WorldWideScience

Sample records for absolute frequency measurement

  1. High-precision absolute coordinate measurement using frequency scanned interferometry

    We reported previously on measurements of absolute distance with frequency scanned interferometry (FSI) method [1, 2]. In this paper, we extend the FSI method into 2-dimensional and 3-dimensional high-precision absolute coordinate measurements using a single laser. Absolute position is determined by several related absolute distances measured simultaneously. The achieved precision on X and Y in 2- and in 3-dimensional measurements is confirmed to be below 1 μm, while the precision in Z (in 3D case) is found to be about 2 μm. The last one is limited by the accuracy of the available translational stage used in the tests. A much more powerful laser and a better real-time data acquirement system will be required in case of measurements of larger absolute distances

  2. Frequency comparison and absolute frequency measurement of I{sub 2}-stabilized lasers at 532 nm

    Nevsky, A.Yu. [Sektion Physik der Ludwig-Maximilians-Univ. Muenchen (Germany)]|[Max-Planck-Inst. fuer Quantenoptik, Garching (Germany)]|[Inst. of Laser Physics, Novosibirsk (Russian Federation); Holzwarth, R.; Reichert, J.; Udem, T.; Haensch, T.W.; Zanthier, J. von; Walther, H. [Sektion Physik der Ludwig-Maximilians-Univ. Muenchen (Germany)]|[Max-Planck-Inst. fuer Quantenoptik, Garching (Germany); Schnatz, H.; Riehle, F. [Physikalisch-Technische Bundesanstalt, Braunschweig (Germany); Pokasov, P.V.; Skvortsov, M.N.; Bagayev, S.N. [Inst. of Laser Physics, Novosibirsk (Russian Federation)

    2001-07-01

    We present a frequency comparison and an absolute frequency measurement of two independent I{sub 2}-stabilized frequency-doubled Nd:YAG lasers at 532 nm, one set up at the Institute of Laser Physics, Novosibirsk, Russia, the other at the Physikalisch-Technische Bundesanstalt, Braunschweig, Germany. The absolute frequency of the I{sub 2}-stabilized lasers was determined using a CH{sub 4}-stabilized He-Ne laser as a reference. This laser had been calibrated prior to the measurement by an atomic cesium fountain clock. The frequency chain linking phase-coherently the two frequencies made use of the frequency comb of a Kerr-lens mode-locked Ti:sapphire femtosecond laser where the comb mode separation was controlled by a local cesium atomic clock. A new value for the R(56)32-0:a{sub 10} component, recommended by the Comite International des Poids et Mesures (CIPM) for the realization of the metre, was obtained with reduced uncertainty. Absolute frequencies of the R(56)32-0 and P(54)32-0 iodine absorption lines together with the hyperfine line separations were measured.

  3. The correction of vibration in frequency scanning interferometry based absolute distance measurement system for dynamic measurements

    Lu, Cheng; Liu, Guodong; Liu, Bingguo; Chen, Fengdong; Zhuang, Zhitao; Xu, Xinke; Gan, Yu

    2015-10-01

    Absolute distance measurement systems are of significant interest in the field of metrology, which could improve the manufacturing efficiency and accuracy of large assemblies in fields such as aircraft construction, automotive engineering, and the production of modern windmill blades. Frequency scanning interferometry demonstrates noticeable advantages as an absolute distance measurement system which has a high precision and doesn't depend on a cooperative target. In this paper , the influence of inevitable vibration in the frequency scanning interferometry based absolute distance measurement system is analyzed. The distance spectrum is broadened as the existence of Doppler effect caused by vibration, which will bring in a measurement error more than 103 times bigger than the changes of optical path difference. In order to decrease the influence of vibration, the changes of the optical path difference are monitored by a frequency stabilized laser, which runs parallel to the frequency scanning interferometry. The experiment has verified the effectiveness of this method.

  4. Evaluation of the systematic shifts and absolute frequency measurement of a single Ca+ ion frequency standard

    Huang, Yao; Liu, Peiliang; Bian, Wu; Guan, Hua; Gao, Kelin

    2014-01-01

    This paper provides a detailed description of the 40Ca+ optical frequency standard uncertainty evaluation and the absolute frequency measurement of the clock transition, as a summary and supplement for the published papers of Yao Huang et al. (Phys Rev A 84:053841, 1) and Huang et al. (Phys Rev A 85:030503, 2). The calculation of systematic frequency shifts, expected for a single trapped Ca+ ion optical frequency standard with a "clock" transition at 729 nm is described. There are several possible causes of systematic frequency shifts that need to be considered. In general, the frequency was measured with an uncertainty of 10-15 level, and the overall systematic shift uncertainty was reduced to below a part in 10-15. Several frequency shifts were calculated for the Ca+ ion optical frequency standard, including the trap design, optical and electromagnetic fields geometry and laboratory conditions, including the temperature condition and the altitude of the Ca+ ion. And we measured the absolute frequency of the 729-nm clock transition at the 10-15 level. An fs comb is referenced to a hydrogen maser, which is calibrated to the SI-second through the Global Positioning System (GPS). Using the GPS satellites as a link, we can calculate the frequency difference of the two hydrogen masers with a long distance, one in WIPM (Wuhan) and the other in National Institute of Metrology (NIM, Beijing). The frequency difference of the hydrogen maser in NIM (Beijing) and the SI-second calculated by BIPM is published on the BIPM web site every 1 month, with a time interval of every 5 days. By analyzing the experimental data obtained within 32 days of a total averaging time of >2 × 106 s, the absolute frequency of the 40Ca+ 4 s 2 S 1/2-3 d 2D5/2 clock transition is measured as 411 042 129 776 393.0 (1.6) Hz with a fractional uncertainty of 3.9 × 10-15.

  5. Absolute frequency measurement of the 1S0 - 3P0 transition of 171Yb

    Pizzocaro, Marco; Rauf, Benjamin; Bregolin, Filippo; Milani, Gianmaria; Clivati, Cecilia; Costanzo, Giovanni A; Levi, Filippo; Calonico, Davide

    2016-01-01

    We report the absolute frequency measurement of the unperturbed transition 1S0 - 3P0 at 578 nm in 171Yb realized in an optical lattice frequency standard. The absolute frequency is measured 518 295 836 590 863.55(28) Hz relative to a cryogenic caesium fountain with a fractional uncertainty of 5.4x10-16 . This value is in agreement with the ytterbium frequency recommended as a secondary representation of the second in the International System of Units.

  6. Absolute Frequency Measurement of Rubidium 5S-7S Two-Photon Transitions

    Morzynski, Piotr; Ablewski, Piotr; Gartman, Rafal; Gawlik, Wojciech; Maslowski, Piotr; Nagorny, Bartlomiej; Ozimek, Filip; Radzewicz, Czeslaw; Witkowski, Marcin; Ciurylo, Roman; Zawada, Michal

    2013-01-01

    We report the absolute frequency measurements of rubidium 5S-7S two-photon transitions with a cw laser digitally locked to an atomic transition and referenced to an optical frequency comb. The narrow, two-photon transition, 5S-7S (760 nm) insensitive to first order in a magnetic field, is a promising candidate for frequency reference. The performed tests yield the transition frequency with accuracy better than reported previously.

  7. Frequency-scanning interferometry for dynamic absolute distance measurement using Kalman filter.

    Tao, Long; Liu, Zhigang; Zhang, Weibo; Zhou, Yangli

    2014-12-15

    We propose a frequency-scanning interferometry using the Kalman filtering technique for dynamic absolute distance measurement. Frequency-scanning interferometry only uses a single tunable laser driven by a triangle waveform signal for forward and backward optical frequency scanning. The absolute distance and moving speed of a target can be estimated by the present input measurement of frequency-scanning interferometry and the previously calculated state based on the Kalman filter algorithm. This method not only compensates for movement errors in conventional frequency-scanning interferometry, but also achieves high-precision and low-complexity dynamic measurements. Experimental results of dynamic measurements under static state, vibration and one-dimensional movement are presented. PMID:25503050

  8. Absolute Frequency Measurements of the D1 and D2 Transitions in Aatomic Li

    Sheets, Donal; Almaguer, Jose; Baron, Jacob; Elgee, Peter; Rowan, Michael; Stalnaker, Jason

    2014-05-01

    We present preliminary results from our measurements of the D1 and D2 transitions in Li. The data were obtained from a collimated atomic beam excited by light from an extended cavity diode laser. The frequency of the diode laser was stabilized to an optical frequency comb, providing absolute frequency measurement and control of the excitation laser frequency. These measurements will provide a stringent test of atomic structure calculations and yield information about the nuclear structure. We also discuss plans to extend the technique to other high-lying states in lithium. Funded by the NIST Precision Measurements Grant and NSF Award #1305591.

  9. Absolute frequency measurements and hyperfine structures of the molecular iodine transitions at 578 nm

    Kobayashi, Takumi; Hosaka, Kazumoto; Inaba, Hajime; Okubo, Sho; Tanabe, Takehiko; Yasuda, Masami; Onae, Atsushi; Hong, Feng-Lei

    2016-01-01

    We report absolute frequency measurements of 81 hyperfine components of the rovibrational transitions of molecular iodine at 578 nm using the second harmonic generation of an 1156-nm external-cavity diode laser and a fiber-based optical frequency comb. The relative uncertainties of the measured absolute frequencies are typically $1.4\\times10^{-11}$. Accurate hyperfine constants of four rovibrational transitions are obtained by fitting the measured hyperfine splittings to a four-term effective Hamiltonian including the electric quadrupole, spin-rotation, tensor spin-spin, and scalar spin-spin interactions. The observed transitions can be good frequency references at 578 nm, and are especially useful for research using atomic ytterbium since the transitions are close to the $^{1}S_{0}-^{3}P_{0}$ clock transition of ytterbium.

  10. Radio frequency controlled synthetic wavelength sweep for absolute distance measurement by optical interferometry

    We present a new technique applied to the variable optical synthetic wavelength generation in optical interferometry. It consists of a chain of optical injection locking among three lasers: first a distributed-feedback laser is used as a master to injection lock an intensity-modulated laser that is directly modulated around 15 GHz by a radio frequency generator on a sideband. A second distributed-feedback laser is injection locked on another sideband of the intensity-modulated laser. The variable synthetic wavelength for absolute distance measurement is simply generated by sweeping the radio frequency over a range of several hundred megahertz, which corresponds to the locking range of the two slave lasers. In this condition, the uncertainty of the variable synthetic wavelength is equivalent to the radio frequency uncertainty. This latter has a relative accuracy of 10-7 or better, resulting in a resolution of ±25 μm for distances exceeding tens of meters. The radio frequency generator produces a linear frequency sweep of 1 ms duration (i.e., exactly equal to one absolute distance measurement acquisition time), with frequency steps of about 1 MHz. Finally, results of absolute distance measurements for ranges up to 10 m are presented

  11. Radio frequency controlled synthetic wavelength sweep for absolute distance measurement by optical interferometry.

    Le Floch, Sébastien; Salvadé, Yves; Mitouassiwou, Rostand; Favre, Patrick

    2008-06-01

    We present a new technique applied to the variable optical synthetic wavelength generation in optical interferometry. It consists of a chain of optical injection locking among three lasers: first a distributed-feedback laser is used as a master to injection lock an intensity-modulated laser that is directly modulated around 15 GHz by a radio frequency generator on a sideband. A second distributed-feedback laser is injection locked on another sideband of the intensity-modulated laser. The variable synthetic wavelength for absolute distance measurement is simply generated by sweeping the radio frequency over a range of several hundred megahertz, which corresponds to the locking range of the two slave lasers. In this condition, the uncertainty of the variable synthetic wavelength is equivalent to the radio frequency uncertainty. This latter has a relative accuracy of 10(-7) or better, resulting in a resolution of +/-25 microm for distances exceeding tens of meters. The radio frequency generator produces a linear frequency sweep of 1 ms duration (i.e., exactly equal to one absolute distance measurement acquisition time), with frequency steps of about 1 MHz. Finally, results of absolute distance measurements for ranges up to 10 m are presented. PMID:18516123

  12. Absolute frequency measurement of the neutral 40Ca optical frequency standard at 657 nm based on microkelvin atoms

    Wilpers, G.; Oates, C. W.; Diddams, S. A.; Bartels, A.; Fortier, T. M.; Oskay, W. H.; Bergquist, J. C.; Jefferts, S. R.; Heavner, T. P.; Parker, T. E.; Hollberg, L.

    2007-04-01

    We report an absolute frequency measurement of the optical clock transition at 657 nm in 40Ca with a relative uncertainty of 7.5 × 10-15, one of the most accurate frequency measurements of a neutral atom optical transition to date. The frequency (455 986 240 494 135.8 ± 3.4) Hz was measured by stabilizing a diode laser system to a spectroscopic signal derived from an ensemble of 106 atoms cooled in two stages to a temperature of 10 µK. The measurement used a femtosecond-laser-based frequency comb to compare the Ca transition frequency with that of the single-ion 199Hg+ optical frequency standard at NIST. The Hg+ frequency was simultaneously calibrated relative to the NIST Cs fountain via the NIST time scale to yield an absolute value for the Ca transition frequency. The relative fractional instability between the two optical standards was 2 × 10-15 for 10 s of averaging time and 2 × 10-16 for 2000 s.

  13. Measuring absolute frequencies beyond the GPS limit via long-haul optical frequency dissemination

    Clivati, C; Livi, L; Poggiali, F; de Cumis, M Siciliani; Mancini, M; Pagano, G; Frittelli, M; Mura, A; Costanzo, G A; Levi, F; Calonico, D; Fallani, L; Catani, J; Inguscio, M

    2015-01-01

    Global Positioning System (GPS) dissemination of frequency standards is ubiquitous at present, providing the most widespread time and frequency reference for the majority of industrial and research applications worldwide. On the other hand, the ultimate limits of the GPS presently curb further advances in high-precision, scientific and industrial applications relying on this dissemination scheme. Here, we demonstrate that these limits can be reliably overcome even in laboratories without a local atomic clock by replacing the GPS with a 642-km-long optical fiber link to a remote primary caesium frequency standard. Through this configuration we stably address the $^1$S$_0$---$^3$P$_0$ clock transition in an ultracold gas of $^{173}$Yb, with a precision that exceeds the possibilities of a GPS-based measurement, dismissing the need for a local clock infrastructure to perform high-precision tasks beyond GPS limit. We also report an improvement of two orders of magnitude in the accuracy on the transition frequency ...

  14. Absolute frequency measurement for the emission transitions of molecular iodine in the 982 - 985 nm range

    Matyugin, Yu A; Ignatovich, S M; Kuznetsov, Sergei A; Nesterenko, M I; Okhapkin, M V; Pivtsov, V S; Skvortsov, Mikhail N; Bagaev, Sergei N [Institute of Laser Physics, Siberian Branch, Russian Academy of Sciences, Novosibirsk (Russian Federation)

    2012-03-31

    We report high-precision frequency measurements of the separate hyperfine structure (HFS) components of the emission B - X system transitions of {sup 127}I{sub 2} molecules in the 982 - 985 nm range. To resolve the HFS of the emission lines, advantage was taken of the method of three-level laser spectroscopy. The function of exciting radiation was fulfilled by the second harmonic of a cw Nd : YAG laser, and the probe radiation in the 968 - 998 nm range was generated by an external-cavity diode laser. The output Nd : YAG laser frequency was locked to an HFS component of the absorption transition and the probing laser radiation to the emission transition component. When both frequencies were locked to HFS components with a common upper level, the output diode laser frequency was precisely equal to the emission transition frequency. The output frequency of the thus stabilised diode laser was measured with the help of a femtosecond optical frequency synthesiser based on a Ti : sapphire laser. We present the results of the absolute frequency measurements of 20 HFS components belonging to six vibrational - rotational transitions of the B - X system of iodine [R56(32 - 48)a1, P58(32 - 48)a1, P85(33 - 48)a1, R87(33 - 48a1, R88(33 - 48)a10] and all 15 components of the R86(33 - 48) line. The relative measurement uncertainty is equal to 7 Multiplication-Sign 10{sup -10} and is determined by the frequency instability of the diode laser radiation.

  15. Absolute frequency measurement of the magnesium intercombination transition $^1S_0 \\to ^3P_1$

    Friebe, Jan; Pape, André; Riedmann, Matthias; Moldenhauer, Karsten; Mehlstäubler, Tanja; Rehbein, Nils; Lisdat, Christian; Rasel, Ernst M.; Ertmer, Wolfgang; Schnatz, Harald; Lipphardt, Burghard; Grosche, Gesine

    2007-01-01

    We report on a frequency measurement of the $(3s^2)^1S_0\\to(3s3p)^3P_1$ clock transition of $^{24}$Mg on a thermal atomic beam. The intercombination transition has been referenced to a portable primary Cs frequency standard with the help of a femtosecond fiber laser frequency comb. The achieved uncertainty is $2.5\\times10^{-12}$ which corresponds to an increase in accuracy of six orders of magnitude compared to previous results. The measured frequency value permits the calculation of several ...

  16. Absolute frequency measurement of the magnesium intercombination transition $^1S_0 \\to ^3P_1$

    Friebe, Jan; Riedmann, Matthias; Moldenhauer, Karsten; Mehlstäubler, Tanja; Rehbein, Nils; Lisdat, Christian; Rasel, Ernst M; Ertmer, Wolfgang; Schnatz, Harald; Lipphardt, Burghard; Grosche, Gesine

    2007-01-01

    We report on a frequency measurement of the $(3s^2)^1S_0\\to(3s3p)^3P_1$ clock transition of $^{24}$Mg on a thermal atomic beam. The intercombination transition has been referenced to a portable primary Cs frequency standard with the help of a femtosecond fiber laser frequency comb. The achieved uncertainty is $2.5\\times10^{-12}$ which corresponds to an increase in accuracy of six orders of magnitude compared to previous results. The measured frequency value permits the calculation of several other optical transitions from $^1S_0$ to the $^3P_J$-level system for $^{24}$Mg, $^{25}$Mg and $^{26}$Mg. We describe in detail the components of our optical frequency standard like the stabilized spectroscopy laser, the atomic beam apparatus used for Ramsey-Bord\\'e interferometry and the frequency comb generator and discuss the uncertainty contributions to our measurement including the first and second order Doppler effect. An upper limit of $3\\times10^{-13}$ in one second for the short term instability of our optical f...

  17. Real-time absolute frequency measurement of continuous-wave terahertz wave based on dual terahertz combs of photocarriers with different frequency spacings

    Yasui, Takeshi; Ichikawa, Ryuji; Cahyadi, Harsono; Hsieh, Yi-Da; Mizutani, Yasuhiro; Yamamoto, Hirotsugu; Iwata, Tetsuo; Inaba, Hajime; Minoshima, Kaoru

    2015-01-01

    Real-time measurement of the absolute frequency of continuous-wave terahertz (CW-THz) waves is required for characterization and frequency calibration of practical CW-THz sources. We proposed a method for real-time monitoring of the absolute frequency of CW-THz waves involving temporally parallel, i.e., simultaneous, measurement of two pairs of beat frequencies and laser repetition frequencies based on dual THz combs of photocarriers (PC-THz combs) with different frequency spacings. To demonstrate the method, THz-comb-referenced spectrum analyzers were constructed with a dual configuration based on dual femtosecond lasers. Regardless of the presence or absence of frequency control in the PC-THz combs, a frequency precision of 10-11 was achieved at a measurement rate of 100 Hz. Furthermore, large fluctuation of the CW-THz frequencies, crossing several modes of the PC-THz combs, was correctly monitored in real time. The proposed method will be a powerful tool for the research and development of practical CW-THz...

  18. Monolithically integrated absolute frequency comb laser system

    Wanke, Michael C.

    2016-07-12

    Rather than down-convert optical frequencies, a QCL laser system directly generates a THz frequency comb in a compact monolithically integrated chip that can be locked to an absolute frequency without the need of a frequency-comb synthesizer. The monolithic, absolute frequency comb can provide a THz frequency reference and tool for high-resolution broad band spectroscopy.

  19. Absolute frequency measurement of an SF6 two-photon line using a femtosecond optical comb and sum-frequency generation

    Amy-Klein, A; Guinet, M; Daussy, C; López, O; Shelkovnikov, A; Chardonnet, C; Amy-Klein, Anne; Goncharov, Andrei; Guinet, Mickael; Daussy, Christophe; Lopez, Olivier; Shelkovnikov, Alexander; Chardonnet, Christian

    2005-01-01

    We demonstrate a new simple technique to measure IR frequencies near 30 THz using a femtosecond (fs) laser optical comb and sum-frequency generation. The optical frequency is directly compared to the distance between two modes of the fs laser, and the resulting beat note is used to control this distance which depends only on the repetition rate fr of the fs laser. The absolute frequency of a CO2 laser stabilized onto an SF6 two-photon line has been measured for the first time. This line is an attractive alternative to the usual saturated absorption OsO4 resonances used for the stabilization of CO2 lasers. First results demonstrate a fractional Allan deviation of 3.10-14 at 1 s.

  20. Measurement of the absolute \

    Aunion, Jose Luis Alcaraz; /Barcelona, IFAE

    2010-07-01

    This thesis presents the measurement of the charged current quasi-elastic (CCQE) neutrino-nucleon cross section at neutrino energies around 1 GeV. This measurement has two main physical motivations. On one hand, the neutrino-nucleon interactions at few GeV is a region where existing old data are sparse and with low statistics. The current measurement populates low energy regions with higher statistics and precision than previous experiments. On the other hand, the CCQE interaction is the most useful interaction in neutrino oscillation experiments. The CCQE channel is used to measure the initial and final neutrino fluxes in order to determine the neutrino fraction that disappeared. The neutrino oscillation experiments work at low neutrino energies, so precise measurement of CCQE interactions are essential for flux measurements. The main goal of this thesis is to measure the CCQE absolute neutrino cross section from the SciBooNE data. The SciBar Booster Neutrino Experiment (SciBooNE) is a neutrino and anti-neutrino scattering off experiment. The neutrino energy spectrum works at energies around 1 GeV. SciBooNE was running from June 8th 2007 to August 18th 2008. In that period, the experiment collected a total of 2.65 x 10{sup 20} protons on target (POT). This thesis has used full data collection in neutrino mode 0.99 x 10{sup 20} POT. A CCQE selection cut has been performed, achieving around 70% pure CCQE sample. A fit method has been exclusively developed to determine the absolute CCQE cross section, presenting results in a neutrino energy range from 0.2 to 2 GeV. The results are compatible with the NEUT predictions. The SciBooNE measurement has been compared with both Carbon (MiniBoonE) and deuterium (ANL and BNL) target experiments, showing a good agreement in both cases.

  1. Absolute neutrino mass measurements

    Wolf, Joachim

    2011-10-01

    The neutrino mass plays an important role in particle physics, astrophysics and cosmology. In recent years the detection of neutrino flavour oscillations proved that neutrinos carry mass. However, oscillation experiments are only sensitive to the mass-squared difference of the mass eigenvalues. In contrast to cosmological observations and neutrino-less double beta decay (0v2β) searches, single β-decay experiments provide a direct, model-independent way to determine the absolute neutrino mass by measuring the energy spectrum of decay electrons at the endpoint region with high accuracy. Currently the best kinematic upper limits on the neutrino mass of 2.2eV have been set by two experiments in Mainz and Troitsk, using tritium as beta emitter. The next generation tritium β-experiment KATRIN is currently under construction in Karlsruhe/Germany by an international collaboration. KATRIN intends to improve the sensitivity by one order of magnitude to 0.2eV. The investigation of a second isotope (137Rh) is being pursued by the international MARE collaboration using micro-calorimeters to measure the beta spectrum. The technology needed to reach 0.2eV sensitivity is still in the R&D phase. This paper reviews the present status of neutrino-mass measurements with cosmological data, 0v2β decay and single β-decay.

  2. Medium-frequency acceleration transducers and their absolute calibration methods

    After a brief review of the principle of operation and principal calibration characteristics of accelerometers, this article presents in the middle frequency range ie, 5 Hz to 10 kHz, two absolute methods of calibration of their sensitivity. These two methods consist of: a method of interference measurement of the accelerometers displacement which for a given frequency will permit calculation of the resultant level of acceleration; an electrical reciprocity method. They require the measurement of mechanical and electrical levels which can be easily referred to National Standards and the interrelation between their frequency range and their acceleration levels permits their cross-comparison

  3. Absolute atomic oxygen and nitrogen densities in radio-frequency driven atmospheric pressure cold plasmas: Synchrotron vacuum ultra-violet high-resolution Fourier-transform absorption measurements

    Reactive atomic species play a key role in emerging cold atmospheric pressure plasma applications, in particular, in plasma medicine. Absolute densities of atomic oxygen and atomic nitrogen were measured in a radio-frequency driven non-equilibrium plasma operated at atmospheric pressure using vacuum ultra-violet (VUV) absorption spectroscopy. The experiment was conducted on the DESIRS synchrotron beamline using a unique VUV Fourier-transform spectrometer. Measurements were carried out in plasmas operated in helium with air-like N2/O2 (4:1) admixtures. A maximum in the O-atom concentration of (9.1 ± 0.7)×1020 m−3 was found at admixtures of 0.35 vol. %, while the N-atom concentration exhibits a maximum of (5.7 ± 0.4)×1019 m−3 at 0.1 vol. %

  4. The improvement and evaluation of a laser interferometer for the absolute measurement of ultrasonic displacements in the frequency range up to 15 MHz

    This report describes the application of a laser interferometer to the absolute calibration of hydrophones in the frequency range 0.5 to 15 MHz. The interferometer, previously developed and improved at AERE Harwell, has now been assessed in terms of its performance characteristics. The optimum experimental arrangement and method of calibration has been defined and corrections for various effects which influence the measurement have been studied experimentally and theoretically. The reproducibility of the method is approximately 1% and the estimated systematic uncertainty ranges from 2.1% at 0.5 MHz to 6.3% at 15 MHz. A hydrophone has been calibrated using the interferometer and using two other methods, and the results are in agreement to within the estimated uncertainties

  5. Measurement of the absolute speed is possible?

    Sergey V. Shevchenko; Tokarevsky, Vladimir V.

    2016-01-01

    One of popular problems, which  are experimentally studied in physics in a long time, is the testing of the special relativity theory, first of all – measurements of isotropy and constancy of light speed; as well as attempts to determine so called “absolute speed”, i.e. the Earth speed in the absolute spacetime (absolute reference frame), if this spacetime (ARF) exists.  Corresponding experiments aimed at the measuring of proper speed of some reference frame in oth...

  6. Absolute calibration in vivo measurement systems

    Lawrence Livermore National Laboratory (LLNL) is currently investigating a new method for obtaining absolute calibration factors for radiation measurement systems used to measure internally deposited radionuclides in vivo. Absolute calibration of in vivo measurement systems will eliminate the need to generate a series of human surrogate structures (i.e., phantoms) for calibrating in vivo measurement systems. The absolute calibration of in vivo measurement systems utilizes magnetic resonance imaging (MRI) to define physiological structure, size, and composition. The MRI image provides a digitized representation of the physiological structure, which allows for any mathematical distribution of radionuclides within the body. Using Monte Carlo transport codes, the emission spectrum from the body is predicted. The in vivo measurement equipment is calibrated using the Monte Carlo code and adjusting for the intrinsic properties of the detection system. The calibration factors are verified using measurements of existing phantoms and previously obtained measurements of human volunteers. 8 refs

  7. Precise Measurement of the Absolute Fluorescence Yield

    Ave, M.; Bohacova, M.; Daumiller, K.; Di Carlo, P.; di Giulio, C.; San Luis, P. Facal; Gonzales, D.; Hojvat, C.; Hörandel, J. R.; Hrabovsky, M.; Iarlori, M.; Keilhauer, B.; Klages, H.; Kleifges, M.; Kuehn, F.; Monasor, M.; Nozka, L.; Palatka, M.; Petrera, S.; Privitera, P.; Ridky, J.; Rizi, V.; D'Orfeuil, B. Rouille; Salamida, F.; Schovanek, P.; Smida, R.; Spinka, H.; Ulrich, A.; Verzi, V.; Williams, C.

    2011-09-01

    We present preliminary results of the absolute yield of fluorescence emission in atmospheric gases. Measurements were performed at the Fermilab Test Beam Facility with a variety of beam particles and gases. Absolute calibration of the fluorescence yield to 5% level was achieved by comparison with two known light sources--the Cherenkov light emitted by the beam particles, and a calibrated nitrogen laser. The uncertainty of the energy scale of current Ultra-High Energy Cosmic Rays experiments will be significantly improved by the AIRFLY measurement.

  8. ABSOLUTE MEASUREMENT OF THE GANIL BEAM ENERGY

    CASANDJIAN, JM; MITTIG, W; BEUNARD, R; GAUDARD, L; LEPINESZILY, A; VILLARI, ACC; AUGER, G; BIANCHI, L; CUNSOLO, A; FOTI, A; LICHTENTHALER, R; PLAGNOL, E; SCHUTZ, Y; SIEMSSEN, RH; WIELECZKO, JP

    1993-01-01

    The energy of the GANIL cyclotron beam was measured on-line during the Pb-208 + Pb-208 elastic scattering experiment ''Search for Color van der Waals Force in the Pb-208 + Pb-208 Mott scattering'' with an absolute precision of 7 x 10(-5) at approximately 1.0 GeV, which represents an improvement of o

  9. An absolute measure for a key currency

    Oya, Shunsuke; Aihara, Kazuyuki; Hirata, Yoshito

    It is generally considered that the US dollar and the euro are the key currencies in the world and in Europe, respectively. However, there is no absolute general measure for a key currency. Here, we investigate the 24-hour periodicity of foreign exchange markets using a recurrence plot, and define an absolute measure for a key currency based on the strength of the periodicity. Moreover, we analyze the time evolution of this measure. The results show that the credibility of the US dollar has not decreased significantly since the Lehman shock, when the Lehman Brothers bankrupted and influenced the economic markets, and has increased even relatively better than that of the euro and that of the Japanese yen.

  10. Measurement of absolute gravity acceleration in Firenze

    M. de Angelis

    2011-01-01

    Full Text Available This paper reports the results from the accurate measurement of the acceleration of gravity g taken at two separate premises in the Polo Scientifico of the University of Firenze (Italy. In these laboratories, two separate experiments aiming at measuring the Newtonian constant and testing the Newtonian law at short distances are in progress. Both experiments require an independent knowledge on the local value of g. The only available datum, pertaining to the italian zero-order gravity network, was taken more than 20 years ago at a distance of more than 60 km from the study site. Gravity measurements were conducted using an FG5 absolute gravimeter, and accompanied by seismic recordings for evaluating the noise condition at the site. The absolute accelerations of gravity at the two laboratories are (980 492 160.6 ± 4.0 μGal and (980 492 048.3 ± 3.0 μGal for the European Laboratory for Non-Linear Spectroscopy (LENS and Dipartimento di Fisica e Astronomia, respectively. Other than for the two referenced experiments, the data here presented will serve as a benchmark for any future study requiring an accurate knowledge of the absolute value of the acceleration of gravity in the study region.

  11. The absolute frequency of the 87Sr optical clock transition

    Campbell, Gretchen K.; Ludlow, Andrew D.; Blatt, Sebastian;

    2008-01-01

    The absolute frequency of the 1S0–3P0 clock transition of 87Sr has been measured to be 429 228 004 229 873.65 (37) Hz using lattice-confined atoms, where the fractional uncertainty of 8.6 × 10-16 represents one of the most accurate measurements of an atomic transition frequency to date. After a d...

  12. Absolute Measurement of Quantum-Limited Interferometric Displacements

    Thiel, Valérian; Treps, Nicolas; Roslund, Jonathan

    2016-01-01

    A methodology is introduced that enables an absolute, quantum-limited measurement of sub-wavelength interferometric displacements. The technique utilizes a high-frequency optical path modulation within an interferometer operated in a homodyne configuration. All of the information necessary to fully characterize the resultant path displacement is contained within the relative strengths of the various harmonics of the phase modulation. The method, which is straightforward and readily implementable, allows a direct measurement of the theoretical Cram\\'er-Rao limit of detection without any assumptions on the nature of the light source.

  13. Absolute CF2 density and gas temperature measurements by absorption spectroscopy in dual-frequency capacitively coupled CF4/Ar plasmas

    Broadband ultraviolet absorption spectroscopy has been used to determine the CF2 radical density in dual-frequency capacitively coupled CF4/Ar plasmas, using the CF2 A~1B1←X~1A1 system of absorption spectrum. The rotational temperature of ground state CF2 and excited state CF was also estimated by using A~1B1←X~1A1 system and B2Δ−X2Π system, respectively. The translational gas temperature was deduced from the Doppler width of the Ar*(3P2) and Ar*(3P0) metastable atoms absorption line by using the tunable diode laser absorption spectroscopy. The rotational temperatures of the excited state CF are about 100 K higher than those of ground state CF2, and about 200 K higher than the translational gas temperatures. The dependences of the radical CF2 density, electron density, electron temperature, rotational temperature, and gas temperature on the high frequency power and pressure have been analyzed. Furthermore, the production and loss mechanisms of CF2 radical and the gas heating mechanisms have also been discussed

  14. Frequency Domain Criteria for Absolute Stability A Delay-integral-quadratic Constraints Approach

    Altshuller, Dmitry

    2013-01-01

    Frequency Domain Criteria for Absolute Stability focuses on recently-developed methods of delay-integral-quadratic constraints to provide criteria for absolute stability of nonlinear control systems. The known or assumed properties of the system are the basis from which stability criteria are developed. Through these methods, many classical results are naturally extended, particularly to time-periodic but also to nonstationary systems. Mathematical prerequisites including Lebesgue-Stieltjes measures and integration are first explained in an informal style with technically more difficult proofs presented in separate sections that can be omitted without loss of continuity. The results are presented in the frequency domain – the form in which they naturally tend to arise. In some cases, the frequency-domain criteria can be converted into computationally tractable linear matrix inequalities but in others, especially those with a certain geometric interpretation, inferences concerning stability can be made direc...

  15. An All Fiber White Light Interferometric Absolute Temperature Measurement System

    Jeonggon Harrison Kim

    2008-01-01

    Recently the author of this article proposed a new signal processing algorithm for an all fiber white light interferometer. In this article, an all fiber white light interferometric absolute temperature measurement system is presented using the previously proposed signal processing algorithm. Stability and absolute temperature measurement were demonstrated. These two tests demonstrated the feasibility of absolute temperature measurement with an accuracy of 0.015 fringe and 0.0005 fringe, resp...

  16. Absolute Distance Measurements with Tunable Semiconductor Laser

    Mikel, Břetislav; Číp, Ondřej; Lazar, Josef

    T118, - (2005), s. 41-44. ISSN 0031-8949 R&D Projects: GA AV ČR(CZ) IAB2065001 Keywords : tunable laser * absolute interferometer Subject RIV: BH - Optics, Masers, Lasers Impact factor: 0.661, year: 2004

  17. On The Absolute Measurement of Some Nuclear Material Samples

    A state with nuclear activities should establish a system capable of controlling all nuclear material (NM) under its authority. Continuous improvement of a measuring system is an essential mandate such controlling system. Measurements of NM using absolute methods could eliminate the dependency on NM standards, which are necessary for other relative or semi-absolute methods. In this work, an absolute method was used to estimate uranium contents in some NM samples. NM was measured by an absolute method through combination of experimental measurements and Monte Carlo calculations

  18. Realization of a frequency standard at 778 nm: absolute frequency measurement of the 2S-8S/D transitions in hydrogen and deuterium and determination of the Rydberg constant; Realisation d'un etalon de frequence a 778 nm: mesure absolue des frequences 2S-8S/D des atomes d'hydrogene et de deuterium et determination de la constante de rydberg

    Beauvoir, B. de

    1996-12-15

    The purpose of this work is to design a 778 nm standard laser for performing an absolute measurement of 2S-8S/D frequencies of hydrogen and deuterium atoms. This frequency calibration is based on a 5S-5D two-photon transition of the rubidium atom. Metrological performance of this laser is 10 times as good as that of He-Ne laser calibrated on iodine. It has been shown that the passage of a laser radiation through an optic fiber does not deteriorate its metrological properties. 2S-8S/8D transitions have been excited in an atomic jet by a titanium-sapphire laser. Spurious effects can shift and broaden lines. In order to prevent these effects, a theoretical line has been shaped and adjusted on experimental signals. The frequency comparison between the excitation laser and the standard laser has led to the measurement of the absolute frequency of the line concerned. The value of the Rydberg constant has been deduced: R{sub {infinity}} = 109737.3156859 (10) cm{sup -1}. The comparison of experimental data between deuterium and hydrogen has allowed us to determine the value of the Lamb shift of the 2S state of deuterium: L(2S-2P) = 1059,230 (9) MHz.

  19. High-precision absolute measurement of CEBAF beam mean energy

    The absolute measurement of the beam mean energy with an accuracy of one part in 104 or higher is an important demand of the CEBAF Hall A physics program. This accuracy may reduce the uncertainty in the d(e, e'p)p cross section δσ/σ to 1%. The need for such an accurately calibrated beam is not particular to CEBAF; at other electron facilities uncertainty in the incident energy has proven to be among the dominant sources of systematic error. The following methods for solving the problem were considered at both CEBAF and the Yerevan Physics Institute during 1990--1991: Backscattering of a plane electromagnetic wave by the relativistic electron beam. Calculations show that the intensity of the backscattered radiation in a bandwidth of 10-4 near the maximum frequency is about 1 photon per second at 4 GeV and 0.3 mA. Magnetic spectrometers performing as three- and four-magnet chicanes with appropriate detector systems. Such a system was used at SLAC for absolute measurement of the SLC beams energy, where a maximum accuracy of 5 x 10-4 was achieved. Calculations show that a similar accuracy can be achieved for the CEBAF beam in both proposed systems. Measurement of the vertical distribution of synchrotron radiation. Calculations indicate that precision of about 2.5 x 10-5 is achievable for CEBAF

  20. Absolute measurements of fast neutrons using yttrium

    Yttrium is presented as an absolute neutron detector for pulsed neutron sources. It has high sensitivity for detecting fast neutrons. Yttrium has the property of generating a monoenergetic secondary radiation in the form of a 909 keV gamma-ray caused by inelastic neutron interaction. It was calibrated numerically using MCNPX and does not need periodic recalibration. The total yttrium efficiency for detecting 2.45 MeV neutrons was determined to be fn∼4.1x10-4 with an uncertainty of about 0.27%. The yttrium detector was employed in the NX2 plasma focus experiments and showed the neutron yield of the order of 108 neutrons per discharge.

  1. Quantifying Discipline Practices Using Absolute vs. Relative Frequencies: Clinical and Research Implications for Child Welfare

    Lindhiem, Oliver; Shaffer, Anne; Kolko, David J.

    2013-01-01

    In the parent intervention outcome literatures, discipline practices are generally quantified as absolute frequencies or, less commonly, as relative frequencies. These differences in methodology warrant direct comparison as they have critical implications for study results and conclusions among treatments targeted at reducing parental aggression and harsh discipline. In this study, we directly compared the absolute frequency method and the relative frequency method for quantifying physically ...

  2. Measuring the absolute magnetic field using high-Tc SQUID

    SQUID normally can only measure the change of magnetic field instead of the absolute value of magnetic field. Using a compensation method, a mobile SQUID, which could keep locked when moving in the earth's magnetic field, was developed. Using the mobile SQUID, it was possible to measure the absolute magnetic field. The absolute value of magnetic field could be calculated from the change of the compensation output when changing the direction of the SQUID in a magnetic field. Using this method and the mobile SQUID, we successfully measured the earth's magnetic field in our laboratory

  3. No-arbitrage conditions and absolutely continuous changes of measure

    Claudio Fontana

    2013-01-01

    We study the stability of several no-arbitrage conditions with respect to absolutely continuous, but not necessarily equivalent, changes of measure. We first consider models based on continuous semimartingales and show that no-arbitrage conditions weaker than NA and NFLVR are always stable. Then, in the context of general semimartingale models, we show that an absolutely continuous change of measure does never introduce arbitrages of the first kind as long as the change of measure density pro...

  4. Absolute brightness temperature measurements at 2.1-mm wavelength

    Ulich, B. L.

    1974-01-01

    Absolute measurements of the brightness temperatures of the Sun, new Moon, Venus, Mars, Jupiter, Saturn, and Uranus, and of the flux density of DR21 at 2.1-mm wavelength are reported. Relative measurements at 3.5-mm wavelength are also preented which resolve the absolute calibration discrepancy between The University of Texas 16-ft radio telescope and the Aerospace Corporation 15-ft antenna. The use of the bright planets and DR21 as absolute calibration sources at millimeter wavelengths is discussed in the light of recent observations.

  5. Absolute Quantum Yield Measurement of Powder Samples

    Moreno, Luis A.

    2012-01-01

    Measurement of fluorescence quantum yield has become an important tool in the search for new solutions in the development, evaluation, quality control and research of illumination, AV equipment, organic EL material, films, filters and fluorescent probes for bio-industry.

  6. Absolute density measurements in the middle atmosphere

    M. Rapp

    Full Text Available In the last ten years a total of 25 sounding rockets employing ionization gauges have been launched at high latitudes ( ~ 70° N to measure total atmospheric density and its small scale fluctuations in an altitude range between 70 and 110 km. While the determination of small scale fluctuations is unambiguous, the total density analysis has been complicated in the past by aerodynamical disturbances leading to densities inside the sensor which are enhanced compared to atmospheric values. Here, we present the results of both Monte Carlo simulations and wind tunnel measurements to quantify this aerodynamical effect. The comparison of the resulting ‘ram-factor’ profiles with empirically determined density ratios of ionization gauge measurements and falling sphere measurements provides excellent agreement. This demonstrates both the need, but also the possibility, to correct aerodynamical influences on measurements from sounding rockets. We have determined a total of 20 density profiles of the mesosphere-lower-thermosphere (MLT region. Grouping these profiles according to season, a listing of mean density profiles is included in the paper. A comparison with density profiles taken from the reference atmospheres CIRA86 and MSIS90 results in differences of up to 40%. This reflects that current reference atmospheres are a significant potential error source for the determination of mixing ratios of, for example, trace gas constituents in the MLT region.

    Key words. Middle atmosphere (composition and chemistry; pressure, density, and temperature; instruments and techniques

  7. Absolute small-angle measurement based on optical feedback interferometry

    Jingang Zhong; Xianhua Zhang; Zhixiang Ju

    2008-01-01

    We present a simple but effective method for small-angle measurement based on optical feedback inter-ferometry (or laser self-mixing interferometry). The absolute zero angle can be defined at the biggest fringe amplitude point, so this method can also achieve absolute angle measurement. In order to verify the method, we construct an angle measurement system. The Fourier-transform method is used to analysis the interference signal. Rotation angles are experimentally measured with a resolution of 10-6 rad and a measurement range of approximately from -0.0007 to +0.0007 rad.

  8. Real-Time Determination of Absolute Frequency in Continuous-Wave Terahertz Radiation with a Photocarrier Terahertz Frequency Comb Induced by an Unstabilized Femtosecond Laser

    Minamikawa, Takeo; Hayashi, Kenta; Mizuguchi, Tatsuya; Hsieh, Yi-Da; Abdelsalam, Dahi Ghareab; Mizutani, Yasuhiro; Yamamoto, Hirotsugu; Iwata, Tetsuo; Yasui, Takeshi

    2016-05-01

    A practical method for the absolute frequency measurement of continuous-wave terahertz (CW-THz) radiation uses a photocarrier terahertz frequency comb (PC-THz comb) because of its ability to realize real-time, precise measurement without the need for cryogenic cooling. However, the requirement for precise stabilization of the repetition frequency ( f rep) and/or use of dual femtosecond lasers hinders its practical use. In this article, based on the fact that an equal interval between PC-THz comb modes is always maintained regardless of the fluctuation in f rep, the PC-THz comb induced by an unstabilized laser was used to determine the absolute frequency f THz of CW-THz radiation. Using an f rep-free-running PC-THz comb, the f THz of the frequency-fixed or frequency-fluctuated active frequency multiplier chain CW-THz source was determined at a measurement rate of 10 Hz with a relative accuracy of 8.2 × 10-13 and a relative precision of 8.8 × 10-12 to a rubidium frequency standard. Furthermore, f THz was correctly determined even when fluctuating over a range of 20 GHz. The proposed method enables the use of any commercial femtosecond laser for the absolute frequency measurement of CW-THz radiation.

  9. Absolute spectroscopy of N2O near 4.5 μm with a comb-calibrated, frequency-swept quantum cascade laser spectrometer.

    Knabe, Kevin; Williams, Paul A; Giorgetta, Fabrizio R; Radunsky, Michael B; Armacost, Chris M; Crivello, Sam; Newbury, Nathan R

    2013-01-14

    We present absolute line center frequencies for 24 fundamental ν3 ro-vibrational P-branch transitions near 4.5 μm in N2O with an absolute expanded (multiplied by 2) frequency uncertainty of 800 kHz. The spectra are acquired with a swept laser spectrometer consisting of an external-cavity quantum cascade laser whose instantaneous frequency is continuously tracked against a near-infrared frequency comb. The measured absorbance profiles have a well-calibrated frequency axis, and are fitted to determine absolute line center values. We discuss the main sources of uncertainty. PMID:23388996

  10. On the Absolute Continuity of the Blackwell Measure

    Bárány, Balázs; Kolossváry, István

    2015-04-01

    In 1957, Blackwell expressed the entropy of hidden Markov chains using a measure which can be characterised as an invariant measure for an iterated function system with place-dependent weights. This measure, called the Blackwell measure, plays a central role in understanding the entropy rate and other important characteristics of fundamental models in information theory. We show that for a suitable set of parameter values the Blackwell measure is absolutely continuous for almost every parameter in the case of binary symmetric channels.

  11. A simplified method of absolute measurement for liquid scintillation counter

    A absolute measurement for simplified determining the activities of LS. sample is described. The total uncertainty of 2.0% and confidence level of 99.7% are given by the method, and as a example, three samples of 14C (n-hexadecane) are measured

  12. Mathematical Model for Absolute Magnetic Measuring Systems in Industrial Applications

    Fügenschuh, Armin; Fügenschuh, Marzena; Ludszuweit, Marina; Mojsic, Aleksandar; Sokół, Joanna

    2015-09-01

    Scales for measuring systems are either based on incremental or absolute measuring methods. Incremental scales need to initialize a measurement cycle at a reference point. From there, the position is computed by counting increments of a periodic graduation. Absolute methods do not need reference points, since the position can be read directly from the scale. The positions on the complete scales are encoded using two incremental tracks with different graduation. We present a new method for absolute measuring using only one track for position encoding up to micrometre range. Instead of the common perpendicular magnetic areas, we use a pattern of trapezoidal magnetic areas, to store more complex information. For positioning, we use the magnetic field where every position is characterized by a set of values measured by a hall sensor array. We implement a method for reconstruction of absolute positions from the set of unique measured values. We compare two patterns with respect to uniqueness, accuracy, stability and robustness of positioning. We discuss how stability and robustness are influenced by different errors during the measurement in real applications and how those errors can be compensated.

  13. Testing and evaluation of thermal cameras for absolute temperature measurement

    Chrzanowski, Krzysztof; Fischer, Joachim; Matyszkiel, Robert

    2000-09-01

    The accuracy of temperature measurement is the most important criterion for the evaluation of thermal cameras used in applications requiring absolute temperature measurement. All the main international metrological organizations currently propose a parameter called uncertainty as a measure of measurement accuracy. We propose a set of parameters for the characterization of thermal measurement cameras. It is shown that if these parameters are known, then it is possible to determine the uncertainty of temperature measurement due to only the internal errors of these cameras. Values of this uncertainty can be used as an objective criterion for comparisons of different thermal measurement cameras.

  14. Absolute luminosity measurements with the LHCb detector at the LHC

    Aaij, R; Adinolfi, M; Adrover, C; Affolder, A; Ajaltouni, Z; Albrecht, J; Alessio, F; Alexander, M; Alkhazov, G; Alvarez Cartelle, P; Alves, A A; Amato, S; Amhis, Y; Anderson, J; Appleby, R B; Aquines Gutierrez, O; Archilli, F; Arrabito, L; Artamonov, A; Artuso, M; Aslanides, E; Auriemma, G; Bachmann, S; Back, J J; Bailey, D S; Balagura, V; Baldini, W; Barlow, R J; Barschel, C; Barsuk, S; Barter, W; Bates, A; Bauer, C; Bauer, Th; Bay, A; Bediaga, I; Belous, K; Belyaev, I; Ben-Haim, E; Benayoun, M; Bencivenni, G; Benson, S; Benton, J; Bernet, R; Bettler, M-O; van Beuzekom, M; Bien, A; Bifani, S; Bizzeti, A; Bjørnstad, P M; Blake, T; Blanc, F; Blanks, C; Blouw, J; Blusk, S; Bobrov, A; Bocci, V; Bondar, A; Bondar, N; Bonivento, W; Borghi, S; Borgia, A; Bowcock, T J V; Bozzi, C; Brambach, T; van den Brand, J; Bressieux, J; Brett, D; Brisbane, S; Britsch, M; Britton, T; Brook, N H; Brown, H; Büchler-Germann, A; Burducea, I; Bursche, A; Buytaert, J; Cadeddu, S; Caicedo Carvajal, J M; Callot, O; Calvi, M; Calvo Gomez, M; Camboni, A; Campana, P; Carbone, A; Carboni, G; Cardinale, R; Cardini, A; Carson, L; Carvalho Akiba, K; Casse, G; Cattaneo, M; Charles, M; Charpentier, Ph; Chiapolini, N; Ciba, K; Cid Vidal, X; Ciezarek, G; Clarke, P E L; Clemencic, M; Cliff, H V; Closier, J; Coca, C; Coco, V; Cogan, J; Collins, P; Constantin, F; Conti, G; Contu, A; Cook, A; Coombes, M; Corti, G; Cowan, G A; Currie, R; D'Almagne, B; D'Ambrosio, C; David, P; De Bonis, I; De Capua, S; De Cian, M; De Lorenzi, F; De Miranda, J M; De Paula, L; De Simone, P; Decamp, D; Deckenhoff, M; Degaudenzi, H; Deissenroth, M; Del Buono, L; Deplano, C; Deschamps, O; Dettori, F; Dickens, J; Dijkstra, H; Diniz Batista, P; Donleavy, S; Dordei, F; Dosil Suárez, A; Dossett, D; Dovbnya, A; Dupertuis, F; Dzhelyadin, R; Eames, C; Easo, S; Egede, U; Egorychev, V; Eidelman, S; van Eijk, D; Eisele, F; Eisenhardt, S; Ekelhof, R; Eklund, L; Elsasser, Ch; d'Enterria, D G; Esperante Pereira, D; Estève, L; Falabella, A; Fanchini, E; Färber, C; Fardell, G; Farinelli, C; Farry, S; Fave, V; Fernandez Albor, V; Ferro-Luzzi, M; Filippov, S; Fitzpatrick, C; Fontana, M; Fontanelli, F; Forty, R; Frank, M; Frei, C; Frosini, M; Furcas, S; Gallas Torreira, A; Galli, D; Gandelman, M; Gandini, P; Gao, Y; Garnier, J-C; Garofoli, J; Garra Tico, J; Garrido, L; Gaspar, C; Gauvin, N; Gersabeck, M; Gershon, T; Ghez, Ph; Gibson, V; Gligorov, V V; Göbel, C; Golubkov, D; Golutvin, A; Gomes, A; Gordon, H; Grabalosa Gándara, M; Graciani Diaz, R; Granado Cardoso, L A; Graugés, E; Graziani, G; Grecu, A; Gregson, S; Gui, B; Gushchin, E; Guz, Yu; Gys, T; Haefeli, G; Haen, C; Haines, S C; Hampson, T; Hansmann-Menzemer, S; Harji, R; Harnew, N; Harrison, J; Harrison, P F; He, J; Heijne, V; Hennessy, K; Henrard, P; Hernando Morata, J A; van Herwijnen, E; Hicks, E; Hofmann, W; Holubyev, K; Hopchev, P; Hulsbergen, W; Hunt, P; Huse, T; Huston, R S; Hutchcroft, D; Hynds, D; Iakovenko, V; Ilten, P; Imong, J; Jacobsson, R; Jaeger, A; Jahjah Hussein, M; Jans, E; Jansen, F; Jaton, P; Jean-Marie, B; Jing, F; John, M; Johnson, D; Jones, C R; Jost, B; Kandybei, S; Karacson, M; Karbach, T M; Keaveney, J; Kerzel, U; Ketel, T; Keune, A; Khanji, B; Kim, Y M; Knecht, M; Koblitz, S; Koppenburg, P; Kozlinskiy, A; Kravchuk, L; Kreplin, K; Kreps, M; Krocker, G; Krokovny, P; Kruse, F; Kruzelecki, K; Kucharczyk, M; Kukulak, S; Kumar, R; Kvaratskheliya, T; La Thi, V N; Lacarrere, D; Lafferty, G; Lai, A; Lambert, D; Lambert, R W; Lanciotti, E; Lanfranchi, G; Langenbruch, C; Latham, T; Le Gac, R; van Leerdam, J; Lees, J-P; Lefèvre, R; Leflat, A; Lefrançois, J; Leroy, O; Lesiak, T; Li, L; Li Gioi, L; Lieng, M; Liles, M; Lindner, R; Linn, C; Liu, B; Liu, G; Lopes, J H; Lopez Asamar, E; Lopez-March, N; Luisier, J; Machefert, F; Machikhiliyan, I V; Maciuc, F; Maev, O; Magnin, J; Malde, S; Mamunur, R M D; Manca, G; Mancinelli, G; Mangiafave, N; Marconi, U; Märki, R; Marks, J; Martellotti, G; Martens, A; Martin, L; Martín Sánchez, A; Martinez Santos, D; Massafferri, A; Matev, R; Mathe, Z; Matteuzzi, C; Matveev, M; Maurice, E; Maynard, B; Mazurov, A; McGregor, G; McNulty, R; Mclean, C; Meissner, M; Merk, M; Merkel, J; Messi, R; Miglioranzi, S; Milanes, D A; Minard, M-N; Monteil, S; Moran, D; Morawski, P; Mountain, R; Mous, I; Muheim, F; Müller, K; Muresan, R; Muryn, B; Musy, M; Mylroie-Smith, J; Naik, P; Nakada, T; Nandakumar, R; Nardulli, J; Nasteva, I; Nedos, M; Needham, M; Neufeld, N; Nguyen-Mau, C; Nicol, M; Nies, S; Niess, V; Nikitin, N; Oblakowska-Mucha, A; Obraztsov, V; Oggero, S; Ogilvy, S; Okhrimenko, O; Oldeman, R; Orlandea, M; Otalora Goicochea, J M; Owen, P; Pal, B; Palacios, J; Palutan, M; Panman, J; Papanestis, A; Pappagallo, M; Parkes, C; Parkinson, C J; Passaleva, G; Patel, G D; Patel, M; Paterson, S K; Patrick, G N; Patrignani, C; Pavel-Nicorescu, C; Pazos Alvarez, A; Pellegrino, A; Penso, G; Pepe Altarelli, M; Perazzini, S; Perego, D L; Perez Trigo, E; Pérez-Calero Yzquierdo, A; Perret, P; Perrin-Terrin, M; Pessina, G; Petrella, A; Petrolini, A; Pie Valls, B; Pietrzyk, B; Pilar, T; Pinci, D; Plackett, R; Playfer, S; Plo Casasus, M; Polok, G; Poluektov, A; Polycarpo, E; Popov, D; Popovici, B; Potterat, C; Powell, A; du Pree, T; Prisciandaro, J; Pugatch, V; Puig Navarro, A; Qian, W; Rademacker, J H; Rakotomiaramanana, B; Rangel, M S; Raniuk, I; Raven, G; Redford, S; Reid, M M; dos Reis, A C; Ricciardi, S; Rinnert, K; Roa Romero, D A; Robbe, P; Rodrigues, E; Rodrigues, F; Rodriguez Perez, P; Rogers, G J; Roiser, S; Romanovsky, V; Rouvinet, J; Ruf, T; Ruiz, H; Sabatino, G; Saborido Silva, J J; Sagidova, N; Sail, P; Saitta, B; Salzmann, C; Sannino, M; Santacesaria, R; Santamarina Rios, C; Santinelli, R; Santovetti, E; Sapunov, M; Sarti, A; Satriano, C; Satta, A; Savrie, M; Savrina, D; Schaack, P; Schiller, M; Schleich, S; Schmelling, M; Schmidt, B; Schneider, O; Schopper, A; Schune, M -H; Schwemmer, R; Sciubba, A; Seco, M; Semennikov, A; Senderowska, K; Sepp, I; Serra, N; Serrano, J; Seyfert, P; Shao, B; Shapkin, M; Shapoval, I; Shatalov, P; Shcheglov, Y; Shears, T; Shekhtman, L; Shevchenko, O; Shevchenko, V; Shires, A; Silva Coutinho, R; Skottowe, H P; Skwarnicki, T; Smith, A C; Smith, N A; Sobczak, K; Soler, F J P; Solomin, A; Soomro, F; Souza De Paula, B; Spaan, B; Sparkes, A; Spradlin, P; Stagni, F; Stahl, S; Steinkamp, O; Stoica, S; Stone, S; Storaci, B; Straticiuc, M; Straumann, U; Styles, N; Subbiah, V K; Swientek, S; Szczekowski, M; Szczypka, P; Szumlak, T; T'Jampens, S; Teodorescu, E; Teubert, F; Thomas, C; Thomas, E; van Tilburg, J; Tisserand, V; Tobin, M; Topp-Joergensen, S; Tran, M T; Tsaregorodtsev, A; Tuning, N; Ubeda Garcia, M; Ukleja, A; Urquijo, P; Uwer, U; Vagnoni, V; Valenti, G; Vazquez Gomez, R; Vazquez Regueiro, P; Vecchi, S; Velthuis, J J; Veltri, M; Vervink, K; Viaud, B; Videau, I; Vilasis-Cardona, X; Visniakov, J; Vollhardt, A; Voong, D; Vorobyev, A; Voss, H; Wacker, K; Wandernoth, S; Wang, J; Ward, D R; Webber, A D; Websdale, D; Whitehead, M; Wiedner, D; Wiggers, L; Wilkinson, G; Williams, M P; Williams, M; Wilson, F F; Wishahi, J; Witek, M; Witzeling, W; Wotton, S A; Wyllie, K; Xie, Y; Xing, F; Yang, Z; Young, R; Yushchenko, O; Zavertyaev, M; Zhang, F; Zhang, L; Zhang, W C; Zhang, Y; Zhelezov, A; Zhong, L; Zverev, E; Zvyagin, A

    2012-01-01

    Absolute luminosity measurements are of general interest for colliding-beam experiments at storage rings. These measurements are necessary to determine the absolute cross-sections of reaction processes and are valuable to quantify the performance of the accelerator. LHCb has applied two methods to determine the absolute scale of its luminosity measurements for proton-proton collisions at the LHC with a centre-of-mass energy of 7 TeV. In addition to the classic ``van der Meer scan'' method a novel technique has been developed which makes use of direct imaging of the individual beams using beam-gas and beam-beam interactions. This beam imaging method is made possible by the high resolution of the LHCb vertex detector and the close proximity of the detector to the beams, and allows beam parameters such as positions, angles and widths to be determined. The results of the two methods have comparable precision and are in good agreement. Combining the two methods, an overall precision of 3.5\\% in the absolute lumi...

  15. Calibrating the absolute amplitude scale for air showers measured at LOFAR

    Nelles, A.; Hörandel, J. R.; Karskens, T.; Krause, M.; Buitink, S.; Corstanje, A.; Enriquez, J. E.; Erdmann, M.; Falcke, H.; Haungs, A.; Hiller, R.; Huege, T.; Krause, R.; Link, K.; Norden, M. J.; Rachen, J. P.; Rossetto, L.; Schellart, P.; Scholten, O.; Schröder, F. G.; ter Veen, S.; Thoudam, S.; Trinh, T. N. G.; Weidenhaupt, K.; Wijnholds, S. J.; Anderson, J.; Bähren, L.; Bell, M. E.; Bentum, M. J.; Best, P.; Bonafede, A.; Bregman, J.; Brouw, W. N.; Brüggen, M.; Butcher, H. R.; Carbone, D.; Ciardi, B.; de Gasperin, F.; Duscha, S.; Eislöffel, J.; Fallows, R. A.; Frieswijk, W.; Garrett, M. A.; van Haarlem, M. P.; Heald, G.; Hoeft, M.; Horneffer, A.; Iacobelli, M.; Juette, E.; Karastergiou, A.; Kohler, J.; Kondratiev, V. I.; Kuniyoshi, M.; Kuper, G.; van Leeuwen, J.; Maat, P.; McFadden, R.; McKay-Bukowski, D.; Orru, E.; Paas, H.; Pandey-Pommier, M.; Pandey, V. N.; Pizzo, R.; Polatidis, A. G.; Reich, W.; Röttgering, H.; Schwarz, D.; Serylak, M.; Sluman, J.; Smirnov, O.; Tasse, C.; Toribio, M. C.; Vermeulen, R.; van Weeren, R. J.; Wijers, R. A. M. J.; Wucknitz, O.; Zarka, P.

    2015-11-01

    Air showers induced by cosmic rays create nanosecond pulses detectable at radio frequencies. These pulses have been measured successfully in the past few years at the LOw-Frequency ARray (LOFAR) and are used to study the properties of cosmic rays. For a complete understanding of this phenomenon and the underlying physical processes, an absolute calibration of the detecting antenna system is needed. We present three approaches that were used to check and improve the antenna model of LOFAR and to provide an absolute calibration of the whole system for air shower measurements. Two methods are based on calibrated reference sources and one on a calibration approach using the diffuse radio emission of the Galaxy, optimized for short data-sets. An accuracy of 19% in amplitude is reached. The absolute calibration is also compared to predictions from air shower simulations. These results are used to set an absolute energy scale for air shower measurements and can be used as a basis for an absolute scale for the measurement of astronomical transients with LOFAR.

  16. Calibrating the absolute amplitude scale for air showers measured at LOFAR

    Air showers induced by cosmic rays create nanosecond pulses detectable at radio frequencies. These pulses have been measured successfully in the past few years at the LOw-Frequency ARray (LOFAR) and are used to study the properties of cosmic rays. For a complete understanding of this phenomenon and the underlying physical processes, an absolute calibration of the detecting antenna system is needed. We present three approaches that were used to check and improve the antenna model of LOFAR and to provide an absolute calibration of the whole system for air shower measurements. Two methods are based on calibrated reference sources and one on a calibration approach using the diffuse radio emission of the Galaxy, optimized for short data-sets. An accuracy of 19% in amplitude is reached. The absolute calibration is also compared to predictions from air shower simulations. These results are used to set an absolute energy scale for air shower measurements and can be used as a basis for an absolute scale for the measurement of astronomical transients with LOFAR

  17. High frequency energy measurements

    High-frequency (> 100 MHz) energy measurements present special problems to the experimenter. Environment or available electronics often limit the applicability of a given detector type. The physical properties of many detectors are frequency dependent and in some cases, the physical effect employed can be frequency dependent. State-of-the-art measurements generally involve a detection scheme in association with high-speed electronics and a method of data recording. Events can be single or repetitive shot requiring real time, sampling, or digitizing data recording. Potential modification of the pulse by the detector and the associated electronics should not be overlooked. This presentation will review typical applications, methods of choosing a detector, and high-speed detectors. Special considerations and limitations of some applications and devices will be described

  18. Beam energy absolute measurement using K-edge absorption spectrometers

    A method is presented of absolute energy measurement with an accuracy of triangle Ε ∼ 10-4Εo by direct measurement of the bend angle in a high-precision magnetic dipole using two opposite-direction short (about 2 mm long) high-field-intensity magnets (bar Β dipole much-lt Βshortmag) installed at each end and two K-edge absorption spectrometers. Using these spectrometers and the hard x-ray synchrotron radiation created by the short magnets, a bend angle of 4.5 arc deg for the CEBAF energy bandwidth can be measured with an accuracy of a few units of 10-6 rad, and the main sources of systematic errors are the absolute measurement of the field integral and the determination of the centroid of the synchrotron beam at a wavelength equal to the K-edge absorption of the chosen substance

  19. BMO solvability and absolute continuity of harmonic measure

    Hofmann, Steve; Le, Phi

    2016-01-01

    We show that for a uniformly elliptic divergence form operator $L$, defined in an open set $\\Omega$ with Ahlfors-David regular boundary, BMO-solvability implies scale invariant quantitative absolute continuity (the weak-$A_\\infty$ property) of elliptic-harmonic measure with respect to surface measure on $\\partial \\Omega$. We do not impose any connectivity hypothesis, qualitative or quantitative; in particular, we do not assume the Harnack Chain condition, even within individual connected comp...

  20. Determination of Corrections in the Absolute Measurement of 137Cs

    A method, of determining corrections in absolute measurements of 137Cs by 4π proportional counter is described. The correction for self-absorption of 137Cs beta particles from sources formed by vacuum deposition of CsCl on standard carrier films was determined. These samples, which had negligible self-absorption, were measured by 4π counter. The radioactive substance on the film was then dissolved, and by the addition of carrier was converted to a form similar to that of sources usually used for absolute measurement. The correction determined for self-absorption was higher than the value expected from comparison with other radionuclides having near Eβmax. The correction for internal conversion coefficient and gamma efficiency of the beta detector was determined with 137mBa samples. Barium was separated as BaSO4 precipitate and deposited on a standard carrier film used for absolute measurement with a layer thickness of about 1 mg/cm2. These samples were simultaneously measured by means of a 4π beta proportional counter and a Nal(Tl) scintillation counter. From corresponding counting rates in both counters, and from both known efficiencies, the value for a correction appropriate to one disintegration of 137mBa was calculated. The values measured were used further for computation of the internal conversion coefficient and the half-life of 137'mBa, which was ascertained to be 155 ± 3 s. (author)

  1. An absolute measurement of #-v# of Cf252

    An absolute measurement of v of Cf252. An absolute determination of the average number of neutrons, #-v#, emitted in the spontaneous fission of Cf252 has been made by counting the fission neutrons in a large liquid scintillator. The detection efficiency of this counter was measured as a function of neutron energy. Well-collimated neutrons were scattered into the scintillator by an anthracene crystal, which detected the corresponding recoil protons. Pulse-shape discrimination was employed to eliminate γ-ray background. The detection efficiency for Cf252 fission neutrons was found to be 0.703 ± 0.007, giving a value of 3.78 ± 0.04 for the average number of prompt neutrons emitted per Cf252 fission. (author)

  2. Measurement of the absolute branching fraction of the Ds+- meson

    Abe, K; Dragic, J; Fujii, H; Gershon, T; Haba, J; Hazumi, M; Higuchi, T; Igarashi, Y; Itoh, R; Iwasaki, Y; Katayama, N; Kichimi, H; Krokovnyi, P P; Limosani, A; Nakamura, I; Nakao, M; Nakazawa, H; Nishida, S; Nozaki, T; Ozaki, H; Ronga, F J; Saitoh, S; Sakai, Y; Stamen, R; Sumisawa, K; Suzuki, S Y; Tajima, O; Takasaki, F; Tamai, K; Tanaka, M; Trabelsi, K; Tsuboyama, T; Tsukamoto, T; Uehara, S; Unno, Y; Uno, S; Ushiroda, Y; Yamauchi, M; Zhang, J; Hoshi, Y; Neichi, K; Aihara, H; Hastings, N C; Ishikawa, A; Itoh, K; Iwasaki, M; Kakuno, H; Kusaka, A; Nakahama, Y; Tanabe, K; Anipko, D; Arinstein, K; Aulchenko, V; Bedny, I; Bondar, A; Eidelman, S; Epifanov, D A; Gabyshev, N; Kuzmin, A; Poluektov, A; Root, N; Shwartz, B; Sidorov, V; Usov, Yu; Zhilich, V; Aoki, K; Enari, Y; Hara, K; Hayasaka, K; Hokuue, T; Iijima, T; Ikado, K; Inami, K; Kishimoto, N; Kozakai, Y; Kubota, T; Miyazaki, Y; Ohshima, T; Okabe, T; Sato, N; Senyo, K; Yoshino, S; Arakawa, T; Kawasaki, T; Miyata, H; Tamura, N; Watanabe, M; Asano, Y; Aso, T; Aushev, T; Bay, A; Hinz, L; Jacoby, C; Schietinger, T; Schneider, O; Villa, S; Wicht, J; Zürcher, D; Aziz, T; Banerjee, S; Gokhroo, G; Majumder, G; Bahinipati, S; Drutskoy, A; Goldenzweig, P; Kinoshita, K; Kulasiri, R; Sayeed, K; Schwartz, A J; Somov, A; Bakich, A M; Cole, S; McOnie, S; Parslow, N; Peak, L S; Stöck, H; Varvell, K E; Yabsley, B D; Balagura, V; Chistov, R; Danilov, M; Liventsev, D; Medvedeva, T; Mizuk, R; Pakhlov, P; Pakhlova, G; Tikhomirov, I; Uglov, T; Tian, Y BanX C; Barberio, E; Dalseno, J; Dowd, R; Moloney, G R; Sevior, M E; Taylor, G N; Tse, Y F; Urquijo, P; Barbero, M; Browder, T E; Guler, H; Jones, M; Li, J; Nishimura, K; Olsen, S L; Peters, M; Rorie, J; Sahoo, H; Uchida, K; Varner, G; Belous, K S; Shapkin, M; Sokolov, A; Bitenc, U; Bizjak, I; Fratina, S; Gorisek, A; Pestotnik, R; Staric, M; Zupanc, A; Blyth, S; Chen, A; Chen, W T; Go, A; Hou, S; Kuo, C C; Bozek, A; Kapusta, P; Lesiak, T; Matyja, A; Natkaniec, Z; Ostrowicz, W; Palka, H; Rózanska, M; Wiechczynski, J; Bracko, M; Korpar S; Brodzicka, J; Chang, M C; Kikuchi, N; Mikami, Y; Nagamine, T; Schonmeier, P; Yamaguchi, A; Yamamoto, H; Chang, P; Chao, Y; Chen, K F; Hou, W S; Hsiung, Y B; Lee, Y J; Lin, C Y; Lin, S W; Shen, Y T; Tsai, Y T; Ueno, K; Wang, C C; Wang, M Z; Wu, C H; Cheon, B G; Choi, J H; Ha, H; Kang, J S; Won, E; Choi, S K; Choi, Y; Choi, Y K; Kim, H O; Kim, J H; Park, C W; Park, K S; Chuvikov, A; Garmash, A; Marlow, D; Ziegler, T; Dash, M; Mohapatra, D; Piilonen, L E; Yusa, Y; Fujikawa, M; Hayashii, H; Imoto, A; Kataoka, S U; Miyabayashi, K; Noguchi, S; Krizan, P; Golob, B; Seidl, R; Grosse-Perdekamp, M; Hara, T; Heffernan, D; Miyake, H; Hasegawa, Y; Satoyama, N; Takada, N; Nitoh, O; Hoshina, K; Ishino, H; Khan, H R; Kibayashi, A; Mori, T; Ono, S; Watanabe, Y; Iwabuchi, M; Kim, Y J; Liu, Y; Sarangi, T R; Uchida, Y; Kang, J H; Kim, T H; Kwon, Y J; Kurihara, E; Kawai, H; Park, H; Kim, H J; Kim, S K; Lee, J; Lee, S E; Yang He Young; Kumar, R; Singh, J B; Soni, N; Lange, J S; Leder, G; MacNaughton, J; Mandl, F; Mitaroff, W A; Pernicka, M; Schwanda, C; Widhalm, L; Matsumoto, T; Nakagawa, T; Seki, T; Sumiyoshi, T; Yamamoto, S; Müller, J; Murakami, A; Sugiyama, A; Suzuki, S; Nagasaka, Y; Nakano, E; Sakaue, H; Teramoto, Y; Ogawa, A; Shibuya, H; Ogawa, S; Okuno, S; Sakamoto, H; Wang, C H; Schümann, J; Stanic, S; Xie, Q L; Yuan, Y; Zang, S L; Zhang, C C; Yamashita, Y; Zhang, L M; Zhang, Z P

    2006-01-01

    The Ds+- -> K+-K-+pi+- absolute branching fraction is measured using e+e- -> Ds*+- Ds1-+(2536) events collected by the Belle detector at the KEKB e+e- asymmetric energy collider. Using the ratio of yields when either the Ds1 or Ds* is fully reconstructed, we find Br(Ds+- -> K+-K-+pi+-)= (4.0+-0.4(stat)+-0.4(sys))%.

  3. Absolute Bunch Length Measurements by Incoherent Radiation Fluctuation Analysis

    Sannibale, F.; /LBL, Berkeley; Stupakov, G.V.; /SLAC; Zolotorev, M.S.; /LBL, Berkeley; Filippetto, D.; /INFN, Rome; Jagerhofer, L.; /Vienna, Tech. U.

    2009-12-09

    By analyzing the pulse to pulse intensity fluctuations of the radiation emitted by a charge particle in the incoherent part of the spectrum, it is possible to extract information about the spatial distribution of the beam. At the Advanced Light Source (ALS) of the Lawrence Berkeley National Laboratory, we have developed and successfully tested a simple scheme based on this principle that allows for the absolute measurement of the rms bunch length. A description of the method and the experimental results are presented.

  4. Strategy for the absolute neutron emission measurement on ITER

    Accuracy of 10% is demanded to the absolute fusion measurement on ITER. To achieve this accuracy, a functional combination of several types of neutron measurement subsystem, cross calibration among them, and in situ calibration are needed. Neutron transport calculation shows the suitable calibration source is a DT/DD neutron generator of source strength higher than 1010 n/s (neutron/second) for DT and 108 n/s for DD. It will take eight weeks at the minimum with this source to calibrate flux monitors, profile monitors, and the activation system.

  5. Absolute orientations from EBSD measurements - as easy as it seems?

    Kilian, Rüdiger; Bestmann, Michel; Heilbronner, Renée

    2016-04-01

    In structural geology, some problems can be addressed by inspecting the crystal orientation of grains in a rock. Deriving shear senses, kinematics of flow, information on deformation processes and recrystallization are some examples. Usually, oriented samples are taken in the field and, if inspected in an universal stage, the researcher has full control over the procedure and can make sure that the derived orientation is related to our geographic reference frame - that it is an absolute orientation. Nowadays, usage of electron backscatter diffraction (EBSD) has greatly improved the information in the derived data (fully crystal orientations, mappings, etc…), and the speed of data acquisition. However, this comes to the price of having to rely on the vendor supplied software and machine setup. Recent benchmarks and comparison of reference data revealed that for various EBSD setups around the world, the orientation data defaults to the wrong absolute orientation. The absolute orientation is not correctly derived - it commonly suffer a 180 degree rotation around the normal of the sample surface. In this contribution we will discuss the implications of such erroneous measurements and what kind of interpretations derived by orientation and texture data will be affected.

  6. Absolute and specific measures of research group excellence

    Mryglod, O; Holovatch, Yu; Berche, B

    2012-01-01

    A desirable goal of scientific management is to introduce, if it exists, a simple and reliable way to measure the scientific excellence of publicly-funded research institutions and universities to serve as a basis for their ranking and financing. While citation-based indicators and metrics are easily accessible, they are far from being universally accepted as way to automate or inform evaluation processes or to replace evaluations based on peer review. Here we consider absolute measurements of research excellence at an amalgamated, institutional level and specific measures of research excellence as performance per head. Using biology research institutions in the UK as a test case, we examine the correlations between peer-review-based and citation-based measures of research excellence on these two scales. We find that citation-based indicators are very highly correlated with peer-evaluated measures of group strength but are poorly correlated with group quality. Thus, and almost paradoxically, our analysis indi...

  7. Deflectometric systems for absolute flatness measurements at PTB

    Recently, two new scanning deflectometric flatness reference (DFR) measurement systems were installed at the Physikalisch-Technische Bundesanstalt. These instruments are aimed at measurements of the absolute flatness of optical surfaces with sub-nanometre uncertainties. System 1 is mainly designed for horizontal specimens with sizes up to 1 m and weights up to 120 kg. The other setup, i.e. system 2, is designed for vertical specimens. The two DFR systems use three different deflectometric procedures, which are based on scanning a pentaprism or the so-called double mirror unit (DMU) across the specimen. These 90° beam deflectors eliminate—to a great extent—residual guidance errors of the scanning stages, which is required to attain topography measurements with sub-nanometre uncertainty. The setups of the two new systems, the principles of the three different measurement modes, the alignment procedures, simulation results and first measurements are presented. (paper)

  8. On Absolute Measurements of β-Emitting Radionuclides

    4 π GM detectors are described and some of their characteristics presented. The absence of spurious pulses is shown by the measurement of the rate of arrival of intervals between pulses. Some problems related to the foil absorption and source absorption are considered using Sr90 and Y90. Aiming at correcting the counting losses in the foil and in a certain extent also the source absorption an experimental method which uses paired sources is presented. The preparation of standards of Bi210 (RaE) is described. A note is presented on the problem of foil absorption losses in scintillation absolute counting. (author)

  9. Absolute Measurement Fiber-optic Sensors in Large Structural Monitoring

    2003-01-01

    The security of civil engineering is an important task due to the economic, social and environmental significance. Compared with conventional sensors, the optical fiber sensors have their unique characteristics.Being durable, stable and insensitive to external perturbations,they are particular interesting for the long-term monitoring of civil structures.Focus is on absolute measurement optical fiber sensors, which are emerging from the monitoring large structural, including SOFO system, F-P optical fiber sensors, and fiber Bragg grating sensors. The principle, characteristic and application of these three kinds of optical fiber sensors are described together with their future prospects.

  10. Use of relative and absolute effect measures in reporting health inequalities: structured review

    Nicholas B. King; Harper, Sam; Young, Meredith E

    2012-01-01

    Objective To examine the frequency of reporting of absolute and relative effect measures in health inequalities research. Design Structured review of selected general medical and public health journals. Data sources 344 articles published during 2009 in American Journal of Epidemiology, American Journal of Public Health, BMJ, Epidemiology, International Journal of Epidemiology, JAMA, Journal of Epidemiology and Community Health, The Lancet, The New England Journal of Medicine, and Social Scie...

  11. Measured and modelled absolute gravity changes in Greenland

    Nielsen, Jens Emil; Forsberg, René; Strykowski, Gabriel

    2014-01-01

    study ofGIA is important since it acts as an error source. GIA consists of three signals as seen by a gravimeter onthe surface of the Earth. These signals are investigated in this study. The ICE-5G ice history and recentlydeveloped ice models of present day changes are used to model the gravity change...... in Greenland. Theresult is compared with the initial measurements of absolute gravity (AG) change at selected GreenlandNetwork (GNET) sites.We find that observations are highly influenced by the direct attraction from the ice and ocean. Thisis especially evident in the measurements conducted at the...... GNET station near the Helheim Glacier.The effect of the direct attraction diminishes at sites that are more than one degree from the source.Here, the dominant signal is the effect of the elastic signal from present day ice mass changes. We findagreement between the measured and modelled gravity changes...

  12. A Laser Frequency Comb System for Absolute Calibration of the VTT Echelle Spectrograph

    Doerr, H.-P.; Steinmetz, T.; Holzwarth, R.; Kentischer, T.; Schmidt, W.

    2012-10-01

    A wavelength calibration system based on a laser frequency comb (LFC) was developed in a co-operation between the Kiepenheuer-Institut für Sonnenphysik, Freiburg, Germany and the Max-Planck-Institut für Quantenoptik, Garching, Germany for permanent installation at the German Vacuum Tower Telescope (VTT) on Tenerife, Canary Islands. The system was installed successfully in October 2011. By simultaneously recording the spectra from the Sun and the LFC, for each exposure a calibration curve can be derived from the known frequencies of the comb modes that is suitable for absolute calibration at the meters per second level. We briefly summarize some topics in solar physics that benefit from absolute spectroscopy and point out the advantages of LFC compared to traditional calibration techniques. We also sketch the basic setup of the VTT calibration system and its integration with the existing echelle spectrograph.

  13. A Laser Frequency Comb System for Absolute Calibration of the VTT Echelle Spectrograph

    Doerr, H -P; Holzwarth, R; Schmidt, T Kentischer und W

    2012-01-01

    A wavelength calibration system based on a laser frequency comb (LFC) was developed in a co-operation between the Kiepenheuer-Institut f\\"ur Sonnenphysik, Freiburg, Germany and the Max-Planck-Institut f\\"ur Quantenoptik, Garching, Germany for permanent installation at the German Vacuum Tower Telescope (VTT) on Tenerife, Canary Islands. The system was installed successfully in October 2011. By simultaneously recording the spectra from the Sun and the LFC, for each exposure a calibration curve can be derived from the known frequencies of the comb modes that is suitable for absolute calibration at the meters per second level. We briefly summarize some topics in solar physics that benefit from absolute spectroscopy and point out the advantages of LFC compared to traditional calibration techniques. We also sketch the basic setup of the VTT calibration system and its integration with the existing echelle spectrograph.

  14. Effects of relative and absolute frequency in the spectral weighting of loudness.

    Joshi, Suyash Narendra; Wróblewski, Marcin; Schmid, Kendra K; Jesteadt, Walt

    2016-01-01

    The loudness of broadband sound is often modeled as a linear sum of specific loudness across frequency bands. In contrast, recent studies using molecular psychophysical methods suggest that low and high frequency components contribute more to the overall loudness than mid frequencies. In a series of experiments, the contribution of individual components to the overall loudness of a tone complex was assessed using the molecular psychophysical method as well as a loudness matching task. The stimuli were two spectrally overlapping ten-tone complexes with two equivalent rectangular bandwidth spacing between the tones, making it possible to separate effects of relative and absolute frequency. The lowest frequency components of the "low-frequency" and the "high-frequency" complexes were 208 and 808 Hz, respectively. Perceptual-weights data showed emphasis on lowest and highest frequencies of both the complexes, suggesting spectral-edge related effects. Loudness matching data in the same listeners confirmed the greater contribution of low and high frequency components to the overall loudness of the ten-tone complexes. Masked detection thresholds of the individual components within the tone complex were not correlated with perceptual weights. The results show that perceptual weights provide reliable behavioral correlates of relative contributions of the individual frequency components to overall loudness of broadband sounds. PMID:26827032

  15. Wave cutoff method to measure absolute electron density in cold plasma

    A method for precise measurements of absolute electron density in plasma using wave cutoff is described. This method of measurement uses a network analyzer with radiating and detecting antenna A microwave signal of 10 kHZ-3 GHz frequency is introduced into the plasma from a radiating port of the network analyzer and propagates in the plasma. The transmitted wave is monitored at a distance from a radiating antenna using an antenna connected to the receiving port of the network analyzer. The transmitted wave decays rapidly at a cutoff plasma frequency, which is a direct measure of the absolute electron density. This cutoff method is free of many difficulties often encountered with a Langmuir probe, such as thin film deposition and plasma potential fluctuation. The cutoff probe can also measure the spatial distribution of the electron density. The measurement technique is analyzed theoretically and experimentally, demonstrated in density measurements of an inductively coupled radio-frequency plasma, and is compared with the double probe and a plasma oscillation methods

  16. Absolute measurement of neutron fluxes inside the reactor core

    The subject of this work is the development and study of two methods of neutron measurements in nuclear reactors, the new method of high neutron flux measurements and the Li6-semiconductor neutron spectrometer. This work is presented in four sections: Section I. The introduction explains the need for neutron measurements in reactors. A critical survey is given of the existing methods of high neutron flux measurement and methods of fast neutron spectrum determination. Section II. Theoretical basis of the work of semiconductor counters and their most important characteristics are given. Section III. The main point of this section is in presenting the basis of the new method which the author developed, i.e., the long-tube method, and the results obtained by it, with particular emphasis on absolute measurement of high neutron fluxes. Advantages and limitations of this method are discussed in details at the end of this section. Section IV. A comparison of the existing semiconductor neutron spectrometers is made and their advantages and shortcomings underlined. A critical analysis of the obtained results with the Li6-semiconductor spectrometer with plane geometry is given. A new type of Li6-semiconductor spectrometer is described, its characteristics experimentally determined, and a comparison of it with a classical Li6-spectrometer made (author)

  17. Absolute frequency references at 1529 nm and 1560 nm using modulation transfer spectroscopy

    de Escobar, Y Natali Martinez; Coop, Simon; Vanderbruggen, Thomas; Kaczmarek, Krzysztof T; Mitchell, Morgan W

    2015-01-01

    We demonstrate a double optical frequency reference (1529 nm and 1560 nm) for the telecom C-band using $^{87}$Rb modulation transfer spectroscopy. The two reference frequencies are defined by the 5S$_{1/2} F=2 \\rightarrow $ 5P$_{3/2} F'=3$ two-level and 5S$_{1/2} F=2 \\rightarrow $ 5P$_{3/2} F'=3 \\rightarrow $ 4D$_{5/2} F"=4$ ladder transitions. We examine the sensitivity of the frequency stabilization to probe power and magnetic field fluctuations, calculate its frequency shift due to residual amplitude modulation, and estimate its shift due to gas collisions. The short-term Allan deviation was estimated from the error signal slope for the two transitions. Our scheme provides a simple and high performing system for references at these important wavelengths. We estimate an absolute accuracy of $\\sim$ 1 kHz is realistic.

  18. Laser induced deflection (LID) method for absolute absorption measurements of optical materials and thin films

    Mühlig, Christian; Bublitz, Simon; Paa, Wolfgang

    2011-05-01

    We use optimized concepts to measure directly low absorption in optical materials and thin films at various laser wavelengths by the laser induced deflection (LID) technique. An independent absolute calibration, using electrical heaters, is applied to obtain absolute absorption data without the actual knowledge of the photo-thermal material properties. Verification of the absolute calibration is obtained by measuring different silicon samples at 633 nm where all laser light, apart from the measured reflection/scattering, is absorbed. Various experimental results for bulk materials and thin films are presented including measurements of fused silica and CaF2 at 193 nm, nonlinear crystals (LBO) for frequency conversion and AR coated fused silica for high power material processing at 1030 nm and Yb-doped silica raw materials for high power fiber lasers at 1550 nm. In particular for LBO the need of an independent calibration is demonstrated since thermal lens generation is dominated by stress-induced refractive index change which is in contrast to most of the common optical materials. The measured results are proven by numerical simulations and their influence on the measurement strategy and the obtained accuracy are shown.

  19. A quantum cascade laser-based mid-IR frequency metrology system with ultra-narrow linewidth and $1\\times 10^{-13}$-level absolute frequency stability

    Hansen, Michael G; Chen, Qun-Feng; Ernsting, Ingo; Schiller, Stephan

    2015-01-01

    We demonstrate a powerful tool for high-resolution mid-IR spectroscopy and frequency metrology with quantum cascade lasers (QCLs). We have implemented frequency stabilization of a QCL to an ultra-low expansion (ULE) reference cavity, via upconversion to the near-IR spectral range, at a level of $1\\times10^{-13}$. The absolute frequency of the QCL is measured relative to a hydrogen maser, with instability $<1\\times10^{-13}$ and inaccuracy $5\\times10^{-13}$, using a frequency comb phase-stabilized to an independent ultrastable laser. The QCL linewidth is determined to be 60 Hz, dominated by fiber noise. Active suppression of fiber noise could result in sub-10 Hz linewidth.

  20. Absolute Thermal SST Measurements over the Deepwater Horizon Oil Spill

    Good, W. S.; Warden, R.; Kaptchen, P. F.; Finch, T.; Emery, W. J.

    2010-12-01

    Climate monitoring and natural disaster rapid assessment require baseline measurements that can be tracked over time to distinguish anthropogenic versus natural changes to the Earth system. Disasters like the Deepwater Horizon Oil Spill require constant monitoring to assess the potential environmental and economic impacts. Absolute calibration and validation of Earth-observing sensors is needed to allow for comparison of temporally separated data sets and provide accurate information to policy makers. The Ball Experimental Sea Surface Temperature (BESST) radiometer was designed and built by Ball Aerospace to provide a well calibrated measure of sea surface temperature (SST) from an unmanned aerial system (UAS). Currently, emissive skin SST observed by satellite infrared radiometers is validated by shipborne instruments that are expensive to deploy and can only take a few data samples along the ship track to overlap within a single satellite pixel. Implementation on a UAS will allow BESST to map the full footprint of a satellite pixel and perform averaging to remove any local variability due to the difference in footprint size of the instruments. It also enables the capability to study this sub-pixel variability to determine if smaller scale effects need to be accounted for in models to improve forecasting of ocean events. In addition to satellite sensor validation, BESST can distinguish meter scale variations in SST which could be used to remotely monitor and assess thermal pollution in rivers and coastal areas as well as study diurnal and seasonal changes to bodies of water that impact the ocean ecosystem. BESST was recently deployed on a conventional Twin Otter airplane for measurements over the Gulf of Mexico to access the thermal properties of the ocean surface being affected by the oil spill. Results of these measurements will be presented along with ancillary sensor data used to eliminate false signals including UV and Synthetic Aperture Radar (SAR

  1. Modelling and measurement of the absolute level of power radiated by antenna integrated THz UTC photodiodes.

    Natrella, Michele; Liu, Chin-Pang; Graham, Chris; van Dijk, Frederic; Liu, Huiyun; Renaud, Cyril C; Seeds, Alwyn J

    2016-05-30

    We determine the output impedance of uni-travelling carrier (UTC) photodiodes at frequencies up to 400 GHz by performing, for the first time, 3D full-wave modelling of detailed UTC photodiode structures. In addition, we demonstrate the importance of the UTC impedance evaluation, by using it in the prediction of the absolute power radiated by an antenna integrated UTC, over a broad frequency range and confirming the predictions by experimental measurements up to 185 GHz. This is done by means of 3D full-wave modelling and is only possible since the source (UTC) to antenna impedance match is properly taken into account. We also show that, when the UTC-to-antenna coupling efficiency is modelled using the classical junction-capacitance/series-resistance concept, calculated and measured levels of absolute radiated power are in substantial disagreement, and the maximum radiated power is overestimated by a factor of almost 7 dB. The ability to calculate the absolute emitted power correctly enables the radiated power to be maximised through optimisation of the UTC-to-antenna impedance match. PMID:27410104

  2. A dedicated pistonphone for absolute calibration of infrasound sensors at very low frequencies

    He, Wen; He, Longbiao; Zhang, Fan; Rong, Zuochao; Jia, Shushi

    2016-02-01

    Aimed at the absolute calibration of infrasound sensors at very low frequencies, an upgraded and improved infrasonic pistonphone has been developed. The pistonphone was designed such that a very narrow clearance between the piston and its guide was realized based on an automatically-centered clearance-sealing structure, and a large volume rigid-walled chamber was also adopted, which improved the leakage time-constant of the chamber. A composite feedback control system was applied to the electromagnetic vibrator to control the precise motion of the piston. Performance tests and uncertainty analysis show that the leakage time-constant is so large, and the distortion of the sound pressure is so small, that the pistonphone can be used as a standard infrasound source in the frequency range from 0.001 Hz to 20 Hz. The low frequency property of the pistonphone has been verified through calibrating low frequency microphones. Comparison tests with the reciprocity method have shown that the pressure sensitivities from the pistonphone are not only reliable at common frequencies but also have smaller uncertainties at low frequencies.

  3. Camera-based speckle noise reduction for 3-D absolute shape measurements.

    Zhang, Hao; Kuschmierz, Robert; Czarske, Jürgen; Fischer, Andreas

    2016-05-30

    Simultaneous position and velocity measurements enable absolute 3-D shape measurements of fast rotating objects for instance for monitoring the cutting process in a lathe. Laser Doppler distance sensors enable simultaneous position and velocity measurements with a single sensor head by evaluating the scattered light signals. The superposition of several speckles with equal Doppler frequency but random phase on the photo detector results in an increased velocity and shape uncertainty, however. In this paper, we present a novel image evaluation method that overcomes the uncertainty limitations due to the speckle effect. For this purpose, the scattered light is detected with a camera instead of single photo detectors. Thus, the Doppler frequency from each speckle can be evaluated separately and the velocity uncertainty decreases with the square root of the number of camera lines. A reduction of the velocity uncertainty by the order of one magnitude is verified by the numerical simulations and experimental results, respectively. As a result, the measurement uncertainty of the absolute shape is not limited by the speckle effect anymore. PMID:27410133

  4. Mid-IR frequency measurement using an optical frequency comb and a long-distance remote frequency reference

    Chanteau, Bruno; Zhang, Wei; Santarelli, Giorgio; Coq, Yann Le; Auguste, Frédéric; Darquié, Benoît; Chardonnet, Christian; Amy-Klein, Anne

    2012-01-01

    We have built a frequency chain which enables to measure the absolute frequency of a laser emitting in the 28-31 THz frequency range and stabilized onto a molecular absorption line. The set-up uses an optical frequency comb and an ultrastable 1.55 $\\mu$m frequency reference signal, transferred from LNE-SYRTE to LPL through an optical link. We are now progressing towards the stabilization of the mid-IR laser via the frequency comb and the extension of this technique to quantum cascade lasers. Such a development is very challenging for ultrahigh resolution molecular spectroscopy and fundamental tests of physics with molecules.

  5. Measurement of the absolute separation for atomic force microscopy measurements in the presence of adsorbed polymer

    McKee, C. T.; Mosse, W. K. J.; Ducker, W. A.

    2006-01-01

    We demonstrate that the absolute separation between an atomic force microscope (AFM) tip and a solid substrate can be measured in the presence of an irreversibly adsorbed polymer film. The separation is obtained from the analysis of a scattered evanescent wave that is generated at the surface of the solid. By comparing our scattering measurements to conventional AFM measurements, we also show an example where a conventional AFM measurement gives the incorrect force-distance profile. We valida...

  6. A proposal to measure absolute environmental sustainability in lifecycle assessment

    Bjørn, Anders; Margni, Manuele; Roy, Pierre-Olivier;

    2016-01-01

    sustainable are therefore increasingly important. Such absolute indicators exist, but suffer from shortcomings such as incomplete coverage of environmental issues, varying data quality and varying or insufficient spatial resolution. The purpose of this article is to demonstrate that life cycle assessment (LCA...... study evaluating emission scenarios for personal residential electricity consumption supplied by production from 45 US coal fired electricity plant. Median values of derived CFs are 0.16–0.19 ha year kg−1 for common acidifying compounds. CFs are generally highest in Northern Europe, Canada and Alaska...... supporting decisions aimed at simultaneously reducing environmental impacts efficiently and maintaining or achieving environmental sustainability. We have demonstrated that LCA indicators can be modified from being relative to being absolute indicators of environmental sustainability. Further research should...

  7. Absolute Position of Targets Measured Through a Chamber Window Using Lidar Metrology Systems

    Kubalak, David; Hadjimichael, Theodore; Ohl, Raymond; Slotwinski, Anthony; Telfer, Randal; Hayden, Joseph

    2012-01-01

    Lidar is a useful tool for taking metrology measurements without the need for physical contact with the parts under test. Lidar instruments are aimed at a target using azimuth and elevation stages, then focus a beam of coherent, frequency modulated laser energy onto the target, such as the surface of a mechanical structure. Energy from the reflected beam is mixed with an optical reference signal that travels in a fiber path internal to the instrument, and the range to the target is calculated based on the difference in the frequency of the returned and reference signals. In cases when the parts are in extreme environments, additional steps need to be taken to separate the operator and lidar from that environment. A model has been developed that accurately reduces the lidar data to an absolute position and accounts for the three media in the testbed air, fused silica, and vacuum but the approach can be adapted for any environment or material. The accuracy of laser metrology measurements depends upon knowing the parameters of the media through which the measurement beam travels. Under normal conditions, this means knowledge of the temperature, pressure, and humidity of the air in the measurement volume. In the past, chamber windows have been used to separate the measuring device from the extreme environment within the chamber and still permit optical measurement, but, so far, only relative changes have been diagnosed. The ability to make accurate measurements through a window presents a challenge as there are a number of factors to consider. In the case of the lidar, the window will increase the time-of-flight of the laser beam causing a ranging error, and refract the direction of the beam causing angular positioning errors. In addition, differences in pressure, temperature, and humidity on each side of the window will cause slight atmospheric index changes and induce deformation and a refractive index gradient within the window. Also, since the window is a

  8. Utilization of coincidence criteria in absolute length measurements by optical interferometry in vacuum and air

    Traceability of length measurements to the international system of units (SI) can be realized by using optical interferometry making use of well-known frequencies of monochromatic light sources mentioned in the Mise en Pratique for the realization of the metre. At some national metrology institutes, such as Physikalisch-Technische Bundesanstalt (PTB) in Germany, the absolute length of prismatic bodies (e.g. gauge blocks) is realized by so-called gauge-block interference comparators. At PTB, a number of such imaging phase-stepping interference comparators exist, including specialized vacuum interference comparators, each equipped with three highly stabilized laser light sources. The length of a material measure is expressed as a multiple of each wavelength. The large number of integer interference orders can be extracted by the method of exact fractions in which the coincidence of the lengths resulting from the different wavelengths is utilized as a criterion. The unambiguous extraction of the integer interference orders is an essential prerequisite for correct length measurements. This paper critically discusses coincidence criteria and their validity for three modes of absolute length measurements: 1) measurements under vacuum in which the wavelengths can be identified with the vacuum wavelengths, 2) measurements under air in which the air refractive index is obtained from environmental parameters using an empirical equation, and 3) measurements under air in which the air refractive index is obtained interferometrically by utilizing a vacuum cell placed along the measurement pathway. For case 3), which corresponds to PTB’s Kösters-Comparator for long gauge blocks, the unambiguous determination of integer interference orders related to the air refractive index could be improved by about a factor of ten when an ‘overall dispersion value,’ suggested in this paper, is used as coincidence criterion. (paper)

  9. The absolute gravity measurement by FG5 gravimeter at Great Wall Station, Antarctica

    2007-01-01

    Gravity measurement is of great importance to the height datum in Antarctica.The absolute gravity measurement was carried out at Great Wall Station, Antarctica, using FG5 absolute gravity instrument.The gravity data was processed with corrections of earth tide, ocean tide, polar motion and the atmospher, and the RMS is within +3 x 10 -s ms-2.The vertical and horizontal gravity gradients were measured using 2 LaCoaste & Romberg (LCR) gravimeters.The absolute gravity measurement provides the fundamental data for the validation and calibration of the satellite gravity projects such as CHAMP, GRACE and GOCE, and for the high accuracy geoid model.

  10. Study on the effect factor of the absolute fission rates measured by depleted uranium fission chamber

    The absolute fission rates was measured by the depleted uranium fission chamber. The efficiency of the fission fragments recorded in the fission chamber was analyzed. The factor influencing absolute fission rates was studied in the experiment, including the disturbing effect between detectors and the effect of the structural material of the fission chamber, etc

  11. Absolute Fluorescence Spectrum and Yield Measurements for a wide range of experimental conditions

    Monnier Ragaigne, D.; Gorodetzky, P.; Moretto, C; Blaksley, C.; Dagoret-Campagne, D.; Gonnin, A.; Miyamoto, H.; Monard, H.; Wicek, F.

    2013-01-01

    For the JEM-EUSO Collaboration The fluorescence yield is a key ingredient in cosmic ray energy determination. It is sensitive to pressure, temperature and humidity. Up to now the fluorescence yield of the brightest line at 337 nm has been measured in an absolute way in one set of conditions, whereas fluorescence yields at the other wavelengths have been relatively measured for different conditions. Thus, absolute calibration for all the lines is unclear. We will do all measurements at once...

  12. Recent Progress in Liquid Scintillation Counting System for Absolute Radioactivity Measurement

    2011-01-01

    The triple to double coincidence ratio (TDCR) method is an absolute activity measurement method in liquid scintillation counting, especially developed for pure β- and EC-emitters activity standardization. Such a liquid scintillation counting system is now

  13. Combining Near-Subject Absolute and Relative Measures of Longitudinal Hydration in Hemodialysis

    Chan, Cian; McIntyre, Christopher; Smith, David; Spanel, Patrik; Davies, Simon J.

    2009-01-01

    Background and objectives: The feasibility and additional value of combining bioimpedance analysis (BIA) with near-subject absolute measurement of total body water using deuterium dilution (TBWD) in determining longitudinal fluid status was investigated.

  14. Absolute dose measurement Gafchromic R EBT2 movies. Case Study of Kaposis sarcoma

    Because of its high spatial resolution, low energy dependence and good response over a wide energy range, EBT2 Gafchromic films are widely used in many applications in radiotherapy for measuring relative dose. Despite being the most common use can be used to measure absolute dose. This text is an example of using films as EBT2 for in vivo absolute dose in a Kaposis sarcoma.

  15. Absolute measurements of neutron cross sections. Progress report

    In the photoneutron laboratory, we have completed a major refurbishing of experimental facilities and begun work on measurements of the capture cross section in thorium and U-238. In the 14 MeV neutron experimental bay, work continues on the measurement of 14 MeV neutron induced reactions of interest as standards or because of their technological importance. First results have been obtained over the past year, and we are extending these measurements along the lines outlined in our proposal of a year ago

  16. Absolute measurement of β activities and application to the determination of neutronic densities

    M. Berthelot, to my entrance to the ''Commissariat a l 'Energie Atomique'', proposed me to study the absolute measurement of neutron densities. Very quickly the problem of the absolute activity of β sources became the central object of this work. In a first part, we will develop the methods of absolute determination for β activities. The use of a 4π counter permits to get the absolute activity of all beta radioactive source, susceptible to be put as thin leaf and of period superior than some minutes. The method is independent of the spectra of the measured radioelement. we will describe in the second part some applications which use neutron densities measurement, neutron sources intensities and ratio of cross sections of capture of thermal neutrons. (M.B.)

  17. ABSOLUTE CONTINUITY FOR INTERACTING MEASURE-VALUED BRANCHING BROWNIAN MOTIONS

    ZHAOXUELEI

    1997-01-01

    The moments and absohite continuity of measure-valued branching Brownian motions with bounded interacting intensity are hivestigated. An estimate of higher order moments is obtained. The ahsolute continuity is verified in the one dimension case. This therehy verifies the conjecture of Méléard and Roelly in [5].

  18. Absolute Oxygenation Metabolism Measurements Using Magnetic Resonance Imaging

    An, Hongyu; Liu, Qingwei; Eldeniz, Cihat; Lin, Weili

    2011-01-01

    Cerebral oxygen metabolism plays a critical role in maintaining normal function of the brain. It is the primary energy source to sustain neuronal functions. Abnormalities in oxygen metabolism occur in various neuro-pathologic conditions such as ischemic stroke, cerebral trauma, cancer, Alzheimer’s disease and shock. Therefore, the ability to quantitatively measure tissue oxygenation and oxygen metabolism is essential to the understanding of pathophysiology and treatment of various diseases. T...

  19. Absolute measurements with a 4 π-counter

    Measurements on standardized p-emitters have been made in a 4 it proportional flow-counter. The counter efficiency is found to be near 100 %. Absorption curves have been determined with plastic foils and aluminium. A comparison is made between the self-absorption arising in different methods of source preparation which include precipitates and the use of wetting agents The most reliable results have been obtained with sources on aluminium foils, where the foil absorption is calculated from the absorption curves and the self-absorption is supposed to be negligible for isotopes with end point energy above 0.5 MeV. The β-emitters studied have energies ranging from 1.71 MeV (32P) to 0.167 MeV (35S). Most of them have been obtained from National Physical Laboratory and Atomic Energy Research Establishment, Harwell, England. The agreement between their calibration and our measurements is very good except in the case of Co 60

  20. Observer variability of absolute and relative thrombus density measurements in patients with acute ischemic stroke

    Thrombus density may be a predictor for acute ischemic stroke treatment success. However, only limited data on observer variability for thrombus density measurements exist. This study assesses the variability and bias of four common thrombus density measurement methods by expert and non-expert observers. For 132 consecutive patients with acute ischemic stroke, three experts and two trained observers determined thrombus density by placing three standardized regions of interest (ROIs) in the thrombus and corresponding contralateral arterial segment. Subsequently, absolute and relative thrombus densities were determined using either one or three ROIs. Intraclass correlation coefficient (ICC) was determined, and Bland-Altman analysis was performed to evaluate interobserver and intermethod agreement. Accuracy of the trained observer was evaluated with a reference expert observer using the same statistical analysis. The highest interobserver agreement was obtained for absolute thrombus measurements using three ROIs (ICCs ranging from 0.54 to 0.91). In general, interobserver agreement was lower for relative measurements, and for using one instead of three ROIs. Interobserver agreement of trained non-experts and experts was similar. Accuracy of the trained observer measurements was comparable to the expert interobserver agreement and was better for absolute measurements and with three ROIs. The agreement between the one ROI and three ROI methods was good. Absolute thrombus density measurement has superior interobserver agreement compared to relative density measurement. Interobserver variation is smaller when multiple ROIs are used. Trained non-expert observers can accurately and reproducibly assess absolute thrombus densities using three ROIs. (orig.)

  1. Observer variability of absolute and relative thrombus density measurements in patients with acute ischemic stroke

    Santos, Emilie M.M. [Erasmus MC - University Medical Center Rotterdam, Department of Radiology, P.O. Box 2040, Rotterdam (Netherlands); Department of Radiology, AMC, Amsterdam (Netherlands); Yoo, Albert J. [Texas Stroke Institute, Plano, TX (United States); Beenen, Ludo F.; Majoie, Charles B. [Department of Radiology, AMC, Amsterdam (Netherlands); Berkhemer, Olvert A. [Department of Radiology, AMC, Amsterdam (Netherlands); Department of Neurology, Erasmus MC, Rotterdam (Netherlands); Blanken, Mark D. den; Wismans, Carrie [AMC, Department of Biomedical Engineering and Physics, Amsterdam (Netherlands); Niessen, Wiro J. [Erasmus MC - University Medical Center Rotterdam, Department of Radiology, P.O. Box 2040, Rotterdam (Netherlands); Delft University of Technology, Faculty of Applied Sciences, Delft (Netherlands); Marquering, Henk A. [Department of Radiology, AMC, Amsterdam (Netherlands); AMC, Department of Biomedical Engineering and Physics, Amsterdam (Netherlands); Collaboration: on behalf of the MR CLEAN investigators

    2016-02-15

    Thrombus density may be a predictor for acute ischemic stroke treatment success. However, only limited data on observer variability for thrombus density measurements exist. This study assesses the variability and bias of four common thrombus density measurement methods by expert and non-expert observers. For 132 consecutive patients with acute ischemic stroke, three experts and two trained observers determined thrombus density by placing three standardized regions of interest (ROIs) in the thrombus and corresponding contralateral arterial segment. Subsequently, absolute and relative thrombus densities were determined using either one or three ROIs. Intraclass correlation coefficient (ICC) was determined, and Bland-Altman analysis was performed to evaluate interobserver and intermethod agreement. Accuracy of the trained observer was evaluated with a reference expert observer using the same statistical analysis. The highest interobserver agreement was obtained for absolute thrombus measurements using three ROIs (ICCs ranging from 0.54 to 0.91). In general, interobserver agreement was lower for relative measurements, and for using one instead of three ROIs. Interobserver agreement of trained non-experts and experts was similar. Accuracy of the trained observer measurements was comparable to the expert interobserver agreement and was better for absolute measurements and with three ROIs. The agreement between the one ROI and three ROI methods was good. Absolute thrombus density measurement has superior interobserver agreement compared to relative density measurement. Interobserver variation is smaller when multiple ROIs are used. Trained non-expert observers can accurately and reproducibly assess absolute thrombus densities using three ROIs. (orig.)

  2. Absolute measurement of the effective nonlinearities of KTP and BBO crystals by optical parametric amplification.

    Armstrong, D J; Alford, W J; Raymond, T D; Smith, A V

    1996-04-20

    Absolute magnitudes of the effective nonlinearity, deff, were measured for seven KTP and six BBO crystals. The d(eff), were derived from the parametric gain of an 800-nm signal wave in the sample crystals when they were pumped by the frequency-doubled, spatially filtered light from an injectionseeded, Q-switched Nd:YAG laser. The KTP crystals, all type II phase matched with propagation in the X-Z plane, had d(eff) values ranging from 1.97 to 3.50 pm/V. Measurements of gain as a function of phase velocity mismatch indicate that two of the KTP crystals clearly contain multiple ferroelectric domains. For five type I phase-matched BBO crystals, d(eff) ranged from 1.76 to 1.83 pm/V, and a single type II phase-matched BBO crystal had a d(eff) of 1.56 pm/V. The uncertainty in our measurements of d(eff) values is ±5% for KTP and ±10% for BBO. PMID:21085331

  3. Absolute Measurement of 14C Activity by Internal Proportional Counters

    14CO22 was obtained by decomposing carbonate with sulphuric acid heated to boiling point, after which it was mixed with CH4 in a reserve flask. Three brass internal proportional counters, differing only in length, were filled with this mixture. The counters were connected to the electronic equipment in the usual arrangement. The equipment dead time was determined by means of a modified two-source method, and the total volume of the equipment was obtained from the isothermic expansion of methane from a flask whose volume, together with that of the counters, had been determined by weighing a water filling. The wall effect was determined by measuring a 14CO2 + CH4 mixture at different pressures and by extrapolation to reciprocal pressure zero value; it was discovered that the wall-effect correction did not differ significantly from zero. The end effect was compensated for by using counters of different lengths so that the difference in plateau slope also did not differ significantly from zero. By the t-test power function it was estimated that the maximal error on a 0.01 significance level, caused by neglecting the wall-effect correction, amounted to ± 0.85% due to the end-effect correction (± 0.62% for the equipment used) having been neglected. The relation between wall, end and discrimination effects is discussed, and, in conclusion, the maximal errors from other sources are estimated; the total maximal error on a 0.01 significance level of the standard solution activity is computed as equal to ± 1.1%. (author)

  4. Absolute frequency and isotope shift of the magnesium (3 s2) 1S0→(3 s 3 d ) 1D2 two-photon transition by direct frequency-comb spectroscopy

    Peters, E.; Reinhardt, S.; Hänsch, Th. W.; Udem, Th.

    2015-12-01

    We use a picosecond frequency-doubled mode-locked titanium sapphire laser to generate a frequency comb at 431 nm in order to probe the (3 s2) 1S0 →(3 s 3 d ) 1D2 transition in atomic magnesium. Using a second, self-referenced femtosecond frequency comb, the absolute transition frequency and the 24Mg and 26Mg isotope shift is determined relative to a global-positioning-system-referenced hydrogen maser. Our result for the transition frequency of the main isotope 24Mg of 1 391 128 606.14 (12 ) MHz agrees with previous measurements and reduces its uncertainty by four orders of magnitude. For the isotope shift we find δ ν26 ,24=3915.13 (39 ) MHz. Accurate values for transition frequencies in Mg are relevant in astrophysics and to test atomic structure calculations.

  5. The Implications for Higher-Accuracy Absolute Measurements for NGS and its GRAV-D Project

    Childers, V. A.; Winester, D.; Roman, D. R.; Eckl, M. C.; Smith, D. A.

    2013-12-01

    Absolute and relative gravity measurements play an important role in the work of NOAA's National Geodetic Survey (NGS). When NGS decided to replace the US national vertical datum, the Gravity for the Redefinition of the American Vertical Datum (GRAV-D) project added a new dimension to the NGS gravity program. Airborne gravity collection would complement existing satellite and surface gravity data to allow the creation of a gravimetric geoid sufficiently accurate to form the basis of the new reference surface. To provide absolute gravity ties for the airborne surveys, initially new FG5 absolute measurements were made at existing absolute stations and relative measurements were used to transfer those measurements to excenters near the absolute mark and to the aircraft sensor height at the parking space. In 2011, NGS obtained a field-capable A10 absolute gravimeter from Micro-g LaCoste which became the basis of the support of the airborne surveys. Now A10 measurements are made at the aircraft location and transferred to sensor height. Absolute and relative gravity play other roles in GRAV-D. Comparison of surface data with new airborne collection will highlight surface surveys with bias or tilt errors and can provide enough information to repair or discard the data. We expect that areas of problem surface data may be re-measured. The GRAV-D project also plans to monitor the geoid in regions of rapid change and update the vertical datum when appropriate. Geoid change can result from glacial isostatic adjustment (GIA), tectonic change, and the massive drawdown of large scale aquifers. The NGS plan for monitoring these changes over time is still in its preliminary stages and is expected to rely primarily on the GRACE and GRACE Follow On satellite data in conjunction with models of GIA and tectonic change. We expect to make absolute measurements in areas of rapid change in order to verify model predictions. With the opportunities presented by rapid, highly accurate

  6. Frequency measurements on the 2S-3S transition of lithium-7 and lithium-6

    Sanchez, A. Rodolfo M.; Ewald, Guido; Geppert, Christopher; Kluge, Juergen [GSI mbH, Darmstadt (Germany); Noerterhaeuser, Wilfried [GSI mbH, Darmstadt (Germany)]|[Institut fuer Kernchemie, Universitaet Mainz (Germany); Andjelkovic, Zoran; Kraemer, Joerg; Nothhelfer, Matthias; Tiedemann, Dirk; Zakova, Monika [Institut fuer Kernchemie, Universitaet Mainz (Germany); Winters, Danyal [Institut fuer Kernphysik, Universitaet Muenster (Germany)

    2008-07-01

    We report on the absolute frequency measurement of the 2S-3S two-photon transition of lithium-7 and -6 by employing a frequency comb. The values we obtained in this measurement are a factor ten times better than the last reported ones. We also discuss how a detailed description of the line profile is necessary in order improve the measured values.

  7. Absolute and Relative Isotope Abundances Measured by Tunable Diode Laser Spectroscopy

    Tucker, George Franklin

    The potential for measuring absolute and relative isotope abundances by high resolution spectroscopy with tunable diode lasers as sources was studied. In order to achieve the sensitivity necessary to determine the absolute abundances of molecules containing long-lived radionuclides such as ('14)C an ('129)I, a resonant spectrophone based on the photoacoustic effect was used for detection. For safety, NH(,3) was used as a sample with air as a buffer gas when characterizing the performance of the TDL-spectrophone system. Frequency modulation of the TDL was employed. The optimum operating pressure was found to be 6.6 kPa(50 Torr). Substitution of Kr as a buffer gas yielded a fourfold increase in signal. It is estimated that with currently available TDLs a photoacoustic spectrometer should be capable of detecting ('14)CO(,2) and CH('129)I at the levels present in nuclear reactor containment gases. An isotope shift of CH(,3)('129) I relative to CH(,3)('127)I in the (nu)(,6) band of (0.0135 (+OR-) 0.0006) cm('-1) was measured by TDL linear absorption spectroscopy. To perform relative isotope abundance measurements a TDL was tuned over two adjacent, but well-resolved, rotation -vibration absorption lines, one of each isotopic species, while the transmitted radiation was monitored with a HgCdTe detector. The P(26) line of the (nu)(,1) band of N(,2)('18)O at 1225.3671 cm('-1) and the P(63) line of the (nu)(,1) band of N(,2)('16)O at 1225.4879 cm('-1) were chosen, for their line strength ratio is inversely proportional to the ratio of their natural abundances, and thereby yielded approximately equal absorbance for each isotopic species. A double-beam, single-detector spectrometer with wavelength modulation to minimize the effects of laser power and cell temperature fluctuations, has been adapted for use with a TDL. After samples of known ('18)O enrichment were used to calibrate the spectrometer, the (delta)('18)O of tropospheric N(,2)O was measured to be (8.05 (+OR-) 0

  8. Measurement of statistical evidence on an absolute scale following thermodynamic principles

    Vieland, V J; Hodge, S E; Seok, S -C

    2013-01-01

    Statistical analysis is used throughout biomedical research and elsewhere to assess strength of evidence. We have previously argued that typical outcome statistics (including p-values and maximum likelihood ratios) have poor measure-theoretic properties: they can erroneously indicate decreasing evidence as data supporting an hypothesis accumulate; and they are not amenable to calibration, necessary for meaningful comparison of evidence across different study designs, data types, and levels of analysis. We have also previously proposed that thermodynamic theory, which allowed for the first time derivation of an absolute measurement scale for temperature (T), could be used to derive an absolute scale for evidence (E). Here we present a novel thermodynamically-based framework in which measurement of E on an absolute scale, for which "one degree" always means the same thing, becomes possible for the first time. The new framework invites us to think about statistical analyses in terms of the flow of (evidential) i...

  9. Absolute measurement of the DT primary neutron yield on the National Ignition Facility

    Leeper R.J.; Bleuel D. L.; Frenje J.A.; Eckart M.J.; Hartouni E.; Kilkenny J.D.; Casey D.T.; Chandler G.A.; Cooper G.W.; Glebov V.Yu.; Hagmann C.; Johnson M. Gatu; Knauer J.P.; Knittel K.M.; Linden-Levy L.A.

    2013-01-01

    The measurement of the absolute neutron yield produced in inertial confinement fusion target experiments conducted on the National Ignition Facility (NIF) is essential in benchmarking progress towards the goal of achieving ignition on this facility. This paper describes three independent diagnostic techniques that have been developed to make accurate and precise DT neutron yield measurements on the NIF.

  10. Absolute measurement of the DT primary neutron yield on the National Ignition Facility

    Leeper R.J.

    2013-11-01

    Full Text Available The measurement of the absolute neutron yield produced in inertial confinement fusion target experiments conducted on the National Ignition Facility (NIF is essential in benchmarking progress towards the goal of achieving ignition on this facility. This paper describes three independent diagnostic techniques that have been developed to make accurate and precise DT neutron yield measurements on the NIF.

  11. Absolute measurement of the DT primary neutron yield on the National Ignition Facility

    The measurement of the absolute neutron yield produced in inertial confinement fusion target experiments conducted on the National Ignition Facility (NIF) is essential in benchmarking progress towards the goal of achieving ignition on this facility. This paper describes three independent diagnostic techniques that have been developed to make accurate and precise DT neutron yield measurements on the NIF. (authors)

  12. First Absolutely Calibrated Localized Measurements of Ion Velocity in the MST in Locked and Rotating Plasmas

    Baltzer, M.; Craig, D.; den Hartog, D. J.; Nornberg, M. D.; Munaretto, S.

    2015-11-01

    An Ion Doppler Spectrometer (IDS) is used on MST for high time-resolution passive and active measurements of impurity ion emission. Absolutely calibrated measurements of flow are difficult because the spectrometer records data within 0.3 nm of the C+5 line of interest, and commercial calibration lamps do not produce lines in this narrow range . A novel optical system was designed to absolutely calibrate the IDS. The device uses an UV LED to produce a broad emission curve in the desired region. A Fabry-Perot etalon filters this light, cutting transmittance peaks into the pattern of the LED emission. An optical train of fused silica lenses focuses the light into the IDS with f/4. A holographic diffuser blurs the light cone to increase homogeneity. Using this light source, the absolute Doppler shift of ion emissions can be measured in MST plasmas. In combination with charge exchange recombination spectroscopy, localized ion velocities can now be measured. Previously, a time-averaged measurement along the chord bisecting the poloidal plane was used to calibrate the IDS; the quality of these central chord calibrations can be characterized with our absolute calibration. Calibration errors may also be quantified and minimized by optimizing the curve-fitting process. Preliminary measurements of toroidal velocity in locked and rotating plasmas will be shown. This work has been supported by the US DOE.

  13. Physical Measure and Absolute Continuity for One-Dimensional Center Direction

    Viana, Marcelo

    2010-01-01

    For a class of partially hyperbolic $C^k$, $k>1$ diffeomorphisms with circle center leaves we prove existence and finiteness of physical (or Sinai-Ruelle-Bowen) measures, whose basins cover a full Lebesgue measure subset of the ambient manifold. Our conditions contain an open and dense subset of all $C^k$ partially hyperbolic skew-products on compact circle bundles. Our arguments blend ideas from the theory of Gibbs states for diffeomorphisms with mostly contracting center direction together with recent progress in the theory of cocycles over hyperbolic systems that call into play geometric properties of invariant foliations such as absolute continuity. Recent results show that absolute continuity of the center foliation is often a rigid property among volume preserving systems. We prove that this is not at all the case in the dissipative setting, where absolute continuity can even be robust.

  14. Absolute calibration of a wideband antenna and spectrometer for sky noise spectral index measurements

    Rogers, Alan E E

    2012-01-01

    A new method of absolute calibration of sky noise temperature using a three-position switched spectrometer, measurements of antenna and low noise amplifier impedance with a vector network analyzer, and ancillary measurements of the amplifier noise waves is described. The details of the method and its application to accurate wideband measurements of the spectral index of the sky noise are described and compared with other methods.

  15. Measurement of the absolute branching fraction of $D^{+}\\rightarrow\\bar K^0 e^{+}\

    Ablikim, M; Ai, X C; Albayrak, O; Albrecht, M; Ambrose, D J; Amoroso, A; An, F F; An, Q; Bai, J Z; Ferroli, R Baldini; Ban, Y; Bennett, D W; Bennett, J V; Bertani, M; Bettoni, D; Bian, J M; Bianchi, F; Boger, E; Boyko, I; Briere, R A; Cai, H; Cai, X; Cakir, O; Calcaterra, A; Cao, G F; Cetin, S A; Chang, J F; Chelkov, G; Chen, G; Chen, H S; Chen, H Y; Chen, J C; Chen, M L; Chen, S; Chen, S J; Chen, X; Chen, X R; Chen, Y B; Cheng, H P; Chu, X K; Cibinetto, G; Dai, H L; Dai, J P; Dbeyssi, A; Dedovich, D; Deng, Z Y; Denig, A; Denysenko, I; Destefanis, M; De Mori, F; Ding, Y; Dong, C; Dong, J; Dong, L Y; Dong, M Y; Dou, Z L; Du, S X; Duan, P F; Fan, J Z; Fang, J; Fang, S S; Fang, X; Fang, Y; Farinelli, R; Fava, L; Fedorov, O; Feldbauer, F; Felici, G; Feng, C Q; Fioravanti, E; Fritsch, M; Fu, C D; Gao, Q; Gao, X L; Gao, X Y; Gao, Y; Gao, Z; Garzia, I; Goetzen, K; Gong, L; Gong, W X; Gradl, W; Greco, M; Gu, M H; Gu, Y T; Guan, Y H; Guo, A Q; Guo, L B; Guo, R P; Guo, Y; Guo, Y P; Haddadi, Z; Hafner, A; Han, S; Hao, X Q; Harris, F A; He, K L; Held, T; Heng, Y K; Hou, Z L; Hu, C; Hu, H M; Hu, J F; Hu, T; Hu, Y; Huang, G S; Huang, J S; Huang, X T; Huang, X Z; Huang, Y; Huang, Z L; Hussain, T; Ji, Q; Ji, Q P; Ji, X B; Ji, X L; Jiang, L W; Jiang, X S; Jiang, X Y; Jiao, J B; Jiao, Z; Jin, D P; Jin, S; Johansson, T; Julin, A; Kalantar-Nayestanaki, N; Kang, X L; Kang, X S; Kavatsyuk, M; Ke, B C; Kiese, P; Kliemt, R; Kloss, B; Kolcu, O B; Kopf, B; Kornicer, M; Kupsc, A; Kühn, W; Lange, J S; Lara, M; Larin, P; Leng, C; Li, C; Li, Cheng; Li, D M; Li, F; Li, F Y; Li, G; Li, H B; Li, H J; Li, J C; Li, Jin; Li, K; Li, K; Li, Lei; Li, P R; Li, Q Y; Li, T; Li, W D; Li, W G; Li, X L; Li, X N; Li, X Q; Li, Y B; Li, Z B; Liang, H; Liang, Y F; Liang, Y T; Liao, G R; Lin, D X; Liu, B; Liu, B J; Liu, C X; Liu, D; Liu, F H; Liu, Fang; Liu, Feng; Liu, H B; Liu, H H; Liu, H H; Liu, H M; Liu, J; Liu, J B; Liu, J P; Liu, J Y; Liu, K; Liu, K Y; Liu, L D; Liu, P L; Liu, Q; Liu, S B; Liu, X; Liu, Y B; Liu, Z A; Liu, Zhiqing; Loehner, H; Lou, X C; Lu, H J; Lu, J G; Lu, Y; Lu, Y P; Luo, C L; Luo, M X; Luo, T; Luo, X L; Lyu, X R; Ma, F C; Ma, H L; Ma, L L; Ma, M M; Ma, Q M; Ma, T; Ma, X N; Ma, X Y; Ma, Y M; Maas, F E; Maggiora, M; Mao, Y J; Mao, Z P; Marcello, S; Messchendorp, J G; Min, J; Min, T J; Mitchell, R E; Mo, X H; Mo, Y J; Morales, C Morales; Muchnoi, N Yu; Muramatsu, H; Nefedov, Y; Nerling, F; Nikolaev, I B; Ning, Z; Nisar, S; Niu, S L; Niu, X Y; Olsen, S L; Ouyang, Q; Pacetti, S; Pan, Y; Patteri, P; Pelizaeus, M; Peng, H P; Peters, K; Pettersson, J; Ping, J L; Ping, R G; Poling, R; Prasad, V; Qi, H R; Qi, M; Qian, S; Qiao, C F; Qin, L Q; Qin, N; Qin, X S; Qin, Z H; Qiu, J F; Rashid, K H; Redmer, C F; Ripka, M; Rong, G; Rosner, Ch; Ruan, X D; Sarantsev, A; Savrié, M; Schoenning, K; Schumann, S; Shan, W; Shao, M; Shen, C P; Shen, P X; Shen, X Y; Sheng, H Y; Shi, M; Song, W M; Song, X Y; Sosio, S; Spataro, S; Sun, G X; Sun, J F; Sun, S S; Sun, X H; Sun, Y J; Sun, Y Z; Sun, Z J; Sun, Z T; Tang, C J; Tang, X; Tapan, I; Thorndike, E H; Tiemens, M; Ullrich, M; Uman, I; Varner, G S; Wang, B; Wang, B L; Wang, D; Wang, D Y; Wang, K; Wang, L L; Wang, L S; Wang, M; Wang, P; Wang, P L; Wang, W; Wang, W P; Wang, X F; Wang, Y; Wang, Y D; Wang, Y F; Wang, Y Q; Wang, Z; Wang, Z G; Wang, Z H; Wang, Z Y; Wang, Z Y; Weber, T; Wei, D H; Weidenkaff, P; Wen, S P; Wiedner, U; Wolke, M; Wu, L H; Wu, L J; Wu, Z; Xia, L; Xia, L G; Xia, Y; Xiao, D; Xiao, H; Xiao, Z J; Xie, Y G; Xiu, Q L; Xu, G F; Xu, J J; Xu, L; Xu, Q J; Xu, Q N; Xu, X P; Yan, L; Yan, W B; Yan, W C; Yan, Y H; Yang, H J; Yang, H X; Yang, L; Yang, Y X; Ye, M; Ye, M H; Yin, J H; Yu, B X; Yu, C X; Yu, J S; Yuan, C Z; Yuan, W L; Yuan, Y; Yuncu, A; Zafar, A A; Zallo, A; Zeng, Y; Zeng, Z; Zhang, B X; Zhang, B Y; Zhang, C; Zhang, C C; Zhang, D H; Zhang, H H; Zhang, H Y; Zhang, J; Zhang, J J; Zhang, J L; Zhang, J Q; Zhang, J W; Zhang, J Y; Zhang, J Z; Zhang, K; Zhang, L; Zhang, S Q; Zhang, X Y; Zhang, Y; Zhang, Y H; Zhang, Y N; Zhang, Y T; Zhang, Yu; Zhang, Z H; Zhan, Z P; Zhang, Z Y; Zhao, G; Zhao, J W; Zhao, J Y; Zhao, J Z; Zhao, Lei; Zhao, Ling; Zhao, M G; Zhao, Q; Zhao, Q W; Zhao, S J; Zhao, T C; Zhao, Y B; Zhao, Z G; Zhemchugov, A; Zheng, B; Zheng, J P; Zheng, W J; Zheng, Y H; Zhong, B; Zhou, L; Zhou, X; Zhou, X K; Zhou, X R; Zhou, X Y; Zhu, K; Zhu, K J; Zhu, S; Zhu, S H; Zhu, X L; Zhu, Y C; Zhu, Y S; Zhu, Z A; Zhuang, J; Zotti, L; Zou, B S; Zou, J H

    2016-01-01

    By analyzing 2.93 fb$^{-1}$ data collected at the center-of-mass energy $\\sqrt s=3.773$ GeV with the BESIII detector, we measure the absolute branching fraction of the semileptonic decay $D^+\\rightarrow\\bar K^0 e^{+}\

  16. Measurements of the absolute branching fractions for $D_{s}^{+}\\rightarrow\\eta e^{+}\

    Ablikim, M; Ai, X C; Albayrak, O; Albrecht, M; Ambrose, D J; Amoroso, A; An, F F; An, Q; Bai, J Z; Ferroli, R Baldini; Ban, Y; Bennett, D W; Bennett, J V; Bertani, M; Bettoni, D; Bian, J M; Bianchi, F; Boger, E; Boyko, I; Briere, R A; Cai, H; Cai, X; Cakir, O; Calcaterra, A; Cao, G F; Cetin, S A; Chang, J F; Chelkov, G; Chen, G; Chen, H S; Chen, H Y; Chen, J C; Chen, M L; Chen, S; Chen, S J; Chen, X; Chen, X R; Chen, Y B; Cheng, H P; Chu, X K; Cibinetto, G; Dai, H L; Dai, J P; Dbeyssi, A; Dedovich, D; Deng, Z Y; Denig, A; Denysenko, I; Destefanis, M; De Mori, F; Ding, Y; Dong, C; Dong, J; Dong, L Y; Dong, M Y; Dou, Z L; Du, S X; Duan, P F; Fan, J Z; Fang, J; Fang, S S; Fang, X; Fang, Y; Farinelli, R; Fava, L; Fedorov, O; Feldbauer, F; Felici, G; Feng, C Q; Fioravanti, E; Fritsch, M; Fu, C D; Gao, Q; Gao, X L; Gao, X Y; Gao, Y; Gao, Z; Garzia, I; Goetzen, K; Gong, L; Gong, W X; Gradl, W; Greco, M; Gu, M H; Gu, Y T; Guan, Y H; Guo, A Q; Guo, L B; Guo, R P; Guo, Y; Guo, Y P; Haddadi, Z; Hafner, A; Han, S; Hao, X Q; Harris, F A; He, K L; Held, T; Heng, Y K; Hou, Z L; Hu, C; Hu, H M; Hu, J F; Hu, T; Hu, Y; Huang, G S; Huang, J S; Huang, X T; Huang, X Z; Huang, Y; Huang, Z L; Hussain, T; Ji, Q; Ji, Q P; Ji, X B; Ji, X L; Jiang, L W; Jiang, X S; Jiang, X Y; Jiao, J B; Jiao, Z; Jin, D P; Jin, S; Johansson, T; Julin, A; Kalantar-Nayestanaki, N; Kang, X L; Kang, X S; Kavatsyuk, M; Ke, B C; Kiese, P; Kliemt, R; Kloss, B; Kolcu, O B; Kopf, B; Kornicer, M; Kupsc, A; Kühn, W; Lange, J S; Lara, M; Larin, P; Leng, C; Li, C; Li, Cheng; Li, D M; Li, F; Li, F Y; Li, G; Li, H B; Li, H J; Li, J C; Li, Jin; Li, K; Li, K; Li, Lei; Li, P R; Li, Q Y; Li, T; Li, W D; Li, W G; Li, X L; Li, X N; Li, X Q; Li, Y B; Li, Z B; Liang, H; Liang, Y F; Liang, Y T; Liao, G R; Lin, D X; Liu, B; Liu, B J; Liu, C X; Liu, D; Liu, F H; Liu, Fang; Liu, Feng; Liu, H B; Liu, H H; Liu, H H; Liu, H M; Liu, J; Liu, J B; Liu, J P; Liu, J Y; Liu, K; Liu, K Y; Liu, L D; Liu, P L; Liu, Q; Liu, S B; Liu, X; Liu, Y B; Liu, Z A; Liu, Zhiqing; Loehner, H; Lou, X C; Lu, H J; Lu, J G; Lu, Y; Lu, Y P; Luo, C L; Luo, M X; Luo, T; Luo, X L; Lyu, X R; Ma, F C; Ma, H L; Ma, L L; Ma, M M; Ma, Q M; Ma, T; Ma, X N; Ma, X Y; Ma, Y M; Maas, F E; Maggiora, M; Mao, Y J; Mao, Z P; Marcello, S; Messchendorp, J G; Min, J; Min, T J; Mitchell, R E; Mo, X H; Mo, Y J; Morales, C Morales; Muchnoi, N Yu; Muramatsu, H; Nefedov, Y; Nerling, F; Nikolaev, I B; Ning, Z; Nisar, S; Niu, S L; Niu, X Y; Olsen, S L; Ouyang, Q; Pacetti, S; Pan, Y; Patteri, P; Pelizaeus, M; Peng, H P; Peters, K; Pettersson, J; Ping, J L; Ping, R G; Poling, R; Prasad, V; Qi, H R; Qi, M; Qian, S; Qiao, C F; Qin, L Q; Qin, N; Qin, X S; Qin, Z H; Qiu, J F; Rashid, K H; Redmer, C F; Ripka, M; Rong, G; Rosner, Ch; Ruan, X D; Sarantsev, A; Savrié, M; Schoenning, K; Schumann, S; Shan, W; Shao, M; Shen, C P; Shen, P X; Shen, X Y; Sheng, H Y; Shi, M; Song, W M; Song, X Y; Sosio, S; Spataro, S; Sun, G X; Sun, J F; Sun, S S; Sun, X H; Sun, Y J; Sun, Y Z; Sun, Z J; Sun, Z T; Tang, C J; Tang, X; Tapan, I; Thorndike, E H; Tiemens, M; Ullrich, M; Uman, I; Varner, G S; Wang, B; Wang, B L; Wang, D; Wang, D Y; Wang, K; Wang, L L; Wang, L S; Wang, M; Wang, P; Wang, P L; Wang, W; Wang, W P; Wang, X F; Wang, Y; Wang, Y D; Wang, Y F; Wang, Y Q; Wang, Z; Wang, Z G; Wang, Z H; Wang, Z Y; Wang, Z Y; Weber, T; Wei, D H; Weidenkaff, P; Wen, S P; Wiedner, U; Wolke, M; Wu, L H; Wu, L J; Wu, Z; Xia, L; Xia, L G; Xia, Y; Xiao, D; Xiao, H; Xiao, Z J; Xie, Y G; Xiu, Q L; Xu, G F; Xu, J J; Xu, L; Xu, Q J; Xu, Q N; Xu, X P; Yan, L; Yan, W B; Yan, W C; Yan, Y H; Yang, H J; Yang, H X; Yang, L; Yang, Y X; Ye, M; Ye, M H; Yin, J H; Yu, B X; Yu, C X; Yu, J S; Yuan, C Z; Yuan, W L; Yuan, Y; Yuncu, A; Zafar, A A; Zallo, A; Zeng, Y; Zeng, Z; Zhang, B X; Zhang, B Y; Zhang, C; Zhang, C C; Zhang, D H; Zhang, H H; Zhang, H Y; Zhang, J; Zhang, J J; Zhang, J L; Zhang, J Q; Zhang, J W; Zhang, J Y; Zhang, J Z; Zhang, K; Zhang, L; Zhang, S Q; Zhang, X Y; Zhang, Y; Zhang, Y H; Zhang, Y N; Zhang, Y T; Zhang, Yu; Zhang, Z H; Zhan, Z P; Zhang, Z Y; Zhao, G; Zhao, J W; Zhao, J Y; Zhao, J Z; Zhao, Lei; Zhao, Ling; Zhao, M G; Zhao, Q; Zhao, Q W; Zhao, S J; Zhao, T C; Zhao, Y B; Zhao, Z G; Zhemchugov, A; Zheng, B; Zheng, J P; Zheng, W J; Zheng, Y H; Zhong, B; Zhou, L; Zhou, X; Zhou, X K; Zhou, X R; Zhou, X Y; Zhu, K; Zhu, K J; Zhu, S; Zhu, S H; Zhu, X L; Zhu, Y C; Zhu, Y S; Zhu, Z A; Zhuang, J; Zotti, L; Zou, B S; Zou, J H

    2016-01-01

    By analyzing 482 pb$^{-1}$ of $e^+e^-$ collision data collected at $\\sqrt s=4.009$ GeV with the BESIII detector at the BEPCII storage ring, we measure the absolute branching fractions for the semileptonic decays $D_{s}^{+}\\to\\eta e^{+}\

  17. Low geometry counter for the absolute measurement of the activity of alpha-emitting sources

    A low-geometry counter is described which allows the absolute determination of the activity for alpha-emitting sources. A Si implanted detector is used to obtain the spectrum of the sample. Two samples are measured with this counter and a 2 π gridded ion chamber. The results an their uncertainties for both instruments are discussed. (Author)

  18. Superharp: A wire scanner with absolute position readout for beam energy measurement at CEBAF

    Superharp is an upgrade CEBAF wire scanner with absolute position readout from shaft encoder. As high precision absolute beam position probe (Δx ∼ 10μm), three pairs of superharps are installed at the entrance, the mid-point, and the exit of Hall C arc beamline in beam switch yard, which will be tuned in dispersive mode as energy spectrometer performing 10-3 beam energy measurement. With dual sensor system: the direct current pickup and the bremsstrahlung detection electronics, beam profile can be obtained by superharp at wide beam current range from 1 μA to 100 μA

  19. Re-creating Gauss's method for non-electrical absolute measurements of magnetic fields and moments

    Van Baak, D. A.

    2013-10-01

    In 1832, Gauss made the first absolute measurements of magnetic fields and of magnetic moments in experiments that are straightforward and instructive to replicate. We show, using rare-earth permanent magnets and a variation of Gauss's technique, that the horizontal component of the ambient geomagnetic field, as well as the size of the magnetic moments of such magnets, can be found. The method shows the connection between the SI and cgs emu unit systems for these quantities and permits an absolute realization of the Ampere with considerable precision.

  20. Method based on chirp decomposition for dispersion mismatch compensation in precision absolute distance measurement using swept-wavelength interferometry.

    Lu, Cheng; Liu, Guodong; Liu, Bingguo; Chen, Fengdong; Hu, Tao; Zhuang, Zhitao; Xu, Xinke; Gan, Yu

    2015-12-14

    We establish a theoretical model of dispersion mismatch in absolute distance measurements using swept-wavelength interferometry (SWI) and propose a novel dispersion mismatch compensation method called chirp decomposition. This method separates the dispersion coefficient and distance under test, which ensures dispersion mismatch compensation without introducing additional random errors. In the measurement of a target located at 3.9 m, a measurement resolution of 45.9 μm is obtained, which is close to the theoretical resolution, and a standard deviation of 0.74 μm is obtained, which is better than the traditional method. The measurement results are compared to a single-frequency laser interferometer. The target moves from 1 m to 3.7 m, and the measurement precision using the new method is less than 0.81 μm. PMID:26698959

  1. Absolute phase retrieval for defocused fringe projection three-dimensional measurement

    Zheng, Dongliang; Da, Feipeng

    2014-02-01

    Defocused fringe projection three-dimensional technique based on pulse-width modulation (PWM) can generate high-quality sinusoidal fringe patterns. It only uses slightly defocused binary structured patterns which can eliminate the gamma problem (i.e. nonlinear response), and the phase error can be significantly reduced. However, when the projector is defocused, it is difficult to retrieve the absolute phase from the wrapped phase. A recently proposed phase coding method is efficient for absolute phase retrieval, but the gamma problem leads this method not so reliable. In this paper, we use the PWM technique to generate fringe patterns for the phase coding method. The gamma problem of the projector can be eliminated, and correct absolute phase can be retrieved. The proposed method only uses two grayscale values (0's and 255's), which can be used for real-time 3D shape measurement. Both simulation and experiment demonstrate the performance of the proposed method.

  2. Measurement of Absolute Hadronic Branching Fractions of D_s Mesons

    Adam, N; Berkelman, K; Cassel, D G; Duboscq, J E; Ecklund, K M; Ehrlich, R; Fields, L; Gibbons, L; Gray, R; Gray, S W; Hartill, D L; Heltsley, B K; Hertz, D; Jones, C D; Kandaswamy, J; Kreinick, D L; Kuznetsov, V E; Mahlke-Krüger, H; Onyisi, P U E; Patterson, J R; Peterson, D; Pivarski, J; Riley, D; Ryd, A; Sadoff, A J; Schwarthoff, H; Shi, X; Stroiney, S; Sun, W M; Wilksen, T; Weinberger, M; Athar, S B; Patel, R; Potlia, V; Yelton, J; Rubin, P; Cawlfield, C; Eisenstein, B I; Karliner, I; Kim, D; Lowrey, N; Naik, P; Sedlack, C; Selen, M; White, E J; Wiss, J; Shepherd, M R; Besson, D; Pedlar, T K; Cronin-Hennessy, D; Gao, K Y; Gong, D T; Hietala, J; Kubota, Y; Klein, T; Lang, B W; Poling, R; Scott, A W; Smith, A; Zweber, P; Dobbs, S; Metreveli, Z V; Seth, K K; Tomaradze, A G; Ernst, J; Severini, H; Dytman, S A; Love, W; Savinov, V; Aquines, O; Li, Z; López, A; Mehrabyan, S S; Méndez, H; Ramírez, J; Huang, G S; Miller, D H; Pavlunin, V; Sanghi, B; Shipsey, I P J; Xin, B; Adams, G S; Anderson, M; Cummings, J P; Danko, I; Napolitano, J; He, Q; Insler, J; Muramatsu, H; Park, C S; Thorndike, E H; Yang, F; Coan, T E; Gao, Y S; Liu, F; Artuso, M; Blusk, S; Butt, J; Li, J; Menaa, N; Mountain, R; Nisar, S; Randrianarivony, K; Redjimi, R; Sia, R; Skwarnicki, T; Stone, S; Wang, J C; Zhang, K; Csorna, S E; Bonvicini, G; Cinabro, D; Dubrovin, M; Lincoln, A; Asner, D M; Edwards, K W; Briere, R A; Brock, I; Chen, J; Ferguson, T; Tatishvili, G T; Vogel, H; Watkins, M E; Rosner, J L

    2006-01-01

    We report preliminary measurements of absolute hadronic branching fractions of Ds mesons determined using a double tag technique. These measurements are from 195 pb^{-1} of e+e- collisions recorded at center of mass energies near 4.17 GeV with the CLEO-c detector at CESR. We obtain absolute branching fractions for Ds+ decays to KS0 K+, K- K+ pi+, K- K+ pi+ pi-, pi+ pi+ pi-, pi+ eta, and pi+ etaprime. We discuss the problems inherent in measuring accurately the branching fraction for Ds+ to phi pi+, which is often used as a reference mode for measurement of other Ds+ branching fractions, and provide a measurement of a branching fraction that may be useful for this purpose.

  3. Demonstrating the Error Budget for the Climate Absolute Radiance and Refractivity Observatory Through Solar Irradiance Measurements

    Thome, Kurtis; McCorkel, Joel; McAndrew, Brendan

    2016-01-01

    The Climate Absolute Radiance and Refractivity Observatory (CLARREO) mission addresses the need to observe highaccuracy, long-term climate change trends and to use decadal change observations as a method to determine the accuracy of climate change. A CLARREO objective is to improve the accuracy of SI-traceable, absolute calibration at infrared and reflected solar wavelengths to reach on-orbit accuracies required to allow climate change observations to survive data gaps and observe climate change at the limit of natural variability. Such an effort will also demonstrate National Institute of Standards and Technology (NIST) approaches for use in future spaceborne instruments. The current work describes the results of laboratory and field measurements with the Solar, Lunar for Absolute Reflectance Imaging Spectroradiometer (SOLARIS) which is the calibration demonstration system (CDS) for the reflected solar portion of CLARREO. SOLARIS allows testing and evaluation of calibration approaches, alternate design and/or implementation approaches and components for the CLARREO mission. SOLARIS also provides a test-bed for detector technologies, non-linearity determination and uncertainties, and application of future technology developments and suggested spacecraft instrument design modifications. Results of laboratory calibration measurements are provided to demonstrate key assumptions about instrument behavior that are needed to achieve CLARREO's climate measurement requirements. Absolute radiometric response is determined using laser-based calibration sources and applied to direct solar views for comparison with accepted solar irradiance models to demonstrate accuracy values giving confidence in the error budget for the CLARREO reflectance retrieval.

  4. Absolute parametric instability of low-frequency waves in a 2D nonuniform anisotropic warm plasma

    N G Zaki

    2010-05-01

    Using the separation method, absolute parametric instability (API) of electrostatic waves in a magnetized pumped warm plasma is investigated. In this case the effect of static strong magnetic field is considered. The problem of strong magnetic field is solved in two-dimensional (2D) nonuniform plane plasma. Equations which describe the spatial part of the electric potential are obtained. Also, the growth rates and conditions of the parametric instability for periodic and aperiodic cases are obtained. It is found that the spatial nonuniformity of the plasma exerts a stabilizing effect on the API. It is shown that the growth rates of periodic and aperiodic API in warm plasma are less when compared to that in cold plasma.

  5. Absolute Neutron Fluence Measurements at the NIST Center for Neutron Research

    Yue, A.; Dewey, M.; Gilliam, D.; Nico, J.; Anderson, E.; Snow, M.; Greene, G.; Laptev, A.

    2015-10-01

    Precise, absolute fluence measurements of cold and thermal neutron beams are of primary importance to beam-type determinations of the neutron lifetime, measurements of standard neutron cross sections, and the development of standards for neutron dosimetry. At the National Institute of Standards and Technology (NIST), a totally absorbing neutron detector based on absolute counting of the 10B(n,α1)7Li reaction 478 keV gamma ray has been used to perform fluence measurements with a precision of 0.06%. This detector has been used to improve the neutron fluence determination in the 2000 NIST beam neutron lifetime by a factor of five, significantly reducing the uncertainty in the lifetime result. Ongoing and possible future uses of the Alpha-Gamma device include 1) Calibration of the neutron fluence monitors that will be used in the upcoming NIST beam neutron lifetime measurement BL2; 2) The first direct, absolute measurement of the 6Li(n,t)4He neutron cross section at sub-thermal neutron energy; 3) Measurements of the 10B(n, γ)11B and 235U(n,f) neutron cross sections; 4) A re-calibration of the national neutron standard NBS-1. The apparatus, measurement technique, and applications will be discussed.

  6. A novel method for the absolute fluorescence yield measurement by AIRFLY

    Ave, M

    2008-01-01

    One of the goals of the AIRFLY (AIR FLuorescence Yield) experiment is to measure the absolute fluorescence yield induced by electrons in air to better than 10% precision. We introduce a new technique for measurement of the absolute fluorescence yield of the 337 nm line that has the advantage of reducing the systematic uncertainty due to the detector calibration. The principle is to compare the measured fluorescence yield to a well known process - the Cerenkov emission. Preliminary measurements taken in the BFT (Beam Test Facility) in Frascati, Italy with 350 MeV electrons are presented. Beam tests in the Argonne Wakefield Accelerator at the Argonne National Laboratory, USA with 14 MeV electrons have also shown that this technique can be applied at lower energies.

  7. Hilbertian sine as an absolute measure of Bayesian inference in ISR, homeland security, medicine, and defense

    Jannson, Tomasz; Wang, Wenjian; Hodelin, Juan; Forrester, Thomas; Romanov, Volodymyr; Kostrzewski, Andrew

    2016-05-01

    In this paper, Bayesian Binary Sensing (BBS) is discussed as an effective tool for Bayesian Inference (BI) evaluation in interdisciplinary areas such as ISR (and, C3I), Homeland Security, QC, medicine, defense, and many others. In particular, Hilbertian Sine (HS) as an absolute measure of BI, is introduced, while avoiding relativity of decision threshold identification, as in the case of traditional measures of BI, related to false positives and false negatives.

  8. Polarized H- Jet Polarimeter For Absolute Proton Polarization Measurements in RHIC

    Status of the H-jet polarimeter development is reviewed. A number of design issues are discussed including vacuum system, integration into the RHIC storage ring, scattering chamber, and uniform vertical holding field magnet design. The absolute proton polarization of the atomic hydrogen-jet target will be measured to 3% accuracy by a Breit- systematic error contribution to the jet-target polarization measurements is also discussed

  9. Reduced Haemodynamic Response in the Ageing Visual Cortex Measured by Absolute fNIRS

    Ward, Laura McKernan; Aitchison, Ross Thomas; Tawse, Melisa; Simmers, Anita Jane; Shahani, Uma

    2015-01-01

    The effect of healthy ageing on visual cortical activation is still to be fully explored. This study aimed to elucidate whether the haemodynamic response (HDR) of the visual cortex altered as a result of ageing. Visually normal (healthy) participants were presented with a simple visual stimulus (reversing checkerboard). Full optometric screening was implemented to identify two age groups: younger adults (n = 12, mean age 21) and older adults (n = 13, mean age 71). Frequency-domain Multi-distance (FD-MD) functional Near-Infrared Spectroscopy (fNIRS) was used to measure absolute changes in oxygenated [HbO] and deoxygenated [HbR] haemoglobin concentrations in the occipital cortices. Utilising a slow event-related design, subjects viewed a full field reversing checkerboard with contrast and check size manipulations (15 and 30 minutes of arc, 50% and 100% contrast). Both groups showed the characteristic response of increased [HbO] and decreased [HbR] during stimulus presentation. However, older adults produced a more varied HDR and often had comparable levels of [HbO] and [HbR] during both stimulus presentation and baseline resting state. Younger adults had significantly greater concentrations of both [HbO] and [HbR] in every investigation regardless of the type of stimulus displayed (p<0.05). The average variance associated with this age-related effect for [HbO] was 88% and [HbR] 91%. Passive viewing of a visual stimulus, without any cognitive input, showed a marked age-related decline in the cortical HDR. Moreover, regardless of stimulus parameters such as check size, the HDR was characterised by age. In concurrence with present neuroimaging literature, we conclude that the visual HDR decreases as healthy ageing proceeds. PMID:25909849

  10. Reduced Haemodynamic Response in the Ageing Visual Cortex Measured by Absolute fNIRS.

    Laura McKernan Ward

    Full Text Available The effect of healthy ageing on visual cortical activation is still to be fully explored. This study aimed to elucidate whether the haemodynamic response (HDR of the visual cortex altered as a result of ageing. Visually normal (healthy participants were presented with a simple visual stimulus (reversing checkerboard. Full optometric screening was implemented to identify two age groups: younger adults (n = 12, mean age 21 and older adults (n = 13, mean age 71. Frequency-domain Multi-distance (FD-MD functional Near-Infrared Spectroscopy (fNIRS was used to measure absolute changes in oxygenated [HbO] and deoxygenated [HbR] haemoglobin concentrations in the occipital cortices. Utilising a slow event-related design, subjects viewed a full field reversing checkerboard with contrast and check size manipulations (15 and 30 minutes of arc, 50% and 100% contrast. Both groups showed the characteristic response of increased [HbO] and decreased [HbR] during stimulus presentation. However, older adults produced a more varied HDR and often had comparable levels of [HbO] and [HbR] during both stimulus presentation and baseline resting state. Younger adults had significantly greater concentrations of both [HbO] and [HbR] in every investigation regardless of the type of stimulus displayed (p<0.05. The average variance associated with this age-related effect for [HbO] was 88% and [HbR] 91%. Passive viewing of a visual stimulus, without any cognitive input, showed a marked age-related decline in the cortical HDR. Moreover, regardless of stimulus parameters such as check size, the HDR was characterised by age. In concurrence with present neuroimaging literature, we conclude that the visual HDR decreases as healthy ageing proceeds.

  11. Measuring the absolute DT neutron yield using the Magnetic Recoil Spectrometer at OMEGA and the NIF

    A Magnetic Recoil Spectrometer (MRS) has been installed and extensively used on OMEGA and the National Ignition Facility (NIF) for measurements of the absolute neutron spectrum from inertial confinement fusion (ICF) implosions. From the neutron spectrum measured with the MRS, many critical implosion parameters are determined including the primary DT neutron yield, the ion temperature, and the down-scattered neutron yield. As the MRS detection efficiency is determined from first principles, the absolute DT neutron yield is obtained without cross-calibration to other techniques. The MRS primary DT neutron measurements at OMEGA and the NIF are shown to be in excellent agreement with previously established yield diagnostics on OMEGA, and with the newly commissioned nuclear activation diagnostics on the NIF.

  12. Measuring the absolute DT neutron yield using the Magnetic Recoil Spectrometer at OMEGA and the NIF

    Mackinnon, A; Casey, D; Frenje, J A; Johnson, M G; Seguin, F H; Li, C K; Petrasso, R D; Glebov, V Y; Katz, J; Knauer, J; Meyerhofer, D; Sangster, T; Bionta, R; Bleuel, D; Hachett, S P; Hartouni, E; Lepape, S; Mckernan, M; Moran, M; Yeamans, C

    2012-05-03

    A Magnetic Recoil Spectrometer (MRS) has been installed and extensively used on OMEGA and the National Ignition Facility (NIF) for measurements of the absolute neutron spectrum from inertial confinement fusion (ICF) implosions. From the neutron spectrum measured with the MRS, many critical implosion parameters are determined including the primary DT neutron yield, the ion temperature, and the down-scattered neutron yield. As the MRS detection efficiency is determined from first principles, the absolute DT neutron yield is obtained without cross-calibration to other techniques. The MRS primary DT neutron measurements at OMEGA and the NIF are shown to be in excellent agreement with previously established yield diagnostics on OMEGA, and with the newly commissioned nuclear activation diagnostics on the NIF.

  13. Absolute measurement of neutron source emission rate with manganese bath method

    The manganese bath method is one of the most widespread and exact method to measure neutron source emission rate (neutron source intensity) absolutely at present. Pouring some 56Mn solution with known activity into the bath, the system efficiency can be obtained from γ counts of 56Mn, which is measured by two NaI(Tl) detectors. From saturated counts of a 241Am-Be(α, n) neutron source in the bath, the source emission rate can be obtained. An standard 241Am-Be(α, n) source which is the transfer source of the CCRI(Ⅲ)-K9. AmBe international key comparison organized by the Comite Consultatif des Rayonnements Ionisants, was measured absolutely with the neutron source emission rate standard equipment (manganese bath method). The result is coincident with the average value of the comparison within the uncertainties, therefore the reliability of the standard equipment is verified. (authors)

  14. High-precision gravity measurements using absolute and relative gravimeters at Mount Etna (Sicily, Italy

    Ciro Del Negro

    2011-12-01

    Full Text Available Accurate detection of time gravity changes attributable to the dynamics of volcanoes requires high-precision gravity measurements. With the aim of improving the quality of data from the Mount Etna gravity network, we used both absolute and relative gravimeters in a hybrid method. In this report, some of the techniques for gravity surveys are reviewed, and the results related to each method are compared. We show how the total uncertainty estimated for the gravity measurements performed with this combined use of absolute and relative gravimeters is roughly comparable to that calculated when the measurements are acquired using only relative gravimeters (the traditional method. However, the data highlight how the hybrid approach improves the measurement capabilities for surveying the Mount Etna volcanic area. This approach enhances the accuracy of the data, and then of the four-dimensional surveying, which minimizes ambiguities inherent in the gravity measurements. As a case study, we refer to two gravity datasets acquired in 2005 and 2010 from the western part of the Etna volcano, which included five absolute and 13 relative stations of the Etna gravity network.

  15. Laser induced deflection technique for absolute thin film absorption measurement: optimized concepts and experimental results

    Using experimental results and numerical simulations, two measuring concepts of the laser induced deflection (LID) technique are introduced and optimized for absolute thin film absorption measurements from deep ultraviolet to IR wavelengths. For transparent optical coatings, a particular probe beam deflection direction allows the absorption measurement with virtually no influence of the substrate absorption, yielding improved accuracy compared to the common techniques of separating bulk and coating absorption. For high-reflection coatings, where substrate absorption contributions are negligible, a different probe beam deflection is chosen to achieve a better signal-to-noise ratio. Various experimental results for the two different measurement concepts are presented.

  16. A Laser Frequency Comb System for Absolute Calibration of the VTT Echelle Spectrograph

    Doerr, H. -P.; T Steinmetz; Holzwarth, R.; Schmidt, T. Kentischer und W.

    2012-01-01

    A wavelength calibration system based on a laser frequency comb (LFC) was developed in a co-operation between the Kiepenheuer-Institut f\\"ur Sonnenphysik, Freiburg, Germany and the Max-Planck-Institut f\\"ur Quantenoptik, Garching, Germany for permanent installation at the German Vacuum Tower Telescope (VTT) on Tenerife, Canary Islands. The system was installed successfully in October 2011. By simultaneously recording the spectra from the Sun and the LFC, for each exposure a calibration curve ...

  17. Absolute reaction rate measurement with D-D neutron source in polyethylene spherical shell

    The absolute reaction rate distribution measurements in a polyethylene spherical shell with 38.6 cm outside diameter and 10 cm thickness were performed with D-D neutron source. By combining fission method and activation method, rich-uranium fission chamber, depleted-uranium fission chamber, 237Np fission chamber and 115In activation foils were placed at several positions on the equatorial line of the inner face of the shell, and the absolute reaction rates were obtained. The uncertainty of fission rates is 2.5%-4.3%, while the uncertainty of activation rates is about 6.3%. The reaction rates were calculated by MCNP and ENDF/B-VII. 0. The calculated results are lower than the measured results and 238U is typical. (authors)

  18. Hyperspectral interferometry for single-shot absolute measurement of two-dimensional optical path distributions

    We propose a method that we call hyperspectral interferometry (HSI) to resolve the 2π phase unwrapping problem in the analysis of interferograms recorded with a narrow-band light source. By using a broadband light source and a hyperspectral imaging system, a set of interferograms at different wave numbers are recorded simultaneously on a high resolution image sensor. These are then assembled to form a three-dimensional intensity distribution. By Fourier transformation along the wave number axis, an absolute optical path difference is obtained for each pixel independently of the other pixels in the field of view. As a result, interferograms with spatially distinct regions are analysed as easily as continuous ones. The approach is illustrated with a HSI system to measure 3D profiles of optically smooth or rough surfaces. Compared to existing profilometers able to measure absolute path differences, the single-shot nature of the approach provides greater immunity from environmental disturbance

  19. Absolutely continuous invariant measure of a map from grazing-impact oscillators

    In this paper we investigate a one-dimensional map with unbounded derivative. The map is the limit of the Nordmark map which is the normal form of a discrete time representation of impact oscillators near grazing, i.e. when the dissipation of the systems is large, the Nordmark map can be viewed as a perturbation of the one-dimensional map. We prove that the map has an ergodic absolutely continuous invariant probability measure in a region of parameter space by constructing an induced Markov map. - Highlights: • We investigate a one-dimensional map with unbounded derivative. • The map is the limit of the Nordmark map which is the normal form of the impact oscillators near grazing states. • We prove that the map has an ergodic absolutely continuous invariant probability measure by constructing an induced Markov map

  20. FFTF (FAST FLUX TEST FACILITY) REACTOR CHARACTERIZATION PROGRAM ABSOLUTE FISSION RATE MEASUREMENTS

    FULLER JL; GILLIAM DM; GRUNDL JA; RAWLINS JA; DAUGHTRY JW

    1981-05-01

    Absolute fission rate measurements using modified National Bureau of Standards fission chambers were performed in the Fast Flux Test Facility at two core locations for isotopic deposits of {sup 232}Th, {sup 233}U, {sup 235}U, {sup 238}U, {sup 237}Np, {sup 239}Pu, {sup 240}Pu, and {sup 241}Pu. Monitor chamber results at a third location were analyzed to support other experiments involving passive dosimeter fission rate determinations.

  1. FFTF (Fast Flux Test Facility) Reactor Characterization Program: Absolute Fission-rate Measurements

    Fuller, J.L.; Gilliam, D.M.; Grundl, J.A.; Rawlins, J.A.; Daughtry, J.W.

    1981-05-01

    Absolute fission rate measurements using modified National Bureau of Standards fission chambers were performed in the Fast Flux Test Facility at two core locations for isotopic deposits of {sup 232}Th, {sup 233}U, {sup 235}U, {sup 238}U, {sup 237}Np, {sup 239}Pu, {sup 240}Pu, and {sup 241}Pu. Monitor chamber results at a third location were analyzed to support other experiments involving passive dosimeter fission rate determinations.

  2. Absolute nuclear energy measurements using the γ-γ coincidence method

    I n this report a summary is first given of the principle of the γ-γ calibration method, stress being laid on the corrections required. After a description of the equipment used, the choice of the experimental conditions required for various isotopes is discussed (22Na, 46Sc, 60Co, 88Y) and the agreement between these results and those obtained by other absolute measurement methods is considered. (authors)

  3. Absolute Polarization Measurements at RHIC in the Coulomb Nuclear Interference Region

    Eyser, K. O.; Alekseev, I.; Bravar, A; Bunce, G.; Dhawan, S.; Gill, R; Haeberli, W.; Huang, H.; Jinnouchi, O.; Makdisi, Y.; Nakagawa, I.; Nass, A.; Okada, H.; Stephenson, E.; Svirida, D.

    2006-01-01

    The Relativistic Heavy Ion Collider at Brookhaven National Laboratory provides polarized proton beams for the investigation of the nucleon spin structure. For polarimetry, carbon-proton and proton-proton scattering is used in the Coulomb nuclear interference region at small momentum transfer ($-t$). Fast polarization measurements of each beam are carried out with carbon fiber targets at several times during an accelerator store. A polarized hydrogen gas jet target is needed for absolute norma...

  4. Absolute measurement of the ultrafast nonlinear electronic and rovibrational response in H$_2$ and D$_2$

    Wahlstrand, J K; Cheng, Y -H; Palastro, J P; Milchberg, H M

    2015-01-01

    The electronic, rotational, and vibrational components of the ultrafast optical nonlinearity in H$_2$ and D$_2$ are measured directly and absolutely at intensities up to the ionization threshold of $\\sim$10$^{14}$ W/cm$^2$. As the most basic nonlinear interactions of the simplest molecules exposed to high fields, these results constitute a benchmark for high field laser-matter theory and simulation.

  5. Geometry of expanding absolutely continuous invariant measures and the liftability problem

    We consider a quite broad class of maps on compact manifolds of arbitrary dimension possibly admitting critical points, discontinuities and singularities. Under some mild nondegeneracy assumptions we show that f admits an induced Gibbs-Markov map with integrable inducing times if and only if it has an ergodic invariant probability measure which is absolutely continuous with respect to the Riemannian volume and has all Lyapunov exponents positive. (author)

  6. Precise Measurement of the Absolute Yield of Fluorescence Photons in Atmospheric Gases

    Ave, M; Daumiller, K; Di Carlo, P; Di Giulio, C; Luis, P Facal San; Gonzales, D; Hojvat, C; Hörandel, J R; Hrabovský, M; Iarlori, M; Keilhauer, B; Klages, H; Kleifges, M; Kuehn, F; Monasor, M; Nožka, L; Palatka, M; Petrera, S; Privitera, P; Ridky, J; Rizi, V; d'Orfeuil, B Rouillé; Salamida, F; Schovánek, P; Šmida, R; Spinka, H; Ulrich, A; Verzi, V; Williams, C

    2011-01-01

    We have performed a measurement of the absolute yield of fluorescence photons at the Fermilab Test Beam. A systematic uncertainty at 5% level was achieved by the use of Cherenkov radiation as a reference calibration light source. A cross-check was performed by an independent calibration using a laser light source. A significant improvement on the energy scale uncertainty of Ultra-High Energy Cosmic Rays is expected.

  7. A luminescent molecular thermometer for long-term absolute temperature measurements at the nanoscale

    Brites, Carlos; Lima, Patricia; Silva, Nuno Joâo O.; Millán, Ángel; Amaral, Vitor S.; Palacio, Fernando; Carlos, Luis D.

    2010-01-01

    A unique Eu3+/Tb3+ luminescent self-referencing nanothermometer allowing absolute measurements in the 10–350 K temperature range and sub-micrometer spatial resolution is reported (see Figure). It has up to 4.9%·K−1 temperature sensitivity and high photostability for long-term use. The combination of molecular thermometry, superparamagnetism and luminescence in a nanometric host matrix provides multifunctionality opening the way for new exciting applications.

  8. LHCb: A novel method for an absolute luminosity measurement at LHCb using beam-gas imaging

    Barschel, C

    2013-01-01

    A novel technique to measure the absolute luminosity at the Large Hadron Collider (LHC) using beam-gas interactions has been successfully used in the LHCb experiment. A gas injection device (SMOG) has been installed in the LHCb experiment to increase the pressure around the interaction point during dedicated fills. The Beam Gas Imaging method (BGI) has now the potential to surpass the accuracy of the commonly used van der Meer scan method (VDM). This poster presents the principles of the Beam Gas Imaging method used to measure the beam overlap integral. Furthermore the gas injection increased the accuracy measurement of the so-called ghost charges and also intensities per bunch.

  9. A Method for Measurement of Absolute Angular Position and Application in a Novel Electromagnetic Encoder System

    Zijian Zhang

    2015-01-01

    Full Text Available For the encoders, especially the sine-cosine magnetic ones, a new method to measure absolute angular position is proposed in the paper. In the method, the code disc of the encoder has only two circle tracks and each one was divided into N and (N-1 equal code cells. The cell angles, changing from 0° to 360° between any two neighboring code cells, are defined to represent any position on the code disc. The position value of the same point can be represented by different cell angle values of different tracks and the absolute angular position of the point can be obtained by the difference value between the cell angle value of the outer track and the inner one. To validate the correctness of the method theoretically, the derivation process of the method was provided. An electromagnetic encoder system was designed and the experimental platform was established to test the method. The experimental results indicate that the electromagnetic encoder can measure the absolute angular position. Besides, it shows that the method is easy to be realized in algorithm and can reduce computational complexity and decrease dimension of the encoder.

  10. Scanning Laser Polarimetry for Measurement of Retinal Nerve Fiber Layer in Absolute, Advanced and Early Glaucoma

    Jen-Chia Tsai

    2006-04-01

    Full Text Available Background: To detect differences in retinal nerve fiber layer (RNFL measurements inabsolute, advanced and early glaucoma with scanning laser polarimetry (TheNerve Fiber Analyzer GDx, and to assess the usefulness and limitations ofthis technique for longitudinal follow-up of glaucoma patients.Methods: This is a prospective, cross-sectional study. Twenty-one eyes of 21 patientswith absolute glaucoma, twenty-six eyes of 26 patients with advanced glaucomaand twenty-four eyes of 24 patients with early glaucoma were imagedusing scanning laser polarimetry. The twelve standard GDx measurementparameters were compared using ANOVA (analysis of variance and theTukey test.Results: No significant differences were demonstrated for any of the twelve GDxmeasurement parameters between absolute and advanced glaucoma cases.There were significant differences for some GDx parameters, including theGDx number (p < 0.0001 superior ratio (p < 0.0001, inferior ratio (p <0.0001, superior/nasal ratio (p < 0.0001, maximum modulation (p <0.0001, ellipse modulation (p < 0.0001 and inferior average (p = 0.001between early and advanced glaucoma, and, between early and absoluteglaucoma. Significant differences were demonstrated for the superior average(p = 0.01 parameter between early and absolute glaucoma, but notbetween early and advanced glaucoma.Conclusions: For follow-up of glaucoma progression, RNFL measurements using scanninglaser polarimetry are more useful in the early stage than in the advancedstage.

  11. Absolute X-ray emission cross section measurements of Fe K transitions

    Hell, Natalie; Brown, Gregory V.; Beiersdorfer, Peter; Boyce, Kevin R.; Grinberg, Victoria; Kelley, Richard L.; Kilbourne, Caroline; Leutenegger, Maurice A.; Porter, Frederick Scott; Wilms, Jörn

    2016-06-01

    We have measured the absolute X-ray emission cross sections of K-shell transitions in highly charged L- and K-shell Fe ions using the LLNL EBIT-I electron beam ion trap and the NASA GSFC EBIT Calorimeter Spectrometer (ECS). The cross sections are determined by using the ECS to simultaneously record the spectrum of the bound-bound K-shell transitions and the emission from radiative recombination from trapped Fe ions. The measured spectrum is then brought to an absolute scale by normalizing the measured flux in the radiative recombination features to their theoretical cross sections, which are well known. Once the spectrum is brought to an absolute scale, the cross sections of the K-shell transitions are determined. These measurements are made possible by the ECS, which consists of a 32 channel array, with 14 channels optimized for detecting high energy photons (hν > 10 keV) and 18 channels optimized for detecting low energy photons (hν collection area, relatively high energy resolution, and a large bandpass; all properties necessary for this measurement technique to be successful. These data will be used to benchmark cross sections in the atomic reference data bases underlying the plasma modeling codes used to analyze astrophysical spectra, especially those measured by the Soft X-ray Spectrometer calorimeter instrument recently launched on the Hitomi X-ray Observatory.This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344, and supported by NASA grants to LLNL and NASA/GSFC and by ESA under contract No. 4000114313/15/NL/CB.

  12. Absolute silicon molar mass measurements, the Avogadro constant and the redefinition of the kilogram

    Vocke, R. D., Jr.; Rabb, S. A.; Turk, G. C.

    2014-10-01

    The results of an absolute silicon molar mass determination of two independent sets of samples from the highly 28Si-enriched crystal (AVO28) produced by the International Avogadro Coordination are presented and compared with results published by the Physikalisch-Technische Bundesanstalt (PTB, Germany), the National Research Council (NRC, Canada) and the National Metrology Institute of Japan (NMIJ, Japan). This study developed and describes significant changes to the published protocols for producing absolute silicon isotope ratios. The measurements were made at very high resolution on a multi-collector inductively coupled plasma mass spectrometer using tetramethylammonium hydroxide (TMAH) to dissolve and dilute all samples. The various changes in the measurement protocol and the use of TMAH resulted in significant improvements to the silicon isotope ratio precision over previously reported measurements and in particular, the robustness of the 29Si/30Si ratio of the AVO28 material. These new results suggest that a limited isotopic variability is present in the AVO28 material. The presence of this variability is at present singular and therefore its significance is not well understood. Fortunately, its magnitude is small enough so as to have an insignificant effect on the overall uncertainty of an Avogadro constant derived from the average molar mass of all four AVO28 silicon samples measured in this study. The NIST results confirm the AVO28 molar mass values reported by PTB and NMIJ and confirm that the virtual element-isotope dilution mass spectrometry approach to calibrated absolute isotope ratio measurements developed by PTB is capable of very high precision as well as accuracy. The Avogadro constant NA and derived Planck constant h based on these measurements, together with their associated standard uncertainties, are 6.02214076(19) × 1023 mol-1 and 6.62607017(21) × 10-34 Js, respectively.

  13. A tunable CW UV laser with <35 kHz absolute frequency instability for precision spectroscopy of Sr Rydberg states

    Bridge, Elizabeth M; Bounds, Alistair D; Boddy, Danielle; Sadler, Daniel P; Jones, Matthew P A

    2015-01-01

    We present a solid-state laser system that generates over 200 mW of continuous-wave, narrowband light, tunable between 316.3 nm and 319.3 nm. The laser is based on commercially available fiber amplifiers and optical frequency doubling technology, along with sum frequency generation in a periodically poled stoichiometric lithium tantalate crystal. The laser frequency is stabilized to an atomic-referenced high finesse optical transfer cavity. Using a GPS-referenced optical frequency comb we measure a long term frequency instability of <35 kHz. As an application we perform spectroscopy of Sr Rydberg states from n = 37 - 81, demonstrating mode-hop-free scans of 24 GHz. In a cold atomic sample we measure Doppler-limited linewidths of 350 kHz.

  14. Tunable cw UV laser with <35 kHz absolute frequency instability for precision spectroscopy of Sr Rydberg states.

    Bridge, Elizabeth M; Keegan, Niamh C; Bounds, Alistair D; Boddy, Danielle; Sadler, Daniel P; Jones, Matthew P A

    2016-02-01

    We present a solid-state laser system that generates over 200 mW of continuous-wave, narrowband light, tunable from 316.3 nm - 317.7 nm and 318.0 nm - 319.3 nm. The laser is based on commercially available fiber amplifiers and optical frequency doubling technology, along with sum frequency generation in a periodically poled stoichiometric lithium tantalate crystal. The laser frequency is stabilized to an atomic-referenced high finesse optical transfer cavity. Using a GPS-referenced optical frequency comb we measure a long term frequency instability of application we perform spectroscopy of Sr Rydberg states from n = 37 - 81, demonstrating mode-hop-free scans of 24 GHz. In a cold atomic sample we measure Doppler-limited linewidths of 350 kHz. PMID:26906804

  15. Characterization of Fricke-gel layers for absolute dose measurements in radiotherapy

    Gambarini, G. [Dept. of Physics, ' Universita degli Studi' of Milan, via Celoria 16, I-20133 Milano (Italy); INFN Istituto Nazionale di Fisica Nucleare Section Milan, via Celoria 16, I-20133 Milano (Italy); Carrara, M. [Medical Physics Unit, Fondazione IRCCS Istituto Nazionale Tumori, Via Venezian 1, I-20133 Milano (Italy); Rrushi, B.; Guilizzoni, R. [Dept. of Physics, ' Universita degli Studi' of Milan, via Celoria 16, I-20133 Milano (Italy); Borroni, M.; Tomatis, S. [Medical Physics Unit, Fondazione IRCCS Istituto Nazionale Tumori, Via Venezian 1, I-20133 Milano (Italy); Pirola, L. [Dept. of Physics, ' Universita degli Studi' of Milan, via Celoria 16, I-20133 Milano (Italy); Battistoni, G. [INFN Istituto Nazionale di Fisica Nucleare Section Milan, via Celoria 16, I-20133 Milano (Italy)

    2011-07-01

    Fricke-gel layer dosimeters (FGLDs) have shown promising features for attaining absolute measurements of the spatial distribution of the absorbed dose in radiotherapy. Good precision of results (within 3%) is achieved by means of calibration of each single dosimeter before measurement. The calibration is performed irradiating the dosimeter at a uniform and precisely known dose, in order to get a calibration matrix that must be used, with pixel-to-pixel manipulation, to obtain the dose image. A study of the trend in time of dosimeter response after one or more exposures was carried out and calibration protocols were suitably established and verified. (authors)

  16. A Model for Converting Solid State Fermentation Growth Profiles Between Absolute and Relative Measurement Bases

    Viccini, Graciele; Mitchell, David A; Krieger, Nadia

    2003-01-01

    A mathematical model is developed for converting between the two measurement bases commonly used in the construction of growth profiles in solid-state fermentation, namely absolute mass ratio m(dry biomass)/m(initial dry matter) and relative mass ratio m(dry biomass)/m(dry matter). These are not equivalent, due to the loss of dry matter as CO2 during the fermentation. The model is equally applicable to any biomass component used in indirect measurements of growth, such as protein. Use of the ...

  17. Absolute Pulse Energy Measurements of Soft X-Rays at the Linac Coherent Light Source

    Tiedtke, K.; Sorokin, Andrey; Soufli, R.; Fernández-Perea, M.; Juha, L.; Heimann, P.(Universität Siegen, Siegen, Germany); Nagler, B.; Lee, H. J.; Mack, S; Cammarata, M.; O. Krupin; Messerschmidt, M.; Jastrow, U.; Holmes, M.; Rowen, M.

    2014-01-01

    This paper reports novel measurements of x-ray optical radiation on an absolute scale from the intense and ultra-short radiation generated in the soft x-ray regime of a free electron laser. We give a brief description of the detection principle for radiation measurements which was specifically adapted for this photon energy range. We present data characterizing the soft x-ray instrument at the Linac Coherent Light Source (LCLS) with respect to the radiant power output and transmission by usin...

  18. A new Ultra Precision Interferometer for absolute length measurements down to cryogenic temperatures

    A new Ultra Precision Interferometer (UPI) was built at Physikalisch-Technische Bundesanstalt. As its precursor, the precision interferometer, it was designed for highly precise absolute length measurements of prismatic bodies, e.g. gauge blocks, under well-defined temperature conditions and pressure, making use of phase stepping imaging interferometry. The UPI enables a number of enhanced features, e.g. it is designed for a much better lateral resolution and better temperature stability. In addition to the original concept, the UPI is equipped with an external measurement pathway (EMP) in which a prismatic body can be placed alternatively. The temperature of the EMP can be controlled in a much wider range compared to the temperature of the interferometer's main chamber. An appropriate cryostat system, a precision temperature measurement system and improved imaging interferometry were established to permit absolute length measurements down to cryogenic temperature, demonstrated for the first time ever. Results of such measurements are important for studying thermal expansion of materials from room temperature towards less than 10 K. (paper)

  19. Absolute measurement of the 242Pu neutron-capture cross section

    Buckner, M. Q.; Wu, C. Y.; Henderson, R. A.; Bucher, B.; Chyzh, A.; Bredeweg, T. A.; Baramsai, B.; Couture, A.; Jandel, M.; Mosby, S.; O'Donnell, J. M.; Ullmann, J. L.; Dance Collaboration

    2016-04-01

    The absolute neutron-capture cross section of 242Pu was measured at the Los Alamos Neutron Science Center using the Detector for Advanced Neutron-Capture Experiments array along with a compact parallel-plate avalanche counter for fission-fragment detection. The first direct measurement of the 242Pu(n ,γ ) cross section was made over the incident neutron energy range from thermal to ≈6 keV, and the absolute scale of the (n ,γ ) cross section was set according to the known 239Pu(n ,f ) resonance at En ,R=7.83 eV. This was accomplished by adding a small quantity of 239Pu to the 242Pu sample. The relative scale of the cross section, with a range of four orders of magnitude, was determined for incident neutron energies from thermal to ≈40 keV. Our data, in general, are in agreement with previous measurements and those reported in ENDF/B-VII.1; the 242Pu(n ,γ ) cross section at the En ,R=2.68 eV resonance is within 2.4 % of the evaluated value. However, discrepancies exist at higher energies; our data are ≈30 % lower than the evaluated data at En≈1 keV and are approximately 2 σ away from the previous measurement at En≈20 keV.

  20. Absolute efficiency measurements with the {sup 10}B based Jalousie detector

    Modzel, G., E-mail: modzel@physi.uni-heidelberg [Physikalisches Institut, Universität Heidelberg, Neuenheimer Feld 226, 69120 Heidelberg (Germany); Henske, M. [CDT CASCADE Detector Technologies GmbH, Hans-Bunte-Str. 8–10, 69123 Heidelberg (Germany); Houben, A. [Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen (Germany); Klein, M. [Physikalisches Institut, Universität Heidelberg, Neuenheimer Feld 226, 69120 Heidelberg (Germany); CDT CASCADE Detector Technologies GmbH, Hans-Bunte-Str. 8–10, 69123 Heidelberg (Germany); Köhli, M.; Lennert, P. [Physikalisches Institut, Universität Heidelberg, Neuenheimer Feld 226, 69120 Heidelberg (Germany); Meven, M. [Heinz Maier-Leibnitz Zentrum (MLZ), 85747 Garching (Germany); Forschungszentrum Jülich GmbH, Jülich Centre for Neutron Science (JCNS), Outstation at MLZ, 85747 Garching (Germany); Schmidt, C.J. [CDT CASCADE Detector Technologies GmbH, Hans-Bunte-Str. 8–10, 69123 Heidelberg (Germany); GSI Detector Laboratory, Planckstr. 1, 64291 Darmstadt (Germany); Schmidt, U. [Physikalisches Institut, Universität Heidelberg, Neuenheimer Feld 226, 69120 Heidelberg (Germany); Schweika, W. [Forschungszentrum Jülich GmbH, Jülich Centre for Neutron Science (JCNS), 52425 Jülich (Germany); European Spallation Source ESS AB, SE-22100 Lund (Sweden)

    2014-04-11

    The {sup 10}B based Jalousie detector is a replacement for {sup 3}He counter tubes, which are nowadays less affordable for large area detectors due to the {sup 3}He crisis. In this paper we investigate and verify the performance of the new {sup 10}B based detector concept and its adoption for the POWTEX diffractometer, which is designed for the detection of thermal neutrons with predicted detection efficiencies of 75–50% for neutron energies of 10–100 meV, respectively. The predicted detection efficiency has been verified by absolute measurements using neutrons with a wavelength of 1.17 Å (59 meV)

  1. Absolute beam flux measurement at NDCX-I using gold-melting calorimetry technique

    We report on an alternative way to measure the absolute beam flux at the NDCX-I, LBNL linear accelerator. Up to date, the beam flux is determined from the analysis of the beam-induced optical emission from a ceramic scintilator (Al-Si). The new approach is based on calorimetric technique, where energy flux is deduced from the melting dynamics of a gold foil. We estimate an average 260 kW/cm2 beam flux over 5 (micro)s, which is consistent with values provided by the other methods. Described technique can be applied to various ion species and energies.

  2. Absolute measurement of $sup 235$U fission cross-section for 2200 m/sec neutrons

    Borcea, C.; Borza, A.; Buta, A.

    1973-12-31

    The results of an absolute fission cross-section measurement of /sup 235/ U are presented; the thermal neutrons were selected by the time-of-flight method. The principle of the method and the experimental apparatus are described. The method had the advantage of avoiding the use of an intermediate cross section in the neutron flux determination by choice of a B target thick enough to absorb all thermal neutrons. Target preparation, efficiency determination, corrections, etc., are reported. The value determined was 581.7 plus or minus 7.8 barns. (6 figures, 4 tables) (RWR)

  3. Measurement of the absolute values of cross-sections in neutron photoproduction (1962)

    The absolute values of photoneutrons production cross-sections for the case of intermediate and heavy nuclei (lanthanium, cerium, tantalum, gold, lead and bismuth) are determined with an error of 15 per cent. The results obtained agree with theories in which the giant resonance is explained by the collective motion of the protons against the neutrons. The effect of the nuclear deformation on the shape of the giant resonance is seen in the case of Ta181, it will be possible to determine the quadrupole momenta of deformed nuclei with a good accuracy when we shall increase the statistics of measurements. (author)

  4. Absolute Measurement of Hadronic Branching Fractions of the D_s^+ Meson

    Alexander, J; Cassel, D G; Duboscq, J E; Ehrlich, R; Fields, L; Gibbons, L; Gray, R; Gray, S W; Hartill, D L; Heltsley, B K; Hertz, D; Jones, C D; Kandaswamy, J; Kreinick, D L; Kuznetsov, V E; Mahlke-Krüger, H; Mohapatra, D; Onyisi, P U E; Patterson, J R; Peterson, D; Riley, D; Ryd, A; Sadoff, A J; Shi, X; Stroiney, S; Sun, W M; Wilksen, T; Athar, S B; Patel, R; Yelton, J; Rubin, P; Eisenstein, B I; Karliner, I; Mehrabyan, S; Lowrey, N; Selen, M; White, E J; Wiss, J; Mitchell, R E; Shepherd, M R; Besson, D; Pedlar, T K; Cronin-Hennessy, D; Gao, K Y; Hietala, J; Kubota, Y; Klein, T; Lang, B W; Poling, R; Scott, A W; Zweber, P; Dobbs, S; Metreveli, Z; Seth, K K; Tomaradze, A G; Libby, J; Powell, A; Wilkinson, G; Ecklund, K M; Love, W; Savinov, V; López, A; Méndez, H; Ramírez, J; Ge, J Y; Miller, D H; Sanghi, B; Shipsey, I P J; Xin, B; Adams, G S; Anderson, M; Cummings, J P; Danko, I; Hu, D; Moziak, B; Napolitano, J; He, Q; Insler, J; Muramatsu, H; Park, C S; Thorndike, E H; Yang, F; Artuso, M; Blusk, S; Khalil, S; Li, J; Mountain, R; Nisar, S; Randrianarivony, K; Sultana, N; Skwarnicki, T; Stone, S; Wang, J C; Zhang, L M; Bonvicini, G; Cinabro, D; Dubrovin, M; Lincoln, A; Rademacker, J; Asner, D M; Edwards, K W; Naik, P; Briere, R A; Ferguson, T; Tatishvili, G; Vogel, H; Watkins, M E; Rosner, J L

    2008-01-01

    The branching fractions of D_s meson decays serve to normalize many measurements of processes involving charm quarks. Using 298 /pb of e+ e- collisions recorded at a center of mass energy of 4.17 GeV, we determine absolute branching fractions for eight D_s decays with a double tag technique. In particular we determine the branching fraction B(D_s -> K- K+ pi+) = (5.50 +- 0.23 +- 0.16)%, where the uncertainties are statistical and systematic respectively. We also provide partial branching fractions for kinematic subsets of the K- K+ pi+ decay mode.

  5. A Method for Measurement of Absolute Angular Position and Application in a Novel Electromagnetic Encoder System

    Zijian Zhang; Yangyang Dong; Fenglei Ni; Minghe Jin; Hong Liu

    2015-01-01

    For the encoders, especially the sine-cosine magnetic ones, a new method to measure absolute angular position is proposed in the paper. In the method, the code disc of the encoder has only two circle tracks and each one was divided into N and (N-1) equal code cells. The cell angles, changing from 0° to 360° between any two neighboring code cells, are defined to represent any position on the code disc. The position value of the same point can be represented by different cell angle values of di...

  6. Improved Measurement of Absolute Hadronic Branching Fractions of the Ds+ Meson

    Onyisi, P U E; Cinabro, D; Smith, M J; Zhou, P; Naik, P; Rademacker, J; Edwards, K W; Briere, R A; Vogel, H; Rosner, J L; Alexander, J P; Cassel, D G; Das, S; Ehrlich, R; Gibbons, L; Gray, S W; Hartill, D L; Heltsley, B K; Kreinick, D L; Kuznetsov, V E; Patterson, J R; Peterson, D; Riley, D; Ryd, A; Sadoff, A J; Shi, X; Sun, W M; Yelton, J; Rubin, P; Lowrey, N; Mehrabyan, S; Selen, M; Wiss, J; Libby, J; Kornicer, M; Mitchell, R E; Besson, D; Pedlar, T K; Cronin-Hennessy, D; Hietala, J; Dobbs, S; Metreveli, Z; Seth, K K; Tomaradze, A; Xiao, T; Powell, A; Thomas, C; Wilkinson, G; Asner, D M; Tatishvili, G; Ge, J Y; Miller, D H; Shipsey, I P J; Xin, B; Adams, G S; Napolitano, J; Ecklund, K M; Insler, J; Muramatsu, H; Pearson, L J; Thorndike, E H; Artuso, M; Blusk, S; Mountain, R; Skwarnicki, T; Stone, S; Wang, J C; Zhang, L M

    2013-01-01

    The branching fractions of Ds meson decays serve to normalize many measurements of processes involving charm quarks. Using 586 pb^-1 of e+ e- collisions recorded at a center of mass energy of 4.17 GeV, we determine absolute branching fractions for 13 Ds decays in 16 reconstructed final states with a double tag technique. In particular we make a precise measurement of the branching fraction B(Ds -> K- K+ pi+) = (5.55 +- 0.14 +- 0.13)%, where the uncertainties are statistical and systematic respectively. We find a significantly reduced value of B(Ds -> pi+ pi0 eta') compared to the world average, and our results bring the inclusively and exclusively measured values of B(Ds -> eta' X)$ into agreement. We also search for CP-violating asymmetries in Ds decays and measure the cross-section of e+ e- -> Ds* Ds at Ecm = 4.17 GeV.

  7. Common mistakes associated with absolute full energy peak efficiency measurements using high pure germanium detectors

    The present work focuses on the uncertainties associated with absolute full energy peak efficiency (AFEPE) when measurements of calibration point sources conducted at various distances from two high pure germanium detectors (HPGe) from Ortec and Eurisys. A set consists of 11 point sources from Amersham were used. The measurements were performed at different source to detector distances. All the spectra were unfolded and analyzed using Emc plus MCA card from Silena. Full energy peak efficiency for each energy was then calculated using the well-know formula. The first approach was to fit the experimental data using least square fitting. Following that, a comparison between the experimental and calculated results was performed. The scattering data due to measurements of the multi-energetic sources specially when measurements carried out at very close distances from the detector were plotted and discussed.(author)

  8. First measurements of the absolute neutron spectrum using the magnetic recoil spectrometer at OMEGA (invited)

    A neutron spectrometer, called a magnetic recoil spectrometer (MRS), has been built and implemented at the OMEGA laser facility [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)] for absolute measurements of the neutron spectrum in the range of 6-30 MeV, from which fuel areal density (ρR), ion temperature (Ti), and yield (Yn) can be determined. The results from the first MRS measurements of the absolute neutron spectrum are presented. In addition, measuring ρR at the National Ignition Facility (NIF) [G. H. Miller et al., Nucl. Fusion 44, S228 (2004)] will be essential for assessing implosion performance during all stages of development from surrogate implosions to cryogenic fizzles to ignited implosions. To accomplish this, we are also developing an MRS for the NIF. As much of the research and development and instrument optimization of the MRS at OMEGA are directly applicable to the MRS at the NIF, a description of the design and characterization of the MRS on the NIF is discussed as well.

  9. First measurements of the absolute neutron spectrum using the Magnetic Recoil Spectrometer (MRS) at OMEGA

    A new type of neutron spectrometer, called a Magnetic Recoil Spectrometer (MRS), has been built and implemented at the OMEGA laser facility (T. R. Boehly. D. L. Brown, R. S. Craxton et al., Opt. Commun. 133, 495 (1997)) for absolute measurements of the neutron spectrum in the range 6 to 30 MeV, from which fuel areal density (ρR), ion temperature (Ti) and yield (Yn) can be determined. The results from the first MRS measurements of the absolute neutron spectrum are presented. In addition, measuring ρR at the National Ignition Facility (NIF) (G.H. Miller, E.I. Moses and C.R. Wuest, Nucl. Fusion 44, S228 (2004)) will be essential for assessing implosion performance during all stages of development from surrogate implosions to cryogenic fizzles and ignited implosions. To accomplish this, we are also developing an MRS for the NIF. As much of the R and D and instrument optimization of the MRS at OMEGA is directly applicable to the MRS at the NIF, a description of the MRS design on the NIF is discussed as well

  10. First measurements of the absolute neutron spectrum using the Magnetic Recoil Spectrometer (MRS) at OMEGA

    Frenje, J A; Casey, D T; Li, C K; Rygg, J R; Seguin, F H; Petrasso, R D; Glebov, V Y; Meyerhofer, D D; Sangster, T C; Hatchett, S; Haan, S; Cerjan, C; Landen, O; Moran, M; Song, P; Wilson, D C; Leeper, R J

    2008-05-12

    A new type of neutron spectrometer, called a Magnetic Recoil Spectrometer (MRS), has been built and implemented at the OMEGA laser facility [T. R. Boehly. D. L. Brown, R. S. Craxton et al., Opt. Commun. 133, 495 (1997)] for absolute measurements of the neutron spectrum in the range 6 to 30 MeV, from which fuel areal density ({rho}R), ion temperature (T{sub i}) and yield (Y{sub n}) can be determined. The results from the first MRS measurements of the absolute neutron spectrum are presented. In addition, measuring {rho}R at the National Ignition Facility (NIF) [G.H. Miller, E.I. Moses and C.R. Wuest, Nucl. Fusion 44, S228 (2004)] will be essential for assessing implosion performance during all stages of development from surrogate implosions to cryogenic fizzles and ignited implosions. To accomplish this, we are also developing an MRS for the NIF. As much of the R&D and instrument optimization of the MRS at OMEGA is directly applicable to the MRS at the NIF, a description of the MRS design on the NIF is discussed as well.

  11. First measurements of the absolute neutron spectrum using the magnetic recoil spectrometer at OMEGA (invited).

    Frenje, J A; Casey, D T; Li, C K; Rygg, J R; Séguin, F H; Petrasso, R D; Glebov, V Yu; Meyerhofer, D D; Sangster, T C; Hatchett, S; Haan, S; Cerjan, C; Landen, O; Moran, M; Song, P; Wilson, D C; Leeper, R J

    2008-10-01

    A neutron spectrometer, called a magnetic recoil spectrometer (MRS), has been built and implemented at the OMEGA laser facility [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)] for absolute measurements of the neutron spectrum in the range of 6-30 MeV, from which fuel areal density (rhoR), ion temperature (T(i)), and yield (Y(n)) can be determined. The results from the first MRS measurements of the absolute neutron spectrum are presented. In addition, measuring rhoR at the National Ignition Facility (NIF) [G. H. Miller et al., Nucl. Fusion 44, S228 (2004)] will be essential for assessing implosion performance during all stages of development from surrogate implosions to cryogenic fizzles to ignited implosions. To accomplish this, we are also developing an MRS for the NIF. As much of the research and development and instrument optimization of the MRS at OMEGA are directly applicable to the MRS at the NIF, a description of the design and characterization of the MRS on the NIF is discussed as well. PMID:19044488

  12. Absolute fission rate measurement of 238U induced by 14 MeV neutrons penetrated composite material

    In order to prove the model calculation method and parameter, the 238U absolute fission rate in the case of 14 MeV neutrons penetrating through the special composite material was measured by minitype slab uranium fission chambers. The measuring spots are distributed in the surface of iron ball hull along the different position of equator. The calculated results are compared with the experiment results. The total error of measured 238U absolute fission rate is 6.1%. (author)

  13. Superharp — A wire scanner with absolute position readout for beam energy measurement at CEBAF

    Yan, C.; Adderley, P.; Barker, D.; Beaufait, J.; Capek, K.; Carlini, R.; Dahlberg, J.; Feldl, E.; Jordan, K.; Kross, B.; Oren, W.; Wojcik, R.; VanDyke, J.

    1995-02-01

    The CEBAF superharp is an upgraded beam wire scanner which provides absolute beam position readout using a shaft encoder. Superharps allow for high precision measurements of the beam's profile and position ( Δx ˜ 10 μm). The Hall C endstation at CEBAF will use three pairs of superharps to perform beam energy measurements with 10 -3 accuracy. The three pairs are installed at the beginning, the mid-point and the end of the Hall C arc beamline. Using superharps in conjunction with a dual sensor system: the direct current pick-up and the bremsstrahlung detectors, beam profile measurements can be obtained over a wide beam current range of 1 ˜ 200 μA.

  14. ABSOLUTE MEASUREMENT OF THE POLARIZATION OF HIGH ENERGY PROTON BEAMS AT RHIC

    MAKDISI,Y.; BRAVAR, A. BUNCE, G. GILL, R.; HUANG, H.; ET AL.

    2007-06-25

    The spin physics program at the Relativistic Heavy Ion Collider (RHIC) requires knowledge of the beam polarization to better than 5%. Such a goal is made the more difficult by the lack of knowledge of the analyzing power of high energy nuclear physics processes. To overcome this, a polarized hydrogen jet target was constructed and installed at one intersection region in RHIC where it intersects both beams and utilizes the precise knowledge of the jet atomic hydrogen beam polarization to measure the analyzing power in proton-proton elastic scattering in the Nuclear Coulomb Interference (CNI) region at the prescribed RHIC proton beam energy. The reverse reaction is used to assess the absolute beam polarization. Simultaneous measurements taken with fast high statistics polarimeters that measure the p-Carbon elastic scattering process also in the CNI region use the jet results to calibrate the latter.

  15. Absolute measurement of the relativistic magnetic dipole transition energy in heliumlike argon.

    Amaro, Pedro; Schlesser, Sophie; Guerra, Mauro; Le Bigot, Eric-Olivier; Isac, Jean-Michel; Travers, Pascal; Santos, José Paulo; Szabo, Csilla I; Gumberidze, Alexandre; Indelicato, Paul

    2012-07-27

    The 1s2s (3)S(1)→1s(2) (1)S(0) relativistic magnetic dipole transition in heliumlike argon, emitted by the plasma of an electron-cyclotron resonance ion source, has been measured using a double-flat crystal x-ray spectrometer. Such a spectrometer, used for the first time on a highly charged ion transition, provides absolute (reference-free) measurements in the x-ray domain. We find a transition energy of 3104.1605(77) eV (2.5 ppm accuracy). This value is the most accurate, reference-free measurement done for such a transition and is in good agreement with recent QED predictions. PMID:23006085

  16. Sonographic Measurement of Absolute and Relative Renal Length in Healthy Isfahani Adults

    A Hekmatnia

    2004-04-01

    Full Text Available Background: There is no information on renal size and its relation to age, sex and height in the area of Isfahan. The aim of this study was to define sonographically measured absolute renal lengths and their relations to height in normal Isfahani adults. Methods: 400 healthy Isfahani subjects aged 20 to 69 years with normal blood pressure, no history of renal disease in them or their first degree relatives and with normal sonographic appearance were chosen in 2002-2003. The study was cross-sectional. With real-time sonography, absolute renal length was measured. Results: Four hundred healthy adults (230 men and 170 women aged 20 to 69 years (39.6 ± 13.6 year were evaluated. The length of left kidney was longer than the right one (111 ± 9.8 mm vs. 109 ± 8.4 mm in right kidney; P < 0.01. Renal length was significantly greater in males compared to females (P < 0.01. Renal length decreased with age and the rate of decrease was accelerated at the age of 60 years and older. There was a significant correlation between kidney length and the subject's height (P < 0.01. Conclusion: The result of this study shows the normal values for renal length in Iranian males and females, which may be helpful in assessing the size of patients’ kidneys in different clinical settings. Keywords: Kidney size, Renal length, Ultrasonography, Normal values.

  17. Relative vs. absolute physiological measures as predictors of mountain bike cross-country race performance.

    Gregory, John; Johns, David P; Walls, Justin T

    2007-02-01

    The aims of this study were to document the effect terrain has on the physiological responses and work demands (power output) of riding a typical mountain bike cross-country course under race conditions. We were particularly interested in determining whether physiological measures relative to mass were better predictors of race performance than absolute measures. Eleven A-grade male cross-country mountain bike riders (VO2max 67.1 +/- 3.6 ml x kg(-1) x min(-1)) performed 2 tests: a laboratory-based maximum progressive exercise test, and a 15.5-km (six 2.58-km laps) mountain bike cross-country time trial. There were significant differences among the speed, cadence, and power output measured in each of 8 different terrain types found in the cross-country time trial course. The highest average speed was measured during the 10-15% downhill section (22.7 +/- 2.6 km x h(-1)), whereas the cadence was highest in the posttechnical flat sections (74.3 +/- 5.6 rpm) and lowest on the 15-20% downhill sections (6.4 +/- 12.1 rpm). The highest mean heart rate (HR) was obtained during the steepest (15-20% incline) section of the course (179 +/- 8 b x min(-1)), when the power output was greatest (419.8 +/- 39.7 W). However, HR remained elevated relative to power output in the downhill sections of the course. Physiological measures relative to total rider mass correlated more strongly to average course speed than did absolute measures (peak power relative to mass r = 0.93, p < 0.01, vs. peak power r = 0.64, p < 0.05; relative VO2max r = 0.80, p < 0.05, vs. VO2max r = 0.66, p < 0.05; power at anaerobic threshold relative to mass r = 0.78, p < 0.05, vs. power at anaerobic threshold r = 0.5, p < 0.05). This suggests that mountain bike cross-country training programs should focus upon improving relative physiological values rather than focusing upon maximizing absolute values to improve performance. PMID:17313256

  18. Measurements of absolute absorption cross sections of ozone in the 185- to 254-nm wavelength region and the temperature dependence

    Yoshino, K.; Esmond, J. R.; Freeman, D. E.; Parkinson, W. H.

    1993-01-01

    Laboratory measurements of the relative absorption cross sections of ozone at temperatures 195, 228, and 295 K have been made throughout the 185 to 254 nm wavelength region. The absolute absorption cross sections at the same temperatures have been measured at several discrete wavelengths in the 185 to 250 nm region. The absolute cross sections of ozone have been used to put the relative cross sections on a firm absolute basis throughout the 185 to 255 nm region. These recalibrated cross sections are slightly lower than those of Molina and Molina (1986), but the differences are within a few percent and would not be significant in atmospheric applications.

  19. Optimized SQUID sensors for low frequency measurements

    We have fabricated and measured optimized SQUID sensors (superconducting quantum interference device) for low frequency measurements of magnetic field. We have also investigated the dependence of flux trapping field on the position of Josephson junctions with respect to the Ketchen-type washer. The sensors are measured using direct room temperature readout utilizing noise cancellation techniques based on negative and positive feedback. A superconducting magnesium diboride can is used to shield the sample in pulse-tube cryocooler measurements.

  20. Absolute absorption cross-section measurements of ozone in the wavelength region 238-335 nm and the temperature dependence

    Yoshino, K.; Freeman, D. E.; Esmond, J. R.; Parkinson, W. H.

    1988-01-01

    The absolute absorption cross-section of ozone has been experimentally determined at the temperatures 195, 228, and 295 K at several discrete wavelengths in the 238-335-nm region. The present results for ozone at 295 K are found to be in agreement with those of Hearn (1961). Absolute cross-section measurements of ozone at 195 K have confirmed previous (Freeman et al., 1984) relative cross-section measurements throughout the 240-335-nm region.

  1. Absolute and relative emission spectroscopy study of 3 cm wide planar radio frequency atmospheric pressure bio-plasma source

    Deng, Xiaolong; Nikiforov, Anton Yu; Ionita, Eusebiu-Rosini; Dinescu, Gheorghe; Leys, Christophe

    2015-08-01

    The dynamics of low power atmospheric pressure radio frequency discharge generated in Ar gas in long gap of 3 cm is investigated. This plasma source is characterized and analyzed for possible large scale biomedical applications where low gas temperature and potential-less effluent are required. The discharge forms a homogenous glow-like afterglow in ambient air at input power of 30 W with low gas temperature of 330 K, which is desirable in biomedical applications. With absolute calibrated spectroscopy of the discharge, electron density of 0.4 × 1018 m-3 and electron temperature of 1.5 eV are obtained from continuum Bremsstrahlung radiation of the source. Time and spatial resolved emission spectroscopy is used to analyze discharge generation mechanism and active species formation. It is found that discharge dynamics strongly correlates with the discharge current waveform. Strong Ar(2p) excited states emission is observed nearby the electrodes surface on a distance up to 200 μm in the plasma sheath region at 10 ns after the current peak, whereas OH(A) emission is uniform along of the interelectrode gap.

  2. Precise measurement of the absolute fluorescence yield of the 337 nm band in atmospheric gases

    Ave, M.; Bohacova, M.; Curry, E.; Di Carlo, P.; Di Giulio, C.; Facal San Luis, P.; Gonzales, D.; Hojvat, C.; Hörandel, J.; Hrabovsky, M.; Iarlori, M.; Keilhauer, B.; Klages, H.; Kleifges, M.; Kuehn, F.; Li, S.; Monasor, M.; Nozka, L.; Palatka, M.; Petrera, S.; Privitera, P.; Ridky, J.; Rizi, V.; Rouille D'Orfeuil, B.; Salamida, F.; Schovanek, P.; Smida, R.; Spinka, H.; Ulrich, A.; Verzi, V.; Williams, C.

    2013-02-01

    A measurement of the absolute fluorescence yield of the 337 nm nitrogen band, relevant to ultra-high energy cosmic ray (UHECR) detectors, is reported. Two independent calibrations of the fluorescence emission induced by a 120 GeV proton beam were employed: Cherenkov light from the beam particle and calibrated light from a nitrogen laser. The fluorescence yield in air at a pressure of 1013 hPa and temperature of 293 K was found to be Y337=5.61±0.06stat±0.22syst photons/MeV. When compared to the fluorescence yield currently used by UHECR experiments, this measurement improves the uncertainty by a factor of three, and has a significant impact on the determination of the energy scale of the cosmic ray spectrum.

  3. The magnetic recoil spectrometer for measurements of the absolute neutron spectrum at OMEGA and the NIF.

    Casey, D T; Frenje, J A; Johnson, M Gatu; Séguin, F H; Li, C K; Petrasso, R D; Glebov, V Yu; Katz, J; Magoon, J; Meyerhofer, D D; Sangster, T C; Shoup, M; Ulreich, J; Ashabranner, R C; Bionta, R M; Carpenter, A C; Felker, B; Khater, H Y; LePape, S; MacKinnon, A; McKernan, M A; Moran, M; Rygg, J R; Yeoman, M F; Zacharias, R; Leeper, R J; Fletcher, K; Farrell, M; Jasion, D; Kilkenny, J; Paguio, R

    2013-04-01

    The neutron spectrum produced by deuterium-tritium (DT) inertial confinement fusion implosions contains a wealth of information about implosion performance including the DT yield, ion-temperature, and areal-density. The Magnetic Recoil Spectrometer (MRS) has been used at both the OMEGA laser facility and the National Ignition Facility (NIF) to measure the absolute neutron spectrum from 3 to 30 MeV at OMEGA and 3 to 36 MeV at the NIF. These measurements have been used to diagnose the performance of cryogenic target implosions to unprecedented accuracy. Interpretation of MRS data requires a detailed understanding of the MRS response and background. This paper describes ab initio characterization of the system involving Monte Carlo simulations of the MRS response in addition to the commission experiments for in situ calibration of the systems on OMEGA and the NIF. PMID:23635195

  4. The magnetic recoil spectrometer for measurements of the absolute neutron spectrum at OMEGA and the NIF

    The neutron spectrum produced by deuterium-tritium (DT) inertial confinement fusion implosions contains a wealth of information about implosion performance including the DT yield, ion-temperature, and areal-density. The Magnetic Recoil Spectrometer (MRS) has been used at both the OMEGA laser facility and the National Ignition Facility (NIF) to measure the absolute neutron spectrum from 3 to 30 MeV at OMEGA and 3 to 36 MeV at the NIF. These measurements have been used to diagnose the performance of cryogenic target implosions to unprecedented accuracy. Interpretation of MRS data requires a detailed understanding of the MRS response and background. This paper describes ab initio characterization of the system involving Monte Carlo simulations of the MRS response in addition to the commission experiments for in situ calibration of the systems on OMEGA and the NIF.

  5. The magnetic recoil spectrometer for measurements of the absolute neutron spectrum at OMEGA and the NIF

    Casey, D. T.; Frenje, J. A.; Gatu Johnson, M.; Seguin, F. H.; Li, C. K.; Petrasso, R. D. [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Glebov, V. Yu.; Katz, J.; Magoon, J.; Meyerhofer, D. D.; Sangster, T. C.; Shoup, M.; Ulreich, J. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States); Ashabranner, R. C.; Bionta, R. M.; Carpenter, A. C.; Felker, B.; Khater, H. Y.; LePape, S.; MacKinnon, A. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); and others

    2013-04-15

    The neutron spectrum produced by deuterium-tritium (DT) inertial confinement fusion implosions contains a wealth of information about implosion performance including the DT yield, ion-temperature, and areal-density. The Magnetic Recoil Spectrometer (MRS) has been used at both the OMEGA laser facility and the National Ignition Facility (NIF) to measure the absolute neutron spectrum from 3 to 30 MeV at OMEGA and 3 to 36 MeV at the NIF. These measurements have been used to diagnose the performance of cryogenic target implosions to unprecedented accuracy. Interpretation of MRS data requires a detailed understanding of the MRS response and background. This paper describes ab initio characterization of the system involving Monte Carlo simulations of the MRS response in addition to the commission experiments for in situ calibration of the systems on OMEGA and the NIF.

  6. Measurement of absolute reaction rates in Be,Pb and Fe spherical systems

    LiuRong; ChenYuan; 等

    1998-01-01

    The absolute reaction rates in Be,Pb and Fe have been measured by using the activation foil technique with different reaction energy thresholds.Thicknesses of Be,Pb and Fe spheres were 5.3,19.1 and 31.9cm.respectively,Eight kinds of activation folis were used for Fe,and four kinds each for Be and Pb,The total experimental er5ror was about 5-7%.The measured results were compared to the values calculated with the 1-D ANISN code and the ENDF/B-VI library data.The average ratio of the experimental to the calculational is less than 7% for Be and Pb,about 5-30% for Fe.

  7. Absolute alpha activity measurements of some plants growing in monazite bearing soils in Sri Lanka

    Mahawatte, P.; Hewamanna, R. (Colombo Univ. (Sri Lanka). Radioisotope Centre)

    1991-01-01

    Deposits of monazite bearing soils occur along the Southwest, West and East Coasts of Sri Lanka. High levels of gamma activity in some plant species growing in the West Coast have been reported. The high levels were due to the presence of the daughter nuclides of {sup 232}Th, most of which are alpha emitters. Absolute alpha activity measurements of ash samples of some plants growing in monazite bearing soils were carried out using the alpha sensitive polymeric nuclear track detector CR-39. The values ranged from 60-1900 mBq/g and were in good agreement with the values obtained from conventional scintillation counting method. The activity concentration of {sup 228}Th in the ash samples was also calculated by measuring the activity concentration of emanated thoron trapped inside a glass bottle with the use of a CR-39 track detector. (author).

  8. Absolute alpha activity measurements of some plants growing in monazite bearing soils in Sri Lanka

    Deposits of monazite bearing soils occur along the Southwest, West and East Coasts of Sri Lanka. High levels of gamma activity in some plant species growing in the West Coast have been reported. The high levels were due to the presence of the daughter nuclides of 232Th, most of which are alpha emitters. Absolute alpha activity measurements of ash samples of some plants growing in monazite bearing soils were carried out using the alpha sensitive polymeric nuclear track detector CR-39. The values ranged from 60-1900 mBq/g and were in good agreement with the values obtained from conventional scintillation counting method. The activity concentration of 228Th in the ash samples was also calculated by measuring the activity concentration of emanated thoron trapped inside a glass bottle with the use of a CR-39 track detector. (author)

  9. Precise measurement of the absolute fluorescence yield of the 337 nm band in atmospheric gases

    Ave, M; Curry, E; Di Carlo, P; Di Giulio, C; Luis, P Facal San; Gonzales, D; Hojvat, C; Hörandel, J; Hrabovsky, M; Iarlori, M; Keilhauer, B; Klages, H; Kleifges, M; Kuehn, F; Li, S; Monasor, M; Nozka, L; Palatka, M; Petrera, S; Privitera, P; Ridky, J; Rizi, V; D'Orfeuil, B Rouille; Salamida, F; Schovanek, P; Smida, R; Spinka, H; Ulrich, A; Verzi, V; Williams, C

    2012-01-01

    A measurement of the absolute fluorescence yield of the 337 nm nitrogen band, relevant to ultra-high energy cosmic ray (UHECR) detectors, is reported. Two independent calibrations of the fluorescence emission induced by a 120 GeV proton beam were employed: Cherenkov light from the beam particle and calibrated light from a nitrogen laser. The fluorescence yield in air at a pressure of 1013 hPa and temperature of 293 K was found to be $Y_{337} = 5.61\\pm 0.06_{stat} \\pm 0.21_{syst}$ photons/MeV. When compared to the fluorescence yield currently used by UHECR experiments, this measurement improves the uncertainty by a factor of three, and has a significant impact on the determination of the energy scale of the cosmic ray spectrum.

  10. A new method for the absolute radiance calibration for UV-vis measurements of scattered sunlight

    Wagner, T.; Beirle, S.; Dörner, S.; Penning de Vries, M.; Remmers, J.; Rozanov, A.; Shaiganfar, R.

    2015-10-01

    Absolute radiometric calibrations are important for measurements of the atmospheric spectral radiance. Such measurements can be used to determine actinic fluxes, the properties of aerosols and clouds, and the shortwave energy budget. Conventional calibration methods in the laboratory are based on calibrated light sources and reflectors and are expensive, time consuming and subject to relatively large uncertainties. Also, the calibrated instruments might change during transport from the laboratory to the measurement sites. Here we present a new calibration method for UV-vis instruments that measure the spectrally resolved sky radiance, for example zenith sky differential optical absorption spectroscopy (DOAS) instruments or multi-axis (MAX)-DOAS instruments. Our method is based on the comparison of the solar zenith angle dependence of the measured zenith sky radiance with radiative transfer simulations. For the application of our method, clear-sky measurements during periods with almost constant aerosol optical depth are needed. The radiative transfer simulations have to take polarisation into account. We show that the calibration results are almost independent from the knowledge of the aerosol optical properties and surface albedo, which causes a rather small uncertainty of about < 7 %. For wavelengths below about 330 nm it is essential that the ozone column density during the measurements be constant and known.

  11. Easy Absolute Values? Absolutely

    Taylor, Sharon E.; Mittag, Kathleen Cage

    2015-01-01

    The authors teach a problem-solving course for preservice middle-grades education majors that includes concepts dealing with absolute-value computations, equations, and inequalities. Many of these students like mathematics and plan to teach it, so they are adept at symbolic manipulations. Getting them to think differently about a concept that they…

  12. Absolute distance measurement in a combined-dispersive interferometer using a femtosecond pulse laser

    In this paper, a ranging system using dispersive interferometry is developed with a femtosecond pulse laser, aiming to eliminate the measurement dead zones by using a greatly unbalanced Mach–Zehnder interferometer. The distance can be measured by the frequency of the spectral modulation. We indicate that the integer number of the pulse-to-pulse length can be determined by changing the repetition frequency. In the short distance measurement, the results show an agreement within 1.5 μm compared with an incremental He-Ne laser in the 1 m measurement range. We do large-scale experiments on a long optical rail using a typical Michelson interferometer, and an agreement well within 25 μm is obtained in a range up to 75 m, corresponding to a relative precision of 3.3  ×  10−7. Additionally, we experimentally optimize the system set-up to minimize the measurement uncertainty. (paper)

  13. Measuring low-frequency noise indoors

    Pedersen, Steffen; Møller, Henrik; Persson-Waye, Kerstin

    2008-01-01

    At low frequencies, the sound pressure level may vary 20-30 dB in a room due to standing waves. For assessment of annoyance, mainly areas with the highest occurring levels are relevant, since persons present in such areas are not helped by the existence of lower levels in other areas. The level...... that is exceeded in 10% of the volume of a room (L10) is proposed as a rational and objective target for a measurement method. In Sweden and Denmark rules exist for measuring low-frequency noise indoors. The performance of these procedures was investigated in three rooms. The results from the Swedish...

  14. Measurement of absolute minority species concentration and temperature in a flame by the photothermal deflection spectroscopy technique.

    Li, Yunjing; Gupta, Rajendra

    2003-04-20

    It is experimentally demonstrated that absolute concentrations of minority species in flames can be measured by the photothermal deflection spectroscopy (PTDS) technique. In addition, the PTDS signal simultaneously yields the flame temperature the measurement point. Absolute concentration profiles of OH have been measured in a flat-flame burner with methane as fuel. The PTDS measurements agree well with those obtained independently by the absorption technique. The flame temperature measurements by PTDS are also in good agreement with those obtained by the Boltzmann distribution among the rotational levels of OH. PMID:12716166

  15. Conversion of far ultraviolet to visible radiation: absolute measurements of the conversion efficiency of tetraphenyl butadiene

    Vest, Robert E.; Coplan, Michael A.; Clark, Charles W.

    Far ultraviolet (FUV) scintillation of noble gases is used in dark matter and neutrino research and in neutron detection. Upon collisional excitation, noble gas atoms recombine into excimer molecules that decay by FUV emission. Direct detection of FUV is difficult. Another approach is to convert it to visible light using a wavelength-shifting medium. One such medium, tetraphenyl butadiene (TPB) can be vapor-deposited on substrates. Thus the quality of thin TPB films can be tightly controlled. We have measured the absolute efficiency of FUV-to-visible conversion by 1 μm-thick TPB films vs. FUV wavelengths between 130 and 300 nm, with 1 nm resolution. The energy efficiency of FUV to visible conversion varies between 1% and 5%. We make comparisons with other recent results. Work performed at the NIST SURF III Synchrotron Ultraviolet Radiation Facility,.

  16. Measurement of the Absolute Branching Fraction of D0 to K- pi+

    Aubert, B.; Bona, M.; Boutigny, D.; Karyotakis, Y.; Lees, J.P.; Poireau, V.; Prudent, X.; Tisserand, V.; Zghiche, A.; /Annecy, LAPP; Garra Tico, J.; Grauges, E.; /Barcelona U., ECM; Lopez, L.; Palano, A.; /Bari U.; Eigen, G.; Ofte, I.; Stugu, B.; Sun, L.; /Bergen U.; Abrams, G.S.; Battaglia, M.; Brown, D.N.; Button-Shafer, J.; /LBL, Berkeley

    2007-04-25

    The authors measure the absolute branching fraction for D{sup 0} {yields} K{sup -} {pi}{sup +} using partial reconstruction of {bar B}{sup 0} {yields} D*{sup +}X{ell}{sup -}{bar {nu}}{sub {ell}} decays, in which only the charged lepton and the pion from the decay D*{sup +} {yields} D{sup 0}{pi}{sup +} are used. Based on a data sample of 230 million B{bar B} pairs collected at the {Upsilon}(4S) resonance with the BABAR detector at the PEP-II asymmetric-energy B Factory at SLAC, they obtain {Beta}(D{sup 0} {yields} K{sup -}{pi}{sup +}) = (4.007 {+-} 0.037 {+-} 0.070)%, where the first error is statistical and the second error is systematic.

  17. Absolute Polarization Measurements at RHIC in the Coulomb Nuclear Interference Region

    The Relativistic Heavy Ion Collider at Brookhaven National Laboratory provides polarized proton beams for the investigation of the nucleon spin structure. For polarimetry, carbon-proton and proton-proton scattering is used in the Coulomb nuclear interference region at small momentum transfer (-t). Fast polarization measurements of each beam are carried out with carbon fiber targets at several times during an accelerator store. A polarized hydrogen gas jet target is needed for absolute normalization over multiple stores, while the target polarization is constantly monitored in a Breit-Rabi polarimeter. In 2005, the jet polarimeter has been used with both RHIC beams. We present results from the jet polarimeter including a detailed analysis of background contributions to asymmetries and to the beam polarization

  18. Coincidence system for the absolute measurement of radionuclides activity using a liquid scintillator

    A system for the standartization of radioisotopes activity using liquid scintillator detector was developed. The system was set up at Nuclear Metrology Laboratory - L.M.N. (Nuclear Physics Division - IEA). The system performance was checked by absolute activity measurements for two radioisotopes, 60Co and 241Am. The activities were determined by the 4π(α, β-γ) coincidence method. An accuracy of the order of 99,8% was obtained. The results for 60Co were compared with those obtained by 4πβ-γ coincidence method using a proportional counter at L.M.N., while the results for 241Am were compared with those obtained through the linear extrapolation method using the same liquid scintillator. Compared to other systems, the advantages of this one are the simplicity and the short time spent in the sample preparation, and the negligible self-absorption. (Author)

  19. Absolute luminosity and proton-proton total cross section measurement for the ATLAS experiment at LHC

    The Large Hadron Collider (LHC) at CERN in Geneva will soon deliver collisions with an energy never reached in a particle accelerator. An energy in the center of mass of 10 and ultimately 14 TeV will allow to go beyond the borders of the physics known so far. ATLAS, the largest detector ever built, will hunt the Higgs boson and search for new physics beyond the Standard Model. Any physical process is described by a cross section that measures its probability to occur. The events resulting from a given process are registered by ATLAS. To determine their according cross section, one has to know the luminosity. For the ATLAS experiment, a relative measurement of the luminosity can be done using the response of several sub-detectors. However to calibrate these detectors, an absolute measurement has to be performed. The ALFA detector has been designed to measure the elastic scattering spectrum that will allow to determine the absolute luminosity and the proton-proton total cross section. This provides an accurate calibration tool at a percent level. These detectors, located 240 m away from the interaction point, are called roman pots, a mechanical system that allows to approach a scintillating fiber tracker a few millimeters to the beam center. The simulation of the measurement requires to use a charged particles transport program. This program has to be carefully chosen because the determination of the protons lost during their travel from the interaction point to the detector has a major impact on the acceptance computation. The systematical uncertainties affecting the luminosity and the total cross section measurements are also determined using the full simulation chain. The ALFA detector operates in a complex environment and consequently its design requires a great care. A large tests campaign has been performed on the front end electronics. The results and the corresponding data analysis have shown that all requirement where fulfilled. A test beam has been

  20. Absolute measurements of the fast neutron capture cross section of 115In

    The 115In(n,#betta#)/sup 116m1/In cross section has been absolutely determined at neutron energies of 23, 265 and 964 keV. These energies are the median neutron energies of the three photo-neutron sources. Sb-Be, Na-CD2 and Na-Be, utilized in this work. The measurements are independent of other cross section data except for corrections amounting to less than 10%. Independent determinations of the reaction rate, detector efficiency, neutron source strength, scalar flux and target masses were performed. Reaction rates were determined by beta counting of the /sup 116ml/In decay activity using a 4π gas flow proportional counter. Detector efficiency was measured using 4π#betta#-#betta# coincidence counting techniques and the foil absorber method of efficiency extrapolation for correction of complex decay scheme effects. Photoneutron source emission rates were determined by intercomparison with the NBS-II calibrated 252Cf spontaneous fission neutron source in the University of Michigan Manganese Bath. The normalized scalar flux was calculated from the neutron emission angular distribution results of the Monte Carlo computer program used to model neutron and gamma transport in the source. Target mass determinations were made with a microbalance. Correction factors were applied for competing reaction activities, neutron scattering from experiment components, room-return induced activities, spectral effects in the manganese bath and the neutron energy spectra of the photoneutron sources. Experimental cross section results were normalized to the source median energy using energy spectra d cross section shape data. The absolute cross sections obtained for the 115In(n,#betta#)/sup 116ml/In reaction were 588 +- 12, 196 +- 4 and 200 +- 3 millibarns at 23, 265 and 964 keV, respectively

  1. A study on the absolute measurement of β-ray absorbed dose in the skin depth

    The absolute measurement of β ray absorbed dose in the skin depth located at the certain distance from the radiation source (90Sr + 90Y, 204TI, 147Pm) recommended by the International Standardization Organization is performed by using an extrapolation chamber in the range of several mGy/h. Since one of critical points in measuring of absorbed dose is to make the environment in chamber similar to tissue, a new approach to the measurement of absorbed dose is proposed. The attenuation difference is minimized by deciding a window thickness such as the attenuation effect in chamber window becomes similar to that in the skin depth. A-150 tissue equivalent plastic, whose structure and density is very similar to tissue, is used for back material. The back scattering effect of both media is measured using the proposed method to calibrate the difference in back scattering effect between back material and tissue. For the measurement of back scattering effect of each material, an ionization chamber, whose structure is very similar to the extrapolation chamber and back material is replaceable, is made. Based on the results, β ray absorbed dose in the skin depth of 70 μm was measured as follows : 0.759 μGy/s (±3.78% ) for 90Sr + 90Y, 0.173 μGy/s (±4.17%) for 204TI and 0.088 μGy/s (±7.70%) for 147Pm. In order to evaluate the reliability of the proposed method, the absorbed dose measured in this study is compared to that measured in PTB (Physikalisch Technische Bundesanstalt) for the same β ray source. Although the proposed method gives slightly higher value, the difference is within 1%. In conclusion, the proposed method seems to make the measuring environment closer to tissue, even though the calibration factor yielded by the proposed method has a little effect on evaluation of absorbed dose

  2. Absolute measurement of the isotopic ratio of a water sample with very low deuterium content

    The presence of H3+ ions which are indistinguishable from HD+ ions presents the principal difficulty encountered in the measurement of isotopic ratios of water samples with very low deuterium contents using a mass spectrometer. Thus, when the sample contains no deuterium, the mass spectrometer does not indicate zero. By producing, in situ, from the sample to be measured, water vapor with an isotopic ratio very close to zero using a small distilling column, this difficulty is overcome. This column, its operating parameters, as well as the way in which the measurements are made are described. An arrangement is employed in which the isotopic ratios can be measured with a sensitivity better than 0.01 x 10-6. The method is applied to the determination of the isotopic ratios of three low deuterium content water samples. The results obtained permit one to assign to the sample with the lowest deuterium content an absolute value equal to 1.71 ± 0.03 ppm. This water sample is a primary standard from which is determined the isotopic ratio of a natural water sample which serves as the laboratory standard. (author)

  3. Absolute calibration method for laser megajoule neutron yield measurement by activation diagnostics.

    Landoas, Olivier; Glebov, Vladimir Yu; Rossé, Bertrand; Briat, Michelle; Disdier, Laurent; Sangster, Thomas C; Duffy, Tim; Marmouget, Jean Gabriel; Varignon, Cyril; Ledoux, Xavier; Caillaud, Tony; Thfoin, Isabelle; Bourgade, Jean-Luc

    2011-07-01

    The laser megajoule (LMJ) and the National Ignition Facility (NIF) plan to demonstrate thermonuclear ignition using inertial confinement fusion (ICF). The neutron yield is one of the most important parameters to characterize ICF experiment performance. For decades, the activation diagnostic was chosen as a reference at ICF facilities and is now planned to be the first nuclear diagnostic on LMJ, measuring both 2.45 MeV and 14.1 MeV neutron yields. Challenges for the activation diagnostic development are absolute calibration, accuracy, range requirement, and harsh environment. At this time, copper and zirconium material are identified for 14.1 MeV neutron yield measurement and indium material for 2.45 MeV neutrons. A series of calibrations were performed at Commissariat à l'Energie Atomique (CEA) on a Van de Graff facility to determine activation diagnostics efficiencies and to compare them with results from calculations. The CEA copper activation diagnostic was tested on the OMEGA facility during DT implosion. Experiments showed that CEA and Laboratory for Laser Energetics (LLE) diagnostics agree to better than 1% on the neutron yield measurement, with an independent calibration for each system. Also, experimental sensitivities are in good agreement with simulations and allow us to scale activation diagnostics for the LMJ measurement range. PMID:21806179

  4. Absolute production rate measurements of nitric oxide by an atmospheric pressure plasma jet (APPJ)

    Pipa, A V; Bindemann, T; Foest, R; Kindel, E; Roepcke, J; Weltmann, K-D [Leibniz-Institut fuer Plasmaforschung and Technologie e.V. (INP), Felix-Hausdorff Strasse 2, D-17489 Greifswald (Germany)], E-mail: foest@inp-greifswald.de

    2008-10-07

    Tunable diode laser absorption spectroscopy (TDLAS) has been applied to measure the absolute production rate of NO molecules in the gas phase of an atmospheric pressure plasma jet (APPJ) operating at rf (13.56 MHz) in argon with small (up to 1%) admixtures of air. The resulting NO production rates were found to be in the range (0.1-80) x 10{sup -3} sccm or (0.05-35) x 10{sup 18} molecules s{sup -1} depending on the experimental conditions. Maximum rates were obtained at 0.2% air. For TDLAS measurements the APPJ was arranged inside an astigmatic multi-pass cell of Herriott type with 100 m absorption length. The insertion into a closed volume differs slightly from the normal, open operation with the jet propagating freely into air. Therefore, the measuring results are compared with optical emission of the open jet to verify equivalent experimental conditions. The dependence of the optical emission of NO (237 nm) on power and gas mixture has been measured. The similar shape of the dependence of absorption and emission signals gives evidence that the comparability of experimental conditions is sufficiently satisfied. It is concluded that the NO production rate of the APPJ in ambient air can be characterized using TDLAS and provides reliable results in spite of differing experimental conditions due to the set-up.

  5. Uncertainty Measures of Regional Flood Frequency Estimators

    Rosbjerg, Dan; Madsen, Henrik

    1995-01-01

    Regional flood frequency models have different assumptions regarding homogeneity and inter-site independence. Thus, uncertainty measures of T-year event estimators are not directly comparable. However, having chosen a particular method, the reliability of the estimate should always be stated, e...

  6. The impact of water temperature on the measurement of absolute dose

    Islam, Naveed Mehdi

    To standardize reference dosimetry in radiation therapy, Task Group 51 (TG 51) of American Association of Physicist's in Medicine (AAPM) recommends that dose calibration measurements be made in a water tank at a depth of 10 cm and at a reference geometry. Methodologies are provided for calculating various correction factors to be applied in calculating the absolute dose. However the protocol does not specify the water temperature to be used. In practice, the temperature of water during dosimetry may vary considerably between independent sessions and different centers. In this work the effect of water temperature on absolute dosimetry has been investigated. Density of water varies with temperature, which in turn may impact the beam attenuation and scatter properties. Furthermore, due to thermal expansion or contraction air volume inside the chamber may change. All of these effects can result in a change in the measurement. Dosimetric measurements were made using a Farmer type ion chamber on a Varian Linear Accelerator for 6 MV and 23 MV photon energies for temperatures ranging from 10 to 40 °C. A thermal insulation was designed for the water tank in order to maintain relatively stable temperature over the duration of the experiment. Dose measured at higher temperatures were found to be consistently higher by a very small magnitude. Although the differences in dose were less than the uncertainty in each measurement, a linear regression of the data suggests that the trend is statistically significant with p-values of 0.002 and 0.013 for 6 and 23 MV beams respectively. For a 10 degree difference in water phantom temperatures, which is a realistic deviation across clinics, the final calculated reference dose can differ by 0.24% or more. To address this effect, first a reference temperature (e.g.22 °C) can be set as the standard; subsequently a correction factor can be implemented for deviations from this reference. Such a correction factor is expected to be of similar

  7. Optical measurement of absolute flatness with the deflectometric measurement systems at PTB

    Highly accurate flatness measurements are needed for synchrotron optics, optical flats, or optical mirrors. Recently, two new scanning deflectometric flatness measurement systems have been installed at the Physikalisch-Technische Bundesanstalt (PTB). The two systems (one system for horizontal and the other for vertical specimens) can measure specimens with sizes up to one metre with an expected uncertainty in the sub-nanometre range. In addition to the classical deflectometric procedure, also the 'extended shear angle difference (ESAD)' and the 'exact autocollimation deflectometric scanning (EADS)' procedures are implemented. The lateral resolution of scanning deflectometric techniques is limited by the aperture of the angle measurement system, usually an autocollimator with typical apertures of a few millimetres. With the EADS procedure, the specimen is scanned with an angular null instrument which has the potential to improve the lateral resolution down to the sub-millimetre region. A new concept and design of an appropriate angular null instrument are presented and discussed.

  8. Frequency and Absolute Number of FoxP3+ Regulatory T Cells Correlate with Disease Progression of Chronic HIV-1 Infection

    2007-01-01

    CD4+CD25+ Regulatory T cells (Treg) have been found to down-regulate immune activation in HIV-1 infection. However, whether the depletion of Treg benefits to the disease status of HIV infection remains undefined. To address this issue, we enumerated the Treg absolute counts and frequency in 75 antiviral-na(i)ve HIV-1-infected individuals in this study. It was found that HIV-infected patients displayed a significant decline in Treg absolute counts but a significant increase in Treg frequency. In addition, with disease progression indicated by CD4 T-cell absolute counts, circulating Treg frequency gradually increased; while Treg absolute counts were gradually decreased, suggesting that the alteration of Treg number closely correlated with disease progression in HIV infection.Functional analysis further showed that Treg efficiently inhibit both CD4 and CD8 T cell proliferation in vitro. Thus, our findings indicates that Treg actively participate in pathogenesis of chronic HIV infection,influencing the disease progression.

  9. A low noise highly integrated bolometer array for absolute measurement of VUV and soft x radiation

    A new low noise miniaturized multichannel bolometer module for absolute measurements in the VUV and soft x spectral ranges is described. Highly integrated four-channel modules (2x3.3x1.5 cm3) each comprising four independent ac-excited (50 kHz) metal resistor bolometer bridges were successfully tested on a large tokamak (Tore Supra in Cadarache) and on an electron synchrotron (BESSY in Berlin). The bolometer system features a linear response to the absorbed radiation power, a low detection limit (≤1.0x10-6 W cm-2 on Tore Supra with an integration time of τint=10x10-3 s) and a low NEP (≤10x10-9 W on BESSY). The thermal cross-talk between adjacent detectors is negligible (Br/ΔT -4 V degree C-1 is achieved. It can be operated at a maximum temperature of 150 degree C, at high magnetic fields (tested up to B=4.5 T in the laboratory) and survives high nuclear radiation doses. The system offers the possibility of detecting low-power VUV and soft x-radiation with sampling rates of up to 10 kHz on plasma machines and of absolutely calibrating VUV and soft x instruments. Effective suppression of electric, thermal and nuclear radiation interferences is characteristic of the bolometer system.Strain gauge effects, which could affect the behavior of the bolometers at high magnetic fields, are suppressed by the ac-excitation technique

  10. Improved absolute calibration of LOPES measurements and its impact on the comparison with REAS 3.11 and CoREAS simulations

    Apel, W. D.; Arteaga-Velázquez, J. C.; Bähren, L.; Bekk, K.; Bertaina, M.; Biermann, P. L.; Blümer, J.; Bozdog, H.; Brancus, I. M.; Cantoni, E.; Chiavassa, A.; Daumiller, K.; de Souza, V.; Di Pierro, F.; Doll, P.; Engel, R.; Falcke, H.; Fuchs, B.; Gemmeke, H.; Grupen, C.; Haungs, A.; Heck, D.; Hiller, R.; Hörandel, J. R.; Horneffer, A.; Huber, D.; Huege, T.; Isar, P. G.; Kampert, K.-H.; Kang, D.; Krömer, O.; Kuijpers, J.; Link, K.; Łuczak, P.; Ludwig, M.; Mathes, H. J.; Melissas, M.; Morello, C.; Nehls, S.; Oehlschläger, J.; Palmieri, N.; Pierog, T.; Rautenberg, J.; Rebel, H.; Roth, M.; Rühle, C.; Saftoiu, A.; Schieler, H.; Schmidt, A.; Schoo, S.; Schröder, F. G.; Sima, O.; Toma, G.; Trinchero, G. C.; Weindl, A.; Wochele, J.; Zabierowski, J.; Zensus, J. A.

    2016-02-01

    LOPES was a digital antenna array detecting the radio emission of cosmic-ray air showers. The calibration of the absolute amplitude scale of the measurements was done using an external, commercial reference source, which emits a frequency comb with defined amplitudes. Recently, we obtained improved reference values by the manufacturer of the reference source, which significantly changed the absolute calibration of LOPES. We reanalyzed previously published LOPES measurements, studying the impact of the changed calibration. The main effect is an overall decrease of the LOPES amplitude scale by a factor of 2.6 ± 0.2, affecting all previously published values for measurements of the electric-field strength. This results in a major change in the conclusion of the paper 'Comparing LOPES measurements of air-shower radio emission with REAS 3.11 and CoREAS simulations' published by Apel et al. (2013) : With the revised calibration, LOPES measurements now are compatible with CoREAS simulations, but in tension with REAS 3.11 simulations. Since CoREAS is the latest version of the simulation code incorporating the current state of knowledge on the radio emission of air showers, this new result indicates that the absolute amplitude prediction of current simulations now is in agreement with experimental data.

  11. Direct and absolute absorption measurements in optical materials and coatings by laser induced deflection (LID) technique

    Mühlig, Ch.

    2012-01-01

    Different strategies of the laser induced deflection (LID) technique for direct and absolute absorption measurements are presented. Besides selected strategies for bulk and coating absorption measurements, respectively, a new strategy is introduced allowing the transfer of the LID technique to very small samples and to significantly increase the sensitivity for materials with a very weak photo-thermal response. Additionally, an emphasis is placed on the importance of the calibration procedure. The electrical calibration of the LID setup is compared to two other approaches that use either doped samples or highly absorptive reference samples in combination with numerical simulations. Applying the LID technique, we report on the characterization of AR coated LBO crystals used in high power NIR/VIS laser applications. The comparison of different LBO crystals shows that there are significant differences in both, the AR coating and the LBO bulk absorption. These differences are much larger at 515 nm than at 1030 nm. Absorption spectroscopy measurements combining LID technique with a high power OPO laser system indicate that the coating process affects the LBO bulk absorption properties. Furthermore, the change of the absorption upon 1030 nm laser irradiation of a Nd:YVO4 laser crystal is investigated and compared to recent results. Finally, Ytterbium doped silica raw materials for high power fiber lasers are characterized with respect to the absorption induced attenuation at 1550 nm in order to compare these data with the total attenuation obtained for the subsequently manufactured laser active fibers.

  12. Cryogenic Current Comparator for Absolute Measurement of the Dark Current of the Superconducting Cavities for Tesla

    Knaack, K; Wittenburg, K

    2003-01-01

    A newly high performance SQUID based measurement system for detecting dark currents, generated by superconducting cavities for TESLA is proposed. It makes use of the Cryogenic Current Comparator principle and senses dark currents in the nA range with a small signal bandwidth of 70 kHz. To reach the maximum possible energy in the TESLA project is a strong motivation to push the gradients of the superconducting cavities closer to the physical limit of 50 MV/m. The field emission of electrons (the so called dark current) of the superconducting cavities at strong fields may limit the maximum gradient. The absolute measurement of the dark current in correlation with the gradient will give a proper value to compare and classify the cavities. This contribution describes a Cryogenic Current Comparator (CCC) as an excellent and useful tool for this purpose. The most important component of the CCC is a high performance DC SQUID system which is able to measure extremely low magnetic fields, e.g. caused by the extracted ...

  13. Absolute high-resolution Se+ photoionization cross-section measurements with Rydberg-series analysis

    Absolute single photoionization cross-section measurements for Se+ ions were performed at the Advanced Light Source (ALS) at Lawrence Berkeley National Laboratory using the photo-ion merged-beams technique. Measurements were made at a photon energy resolution of 5.5 meV from 17.75 to 21.85 eV spanning the 4s24p34S3/2o ground-state ionization threshold and the 2P3/2o,2P1/2o,2D5/2o, and2D3/2o metastable state thresholds. Extensive analysis of the complex resonant structure in this region identified numerous Rydberg series of resonances and obtained the Se2+ 4s24p23P2 and 4s24p21S0 state energies. In addition, particular attention was given to removing significant effects in the measurements due to a small percentage of higher-order undulator radiation.

  14. Approximation by Absolutely Continuous Invariant Measures of Iterated Function Systems with Place-Dependent Probabilities

    Islam, Md Shafiqul; Chandler, Stephen

    2015-10-01

    Let S be the attractor (fractal) of a contractive iterated function system (IFS) with place-dependent probabilities. An IFS with place-dependent probabilities is a random map T = {τ1(x),τ2(x),…,τK(x); p1(x),p2(x),…,pK(x)}, where the probabilities p1(x),p2(x),…,pK(x) of switching from one transformation to another are functions of positions, that is, at each step, the random map T moves the point x to τk(x) with probability pk(x). If the random map T has a unique invariant measure μ, then the support of μ is the attractor S. For a bounded region X ⊆ ℝN, we prove the existence of a sequence {T0,n∗} of IFSs with place-dependent probabilities whose invariant measures {μn} are absolutely continuous with respect to Lebesgue measure. Moreover, if X is a compact metric space, we prove that μn converges weakly to μ as n →∞. We present examples with computations.

  15. Design and characterization of a multi-frequency bioimpedance measurement prototype

    A multi-frequency bioimpedance measurement prototype is proposed, validated and characterized. It consists of an Improved Howland Current Source controlled by voltage, a load voltage sensing scheme through a discrete 3-opamp instrumentation amplifier, a phase and quadrature demodulation setup through analog multipliers, and digitization and processing of the signals using a digital benchtop multimeter. The electrical characterization of the measurement channel was done for resistive loads only, on four different circuits. Measurements were made on 10 frequencies, from 100 kHz to 1 MHz, with 10 load resistances, from 100 Ω to 1 kΩ, to obtain linearity, absolute error and frequency response. The best performance among the four circuits was a maximum absolute error of 5.55 %, and −1.93 % of load current variation at the worst case scenario.

  16. Design and characterization of a multi-frequency bioimpedance measurement prototype

    Mattia Neto, O. E.; Porto, R. W.; Aya, J. C. C.

    2012-12-01

    A multi-frequency bioimpedance measurement prototype is proposed, validated and characterized. It consists of an Improved Howland Current Source controlled by voltage, a load voltage sensing scheme through a discrete 3-opamp instrumentation amplifier, a phase and quadrature demodulation setup through analog multipliers, and digitization and processing of the signals using a digital benchtop multimeter. The electrical characterization of the measurement channel was done for resistive loads only, on four different circuits. Measurements were made on 10 frequencies, from 100 kHz to 1 MHz, with 10 load resistances, from 100 Ω to 1 kΩ, to obtain linearity, absolute error and frequency response. The best performance among the four circuits was a maximum absolute error of 5.55 %, and -1.93 % of load current variation at the worst case scenario.

  17. In-Flight Measurement of the Absolute Energy Scale of the Fermi Large Area Telescope

    Ackermann, M.; Ajello, M.; Allafort, A.; Atwood, W. B.; Axelsson, M.; Baldini, L.; Barbielini, G; Bastieri, D.; Bechtol, K.; Bellazzini, R.; Berenji, B,; Bloom, E. D.; Bonamente, E.; Borgland, A. W.; Bouvier, A.; Bregeon, J.; Brez, A.; Brigida, M.; Bruel, P.; Buehler, R.; Gehrels, N.; Hays, E.; McEnery, J. E.; Thompson, D. J.; Troja, E. J.

    2012-01-01

    The Large Area Telescope (LAT) on-board the Fermi Gamma-ray Space Telescope is a pair-conversion telescope designed to survey the gamma-ray sky from 20 MeV to several hundreds of GeV. In this energy band there are no astronomical sources with sufficiently well known and sharp spectral features to allow an absolute calibration of the LAT energy scale. However, the geomagnetic cutoff in the cosmic ray electron- plus-positron (CRE) spectrum in low Earth orbit does provide such a spectral feature. The energy and spectral shape of this cutoff can be calculated with the aid of a numerical code tracing charged particles in the Earth's magnetic field. By comparing the cutoff value with that measured by the LAT in different geomagnetic positions, we have obtained several calibration points between approx. 6 and approx. 13 GeV with an estimated uncertainty of approx. 2%. An energy calibration with such high accuracy reduces the systematic uncertainty in LAT measurements of, for example, the spectral cutoff in the emission from gamma ray pulsars.

  18. Gravity change from repeated absolute measurements in Estonia, Latvia and Lithuania 1994-2008

    Mäkinen, J.; Bilker-Koivula, M.; Falk, R.; Gitlein, O.; Kaminskis, J.; Lapushka, K.; Oja, T.; Paršeliunas, E.; Petroškevičius, P.; Timmen, L.

    2009-04-01

    Estonia, Latvia, and Lithuania belong to the margin of the Fennoscandian postglacial rebound (PGR) area. Vertical rates predicted by PGR models are in the range 0 to +3 mm/yr. Our first absolute gravity campaigns in the area were performed with the JILAg-5 gravimeter in 1994-1995 when three stations were measured in each country. All three stations in Lithuania were repeated with the JILAg-5 in 2002 and one of them (Vilnius) with the FG5#221 gravimeter in 2007. In Latvia one station (Riga) was remeasured with the FG5#101 and FG5#107 (D. Stizza, NIMA) in 1986 and with the FG5#221 in 2007. In Estonia two of the stations (Suurupi and Töravere) were remeasured with the FG5#220 in 2007 and with the FG5#221 in 2008, the third (Kuressaare) was only remeasured in 2008 with the FG5#221. This amounts to seven repeated stations with time spans of 8-13 years. In interpreting gravity change, special attention must be paid to subsurface water storage, as (due to inaccessibility of crystalline bedrock) many stations are on thick sediments, the repeat measurements were partly made in different seasons, and in some cases there is evidence of strong interannual variation in hydrology. We discuss the constraints to PGR implied by the observed gravity change and compare it with PGR models and with available observations of vertical motion.

  19. SQUID-based setup for the absolute measurement of the Earth’s magnetic field

    We present a configuration of LTS dc SQUID magnetometers that is suited for an absolute measurement of the vector components of the Earth’s magnetic field with a white noise level of about 6 fT Hz−1/2. Due to its periodic voltage–flux characteristic, a SQUID’s output voltage generally corresponds to a set of equidistant fluxes or magnetic field strengths. To resolve this ambiguity, we introduce a configuration of coplanar SQUIDs integrated on a single chip, which exhibit effective areas differing by several orders of magnitude. The set of possible magnetic field strengths matching the output voltages of these SQUIDs is thereby significantly reduced and especially unique for magnetic field strengths less than a certain threshold value of about 10 μT in our current implementation. The SQUIDs are realized with 0.8 μm cross-type Josephson junctions that withstand high background fields of up to 3.9 mT during cool down and operation. A first one-dimensional experimental implementation successfully measured the modulation of the magnetic field component perpendicular to the sensor surface with amplitudes exceeding 50 μT. The overall dynamic range of the SQUID magnetometer system achieves 190 dB. (paper)

  20. Use of proportional gas scintillator in absolute measurements of alpha-gamma emitter activities

    The absolute activity of U-235 contained in a U3 O8 sample was measured utilizing a sum-coincidence circuit which selects only the alpha particles which are simultaneous with the 143 KeV and 186 KeV gamma radiations from the Th-231 (product nucleus). The alpha particles were detected by means of a new type of a gas scintillating chamber, in which the light emitted by excitation of the gas atoms, due to the passage of a charged incoming particle, has its intensity increased by the action of an applied electric field. The gamma radiations were detected by means of a NaI(Tl) 1'' x 11/2'' scintillation detector. The value obtained for the half-life of U-235 was compared with the data available from various observers which used different experimental techniques. It is shown tht the results, are in excellent agreement with the best international data available on the subject and that, therefore, the sum-coincidence technique constitutes an important method for such measurements. (Author)

  1. In-Flight Measurement of the Absolute Energy Scale of the Fermi Large Area Telescope

    The Large Area Telescope (LAT) on-board the Fermi Gamma-ray Space Telescope is a pair-conversion telescope designed to survey the gamma-ray sky from 20 MeV to several hundreds of GeV. In this energy band there are no astronomical sources with sufficiently well known and sharp spectral features to allow an absolute calibration of the LAT energy scale. However, the geomagnetic cutoff in the cosmic ray electron-plus-positron (CRE) spectrum in low Earth orbit does provide such a spectral feature. The energy and spectral shape of this cutoff can be calculated with the aid of a numerical code tracing charged particles in the Earth's magnetic field. By comparing the cutoff value with that measured by the LAT in different geomagnetic positions, we have obtained several calibration points between ∼6 and ∼13 GeV with an estimated uncertainty of ∼2%. An energy calibration with such high accuracy reduces the systematic uncertainty in LAT measurements of, for example, the spectral cutoff in the emission from gamma ray pulsars.

  2. In-Flight Measurement of the Absolute Energy Scale of the Fermi Large Area Telescope

    Ackermann, M.; /Stanford U., HEPL /SLAC /KIPAC, Menlo Park; Ajello, M.; /Stanford U., HEPL /SLAC /KIPAC, Menlo Park; Allafort, A.; /Stanford U., HEPL /SLAC /KIPAC, Menlo Park; Atwood, W.B.; /UC, Santa Cruz; Axelsson, M.; /Stockholm U. /Stockholm U., OKC /Royal Inst. Tech., Stockholm; Baldini, L.; /INFN, Pisa; Barbiellini, G.; /INFN, Trieste /Trieste U.; Bastieri, D.; /INFN, Padua /Padua U.; Bechtol, K.; /Stanford U., HEPL /SLAC /KIPAC, Menlo Park; Bellazzini, R.; /INFN, Pisa; Berenji, B.; /Stanford U., HEPL /SLAC /KIPAC, Menlo Park; Bloom, E.D.; /Stanford U., HEPL /SLAC /KIPAC, Menlo Park; Bonamente, E.; /INFN, Perugia /Perugia U.; Borgland, A.W.; /Stanford U., HEPL /SLAC /KIPAC, Menlo Park; Bouvier, A.; /UC, Santa Cruz; Bregeon, J.; /INFN, Pisa; Brez, A.; /INFN, Pisa; Brigida, M.; /Bari Polytechnic /INFN, Bari; Bruel, P.; /Ecole Polytechnique; Buehler, R.; /Stanford U., HEPL /SLAC /KIPAC, Menlo Park; Buson, S.; /INFN, Padua /Padua U. /CSIC, Catalunya /Stanford U., HEPL /SLAC /KIPAC, Menlo Park /IASF, Milan /DAPNIA, Saclay /INFN, Perugia /Perugia U. /Stanford U., HEPL /SLAC /KIPAC, Menlo Park /Unlisted, US /Stanford U., HEPL /SLAC /KIPAC, Menlo Park /ASDC, Frascati /Perugia U. /Stanford U., HEPL /SLAC /KIPAC, Menlo Park /Montpellier U. /ASDC, Frascati /Bari Polytechnic /INFN, Bari /Naval Research Lab, Wash., D.C. /Stanford U., HEPL /SLAC /KIPAC, Menlo Park /Stanford U., HEPL /SLAC /KIPAC, Menlo Park /Stanford U., HEPL /SLAC /KIPAC, Menlo Park /Stanford U., HEPL /SLAC /KIPAC, Menlo Park /Stanford U., HEPL /SLAC /KIPAC, Menlo Park /Stanford U., HEPL /SLAC /KIPAC, Menlo Park /Montpellier U. /Bari Polytechnic /INFN, Bari /Ecole Polytechnique /Stanford U., HEPL /SLAC /KIPAC, Menlo Park /Ecole Polytechnique /Hiroshima U. /Stanford U., HEPL /SLAC /KIPAC, Menlo Park /Bari Polytechnic /INFN, Bari /INFN, Bari /NASA, Goddard /INFN, Perugia /Perugia U.; /more authors..

    2012-09-20

    The Large Area Telescope (LAT) on-board the Fermi Gamma-ray Space Telescope is a pair-conversion telescope designed to survey the gamma-ray sky from 20 MeV to several hundreds of GeV. In this energy band there are no astronomical sources with sufficiently well known and sharp spectral features to allow an absolute calibration of the LAT energy scale. However, the geomagnetic cutoff in the cosmic ray electron-plus-positron (CRE) spectrum in low Earth orbit does provide such a spectral feature. The energy and spectral shape of this cutoff can be calculated with the aid of a numerical code tracing charged particles in the Earth's magnetic field. By comparing the cutoff value with that measured by the LAT in different geomagnetic positions, we have obtained several calibration points between {approx}6 and {approx}13 GeV with an estimated uncertainty of {approx}2%. An energy calibration with such high accuracy reduces the systematic uncertainty in LAT measurements of, for example, the spectral cutoff in the emission from gamma ray pulsars.

  3. An accurate absolute-scale measurement of bremsstrahlung following absorption of incident X and γ rays

    The spectrum of bremsstrahlung due to photoelectrons ejected by incident photons of energy 59.5 keV was measured. The coincidence setup with two HP germanium detectors was applied, in which the target-detector recorded the energy of ejected photoelectron after it radiated a bremsstrahlung photon, and another (second) detector detected energy of radiated bremsstrahlung photon. A detailed analysis of the measurement was made taking into account various detector-to-detector cross-talk processes. As expected, the experimental method gave a clean spectrum, which can be reliably determined on absolute scale in the low- and mid-energy range. The condition for reliable measurement are that the asymmetry ratio (the ratio of number of incident photons which reached the target detector and the second detector) is higher than approximately 1000 to reduce reverse-Compton scattering, and solid angle is smaller than about 0.15 sr to reduce the influence of double-cross-talk processes. (We name a group of processes double-cross-talk processes in which incident radiation produces secondary radiation in target detector, the secondary radiation escapes it and reaches the second detector where it induces tertiary radiation, which reaches the target detector and is absorbed therein.) Almost any line source of photons can be used even if of a complex spectrum. Therefore, simultaneous measurements at several incident energies are possible in one experiment. Application of a very weak source is possible because of very high signal-to-background ratio and high efficiency of the applied experimental method. The simple theoretical model of bremsstrahlung radiation due to photoelectrons in infinity-thick target gives results in a good agreement with the experimental data. The bremsstrahlung cross-section calculated using the well-known semi-empirical thick-target formula gives also a good agreement with the experimental data. (author)

  4. Absolute distance metrology for space interferometers

    Swinkels, B L; Wendrich, T.J.; Bhattacharya, N; Wielders, A.A.; Braat, J.J.M.

    2004-01-01

    Space interferometers consisting of several free flying telescopes, such as the planned Darwin mission, require a complex metrology system to make all the components operate as a single instrument. Our research focuses on one of its sub-systems that measures the absolute distance between two satellites with high accuracy. For Darwin the required accuracy would be in the order of 10 μm over 250 meter. To measure this absolute distance, we are currently exploring the frequency sweeping interfer...

  5. Absolute measurement of the desintegration rate of 137 Cs by 4Π (BS) e--X coincidence method

    The method developed by the Nuclear Metrology Laboratory for the absolute measurement of the desintegration rate of 137Cs by 4Π(BS)e--X is described. The conversion electron are measured by a pair of surface barrier detectors with 200mm2 of active area and 1000μm of depletion depth. The X-rays are measured by two 50.8mm diameter and 1.0mm thick NaI (Tl) scintillation counters. (author)

  6. Absolute cerebral blood flow and blood volume measured by magnetic resonance imaging bolus tracking: comparison with positron emission tomography values

    Østergaard, Leif; Smith, D F; Vestergaard-Poulsen, Peter;

    1998-01-01

    blood volume (CBV) estimates obtained using this normalization constant correlated well with values obtained by O-15 labeled carbonmonooxide (C15O) PET. However, PET CBV values were approximately 2.5 times larger than absolute MRI CBV values, supporting the hypothesized sensitivity of MRI to small...... hypercapnic conditions. After dose normalization and introduction of an empirical constant phi Gd, absolute regional CBF was calculated from MRI. The spatial resolution and the signal-to-noise ratio of CBF measurements by MRI were better than by the H215O-PET protocol. Magnetic resonance imaging cerebral...

  7. Some triple-filament lead isotope ratio measurements and an absolute growth curve for single-stage leads

    Stacey, J.S.; Delevaux, M.E.; Ulrych, T.J.

    1969-01-01

    Triple-filament analyses of three standard lead samples are used to calibrate a mass spectrometer in an absolute sense. The bias we measure is 0.0155 percent per mass unit, and the precision (for 95% confidence limits) is ??0.13% or less for all ratios relative to 204Pb. Although its precision is not quite so good as that of the lead-tetramethyl method in the analysis of large samples, the triple-filament method is less complex and is an attractive alternative for smaller sample sizes down to 500 ??g. Triple-filament data are presented for six possibly single-stage lead ores and one feldspar. These new data for ores are combined with corrected tetramethyl data for stratiform lead deposits to compute absolute parameters for a universal single-stage lead isotope growth curve. Absolute isotopic ratios for primeval lead have been determined by Oversby and because all the previous data for both meteorites and lead ores were similarly fractionated, the absolute value of 238U 204Pb = 9.09 ?? 0.06 for stratiform leads is little different from the value 8.99 ?? 0.05 originally computed by Ostic, Russell and Stanton. Absolute values for lead isotope ratios for all interlaboratory standard samples presently available from the literature are tabulated. ?? 1969.

  8. Absolute measurement of thermal noise in a resonant short-range force experiment

    Yan, H.; Housworth, E. A.; Meyer, H. O.; Visser, G.; Weisman, E.; Long, J. C.

    2014-10-01

    Planar, double-torsional oscillators are especially suitable for short-range macroscopic force search experiments, since they can be operated at the limit of instrumental thermal noise. As a study of this limit, we report a measurement of the noise kinetic energy of a polycrystalline tungsten oscillator in thermal equilibrium at room temperature. The fluctuations of the oscillator in a high-Q torsional mode with a resonance frequency near 1 kHz are detected with capacitive transducers coupled to a sensitive differential amplifier. The electronic processing is calibrated by means of a known electrostatic force and input from a finite-element model. The measured average kinetic energy, Eexp = (2.0 ± 0.3) × 10-21 J, is in agreement with the expected value of 1/2{{k}B}T.

  9. Field Measurement of Sand Dune Bidirectional Reflectance Characteristics for Absolute Radiometric Calibration of Optical Remote Sensing Data.

    Coburn, C. A.; Logie, G.; Beaver, J.; Helder, D.

    2015-12-01

    The use of Pseudo Invariant Calibration Sites (PICS) for establishing the radiometric trending of optical remote sensing systems has a long history of successful implementation. Past studies have shown that the PICS method is useful for evaluating the trend of sensors over time or cross-calibration of sensors but was not considered until recently for deriving absolute calibration. Current interest in using this approach to establish absolute radiometric calibration stems from recent research that indicates that with empirically derived models of the surface properties and careful atmospheric characterisation Top of Atmosphere (TOA) reflectance values can be predicted and used for absolute sensor radiometric calibration. Critical to the continued development of this approach is the accurate characterization of the Bidirectional Reflectance Distribution Function (BRDF) of PICS sites. This paper presents the field data collected by a high-performance portable goniometer system in order to develop a BRDF model for the Algodones Dunes in California. These BRDF data are part of a larger study that is seeking to evaluate and quantify all aspects of this dune system (from regional effects to the micro scale optical properties of the sand) in order to provide an absolute radiometric calibration PICS. This paper presents the results of a dense temporal measurement sequence (several measurements per hour with high angular resolution), to yield detailed information on the nature of the surface reflectance properties. The BRDF data were collected covering typical view geometry of space borne sensors and will be used to close the loop on the calibration to create an absolute calibration target for optical satellite absolute radiometric calibration.

  10. Using relative and absolute measures for monitoring health inequalities: experiences from cross-national analyses on maternal and child health

    Huisman Martijn

    2007-10-01

    Full Text Available Abstract Background As reducing socio-economic inequalities in health is an important public health objective, monitoring of these inequalities is an important public health task. The specific inequality measure used can influence the conclusions drawn, and there is no consensus on which measure is most meaningful. The key issue raising most debate is whether to use relative or absolute inequality measures. Our paper aims to inform this debate and develop recommendations for monitoring health inequalities on the basis of empirical analyses for a broad range of developing countries. Methods Wealth-group specific data on under-5 mortality, immunisation coverage, antenatal and delivery care for 43 countries were obtained from the Demographic and Health Surveys. These data were used to describe the association between the overall level of these outcomes on the one hand, and relative and absolute poor-rich inequalities in these outcomes on the other. Results We demonstrate that the values that the absolute and relative inequality measures can take are bound by mathematical ceilings. Yet, even where these ceilings do not play a role, the magnitude of inequality is correlated with the overall level of the outcome. The observed tendencies are, however, not necessities. There are countries with low mortality levels and low relative inequalities. Also absolute inequalities showed variation at most overall levels. Conclusion Our study shows that both absolute and relative inequality measures can be meaningful for monitoring inequalities, provided that the overall level of the outcome is taken into account. Suggestions are given on how to do this. In addition, our paper presents data that can be used for benchmarking of inequalities in the field of maternal and child health in low and middle-income countries.

  11. Distance measurement using frequency scanning interferometry with mode-hoped laser

    Medhat, M.; Sobee, M.; Hussein, H. M.; Terra, O.

    2016-06-01

    In this paper, frequency scanning interferometry is implemented to measure distances up to 5 m absolutely. The setup consists of a Michelson interferometer, an external cavity tunable diode laser, and an ultra-low expansion (ULE) Fabry-Pérot (FP) cavity to measure the frequency scanning range. The distance is measured by acquiring simultaneously the interference fringes from, the Michelson and the FP interferometers, while scanning the laser frequency. An online fringe processing technique is developed to calculate the distance from the fringe ratio while removing the parts result from the laser mode-hops without significantly affecting the measurement accuracy. This fringe processing method enables accurate distance measurements up to 5 m with measurements repeatability ±3.9×10-6 L. An accurate translation stage is used to find the FP cavity free-spectral-range and therefore allow accurate measurement. Finally, the setup is applied for the short distance calibration of a laser distance meter (LDM).

  12. Absolute gravity measurements in Southeast Alaska and continuous gravity observation in Juneau by ISEA2 project

    Sato, T.; Kazama, T.; Miura, S.; Ohta, Y.; Okubo, S.; Fujimoto, H.; Kaufman, M.; Herreid, S. J.; Larsen, C. F.; Freymueller, J. T.

    2012-12-01

    It is known that Southeast Alaska (SE-AK) shows a large uplift rates exceeding 32 mm/year at the maximum mainly due to the three ice changes in ages, i.e. in the Large Glacier Maximum, the Little Ice Age and the present day. Comparisons between rates of change obtained from GPS and absolute gravimeter (AG) observations and the rates predicted by model computations based on independently estimated ice mass changes indicate the existence of a very thin lithosphere (on the order of 60 km) and a low viscousity upper mantle (on the order of 1.E18 Pa s) beneath SE-AK (Larsen et al., 2005; Sato et al, 2011; Sato et al., 2012). On the other hand, it is also known that there are very large oceanic tidal loading effects in SE-AK, i.e. exceeding 2.7 cm and 8 microGals for the M2 constituent of the vertical displacement and gravity, respectively (Sato et al., 2008; Inazu et al., 2009; Sun et al., 2010; Sato et al., 2012). These regional large loading and unloading effects provide good signals to study the viscoelastic structure beneath SE-AK. A joint observation project (ISEA2) between Japan and USA groups has restarted as a five years project beginning in 2012. In June 2012, we conducted the AG measurements at the 6 sites in SE-AK at where the AG measurements were conducted by the previous ISEA1 project (Sun et al., 2010). Continuous gravity observation started also on June 2012 with a portable super conducting gravimeter (iGrav) at the EGAN library of UAS. We will introduce the results for these observations and comparisons with the previous observations and model computations. It is noted that the precipitation during the period from the winter in 2011 to the spring in 2012 was very large compared with the usual amount. We evaluate this effect on our gravity observations with a hydrological model computation (Kazama and Okubo, 2009) using the observed precipitation data as an input data. The observation with the iGrav super conducting gravimeter shall give us a useful data

  13. Design and construction of a cryogenic facility providing absolute measurements of radon 222 activity for developing a primary standard

    Radon 222 metrology is required to obtain higher accuracy in assessing human health risks from exposure to natural radiation. This paper describes the development of a cryogenic facility that allows absolute measurements of radon 222 in order to obtain a primary standard. The method selected is the condensation of a radon 222 sample on a geometrically defined cold surface with a constant, well known and adjustable temperature and facing an alpha particles detector. Counting of the alpha particles reaching the detector and the precisely known detection geometry provide an absolute measurement of the source activity. After describing the cryogenic facility, the measurement accuracy and precision are discussed and a comparison made with other measurement systems. The relative uncertainty is below 1 pc (1 σ). The facility can also be used to improve our knowledge of the nuclear properties of radon 222 and to produce secondary standards. (author)

  14. Design of a quasi-zero-stiffness based sensor system for the measurement of absolute vibration displacement of moving platforms

    Jing, Xingjian; Wang, Yu; Li, Quankun; Sun, Xiuting

    2016-09-01

    This study presents the analysis and design of a novel sensor system for measuring the absolute vibration displacement of moving platforms based on the concept of quasi-zero-stiffness (QZS). The sensor system is constructed using positive- and negative-stiffness springs, which make it possible to achieve an equivalent QZS and consequently to create a broadband vibration-free point for absolute vibration displacement measurement in moving platforms. Theoretical analysis is conducted for the analysis and design of the influence of structure parameters on system measurement performance. A prototype is designed which can avoid the drawback of instability in existing QZS systems with negative stiffness, and corresponding data-processing software is developed to fulfill time domain measurements. Both the simulation and experimental results verify the effectiveness of this novel sensor system.

  15. Measurement of the Absolute Proton and Helium Flux at the Top of the Atmosphere using IMAX

    Menn, W.; Hof, M.; Reimer, O.; Simon, M.; Barbier, L.M.; Christian, E.R.; Krombel, K.E.; Mitchell, J.W.; Ormes, J.F.; Streitmatter, R.E.; Davis, A.J.; Labrador, A.W.; Mewaldt, R.A.; Schindler, S.M.; Golden, R.L.; Stochaj, S.J.; Webber, W.R.; Rasmussen, Ib Lundgaard

    1996-01-01

    with ancillary scintillators, time-of-flight, and aerogel cherenkov detectors. High resolution drift chambers and MWPCs were used as the tracking devices. Using redundant detectors, an extensive examination of the instrument efficiency was carried out. We present the absolute spectra of protons and...

  16. Fundamentals of absolute measurements of the absorved dose of quantum and electron radiation up to 50 MeV

    Absorbed dose measurements are dealt with considering the existing or missing secondary electron balance. At present, calorimeters, ionization chambers and chemical dosimeters are particularly suitable for absolute measurements of absorbed doses and for ensuring the accuracy needed for standard procedures. The above-mentioned methods are briefly discussed together with the requirements to be met in applying them. Intermediate solutions for electron and quantum energies exceeding 3 MeV are outlined. (author)

  17. Improved absolute calibration of LOPES measurements and its impact on the comparison with REAS 3.11 and CoREAS simulations

    ,

    2016-01-01

    LOPES was a digital antenna array detecting the radio emission of cosmic-ray air showers. The calibration of the absolute amplitude scale of the measurements was done using an external, commercial reference source, which emits a frequency comb with defined amplitudes. Recently, we obtained improved reference values by the manufacturer of the reference source, which significantly changed the absolute calibration of LOPES. We reanalyzed previously published LOPES measurements, studying the impact of the changed calibration. The main effect is an overall decrease of the LOPES amplitude scale by a factor of $2.6 \\pm 0.2$, affecting all previously published values for measurements of the electric-field strength. This results in a major change in the conclusion of the paper 'Comparing LOPES measurements of air-shower radio emission with REAS 3.11 and CoREAS simulations' published in Astroparticle Physics 50-52 (2013) 76-91: With the revised calibration, LOPES measurements now are compatible with CoREAS simulations,...

  18. Absolute distance measurement by dual-comb interferometry with multi-channel digital lock-in phase detection

    We present a dual-comb-based heterodyne multi-wavelength absolute interferometer capable of long distance measurements. The phase information of the various comb modes is extracted in parallel by a multi-channel digital lock-in phase detection scheme. Several synthetic wavelengths of the same order are constructed and the corresponding phases are averaged to deduce the absolute lengths with significantly reduced uncertainty. Comparison experiments with an incremental HeNe reference interferometer show a combined relative measurement uncertainty of 5.3 × 10−7 at a measurement distance of 20 m. Combining the advantage of synthetic wavelength interferometry and dual-comb interferometry, our compact and simple approach provides sufficient precision for many industrial applications. (paper)

  19. Measuring the absolute deuterium-tritium neutron yield using the magnetic recoil spectrometer at OMEGA and the NIF

    Casey, D. T.; Frenje, J. A.; Gatu Johnson, M.; Seguin, F. H.; Li, C. K.; Petrasso, R. D. [Plasma Science and Fusion Center, MIT, Cambridge, Massachusetts 02139 (United States); Glebov, V. Yu.; Katz, J.; Knauer, J. P.; Meyerhofer, D. D.; Sangster, T. C. [Laboratory for Laser Energetics, UR, Rochester, New York 14623 (United States); Bionta, R. M.; Bleuel, D. L.; Doeppner, T.; Glenzer, S.; Hartouni, E.; Hatchett, S. P.; Le Pape, S.; Ma, T.; MacKinnon, A. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); and others

    2012-10-15

    A magnetic recoil spectrometer (MRS) has been installed and extensively used on OMEGA and the National Ignition Facility (NIF) for measurements of the absolute neutron spectrum from inertial confinement fusion implosions. From the neutron spectrum measured with the MRS, many critical implosion parameters are determined including the primary DT neutron yield, the ion temperature, and the down-scattered neutron yield. As the MRS detection efficiency is determined from first principles, the absolute DT neutron yield is obtained without cross-calibration to other techniques. The MRS primary DT neutron measurements at OMEGA and the NIF are shown to be in excellent agreement with previously established yield diagnostics on OMEGA, and with the newly commissioned nuclear activation diagnostics on the NIF.

  20. Measuring the absolute deuterium–tritium neutron yield using the magnetic recoil spectrometer at OMEGA and the NIF

    A magnetic recoil spectrometer (MRS) has been installed and extensively used on OMEGA and the National Ignition Facility (NIF) for measurements of the absolute neutron spectrum from inertial confinement fusion implosions. From the neutron spectrum measured with the MRS, many critical implosion parameters are determined including the primary DT neutron yield, the ion temperature, and the down-scattered neutron yield. As the MRS detection efficiency is determined from first principles, the absolute DT neutron yield is obtained without cross-calibration to other techniques. The MRS primary DT neutron measurements at OMEGA and the NIF are shown to be in excellent agreement with previously established yield diagnostics on OMEGA, and with the newly commissioned nuclear activation diagnostics on the NIF.

  1. Measuring the absolute deuterium-tritium neutron yield using the magnetic recoil spectrometer at OMEGA and the NIF.

    Casey, D T; Frenje, J A; Gatu Johnson, M; Séguin, F H; Li, C K; Petrasso, R D; Glebov, V Yu; Katz, J; Knauer, J P; Meyerhofer, D D; Sangster, T C; Bionta, R M; Bleuel, D L; Döppner, T; Glenzer, S; Hartouni, E; Hatchett, S P; Le Pape, S; Ma, T; MacKinnon, A; McKernan, M A; Moran, M; Moses, E; Park, H-S; Ralph, J; Remington, B A; Smalyuk, V; Yeamans, C B; Kline, J; Kyrala, G; Chandler, G A; Leeper, R J; Ruiz, C L; Cooper, G W; Nelson, A J; Fletcher, K; Kilkenny, J; Farrell, M; Jasion, D; Paguio, R

    2012-10-01

    A magnetic recoil spectrometer (MRS) has been installed and extensively used on OMEGA and the National Ignition Facility (NIF) for measurements of the absolute neutron spectrum from inertial confinement fusion implosions. From the neutron spectrum measured with the MRS, many critical implosion parameters are determined including the primary DT neutron yield, the ion temperature, and the down-scattered neutron yield. As the MRS detection efficiency is determined from first principles, the absolute DT neutron yield is obtained without cross-calibration to other techniques. The MRS primary DT neutron measurements at OMEGA and the NIF are shown to be in excellent agreement with previously established yield diagnostics on OMEGA, and with the newly commissioned nuclear activation diagnostics on the NIF. PMID:23126915

  2. Absolute brightness temperature measurements at 3.5-mm wavelength. [of sun, Venus, Jupiter and Saturn

    Ulich, B. L.; Rhodes, P. J.; Davis, J. H.; Hollis, J. M.

    1980-01-01

    Careful observations have been made at 86.1 GHz to derive the absolute brightness temperatures of the sun (7914 + or - 192 K), Venus (357.5 + or - 13.1 K), Jupiter (179.4 + or - 4.7 K), and Saturn (153.4 + or - 4.8 K) with a standard error of about three percent. This is a significant improvement in accuracy over previous results at millimeter wavelengths. A stable transmitter and novel superheterodyne receiver were constructed and used to determine the effective collecting area of the Millimeter Wave Observatory (MWO) 4.9-m antenna relative to a previously calibrated standard gain horn. The thermal scale was set by calibrating the radiometer with carefully constructed and tested hot and cold loads. The brightness temperatures may be used to establish an absolute calibration scale and to determine the antenna aperture and beam efficiencies of other radio telescopes at 3.5-mm wavelength.

  3. Simultaneous pO2 and HbO2 measurement to determine absolute HbO2 concentration for in vivo near infrared spectroscopy

    Macnab, Andrew J.; Gagnon, Roy; Gagnon, Faith; Minchinton, Andrew I.; Fryer, Karen H.

    2003-01-01

    Purpose: Near infrared spectroscopy (NIRS) monitors absolute changes in concentration of chromophores from an unquantified baseline. A change in oxygenation is required to obtain information. Clinically, knowing initial chromophore concentration is desirable. We sought absolute initial concentrations by combining NIRS measurements with simultaneous Eppendorf histograph measurement (absolute values of tissue partial pressure of oxygen (pO2)). Methods: There were 22 trials on 9 occasions in 2 a...

  4. System for absolute measurement of electrolytic conductivity in aqueous solutions based on van der Pauw's theory

    Based on an innovative application of van der Pauw's theory, a system was developed for the absolute measurement of electrolytic conductivity in aqueous solutions. An electrolytic conductivity meter was designed that uses a four-electrode system with an axial–radial two-dimensional adjustment structure coupled to an ac voltage excitation source and signal collecting circuit. The measurement accuracy, resolution and repeatability of the measurement system were examined through a series of experiments. Moreover, the measurement system and a high-precision electrolytic conductivity meter were compared using some actual water samples. (paper)

  5. Measurement of absolute gamma ray emission probability of 1001 keV from the decay of 234mPa

    In the direct γ-ray spectrometric measurements of 238U content, 1001 keV γ-ray of 234mPa is commonly used in recent years. 234mPa is the second daughter of 238U and rapidly reaches secular equilibrium with the parent nucleus. This clean peak is well resolved by high purity Ge detectors and gives more accurate indication of uranium content without requiring any self attenuation correction. Several measurements of the absolute emission probability of the 1001 keV γ-ray of 234mPa have resulted in doubts concerning the old recommended value 0.59±0.01 % obtained by a radiochemical method. Therefore, this old value is now absolute and a newly value of 0.835±0.004 % is recommended. In this study the γ-ray spectrometric measurements were carried out using the powdered U3O8 and the certified uranium samples. A new experimental value o 0.861±0.015 % for the absolute γ-ray emission probability for the 1001 keV gamma-ray of the 234mPa has been obtained. The present measured values agrees good with the most experimental results appeared in the literature and is close to the newly recommended values of 0.835±0.004 % and 0.837±0.012 % for the 1001 keV γ-ray of 234mPa

  6. A Proposed Method for Measurement of Absolute Air Fluorescence Yield based on High Resolution Optical Emission Spectroscopy

    Gika, V; Maltezos, S

    2016-01-01

    In this work, we present a method for absolute measurement of air fluorescence yield based on high resolution optical emission spectroscopy. The absolute measurement of the air fluorescence yield is feasible using the Cherenkov light, emitted by an electron beam simultaneously with the fluorescence light, as a "standard candle". The separation of these two radiations can be accomplished exploiting the "dark" spectral regions of the emission band systems of the molecular spectrum of nitrogen. In these "dark" regions the net Cherenkov light can be recorded experimentally and be compared with the calculated one. The instrumentation for obtaining the nitrogen molecular spectra in high resolution and the noninvasive method for monitoring the rotational temperature of the emission process are also described. For the experimental evaluation of the molecular spectra analysis we used DC normal glow discharges in air performed in an appropriate spectral lamp considered as an air-fluorescence light emulator. The propose...

  7. Integration of Quantitative Positron Emission Tomography Absolute Myocardial Blood Flow Measurements in the Clinical Management of Coronary Artery Disease.

    Gewirtz, Henry; Dilsizian, Vasken

    2016-05-31

    In the >40 years since planar myocardial imaging with(43)K-potassium was introduced into clinical research and management of patients with coronary artery disease (CAD), diagnosis and treatment have undergone profound scientific and technological changes. One such innovation is the current state-of-the-art hardware and software for positron emission tomography myocardial perfusion imaging, which has advanced it from a strictly research-oriented modality to a clinically valuable tool. This review traces the evolving role of quantitative positron emission tomography measurements of myocardial blood flow in the evaluation and management of patients with CAD. It presents methodology, currently or soon to be available, that offers a paradigm shift in CAD management. Heretofore, radionuclide myocardial perfusion imaging has been primarily qualitative or at best semiquantitative in nature, assessing regional perfusion in relative terms. Thus, unlike so many facets of modern cardiovascular practice and CAD management, which depend, for example, on absolute values of key parameters such as arterial and left ventricular pressures, serum lipoprotein, and other biomarker levels, the absolute levels of rest and maximal myocardial blood flow have yet to be incorporated into routine clinical practice even in most positron emission tomography centers where the potential to do so exists. Accordingly, this review focuses on potential value added for improving clinical CAD practice by measuring the absolute level of rest and maximal myocardial blood flow. Physiological principles and imaging fundamentals necessary to understand how positron emission tomography makes robust, quantitative measurements of myocardial blood flow possible are highlighted. PMID:27245647

  8. Long-path atmospheric measurements using dual frequency comb measurements

    Waxman, Eleanor; Cossel, Kevin; Truong, Gar-Wing; Giorgetta, Fabrizio; Swann, William; Coddington, Ian; Newbury, Nathan

    2016-04-01

    The dual frequency comb spectrometer is a new tool for performing atmospheric trace gas measurements. This instrument is capable of measuring carbon dioxide, methane, and water with extremely high resolution in the region between 1.5 and 2.1 microns in the near-IR. It combines the high resolution of a laboratory-based FTIR instrument with the portability of a long-path DOAS system. We operate this instrument at path lengths of a few kilometers, thus bridging the spatial resolution of in-situ point sensors and the tens of square kilometer footprints of satellites. This spatial resolution is ideal for measuring greenhouse gas emissions from cities. Here we present initial long-path integrated column measurements of the greenhouse gases water, carbon dioxide, and methane in an urban environment. We present a time series with 5 minute time resolution over a 2 kilometer path in Boulder, Colorado at the urban-rural interface. We validate this data via a comparison with an in-situ greenhouse gas monitor co-located along the measurement path and show that we agree well on the baseline concentration but that we are significantly less sensitive to local point source emission that have high temporal variability, making this instrument ideal for measurements of average city-wide emissions. We additionally present progress towards measurements over an 11 kilometer path over downtown Boulder to measure the diurnal flux of greenhouse gases across the city.

  9. Absolute measurements of the fast neutron flux in the reactor RA

    The absolute neutron flux in the vertical VK-5 hole of the reactor RA was determined by using the 27Al (n, alpha) 24Na reaction, and by counting the 24Na - 2.5 MeV gamma line photopeak activity. A method for the determination of σeff as a mean value between the two large limiting cases of neutron spectra is used. The flux at the power level of 5 MW was found to be (2.5±0.9)·1012n/cm2sec (author)

  10. Absolute measurements of the alpha-gamma emitters activities by a sum-coincidence method

    The absolute activity of U-235 contained in a UO2 sample, using a sum-coincidence circuit which selected only the alpha particles which were simultaneous with the well known 184 Kev gamma radiation from Th-231. The alpha particles were detected by ZnS(Ag) scintillator specially designed to show its maximun efficiency for U-235 alpha particles, whereas the gamma radiation was detected by NaI(Tl) scintillation detector. The values obtained for the half-life of U-235 was compared with data from various observers using different experimental techniques. (Author)