WorldWideScience

Sample records for absolute instabilities

  1. Absolute parametric instability in a nonuniform plane plasma waveguide

    Khaled Hamed El-Shorbagy; Atef Ahmed El-Bendary; Shatha Jameel Monaquel

    2013-04-01

    The paper reports an analysis of the effect of spatial plasma nonuniformity on absolute parametric instability (API) of electrostatic waves in magnetized plane waveguides subjected to an intense high-frequency (HF) electric field using the separation method. In this case the effect of strong static magnetic field is considered. The problem of strong magnetic field is solved in 1D nonuniform plane plasma waveguide. The equation describing the spatial part of the electric potential is obtained. Also, the growth rates and conditions of the parametric instability for periodic and aperiodic cases are obtained. It is found that the spatial nonuniformity of the plasma exerts a stabilizing effect on the API. It is shown that the growth rates of periodic and aperiodic API in nonuniform plasma are less compared to that of uniform plasma.

  2. Absolute instability from linear conversion of counter-propagating positive and negative energy waves

    Kaufman, A.N.; Brizard, A.J.; Morehead, J.J. [Lawrence Berkeley National Lab., CA (United States); Tracy, E.R. [College of William and Mary, Williamsburg, VA (United States)

    1997-12-31

    The resonant interaction of a negative-energy wave with a positive-energy wave gives rise to a linear instability. Whereas a single crossing of rays in a nonuniform medium leads to a convectively saturated instability, we show that a double crossing can yield an absolute instability.

  3. Double-Cross Instability: An Absolute Instability Caused by Counter-Propagating Positive- and Negative-Energy Waves

    The resonant interaction of a negative-energy wave with a positive-energy wave gives rise to a linear instability. Whereas a single crossing of rays in a nonuniform medium leads to a convectively saturated instability, we show that a double crossing can yield an absolute instability, if the two rays are oppositely directed. We obtain expressions for the growth rate and the threshold, and present one application. copyright 1996 The American Physical Society

  4. Density modulation-induced absolute laser-plasma-instabilities: simulations and theory

    Li, J; Ren, C

    2016-01-01

    Fluid simulations show that when a sinusoidal density modulation is superimposed on a linear density profile, convective instabilities can become absolutely unstable. This conversion can occur for two-plasmon-decay and stimulated Raman Scattering instabilities under realistic direct-drive inertial confinement fusion conditions and can affect hot electron generation and laser energy deposition. Analysis of the three-wave model shows that a sufficiently large change of the density gradient in a linear density profile can turn convective instabilities into absolute ones. An analytical expression is given for the threshold of the gradient change, which depends on the convective gain only.

  5. Absolute instability of a laser-produced plasma during induced Mandelstam-Brillouin scattering

    The aim of investigation is to obtain the dependence of increments and frequencies of absolutely growing modes on the main plasma characteristics, laser radiation, as well as the calculation of saturation of the absolute instability of the forced Mandelstam-Brillouin scattering (FMBS) in a laser-produced plasma. A case is considered typical of a laser produced plasma when the primary role is played by density inhomogeneities and recession velocities. Explicit expressions for increments and frequencies of absolute FMBS instabilities in a hot plasma with an inhomogeneous density and recession velocity, are obtained. The absolute instability saturation due to the pumping wave depletion and generation of the second harmonics of ion-acoustic wave is considered

  6. Absolute and convective nature of the modulational and Raman instabilities in the relativistic regime

    The nature (convective or absolute) of the modulational and Raman instabilities is investigated in the relativistic regime, for a large amplitude electromagnetic wave propagating in a plasma of arbitrary density. The present paper extends previous results by Guerin et al. [Phys. Plasmas 2, 2807 (1995)]. Stability diagrams are obtained and compared to the stability properties found by a classical temporal stability analysis. It is shown that the modulational and the (forward and backward) Raman instabilities are individually convective. However, the Raman instability is absolute for large density and high intensity when the forward and backward Raman branches have merged into a hybrid Raman branch. Near quarter critical density, this hybrid branch is destabilized and is absolute from the threshold. The plasma equilibrium is convectively unstable between quarter critical and critical density at low intensity

  7. Density modulation-induced absolute laser-plasma-instabilities: simulations and theory

    Li, J.; Yan, R.; Ren, C.

    2016-01-01

    Fluid simulations show that when a sinusoidal density modulation is superimposed on a linear density profile, convective instabilities can become absolutely unstable. This conversion can occur for two-plasmon-decay and stimulated Raman Scattering instabilities under realistic direct-drive inertial confinement fusion conditions and can affect hot electron generation and laser energy deposition. Analysis of the three-wave model shows that a sufficiently large change of the density gradient in a...

  8. Absolute and convective instabilities in a one-dimensional Brusselator flow model

    Kuznetsov, S.P.; Mosekilde, Erik; Dewel, G.;

    1997-01-01

    The paper considers a one-dimensional Brusselator model with a uniform flow of the mixture of reaction components. An absolute as well as a convective instability can arise for both the Hopf and the Turing modes. The corresponding linear stability analysis is presented and supported by the result...

  9. Viscous linear stability of axisymmetric low-density jets: Parameters influencing absolute instability

    Srinivasan, V.; Hallberg, M. P.; Strykowski, P. J.

    2010-02-01

    Viscous linear stability calculations are presented for model low-density axisymmetric jet flows. Absolute growth transitions for the jet column mode are mapped out in a parametric space including velocity ratio, density ratio, Reynolds number, momentum thickness, and subtle differences between velocity and density profiles. Strictly speaking, the profiles used in most jet stability studies to date are only applicable to unity Prandtl numbers and zero pressure gradient flows—the present work relaxes this requirement. Results reveal how subtle differences between the velocity and density profiles generally used in jet stability theory can dramatically alter the absolute growth rate of the jet column mode in these low-density flows. The results suggest heating/cooling or mass diffusion at the outer nozzle surface can suppress absolute instability and potentially global instability in low-density jets.

  10. Absolute parametric instability of low-frequency waves in a 2D nonuniform anisotropic warm plasma

    N G Zaki

    2010-05-01

    Using the separation method, absolute parametric instability (API) of electrostatic waves in a magnetized pumped warm plasma is investigated. In this case the effect of static strong magnetic field is considered. The problem of strong magnetic field is solved in two-dimensional (2D) nonuniform plane plasma. Equations which describe the spatial part of the electric potential are obtained. Also, the growth rates and conditions of the parametric instability for periodic and aperiodic cases are obtained. It is found that the spatial nonuniformity of the plasma exerts a stabilizing effect on the API. It is shown that the growth rates of periodic and aperiodic API in warm plasma are less when compared to that in cold plasma.

  11. Onset of Absolute Instability Induced by Viscous Dissipation in the Poiseuille-Darcy-Benard Convection of a Newtonian Fluid

    The present paper investigates the transition from convective to absolute instability induced by viscous dissipation. As far as the authors are aware, this is the first time such a study is reported in the literature. Its framework is provided by the Poiseuille-Darcy-Benard convection of a Newtonian fluid. We found the same behaviour observed in the absence of viscous dissipation whenever the Gebhart number is smaller than Ge < 0.95, which is the stabilising effect of the cross flow. When 0.95 < Ge < 4.31, weak cross flows still stabilise the onset of absolute instability but stronger cross flows destabilise it. For a stronger viscous dissipation, i.e. Ge > 4.31, the cross flow always destabilises this onset. The latter two conditions create a scenario where viscous dissipation is capable of inducing a transition to absolute instability in the absence of wall heating, i.e. with a zero Rayleigh number

  12. Noise sensitivity of sub- and supercritically bifurcating patterns with group velocities close to the convective-absolute instability

    Szprynger, A

    2003-01-01

    The influence of small additive noise on structure formation near a forwards and near an inverted bifurcation as described by a cubic and quintic Ginzburg Landau amplitude equation, respectively, is studied numerically for group velocities in the vicinity of the convective-absolute instability where the deterministic front dynamics would empty the system.

  13. On Novel Mechanism of a Pump Electromagnetic Wave Absolute Two-Plasmon Parametric Decay Instability Excitation in Tokamak ECRH Experiments

    Gusakov, E Z

    2016-01-01

    Novel mechanism leading to excitation of absolute two plasmon parametric decay instability (TPDI) of a pump extraordinary (X) wave is discussed. It is shown that the upper hybrid (UH) plasmon can be 3D trapped in the presence of both a nonmonotonous density profile and a finite-size pump beam in a plane perpendicular to the plasma inhomogeneity direction. This leads to excitation of the absolute TPDI of the pump X wave, which manifests itself in temporal exponential growth of the trapped daughter UH wave amplitude and is perhaps the most dangerous instability for mm-waves, widely utilized nowadays in tokamak and stellarators for local plasma heating and current drive and being considered for application in ITER.

  14. Stabilization of the potential multi-steady-state absolute instabilities in a gyrotron traveling-wave amplifier

    The problem of spurious oscillations induced by absolute instabilities is the most challenging one that hinders the development of the millimeter-wave gyrotron traveling-wave amplifiers (gyro-TWTs). A spurious oscillation exists as a high order axial mode (HOAM) in the interaction circuit. This paper is devoted to demonstrating the complicated steady states of these HOAMs and exploring corresponding techniques to stabilize these potential multi-steady-state absolute instabilities. The stability-oriented design principle is conveyed in a start-to-end design flow of a Ka-band TE11 mode gyro-TWT. Strong magnetic tapering near the downstream port, which is capable of cutting short the effective interaction circuit of a spurious oscillation and simultaneously boosting the amplification performance, is for the first time proposed to further improve the system stability. It is also found that an ideal prebunched electron beam in the linear stage is the necessary condition to efficient amplification in the nonlinear stage, suggesting that it is feasible to design a stable prebunching stage to replace the distributed-loss-loaded linear stage. The stability-oriented design principle provides more explicit reference for future design of a zero-drive stable gyro-TWT.

  15. Room-temperature instability of TRM and the problem of estimating absolute paleointensity from non single domain materials.

    Shaar, R.; Tauxe, L.

    2015-12-01

    Absolute paleointensity data are essential for understanding Earth's deep interior, climatic modeling, and geochronology applications, among others. Paleointensity data are derived from experiments in which the ancient TRM is replaced by a laboratory controlled TRM. This procedure is built on the assumption that the process of ancient TRM acquisition is entirely reproducible in the lab. Here we show experimental results violating this assumption in a manner not expected from standard theory. We prepared 118 pairs of nearly identical specimens. One specimen from each pair was given laboratory TRM and allowed to "age" in a controlled fixed field, identical and parallel to the laboratory TRM field, for two years. After two years the second specimen was given a "fresh" TRM. Thus, the two specimens in each pair differ in only one significant respect: the time elapsed from the TRM acquisition. We carried out IZZI-type absolute paleointensity experiments on the two groups. Under the assumption of TRM stability we expect that the behavior of the twin specimens in the experiment would be exactly the same. Yet, we found a small but systematic difference between the "aged" and the "fresh" TRM. The "aged" TRM yield more curved and zigzaggy Arai plots, and exhibit a shift in the blocking/unblocking spectra. This effect leads to a systematic bias in paleointensity estimates caused only by room-temperature instability of TRM. The change in TRM properties is likely caused by irreversible changes in micromagnetic structures of non single domains.

  16. A tunable CW UV laser with <35 kHz absolute frequency instability for precision spectroscopy of Sr Rydberg states

    Bridge, Elizabeth M; Bounds, Alistair D; Boddy, Danielle; Sadler, Daniel P; Jones, Matthew P A

    2015-01-01

    We present a solid-state laser system that generates over 200 mW of continuous-wave, narrowband light, tunable between 316.3 nm and 319.3 nm. The laser is based on commercially available fiber amplifiers and optical frequency doubling technology, along with sum frequency generation in a periodically poled stoichiometric lithium tantalate crystal. The laser frequency is stabilized to an atomic-referenced high finesse optical transfer cavity. Using a GPS-referenced optical frequency comb we measure a long term frequency instability of <35 kHz. As an application we perform spectroscopy of Sr Rydberg states from n = 37 - 81, demonstrating mode-hop-free scans of 24 GHz. In a cold atomic sample we measure Doppler-limited linewidths of 350 kHz.

  17. Tunable cw UV laser with <35 kHz absolute frequency instability for precision spectroscopy of Sr Rydberg states.

    Bridge, Elizabeth M; Keegan, Niamh C; Bounds, Alistair D; Boddy, Danielle; Sadler, Daniel P; Jones, Matthew P A

    2016-02-01

    We present a solid-state laser system that generates over 200 mW of continuous-wave, narrowband light, tunable from 316.3 nm - 317.7 nm and 318.0 nm - 319.3 nm. The laser is based on commercially available fiber amplifiers and optical frequency doubling technology, along with sum frequency generation in a periodically poled stoichiometric lithium tantalate crystal. The laser frequency is stabilized to an atomic-referenced high finesse optical transfer cavity. Using a GPS-referenced optical frequency comb we measure a long term frequency instability of application we perform spectroscopy of Sr Rydberg states from n = 37 - 81, demonstrating mode-hop-free scans of 24 GHz. In a cold atomic sample we measure Doppler-limited linewidths of 350 kHz. PMID:26906804

  18. Easy Absolute Values? Absolutely

    Taylor, Sharon E.; Mittag, Kathleen Cage

    2015-01-01

    The authors teach a problem-solving course for preservice middle-grades education majors that includes concepts dealing with absolute-value computations, equations, and inequalities. Many of these students like mathematics and plan to teach it, so they are adept at symbolic manipulations. Getting them to think differently about a concept that they…

  19. Time, absolute.

    Mughal, Muhammad Aurang Zeb

    2009-01-01

    The concept of absolute time is a hypothetical model from the laws of classical physics postulated by Isaac Newton in the Principia in 1687. Although the Newtonian model of absolute time has since been opposed and rejected in light of more recent scholarship, it still provides a way to study science with reference to time and understand the phenomena of time within the scientific tradition. According to this model, it is assumed that time runs at the same rate for all the observers in the uni...

  20. Absolute beginners

    Costa, Carlos Casimiro da; Costa, Jacinta Casimiro da

    2012-01-01

    Tomorrow, I m recovering my Thursday child as an absolute beginner , Transporting you to the essential touch of surface skin and space, Only for you, i do not regret, looking for education in a materia set. My love is your love , my materiality is you making things, The legacy of our ethnography, craftsmen s old and disappear, make me strong hard feelings, Recovering experiences and knowledge sprinkled in powder of stone, wood and metal ( ) reflecting in your dirty face the ...

  1. Absolute Summ

    Phillips, Alfred, Jr.

    Summ means the entirety of the multiverse. It seems clear, from the inflation theories of A. Guth and others, that the creation of many universes is plausible. We argue that Absolute cosmological ideas, not unlike those of I. Newton, may be consistent with dynamic multiverse creations. As suggested in W. Heisenberg's uncertainty principle, and with the Anthropic Principle defended by S. Hawking, et al., human consciousness, buttressed by findings of neuroscience, may have to be considered in our models. Predictability, as A. Einstein realized with Invariants and General Relativity, may be required for new ideas to be part of physics. We present here a two postulate model geared to an Absolute Summ. The seedbed of this work is part of Akhnaton's philosophy (see S. Freud, Moses and Monotheism). Most important, however, is that the structure of human consciousness, manifest in Kenya's Rift Valley 200,000 years ago as Homo sapiens, who were the culmination of the six million year co-creation process of Hominins and Nature in Africa, allows us to do the physics that we do. .

  2. Teaching Absolute Value Meaningfully

    Wade, Angela

    2012-01-01

    What is the meaning of absolute value? And why do teachers teach students how to solve absolute value equations? Absolute value is a concept introduced in first-year algebra and then reinforced in later courses. Various authors have suggested instructional methods for teaching absolute value to high school students (Wei 2005; Stallings-Roberts…

  3. Eosinophil count - absolute

    Eosinophils; Absolute eosinophil count ... the white blood cell count to give the absolute eosinophil count. ... than 500 cells per microliter (cells/mcL). Normal value ranges may vary slightly among different laboratories. Talk ...

  4. Absolute nuclear material assay

    Prasad, Manoj K.; Snyderman, Neal J.; Rowland, Mark S.

    2010-07-13

    A method of absolute nuclear material assay of an unknown source comprising counting neutrons from the unknown source and providing an absolute nuclear material assay utilizing a model to optimally compare to the measured count distributions. In one embodiment, the step of providing an absolute nuclear material assay comprises utilizing a random sampling of analytically computed fission chain distributions to generate a continuous time-evolving sequence of event-counts by spreading the fission chain distribution in time.

  5. Absolute nuclear material assay

    Prasad, Manoj K.; Snyderman, Neal J.; Rowland, Mark S.

    2012-05-15

    A method of absolute nuclear material assay of an unknown source comprising counting neutrons from the unknown source and providing an absolute nuclear material assay utilizing a model to optimally compare to the measured count distributions. In one embodiment, the step of providing an absolute nuclear material assay comprises utilizing a random sampling of analytically computed fission chain distributions to generate a continuous time-evolving sequence of event-counts by spreading the fission chain distribution in time.

  6. ABSOLUTE NEUTRINO MASSES

    Schechter, J.; Shahid, M. N.

    2012-01-01

    We discuss the possibility of using experiments timing the propagation of neutrino beams over large distances to help determine the absolute masses of the three neutrinos.......We discuss the possibility of using experiments timing the propagation of neutrino beams over large distances to help determine the absolute masses of the three neutrinos....

  7. Waves and instabilities in plasmas

    The contents of this book are: Plasma as a Dielectric Medium; Nyquist Technique; Absolute and Convective Instabilities; Landau Damping and Phase Mixing; Particle Trapping and Breakdown of Linear Theory; Solution of Viasov Equation via Guilding-Center Transformation; Kinetic Theory of Magnetohydrodynamic Waves; Geometric Optics; Wave-Kinetic Equation; Cutoff and Resonance; Resonant Absorption; Mode Conversion; Gyrokinetic Equation; Drift Waves; Quasi-Linear Theory; Ponderomotive Force; Parametric Instabilities; Problem Sets for Homework, Midterm and Final Examinations

  8. Shoulder Instability

    ... Risk Factors Is shoulder instability the same as shoulder dislocation? No. The signs of dislocation and instability might ... the same to you--weakness and pain. However, dislocation occurs when your shoulder goes completely out of place. The shoulder ligaments ...

  9. NGS Absolute Gravity Data

    National Oceanic and Atmospheric Administration, Department of Commerce — The NGS Absolute Gravity data (78 stations) was received in July 1993. Principal gravity parameters include Gravity Value, Uncertainty, and Vertical Gradient. The...

  10. Absolute Pitch on Music

    Çuhadar, C.Hakan

    2008-01-01

    Musicians are debated people in the academic circles with the claim of they have both various characteristics and different cognitive personalities on the analogy those other people. One of these different characteristics is absolute pitch ability. Absolute pitch (AP) is a cognitive ability which can be characterized as to identify any tones (labeling) at a given pitch without using any external references. According to the different studies which were held in different times, the prevalence ...

  11. Absolute polarimetry at RHIC

    Okada, H.; Alekseev, I.; Bravar, A; Bunce, G.; Dhawan, S.; Eyser, K. O.; Gill, R; Haeberli, W.; Huang, H.; Jinnouchi, O.; Makdisi, Y.; Nakagawa, I.; Nass, A.; Saito, N; Stephenson, E.

    2007-01-01

    Precise and absolute beam polarization measurements are critical for the RHIC spin physics program. Because all experimental spin-dependent results are normalized by beam polarization, the normalization uncertainty contributes directly to final physics uncertainties. We aimed to perform the beam polarization measurement to an accuracy of $\\Delta P_{beam}/P_{beam} < 5%$. The absolute polarimeter consists of Polarized Atomic Hydrogen Gas Jet Target and left-right pairs of silicon strip detector...

  12. Absolute surface energy determination

    Metois, J. J.; Muller, P.

    2007-01-01

    Experimental determination of absolute surface energies remains a challenge. We propose a simple method based on two independent measurements on 3D and 2D equilibrium shapes completed by the analysis of the thermal fluctuation of an isolated step. Using then basic equations (Wulff' theorem, Gibbs-Thomson equation, thermodynamics fluctuation of an isolated step) allows us to extract the absolute surface free energy of a singular face. The so-proposed method can be applied when (i) all orientat...

  13. Shoulder instability

    In the shoulder, the advantages of range of motion are traded for the disadvantages of vulnerability to injury and the development of instability. Shoulder instability and the lesion it produces represent one of the main causes of shoulder discomfort and pain. Shoulder instability is defined as a symptomatic abnormal motion of the humeral head relative to the glenoid during active shoulder motion. Glenohumeral instabilities are classified according to their causative factors as the pathogenesis of instability plays an important role with respect to treatment options: instabilities are classified in traumatic and atraumatic instabilities as part of a multidirectional instability syndrome, and in microtraumatic instabilities. Plain radiographs ('trauma series') are performed to document shoulder dislocation and its successful reposition. Direct MR arthrography is the most important imaging modality for delineation the different injury patterns on the labral-ligamentous complex and bony structures. Monocontrast CT-arthrography with use of multidetector CT scanners may be an alternative imaging modality, however, regarding the younger patient age, MR imaging should be preferred in the diagnostic work-up of shoulder instabilities. (orig.)

  14. Hip instability.

    Smith, Matthew V; Sekiya, Jon K

    2010-06-01

    Hip instability is becoming a more commonly recognized source of pain and disability in patients. Traumatic causes of hip instability are often clear. Appropriate treatment includes immediate reduction, early surgery for acetabular rim fractures greater than 25% or incarcerated fragments in the joint, and close follow-up to monitor for avascular necrosis. Late surgical intervention may be necessary for residual symptomatic hip instability. Atraumatic causes of hip instability include repetitive external rotation with axial loading, generalized ligamentous laxity, and collagen disorders like Ehlers-Danlos. Symptoms caused by atraumatic hip instability often have an insidious onset. Patients may have a wide array of hip symptoms while demonstrating only subtle findings suggestive of capsular laxity. Traction views of the affected hip can be helpful in diagnosing hip instability. Open and arthroscopic techniques can be used to treat capsular laxity. We describe an arthroscopic anterior hip capsular plication using a suture technique. PMID:20473129

  15. Calibration with Absolute Shrinkage

    Øjelund, Henrik; Madsen, Henrik; Thyregod, Poul

    2001-01-01

    In this paper, penalized regression using the L-1 norm on the estimated parameters is proposed for chemometric je calibration. The algorithm is of the lasso type, introduced by Tibshirani in 1996 as a linear regression method with bound on the absolute length of the parameters, but a modification...

  16. The modulational instability of colinear waves

    A brief review is given of the modulational instability of a single wave. Some aspects of the modulational instability of two colinear waves are then studied. In general, the waves are modulationally unstable with a maximal growth rate which is larger than the modulational growth rate of either wave alone. Moreover, waves which are modulationally stable by themselves are often unstable in the other's presence. This is true for both copropagating and counterpropagating waves. An important property of an instability is whether it is absolute of convective in nature. The modulational instability of two equal-amplitude copropagating waves is usually, but not always, convective. The modulational instability of two equal-amplitude counter-propagating waves is always absolute. Some applications of current interest are discussed. (orig.)

  17. Absolute Neutrino Masses

    Since the recent convincing evidence for massive neutrinos in oscillation experiments, the next task is to determine the absolute masses of neutrinos. A unique pattern of neutrino masses will be hopefully fixed in the future superbeam experiments and neutrino factories. However, the determination of the exact scale is more complicated and depends on the mass of the lightest neutrino ( mμ )min . If ( mμ)min ≥ 0.35 eV, the future tritium β decay experiments ( e.g. KATRIN) will have a chance to establish absolute neutrino masses. For smaller masses, 0.004 eV ≤ (mμ)min ≤ 0.35 eV, if neutrinos are Majorana particles, an additional information can be derived from the neutrinoless double β decay (ββ)0μ of nuclei and again the absolute neutrino masses can be fixed. If, however, (mμ)min ≤ 0.004 eV, none of the present and foreseeable future experiments is known to be able to fix the mass scale. (author)

  18. Absolute and Convective Ion Beam Instability Studied through Green's Function

    Jensen, Vagn Orla; Michelsen, Poul; Hsuan, H. C. S.

    1974-01-01

    A Vlasov plasma with a double‐humped, unstable ion velocity distribution function is considered. A δ function in space is assumed as the initial perturbation and the plasma response to this perturbation is calculated, i.e., the Green's function for the problem is found. The response can be divided...

  19. Baroclinic instabilities

    Joly, Laurent; Chassaing, Patrick; Chapin, Vincent; Reinaud, Jean; Micallef, J; Suarez, Juan; Bretonnet, L

    2003-01-01

    1. Introduction - Illustrative examples from experiments and simulations 2. The baroclinic torque in high Froude number flows, its organization, scale and order of magnitude 3. Stability of the inhomogeneous mixing-layer 4. Transition of the inhomogeneous mixing-layer and the 2D secondary baroclinic instability 5. The strain field of 2D light jets 6. Transition to three-dimensionality in light jets and the question of side-jets 7. Baroclinic instability of heavy vortices and...

  20. Carpal instability

    Schmitt, R.; Froehner, S.; Coblenz, G.; Christopoulos, G. [Institut fuer Diagnostische und Interventionelle Radiologie, Herz- und Gefaessklinik GmbH, Bad Neustadt an der Saale (Germany)

    2006-10-15

    This review addresses the pathoanatomical basics as well as the clinical and radiological presentation of instability patterns of the wrist. Carpal instability mostly follows an injury; however, other diseases, like CPPD arthropathy, can be associated. Instability occurs either if the carpus is unable to sustain physiologic loads (''dyskinetics'') or suffers from abnormal motion of its bones during movement (''dyskinematics''). In the classification of carpal instability, dissociative subcategories (located within proximal carpal row) are differentiated from non-dissociative subcategories (present between the carpal rows) and combined patterns. It is essential to note that the unstable wrist initially does not cause relevant signs in standard radiograms, therefore being ''occult'' for the radiologic assessment. This paper emphasizes the high utility of kinematographic studies, contrast-enhanced magnetic resonance imaging (MRI) and MR arthrography for detecting these predynamic and dynamic instability stages. Later in the natural history of carpal instability, static malalignment of the wrist and osteoarthritis will develop, both being associated with significant morbidity and disability. To prevent individual and socio-economic implications, the handsurgeon or orthopedist, as well as the radiologist, is challenged for early and precise diagnosis. (orig.)

  1. ABSOLUTE POLARIMETRY AT RHIC.

    OKADA; BRAVAR, A.; BUNCE, G.; GILL, R.; HUANG, H.; MAKDISI, Y.; NASS, A.; WOOD, J.; ZELENSKI, Z.; ET AL.

    2007-09-10

    Precise and absolute beam polarization measurements are critical for the RHIC spin physics program. Because all experimental spin-dependent results are normalized by beam polarization, the normalization uncertainty contributes directly to final physics uncertainties. We aimed to perform the beam polarization measurement to an accuracy Of {Delta}P{sub beam}/P{sub beam} < 5%. The absolute polarimeter consists of Polarized Atomic Hydrogen Gas Jet Target and left-right pairs of silicon strip detectors and was installed in the RHIC-ring in 2004. This system features proton-proton elastic scattering in the Coulomb nuclear interference (CNI) region. Precise measurements of the analyzing power A{sub N} of this process has allowed us to achieve {Delta}P{sub beam}/P{sub beam} = 4.2% in 2005 for the first long spin-physics run. In this report, we describe the entire set up and performance of the system. The procedure of beam polarization measurement and analysis results from 2004-2005 are described. Physics topics of AN in the CNI region (four-momentum transfer squared 0.001 < -t < 0.032 (GeV/c){sup 2}) are also discussed. We point out the current issues and expected optimum accuracy in 2006 and the future.

  2. Absolute polarimetry at RHIC

    Okada, H; Bravar, A; Bunce, G; Dhawan, S; Eyser, K O; Gill, R; Haeberli, W; Huang, H; Jinnouchi, O; Makdisi, Y; Nakagawa, I; Nass, A; Saitô, N; Stephenson, E; Sviridia, D; Wise, T; Wood, J; Zelenski, A

    2007-01-01

    Precise and absolute beam polarization measurements are critical for the RHIC spin physics program. Because all experimental spin-dependent results are normalized by beam polarization, the normalization uncertainty contributes directly to final physics uncertainties. We aimed to perform the beam polarization measurement to an accuracy of $\\Delta P_{beam}/P_{beam} < 5%$. The absolute polarimeter consists of Polarized Atomic Hydrogen Gas Jet Target and left-right pairs of silicon strip detectors and was installed in the RHIC-ring in 2004. This system features \\textit{proton-proton} elastic scattering in the Coulomb nuclear interference (CNI) region. Precise measurements of the analyzing power $A_N$ of this process has allowed us to achieve $\\Delta P_{beam}/P_{beam} =4.2%$ in 2005 for the first long spin-physics run. In this report, we describe the entire set up and performance of the system. The procedure of beam polarization measurement and analysis results from 2004-2005 are described. Physics topics of $A...

  3. Condition for convective instability of dark solitons

    Simple derivation of the condition for the transition point from absolute instability of plane dark solitons to their convective instability is suggested. It is shown that unstable wave packet expands with velocity equal to the minimal group velocity of the disturbance waves propagating along a dark soliton. The growth rate of the length of dark solitons generated by the flow of Bose-Einstein condensate past an obstacle is estimated. Analytical theory is confirmed by the results of numerical simulations. -- Highlights: → Conditions for absolute or convective instability of dark solitons are derived. → Velocity of expansion of instability front equals to the minimal group velocity. → Growth rate of length of dark solitons generated by the flow is estimated.

  4. Optical tweezers absolute calibration

    Dutra, R S; Neto, P A Maia; Nussenzveig, H M

    2014-01-01

    Optical tweezers are highly versatile laser traps for neutral microparticles, with fundamental applications in physics and in single molecule cell biology. Force measurements are performed by converting the stiffness response to displacement of trapped transparent microspheres, employed as force transducers. Usually, calibration is indirect, by comparison with fluid drag forces. This can lead to discrepancies by sizable factors. Progress achieved in a program aiming at absolute calibration, conducted over the past fifteen years, is briefly reviewed. Here we overcome its last major obstacle, a theoretical overestimation of the peak stiffness, within the most employed range for applications, and we perform experimental validation. The discrepancy is traced to the effect of primary aberrations of the optical system, which are now included in the theory. All required experimental parameters are readily accessible. Astigmatism, the dominant effect, is measured by analyzing reflected images of the focused laser spo...

  5. Shoulder instability

    Shoulder instability is a common clinical feature leading to recurrent pain and limitated range of motion within the glenohumeral joint. Instability can be due a single traumatic event, general joint laxity or repeated episodes of microtrauma. Differentiation between traumatic and atraumatic forms of shoulder instability requires careful history and a systemic clinical examination. Shoulder laxity has to be differentiated from true instability followed by the clinical assessment of direction and degree of glenohumeral translation. Conventional radiography and CT are used for the diagnosis of bony lesions. MR imaging and MR arthrography help in the detection of soft tissue affection, especially of the glenoid labrum and the capsuloligamentous complex. The most common lesion involving the labrum is the anterior labral tear, associated with capsuloperiostal stripping (Bankart lesion). A number of variants of the Bankart lesion have been described, such as ALPSA, SLAP or HAGL lesions. The purpose of this review is to highlight different forms of shoulder instability and its associated radiological findings with a focus on MR imaging. (orig.)

  6. Measurement of the absolute \

    Aunion, Jose Luis Alcaraz; /Barcelona, IFAE

    2010-07-01

    This thesis presents the measurement of the charged current quasi-elastic (CCQE) neutrino-nucleon cross section at neutrino energies around 1 GeV. This measurement has two main physical motivations. On one hand, the neutrino-nucleon interactions at few GeV is a region where existing old data are sparse and with low statistics. The current measurement populates low energy regions with higher statistics and precision than previous experiments. On the other hand, the CCQE interaction is the most useful interaction in neutrino oscillation experiments. The CCQE channel is used to measure the initial and final neutrino fluxes in order to determine the neutrino fraction that disappeared. The neutrino oscillation experiments work at low neutrino energies, so precise measurement of CCQE interactions are essential for flux measurements. The main goal of this thesis is to measure the CCQE absolute neutrino cross section from the SciBooNE data. The SciBar Booster Neutrino Experiment (SciBooNE) is a neutrino and anti-neutrino scattering off experiment. The neutrino energy spectrum works at energies around 1 GeV. SciBooNE was running from June 8th 2007 to August 18th 2008. In that period, the experiment collected a total of 2.65 x 10{sup 20} protons on target (POT). This thesis has used full data collection in neutrino mode 0.99 x 10{sup 20} POT. A CCQE selection cut has been performed, achieving around 70% pure CCQE sample. A fit method has been exclusively developed to determine the absolute CCQE cross section, presenting results in a neutrino energy range from 0.2 to 2 GeV. The results are compatible with the NEUT predictions. The SciBooNE measurement has been compared with both Carbon (MiniBoonE) and deuterium (ANL and BNL) target experiments, showing a good agreement in both cases.

  7. Beam Instabilities

    Rumolo, G

    2014-01-01

    When a beam propagates in an accelerator, it interacts with both the external fields and the self-generated electromagnetic fields. If the latter are strong enough, the interplay between them and a perturbation in the beam distribution function can lead to an enhancement of the initial perturbation, resulting in what we call a beam instability. This unstable motion can be controlled with a feedback system, if available, or it grows, causing beam degradation and loss. Beam instabilities in particle accelerators have been studied and analysed in detail since the late 1950s. The subject owes its relevance to the fact that the onset of instabilities usually determines the performance of an accelerator. Understanding and suppressing the underlying sources and mechanisms is therefore the key to overcoming intensity limitations, thereby pushing forward the performance reach of a machine.

  8. Absolute neutrino mass measurements

    Wolf, Joachim

    2011-10-01

    The neutrino mass plays an important role in particle physics, astrophysics and cosmology. In recent years the detection of neutrino flavour oscillations proved that neutrinos carry mass. However, oscillation experiments are only sensitive to the mass-squared difference of the mass eigenvalues. In contrast to cosmological observations and neutrino-less double beta decay (0v2β) searches, single β-decay experiments provide a direct, model-independent way to determine the absolute neutrino mass by measuring the energy spectrum of decay electrons at the endpoint region with high accuracy. Currently the best kinematic upper limits on the neutrino mass of 2.2eV have been set by two experiments in Mainz and Troitsk, using tritium as beta emitter. The next generation tritium β-experiment KATRIN is currently under construction in Karlsruhe/Germany by an international collaboration. KATRIN intends to improve the sensitivity by one order of magnitude to 0.2eV. The investigation of a second isotope (137Rh) is being pursued by the international MARE collaboration using micro-calorimeters to measure the beta spectrum. The technology needed to reach 0.2eV sensitivity is still in the R&D phase. This paper reviews the present status of neutrino-mass measurements with cosmological data, 0v2β decay and single β-decay.

  9. Estimating Absolute Site Effects

    Malagnini, L; Mayeda, K M; Akinci, A; Bragato, P L

    2004-07-15

    The authors use previously determined direct-wave attenuation functions as well as stable, coda-derived source excitation spectra to isolate the absolute S-wave site effect for the horizontal and vertical components of weak ground motion. They used selected stations in the seismic network of the eastern Alps, and find the following: (1) all ''hard rock'' sites exhibited deamplification phenomena due to absorption at frequencies ranging between 0.5 and 12 Hz (the available bandwidth), on both the horizontal and vertical components; (2) ''hard rock'' site transfer functions showed large variability at high-frequency; (3) vertical-motion site transfer functions show strong frequency-dependence, and (4) H/V spectral ratios do not reproduce the characteristics of the true horizontal site transfer functions; (5) traditional, relative site terms obtained by using reference ''rock sites'' can be misleading in inferring the behaviors of true site transfer functions, since most rock sites have non-flat responses due to shallow heterogeneities resulting from varying degrees of weathering. They also use their stable source spectra to estimate total radiated seismic energy and compare against previous results. they find that the earthquakes in this region exhibit non-constant dynamic stress drop scaling which gives further support for a fundamental difference in rupture dynamics between small and large earthquakes. To correct the vertical and horizontal S-wave spectra for attenuation, they used detailed regional attenuation functions derived by Malagnini et al. (2002) who determined frequency-dependent geometrical spreading and Q for the region. These corrections account for the gross path effects (i.e., all distance-dependent effects), although the source and site effects are still present in the distance-corrected spectra. The main goal of this study is to isolate the absolute site effect (as a function of frequency

  10. Be Resolute about Absolute Value

    Kidd, Margaret L.

    2007-01-01

    This article explores how conceptualization of absolute value can start long before it is introduced. The manner in which absolute value is introduced to students in middle school has far-reaching consequences for their future mathematical understanding. It begins to lay the foundation for students' understanding of algebra, which can change…

  11. Transverse modulational instability of collinear waves

    The transverse modulational instability, or filamentation, of two collinear waves is investigated using a coupled nonlinear Schro at sign;udinger-equation model. For infinite media it is shown that the presence of the second laser field increases the growth rate of the instability and decreases the scale length of the most unstable filaments. Systems of two copropagating waves are shown to be convectively unstable and systems of two counterpropagating waves are shown to be absolutely unstable, even when the ratio of backward- to forward-wave intensity is small. For two counterpropagating waves in finite media, the threshold intensities for the absolute instability depend only weakly on the ratio of wave intensities. The general theory is applied to the pondermotive filamentation of two light waves in homogeneous plasma

  12. ROE Absolute Sea Level Changes

    U.S. Environmental Protection Agency — This raster dataset represents changes in absolute sea level along U.S. coasts from 1993 to 2014. Data were provided by the University of Colorado at Boulder (2015)...

  13. INTRINSIC INSTABILITY OF THE LATTICE BGK MODEL

    熊鳌魁

    2002-01-01

    Based on the stability analysis with no linearization and expansion,it is argued that instability in the lattice BGK model is originated from the linearrelaxation hypothesis of collision in the model. The hypothesis stands up only whenthe deviation from the local equilibrium is weak. In this case the computation is abso-lutely stable for real fluids. But for flows of high Reynolds number, this hypothesis isviolated and then instability takes place physically. By performing a transformationa quantified stability criteria is put forward without those approximation. From thecriteria a sufficient condition for stability can be obtained and serve as an estimationof the limited Reynolds number as high as possible.

  14. Absolute transition probabilities of phosphorus.

    Miller, M. H.; Roig, R. A.; Bengtson, R. D.

    1971-01-01

    Use of a gas-driven shock tube to measure the absolute strengths of 21 P I lines and 126 P II lines (from 3300 to 6900 A). Accuracy for prominent, isolated neutral and ionic lines is estimated to be 28 to 40% and 18 to 30%, respectively. The data and the corresponding theoretical predictions are examined for conformity with the sum rules.-

  15. Nonlinear ideal magnetohydrodynamics instabilities

    Explosive phenomena such as internal disruptions in toroidal discharges and solar flares are difficult to explain in terms of linear instabilities. A plasma approaching a linear stability limit can, however, become nonlinearly and explosively unstable, with noninfinitesimal perturbations even before the marginal state is reached. For such investigations, a nonlinear extension of the usual MHD (magnetohydrodynamic) energy principle is helpful. (This was obtained by Merkel and Schlueter, Sitzungsberichted. Bayer. Akad. Wiss., Munich, 1976, No. 7, for Cartesian coordinate systems.) A coordinate system independent Eulerian formulation for the Lagrangian allowing for equilibria with flow and with built-in conservation laws for mass, magnetic flux, and entropy is developed in this paper which is similar to Newcomb's Lagrangian method of 1962 [Nucl. Fusion, Suppl., Pt. II, 452 (1962)]. For static equilibria nonlinear stability is completely determined by the potential energy. For a potential energy which contains second- and nth order or some more general contributions only, it is shown in full generality that linearly unstable and marginally stable systems are explosively unstable even for infinitesimal perturbations; linearly absolutely stable systems require finite initial perturbations. For equilibria with Abelian symmetries symmetry breaking initial perturbations are needed, which should be observed in numerical simulations. Nonlinear stability is proved for two simple examples, m=0 perturbations of a Bennet Z-pinch and z-independent perturbations of a θ pinch. The algebra for treating these cases reduces considerably if symmetries are taken into account from the outset, as suggested by M. N. Rosenbluth (private communication, 1992)

  16. Study of sausage instability in semiconductor plasma

    As a perturbation of the adiabatically compressed linear pinch, a theory of the sausage instability is developed on the basis of the magnetohydrodynamic equations of motion and the particle conservation combined with Maxwell's equations. A dispersion relation of the instability and the explicit dependence of wave parameters on the fields are obtained by linearizing the equations for axially symmetrical harmonic perturbation. The critical field between a convective and an absolute instability is numerically obtained, and spatial growth rates associated with the instability are also derived in its convectively unstable region. The excitation of the sausage instability is made in an impact ionized plasma of n-InSb. The linear pinch effect of the samples is confirmed through the magnetic field dependence of current-voltage characteristics, and sinusoidal coherent oscillations are observed after a complete confinement of a pinch without an external magnetic field. Oscillation frequencies and currents on the threshold of excitations are obtained for various samples as a function of the applied electric field. The stabilization of instability by an axial magnetic field is also investigated theoretically and experimentally. The possibility of the stabilization is discussed through an evaluation of the magnetic Reynolds number in an impact ionized plasma pinch, and the critical magnetic field is derived from the hydromagnetic energy principle of the stabilization. Waveforms of the excited instability are observed under various axial magnetic fields in order to find the critical magnetic field for stabilization. The developed theories of the sausage instability on the dispersion relation and on the stabilization by axial magnetic fields are in good qualitative and quantitative agreements with the experiments. It is found that the sausage instability is excited in an impact ionized plasma of n-InSb and is explained well by the developed theory. (J.P.N.)

  17. Android Apps for Absolute Beginners

    Jackson, Wallace

    2011-01-01

    Anybody can start building simple apps for the Android platform, and this book will show you how! Android Apps for Absolute Beginners takes you through the process of getting your first Android applications up and running using plain English and practical examples. It cuts through the fog of jargon and mystery that surrounds Android application development, and gives you simple, step-by-step instructions to get you started.* Teaches Android application development in language anyone can understand, giving you the best possible start in Android development * Provides simple, step-by-step exampl

  18. Systematics of shoulder instability

    Shoulder instability is defined as a symptomatic abnormal motion of the humeral head relative to the glenoid during active shoulder motion. Glenohumeral instabilities are classified according to the causative factors as the pathogenesis of instability plays an important role with respect to treatment options. Instabilities are classified into traumatic and atraumatic instabilities as part of a multidirectional instability syndrome and into microtraumatic instabilities. For diagnostics plain radiographs (''trauma series'') are performed to document shoulder dislocation and its successful repositioning. Direct magnetic resonance (MR) arthrography is the most important imaging modality for delineation of the different injury patterns of the labral-ligamentous complex and bony structures. Monocontrast computed tomography (CT) arthrography with the use of multidetector CT scanners represents an alternative imaging modality; however, MR imaging should be preferred in the work-up of shoulder instabilities due to the mostly younger age of patients. (orig.)

  19. Bias in Absolute Magnitude Determination from Parallaxes

    Feast, Michael

    2002-01-01

    Relations are given for the correction of bias when mean absolute magnitudes are derived by the method of reduced parallaxes. The bias in the case of the derivation of the absolute magnitudes of individual objects is also considered.

  20. Absolute calibration of JET ELE system

    The first Michelson channel of the JET ECE system has been calibrated absolutely using a new high temperature source. The estimated uncertainties are of order +- 20% in the absolute spectral response and +- 10% in the relative spectral shape

  1. Earnings instability and tenure

    Cappellari, Lorenzo; Leonardi, Marco

    2007-01-01

    We study the effect of tenure on earnings instability in Italy using two alternative estimation strategies. First we use a descriptive measure of earnings instability and fixed effects regressions. Second, we develop a formal model of earnings dynamics distinguishing permanent from transitory earnings, and exploit variation of tenure and instability over time and across birth cohorts in estimation. We use the two approaches also to evaluate earnings instability associated with temporary contr...

  2. Evaluating shoulder instability treatment

    Linde, J. A.

    2016-01-01

    Shoulder instability common occurs. When treated nonoperatively, the resulting societal costs based on health care utilization and productivity losses are significant. Shoulder function can be evaluated using patient reported outcome measurements (PROMs). For shoulder instability, these include the Western Ontario Shoulder Instability index (WOSI) and the Oxford Shoulder Instability Score (OSIS). When translated and validated for the dutch population, both have good measurment properties. Sco...

  3. Lower hybrid parametric instabilities: Nonuniform pump waves and tokamak applications

    Electrostatic lower hybrid ''pump'' waves are often launched into tokamak plasmas by structures (e.g., waveguides) whose dimensions are considerably smaller than characteristic plasma sizes. Such waves propagate in well-defined resonance cones and give rise to parametric instabilities driven by electron E x B velocities. The finite size of the resonance cone region determines the threshold for both convective quasi-mode decay instabilities and absolute instabilities. The excitation of absolute instabilities depends on whether a traveling or standing wave pump model is used; traveling wave pumps require the daughter waves to have a definite frequency shift. Altogether, parametric instabilities driven by E x B velocities occur for threshold fields significantly below the threshold for filamentation instabilities driven by pondermotive forces. Applications to tokamak heating show that nonlinear effects set in when a certain power-per-wave-launching port is exceeded. For sufficiently high powers, these instabilities will occur in the low-density edge region of a tokamak. They are characterized by a daughter wave frequency 10% below the pump wave frequency, in agreement with experimental observations

  4. Transit time instabilities in an inverted fireball. I. Basic properties

    Stenzel, R. L.; Gruenwald, J.; Fonda, B.; Ionita, C.; Schrittwieser, R.

    2011-01-01

    A new fireball configuration has been developed which produces vircator-like instabilities. Electrons are injected through a transparent anode into a spherical plasma volume. Strong high-frequency oscillations with period corresponding to the electron transit time through the sphere are observed. The frequency is below the electron plasma frequency, hence does not involve plasma eigenmodes. The sphere does not support electromagnetic eigenmodes at the instability frequency. However, the rf oscillations on the gridded anode create electron bunches which reinforce the grid oscillation after one transit time or rf period, which leads to an absolute instability. Various properties of the instability are demonstrated and differences to the sheath-plasma instability are pointed out, one of which is a relatively high conversion efficiency from dc to rf power. Nonlinear effects are described in a companion paper [R. L. Stenzel et al., Phys. Plasmas 18, 012105 (2011)].

  5. Cosmology with negative absolute temperatures

    Vieira, J. P. P.; Byrnes, Christian T.; Lewis, Antony

    2016-08-01

    Negative absolute temperatures (NAT) are an exotic thermodynamical consequence of quantum physics which has been known since the 1950's (having been achieved in the lab on a number of occasions). Recently, the work of Braun et al. [1] has rekindled interest in negative temperatures and hinted at a possibility of using NAT systems in the lab as dark energy analogues. This paper goes one step further, looking into the cosmological consequences of the existence of a NAT component in the Universe. NAT-dominated expanding Universes experience a borderline phantom expansion (w < ‑1) with no Big Rip, and their contracting counterparts are forced to bounce after the energy density becomes sufficiently large. Both scenarios might be used to solve horizon and flatness problems analogously to standard inflation and bouncing cosmologies. We discuss the difficulties in obtaining and ending a NAT-dominated epoch, and possible ways of obtaining density perturbations with an acceptable spectrum.

  6. Cosmology with Negative Absolute Temperatures

    Vieira, J P P; Lewis, Antony

    2016-01-01

    Negative absolute temperatures (NAT) are an exotic thermodynamical consequence of quantum physics which has been known since the 1950's (having been achieved in the lab on a number of occasions). Recently, the work of Braun et al (2013) has rekindled interest in negative temperatures and hinted at a possibility of using NAT systems in the lab as dark energy analogues. This paper goes one step further, looking into the cosmological consequences of the existence of a NAT component in the Universe. NAT-dominated expanding Universes experience a borderline phantom expansion ($w<-1$) with no Big Rip, and their contracting counterparts are forced to bounce after the energy density becomes sufficiently large. Both scenarios might be used to solve horizon and flatness problems analogously to standard inflation and bouncing cosmologies. We discuss the difficulties in obtaining and ending a NAT-dominated epoch, and possible ways of obtaining density perturbations with an acceptable spectrum.

  7. Shoulder instability; Schulterinstabilitaeten

    Kreitner, Karl-Friedrich [Mainiz Univ. (Germany). Klinik und Poliklinik fuer Diagnostische und Interventionelle Radiologie

    2014-06-15

    In the shoulder, the advantages of range of motion are traded for the disadvantages of vulnerability to injury and the development of instability. Shoulder instability and the lesion it produces represent one of the main causes of shoulder discomfort and pain. Shoulder instability is defined as a symptomatic abnormal motion of the humeral head relative to the glenoid during active shoulder motion. Glenohumeral instabilities are classified according to their causative factors as the pathogenesis of instability plays an important role with respect to treatment options: instabilities are classified in traumatic and atraumatic instabilities as part of a multidirectional instability syndrome, and in microtraumatic instabilities. Plain radiographs ('trauma series') are performed to document shoulder dislocation and its successful reposition. Direct MR arthrography is the most important imaging modality for delineation the different injury patterns on the labral-ligamentous complex and bony structures. Monocontrast CT-arthrography with use of multidetector CT scanners may be an alternative imaging modality, however, regarding the younger patient age, MR imaging should be preferred in the diagnostic work-up of shoulder instabilities. (orig.)

  8. Joint instability and osteoarthritis.

    Blalock, Darryl; Miller, Andrew; Tilley, Michael; Wang, Jinxi

    2015-01-01

    Joint instability creates a clinical and economic burden in the health care system. Injuries and disorders that directly damage the joint structure or lead to joint instability are highly associated with osteoarthritis (OA). Thus, understanding the physiology of joint stability and the mechanisms of joint instability-induced OA is of clinical significance. The first section of this review discusses the structure and function of major joint tissues, including periarticular muscles, which play a significant role in joint stability. Because the knee, ankle, and shoulder joints demonstrate a high incidence of ligament injury and joint instability, the second section summarizes the mechanisms of ligament injury-associated joint instability of these joints. The final section highlights the recent advances in the understanding of the mechanical and biological mechanisms of joint instability-induced OA. These advances may lead to new opportunities for clinical intervention in the prevention and early treatment of OA. PMID:25741184

  9. Modelling Financial Instability

    Franklin Allen

    2005-01-01

    Financial instability can have large adverse effects on an economy. One major cause of instability is asset price bubbles. This paper starts by considering how such bubbles can arise due to the expansion of money and credit. The ways in which subsequent financial instability occurs are then discussed. Banking crises can arise due to panics or as a result of the business cycle. Contagion and financial fragility can cause small disturbances to have large effects. Finally, policy issues are touc...

  10. Dynamics of explosive instability

    It was shown that in general case explosive instability dynamics should be described as four wave interaction. The main difference from three wave interaction is that this dynamics may not contain explosive instability. Besides it may by irregular. If the characteristics of one of the wave is closed to one of the interacting wave and they are connected linearly then explosive instability may be suppressed.

  11. Measurement of the absolute speed is possible?

    Sergey V. Shevchenko; Tokarevsky, Vladimir V.

    2016-01-01

    One of popular problems, which  are experimentally studied in physics in a long time, is the testing of the special relativity theory, first of all – measurements of isotropy and constancy of light speed; as well as attempts to determine so called “absolute speed”, i.e. the Earth speed in the absolute spacetime (absolute reference frame), if this spacetime (ARF) exists.  Corresponding experiments aimed at the measuring of proper speed of some reference frame in oth...

  12. Transverse Mode Coupling Instability with Space Charge

    Balbekov, V

    2016-01-01

    Transverse mode coupling instability of a bunch with space charge and wake field is considered in frameworks of the boxcar model. Eigenfunctions of the bunch without wake are used as the basis for solution of the equations with the wake field included. Dispersion equation for the bunch eigentunes is obtained in the form of an infinite continued fraction. It is shown that influence of space charge on the instability essentially depends on the wake sign. In particular, threshold of the negative wake increases in absolute value until the space charge tune shift is rather small, and goes to zero at higher space charge. The explanation of this behavior is developed by analysis of the bunch spectrum. A comparison of the results with published articles is represented.

  13. Transverse Mode Coupling Instability with Space Charge

    Balbekov, V. [Fermilab

    2016-03-11

    Transverse mode coupling instability of a bunch with space charge and wake field is considered in frameworks of the boxcar model. Eigenfunctions of the bunch without wake are used as the basis for solution of the equations with the wake field included. Dispersion equation for the bunch eigentunes is obtained in the form of an infinite continued fraction. It is shown that influence of space charge on the instability essentially depends on the wake sign. In particular, threshold of the negative wake increases in absolute value until the space charge tune shift is rather small, and goes to zero at higher space charge. The explanation of this behavior is developed by analysis of the bunch spectrum. A comparison of the results with published articles is represented.

  14. Noise-Sustained Convective Instability in a Magnetized Taylor-Couette Flow

    Liu, Wei

    2008-01-01

    The helical magnetorotational instability of the magnetized Taylor-Couette flow is studied numerically in a finite cylinder. A distant upstream insulating boundary is shown to stabilize the convective instability entirely while reducing the growth rate of the absolute instability. The reduction is less severe with larger height. After modeling the boundary conditions properly, the wave patterns observed in the experiment turn out to be a noise-sustained convective instability. After the source of the noise resulted from unstable Ekman and Stewartson layers is switched off, a slowly-decaying inertial oscillation is observed in the simulation. We reach the conclusion that the experiments completed to date have not yet reached the regime of absolute instability.

  15. Instability in evolutionary games.

    Zimo Yang

    Full Text Available BACKGROUND: Phenomena of instability are widely observed in many dissimilar systems, with punctuated equilibrium in biological evolution and economic crises being noticeable examples. Recent studies suggested that such instabilities, quantified by the abrupt changes of the composition of individuals, could result within the framework of a collection of individuals interacting through the prisoner's dilemma and incorporating three mechanisms: (i imitation and mutation, (ii preferred selection on successful individuals, and (iii networking effects. METHODOLOGY/PRINCIPAL FINDINGS: We study the importance of each mechanism using simplified models. The models are studied numerically and analytically via rate equations and mean-field approximation. It is shown that imitation and mutation alone can lead to the instability on the number of cooperators, and preferred selection modifies the instability in an asymmetric way. The co-evolution of network topology and game dynamics is not necessary to the occurrence of instability and the network topology is found to have almost no impact on instability if new links are added in a global manner. The results are valid in both the contexts of the snowdrift game and prisoner's dilemma. CONCLUSIONS/SIGNIFICANCE: The imitation and mutation mechanism, which gives a heterogeneous rate of change in the system's composition, is the dominating reason of the instability on the number of cooperators. The effects of payoffs and network topology are relatively insignificant. Our work refines the understanding on the driving forces of system instability.

  16. Genomic instability following irradiation

    Hacker-Klom, U.B.; Goehde, W. [Inst. fuer Strahlenbiologie, Muenster Univ. (Germany)

    2001-07-01

    Ionising irradiation may induce genomic instability. The broad spectrum of stress reactions in eukaryontic cells to irradiation complicates the discovery of cellular targets and pathways inducing genomic instability. Irradiation may initiate genomic instability by deletion of genes controlling stability, by induction of genes stimulating instability and/or by activating endogeneous cellular viruses. Alternatively or additionally it is discussed that the initiation of genomic instability may be a consequence of radiation or other agents independently of DNA damage implying non nuclear targets, e.g. signal cascades. As a further mechanism possibly involved our own results may suggest radiation-induced changes in chromatin structure. Once initiated the process of genomic instability probably is perpetuated by endogeneous processes necessary for proliferation. Genomic instability may be a cause or a consequence of the neoplastic phenotype. As a conclusion from the data available up to now a new interpretation of low level radiation effects for radiation protection and in radiotherapy appears useful. The detection of the molecular mechanisms of genomic instability will be important in this context and may contribute to a better understanding of phenomenons occurring at low doses <10 cSv which are not well understood up to now. (orig.)

  17. Genomic instability following irradiation

    Ionising irradiation may induce genomic instability. The broad spectrum of stress reactions in eukaryontic cells to irradiation complicates the discovery of cellular targets and pathways inducing genomic instability. Irradiation may initiate genomic instability by deletion of genes controlling stability, by induction of genes stimulating instability and/or by activating endogeneous cellular viruses. Alternatively or additionally it is discussed that the initiation of genomic instability may be a consequence of radiation or other agents independently of DNA damage implying non nuclear targets, e.g. signal cascades. As a further mechanism possibly involved our own results may suggest radiation-induced changes in chromatin structure. Once initiated the process of genomic instability probably is perpetuated by endogeneous processes necessary for proliferation. Genomic instability may be a cause or a consequence of the neoplastic phenotype. As a conclusion from the data available up to now a new interpretation of low level radiation effects for radiation protection and in radiotherapy appears useful. The detection of the molecular mechanisms of genomic instability will be important in this context and may contribute to a better understanding of phenomenons occurring at low doses <10 cSv which are not well understood up to now. (orig.)

  18. Absolute Income, Relative Income, and Happiness

    Ball, Richard; Chernova, Kateryna

    2008-01-01

    This paper uses data from the World Values Survey to investigate how an individual's self-reported happiness is related to (i) the level of her income in absolute terms, and (ii) the level of her income relative to other people in her country. The main findings are that (i) both absolute and relative income are positively and significantly…

  19. Monolithically integrated absolute frequency comb laser system

    Wanke, Michael C.

    2016-07-12

    Rather than down-convert optical frequencies, a QCL laser system directly generates a THz frequency comb in a compact monolithically integrated chip that can be locked to an absolute frequency without the need of a frequency-comb synthesizer. The monolithic, absolute frequency comb can provide a THz frequency reference and tool for high-resolution broad band spectroscopy.

  20. Investigating Absolute Value: A Real World Application

    Kidd, Margaret; Pagni, David

    2009-01-01

    Making connections between various representations is important in mathematics. In this article, the authors discuss the numeric, algebraic, and graphical representations of sums of absolute values of linear functions. The initial explanations are accessible to all students who have experience graphing and who understand that absolute value simply…

  1. New Conformal Invariants in Absolute Parallelism Geometry

    Youssef, Nabil L.; Soleiman, A.; Taha, Ebtsam H.

    2016-01-01

    The aim of the present paper is to investigate conformal changes in absolute parallelism geometry. We find out some new conformal invariants in terms of the Weitzenb\\"ock connection and the Levi-Civita connection of an absolute parallelism space.

  2. Introducing the Mean Absolute Deviation "Effect" Size

    Gorard, Stephen

    2015-01-01

    This paper revisits the use of effect sizes in the analysis of experimental and similar results, and reminds readers of the relative advantages of the mean absolute deviation as a measure of variation, as opposed to the more complex standard deviation. The mean absolute deviation is easier to use and understand, and more tolerant of extreme…

  3. Inequalities, Absolute Value, and Logical Connectives.

    Parish, Charles R.

    1992-01-01

    Presents an approach to the concept of absolute value that alleviates students' problems with the traditional definition and the use of logical connectives in solving related problems. Uses a model that maps numbers from a horizontal number line to a vertical ray originating from the origin. Provides examples solving absolute value equations and…

  4. Large eddy simulation predictions of absolutely unstable round hot jet

    Boguslawski, A.; Tyliszczak, A.; Wawrzak, K.

    2016-02-01

    The paper presents a novel view on the absolute instability phenomenon in heated variable density round jets. As known from literature the global instability mechanism in low density jets is released when the density ratio is lower than a certain critical value. The existence of the global modes was confirmed by an experimental evidence in both hot and air-helium jets. However, some differences in both globally unstable flows were observed concerning, among others, a level of the critical density ratio. The research is performed using the Large Eddy Simulation (LES) method with a high-order numerical code. An analysis of the LES results revealed that the inlet conditions for the velocity and density distributions at the nozzle exit influence significantly the critical density ratio and the global mode frequency. Two inlet velocity profiles were analyzed, i.e., the hyperbolic tangent and the Blasius profiles. It was shown that using the Blasius velocity profile and the uniform density distribution led to a significantly better agreement with the universal scaling law for global mode frequency.

  5. The Collisionless Magnetothermal Instability

    Islam, Tanim

    2013-01-01

    It is likely that nearly all central galactic massive and supermassive black holes are nonradiative: their accretion luminosities are orders of magnitude below what can be explained by efficient black hole accretion within their ambient environments. These objects, of which Sagittarius A* is the best-known example, are also dilute (mildly collisional to highly collisionless) and optically thin. In order for accretion to occur, magnetohydrodynamic instabilities must develop that not only transport angular momentum, but also gravitational energy generated through matter infall, outwards. A class of new magnetohydrodynamical fluid instabilities -- the magnetoviscous-thermal instability (MVTI) (Islam12) -- was found to transport angular momentum and energy along magnetic field lines through large (fluid) viscosities and thermal conductivities. This paper describes the collisionless and mildly collisional analogue to the MVTI, the collisional magnetothermal instability (CMTI), that similarly transports energy and ...

  6. Chronic Ankle Instability

    ... ankle surgeon will ask you about any previous ankle injuries and instability. Then s/he will examine your ankle ... Weak ankles may be a result of previous ankle injuries, but in some cases they are a congenital ( ...

  7. The Curse of Instability

    Kuehn, Christian

    2015-01-01

    High-dimensional computational challenges are frequently explained via the curse of dimensionality, i.e., increasing the number of dimensions leads to exponentially growing computational complexity. In this commentary, we argue that thinking on a different level helps to understand, why we face the curse of dimensionality. We introduce as a guiding principle the curse of instability, which triggers the classical curse of dimensionality. Furthermore, we claim that the curse of instability is a...

  8. Rotor internal friction instability

    Bently, D. E.; Muszynska, A.

    1985-01-01

    Two aspects of internal friction affecting stability of rotating machines are discussed. The first role of internal friction consists of decreasing the level of effective damping during rotor subsynchronous and backward precessional vibrations caused by some other instability mechanisms. The second role of internal frication consists of creating rotor instability, i.e., causing self-excited subsynchronous vibrations. Experimental test results document both of these aspects.

  9. Streaming gravity mode instability

    In this paper, we study the stability of a current sheet with a sheared flow in a gravitational field which is perpendicular to the magnetic field and plasma flow. This mixing mode caused by a combined role of the sheared flow and gravity is named the streaming gravity mode instability. The conditions of this mode instability are discussed for an ideal four-layer model in the incompressible limit. (author). 5 refs

  10. Absolute calibration technique for spontaneous fission sources

    An absolute calibration technique for a spontaneously fissioning nuclide (which involves no arbitrary parameters) allows unique determination of the detector efficiency for that nuclide, hence of the fission source strength

  11. Phenotypic spandrel: absolute discrimination and ligand antagonism

    François, Paul; Johnson, Kyle A.; Saunders, Laura N.

    2015-01-01

    We consider the general problem of absolute discrimination between categories of ligands irrespective of their concentration. An instance of this problem is immune discrimination between self and not-self. We connect this problem to biochemical adaptation, and establish that ligand antagonism - the ability of sub threshold ligands to negatively impact response - is a necessary consequence of absolute discrimination.Thus antagonism constitutes a "phenotypic spandrel": a phenotype existing as a...

  12. Absolute Photoacoustic Thermometry in Deep Tissue

    Yao, Junjie; Ke, Haixin; Tai, Stephen; Zhou, Yong; Wang, Lihong V.

    2013-01-01

    Photoacoustic (PA) thermography is a promising tool for temperature measurement in deep tissue. Here, we propose an absolute temperature measurement method based on the dual temperature dependences of the Grüneisen parameter and the speed of sound in tissue. By taking ratiometric measurements at two adjacent temperatures, we can eliminate the factors that are temperature irrelevant but difficult to correct for in deep tissue. To validate our method, absolute temperatures of blood-filled tubes...

  13. 'Araphid' diatom classification and the 'absolute standard'

    Williams, David M.

    2009-01-01

    'Araphid' diatom classification is discussed from the point of view of an 'absolute standard' for taxonomic rank. The 'absolute standard' is the phylogenetic tree, its nodes, the included monophyletic groups and sub-groups. To illustrate this point a few species from the genus Licmophora are re-analysed and the resulting phylogenetic tree is discussed in terms of a possible classification, the groups and sub-groups and their ranks.

  14. Absolute distance metrology for space interferometers

    Swinkels, B L; Wendrich, T.J.; Bhattacharya, N; Wielders, A.A.; Braat, J.J.M.

    2004-01-01

    Space interferometers consisting of several free flying telescopes, such as the planned Darwin mission, require a complex metrology system to make all the components operate as a single instrument. Our research focuses on one of its sub-systems that measures the absolute distance between two satellites with high accuracy. For Darwin the required accuracy would be in the order of 10 μm over 250 meter. To measure this absolute distance, we are currently exploring the frequency sweeping interfer...

  15. Introducing the mean absolute deviation 'effect' size.

    Gorard, S.

    2015-01-01

    This paper revisits the use of effect sizes in the analysis of experimental and similar results, and reminds readers of the relative advantages of the mean absolute deviation as a measure of variation, as opposed to the more complex standard deviation. The mean absolute deviation is is easier to use and understand, and more tolerant of extreme values. The paper then proposes the use of an easy to comprehend effect size based on the mean difference between treatment groups, divided by the mean...

  16. A global algorithm for estimating Absolute Salinity

    T. J. McDougall

    2012-12-01

    Full Text Available The International Thermodynamic Equation of Seawater – 2010 has defined the thermodynamic properties of seawater in terms of a new salinity variable, Absolute Salinity, which takes into account the spatial variation of the composition of seawater. Absolute Salinity more accurately reflects the effects of the dissolved material in seawater on the thermodynamic properties (particularly density than does Practical Salinity.

    When a seawater sample has standard composition (i.e. the ratios of the constituents of sea salt are the same as those of surface water of the North Atlantic, Practical Salinity can be used to accurately evaluate the thermodynamic properties of seawater. When seawater is not of standard composition, Practical Salinity alone is not sufficient and the Absolute Salinity Anomaly needs to be estimated; this anomaly is as large as 0.025 g kg−1 in the northernmost North Pacific. Here we provide an algorithm for estimating Absolute Salinity Anomaly for any location (x, y, p in the world ocean.

    To develop this algorithm, we used the Absolute Salinity Anomaly that is found by comparing the density calculated from Practical Salinity to the density measured in the laboratory. These estimates of Absolute Salinity Anomaly however are limited to the number of available observations (namely 811. In order to provide a practical method that can be used at any location in the world ocean, we take advantage of approximate relationships between Absolute Salinity Anomaly and silicate concentrations (which are available globally.

  17. Instability of the Heliopause

    The heliopause (HP) separates the tenuous hot heliosheath plasma from the relatively dense cool magnetized plasma of the local interstellar medium (LISM). Fluid acceleration in the HP region can therefore drive Rayleigh-Taylor-like and Kelvin-Helmholtz- like instabilities. Charge exchange coupling of plasma ions and primary interstellar neutral atoms provides an effective gravity, suggesting the possibility of Rayleigh Taylor-like (RT-like) instabilities. Shear flow due to the velocity difference between the heliosheath and the interstellar flows drives Kelvin Helmholtz-like (KH-like) modes on the heliopause. Magnetic fields damp the classical KH instability. However, we show that energetic neutral atoms (ENAs) destabilize KH-modes,even in the presence of interplanetary and interstellar magnetic fields. We consider a model that includes a number of effects that are important in the heliosphere such as resonant change exchange between the primary neutrals and the solar wind plasma, ENAs from the inner heliosheath, plasma flows along the heliopause and magnetic fields in the inner and outer heliosheath. We find that the nose region is unstable to RT-like modes for HP parameters, while the shoulder region is unstable to a new instability that has the characteristics of a mixed RT-KH-like mode. These instabilities are not stabilized by typical values of the magnetic fields in the inner and outer heliosheath close to the nose and shoulder regions. Whereas ENAs have a stabilizing influence on the RT instability in the vicinity of the nose region (due to counter streaming), they have a destabilizing influence on the KH instability in the vicinity of the flanks. We find that even in the presence of interplanetary and interstellar magnetic fields, ENAs can drive a new form of KH-like instability on the flanks. An analysis of the collisional and anomalous magnetic field diffusion time scales shows that ideal MHD is an appropriate model at the HP. The interstellar magnetic

  18. Plasma physics and instabilities

    These lectures procide an introduction to the theory of plasmas and their instabilities. Starting from the Bogoliubov, Born, Green, Kirkwood, and Yvon (BBGKY) hierarchy of kinetic equations, the additional concept of self-consistent fields leads to the fundamental Vlasov equation and hence to the warm two-fluid model and the one-fluid MHD, or cold, model. The properties of small-amplitude waves in magnetized (and unmagnetized) plasmas, and the instabilities to which they give rise, are described in some detail, and a complete chapter is devoted to Landau damping. The linear theory of plasma instabilities is illustrated by the current-driven electrostatic kind, with descriptions of the Penrose criterion and the energy principle of ideal MHD. There is a brief account of the application of feedback control. The non-linear theory is represented by three examples: quasi-linear velocity-space instabilities, three-wave instabilities, and the stability of an arbitrarily largeamplitude wave in a plasma. (orig.)

  19. Mackenzie's Demon with instabilities

    MacKenzie's Maxwell Demon, consisting of positively biased thin wires, heats plasma electrons without significantly affecting the plasma potential. Experiments were performed on the Maxwell Demon in a multi-dipole confined filament discharge. It is shown that given adequate bias, the Demon reduces a bi-Maxwellian electron distribution function to a single Maxwellian electron distribution function. It is shown that a small planar electrode can perform identical heating as the Demon, provided that the electrode has the area of approximately three times the Demon's conductive surface area. The instability that limits the Demon's operation is investigated. Time-resolved measurements of changes in global electron temperature, plasma density and plasma potential within a cycle of the instability are considered. It is found that the Demon's instability is a repeating pulsed anode spot. Density measurements indicate that the frequency of the instability is dependent on plasma production and loss rates. The neutral pressure dependence of the anode spot instability is measured and modeled for the first time. (paper)

  20. Nonlinear mirror instability

    Rincon, F; Cowley, S C

    2014-01-01

    Slow dynamical changes in magnetic-field strength and invariance of the particles' magnetic moments generate ubiquitous pressure anisotropies in weakly collisional, magnetized astrophysical plasmas. This renders them unstable to fast, small-scale mirror and firehose instabilities, which are capable of exerting feedback on the macroscale dynamics of the system. By way of a new asymptotic theory of the early nonlinear evolution of the mirror instability in a plasma subject to slow shearing or compression, we show that the instability does not saturate quasilinearly at a steady, low-amplitude level. Instead, the trapping of particles in small-scale mirrors leads to nonlinear secular growth of magnetic perturbations, $\\delta B/B \\propto t^{2/3}$. Our theory explains recent collisionless simulation results, provides a prediction of the mirror evolution in weakly collisional plasmas and establishes a foundation for a theory of nonlinear mirror dynamics with trapping, valid up to $\\delta B/B =O(1)$.

  1. Neutrino beam plasma instability

    Vishnu M Bannur

    2001-10-01

    We derive relativistic fluid set of equations for neutrinos and electrons from relativistic Vlasov equations with Fermi weak interaction force. Using these fluid equations, we obtain a dispersion relation describing neutrino beam plasma instability, which is little different from normal dispersion relation of streaming instability. It contains new, nonelectromagnetic, neutrino-plasma (or electroweak) stable and unstable modes also. The growth of the instability is weak for the highly relativistic neutrino flux, but becomes stronger for weakly relativistic neutrino flux in the case of parameters appropriate to the early universe and supernova explosions. However, this mode is dominant only for the beam velocity greater than 0.25 and in the other limit electroweak unstable mode takes over.

  2. Instabilities in astrophysical jets

    Instabilities in astrophysical jets are studied in the nonlinear regime by performing 2D numerical classical gasdynamical calculations. The instabilities which arise from unsteadiness in output from the central engine feeding the jets, and those which arise from a beam in a turbulent surrounding are studied. An extra power output an order of magnitude higher than is normally delivered by the engine over a time equal to (nozzle length)/(sound velocity at centre) causes a nonlinear Kelvin-Helmholtz instability in the jet walls. Constrictions move outwards, but the jet structure is left untouched. A beam in turbulent surroundings produces internal shocks over distances of a few beam widths. If viscosity is present the throughput of material is hampered on time scales of a few beam radius sound travel times. The implications are discussed. (Auth.)

  3. Causes of genome instability

    Langie, Sabine A S; Koppen, Gudrun; Desaulniers, Daniel;

    2015-01-01

    Genome instability is a prerequisite for the development of cancer. It occurs when genome maintenance systems fail to safeguard the genome's integrity, whether as a consequence of inherited defects or induced via exposure to environmental agents (chemicals, biological agents and radiation). Thus......, genome instability can be defined as an enhanced tendency for the genome to acquire mutations; ranging from changes to the nucleotide sequence to chromosomal gain, rearrangements or loss. This review raises the hypothesis that in addition to known human carcinogens, exposure to low dose of other...... chemicals present in our modern society could contribute to carcinogenesis by indirectly affecting genome stability. The selected chemicals with their mechanisms of action proposed to indirectly contribute to genome instability are: heavy metals (DNA repair, epigenetic modification, DNA damage signaling...

  4. Absolute calibration in vivo measurement systems

    Lawrence Livermore National Laboratory (LLNL) is currently investigating a new method for obtaining absolute calibration factors for radiation measurement systems used to measure internally deposited radionuclides in vivo. Absolute calibration of in vivo measurement systems will eliminate the need to generate a series of human surrogate structures (i.e., phantoms) for calibrating in vivo measurement systems. The absolute calibration of in vivo measurement systems utilizes magnetic resonance imaging (MRI) to define physiological structure, size, and composition. The MRI image provides a digitized representation of the physiological structure, which allows for any mathematical distribution of radionuclides within the body. Using Monte Carlo transport codes, the emission spectrum from the body is predicted. The in vivo measurement equipment is calibrated using the Monte Carlo code and adjusting for the intrinsic properties of the detection system. The calibration factors are verified using measurements of existing phantoms and previously obtained measurements of human volunteers. 8 refs

  5. Stimulus probability effects in absolute identification.

    Kent, Christopher; Lamberts, Koen

    2016-05-01

    This study investigated the effect of stimulus presentation probability on accuracy and response times in an absolute identification task. Three schedules of presentation were used to investigate the interaction between presentation probability and stimulus position within the set. Data from individual participants indicated strong effects of presentation probability on both proportion correct and response times. The effects were moderated by the ubiquitous stimulus position effect. The accuracy and response time data were predicted by an exemplar-based model of perceptual cognition (Kent & Lamberts, 2005). The bow in discriminability was also attenuated when presentation probability for middle items was relatively high, an effect that will constrain future model development. The study provides evidence for item-specific learning in absolute identification. Implications for other theories of absolute identification are discussed. (PsycINFO Database Record PMID:26478959

  6. Ringed accretion disks: instabilities

    Pugliese, D

    2016-01-01

    We analyze the possibility that several instability points may be formed, due to the Paczy\\'nski mechanism of violation of mechanical equilibrium, in the orbiting matter around a supermassive Kerr black hole. We consider recently proposed model of ringed accretion disk, made up by several tori (rings) which can be corotating or counterrotating relative to the Kerr attractor due to the history of the accretion process. Each torus is governed by the general relativistic hydrodynamic Boyer condition of equilibrium configurations of rotating perfect fluids. We prove that the number of the instability points is generally limited and depends on the dimensionless spin of the rotating attractor.

  7. Longitudinal microwave instability

    A derivation of the relationship between growth rate and impedance is given. The only other instability considered here is the resonance effect produced by excessive tune shift due to space charge. We assume, without discussion, the (Δν)/sub max/ = .25; that is, this resonance growth is avoided (stability) by limiting the ring charge. On the other hand, the longitudinal microwave instability is assumed to be present (cannot be stabilized). Thus, the latter involves a limiting impedance to keep the growth rate low enough. The maximum allowed impedance for a maximum allowed growth rate is listed

  8. Photomultiplier time instability

    A short-time and slow instability of anode photocurrent in photoelectron multiplier is investigated. The analysis of sorption and desorption processes stimulated by electron excitation allowed to propose an adsorption-desorption mechanism of devices instability. Transient response and drift of photomultiplier anode photocurrent are measured as well as the curves of spent variations of spectral sensitivity of photocathode and individual amplifier cascades of the multiplying system depending on anode current. The results of calculating the proposed model are in good agreement with the experimental data

  9. Ringed Accretion Disks: Instabilities

    Pugliese, D.; Stuchlík, Z.

    2016-04-01

    We analyze the possibility that several instability points may be formed, due to the Paczyński mechanism of violation of mechanical equilibrium, in the orbiting matter around a supermassive Kerr black hole. We consider a recently proposed model of a ringed accretion disk, made up by several tori (rings) that can be corotating or counter-rotating relative to the Kerr attractor due to the history of the accretion process. Each torus is governed by the general relativistic hydrodynamic Boyer condition of equilibrium configurations of rotating perfect fluids. We prove that the number of the instability points is generally limited and depends on the dimensionless spin of the rotating attractor.

  10. Fluidelastic instability in tube arrays

    When an array of tubes is subjected to crossflow, the tubes can experience dynamic instability, generally called fluidelastic instability. Instability initiates when the crossflow velocity exceeds a threshold value above which energy input from the flow exceeds that dissipated by system damping. Catastrophic failures of reactor and process plant equipment have been attributed to fluidelastic instability. As a result, extensive research studies have been conducted in the last 15 years with the objective of understanding the instability mechanisms and developing general design guidelines to avoid instability. Argonne National Laboratory has a continuing research program in this area which includes both mathematical model development and experimentation. This paper describes recent developments and accomplishments

  11. Precise Measurement of the Absolute Fluorescence Yield

    Ave, M.; Bohacova, M.; Daumiller, K.; Di Carlo, P.; di Giulio, C.; San Luis, P. Facal; Gonzales, D.; Hojvat, C.; Hörandel, J. R.; Hrabovsky, M.; Iarlori, M.; Keilhauer, B.; Klages, H.; Kleifges, M.; Kuehn, F.; Monasor, M.; Nozka, L.; Palatka, M.; Petrera, S.; Privitera, P.; Ridky, J.; Rizi, V.; D'Orfeuil, B. Rouille; Salamida, F.; Schovanek, P.; Smida, R.; Spinka, H.; Ulrich, A.; Verzi, V.; Williams, C.

    2011-09-01

    We present preliminary results of the absolute yield of fluorescence emission in atmospheric gases. Measurements were performed at the Fermilab Test Beam Facility with a variety of beam particles and gases. Absolute calibration of the fluorescence yield to 5% level was achieved by comparison with two known light sources--the Cherenkov light emitted by the beam particles, and a calibrated nitrogen laser. The uncertainty of the energy scale of current Ultra-High Energy Cosmic Rays experiments will be significantly improved by the AIRFLY measurement.

  12. Tracking Code for Microwave Instability

    Heifets, S.; /SLAC

    2006-09-21

    To study microwave instability the tracking code is developed. For bench marking, results are compared with Oide-Yokoya results [1] for broad-band Q = 1 impedance. Results hint to two possible mechanisms determining the threshold of instability.

  13. Sharp coincidences for absolutely summing multilinear operators

    Pellegrino, Daniel

    2012-01-01

    In this note we prove the optimality of a family of known coincidence theorems for absolutely summing multilinear operators. We connect our results with the theory of multiple summing multilinear operators and prove the sharpness of similar results obtained via the complex interpolation method.

  14. Thin-film magnetoresistive absolute position detector

    Groenland, Johannes Petrus Jacobus

    1990-01-01

    The subject of this thesis is the investigation of a digital absolute posi- tion-detection system, which is based on a position-information carrier (i.e. a magnetic tape) with one single code track on the one hand, and an array of magnetoresistive sensors for the detection of the informatio

  15. Stimulus Probability Effects in Absolute Identification

    Kent, Christopher; Lamberts, Koen

    2016-01-01

    This study investigated the effect of stimulus presentation probability on accuracy and response times in an absolute identification task. Three schedules of presentation were used to investigate the interaction between presentation probability and stimulus position within the set. Data from individual participants indicated strong effects of…

  16. Solving Absolute Value Equations Algebraically and Geometrically

    Shiyuan, Wei

    2005-01-01

    The way in which students can improve their comprehension by understanding the geometrical meaning of algebraic equations or solving algebraic equation geometrically is described. Students can experiment with the conditions of the absolute value equation presented, for an interesting way to form an overall understanding of the concept.

  17. Teaching Absolute Value Inequalities to Mature Students

    Sierpinska, Anna; Bobos, Georgeana; Pruncut, Andreea

    2011-01-01

    This paper gives an account of a teaching experiment on absolute value inequalities, whose aim was to identify characteristics of an approach that would realize the potential of the topic to develop theoretical thinking in students enrolled in prerequisite mathematics courses at a large, urban North American university. The potential is…

  18. Det demokratiske argument for absolut ytringsfrihed

    Lægaard, Sune

    2014-01-01

    Artiklen diskuterer den påstand, at absolut ytringsfrihed er en nødvendig forudsætning for demokratisk legitimitet med udgangspunkt i en rekonstruktion af et argument fremsat af Ronald Dworkin. Spørgsmålet er, hvorfor ytringsfrihed skulle være en forudsætning for demokratisk legitimitet, og hvorf...

  19. Absolute-stability results in infinite dimensions

    Curtain, RF; Logemann, H; Staffans, O

    2004-01-01

    We derive absolute-stability results of Popov and circle-criterion type for infinite-dimensional systems in an input-output setting. Our results apply to feedback systems in which the linear part is the series interconnection of an input-output stable linear system and an integrator, and the nonline

  20. The Weyl functor - Introduction to Absolute Arithmetic

    Thas, Koen

    2014-01-01

    Starting from an ancient observation of Tits concerning the interpretation of symmetric groups as Chevalley groups over a (non-existing) field having only one element, we describe combinatorial geometry over this field, as well as Linear Algebra. We arrive at an "absolute mantra" which is one of the basic principles of the present book.

  1. Time Function and Absolute Black Hole

    Javadi, Hossein; Forouzbakhsh, Farshid

    2006-01-01

    Einstein’s theory of gravity is not consistent with quantum mechanics, because general relativity cannot be quantized. [1] But without conversion of force and energy, it is impossible to find a grand unified theory. A very important result of CPH theory is time function that allows we give a new ...... description of absolute black hole and before the big bang....

  2. ABSOLUTE MEASUREMENT OF THE GANIL BEAM ENERGY

    CASANDJIAN, JM; MITTIG, W; BEUNARD, R; GAUDARD, L; LEPINESZILY, A; VILLARI, ACC; AUGER, G; BIANCHI, L; CUNSOLO, A; FOTI, A; LICHTENTHALER, R; PLAGNOL, E; SCHUTZ, Y; SIEMSSEN, RH; WIELECZKO, JP

    1993-01-01

    The energy of the GANIL cyclotron beam was measured on-line during the Pb-208 + Pb-208 elastic scattering experiment ''Search for Color van der Waals Force in the Pb-208 + Pb-208 Mott scattering'' with an absolute precision of 7 x 10(-5) at approximately 1.0 GeV, which represents an improvement of o

  3. Absolute Distance Measurements with Tunable Semiconductor Laser

    Mikel, Břetislav; Číp, Ondřej; Lazar, Josef

    T118, - (2005), s. 41-44. ISSN 0031-8949 R&D Projects: GA AV ČR(CZ) IAB2065001 Keywords : tunable laser * absolute interferometer Subject RIV: BH - Optics, Masers, Lasers Impact factor: 0.661, year: 2004

  4. Magnetoresistive transducer for absolute position detection

    Groenland, J.P.J.

    1984-01-01

    In this paper a new method is presented for the measurement of absolute linear or angular position. The digital position information is recorded serially into one track of a suitable hard-magnetic medium. The stray field of this information layer determines the angular magnetisation distribution in

  5. Shock instability in dissipative gases

    Radulescu, Matei I.; Sirmas, Nick

    2011-01-01

    Previous experiments have revealed that shock waves in thermally relaxing gases, such as ionizing, dissociating and vibrationally excited gases, can become unstable. To date, the mechanism controlling this instability has not been resolved. Previous accounts of the D'yakov-Kontorovich instability, and Bethe-Zel'dovich-Thompson behaviour could not predict the experimentally observed instability. To address the mechanism controlling the instability, we study the propagation of shock waves in a ...

  6. Nonlinear evolution of MHD instabilities

    A 3-D nonlinear MHD computer code was used to study the time evolution of internal instabilities. Velocity vortex cells are observed to persist into the nonlinear evolution. Pressure and density profiles convect around these cells for a weak localized instability, or convect into the wall for a strong instability. (U.S.)

  7. Absolute parallelism, modified gravity, and suppression of gravitational short waves

    Zhogin, I L

    2011-01-01

    There is a unique variant of Absolute Parallelism, which is very simple as it has no free parameters: nothing (nor D=5) can be changed if to keep the theory safe from emerging singularities of solutions. On the contrary, eternal solutions of this theory, due to the linear instability of the trivial solution, should be of great complexity which can in some scenarios (with a set of slowly varying parameters of solutions) provide a few phenomenological models including a modified (better to say, new or another) gravity and an expanding-shell cosmology (the longitudinal polarization gives the anti-Milne model). The former looks (mostly) like a variant of tensor-Ricci-squared gravity on a brane of a huge scale L along the extra-dimension. The correction to Newton's law of gravity, which depends in this theory on two parameters (bi-Laplace equation) and behaves as 1/r on large scales, r>L (kpc>L>pc), can start from zero (the Rindler term vanishes) if a constraint is imposed on these parameters. On further considera...

  8. Genetic instability in Gynecological Cancer

    ZHAO Qing-hua; ZHOU Hong-lin

    2003-01-01

    Defects of mismatch repair (MMR) genes also have beenidentified in many kinds of tumors. Loss of MMR functionhas been linked to genetic instability especially microsatelliteinstability that results in high mutation rate. In this review, wediscussed the microsatellite instability observed in thegynecological tumors. We also discussed defects in the DNAmismatch repair in these tumors and their correlation to themicrosatellite instability, as well as the gene mutations due tothe microsatellite instability in these tumors. From thesediscussion, we tried to understand the mechanism ofcarcinogenesis in gynecological tumors from the aspect ofgenetic instability due to mismatch repair defects.

  9. Cosmic ray driven instability

    The interaction between energetic charged particles and thermal plasma, which forms the basis of diffusive shock acceleration, leads also to interesting dynamical phenomena. For a compressional mode propagating in a system with homoeneous energetic particle pressure it is well known that friction with the energetic particles leads to damping. The linear theory of this effect has been analyzed in detail by Ptuskin. Not so obvious is that a non-uniform energetic particle pressure can in addition amplify compressional disturbances. If the pressure gradient is sufficiently steep this growth can dominate the frictional damping and lead to an instability. It is important to not that this effect results from the collective nature of the interaction between the energetic particles and the gas and is not connected with the Parker instability, nor with the resonant amplification of Alfven waves

  10. Whistler modulational instability.

    Brinca, A. L.

    1973-01-01

    Derivation of the modulational instability characteristics of whistlers in cold and hot plasmas. The cold-plasma analysis considers both ion motion and relativistic effects; the unstable band, with a growth rate proportional to (B/B sub zero)squared, is contiguous to Omega sub e/4 and, depending on the plasma density, lies above or below that frequency (Omega sub e is the electron cyclotron frequency of the static magnetic field; B and B sub zero are the whistler and static magnetic fields). In hot plasmas, stability occurs between Omega sub e/4 and Omega prime (less than Omega sub e), with Omega prime depending mainly on the mean energy and anisotropy of the energetic electron population; the complementary unstable band has a growth rate proportional to (B/B sub zero) to the 1/2 power. The relevance of the instability to whistlers in the magnetosphere is discussed.

  11. The bar instability revisited

    Chiodi, Filippo; Andreotti, Bruno; Claudin, Philippe

    2012-01-01

    The river bar instability is revisited, using a hydrodynamical model based on Reynolds averaged Navier-Stokes equations. The results are contrasted with the standard analysis based on shallow water Saint-Venant equations. We first show that the stability of both transverse modes (ripples) and of small wavelength inclined modes (bars) predicted by the Saint-Venant approach are artefacts of this hydrodynamical approximation. When using a more reliable hydrodynamical model, the dispersion relati...

  12. The Instability of Markets

    Hogg, Tad; Huberman, Bernardo A.; Youssefmir, Michael

    1995-01-01

    Recent developments in the global liberalization of equity and currency markets, coupled to advances in trading technologies, are making markets increasingly interdependent. This increased fluidity raises questions about the stability of the international financial system. In this paper, we show that as couplings between stable markets grow, the likelihood of instabilities is increased, leading to a loss of general equilibrium as the system becomes increasingly large and diverse.

  13. The instability of markets

    Huberman, B A; Huberman, Bernardo A; Youssefmir, Michael

    1995-01-01

    Recent developments in the global liberalization of equity and currency markets, coupled to advances in trading technologies, are making markets increasingly interdependent. This increased fluidity raises questions about the stability of the international financial system. In this paper, we show that as couplings between stable markets grow, the likelihood of instabilities is increased, leading to a loss of general equilibrium as the system becomes increasingly large and diverse.

  14. Non-conventional fishbone instabilities

    New instabilities of the fishbone type are predicted. The first is a trapped-particle-induced m = n = 1 instability with a mode structure that has nothing in common with the conventional rigid kink displacement. This instability takes place when the magnetic field is weak, so that the precession frequency of the energetic ions is not small as compared to the frequency of the corresponding Alfven continuum at r=0 and the magnetic shear is small inside the q = 1 radius (the case relevant to spherical tori). The second predicted instability is an Energertic Particle Mode fishbone instability driven by circulating particles, and the third is a double-kink-mode instability driven by the circulating energetic ions. In particular, the latter can have two frequencies simultaneously: we refer to it as 'doublet' fishbones. This instability can occur when the radial profile of the energetic ions has an off-axis maximum inside the region of the mode localization. (author)

  15. Absolute calibration of TFTR helium proportional counters

    The TFTR helium proportional counters are located in the central five (5) channels of the TFTR multichannel neutron collimator. These detectors were absolutely calibrated using a 14 MeV neutron generator positioned at the horizontal midplane of the TFTR vacuum vessel. The neutron generator position was scanned in centimeter steps to determine the collimator aperture width to 14 MeV neutrons and the absolute sensitivity of each channel. Neutron profiles were measured for TFTR plasmas with time resolution between 5 msec and 50 msec depending upon count rates. The He detectors were used to measure the burnup of 1 MeV tritons in deuterium plasmas, the transport of tritium in trace tritium experiments, and the residual tritium levels in plasmas following 50:50 DT experiments

  16. An absolute measure for a key currency

    Oya, Shunsuke; Aihara, Kazuyuki; Hirata, Yoshito

    It is generally considered that the US dollar and the euro are the key currencies in the world and in Europe, respectively. However, there is no absolute general measure for a key currency. Here, we investigate the 24-hour periodicity of foreign exchange markets using a recurrence plot, and define an absolute measure for a key currency based on the strength of the periodicity. Moreover, we analyze the time evolution of this measure. The results show that the credibility of the US dollar has not decreased significantly since the Lehman shock, when the Lehman Brothers bankrupted and influenced the economic markets, and has increased even relatively better than that of the euro and that of the Japanese yen.

  17. From Hubble's NGSL to Absolute Fluxes

    Heap, Sara R.; Lindler, Don

    2012-01-01

    Hubble's Next Generation Spectral Library (NGSL) consists of R-l000 spectra of 374 stars of assorted temperature, gravity, and metallicity. Each spectrum covers the wavelength range, 0.18-1.00 microns. The library can be viewed and/or downloaded from the website, http://archive.stsci.edu/prepds/stisngsll. Stars in the NGSL are now being used as absolute flux standards at ground-based observatories. However, the uncertainty in the absolute flux is about 2%, which does not meet the requirements of dark-energy surveys. We are therefore developing an observing procedure that should yield fluxes with uncertainties less than 1 % and will take part in an HST proposal to observe up to 15 stars using this new procedure.

  18. The absolute differential calculus (calculus of tensors)

    Levi-Civita, Tullio

    2013-01-01

    Written by a towering figure of twentieth-century mathematics, this classic examines the mathematical background necessary for a grasp of relativity theory. Tullio Levi-Civita provides a thorough treatment of the introductory theories that form the basis for discussions of fundamental quadratic forms and absolute differential calculus, and he further explores physical applications.Part one opens with considerations of functional determinants and matrices, advancing to systems of total differential equations, linear partial differential equations, algebraic foundations, and a geometrical intro

  19. Absolute clock synchronisation and special relativity paradoxes

    Ciborowski, Jacek; Wlodarczyk, Marta

    2012-01-01

    Solving special relativity paradoxes requires rigorous analysis of event timing, due to relative simultaneity in consequence of the Lorentz transformation. Since clock synchronisation is a convention in special theory of relativity, instead of the Einstein's procedure one may choose such that offers absolute simultaneity. We present in short the corresponding formalism in one spatial dimension. We show that paradoxes do not arise with this choice of synchronisation and descriptions of these i...

  20. Absolute distance metrology for space interferometers

    Swinkels, B L; Bhattacharya, N; Wielders, A.A.; Braat, J.J.M.

    2005-01-01

    Future space missions, among which the Darwin Space Interferometer, will consist of several free flying satellites. A complex metrology system is required to have all the components fly accurately in formation and have it operate as a single instrument. Our work focuses on a possible implementation of the sub-system that measures the absolute distance between two satellites with high accuracy. For Darwin the required accuracy is on the order of 70 micrometer over a distance of 250 meter. We a...

  1. An absolute deviation approach to assessing correlation.

    Gorard, S.

    2015-01-01

    This paper describes two possible alternatives to the more traditional Pearson’s R correlation coefficient, both based on using the mean absolute deviation, rather than the standard deviation, as a measure of dispersion. Pearson’s R is well-established and has many advantages. However, these newer variants also have several advantages, including greater simplicity and ease of computation, and perhaps greater tolerance of underlying assumptions (such as the need for linearity). The first alter...

  2. Absolute Parallelism Geometry: Developments, Applications and Problems

    Wanas, M. I.

    2002-01-01

    Absolute parallelism geometry is frequently used for physical applications. It has two main defects, from the point of view of applications. The first is the identical vanishing of its curvature tensor. The second is that its autoparallel paths do not represent physical trajectories. The present work shows how these defects were treated in the course of development of the geometry. The new version of this geometry contains simultaneous non-vanishing torsion and curvatures. Also, the new paths...

  3. Cosmological frames for theories with absolute parallelism

    Ferraro, Rafael; Fiorini, Franco

    2011-01-01

    The vierbein (tetrad) fields for closed and open Friedmann-Robertson-Walker cosmologies are hard to work out in most of the theories featuring absolute parallelism. The difficulty is traced in the fact that these theories are not invariant under local Lorentz transformations of the vierbein. We illustrate this issue in the framework of f(T) theories and Born-Infeld determinantal gravity. In particular, we show that the early Universe as described by the Born-Infeld scheme is singularity free ...

  4. Measurement of absolute gravity acceleration in Firenze

    M. de Angelis

    2011-01-01

    Full Text Available This paper reports the results from the accurate measurement of the acceleration of gravity g taken at two separate premises in the Polo Scientifico of the University of Firenze (Italy. In these laboratories, two separate experiments aiming at measuring the Newtonian constant and testing the Newtonian law at short distances are in progress. Both experiments require an independent knowledge on the local value of g. The only available datum, pertaining to the italian zero-order gravity network, was taken more than 20 years ago at a distance of more than 60 km from the study site. Gravity measurements were conducted using an FG5 absolute gravimeter, and accompanied by seismic recordings for evaluating the noise condition at the site. The absolute accelerations of gravity at the two laboratories are (980 492 160.6 ± 4.0 μGal and (980 492 048.3 ± 3.0 μGal for the European Laboratory for Non-Linear Spectroscopy (LENS and Dipartimento di Fisica e Astronomia, respectively. Other than for the two referenced experiments, the data here presented will serve as a benchmark for any future study requiring an accurate knowledge of the absolute value of the acceleration of gravity in the study region.

  5. Shoulder instability; Schultergelenkinstabilitaet

    Sailer, J.; Imhof, H. [Abteilung Osteoradiologie, Univ.-Klinik fuer Radiodiagnostik Wien (Austria)

    2004-06-01

    Shoulder instability is a common clinical feature leading to recurrent pain and limitated range of motion within the glenohumeral joint. Instability can be due a single traumatic event, general joint laxity or repeated episodes of microtrauma. Differentiation between traumatic and atraumatic forms of shoulder instability requires careful history and a systemic clinical examination. Shoulder laxity has to be differentiated from true instability followed by the clinical assessment of direction and degree of glenohumeral translation. Conventional radiography and CT are used for the diagnosis of bony lesions. MR imaging and MR arthrography help in the detection of soft tissue affection, especially of the glenoid labrum and the capsuloligamentous complex. The most common lesion involving the labrum is the anterior labral tear, associated with capsuloperiostal stripping (Bankart lesion). A number of variants of the Bankart lesion have been described, such as ALPSA, SLAP or HAGL lesions. The purpose of this review is to highlight different forms of shoulder instability and its associated radiological findings with a focus on MR imaging. (orig.) [German] Die Schultergelenkinstabilitaet ist haeufig fuer wiederholt auftretende Schmerzen sowie eine eingeschraenkte Beweglichkeit im Glenohumeralgelenk verantwortlich. Sie kann als Folge eines vorangegangenen Traumas, einer generellen Hyperlaxitaet oder infolge wiederholter Mikrotraumen entstehen. Die Differenzierung zwischen traumatischer und atraumatischer Form der Gelenkinstabilitaet erfordert eine sorgfaeltige Anamnese und eine genaue klinische Untersuchung. Die Gelelenklaxitaet als Differenzialdiagnose muss von der echten Instabilitaet unterschieden werden, die Instabilitaet wird dann im Rahmen des klinischen Status nach Grad und Richtung der glenohumeralen Translation unterteilt. Zur Diagnose knoecherner Laesionen werden das konventionelle Roentgen sowie die CT herangezogen. MRT sowie MR-Arthrographie dienen zur Detektion

  6. Genome instability and aging.

    Vijg, Jan; Suh, Yousin

    2013-01-01

    Genome instability has long been implicated as the main causal factor in aging. Somatic cells are continuously exposed to various sources of DNA damage, from reactive oxygen species to UV radiation to environmental mutagens. To cope with the tens of thousands of chemical lesions introduced into the genome of a typical cell each day, a complex network of genome maintenance systems acts to remove damage and restore the correct base pair sequence. Occasionally, however, repair is erroneous, and such errors, as well as the occasional failure to correctly replicate the genome during cell division, are the basis for mutations and epimutations. There is now ample evidence that mutations accumulate in various organs and tissues of higher animals, including humans, mice, and flies. What is not known, however, is whether the frequency of these random changes is sufficient to cause the phenotypic effects generally associated with aging. The exception is cancer, an age-related disease caused by the accumulation of mutations and epimutations. Here, we first review current concepts regarding the relationship between DNA damage, repair, and mutation, as well as the data regarding genome alterations as a function of age. We then describe a model for how randomly induced DNA sequence and epigenomic variants in the somatic genomes of animals can result in functional decline and disease in old age. Finally, we discuss the genetics of genome instability in relation to longevity to address the importance of alterations in the somatic genome as a causal factor in aging and to underscore the opportunities provided by genetic approaches to develop interventions that attenuate genome instability, reduce disease risk, and increase life span. PMID:23398157

  7. Non-conventional Fishbone Instabilities

    New instabilities of fishbone type are predicted. First, a trapped-particle-induced m = n = 1 instability with the mode structure having nothing to do with the conventional rigid kink displacement. This instability takes place when the magnetic field is weak, so that the precession frequency of the energetic ions is not small as compared to the frequency of the corresponding Alfven continuum at r = 0 and the magnetic shear is small inside the q = 1 radius [the case relevant to spherical tori]. Second, an Energetic Particle Mode fishbone instability driven by circulating particles. Third, a double-kink-mode instability driven by the circulating energetic ions. In particular, the latter can have two frequencies simultaneously: we refer to it as ''doublet'' fishbones. This instability can occur when the radial profile of the energetic ions has an off-axis maximum inside the region of the mode localization

  8. Instability in Shocked Granular Gases

    Sirmas, Nick; Falle, Sam; Radulescu, Matei

    2013-01-01

    Shocks in granular media, such as vertically oscillated beds, have been shown to develop instabilities. Similar jet formation has been observed in explosively dispersed granular media. Our previous work addressed this instability by performing discrete-particle simulations of inelastic media undergoing shock compression. By allowing finite dissipation within the shock wave, instability manifests itself as distinctive high density non-uniformities and convective rolls within the shock structur...

  9. Modulational instability of nematic phase

    T Mithun; K Porsezian

    2014-02-01

    We numerically observe the effect of homogeneous magnetic field on the modulationally stable case of polar phase in = 2 spinor Bose–Einstein condensates (BECs). Also we investigate the modulational instability of uniaxial and biaxial (BN) states of polar phase. Our observations show that the magnetic field triggers the modulational instability and demonstrate that irrespective of the magnetic field effect the uniaxial and biaxial nematic phases show modulational instability.

  10. Summary of longitudinal instabilities workshop

    A five-day ISABELLE workshop on longitudinal instabilities was held at BNL, August 9--13, 1976. Heavy emphasis was put on single bunched beam instabilities in the microwave region extending above the cut-off frequency of the ISABELLE vacuum chamber. A discussion is given of the mechanism governing the instability, and calculations as well as measurements of the longitudinal coupling impedances in the ISABELLE rings are described

  11. The National Geodetic Survey absolute gravity program

    Peter, George; Moose, Robert E.; Wessells, Claude W.

    1989-03-01

    The National Geodetic Survey absolute gravity program will utilize the high precision afforded by the JILAG-4 instrument to support geodetic and geophysical research, which involves studies of vertical motions, identification and modeling of other temporal variations, and establishment of reference values. The scientific rationale of these objectives is given, the procedures used to collect gravity and environmental data in the field are defined, and the steps necessary to correct and remove unwanted environmental effects are stated. In addition, site selection criteria, methods of concomitant environmental data collection and relative gravity observations, and schedule and logistics are discussed.

  12. Prospects for absolute neutron activation analysis

    The desirability for absolute neutron activation analysis(ANAA) is two-fold. Results by the comparitor method are only as good as the standards used, and also the method offers a chance of having the final results available within minutes of completing the analysis. In the past ANAA was not seriously considered because of the scarcity and poor qaulity of the nuclear data that were available. This situation is however steadily improving and the possible applications are being investigated. This report reviews the present status by considering the basic activation equation, calculation of parameters, the factors of importance and the size error one might expect

  13. Brownian motion: absolute negative particle mobility.

    Ros, Alexandra; Eichhorn, Ralf; Regtmeier, Jan; Duong, Thanh Tu; Reimann, Peter; Anselmetti, Dario

    2005-08-18

    Noise effects in technological applications, far from being a nuisance, can be exploited with advantage - for example, unavoidable thermal fluctuations have found application in the transport and sorting of colloidal particles and biomolecules. Here we use a microfluidic system to demonstrate a paradoxical migration mechanism in which particles always move in a direction opposite to the net acting force ('absolute negative mobility') as a result of an interplay between thermal noise, a periodic and symmetric microstructure, and a biased alternating-current electric field. This counterintuitive phenomenon could be used for bioanalytical purposes, for example in the separation and fractionation of colloids, biological molecules and cells. PMID:16107829

  14. Absolute Priority for a Vehicle in VANET

    Shirani, Rostam; Hendessi, Faramarz; Montazeri, Mohammad Ali; Sheikh Zefreh, Mohammad

    In today's world, traffic jams waste hundreds of hours of our life. This causes many researchers try to resolve the problem with the idea of Intelligent Transportation System. For some applications like a travelling ambulance, it is important to reduce delay even for a second. In this paper, we propose a completely infrastructure-less approach for finding shortest path and controlling traffic light to provide absolute priority for an emergency vehicle. We use the idea of vehicular ad-hoc networking to reduce the imposed travelling time. Then, we simulate our proposed protocol and compare it with a centrally controlled traffic light system.

  15. Musical Activity Tunes Up Absolute Pitch Ability

    Dohn, Anders; Garza-Villarreal, Eduardo A.; Ribe, Lars Riisgaard; Wallentin, Mikkel; Vuust, Peter

    2014-01-01

    Absolute pitch (AP) is the ability to identify or produce pitches of musical tones without an external reference. Active AP (i.e., pitch production or pitch adjustment) and passive AP (i.e., pitch identification) are considered to not necessarily coincide, although no study has properly compared......, we found that APs generally undershoot when adjusting musical pitch, a tendency that decreases when musical activity increases. Finally, APs are less accurate when adjusting the pitch to black key targets than to white key targets. Hence, AP ability may be partly practice-dependent and we speculate...

  16. ABSOLUT LOMO绝对创意

    婷婷(整理)

    2007-01-01

    ABSOLUT与创意素来有着不解之缘。由Andy Warhal的ABSOLUT WARHOL至今,已有超过400位不同领域的创意大师为ABSOLUT的当代艺术宝库贡献了自己的得意之作。ABSOLUT的创意仿佛永远不会枯竭,而一系列的作品也让惊喜从未落空。

  17. Instability of enclosed horizons

    Kay, Bernard S

    2013-01-01

    We study the classical massless scalar wave equation on the region of 1+1-dimensional Minkowski space between the two branches of the hyperbola $x^2-t^2=1$ with vanishing boundary conditions on it. We point out that there are initially finite-energy initially, say, right-going waves for which the stress-energy tensor becomes singular on the null-line $t+x=0$. We also construct the quantum theory of this system and show that, while there is a regular Hartle-Hawking-Israel-like state, there are coherent states built on this for which there is a similar singularity in the expectation value of the renormalized stress-energy tensor. We conjecture that in 1+3-dimensional situations with 'enclosed horizons' such as a (maximally extended) Schwarzschild black hole in equilibrium in a stationary box or the (maximally extended) Schwarzschild-AdS spacetime, there will be a similar singularity at the horizon and that would signal an instability when matter perturbations and/or gravity are switched on. Such an instability ...

  18. Libration driven multipolar instabilities

    Cébron, David; Herreman, Wietze

    2014-01-01

    We consider rotating flows in non-axisymmetric enclosures that are driven by libration, i.e. by a small periodic modulation of the rotation rate. Thanks to its simplicity, this model is relevant to various contexts, from industrial containers (with small oscillations of the rotation rate) to fluid layers of terrestial planets (with length-of-day variations). Assuming a multipolar $n$-fold boundary deformation, we first obtain the two-dimensional basic flow. We then perform a short-wavelength local stability analysis of the basic flow, showing that an instability may occur in three dimensions. We christen it the Libration Driven Multipolar Instability (LDMI). The growth rates of the LDMI are computed by a Floquet analysis in a systematic way, and compared to analytical expressions obtained by perturbation methods. We then focus on the simplest geometry allowing the LDMI, a librating deformed cylinder. To take into account viscous and confinement effects, we perform a global stability analysis, which shows that...

  19. Variance computations for functional of absolute risk estimates

    Pfeiffer, R. M.; E. Petracci

    2011-01-01

    We present a simple influence function based approach to compute the variances of estimates of absolute risk and functions of absolute risk. We apply this approach to criteria that assess the impact of changes in the risk factor distribution on absolute risk for an individual and at the population level. As an illustration we use an absolute risk prediction model for breast cancer that includes modifiable risk factors in addition to standard breast cancer risk factors. Influence function base...

  20. Isotope dilution strategies for absolute quantitative proteomics

    The development of mass spectrometry (MS)-based methodologies for high-throughput protein identification has generated a concomitant need for protein quantification. Numerous MS-based relative quantification methodologies have been dedicated to the extensive comparison of multiple proteomes. On the other hand, absolute quantification methodologies, which allow the determination of protein concentrations in biological samples, are generally restricted to defined sets of proteins. Depending on the selected analytical procedure, absolute quantification approaches can provide accurate and precise estimations. These analytical performances are crucial for specific applications such as the evaluation of clinical bio-marker candidates. According to bioanalytical guidelines, accurate analytical processes require internal standards and quality controls. Regarding MS-based analysis of small molecules, isotope dilution has been recognized as the reference method for internal standardization. However, protein quantification methodologies which rely on the isotope dilution principle have been implemented in the proteomic field only recently. In these approaches, the sample is spiked with defined amounts of isotope-labeled analogue(s) of specific proteolytic peptide(s) (AQUA and QconCAT strategies) or protein(s) (PSAQ strategy). In this review, we present a critical overview of these isotope dilution methodologies. (authors)

  1. A Conceptual Approach to Absolute Value Equations and Inequalities

    Ellis, Mark W.; Bryson, Janet L.

    2011-01-01

    The absolute value learning objective in high school mathematics requires students to solve far more complex absolute value equations and inequalities. When absolute value problems become more complex, students often do not have sufficient conceptual understanding to make any sense of what is happening mathematically. The authors suggest that the…

  2. Using, Seeing, Feeling, and Doing Absolute Value for Deeper Understanding

    Ponce, Gregorio A.

    2008-01-01

    Using sticky notes and number lines, a hands-on activity is shared that anchors initial student thinking about absolute value. The initial point of reference should help students successfully evaluate numeric problems involving absolute value. They should also be able to solve absolute value equations and inequalities that are typically found in…

  3. Transients in quasi-controllable systems. Overshooting, stability and instability

    Kozyakin, V S; Pokrovskii, A V

    2009-01-01

    Families of regimes for control systems are studied possessing the so called quasi-controllability property that is similar to the Kalman controllability property. A new approach is proposed to estimate the degree of transients overshooting in quasi-controllable systems. This approach is conceptually related with the principle of bounded regimes absence in the absolute stability problem. Its essence is in obtaining of constructive a priori bounds for degree of overshooting in terms of the so called quasi-controllability measure. It is shown that relations between stability, asymptotic stability and instability for quasi-controllable systems are similar to those for systems described by linear differential or difference equations in the case when the leading eigenvalue of the corresponding matrix is simple. The results are applicable for analysis of transients, classical absolute stability problem, stability problem for desynchronized systems and so on.

  4. MD on Head-Tail Instability in the PS Booster

    Kornilov, V; Mikulec, B; Aumon, S; Rumolo, G

    2013-01-01

    Machine study experiments on the coherent instabilities appearing along the magnetic ramp have been performed at the CERN PS Booster synchrotron in the week of June 11-15, 2012. The space- and time structure of the head-tail instabilities was recorded by the triggered pick-up signals due to reproducibility of the occurrence time in the shot-by-shot sense. The intensity thresholds, the absolute growth rates and the mode structure have been compared for the bunches in the single-rf and in three types of the double-rf operation. The growth rates are compared to the instantaneous synchrotron frequencies, in the cases of the large corresponding ratio the head-tail mode structure is deformed by the driving impedance. Bunch parameters measurements indicate that the PSB bunches are in the regime of very strong transverse space-charge all along the magnetic ramp.

  5. Effect of induced spatial incoherence on parametric instabilities

    The effect on parametric instability growth of pump wave incoherence is treated by deriving a set of equations governing the space-time evolution of the ensemble-average coupled-mode amplitudes and intensities. Particular attention is paid to establishing the regions of validity of the statistical description. Thresholds, growth rates, and amplification rates are given for both spatially and temporally incoherent pump waves. Both absolutely and convectively unstable modes are considered. The statistical results are verified where appropriate by numerical integration of the coupled-mode equations with different models of pump incoherence

  6. Cohabitation and Children's Family Instability

    Kelly Raley, R.; Wildsmith, Elizabeth

    2004-01-01

    This study estimates how much children's family instability is missed when we do not count transitions into and out of cohabitation, and examines early life course trajectories of children to see whether children who experience maternal cohabitation face more family instability than children who do not. Using data from the 1995 National Survey of…

  7. Instability of liquid crystal elastomers

    An, Ning; Li, Meie; Zhou, Jinxiong

    2016-01-01

    Nematic liquid crystal elastomers (LCEs) contract in the director direction but expand in other directions, perpendicular to the director, when heated. If the expansion of an LCE is constrained, compressive stress builds up in the LCE, and it wrinkles or buckles to release the stored elastic energy. Although the instability of soft materials is ubiquitous, the mechanism and programmable modulation of LCE instability has not yet been fully explored. We describe a finite element method (FEM) scheme to model the inhomogeneous deformation and instability of LCEs. A constrained LCE beam working as a valve for microfluidic flow, and a piece of LCE laminated with a nanoscale poly(styrene) (PS) film are analyzed in detail. The former uses the buckling of the LCE beam to occlude the microfluidic channel, while the latter utilizes wrinkling or buckling to measure the mechanical properties of hard film or to realize self-folding. Through rigorous instability analysis, we predict the critical conditions for the onset of instability, the wavelength and amplitude evolution of instability, and the instability patterns. The FEM results are found to correlate well with analytical results and reported experiments. These efforts shed light on the understanding and exploitation of the instabilities of LCEs.

  8. Genome instability in Alzheimer disease

    Hou, Yujun; Song, Hyundong; Croteau, Deborah L;

    2016-01-01

    to the development of noninvasive treatment strategies. Further investigations into the molecular mechanisms connecting DNA damage to AD pathology may help to develop novel treatment strategies for this debilitating disease. Here we provide an overview of the role of genome instability and DNA repair deficiency...... in AD pathology and discuss research strategies that include genome instability as a component....

  9. Cinerama sickness and postural instability

    Bos, J.E.; Ledegang, W.D.; Lubeck, A.J.A.; Stins, J.F.

    2013-01-01

    Motion sickness symptoms and increased postural instability induced by motion pictures have been reported in a laboratory, but not in a real cinema. We, therefore, carried out an observational study recording sickness severity and postural instability in 19 subjects before, immediately and 45 min af

  10. Microsatellite instability in bladder cancer

    Gonzalez-Zulueta, M; Ruppert, J M; Tokino, K; Tsai, Y C; Spruck, C H; Miyao, N; Nichols, P W; Hermann, G G; Horn, T; Steven, K

    1993-01-01

    Somatic instability at microsatellite repeats was detected in 6 of 200 transitional cell carcinomas of the bladder. Instabilities were apparent as changes in (GT)n repeat lengths on human chromosome 9 for four tumors and as alterations in a (CAG)n repeat in the androgen receptor gene on the X chr...

  11. Structural and Material Instability

    Cifuentes, Gustavo Cifuentes

    This work is a small contribution to the general problem of structural and material instability. In this work, the main subject is the analysis of cracking and failure of structural elements made from quasi-brittle materials like concrete. The analysis is made using the finite element method. Three...... program based on the finite element method for the analysis of cracks in structural elements is presented; in this program the interface and elements with embedded discontinuities are implemented....... use of interface elements) is used successfully to model cases where the path of the discontinuity is known in advance, as is the case of the analysis of pull-out of fibers embedded in a concrete matrix. This method is applied to the case of non-straight fibers and fibers with forces that have...

  12. Instability and Information

    Patzelt, Felix

    2015-01-01

    Many complex systems exhibit extreme events far more often than expected for a normal distribution. This work examines how self-similar bursts of activity across several orders of magnitude can emerge from first principles in systems that adapt to information. Surprising connections are found between two apparently unrelated research topics: hand-eye coordination in balancing tasks and speculative trading in financial markets. Seemingly paradoxically, locally minimising fluctuations can increase a dynamical system's sensitivity to unpredictable perturbations and thereby facilitate global catastrophes. This general principle is studied in several domain-specific models and in behavioural experiments. It explains many findings in both fields and resolves an apparent antinomy: the coexistence of stabilising control or market efficiency and perpetual instabilities resembling critical phenomena in physical systems.

  13. The bar instability revisited

    Chiodi, Filippo; Claudin, Philippe

    2012-01-01

    The river bar instability is revisited, using a hydrodynamical model based on Reynolds averaged Navier-Stokes equations. The results are contrasted with the standard analysis based on shallow water Saint-Venant equations. We first show that the stability of both transverse modes (ripples) and of small wavelength inclined modes (bars) predicted by the Saint-Venant approach are artefacts of this hydrodynamical approximation. When using a more reliable hydrodynamical model, the dispersion relation does not present any maximum of the growth rate when the sediment transport is assumed to be locally saturated. The analysis therefore reveals the fundamental importance of the relaxation of sediment transport towards equilibrium as it it is responsible for the stabilisation of small wavelength modes. This dynamical mechanism is characterised by the saturation number, defined as the ratio of the saturation length to the water depth Lsat/H. This dimensionless number controls the transition from ripples (transverse patte...

  14. Plateau Rayleigh instability simulation.

    Mead-Hunter, Ryan; King, Andrew J C; Mullins, Benjamin J

    2012-05-01

    The well-known phenomena of Plateau-Rayleigh instability has been simulated using computational fluid dynamics (CFD). The breakup of a liquid film into an array of droplets on a cylindrical element was simulated using a volume-of-fluid (VOF) solver and compared to experimental observations and existing theory. It is demonstrated that the VOF method can correctly predict the breakup of thins films into an array of either axisymmetric droplets or clam-shell droplets, depending on the surface energy. The existence of unrealistically large films is precluded. Droplet spacing was found to show reasonable agreement with theory. Droplet motion and displacement under fluid flow was also examined and compared to that in previous studies. It was found that the presence of air flow around the droplet does not influence the stable film thickness; however, it reduces the time required for droplet formation. Novel relationships for droplet displacement were derived from the results. PMID:22512475

  15. From instabilities to multifragmentation

    The main purpose of this article is to show that, in many physical situations, the spinodal decomposition of unstable systems can be correctly described by stochastic mean-field approaches. Such theories predict that the occurrence of spinodal instability leading the multifragmentation of an expended nuclear system, can be signed through the observation of time scales for the fragment formation of the order of 100 fm/c and of typical fragment size around A=20. We will finally discuss the fact that these fragments are formed at finite temperature and so can subsequently decay in flight. Finally, we will give some hints about possible experimental signals of such first order phase transitions. (authors). 12 refs., 5 figs

  16. Internal rotor friction instability

    Walton, J.; Artiles, A.; Lund, J.; Dill, J.; Zorzi, E.

    1990-01-01

    The analytical developments and experimental investigations performed in assessing the effect of internal friction on rotor systems dynamic performance are documented. Analytical component models for axial splines, Curvic splines, and interference fit joints commonly found in modern high speed turbomachinery were developed. Rotor systems operating above a bending critical speed were shown to exhibit unstable subsynchronous vibrations at the first natural frequency. The effect of speed, bearing stiffness, joint stiffness, external damping, torque, and coefficient of friction, was evaluated. Testing included material coefficient of friction evaluations, component joint quantity and form of damping determinations, and rotordynamic stability assessments. Under conditions similar to those in the SSME turbopumps, material interfaces experienced a coefficient of friction of approx. 0.2 for lubricated and 0.8 for unlubricated conditions. The damping observed in the component joints displayed nearly linear behavior with increasing amplitude. Thus, the measured damping, as a function of amplitude, is not represented by either linear or Coulomb friction damper models. Rotordynamic testing of an axial spline joint under 5000 in.-lb of static torque, demonstrated the presence of an extremely severe instability when the rotor was operated above its first flexible natural frequency. The presence of this instability was predicted by nonlinear rotordynamic time-transient analysis using the nonlinear component model developed under this program. Corresponding rotordynamic testing of a shaft with an interference fit joint demonstrated the presence of subsynchronous vibrations at the first natural frequency. While subsynchronous vibrations were observed, they were bounded and significantly lower in amplitude than the synchronous vibrations.

  17. Combustion Instabilities Modeled

    Paxson, Daniel E.

    1999-01-01

    NASA Lewis Research Center's Advanced Controls and Dynamics Technology Branch is investigating active control strategies to mitigate or eliminate the combustion instabilities prevalent in lean-burning, low-emission combustors. These instabilities result from coupling between the heat-release mechanisms of the burning process and the acoustic flow field of the combustor. Control design and implementation require a simulation capability that is both fast and accurate. It must capture the essential physics of the system, yet be as simple as possible. A quasi-one-dimensional, computational fluid dynamics (CFD) based simulation has been developed which may meet these requirements. The Euler equations of mass, momentum, and energy have been used, along with a single reactive species transport equation to simulate coupled thermoacoustic oscillations. A very simple numerical integration scheme was chosen to reduce computing time. Robust boundary condition procedures were incorporated to simulate various flow conditions (e.g., valves, open ends, and choked inflow) as well as to accommodate flow reversals that may arise during large flow-field oscillations. The accompanying figure shows a sample simulation result. A combustor with an open inlet, a choked outlet, and a large constriction approximately two thirds of the way down the length is shown. The middle plot shows normalized, time-averaged distributions of the relevant flow quantities, and the bottom plot illustrates the acoustic mode shape of the resulting thermoacoustic oscillation. For this simulation, the limit cycle peak-to-peak pressure fluctuations were 13 percent of the mean. The simulation used 100 numerical cells. The total normalized simulation time was 50 units (approximately 15 oscillations), which took 26 sec on a Sun Ultra2.

  18. Instability in Shocked Granular Gases

    Sirmas, Nick; Radulescu, Matei

    2013-01-01

    Shocks in granular media, such as vertically oscillated beds, have been shown to develop instabilities. Similar jet formation has been observed in explosively dispersed granular media. Our previous work addressed this instability by performing discrete-particle simulations of inelastic media undergoing shock compression. By allowing finite dissipation within the shock wave, instability manifests itself as distinctive high density non-uniformities and convective rolls within the shock structure. In the present study we have extended this work to investigate this instability at the continuum level. We modeled the Euler equations for granular gases with a modified cooling rate to include an impact velocity threshold necessary for inelastic collisions. Our results showed a fair agreement between the continuum and discrete-particle models. Discrepancies, such as higher frequency instabilities in our continuum results may be attributed to the absence of higher order effects.

  19. Instability in shocked granular gases

    Shocks in granular media, such as vertically oscillated beds, have been shown to develop instabilities. Similar jet formation has been observed in explosively dispersed granular media. Our previous work addressed this instability by performing discrete-particle simulations of inelastic media undergoing shock compression. By allowing finite dissipation within the shock wave, instability manifests itself as distinctive high density non-uniformities and convective rolls within the shock structure. In the present study we have extended this work to investigate this instability at the continuum level. We modeled the Euler equations for granular gases with a modified cooling rate to include an impact velocity threshold necessary for inelastic collisions. Our results showed a fair agreement between the continuum and discrete-particle models. Discrepancies, such as higher frequency instabilities in our continuum results may be attributed to the absence of higher order effects.

  20. Nonlinear evolution of MHD instabilities

    The problems of nonlinear theory of MHD instability, some analytical solutions of one-dimensional dynamic and two-dimensional kinematic problems and the problems of helical MHD instability in a plasma cylinder and axially-symmetric MHD instability in a Z-pinch are considered. The initial configuration is assumed to be equilibrium but unstable and its motion is initiated by a small initial disturbance. Instability evolution at a nonlinear stage is investigated by means of computer numerical integrating of the total system of MHD equations of motion. Limiting by two-dimensional motions class allows using the visual apparatus of freezed in functions satisfying in ideal gasodynamics the equation deltaPSIsub(i)/deltat+vector Vgrad PSIsub(i)=0. The investigation of evolution of axially symmetric MHD-instability in Z-pinch systems allows to construct on uncontradictory scheme of physical processes occuring in them from the initial discharge state to cylindrical equilibrium state

  1. Gravitational Instabilities in Circumstellar Disks

    Kratter, Kaitlin M

    2016-01-01

    [Abridged] Star and planet formation are the complex outcomes of gravitational collapse and angular momentum transport mediated by protostellar and protoplanetary disks. In this review we focus on the role of gravitational instability in this process. We begin with a brief overview of the observational evidence for massive disks that might be subject to gravitational instability, and then highlight the diverse ways in which the instability manifests itself in protostellar and protoplanetary disks: the generation of spiral arms, small scale turbulence-like density fluctuations, and fragmentation of the disk itself. We present the analytic theory that describes the linear growth phase of the instability, supplemented with a survey of numerical simulations that aim to capture the non-linear evolution. We emphasize the role of thermodynamics and large scale infall in controlling the outcome of the instability. Despite apparent controversies in the literature, we show a remarkable level of agreement between analyt...

  2. Dynamical Instability and Soliton Concept

    The problem of dynamical instability and clustering (stable fragments formation) in a breakup of excited nuclear systems are considered from the points of view of the soliton concept. It is noted that the volume (spinodal) instability can be associated with nonlinear terms, and the surface (Rayleigh-Taylor type) instability, with the dispersion terms in the evolution equations. The spinodal instability and the Rayleigh-Taylor instability may compensate each other and lead to stable quasi-soliton type objects. The simple analytical model is presented to illustrate this physical picture. The time evolution of an initially compressed cold nuclear system is analysed in the framework of the inverse mean-field method. It is demonstrated that the nonlinearity and dispersion terms of the evolution equations can lead to clusterization in the final channel. 8 p

  3. Beam instability Workshop - plenary sessions

    The purpose of this workshop was to provide a review of the mechanisms of limiting beam instabilities, their cures, including feedback, and beam measurement for synchrotron radiation light sources. 12 plenary sessions took place whose titles are: 1) challenging brilliance and lifetime issues with increasing currents; 2) limiting instabilities in multibunch; 3) experience from high currents in B factories; 4) longitudinal dynamics in high intensity/bunch; 5) Transverse instabilities for high intensity/bunch; 6) working group introduction from ESRF experience; 7) impedance modelling: simulations, minimization; 8) report on the broadband impedance measurements and modelling workshop; 9) feedback systems for synchrotron light sources; 10) beam instabilities diagnostics; 11) harmonic cavities: the pros and cons; and 12) experimental study of fast beam-ion instabilities at PLS. This document gathers the 12 articles that were presented during these sessions

  4. Equilibrium Electro-osmotic Instability

    Rubinstein, Isaak

    2014-01-01

    Since its prediction fifteen years ago, electro-osmotic instability has been attributed to non-equilibrium electro-osmosis related to the extended space charge which develops at the limiting current in the course of concentration polarization at a charge-selective interface. This attribution had a double basis. Firstly, it has been recognized that equilibrium electro-osmosis cannot yield instability for a perfectly charge-selective solid. Secondly, it has been shown that non-equilibrium electro-osmosis can. First theoretical studies in which electro-osmotic instability was predicted and analyzed employed the assumption of perfect charge-selectivity for the sake of simplicity and so did the subsequent numerical studies of various time-dependent and nonlinear features of electro-osmotic instability. In this letter, we show that relaxing the assumption of perfect charge-selectivity (tantamount to fixing the electrochemical potential in the solid) allows for equilibrium electro-osmotic instability. Moreover, we s...

  5. Absolute geostrophic currents in global tropical oceans

    Yang, Lina; Yuan, Dongliang

    2016-03-01

    A set of absolute geostrophic current (AGC) data for the period January 2004 to December 2012 are calculated using the P-vector method based on monthly gridded Argo profiles in the world tropical oceans. The AGCs agree well with altimeter geostrophic currents, Ocean Surface Current Analysis-Real time currents, and moored current-meter measurements at 10-m depth, based on which the classical Sverdrup circulation theory is evaluated. Calculations have shown that errors of wind stress calculation, AGC transport, and depth ranges of vertical integration cannot explain non-Sverdrup transport, which is mainly in the subtropical western ocean basins and equatorial currents near the Equator in each ocean basin (except the North Indian Ocean, where the circulation is dominated by monsoons). The identified non-Sverdrup transport is thereby robust and attributed to the joint effect of baroclinicity and relief of the bottom (JEBAR) and mesoscale eddy nonlinearity.

  6. How is an absolute democracy possible?

    Joanna Bednarek

    2011-01-01

    Full Text Available In the last part of the Empire trilogy, Commonwealth, Negri and Hardt ask about the possibility of the self-governance of the multitude. When answering, they argue that absolute democracy, understood as the political articulation of the multitude that does not entail its unification (construction of the people is possible. As Negri states, this way of thinking about political articulation is rooted in the tradition of democratic materialism and constitutes the alternative to the dominant current of modern political philosophy that identifies political power with sovereignty. The multitude organizes itself politically by means of the constitutive power, identical with the ontological creativity or productivity of the multitude. To state the problem of political organization means to state the problem of class composition: political democracy is at the same time economic democracy.

  7. Absolute measurements of fast neutrons using yttrium

    Yttrium is presented as an absolute neutron detector for pulsed neutron sources. It has high sensitivity for detecting fast neutrons. Yttrium has the property of generating a monoenergetic secondary radiation in the form of a 909 keV gamma-ray caused by inelastic neutron interaction. It was calibrated numerically using MCNPX and does not need periodic recalibration. The total yttrium efficiency for detecting 2.45 MeV neutrons was determined to be fn∼4.1x10-4 with an uncertainty of about 0.27%. The yttrium detector was employed in the NX2 plasma focus experiments and showed the neutron yield of the order of 108 neutrons per discharge.

  8. Site specific estimation of cumulative absolute velocity

    The presented paper shows some recent results for correlation between cumulative absolute velocity (CAV) and the macro-seismic intensity, magnitude and distance (attenuation functions). The analyses are based mainly on European strong motion data. The processing is performed separately for intermediate depth earthquakes (Vrancea seismic region), regional shallow earthquakes and moderate local earthquakes. The results show that CAV correlates with the intensity, magnitude and distance in a similar way as the peak values of strong motion. There is significant difference of expected CAV from local earthquakes and from strong regional seismic excitations. The local earthquakes, although producing high accelerations, are developing small CAV and respectively small damage potential. The analyses show that intermediate depth earthquakes may produce significant CAV on very large distances, i.e. they may affect large territories and produce damage. The attenuation functions developed are used for prediction of CAV on the site of Kozloduy NPP in Bulgaria. (author)

  9. Absolute nonlocality via distributed computing without communication

    Czekaj, Ł.; Pawłowski, M.; Vértesi, T.; Grudka, A.; Horodecki, M.; Horodecki, R.

    2015-09-01

    Understanding the role that quantum entanglement plays as a resource in various information processing tasks is one of the crucial goals of quantum information theory. Here we propose an alternative perspective for studying quantum entanglement: distributed computation of functions without communication between nodes. To formalize this approach, we propose identity games. Surprisingly, despite no signaling, we obtain that nonlocal quantum strategies beat classical ones in terms of winning probability for identity games originating from certain bipartite and multipartite functions. Moreover we show that, for a majority of functions, access to general nonsignaling resources boosts success probability two times in comparison to classical ones for a number of large enough outputs. Because there are no constraints on the inputs and no processing of the outputs in the identity games, they detect very strong types of correlations: absolute nonlocality.

  10. Disconnected Skeleton: Shape at its Absolute Scale

    Aslan, C; Erdem, E; Tari, S

    2011-01-01

    We present a new skeletal representation along with a matching framework to address the deformable shape recognition problem. The disconnectedness arises as a result of excessive regularization that we use to describe a shape at an attainably coarse scale. Our motivation is to rely on the stable properties of the shape instead of inaccurately measured secondary details. The new representation does not suffer from the common instability problems of traditional connected skeletons, and the matching process gives quite successful results on a diverse database of 2D shapes. An important difference of our approach from the conventional use of the skeleton is that we replace the local coordinate frame with a global Euclidean frame supported by additional mechanisms to handle articulations and local boundary deformations. As a result, we can produce descriptions that are sensitive to any combination of changes in scale, position, orientation and articulation, as well as invariant ones.

  11. Instabilities of advection-dominated accretion flows

    Chen, X

    1996-01-01

    Accretion disk instabilities are briefly reviewed. Some details are given to the short-wavelength thermal instabilities and the convective instabilities. Time-dependent calculations of two-dimensional advection-dominated accretion flows are presented.

  12. Instabilities of Advection-Dominated Accretion Flows

    Chen, Xingming

    1996-01-01

    Accretion disk instabilities are briefly reviewed. Some details are given to the short-wavelength thermal instabilities and the convective instabilities. Time-dependent calculations of two-dimensional advection-dominated accretion flows are presented.

  13. The use of instability to train the core musculature.

    Behm, David G; Drinkwater, Eric J; Willardson, Jeffrey M; Cowley, Patrick M

    2010-02-01

    Training of the trunk or core muscles for enhanced health, rehabilitation, and athletic performance has received renewed emphasis. Instability resistance exercises have become a popular means of training the core and improving balance. Whether instability resistance training is as, more, or less effective than traditional ground-based resistance training is not fully resolved. The purpose of this review is to address the effectiveness of instability resistance training for athletic, nonathletic, and rehabilitation conditioning. The anatomical core is defined as the axial skeleton and all soft tissues with a proximal attachment on the axial skeleton. Spinal stability is an interaction of passive and active muscle and neural subsystems. Training programs must prepare athletes for a wide variety of postures and external forces, and should include exercises with a destabilizing component. While unstable devices have been shown to be effective in decreasing the incidence of low back pain and increasing the sensory efficiency of soft tissues, they are not recommended as the primary exercises for hypertrophy, absolute strength, or power, especially in trained athletes. For athletes, ground-based free-weight exercises with moderate levels of instability should form the foundation of exercises to train the core musculature. Instability resistance exercises can play an important role in periodization and rehabilitation, and as alternative exercises for the recreationally active individual with less interest or access to ground-based free-weight exercises. Based on the relatively high proportion of type I fibers, the core musculature might respond well to multiple sets with high repetitions (e.g., >15 per set); however, a particular sport may necessitate fewer repetitions. PMID:20130672

  14. Gyrokinetic Statistical Absolute Equilibrium and Turbulence

    Jian-Zhou Zhu and Gregory W. Hammett

    2011-01-10

    A paradigm based on the absolute equilibrium of Galerkin-truncated inviscid systems to aid in understanding turbulence [T.-D. Lee, "On some statistical properties of hydrodynamical and magnetohydrodynamical fields," Q. Appl. Math. 10, 69 (1952)] is taken to study gyrokinetic plasma turbulence: A finite set of Fourier modes of the collisionless gyrokinetic equations are kept and the statistical equilibria are calculated; possible implications for plasma turbulence in various situations are discussed. For the case of two spatial and one velocity dimension, in the calculation with discretization also of velocity v with N grid points (where N + 1 quantities are conserved, corresponding to an energy invariant and N entropy-related invariants), the negative temperature states, corresponding to the condensation of the generalized energy into the lowest modes, are found. This indicates a generic feature of inverse energy cascade. Comparisons are made with some classical results, such as those of Charney-Hasegawa-Mima in the cold-ion limit. There is a universal shape for statistical equilibrium of gyrokinetics in three spatial and two velocity dimensions with just one conserved quantity. Possible physical relevance to turbulence, such as ITG zonal flows, and to a critical balance hypothesis are also discussed.

  15. Gyrokinetic Statistical Absolute Equilibrium and Turbulence

    A paradigm based on the absolute equilibrium of Galerkin-truncated inviscid systems to aid in understanding turbulence (T.-D. Lee, 'On some statistical properties of hydrodynamical and magnetohydrodynamical fields,' Q. Appl. Math. 10, 69 (1952)) is taken to study gyrokinetic plasma turbulence: A finite set of Fourier modes of the collisionless gyrokinetic equations are kept and the statistical equilibria are calculated; possible implications for plasma turbulence in various situations are discussed. For the case of two spatial and one velocity dimension, in the calculation with discretization also of velocity v with N grid points (where N + 1 quantities are conserved, corresponding to an energy invariant and N entropy-related invariants), the negative temperature states, corresponding to the condensation of the generalized energy into the lowest modes, are found. This indicates a generic feature of inverse energy cascade. Comparisons are made with some classical results, such as those of Charney-Hasegawa-Mima in the cold-ion limit. There is a universal shape for statistical equilibrium of gyrokinetics in three spatial and two velocity dimensions with just one conserved quantity. Possible physical relevance to turbulence, such as ITG zonal flows, and to a critical balance hypothesis are also discussed.

  16. WELLBORE INSTABILITY: CAUSES AND CONSEQUENCES

    Borivoje Pašić

    2007-12-01

    Full Text Available Wellbore instability is one of the main problems that engineers meet during drilling. The causes of wellbore instability are often classified into either mechanical (for example, failure of the rock around the hole because of high stresses, low rock strength, or inappropriate drilling practice or chemical effects which arise from damaging interaction between the rock, generally shale, and the drilling fluid. Often, field instances of instability are a result of a combination of both chemical and mechanical. This problem might cause serious complication in well and in some case can lead to expensive operational problems. The increasing demand for wellbore stability analyses during the planning stage of a field arise from economic considerations and the increasing use of deviated, extended reach and horizontal wells. This paper presents causes, indicators and diagnosing of wellbore instability as well as the wellbore stresses model.

  17. Size effects on cavitation instabilities

    Niordson, Christian Frithiof; Tvergaard, Viggo

    2006-01-01

    growth is here analyzed for such cases. A finite strain generalization of a higher order strain gradient plasticity theory is applied for a power-law hardening material, and the numerical analyses are carried out for an axisymmetric unit cell containing a spherical void. In the range of high stress......In metal-ceramic systems the constraint on plastic flow leads to so high stress triaxialities that cavitation instabilities may occur. If the void radius is on the order of magnitude of a characteristic length for the metal, the rate of void growth is reduced, and the possibility of unstable cavity...... triaxiality, where cavitation instabilities are predicted by conventional plasticity theory, such instabilities are also found for the nonlocal theory, but the effects of gradient hardening delay the onset of the instability. Furthermore, in some cases the cavitation stress reaches a maximum and then decays...

  18. Summary of longitudinal instabilities workshop

    Chasman, R.

    1976-01-01

    A five-day ISABELLE workshop on longitudinal instabilities was held at Brookhaven, August 9-13, 1976. About a dozen outside accelerator experts, both from Europe and the U.S.A., joined the local staff for discussions of longitudinal instabilities in ISABELLE. An agenda of talks was scheduled for the first day of the workshop. Later during the week, a presentation was given on the subject ''A more rigorous treatment of Landau damping in longitudinal beam instabilities''. A few progress meetings were held in which disagreements regarding calculations of coupling impedances were clarified. A summary session was held on the last day. Heavy emphasis was put on single bunched beam instabilities in the microwave region extending above the cut-off frequency of the ISABELLE vacuum chamber.

  19. Baryon Instability in SUSY Models

    Nath, Pran; Arnowitt, R.

    1996-01-01

    Comment: 14 pages, latex, 1 fig, to be published in proceedings of the International Workshop on " Future Prospects of Baryon Instability Search in p-Decay and n-nbar Oscillation Experiments", Oak Ridge, Tennessee, March 28-30,1996

  20. Intrinsic Instability of Coronal Streamers

    Chen, Y; Song, H Q; Shi, Q Q; Feng, S W; Xia, L D; 10.1088/0004-637X/691/2/1936

    2009-01-01

    Plasma blobs are observed to be weak density enhancements as radially stretched structures emerging from the cusps of quiescent coronal streamers. In this paper, it is suggested that the formation of blobs is a consequence of an intrinsic instability of coronal streamers occurring at a very localized region around the cusp. The evolutionary process of the instability, as revealed in our calculations, can be described as follows: (1) through the localized cusp region where the field is too weak to sustain the confinement, plasmas expand and stretch the closed field lines radially outward as a result of the freezing-in effect of plasma-magnetic field coupling; the expansion brings a strong velocity gradient into the slow wind regime providing the free energy necessary for the onset of a subsequent magnetohydrodynamic instability; (2) the instability manifests itself mainly as mixed streaming sausage-kink modes, the former results in pinches of elongated magnetic loops to provoke reconnections at one or many loc...

  1. Thermal instability of gold nanowires

    Karim, Shafqat [Fachbereich Chemie, Marburg University (Germany); Toimil-Molares, Maria E.; Cornelius, Thomas; Neumann, Reinhard [Gesellschaft fuer Schwerionenforschung (GSI), Darmstadt (Germany); Balogh, Adam; Ensinger, Wolfgang [Institute of Materials Science, Darmstadt University of Technology (Germany)

    2007-07-01

    The technological implementation of nanostructures in future nano- and opto-electronic devices requires the capability to withstand elevated temperatures often encountered during routine operation. However, due to their reduced size and high surface to volume ratio, nanowires are expected to display structural and morphological instabilities. The Rayleigh instability concept, introduced to describe the instability of liquid jets, is applied to the fragmentation of metal nanowires during heating. Gold nanowires are electrochemically deposited in etched ion track membranes. After dissolving the template, the wires are put on a substrate and heated to temperatures between 300 and 600 C. The wires decay driven by Rayleigh instability, and the process depends on annealing temperature, wire diameter, and crystallinity. Wires of diameter 20 nm already fragment at 300 C being far below the bulk melting temperature of 1064 C.

  2. An All Fiber White Light Interferometric Absolute Temperature Measurement System

    Jeonggon Harrison Kim

    2008-01-01

    Recently the author of this article proposed a new signal processing algorithm for an all fiber white light interferometer. In this article, an all fiber white light interferometric absolute temperature measurement system is presented using the previously proposed signal processing algorithm. Stability and absolute temperature measurement were demonstrated. These two tests demonstrated the feasibility of absolute temperature measurement with an accuracy of 0.015 fringe and 0.0005 fringe, resp...

  3. Absolute nuclear material assay using count distribution (LAMBDA) space

    Prasad, Mano K.; Snyderman, Neal J.; Rowland, Mark S.

    2015-12-01

    A method of absolute nuclear material assay of an unknown source comprising counting neutrons from the unknown source and providing an absolute nuclear material assay utilizing a model to optimally compare to the measured count distributions. In one embodiment, the step of providing an absolute nuclear material assay comprises utilizing a random sampling of analytically computed fission chain distributions to generate a continuous time-evolving sequence of event-counts by spreading the fission chain distribution in time.

  4. Absolute value preconditioning for symmetric indefinite linear systems

    Vecharynski, Eugene; Knyazev, Andrew V.

    2011-01-01

    We introduce a novel strategy for constructing symmetric positive definite (SPD) preconditioners for linear systems with symmetric indefinite matrices. The strategy, called absolute value preconditioning, is motivated by the observation that the preconditioned minimal residual method with the inverse of the absolute value of the matrix as a preconditioner converges to the exact solution of the system in at most two steps. Neither the exact absolute value of the matrix nor its exact inverse ar...

  5. Absolute nuclear material assay using count distribution (LAMBDA) space

    Prasad, Manoj K.; Snyderman, Neal J.; Rowland, Mark S.

    2012-06-05

    A method of absolute nuclear material assay of an unknown source comprising counting neutrons from the unknown source and providing an absolute nuclear material assay utilizing a model to optimally compare to the measured count distributions. In one embodiment, the step of providing an absolute nuclear material assay comprises utilizing a random sampling of analytically computed fission chain distributions to generate a continuous time-evolving sequence of event-counts by spreading the fission chain distribution in time.

  6. Midcarpal instability: a radiological perspective

    Midcarpal instability (MCI) is the result of complex abnormal carpal motion at the midcarpal joint of the wrist. It is a form of non-dissociative carpal instability (CIND) and can be caused by various combinations of extrinsic ligament injuries that then result in one of several subtypes of MCI. The complex patterns of injury and the kinematics are further complicated by competing theories, terminology and classifications of MCI. Palmar, dorsal, ulna midcarpal instability, and capitolunate or chronic capitolunate instability are all descriptions of types of MCI with often overlapping features. Palmar midcarpal instability (PMCI) is the most commonly reported type of MCI. It has been described as resulting from deficiencies in the ulna limb of the palmar arcuate ligament (triquetrohamate-capitate) or the dorsal radiotriquetral ligaments, or both. Unstable carpal articulations can be treated with limited carpal arthrodesis or the ligamentous defects can be treated with capsulorrhaphy or ligament reconstruction. Conventional radiographic abnormalities are usually limited to volar intercalated segment instability (VISI) patterns of carpal alignment and are not specific. For many years stress view radiographs and videofluoroscopy have been the methods of choice for demonstrating carpal instability and abnormal carpal kinematics respectively. Dynamic US can be also used to demonstrate midcarpal dyskinesia including the characteristic triquetral ''catch-up'' clunk. Tears of the extrinsic ligaments can be demonstrated with MR arthrography, and probably with CT arthrography, but intact yet redundant ligaments are more difficult to identify. The exact role of these investigations in the diagnosis, categorisation and management of midcarpal instability has yet to be determined. (orig.)

  7. Stability and instability in evolution.

    Benci, V; Galleni, L

    1998-10-21

    In this paper we propose a mechanism which tries to explain the presence of periods of stability and instability which occur during the evolution of living forms. According to the Gaia hypothesis there are feedback mechanisms which stabilise the biosphere. Adding the presence of parameters which are out of control of the biosphere and of different time-scales, we propose a model which might explain the periods of instability. PMID:9790828

  8. Photomultiplier short-term instability

    The present paper gives a description of the apparatus and method to measure PM gain short-term instability under the condition of pulsed light source simulating the operation at proton synchrotrons. Experimental results are presented for FEU-84, FEU-85, FEU-110, FEU-115 and XP2010 photomultipliers. It is shown that the short-term gain instability can be described by a simple mathematical model. (Auth.)

  9. Equilibrium Electro-osmotic Instability

    Rubinstein, Isaak; Zaltzman, Boris

    2014-01-01

    Since its prediction fifteen years ago, electro-osmotic instability has been attributed to non-equilibrium electro-osmosis related to the extended space charge which develops at the limiting current in the course of concentration polarization at a charge-selective interface. This attribution had a double basis. Firstly, it has been recognized that equilibrium electro-osmosis cannot yield instability for a perfectly charge-selective solid. Secondly, it has been shown that non-equilibrium elect...

  10. On The Absolute Measurement of Some Nuclear Material Samples

    A state with nuclear activities should establish a system capable of controlling all nuclear material (NM) under its authority. Continuous improvement of a measuring system is an essential mandate such controlling system. Measurements of NM using absolute methods could eliminate the dependency on NM standards, which are necessary for other relative or semi-absolute methods. In this work, an absolute method was used to estimate uranium contents in some NM samples. NM was measured by an absolute method through combination of experimental measurements and Monte Carlo calculations

  11. Instability of enclosed horizons

    Kay, Bernard S.

    2015-03-01

    We point out that there are solutions to the scalar wave equation on dimensional Minkowski space with finite energy tails which, if they reflect off a uniformly accelerated mirror due to (say) Dirichlet boundary conditions on it, develop an infinite stress-energy tensor on the mirror's Rindler horizon. We also show that, in the presence of an image mirror in the opposite Rindler wedge, suitable compactly supported arbitrarily small initial data on a suitable initial surface will develop an arbitrarily large stress-energy scalar near where the two horizons cross. Also, while there is a regular Hartle-Hawking-Israel-like state for the quantum theory between these two mirrors, there are coherent states built on it for which there are similar singularities in the expectation value of the renormalized stress-energy tensor. We conjecture that in other situations with analogous enclosed horizons such as a (maximally extended) Schwarzschild black hole in equilibrium in a (stationary spherical) box or the (maximally extended) Schwarzschild-AdS spacetime, there will be similar stress-energy singularities and almost-singularities—leading to instability of the horizons when gravity is switched on and matter and gravity perturbations are allowed for. All this suggests it is incorrect to picture a black hole in equilibrium in a box or a Schwarzschild-AdS black hole as extending beyond the past and future horizons of a single Schwarzschild (/Schwarzschild-AdS) wedge. It would thus provide new evidence for 't Hooft's brick wall model while seeming to invalidate the picture in Maldacena's ` Eternal black holes in AdS'. It would thereby also support the validity of the author's matter-gravity entanglement hypothesis and of the paper ` Brick walls and AdS/CFT' by the author and Ortíz.

  12. Elastic instabilities in rubber

    Gent, Alan

    2009-03-01

    Materials that undergo large elastic deformations can exhibit novel instabilities. Several examples are described: development of an aneurysm on inflating a rubber tube; non-uniform stretching on inflating a spherical balloon; formation of internal cracks in rubber blocks at a critical level of triaxial tension or when supersaturated with a dissolved gas; surface wrinkling of a block at a critical amount of compression; debonding or fracture of constrained films on swelling, and formation of ``knots'' on twisting stretched cylindrical rods. These various deformations are analyzed in terms of a simple strain energy function, using Rivlin's theory of large elastic deformations, and the results are compared with experimental measurements of the onset of unstable states. Such comparisons provide new tests of Rivlin's theory and, at least in principle, critical tests of proposed strain energy functions for rubber. Moreover the onset of highly non-uniform deformations has serious implications for the fatigue life and fracture resistance of rubber components. [4pt] References: [0pt] R. S. Rivlin, Philos. Trans. Roy. Soc. Lond. Ser. A241 (1948) 379--397. [0pt] A. Mallock, Proc. Roy. Soc. Lond. 49 (1890--1891) 458--463. [0pt] M. A. Biot, ``Mechanics of Incremental Deformations'', Wiley, New York, 1965. [0pt] A. N. Gent and P. B. Lindley, Proc. Roy. Soc. Lond. A 249 (1958) 195--205. [0pt] A. N. Gent, W. J. Hung and M. F. Tse, Rubb. Chem. Technol. 74 (2001) 89--99. [0pt] A. N. Gent, Internatl. J. Non-Linear Mech. 40 (2005) 165--175.

  13. Evaluation of the absolute regional temperature potential

    D. T. Shindell

    2012-09-01

    Full Text Available The Absolute Regional Temperature Potential (ARTP is one of the few climate metrics that provides estimates of impacts at a sub-global scale. The ARTP presented here gives the time-dependent temperature response in four latitude bands (90–28° S, 28° S–28° N, 28–60° N and 60–90° N as a function of emissions based on the forcing in those bands caused by the emissions. It is based on a large set of simulations performed with a single atmosphere-ocean climate model to derive regional forcing/response relationships. Here I evaluate the robustness of those relationships using the forcing/response portion of the ARTP to estimate regional temperature responses to the historic aerosol forcing in three independent climate models. These ARTP results are in good accord with the actual responses in those models. Nearly all ARTP estimates fall within ±20% of the actual responses, though there are some exceptions for 90–28° S and the Arctic, and in the latter the ARTP may vary with forcing agent. However, for the tropics and the Northern Hemisphere mid-latitudes in particular, the ±20% range appears to be roughly consistent with the 95% confidence interval. Land areas within these two bands respond 39–45% and 9–39% more than the latitude band as a whole. The ARTP, presented here in a slightly revised form, thus appears to provide a relatively robust estimate for the responses of large-scale latitude bands and land areas within those bands to inhomogeneous radiative forcing and thus potentially to emissions as well. Hence this metric could allow rapid evaluation of the effects of emissions policies at a finer scale than global metrics without requiring use of a full climate model.

  14. Development of a superconducting absolute tensor gradiometer

    Full text: Although the use of high-temperature superconducting (HTSC) materials for the fabrication of SQUID-based magnetometers and gradiometers is now well established these materials remain more difficult to use than the alternative low-temperature superconducting materials. In particular, the lack of HTSC wires and the difficulty of forming superconducting connections means that the standard low-Tc design practice of forming gradiometer coils from superconducting wires, is not applicable in high-Tc materials. Designs for HTSC axial gradiometers [2] have been implemented only by means of electronic or software subtraction of the outputs of a pair of SQUID magnetometers, and generally have insufficient dynamic range to be rotated in the earth's magnetic field. In this work we describe the development of a new concept axial gradiometer which is implemented through the use of a flux transformer pick-up loop structure patterned on flexible superconducting tape that is inductively coupled to a SQUID-based magnetometer. This is the first example of a series axial gradiometer in HTSC materials and offers significant advantages over the two-SQUID systems mentioned above. The design provides sufficient dynamic range and intrinsic noise immunity to operate while rotated in the full earth's field. Data analysis facilitates the measurement of the absolute value of all five independent components of the magnetic gradient tensor using a set of three such gradiometers, each of which is rotated about its axis. Initial results are presented showing the measurement by a prototype instrument of the tensor gradient of a small bar magnet

  15. Absolute Radiometric Calibration of KOMPSAT-3A

    Ahn, H. Y.; Shin, D. Y.; Kim, J. S.; Seo, D. C.; Choi, C. U.

    2016-06-01

    This paper presents a vicarious radiometric calibration of the Korea Multi-Purpose Satellite-3A (KOMPSAT-3A) performed by the Korea Aerospace Research Institute (KARI) and the Pukyong National University Remote Sensing Group (PKNU RSG) in 2015.The primary stages of this study are summarized as follows: (1) A field campaign to determine radiometric calibrated target fields was undertaken in Mongolia and South Korea. Surface reflectance data obtained in the campaign were input to a radiative transfer code that predicted at-sensor radiance. Through this process, equations and parameters were derived for the KOMPSAT-3A sensor to enable the conversion of calibrated DN to physical units, such as at-sensor radiance or TOA reflectance. (2) To validate the absolute calibration coefficients for the KOMPSAT-3A sensor, we performed a radiometric validation with a comparison of KOMPSAT-3A and Landsat-8 TOA reflectance using one of the six PICS (Libya 4). Correlations between top-of-atmosphere (TOA) radiances and the spectral band responses of the KOMPSAT-3A sensors at the Zuunmod, Mongolia and Goheung, South Korea sites were significant for multispectral bands. The average difference in TOA reflectance between KOMPSAT-3A and Landsat-8 image over the Libya 4, Libya site in the red-green-blue (RGB) region was under 3%, whereas in the NIR band, the TOA reflectance of KOMPSAT-3A was lower than the that of Landsat-8 due to the difference in the band passes of two sensors. The KOMPSAT-3Aensor includes a band pass near 940 nm that can be strongly absorbed by water vapor and therefore displayed low reflectance. Toovercome this, we need to undertake a detailed analysis using rescale methods, such as the spectral bandwidth adjustment factor.

  16. Design of a quasi-zero-stiffness based sensor system for the measurement of absolute vibration displacement of moving platforms

    Jing, Xingjian; Wang, Yu; Li, Quankun; Sun, Xiuting

    2016-09-01

    This study presents the analysis and design of a novel sensor system for measuring the absolute vibration displacement of moving platforms based on the concept of quasi-zero-stiffness (QZS). The sensor system is constructed using positive- and negative-stiffness springs, which make it possible to achieve an equivalent QZS and consequently to create a broadband vibration-free point for absolute vibration displacement measurement in moving platforms. Theoretical analysis is conducted for the analysis and design of the influence of structure parameters on system measurement performance. A prototype is designed which can avoid the drawback of instability in existing QZS systems with negative stiffness, and corresponding data-processing software is developed to fulfill time domain measurements. Both the simulation and experimental results verify the effectiveness of this novel sensor system.

  17. Towards a stable and absolute atmospheric carbon dioxide instrument using spectroscopic null method

    Xiang, B.; Nelson, D. D.; McManus, J. B.; Zahniser, M. S.; Wofsy, S. C.

    2013-07-01

    We present a novel spectral method to measure atmospheric carbon dioxide (CO2) with high precision and stability without resorting to calibration tanks during long-term operation. This spectral null method improves precision by reducing spectral proportional noise associated with laser emission instabilities. We employ sealed quartz cells with known CO2 column densities to serve as the permanent internal references in the null method, which improve the instrument's stability and accuracy. A prototype instrument - ABsolute Carbon dioxide (ABC) is developed using this new approach. The instrument has a one-second precision of 0.02 ppm, which averages down to 0.007 ppm within one minute. Long-term stability of within 0.1 ppm is achieved without any calibrations for over a one-month period. These results have the potential for eliminating the need for calibration cylinders for high accuracy field measurements of carbon dioxide.

  18. Elliptic and magneto-elliptic instabilities

    Lyra Wladimir

    2013-04-01

    Full Text Available Vortices are the fundamental units of turbulent flow. Understanding their stability properties therefore provides fundamental insights on the nature of turbulence itself. In this contribution I briely review the phenomenological aspects of the instability of elliptic streamlines, in the hydro (elliptic instability and hydromagnetic (magneto-elliptic instability regimes. Vortex survival in disks is a balance between vortex destruction by these mechanisms, and vortex production by others, namely, the Rossby wave instability and the baroclinic instability.

  19. Supplementary and Enrichment Series: Absolute Value. Teachers' Commentary. SP-25.

    Bridgess, M. Philbrick, Ed.

    This is one in a series of manuals for teachers using SMSG high school supplementary materials. The pamphlet includes commentaries on the sections of the student's booklet, answers to the exercises, and sample test questions. Topics covered include addition and multiplication in terms of absolute value, graphs of absolute value in the Cartesian…

  20. Supplementary and Enrichment Series: Absolute Value. SP-24.

    Bridgess, M. Philbrick, Ed.

    This is one in a series of SMSG supplementary and enrichment pamphlets for high school students. This series is designed to make material for the study of topics of special interest to students readily accessible in classroom quantity. Topics covered include absolute value, addition and multiplication in terms of absolute value, graphs of absolute…

  1. Absolute Humidity and the Seasonality of Influenza (Invited)

    Shaman, J. L.; Pitzer, V.; Viboud, C.; Grenfell, B.; Goldstein, E.; Lipsitch, M.

    2010-12-01

    Much of the observed wintertime increase of mortality in temperate regions is attributed to seasonal influenza. A recent re-analysis of laboratory experiments indicates that absolute humidity strongly modulates the airborne survival and transmission of the influenza virus. Here we show that the onset of increased wintertime influenza-related mortality in the United States is associated with anomalously low absolute humidity levels during the prior weeks. We then use an epidemiological model, in which observed absolute humidity conditions temper influenza transmission rates, to successfully simulate the seasonal cycle of observed influenza-related mortality. The model results indicate that direct modulation of influenza transmissibility by absolute humidity alone is sufficient to produce this observed seasonality. These findings provide epidemiological support for the hypothesis that absolute humidity drives seasonal variations of influenza transmission in temperate regions. In addition, we show that variations of the basic and effective reproductive numbers for influenza, caused by seasonal changes in absolute humidity, are consistent with the general timing of pandemic influenza outbreaks observed for 2009 A/H1N1 in temperate regions. Indeed, absolute humidity conditions correctly identify the region of the United States vulnerable to a third, wintertime wave of pandemic influenza. These findings suggest that the timing of pandemic influenza outbreaks is controlled by a combination of absolute humidity conditions, levels of susceptibility and changes in population mixing and contact rates.

  2. Absolute electronegativity and hardness correlated with molecular orbital theory

    Pearson, Ralph G.

    1986-01-01

    The concepts of absolute electronegativity, χ, and absolute hardness, η, are incorporated into molecular orbital theory. A graphic and concise definition of hardness is given as twice the energy gap between the highest occupied molecular orbital and the lowest unoccupied molecular orbital. Useful correlations can now be made between chemical behavior, visible-UV absorption spectra, optical polarizability, ionization potentials, and electron affinities.

  3. Absolute neutronic performance of SNS from gold foil application

    The determination of absolute neutron fluxes by white beam activation of thick gold foils in conjuction with spectral analysis by time-of-flight monitors is described. A numerical integration procedure is presented and the method applied to determining the absolute performance of SNS from data obtained during the initial commissioning run in December 1984. (author)

  4. Karst Water System Investigated by Absolute Gravimetry

    Quinif, Y.; Meus, P.; van Camp, M.; Kaufmann, O.; van Ruymbeke, M.; Vandiepenbeeck, M.; Camelbeeck, T.

    2006-12-01

    The highly anisotropic and heterogeneous hydrogeological characteristics of karst aquifers are difficult to characterize and present challenges for modeling of storage capacities. Little is known about the surface and groundwater interconnection, about the connection between the porous formations and the draining cave and conduits, and about the variability of groundwater volume within the system. Usually, an aquifer is considered as a black box, where water fluxes are monitored as input and output. However, water inflow and outflow are highly variable and cannot be measured directly. A recent project, begun in 2006 sought to constrain the water budget in a Belgian karst aquifer and to assess the porosity and water dynamics, combining absolute gravity (AG) measurements and piezometric levels around the Rochefort cave. The advantage of gravity measurements is that they integrate all the subsystems in the karst system. This is not the case with traditional geophysical tools like boring or monitoring wells, which are soundings affected by their near environment and its heterogeneity. The investigated cave results from the meander cutoff system of the Lomme River. The main inputs are swallow holes of the river crossing the limestone massif. The river is canalized and the karst system is partly disconnected from the hydraulic system. In February and March 2006, when the river spilled over its dyke and sank into the most important swallow hole, this resulted in dramatic and nearly instantaneous increases in the piezometric levels in the cave, reaching up to 13 meters. Meanwhile, gravity increased by 50 and 90 nms-2 in February and March, respectively. A first conclusion is that during these sudden floods, the pores and fine fissures were poorly connected with the enlarged fractures, cave, and conduits. With a rise of 13 meters in the water level and a 5% porosity, a gravity change of 250 nms-2 should have been expected. This moderate gravity variation suggests either a

  5. High-precision absolute coordinate measurement using frequency scanned interferometry

    We reported previously on measurements of absolute distance with frequency scanned interferometry (FSI) method [1, 2]. In this paper, we extend the FSI method into 2-dimensional and 3-dimensional high-precision absolute coordinate measurements using a single laser. Absolute position is determined by several related absolute distances measured simultaneously. The achieved precision on X and Y in 2- and in 3-dimensional measurements is confirmed to be below 1 μm, while the precision in Z (in 3D case) is found to be about 2 μm. The last one is limited by the accuracy of the available translational stage used in the tests. A much more powerful laser and a better real-time data acquirement system will be required in case of measurements of larger absolute distances

  6. Radiation-induced chromosomal instability

    Ritter, S. [GSI, Biophysics, Darmstadt (Germany)

    1999-03-01

    Recent studies on radiation-induced chromosomal instability in the progeny of exposed mammalian cells were briefly described as well as other related studies. For the analysis of chromosomal damage in clones, cells were seeded directly after exposure in cell well-dish to form single cell clones and post-irradiation chromosome aberrations were scored. Both exposure to isoeffective doses of X-ray or 270 MeV/u C-ions (13 keV/{mu}m) increased the number of clones with abnormal karyotype and the increase was similar for X-ray and for C-ions. Meanwhile, in the progeny of cells for mass cultures, there was no indication of a delayed expression of chromosomal damage up to 40 population doublings after the exposure. A high number of aberrant cells were only observed directly after exposure to 10.7 MeV/u O-ions, i.e. in the first cycle cells and decreased with subsequent cell divisions. The reason for these differences in the radiation-induced chromosomal instability between clonal isolates and mass culture has not been clarified. Recent studies indicated that genomic instability occurs at a high frequency in the progeny of cells irradiated with both sparsely and densely ionizing radiation. Such genomic instability is thought likely to increase the risk of carcinogenesis, but more data are required for a well understanding of the health risks resulting from radiation-induced delayed instability. (M.N.)

  7. Fermi liquids near Pomeranchuk instabilities

    Reidy, Kelly Elizabeth

    We explore features of a Fermi liquid near generalized Pomeranchuk instabilities (PIs) starting from both ordered and disordered phases. These PIs can be viewed as quantum critical points in parameter space, and thus provide an alternate viewpoint on quantum criticality. We employ the tractable crossing symmetric equation method, which is a non-perturbative diagrammatic many-particle method used to calculate the Fermi liquid interaction functions and scattering amplitudes. We consider both repulsive and attractive underlying interactions of arbitrary strength. Starting from a ferromagnetically ordered ground state, we find that upon approach to an s-wave instability in one critical channel, the system simultaneously approaches instabilities in non-critical channels. We study origins and implications of this "quantum multicriticality". We also find that a nematic (non-s-wave) instability precedes and is driven by Pomeranchuk instabilities in both the s-wave spin and density channels. Finally, we discuss potential applications of our results to physical systems, such as ferromagnetic superconductors.

  8. Longitudinal instability in HIF beams

    In contrast to an electron induction accelerator, in which the particle velocity is virtually constant, the resistive and inductive components of accelerating module impedances can cause instability for an intense non-relativistic heavy ion beam accelerated in a similar structure. Since focusing requirements at the fusion pellet imply a momentum spread approx-lt 3 x 10-4 at the end of the accelerator, it is essential to understand and suppress this instability. There is also an economic issue involved for this application; selection of parameters to control the instability must not unduly affect the efficiency and cost of the accelerator. This paper will present the results of analytic and computational work on module impedances, growth rates and feed back (forward) systems. 2 refs., 3 figs

  9. Interfacial instabilities and Kapitsa pendula

    Krieger, Madison

    2015-11-01

    Determining the critera for onset and amplitude growth of instabilities is one of the central problems of fluid mechanics. We develop a parallel between the Kapitsa effect, in which a pendulum subject to high-frequency low-amplitude vibrations becomes stable in the inverted position, and interfaces separating fluids of different density. It has long been known that such interfaces can be stabilized by vibrations, even when the denser fluid is on top. We demonstrate that the stability diagram for these fluid interfaces is identical to the stability diagram for an appopriate Kapitsa pendulum. We expand the robust, ``dictionary''-type relationship between Kapitsa pendula and interfacial instabilities by considering the classical Rayleigh-Taylor, Kelvin-Helmholtz and Plateau instabilities, as well as less-canonical examples ranging in scale from the micron to the width of a galaxy.

  10. Compressive Instability Phenomena During Springback

    Springback in sheet metal product makes difficulties in die design because small strain causes large displacement. Especially for the sheet metal product having small geometric constraints, springback displacement may become severe. After first stage of stamping of outer case of washing machine, a large amount of springback is observed. The stamping depth of the outer case is small while stamping area is very large compared to the stamping depth, and therefore, there exists small geometric constraints in the formed part. Also, a compressive instability during the elastic recovery takes place and this instability enlarged the elastic recovery and dimensional error. In this paper, the compressive instability during the elastic recovery is analyzed using bifurcation theory. The final deformed shape after springback is obtained by bifurcating the solution path from primary to secondary. The deformed shapes obtained by the finite element analysis are in good agreement with the experimental data. The bifurcation behavior and the springback displacement for different forming depth are investigated

  11. Kinetic theory of tearing instability

    The guiding-center kinetic equation with Fokker-Planck collision term is used to study, in cylindrical geometry, a class of dissipative instabilities of which the classical tearing mode is an archetype. Variational solution of the kinetic equation obviates the use of an approximate Ohm's law or adiabatic assumption, as used in previous studies, and it provides a dispersive relation which is uniformly valid for any ratio of wave frequency to collision frequency. One result of using the rigorous collision operator is the prediction of a new instability. This instability, driven by the electron temperature gradient, is predicted to occur under the long mean-free path conditions of present tokamak experiments, and has significant features in common with the kink-like oscillations observed in such experiments

  12. Interfacial Instability during Granular Erosion

    Lefebvre, Gautier; Merceron, Aymeric; Jop, Pierre

    2016-02-01

    The complex interplay between the topography and the erosion and deposition phenomena is a key feature to model granular flows such as landslides. Here, we investigated the instability that develops during the erosion of a wet granular pile by a dry dense granular flow. The morphology and the propagation of the generated steps are analyzed in relation to the specific erosion mechanism. The selected flowing angle of the confined flow on a dry heap appears to play an important role both in the final state of the experiment, and for the shape of the structures. We show that the development of the instability is governed by the inertia of the flow through the Froude number. We model this instability and predict growth rates that are in agreement with the experiment results.

  13. Modulational instability of drift waves

    The instability of drift waves against zonal flows and streamers is discussed. Unlike in previous treatments, we do not make the assumption that their frequency is resonant with drift wave packets. In this more general treatment we find at least two unstable roots even in the simple case of a monochromatic pump drift wave, and potentially an infinite multitude of roots for a more complicated drift wave spectrum. One of them is the well known modulational instability in resonance with the drift wave packets; the other is a new instability corresponding to the inelastic refraction of drift waves at the streamer. It is nontrivial which of the many roots is the most unstable one

  14. Performance through Deformation and Instability

    Bertoldi, Katia

    2015-03-01

    Materials capable of undergoing large deformations like elastomers and gels are ubiquitous in daily life and nature. An exciting field of engineering is emerging that uses these compliant materials to design active devices, such as actuators, adaptive optical systems and self-regulating fluidics. Compliant structures may significantly change their architecture in response to diverse stimuli. When excessive deformation is applied, they may eventually become unstable. Traditionally, mechanical instabilities have been viewed as an inconvenience, with research focusing on how to avoid them. Here, I will demonstrate that these instabilities can be exploited to design materials with novel, switchable functionalities. The abrupt changes introduced into the architecture of soft materials by instabilities will be used to change their shape in a sudden, but controlled manner. Possible and exciting applications include materials with unusual properties such negative Poisson's ratio, phononic crystals with tunable low-frequency acoustic band gaps and reversible encapsulation systems.

  15. Hydrodynamick instabilities on ICF capsules

    This article summarizes our current understanding of hydrodynamic instabilities as relevant to ICF. First we discuss classical, single mode Rayleigh-Taylor instability, and nonlinear effects in the evolution of a single mode. Then we discuss multimode systems, considering: (1) the onset of nonlinearity; (2) a second order mode coupling theory for weakly nonlinear effects, and (3) the fully nonlinear regime. Two stabilization mechanisms relevant to ICF are described next: gradient scale length and convective stabilization. Then we describe a model which is meant to estimate the weakly nonlinear evolution of multi-mode systems as relevant to ICF, given the short-wavelength stabilization. Finally, we discuss the relevant code simulation capability, and experiments. At this time we are quite optimistic about our ability to estimate instability growth on ICF capsules, but further experiments and simulations are needed to verify the modeling. 52 refs

  16. The Nature of the Radiative Hydrodynamic Instabilities in Radiatively Supported Thomson Atmospheres

    Shaviv, N J

    2001-01-01

    Atmospheres having a significant radiative support are shown to be intrinsically unstable at luminosities above a critical fraction Gamma_crit ~ 0.5-0.85 of the Eddington limit, with the exact value depending on the boundary conditions. Two different types of absolute radiation-hydrodynamic instabilities of acoustic waves are found to take place even in the electron scattering dominated limit. Both instabilities grow over dynamical time scales and both operate on non radial modes. One is stationary and arises only after the effects of the boundary conditions are taken into account, while the second is a propagating wave and is insensitive to the boundary conditions. Although a significant wind can be generated by these instabilities even below the classical Eddington luminosity limit, quasi-stable configurations can exist beyond the Eddington limit due to the generally reduced effective opacity. The study is done using a rigorous numerical linear analysis of a gray plane parallel atmosphere under the Eddingto...

  17. Telomere dysfunction and chromosome instability

    Murnane, John P., E-mail: jmurnane@radonc.ucsf.edu [Department of Radiation Oncology, University of California San Francisco, 2340 Sutter Street, San Francisco, CA 94143-1331 (United States)

    2012-02-01

    The ends of chromosomes are composed of a short repeat sequence and associated proteins that together form a cap, called a telomere, that keeps the ends from appearing as double-strand breaks (DSBs) and prevents chromosome fusion. The loss of telomeric repeat sequences or deficiencies in telomeric proteins can result in chromosome fusion and lead to chromosome instability. The similarity between chromosome rearrangements resulting from telomere loss and those found in cancer cells implicates telomere loss as an important mechanism for the chromosome instability contributing to human cancer. Telomere loss in cancer cells can occur through gradual shortening due to insufficient telomerase, the protein that maintains telomeres. However, cancer cells often have a high rate of spontaneous telomere loss despite the expression of telomerase, which has been proposed to result from a combination of oncogene-mediated replication stress and a deficiency in DSB repair in telomeric regions. Chromosome fusion in mammalian cells primarily involves nonhomologous end joining (NHEJ), which is the major form of DSB repair. Chromosome fusion initiates chromosome instability involving breakage-fusion-bridge (B/F/B) cycles, in which dicentric chromosomes form bridges and break as the cell attempts to divide, repeating the process in subsequent cell cycles. Fusion between sister chromatids results in large inverted repeats on the end of the chromosome, which amplify further following additional B/F/B cycles. B/F/B cycles continue until the chromosome acquires a new telomere, most often by translocation of the end of another chromosome. The instability is not confined to a chromosome that loses its telomere, because the instability is transferred to the chromosome donating a translocation. Moreover, the amplified regions are unstable and form extrachromosomal DNA that can reintegrate at new locations. Knowledge concerning the factors promoting telomere loss and its consequences is

  18. Mechanical Instabilities of Biological Tubes

    Hannezo, Edouard; Prost, Jacques; Joanny, Jean-François

    2012-07-01

    We study theoretically the morphologies of biological tubes affected by various pathologies. When epithelial cells grow, the negative tension produced by their division provokes a buckling instability. Several shapes are investigated: varicose, dilated, sinuous, or sausagelike. They are all found in pathologies of tracheal, renal tubes, or arteries. The final shape depends crucially on the mechanical parameters of the tissues: Young’s modulus, wall-to-lumen ratio, homeostatic pressure. We argue that since tissues must be in quasistatic mechanical equilibrium, abnormal shapes convey information as to what causes the pathology. We calculate a phase diagram of tubular instabilities which could be a helpful guide for investigating the underlying genetic regulation.

  19. Modulational instabilities in discrete lattices

    We study analytically and numerically modulational instabilities in discrete nonlinear chains, taking the discrete Klein-Gordon model as an example. We show that discreteness can drastically change the conditions for modulational instability; e.g., at small wave numbers a nonlinear carrier wave is unstable to all possible modulations of its amplitude if the wave amplitude exceeds a certain threshold value. Numerical simulations show the validity of the analytical approach for the initial stage of the time evolution, provided that the harmonics generated by the nonlinear terms are considered. The long-term evolution exhibits chaoticlike states

  20. Stretching Instability of Helical Springs

    Kessler, David A.; Rabin, Yitzhak

    2003-01-01

    We show that when a gradually increasing tensile force is applied to the ends of a helical spring with sufficiently large ratios of radius to pitch and twist to bending rigidity, the end-to-end distance undergoes a sequence of discontinuous stretching transitions. Subsequent decrease of the force leads to steplike contraction, and hysteresis is observed. For finite helices, the number of these transitions increases with the number of helical turns but only one stretching and one contraction instability survive in the limit of an infinite helix. We calculate the critical line that separates the region of parameters in which the deformation is continuous from that in which stretching instabilities occur.

  1. Hydromagnetic Instabilities in Neutron Stars

    Lasky, Paul D; Kokkotas, Kostas D; Glampedakis, Kostas

    2011-01-01

    We model the non-linear ideal magnetohydrodynamics of poloidal magnetic fields in neutron stars in general relativity assuming a polytropic equation of state. We identify familiar hydromagnetic modes, in particular the 'sausage/varicose' mode and 'kink' instability inherent to poloidal magnetic fields. The evolution is dominated by the kink instability, which causes a cataclysmic reconfiguration of the magnetic field. The system subsequently evolves to new, non-axisymmetric, quasi-equilibrium end-states. The existence of this branch of stable quasi-equilibria may have consequences for magnetar physics, including flare generation mechanisms and interpretations of quasi-periodic oscillations.

  2. Measuring the absolute magnetic field using high-Tc SQUID

    SQUID normally can only measure the change of magnetic field instead of the absolute value of magnetic field. Using a compensation method, a mobile SQUID, which could keep locked when moving in the earth's magnetic field, was developed. Using the mobile SQUID, it was possible to measure the absolute magnetic field. The absolute value of magnetic field could be calculated from the change of the compensation output when changing the direction of the SQUID in a magnetic field. Using this method and the mobile SQUID, we successfully measured the earth's magnetic field in our laboratory

  3. Absolute brightness temperature measurements at 2.1-mm wavelength

    Ulich, B. L.

    1974-01-01

    Absolute measurements of the brightness temperatures of the Sun, new Moon, Venus, Mars, Jupiter, Saturn, and Uranus, and of the flux density of DR21 at 2.1-mm wavelength are reported. Relative measurements at 3.5-mm wavelength are also preented which resolve the absolute calibration discrepancy between The University of Texas 16-ft radio telescope and the Aerospace Corporation 15-ft antenna. The use of the bright planets and DR21 as absolute calibration sources at millimeter wavelengths is discussed in the light of recent observations.

  4. Absolute calibration of photomultiplier based detectors - difficulties and uncertainties

    Photomultiplier manufacturers can provide a calibration of quantum efficiency over a range of wavelengths with an accuracy of up to 2%. To convert these figures to absolute counting efficiency requires knowledge of photomultiplier collection efficiency, F. Traditional methods for determining F are discussed with emphasis on sources of error. Light sources emitting at a known photon rate allow the absolute quantum efficiency to be determined directly. It is important in all attempts at absolute calibration to appreciate the conditions which manufacturers apply when calibrating photomultipliers

  5. Absolute Antenna Calibration at the US National Geodetic Survey

    Mader, G. L.; Bilich, A. L.

    2012-12-01

    Geodetic GNSS applications routinely demand millimeter precision and extremely high levels of accuracy. To achieve these accuracies, measurement and instrument biases at the centimeter to millimeter level must be understood. One of these biases is the antenna phase center, the apparent point of signal reception for a GNSS antenna. It has been well established that phase center patterns differ between antenna models and manufacturers; additional research suggests that the addition of a radome or the choice of antenna mount can significantly alter those a priori phase center patterns. For the more demanding GNSS positioning applications and especially in cases of mixed-antenna networks, it is all the more important to know antenna phase center variations as a function of both elevation and azimuth in the antenna reference frame and incorporate these models into analysis software. Determination of antenna phase center behavior is known as "antenna calibration". Since 1994, NGS has computed relative antenna calibrations for more than 350 antennas. In recent years, the geodetic community has moved to absolute calibrations - the IGS adopted absolute antenna phase center calibrations in 2006 for use in their orbit and clock products, and NGS's CORS group began using absolute antenna calibration upon the release of the new CORS coordinates in IGS08 epoch 2005.00 and NAD 83(2011,MA11,PA11) epoch 2010.00. Although NGS relative calibrations can be and have been converted to absolute, it is considered best practice to independently measure phase center characteristics in an absolute sense. Consequently, NGS has developed and operates an absolute calibration system. These absolute antenna calibrations accommodate the demand for greater accuracy and for 2-dimensional (elevation and azimuth) parameterization. NGS will continue to provide calibration values via the NGS web site www.ngs.noaa.gov/ANTCAL, and will publish calibrations in the ANTEX format as well as the legacy ANTINFO

  6. Absolute f-values for resonance lines of neutral titanium

    Absolute f-values for 13 resonance lines of Ti i have been experimentally measured by the atomic-beam method. Difficulties in evaporation of titanium were overcome by using a TiC boat, and gettering effects were determined by comparing microbalance weighings of instantaneous deposit rates with quantitative chemical analyses of total deposits. Comparisons are made with other experimental results, and conversion factors are given for placing previously published relative f-values on an absolute scale. Also, the effect of an improved absolute scale for Ti i gf-values on the abundance of titanium in the solar photosphere is discussed

  7. Edge instabilities of topological superconductors

    Hofmann, Johannes S.; Assaad, Fakher F.; Schnyder, Andreas P.

    2016-05-01

    Nodal topological superconductors display zero-energy Majorana flat bands at generic edges. The flatness of these edge bands, which is protected by time-reversal and translation symmetry, gives rise to an extensive ground-state degeneracy. Therefore, even arbitrarily weak interactions lead to an instability of the flat-band edge states towards time-reversal and translation-symmetry-broken phases, which lift the ground-state degeneracy. We examine the instabilities of the flat-band edge states of dx y-wave superconductors by performing a mean-field analysis in the Majorana basis of the edge states. The leading instabilities are Majorana mass terms, which correspond to coherent superpositions of particle-particle and particle-hole channels in the fermionic language. We find that attractive interactions induce three different mass terms. One is a coherent superposition of imaginary s -wave pairing and current order, and another combines a charge-density-wave and finite-momentum singlet pairing. Repulsive interactions, on the other hand, lead to ferromagnetism together with spin-triplet pairing at the edge. Our quantum Monte Carlo simulations confirm these findings and demonstrate that these instabilities occur even in the presence of strong quantum fluctuations. We discuss the implications of our results for experiments on cuprate high-temperature superconductors.

  8. Waves and instabilities in plasmas

    Chen Liu

    1987-01-01

    The topics covered in these notes are selective and tend to emphasize more on kinetic-theory approaches to waves and instabilities in both uniform and non-uniform plasmas, students are assumed to have some basic knowledge of plasma dynamics in terms of single-particle and fluid descriptions.

  9. Arthroscopic Management of Scapholunate Instability

    Geissler, William B.

    2013-01-01

    Wrist arthroscopy plays a valuable role in the management of scapholunate instability. A spectrum of injuries can occur to the scapholunate interosseous ligament, which may be difficult to detect with imaging studies. Wrist arthroscopy enables detection and management of injury to the scapholunate ligament under bright light and magnified conditions, in both acute and chronic situations.

  10. Faraday instability in deformable domains

    Hydrodynamical instabilities are usually studied either in bounded regions or free to grow in space. In this article we review the experimental results of an intermediate situation, in which an instability develops in deformable domains. The Faraday instability, which consists in the formation of surface waves on a liquid experiencing a vertical forcing, is triggered in floating liquid lenses playing the role of deformable domains. Faraday waves deform the lenses from the initial circular shape and the mutual adaptation of instability patterns with the lens boundary is observed. Two archetypes of behaviour have been found. In the first archetype a stable elongated shape is reached, the wave vector being parallel to the direction of elongation. In the second archetype the waves exceed the response of the lens border and no equilibrium shape is reached. The lens stretches and eventually breaks into fragments that have a complex dynamics. The difference between the two archetypes is explained by the competition between the radiation pressure the waves exert on the lens border and its response due to surface tension.