of the potential of todays state-of-the-art simulation algorithms for non-perturbatively O(a)-improved Wilson fermions to produce reliable results in the chiral regime and at the physical point both for zero and non-zero temperature. Important in this context is the control over the chiral extrapolation. This thesis is concerned with two particular topics, namely the computation of hadronic form factors at zero temperature, and the properties of the phase transition in the chiral limit of two-flavour QCD. The electromagnetic iso-vector form factor of the pion provides a platform to study systematic effects and the chiral extrapolation for observables connected to the structure of mesons (and baryons). Mesonic form factors are computationally simpler than their baryonic counterparts but share most of the systematic effects. This thesis contains a comprehensive study of the form factor in the regime of low momentum transfer q{sup 2}, where the form factor is connected to the charge radius of the pion. A particular emphasis is on the region very close to q{sup 2}=0 which has not been explored so far, neither in experiment nor in LQCD. The results for the form factor close the gap between the smallest spacelike q{sup 2}-value available so far and q{sup 2}=0, and reach an unprecedented accuracy at full control over the main systematic effects. This enables the model-independent extraction of the pion charge radius. The results for the form factor and the charge
Zero temperature holographic superfluids with two competing orders
Ran, Li; Tian, Yu; Zhang, Hongbao; Zhao, Junkun
2016-08-01
We initiate the investigation of the zero temperature holographic superfluids with two competing orders, where besides the vacuum phase, two one component superfluid phases, the coexistent superfluid phase has also been found in the anti-de Sitter soliton background for the first time. We construct the complete phase diagram in the e - μ plane by numerics, which is consistent with our qualitative analysis. Furthermore, we calculate the corresponding optical conductivity and sound speed by the linear response theory. The onset of the pole of optical conductivity at ω =0 indicates that the spontaneous breaking phase always represents the superfluid phase, and the residue of the pole is increased with the chemical potential, which is consistent with the fact that the particle density is essentially the superfluid density for zero temperature superfluids. In addition, the resulting sound speed demonstrates the nonsmoothness at the critical points as the order parameter of the condensate, which indicates that the phase transitions can also be identified by the behavior of the sound speed. Moreover, as expected from the boundary conformal field theory, the sound speed saturates to 1/√{2 } at the large chemical potential limit for our two component holographic superfluid model.
Zero temperature phase transitions in quantum Heisenberg ferromagnets
The purpose of this work is to understand the zero temperature phases and the phase transitions of Heisenberg spin systems which can have an extensive, spontaneous magnetic moment, this entails a study of quantum transitions with an order parameter which is also a non-abelian conserved charge. To this end, we introduce and study a new class of lattice models of quantum rotors. We compute their mean-field phase diagrams and present continuum, quantum field-theoretic descriptions of their low energy properties in different regimes. We argue that, in spatial dimension d=1, the phase transitions in itinerant Fermi systems are in the same universality class as the corresponding transitions in certain rotor models. We discuss implications of our results for itinerant fermions systems in higher d and for other physical systems. Copyright copyright 1996 Academic Press, Inc
Energy loss at zero temperature from extremal black holes
Ahmadvand, Moslem
2015-01-01
Using the AdS/CFT correspondence, we probe the extremal black holes by studying the energy loss of a moving heavy point particle in a strongly-coupled boundary field theory at zero temperature and finite charge density. We first consider the extremal Reissner-Nordstr$\\rm\\ddot{o}$m-AdS (AdSRN) background black hole in the bulk and find an analytic solution of drag force which depends on the finite charge density of the boundary field theory. By studying the near horizon geometry of trailing string in the bulk, we show the IR divergency does not show the logarithmic behavior. We study also the stochastic behavior of the probe and find the Langevin diffusion coefficients. This study is extended to the extremal backgrounds with vanishing entropy density in appropriate extremal limits.
Fluctuations in subsystems of the zero temperature XX chain: Emergence of an effective temperature
Eisler, V.; Legeza, O.; Racz, Z.
2006-01-01
The zero-temperature XX chain is studied with emphasis on the properties of a block of $L$ spins inside the chain. We investigate the quantum fluctuations resulting from the entanglement of the block with the rest of the chain using analytical as well as numerical (density matrix renormalization group) methods. It is found that the rest of the chain acts as a thermal environment and an effective temperature can be introduced to describe the fluctuations. We show that the effective temperature...
Tagliati, Stella
2011-01-01
A differential, membrane-based nanocalorimeter has been designed and constructed for thermal studies of mesoscopic samples at low temperatures. The calorimeter is intended for sample masses from mg to sub-μg and a broad temperature range from above room temperature down to the sub-K region. It allows concurrent use of ac steady state and relaxation methods. Effort was spent to achieve good absolute accuracy to enable investigations of the electronic contribution to the heat capacity of superc...
Quantum Quench Across a Zero Temperature Holographic Superfluid Transition
Basu, Pallab; Das, Sumit R; Nishioka, Tatsuma
2012-01-01
We study quantum quench in a holographic model of a zero temperature insulator-superfluid transition. The model is a modification of that of arXiv:0911.0962 and involves a self-coupled complex scalar field, Einstein gravity with a negative cosmological constant, and Maxwell field with one of the spatial directions compact. In a suitable regime of parameters, the scalar field can be treated as a probe field whose backreaction to both the metric and the gauge field can be ignored. We show that when the chemical potential of the dual field theory lies between two critical values, the equilibrium background geometry is a AdS soliton with a constant gauge field, while the complex scalar condenses leading to broken symmetry. We then turn on a time dependent source for the order parameter which interpolates between constant values and crosses the order-disorder critical point. In the critical region adiabaticity breaks down, but for a small rate of change of the source $v$ there is a new small-$v$ expansion in fract...
Gan, Zhixing; Wu, Xinglong; Zhang, Jinlei; Zhu, Xiaobin; Chu, Paul K
2013-06-10
The temperature sensing capability of diphenylalanine nanotubes is investigated. The materials can detect local rapid temperature changes and measure the absolute temperature in situ with a precision of 1 °C by monitoring the temperature-dependent photoluminescence (PL) intensity and lifetime, respectively. The PL lifetime is independent of ion concentrations in the medium as well as pH in the physiological range. This biocompatible thermal sensing platform has immense potential in the in situ mapping of microenvironmental temperature fluctuations in biological systems for disease diagnosis and therapeutics. PMID:23679829
A luminescent molecular thermometer for long-term absolute temperature measurements at the nanoscale
Brites, Carlos; Lima, Patricia; Silva, Nuno Joâo O.; Millán, Ángel; Amaral, Vitor S.; Palacio, Fernando; Carlos, Luis D.
2010-01-01
A unique Eu3+/Tb3+ luminescent self-referencing nanothermometer allowing absolute measurements in the 10–350 K temperature range and sub-micrometer spatial resolution is reported (see Figure). It has up to 4.9%·K−1 temperature sensitivity and high photostability for long-term use. The combination of molecular thermometry, superparamagnetism and luminescence in a nanometric host matrix provides multifunctionality opening the way for new exciting applications.
Absolute scaling law for temperature data in Rayleigh-Benard convection
无
2009-01-01
In addition to the hierarchical-structure (H-S) model, this paper further explores the most intensive intermittent structure of Rayleigh-Bénard convection at the high Ra numbers proportional to temperature. With respect to the discovery and by means of the scale, both of Bolgiano, there are two regions of the structure holding the absolute scaling law given by Ching’s paper. Through theoretic analysis of data, this paper indicates that the regions act as two local intensive intermittent structures, by which the statistical absolute scaling performance of region is induced, rather than the statistical result of the entire time series in belief since 1941. In terms of statistical theory, the local structure in fluid, therefore, is the essence governing the absolute scaling performance of region, especially in high intensity.
Jamming as a critical phenomenon: a field theory of zero-temperature grain packings
Henkes, Silke; Chakraborty, Bulbul
2005-01-01
A field theory of frictionless grain packings in two dimensions is shown to exhibit a zero-temperature critical point at a non-zero value of the packing fraction. The zero-temperature constraint of force-balance plays a crucial role in determining the nature of the transition. Two order parameters, , the deviation of the average number of contacts from the isostatic value and, , the average magnitude of the force per contact, characterize the transition from the jammed (high packing fraction)...
Best, Fred A.; Adler, Douglas P.; Pettersen, Claire; Revercomb, Henry E.; Perepezko, John H.
2010-11-01
NASA's anticipated plan for a mission dedicated to Climate (CLARREO) will hinge upon the ability to fly SI traceable standards that provide irrefutable absolute measurement accuracy. As an example, instrumentation designed to measure spectrally resolved infrared radiances will require high-emissivity calibration blackbodies that have absolute temperature uncertainties of better than 0.045K (3 sigma). A novel scheme to provide absolute calibration of temperature sensors onorbit, that uses the transient melt signatures from multiple phase change materials, has been demonstrated in the laboratory at the University of Wisconsin and is now undergoing technology advancement under NASA Instrument Incubator Program funding. Using small quantities of phase change material (less than half of a percent of the mass of the cavity), melt temperature accuracies of better than 10 mK have been demonstrated for mercury, water, and gallium (providing calibration from 233K to 303K). Refinements currently underway focus on ensuring that the melt materials in their sealed confinement housings perform as expected in the thermal and microgravity environment of a multi-year spaceflight mission. Thermal soak and cycling tests are underway to demonstrate that there is no dissolution from the housings into the melt materials that could alter melt temperature, and that there is no liquid metal embrittlement of the housings from the metal melt materials. In addition, NASA funding has been recently secured to conduct a demonstration of this scheme in the microgravity environment of the International Space Station.
Ulich, B. L.; Rhodes, P. J.; Davis, J. H.; Hollis, J. M.
1980-01-01
Careful observations have been made at 86.1 GHz to derive the absolute brightness temperatures of the sun (7914 + or - 192 K), Venus (357.5 + or - 13.1 K), Jupiter (179.4 + or - 4.7 K), and Saturn (153.4 + or - 4.8 K) with a standard error of about three percent. This is a significant improvement in accuracy over previous results at millimeter wavelengths. A stable transmitter and novel superheterodyne receiver were constructed and used to determine the effective collecting area of the Millimeter Wave Observatory (MWO) 4.9-m antenna relative to a previously calibrated standard gain horn. The thermal scale was set by calibrating the radiometer with carefully constructed and tested hot and cold loads. The brightness temperatures may be used to establish an absolute calibration scale and to determine the antenna aperture and beam efficiencies of other radio telescopes at 3.5-mm wavelength.
A new Ultra Precision Interferometer for absolute length measurements down to cryogenic temperatures
A new Ultra Precision Interferometer (UPI) was built at Physikalisch-Technische Bundesanstalt. As its precursor, the precision interferometer, it was designed for highly precise absolute length measurements of prismatic bodies, e.g. gauge blocks, under well-defined temperature conditions and pressure, making use of phase stepping imaging interferometry. The UPI enables a number of enhanced features, e.g. it is designed for a much better lateral resolution and better temperature stability. In addition to the original concept, the UPI is equipped with an external measurement pathway (EMP) in which a prismatic body can be placed alternatively. The temperature of the EMP can be controlled in a much wider range compared to the temperature of the interferometer's main chamber. An appropriate cryostat system, a precision temperature measurement system and improved imaging interferometry were established to permit absolute length measurements down to cryogenic temperature, demonstrated for the first time ever. Results of such measurements are important for studying thermal expansion of materials from room temperature towards less than 10 K. (paper)
YE Liming; YANG Guixia; Eric VAN RANST; TANG Huajun
2013-01-01
A generalized,structural,time series modeling framework was developed to analyze the monthly records of absolute surface temperature,one of the most important environmental parameters,using a deterministicstochastic combined (DSC) approach.Although the development of the framework was based on the characterization of the variation patterns of a global dataset,the methodology could be applied to any monthly absolute temperature record.Deterministic processes were used to characterize the variation patterns of the global trend and the cyclic oscillations of the temperature signal,involving polynomial functions and the Fourier method,respectively,while stochastic processes were employed to account for any remaining patterns in the temperature signal,involving seasonal autoregressive integrated moving average (SARIMA) models.A prediction of the monthly global surface temperature during the second decade of the 21st century using the DSC model shows that the global temperature will likely continue to rise at twice the average rate of the past 150 years.The evaluation of prediction accuracy shows that DSC models perform systematically well against selected models of other authors,suggesting that DSC models,when coupled with other ecoenvironmental models,can be used as a supplemental tool for short-term (～10-year) environmental planning and decision making.
Ye, Liming; Yang, Guixia; Van Ranst, Eric; Tang, Huajun
2013-03-01
A generalized, structural, time series modeling framework was developed to analyze the monthly records of absolute surface temperature, one of the most important environmental parameters, using a deterministicstochastic combined (DSC) approach. Although the development of the framework was based on the characterization of the variation patterns of a global dataset, the methodology could be applied to any monthly absolute temperature record. Deterministic processes were used to characterize the variation patterns of the global trend and the cyclic oscillations of the temperature signal, involving polynomial functions and the Fourier method, respectively, while stochastic processes were employed to account for any remaining patterns in the temperature signal, involving seasonal autoregressive integrated moving average (SARIMA) models. A prediction of the monthly global surface temperature during the second decade of the 21st century using the DSC model shows that the global temperature will likely continue to rise at twice the average rate of the past 150 years. The evaluation of prediction accuracy shows that DSC models perform systematically well against selected models of other authors, suggesting that DSC models, when coupled with other ecoenvironmental models, can be used as a supplemental tool for short-term (˜10-year) environmental planning and decision making.
Decoherence of a Quantum Nonlinear Oscillator Under a Non-zero Temperature Thermal Bath
无
2006-01-01
The characteristic time τD for decoherence process of a quantum nonlinear oscillator system under a nonzero temperature thermal bath is studied by expanding the linear entropy. By numerical analysis, it is shown that at a non-zero temperature, the quantum coherence decays much faster than at zero temperature. Moreover, the non-zero temperature thermal bath will bring a crucialsuppression to the quantum effects of the observables, which causes these quantum effects to become unable to persist up to the Ehrenfest time but is insufficient to destroy the quantum-classical transition.
Temperature dependence of the absolute rate constant for the reaction of ozone with dimethyl sulfide
WANG Hai-tao; ZHANG Yu-jie; MU Yu-jing
2007-01-01
Absolute rate constants for the reaction of ozone with dimethyl sulfide (DMS) were measured in a 200-L Teflon chamber over the temperature range of 283-353 K. Measurements were carried out using DMS in large excess over ozone of 10 to 1 or greater. Over the indicated temperature range,the data could be fit to the simple Arrhenius expression as KDMS = (9.96±3.61)×10-11exp(-(7309.7±1098.2)/T)cm3/(molecule·s). A compared investigation of the reaction between ozone and ethene had a kc2H4 value of(1.35±0.11)×10-18 cm3/(molecule·s) at room temperature.
Remarks on the U(1) axial symmetry in QCD at zero and non-zero temperature
Meggiolaro, E
2002-01-01
This paper is organized in two parts. The first part (Sections 2-5) is dedicated to the theory at T=0 and contains a pedagogical review of some fundamental aspects related with the chiral symmetries of QCD, the U(1) problem and its solution proposed by 'tHooft, Witten and Veneziano. In the second part (Sections 6-14) we discuss the role of the U(1) axial symmetry for the phase structure of QCD at finite temperature. One expects that, above a certain critical temperature, also the U(1) axial symmetry will be restored. We will try to see if this transition has (or has not) anything to do with the usual chiral transition: various possible scenarios are discussed. In particular, we analyse a scenario in which the U(1) axial symmetry is still broken above the chiral transition. We will show that this scenario can be consistently reproduced in the full respect of the relevant QCD Ward Identities and also using an effective Lagrangian model. A new order parameter is introduced for the U(1) axial symmetry.
Isothermal martensite formation at sub-zero temperatures
Stojko, Allan; Hansen, Mikkel Fougt; Slycke, Jan;
2012-01-01
temperatures in the range of 80-233 K. The kinetics of isothermal martensite formation depends strongly on the temperature and can be described by Johnson-Mehl-Avrami-Kolmogorov kinetics. Isothermal experiments with dilatometry indicated the occurrence of a volume increase on isothermal holding, consistent...
Isothermal martensite formation at sub-zero temperatures
Stojko, Allan; Hansen, Mikkel Fougt; Slycke, Jan;
2011-01-01
temperatures in the range of 80-233 K. The kinetics of isothermal martensite formation depends strongly on the temperature and can be described by Johnson-Mehl-Avrami-Kolmogorov kinetics. Isothermal experiments with dilatometry indicated the occurrence of a volume increase on isothermal holding, consistent...
Yoshino, K.; Esmond, J. R.; Freeman, D. E.; Parkinson, W. H.
1993-01-01
Laboratory measurements of the relative absorption cross sections of ozone at temperatures 195, 228, and 295 K have been made throughout the 185 to 254 nm wavelength region. The absolute absorption cross sections at the same temperatures have been measured at several discrete wavelengths in the 185 to 250 nm region. The absolute cross sections of ozone have been used to put the relative cross sections on a firm absolute basis throughout the 185 to 255 nm region. These recalibrated cross sections are slightly lower than those of Molina and Molina (1986), but the differences are within a few percent and would not be significant in atmospheric applications.
The impact of water temperature on the measurement of absolute dose
Islam, Naveed Mehdi
To standardize reference dosimetry in radiation therapy, Task Group 51 (TG 51) of American Association of Physicist's in Medicine (AAPM) recommends that dose calibration measurements be made in a water tank at a depth of 10 cm and at a reference geometry. Methodologies are provided for calculating various correction factors to be applied in calculating the absolute dose. However the protocol does not specify the water temperature to be used. In practice, the temperature of water during dosimetry may vary considerably between independent sessions and different centers. In this work the effect of water temperature on absolute dosimetry has been investigated. Density of water varies with temperature, which in turn may impact the beam attenuation and scatter properties. Furthermore, due to thermal expansion or contraction air volume inside the chamber may change. All of these effects can result in a change in the measurement. Dosimetric measurements were made using a Farmer type ion chamber on a Varian Linear Accelerator for 6 MV and 23 MV photon energies for temperatures ranging from 10 to 40 °C. A thermal insulation was designed for the water tank in order to maintain relatively stable temperature over the duration of the experiment. Dose measured at higher temperatures were found to be consistently higher by a very small magnitude. Although the differences in dose were less than the uncertainty in each measurement, a linear regression of the data suggests that the trend is statistically significant with p-values of 0.002 and 0.013 for 6 and 23 MV beams respectively. For a 10 degree difference in water phantom temperatures, which is a realistic deviation across clinics, the final calculated reference dose can differ by 0.24% or more. To address this effect, first a reference temperature (e.g.22 °C) can be set as the standard; subsequently a correction factor can be implemented for deviations from this reference. Such a correction factor is expected to be of similar
N=1 Wess Zumino Model in d=3 at zero and finite temperature
Synatschke, Franziska; Wipf, Andreas
2010-01-01
Supersymmetric renormalization group (RG) flow equations for the effective superpotential of the three-dimensional Wess-Zumino model are derived at zero and non-zero temperature. This model with fermions and bosons interacting via a Yukawa term possesses a supersymmetric analogue of the Wilson-Fisher fixed-point. At zero temperature we determine the phase-transition line in coupling-constant space separating the supersymmetric from the non-supersymmetric phase. At finite temperature we encounter dimensional reduction from 3 to 2 dimensions in the infrared regime. We determine the finite-temperature phase diagram for the restoration of the global $Z_2$-symmetry and show that for temperatures above the $Z_2$ phase transition the pressure obeys the Stefan-Boltzmann law of a gas of massless bosons in 2+1 dimensions.
Isothermal martensite formation at sub-zero temperatures
Stojko, Allan; Hansen, Mikkel Fougt; Slycke, Jan;
2010-01-01
austenitized and quenched in oil and thereafter investigated with vibrating sample agnetometry, which allows a quantitative assessment of the fraction of retained austenite as a function of the subzero temperature and time. Isothermal martensite formation was observed on interrupting the continuous cooling (5...
Conductance of ballistic quantum wires at non-zero temperature
Temperature dependent conductance of ballistic quantum wire has been calculated for kT j - μ, the filling of quantum subbands (G) being taken into account; here μ(T) is the chemical potential, and Ej corresponds to the top of the quantum subband. The contribution of the filled in subbands to the ballistic conductance is described by the Landauer-Buettiker formula G = 2 e2/h, whereas the conductance decreases when the subband is partly filled in, which results in disappearance of the quantum steps in case kT coincides with the quantum subband gap. This temperature quenching of the quantum steps under the gate voltage is demonstrated when studying quantum wires in a Si (100) wafer
The instanton liquid in QCD at zero and finite temperature
Schäfer, T
1995-01-01
In this paper we study the statistical mechanics of the instanton liquid in QCD. After introducing the partition function as well as the gauge field and quark induced interactions between instantons we describe a method to calculate the free energy of the instanton system. We use this method to determine the equilibrium density and the equation of state from numerical simulations of the instanton ensemble in QCD for various numbers of flavors. We find that there is a critical number of flavors above which chiral symmetry is restored in the groundstate. In the physical case of two light and one intermediate mass flavor the system undergoes a chiral phase transition at T\\simeq 140 MeV. We show that the mechanism for this transition is a rearrangement of the instanton liquid, going from a disordered, random, phase at low temperatures to a strongly correlated, molecular, phase at high temperature. We also study the behavior of mesonic susceptibilities near the phase transition.
S-parameter at Non-Zero Temperature and Chemical Potential
Søndergaard, Ulrik Ishøj; Sannino, Francesco; Pica, Claudio
2011-01-01
We compute the finite-temperature and matter density corrections to the S-parameter at the one loop level. At non-zero temperature T and matter density Lorentz symmetry breaks and therefore we suggest a suitable generalization of the S-parameter. By computing the plasma correction, we discover a...
Camargo-Molina, J.E., E-mail: jose.camargo@physik.uni-wuerzburg.de [Institut für Theoretische Physik und Astronomie, Universität Würzburg, Am Hubland, 97074 Würzburg (Germany); Garbrecht, B., E-mail: garbrecht@tum.de [Physik Department T70, Technische Universität München, 85748 Garching (Germany); O' Leary, B., E-mail: ben.oleary@physik.uni-wuerzburg.de [Institut für Theoretische Physik und Astronomie, Universität Würzburg, Am Hubland, 97074 Würzburg (Germany); Porod, W., E-mail: porod@physik.uni-wuerzburg.de [Institut für Theoretische Physik und Astronomie, Universität Würzburg, Am Hubland, 97074 Würzburg (Germany); Staub, F., E-mail: fnstaub@th.physik.uni-bonn.de [Bethe Center for Theoretical Physics and Physikalisches Institut der Universität Bonn, 53115 Bonn (Germany)
2014-10-07
We re-evaluate the constraints on the parameter space of the minimal supersymmetric standard model from tunneling to charge- and/or color-breaking minima, taking into account thermal corrections. We pay particular attention to the region known as the Natural MSSM, where the masses of the scalar partners of the top quarks are within an order of magnitude or so of the electroweak scale. These constraints arise from the interaction between these scalar tops and the Higgs fields, which allows the possibility of parameter points having deep charge- and color-breaking true vacua. In addition to requiring that our electroweak-symmetry-breaking, yet QCD- and electromagnetism-preserving vacuum has a sufficiently long lifetime at zero temperature, also demanding stability against thermal tunneling further restricts the allowed parameter space.
Camargo-Molina, J E; O'Leary, B; Porod, W; Staub, F
2014-01-01
We re-evaluate the constraints on the parameter space of the minimal supersymmetric standard model from tunneling to charge- and/or color-breaking minima, taking into account thermal corrections. We pay particular attention to the region known as the Natural MSSM, where the masses of the scalar partners of the top quarks are within an order of magnitude or so of the electroweak scale. These constraints arise from the interaction between these scalar tops and the Higgs fields, which allows the possibility of parameter points having deep charge- and color-breaking true vacua. In addition to requiring that our electro-weak-symmetry-breaking, yet QCD- and electromagnetism-preserving vacuum has a sufficiently long lifetime at zero temperature, also demanding stability against thermal tunneling further restricts the allowed parameter space.
We re-evaluate the constraints on the parameter space of the minimal supersymmetric standard model from tunneling to charge- and/or color-breaking minima, taking into account thermal corrections. We pay particular attention to the region known as the Natural MSSM, where the masses of the scalar partners of the top quarks are within an order of magnitude or so of the electroweak scale. These constraints arise from the interaction between these scalar tops and the Higgs fields, which allows the possibility of parameter points having deep charge- and color-breaking true vacua. In addition to requiring that our electroweak-symmetry-breaking, yet QCD- and electromagnetism-preserving vacuum has a sufficiently long lifetime at zero temperature, also demanding stability against thermal tunneling further restricts the allowed parameter space
Yoshino, K.; Freeman, D. E.; Esmond, J. R.; Parkinson, W. H.
1988-01-01
The absolute absorption cross-section of ozone has been experimentally determined at the temperatures 195, 228, and 295 K at several discrete wavelengths in the 238-335-nm region. The present results for ozone at 295 K are found to be in agreement with those of Hearn (1961). Absolute cross-section measurements of ozone at 195 K have confirmed previous (Freeman et al., 1984) relative cross-section measurements throughout the 240-335-nm region.
Holographic zero sound at finite temperature in the Sakai-Sugimoto model
DiNunno, Brandon S; Jokela, Niko; Pedraza, Juan F
2014-01-01
In this paper, we study the fate of the holographic zero sound mode at finite temperature and non-zero baryon density in the deconfined phase of the Sakai-Sugimoto model of holographic QCD. We establish the existence of such a mode for a wide range of temperatures and investigate the dispersion relation, quasi-normal modes, and spectral functions of the collective excitations in four different regimes, namely, the collisionless quantum, collisionless thermal, and hydrodynamic regimes, as well as an intermediate crossover between the latter two. For sufficiently high temperatures, the zero sound completely disappears, and the physics is dominated by an emergent diffusive mode. We compare our findings to Landau-Fermi liquid theory and to other holographic models.
Li, Yunjing; Gupta, Rajendra
2003-04-20
It is experimentally demonstrated that absolute concentrations of minority species in flames can be measured by the photothermal deflection spectroscopy (PTDS) technique. In addition, the PTDS signal simultaneously yields the flame temperature the measurement point. Absolute concentration profiles of OH have been measured in a flat-flame burner with methane as fuel. The PTDS measurements agree well with those obtained independently by the absorption technique. The flame temperature measurements by PTDS are also in good agreement with those obtained by the Boltzmann distribution among the rotational levels of OH. PMID:12716166
Zero-temperature renormalization of the 2D transverse Ising model
A zero-temperature real-space renormalization-group method is applied to the transverse Ising model on planar hexagonal, triangular and quadratic lattices. The critical fields and the critical exponents describing low-field large-field transition are calculated. (author)
Non-invasive continuous core temperature measurement by zero heat flux
Teunissen, L.P.J.; Klewer, J.; Haan, A. de; Koning, J.J. de; Daanen, H.A.M.
2011-01-01
Reliable continuous core temperature measurement is of major importance for monitoring patients. The zero heat flux method (ZHF) can potentially fulfil the requirements of non-invasiveness, reliability and short delay time that current measurement methods lack. The purpose of this study was to deter
Characterisation of the dynamical quantum state of a zero temperature Bose-Einstein condensate
Rogel-Salazar, J.; Choi, S.; New, G. H. C.; Burnett, K.
2003-01-01
We describe the quantum state of a Bose-Einstein condensate at zero temperature. By evaluating the Q-function we show that the ground state of Bose-Einstein condensate under the Hartree approximation is squeezed. We find that multimode Schroedinger cat states are generated as the condensate evolves in a ballistic expansion.
Spinodal Decomposition of Metastable Melting in the Zero-Temperature Limit
Iosilevski, I L; Chigvintsev, Alexander Yu.; Iosilevski, Igor L.
2006-01-01
"Conventional" scenario of metastable melting in ordinary substances in the limit of zero temperature assumes that the melting curve reaches the matter zero isotherm ("cold curve"). The same is true for standard variant of one-component plasma model on rigid compensating background in both limits: classical and "cold" quantum melting. The modified OCP on uniform, but compressible background shows the completely different scenario of the metastable melting closure. The remarkable feature of this scenario is that the liquid freezing curve terminates at liquid spinodal curve of 1st-order liquid gas phase transition, which takes place in this type of OCP models ("spinodal decomposition").
Zero temperature black holes and the failure of semi-classical analysis
Alvarenga, F G; Fabris, J C; Marques, G T
2003-01-01
The extreme Reissner-Nordstr\\"om black holes have zero surface gravity. However, a semi-classical analysis seems to be ill-definite for these objects and apparently no notion of temperature exists for them. It is argued here that these properties are shared for all kind of black holes whose surface gravity is zero. Two examples are worked out explicitely: the scalar-tensor cold black holes and extreme black holes resulting from a gravity system coupled to a generalized Maxwell field in higher dimensions. The reasons for this anomolous behaviour are discussed as well as its thermodynamics implications.
Quark-Number Susceptibility at Finite Chemical Potential and Zero Temperature
HE Deng-Ke; JIANG Yu; FENG Hong-Tao; SUN Wei-Min; ZONG Hong-Shi
2008-01-01
We give a direct method for calculating the quark-number susceptibility at finite chemical potential and zero temperature.In this approach the quark-number susceptibility is totally determined by G[μ](p)(the dressed quark propagator at finite chemical potential μ).By applying the general result in our previous study[Phys.Rev.C 71(2005)015205,034901,73 (2006) 016004] G[μ](p)is calculated from the model quark propagator proposed by Pagels and Stokar[Phys.Rev.D 20(1979)2947].The full analytic expression of the quark-number susceptibility at finite μ and zero T is obtained.
Sohrab, Siavash
Thermodynamic equilibrium between matter and radiation leads to de Broglie wavelength λdβ = h /mβvrβ and frequency νdβ = k /mβvrβ of matter waves and stochastic definitions of Planck h =hk =mk c and Boltzmann k =kk =mk c constants, λrkνrk = c , that respectively relate to spatial (λ) and temporal (ν) aspects of vacuum fluctuations. Photon massmk =√{ hk /c3 } , amu =√{ hkc } = 1 /No , and universal gas constant Ro =No k =√{ k / hc } result in internal Uk = Nhνrk = Nmkc2 = 3 Nmkvmpk2 = 3 NkT and potential pV = uN\\vcirc / 3 = N\\ucirc / 3 = NkT energy of photon gas in Casimir vacuum such that H = TS = 4 NkT . Therefore, Kelvin absolute thermodynamic temperature scale [degree K] is identified as length scale [meter] and related to most probable wavelength and de Broglie thermal wavelength as Tβ =λmpβ =λdβ / 3 . Parallel to Wien displacement law obtained from Planck distribution, the displacement law λwS T =c2 /√{ 3} is obtained from Maxwell -Boltzmann distribution of speed of ``photon clusters''. The propagation speeds of sound waves in ideal gas versus light waves in photon gas are described in terms of vrβ in harmony with perceptions of Huygens. Newton formula for speed of long waves in canals √{ p / ρ } is modified to √{ gh } =√{ γp / ρ } in accordance with adiabatic theory of Laplace.
By use of first order time dependent perturbation theory at zero temperature for separable position or momentum dependent couplings between intrinsic and collective degrees of freedom the author derives expressions for friction and diffusion constants, mass and potential corrections, and differential equations in time for the first and second moments of the collectibe variables. The diffusion constants do not vanish at zero temperature, thus indicating the invalidity of the Einstein relation and the existence of pure quantum effects. By taking the trace over the intrinsic coordinates in the Schroedinger equation of the total density operator, a von Neumann equation for the collective density matrix is obtained which, in turn, reduces to a nonlinear dissipative Schroedinger equation if a certain condition is fulfilled. As a solvable example, with this scheme the theory of radiation damping is treated. (orig./AH)
The fracture mechanisms in duplex stainless steels at sub-zero temperatures
Pilhagen, Johan
2013-01-01
The aim of the thesis was to study the susceptibility for brittle failures and the fracture process of duplex stainless steels at sub-zero temperatures (°C). In the first part of the thesis plates of hot-rolled duplex stainless steel with various thicknesses were used to study the influence of delamination (also known as splits) on the fracture toughness. The methods used were impact and fracture toughness testing. Light optical microscopy and scanning electron microscopy were used to investi...
Vortex in a weakly relativistic Bose gas at zero temperature and relativistic fluid approximation
Boisseau, B.
2002-01-01
The Bogoliubov procedure in quantum field theory is used to describe a relativistic almost ideal Bose gas at zero temperature. Special attention is given to the study of a vortex. The radius of the vortex in the field description is compared to that obtained in the relativistic fluid approximation. The Kelvin waves are studied and, for long wavelengths, the dispersion relation is obtained by an asymptotic matching method and compared with the non relativistic result.
A universal form of slow dynamics in zero-temperature random-field Ising model
Ohta, Hiroki; Sasa, Shin-ichi
2009-01-01
The zero-temperature Glauber dynamics of the random-field Ising model describes various ubiquitous phenomena such as avalanches, hysteresis, and related critical phenomena. Here, for a model on a random graph with a special initial condition, we derive exactly an evolution equation for an order parameter. Through a bifurcation analysis of the obtained equation, we reveal a new class of cooperative slow dynamics with the determination of critical exponents.
A universal form of slow dynamics in zero-temperature random-field Ising model
Ohta, H.; Sasa, S.
2010-04-01
The zero-temperature Glauber dynamics of the random-field Ising model describes various ubiquitous phenomena such as avalanches, hysteresis, and related critical phenomena. Here, for a model on a random graph with a special initial condition, we derive exactly an evolution equation for an order parameter. Through a bifurcation analysis of the obtained equation, we reveal a new class of cooperative slow dynamics with the determination of critical exponents.
Absolute scaling law for temperature data in Rayleigh-Benard convection
FU Qiang
2009-01-01
In addition to the hierarchical-structure (H-S) model, this paper further explores the most intensive in-With respect to the discovery and by means of the scale, both of Bolgiano, there are two regions of the structure holding the absolute scaling law given by Ching's paper. Through theoretic analysis of data, this paper indicates that the regions act as two local intensive intermittent structures, by which the statistical absolute scaling performance of region is induced, rather than the statistical result of the entire time series in belief since 1941. In terms of statistical theory, the local structure in fluid, therefore, is the essence governing the absolute scaling performance of region, especially in high intensity.
Bhattacharya, Rupak; Mondal, Richarj; Khatua, Pradip; Rudra, Alok; Kapon, Eli; Malzer, Stefan; Döhler, Gottfried; Pal, Bipul; Bansal, Bhavtosh
2015-01-01
We study a specific type of lifetime broadening resulting in the well-known exponential "Urbach tail" density of states within the energy gap of an insulator. After establishing the frequency and temperature dependence of the Urbach edge in GaAs quantum wells, we show that the broadening due to the zero-point optical phonons is the fundamental limit to the Urbach slope in high-quality samples. In rough analogy with Welton's heuristic interpretation of the Lamb shift, the zero-temperature contribution to the Urbach slope can be thought of as arising from the electric field of the zero-point longitudinal-optical phonons. The value of this electric field is experimentally measured to be 3 kV cm-1 , in excellent agreement with the theoretical estimate.
Quantum confinement of zero-dimensional hybrid organic-inorganic polaritons at room temperature
We report on the quantum confinement of zero-dimensional polaritons in perovskite-based microcavity at room temperature. Photoluminescence of discrete polaritonic states is observed for polaritons localized in symmetric sphere-like defects which are spontaneously nucleated on the top dielectric Bragg mirror. The linewidth of these confined states is found much sharper (almost one order of magnitude) than that of photonic modes in the perovskite planar microcavity. Our results show the possibility to study organic-inorganic cavity polaritons in confined microstructure and suggest a fabrication method to realize integrated polaritonic devices operating at room temperature
Effects of Tyrode's solution osmolarities and milk on bull sperm storage above zero temperatures
Mahsa Afrough
2011-01-01
Full Text Available Background: Control of the medium osmolarity and temperature during long or short time sperm manipulation is essential.Objective: The objectives of the present study were to find the effects of different osmolarities of modified Tyrode's solution and milk on the bull sperm during incubation at above zero temperatures.Materials and Methods: Semen samples were collected twice from five Najdi bull. Centrifuged and most parts of seminal plasma were removed. First experiment: The concentrated semen were splited into nine aliquots to incubate in three different osmolarities (200, 300 and 400 mOsm at three temperatures (5, 25 and 39°C for 15 and 60 min of incubation. Second experiment: The semen samples were splited, mixed with the same volume of whole cow milk (5 and 25°C and milk with 7% glycerol (5°C and incubated for 15 and 60 min. Results: Sperm motility severely affected (p0.05 by increasing temperature during 1 h of incubation. Milk can protect the sperm viability and motility at cool conditions and there is no beneficial effect of glycerol in combination of milk on sperm incubation at above zero temperatures (p<0.05.Conclusion: Iso- and hyper-osmotic solutions protect bull sperm motility and viability at 25 and 39°C, while milk can be used for protecting sperm at 5°C.
Easy Absolute Values? Absolutely
Taylor, Sharon E.; Mittag, Kathleen Cage
2015-01-01
The authors teach a problem-solving course for preservice middle-grades education majors that includes concepts dealing with absolute-value computations, equations, and inequalities. Many of these students like mathematics and plan to teach it, so they are adept at symbolic manipulations. Getting them to think differently about a concept that they…
Yao Daquan; Zhai Hongtao
2005-01-01
In order to determine the degree of returning-to-zero of temperatures of deformed calcite, a series of rock-breaking experiments were designed to test calcite-rich limestone samples under fixed confining pressures and different temperatures. The consolidated deformed samples in their initial state were observed under a microscope and the microscopic indicators in different zero-returning states were put forward, thus providing a microscopic foundation for evaluation of reliability of dating values of deformation in calcite. At last, the correction of dating values of deformation for samples whose temperature has not yet returned to zero is discussed.
The investigation of the zero temperature coefficient point of power MOSFET
Bowen, Zhang; Xiaoling, Zhang; Wenwen, Xiong; Shuojie, She; Xuesong, Xie
2016-06-01
The paper investigates the zero temperature coefficient (ZTC) point of power MOSFET, based on the output characteristic of power MOSFET, the temperature coefficient of threshold voltage and the carrier mobility. It is found that the gate voltage has a big effect on the ZTC point. The result indicates that there are three types of temperature coefficient under different gate voltage. When the gate voltage is near the threshold voltage, both the linear region and saturation region shows a large positive temperature coefficient. With the increase of gate voltage, the temperature coefficient of the linear region changes from positive to negative, when the saturation region still remains positive, giving rise to the ZTC point. When the gate voltage is high enough, the negative temperature coefficient is present on both the linear and saturation region, resulting in no ZTC point. According to the experimental result, the change of ZTC point as a function of temperature is larger when the gate voltage is higher. The carrier mobility is also discussed, displaying a positive temperature coefficient at low gate voltage due to the free charge screen effect.
Does zero temperature decide on the nature of the electroweak phase transition?
Harman, Christopher P D
2015-01-01
Taking on a new perspective of the electroweak phase transition, we investigate in detail the role played by the depth of the electroweak minimum ("vacuum energy difference"). We find a strong correlation between the vacuum energy difference and the strength of the phase transition. This correlation only breaks down if a negative eigenvalue develops upon thermal corrections in the squared scalar mass matrix in the broken vacuum before the critical temperature. As a result the scalar fields slide across field space toward the symmetric vacuum, often causing a significantly weakened phase transition. Phenomenological constraints are found to strongly disfavour such sliding scalar scenarios. For several popular models, we suggest numerical bounds that guarantee a strong first order electroweak phase transition. The zero temperature phenomenology can then be studied in these parameter regions without the need for any finite temperature calculations. For almost all non-supersymmetric models with phenomenologically...
NMR measurement have been made at low temperatures on the crystal structure of K2CuF4 and (C3H7NH3)2CuCl4 at zero applied magnetic field. 63Cu, 65Cu and 35Cl NMR have been used to measure spontaneous magnetization at the temperature range 2 K down to 30 mK. We have made the NMR experiments using a 3He-4He dilution refrigerator by conventional pulsed NMR method without external magnetic field. The magnetization at zero applied magnetic field in the nearly two-dimensional ferromagnet K2CuF4 of the experimental data is in a good agreement with Yamaji-Kondo theory and θc = 0.3, which is applied the double-time Green's function method incorporated with Tyablikov's decoupling. For temperature 1.1 K down to 0.26 K, the spontaneous magnetization of (C3H7NH3)2CuCl4 is support (t log t')-formalism from the spin wave theory.
Towards a comprehensive theory for He II: I. A zero-temperature hybrid approach
A simple hybrid approach based on a gauge theory as well as a Hartree formalism, is presented for He II at zero temperature. Although this is intended to be merely a first step in an all-embracing theory, it already resolves quite neatly several old inconsistencies and corrects a few errors. As an illustration of its feasibility, a crude but instructive calculation is performed for the static structure factor of the system at low momentum transfers. A number of planned extensions and generalizations are outlined. (author)
CFRP strengthening of concrete beams - testing in sub-zero temperature
Täljsten, Björn; Carolin, A.
2007-01-01
Strengthening structures with epoxy bonded Carbon Fibre-Reinforced Polymer (CFRP) plates and sheets are today a well-known and over the world common used method to improve a structure performance. The composite materials used for strengthening are very light and easy to handle,. have good...... compared to the summer period? In this paper the last issue will be addressed. CFRP strengthen concrete beams have been tested in sub-zero temperature and loaded up to failure. The cold climate tests are then compared with similar beams tested in room climate. From the tests no significantly difference...
Equation of state and symmetry energy at high densities for zero and finite temperatures
The equation of state of isospin asymmetric nuclear matter within the framework of the Brueckner theory is used to calculate the energy per particle for nuclear and neutron matter. Pressure and symmetry energy are also presented. Here we extended our work to include Skyrme-like zero-range density-dependent two-body forces, which could mimic three-body forces. A three-body forces are shown to be necessary for reproducing the empirical saturation properties of symmetric nuclear matter. We also studied the effect of extending the calculation to finite temperatures. (author)
Zero temperature properties of mesons and baryons from an extended linear sigma-model
An extended linear sigma model with mesons (q q-bar states) and baryons (qqq states) is presented. The model contains a low energy multiplet for every hadronic particle type, namely a scalar, a pseudoscalar, a vector and an axialvector nonet, a baryon octet and a baryon decuplet. The model parameters are determined through a multiparametric minimalization with the help of well known physical quantities. It is found that the considered zero temperature quantities (masses and decay widths) can be described well at tree-level and are in good agreement with the experimental data.
MAEZAWA,Y.; AOKI, S.; EJIRI, S.; HATSUDA, T.; ISHII, N.; KANAYA, K.; UKITA, N.
2006-11-14
The authors report the current status of the systematic studies of the QCD thermodynamics by lattice QCD simulations with two flavors of improved Wilson quarks. They evaluate the critical temperature of two flavor QCD in the chiral limit at zero chemical potential and show the preliminary result. Also they discuss fluctuations at none-zero temperature and density by calculating the quark number and isospin susceptibilities and their derivatives with respect to chemical potential.
Non-invasive continuous core temperature measurement by zero heat flux
Reliable continuous core temperature measurement is of major importance for monitoring patients. The zero heat flux method (ZHF) can potentially fulfil the requirements of non-invasiveness, reliability and short delay time that current measurement methods lack. The purpose of this study was to determine the performance of a new ZHF device on the forehead regarding these issues. Seven healthy subjects performed a protocol of 10 min rest, 30 min submaximal exercise (average temperature increase about 1.5 °C) and 10 min passive recovery in ambient conditions of 35 °C and 50% relative humidity. ZHF temperature (Tzhf) was compared to oesophageal (Tes) and rectal (Tre) temperature. ΔTzhf–Tes had an average bias ± standard deviation of 0.17 ± 0.19 °C in rest, −0.05 ± 0.18 °C during exercise and −0.01 ± 0.20 °C during recovery, the latter two being not significant. The 95% limits of agreement ranged from −0.40 to 0.40 °C and Tzhf had hardly any delay compared to Tes. Tre showed a substantial delay and deviation from Tes when core temperature changed rapidly. Results indicate that the studied ZHF sensor tracks Tes very well in hot and stable ambient conditions and may be a promising alternative for reliable non-invasive continuous core temperature measurement in hospital
Reddy, Ch Sridhar; Prasad, M Durga
2016-04-28
An effective time dependent approach based on a method that is similar to the Gaussian wave packet propagation (GWP) technique of Heller is developed for the computation of vibrationally resolved electronic spectra at finite temperatures in the harmonic, Franck-Condon/Hertzberg-Teller approximations. Since the vibrational thermal density matrix of the ground electronic surface and the time evolution operator on that surface commute, it is possible to write the spectrum generating correlation function as a trace of the time evolved doorway state. In the stated approximations, the doorway state is a superposition of the harmonic oscillator zero and one quantum eigenfunctions and thus can be propagated by the GWP. The algorithm has an O(N(3)) dependence on the number of vibrational modes. An application to pyrene absorption spectrum at two temperatures is presented as a proof of the concept. PMID:27035861
Direct and absolute temperature mapping and heat transfer measurements in diode-end-pumped Yb:YAG
Chenais, Sébastien; Forget, Sébastien; Druon, Frédéric; Balembois, François; Georges, Patrick
2004-01-01
We report direct and absolute temperature measurements in a diode-end-pumped Yb:YAG crystal, using a calibrated infrared camera, with a 60-$\\mu$m spatial resolution. The heat transfer coefficient has been measured, for the first time to our knowledge, with four different types of thermal contact (H = 0.25, 0.28, 0.9 and 2.0 for bare contact, graphite layer, indium foil and heat sink grease respectively). The dynamics of thermal effects is also presented.
Unified treatment of subsaturation stellar matter at zero and finite temperature
Gulminelli, F.; Raduta, Ad. R.
2015-11-01
The standard variational derivation of stellar-matter structure in the Wigner-Seitz approximation is generalized to the finite-temperature situation where a wide distribution of different nuclear species can coexist in the same density and proton fraction condition, possibly out of β equilibrium. The same theoretical formalism is shown to describe on one side the single-nucleus approximation (SNA), currently used in most core-collapse supernova simulations and on the other side the nuclear statistical equilibrium (NSE) approach, routinely employed in r - and p -process explosive nucleosynthesis problems. In particular, we show that in-medium effects have to be accounted for in NSE to have a theoretical consistency between the zero-temperature and the finite-temperature modeling. The bulk part of these in-medium effects is analytically calculated in the local density approximation and shown to be different from a Van der Waals excluded-volume term. This unified formalism allows controlling quantitatively the deviations from the SNA in the different thermodynamic conditions, as well as having a NSE model which is reliable at any arbitrarily low value of the temperature, with potential applications for neutron-star cooling and accretion problems. We present different illustrative results with several mass models and effective interactions, showing the importance of accounting for the nuclear species distribution even at temperatures lower than 1 MeV.
John D. Bess; Nozomu Fujimoto; James W. Sterbentz; Luka Snoj; Atsushi Zukeran
2011-03-01
The High Temperature Engineering Test Reactor (HTTR) of the Japan Atomic Energy Agency (JAEA) is a 30 MWth, graphite-moderated, helium-cooled reactor that was constructed with the objectives to establish and upgrade the technological basis for advanced high-temperature gas-cooled reactors (HTGRs) as well as to conduct various irradiation tests for innovative high-temperature research. The core size of the HTTR represents about one-half of that of future HTGRs, and the high excess reactivity of the HTTR, necessary for compensation of temperature, xenon, and burnup effects during power operations, is similar to that of future HTGRs. During the start-up core physics tests of the HTTR, various annular cores were formed to provide experimental data for verification of design codes for future HTGRs. The experimental benchmark performed and currently evaluated in this report pertains to the data available for two zero-power, warm-critical measurements with the fully-loaded HTTR core. Six isothermal temperature coefficients for the fully-loaded core from approximately 340 to 740 K have also been evaluated. These experiments were performed as part of the power-up tests (References 1 and 2). Evaluation of the start-up core physics tests specific to the fully-loaded core (HTTR-GCR-RESR-001) and annular start-up core loadings (HTTR-GCR-RESR-002) have been previously evaluated.
Niekerken, Ole
2009-06-15
In this diploma thesis the Casimir-Polder force at zero temperature and at finite temperatures is calculated by using a well-defined quantum field theory (formulated in position space) and the method of image charges. For the calculations at finite temperature KMS-states are used. The so defined temperature describes the temperature of the electromagnetic background. A one oscillator model for inhomogeneous dispersive absorbing dielectric material is introduced and canonically quantized to calculate the Casimir-Polder force at a dielectric interface at finite temperature. The model fulfils causal commutation relations and the dielectric function of the model fulfils the Kramer-Kronig relations. We then use the same methods to calculate the van der Waals force between two neutral atoms at zero temperature and at finite temperatures. It is shown that the high temperature behaviour of the Casimir-Polder force and the van der Waals force are independent of {Dirac_h}. This means that they have to be understood classically, what is then shown in an algebraic statistical theory by using classical KMS states. (orig.)
Renormalization-group approach to the infrared behavior of a zero-temperature Bose system
We exploit the renormalization-group approach to establish the exact infrared behavior of an interacting Bose system at zero temperature. The local-gauge symmetry in the broken-symmetry phase is implemented through the associated Ward identities, which reduce the number of independent running couplings to a single one. For this coupling the ε expansion can be controlled to all orders in ε (=3-d). For spatial dimensions 1< d≤3 the Bogoliubov fixed point is unstable towards a different fixed point characterized by the divergence of the longitudinal correlation function. The Bogoliubov linear spectrum, however, is found to be independent of the critical behavior of this correlation function, being exactly constrained by Ward identities. The new fixed point properly gives a finite value of the coupling among transverse fluctuations, but due to virtual intermediate longitudinal fluctuations, the effective coupling affecting the transverse correlation function flows to zero. As a result, no transverse anomalous dimension is present. This treatment allows us to recover known results for the quantum Bose gas in the context of a unifying framework and also to reveal the nontrivial skeleton structure of its perturbation theory
Critical behavior of 3D Z(N) lattice gauge theories at zero temperature
Borisenko, O., E-mail: oleg@bitp.kiev.ua [Bogolyubov Institute for Theoretical Physics, National Academy of Sciences of Ukraine, 03680 Kiev (Ukraine); Chelnokov, V., E-mail: chelnokov@bitp.kiev.ua [Bogolyubov Institute for Theoretical Physics, National Academy of Sciences of Ukraine, 03680 Kiev (Ukraine); Cortese, G., E-mail: cortese@unizar.es [Instituto de Física Teórica UAM/CSIC, Cantoblanco, E-28049 Madrid (Spain); Departamento de Física Teórica, Universidad de Zaragoza, E-50009 Zaragoza (Spain); Gravina, M., E-mail: gravina@cs.infn.it [Dipartimento di Fisica, Università della Calabria, and Istituto Nazionale di Fisica Nucleare, Gruppo Collegato di Cosenza, I-87036 Arcavacata di Rende, Cosenza (Italy); Papa, A., E-mail: papa@cs.infn.it [Dipartimento di Fisica, Università della Calabria, and Istituto Nazionale di Fisica Nucleare, Gruppo Collegato di Cosenza, I-87036 Arcavacata di Rende, Cosenza (Italy); Surzhikov, I., E-mail: i_van_go@inbox.ru [Bogolyubov Institute for Theoretical Physics, National Academy of Sciences of Ukraine, 03680 Kiev (Ukraine)
2014-02-15
Three-dimensional Z(N) lattice gauge theories at zero temperature are studied for various values of N. Using a modified phenomenological renormalization group, we explore the critical behavior of the generalized Z(N) model for N=2,3,4,5,6,8. Numerical computations are used to simulate vector models for N=2,3,4,5,6,8,13,20 for lattices with linear extension up to L=96. We locate the critical points of phase transitions and establish their scaling with N. The values of the critical indices indicate that the models with N>4 belong to the universality class of the three-dimensional XY model. However, the exponent α derived from the heat capacity is consistent with the Ising universality class. We discuss a possible resolution of this puzzle.
Standing Wave Ground State in High Density, Zero Temperature QCD at Large NC
Deryagin, D. V.; Grigoriev, D. Yu.; Rubakov, V. A.
Chiral symmetry breaking in QCD at zero temperature and high fermionic density is studied in the limit NC → ∞. We evaluate the effective action in the ladder approximation and integrate out fermions by introducing the bilocal field Σ(x, y), which enters the action as the mass operator for fermions. It is argued that at large fermionic chemical potential the mass operator Σ(x, y) has a small but nonvanishing expectation value. The condensate of the field Σ(x, y) and the fermionic condensate are inhomogeneous and anisotropic, so that the ground state has the structure of the standing wave with respect to these order parameters. Unlike possible color superconductivity, this symmetry breaking occurs to the leading order in 1/NC.
Standing wave ground state in high density zero temperature QCD at large N sub c
Deryagin, D.V.; Grigoriev, D.Y.; Rubakov, V.A. (Inst. for Nuclear Research of the Academy of Sciences of the USSR, 7a Moscow 117312 (SU))
1992-02-10
Chiral symmetry breaking in QCD at zero temperature and high fermionic density is studied in the limit N{sub c} {yields} {infinity}. In this paper, the authors evaluate the effective action in the ladder approximation and integrate out fermions by introducing the bilocal field {Sigma}(x,y), which enters the action as the mass operator for fermions. It is argued that at large fermionic chemical potential the mass operator {Sigma}(x,y) has a small but nonvanishing expectation value. The condensate of the field {Sigma}(x,y) and the fermionic condensate ({bar {psi}}(x){psi}(y)) are inhomogeneous and anisotropic, so that the ground state has the structure of the standing wave with respect to these order parameters. Unlike possible color superconductivity, this symmetry breaking occurs to the leading order in 1/N{sub c}.
Wei, Ji Feng; Lu, Fei; Sun, Li Qun; Zhang, Kai; Hu, Xiao Yang; Zhou, Shan; Xu, De
2015-02-01
The nonlinear effect of materials and sensors in high-energy laser calorimeters is especially obvious—due to the steep temperature gradients of their absorbers. Significant measurement errors occur when traditional integral temperature sensors and methods are utilized. In an effort to remedy this, a method is proposed in this paper in which an absorption cavity is divided into many parts and multiple discrete thermocouple sensors are used to measure the temperature rise of the absorbers. The temperature distribution in the absorbers is theoretically analyzed, numerically simulated, and verified through experimentation. Energy measurement results are compared according to the temperature distribution for different layouts of thermocouples. A high-accuracy calorimeter is developed by setting and optimizing thermocouple layout, as well as correcting various elements such as the specific heat of graphite and responsivity of thermocouples. The calorimeter employing this measurement method is calibrated against a standard energy meter, resulting in correction coefficient of 1.027 and relative standard deviation of the correction coefficient of only 0.8%. Theoretical analysis, numerical simulation, and experimental verification all prove that the proposed method successfully improves measurement accuracy.
Effects of near-zero Dirac eigenmodes on axial U(1) symmetry at finite temperature
Tomiya, Akio; Fukaya, Hidenori; Hashimoto, Shoji; Noaki, Junichi
2014-01-01
We study the axial U(1)A symmetry of Nf = 2 QCD at finite temperature using the Dirac eigenvalue spectrum. The gauge configurations are generated employing the Mobius domain-wall fermion action on 16^3x8 and 32^3x8 lattices. The physical spatial size of these lattices is around 2 fm and 4 fm, respectively, and the simulated temperature is around 200 MeV, which is slightly above the critical temperature of the chiral phase transition. Although the Mobius domain-wall Dirac operator is expected to have a good chiral symmetry and our data actually show small values of the residual mass, we observe significant violation of the Ginsparg-Wilson relation for the low- lying eigenmodes of the Mobius domain-wall Dirac operator. Using the reweighting technique, we compute the overlap-Dirac operator spectrum on the same set of configurations and find a significant difference of the spectrum between the two Dirac operators for the low-lying eigenvalues. The overlap-Dirac spectrum shows a gap from zero, which is insensitive...
Delaminations by Cleavage Cracking in Duplex Stainless Steels at Sub-zero Temperatures
Pilhagen, Johan; Sandström, Rolf
2013-10-01
Impact toughness testing was conducted on 10 and 30 mm plates of 2205 together with a 30 mm plate of LDX 2101® duplex stainless steel (DSS). The testing temperatures were between 153 K (-120 °C) and room temperature. Interrupted fracture toughness tests of the 10 mm plate and a 50 mm plate of 2205 were also performed. The conclusion from the fractographic investigation was that the delaminations that occur in hot-rolled DSSs were cleavage fractures. The toughness anisotropy can be explained by the cleavage fracture and the appearance of the microstructure. The result from the interrupted fracture toughness test revealed that the delaminations initiated prior to the maximum force plateau and propagated ahead of the stable crack growth during testing. Estimated upper limit for the fracture delamination initiation toughness at sub-zero temperatures for the 2205 base metal according to the crack-tip opening displacement method was 28 to 61 μm for the 10 mm plate, 70 to 106 μm for the 30 mm plate and below 100 μm for the 50 mm plate.
Global cold curve. New representation for zero-temperature isotherm in whole density range
Iosilevskiy, Igor
2014-01-01
Non-standard representation for so-called "cold curve" of matter (i.e. isotherm $T = 0$) is proposed as Global Cold Curve (GCC). The main point is that chemical potential of substance, $\\mu$, plays role of ruling parameter in basic GCC-dependence of internal energy under compression, $U = U(\\mu)$, in contrast to the standard form $U = U(\\rho)$. This substitution changes radically low-density ("gaseous") part of GCC. Namely: ($i$) - physically meaningless part of standard cold curve $(U(\\rho)$ at $T \\rightarrow 0)$ disappears totally from new version of GCC. This deleted part corresponded to absolutely thermodynamically unstable states in standard representation $U(\\rho)$; ($ii$) - new gaseous branch of cold curve, $U = U(\\mu)$, comes in GCC. It describes in simple, schematic way thermodynamics of whole gas-like plasma in low-temperature limit (Iosilevskiy: arXiv:0902.3708) as combination of all ionization and dissociation processes available for equilibrium plasma at finite temperature. This gaseous branch co...
Shaar, R.; Tauxe, L.
2015-12-01
Absolute paleointensity data are essential for understanding Earth's deep interior, climatic modeling, and geochronology applications, among others. Paleointensity data are derived from experiments in which the ancient TRM is replaced by a laboratory controlled TRM. This procedure is built on the assumption that the process of ancient TRM acquisition is entirely reproducible in the lab. Here we show experimental results violating this assumption in a manner not expected from standard theory. We prepared 118 pairs of nearly identical specimens. One specimen from each pair was given laboratory TRM and allowed to "age" in a controlled fixed field, identical and parallel to the laboratory TRM field, for two years. After two years the second specimen was given a "fresh" TRM. Thus, the two specimens in each pair differ in only one significant respect: the time elapsed from the TRM acquisition. We carried out IZZI-type absolute paleointensity experiments on the two groups. Under the assumption of TRM stability we expect that the behavior of the twin specimens in the experiment would be exactly the same. Yet, we found a small but systematic difference between the "aged" and the "fresh" TRM. The "aged" TRM yield more curved and zigzaggy Arai plots, and exhibit a shift in the blocking/unblocking spectra. This effect leads to a systematic bias in paleointensity estimates caused only by room-temperature instability of TRM. The change in TRM properties is likely caused by irreversible changes in micromagnetic structures of non single domains.
Tobar, M E; Cros, D; Blondy, P; Ivanov, E N
2001-05-01
Some novel new resonator designs based on the distributed Bragg reflector are presented. The resonators implement a TE011 resonance in a cylindrical sapphire dielectric, which is confined by the addition of rutile and sapphire dielectric reflectors at the end faces. Finite element calculations are utilized to optimize the dimensions to obtain the highest Q-factors and zero frequency-temperature coefficient for a resonator operating near 0 degree C. We show that a Q-factor of 70,000 and 65,000 can be achieved with and without the condition of zero frequency-temperature coefficients, respectively. PMID:11381707
The equation of state in two-, three-, and four-color QCD at non-zero temperature and density
Gorda, Tyler
2014-01-01
We calculate the equation of state at non-zero temperature and density from first principles in two-, three- and four-color QCD with two fermion flavors in the fundamental and two-index, antisymmetric representation. By matching low-energy results (from a `hadron resonance gas') to high-energy results from (resummed) perturbative QCD, we obtain results for the pressure and trace anomaly that are in quantitative agreement with full lattice-QCD studies for three colors at zero chemical potential. Our results for non-zero chemical potential at zero temperature constitute predictions for the equation of state in QCD-like theories that can be tested by traditional lattice studies for two-color QCD with two fundamental fermions and four-color QCD with two two-index, antisymmetric fermions. We find that the speed of sound squared at zero temperature can exceed one third, which may be relevant for the phenomenology of high-mass neutron stars.
Magnetic field effects on the static quark potential at zero and finite temperature
Bonati, Claudio; Mariti, Marco; Mesiti, Michele; Negro, Francesco; Rucci, Andrea; Sanfilippo, Francesco
2016-01-01
We investigate the static $Q\\bar{Q}$ potential at zero and finite temperature in the presence of a constant and uniform external magnetic field $\\vec{B}$, for several values of the lattice spacing and for different orientations with respect to $\\vec{B}$. As a byproduct, we provide continuum limit extrapolated results for the string tension, the Coulomb coupling and the Sommer parameter at $T = 0$ and $B = 0$. We confirm the presence in the continuum of a $B$-induced anisotropy, regarding essentially the string tension, for which it is of the order of 15\\% at $|e| B \\sim 1~{\\rm GeV}^2$ and would suggest, if extrapolated to larger fields, a vanishing string tension along the magnetic field for $|e| B \\gtrsim 4$ GeV$^2$. The angular dependence for $|e| B \\lesssim 1$ GeV$^2$ can be nicely parametrized by the first allowed term in an angular Fourier expansion, corresponding to a quadrupole deformation. Finally, for $T \
Raitsimring, A.; Dalaloyan, A.; Collauto, A.; Feintuch, A.; Meade, T.; Goldfarb, D.
2014-11-01
Distance measurements using double electron-electron resonance (DEER) and Gd3+ chelates for spin labels (GdSL) have been shown to be an attractive alternative to nitroxide spin labels at W-band (95 GHz). The maximal distance that can be accessed by DEER measurements and the sensitivity of such measurements strongly depends on the phase relaxation of Gd3+ chelates in frozen, glassy solutions. In this work, we explore the phase relaxation of Gd3+-DOTA as a representative of GdSL in temperature and concentration ranges typically used for W-band DEER measurements. We observed that in addition to the usual mechanisms of phase relaxation known for nitroxide based spin labels, GdSL are subjected to an additional phase relaxation mechanism that features an increase in the relaxation rate from the center to the periphery of the EPR spectrum. Since the EPR spectrum of GdSL is the sum of subspectra of the individual EPR transitions, we attribute this field dependence to transition dependent phase relaxation. Using simulations of the EPR spectra and its decomposition into the individual transition subspectra, we isolated the phase relaxation of each transition and found that its rate increases with |ms|. We suggest that this mechanism is due to transient zero field splitting (tZFS), where its magnitude and correlation time are scaled down and distributed as compared with similar situations in liquids. This tZFS induced phase relaxation mechanism becomes dominant (or at least significant) when all other well-known phase relaxation mechanisms, such as spectral diffusion caused by nuclear spin diffusion, instantaneous and electron spin spectral diffusion, are significantly suppressed by matrix deuteration and low concentration, and when the temperature is sufficiently low to disable spin lattice interaction as a source of phase relaxation.
Villa, Matteo; Hansen, Mikkel Fougt; Pantleon, Karen;
2013-01-01
Martensite formation in AISI 52100 bearing steel at sub-zero Celsius temperature was investigated with Vibrating Sample Magnetometry. The investigation reports the stabilization of retained austenite in quenched samples during storage at room temperature and reveals the thermally activated nature...... of the martensitic transformation. The kinetics of the transformation is interpreted in terms of a-thermal nucleation and thermally activated growth of lenticular martensite....
Villa, Matteo; Hansen, Mikkel Fougt; Pantleon, Karen; Somers, Marcel A. J.
2013-01-01
Martensite formation in AISI 52100 bearing steel at sub-zero Celsius temperature was investigated with Vibrating Sample Magnetometry. The investigation reports the stabilization of retained austenite in quenched samples during storage at room temperature and reveals the thermally activated nature of the martensitic transformation. The kinetics of the transformation is interpreted in terms of a-thermal nucleation and thermally activated growth of lenticular martensite.
Silva, Paulo J; Dudal, David; Bicudo, Pedro; Cardoso, Nuno
2014-01-01
We address several aspects of gluon propagation at zero and finite temperature. In particular, we study the violation of spectral positivity, we discuss a method to extract the K\\"all\\'{e}n-Lehmann spectral density of a particle (be it elementary or bound state) propagator and apply it to compute gluon spectral densities from lattice data. Furthermore, we also consider the interpretation of the Landau gauge gluon propagator at finite temperature as a massive type bosonic propagator.
The equation of state in two-, three-, and four-color QCD at non-zero temperature and density
Gorda, Tyler; Romatschke, Paul
2014-01-01
We calculate the equation of state at non-zero temperature and density from first principles in two-, three- and four-color QCD with two fermion flavors in the fundamental and two-index, antisymmetric representation. By matching low-energy results (from a `hadron resonance gas') to high-energy results from (resummed) perturbative QCD, we obtain results for the pressure and trace anomaly that are in quantitative agreement with full lattice-QCD studies for three colors at zero chemical potentia...
Lyashenko, Alexey; Snyder, Adam; Wang, Hanguo; Arisaka, Katsushi
2014-01-01
We report on the measurements of the absolute Quantum Efficiency(QE) for Hamamatsu model R11410-10 PMTs specially designed for the use in low background liquid xenon detectors. QE was measured for five PMTs in a spectral range between 154.5 nm to 400 nm at low temperatures down to -110$^0$C. It was shown that during the PMT cooldown from room temperature to -110 $^0$C (a typical PMT operation temperature in liquid xenon detectors), the absolute QE increases by a factor of 1.1 - 1.15 at 175 nm. The QE growth rate with respect to temperature is wavelength dependent peaking at about 165 nm corresponding to the fastest growth of about -0.07 %QE/$^{0}C$ and at about 200 nm corresponding to slowest growth of below -0.01 %QE/$^{0}C$. A dedicated setup and methods for PMT Quantum Efficiency measurement at low temperatures are described in details.
Highlights: • Composite thin films with Ag nano-grains uniformly distributed in amorphous Ta–Si–N matrix are obtained. • The temperature coefficient of resistance and the resistivity can be well adjusted by changing Si component. • The balance between quantum tunneling effect and phonon scattering effect results in near-zero TCR. • The near-zero TCR can be maintained at an extremely low temperature from 105 K to 225 K. - Abstract: Ta–Si–N/Ag nanocomposite thin films were prepared by reactive magnetron co-sputtering of Ta, Si and Ag targets in the plasma of N2 and Ar. It was found that Ag nano-grains were uniformly distributed in the amorphous matrix due to the incorporation of Si. The sizes of Ag grains and the separation between them could be well controlled by changing the Si component, which can be adopted to improve the electronic properties of the composite resistive films. A near-zero temperature coefficient of resistance (TCR) of +39.7 ppm/K was obtained in the thin films with a Si component of 5.88 at.% as a result of the balance of quantum tunneling effect and phonon scattering effect. This is consolidated by the changes in the measured carrier density and Hall mobility at different temperatures. Particularly, the near-zero TCR could be maintained at an extremely low temperature from 105 K to 225 K. The results are of great significance for the exploitation of high-performance resistive thin films
Exact zero-temperature correlation functions for two-leg Hubbard ladders and carbon nanotubes
Motivated by recent work of Lin, Balents, and Fisher [Phys. Rev. B 58, 1794 (1998)], we compute correlation functions at zero temperature for weakly coupled two-leg Hubbard ladders and (N,N) armchair carbon nanotubes. In this paper it was argued that such systems renormalize towards the SO(8) Gross-Neveu model, an integrable theory. We exploit this integrability to perform the computation at the SO(8) invariant point. Any terms breaking the SO(8) symmetry can be treated systematically in perturbation theory, leading to a model with the same qualitative features as the integrable theory. Using said correlators, we determine the optical conductivity, the single-particle spectral function, and the I-V curve for tunneling into the system from an external metallic lead. The frequency, ω, dependent optical conductivity is determined exactly for ω1/2 and not the ω-1/2 one would expect from the van Hove singularity in the density of states. Similarly, we obtain the exact single-particle spectral function for energies less than 3m. The latter possesses a δ function peak arising from single-particle excitations, together with a two-particle continuum for ω≥2m. The final quantity we compute is the tunneling I-V curve to lowest nonvanishing order in the tunneling matrix elements. For this quantity, we present exact results for voltages, V<(1+√(3))m. The resulting differential conductance is marked by a finite jump at ω=2m, the energy of the onset of tunneling into the continuum of two-particle states. Through integrability, we are able to characterize this jump exactly. All calculations are done through form-factor expansions of correlation functions. These give exact closed form expressions for spectral functions because the SO(8) Gross-Neveu model is massive: each term in the expansion has an energy threshold below which it does not contribute. Thus, we obtain exact results below certain thresholds by computing a finite number of terms in this series. Previous to
Yokoyama, Yukio; Kawashima, Hirofumi; Kanie, Hisashi
2006-05-01
Rectangular X-cut quartz crystal resonators with cut angles theta > 5.0 degrees and aspect ratios Rzy (= width 2z0/length 2y0) from 0.3 to 0.5 are investigated. The resonators oscillate mode is a length-extensional mode. A semiempirical frequency equation was derived from the stress expressed in terms of the trigonometric and the hyperbolic transcendental functions with constants estimated by the regression curve fit to the stress simulated by the finite-element method (FEM). Contours on which a point satisfies a zero first order temperature coefficient condition are shown in a cut angle theta and Rzy diagram. We proved that a fabricated resonator with Rzy = 0.400 and theta = 16.0 degrees, whose design parameter is located in the area of the contour, had a zero temperature coefficient. PMID:16764439
Kandori, H; Shichida, Y; Yoshizawa, T
1989-01-01
Picosecond laser photolysis of rhodopsin in 15% polyacrylamide gel was performed for estimating absolute absorption spectra of the primary intermediates of cattle rhodopsin (bathorhodopsin and photorhodopsin). Using a rhodopsin digitonin extract embedded in 15% polyacrylamide gel, a precise percentage of bleaching of rhodopsin after excitation of a picosecond laser pulse was measured. Using this value, the absolute absorption spectrum of bathorhodopsin was calculated from the spectral change ...
Das, Arnab; Chakrabarti, Bikas K.
2008-12-01
Here we discuss the annealing behavior of an infinite-range ±J Ising spin glass in the presence of a transverse field using a zero-temperature quantum Monte Carlo method. Within the simulation scheme, we demonstrate that quantum annealing not only helps finding the ground state of a classical spin glass, but can also help simulating the ground state of a quantum spin glass, in particular, when the transverse field is low, much more efficiently.
Approaching the Ground State of a Quantum Spin Glass using a Zero-Temperature Quantum Monte Carlo
Das, Arnab; Chakrabarti, Bikas K.
2008-01-01
Here we discuss the annealing behavior of an infinite-range $\\pm J$ Ising spin glass in presence of a transverse field using a zero-temperature quantum Monte Carlo. Within the simulation scheme, we demonstrate that quantum annealing not only helps finding the ground state of a classical spin glass, but can also help simulating the ground state of a quantum spin glass, in particularly, when the transverse field is low, much more efficiently.
Chamel, Nicolas; Goriely, Stéphane
2010-01-01
Self-consistent mean-field methods based on phenomenological Skyrme effective interactions are known to exhibit spurious spin and spin-isospin instabilities both at zero and finite temperatures when applied to homogeneous nuclear matter at the densities encountered in neutron stars and in supernova cores. The origin of these instabilities is revisited in the framework of the nuclear energy density functional theory, and a simple prescription is proposed to remove them. The stability of severa...
Extension of SGTE data for pure elements to zero Kelvin temperature - A case study
Vřešťál, Jan; Štrof, J.; Pavlů, Jana
2012-01-01
Roč. 37, JUN (2012), s. 37-48. ISSN 0364-5916 R&D Projects: GA ČR(CZ) GAP108/10/1908 Institutional support: RVO:68081723 Keywords : Gibbs energy * Pure elements * Zero Kelvin * SGTE data * Heat capacity Subject RIV: BJ - Thermodynamics Impact factor: 1.433, year: 2012
Two-colour QCD at non-zero temperature in the presence of a strong magnetic field
Muller-Preussker, M; Schreiber, A; Ilgenfritz, E -M; Kalinowski, M
2014-01-01
In this talk we report on our study of two-colour lattice QCD with N_f=4 staggered fermion degrees of freedom with equal electric charge q in a homogeneous magnetic field B at non-zero temperature T. We find indications for a non-monotonic behaviour of the critical temperature as a function of the magnetic field strength and, as a consequence, for the occurence of `inverse magnetic catalysis' within the transition region for magnetic fields in the range 0 < qB < 0.7 GeV^2.
Mughal, Muhammad Aurang Zeb
2009-01-01
The concept of absolute time is a hypothetical model from the laws of classical physics postulated by Isaac Newton in the Principia in 1687. Although the Newtonian model of absolute time has since been opposed and rejected in light of more recent scholarship, it still provides a way to study science with reference to time and understand the phenomena of time within the scientific tradition. According to this model, it is assumed that time runs at the same rate for all the observers in the uni...
An absolute intensity measurement (AIM) technique is presented that combines the absolute measurements of the line and the continuum emitted by strongly ionizing argon plasmas. AIM is an iterative combination of the absolute line intensity-collisional radiative model (ALI-CRM) and the absolute continuum intensity (ACI) method. The basis of ALI-CRM is that the excitation temperature T13 determined by the method of ALI is transformed into the electron temperature Te using a CRM. This gives Te as a weak function of electron density ne. The ACI method is based on the absolute value of the continuum radiation and determines the electron density in a way that depends on Te. The iterative combination gives ne and Te. As a case study the AIM method is applied to plasmas created by torche a injection axiale (TIA) at atmospheric pressure and fixed frequency at 2.45 GHz. The standard operating settings are a gas flow of 1 slm and a power of 800 W; the measurements have been performed at a position of 1 mm above the nozzle. With AIM we found an electron temperature of 1.2 eV and electron density values around 1021 m-3. There is not much dependence of these values on the plasma control parameters (power and gas flow). From the error analysis we can conclude that the determination of Te is within 7% and thus rather accurate but comparison with other studies shows strong deviations. The ne determination comes with an error of 40% but is in reasonable agreement with other experimental results.
Sensing Atomic Motion from the Zero Point to Room Temperature with Ultrafast Atom Interferometry
Johnson, K. G.; Neyenhuis, B.; Mizrahi, J.; Wong-Campos, J. D.; Monroe, C.
2015-11-01
We sense the motion of a trapped atomic ion using a sequence of state-dependent ultrafast momentum kicks. We use this atom interferometer to characterize a nearly pure quantum state with n =1 phonon and accurately measure thermal states ranging from near the zero-point energy to n ¯˜104, with the possibility of extending at least 100 times higher in energy. The complete energy range of this method spans from the ground state to far outside of the Lamb-Dicke regime, where atomic motion is greater than the optical wavelength. Apart from thermometry, these interferometric techniques are useful for characterizing ultrafast entangling gates between multiple trapped ions.
Tropical Zero Energy Office Building
Reimann, Gregers Peter; Kristensen, Poul Erik
2006-01-01
by daylight, supplemented by electric lighting during very dark and overcast periods. Extensive active energy efficiency measures are implemented in the building in order to reduce the need for electricity to an absolute minimum, without compromising the request for comfortable temperatures and adequate......The new headquarter for Pusat Tenaga Malaysia is designed to be a Zero Emission Office Building (ZEO). A full range of passive and active energy efficiency measures are implemented such that the building will need no more electricity than what can be produced via its own Building Integrated PV...... system. The overall objective of the project is to achieve zero energy consumption at lowest possible initial investments. The ZEO Building shows implementation of integrated design concepts, where active and passive energy systems are interwoven into the building itself, and where several building...
Costa, Carlos Casimiro da; Costa, Jacinta Casimiro da
2012-01-01
Tomorrow, I m recovering my Thursday child as an absolute beginner , Transporting you to the essential touch of surface skin and space, Only for you, i do not regret, looking for education in a materia set. My love is your love , my materiality is you making things, The legacy of our ethnography, craftsmen s old and disappear, make me strong hard feelings, Recovering experiences and knowledge sprinkled in powder of stone, wood and metal ( ) reflecting in your dirty face the ...
Non-trivial exponents in the zero temperature dynamics of the 1D Ising and Potts models
Derrida, B.; Bray, A. J.; Godrèche, C.
1994-01-01
We consider the Glauber dynamics of the $ q $-state Potts model in one dimension at zero temperature. Starting with a random initial configuration, we measure the density $ r_t $ of spins which have never flipped from the beginning of the simulation until time $ t. $ We find that for large $ t, $ the density $ r_t $ has a power law decay $ \\left(r_t \\sim t^{-\\theta} \\right) $ where the exponent $ \\theta $ varies with $ q. $ Our simulations lead to $ \\theta \\simeq .37 $ for $ q=2, $ $ \\theta \\...
Sensing Atomic Motion from the Zero Point to Room Temperature with Ultrafast Atom Interferometry.
Johnson, K G; Neyenhuis, B; Mizrahi, J; Wong-Campos, J D; Monroe, C
2015-11-20
We sense the motion of a trapped atomic ion using a sequence of state-dependent ultrafast momentum kicks. We use this atom interferometer to characterize a nearly pure quantum state with n=1 phonon and accurately measure thermal states ranging from near the zero-point energy to n[over ¯]~10^{4}, with the possibility of extending at least 100 times higher in energy. The complete energy range of this method spans from the ground state to far outside of the Lamb-Dicke regime, where atomic motion is greater than the optical wavelength. Apart from thermometry, these interferometric techniques are useful for characterizing ultrafast entangling gates between multiple trapped ions. PMID:26636850
Sensing Atomic Motion from the Zero Point to Room Temperature with Ultrafast Atom Interferometry
Johnson, K G; Mizrahi, J; Wong-Campos, J D; Monroe, C
2015-01-01
We sense the motion of a trapped atomic ion using a sequence of state-dependent ultrafast momentum kicks. We use this atom interferometer to characterize a nearly-pure quantum state with $n=1$ phonon and accurately measure thermal states ranging from near the zero-point energy to $\\bar{n}\\sim 10^4$, with the possibility of extending at least 100 times higher in energy. The complete energy range of this method spans from the ground state to far outside of the Lamb-Dicke regime, where atomic motion is greater than the optical wavelength. These interferometric techniques are useful for characterizing ultrafast entangling gates between multiple trapped ions, and may also be used for sensing electromagnetic fields over a wide dynamic range.
Bottomonium at Non-zero Temperature from Lattice Non-relativistic QCD
Aarts, Gert; Lombardo, Maria Paola; Oktay, Mehmet B; Ryan, Sinead M; Sinclair, D K; Skullerud, Jon-Ivar
2011-01-01
The temperature dependence of bottomonium states at temperatures above and below $T_c$ is presented, using non-relativistic dynamics for the bottom quark and full relativistic lattice QCD simulations for two light flavors on a highly anisotropic lattice. We find that the S-waves ($\\Upsilon$ and $\\eta_b$) show little temperature dependence in this range while the P wave propagators show a crossover from the exponential decay characterizing the hadronic phase to a power-law behavior consistent with nearly-free dynamics at approximately twice the critical temperature.
Dust particles observed in universe as well as in laboratory and technological plasma devices are still under investigation. At low temperature, these particles are strongly negatively charged and are able to form a 2D or 3D coulomb crystal. In this work, our aim was to check the ideal gas law validity for a 2D single-layer dust crystal recently reported in the literature. For this purpose, we have simulated, using the molecular dynamics method, its thermodynamic properties for different values of dust particles number and confinement parameters. The obtained results have allowed us to invalidate the ideal gas behaviour and to propose an effective equation of state which assumes a near zero dust temperature. Furthermore, the value of the calculated sound velocity was found to be in a good agreement with experimental data published elsewhere
Djouder, M., E-mail: djouder-madjid@ummto.dz; Kermoun, F.; Mitiche, M. D.; Lamrous, O. [Laboratoire de Physique et Chimie Quantique, Université Mouloud Mammeri Tizi-Ouzou, BP 17 RP, 15000 Tizi-Ouzou (Algeria)
2016-01-15
Dust particles observed in universe as well as in laboratory and technological plasma devices are still under investigation. At low temperature, these particles are strongly negatively charged and are able to form a 2D or 3D coulomb crystal. In this work, our aim was to check the ideal gas law validity for a 2D single-layer dust crystal recently reported in the literature. For this purpose, we have simulated, using the molecular dynamics method, its thermodynamic properties for different values of dust particles number and confinement parameters. The obtained results have allowed us to invalidate the ideal gas behaviour and to propose an effective equation of state which assumes a near zero dust temperature. Furthermore, the value of the calculated sound velocity was found to be in a good agreement with experimental data published elsewhere.
Ellingsen, Simen Andreas Aadnoey
2011-01-15
The present thesis focuses on several topics within three separate but related branches of the overall field of dispersion forces. The three branches are: temperature corrections to the Casimir force between real materials (Part 1), explicit calculation of Casimir energy in wedge geometries (Part 2), and Casimir-Polder forces on particles out of thermal equilibrium (Part 3). Part 1 deals primarily with analysis of a previously purported thermodynamic inconsistency in the Casimir-Lifshitz free energy of the interaction of two plane mirrors - violation of the third law of thermodynamics - when the latter's dielectric response is described with dissipative models. It is shown analytically and numerically that the Casimir entropy of the interaction between two metallic mirrors described by the Drude model does tend to zero at zero temperature, provided electronic relaxation does not vanish. The leading order terms at low temperature are found. A similar calculation is carried out for the interaction of semiconductors with small but non-zero DC conductivity. In a generalisation, it is shown that a violation of the third law can only occur for permittivities whose low-frequency behaviour is temperature dependent near zero temperature. A calculation using path integral methods shows that the low temperature behaviour of the interaction of fluctuating Foucault currents in two mirrors of Drude metal is identical to that of the full Casimir-Lifshitz free energy, reasserting a previous finding by Intravaia and Henkel that such fluctuating bulk currents are the physical reason for the anomalous entropy behaviour. In a related effort, an analysis of the frequency dependence of the Casimir force by Ford is generalised to imperfectly reflecting mirrors. A paradox is pointed out, in that the effects of a perturbation of the reflecting properties of the mirrors in a finite frequency window can be calculated in two ways giving different results. It is concluded that optimistic
Pettersen, C.; Best, F. A.; Adler, D. P.; Aguilar, D. M.; Perepezko, J. H.
2012-12-01
The next generation of infrared remote sensing missions, including the climate benchmark missions, will require better absolute measurement accuracy than now available, and will most certainly rely on the emerging capability to fly SI traceable standards that provide irrefutable absolute measurement accuracy. As an example, instrumentation designed to measure spectrally resolved infrared radiances with an absolute brightness temperature error of better than 0.1 K will require high-emissivity (>0.999) calibration blackbodies requiring absolute temperature uncertainties of better than 0.045K (k=3). Key elements of an On-Orbit Absolute Radiance Standard (OARS) meeting these stringent requirements have been demonstrated in the laboratory at the University of Wisconsin and were further refined under the NASA Instrument Incubator Program (IIP). In particular, the OARS has imbedded thermistors that can be periodically calibrated on-orbit using the melt signatures of small quantities (technology for on-orbit application is a demonstration of performance in microgravity to be conducted on the International Space Station (ISS). This demonstration will make use of an Experiment Support Package developed by Utah State Space Dynamics Laboratory to continuously run melt cycles on miniature phase change cells containing gallium, a gallium-tin eutectic, and water. The phase change cells will be mounted in a small aluminum block along with a thermistor temperature sensor. A thermoelectric cooler will be used to change the temperature of the block. The demonstration will use the configuration of the phase transition cells developed under our NASA IIP that has been tested extensively in the laboratory under simulated mission life cycle scenarios - these included vibration, thermal soaks, and deep cycling. Melt signatures obtained on orbit will be compared to those recorded on the ground to validate that the melt behavior of the three phase change materials is unaltered in the
A dual-unit pressure sensor for on-chip self-compensation of zero-point temperature drift
A novel dual-unit piezoresistive pressure sensor, consisting of a sensing unit and a dummy unit, is proposed and developed for on-chip self-compensation for zero-point temperature drift. With an MIS (microholes inter-etch and sealing) process implemented only from the front side of single (1 1 1) silicon wafers, a pressure sensitive unit and another identically structured pressure insensitive dummy unit are compactly integrated on-chip to eliminate unbalance factors induced zero-point temperature-drift by mutual compensation between the two units. Besides, both units are physically suspended from silicon substrate to further suppress packaging-stress induced temperature drift. A simultaneously processes ventilation hole-channel structure is connected with the pressure reference cavity of the dummy unit to make it insensitive to detected pressure. In spite of the additional dummy unit, the sensor chip dimensions are still as small as 1.2 mm × 1.2 mm × 0.4 mm. The proposed dual-unit sensor is fabricated and tested, with the tested sensitivity being 0.104 mV kPa−1 3.3 V−1, nonlinearity of less than 0.08% · FSO and overall accuracy error of ± 0.18% · FSO. Without using any extra compensation method, the sensor features an ultra-low temperature coefficient of offset (TCO) of 0.002% °C−1 · FSO that is much better than the performance of conventional pressure sensors. The highly stable and small-sized sensors are promising for low cost production and applications. (paper)
Phillips, Alfred, Jr.
Summ means the entirety of the multiverse. It seems clear, from the inflation theories of A. Guth and others, that the creation of many universes is plausible. We argue that Absolute cosmological ideas, not unlike those of I. Newton, may be consistent with dynamic multiverse creations. As suggested in W. Heisenberg's uncertainty principle, and with the Anthropic Principle defended by S. Hawking, et al., human consciousness, buttressed by findings of neuroscience, may have to be considered in our models. Predictability, as A. Einstein realized with Invariants and General Relativity, may be required for new ideas to be part of physics. We present here a two postulate model geared to an Absolute Summ. The seedbed of this work is part of Akhnaton's philosophy (see S. Freud, Moses and Monotheism). Most important, however, is that the structure of human consciousness, manifest in Kenya's Rift Valley 200,000 years ago as Homo sapiens, who were the culmination of the six million year co-creation process of Hominins and Nature in Africa, allows us to do the physics that we do. .
Solitons in proteins at non-zero temperatures with allowance for the fluctuations of polarization
A model for the nonlinear transfer of vibrational energy in molecular chains is derived at temperatures of realistic interest for transport in proteins. The study includes the influence of the fluctuations of polarization in the chain. This theory exhibits a new form of temperature-dependence in intrinsic parameters of alpha-helix, and consequently in the coefficients of the nonlinear Schroedinger equation governing the system and in the solitons' parameters. Thermal fluctuations are analysed in the basis of the non-Gaussian approximation and the total free-energy of the alpha-helix is determined to elucidate the denaturation process of the protein. (author)
Zero-temperature spin-wave damping in a spin-polarized Fermi liquid
We have measured the temperature and polarization dependence of the spin-wave damping and spin diffusion coefficient in a saturated 3He-4He mixture with a concentration of 9.4% at a pressure of 8 bars. A Leiden dilution refrigerator has been used to enhance the nuclear polarization and to cool the mixture to temperatures in the range 10-15 mK. The maximum polarization is 3.4 times higher than the equilibrium value of 2.7% in an external magnetic field of 11.36 T. The effects of the dipolar interactions and the radiation damping have been taken into account in the analysis of the spin-wave spectra. We observe that the polarization dependence of the spin-wave damping is proportional to T2+A2Ta02 where T is the temperature, A is the polarization enhancement factor, and Ta0 is the anisotropy temperature for the mixture at equilibrium in the external field. Our result Ta0=3.66±0.14 mK is 30% higher than the theoretical prediction for very dilute mixtures and is evidence for the existence of polarization-induced relaxation of transverse spin currents
Ion temperature gradient instability at sub-Larmor radius scales with non-zero ballooning angle
Migliano, Pierluigi; Casson, Francis; Hornsby, William; Peeters, Arthur
2012-01-01
Linear gyro-kinetic stability calculations predict unstable toroidal Ion Temperature Gradient modes with normalised poloidal wave vectors well above one ($k_\\theta \\rho_i > 1$) for standard parameters and with adiabatic electrons. These modes have a maximum amplitude at a poloidal angle $\\theta$ that is shifted away from the low field side ($\\theta \
Cox, R P
1975-06-17
1. Chloroplasts can be suspended in aqueous/organic mixtures which are liquid at sub-zero temperatures with a good retention of the ability to reduce artificial electron acceptors. The reduction of ferricyanide and 2,6-dichlorophenolindophenol at temperatures above 0 degrees C is about 50% inhibited by 50% (v/v) ethylene glycol. Higher concentrations cause more extensive inhibition. 2. Different solvents were compared on the basis of their ability to cause a given depression of the freezing point of an aqueous solution. Ethylene glycol caused less inhibition of electron transport than glycerol, which in turn was found to be superior to methanol. 3. The reduction of oxidised 2,3,5,6-tetramethyl-p-phenylenediamine could be measured at -25 degrees C in 40% (v/v) ethylene glycol. Using an acceptor with a high extinction coefficient, methyl purple (a derivative of 2,6-dichlorophenolindophenol) it was possible to observe electron flow at temperatures as low as -40 degrees C in 50% (v/v) ethylene glycol. 4. From studies of the effects of the inhibitors 3(3,4-dichlorophenyl)-1,1-dimethylurea and 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone it is suggested that electron flow from the donor side of Photosystem II to the acceptor side of Photosystem I can occur at temperatures at least as low as -25 degrees C. The ultimate electron donor is presumably water but it was not possible to demonstrate this directly. PMID:1138892
Rice, Charles V.; Wickham, Jason R.; Eastman, Margaret A.; Harrison, William; Pereira, Mark P.; Brown, Eric D.
2008-08-01
Numerous chemical additives lower the freezing point of water, but life at sub-zero temperatures is sustained by a limited number of biological cryoprotectants. Antifreeze proteins in fish, plants, and insects provide protection to a few degrees below freezing. Microbes have been found to survive at even lower temperatures, although, with a few exceptions, antifreeze proteins are missing. Survival has been attributed to external factors, such as high salt concentration (brine veins) and adhesion to particulates or ice crystal defects. Teichoic acid is a phosphodiester polymer ubiquitous in Gram positive bacteria, composing 50% of the mass of the bacterial cell wall and excreted into the extracellular space of biofilm communities. We have found that when bound to the peptidoglycan cell wall (wall teichoic acid) or as a free molecule (lipoteichoic acid), teichoic acid is surrounded by liquid water at temperatures significantly below freezing. Using solid-state NMR, we are unable to collect 31P CPMAS spectra for frozen solutions of lipoteichoic acid at temperatures above -60 °C. For wall teichoic acid in D2O, signals are not seen above -30 °C. These results can be explained by the presence of liquid water, which permits rapid molecular motion to remove 1H/31P dipolar coupling. 2H quadrupole echo NMR spectroscopy reveals that both liquid and solid water are present. We suggest that teichoic acids could provide a shell of liquid water around biofilms and planktonic bacteria, removing the need for brine veins to prevent bacterial freezing.
Sub-zero temperature inactivation of carboxypeptidase Y under high hydrostatic pressure.
Kinsho, Toshihiko; Ueno, Hiroshi; Hayashi, Rikimaru; Hashizume, Chieko; Kimura, Kunio
2002-09-01
High hydrostatic pressure induced cold inactivation of carboxypeptidase Y. Carboxypeptidase Y was fully active when exposed to subzero temperature at 0.1 MPa; however, the enzyme became inactive when high hydrostatic pressure and subzero temperature were both applied. When the enzyme was treated at pressures higher than 300 MPa and temperatures lower than -5 degrees C, it underwent an irreversible inactivation in which nearly 50% of the alpha-helical structure was lost as judged by circular dichroism spectral analysis. When the applied pressure was limited to below 200 MPa, the cold inactivation process appeared to be reversible. In the presence of reducing agent, this reversible phenomenon, observed at below 200 MPa, diminished to give an inactive enzyme; the agent reduces some of disulfide bridge(s) in an area of the structure that is newly exposed area because of the cold inactivation. Such an area is unavailable if carboxypeptidase Y is in its native conformation. Because all the disulfide bridges in carboxypeptidase Y locate near the active site cleft, it is suggested that the structural destruction, if any, occurs preferentially in this disulfide rich area. A possible mechanism of pressure-dependent cold inactivation of CPY is to destroy the alpha-helix rich region, which creates an hydrophobic environment. This destruction is probably a result of the reallocation of water molecules. Experiments carried out in the presence of denaturing agents (SDS, urea, GdnHCl), salts, glycerol, and sucrose led to a conclusion consistent with the idea of water reallocation. PMID:12230580
Elastic properties of the degenerate f.c.c. crystal of polydisperse soft dimers at zero temperature
Narojczyk, J W
2015-01-01
Elastic properties of soft, three-dimensional dimers, interacting through site-site n-inverse-power potential, are determined by computer simulations at zero temperature. The degenerate crystal of dimers exhibiting (Gaussian) size distribution of atomic diameters - i.e. size polydispersity - is studied at the molecular number density $1/\\sqrt{2}$; the distance between centers of atoms forming dimers is considered as a length unit. It is shown that, at the fixed number density of the dimers, increasing polydispersity causes, typically, an increase of pressure, elastic constants and Poisson's ratio; the latter is positive in most direction. A direction is found, however, in which the size polydispersity causes substantial decrease of Poisson's ratio, down to negative values for large $n$. Thus, the system is partially auxetic for large polydispersity and large n.
Kaon polarizability in the Nambu-Jona-Lasinio model at zero and finite temperature
Using recent data for the decays fo → γγ, f0 → ππ, we determine the mixing angle of scalar mesons in a chiral quark σ-model. This value is employed to analyze the kaon polarizability. It is shown that pole diagrams from intermediate scalar mesons and their mixing angle significantly affect the electromagnetic polarizability of charged and neutral kaons. Our results are compared with other models and the results of the chiral symmetry limit. The temperature dependence of the kaon polarizabilities is investigated. 18 refs., 3 figs., 4 tabs
Deeney, F A; O' Leary, J P [Physics Department, National University of Ireland, Cork, Republic of Ireland (Ireland)], E-mail: f.a.deeney@ucc.ie
2008-09-15
The connection between quantum zero point fluctuations and a density maximum in water and in liquid He{sup 4} has recently been established. Here we present a description of a simple and rapid method of determining the temperatures at which maximum densities in water and aqueous solutions occur. The technique is such as to allow experiments to be carried out in one session of an undergraduate laboratory thereby introducing students to the concept of quantum zero point energy.
Characterization of Zero-Bias Microwave Diode Power Detectors at Cryogenic Temperature
Giordano, Vincent; Dubois, Benoît; Rubiola, Enrico
2016-01-01
We present the characterization of commercial tunnel diode low-level microwave power detectors at room and cryogenic temperatures. The sensitivity as well as the output voltage noise of the tunnel diodes are measured as functions of the applied microwave power, the signal frequency being 10 GHz. We highlight strong variations of the diode characteristics when the applied microwave power is higher than few microwatt. For a diode operating at ${4}$ K, the differential gain increases from ${1,000}$ V/W to about ${4,500}$ V/W when the power passes from ${-30}$ dBm to ${-20}$ dBm. The diode present a white noise floor equivalent to a NEP of ${0.8}$ pW/ ${\\sqrt{\\mathrm{Hz}}}$ and ${8}$ pW/${ \\sqrt{\\mathrm{Hz}}}$ at 4 K and 300 K respectively. Its flicker noise is equivalent to a relative amplitude noise power spectral density ${S_{\\alpha}(1~\\mathrm{Hz})=-120}$~dB/Hz at ${4}$ K. Flicker noise is 10 dB higher at room temperature.
Zero and finite temperature phase diagram of the spinless fermion model in infinite dimensions
Uhrig, G. S.; Vlaming, R.
The phase diagram of the model of spinless fermions with repulsive nearest neighbour interaction is calculated analytically on a hypercubic lattice in infinite dimensions (d ). In spite of its simplicity the model displays a rich phase diagram depending on the doping , the interaction U and the temperature T. The system can be in the homogeneous phase (HOM), the nonsegregated AB charge density wave (AB-CDW), the AB phase separation region (PS-AB/HOM; coexistence of AB-CDW and HOM), the incommensurate phase (IP) or the IP phase separation region (PS-AB/IP; coexistence of AB-CDW and IP). We identify three important values of the interaction UIPL = 0.572 UIP/PS = 4.212 which distinguish four intervals of U. These imply four different types of phase diagrams. In all the three phase diagrams with U below UIP/PS the IP appears. We propose a new general ansatz for the order parameter of this phase. A competition between the IP, the PS-AB/IP and the PS-AB/HOM is found. The relevance of our findings for the phase scenario of the Hubbard model is shown.
On the general XY Model: positive and zero temperature, selection and non-selection
Baraviera, A T; Lopes, A O; Mohr, J; Souza, R R
2011-01-01
We consider $(M,d)$ a connected and compact manifold and we denote by $\\mathcal{B}_i$ the Bernoulli space $M^{\\Z}$ of sequences represented by $$x=(... x_{-3},x_{-2},x_{-1},x_0,x_1,x_2,x_3,...),$$ where $x_i$ belongs to the space (alphabet) $M$. The case where $M=\\mathbb{S}^1$, the unit circle, is of particular interest here. The analogous problem in the one-dimensional lattice $\\mathbb{N}$ is also considered. %In this case we consider the potential $A: {\\cal B}=M^\\mathbb{N} \\to \\mathbb{R}.$ Let $A: \\mathcal{B}_i \\rar \\R$ be an {\\it observable} or {\\it potential} defined in the Bernoulli space $\\mathcal{B}_i$. The potential $A$ describes an interaction between sites in the one-dimensional lattice $M^\\mathbb{Z}$. Given a temperature $T$, we analyze the main properties of the Gibbs state $\\hat{\\mu}_{\\frac{1}{T} A}$ which is a certain probability measure over ${\\cal B}_i$. We denote this setting "the general XY model". In order to do our analysis we consider the Ruelle operator associated to $\\frac{1}{T} A$, and...
A density variational approach to nuclear giant resonances at zero and finite temperature
We present a density functional approach to the description of nuclear giant resonances (GR), using Skyrme type effective interactions. We exploit hereby the theorems of Thouless and others, relating RPA sum rules to static (constrained) Hartree-Fock expectation values. The latter are calculated both microscopically and, where shell effects are small enough to allow it, semiclassically by a density variational method employing the gradient-expanded density functionals of the extended Thomas-Fermi model. We obtain an excellent overall description of both systematics and detailed isotopic dependence of GR energies, in particular with the Skyrme force SkM. For the breathing modes (isoscalar and isovector giant monopole modes), and to some extent also for the isovector dipole mode, the A-dependence of the experimental peak energies is better described by coupling two different modes (corresponding to two different excitation operators) of the same spin and parity and evaluating the eigenmodes of the coupled system. Our calculations are also extended to highly excited nuclei (without angular momentum) and the temperature dependence of the various GR energies is discussed
Conservation of coconut (Cocos nucifera L.) germplasm at sub-zero temperature.
Sisunandar; Sopade, Peter A; Samosir, Yohannes M S; Rival, Alain; Adkins, Steve W
2012-01-01
Protocols are proposed for the low (-20 degree C) and ultra-low (-80 degree C) temperature storage of coconut (Cocos nucifera L.) embryos. A tissue dehydration step prior to storage, and a rapid warming step upon recovery optimized the protocol. The thermal properties of water located within embryos were monitored using differential scanning calorimetry (DSC). In the most efficient version of the protocol, embryos were dehydrated under a sterile air flow in a dehydration solution containing glucose (3.33 M) and glycerol (15 percent) for 16 hours. This protocol decreased the embryo water content from 77 to 29 percent FW and at the same time reduced the amount of freezable water down to 0.03 percent. The dehydrated embryos could be stored for up to 3 weeks at -20 degree C (12 percent producing normal plants upon recovery) or 26 weeks at -80 degree C (28 percent producing normal plants upon recovery). These results indicate that it is possible to store coconut germplasm on a medium term basis using an ultra-deep freezer unit. However for more efficient, long term storage, cryopreservation remains the preferred option. PMID:23250406
Effects of sub-zero storage temperatures on endoparasites in canine and equine feces.
Schurer, Janna; Davenport, Laura; Wagner, Brent; Jenkins, Emily
2014-08-29
Fecal samples from wild and domestic carnivores are routinely frozen for three days at -80°C to kill eggs of Echinococcus spp., following recommendations from the World Health Organization (WHO) and World Organization for Animal Health (OIE). This is done to decrease the risk of zoonotic infection with these pathogenic cestodes. In addition, it is often necessary to freeze fecal samples collected for research prior to batch processing by a limited number of personnel, especially large numbers of samples or those collected in remote locations. The effect of freezing on the recovery of endoparasite eggs, cysts and oocysts from fecal samples is not well documented, even in hosts for which veterinary diagnostic submissions are relatively common. In this study, fecal samples from naturally infected dogs and horses were split into four treatment groups: fresh; -80°C for 3 days; -20°C for 30 days; and -80°C for 3 days followed by -20°C for an additional 30 days. Temperatures and times were chosen to simulate diagnostic and research protocols currently in place. Helminth eggs and sporocysts of Sarcocystis spp. were counted using a quantitative double centrifugation sucrose fecal flotation (modified Stoll egg count). Repeated measures ANOVA was used to detect differences in egg/sporocyst counts between the treatment groups for Sarcocystis spp. sporocysts, taeniid eggs (Taenia and/or Echinococcus spp.), ascarid eggs (Parascaris equorum, Toxocara canis, Toxascaris leonina), and strongylid type eggs (Uncinaria stenocephala, and equine strongylids, most likely cyathostomins). Counts for P. equorum and strongylid type eggs (both equine and canine) decreased significantly following freezing. Post-freezing, some samples that had been positive on fresh examination became negative for Parascaris and strongylid eggs. This study suggests that protocols requiring freezing artificially lowers recovery of eggs of Parascaris and strongylid nematodes in fecal surveys; however
Lan, Yi-Bin; Qian, Xu; Yang, Zhong-Jun; Xiang, Xiao-Feng; Yang, Wei-Xi; Liu, Tao; Zhu, Bao-Qing; Pan, Qiu-Hong; Duan, Chang-Qing
2016-12-01
The evolution of free and glycosidically bound volatile compounds in 'Beibinghong' (Vitis vinifera×Vitis amurensis) grape berries throughout on-vine over-ripening and freezing processes was studied in two vintages. The aroma profiles of 'Beibinghong' icewine berries were characterized by C6 compounds, higher alcohols and terpenoids in free fractions and carbonyl compounds, higher alcohols, C6 alcohols and terpenoids in bound fractions. With regard to free volatile compounds, there was a decrease in the concentration of C6 compounds, terpenols and norisoprenoids and an increase of terpene oxides during over-ripening process. A striking alteration of volatile profile occurred at sub-zero temperatures, particularly for the free fractions such as C6 alcohols, higher alcohols and oxidative terpene derivatives. These changes were attributed to a series of reactions (biotransformation, oxidation and anaerobic metabolism) induced by water loss and especially freeze-thaw cycles. PCA revealed temperature and rainfall affected the accumulation of volatile compounds during over-ripening processes. PMID:27374521
Absolute calibration of JET ELE system
The first Michelson channel of the JET ECE system has been calibrated absolutely using a new high temperature source. The estimated uncertainties are of order +- 20% in the absolute spectral response and +- 10% in the relative spectral shape
Benchmark models were developed to evaluate six cold-critical and two warm-critical, zero-power measurements of the HTTR. Additional measurements of a fully-loaded subcritical configuration, core excess reactivity, shutdown margins, six isothermal temperature coefficients, and axial reaction-rate distributions were also evaluated as acceptable benchmark experiments. Insufficient information is publicly available to develop finely-detailed models of the HTTR as much of the design information is still proprietary. However, the uncertainties in the benchmark models are judged to be of sufficient magnitude to encompass any biases and bias uncertainties incurred through the simplification process used to develop the benchmark models. Dominant uncertainties in the experimental keff for all core configurations come from uncertainties in the impurity content of the various graphite blocks that comprise the HTTR. Monte Carlo calculations of keff are between approximately 0.9 % and 2.7 % greater than the benchmark values. Reevaluation of the HTTR models as additional information becomes available could improve the quality of this benchmark and possibly reduce the computational biases. High-quality characterization of graphite impurities would significantly improve the quality of the HTTR benchmark assessment. Simulation of the other reactor physics measurements are in good agreement with the benchmark experiment values. The complete benchmark evaluation details are available in the 2014 edition of the International Handbook of Evaluated Reactor Physics Benchmark Experiments
Monteiro, Silvio Rogerio; Santos, Angelo Francisco dos [Liquigas Distribuidora S.A., Sao Paulo, SP (Brazil)
2008-07-01
A scenery of water shortage and the search for profitability improvement obligate the companies to exercise their creativity and to adopt alternative methods to the conventional ones to preserve the environmental resources. The 'Effluent Zero' project comes from a paradigms changing that the environmental preservation is a necessary cost. It brings a new analysis approach of this problem with the purpose to adapt the investments and operational costs with the effluents treatment to the demands of the productive processes. In Liquigas, the project brought significant results; made a potential reduction of nearly 90% in the investments of the effluents treatment systems. That means nearly 13% in reduction in the total investments in modernization and upgrade of the existents companies installations and of 1,6% in the total operational costs of the Company. Further more, it has contributed for a reduction of until 43% of the water consumption in the bottling process of the Liquefied Petroleum Gas (LPG). This way, the project resulted in effective actions of environmental protection with relevant economic benefits. (author)
Abadlia, L; Gasser, F; Khalouk, K; Mayoufi, M; Gasser, J G
2014-09-01
In this paper we describe an experimental setup designed to measure simultaneously and very accurately the resistivity and the absolute thermoelectric power, also called absolute thermopower or absolute Seebeck coefficient, of solid and liquid conductors/semiconductors over a wide range of temperatures (room temperature to 1600 K in present work). A careful analysis of the existing experimental data allowed us to extend the absolute thermoelectric power scale of platinum to the range 0-1800 K with two new polynomial expressions. The experimental device is controlled by a LabView program. A detailed description of the accurate dynamic measurement methodology is given in this paper. We measure the absolute thermoelectric power and the electrical resistivity and deduce with a good accuracy the thermal conductivity using the relations between the three electronic transport coefficients, going beyond the classical Wiedemann-Franz law. We use this experimental setup and methodology to give new very accurate results for pure copper, platinum, and nickel especially at very high temperatures. But resistivity and absolute thermopower measurement can be more than an objective in itself. Resistivity characterizes the bulk of a material while absolute thermoelectric power characterizes the material at the point where the electrical contact is established with a couple of metallic elements (forming a thermocouple). In a forthcoming paper we will show that the measurement of resistivity and absolute thermoelectric power characterizes advantageously the (change of) phase, probably as well as DSC (if not better), since the change of phases can be easily followed during several hours/days at constant temperature. PMID:25273786
Abadlia, L.; Mayoufi, M. [Laboratoire de Chimie des Matériaux Inorganiques, Université Badji-Mokhtar Annaba, BP12, 23000 Annaba (Algeria); Gasser, F.; Khalouk, K.; Gasser, J. G., E-mail: jean-georges.gasser@univ-lorraine.fr [Laboratoire de Chimie et Physique - Approche Multi-échelle des Milieux Complexes (LCP-A2MC) Institut de Chimie, Physique et Matériaux, Université de Lorraine, 1 Boulevard Arago - 57078 Metz cedex 3 (France)
2014-09-15
In this paper we describe an experimental setup designed to measure simultaneously and very accurately the resistivity and the absolute thermoelectric power, also called absolute thermopower or absolute Seebeck coefficient, of solid and liquid conductors/semiconductors over a wide range of temperatures (room temperature to 1600 K in present work). A careful analysis of the existing experimental data allowed us to extend the absolute thermoelectric power scale of platinum to the range 0-1800 K with two new polynomial expressions. The experimental device is controlled by a LabView program. A detailed description of the accurate dynamic measurement methodology is given in this paper. We measure the absolute thermoelectric power and the electrical resistivity and deduce with a good accuracy the thermal conductivity using the relations between the three electronic transport coefficients, going beyond the classical Wiedemann-Franz law. We use this experimental setup and methodology to give new very accurate results for pure copper, platinum, and nickel especially at very high temperatures. But resistivity and absolute thermopower measurement can be more than an objective in itself. Resistivity characterizes the bulk of a material while absolute thermoelectric power characterizes the material at the point where the electrical contact is established with a couple of metallic elements (forming a thermocouple). In a forthcoming paper we will show that the measurement of resistivity and absolute thermoelectric power characterizes advantageously the (change of) phase, probably as well as DSC (if not better), since the change of phases can be easily followed during several hours/days at constant temperature.
Smagina, Ye. M.
2006-01-01
The present book is the first publication in English considered the modern problems of control theory and analysis connected with a concept of system zeros. The previous book by Ye.M. Smagina (1990) had been written in Russian and it is inaccessible to English speaking researchers. The purpose of the offered book is to systematize and consistently to state basic theoretical results connected with properties of multivariable system zeros. Different zeros definitions and different types of zero...
In this paper we study the spin-spin correlation function decay properties of the Blume-Emery-Griffiths (BEG) model with Hamiltonian located on the interface between the disordered and the anti-quadrupolar phases. On this interface, the BEG model has infinitely many ground state configurations. We show that, for any dimension d, there exists a parameter value, yd, below which the spin-spin correlation function with zero boundary condition decays exponentially fast at all non-zero temperatures. This result suggests that reentrant behaviour predicted by mean-field and numerical calculations may be absent for those values of parameters
Braga, Gastao A; Lima, Paulo C [Departamento de Matematica, UFMG, Caixa Postal 1621, 30161-970, Belo Horizonte, MG (Brazil)
2003-09-19
In this paper we study the spin-spin correlation function decay properties of the Blume-Emery-Griffiths (BEG) model with Hamiltonian located on the interface between the disordered and the anti-quadrupolar phases. On this interface, the BEG model has infinitely many ground state configurations. We show that, for any dimension d, there exists a parameter value, y{sub d}, below which the spin-spin correlation function with zero boundary condition decays exponentially fast at all non-zero temperatures. This result suggests that reentrant behaviour predicted by mean-field and numerical calculations may be absent for those values of parameters.
Braga, Gastão A.; Lima, Paulo C.
2003-09-01
In this paper we study the spin-spin correlation function decay properties of the Blume-Emery-Griffiths (BEG) model with Hamiltonian located on the interface between the disordered and the anti-quadrupolar phases. On this interface, the BEG model has infinitely many ground state configurations. We show that, for any dimension d, there exists a parameter value, yd, below which the spin-spin correlation function with zero boundary condition decays exponentially fast at all non-zero temperatures. This result suggests that reentrant behaviour predicted by mean-field and numerical calculations may be absent for those values of parameters.
The temperature coefficient of frequency (TCF) was investigated in monoclinic NdCa4O(BO3)3 (NdCOB) piezoelectric crystals over the temperature range of -140 C to 200 C. A zero TCF characteristic was achieved for the (ZXw) 15 crystal cut, with turnover point at 20 C. The electromechanical coupling k26 and piezoelectric coefficient d26, in shear vibration mode, were determined to be 25% and 13.5 pC/N, respectively. The zero TCF crystal cut, large coupling factor and high piezoelectric coefficient, together with a high mechanical quality factor (Q > 10,000), demonstrate NdCOB crystals promising candidates for bulk acoustic wave resonators over a wide temperature range. (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)
On determining absolute entropy without quantum theory or the third law of thermodynamics
Steane, Andrew M.
2016-04-01
We employ classical thermodynamics to gain information about absolute entropy, without recourse to statistical methods, quantum mechanics or the third law of thermodynamics. The Gibbs–Duhem equation yields various simple methods to determine the absolute entropy of a fluid. We also study the entropy of an ideal gas and the ionization of a plasma in thermal equilibrium. A single measurement of the degree of ionization can be used to determine an unknown constant in the entropy equation, and thus determine the absolute entropy of a gas. It follows from all these examples that the value of entropy at absolute zero temperature does not need to be assigned by postulate, but can be deduced empirically.
Absolute Photoacoustic Thermometry in Deep Tissue
Yao, Junjie; Ke, Haixin; Tai, Stephen; Zhou, Yong; Wang, Lihong V.
2013-01-01
Photoacoustic (PA) thermography is a promising tool for temperature measurement in deep tissue. Here, we propose an absolute temperature measurement method based on the dual temperature dependences of the Grüneisen parameter and the speed of sound in tissue. By taking ratiometric measurements at two adjacent temperatures, we can eliminate the factors that are temperature irrelevant but difficult to correct for in deep tissue. To validate our method, absolute temperatures of blood-filled tubes...
Teaching Absolute Value Meaningfully
Wade, Angela
2012-01-01
What is the meaning of absolute value? And why do teachers teach students how to solve absolute value equations? Absolute value is a concept introduced in first-year algebra and then reinforced in later courses. Various authors have suggested instructional methods for teaching absolute value to high school students (Wei 2005; Stallings-Roberts…
Fat’yanov, O. V., E-mail: fatyan1@gps.caltech.edu; Asimow, P. D., E-mail: asimow@gps.caltech.edu [Division of Geological and Planetary Sciences 252-21, California Institute of Technology, Pasadena, California 91125 (United States)
2015-10-15
We describe an accurate and precise calibration procedure for multichannel optical pyrometers such as the 6-channel, 3-ns temporal resolution instrument used in the Caltech experimental geophysics laboratory. We begin with a review of calibration sources for shock temperatures in the 3000-30 000 K range. High-power, coiled tungsten halogen standards of spectral irradiance appear to be the only practical alternative to NIST-traceable tungsten ribbon lamps, which are no longer available with large enough calibrated area. However, non-uniform radiance complicates the use of such coiled lamps for reliable and reproducible calibration of pyrometers that employ imaging or relay optics. Careful analysis of documented methods of shock pyrometer calibration to coiled irradiance standard lamps shows that only one technique, not directly applicable in our case, is free of major radiometric errors. We provide a detailed description of the modified Caltech pyrometer instrument and a procedure for its absolute spectral radiance calibration, accurate to ±5%. We employ a designated central area of a 0.7× demagnified image of a coiled-coil tungsten halogen lamp filament, cross-calibrated against a NIST-traceable tungsten ribbon lamp. We give the results of the cross-calibration along with descriptions of the optical arrangement, data acquisition, and processing. We describe a procedure to characterize the difference between the static and dynamic response of amplified photodetectors, allowing time-dependent photodiode correction factors for spectral radiance histories from shock experiments. We validate correct operation of the modified Caltech pyrometer with actual shock temperature experiments on single-crystal NaCl and MgO and obtain very good agreement with the literature data for these substances. We conclude with a summary of the most essential requirements for error-free calibration of a fiber-optic shock-temperature pyrometer using a high-power coiled tungsten halogen
We describe an accurate and precise calibration procedure for multichannel optical pyrometers such as the 6-channel, 3-ns temporal resolution instrument used in the Caltech experimental geophysics laboratory. We begin with a review of calibration sources for shock temperatures in the 3000-30 000 K range. High-power, coiled tungsten halogen standards of spectral irradiance appear to be the only practical alternative to NIST-traceable tungsten ribbon lamps, which are no longer available with large enough calibrated area. However, non-uniform radiance complicates the use of such coiled lamps for reliable and reproducible calibration of pyrometers that employ imaging or relay optics. Careful analysis of documented methods of shock pyrometer calibration to coiled irradiance standard lamps shows that only one technique, not directly applicable in our case, is free of major radiometric errors. We provide a detailed description of the modified Caltech pyrometer instrument and a procedure for its absolute spectral radiance calibration, accurate to ±5%. We employ a designated central area of a 0.7× demagnified image of a coiled-coil tungsten halogen lamp filament, cross-calibrated against a NIST-traceable tungsten ribbon lamp. We give the results of the cross-calibration along with descriptions of the optical arrangement, data acquisition, and processing. We describe a procedure to characterize the difference between the static and dynamic response of amplified photodetectors, allowing time-dependent photodiode correction factors for spectral radiance histories from shock experiments. We validate correct operation of the modified Caltech pyrometer with actual shock temperature experiments on single-crystal NaCl and MgO and obtain very good agreement with the literature data for these substances. We conclude with a summary of the most essential requirements for error-free calibration of a fiber-optic shock-temperature pyrometer using a high-power coiled tungsten halogen
Fat'yanov, O. V.; Asimow, P. D.
2015-10-01
We describe an accurate and precise calibration procedure for multichannel optical pyrometers such as the 6-channel, 3-ns temporal resolution instrument used in the Caltech experimental geophysics laboratory. We begin with a review of calibration sources for shock temperatures in the 3000-30 000 K range. High-power, coiled tungsten halogen standards of spectral irradiance appear to be the only practical alternative to NIST-traceable tungsten ribbon lamps, which are no longer available with large enough calibrated area. However, non-uniform radiance complicates the use of such coiled lamps for reliable and reproducible calibration of pyrometers that employ imaging or relay optics. Careful analysis of documented methods of shock pyrometer calibration to coiled irradiance standard lamps shows that only one technique, not directly applicable in our case, is free of major radiometric errors. We provide a detailed description of the modified Caltech pyrometer instrument and a procedure for its absolute spectral radiance calibration, accurate to ±5%. We employ a designated central area of a 0.7× demagnified image of a coiled-coil tungsten halogen lamp filament, cross-calibrated against a NIST-traceable tungsten ribbon lamp. We give the results of the cross-calibration along with descriptions of the optical arrangement, data acquisition, and processing. We describe a procedure to characterize the difference between the static and dynamic response of amplified photodetectors, allowing time-dependent photodiode correction factors for spectral radiance histories from shock experiments. We validate correct operation of the modified Caltech pyrometer with actual shock temperature experiments on single-crystal NaCl and MgO and obtain very good agreement with the literature data for these substances. We conclude with a summary of the most essential requirements for error-free calibration of a fiber-optic shock-temperature pyrometer using a high-power coiled tungsten halogen
S. A. Carl
2008-10-01
Full Text Available The absolute rate constant for the reaction that is the major source of stratospheric NOx, O(1D+N2O → products, has been determined in the temperature range 227 K to 719 K, and, in the temperature range 248 K to 600 K, the fraction of the reaction that yields O(3P. Both the rate constants and product yields were determined using a recently-developed chemiluminescence technique for monitoring O(1D that allows for higher precision determinations for both rate constants, and, particularly, O(3P yields, than do other methods. We found the rate constant, kR1, to be essentially independent of temperature between 400 K and 227 K, having a value of (1.37±0.11×10−10 cm3 s−1, and for temperatures greater than 450 K a marked decrease in rate constant was observed, with a rate constant of only (0.94±0.11×10−10 cm3 s−1 at 719 K. The rate constants determined over the 227 K–400 K range show very low scatter and are significantly greater, by 20% at room temperature and 15% at 227 K, than the current recommended values. The fraction of O(3P produced in this reaction was determined to be 0.002±0.002 at 250 K rising steadily to 0.010±0.004 at 600 K, thus the channel producing O(3P can be entirely neglected in atmospheric kinetic modeling calculations. A further result of this study is an expression of the relative quantum yields as a function of temperature for the chemiluminescence reactions (kCL1C2H + O(1D → CH(A + CO and (kCL2C2H + O(3P → CH(A + CO, both followed by CH(A → CH(X + hν, as kCL1(T/kCL2(T=(32.8T−3050/(6.29T+398.
Teplukhin, Alexander; Babikov, Dmitri
2016-07-28
Rigorous calculations of scattering resonances in ozone are carried out for a broad range of rotational excitations. The accurate potential energy surface of Dawes is adopted, and a new efficient method for calculations of ro-vibrational energies, wave functions and resonance lifetimes is employed (which uses hyper-spherical coordinates, the sequential diagonalization/truncation approach, grid optimization and complex absorbing potential). A detailed analysis is carried out to characterize distributions of resonance energies and lifetimes, their rotational/vibrational content and their positions with respect to the centrifugal barrier. Emphasis is on the contribution of these resonances to the recombination process that forms ozone. It is found that major contributions come from localized resonances at energies near the top of the barrier. Delocalized resonances at higher energies should also be taken into account, while very narrow resonances at low energies (trapped far behind the centrifugal barrier) should be treated as bound states. The absolute value of the recombination rate coefficient, its pressure and temperature dependencies are obtained using the energy-transfer model developed in the earlier work. Good agreement with experimental data is obtained if one follows the suggestion of Troe, who argued that the energy transfer mechanism of recombination is responsible only for 55% of the recombination rate (with the remaining 45% coming from the competing chaperon mechanism). PMID:27364351
Lozada, Marlene
1998-01-01
Many public school districts have adopted a policy of zero tolerance toward drug use, weapon possession, and sexual harassment on school grounds. Although a study by the National Center for Education Statistics reported no evidence that zero tolerance policies have lowered school crime rates, prominent education groups favor them. (JOW)
Eosinophils; Absolute eosinophil count ... the white blood cell count to give the absolute eosinophil count. ... than 500 cells per microliter (cells/mcL). Normal value ranges may vary slightly among different laboratories. Talk ...
Wang, Zhiyuan; Ma, Bo-Qiang
2016-05-01
We propose a unified approach to study meson, nucleon and Δ -baryon properties at zero and finite temperatures in the context of hard-wall AdS/QCD model. We first combine some previous works dealing with mesons and baryons separately, and introduce a new parameter ξ so that the model could give a universal description of spectrum and couplings of both sectors in a self-consistent way. All observables calculated numerically show reasonable agreement with experimental data. We then study these observables at nonzero temperature by modifying the AdS space-time into AdS-Schwartzchild space-time. Numerically solving the model, we find an interesting temperature dependence of the spectrum and the couplings. We also make a prediction on the finite-temperature decay width of some nucleon and Δ excited states.
Moussa, Marwen; Dumont, Frédéric; Perrier-Cornet, Jean-Marie; Gervais, Patrick
2008-12-15
The survival of cells subjected to cooling at sub-zero temperature is of paramount concern in cryobiology. The susceptibility of cells to cryopreservation processes, especially freeze-thawing, stimulated considerable interest in better understanding the mechanisms leading to cell injury and inactivation. In this study, we assessed the viability of cells subjected to cold stress, through long-term supercooling experiments, versus freeze-thawing stress. The viability of Escherichia coli, Saccharomyces cerevisiae, and leukemia cells were assessed over time. Supercooled conditions were maintained for 71 days at -10 degrees C, and for 4 h at -15 degrees C, and -20 degrees C, without additives or emulsification. Results showed that cells could be inactivated by the only action of sub-zero temperature, that is, without any water crystallization. The loss of cell viability upon exposure to sub-zero temperatures is suggested to be caused by exposure to cold shock which induced membrane damage. During holding time in the supercooled state, elevated membrane permeability results in uncontrolled mass transfer to and from the cell maintained at cold conditions and thus leads to a loss of viability. With water crystallization, cells shrink suddenly and thus are exposed to cold osmotic shock, which is suggested to induce abrupt loss of cell viability. During holding time in the frozen state, cells remain suspended in the residual unfrozen fraction of the liquid and are exposed to cold stress that would cause membrane damage and loss of viability over time. However, the severity of such a stress seems to be moderated by the cell type and the increased solute concentration in the unfrozen fraction of the cell suspension. PMID:18814283
Absolute nuclear material assay
Prasad, Manoj K.; Snyderman, Neal J.; Rowland, Mark S.
2010-07-13
A method of absolute nuclear material assay of an unknown source comprising counting neutrons from the unknown source and providing an absolute nuclear material assay utilizing a model to optimally compare to the measured count distributions. In one embodiment, the step of providing an absolute nuclear material assay comprises utilizing a random sampling of analytically computed fission chain distributions to generate a continuous time-evolving sequence of event-counts by spreading the fission chain distribution in time.
Absolute nuclear material assay
Prasad, Manoj K.; Snyderman, Neal J.; Rowland, Mark S.
2012-05-15
A method of absolute nuclear material assay of an unknown source comprising counting neutrons from the unknown source and providing an absolute nuclear material assay utilizing a model to optimally compare to the measured count distributions. In one embodiment, the step of providing an absolute nuclear material assay comprises utilizing a random sampling of analytically computed fission chain distributions to generate a continuous time-evolving sequence of event-counts by spreading the fission chain distribution in time.
With the liquefaction of helium performed by Kammerling Onnes in 1908, all known gases had been liquefied. The discovery of new and unexpected physical phenomena like the superconductivity and the connection of these phenomena with the new quantum theory introduced by Planck in 1900 opened new fields of research what motivated the physicists to develop new techniques to approach more and more the absolute zero temperature (-273,15 deg C). If the refrigeration at the temperature of liquid helium (4.2 K) is used in on industrial way in particular for the medical imagery (MRI) or the production of helium, the lower temperatures remain in the field of laboratory or great scientific projects (particles collider, nuclear fusion). Thus, it is possible to approach the absolute zero today (less than 1 mK), by combining several techniques of refrigeration like evaporation, adiabatic demagnetization or the dilution of helium 3 in helium 4. (author)
Deng, Sihao; Sun, Ying; Wang, Lei; Shi, Kewen; Hu, Pengwei; Wang, Cong, E-mail: congwang@buaa.edu.cn [Center for Condensed Matter and Materials Physics, Department of Physics, Beihang University, Beijing 100191 (China); Wu, Hui; Huang, Qingzhen [NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899-6102 (United States)
2016-01-25
The near-zero temperature coefficient of resistivity (NZ-TCR) behavior is reported in the antiperovskite compounds Mn{sub 3+x}Ni{sub 1−x}N (0 ≤ x ≤ 0.333). Our results indicate that the broad temperature range (above 275 K extending to above 220 K) of NZ-TCR is obtained by Mn doping at the Ni site. The short-range magnetic ordering is revealed by both neutron powder diffraction and inverse magnetic susceptibility. Further, we find a strong correlation between the anomalous resistivity change of Mn{sub 3+x}Ni{sub 1−x}N from the metal-like to the NZ-TCR behavior and the lack of the long-range magnetic ordering. The possible mechanism of NZ-TCR behavior is discussed using the spin-disorder scattering model.
The near-zero temperature coefficient of resistivity (NZ-TCR) behavior is reported in the antiperovskite compounds Mn3+xNi1−xN (0 ≤ x ≤ 0.333). Our results indicate that the broad temperature range (above 275 K extending to above 220 K) of NZ-TCR is obtained by Mn doping at the Ni site. The short-range magnetic ordering is revealed by both neutron powder diffraction and inverse magnetic susceptibility. Further, we find a strong correlation between the anomalous resistivity change of Mn3+xNi1−xN from the metal-like to the NZ-TCR behavior and the lack of the long-range magnetic ordering. The possible mechanism of NZ-TCR behavior is discussed using the spin-disorder scattering model
Schechter, J.; Shahid, M. N.
2012-01-01
We discuss the possibility of using experiments timing the propagation of neutrino beams over large distances to help determine the absolute masses of the three neutrinos.......We discuss the possibility of using experiments timing the propagation of neutrino beams over large distances to help determine the absolute masses of the three neutrinos....
Superconducting Tl-Ca-Ba-Cu-O thin films with zero resistance at temperatures of up to 120 K
We have prepared superconducting Tl-Ca-Ba-Cu-O thin films on a variety of substrates with transition temperatures as high as ≅120 K, confirmed by sharp onsets of substantial Meissner and shielding signals at the same temperatures. The properties of the films are found to depend sensitively on the post-annealing conditions. Highly textured c-axis-oriented films comprised mostly of Tl2Ca1Ba2Cu2O/sub x/, Tl1Ca2Ba2Cu3O/sub x/, and Tl2Ca2Ba2Cu3O/sub x/ were synthesized by varying the annealing procedure with corresponding maximum superconducting transition temperatures of ≅100, 110, and 120 K, respectively
Carl, S. A.; Peeters, J.; Vranckx, S.
2008-01-01
The absolute rate constant for the reaction that is the major source of stratospheric NOx, O(1D)+N2O → products, has been determined in the temperature range 227 K to 719 K, and, in the temperature range 248 K to 600 K, the fraction of the reaction that yields O(3P). Both the rate constants and product yields were determined using a recently-developed chemiluminescence technique for monitoring O(1D) that allows for higher precision determinations for both rate constants, and, particularl...
National Oceanic and Atmospheric Administration, Department of Commerce — The NGS Absolute Gravity data (78 stations) was received in July 1993. Principal gravity parameters include Gravity Value, Uncertainty, and Vertical Gradient. The...
Çuhadar, C.Hakan
2008-01-01
Musicians are debated people in the academic circles with the claim of they have both various characteristics and different cognitive personalities on the analogy those other people. One of these different characteristics is absolute pitch ability. Absolute pitch (AP) is a cognitive ability which can be characterized as to identify any tones (labeling) at a given pitch without using any external references. According to the different studies which were held in different times, the prevalence ...
Okada, H.; Alekseev, I.; Bravar, A; Bunce, G.; Dhawan, S.; Eyser, K. O.; Gill, R; Haeberli, W.; Huang, H.; Jinnouchi, O.; Makdisi, Y.; Nakagawa, I.; Nass, A.; Saito, N; Stephenson, E.
2007-01-01
Precise and absolute beam polarization measurements are critical for the RHIC spin physics program. Because all experimental spin-dependent results are normalized by beam polarization, the normalization uncertainty contributes directly to final physics uncertainties. We aimed to perform the beam polarization measurement to an accuracy of $\\Delta P_{beam}/P_{beam} < 5%$. The absolute polarimeter consists of Polarized Atomic Hydrogen Gas Jet Target and left-right pairs of silicon strip detector...
Absolute surface energy determination
Metois, J. J.; Muller, P.
2007-01-01
Experimental determination of absolute surface energies remains a challenge. We propose a simple method based on two independent measurements on 3D and 2D equilibrium shapes completed by the analysis of the thermal fluctuation of an isolated step. Using then basic equations (Wulff' theorem, Gibbs-Thomson equation, thermodynamics fluctuation of an isolated step) allows us to extract the absolute surface free energy of a singular face. The so-proposed method can be applied when (i) all orientat...
Deformable spin- (1)/(2) XX chain with three-site interactions at zero and finite temperatures
Derzhko, Oleg; Krokhmalskii, Taras; Stolze, Joachim; Verkholyak, Taras
2009-03-01
We study spin-Peierls structural lattice instabilities for a spin-1/2 isotropic XY chain with three-site interactions of (XZX+YZY) type. Within the adopted adiabatic treatment we have to examine the ground-state energy or the Helmholtz free energy of the spin chain with exchange couplings varying coherently with a possible static lattice distortion pattern. Since the considered spin model can be converted into a system of noninteracting spinless fermions the required ground-state energy or the Helmholtz free energy can be calculated accurately without making any approximations. We examine rigorously several lattice distortion patterns focusing on dimerized and trimerized ones, which owe their presence to the spin-Peierls mechanism. We present phase diagrams illustrating the effect of the three-site interaction on the spin-Peierls lattice distortions. Finally we discuss some properties of the deformable spin chain in the ground state and at finite temperatures. In particular, we examine the transverse magnetization, the static transverse susceptibility and the specific heat illustrating the changes in these quantities due to lattice instabilities.
Highlights: • Real-time zero-dimensional three-zone diagnostic combustion model. • Capable of evaluating in-cylinder temperatures, HRR and NOx in DI diesel engines. • Able to be integrated in the engine ECU for control applications. • Able to be integrated in the test bed acquisition software for calibration tasks. • Tested under both steady state and fast transient conditions. - Abstract: A real-time zero-dimensional diagnostic combustion model has been developed and assessed to evaluate in-cylinder temperatures, HRR (heat release rate) and NOx (nitrogen oxides) in DI (Direct Injection) diesel engines under steady state and transient conditions. The approach requires very little computational time, that is, of the order of a few milliseconds, and is therefore suitable for real-time applications. It could, for example, be implemented in an ECU (Engine Control Unit) for the on-board diagnostics of combustion and emission formation processes, or it could be integrated in acquisition software installed on an engine test bench for indicated analysis. The model could also be used for post-processing analysis of previously acquired experimental data. The methodology is based on a three-zone thermodynamic model: the combustion chamber is divided into a fuel zone, an unburned gas zone and a stoichiometric burned gas zone, to which the energy and mass conservation equations are applied. The main novelty of the proposed method is that the equations can be solved in closed form, thus making the approach suitable for real-time applications. The evaluation of the temperature of burned gases allows the in-cylinder NOx concentration to be calculated, on the basis of prompt and Zeldovich thermal mechanisms. The procedure also takes into account the NOx level in the intake charge, and is therefore suitable for engines equipped with traditional short-route EGR (Exhaust Gas Recirculation) systems, and engines equipped with SCR (Selective Catalytic Reduction) and long
Ivády, Viktor; Simon, Tamás; Maze, Jeronimo R.; Abrikosov, I. A.; Gali, Adam
2014-12-01
Nitrogen-vacancy centers in diamond (NV) attract great attention because they serve as a tool in many important applications. The NV center has a polarizable spin S =1 ground state and its spin state can be addressed by optically detected magnetic resonance (ODMR) techniques. The mS=0 and mS=±1 spin levels of the ground state are separated by about 2.88 GHz in the absence of an external magnetic field or any other perturbations. This zero-field splitting (ZFS) can be probed by ODMR. As this splitting changes as a function of pressure and temperature, the NV center might be employed as a sensor operating at the nanoscale. Therefore, it is of high importance to understand the intricate details of the pressure and temperature dependence of this splitting. Here we present an ab initio theory of the ZFS of the NV center as a function of external pressure and temperature including detailed analysis on the contributions of macroscopic and microscopic effects. We found that the pressure dependence is governed by the change in the distance between spins as a consequence of the global compression and the additional local structural relaxation. The local structural relaxation contributes to the change of ZFS with the same magnitude as the global compression. In the case of temperature dependence of ZFS, we investigated the effect of macroscopic thermal expansion as well as the consequent change of the microscopic equilibrium positions. We could conclude that theses effects are responsible for about 15% of the observed decrease of ZFS.
Broadband ultraviolet absorption spectroscopy has been used to determine the CF2 radical density in dual-frequency capacitively coupled CF4/Ar plasmas, using the CF2 A~1B1←X~1A1 system of absorption spectrum. The rotational temperature of ground state CF2 and excited state CF was also estimated by using A~1B1←X~1A1 system and B2Δ−X2Π system, respectively. The translational gas temperature was deduced from the Doppler width of the Ar*(3P2) and Ar*(3P0) metastable atoms absorption line by using the tunable diode laser absorption spectroscopy. The rotational temperatures of the excited state CF are about 100 K higher than those of ground state CF2, and about 200 K higher than the translational gas temperatures. The dependences of the radical CF2 density, electron density, electron temperature, rotational temperature, and gas temperature on the high frequency power and pressure have been analyzed. Furthermore, the production and loss mechanisms of CF2 radical and the gas heating mechanisms have also been discussed
Calibration with Absolute Shrinkage
Øjelund, Henrik; Madsen, Henrik; Thyregod, Poul
2001-01-01
In this paper, penalized regression using the L-1 norm on the estimated parameters is proposed for chemometric je calibration. The algorithm is of the lasso type, introduced by Tibshirani in 1996 as a linear regression method with bound on the absolute length of the parameters, but a modification...
Barna Roy
2014-06-01
Full Text Available The effect of cryorolling (CR strain at 153 K on the evolution of structural defects and their interaction in α−brass (Cu–30 wt.% Zn during nanostructuring has been evaluated. Even though the lattice strain increases up to 2.1 × 10−3 at CR strain of 0.6 initially, but it remains constant upon further rolling. Whereas, the twin density (β increases to a maximum value of 5.9 × 10−3 at a CR strain of 0.7 and reduces to 1.1 × 10−5 at 0.95. Accumulation of stacking faults (SFs and lattice disorder at the twin boundaries causes dynamic recrystallization, promotes grain refinement and decreases the twin density by forming subgrains. Detailed investigations on the formation and interaction of defects have been done through resistivity, positron lifetime and Doppler broadening measurements in order to understand the micro-mechanism of nanostructuring at sub-zero temperatures.
Absolute Gravimetry in Fennoscandia
Pettersen, B. R; TImmen, L.; Gitlein, O.;
away from this central location. An oval shaped zero uplift isoline tracks the general western and northern coastline of Norway and the Kola peninsula. It returns southwest through Russian Karelia and touches the southern tip of Sweden and northern Denmark. The uplift area (as measured by present day...
Kotesovec, Bernhard; Steinrück, Herbert
2010-11-01
The piston rod of a reciprocating compressor is sealed with elastic cylindrical sealing elements. Across the sealings the pressure drops from the operating pressure to the ambient pressure. The lubrication gap between the elastic sealing and reciprocating piston rod is studied with the aim to find conditions of a leakage free sealing. The flow in the lubrication gap and the elastic deformation of the sealing are determined simultaneously. The net-flow during one cycle of the reciprocating piston rod is calculated. It turns out that maintaining zero leakage is very sensible. Indeed the outbound flow during out-stroke has to be equal the inbound flow during the in-stroke. By prescribing a special shape of the undeformed sealing zero leakage can be attained - at least theoretically for certain operating conditions. It turns out that temperature dependent material data and a model for cavitation is necessary. The model, its numerical implementation and results will be discussed.
Zero Gravity Research Facility (Zero-G)
Federal Laboratory Consortium — The Zero Gravity Research Facility (Zero-G) provides a near weightless or microgravity environment for a duration of 5.18 seconds. This is accomplished by allowing...
Since the recent convincing evidence for massive neutrinos in oscillation experiments, the next task is to determine the absolute masses of neutrinos. A unique pattern of neutrino masses will be hopefully fixed in the future superbeam experiments and neutrino factories. However, the determination of the exact scale is more complicated and depends on the mass of the lightest neutrino ( mμ )min . If ( mμ)min ≥ 0.35 eV, the future tritium β decay experiments ( e.g. KATRIN) will have a chance to establish absolute neutrino masses. For smaller masses, 0.004 eV ≤ (mμ)min ≤ 0.35 eV, if neutrinos are Majorana particles, an additional information can be derived from the neutrinoless double β decay (ββ)0μ of nuclei and again the absolute neutrino masses can be fixed. If, however, (mμ)min ≤ 0.004 eV, none of the present and foreseeable future experiments is known to be able to fix the mass scale. (author)
We consider a dilute homogeneous mixture of bosons and spin-polarized fermions at zero temperature. We first construct the formal scheme for carrying out systematic perturbation theory in terms of single particle Green's functions. We especially focus on the description of the boson-fermion interaction. To do so we need to introduce the renormalized boson-fermion T matrix, which we determine to second order in the boson-fermion s-wave scattering length. We also discuss how to incorporate the usual boson-boson T matrix in mean field approximation to obtain the total ground-state properties of the system. The next-order term beyond mean field stems from the boson-fermion interaction and is proportional to aBFkF. The total ground-state energy density to this order is the sum of the kinetic energy of the free fermions, the boson-boson mean-field interaction, the usual mean-field contribution to the boson-fermion interaction energy, and the first boson-fermion correction beyond mean field. We also compute the bosonic and the fermionic chemical potentials, the compressibilities, and the modification to the induced fermion-fermion interaction. We discuss the behavior of the total ground-state energy and the importance of the correction beyond mean field for various parameter regimes, in particular considering mixtures of 6Li and 7Li and of 3He and 4He. Moreover, we determine the modification of the induced fermion-fermion interaction due to the effects beyond mean field. We show that there is no effect on the depletion of the Bose condensate to first order in the boson-fermion scattering length aBF
Absolute Stability of Discrete-Time Systems with Delay
Medina Rigoberto
2008-01-01
Full Text Available We investigate the stability of nonlinear nonautonomous discrete-time systems with delaying arguments, whose linear part has slowly varying coefficients, and the nonlinear part has linear majorants. Based on the "freezing" technique to discrete-time systems, we derive explicit conditions for the absolute stability of the zero solution of such systems.
OKADA; BRAVAR, A.; BUNCE, G.; GILL, R.; HUANG, H.; MAKDISI, Y.; NASS, A.; WOOD, J.; ZELENSKI, Z.; ET AL.
2007-09-10
Precise and absolute beam polarization measurements are critical for the RHIC spin physics program. Because all experimental spin-dependent results are normalized by beam polarization, the normalization uncertainty contributes directly to final physics uncertainties. We aimed to perform the beam polarization measurement to an accuracy Of {Delta}P{sub beam}/P{sub beam} < 5%. The absolute polarimeter consists of Polarized Atomic Hydrogen Gas Jet Target and left-right pairs of silicon strip detectors and was installed in the RHIC-ring in 2004. This system features proton-proton elastic scattering in the Coulomb nuclear interference (CNI) region. Precise measurements of the analyzing power A{sub N} of this process has allowed us to achieve {Delta}P{sub beam}/P{sub beam} = 4.2% in 2005 for the first long spin-physics run. In this report, we describe the entire set up and performance of the system. The procedure of beam polarization measurement and analysis results from 2004-2005 are described. Physics topics of AN in the CNI region (four-momentum transfer squared 0.001 < -t < 0.032 (GeV/c){sup 2}) are also discussed. We point out the current issues and expected optimum accuracy in 2006 and the future.
Okada, H; Bravar, A; Bunce, G; Dhawan, S; Eyser, K O; Gill, R; Haeberli, W; Huang, H; Jinnouchi, O; Makdisi, Y; Nakagawa, I; Nass, A; Saitô, N; Stephenson, E; Sviridia, D; Wise, T; Wood, J; Zelenski, A
2007-01-01
Precise and absolute beam polarization measurements are critical for the RHIC spin physics program. Because all experimental spin-dependent results are normalized by beam polarization, the normalization uncertainty contributes directly to final physics uncertainties. We aimed to perform the beam polarization measurement to an accuracy of $\\Delta P_{beam}/P_{beam} < 5%$. The absolute polarimeter consists of Polarized Atomic Hydrogen Gas Jet Target and left-right pairs of silicon strip detectors and was installed in the RHIC-ring in 2004. This system features \\textit{proton-proton} elastic scattering in the Coulomb nuclear interference (CNI) region. Precise measurements of the analyzing power $A_N$ of this process has allowed us to achieve $\\Delta P_{beam}/P_{beam} =4.2%$ in 2005 for the first long spin-physics run. In this report, we describe the entire set up and performance of the system. The procedure of beam polarization measurement and analysis results from 2004-2005 are described. Physics topics of $A...
Optical tweezers absolute calibration
Dutra, R S; Neto, P A Maia; Nussenzveig, H M
2014-01-01
Optical tweezers are highly versatile laser traps for neutral microparticles, with fundamental applications in physics and in single molecule cell biology. Force measurements are performed by converting the stiffness response to displacement of trapped transparent microspheres, employed as force transducers. Usually, calibration is indirect, by comparison with fluid drag forces. This can lead to discrepancies by sizable factors. Progress achieved in a program aiming at absolute calibration, conducted over the past fifteen years, is briefly reviewed. Here we overcome its last major obstacle, a theoretical overestimation of the peak stiffness, within the most employed range for applications, and we perform experimental validation. The discrepancy is traced to the effect of primary aberrations of the optical system, which are now included in the theory. All required experimental parameters are readily accessible. Astigmatism, the dominant effect, is measured by analyzing reflected images of the focused laser spo...
Aunion, Jose Luis Alcaraz; /Barcelona, IFAE
2010-07-01
This thesis presents the measurement of the charged current quasi-elastic (CCQE) neutrino-nucleon cross section at neutrino energies around 1 GeV. This measurement has two main physical motivations. On one hand, the neutrino-nucleon interactions at few GeV is a region where existing old data are sparse and with low statistics. The current measurement populates low energy regions with higher statistics and precision than previous experiments. On the other hand, the CCQE interaction is the most useful interaction in neutrino oscillation experiments. The CCQE channel is used to measure the initial and final neutrino fluxes in order to determine the neutrino fraction that disappeared. The neutrino oscillation experiments work at low neutrino energies, so precise measurement of CCQE interactions are essential for flux measurements. The main goal of this thesis is to measure the CCQE absolute neutrino cross section from the SciBooNE data. The SciBar Booster Neutrino Experiment (SciBooNE) is a neutrino and anti-neutrino scattering off experiment. The neutrino energy spectrum works at energies around 1 GeV. SciBooNE was running from June 8th 2007 to August 18th 2008. In that period, the experiment collected a total of 2.65 x 10{sup 20} protons on target (POT). This thesis has used full data collection in neutrino mode 0.99 x 10{sup 20} POT. A CCQE selection cut has been performed, achieving around 70% pure CCQE sample. A fit method has been exclusively developed to determine the absolute CCQE cross section, presenting results in a neutrino energy range from 0.2 to 2 GeV. The results are compatible with the NEUT predictions. The SciBooNE measurement has been compared with both Carbon (MiniBoonE) and deuterium (ANL and BNL) target experiments, showing a good agreement in both cases.
Measurement of absolute gravity acceleration in Firenze
M. de Angelis
2011-01-01
Full Text Available This paper reports the results from the accurate measurement of the acceleration of gravity g taken at two separate premises in the Polo Scientifico of the University of Firenze (Italy. In these laboratories, two separate experiments aiming at measuring the Newtonian constant and testing the Newtonian law at short distances are in progress. Both experiments require an independent knowledge on the local value of g. The only available datum, pertaining to the italian zero-order gravity network, was taken more than 20 years ago at a distance of more than 60 km from the study site. Gravity measurements were conducted using an FG5 absolute gravimeter, and accompanied by seismic recordings for evaluating the noise condition at the site. The absolute accelerations of gravity at the two laboratories are (980 492 160.6 ± 4.0 μGal and (980 492 048.3 ± 3.0 μGal for the European Laboratory for Non-Linear Spectroscopy (LENS and Dipartimento di Fisica e Astronomia, respectively. Other than for the two referenced experiments, the data here presented will serve as a benchmark for any future study requiring an accurate knowledge of the absolute value of the acceleration of gravity in the study region.
ZHAO Yunlei; DENG Xiaotie; LEE C. H.; ZHU Hong
2004-01-01
The nature of zero-knowledge is re-examined and the evidence for the following belief is shown:the classic simulation based definitions of zero-knowledge(simulation zero-knowledge)may be somewhat too strong to include some "nice" protocols in which the malicious verifier seems to learn nothing but we do not know how to construct a zero-knowledge simulator for it.To overcome this problem a new relaxation of zero-knowledge,reduction zero-knowledge,is introduced.It is shown that reduction zero-knowledge just lies between simulation zero-knowledge and witness indistinguishability.Under the assumption of existence of one-way permutations a 4-round public-coin reduction zero-knowledge proof system for NP is presented and in practice this protocol works in 3 rounds since the first verifier's message can be fixed once and for all.
The EPR zero-field splitting D (= b20) and its pressure and temperature dependence for trigonal Mn2+ centers in low and room temperature phases in [Zn(H2O)6](BF4)2:Mn2+ crystal are studied by a high-order perturbation formula based on the dominant spin-orbit coupling mechanism. From the studies, the local trigonal distortion angles, the local angular compressibilities and the local angular thermal expansion coefficients for Mn2+ centers in both phases of the [Zn(H2O)6](BF4)2 crystal are estimated. The results are discussed. (orig.)
Absolute neutrino mass measurements
Wolf, Joachim
2011-10-01
The neutrino mass plays an important role in particle physics, astrophysics and cosmology. In recent years the detection of neutrino flavour oscillations proved that neutrinos carry mass. However, oscillation experiments are only sensitive to the mass-squared difference of the mass eigenvalues. In contrast to cosmological observations and neutrino-less double beta decay (0v2β) searches, single β-decay experiments provide a direct, model-independent way to determine the absolute neutrino mass by measuring the energy spectrum of decay electrons at the endpoint region with high accuracy. Currently the best kinematic upper limits on the neutrino mass of 2.2eV have been set by two experiments in Mainz and Troitsk, using tritium as beta emitter. The next generation tritium β-experiment KATRIN is currently under construction in Karlsruhe/Germany by an international collaboration. KATRIN intends to improve the sensitivity by one order of magnitude to 0.2eV. The investigation of a second isotope (137Rh) is being pursued by the international MARE collaboration using micro-calorimeters to measure the beta spectrum. The technology needed to reach 0.2eV sensitivity is still in the R&D phase. This paper reviews the present status of neutrino-mass measurements with cosmological data, 0v2β decay and single β-decay.
Ogden, Daniel M., Jr.
1978-01-01
Suggests that the most practical budgeting system for most managers is a formalized combination of incremental and zero-based analysis because little can be learned about most programs from an annual zero-based budget. (Author/IRT)
Estimating Absolute Site Effects
Malagnini, L; Mayeda, K M; Akinci, A; Bragato, P L
2004-07-15
The authors use previously determined direct-wave attenuation functions as well as stable, coda-derived source excitation spectra to isolate the absolute S-wave site effect for the horizontal and vertical components of weak ground motion. They used selected stations in the seismic network of the eastern Alps, and find the following: (1) all ''hard rock'' sites exhibited deamplification phenomena due to absorption at frequencies ranging between 0.5 and 12 Hz (the available bandwidth), on both the horizontal and vertical components; (2) ''hard rock'' site transfer functions showed large variability at high-frequency; (3) vertical-motion site transfer functions show strong frequency-dependence, and (4) H/V spectral ratios do not reproduce the characteristics of the true horizontal site transfer functions; (5) traditional, relative site terms obtained by using reference ''rock sites'' can be misleading in inferring the behaviors of true site transfer functions, since most rock sites have non-flat responses due to shallow heterogeneities resulting from varying degrees of weathering. They also use their stable source spectra to estimate total radiated seismic energy and compare against previous results. they find that the earthquakes in this region exhibit non-constant dynamic stress drop scaling which gives further support for a fundamental difference in rupture dynamics between small and large earthquakes. To correct the vertical and horizontal S-wave spectra for attenuation, they used detailed regional attenuation functions derived by Malagnini et al. (2002) who determined frequency-dependent geometrical spreading and Q for the region. These corrections account for the gross path effects (i.e., all distance-dependent effects), although the source and site effects are still present in the distance-corrected spectra. The main goal of this study is to isolate the absolute site effect (as a function of frequency
无
2011-01-01
As the picture of HIV/AIDS in China becomes more complex, more efforts are needed The theme of World AIDS Day this year is "Getting to Zero," which means zero new HIV infections, zero discrimination and zero AIDS-related deaths.Realizing these goals, however, is an extremely difficult challenge. Three decades after the first case of HIV was reported in the world in 1981, poor awareness and inadequate medical responses have allowed the virus to continue to spread worldwide.
Zero Sound in Dipolar Fermi Gases
Ronen, Shai; Bohn, John L.
2009-01-01
We study the propagation of sound in a homogeneous dipolar gas at zero temperature, known as zero sound. We find that undamped sound propagation is possible only in a range of solid angles around the direction of polarization of the dipoles. Above a critical dipole moment, we find an unstable mode, by which the gas collapses locally perpendicular to the dipoles' direction.
Non-Invasive Method of Determining Absolute Intracranial Pressure
Yost, William T. (Inventor); Cantrell, John H., Jr. (Inventor); Hargens, Alan E. (Inventor)
2004-01-01
A method is presented for determining absolute intracranial pressure (ICP) in a patient. Skull expansion is monitored while changes in ICP are induced. The patient's blood pressure is measured when skull expansion is approximately zero. The measured blood pressure is indicative of a reference ICP value. Subsequently, the method causes a known change in ICP and measured the change in skull expansion associated therewith. The absolute ICP is a function of the reference ICP value, the known change in ICP and its associated change in skull expansion; and a measured change in skull expansion.
Absolute small-angle measurement based on optical feedback interferometry
Jingang Zhong; Xianhua Zhang; Zhixiang Ju
2008-01-01
We present a simple but effective method for small-angle measurement based on optical feedback inter-ferometry (or laser self-mixing interferometry). The absolute zero angle can be defined at the biggest fringe amplitude point, so this method can also achieve absolute angle measurement. In order to verify the method, we construct an angle measurement system. The Fourier-transform method is used to analysis the interference signal. Rotation angles are experimentally measured with a resolution of 10-6 rad and a measurement range of approximately from -0.0007 to +0.0007 rad.
Be Resolute about Absolute Value
Kidd, Margaret L.
2007-01-01
This article explores how conceptualization of absolute value can start long before it is introduced. The manner in which absolute value is introduced to students in middle school has far-reaching consequences for their future mathematical understanding. It begins to lay the foundation for students' understanding of algebra, which can change…
Ivády, Viktor; Simon, Tamas; Maze, Jeronimo R; Abrikosov, Igor; Gali, Adam
2014-01-01
Nitrogen-vacancy centers in diamond (NV) attract great attention because they serve as a tool in many important applications. The NV center has a polarizable spin S = 1 ground state and its spin state can be addressed by optically detected magnetic resonance (ODMR) techniques. The m(S) = 0 and m(S) = +/- 1 spin levels of the ground state are separated by about 2.88 GHz in the absence of an external magnetic field or any other perturbations. This zero-field splitting (ZFS) can be probed by ODM...
Absolute Stability of Discrete-Time Systems with Delay
Rigoberto Medina
2008-02-01
Full Text Available We investigate the stability of nonlinear nonautonomous discrete-time systems with delaying arguments, whose linear part has slowly varying coefficients, and the nonlinear part has linear majorants. Based on the Ã¢Â€ÂœfreezingÃ¢Â€Â technique to discrete-time systems, we derive explicit conditions for the absolute stability of the zero solution of such systems.
ROE Absolute Sea Level Changes
U.S. Environmental Protection Agency — This raster dataset represents changes in absolute sea level along U.S. coasts from 1993 to 2014. Data were provided by the University of Colorado at Boulder (2015)...
From Hubble's NGSL to Absolute Fluxes
Heap, Sara R.; Lindler, Don
2012-01-01
Hubble's Next Generation Spectral Library (NGSL) consists of R-l000 spectra of 374 stars of assorted temperature, gravity, and metallicity. Each spectrum covers the wavelength range, 0.18-1.00 microns. The library can be viewed and/or downloaded from the website, http://archive.stsci.edu/prepds/stisngsll. Stars in the NGSL are now being used as absolute flux standards at ground-based observatories. However, the uncertainty in the absolute flux is about 2%, which does not meet the requirements of dark-energy surveys. We are therefore developing an observing procedure that should yield fluxes with uncertainties less than 1 % and will take part in an HST proposal to observe up to 15 stars using this new procedure.
Donaire, M
2009-01-01
We study from a critical perspective several quantum-electrodynamic phenomena commonly related to vacuum electromagnetic (EM) fluctuations in complex media. We compute the resonance-shift, the spontaneous emission rate, the local density of states and the van-der-Waals-Casimir pressure in a dielectric medium using a microscopic diagrammatic approach. We find, in agreement with some recent works, that these effects cannot be attributed to variations on the energy of the EM vacuum but to variations of the dielectric self-energy. This energy is the result of the interaction of the bare polarizability of the dielectric constituents with the EM fluctuations of an actually polarized vacuum. We have found an exact expression for the spectrum of these fluctuations in a statistically homogeneous dielectric. Those fluctuations turn out to be different to the ones of normal radiative modes. It is the latter that carry the zero-point-energy (ZPE). Concerning spontaneous emission, we clarify the nature of the radiation an...
Moore, Brian N.
2010-01-01
The concept of zero tolerance dates back to the mid-1990s when New Jersey was creating laws to address nuisance crimes in communities. The main goal of these neighborhood crime policies was to have zero tolerance for petty crime such as graffiti or littering so as to keep more serious crimes from occurring. Next came the war on drugs. In federal…
Roland, Erling; Midthassel, Unni Vere
2012-01-01
Zero is a schoolwide antibullying program developed by the Centre for Behavioural Research at the University of Stavanger, Norway. It is based on three main principles: a zero vision of bullying, collective commitment among all employees at the school using the program, and continuing work. Based on these principles, the program aims to reduce…
Wichowski, Chester
1979-01-01
The zero-based budgeting approach is designed to achieve the greatest benefit with the fewest undesirable consequences. Seven basic steps make up the zero-based decision-making process: (1) identifying program goals, (2) classifying goals, (3) identifying resources, (4) reviewing consequences, (5) developing decision packages, (6) implementing a…
Ziock, H.; Lackner, K.
2000-08-01
We discuss a novel, emission-free process for producing hydrogen or electricity from coal. Even though we focus on coal, the basic design is compatible with any carbonaceous fuel. The process uses cyclical carbonation of calcium oxide to promote the production of hydrogen from carbon and water. The carbonation of the calcium oxide removes carbon dioxide from the reaction products and provides the additional energy necessary to complete hydrogen production without additional combustion of carbon. The calcination of the resulting calcium carbonate is accomplished using the high temperature waste heat from solid oxide fuel cells (SOFC), which generate electricity from hydrogen fuel. Converting waste heat back to useful chemical energy allows the process to achieve very high conversion efficiency from fuel energy to electrical energy. As the process is essentially closed-loop, the process is able to achieve zero emissions if the concentrated exhaust stream of CO{sub 2} is sequestered. Carbon dioxide disposal is accomplished by the production of magnesium carbonate from ultramafic rock. The end products of the sequestration process are stable naturally occurring minerals. Sufficient rich ultramafic deposits exist to easily handle all the world's coal.
Zero drift of intraventricular and subdural intracranial pressure monitoring systems
CHEN Li; DU Hang-gen; YIN Li-chun; HE Min; ZHANG Guo-jun; TIAN Yong; WANG Cheng
2013-01-01
Objective:To assess zero drift of intraventricular and subdural intracranial pressure (ICP) monitoring systems.Methods:A prospective study was conducted in patients who received Codman ICP monitoring in the neurosurgical department from January 2010 to December 2011.According to the location of sensors,the patients were categorized into two groups:intraventricular group and subdural group.Zero drift between the two groups and its association with the duration of ICP monitor were analyzed.Results:Totally,22 patients undergoing intraventricular ICP monitoring and 27 receiving subdural ICP monitoring were enrolled.There was no significant difference in duration of ICP monitoring,zero drift value and its absolute value between intraventricular and subdural groups (5.38 d±2.58 d vs 4.58 d±2.24d,0.77 mmHg±2.18 mm Hg vs 1.03 mmHg±2.06mmHg,1.68 mmHg±155 mmHg vs 1.70mmHg±153 mmHg,respectively; all P＞0.05).Absolute value of zero drift in both groups significantly rose with the increased duration of ICP monitoring (P＜0.05) while zero drift value did not.Moreover,daily absolute value in the intraventricular group was significantly smaller than that in the subdural group (0.27 mm Hg±0.32 mm Hg vs 0.29 mm Hg±0.18 mm Hg,P＜0.05).Conclusion:This study demonstrates that absolute value of zero drift significantly correlates with duration of both intraventricular and subdural ICP monitoring.Due to the smaller daily absolute value,ICP values recorded from intraventricular system may be more reliable than those from subdural system.
吴峰
2014-01-01
压阻式压力传感器在实际应用中普遍存在零位偏离和零位温度漂移现象，这就降低了传感器的测量精度，因此需采取适当的补偿方法对这两种现象产生的误差进行修正，从而提高测量精度。文中分别通过电桥臂一串一并的硬件补偿方法及基于规范化多项式拟合算法的软件补偿方法同时实现平衡零位与补偿零位漂移。由模型推导分析及实验最终得出，通过规范化多项式计算方法拟合出的数据精度较高，补偿效果好于一串一并的硬件补偿方法。%Zero drift and zero temperature drift generally exist in practical application of piezoresistive pressure sen-sors,which leads to loss of measuring accuracy of sensors.Therefore,appropriate compensation method needs to be adopt-ed for error correction,thus improving measuring accuracy.The paper provides two methods to achieve null balance and compensate zero drift simultaneously,the hardware method of bridge arm in series and parallel and the software method based on normalized polynomial fitting algorithm.According to model analysis and deduction as well as experiments,statis-tics obtained through normalized polynomial fitting algorithm shows higher accuracy and better compensation effect than the hardware compensation method of bridge arm in series and parallel.
Kim, Seyong; Allton, Chris; Lombardo, Maria Paola; Oktay, Mehmet B; Ryan, Sinead M; Sinclair, Donald K; Skullerud, Jon-Ivar
2012-01-01
Using Non-Relativistic QCD (NRQCD), we study heavy quark mass dependence of S-wave and P-wave bottomonium correlators for 0.42Tc <= T <= 2.09Tc and study spectral functions of S-wave bottomonium states moving in a thermal bath at these temperatures using Maximum Entropy Method with NRQCD kernel. For the studied momentum range, the energy of moving states shows quadratic momentum-dependence and the width of moving states does not show significant changes as the momentum of bottomonium is increased. Also, we find that in correlator ratios, the temperature effect is larger than the effect caused by 20% change in the bottom quark mass.
Fischer, William B.; Stauffer, Robert A.
1978-01-01
Erie County Community College (New York) has developed a zero-based program budgeting system to meet current fiscal problems and diminished resources. The system allocates resources on the basis of program effectiveness and market potential. (LH)
Absolute transition probabilities of phosphorus.
Miller, M. H.; Roig, R. A.; Bengtson, R. D.
1971-01-01
Use of a gas-driven shock tube to measure the absolute strengths of 21 P I lines and 126 P II lines (from 3300 to 6900 A). Accuracy for prominent, isolated neutral and ionic lines is estimated to be 28 to 40% and 18 to 30%, respectively. The data and the corresponding theoretical predictions are examined for conformity with the sum rules.-
Finite-temperature T > 0 transport properties of integrable and nonintegrable one-dimensional (1D) many-particle quantum systems are rather different, showing ballistic and diffusive behavior, respectively. The repulsive 1D Hubbard model is a prominent example of an integrable correlated system. For electronic densities n ≠ 1 (and spin densities m ≠ 0) it is an ideal charge (and spin) conductor, with ballistic charge (and spin) transport for T ⩾ 0. In spite of the fact that it is solvable by the Bethe ansatz, at n = 1 (and m = 0) its T > 0 charge (and spin) transport properties are an issue that remains poorly understood. Here we combine this solution with symmetry and the explicit calculation of current-operator matrix elements between energy eigenstates to show that for on-site repulsion U > 0 and at n = 1 the charge stiffness Dη(T) vanishes for T > 0 in the thermodynamic limit. A similar behavior is found by such methods for the spin stiffness Ds(T) for U > 0 and T > 0, which vanishes at m = 0. This absence of finite temperature n = 1 ballistic charge transport and m = 0 ballistic spin transport are exact results that clarify long-standing open problems. (paper)
Kristensen, Kasper; Normann Jensen, Louise; Bilde, Merete
2016-04-01
The oxidation of volatile organic compounds (VOC) is considered a major source of secondary organic aerosols (SOA) in the atmosphere. Recently, extremely low volatility organic compounds, or ELVOC, formed from the oxidation of VOCs have been shown to play a crucial role in new particle formation (Ehn et al., 2014). In addition, higher molecular weight dimer esters originating from the oxidation of the biogenic VOC alpha-pinene have been observed in both laboratory-generated and ambient SOA (Kristensen et al., 2013). The low volatility of the dimer esters along with an observed rapid formation makes these high molecular weight compounds likely candidates involved in new particle formation from the oxidation of alpha-pinene. Furthermore, laboratory experiments show that the dimer esters only form in the presence of ozone, thus may be used as tracers for the ozone-initiated oxidation of alpha-pinene, and are therefore indicative of enhanced anthropogenic activities. In this work, we present the results of a series of oxidation experiments performed in the newly constructed cold-room smog chamber at Aarhus University. This unique and state-of-the-art Teflon chamber allows for atmospheric simulations of the oxidation VOCs and subsequent SOA formation at temperatures down to -16 °C. In this study, ozonolysis and photochemical oxidations of alpha-pinene are performed at temperatures ranging from +20 to -16 °C. Chemical characterization of the formed SOA is performed using liquid chromatography coupled to quadrupole time-of-flight mass spectrometry. The results show significant differences in the chemical composition related to the experiment temperature. In particularly, the concentration of the high molecular weight dimer esters showed to be highly affected by temperature. Interestingly, preliminary results show higher formation of dimer esters related to increased SOA formation rate, thus indicating that these particle-phase ELVOCs may be linked with new particle
Karazhanov, S. Zh; Ravindran, P.; Vajeeston, P.; Ulyashin, A. G.; Fjellvåg, H.; Svensson, B. G.
2009-12-01
Using density functional total energy calculations the structural phase stability and pressure-induced structural transition in different polymorphs of ZnSiO3 and Zn2SiO4 have been studied. Among the considered monoclinic phase with space groups (P 21/c) and (C 2/c), rhombohedral (R\\bar {3}) and orthorhombic (Pbca) modifications the monoclinic phase (P 21/c) of ZnSiO3 is found to be the most stable one. At high pressure monoclinic ZnSiO3 (C 2/c) can co-exist with orthorhombic (Pbca) modification. Differences in equilibrium volume and total energy of these two polymorphs are very small, which indicates that it is relatively easier to transform between these two phases by temperature, pressure or chemical composition. It can also explain the experimentally established result of metastability of the orthorhombic phase under all conditions. The following sequence of pressure-induced structural phase transitions is found for ZnSiO3 polymorphs: monoclinic (P2_{1}/c) \\to monoclinic (C2/c) \\to rhombohedral (R\\bar {3}) . Among the rhombohedral (R\\bar {3} ), tetragonal (I\\bar {4} 2d) , orthorhombic (Pbca), orthorhombic (Imma), cubic (Fd\\bar {3} m) and orthorhombic (Pbnm) modifications of Zn2SiO4, the rhombohedral phase is found to be the ground state. For this chemical composition of zinc silicate the following sequence of structural phase transitions is found: rhombohedral (R\\bar {3}) \\to tetragonal (I\\bar {4} 2d) \\to orthorhombic (Pbca) \\to orthorhombic (Imma) \\to cubic (Fd\\bar {3} m) \\to orthorhombic (Pbnm). Based on the analogy of crystal structures of magnesium and zinc silicates and using the lattice and positional parameters of Mg2SiO4 as input, structural properties of spinel Zn2SiO4 have also been studied.
Karazhanov, S Zh; Ravindran, P; Vajeeston, P; Ulyashin, A G; Fjellvåg, H; Svensson, B G
2009-12-01
Using density functional total energy calculations the structural phase stability and pressure-induced structural transition in different polymorphs of ZnSiO(3) and Zn(2)SiO(4) have been studied. Among the considered monoclinic phase with space groups (P 2(1)/c) and (C 2/c), rhombohedral [Formula: see text] and orthorhombic (Pbca) modifications the monoclinic phase (P 2(1)/c) of ZnSiO(3) is found to be the most stable one. At high pressure monoclinic ZnSiO(3) (C 2/c) can co-exist with orthorhombic (Pbca) modification. Differences in equilibrium volume and total energy of these two polymorphs are very small, which indicates that it is relatively easier to transform between these two phases by temperature, pressure or chemical composition. It can also explain the experimentally established result of metastability of the orthorhombic phase under all conditions. The following sequence of pressure-induced structural phase transitions is found for ZnSiO(3) polymorphs: monoclinic [Formula: see text] monoclinic [Formula: see text] rhombohedral [Formula: see text]. Among the rhombohedral ([Formula: see text]), tetragonal [Formula: see text], orthorhombic (Pbca), orthorhombic (Imma), cubic [Formula: see text] and orthorhombic (Pbnm) modifications of Zn(2)SiO(4), the rhombohedral phase is found to be the ground state. For this chemical composition of zinc silicate the following sequence of structural phase transitions is found: rhombohedral [Formula: see text] tetragonal [Formula: see text] orthorhombic [Formula: see text] orthorhombic (Imma) [Formula: see text] cubic [Formula: see text] orthorhombic (Pbnm). Based on the analogy of crystal structures of magnesium and zinc silicates and using the lattice and positional parameters of Mg(2)SiO(4) as input, structural properties of spinel Zn(2)SiO(4) have also been studied. PMID:21832530
Karazhanov, S Zh; Ravindran, P; Vajeeston, P; Fjellvaag, H [Centre for Material Science and Nanotechnology, Department of Chemistry, University of Oslo, PO Box 1033 Blindern, N-0315 Oslo (Norway); Ulyashin, A G [Institute for Energy Technology, PO Box 40, N-2027 Kjeller (Norway); Svensson, B G, E-mail: smagul.karazhanov@ife.n [Department of Physics, University of Oslo, PO Box 1048 Blindern, N-0316 Oslo (Norway)
2009-12-02
Using density functional total energy calculations the structural phase stability and pressure-induced structural transition in different polymorphs of ZnSiO{sub 3} and Zn{sub 2}SiO{sub 4} have been studied. Among the considered monoclinic phase with space groups (P 2{sub 1}/c) and (C 2/c), rhombohedral (R3-bar) and orthorhombic (Pbca) modifications the monoclinic phase (P 2{sub 1}/c) of ZnSiO{sub 3} is found to be the most stable one. At high pressure monoclinic ZnSiO{sub 3} (C 2/c) can co-exist with orthorhombic (Pbca) modification. Differences in equilibrium volume and total energy of these two polymorphs are very small, which indicates that it is relatively easier to transform between these two phases by temperature, pressure or chemical composition. It can also explain the experimentally established result of metastability of the orthorhombic phase under all conditions. The following sequence of pressure-induced structural phase transitions is found for ZnSiO{sub 3} polymorphs: monoclinic (P2{sub 1}/c)-> monoclinic (C2/c)-> rhombohedral (R3-bar). Among the rhombohedral (R3-bar), tetragonal (I4-ba2d), orthorhombic (Pbca), orthorhombic (Imma), cubic (Fd3-barm) and orthorhombic (Pbnm) modifications of Zn{sub 2}SiO{sub 4}, the rhombohedral phase is found to be the ground state. For this chemical composition of zinc silicate the following sequence of structural phase transitions is found: rhombohedral (R3-bar) -> tetragonal (I4-bar2d) -> orthorhombic (Pbca)-> orthorhombic (Imma) -> cubic (Fd3-barm) -> orthorhombic (Pbnm). Based on the analogy of crystal structures of magnesium and zinc silicates and using the lattice and positional parameters of Mg{sub 2}SiO{sub 4} as input, structural properties of spinel Zn{sub 2}SiO{sub 4} have also been studied.
Do cosmological perturbations have zero mean?
A central assumption in our analysis of cosmic structure is that cosmological perturbations have a constant ensemble mean, which can be set to zero by appropriate choice of the background. This property is one of the consequences of statistical homogeneity, the invariance of correlation functions under spatial translations. In this article we explore whether cosmological perturbations indeed have zero mean, and thus test one aspect of statistical homogeneity. We carry out a classical test of the zero mean hypothesis against a class of alternatives in which primordial perturbations have inhomogeneous non-vanishing means, but homogeneous and isotropic covariances. Apart from Gaussianity, our test does not make any additional assumptions about the nature of the perturbations and is thus rather generic and model-independent. The test statistic we employ is essentially Student's t statistic, applied to appropriately masked, foreground-cleaned cosmic microwave background anisotropy maps produced by the WMAP mission. We find evidence for a non-zero mean in a particular range of multipoles, but the evidence against the zero mean hypothesis goes away when we correct for multiple testing. We also place constraints on the mean of the temperature multipoles as a function of angular scale. On angular scales smaller than four degrees, a non-zero mean has to be at least an order of magnitude smaller than the standard deviation of the temperature anisotropies
Absolute magnitudes and phase coefficients of trans-Neptunian objects
Alvarez-Candal, A; Ortiz, J L; Duffard, R; Morales, N; Santos-Sanz, P; Thirouin, A; Silva, J S
2015-01-01
Context: Accurate measurements of diameters of trans-Neptunian objects are extremely complicated to obtain. Thermal modeling can provide good results, but accurate absolute magnitudes are needed to constrain the thermal models and derive diameters and geometric albedos. The absolute magnitude, Hv, is defined as the magnitude of the object reduced to unit helio- and geocentric distances and a zero solar phase angle and is determined using phase curves. Phase coefficients can also be obtained from phase curves. These are related to surface properties, yet not many are known. Aims: Our objective is to measure accurate V band absolute magnitudes and phase coefficients for a sample of trans-Neptunian objects, many of which have been observed, and modeled, within the 'TNOs are cool' program, one of Herschel Space Observatory key projects. Methods: We observed 56 objects using the V and R filters. These data, along with those available in the literature, were used to obtain phase curves and measure V band absolute m...
De Marco, N
2013-01-01
Two identical sets of calorimeters are located on both sides with respect to the beam Interaction Point (IP), 112.5 m away from it. Each set of detectors consists of a neutron (ZN) and a proton (ZP) Zero Degree Calorimeter (ZDC), positioned on remotely controlled platforms. The ZN is placed at zero degree with respect to the LHC beam axis, between the two beam pipes, while the ZP is positioned externally to the outgoing beam pipe. The spectator protons are separated from the ion beams by means of the dipole magnet D1.
The absolute threshold photodetachment cross-section of Al-
The total absolute photodetachment cross-section of the aluminum anion, Al-, is calculated in the threshold spectral region for photons of wave numbers 3400 - 3650cm-1 using the zero-core contribution (ZCC) model. A computer least-squares curve fit is used to test the validity of the Wigner threshold law and the deviation from recent experimental measurements of the relative photodetachment cross-section. It is found that the best agreements is achieved with a smaller core radius rο=1.60 Angstrom rather than the value of 1.82 Angstrom used earlier. (authors). 22 refs., 5 figs., 1 tab
Sarndal, Anne G.
1979-01-01
Traditional budgeting starts with the previous year's budget, but zero base budgeting demands that each activity be justified from "scratch," and establishes a number of increments for each unit, in order of priority. Given the set of increments and the money available, management can determine what activities to finance. (Author)
Macglashan, W. F., Jr.
1980-01-01
Zero-leakage valve has fluid-sealing diaphragm support and flat sievelike sealing surface. Diaphragm-support valve is easy to fabricate and requires minimum maintenance. Potential applications include isolation valve for waste systems and remote air-actuated valve. Device is also useful in controlling flow of liquid fluorine and corrosive fluids at high pressures.
Journal of College Science Teaching, 2005
2005-01-01
The walnut sized brain of the African grey parrot may actually be capable of comprehending abstract mathematical concepts. The bird seems to understand a numerical concept akin to zero--an abstract notion that humans don't typically understand until they are three or four years old. Alex, the 28-year-old parrot who lives in a Brandeis University…
Chronicle of Higher Education, 2006
2006-01-01
An excerpt from the opening piece in "Everything That Rises: A Book of Convergences" by Lawrence Weschler is presented where the author is talking with Joel Meyerowitz, the only photographer granted unimpeded access to the clean-up operations at ground zero after the terrorist attacks of September 11, 2001. The two discuss the parallels between…
Haaland, C.M.
1984-01-01
The history of the development of nuclear weapons starting with the detonation of the A-bombs on Japan is reviewed. An overview of nuclear weapon effects is presented. The effects of electromagnetic pulse (EMP), initial nuclear radiation, thermal radiation and blast are discussed with reference to how people outside can survive when ground zero is only a few miles away. 8 references. (ACR)
Techniques: Connecting Education and Careers, 2002
2002-01-01
Describes the robots used to aid in rescue and recovery at Ground Zero after the September 11, 2001 attack on the World Trade Center. The robots were developed as a result of national Science Foundation Quick Response Research Awards. Describes several awards that were made following the attack. (JOW)
胡奇勇; 占志雄; 陈元洪; 黄玉清; 张晓俊
2003-01-01
The developmental zero and effective accumulated temperature for individual development of Cornegenapsylla sinica were measured by the experiment under constant temperature in the climatic chamber. The results indicated that this psyllid could complete its life cycle under the temperature of 18-30℃. The development period decreased as the increase of temperature within the favorable range. Nymph stage had the longest period, while the adult had the shortest. To complete one life cycle, 72.76 days were needed under 18℃, and only 31.76 days under 30.The theoretical developmental zero (C) and effective accumulated temperature (K) for one whole life cycle were 6. 966 ± 2. 0142 (℃) and 770. 224 ± 88. 2071 (day. degree), respectively. Based on the observed K-value from temperatures above C which is 4550 day. degree per year, 5.91generations theoretically occur in this region, which is coincided with the actual 6 generations,indicating that the theoretical C- and K- value are applicable for the prediction of emergence of this pest. Predictions for the timing of chemical control proved useful.%在人工气候室不同温度下测定龙眼角颊木虱的各个虫态及全世代的发育起点温度和有效积温.研究结果表明,在试验温度范围内(18-30℃)龙眼角颊木虱的生命活动能正常进行.发育历期随温度的升高而缩短,随温度的降低而延长;在18℃时从卵发育到成虫需72.76d,在30℃时从卵发育到成虫需31.76d.龙眼角颊木虱室内人工饲养温度以24-30℃范围内发育历期最短,发育速度最快.全世代的理论发育起点温度C为6.966±2.0142(℃),有效积温K为770.224土88.2071(日度).根据在福州全年大于发育起点温度的有效积温约为4550日·度;计算出龙眼角颊木虱在福州地区一年发生的理论代数为5.91代,这与田间实际发生代数6代基本吻合.为龙眼角颊木虱在福州地区发生提供了预测依据,为化学防治发挥重要的指导作用.
Android Apps for Absolute Beginners
Jackson, Wallace
2011-01-01
Anybody can start building simple apps for the Android platform, and this book will show you how! Android Apps for Absolute Beginners takes you through the process of getting your first Android applications up and running using plain English and practical examples. It cuts through the fog of jargon and mystery that surrounds Android application development, and gives you simple, step-by-step instructions to get you started.* Teaches Android application development in language anyone can understand, giving you the best possible start in Android development * Provides simple, step-by-step exampl
Bias in Absolute Magnitude Determination from Parallaxes
Feast, Michael
2002-01-01
Relations are given for the correction of bias when mean absolute magnitudes are derived by the method of reduced parallaxes. The bias in the case of the derivation of the absolute magnitudes of individual objects is also considered.
High temperature superconductivity: Hope of a new technology
Following the sensational report in 1986 from the IBM laboratory in Rueschlikon, Switzerland, that superconductivity - that permanent flow of current at temperatures close to absolute zero - is also possible at higher temperatures, the waves of enthusiasm among scientists at first rose high. They talked of a revolution in electrotechnology, especially since superconductors at room temperature seemed to have almost come within reach. In the meantime their thoughts on the matter are much more down to earth. What are the realistic fields of application for the 'new superconductors'? The questions are discussed by scientists, politicians and engineers. (orig.)
Absolute magnitudes and phase coefficients of trans-Neptunian objects
Alvarez-Candal, A.; Pinilla-Alonso, N.; Ortiz, J. L.; Duffard, R.; Morales, N.; Santos-Sanz, P.; Thirouin, A.; Silva, J. S.
2016-02-01
Context. Accurate measurements of diameters of trans-Neptunian objects (TNOs) are extremely difficult to obtain. Thermal modeling can provide good results, but accurate absolute magnitudes are needed to constrain the thermal models and derive diameters and geometric albedos. The absolute magnitude, HV, is defined as the magnitude of the object reduced to unit helio- and geocentric distances and a zero solar phase angle and is determined using phase curves. Phase coefficients can also be obtained from phase curves. These are related to surface properties, but only few are known. Aims: Our objective is to measure accurate V-band absolute magnitudes and phase coefficients for a sample of TNOs, many of which have been observed and modeled within the program "TNOs are cool", which is one of the Herschel Space Observatory key projects. Methods: We observed 56 objects using the V and R filters. These data, along with those available in the literature, were used to obtain phase curves and measure V-band absolute magnitudes and phase coefficients by assuming a linear trend of the phase curves and considering a magnitude variability that is due to the rotational light-curve. Results: We obtained 237 new magnitudes for the 56 objects, six of which were without previously reported measurements. Including the data from the literature, we report a total of 110 absolute magnitudes with their respective phase coefficients. The average value of HV is 6.39, bracketed by a minimum of 14.60 and a maximum of -1.12. For the phase coefficients we report a median value of 0.10 mag per degree and a very large dispersion, ranging from -0.88 up to 1.35 mag per degree.
Marszal, Anna Joanna; Bourrelle, Julien S.; Musall, Eike;
2010-01-01
The international cooperation project IEA SHC Task 40 / ECBCS Annex 52 “Towards Net Zero Energy Solar Buildings”, attempts to develop a common understanding and to set up the basis for an international definition framework of Net Zero Energy Buildings (Net ZEBs). The understanding of such buildings...... and how the Net ZEB status should be calculated differs in most countries. This paper presents an overview of Net ZEBs energy calculation methodologies proposed by organisations representing eight different countries: Austria, Canada, Denmark, Germany, Italy, Norway, Switzerland and the USA. The...... different parameters used in the calculations are discussed and the various renewable supply options considered in the methodologies are summarised graphically. Thus, the paper helps to understand different existing approaches to calculate energy balance in Net ZEBs, highlights the importance of variables...
滕敏
2011-01-01
This article deduces a set of formulas about compensating the pressure sensor's temperature drift on zero singal. For the sake of the balance of the electric bridge, more than ten compensating methods to the bridge arms are induced into two -- the series and parallel join respectively, and thus the research has simplified the calculation of maths and complexity of compensating work. Moreover, the usage of two formulas are introduced, and have been testified in both theories and experiments.%导出一套压阻式压力传感器零点温漂的补偿公式.从电桥平衡出发,提出对电桥桥臂一串一并的十几种补偿方法归结为两种,从而简化了数学计算和补偿工作的繁杂性,并对导出的公式的使用方法,加以说明,理论和实验得到了较好的验证.
An algorithm for estimating Absolute Salinity in the global ocean
T. J. McDougall
2009-02-01
Full Text Available To date, density and other thermodynamic properties of seawater have been calculated from Practical Salinity, S_{ P}. It is more accurate however to use Absolute Salinity, S_{ A} (the mass fraction of dissolved material in seawater. Absolute Salinity S_{ A} can be expressed in terms of Practical Salinity S_{ P} as
S_{ A}=(35.165 04 g kg^{-1}/35S_{ P}+δ S_{ A}(φ, λ, p
where δ S_{ A} is the Absolute Salinity Anomaly as a function of longitude φ, latitude λ and pressure. When a seawater sample has standard composition (i.e. the ratios of the constituents of sea salt are the same as those of surface water of the North Atlantic, the Absolute Salinity Anomaly is zero. When seawater is not of standard composition, the Absolute Salinity Anomaly needs to be estimated; this anomaly is as large as 0.025 g kg^{−1} in the northernmost North Pacific. Here we provide an algorithm for estimating Absolute Salinity Anomaly for any location (φ, λ, p in the world ocean.
To develop this algorithm we use the Absolute Salinity Anomaly that is found by comparing the density calculated from Practical Salinity to the density measured in the laboratory. These estimates of Absolute Salinity Anomaly however are limited to the number of available observations (namely 811. To expand our data set we take advantage of approximate relationships between Absolute Salinity Anomaly and silicate concentrations (which are available globally. We approximate the laboratory-determined values of δ S_{ A} of the 811 seawater samples as a series of simple functions of the silicate concentration of the seawater sample and latitude; one function for each ocean basin. We use these basin-specific correlations and a digital atlas of silicate in the world ocean to deduce the Absolute Salinity
In 1958 the zero energy reactor RB was built with the purpose of enabling critical experiments with various reactor systems to be carried out. The first core assembly built in this reactor consists of heavy water as moderator and natural uranium metal as fuel. In order to be able to obtain very accurate results when measuring the main characteristics of the assembly the reactor was built as a completely bare system. (author)
The venetian-blind effect: A preference for zero disparity or zero slant?
Björn N.S. Vlaskamp
2013-11-01
Full Text Available When periodic stimuli, such as vertical sinewave gratings, are presented to the two eyes, the initial stage of disparity estimation yields multiple solutions stacked in at multiple depths. The solutions are all frontoparallel when the sinewaves have the same spatial frequency;. They are all slanted when the sinewaves have quite different frequencies. Despite the multiple solutions, humans perceive only one depth in each visual direction: a single frontoparallel plane when the frequencies are the same and a series of small slanted planes—Venetian blinds—when the frequencies are quite different. These percepts are consistent with a preference for solutions that minimize absolute disparity or that minimize overall slant. We conducted two psychophysical experiments to determine whether the preference is for minimum disparity or and for minimum slant are identical for gaze at zero eccentricity., We dissociated the predictions of the two by measuring the occurrence of Venetian blinds when the stimuli were viewed in eccentric gaze. The results were generally quite consistent with a zero-disparity preference (experiment 1, but we also observed a shift toward a zero-slant preference when the edges of the stimulus had zero slant (experiment 2. These observations provide useful insights into how the visual system constructs depth percepts from a multitude of possible depths.
The venetian-blind effect: a preference for zero disparity or zero slant?
Vlaskamp, Björn N S; Guan, Phillip; Banks, Martin S
2013-01-01
When periodic stimuli such as vertical sinewave gratings are presented to the two eyes, the initial stage of disparity estimation yields multiple solutions at multiple depths. The solutions are all frontoparallel when the sinewaves have the same spatial frequency; they are all slanted when the sinewaves have quite different frequencies. Despite multiple solutions, humans perceive only one depth in each visual direction: a single frontoparallel plane when the frequencies are the same and a series of small slanted planes-Venetian blinds-when the frequencies are quite different. These percepts are consistent with a preference for solutions that minimize absolute disparity or overall slant. The preference for minimum disparity and minimum slant are identical for gaze at zero eccentricity; we dissociated the predictions of the two by measuring the occurrence of Venetian blinds when the stimuli were viewed in eccentric gaze. The results were generally quite consistent with a zero-disparity preference (Experiment 1), but we also observed a shift toward a zero-slant preference when the edges of the stimulus had zero slant (Experiment 2). These observations provide useful insights into how the visual system constructs depth percepts from a multitude of possible depths. PMID:24273523
On-Orbit Absolute Radiance Standard for the Next Generation of IR Remote Sensing Instruments
Best, Fred A.; Adler, Douglas P.; Pettersen, P. Claire; Gero, Jonathan; Taylor, Joseph K.; Revercomb, Henry E.; Knuteson, Robert O.; Perepezko, John H.
2012-01-01
The next generation of infrared remote sensing satellite instrumentation, including climate benchmark missions will require better absolute measurement accuracy than now available, and will most certainly rely on the emerging capability to fly SI traceable standards that provide irrefutable absolute measurement accuracy. As an example, instrumentation designed to measure spectrally resolved infrared radiances with an absolute brightness temperature error of better than 0.1 K will require high...
Zero-valent iron nanoparticles preparation
Graphical abstract: Zero-valent iron nanoparticles were synthesized by hydrogenating [Fe[N(Si(CH3)3)2]2] at room temperature and a pressure of 3 atm. The synthesized nanoparticles were spherical and had diameters less than 5 nm. Highlights: ► Zero-valent iron nanoparticles were synthesized by hydrogenating [Fe[N(Si(CH3)3)2]2]. ► The conditions of reaction were at room temperature and a pressure of 3 atm. ► The synthesized nanoparticles were spherical and had diameters less than 5 nm. -- Abstract: Zero-valent iron nanoparticles were synthesized by hydrogenating [Fe[N(Si(CH3)3)2]2] at room temperature and a pressure of 3 atm. To monitor the reaction, a stainless steel pressure reactor lined with PTFE and mechanically stirred was designed. This design allowed the extraction of samples at different times, minimizing the perturbation in the system. In this way, the shape and the diameter of the nanoparticles produced during the reaction were also monitored. The results showed the production of zero-valent iron nanoparticles that were approximately 5 nm in diameter arranged in agglomerates. The agglomerates grew to 900 nm when the reaction time increased up to 12 h; however, the diameter of the individual nanoparticles remained almost the same. During the reaction, some byproducts constituted by amino species acted as surfactants; therefore, no other surfactants were necessary.
Zero-valent iron nanoparticles preparation
Oropeza, S. [Instituto Politécnico Nacional, ESIQIE, UPALM, Edificio Z-6, Primer Piso, C.P. 07738, Col. San Pedro Zacatenco, México D.F. (Mexico); Corea, M., E-mail: mcoreat@yahoo.com.mx [Instituto Politécnico Nacional, ESIQIE, UPALM, Edificio Z-6, Primer Piso, C.P. 07738, Col. San Pedro Zacatenco, México D.F. (Mexico); Gómez-Yáñez, C. [Instituto Politécnico Nacional, ESIQIE, UPALM, Edificio Z-6, Primer Piso, C.P. 07738, Col. San Pedro Zacatenco, México D.F. (Mexico); Cruz-Rivera, J.J. [Universidad Autónoma de San Luis Potosí, Instituto de Metalurgia, Sierra Leona 550, San Luis Potosí, C.P. 78210 (Mexico); Navarro-Clemente, M.E., E-mail: mnavarroc@ipn.mx [Instituto Politécnico Nacional, ESIQIE, UPALM, Edificio Z-6, Primer Piso, C.P. 07738, Col. San Pedro Zacatenco, México D.F. (Mexico)
2012-06-15
Graphical abstract: Zero-valent iron nanoparticles were synthesized by hydrogenating [Fe[N(Si(CH{sub 3}){sub 3}){sub 2}]{sub 2}] at room temperature and a pressure of 3 atm. The synthesized nanoparticles were spherical and had diameters less than 5 nm. Highlights: ► Zero-valent iron nanoparticles were synthesized by hydrogenating [Fe[N(Si(CH{sub 3}){sub 3}){sub 2}]{sub 2}]. ► The conditions of reaction were at room temperature and a pressure of 3 atm. ► The synthesized nanoparticles were spherical and had diameters less than 5 nm. -- Abstract: Zero-valent iron nanoparticles were synthesized by hydrogenating [Fe[N(Si(CH{sub 3}){sub 3}){sub 2}]{sub 2}] at room temperature and a pressure of 3 atm. To monitor the reaction, a stainless steel pressure reactor lined with PTFE and mechanically stirred was designed. This design allowed the extraction of samples at different times, minimizing the perturbation in the system. In this way, the shape and the diameter of the nanoparticles produced during the reaction were also monitored. The results showed the production of zero-valent iron nanoparticles that were approximately 5 nm in diameter arranged in agglomerates. The agglomerates grew to 900 nm when the reaction time increased up to 12 h; however, the diameter of the individual nanoparticles remained almost the same. During the reaction, some byproducts constituted by amino species acted as surfactants; therefore, no other surfactants were necessary.
Goltermann, Per; Ottosen, Lisbeth M.; Jensen, Pernille Erland;
2014-01-01
The ZeroWaste research group at the Department of Civil Engineering at the Technical University of Denmark (DTU Byg) was established two years ago and covers the broad range of expertise, required for turning waste materials into attractive, new materials. Members of the group have, prior to that......, developed methods for removal of heavy metals and phosphorous from waste incineration, sewage sludge and other bio ashes, providing the basis of to make these ash types an attractive, new material for the building sector. Initial results for upgrading and using different types of ashes are presented in the...
Milián Martínez, Irene; Vink, Willem; Ortiz Braulio, Ruben
2008-01-01
The zero energy house project talks about sustainability. In general terms the house is designed to produce as much energy as it consume. If you take a look to the house its possible to find several systems that takes as much profit as possible to the renewable energies like photovoltaic electricity production, geothermal energy used to run a heat pump or a well thought isolated house. First of all it’s possible to find general information about the topics in house, to make people understa...
Ahmad, Othman; Chekima, Ali
2011-01-01
It is fundamentally possible to travel with zero energy based on Newton Laws of Motion. According to the first law of motion, a body will continue to travel for infinite distance unless it is acted upon by another force. For a body in motion, the force which stops perpetual motion is friction. However, there are many circumstances that friction is zero, for example in space, where there is vacuum. On earth, gravity makes objects to be in constant contact with each other generating friction but technology exists to separate them in the air using powerful magnetic forces. At low speeds, the friction caused by air is minimal but we can create vacuum even on land for high speed travel. Another condition for travelling is for it to stop at its destination. On land, we can recover the kinetic energy back into electrical energy using brushless permanent magnet generators. These generators can also convert electric energy into kinetic energy in order to provide motion. This article reviews technologies that will allo...
We report on ac magnetoresistance, R(T,H) and ZFC [MZFC(T)] and FCC [MFCC(T)] dc magnetizations measurements of the a hole doped Y0.9Ca0.1Ba2Cu3O7-δ single crystal with the propose of to disclose the correlation between the zero resistance, TR0(H) and the magnetic irreversibility, Tirr(H) temperatures. The R(T,H) measurements were performed with a PPMS with the measurement current density applied parallel to the sample ab plane. The MZFC(T) and MFCC(T) measurements were performed with a commercial SQUID magnetometer. For the both measurements H ≤ 50kOe were applied parallel to the c axis of the sample. The contrasting of the Tirr(H) and TR0(H) data profile at H-T diagram shows that for H ≤ 5kOe the TR0(H) data falls systematically underneath of the Tirr(H) data and for H > 5kOe the TR0(H) data matches to the Tirr(H) data. We attributed to the establishment of a superconducting granular scenario provided for Ca doping as responsible for the observation of these features. At this scenario, Tirr(H) and TR0(H) do not depend of the same parts of the sample. While the Tirr(H) depends on well coupled grain clusters the TR0(H) depends on grain arrays traversing the whole sample. The granular aspect of this result is discussed at the light of the superconducting glass theories
Measurement of the absolute speed is possible?
Sergey V. Shevchenko; Tokarevsky, Vladimir V.
2016-01-01
One of popular problems, which are experimentally studied in physics in a long time, is the testing of the special relativity theory, first of all – measurements of isotropy and constancy of light speed; as well as attempts to determine so called “absolute speed”, i.e. the Earth speed in the absolute spacetime (absolute reference frame), if this spacetime (ARF) exists. Corresponding experiments aimed at the measuring of proper speed of some reference frame in oth...
Marszal, Anna Joanna; Heiselberg, Per; Bourrelle, J.S.;
2011-01-01
, (4) the type of energy balance, (5) the accepted renewable energy supply options, (6) the connection to the energy infrastructure and (7) the requirements for the energy efficiency, the indoor climate and in case of gird connected ZEB for the building–grid interaction. This paper focuses on the......The concept of Zero Energy Building (ZEB) has gained wide international attention during last few years and is now seen as the future target for the design of buildings. However, before being fully implemented in the national building codes and international standards, the ZEB concept requires...... clear and consistent definition and a commonly agreed energy calculation methodology. The most important issues that should be given special attention before developing a new ZEB definition are: (1) the metric of the balance, (2) the balancing period, (3) the type of energy use included in the balance...
ALL ZERO MACROBLOCK DECISION METHOD FOR H.26L
Ou Jianping
2004-01-01
In order to reduce the computation in the part of motion search and transform in H.26L encoder, an all-zero macroblock decision method based on integer transform and motion search is proposed in this paper. According to the characteristics of integer transform and motion search in H.26L, all-zero macroblock decision is made in inter frame coding by comparing Sum of the Absolute Differences(SAD) with a value related with Quantization Parameter(QP)before integer transform. It avoids a large amount of computation in motion search, transform and quantization. This technology highly improves the efficiency of real time H.26L encoder by skipping all-zero macroblock before integer transform and shortening the code stream at the same time.
New Conformal Invariants in Absolute Parallelism Geometry
Youssef, Nabil L.; Soleiman, A.; Taha, Ebtsam H.
2016-01-01
The aim of the present paper is to investigate conformal changes in absolute parallelism geometry. We find out some new conformal invariants in terms of the Weitzenb\\"ock connection and the Levi-Civita connection of an absolute parallelism space.
Monolithically integrated absolute frequency comb laser system
Wanke, Michael C.
2016-07-12
Rather than down-convert optical frequencies, a QCL laser system directly generates a THz frequency comb in a compact monolithically integrated chip that can be locked to an absolute frequency without the need of a frequency-comb synthesizer. The monolithic, absolute frequency comb can provide a THz frequency reference and tool for high-resolution broad band spectroscopy.
Investigating Absolute Value: A Real World Application
Kidd, Margaret; Pagni, David
2009-01-01
Making connections between various representations is important in mathematics. In this article, the authors discuss the numeric, algebraic, and graphical representations of sums of absolute values of linear functions. The initial explanations are accessible to all students who have experience graphing and who understand that absolute value simply…
Introducing the Mean Absolute Deviation "Effect" Size
Gorard, Stephen
2015-01-01
This paper revisits the use of effect sizes in the analysis of experimental and similar results, and reminds readers of the relative advantages of the mean absolute deviation as a measure of variation, as opposed to the more complex standard deviation. The mean absolute deviation is easier to use and understand, and more tolerant of extreme…
Absolute Income, Relative Income, and Happiness
Ball, Richard; Chernova, Kateryna
2008-01-01
This paper uses data from the World Values Survey to investigate how an individual's self-reported happiness is related to (i) the level of her income in absolute terms, and (ii) the level of her income relative to other people in her country. The main findings are that (i) both absolute and relative income are positively and significantly…
Inequalities, Absolute Value, and Logical Connectives.
Parish, Charles R.
1992-01-01
Presents an approach to the concept of absolute value that alleviates students' problems with the traditional definition and the use of logical connectives in solving related problems. Uses a model that maps numbers from a horizontal number line to a vertical ray originating from the origin. Provides examples solving absolute value equations and…
Transport and zero sound in holographic strange metals
It is a challenge to describe the non-Fermi liquid behavior that appears in strongly interacting systems of fermions using traditional field theory techniques. A proposal to model the associated 'strange metal' phenomenology is to use a strongly coupled critical point with non-relativistic scale invariance, dual to a Lifshitz geometry, coupled to a finite density of probe charged carriers dual to D-branes. We use this model to study the thermodynamic and transport properties of charge carriers at finite and zero temperature. At zero temperature we show that the large wavelength behavior is dominated by a single mode whose properties are similar to the zero sound of Fermi liquids.
Zero Modes and Entanglement Entropy
Yazdi, Yasaman K
2016-01-01
Ultraviolet divergences are widely discussed in studies of entanglement entropy. Also present, but much less understood, are infrared divergences due to zero modes in the field theory. In this note, we discuss the importance of carefully handling zero modes in entanglement entropy. We give an explicit example for a chain of harmonic oscillators in 1D, where a mass regulator is necessary to avoid an infrared divergence due to a zero mode. We also comment on a surprising contribution of the zero mode to the UV-scaling of the entanglement entropy.
Gyrokinetic Statistical Absolute Equilibrium and Turbulence
Jian-Zhou Zhu and Gregory W. Hammett
2011-01-10
A paradigm based on the absolute equilibrium of Galerkin-truncated inviscid systems to aid in understanding turbulence [T.-D. Lee, "On some statistical properties of hydrodynamical and magnetohydrodynamical fields," Q. Appl. Math. 10, 69 (1952)] is taken to study gyrokinetic plasma turbulence: A finite set of Fourier modes of the collisionless gyrokinetic equations are kept and the statistical equilibria are calculated; possible implications for plasma turbulence in various situations are discussed. For the case of two spatial and one velocity dimension, in the calculation with discretization also of velocity v with N grid points (where N + 1 quantities are conserved, corresponding to an energy invariant and N entropy-related invariants), the negative temperature states, corresponding to the condensation of the generalized energy into the lowest modes, are found. This indicates a generic feature of inverse energy cascade. Comparisons are made with some classical results, such as those of Charney-Hasegawa-Mima in the cold-ion limit. There is a universal shape for statistical equilibrium of gyrokinetics in three spatial and two velocity dimensions with just one conserved quantity. Possible physical relevance to turbulence, such as ITG zonal flows, and to a critical balance hypothesis are also discussed.
Gyrokinetic Statistical Absolute Equilibrium and Turbulence
A paradigm based on the absolute equilibrium of Galerkin-truncated inviscid systems to aid in understanding turbulence (T.-D. Lee, 'On some statistical properties of hydrodynamical and magnetohydrodynamical fields,' Q. Appl. Math. 10, 69 (1952)) is taken to study gyrokinetic plasma turbulence: A finite set of Fourier modes of the collisionless gyrokinetic equations are kept and the statistical equilibria are calculated; possible implications for plasma turbulence in various situations are discussed. For the case of two spatial and one velocity dimension, in the calculation with discretization also of velocity v with N grid points (where N + 1 quantities are conserved, corresponding to an energy invariant and N entropy-related invariants), the negative temperature states, corresponding to the condensation of the generalized energy into the lowest modes, are found. This indicates a generic feature of inverse energy cascade. Comparisons are made with some classical results, such as those of Charney-Hasegawa-Mima in the cold-ion limit. There is a universal shape for statistical equilibrium of gyrokinetics in three spatial and two velocity dimensions with just one conserved quantity. Possible physical relevance to turbulence, such as ITG zonal flows, and to a critical balance hypothesis are also discussed.
Absolute dimensions and masses of eclipsing binaries. V. IQ Persei
Lacy, C.H.; Frueh, M.L.
1985-08-01
New photometric and spectroscopic observations of the 1.7 day eclipsing binary IQ Persei (B8 + A6) have been analyzed to yield very accurate fundamental properties of the system. Reticon spectroscopic observations obtained at McDonald Observatory were used to determine accurate radial velocities of both stars in this slightly eccentric large light-ratio binary. A new set of VR light curves obtained at McDonald Observatory were analyzed by synthesis techniques, and previously published UBV light curves were reanalyzed to yield accurate photometric orbits. Orbital parameters derived from both sets of photometric observations are in excellent agreement. The absolute dimensions, masses, luminosities, and apsidal motion period (140 yr) derived from these observations agree well with the predictions of theoretical stellar evolution models. The A6 secondary is still very close to the zero-age main sequence. The B8 primary is about one-third of the way through its main-sequence evolution. 27 references.
Development of a superconducting absolute tensor gradiometer
Full text: Although the use of high-temperature superconducting (HTSC) materials for the fabrication of SQUID-based magnetometers and gradiometers is now well established these materials remain more difficult to use than the alternative low-temperature superconducting materials. In particular, the lack of HTSC wires and the difficulty of forming superconducting connections means that the standard low-Tc design practice of forming gradiometer coils from superconducting wires, is not applicable in high-Tc materials. Designs for HTSC axial gradiometers [2] have been implemented only by means of electronic or software subtraction of the outputs of a pair of SQUID magnetometers, and generally have insufficient dynamic range to be rotated in the earth's magnetic field. In this work we describe the development of a new concept axial gradiometer which is implemented through the use of a flux transformer pick-up loop structure patterned on flexible superconducting tape that is inductively coupled to a SQUID-based magnetometer. This is the first example of a series axial gradiometer in HTSC materials and offers significant advantages over the two-SQUID systems mentioned above. The design provides sufficient dynamic range and intrinsic noise immunity to operate while rotated in the full earth's field. Data analysis facilitates the measurement of the absolute value of all five independent components of the magnetic gradient tensor using a set of three such gradiometers, each of which is rotated about its axis. Initial results are presented showing the measurement by a prototype instrument of the tensor gradient of a small bar magnet
Complex zero strip decreasing operators
Cardon, David A.
2013-01-01
In this paper we study the effect of linear differential operators coming from the Laguerre-Polya class that act on functions in the extended Laguerre-Polya class with zeros in a horizontal strip in the complex plane. These operator decrease the size of the strip containing the zeros.
Fernández, Francisco V.; Sánchez-López, Carlos; Castro-López, R.; Roca, E.
2012-01-01
Extraction of pole/zero expressions as a function of circuit parameters has traditionally been an essential tool for designers. In this Chapter, the main specific techniques for symbolic pole/zero extraction are described and their pros and cons are discussed. The application of the different techniques is illustrated with experimental results on practical circuits.
Recently, investigations of novel non-conventional sources of energy and propulsion technologies have led to the belief that vacuum fluctuations or zero-point energy (ZPE) can be tapped as an additional prime mover alongside fusion, fission, hydrocarbons, hydropower, geothermal and solar-based technologies. Only a handful of researchers have seriously investigated the possible use of vacuum fluctuation energy for power production and gravitational interaction and suggested methods of experimentation, among them, Vallee, Puthoff, Tchernetsky, and Alzofon. In theories ranging from advanced semi-classical treatments to quantum electrodynamics (QED) and dynamic nuclear orientation, they suggest several more or less practical approaches to interacting with vacuum fluctuation energy which may be undertaken with today's technology. Notwithstanding the paucity of consistent, repeatable results directly attributable to vacuum interactions, it is possible to outline the engineering tools and techniques required to begin to investigate ZPE. Extremely high frequency oscillations at high field strengths (Vallee), highly non-linear plasmas or arcs (Tchernetsky), super-high charge concentrations or field gradients (Puthoff), and dynamic magnetic resonance cooling of nuclei (Alzofon) are prime candidates for investigation at present. The paper attempts to draw together the most practical aspects of this, which is currently at a sufficiently advance stage to allow initial experiments to be designed. Only the essentials of the theories propounded will be presented, chiefly those aspects from which real-world physical apparatus and order-of-magnitude measurements can be deduced. The work of other researchers which may have a bearing on the subject will also be briefly touched upon
Spectra of random operators with absolutely continuous integrated density of states
Rio, Rafael del, E-mail: delrio@iimas.unam.mx, E-mail: delriomagia@gmail.com [Departamento de Fisica Matematica, Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de México, C.P. 04510, México D.F. (Mexico)
2014-04-15
The structure of the spectrum of random operators is studied. It is shown that if the density of states measure of some subsets of the spectrum is zero, then these subsets are empty. In particular follows that absolute continuity of the integrated density of states implies singular spectra of ergodic operators is either empty or of positive measure. Our results apply to Anderson and alloy type models, perturbed Landau Hamiltonians, almost periodic potentials, and models which are not ergodic.
Absolute calibration technique for spontaneous fission sources
An absolute calibration technique for a spontaneously fissioning nuclide (which involves no arbitrary parameters) allows unique determination of the detector efficiency for that nuclide, hence of the fission source strength
Srinivasan, V.; Hallberg, M. P.; Strykowski, P. J.
2010-02-01
Viscous linear stability calculations are presented for model low-density axisymmetric jet flows. Absolute growth transitions for the jet column mode are mapped out in a parametric space including velocity ratio, density ratio, Reynolds number, momentum thickness, and subtle differences between velocity and density profiles. Strictly speaking, the profiles used in most jet stability studies to date are only applicable to unity Prandtl numbers and zero pressure gradient flows—the present work relaxes this requirement. Results reveal how subtle differences between the velocity and density profiles generally used in jet stability theory can dramatically alter the absolute growth rate of the jet column mode in these low-density flows. The results suggest heating/cooling or mass diffusion at the outer nozzle surface can suppress absolute instability and potentially global instability in low-density jets.
Phenotypic spandrel: absolute discrimination and ligand antagonism
François, Paul; Johnson, Kyle A.; Saunders, Laura N.
2015-01-01
We consider the general problem of absolute discrimination between categories of ligands irrespective of their concentration. An instance of this problem is immune discrimination between self and not-self. We connect this problem to biochemical adaptation, and establish that ligand antagonism - the ability of sub threshold ligands to negatively impact response - is a necessary consequence of absolute discrimination.Thus antagonism constitutes a "phenotypic spandrel": a phenotype existing as a...
'Araphid' diatom classification and the 'absolute standard'
Williams, David M.
2009-01-01
'Araphid' diatom classification is discussed from the point of view of an 'absolute standard' for taxonomic rank. The 'absolute standard' is the phylogenetic tree, its nodes, the included monophyletic groups and sub-groups. To illustrate this point a few species from the genus Licmophora are re-analysed and the resulting phylogenetic tree is discussed in terms of a possible classification, the groups and sub-groups and their ranks.
Absolute distance metrology for space interferometers
Swinkels, B L; Wendrich, T.J.; Bhattacharya, N; Wielders, A.A.; Braat, J.J.M.
2004-01-01
Space interferometers consisting of several free flying telescopes, such as the planned Darwin mission, require a complex metrology system to make all the components operate as a single instrument. Our research focuses on one of its sub-systems that measures the absolute distance between two satellites with high accuracy. For Darwin the required accuracy would be in the order of 10 μm over 250 meter. To measure this absolute distance, we are currently exploring the frequency sweeping interfer...
Introducing the mean absolute deviation 'effect' size.
Gorard, S.
2015-01-01
This paper revisits the use of effect sizes in the analysis of experimental and similar results, and reminds readers of the relative advantages of the mean absolute deviation as a measure of variation, as opposed to the more complex standard deviation. The mean absolute deviation is is easier to use and understand, and more tolerant of extreme values. The paper then proposes the use of an easy to comprehend effect size based on the mean difference between treatment groups, divided by the mean...
From Hubble's Next Generation Spectral Library (NGSL) to Absolute Fluxes
Heap, S. R.; Lindler, D.
2016-05-01
Hubble's Next Generation Spectral Library (NGSL) consists of R˜1000 spectra of 374 stars of assorted temperature, gravity, and metallicity. Each spectrum covers the wavelength range, 0.18–1.03 μ. The library can be viewed and/or downloaded from the website, http://archive.stsci.edu/prepds/stisngsl/. Stars in the NGSL are now being used as absolute flux standards at ground-based observatories. However, the uncertainty in the absolute flux is about 2%, which does not meet the requirements of dark-energy surveys. We have therefore developed an observing procedure, data-reduction procedure, and correction algorithms that should yield fluxes with uncertainties less than 1%.
From Zero Energy Buildings to Zero Energy Districts
Polly, Ben; Kutscher, Chuck; Macumber, Dan; Schott, Marjorie; Pless, Shanti; Livingood, Bill; Van Geet, Otto
2016-08-26
Some U.S. cities are planning advanced districts that have goals for zero energy, water, waste, and/or greenhouse gas emissions. From an energy perspective, zero energy districts present unique opportunities to cost-effectively achieve high levels of energy efficiency and renewable energy penetration across a collection of buildings that may be infeasible at the individual building scale. These high levels of performance are accomplished through district energy systems that harness renewable and wasted energy at large scales and flexible building loads that coordinate with variable renewable energy supply. Unfortunately, stakeholders face a lack of documented processes, tools, and best practices to assist them in achieving zero energy districts. The National Renewable Energy Laboratory (NREL) is partnering on two new district projects in Denver: the National Western Center and the Sun Valley Neighborhood. We are working closely with project stakeholders in their zero energy master planning efforts to develop the resources needed to resolve barriers and create replicable processes to support future zero energy district efforts across the United States. Initial results of these efforts include the identification and description of key zero energy district design principles (maximizing building efficiency, solar potential, renewable thermal energy, and load control), economic drivers, and master planning principles. The work has also resulted in NREL making initial enhancements to the U.S. Department of Energy's open source building energy modeling platform (OpenStudio and EnergyPlus) with the long-term goal of supporting the design and optimization of energy districts.
A global algorithm for estimating Absolute Salinity
T. J. McDougall
2012-12-01
Full Text Available The International Thermodynamic Equation of Seawater – 2010 has defined the thermodynamic properties of seawater in terms of a new salinity variable, Absolute Salinity, which takes into account the spatial variation of the composition of seawater. Absolute Salinity more accurately reflects the effects of the dissolved material in seawater on the thermodynamic properties (particularly density than does Practical Salinity.
When a seawater sample has standard composition (i.e. the ratios of the constituents of sea salt are the same as those of surface water of the North Atlantic, Practical Salinity can be used to accurately evaluate the thermodynamic properties of seawater. When seawater is not of standard composition, Practical Salinity alone is not sufficient and the Absolute Salinity Anomaly needs to be estimated; this anomaly is as large as 0.025 g kg^{−1} in the northernmost North Pacific. Here we provide an algorithm for estimating Absolute Salinity Anomaly for any location (x, y, p in the world ocean.
To develop this algorithm, we used the Absolute Salinity Anomaly that is found by comparing the density calculated from Practical Salinity to the density measured in the laboratory. These estimates of Absolute Salinity Anomaly however are limited to the number of available observations (namely 811. In order to provide a practical method that can be used at any location in the world ocean, we take advantage of approximate relationships between Absolute Salinity Anomaly and silicate concentrations (which are available globally.
Zero-shifted accelerometer outputs
Galef, Arnold
1986-08-01
It is claimed that the commonly appearing zero-shift in pyroshock data is usually a symptom of a malfunctioning measurement system, so that the data can not be repaired (by high-pass filtering or equivalent) unless tests can be devised that permit the demonstration that the system is operating in a linear mode in all respects other than the shift. The likely cause of the zero-shift and its prevention are discussed.
A schematic model for QCD II finite temperature regime
Jesgarz, S; Hess, P O; Civitarese, O; Reboiro, M
2003-01-01
A schematic model for QCD, developed in a previous paper, is applied to calculate meson properties in the high temperature (up to 0.5 GeV) regime. It is a Lipkin model for quark-antiquark pairs coupled to gluon pairs of spin zero. The partition function is constructed with the obtained meson spectrum and several thermodynamical observables are calculated, like: the energy density, heat capacity, as well as relative production rates of mesons and absolute production rates for pions and kaons. The model predictions show a qualitative agreement with data. Based on these results we advocate the use of the model as a toy model for QCD.
Schematic model for QCD. II. Finite temperature regime
A schematic model for QCD, developed in a previous paper, is applied to calculate meson properties in the high temperature (up to 0.5 GeV) regime. It is a Lipkin model for quark-antiquark pairs coupled to gluon pairs of spin zero. The partition function is constructed with the obtained meson spectrum and several thermodynamical observables are calculated, such as the energy density, heat capacity, as well as relative production rates of mesons and absolute production rates for pions and kaons. The model predictions show a qualitative agreement with data. Based on these results, we advocate the use of the model as a toy model for QCD
Revised Filter Profiles and Zero Points for Broadband Photometry
Mann, Andrew W
2014-01-01
Estimating accurate bolometric fluxes for stars requires reliable photometry to absolutely flux calibrate the spectra. This is a significant problem for studies of very bright stars, which are generally saturated in modern photometric surveys. Instead we must rely on photometry with less precise calibration. We utilize precisely flux-calibrated spectra to derive improved filter bandpasses and zero points for the most common sources of photometry for bright stars. In total we test 40 different filters in the General Catalog of Photometric Data as well as those from Tycho-2 and $Hipparcos$. We show that utilizing inaccurate filter profiles from the literature can create significant color terms resulting in fluxes that deviate by $>$10% from actual values. To remedy this we employ an empirical approach; we iteratively adjust the literature filter profile and zero point, convolve it with catalog spectra, and compare to the corresponding flux from the photometry. We adopt the passband values that produces the best...
Absolute calibration in vivo measurement systems
Lawrence Livermore National Laboratory (LLNL) is currently investigating a new method for obtaining absolute calibration factors for radiation measurement systems used to measure internally deposited radionuclides in vivo. Absolute calibration of in vivo measurement systems will eliminate the need to generate a series of human surrogate structures (i.e., phantoms) for calibrating in vivo measurement systems. The absolute calibration of in vivo measurement systems utilizes magnetic resonance imaging (MRI) to define physiological structure, size, and composition. The MRI image provides a digitized representation of the physiological structure, which allows for any mathematical distribution of radionuclides within the body. Using Monte Carlo transport codes, the emission spectrum from the body is predicted. The in vivo measurement equipment is calibrated using the Monte Carlo code and adjusting for the intrinsic properties of the detection system. The calibration factors are verified using measurements of existing phantoms and previously obtained measurements of human volunteers. 8 refs
Stimulus probability effects in absolute identification.
Kent, Christopher; Lamberts, Koen
2016-05-01
This study investigated the effect of stimulus presentation probability on accuracy and response times in an absolute identification task. Three schedules of presentation were used to investigate the interaction between presentation probability and stimulus position within the set. Data from individual participants indicated strong effects of presentation probability on both proportion correct and response times. The effects were moderated by the ubiquitous stimulus position effect. The accuracy and response time data were predicted by an exemplar-based model of perceptual cognition (Kent & Lamberts, 2005). The bow in discriminability was also attenuated when presentation probability for middle items was relatively high, an effect that will constrain future model development. The study provides evidence for item-specific learning in absolute identification. Implications for other theories of absolute identification are discussed. (PsycINFO Database Record PMID:26478959
Zero Sound in Effective Holographic Theories
Lee, Bum-Hoon; Park, Chanyong
2010-01-01
We investigate zero sound in $D$-dimensional effective holographic theories, whose action is given by Einstein-Maxwell-Dilaton terms. The bulk spacetimes include both zero temperature backgrounds with anisotropic scaling symmetry and their near-extremal counterparts obtained in 1006.2124 [hep-th], while the massless charge carriers are described by probe D-branes. We discuss thermodynamics of the probe D-branes analytically. In particular, we clarify the conditions under which the specific heat is linear in the temperature, which is a characteristic feature of Fermi liquids. We also compute the retarded Green's functions in the limit of low frequency and low momentum and find quasi-particle excitations in certain regime of the parameters. The retarded Green's functions are plotted at specific values of parameters in $D=4$, where the specific heat is linear in the temperature and the quasi-particle excitation exists. We also calculate the AC conductivity in $D$-dimensions as a by-product.
Nakazawa, Toru
2015-03-01
comprehensive expression analyses or imaging data. This is an important area of research, since it promises to enable the exploration of targets for drug discovery and the identification of new biomarkers to efficiently detect glaucoma progression by applying new analysis strategies to the complex mass data. The project not only depends on the collaborative efforts of various types of clinical settings including private practices, medical centers and university hospitals, but also contributions of the pharmaceutical and the medical device industries. Thus, uniting a wide range of Japanese interests and resources is the key for success. In summary, in order to aim for ZERO BLINDNESS, a drastic improvement in the quality of our patient care, drug development research for unmet medical demands, and a strategic collaboration of various professionals in the ophthalmic industry are essential. With the deep appreciation we fell towards the selfless support extended during the earthquake disaster, we wish to translate our "gratitude" into "power" from Tohoku. In doing so, we as academicians are determined to keep on contributing to the society by making progress in the medicine. PMID:25854109
Absolute Calibration of the Radio Astronomy Flux Density Scale at 22 to 43 GHz Using Planck
B. Partridge; López-Caniego, M.; Perley, R. A.; Stevens, J.; Butler, B. J.; Rocha, G.; Walter, B; Zacchei, A.
2015-01-01
The Planck mission detected thousands of extragalactic radio sources at frequencies from 28 to 857 GHz. Planck's calibration is absolute (in the sense that it is based on the satellite's annual motion around the Sun and the temperature of the cosmic microwave background), and its beams are well characterized at sub-percent levels. Thus Planck's flux density measurements of compact sources are absolute in the same sense. We have made coordinated VLA and ATCA observations of 65 strong, unresolv...
Absolute Fluorescence Spectrum and Yield Measurements for a wide range of experimental conditions
Monnier Ragaigne, D.; Gorodetzky, P.; Moretto, C; Blaksley, C.; Dagoret-Campagne, D.; Gonnin, A.; Miyamoto, H.; Monard, H.; Wicek, F.
2013-01-01
For the JEM-EUSO Collaboration The fluorescence yield is a key ingredient in cosmic ray energy determination. It is sensitive to pressure, temperature and humidity. Up to now the fluorescence yield of the brightest line at 337 nm has been measured in an absolute way in one set of conditions, whereas fluorescence yields at the other wavelengths have been relatively measured for different conditions. Thus, absolute calibration for all the lines is unclear. We will do all measurements at once...
Riemann zeta zeros and zero-point energy
Dueñas, J G
2013-01-01
We postulate the existence of a self-adjoint operator associated to a system with countably infinite number of degrees of freedom whose spectrum is the sequence of the nontrivial zeros of the Riemann zeta function. We assume that it describes a massive scalar field coupled to a background field in a $(d+1)$-dimensional flat space-time. The scalar field is confined to the interval $[0,a]$ in one dimension and is not restricted in the other dimensions. The renormalized zero-point energy of this system is presented using techniques of dimensional and analytic regularization. In even dimensional space-time, the series that defines the regularized vacuum energy is finite. For the odd-dimensional case, to obtain a finite vacuum energy per unit area we are forced to introduce mass counterterms. A Riemann mass appears, which is the correction to the mass of the field generated by the nontrivial zeros of the Riemann zeta function.
Precise Measurement of the Absolute Fluorescence Yield
Ave, M.; Bohacova, M.; Daumiller, K.; Di Carlo, P.; di Giulio, C.; San Luis, P. Facal; Gonzales, D.; Hojvat, C.; Hörandel, J. R.; Hrabovsky, M.; Iarlori, M.; Keilhauer, B.; Klages, H.; Kleifges, M.; Kuehn, F.; Monasor, M.; Nozka, L.; Palatka, M.; Petrera, S.; Privitera, P.; Ridky, J.; Rizi, V.; D'Orfeuil, B. Rouille; Salamida, F.; Schovanek, P.; Smida, R.; Spinka, H.; Ulrich, A.; Verzi, V.; Williams, C.
2011-09-01
We present preliminary results of the absolute yield of fluorescence emission in atmospheric gases. Measurements were performed at the Fermilab Test Beam Facility with a variety of beam particles and gases. Absolute calibration of the fluorescence yield to 5% level was achieved by comparison with two known light sources--the Cherenkov light emitted by the beam particles, and a calibrated nitrogen laser. The uncertainty of the energy scale of current Ultra-High Energy Cosmic Rays experiments will be significantly improved by the AIRFLY measurement.
Stability of array spectroradiometers and their suitability for absolute calibrations
Nevas, Saulius; Teuber, Annette; Sperling, Armin; Lindemann, Matthias
2012-04-01
An investigation of the short- and long-term stability of various low-end and high-end array spectroradiometers is presented. Potentially weak points of array spectroradiometers with respect to their suitability for absolute calibrations are pointed out. The influence of ambient conditions on relevant instrumental characteristics and their temporal stability is discussed. It is shown that the temporal stability of some instruments can be significantly affected by high ambient humidity. Most important ambient temperature effects on instrument properties are also discussed.
Det demokratiske argument for absolut ytringsfrihed
Lægaard, Sune
2014-01-01
Artiklen diskuterer den påstand, at absolut ytringsfrihed er en nødvendig forudsætning for demokratisk legitimitet med udgangspunkt i en rekonstruktion af et argument fremsat af Ronald Dworkin. Spørgsmålet er, hvorfor ytringsfrihed skulle være en forudsætning for demokratisk legitimitet, og hvorf...
Absolute-stability results in infinite dimensions
Curtain, RF; Logemann, H; Staffans, O
2004-01-01
We derive absolute-stability results of Popov and circle-criterion type for infinite-dimensional systems in an input-output setting. Our results apply to feedback systems in which the linear part is the series interconnection of an input-output stable linear system and an integrator, and the nonline
The Weyl functor - Introduction to Absolute Arithmetic
Thas, Koen
2014-01-01
Starting from an ancient observation of Tits concerning the interpretation of symmetric groups as Chevalley groups over a (non-existing) field having only one element, we describe combinatorial geometry over this field, as well as Linear Algebra. We arrive at an "absolute mantra" which is one of the basic principles of the present book.
Time Function and Absolute Black Hole
Javadi, Hossein; Forouzbakhsh, Farshid
2006-01-01
Einstein’s theory of gravity is not consistent with quantum mechanics, because general relativity cannot be quantized. [1] But without conversion of force and energy, it is impossible to find a grand unified theory. A very important result of CPH theory is time function that allows we give a new ...... description of absolute black hole and before the big bang....
Thin-film magnetoresistive absolute position detector
Groenland, Johannes Petrus Jacobus
1990-01-01
The subject of this thesis is the investigation of a digital absolute posi- tion-detection system, which is based on a position-information carrier (i.e. a magnetic tape) with one single code track on the one hand, and an array of magnetoresistive sensors for the detection of the informatio
Stimulus Probability Effects in Absolute Identification
Kent, Christopher; Lamberts, Koen
2016-01-01
This study investigated the effect of stimulus presentation probability on accuracy and response times in an absolute identification task. Three schedules of presentation were used to investigate the interaction between presentation probability and stimulus position within the set. Data from individual participants indicated strong effects of…
Solving Absolute Value Equations Algebraically and Geometrically
Shiyuan, Wei
2005-01-01
The way in which students can improve their comprehension by understanding the geometrical meaning of algebraic equations or solving algebraic equation geometrically is described. Students can experiment with the conditions of the absolute value equation presented, for an interesting way to form an overall understanding of the concept.
Teaching Absolute Value Inequalities to Mature Students
Sierpinska, Anna; Bobos, Georgeana; Pruncut, Andreea
2011-01-01
This paper gives an account of a teaching experiment on absolute value inequalities, whose aim was to identify characteristics of an approach that would realize the potential of the topic to develop theoretical thinking in students enrolled in prerequisite mathematics courses at a large, urban North American university. The potential is…
Magnetoresistive transducer for absolute position detection
Groenland, J.P.J.
1984-01-01
In this paper a new method is presented for the measurement of absolute linear or angular position. The digital position information is recorded serially into one track of a suitable hard-magnetic medium. The stray field of this information layer determines the angular magnetisation distribution in
Absolute Distance Measurements with Tunable Semiconductor Laser
Mikel, Břetislav; Číp, Ondřej; Lazar, Josef
T118, - (2005), s. 41-44. ISSN 0031-8949 R&D Projects: GA AV ČR(CZ) IAB2065001 Keywords : tunable laser * absolute interferometer Subject RIV: BH - Optics, Masers, Lasers Impact factor: 0.661, year: 2004
ABSOLUTE MEASUREMENT OF THE GANIL BEAM ENERGY
CASANDJIAN, JM; MITTIG, W; BEUNARD, R; GAUDARD, L; LEPINESZILY, A; VILLARI, ACC; AUGER, G; BIANCHI, L; CUNSOLO, A; FOTI, A; LICHTENTHALER, R; PLAGNOL, E; SCHUTZ, Y; SIEMSSEN, RH; WIELECZKO, JP
1993-01-01
The energy of the GANIL cyclotron beam was measured on-line during the Pb-208 + Pb-208 elastic scattering experiment ''Search for Color van der Waals Force in the Pb-208 + Pb-208 Mott scattering'' with an absolute precision of 7 x 10(-5) at approximately 1.0 GeV, which represents an improvement of o
Sharp coincidences for absolutely summing multilinear operators
Pellegrino, Daniel
2012-01-01
In this note we prove the optimality of a family of known coincidence theorems for absolutely summing multilinear operators. We connect our results with the theory of multiple summing multilinear operators and prove the sharpness of similar results obtained via the complex interpolation method.
Transverse voltage in superconductors at zero applied magnetic field
A systematic study of the transverse voltage at zero magnetic field in the superconducting state is reported. The effects of warming rate, temperature, applied magnetic field, and electrical current on the transversal resistance (RXY) of polycrystalline superconducting sample are taken into account. At zero magnetic field two peaks are observed in RXY(T) curves which are related to the double superconducting transition in the RXX(T) component. In the superconducting (RXX = zero) and normal states no transverse voltage has been detected at zero magnetic field as expected. The results are discussed within the framework of the motion of Abrikosov and Josephson vortices and anti-vortices. A new scaling relation between transverse and longitudinal components given by RXY ∼ dRXX/dT has been confirmed
Dusser, Julien; Piquet, Thomas; Seznec, André
2008-01-01
It has been observed that some applications manipulate large amounts of null data. Moreover these zero data often exhibit high spatial locality. On some applications more than 20\\% of the data accesses concern null data blocks. Representing a null block in a cache on a standard cache line appears as a waste of resources. In this paper, we propose the Zero-Content Augmented cache, the ZCA cache. A ZCA cache consists of a conventional cache augmented with a specialized cache for memorizing null...
Axtell, M.; Stickles, J.
2010-01-01
The last ten years have seen an explosion of research in the zero-divisor graphs of commutative rings--by professional mathematicians "and" undergraduates. The objective is to find algebraic information within the geometry of these graphs. This topic is approachable by anyone with one or two semesters of abstract algebra. This article gives the…
Improved Zero-Crossing Detector
Dick, G. John; Kuhnle, Paul F.
1992-01-01
Improved zero-crossing-detector circuit designed for precisely measuring difference between frequencies of two frequency-standard signal sources. Contains low-bandwidth first-stage amplifier and three limiting amplifiers, each "squares" signal bit more. Crosstalk eliminated and jitter reduced to about 10 to the negative 7th power microseconds.
Guo Liqin
2010-01-01
@@ It is widely reported that starting the first day of 201 0,China and six old ASEAN member nations,including Brunei,Indonesia,Malaysia,the Philippines,Singapore and Thailand,imposed zero tariffs on most normal products,while China and the other four new ASEAN members namely Cambodia,Lao PDR,Myanmar and Vietnam will do the same in 2015.
Geiger, Philip E.
1993-01-01
Zero-based, programmatic budgeting involves four basic steps: (1) define what needs to be done; (2) specify the resources required; (3) determine the assessment procedures and standards to use in evaluating the effectiveness of various programs; and (4) assign dollar figures to this information. (MLF)
Induced gravity and Planck zeros
Starting with an asymptotically free gauge theory with dynamical symmetry breaking and a mass hierarchy, we investigate the Adler-Zee formula for the induced gravitational constant. We study the two-point function psi(q2), constructed with the trace of the energy-momentum tensor. First, we show that if the zeros of psi are at a mass scale significantly below the leading scale, then G/sub ind/ -1 = 0 (m/sub zero/ 2) making it impossible to get a realistic G/sub ind/ from the Adler-Zee formula with low-mass zeros. Next we use the Jensen formula to derive a sum rule for Vertical Barm/sub zero/Vertical Bar. The analysis of this sum rule coupled with the result above leads to a dilemma with only one reasonable resolution. To get a realistic G/sub ind/ from the Adler-Zee formula, psi(q2) must have a pair of complex-conjugate zeros at q2 = M02 +- 2iνM0, where M0 is large and of the maximal scale and ν/M0-1. It gives a lower bound, which with our previously derived general upper bound gives [π2/4(ln10)288] C/sub psi/M02-1 2/288) C/sub psi/M02, where C/sub psi/ is the anomaly coefficient, a number easily determined by low-order perturbation theory for any group
Zeros of combinations of Bessel functions and the mean charge of graphene nanodots
Beneventano, C. G.; Fialkovsky, I. V.; Santangelo, E. M.
2016-04-01
We establish some properties of the zeros of sums and differences of contiguous Bessel functions of the first kind. As a by-product, we also prove that the zeros of the derivatives of Bessel functions of the first kind of different orders are interlaced the same way as the zeros of the Bessel functions themselves. As a physical motivation, we consider gated graphene nanodots subject to Berry-Mondragon boundary conditions. We determine the allowed energy levels and calculate the mean charge at zero temperature. We discuss its dependence on the gate ( chemical) potential in detail and also comment on the effect of temperature.
Absolute calibration of TFTR helium proportional counters
The TFTR helium proportional counters are located in the central five (5) channels of the TFTR multichannel neutron collimator. These detectors were absolutely calibrated using a 14 MeV neutron generator positioned at the horizontal midplane of the TFTR vacuum vessel. The neutron generator position was scanned in centimeter steps to determine the collimator aperture width to 14 MeV neutrons and the absolute sensitivity of each channel. Neutron profiles were measured for TFTR plasmas with time resolution between 5 msec and 50 msec depending upon count rates. The He detectors were used to measure the burnup of 1 MeV tritons in deuterium plasmas, the transport of tritium in trace tritium experiments, and the residual tritium levels in plasmas following 50:50 DT experiments
An absolute measure for a key currency
Oya, Shunsuke; Aihara, Kazuyuki; Hirata, Yoshito
It is generally considered that the US dollar and the euro are the key currencies in the world and in Europe, respectively. However, there is no absolute general measure for a key currency. Here, we investigate the 24-hour periodicity of foreign exchange markets using a recurrence plot, and define an absolute measure for a key currency based on the strength of the periodicity. Moreover, we analyze the time evolution of this measure. The results show that the credibility of the US dollar has not decreased significantly since the Lehman shock, when the Lehman Brothers bankrupted and influenced the economic markets, and has increased even relatively better than that of the euro and that of the Japanese yen.
Absolute rate of thermal desorption from first-principles simulation
We present a technique for computing by first-principles simulation the absolute desorption rate γ of adsorbate molecules from a surface for any coverage and temperature. The technique is valid when the thermal equilibration rate on the surface is faster than γ, and is based on an exact expression for γ in terms of the difference of non-configurational chemical potentials of gas-phase and adsorbed molecules. This difference is expressed in terms of a potential of mean force, which is computed by constrained first-principles molecular dynamics. The technique is applied to D2O on the MgO(001) surface at low coverage, using the generalized gradient approximation (GGA) for exchange-correlation energy. Comparisons with experimental temperature programmed desorption data allow an assessment of the accuracy of the GGA for the adsorption of D2O on MgO(001). (letter to the editor)
Absolute parallelism, modified gravity, and suppression of gravitational short waves
Zhogin, I L
2011-01-01
There is a unique variant of Absolute Parallelism, which is very simple as it has no free parameters: nothing (nor D=5) can be changed if to keep the theory safe from emerging singularities of solutions. On the contrary, eternal solutions of this theory, due to the linear instability of the trivial solution, should be of great complexity which can in some scenarios (with a set of slowly varying parameters of solutions) provide a few phenomenological models including a modified (better to say, new or another) gravity and an expanding-shell cosmology (the longitudinal polarization gives the anti-Milne model). The former looks (mostly) like a variant of tensor-Ricci-squared gravity on a brane of a huge scale L along the extra-dimension. The correction to Newton's law of gravity, which depends in this theory on two parameters (bi-Laplace equation) and behaves as 1/r on large scales, r>L (kpc>L>pc), can start from zero (the Rindler term vanishes) if a constraint is imposed on these parameters. On further considera...
Transport and zero sound in holographic strange metals
Hoyos, Carlos [Department of Physics, University of Washington, Seattle, WA 98195-1560 (United States); O' Bannon, Andy [DAMTP, Centre for Mathematical Sciences, Wilberforce Road, Cambridge, CB3 0WA (United Kingdom); Wu, Jackson M S, E-mail: choyos@phys.washington.edu, E-mail: A.OBannon@damtp.cam.ac.uk, E-mail: jbnwu@itp.unibe.ch [Department of Physics, University of Auckland, Private Bag 92019, Auckland (New Zealand)
2011-04-01
It is a challenge to describe the non-Fermi liquid behavior that appears in strongly interacting systems of fermions using traditional field theory techniques. A proposal to model the associated 'strange metal' phenomenology is to use a strongly coupled critical point with non-relativistic scale invariance, dual to a Lifshitz geometry, coupled to a finite density of probe charged carriers dual to D-branes. We use this model to study the thermodynamic and transport properties of charge carriers at finite and zero temperature. At zero temperature we show that the large wavelength behavior is dominated by a single mode whose properties are similar to the zero sound of Fermi liquids.
Absolute Parallelism Geometry: Developments, Applications and Problems
Wanas, M. I.
2002-01-01
Absolute parallelism geometry is frequently used for physical applications. It has two main defects, from the point of view of applications. The first is the identical vanishing of its curvature tensor. The second is that its autoparallel paths do not represent physical trajectories. The present work shows how these defects were treated in the course of development of the geometry. The new version of this geometry contains simultaneous non-vanishing torsion and curvatures. Also, the new paths...
Cosmological frames for theories with absolute parallelism
Ferraro, Rafael; Fiorini, Franco
2011-01-01
The vierbein (tetrad) fields for closed and open Friedmann-Robertson-Walker cosmologies are hard to work out in most of the theories featuring absolute parallelism. The difficulty is traced in the fact that these theories are not invariant under local Lorentz transformations of the vierbein. We illustrate this issue in the framework of f(T) theories and Born-Infeld determinantal gravity. In particular, we show that the early Universe as described by the Born-Infeld scheme is singularity free ...
Absolute clock synchronisation and special relativity paradoxes
Ciborowski, Jacek; Wlodarczyk, Marta
2012-01-01
Solving special relativity paradoxes requires rigorous analysis of event timing, due to relative simultaneity in consequence of the Lorentz transformation. Since clock synchronisation is a convention in special theory of relativity, instead of the Einstein's procedure one may choose such that offers absolute simultaneity. We present in short the corresponding formalism in one spatial dimension. We show that paradoxes do not arise with this choice of synchronisation and descriptions of these i...
Absolute distance metrology for space interferometers
Swinkels, B L; Bhattacharya, N; Wielders, A.A.; Braat, J.J.M.
2005-01-01
Future space missions, among which the Darwin Space Interferometer, will consist of several free flying satellites. A complex metrology system is required to have all the components fly accurately in formation and have it operate as a single instrument. Our work focuses on a possible implementation of the sub-system that measures the absolute distance between two satellites with high accuracy. For Darwin the required accuracy is on the order of 70 micrometer over a distance of 250 meter. We a...
An absolute deviation approach to assessing correlation.
Gorard, S.
2015-01-01
This paper describes two possible alternatives to the more traditional Pearson’s R correlation coefficient, both based on using the mean absolute deviation, rather than the standard deviation, as a measure of dispersion. Pearson’s R is well-established and has many advantages. However, these newer variants also have several advantages, including greater simplicity and ease of computation, and perhaps greater tolerance of underlying assumptions (such as the need for linearity). The first alter...
The absolute differential calculus (calculus of tensors)
Levi-Civita, Tullio
2013-01-01
Written by a towering figure of twentieth-century mathematics, this classic examines the mathematical background necessary for a grasp of relativity theory. Tullio Levi-Civita provides a thorough treatment of the introductory theories that form the basis for discussions of fundamental quadratic forms and absolute differential calculus, and he further explores physical applications.Part one opens with considerations of functional determinants and matrices, advancing to systems of total differential equations, linear partial differential equations, algebraic foundations, and a geometrical intro
Commodity production in Brazil: Combining zero deforestation and zero illegality
Azevedo, Andrea A.; Marcelo C. C. Stabile; Tiago N. P. Reis
2015-01-01
Abstract This article documents the degree of noncompliance of soy producers in the Amazon portion of Mato Grosso with Brazil’s Forest Code and addresses the importance of market demands in shifting agricultural production and land occupation towards zero deforestation. By using a sample composed of the boundaries of 9,113 properties (72.5% of soy in the region) we assessed: a) compliance with Forest Code legal reserve requirements (a percentage of the property must have its original vegetati...
Simple and accurate empirical absolute volume calibration of a multi-sensor fringe projection system
Gdeisat, Munther; Qudeisat, Mohammad; AlSa`d, Mohammed; Burton, David; Lilley, Francis; Ammous, Marwan M. M.
2016-05-01
This paper suggests a novel absolute empirical calibration method for a multi-sensor fringe projection system. The optical setup of the projector-camera sensor can be arbitrary. The term absolute calibration here means that the centre of the three dimensional coordinates in the resultant calibrated volume coincides with a preset centre to the three-dimensional real-world coordinate system. The use of a zero-phase fringe marking spot is proposed to increase depth calibration accuracy, where the spot centre is determined with sub-pixel accuracy. Also, a new method is proposed for transversal calibration. Depth and transversal calibration methods have been tested using both single sensor and three-sensor fringe projection systems. The standard deviation of the error produced by this system is 0.25 mm. The calibrated volume produced by this method is 400 mm×400 mm×140 mm.
What measurable zero point fluctuations can(not) tell us about dark energy
We show that laboratory experiments cannot measure the absolute value of dark energy. All known experiments rely on electromagnetic interactions. They are thus insensitive to particles and fields that interact only weakly with ordinary matter. In addition, Josephson junction experiments only measure differences in vacuum energy similar to Casimir force measurements. Gravity, however, couples to the absolute value. Finally we note that Casimir force measurements have tested zero point fluctuations up to energies of ∝ 10 eV, well above the dark energy scale of ∝ 0.01 eV. Hence, the proposed cut-off in the fluctuation spectrum is ruled out experimentally. (Orig.)
SUB-ZERO TREATMENT OF P/M VANADIS 6 LEDEBURITIC TOOL STEEL
Peter Jurči
2013-09-01
Full Text Available The Cr-V ledeburitic steel Vanadis 6 was vacuum austenitized at different temperatures, nitrogen gas quenched and double tempered at 530 °C for 2 h. For the selected samples, a sub-zero period was inserted between quenching and tempering. The obtained results infer that: I as-quenched microstructure consisted of martensite, retained austenite and undissolved carbides, II sub-zero processing reduced the amount of the retained austenite and increased the tetragonality of the martensitic lattice, III as-quenched hardness of the steel was higher by 2 – 3 HRC due to sub-zero processing, IV as-tempered hardness increased with increasing austenitizing temperature but it decreased slightly with the sub-zero period, V no negative impact of sub-zero processing on toughness was recorded, VI wear resistance increased with sub-zero period when 100Cr6 steel has been used as a counterpart.
Terminal nerve: cranial nerve zero
Jorge Eduardo Duque Parra; Carlos Alberto Duque Parra
2006-01-01
It has been stated, in different types of texts, that there are only twelve pairs of cranial nerves. Such texts exclude the existence of another cranial pair, the terminal nerve or even cranial zero. This paper considers the mentioned nerve like a cranial pair, specifying both its connections and its functional role in the migration of liberating neurons of the gonadotropic hormone (Gn RH). In this paper is also stated the hypothesis of the phylogenetic existence of a cerebral sector and a co...
A study of zero-dimensional theories, based on exact results, is presented. First, relying on a simple diagrammatic representation of the theory, equations involving the generating function of all connected Green's functions are constructed. Second, exact solutions of these equations are obtained for several theories. Finally, renormalization is carried out. Based on the anticipated knowledge of the exact solutions the full dependence on the renormalized coupling constant is studied. (orig.)
Majorana Zero Modes in Graphene
San-Jose, P.; Lado, Jose L.; Aguado Sola, Ramón; Guinea, F.; Fernández Rossier, Joaquín
2015-01-01
A clear demonstration of topological superconductivity (TS) and Majorana zero modes remains one of the major pending goals in the field of topological materials. One common strategy to generate TS is through the coupling of an s-wave superconductor to a helical half-metallic system. Numerous proposals for the latter have been put forward in the literature, most of them based on semiconductors or topological insulators with strong spin-orbit coupling. Here, we demonstrate an alternative approa...
Absolute stability in a collisionless electron-heat-conducting plasma in strong magnetic fields
de la Torre, A.; Duhau, S.
1989-02-01
The dispersion relation obtained from a linear analysis of the hydrodynamic system of equations of Duhau is used to study the behaviour of the fast and slow magnetosonic and entropy modes in an electron-heat-flux-conducting plasma. The evolution of the hydrodynamic modes different from the Alfvén mode are studied as the electron heat flux is increased from zero as well as around the borders of overstable regions, for any anisotropy condition of the ions. The development of the domains of mirror and electron-heat-flux overstabilities are established and the regions of absolute stability are shown
The concepts of leak before break and absolute reliability of NPP equipment and piping
Getman, A.F.; Komarov, O.V.; Sokov, L.M. [and others
1997-04-01
This paper describes the absolute reliability (AR) concept for ensuring safe operation of nuclear plant equipment and piping. The AR of a pipeline or component is defined as the level of reliability when the probability of an instantaneous double-ended break is near zero. AR analysis has been applied to Russian RBMK and VVER type reactors. It is proposed that analyses required for application of the leak before break concept should be included in AR implementation. The basic principles, methods, and approaches that provide the basis for implementing the AR concept are described.
Implications of zero economic growth
Thurow, L.C.
1977-01-01
The consequences of a zero economic growth (ZEG) policy are examined to see what limits to growth, some of which already exist, are desirable and what changes in our institutions are required to impose a no-growth policy. Past periods of zero or negative growth have increased unemployment, raised employability standards, and increased income-distribution inequalities with a subsequent lowering of the living standard. Zero population growth would offset this somewhat by freeing the capital now spent on education and career training and using it to raise per capita living standards if a work-sharing and unemployment-payment system were devised. Undesirable social implications would be felt both if a lack of employment opportunities reduced competition and consumption habits or if it led to intensive competition. Advocates of ZEG propose to restrain only those areas using nonrenewable resources and causing pollution of the environment, while expanding the service areas. The service sector (e.g., transportation and utilities) is also polluting and uses nonrenewable resources, however, pointing up their failure to account for indirect consumption. Many undeveloped countries already have ZEG but would not be content for the U.S. to halt growth opportunities. ZEG would be difficult to enforce and would do nothing to promote pollution control. (DCK)
Constitutive model of discontinuous plastic flow at cryogenic temperatures
Skoczen, B; Bielski, J; Marcinek, D
2010-01-01
FCC metals and alloys are frequently used in cryogenic applications, nearly down to the temperature of absolute zero, because of their excellent physical and mechanical properties including ductility. Some of these materials, often characterized by the low stacking fault energy (LSFE), undergo at low temperatures three distinct phenomena: dynamic strain ageing (DSA), plastic strain induced transformation from the parent phase (gamma) to the secondary phase (alpha) and evolution of micro-damage. The constitutive model presented in the paper is focused on the discontinuous plastic flow (serrated yielding) and takes into account the relevant thermodynamic background. The discontinuous plastic flow reflecting the DSA effect is described by the mechanism of local catastrophic failure of Lomer-Cottrell (LC) locks under the stress fields related to the accumulating edge dislocations (below the transition temperature from the screw dislocations to the edge dislocations mode T-1). The failure of LC locks leads to mass...
Myosin heavy chain expression in rodent skeletal muscle: effects of exposure to zero gravity
Haddad, F.; Herrick, R. E.; Adams, G. R.; Baldwin, K. M.
1993-01-01
This study ascertained the effects of 9 days of zero gravity on the relative (percentage of total) and calculated absolute (mg/muscle) content of isomyosin expressed in both antigravity and locomotor skeletal muscle of ground control (CON) and flight-exposed (FL) rats. Results showed that although there were no differences in body weight between FL and CON animals, a significant reduction in muscle mass occurred in the vastus intermedius (VI) (P 0.05). mRNA levels were consistent with this pattern (P antigravity skeletal muscle during exposure to zero gravity that could affect muscle function.
DISTANCE SCALE ZERO POINTS FROM GALACTIC RR LYRAE STAR PARALLAXES
Benedict, G. Fritz; McArthur, Barbara E.; Barnes, Thomas G. [McDonald Observatory, University of Texas, Austin, TX 78712 (United States); Feast, Michael W. [Centre for Astrophysics, Cosmology and Gravitation, Astronomy Department, University of Cape Town, Rondebosch 7701 (South Africa); Harrison, Thomas E. [Department of Astronomy, New Mexico State University, Las Cruces, NM 88003 (United States); Bean, Jacob L.; Kolenberg, Katrien [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States); Menzies, John W.; Laney, C. D. [South African Astronomical Observatory, Observatory 7935 (South Africa); Chaboyer, Brian [Department of Physics and Astronomy, Dartmouth College, Hanover, NH 03755 (United States); Fossati, Luca [Department of Physics and Astronomy, Open University, Milton Keynes MK7 6AA (United Kingdom); Nesvacil, Nicole [Institute of Astronomy, University of Vienna, A-1180 Vienna (Austria); Smith, Horace A. [Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824 (United States); Kochukhov, Oleg [Department of Physics and Astronomy, Uppsala University, 75120 Uppsala (Sweden); Nelan, Edmund P.; Taylor, Denise [STScI, Baltimore, MD 21218 (United States); Shulyak, D. V. [Institute of Astrophysics, Georg-August-University, Friedrich-Hund-Platz 1, D-37077 Goettingen (Germany); Freedman, Wendy L. [The Observatories, Carnegie Institution of Washington, Pasadena, CA 91101 (United States)
2011-12-15
We present new absolute trigonometric parallaxes and proper motions for seven Population II variable stars-five RR Lyr variables: RZ Cep, XZ Cyg, SU Dra, RR Lyr, and UV Oct; and two type 2 Cepheids: VY Pyx and {kappa} Pav. We obtained these results with astrometric data from Fine Guidance Sensors, white-light interferometers on Hubble Space Telescope. We find absolute parallaxes in milliseconds of arc: RZ Cep, 2.12 {+-} 0.16 mas; XZ Cyg, 1.67 {+-} 0.17 mas; SU Dra, 1.42 {+-} 0.16 mas; RR Lyr, 3.77 {+-} 0.13 mas; UV Oct, 1.71 {+-} 0.10 mas; VY Pyx, 6.44 {+-} 0.23 mas; and {kappa} Pav, 5.57 {+-} 0.28 mas; an average {sigma}{sub {pi}}/{pi} = 5.4%. With these parallaxes, we compute absolute magnitudes in V and K bandpasses corrected for interstellar extinction and Lutz-Kelker-Hanson bias. Using these RR Lyrae variable star absolute magnitudes, we then derive zero points for M{sub V} -[Fe/H] and M{sub K} -[Fe/H]-log P relations. The technique of reduced parallaxes corroborates these results. We employ our new results to determine distances and ages of several Galactic globular clusters and the distance of the Large Magellanic Cloud. The latter is close to that previously derived from Classical Cepheids uncorrected for any metallicity effect, indicating that any such effect is small. We also discuss the somewhat puzzling results obtained for our two type 2 Cepheids.
DISTANCE SCALE ZERO POINTS FROM GALACTIC RR LYRAE STAR PARALLAXES
We present new absolute trigonometric parallaxes and proper motions for seven Population II variable stars—five RR Lyr variables: RZ Cep, XZ Cyg, SU Dra, RR Lyr, and UV Oct; and two type 2 Cepheids: VY Pyx and κ Pav. We obtained these results with astrometric data from Fine Guidance Sensors, white-light interferometers on Hubble Space Telescope. We find absolute parallaxes in milliseconds of arc: RZ Cep, 2.12 ± 0.16 mas; XZ Cyg, 1.67 ± 0.17 mas; SU Dra, 1.42 ± 0.16 mas; RR Lyr, 3.77 ± 0.13 mas; UV Oct, 1.71 ± 0.10 mas; VY Pyx, 6.44 ± 0.23 mas; and κ Pav, 5.57 ± 0.28 mas; an average σπ/π = 5.4%. With these parallaxes, we compute absolute magnitudes in V and K bandpasses corrected for interstellar extinction and Lutz-Kelker-Hanson bias. Using these RR Lyrae variable star absolute magnitudes, we then derive zero points for MV -[Fe/H] and MK -[Fe/H]-log P relations. The technique of reduced parallaxes corroborates these results. We employ our new results to determine distances and ages of several Galactic globular clusters and the distance of the Large Magellanic Cloud. The latter is close to that previously derived from Classical Cepheids uncorrected for any metallicity effect, indicating that any such effect is small. We also discuss the somewhat puzzling results obtained for our two type 2 Cepheids.
Om Prakash Gurjar; Surendra Prasad Mishra
2015-01-01
Purpose: To compare the results of patient specific absolute dosimetry using slab phantom, acrylic body phantom and goat head phantom. Methods: Fifteen intensity modulated radiotherapy (IMRT) plans already planned on treatment planning system (TPS) for head-and-neck cancer patients were exported on all three kinds of phantoms viz. slab phantom, acrylic body phantom and goat head phantom, and dose was calculated using anisotropic analytic algorithm (AAA). All the gantry angles were set to zero...
Commodity production in Brazil: Combining zero deforestation and zero illegality
Andrea A. Azevedo
2015-12-01
Full Text Available Abstract This article documents the degree of noncompliance of soy producers in the Amazon portion of Mato Grosso with Brazil’s Forest Code and addresses the importance of market demands in shifting agricultural production and land occupation towards zero deforestation. By using a sample composed of the boundaries of 9,113 properties (72.5% of soy in the region we assessed: a compliance with Forest Code legal reserve requirements (a percentage of the property must have its original vegetation kept undisturbed; and compared it to b compliance with the zero deforestation criterion of the soy moratorium. We found that 82% of the sampled properties have not deforested since 2008, thus complying with the soy moratorium. However, approximately 65% out of these 82% are noncompliant with Forest Code legal reserve requirements. This situation is even worse in the Cerrado portion of Mato Grosso. Even though the soy moratorium criterion is only applicable to the Amazon biome, the Forest Code is applicable nationwide. Despite legal reserve requirements being much lower (35% of the property in the Cerrado, as opposed to 80% in the Amazon, almost 70% of sampled properties were noncompliant with the Forest Code. From this analysis we concluded that while there was a role for consumer-driven market demand for zero deforestation soy production, there is still a need (and opportunity to implement purchasing and financing criteria to promote compliance with Forest Code requirements in regards to legal reserve deficits. We believe that if this succeeds, it will drive a process of restoration and compensation of Forest Code deficits, strengthening public policy as well as reducing economic distortions between those who have and have not complied with Forest Code requirements.
The National Geodetic Survey absolute gravity program
Peter, George; Moose, Robert E.; Wessells, Claude W.
1989-03-01
The National Geodetic Survey absolute gravity program will utilize the high precision afforded by the JILAG-4 instrument to support geodetic and geophysical research, which involves studies of vertical motions, identification and modeling of other temporal variations, and establishment of reference values. The scientific rationale of these objectives is given, the procedures used to collect gravity and environmental data in the field are defined, and the steps necessary to correct and remove unwanted environmental effects are stated. In addition, site selection criteria, methods of concomitant environmental data collection and relative gravity observations, and schedule and logistics are discussed.
Prospects for absolute neutron activation analysis
The desirability for absolute neutron activation analysis(ANAA) is two-fold. Results by the comparitor method are only as good as the standards used, and also the method offers a chance of having the final results available within minutes of completing the analysis. In the past ANAA was not seriously considered because of the scarcity and poor qaulity of the nuclear data that were available. This situation is however steadily improving and the possible applications are being investigated. This report reviews the present status by considering the basic activation equation, calculation of parameters, the factors of importance and the size error one might expect
Brownian motion: absolute negative particle mobility.
Ros, Alexandra; Eichhorn, Ralf; Regtmeier, Jan; Duong, Thanh Tu; Reimann, Peter; Anselmetti, Dario
2005-08-18
Noise effects in technological applications, far from being a nuisance, can be exploited with advantage - for example, unavoidable thermal fluctuations have found application in the transport and sorting of colloidal particles and biomolecules. Here we use a microfluidic system to demonstrate a paradoxical migration mechanism in which particles always move in a direction opposite to the net acting force ('absolute negative mobility') as a result of an interplay between thermal noise, a periodic and symmetric microstructure, and a biased alternating-current electric field. This counterintuitive phenomenon could be used for bioanalytical purposes, for example in the separation and fractionation of colloids, biological molecules and cells. PMID:16107829
Musical Activity Tunes Up Absolute Pitch Ability
Dohn, Anders; Garza-Villarreal, Eduardo A.; Ribe, Lars Riisgaard; Wallentin, Mikkel; Vuust, Peter
2014-01-01
Absolute pitch (AP) is the ability to identify or produce pitches of musical tones without an external reference. Active AP (i.e., pitch production or pitch adjustment) and passive AP (i.e., pitch identification) are considered to not necessarily coincide, although no study has properly compared......, we found that APs generally undershoot when adjusting musical pitch, a tendency that decreases when musical activity increases. Finally, APs are less accurate when adjusting the pitch to black key targets than to white key targets. Hence, AP ability may be partly practice-dependent and we speculate...
Absolute Priority for a Vehicle in VANET
Shirani, Rostam; Hendessi, Faramarz; Montazeri, Mohammad Ali; Sheikh Zefreh, Mohammad
In today's world, traffic jams waste hundreds of hours of our life. This causes many researchers try to resolve the problem with the idea of Intelligent Transportation System. For some applications like a travelling ambulance, it is important to reduce delay even for a second. In this paper, we propose a completely infrastructure-less approach for finding shortest path and controlling traffic light to provide absolute priority for an emergency vehicle. We use the idea of vehicular ad-hoc networking to reduce the imposed travelling time. Then, we simulate our proposed protocol and compare it with a centrally controlled traffic light system.
婷婷（整理）
2007-01-01
ABSOLUT与创意素来有着不解之缘。由Andy Warhal的ABSOLUT WARHOL至今，已有超过400位不同领域的创意大师为ABSOLUT的当代艺术宝库贡献了自己的得意之作。ABSOLUT的创意仿佛永远不会枯竭，而一系列的作品也让惊喜从未落空。
Epsilon-near-zero mode for active optoelectronic devices.
Vassant, S; Archambault, A; Marquier, F; Pardo, F; Gennser, U; Cavanna, A; Pelouard, J L; Greffet, J J
2012-12-01
The electromagnetic modes of a GaAs quantum well between two AlGaAs barriers are studied. At the longitudinal optical phonon frequency, the system supports a phonon polariton mode confined in the thickness of the quantum well that we call epsilon-near-zero mode. This epsilon-near-zero mode can be resonantly excited through a grating resulting in a very large absorption localized in the single quantum well. We show that the reflectivity can be modulated by applying a voltage. This paves the way to a new class of active optoelectronic devices working in the midinfrared and far infrared at ambient temperature. PMID:23368264
Zero G Mass Measurement Device (ZGMMD) Project
National Aeronautics and Space Administration — The Zero G Mass Measurement Device (ZGMMD) will provide the ability to quantify the mass of objects up to 2,000 grams, including live animal specimens in a zero G...
Zero-dimensionality of some pseudocompact groups
Dikranjan, Dikran N.
2015-01-01
We prove that hereditarily disconnected countably compact groups are zero-dimensional. This gives a strongly positive answer to a question of Shakhmatov. We show that hereditary or total disconnectedness yields zero-dimensionality in various classes of pseudocompact groups.
On-Orbit Absolute Radiance Standard for Future IR Remote Sensing Instruments
Best, F. A.; Adler, D. P.; Pettersen, C.; Revercomb, H. E.; Gero, P. J.; Taylor, J. K.; Knuteson, R. O.; Perepezko, J. H.
2010-12-01
Future NASA infrared remote sensing missions, including the climate benchmark CLARREO mission will require better absolute measurement accuracy than now available, and will most certainly rely on the emerging capability to fly SI traceable standards that provide irrefutable absolute measurement accuracy. As an example, instrumentation designed to measure spectrally resolved infrared radiances with an absolute brightness temperature error of better than 0.1 K will require high-emissivity (>0.999) calibration blackbodies with emissivity uncertainty of better than 0.06%, and absolute temperature uncertainties of better than 0.045K (3 sigma). Key elements of an On-Orbit Absolute Radiance Standard (OARS) meeting these stringent requirements have been demonstrated in the laboratory at the University of Wisconsin and are undergoing Technology Readiness Level (TRL) advancement under the NASA Instrument Incubator Program (IIP). We present the new technologies that underlie the OARS and the results of laboratory testing that demonstrate the required accuracy is being met. The underlying technologies include on-orbit absolute temperature calibration using the transient melt signatures of small quantities (<1g) of reference materials (gallium, water, and mercury) imbedded in the blackbody cavity; and on-orbit cavity spectral emissivity measurement using a heated halo. For these emissivity measurements, a carefully baffled heated cylinder is placed in front of a blackbody in the infrared spectrometer system, and the combined radiance of the blackbody and Heated Halo reflection is observed. Knowledge of key temperatures and the viewing geometry allow the blackbody cavity spectral emissivity to be calculated. This work will culminate with an integrated subsystem that can provide on-orbit end-to-end radiometric accuracy validation for infrared remote sensing instruments.
M. V. Gerotto
2000-06-01
Full Text Available Concretos refratários aluminosos contendo microssílica apresentam um grande potencial de aplicação tecnológica pela possibilidade de formação da fase mulita através da reação entre Al2O3 e SiO2. Porém, segundo o diagrama Al2O3 - SiO2 - CaO, seu uso é limitado a temperaturas próximas a 1300 ºC uma vez que a presença do CaO, contido no cimento de aluminato de cálcio, leva a formação de fases líquidas que prejudicam fortemente a sua resistência mecânica a altas temperaturas. Recentemente foi mostrado a possível presença de uma fase metaestável de baixo ponto de fusão inerente ao diagrama Al2O3- SiO2 que poderia ser a responsável pela redução na resistência mecânica a quente, mesmo para um concreto isento de CaO. A fim de se analisar essa hipótese, foram formulados concretos refratários aluminosos com diferentes teores de microssílica e totalmente isentos de cimento, aluminas de transição (ro-Al2O3 ou de qualquer ligante hidráulico. Os resultados obtidos confirmaram a formação dessa fase metaestável. Com intuito de melhorar o empacotamento do concreto e a reatividade de sua matriz, favorecendo a formação de mulita, foram adicionalmente preparados concretos contendo sílica coloidal e microssílica. O potencial para aplicações tecnológicas dos concretos refratários obtidos são apresentados e discutidos.High alumina castables containing microsilica exhibit a great potential for technological applications due to mullite formation resulting from the reaction of Al2O3 and SiO2. However, their use has been limited up to temperatures of approximately 1300 ºC, due to reductions in the castable's strength. This has been attributed to CaO present in cement that leads to liquid formation at high temperatures, in accordance with the Al2O3-SiO2-CaO phase diagram. Recently, it has been shown that a metastable phase in the Al2O3-SiO2 system could be responsible for strength decrease even in the absence of CaO. In
The present paper investigates the transition from convective to absolute instability induced by viscous dissipation. As far as the authors are aware, this is the first time such a study is reported in the literature. Its framework is provided by the Poiseuille-Darcy-Benard convection of a Newtonian fluid. We found the same behaviour observed in the absence of viscous dissipation whenever the Gebhart number is smaller than Ge < 0.95, which is the stabilising effect of the cross flow. When 0.95 < Ge < 4.31, weak cross flows still stabilise the onset of absolute instability but stronger cross flows destabilise it. For a stronger viscous dissipation, i.e. Ge > 4.31, the cross flow always destabilises this onset. The latter two conditions create a scenario where viscous dissipation is capable of inducing a transition to absolute instability in the absence of wall heating, i.e. with a zero Rayleigh number
Propulsion Investigation for Zero and Near-Zero Emissions Aircraft
Snyder, Christopher A.; Berton, Jeffrey J.; Brown, Gerald v.; Dolce, James L.; Dravid, Marayan V.; Eichenberg, Dennis J.; Freeh, Joshua E.; Gallo, Christopher A.; Jones, Scott M.; Kundu, Krishna P.; Marek, Cecil J.; Millis, Marc G.; Murthy, Pappu L.; Roach, Timothy M.; Smith, Timothy D.; Stefko, George L.; Sullivan, Roy M.; Tornabene, Robert T.; Geiselhat, Karl A.; Kascak, Albert F.
2009-01-01
As world emissions are further scrutinized to identify areas for improvement, aviation s contribution to the problem can no longer be ignored. Previous studies for zero or near-zero emissions aircraft suggest aircraft and propulsion system sizes that would perform propulsion system and subsystems layout and propellant tankage analyses to verify the weight-scaling relationships. These efforts could be used to identify and guide subsequent work on systems and subsystems to achieve viable aircraft system emissions goals. Previous work quickly focused these efforts on propulsion systems for 70- and 100-passenger aircraft. Propulsion systems modeled included hydrogen-fueled gas turbines and fuel cells; some preliminary estimates combined these two systems. Hydrogen gas-turbine engines, with advanced combustor technology, could realize significant reductions in nitrogen emissions. Hydrogen fuel cell propulsion systems were further laid out, and more detailed analysis identified systems needed and weight goals for a viable overall system weight. Results show significant, necessary reductions in overall weight, predominantly on the fuel cell stack, and power management and distribution subsystems to achieve reasonable overall aircraft sizes and weights. Preliminary conceptual analyses for a combination of gas-turbine and fuel cell systems were also performed, and further studies were recommended. Using gas-turbine engines combined with fuel cell systems can reduce the fuel cell propulsion system weight, but at higher fuel usage than using the fuel cell only.
Variance computations for functional of absolute risk estimates
Pfeiffer, R. M.; E. Petracci
2011-01-01
We present a simple influence function based approach to compute the variances of estimates of absolute risk and functions of absolute risk. We apply this approach to criteria that assess the impact of changes in the risk factor distribution on absolute risk for an individual and at the population level. As an illustration we use an absolute risk prediction model for breast cancer that includes modifiable risk factors in addition to standard breast cancer risk factors. Influence function base...
Isotope dilution strategies for absolute quantitative proteomics
The development of mass spectrometry (MS)-based methodologies for high-throughput protein identification has generated a concomitant need for protein quantification. Numerous MS-based relative quantification methodologies have been dedicated to the extensive comparison of multiple proteomes. On the other hand, absolute quantification methodologies, which allow the determination of protein concentrations in biological samples, are generally restricted to defined sets of proteins. Depending on the selected analytical procedure, absolute quantification approaches can provide accurate and precise estimations. These analytical performances are crucial for specific applications such as the evaluation of clinical bio-marker candidates. According to bioanalytical guidelines, accurate analytical processes require internal standards and quality controls. Regarding MS-based analysis of small molecules, isotope dilution has been recognized as the reference method for internal standardization. However, protein quantification methodologies which rely on the isotope dilution principle have been implemented in the proteomic field only recently. In these approaches, the sample is spiked with defined amounts of isotope-labeled analogue(s) of specific proteolytic peptide(s) (AQUA and QconCAT strategies) or protein(s) (PSAQ strategy). In this review, we present a critical overview of these isotope dilution methodologies. (authors)
Zeros of entire functions of finite order
Supper Raphaële
2002-01-01
Full Text Available Given , , let be the set of all entire functions , with , for which there exists some constant such that . It is shown that the zero set of a function of satisfies and that the union of the zero sets of two functions of is not necessarily the zero set of a function of . Some uniqueness results of Carlson's type are also obtained.
Zero expression of arguments in Old Danish
Heltoft, Lars
2014-01-01
Old Scandinavian (represented here by Old Danish) allowed zero arguments (null-arguments) in any nominal (argument) position, that is: for NPs as subjects, objects and in PPs. In generative grammar, zero arguments are held to be variants of pronouns, but in this article, I shall claim that zero a...
Uniqueness and Zeros of -Shift Difference Polynomials
Kai Liu; Xin-Ling Liu; Ting-Bin Cao
2011-08-01
In this paper, we consider the zero distributions of -shift difference polynomials of meromorphic functions with zero order, and obtain two theorems that extend the classical Hayman results on the zeros of differential polynomials to -shift difference polynomials. We also investigate the uniqueness problem of -shift difference polynomials that share a common value.
Quantum Search for Zeros of Polynomials
Weigert, S
2003-01-01
A quantum mechanical search procedure to determine the real zeros of a polynomial is introduced. It is based on the construction of a spin observable whose eigenvalues coincide with the zeros of the polynomial. Subsequent quantum mechanical measurements of the observable output directly the numerical values of the zeros. Performing the measurements is the only computational resource involved.
A quantum search for zeros of polynomials
Weigert, Stefan [HuMP-Hull Mathematical Physics, Department of Mathematics, University of Hull, Hull HU6 7RX (United Kingdom)
2003-12-01
A quantum mechanical search procedure to determine the real zeros of a polynomial is introduced. It is based on the construction of a spin observable whose eigenvalues coincide with the zeros of the polynomial. Subsequent quantum mechanical measurements of the observable output directly the numerical values of the zeros. Performing the measurements is the only computational resource involved.
A Conceptual Approach to Absolute Value Equations and Inequalities
Ellis, Mark W.; Bryson, Janet L.
2011-01-01
The absolute value learning objective in high school mathematics requires students to solve far more complex absolute value equations and inequalities. When absolute value problems become more complex, students often do not have sufficient conceptual understanding to make any sense of what is happening mathematically. The authors suggest that the…
Using, Seeing, Feeling, and Doing Absolute Value for Deeper Understanding
Ponce, Gregorio A.
2008-01-01
Using sticky notes and number lines, a hands-on activity is shared that anchors initial student thinking about absolute value. The initial point of reference should help students successfully evaluate numeric problems involving absolute value. They should also be able to solve absolute value equations and inequalities that are typically found in…
Zeroes of random Reinhardt polynomials
Karami, Arash
2012-01-01
For a Reinhardt domain $\\Omega$ with the smooth boundary in $\\mathbb{C}^{m+1}$ and a positive smooth measure $\\mu$ on the boundary of $\\Omega$, we consider the ensemble $P_{N}$ of polynomials of degree $N$ with the Gaussian probability measure $\\gamma_{N}$ which is induced by $L^{2}(\\partial\\Omega,d\\mu)$. Our aim is to compute scaling limit distribution function and scaling limit pair correlation function between zeros when $z\\in\\partial\\Omega$. First of all we apply stationary phase method t...
A three-axis SQUID-based absolute vector magnetometer
Schönau, T.; Schmelz, M.; Stolz, R.; Anders, S.; Linzen, S.; Meyer, H.-G. [Department of Quantum Detection, Leibniz Institute of Photonic Technology, Jena 07745 (Germany); Zakosarenko, V.; Meyer, M. [Supracon AG, An der Lehmgrube 11, Jena 07751 (Germany)
2015-10-15
We report on the development of a three-axis absolute vector magnetometer suited for mobile operation in the Earth’s magnetic field. It is based on low critical temperature dc superconducting quantum interference devices (LTS dc SQUIDs) with sub-micrometer sized cross-type Josephson junctions and exhibits a white noise level of about 10 fT/Hz{sup 1/2}. The width of superconducting strip lines is restricted to less than 6 μm in order to avoid flux trapping during cool-down in magnetically unshielded environment. The long-term stability of the flux-to-voltage transfer coefficients of the SQUID electronics is investigated in detail and a method is presented to significantly increase their reproducibility. We further demonstrate the long-term operation of the setup in a magnetic field varying by about 200 μT amplitude without the need for recalibration.
A three-axis SQUID-based absolute vector magnetometer
Schönau, T.; Zakosarenko, V.; Schmelz, M.; Stolz, R.; Anders, S.; Linzen, S.; Meyer, M.; Meyer, H.-G.
2015-10-01
We report on the development of a three-axis absolute vector magnetometer suited for mobile operation in the Earth's magnetic field. It is based on low critical temperature dc superconducting quantum interference devices (LTS dc SQUIDs) with sub-micrometer sized cross-type Josephson junctions and exhibits a white noise level of about 10 fT/Hz1/2. The width of superconducting strip lines is restricted to less than 6 μm in order to avoid flux trapping during cool-down in magnetically unshielded environment. The long-term stability of the flux-to-voltage transfer coefficients of the SQUID electronics is investigated in detail and a method is presented to significantly increase their reproducibility. We further demonstrate the long-term operation of the setup in a magnetic field varying by about 200 μT amplitude without the need for recalibration.
A three-axis SQUID-based absolute vector magnetometer
We report on the development of a three-axis absolute vector magnetometer suited for mobile operation in the Earth’s magnetic field. It is based on low critical temperature dc superconducting quantum interference devices (LTS dc SQUIDs) with sub-micrometer sized cross-type Josephson junctions and exhibits a white noise level of about 10 fT/Hz1/2. The width of superconducting strip lines is restricted to less than 6 μm in order to avoid flux trapping during cool-down in magnetically unshielded environment. The long-term stability of the flux-to-voltage transfer coefficients of the SQUID electronics is investigated in detail and a method is presented to significantly increase their reproducibility. We further demonstrate the long-term operation of the setup in a magnetic field varying by about 200 μT amplitude without the need for recalibration
Gammaitoni, Luca; Chiuchiú, D.; Madami, M.; Carlotti, G.
2015-06-01
Is it possible to operate a computing device with zero energy expenditure? This question, once considered just an academic dilemma, has recently become strategic for the future of information and communication technology. In fact, in the last forty years the semiconductor industry has been driven by its ability to scale down the size of the complementary metal-oxide semiconductor-field-effect transistor, the building block of present computing devices, and to increase computing capability density up to a point where the power dissipated in heat during computation has become a serious limitation. To overcome such a limitation, since 2004 the Nanoelectronics Research Initiative has launched a grand challenge to address the fundamental limits of the physics of switches. In Europe, the European Commission has recently funded a set of projects with the aim of minimizing the energy consumption of computing. In this article we briefly review state-of-the-art zero-power computing, with special attention paid to the aspects of energy dissipation at the micro- and nanoscales.
Low-temperature sintered ZnNb{sub 2}O{sub 6}–CaTiO{sub 3} ceramics with near-zero τ{sub f}
Guo, Mei; Li, Yuxia [Key Laboratory for Robot and Intelligent Technology of Shandong Province, College of Electrical Engineering and Automation, Shandong University of Science and Technology, Qingdao 266590 (China); Dou, Gang, E-mail: dougang521@163.com [Key Laboratory for Robot and Intelligent Technology of Shandong Province, College of Electrical Engineering and Automation, Shandong University of Science and Technology, Qingdao 266590 (China); Gong, Shuping [School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074 (China)
2014-10-15
The phases, microstructure and microwave dielectric properties of ZnNb{sub 2}O{sub 6}–xCaTiO{sub 3} ceramics with BaCu(B{sub 2}O{sub 5}) glass additions prepared by solid state reaction method were charactered by using X-ray diffraction, Scanning electron microscopy and Advantest network analyzer. The τ{sub f} of ZnNb{sub 2}O{sub 6} was modified to near 0 ppm °C{sup −1} by incorporating CaTiO{sub 3} with opposite τ{sub f} values on the basis of Lichtenecker empirical rule. The microwave dielectric properties of ZnNb{sub 2}O{sub 6}–xCaTiO{sub 3} (x = 8.0 wt.%) samples with BaCu(B{sub 2}O{sub 5}) glass additives sintered in 900–1000 °C were investigated, and the results indicated that the behaviors of the ε{sub r} and Q × f were associated with the sintering temperature and the amount of BaCu(B{sub 2}O{sub 5}) glass. The sintering temperature of the ceramics was reduced to 950 °C from 1175 °C. Addition of 5.0 wt.% BaCu(B{sub 2}O{sub 5}) glass in ZnNb{sub 2}O{sub 6}–xCaTiO{sub 3} (x = 8.0 wt.%) ceramics sintered at 950 °C showed excellent dielectric properties of ε{sub r} = 20.2, Q × f = 14,100 GHz (f = 7.3 GHz) and τ{sub f} = 0 ppm °C{sup −1}. Moreover, the material had a chemical compatibility with silver, which represented a promising candidate materials for low-temperature-co-fired ceramics applications. - Highlights: • The τ{sub f} of ZnNb{sub 2}O{sub 6} was modified to near 0 ppm °C{sup −1} by incorporating CaTiO{sub 3}. • The sintering temperature of ZnNb{sub 2}O{sub 6}–xCaTiO{sub 3} ceramics with BCB was reduced to 950 °C. • The good dielectric properties of ε{sub r} = 20.2, Q × f = 14,100 GHz, τ{sub f} = 0 ppm °C{sup −1} were achieved. • It represented a promising candidate materials for LTCC applications.
QCD thermodynamics at zero and non-zero density
Schmidt, Christian
2015-01-01
We present results on the QCD equation of state, obtained with two different improved dynamical staggered fermion actions and almost physical quark masses. Lattice cut-off effects are discussed in detail as results for three different lattice spacings are available now, i.e. results have been obtained on lattices with temporal extent of $N_\\tau=4,6$ and 8. Furthermore we discuss the Taylor expansion approach to non-zero baryon chemical potential by means of an expansion of the pressure. We use the expansion coefficients to calculate various fluctuations and correlations among hadronic charges. We find that the correlations reproduce the qualitative behavior of the resonance gas model below $T_c$ and start to agree with the free gas predictions for $T\\gsim 1.5T_c$.
Absolute geostrophic currents in global tropical oceans
Yang, Lina; Yuan, Dongliang
2016-03-01
A set of absolute geostrophic current (AGC) data for the period January 2004 to December 2012 are calculated using the P-vector method based on monthly gridded Argo profiles in the world tropical oceans. The AGCs agree well with altimeter geostrophic currents, Ocean Surface Current Analysis-Real time currents, and moored current-meter measurements at 10-m depth, based on which the classical Sverdrup circulation theory is evaluated. Calculations have shown that errors of wind stress calculation, AGC transport, and depth ranges of vertical integration cannot explain non-Sverdrup transport, which is mainly in the subtropical western ocean basins and equatorial currents near the Equator in each ocean basin (except the North Indian Ocean, where the circulation is dominated by monsoons). The identified non-Sverdrup transport is thereby robust and attributed to the joint effect of baroclinicity and relief of the bottom (JEBAR) and mesoscale eddy nonlinearity.
How is an absolute democracy possible?
Joanna Bednarek
2011-01-01
Full Text Available In the last part of the Empire trilogy, Commonwealth, Negri and Hardt ask about the possibility of the self-governance of the multitude. When answering, they argue that absolute democracy, understood as the political articulation of the multitude that does not entail its unification (construction of the people is possible. As Negri states, this way of thinking about political articulation is rooted in the tradition of democratic materialism and constitutes the alternative to the dominant current of modern political philosophy that identifies political power with sovereignty. The multitude organizes itself politically by means of the constitutive power, identical with the ontological creativity or productivity of the multitude. To state the problem of political organization means to state the problem of class composition: political democracy is at the same time economic democracy.
Absolute measurements of fast neutrons using yttrium
Yttrium is presented as an absolute neutron detector for pulsed neutron sources. It has high sensitivity for detecting fast neutrons. Yttrium has the property of generating a monoenergetic secondary radiation in the form of a 909 keV gamma-ray caused by inelastic neutron interaction. It was calibrated numerically using MCNPX and does not need periodic recalibration. The total yttrium efficiency for detecting 2.45 MeV neutrons was determined to be fn∼4.1x10-4 with an uncertainty of about 0.27%. The yttrium detector was employed in the NX2 plasma focus experiments and showed the neutron yield of the order of 108 neutrons per discharge.
Site specific estimation of cumulative absolute velocity
The presented paper shows some recent results for correlation between cumulative absolute velocity (CAV) and the macro-seismic intensity, magnitude and distance (attenuation functions). The analyses are based mainly on European strong motion data. The processing is performed separately for intermediate depth earthquakes (Vrancea seismic region), regional shallow earthquakes and moderate local earthquakes. The results show that CAV correlates with the intensity, magnitude and distance in a similar way as the peak values of strong motion. There is significant difference of expected CAV from local earthquakes and from strong regional seismic excitations. The local earthquakes, although producing high accelerations, are developing small CAV and respectively small damage potential. The analyses show that intermediate depth earthquakes may produce significant CAV on very large distances, i.e. they may affect large territories and produce damage. The attenuation functions developed are used for prediction of CAV on the site of Kozloduy NPP in Bulgaria. (author)
Absolute nonlocality via distributed computing without communication
Czekaj, Ł.; Pawłowski, M.; Vértesi, T.; Grudka, A.; Horodecki, M.; Horodecki, R.
2015-09-01
Understanding the role that quantum entanglement plays as a resource in various information processing tasks is one of the crucial goals of quantum information theory. Here we propose an alternative perspective for studying quantum entanglement: distributed computation of functions without communication between nodes. To formalize this approach, we propose identity games. Surprisingly, despite no signaling, we obtain that nonlocal quantum strategies beat classical ones in terms of winning probability for identity games originating from certain bipartite and multipartite functions. Moreover we show that, for a majority of functions, access to general nonsignaling resources boosts success probability two times in comparison to classical ones for a number of large enough outputs. Because there are no constraints on the inputs and no processing of the outputs in the identity games, they detect very strong types of correlations: absolute nonlocality.
Sub-zero Treatment of P/M Vanadis 6 Ledeburitic Tool Steel
Peter Jurči
2013-05-01
Full Text Available The Cr-V ledeburitic steel Vanadis 6 was vacuum austenitized, nitrogen gas quenched and double tempered at various combinations of regimes. For selected samples, a sub-zero period was inserted between quenching and tempering. The obtained results infer that: I as-quenched microstructure consisted of martensite, retained austenite and undissolved carbides, II sub-zero processing reduced the amount of the retained austenite and increased the tetragonality of the martensitic lattice, III as-quenched hardness of the steel was higher by 2 – 3 HRC due to sub-zero processing, IV as-tempered hardness increased with increasing austenitizing temperature but it decreased slightly with the sub-zero period, V no negative impact of sub-zero processing on toughness was recorded, VI wear resistance increased with sub-zero period when 100Cr6 steel has been used as a counterpart.
Monochromator-Based Absolute Calibration of a Standard Radiation Thermometer
Mantilla, J. M.; Hernanz, M. L.; Campos, J.; Martín, M. J.; Pons, A.; del Campo, D.
2014-04-01
Centro Español de Metrología (CEM) is disseminating the International Temperature Scale (ITS-90), at high temperatures, by using the fixed points of Ag and Cu and a standard radiation thermometer. However, the future mise-en-pratique for the definition of the kelvin ( MeP-K) will include the dissemination of the kelvin by primary methods and by indirect approximations capable of exceptionally low uncertainties or increased reliability. Primary radiometry is, at present, able to achieve uncertainties competitive with the ITS-90 above the silver point with one of the possible techniques the calibration for radiance responsivity of an imaging radiometer (radiance method). In order to carry out this calibration, IO-CSIC (Spanish Designated Institute for luminous intensity and luminous flux) has collaborated with CEM, allowing traceability to its cryogenic radiometer. A monochromator integrating sphere-based spectral comparator facility has been used to calibrate one of the CEM standard radiation thermometers. The absolute calibrated standard radiation thermometer has been used to determine the temperatures of the fixed points of Cu, Co-C, Pt-C, and Re-C. The results obtained are 1357.80 K, 1597.10 K, 2011.66 K, and 2747.64 K, respectively, with uncertainties ranging from 0.4 K to 1.1 K.
MEASUREMENT OF 2-DIMENSIONAL DISPLACEMENT USING 2-D ZERO-REFERENCE MARKS
Wang Yingnan; Zhou Chenggang; Huang Wenhao
2005-01-01
Several 2-D displacement sensing methods are reviewed. As to the cross diffraction grating,there is no absolute zero-reference. In regards to the optical fiber method, the output signal is affected greatly by the quality of the reflecting surface and it is hard to get high resolution. Considering the concentric-circle gratings, the displacement can only be gained with complicated calculating of the experiment data. Compared with the advantages and limitations of the methods above, a novel 2-D zero-reference mark is especially proposed and demonstrated. This kind of mark has an absolute zero-reference when used in pair, and the experimental result is simple to dispose. By superimposing a pair of specially coded 2-D marks, the correct alignment position of the two marks can be detected by the maximum output of the sharp intensity peak. And each slope of the peak is of good linearity which can be used to achieve high resolution in positioning and alignment in two dimensions. Design and fabrication of such 2-D zero-reference marks are introduced in detail. The experiment results are agreed with the theoretical ones.
Terminal nerve: cranial nerve zero
Jorge Eduardo Duque Parra
2006-12-01
Full Text Available It has been stated, in different types of texts, that there are only twelve pairs of cranial nerves. Such texts exclude the existence of another cranial pair, the terminal nerve or even cranial zero. This paper considers the mentioned nerve like a cranial pair, specifying both its connections and its functional role in the migration of liberating neurons of the gonadotropic hormone (Gn RH. In this paper is also stated the hypothesis of the phylogenetic existence of a cerebral sector and a common nerve that integrates the terminal nerve with the olfactory nerves and the vomeronasals nerves which seem to carry out the odors detection function as well as in the food search, pheromone detection and nasal vascular regulation.
Tribology Experiment in Zero Gravity
Pan, C. H. T.; Gause, R. L.; Whitaker, A. F.; Finckenor, M. M.
2015-01-01
A tribology experiment in zero gravity was performed during the orbital flight of Spacelab 1 to study the motion of liquid lubricants over solid surfaces. The absence of a significant gravitational force facilitates observation of such motions as controlled by interfacial and capillary forces. Two experimental configurations were used. One deals with the liquid on one solid surface, and the other with the liquid between a pair of closed spaced surfaces. Time sequence photographs of fluid motion on a solid surface yielded spreading rate data of several fluid-surface combinations. In general, a slow spreading process as governed by the tertiary junction can be distinguished from a more rapid process which is driven by surface tension controlled internal fluid pressure. Photographs were also taken through the transparent bushings of several experimental journal bearings. Morphology of incomplete fluid films and its fluctuation with time suggest the presence or absence of unsteady phenomena of the bearing-rotor system in various arrangements.
Understanding Net Zero Energy Buildings
Salom, Jaume; Widén, Joakim; Candanedo, José;
2011-01-01
Although several alternative definitions exist, a Net-Zero Energy Building (Net ZEB) can be succinctly described as a grid-connected building that generates as much energy as it uses over a year. The “net-zero” balance is attained by applying energy conservation and efficiency measures and by...... incorporating renewable energy systems. While based on annual balances, a complete description of a Net ZEB requires examining the system at smaller time-scales. This assessment should address: (a) the relationship between power generation and building loads and (b) the resulting interaction with the power grid....... This paper presents and categorizes quantitative indicators suitable to describe both aspects of the building’s performance. These indicators, named LMGI - Load Matching and Grid Interaction indicators, are easily quantifiable and could complement the output variables of existing building simulation...
Lee-Yang Zeros of Periodic and Quasiperiodic Anisotropic XY Chains in a Transverse Field
Tong, Peiqing; Liu, Xiaoxian
2006-07-01
The partition function zeros of the anisotropic XY chain in a complex transverse field are studied analytically and numerically. It is found that the partition function zeros of the periodic and quasiperiodic quantum Ising chain lie on the circle at zero temperature and the radius equal to the values of the critical field. For the periodic and quasiperiodic anisotropic XY chains, the closed curves are split to two or three closed curves as the anisotropic parameter γ decreases at a given ratio of two kinds of exchange interactions. For the isotropic XX case, the partition function zeros lie on the straight segments which are parallel to the real axis and the segments move towards the real axis as the temperature goes to zero.
Fractionally Charged Zero-Energy Single-Particle Excitations in a Driven Fermi Sea
Moskalets, Michael
2016-07-01
A voltage pulse of a Lorentzian shape carrying half of the flux quantum excites out of a zero-temperature Fermi sea an electron in a mixed state, which looks like a quasiparticle with an effectively fractional charge e /2 . A prominent feature of such an excitation is a narrow peak in the energy distribution function lying exactly at the Fermi energy μ . Another spectacular feature is that the distribution function has symmetric tails around μ , which results in a zero-energy excitation. This sounds improbable since at zero temperature all available states below μ are fully occupied. The resolution lies in the fact that such a voltage pulse also excites electron-hole pairs, which free some space below μ and thus allow a zero-energy quasiparticle to exist. I discuss also how to address separately electron-hole pairs and a fractionally charged zero-energy excitation in an experiment.
Measurement of statistical evidence on an absolute scale following thermodynamic principles
Vieland, V J; Hodge, S E; Seok, S -C
2013-01-01
Statistical analysis is used throughout biomedical research and elsewhere to assess strength of evidence. We have previously argued that typical outcome statistics (including p-values and maximum likelihood ratios) have poor measure-theoretic properties: they can erroneously indicate decreasing evidence as data supporting an hypothesis accumulate; and they are not amenable to calibration, necessary for meaningful comparison of evidence across different study designs, data types, and levels of analysis. We have also previously proposed that thermodynamic theory, which allowed for the first time derivation of an absolute measurement scale for temperature (T), could be used to derive an absolute scale for evidence (E). Here we present a novel thermodynamically-based framework in which measurement of E on an absolute scale, for which "one degree" always means the same thing, becomes possible for the first time. The new framework invites us to think about statistical analyses in terms of the flow of (evidential) i...
Gaia Parallax Zero Point From RR Lyrae Stars
Gould, Andrew
2016-01-01
Like Hipparcos, Gaia is designed to give absolute parallaxes, independent of any astrophysical reference system. And indeed, Gaia's internal zero-point error for parallaxes is likely to be smaller than any individual parallax error. Nevertheless, due in part to mechanical issues of unknown origin, there are many astrophysical questions for which the parallax zero-point error $\\sigma(\\pi_0)$ will be the fundamentally limiting constraint. These include the distance to the Large Magellanic Cloud and the Galactic Center. We show that by using the photometric parallax estimates for RR Lyrae stars (RRL) within 8kpc, via the ultra-precise infrared period-luminosity relation, one can independently determine a hyper-precise value for $\\pi_{0}$. Despite their paucity relative to bright quasars, we show that RRL are competitive due to their order-of-magnitude improved parallax precision for each individual object relative to bright quasars. We show that this method is mathematically robust and well-approximated by analy...
Dong-Nhat, Nguyen; Elsherif, Mohamed A.; Malekmohammadi, Amin
2016-07-01
A novel multilevel modulation format based on partial-response signaling called Absolute Added Correlative Coding (AACC) is proposed and numerically demonstrated for high-speed fiber-optic communication systems. A bit error rate (BER) estimation model for the proposed multilevel format has also been developed. The performance of AACC is examined and compared against other prevailing On-Off-Keying and multilevel modulation formats e.g. non-return-to-zero (NRZ), 50% return-to-zero (RZ), 67% carrier-suppressed return-to-zero (CS-RZ), duobinary and four-level pulse-amplitude modulation (4-PAM) in terms of receiver sensitivity, spectral efficiency and dispersion tolerance. Calculated receiver sensitivity at a BER of 10-9 and chromatic dispersion tolerance of the proposed system are ∼-28.3 dBm and ∼336 ps/nm, respectively. The performance of AACC is delineated to be improved by 7.8 dB in terms of receiver sensitivity compared to 4-PAM in back-to-back scenario. The comparison results also show a clear advantage of AACC in achieving longer fiber transmission distance due to the higher dispersion tolerance in optical access networks.
Understanding something about nothing: Radiation zeros
Radiation symmetry is briefly reviewed, along with its historical, experimental, computational, and theoretical relevance. A sketch of the proof of a theorem for radiation zeros is used to highlight the connection between gauge-boson couplings and Poincare transformations. It is emphasized that while mostly bad things happen to good zeros, the weak-boson self-couplings continue to be intimately tied to the best examples of exact or approximate zeros. copyright 1995 American Institute of Physics
Origin of zero degeneracy in networks spectra
Yadav, Alok
2014-01-01
Spectra of real world networks exhibit properties which are different from the random networks. One such property is the existence of a very high degeneracy at zero eigenvalues. In this work, we provide all the possible reasons behind occurrence of the zero degeneracy in the networks spectra. Comparison of zero degeneracy in protein-protein interaction networks of six different species and in their corresponding model networks sheds light in understanding the evolution of complex biological systems.
Revisiting the texture zero neutrino mass matrices
Singh, Madan; Gupta, Manmohan
2016-01-01
In the light of refined and large reactor mixing angle $\\theta_{13}$, we have revisited the texture three and two zero neutrino mass matrices in the flavor basis. For Majorana neutrinos, it has been explicitly shown that all the texture three zero mass matrices remain ruled out. Further, for both normal and inverted mass ordering, for the texture two zero neutrino mass matrices one finds interesting constraints on the Dirac-like CP violating phase $\\delta$ and Majorana phases $\\rho$ and $\\sigma$.
Computing the zeros of quaternion polynomials
Serôdio, R.; Pereira, E.; Vitória, J.
2001-01-01
A method is developed to compute the zeros of a quaternion polynomial with all terms of the form qkXk. This method is based essentially in Niven's algorithm [1], which consists of dividing the polynomial by a characteristic polynomial associated to a zero. The information about the trace and the norm of the zero is obtained by an original idea which requires the companion matrix associated to the polynomial. The companion matrix is represented by a matrix with complex entries. Three numerical...
Absolute paleointensity from Hawaiian lavas younger than 35 ka
Valet, J.-P.; Tric, E.; Herrero-Bervera, E.; Meynadier, L.; Lockwood, J.P.
1998-01-01
Paleointensity studies have been conducted in air and in argon atmosphere on nine lava flows with radiocarbon ages distributed between 3.3 and 28.2 ka from the Mauna Loa volcano in the big island of Hawaii. Determinations of paleointensity obtained at eight sites depict the same overall pattern as the previous results for the same period in Hawaii, although the overall average field intensity appears to be lower. Since the present results were determined at higher temperatures than in the previous studies, this discrepancy raises questions regarding the selection of low versus high-temperature segments that are usually made for absolute paleointensity. The virtual dipole moments are similar to those displayed by the worldwide data set obtained from dated lava flows. When averaged within finite time intervals, the worldwide values match nicely the variations of the Sint-200 synthetic record of relative paleointensity and confirm the overall decrease of the dipole field intensity during most of this period. The convergence between the existing records at Hawaii and the rest of the world does not favour the presence of persistent strong non-dipole components beneath Hawaii for this period.
Distribution of zeros in Ising and gauge models
Itzykson, C.; Zuber, J.B. (CEA Centre d' Etudes Nucleaires de Saclay, 91 - Gif-sur-Yvette (France). Service de Physique Theorique); Pearson, R.B. (CEA Centre d' Etudes Nucleaires de Saclay, 91 - Gif-sur-Yvette (France). Service de Physique Theorique; Institute of Theoretical Physics, Santa-Barbara, CA (USA))
1983-09-05
We discuss some features of Ising and gauge systems in the complex temperature plane. The distribution of zeros of the partition function enables one to study critical properties in a way complementary to the methods using real values. Data on small lattices confirm this picture. Nearby complex singularities seem to exhibit a universal behaviour which might have some relation with a model of random surfaces.
Distribution of zeros in ising and gauge models
We discuss some features of Ising and gauge systems in the complex temperature plane. The distribution of zeros of the partition function enables one to study critical properties in a way complementary to the methods using real values. Data on small lattices confirm this picture. Nearby complex singularities seem to exhibit a universal behaviour which might have some relation with a model of random surfaces. (orig.)
Zero-distortion lossless data embedding
Nagaraj, Nithin; Mullick, Rakesh
2004-05-01
All known methods of lossless or reversible data embedding that exist today suffer from two major disadvantages: 1) The embedded image suffers from distortion, however small it may be by the very process of embedding and 2) The requirement of a special parser (decoder), which is necessary for the client to remove the embedded data in order to obtain the original image (lossless). We propose a novel lossless data embedding method where both these disadvantages are circumvented. Zero-distortion lossless data embedding (ZeroD-LDE) claims 'zero-distortion' of the embedded image for all viewing purposes and further maintaining that clients without any specialized parser can still recover the original image losslessly but would not have direct access to the embedded data. The fact that not all gray levels are used by most images is exploited to embed data by selective lossless compression of run-lengths of zeros (or any compressible pattern). Contiguous runs of zeros are changed such that the leading zero is made equal to the maximum original intensity plus the run-length and the succeeding zeros are converted to the embedded data (plus maximum original intensity) thus achieving extremely high embedding capacities. This way, the histograms of the host-data and the embedded data do not overlap and hence we can obtain zero-distortion by using the window-level setting of standard DICOM viewers. The embedded image is thus not only DICOM compatible but also zero-distortion visually and requires no clinical validation.
Materials analogue of zero-stiffness structures
Kumar, Arun; Subramaniam, Anandh
2011-04-01
Anglepoise lamps and certain tensegrities are examples of zero-stiffness structures. These structures are in a state of neutral equilibrium with respect to changes in configuration of the system. Using Eshelby's example of an edge dislocation in a thin plate that can bend, we report the discovery of a non-trivial new class of material structures as an analogue to zero-stiffness structures. For extended positions of the edge dislocation in these structures, the dislocation experiences a zero image force. Salient features of these material structures along with the key differences from conventional zero-stiffness structures are pointed out.
NASA Net Zero Energy Buildings Roadmap
Pless, S.; Scheib, J.; Torcellini, P.; Hendron, B.; Slovensky, M.
2014-10-01
In preparation for the time-phased net zero energy requirement for new federal buildings starting in 2020, set forth in Executive Order 13514, NASA requested that the National Renewable Energy Laboratory (NREL) to develop a roadmap for NASA's compliance. NASA detailed a Statement of Work that requested information on strategic, organizational, and tactical aspects of net zero energy buildings. In response, this document presents a high-level approach to net zero energy planning, design, construction, and operations, based on NREL's first-hand experience procuring net zero energy construction, and based on NREL and other industry research on net zero energy feasibility. The strategic approach to net zero energy starts with an interpretation of the executive order language relating to net zero energy. Specifically, this roadmap defines a net zero energy acquisition process as one that sets an aggressive energy use intensity goal for the building in project planning, meets the reduced demand goal through energy efficiency strategies and technologies, then adds renewable energy in a prioritized manner, using building-associated, emission- free sources first, to offset the annual energy use required at the building; the net zero energy process extends through the life of the building, requiring a balance of energy use and production in each calendar year.
Absolute nuclear material assay using count distribution (LAMBDA) space
Prasad, Manoj K.; Snyderman, Neal J.; Rowland, Mark S.
2012-06-05
A method of absolute nuclear material assay of an unknown source comprising counting neutrons from the unknown source and providing an absolute nuclear material assay utilizing a model to optimally compare to the measured count distributions. In one embodiment, the step of providing an absolute nuclear material assay comprises utilizing a random sampling of analytically computed fission chain distributions to generate a continuous time-evolving sequence of event-counts by spreading the fission chain distribution in time.
Absolute nuclear material assay using count distribution (LAMBDA) space
Prasad, Mano K.; Snyderman, Neal J.; Rowland, Mark S.
2015-12-01
A method of absolute nuclear material assay of an unknown source comprising counting neutrons from the unknown source and providing an absolute nuclear material assay utilizing a model to optimally compare to the measured count distributions. In one embodiment, the step of providing an absolute nuclear material assay comprises utilizing a random sampling of analytically computed fission chain distributions to generate a continuous time-evolving sequence of event-counts by spreading the fission chain distribution in time.
Absolute value preconditioning for symmetric indefinite linear systems
Vecharynski, Eugene; Knyazev, Andrew V.
2011-01-01
We introduce a novel strategy for constructing symmetric positive definite (SPD) preconditioners for linear systems with symmetric indefinite matrices. The strategy, called absolute value preconditioning, is motivated by the observation that the preconditioned minimal residual method with the inverse of the absolute value of the matrix as a preconditioner converges to the exact solution of the system in at most two steps. Neither the exact absolute value of the matrix nor its exact inverse ar...
On The Absolute Measurement of Some Nuclear Material Samples
A state with nuclear activities should establish a system capable of controlling all nuclear material (NM) under its authority. Continuous improvement of a measuring system is an essential mandate such controlling system. Measurements of NM using absolute methods could eliminate the dependency on NM standards, which are necessary for other relative or semi-absolute methods. In this work, an absolute method was used to estimate uranium contents in some NM samples. NM was measured by an absolute method through combination of experimental measurements and Monte Carlo calculations
2014-01-01
In this week’s Bulletin (see here), you’ll read that fraudulent activities were uncovered last year by our Internal Audit Service. CERN has a very clearly defined policy in such cases: we base our efforts on prevention through education, we have a policy of protecting those reporting fraud from recrimination, and we have a zero-tolerance policy should fraud be uncovered. I don’t intend to enter into the details of what occurred, but I’d like to remind you that fraud is a very grave business, and something we take extremely seriously. What do we mean by fraud at CERN? Operational Circular No. 10 on “Principles and procedures governing the investigation of fraud” defines fraud in terms of any deception intended to benefit the perpetrator, or a third party, that results in a loss to the Organization. This loss can be to funds, property or reputation. Thankfully, fraud at CERN is a rare occurrence, but we should never be complacent. ...
Absolute Radiometric Calibration of KOMPSAT-3A
Ahn, H. Y.; Shin, D. Y.; Kim, J. S.; Seo, D. C.; Choi, C. U.
2016-06-01
This paper presents a vicarious radiometric calibration of the Korea Multi-Purpose Satellite-3A (KOMPSAT-3A) performed by the Korea Aerospace Research Institute (KARI) and the Pukyong National University Remote Sensing Group (PKNU RSG) in 2015.The primary stages of this study are summarized as follows: (1) A field campaign to determine radiometric calibrated target fields was undertaken in Mongolia and South Korea. Surface reflectance data obtained in the campaign were input to a radiative transfer code that predicted at-sensor radiance. Through this process, equations and parameters were derived for the KOMPSAT-3A sensor to enable the conversion of calibrated DN to physical units, such as at-sensor radiance or TOA reflectance. (2) To validate the absolute calibration coefficients for the KOMPSAT-3A sensor, we performed a radiometric validation with a comparison of KOMPSAT-3A and Landsat-8 TOA reflectance using one of the six PICS (Libya 4). Correlations between top-of-atmosphere (TOA) radiances and the spectral band responses of the KOMPSAT-3A sensors at the Zuunmod, Mongolia and Goheung, South Korea sites were significant for multispectral bands. The average difference in TOA reflectance between KOMPSAT-3A and Landsat-8 image over the Libya 4, Libya site in the red-green-blue (RGB) region was under 3%, whereas in the NIR band, the TOA reflectance of KOMPSAT-3A was lower than the that of Landsat-8 due to the difference in the band passes of two sensors. The KOMPSAT-3Aensor includes a band pass near 940 nm that can be strongly absorbed by water vapor and therefore displayed low reflectance. Toovercome this, we need to undertake a detailed analysis using rescale methods, such as the spectral bandwidth adjustment factor.
Zero Tolerance, Zero Sense%过分苛责,有悖情理
陈文炳
2012-01-01
Two good kids. Two broken rules. Two parables2 of justice, except one offers a bracing3 lesson in honor and the other just leaves you heartsick at the latest evidence that zero tolerance often makes zero sense.
Absolute Thermal SST Measurements over the Deepwater Horizon Oil Spill
Good, W. S.; Warden, R.; Kaptchen, P. F.; Finch, T.; Emery, W. J.
2010-12-01
Climate monitoring and natural disaster rapid assessment require baseline measurements that can be tracked over time to distinguish anthropogenic versus natural changes to the Earth system. Disasters like the Deepwater Horizon Oil Spill require constant monitoring to assess the potential environmental and economic impacts. Absolute calibration and validation of Earth-observing sensors is needed to allow for comparison of temporally separated data sets and provide accurate information to policy makers. The Ball Experimental Sea Surface Temperature (BESST) radiometer was designed and built by Ball Aerospace to provide a well calibrated measure of sea surface temperature (SST) from an unmanned aerial system (UAS). Currently, emissive skin SST observed by satellite infrared radiometers is validated by shipborne instruments that are expensive to deploy and can only take a few data samples along the ship track to overlap within a single satellite pixel. Implementation on a UAS will allow BESST to map the full footprint of a satellite pixel and perform averaging to remove any local variability due to the difference in footprint size of the instruments. It also enables the capability to study this sub-pixel variability to determine if smaller scale effects need to be accounted for in models to improve forecasting of ocean events. In addition to satellite sensor validation, BESST can distinguish meter scale variations in SST which could be used to remotely monitor and assess thermal pollution in rivers and coastal areas as well as study diurnal and seasonal changes to bodies of water that impact the ocean ecosystem. BESST was recently deployed on a conventional Twin Otter airplane for measurements over the Gulf of Mexico to access the thermal properties of the ocean surface being affected by the oil spill. Results of these measurements will be presented along with ancillary sensor data used to eliminate false signals including UV and Synthetic Aperture Radar (SAR
CPAFFC Delegation Attends Global Zero Summit
2010-01-01
<正>CPAFFC President Chen Haosu led a delegation to attend the Global Zero Summit in Paris,France from February 2 to 4.The event aimed to promote a new phase in the"Global Zero"movement:working to reach a binding and verifiable agreement on elimination of all nuclear weapons worldwide.More than 200
Methods to Minimize Zero-Missing Phenomenon
da Silva, Filipe Miguel Faria; Bak, Claus Leth; Gudmundsdottir, Unnur Stella; Wiechowski, W.; Knardrupgård, M. R.
2010-01-01
With the increasing use of high-voltage AC cables at transmission levels, phenomena such as current zero-missing start to appear more often in transmission systems. Zero-missing phenomenon can occur when energizing cable lines with shunt reactors. This may considerably delay the opening of the ci...
Zero-Base Budgeting:; An Institutional Experience.
Alexander, Donald L.; Anderson, Roger C.
Zero-base budgeting as it is used at Allegany College is described. Zero-based budgeting is defined as a budgeting and planning approach that requires the examination of every item in a budget request as if the request were being proposed for the first time. Budgets (decision packages) are first made up for decision units (i.e., a course for the…
Let D be a t-(v, k, λ) design and let Ni(D), for 1 ≤ i ≤ t, be the higher incidence matrix of D, a (0, 1)-matrix of size (v/i) x b, where b is the number of blocks of D. A zero-sum flow of D is a nowhere-zero real vector in the null space of N1(D). A zero-sum k-flow of D is a zero-sum flow with values in {±,...,±(k-1)}. In this paper we show that every non-symmetric design admits an integral zero-sum flow, and consequently we conjecture that every non-symmetric design admits a zero-sum 5-flow. Similarly, the definition of zero-sum flow can be extended to Ni(D), 1 ≤ i ≤ t. Let D = t-(v,k, (v-t/k-t)) be the complete design. We conjecture that Nt(D) admits a zero-sum 3-flow and prove this conjecture for t = 2. (author)
Zero Tolerance Policies. ERIC Digest Number 146.
McAndrews, Tobin
State legislatures and school boards are adopting a growing number of zero-tolerance polices toward weapons, guns, and violence. Zero-tolerance polices are rules intended to address specific school-safety issues. They have arisen in part as a response to the threat of the withdrawal of federal funds under the 1994 Gun-Free Schools Act, and…
On extreme Kerr-throats and zero temperature black holes
Recently it was shown that the area A and the angular momentum J of any apparent horizon on a maximal, axisymmetric and asymptotically flat Cauchy hyper-surface of a vacuum space-time satisfy necessarily the universal inequality A ⩾ 8π|J|. We show here that the equality A = 8π|J| is never attained. We study too the global structure of data sets having surfaces with A = 8π|J|. This lead us to prove the rigidity of the extreme Kerr-throats and to investigate the important phenomenon of formation of extreme Kerr-throats along sequences of data sets. (paper)
On the ground state of antiferromagnets at zero temperature
Mayer, I.; Angelov, S. A.
1984-02-01
The wave function describing a perfect antiferromagnetic ordering of spins at 0 K (the singlet projection of the Néel function) was proved to be not an eigenfunction of the exchange Hamiltonian: the long-range order is reduced as to permit a higher correlation between the nearest-neighbour spins.
Carbon Nanotube Bolometer for Absolute FTIR Spectroscopy
Woods, Solomon; Neira, Jorge; Tomlin, Nathan; Lehman, John
We have developed and calibrated planar electrical-substitution bolometers which employ absorbers made from vertically-aligned carbon nanotube arrays. The nearly complete absorption of light by the carbon nanotubes from the visible range to the far-infrared can be exploited to enable a device with read-out in native units equivalent to optical power. Operated at cryogenic temperatures near 4 K, these infrared detectors are designed to have time constant near 10 ms and a noise floor of about 10 pW. Built upon a micro-machined silicon platform, each device has an integrated heater and thermometer, either a carbon nanotube thermistor or superconducting transition edge sensor, for temperature control. We are optimizing temperature-controlled measurement techniques to enable high resolution spectral calibrations using these devices with a Fourier-transform spectrometer.
Reconstruction of core inlet temperature distribution by cold leg temperature measurements
The reduced core of Loviisa NPP contains 33 thermocouple measurements measuring the core inlet temperature. Currently, these thermocouple measurements are not used in determining the inlet temperature distribution. The average of cold leg temperature measurements is used as inlet temperature for each fuel assembly. In practice, the inlet temperature distribution is not constant. Thus, using a constant inlet temperature distribution induces asymmetries in the measured core power distribution. Using a more realistic inlet temperature distribution would help us to reduce virtual asymmetries of the core power distribution and increase the thermal margins of the core. The thermocouples at the inlet cannot be used directly to measure the inlet temperature accurately because the calibration of the thermocouples that is done at hot zero power conditions is no longer valid at full power, when there is temperature change across the core region. This is due to the effect of neutron irradiation on the Seebeck coefficient of the thermocouple wires. Therefore, we investigate in this paper a method to determine the inlet temperature distribution based on the cold leg temperature measurements. With this method we rely on the assumption that although the core inlet thermocouple measurements do not measure the absolute temperature accurately they do measure temperature changes with sufficient accuracy particularly in big disturbances. During the yearly testing of steam generator safety valves we observe a large temperature increase up to 12 degrees in the cold leg temperature. The change in the temperature of one of the cold legs causes a local disturbance in the core inlet temperature distribution. Using the temperature changes observed in the inlet thermocouple measurements we are able to fit six core inlet temperature response functions, one for each cold leg. The value of a function at an assembly inlet is determined only by the corresponding cold leg temperature disturbance
Landau-Siegel zeros and zeros of the derivative of the Riemann zeta function
Farmer, David W
2010-01-01
We show that if the derivative of the Riemann zeta function has sufficiently many zeros close to the critical line, then the zeta function has many closely spaced zeros. This gives a condition on the zeros of the derivative of the zeta function which implies a lower bound of the class numbers of imaginary quadratic fields.
Zero CO2 emission SOLRGT power system
A novel hybrid power system with zero CO2 emission (ZE-SOLRGT) has been proposed and analyzed in this paper. It consists of a high temperature Brayton-like topping cycle and a high pressure-ratio Rankine-like bottoming cycle, integrated with methane-steam reforming, solar heat-assisted steam generation and CO2 capture and compression. Water is selected to be the working fluid. Solar heat input enhances the steam generation and power output, and reduces fossil fuel consumption. Besides CO2 capture with oxy-fuel combustion and cascade recuperation of turbine exhaust heat, the system is featured with indirect upgrading of low-mid temperature solar heat and cascade release of fossil fuel chemical exergy, which is described by the energy level concept. With nearly 100% CO2 capture, the system attains a net energy efficiency of 50.7% (including consideration of the energy needed for oxygen separation). The cost of generated electricity and the payback period of ZE-SOLRGT are found to be $0.056/kWh and 11.3 years, respectively. The system integration accomplishes the complementary utilization of fossil fuel and solar heat, and attains their high efficiency conversion into electricity. -- Highlights: ► A novel hybrid power system ZE-SOLRGT has been proposed and analyzed. ► The system integrates power generation with methane-steam reforming, solar heat driven steam generation and CO2 capture. ► The system is featured with indirect upgrading of solar heat and cascade release of fossil fuel chemical exergy. ► The system thermodynamic and economic performances have been investigated.
Absolute Humidity and the Seasonality of Influenza (Invited)
Shaman, J. L.; Pitzer, V.; Viboud, C.; Grenfell, B.; Goldstein, E.; Lipsitch, M.
2010-12-01
Much of the observed wintertime increase of mortality in temperate regions is attributed to seasonal influenza. A recent re-analysis of laboratory experiments indicates that absolute humidity strongly modulates the airborne survival and transmission of the influenza virus. Here we show that the onset of increased wintertime influenza-related mortality in the United States is associated with anomalously low absolute humidity levels during the prior weeks. We then use an epidemiological model, in which observed absolute humidity conditions temper influenza transmission rates, to successfully simulate the seasonal cycle of observed influenza-related mortality. The model results indicate that direct modulation of influenza transmissibility by absolute humidity alone is sufficient to produce this observed seasonality. These findings provide epidemiological support for the hypothesis that absolute humidity drives seasonal variations of influenza transmission in temperate regions. In addition, we show that variations of the basic and effective reproductive numbers for influenza, caused by seasonal changes in absolute humidity, are consistent with the general timing of pandemic influenza outbreaks observed for 2009 A/H1N1 in temperate regions. Indeed, absolute humidity conditions correctly identify the region of the United States vulnerable to a third, wintertime wave of pandemic influenza. These findings suggest that the timing of pandemic influenza outbreaks is controlled by a combination of absolute humidity conditions, levels of susceptibility and changes in population mixing and contact rates.
Absolute electronegativity and hardness correlated with molecular orbital theory
Pearson, Ralph G.
1986-01-01
The concepts of absolute electronegativity, χ, and absolute hardness, η, are incorporated into molecular orbital theory. A graphic and concise definition of hardness is given as twice the energy gap between the highest occupied molecular orbital and the lowest unoccupied molecular orbital. Useful correlations can now be made between chemical behavior, visible-UV absorption spectra, optical polarizability, ionization potentials, and electron affinities.
Supplementary and Enrichment Series: Absolute Value. Teachers' Commentary. SP-25.
Bridgess, M. Philbrick, Ed.
This is one in a series of manuals for teachers using SMSG high school supplementary materials. The pamphlet includes commentaries on the sections of the student's booklet, answers to the exercises, and sample test questions. Topics covered include addition and multiplication in terms of absolute value, graphs of absolute value in the Cartesian…
Supplementary and Enrichment Series: Absolute Value. SP-24.
Bridgess, M. Philbrick, Ed.
This is one in a series of SMSG supplementary and enrichment pamphlets for high school students. This series is designed to make material for the study of topics of special interest to students readily accessible in classroom quantity. Topics covered include absolute value, addition and multiplication in terms of absolute value, graphs of absolute…
Absolute neutronic performance of SNS from gold foil application
The determination of absolute neutron fluxes by white beam activation of thick gold foils in conjuction with spectral analysis by time-of-flight monitors is described. A numerical integration procedure is presented and the method applied to determining the absolute performance of SNS from data obtained during the initial commissioning run in December 1984. (author)
Grape anthocyanin altered by absolute sunlight exclusion
This research was conducted to clarify anthocyanin accumulation within ‘Merlot’ grapes in response to microclimate, specifically to light incidence, temperature, and humidity. Treatment grape clusters were light-excluded during ripening by opaque white polypropylene enclosures, during which light in...
Karst Water System Investigated by Absolute Gravimetry
Quinif, Y.; Meus, P.; van Camp, M.; Kaufmann, O.; van Ruymbeke, M.; Vandiepenbeeck, M.; Camelbeeck, T.
2006-12-01
The highly anisotropic and heterogeneous hydrogeological characteristics of karst aquifers are difficult to characterize and present challenges for modeling of storage capacities. Little is known about the surface and groundwater interconnection, about the connection between the porous formations and the draining cave and conduits, and about the variability of groundwater volume within the system. Usually, an aquifer is considered as a black box, where water fluxes are monitored as input and output. However, water inflow and outflow are highly variable and cannot be measured directly. A recent project, begun in 2006 sought to constrain the water budget in a Belgian karst aquifer and to assess the porosity and water dynamics, combining absolute gravity (AG) measurements and piezometric levels around the Rochefort cave. The advantage of gravity measurements is that they integrate all the subsystems in the karst system. This is not the case with traditional geophysical tools like boring or monitoring wells, which are soundings affected by their near environment and its heterogeneity. The investigated cave results from the meander cutoff system of the Lomme River. The main inputs are swallow holes of the river crossing the limestone massif. The river is canalized and the karst system is partly disconnected from the hydraulic system. In February and March 2006, when the river spilled over its dyke and sank into the most important swallow hole, this resulted in dramatic and nearly instantaneous increases in the piezometric levels in the cave, reaching up to 13 meters. Meanwhile, gravity increased by 50 and 90 nms-2 in February and March, respectively. A first conclusion is that during these sudden floods, the pores and fine fissures were poorly connected with the enlarged fractures, cave, and conduits. With a rise of 13 meters in the water level and a 5% porosity, a gravity change of 250 nms-2 should have been expected. This moderate gravity variation suggests either a
A liquid-helium-cooled absolute reference cold load for long-wavelength radiometric calibration
Bensadoun, Marc; Witebsky, Chris; Smoot, George; De Amici, Giovanni; Kogut, AL; Levin, Steve
1992-01-01
Design, radiometric and thermal performance, and operation of a large diameter (78 cm) liquid-helium-cooled blackbody absolute reference cold load (CL) for the calibration of microwave radiometers is described. CL provides an absolute calibration near the liquid-helium (LHe) boiling point, with total uncertainty in the radiometric temperature of less than 30 mK over the 2.5-23 cm wavelength operating range. CL was used at several wavelengths at the South Pole, Antarctica and the White Mountain Research Center, California. Results show that, for the instruments operated at 20-, 12-, 7.9-, and 4.0 cm wavelength at the South Pole, the total corrections to the LHe boiling-point temperature (about 3.8 K) were 48 +/-23, 18 +/-10, 10 +/-18, and 15 +/-mK.
High-precision absolute coordinate measurement using frequency scanned interferometry
We reported previously on measurements of absolute distance with frequency scanned interferometry (FSI) method [1, 2]. In this paper, we extend the FSI method into 2-dimensional and 3-dimensional high-precision absolute coordinate measurements using a single laser. Absolute position is determined by several related absolute distances measured simultaneously. The achieved precision on X and Y in 2- and in 3-dimensional measurements is confirmed to be below 1 μm, while the precision in Z (in 3D case) is found to be about 2 μm. The last one is limited by the accuracy of the available translational stage used in the tests. A much more powerful laser and a better real-time data acquirement system will be required in case of measurements of larger absolute distances
Absolute absorption on the potassium D lines: theory and experiment
Hanley, Ryan K.; Gregory, Philip D.; Hughes, Ifan G.; Cornish, Simon L.
2015-10-01
We present a detailed study of the absolute Doppler-broadened absorption of a probe beam scanned across the potassium D lines in a thermal vapour. Spectra using a weak probe were measured on the 4S \\to 4P transition and compared to the theoretical model of the electric susceptibility detailed by Zentile et al (2015 Comput. Phys. Commun. 189 162-74) in the code named ElecSus. Comparisons were also made on the 4S \\to 5P transition with an adapted version of ElecSus. This is the first experimental test of ElecSus on an atom with a ground state hyperfine splitting smaller than that of the Doppler width. An excellent agreement was found between ElecSus and experimental measurements at a variety of temperatures with rms errors ˜ {10}-3. We have also demonstrated the use of ElecSus as an atomic vapour thermometry tool, and present a possible new measurement technique of transition decay rates which we predict to have a precision of ˜3 {kHz}.
PMSM Rotor Position Detection Based on Hybrid Optical Encoder and R-Signal Zero-Setting Scheme
Wang, Yaoqiang; Ma, Xiaoyong; Wang, Mingdong; Cao, Chong
2016-01-01
Rotor position detection is a prerequisite for achieving good control performance of PMSM. For a PMSM control system based on an optical encoder, it is a difficulty to detect rotor position and achieve R-Signal zero-setting. To solve the problem, a hybrid optical encoder is used in the paper by which a scheme for rotor position detection and R-Signal zero-setting is proposed. This encoder can do absolute and incremental rotor position detection simultaneously; here, the former is used for acq...
Khokhlova, Vera A.; Shmeleva, Svetlana M.; Gavrilov, Leonid R.; Martin, Eleanor; Sadhoo, Neelaksh; Shaw, Adam
2013-01-01
Considerable progress has been achieved in the use of infrared (IR) techniques for qualitative mapping of acoustic fields of high intensity focused ultrasound (HIFU) transducers. The authors have previously developed and demonstrated a method based on IR camera measurement of the temperature rise induced in an absorber less than 2 mm thick by ultrasonic bursts of less than 1 s duration. The goal of this paper was to make the method more quantitative and estimate the absolute intensity distrib...
Liu, X; Zhao, H L; Liu, Y; Li, E Z; Han, X; Domier, C W; Luhmann, N C; Ti, A; Hu, L Q; Zhang, X D
2014-09-01
This paper presents the results of the in situ absolute intensity calibration for the 32-channel heterodyne radiometer on the experimental advanced superconducting tokamak. The hot/cold load method is adopted, and the coherent averaging technique is employed to improve the signal to noise ratio. Measured spectra and electron temperature profiles are compared with those from an independent calibrated Michelson interferometer, and there is a relatively good agreement between the results from the two different systems. PMID:25273727
Rogers, Alan E E
2012-01-01
A new method of absolute calibration of sky noise temperature using a three-position switched spectrometer, measurements of antenna and low noise amplifier impedance with a vector network analyzer, and ancillary measurements of the amplifier noise waves is described. The details of the method and its application to accurate wideband measurements of the spectral index of the sky noise are described and compared with other methods.
Liu, X.; Zhao, H. L.; Liu, Y., E-mail: liuyong@ipp.ac.cn; Li, E. Z.; Han, X.; Ti, A.; Hu, L. Q.; Zhang, X. D. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Domier, C. W.; Luhmann, N. C. [Department of Electrical and Computer Engineering, University of California at Davis, Davis, California 95616 (United States)
2014-09-15
This paper presents the results of the in situ absolute intensity calibration for the 32-channel heterodyne radiometer on the experimental advanced superconducting tokamak. The hot/cold load method is adopted, and the coherent averaging technique is employed to improve the signal to noise ratio. Measured spectra and electron temperature profiles are compared with those from an independent calibrated Michelson interferometer, and there is a relatively good agreement between the results from the two different systems.
Complex zeros of the 2 d Ising model on dynamical random lattices
Ambjørn, J.; Anagnostopoulos, K. N.; Magnea, U.
1998-04-01
We study the zeros in the complex plane of the partition function for the Ising model coupled to 2 d quantum gravity for complex magnetic field and for complex temperature. We compute the zeros by using the exact solution coming from a two matrix model and by Monte Carlo simulations of Ising spins on dynamical triangulations. We present evidence that the zeros form simple one-dimensional patterns in the complex plane, and that the critical behaviour of the system is governed by the scaling of the distribution of singularities near the critical point.
Sub-zero Treatment of P/M Vanadis 6 Ledeburitic Tool Steel
Peter Jurči; Jana Sobotová; Petra Salabová; Otakar Prikner; Borivoj Šuštaršič; Darja Jenko
2013-01-01
The Cr-V ledeburitic steel Vanadis 6 was vacuum austenitized at different temperatures, nitrogen gas quenched and double tempered at 530 °C for 2 h. For the selected samples, a sub-zero period was inserted between quenching and tempering. The obtained results infer that: I) as-quenched microstructure consisted of martensite, retained austenite and undissolved carbides, II) sub-zero processing reduced the amount of the retained austenite and increased the tetragonality of the martensitic latti...
Superconducting proximity effect through graphene from zero field to the Quantum Hall regime
Komatsu, Katsuyoshi; Li, Chuan; Autier-Laurent, S.; Bouchiat, H.; Gueron, S.
2012-01-01
We investigate the superconducting proximity effect through graphene in the long diffusive junction limit, at low and high magnetic field. The interface quality and sample phase coherence lead to a zero resistance state at low temperature, zero magnetic field, and high doping. We find a striking suppression of the critical current near graphene\\rq{}s charge neutrality point, which we attribute to specular reflexion of Andreev pairs at the interface of charge puddles. This type of reflexion, s...
Zero-point fluctuations in the ground state of a mesoscopic normal ring
Cedraschi, Pascal; Buttiker, Markus
2000-01-01
We investigate the persistent current of a ring with an in-line quantum dot capacitively coupled to an external circuit. Of special interest is the magnitude of the persistent current as a function of the external impedance in the zero temperature limit when the only fluctuations in the external circuit are zero-point fluctuations. These are time-dependent fluctuations which polarize the ring-dot structure and we discuss in detail the contribution of displacement currents to the persistent cu...
Measuring the absolute magnetic field using high-Tc SQUID
SQUID normally can only measure the change of magnetic field instead of the absolute value of magnetic field. Using a compensation method, a mobile SQUID, which could keep locked when moving in the earth's magnetic field, was developed. Using the mobile SQUID, it was possible to measure the absolute magnetic field. The absolute value of magnetic field could be calculated from the change of the compensation output when changing the direction of the SQUID in a magnetic field. Using this method and the mobile SQUID, we successfully measured the earth's magnetic field in our laboratory
Absolute calibration of photomultiplier based detectors - difficulties and uncertainties
Photomultiplier manufacturers can provide a calibration of quantum efficiency over a range of wavelengths with an accuracy of up to 2%. To convert these figures to absolute counting efficiency requires knowledge of photomultiplier collection efficiency, F. Traditional methods for determining F are discussed with emphasis on sources of error. Light sources emitting at a known photon rate allow the absolute quantum efficiency to be determined directly. It is important in all attempts at absolute calibration to appreciate the conditions which manufacturers apply when calibrating photomultipliers
Absolute Antenna Calibration at the US National Geodetic Survey
Mader, G. L.; Bilich, A. L.
2012-12-01
Geodetic GNSS applications routinely demand millimeter precision and extremely high levels of accuracy. To achieve these accuracies, measurement and instrument biases at the centimeter to millimeter level must be understood. One of these biases is the antenna phase center, the apparent point of signal reception for a GNSS antenna. It has been well established that phase center patterns differ between antenna models and manufacturers; additional research suggests that the addition of a radome or the choice of antenna mount can significantly alter those a priori phase center patterns. For the more demanding GNSS positioning applications and especially in cases of mixed-antenna networks, it is all the more important to know antenna phase center variations as a function of both elevation and azimuth in the antenna reference frame and incorporate these models into analysis software. Determination of antenna phase center behavior is known as "antenna calibration". Since 1994, NGS has computed relative antenna calibrations for more than 350 antennas. In recent years, the geodetic community has moved to absolute calibrations - the IGS adopted absolute antenna phase center calibrations in 2006 for use in their orbit and clock products, and NGS's CORS group began using absolute antenna calibration upon the release of the new CORS coordinates in IGS08 epoch 2005.00 and NAD 83(2011,MA11,PA11) epoch 2010.00. Although NGS relative calibrations can be and have been converted to absolute, it is considered best practice to independently measure phase center characteristics in an absolute sense. Consequently, NGS has developed and operates an absolute calibration system. These absolute antenna calibrations accommodate the demand for greater accuracy and for 2-dimensional (elevation and azimuth) parameterization. NGS will continue to provide calibration values via the NGS web site www.ngs.noaa.gov/ANTCAL, and will publish calibrations in the ANTEX format as well as the legacy ANTINFO
Absolute f-values for resonance lines of neutral titanium
Absolute f-values for 13 resonance lines of Ti i have been experimentally measured by the atomic-beam method. Difficulties in evaporation of titanium were overcome by using a TiC boat, and gettering effects were determined by comparing microbalance weighings of instantaneous deposit rates with quantitative chemical analyses of total deposits. Comparisons are made with other experimental results, and conversion factors are given for placing previously published relative f-values on an absolute scale. Also, the effect of an improved absolute scale for Ti i gf-values on the abundance of titanium in the solar photosphere is discussed
Zero-Based Budgeting in Nursing Education.
Farrell, Marie; Eckert, Joseph
1979-01-01
Zero-based budgeting (ZBB) refers to a system whereby the entire nursing program is reevaluated yearly and justification for all programs and expenditures must be made. ZBB is compared to the governmental sunset law. (JOW)
Zero G Mass Measurement Device (ZGMMD) Project
National Aeronautics and Space Administration — The Zero Gravity Mass Measurement Device (ZGMMD) provides the ability to measure the mass of samples in a microgravity environment, like that found on the...
Symplectic 4-manifolds with Kodaira dimension zero
Li, Tian-Jun
2006-01-01
We discuss the notion of the Kodaira dimension for symplectic manifolds in dimension 4. In particular, we propose and partially verify Betti number bounds for symplectic 4-manifolds with Kodaira dimension zero.
Interlacing of real zeros of Bessel functions
Palmai, Tamas
2010-01-01
We unify the known three distinct inequality sequences [Abramowitz 9.5.2] of real zeros of Bessel functions into a single, generalized one. This result is triggered by a uniqueness proof concerning a particular inverse scattering problem.
Statistical properties of zeta functions' zeros
Kargin, Vladislav
2013-01-01
The paper reviews existing results about the statistical distribution of zeros for three main types of zeta functions: number-theoretical, geometrical, and dynamical. It provides necessary background and some details about the proofs of the main results.
Fermion zero modes and 'hidden' symmetry
The origin of the fermion zero modes in the soliton fields is investigated in 2- and 4-dimensional models and a connection is found with the existence of 'hidden' supersymmetry properties of the Lagrangians. (Auth.)
Spin Glass Stiffness in zero Dimensions
Boettcher, Stefan
2006-01-01
A unique analytical result for the Migdal-Kadanoff hierarchical lattice is obtained. The scaling of the defect energy for a zero-dimensional spin glass is derived for a bond distribution that is continuous at the origin. The value of the ``stiffness'' exponent in zero dimensions, y_0=-1, corresponds to the value also found in one dimension. This result complements and completes earlier findings for y_d at d>0.
Zeros of Bessel functions: monotonicity, concavity, inequalities
Andrea Laforgia
2007-12-01
Full Text Available We present a survey of the most important inequalities and monotonicity, concavity (convexity results of the zeros of Bessel functions. The results refer to the deﬁnition Jνκ of the zeros of Cν (x = Jν (x cosα −Yν (x sinα, formulated in [6], where κ is a continuous variable. Sometimes, also the Sturm comparison theorem is an important tool of our results.
Net-Zero Energy Technical Shelter
Zhang, Chen; Heiselberg, Per; Jensen, Rasmus Lund
2014-01-01
technical shelter, this study will apply the net-zero energy concept into the technical shelter design. The energy conservation can be achieved by proper design of building envelop and optimization of the cooling strategies. Both experiments and numerical simulations are carried out to investigate the...... indoor environment and energy performance of the technical shelter. Finally, a wind-solar hybrid energy system is designed as an alternative power solution for technical shelter, in order to achieve a net-zero energy target....
Observation of the Zero Doppler Effect
Jia Ran; Yewen Zhang; Xiaodong Chen; Kai Fang; Junfei Zhao; Hong Chen
2016-01-01
The normal Doppler effect has well-established applications in many areas of science and technology. Recently, a few experimental demonstrations of the inverse Doppler effect have begun to appear in negative-index metamaterials. Here we report an experimental observation of the zero Doppler effect, that is, no frequency shift irrespective of the relative motion between the wave signal source and the detector in a zero-index metamaterial. This unique phenomenon, accompanied by the normal and i...
Rettig, Oliver; Krautwurst, Britta; Maier, Michael W.; Wolf, Sebastian I.
2015-01-01
Background: Surgical interventions at the shoulder may alter function of the shoulder complex. Clinically, the outcome can be assessed by universal goniometry. Marker-based motion capture may not resemble these results due to differing angle definitions. Methods: The clinical inspection of bilateral arm abduction for assessing shoulder dysfunction is performed with a marker based 3D optical measurement method. An anatomical zero position of shoulder pose is proposed to determine absolute an...
Zero emission targets as long-term global goals for climate protection
Recently, assessments have robustly linked stabilization of global-mean temperature rise to the necessity of limiting the total amount of emitted carbon-dioxide (CO2). Halting global warming thus requires virtually zero annual CO2 emissions at some point. Policymakers have now incorporated this concept in the negotiating text for a new global climate agreement, but confusion remains about concepts like carbon neutrality, climate neutrality, full decarbonization, and net zero carbon or net zero greenhouse gas (GHG) emissions. Here we clarify these concepts, discuss their appropriateness to serve as a long-term global benchmark for achieving temperature targets, and provide a detailed quantification. We find that with current pledges and for a likely (>66%) chance of staying below 2 °C, the scenario literature suggests net zero CO2 emissions between 2060 and 2070, with net negative CO2 emissions thereafter. Because of residual non-CO2 emissions, net zero is always reached later for total GHG emissions than for CO2. Net zero emissions targets are a useful focal point for policy, linking a global temperature target and socio-economic pathways to a necessary long-term limit on cumulative CO2 emissions. (letter)
EOP TDRs (Temperature-Depth-Recordings) Data
National Oceanic and Atmospheric Administration, Department of Commerce — Temperature-depth-recorders (TDRs) were attached to commercial longline and research Cobb trawl gear to obtain absolute depth and temperature measurement during...
Absolute measurement of the isotopic ratio of a water sample with very low deuterium content
The presence of H3+ ions which are indistinguishable from HD+ ions presents the principal difficulty encountered in the measurement of isotopic ratios of water samples with very low deuterium contents using a mass spectrometer. Thus, when the sample contains no deuterium, the mass spectrometer does not indicate zero. By producing, in situ, from the sample to be measured, water vapor with an isotopic ratio very close to zero using a small distilling column, this difficulty is overcome. This column, its operating parameters, as well as the way in which the measurements are made are described. An arrangement is employed in which the isotopic ratios can be measured with a sensitivity better than 0.01 x 10-6. The method is applied to the determination of the isotopic ratios of three low deuterium content water samples. The results obtained permit one to assign to the sample with the lowest deuterium content an absolute value equal to 1.71 ± 0.03 ppm. This water sample is a primary standard from which is determined the isotopic ratio of a natural water sample which serves as the laboratory standard. (author)
Standard hydrogen electrode and potential of zero charge in density functional calculations
Tripkovic, Vladimir; Björketun, Mårten; Skúlason, Egill;
2011-01-01
Methods to explicitly account for half-cell electrode potentials have recently appeared within the framework of density functional theory. The potential of the electrode relative to the standard hydrogen electrode is typically determined by subtracting the experimental value of the absolute...... functional setups. By analyzing a dozen different water structures, built up from water hexamers, in their uncharged [potential of zero charge (PZC)] states on Pt(111), we then determine three different criteria (no net dipole, no charge transfer, and high water flexibility) that a water structure should...
Absolute value preconditioning for symmetric indefinite linear systems
Vecharynski, Eugene
2011-01-01
We introduce a novel strategy for constructing symmetric positive definite (SPD) preconditioners for linear systems with symmetric indefinite coefficient matrices. The strategy is motivated by the observation that the preconditioned minimal residual method with the inverse of the absolute value of the coefficient matrix as a preconditioner converges to the exact solution of the system in at most two steps. Neither the exact absolute value of the coefficient matrix, nor its exact inverse are computationally feasible to construct in general. However, as the proof of concept, we provide two practical examples of SPD preconditioners, which are based on the suggested approach, called absolute value preconditioning. The first example is for strictly (block) diagonally dominant coefficient matrices, where we propose using the inverse to the absolute value of the (block) diagonal as the preconditioner. Our second example is less intuitive. We consider a model problem with a shifted discrete negative Laplacian, and su...
Absolute Value Boundedness, Operator Decomposition, and Stochastic Media and Equations
Adomian, G.; Miao, C. C.
1973-01-01
The research accomplished during this period is reported. Published abstracts and technical reports are listed. Articles presented include: boundedness of absolute values of generalized Fourier coefficients, propagation in stochastic media, and stationary conditions for stochastic differential equations.
Absolute angular calibration of a submarine km3 neutrino telescope
A requirement for neutrino telescope is the ability to resolve point sources of neutrinos. In order to understand its resolving power a way to perform absolute angular calibration with muons is required. Muons produced by cosmic rays in the atmosphere offer an abundant calibration source. By covering a surface vessel with 200 modules of 5 m2 plastic scintillator a surface air shower array can be set up. Running this array in coincidence with a deep-sea km3 size neutrino detector, where the coincidence is defined by the absolute clock timing stamp for each event, would allow absolute angular calibration to be performed. Monte Carlo results simulating the absolute angular calibration of the km3 size neutrino detector will be presented. Future work and direction will be discussed.
Summary of the Absolute neutrino mass scale parallel branch session
Mangano, G. [Istituto Nazionale di Fisica Nucleare - Sezione di Napoli - Complesso Universitario di Monte S.Angelo, I-80126 Napoli (Italy); Zuber, K. [Institut fuer Kern - und Teilchenphysik Technische Universitaet, D-01069 Dresden (Germany)
2011-08-15
We summarize the talks presented to the Absolute neutrino mass scale parallel session of NOW2010, mainly focused on neutrinoless double beta decay in its theoretical and experimental aspects and the role of the neutrino mass scale in cosmology.
Absolute transition probabilities in Sc I and Sc II
Absolute atomic transition probabilities for emission lines from 70 levels in Sc I and Sc II are reported. The transition probabilities are from emission branching ratios measured using the 1.0-m Fourier-transform spectrometer at the National Solar Observatory. Radiative lifetimes, measured using time-resolved laser-induced fluorescence, provide the normalization for converting the branching ratios to absolute transition probabilities. These results are compared with other experimental and theoretical transition probabilities
No-arbitrage conditions and absolutely continuous changes of measure
Claudio Fontana
2013-01-01
We study the stability of several no-arbitrage conditions with respect to absolutely continuous, but not necessarily equivalent, changes of measure. We first consider models based on continuous semimartingales and show that no-arbitrage conditions weaker than NA and NFLVR are always stable. Then, in the context of general semimartingale models, we show that an absolutely continuous change of measure does never introduce arbitrages of the first kind as long as the change of measure density pro...
Vision-based absolute navigation for the Martian landing
Martínez Torío, Alexandra
2013-01-01
Future European missions aspire to bring soil samples from Mars back to Earth. The precise identification of the site from which samples are taken leads to major constraints as to the landing accuracy of the lander. Vision-based absolute navigation now appears to be the most promising navigation method for correcting errors originated from the interplanetary voyage at the point of re-entry. The thesis has consisted in improving the vision-based absolute navigation simulator developed for the ...
Absolute Baseline for Testing of Electronic Distance Meters
Jaroslav Braun; Filip Dvořáček; Martin Štroner
2014-01-01
The paper deals with the construction and determination of coordinates of the absoluteEDMs baseline in a laboratory with 16 pillars with forced centring. Leica Absolute TrackerAT401 (standard deviation of distance measurement: 5 μ m, standard deviation of anglemeasurement: 0.15 mgon), which is designed for very accurate industrial measurements,was used for our purpose. Lengths between the baseline points were determined with astandard deviation of 0.02 mm. The baseline is used for determining...
The absolute infrared magnitudes of type Ia supernovae
Meikle, W P S
1999-01-01
The absolute luminosities and homogeneity of early-time infrared (IR) light curves of type Ia supernovae are examined. Eight supernovae are considered. These are selected to have accurately known epochs of maximum blue light as well as having reliable distance estimates and/or good light curve coverage. Two approaches to extinction correction are considered. Owing to the low extinction in the IR, the differences in the corrections via the two methods are small. Absolute magnitude light curves...
Wall Effect on the Convective-Absolute Boundary for the Compressible Shear Layer
Robinet, Jean-Christophe; Dussauge, Jean-Paul; Casalis, Grégoire
The linear stability of inviscid compressible shear layers is studied. When the layer develops at the vicinity of a wall, the two parallel flows can have a velocity of the same sign or of opposite signs. This situation is examined in order to obtain first hints on the stability of separated flows in the compressible regime. The shear layer is described by a hyperbolic tangent profile for the velocity component and the Crocco relation for the temperature profile. Gravity effects and the superficial tension are neglected. By examining the temporal growth rate at the saddle point in the wave-number space, the flow is characterized as being either absolutely unstable or convectively unstable. This study principally shows the effect of the wall on the convective-absolute transition in compressible shear flow. Results are presented, showing the amount of the backflow necessary to have this type of transition for a range of primary flow Mach numbers M1 up to 3.0. The boundary of the convective-absolute transition is defined as a function of the velocity ratio, the temperature ratio and the Mach number. Unstable solutions are calculated for both streamwise and oblique disturbances in the shear layer.
The Pragmatics of "Unruly" Dative Absolutes in Early Slavic
Daniel E. Collins
2011-08-01
Full Text Available This chapter examines some uses of the dative absolute in Old Church Slavonic and in early recensional Slavonic texts that depart from notions of how Indo-European absolute constructions should behave, either because they have subjects coreferential with the (putative main-clause subjects or because they function as if they were main clauses in their own right. Such "noncanonical" absolutes have generally been written off as mechanistic translations or as mistakes by scribes who did not understand the proper uses of the construction. In reality, the problem is not with literalistic translators or incompetent scribes but with the definition of the construction itself; it is quite possible to redefine the Early Slavic dative absolute in a way that accounts for the supposedly deviant cases. While the absolute is generally dependent semantically on an adjacent unit of discourse, it should not always be regarded as subordinated syntactically. There are good grounds for viewing some absolutes not as dependent clauses but as independent sentences whose collateral character is an issue not of syntax but of the pragmatics of discourse.
Global absolut gravity reference system as replacement of IGSN 71
Wilmes, Herbert; Wziontek, Hartmut; Falk, Reinhard
2015-04-01
The determination of precise gravity field parameters is of great importance in a period in which earth sciences are achieving the necessary accuracy to monitor and document global change processes. This is the reason why experts from geodesy and metrology joined in a successful cooperation to make absolute gravity observations traceable to SI quantities, to improve the metrological kilogram definition and to monitor mass movements and smallest height changes for geodetic and geophysical applications. The international gravity datum is still defined by the International Gravity Standardization Net adopted in 1971 (IGSN 71). The network is based upon pendulum and spring gravimeter observations taken in the 1950s and 60s supported by the early free fall absolute gravimeters. Its gravity values agreed in every case to better than 0.1 mGal. Today, more than 100 absolute gravimeters are in use worldwide. The series of repeated international comparisons confirms the traceability of absolute gravity measurements to SI quantities and confirm the degree of equivalence of the gravimeters in the order of a few µGal. For applications in geosciences where e.g. gravity changes over time need to be analyzed, the temporal stability of an absolute gravimeter is most important. Therefore, the proposition is made to replace the IGSN 71 by an up-to-date gravity reference system which is based upon repeated absolute gravimeter comparisons and a global network of well controlled gravity reference stations.
Absolute density measurements in the middle atmosphere
M. Rapp
Full Text Available In the last ten years a total of 25 sounding rockets employing ionization gauges have been launched at high latitudes ( ~ 70° N to measure total atmospheric density and its small scale fluctuations in an altitude range between 70 and 110 km. While the determination of small scale fluctuations is unambiguous, the total density analysis has been complicated in the past by aerodynamical disturbances leading to densities inside the sensor which are enhanced compared to atmospheric values. Here, we present the results of both Monte Carlo simulations and wind tunnel measurements to quantify this aerodynamical effect. The comparison of the resulting ‘ram-factor’ profiles with empirically determined density ratios of ionization gauge measurements and falling sphere measurements provides excellent agreement. This demonstrates both the need, but also the possibility, to correct aerodynamical influences on measurements from sounding rockets. We have determined a total of 20 density profiles of the mesosphere-lower-thermosphere (MLT region. Grouping these profiles according to season, a listing of mean density profiles is included in the paper. A comparison with density profiles taken from the reference atmospheres CIRA86 and MSIS90 results in differences of up to 40%. This reflects that current reference atmospheres are a significant potential error source for the determination of mixing ratios of, for example, trace gas constituents in the MLT region.
Key words. Middle atmosphere (composition and chemistry; pressure, density, and temperature; instruments and techniques
Absolute determination of bremsstrahlung deposition (Hydra)
A technique developed to measure electron energy deposition in metals has been applied to the determination of bremsstrahlung deposition. In this method a square-wave beam modulation is employed and the time-derivative of a calorimeter temperature is used to obtain the energy deposited. This paper presents the results of bremsstrahlung deposition measurements in gold and aluminum. Data are presented for dose to a material as a function of converter material, converter thickness, and angle of electron incidence for electron energies in the range from 0.2 to 1.0 MeV. In addition, measurements of dose as a function of calorimeter position as it was moved both laterally and axially with respect to the beam axis are reported. Utilizing the facility and technique developed to make these measurements, a thorough study of the bremsstrahlung measuring calorimeters used with the pulsed electron beam machine Hydra was accomplished. The goal of this study was to determine accurately the correction factor for the loading effect of the thermocouple wires. The loading correction factor was measured to be 1.72 with an uncertainty of +- 5 percent. This value should be used when determining true dose to gold with the standard Hydra calorimeters instead of the value of 1.5 obtained from data on Hydra, since there is a larger uncertainty in the latter value. (U.S.)
Variable selection for distribution-free models for longitudinal zero-inflated count responses.
Chen, Tian; Wu, Pan; Tang, Wan; Zhang, Hui; Feng, Changyong; Kowalski, Jeanne; Tu, Xin M
2016-07-20
Zero-inflated count outcomes arise quite often in research and practice. Parametric models such as the zero-inflated Poisson and zero-inflated negative binomial are widely used to model such responses. Like most parametric models, they are quite sensitive to departures from assumed distributions. Recently, new approaches have been proposed to provide distribution-free, or semi-parametric, alternatives. These methods extend the generalized estimating equations to provide robust inference for population mixtures defined by zero-inflated count outcomes. In this paper, we propose methods to extend smoothly clipped absolute deviation (SCAD)-based variable selection methods to these new models. Variable selection has been gaining popularity in modern clinical research studies, as determining differential treatment effects of interventions for different subgroups has become the norm, rather the exception, in the era of patent-centered outcome research. Such moderation analysis in general creates many explanatory variables in regression analysis, and the advantages of SCAD-based methods over their traditional counterparts render them a great choice for addressing this important and timely issues in clinical research. We illustrate the proposed approach with both simulated and real study data. Copyright © 2016 John Wiley & Sons, Ltd. PMID:26844819
Zero-Gravity Vortex Vent and PVT Gaging System
Downey, M. G.; Trevathan, J. T.
1989-01-01
Space Station and satellite reservicing will require the ability to vent gas on orbit from liquid supply or storage tanks and to gage liquid quantity under microgravity conditions. In zero gravity, (zero-g) the vortex vent is capable of venting gas from a tank of liquid containing gas randomly distributed as bubbles. The concept uses a spinning impeller to create centrifugal force inside a vortex tube within a tank. This creates a gas pocket and forces the liquid through a venturi and back into the tank. Gas is then vented from the gas pocket through a liquid detector and then out through an exhaust port. If the liquid detector senses liquid in the vent line, the fluid is directed to the low-pressure port on the venturi and is returned to the tank. The advantages of this system is that it has no rotating seals and is compatible with most corrosive and cryogenic fluids. A prototype was designed and built at the NASA Johnson Space Center and flown on the KC-135 zero-g aircraft. During these test flights, where microgravity conditions are obtained for up to 30 sec, the prototype demonstrated that less than 0.10 percent of the volume of fluid vented was liquid when the tank was half full of liquid. The pressure volume temperature (PVT) gaging system is used in conjunction with the vortex vent to calculate the amount of liquid remaining in a tank under microgravity conditions. The PVT gaging system is used in conjunction with the vortex vent to gage liquid quantity in zero or low gravity. The system consists of a gas compressor, accumulator, and temperature and pressure instrumentation. To measure the liquid in a tank a small amount of gas is vented from the tank to the compressor and compressed into the accumulator. Pressure and temperature in the tank and accumulator are measured before and after the gas transfer occurs. Knowing the total volume of the tank, the volume of the accumulator, the volume of the intermediate lines, and initial and final pressures and
Measuring the absolute DT neutron yield using the Magnetic Recoil Spectrometer at OMEGA and the NIF
A Magnetic Recoil Spectrometer (MRS) has been installed and extensively used on OMEGA and the National Ignition Facility (NIF) for measurements of the absolute neutron spectrum from inertial confinement fusion (ICF) implosions. From the neutron spectrum measured with the MRS, many critical implosion parameters are determined including the primary DT neutron yield, the ion temperature, and the down-scattered neutron yield. As the MRS detection efficiency is determined from first principles, the absolute DT neutron yield is obtained without cross-calibration to other techniques. The MRS primary DT neutron measurements at OMEGA and the NIF are shown to be in excellent agreement with previously established yield diagnostics on OMEGA, and with the newly commissioned nuclear activation diagnostics on the NIF.
Measuring the absolute DT neutron yield using the Magnetic Recoil Spectrometer at OMEGA and the NIF
Mackinnon, A; Casey, D; Frenje, J A; Johnson, M G; Seguin, F H; Li, C K; Petrasso, R D; Glebov, V Y; Katz, J; Knauer, J; Meyerhofer, D; Sangster, T; Bionta, R; Bleuel, D; Hachett, S P; Hartouni, E; Lepape, S; Mckernan, M; Moran, M; Yeamans, C
2012-05-03
A Magnetic Recoil Spectrometer (MRS) has been installed and extensively used on OMEGA and the National Ignition Facility (NIF) for measurements of the absolute neutron spectrum from inertial confinement fusion (ICF) implosions. From the neutron spectrum measured with the MRS, many critical implosion parameters are determined including the primary DT neutron yield, the ion temperature, and the down-scattered neutron yield. As the MRS detection efficiency is determined from first principles, the absolute DT neutron yield is obtained without cross-calibration to other techniques. The MRS primary DT neutron measurements at OMEGA and the NIF are shown to be in excellent agreement with previously established yield diagnostics on OMEGA, and with the newly commissioned nuclear activation diagnostics on the NIF.
CMOS MEMS capacitive absolute pressure sensor
This paper presents the design, fabrication and characterization of a capacitive pressure sensor using a commercial 0.18 µm CMOS (complementary metal–oxide–semiconductor) process and postprocess. The pressure sensor is capacitive and the structure is formed by an Al top electrode enclosed in a suspended SiO2 membrane, which acts as a movable electrode against a bottom or stationary Al electrode fixed on the SiO2 substrate. Both the movable and fixed electrodes form a variable parallel plate capacitor, whose capacitance varies with the applied pressure on the surface. In order to release the membranes the CMOS layers need to be applied postprocess and this mainly consists of four steps: (1) deposition and patterning of PECVD (plasma-enhanced chemical vapor deposition) oxide to protect CMOS pads and to open the pressure sensor top surface, (2) etching of the sacrificial layer to release the suspended membrane, (3) deposition of PECVD oxide to seal the etching holes and creating vacuum inside the gap, and finally (4) etching of the passivation oxide to open the pads and allow electrical connections. This sensor design and fabrication is suitable to obey the design rules of a CMOS foundry and since it only uses low-temperature processes, it allows monolithic integration with other types of CMOS compatible sensors and IC (integrated circuit) interface on a single chip. Experimental results showed that the pressure sensor has a highly linear sensitivity of 0.14 fF kPa−1 in the pressure range of 0–300 kPa. (paper)
Towards Zero emissions. The challenge for hydrocarbons
The limited availability of natural resources, a still rapidly rising world population combined with overall economic growth will be stretching the Earth's carrying capacity beyond its limit, unless a suitable strategy is set in place. This scenario renders the concept of Zero Emissions all the more relevant, stressing as it does that the problem of environmental pollution cannot be effectively solved simply by reducing the production of wastes. In practical terms Zero Emissions can be conceived along similar lines to already establish corporate programs aiming to achieve zero accidents. Although no one claims that accidents are never going to occur, unless a clear objective is established, systems will not evolve in that direction. The target of Zero Emissions is therefore to move towards achieving the highest possible level of material productivity and energy efficiency. Considering how the hydrocarbon industry could become ever more engaged in applying the concept of Zero Emissions, and what in practice this means, can therefore play an important role in defining an appropriate innovation policy, and promoting long term corporate competitiveness
Constraints on the critical temperature of the phase transition to the quark-gluon plasma
Low temperatures of the phase transition to the quark-gluon plasma correspond to low values of the bag model constants and to absolutely stable strange quark matter. Some of the observed pulsars are identified quite reliably as neutron stars. If strange matter is stable, the central density of these pulsars has to be smaller that critical density of the phase transition to nonstrange quark matter. The nonstrange quark matter being formed turns to more stable strange matter on a weak interaction timescale, converting neutron stars into strange stars. The requirement of stability of old and newly born neutron stars is used to constrain the bag model constant and the critical temperature of the phase transition to the quark-gluon plasma at zero chemical potential. 16 refs., 1 tab
Constraints for critical temperature of the phase transition into the quark-gluon plasma
Low temperature of the phase transition into the quark-gluon plasma correspond to low values of the bag model constant and to absolutely stable strange quark matter. Some of the observed pulsars are identified quite reliably as neutron stars. If strange matter is stable, the central density of these pulsars is to be smaller that critical density of the phase transition into the nonstrange quark matter. The nonstrange quark matter being formed turns to more stable strange matter on a weak interaction timescale converting neutron stars into strange stars. The requirement of stability of old and newly born neutron stars is used to constrain the bag model constant and the critical temperature of the phase transition into the quark-gluon plasma at zero chemical potential. (orig.)
Heat capacity decomposition by partition function zeros for interacting self-avoiding walks
Chen, Chi-Ning; Hsieh, Yu-Hsin; Hu, Chin-Kun
2013-10-01
A novel method based on partition function zeros is developed to demonstrate the additional advantages by considering both loci of partition function zeros and thermodynamical functions associated with them. With this method, the first pair of complex conjugate zeros (first zeros) can be defined without ambiguity and the critical point of a small system can be defined as the peak position of the heat capacity component associated with the first zeros. For the system with two phase transitions, two pairs of first zeros corresponding to two phase transitions can be identified and two overlapping phase transitions can be well separated. This method is applied to the interacting self-avoiding walk (ISAW) of homopolymer with N monomers on the simple cubic lattice, which has a collapse transition at a higher temperature and a freezing transition at a low temperature. The exact partition functions ZN with N up to 27 are calculated and our approach gives a clear scenario for the collapse and the freezing transitions.
Dirac zero modes in hyperdiamond model
Using the SU(5) symmetry of the 4D hyperdiamond and results on the study of 4D graphene given in Drissi et al.[Phys. Rev. D 84, 014504 (2011)], we engineer a class of 4D lattice QCD fermions whose Dirac operators have two zero modes. We show that generally the zero modes of the Dirac operator in hyperdiamond fermions are captured by a tensor Ωμl with 4x5 complex components linking the Euclidean SO(4) vector μ; and the 5-dimensional representation of SU(5). The Borici-Creutz (BC) and the Karsten-Wilzeck (KW) models as well as their Dirac zero modes are rederived as particular realizations of Ωμl. Other features are also given.
2014 Zero Waste Strategic Plan Executive Summary.
Wrons, Ralph J.
2016-05-01
Sandia National Laboratories/New Mexico is located in Albuquerque, New Mexico, primarily on Department of Energy (DOE) permitted land on approximately 2,800 acres of Kirtland Air Force Base. There are approximately 5.5 million square feet of buildings, with a workforce of approximately 9200 personnel. Sandia National Laboratories Materials Sustainability and Pollution Prevention (MSP2) program adopted in 2008 an internal team goal for New Mexico site operations for Zero Waste to Landfill by 2025. Sandia solicited a consultant to assist in the development of a Zero Waste Strategic Plan. The Zero Waste Consultant Team selected is a partnership of SBM Management Services and Gary Liss & Associates. The scope of this Plan is non-hazardous solid waste and covers the life cycle of material purchases to the use and final disposal of the items at the end of their life cycle.
Universal Zero Conductivity Condition for Optical Absorption
Guo, Yu; Jacob, Zubin
2016-01-01
Harnessing information and energy from light within a nanoscale mode volume is a fundamental challenge for nanophotonic applications ranging from solar photovoltaics to single photon detectors. Here, we show the existence of a universal condition in materials that sheds light on fundamental limits of electromagnetic to matter energy conversion (transduction). We show that the upper limit of absorption rate (transduction rate) in any nanoscale absorber converting light to matter degrees of freedom is revealed by the zero of optical conductivity at complex frequencies ($\\sigma(\\omega^\\prime + i\\omega^{\\prime\\prime})= 0$). We trace the origin of this universal zero conductivity condition to causality requirements on any passive linear response function and propose an experiment of absorption resonances using plasmonic nanoparticles to experimentally verify this universal zero conductivity condition. Our work is widely applicable to linear systems across the electromagnetic spectrum and allows for systematic opti...
Observation of the Zero Doppler Effect
Ran, Jia; Zhang, Yewen; Chen, Xiaodong; Fang, Kai; Zhao, Junfei; Chen, Hong
2016-04-01
The normal Doppler effect has well-established applications in many areas of science and technology. Recently, a few experimental demonstrations of the inverse Doppler effect have begun to appear in negative-index metamaterials. Here we report an experimental observation of the zero Doppler effect, that is, no frequency shift irrespective of the relative motion between the wave signal source and the detector in a zero-index metamaterial. This unique phenomenon, accompanied by the normal and inverse Doppler effects, is generated by reflecting a wave from a moving discontinuity in a composite right/left-handed transmission line loaded with varactors when operating in the near zero-index passband, or the right/left-handed passband. This work has revealed a complete picture of the Doppler effect in metamaterials and may lead to potential applications in electromagnetic wave related metrology.
Geometric spin echo under zero field.
Sekiguchi, Yuhei; Komura, Yusuke; Mishima, Shota; Tanaka, Touta; Niikura, Naeko; Kosaka, Hideo
2016-01-01
Spin echo is a fundamental tool for quantum registers and biomedical imaging. It is believed that a strong magnetic field is needed for the spin echo to provide long memory and high resolution, since a degenerate spin cannot be controlled or addressed under a zero magnetic field. While a degenerate spin is never subject to dynamic control, it is still subject to geometric control. Here we show the spin echo of a degenerate spin subsystem, which is geometrically controlled via a mediating state split by the crystal field, in a nitrogen vacancy centre in diamond. The demonstration reveals that the degenerate spin is protected by inherent symmetry breaking called zero-field splitting. The geometric spin echo under zero field provides an ideal way to maintain the coherence without any dynamics, thus opening the way to pseudo-static quantum random access memory and non-invasive biosensors. PMID:27193936
Main Street Zero Energy Buildings: The Zero Energy Method in Concept and Practice: Preprint
Torcellini, P.; Pless, S.; Lobato, C.; Hootman, T.
2010-07-01
Ongoing work at the National Renewable Energy Laboratory indicates that net-zero energy building (NZEB) status is both achievable and repeatable today. This paper presents a definition framework for classifying NZEBs and a real-life example that demonstrates how a large-scale office building can cost-effectively achieve net-zero energy.
Adler zeros are a group-theoretical consequence of mass zero asymptotic free fields
Lorentz and isospin-invariant S-matrix theories for isospin-one mass-zero bosons are studied. Under an additional continuity assumption, a simple factorization for the S-matrix always leading to Adler zeros is obtained. No dynamical assumptions or assumptions concerning the interacting fields are made
Neutrino seesaw mechanism with texture zeros
Liao, Jiajun; Whisnant, K
2015-01-01
In the context of the Type I seesaw mechanism, we carry out a systematic study of the constraints that result from zeros in both the Dirac and right-handed Majorana neutrino mass matrices. We find that most constraints can be expressed in the standard form with one or two element/cofactor zeros alone, while there are 9 classes of nonstandard constraints. We show that all the constraints are stable under renormalization group running from the lightest right-handed neutrino mass scale to the electroweak scale. We study the predictions of the nonstandard constraints for the lightest neutrino mass, Dirac CP phase and neutrinoless double beta decay.
The zero-point energy for rotation
The Gaussian overlap approach (GOA) becomes inappropriate for describing the rotation of weakly deformed systems. A modification is proposed which allows to maintain the GOA for small deformations. The zero-point energy subtraction, derived from it, provides a simple and reliable approximation for angular momentum projection. It becomes obvious, however, that the projection complicates the equations which determine the motion along the deformation path. These effects are studied in some simple models and the results are condensed into a simple interpolation formula for the total zero-point energy. (orig.)
Curvature, zero modes and quantum statistics
Calixto, M [Departamento de Matematica Aplicada y EstadIstica, Universidad Politecnica de Cartagena, Paseo Alfonso XIII 56, 30203 Cartagena (Spain); Aldaya, V [Instituto de AstrofIsica de AndalucIa, Apartado Postal 3004, 18080 Granada (Spain)
2006-08-18
We explore an intriguing connection between the Fermi-Dirac and Bose-Einstein statistics and the thermal baths obtained from a vacuum radiation of coherent states of zero modes in a second quantized (many-particle) theory on the compact O(3) and noncompact O(2, 1) isometry subgroups of the de Sitter and anti-de Sitter spaces, respectively. The high frequency limit is retrieved as a (zero-curvature) group contraction to the Newton-Hooke (harmonic oscillator) group. We also make some comments on the vacuum energy density and the cosmological constant problem. (letter to the editor)
Baby Skyrme model and fermionic zero modes
Queiruga, J M
2016-01-01
In this work we investigate some features of the fermionic sector of the supersymmetric version of the baby Skyrme model. We find that, in the background of BPS compact Skyrmions, fermionic zero modes are confined to the defect core. Further, we show that, while three SUSY generators are broken in the defect core, SUSY is completely restored outside. We study also the effect of a D-term deformation of the model. Such a deformation allows for the existence of fermionic zero modes and broken SUSY outside the compact defect.
Performance of heat engines with non-zero heat capacity
Highlights: ► Finite heat capacity is a second irreversibility mechanism in addition to thermal resistance. ► Heat capacity introduces thermal transients and reverse heat flow. ► Engine maximum power and efficiency are lower for finite heat capacity. ► Implementing the optimal engine cycle requires active control. - Abstract: The performance of a heat engine is analyzed subject to two types of irreversibility: a non-zero heat capacity, together with the more common finite heat transfer rate between the engine and the external heat reservoirs. The heat capacity represents an engine body that undergoes significant temperature variations during the engine cycle. An option to cut off the heat exchange between the engine and the external surrounding for part of the engine cycle is also explored. A variational approach was taken to find the engine’s internal temperature profile (which defines the internal thermodynamic cycle) that would produce maximum power. The maximum power is shown to be lower than the case of zero heat capacity, due to a loss of heat that is stored in the engine body and then lost, bypassing the thermodynamic cycle. The maximum efficiency and the efficiency at maximum power are also lower than the zero heat capacity case. Similar to the Curzon–Ahlborn analysis, power can be traded for increased efficiency, but for high heat capacity, the range of efficiency that is available for such a trade is diminished. Isolating the engine during part of the cycle reduces maximum power, but the efficiency at maximum power and the maximum efficiency are improved, due to better exploitation of heat stored in the engine body. This might be useful for real engines that are limited by the internal energy change during a single engine cycle or by the operating frequency, leading to a broader power–efficiency curve.
Relative and absolute risk in epidemiology and health physics
The health risk from ionizing radiation commonly is expressed in two forms: (1) the relative risk, which is the percentage increase in natural disease rate and (2) the absolute or attributable risk which represents the difference between the natural rate and the rate associated with the agent in question. Relative risk estimates for ionizing radiation generally are higher than those expressed as the absolute risk. This raises the question of which risk estimator is the most appropriate under different conditions. The absolute risk has generally been used for radiation risk assessment, although mathematical combinations such as the arithmetic or geometric mean of both the absolute and relative risks, have also been used. Combinations of the two risk estimators are not valid because the absolute and relative risk are not independent variables. Both human epidemiologic studies and animal experimental data can be found to illustrate the functional relationship between the natural cancer risk and the risk associated with radiation. This implies that the radiation risk estimate derived from one population may not be appropriate for predictions in another population, unless it is adjusted for the difference in the natural disease incidence between the two populations