The fission cross-section of 233Pa(2nth, f) using fission track technique has been determined for the first time using thermal neutron flux of the reactor APSARA. This is important from the point of view of advance heavy water reactor (AHWR), which is to be described. On the other hand, the yields of fission products in the fast neutron induced fission of minor actinides are important from the point accelerator driven sub critical system (ADSS). In view of that, absolute yields of fission products in the fast neutron induced fission of 238U, 237Np, 238,240Pu, 243Am and 244Cm have been determined using the fission track-cum gamma-ray spectrometric technique. The total number of fission occurring in the target was estimated by track technique, whereas the activities of the fission products have been determined using gamma-ray spectrometric technique. Detailed procedure and its importance are to be discussed. (author)
Mass yields from fission induced by a span of neutron energies up to 18 MeV have been measured for Th232, U235 and U238 target nuclei. Particular attention has been given to the dependence of symmetric fission yields on energy. To study the effect of angular momentum, fission yields from the U236 compound nucleus formed by alpha-particle irradiations of Th232 were also studied over the same span of excitation energies. A standard set of Pd109, Ag111, Pd112 and Ag113 symmetric fission yields was generally measured for all irradiations. In addition, yields of Eu156, Cs136 and 2.3-d Cd115 were measured for some selected combinations of projectile, energy and target nucleus. Assays for Zr97 and sometimes also Ba139 served as fission monitors. Altogether 150 fission yields were measured for these combinations of target nucleus, projectile and incident energy. About one-third of these were checked by replicated irradiations. At highest energies for the U236 compound nucleus the symmetric fission yield from alpha-particle-induced fission is about 13% higher than for neutron-induced fission. Dips in symmetric fission yield were observed at the energy onset of third-chance fission for each target and projectile. Some indication of a small central peak in the mass distribution was observed in the yields from U236 compound nucleus fission, but not from the Th233 compound nucleus fission. Detailed mathematical methods have been developed to separate the effects of fissions preceding and following neutron emission. These methods were used to remove the effects of second- and third-chance fissions from the measured symmetric fission yields. These calculated yields for first-chance fission show no dips with energy. The calculations also show that perhaps half the difference between symmetric yields for alpha- particle-induced fission of Th232 and neutron-induced fission of U235 is attributable to angular momentum effects. Both calculated first-chance yields and measured yields
Data are summed up necessary for determining the yields of individual fission products from different fissionable nuclides. Fractional independent yields, cumulative and isobaric yields are presented here for the thermal fission of 235U, 239Pu, 241Pu and for fast fission (approximately 1 MeV) of 235U, 238U, 239Pu, 241Pu; these values are included into the 5th version of the YIELDS library, supplementing the BIBFP library. A comparison is made of experimental data and possible improvements of calculational methods are suggested. (author)
Absolute calibration technique for spontaneous fission sources
An absolute calibration technique for a spontaneously fissioning nuclide (which involves no arbitrary parameters) allows unique determination of the detector efficiency for that nuclide, hence of the fission source strength
Status of fission yield measurements
Fission yield measurement and yield compilation activities in the major laboratories of the world are reviewed. In addition to a general review of the effort of each laboratory, a brief summary of yield measurement activities by fissioning nuclide is presented. A new fast reactor fission yield measurement program being conducted in the US is described
Piksaikine, V. [Institute of Physics and Power Engineering, Obninsk (Russian Federation)
1997-03-01
The experimental method for measurements of the delayed neutron yields and period is presented. The preliminary results of the total yield, relative abundances and periods are shown comparing with the previously reported values. (J.P.N.)
Fission yield measurements at IGISOL
Lantz M.
2016-01-01
Full Text Available The fission product yields are an important characteristic of the fission process. In fundamental physics, knowledge of the yield distributions is needed to better understand the fission process. For nuclear energy applications good knowledge of neutroninduced fission-product yields is important for the safe and efficient operation of nuclear power plants. With the Ion Guide Isotope Separator On-Line (IGISOL technique, products of nuclear reactions are stopped in a buffer gas and then extracted and separated by mass. Thanks to the high resolving power of the JYFLTRAP Penning trap, at University of Jyväskylä, fission products can be isobarically separated, making it possible to measure relative independent fission yields. In some cases it is even possible to resolve isomeric states from the ground state, permitting measurements of isomeric yield ratios. So far the reactions U(p,f and Th(p,f have been studied using the IGISOL-JYFLTRAP facility. Recently, a neutron converter target has been developed utilizing the Be(p,xn reaction. We here present the IGISOL-technique for fission yield measurements and some of the results from the measurements on proton induced fission. We also present the development of the neutron converter target, the characterization of the neutron field and the first tests with neutron-induced fission.
Fission yield measurements at IGISOL
Lantz, M.; Al-Adili, A.; Gorelov, D.; Jokinen, A.; Kolhinen, V. S.; Mattera, A.; Moore, I.; Penttilä, H.; Pomp, S.; Prokofiev, A. V.; Rakopoulos, V.; Rinta-Antila, S.; Simutkin, V.; Solders, A.
2016-06-01
The fission product yields are an important characteristic of the fission process. In fundamental physics, knowledge of the yield distributions is needed to better understand the fission process. For nuclear energy applications good knowledge of neutroninduced fission-product yields is important for the safe and efficient operation of nuclear power plants. With the Ion Guide Isotope Separator On-Line (IGISOL) technique, products of nuclear reactions are stopped in a buffer gas and then extracted and separated by mass. Thanks to the high resolving power of the JYFLTRAP Penning trap, at University of Jyväskylä, fission products can be isobarically separated, making it possible to measure relative independent fission yields. In some cases it is even possible to resolve isomeric states from the ground state, permitting measurements of isomeric yield ratios. So far the reactions U(p,f) and Th(p,f) have been studied using the IGISOL-JYFLTRAP facility. Recently, a neutron converter target has been developed utilizing the Be(p,xn) reaction. We here present the IGISOL-technique for fission yield measurements and some of the results from the measurements on proton induced fission. We also present the development of the neutron converter target, the characterization of the neutron field and the first tests with neutron-induced fission.
The absolute fission rates was measured by the depleted uranium fission chamber. The efficiency of the fission fragments recorded in the fission chamber was analyzed. The factor influencing absolute fission rates was studied in the experiment, including the disturbing effect between detectors and the effect of the structural material of the fission chamber, etc
Fission product yields from 22 MeV neutron-induced fission of 235U
The chain yields of 28 product nuclides were determined for the fission of 235U induced by 22 MeV neutrons for the first time. Absolute fission rate was monitored with a double-fission chamber. Fission product activities were measured by HPGe γ-ray spectrometry. Time of flight technique was used to measure the neutron spectrum in order to estimate fission events induced by break-up neutrons and scattering neutrons. A mass distribution curve was obtained and the dependence of fission yield on neutron energy is discussed
Fission product yields from 19.1 MeV neutron induced fission of 238U
36 chain yields were determined for the fission of 238U induced by 19.1 MeV neutrons for the first time. Absolute fission rate was monitored with a double-fission chamber. Fission product activities were measured by HPGe γ-ray spectrometry. Threshold detector method was used to measure the neutron spectrum in order to estimate the fission events induced by break-up neutrons and scattering neutrons. A mass distribution curve was obtained and the dependence of fission yield on neutron energy was discussed
In this paper we summarize the current status of the recent US evaluation for 34 fissioning nuclides at one or more neutron incident energies and for spontaneous fission. Currently there are 50 yields sets, and for each we have independent and cumulative yields and uncertainties for approximately 1100 fission products. When finalized the recommended data will become part of Version VI of the US ENDF/B. Other major evaluations in progress that are included in a recently formed IAEA Coordinated Research Program are also summarized. In a second part we review two empirical models in use to estimate independent yields. Comparison of model estimates with measured data is presented, including a comparison with some recent data obtained from Lohengrin (Cf-249 T). 18 refs., 13 figs., 3 tabs
Status of fission yield evaluations
Very few yield compilations are also evaluations, and very few contain an extensive global library of measured data and extensive models for unmeasured data. The earlier U.K. evaluations and US evaluations were comparable up to the retirements of the primary evaluators. Only the effort in the US has been continued and expanded. The previous U.K. evaluations have been published. In this paper we summarize the current status of the US evaluation, philosophy, and various integral yield tests for 34 fissioning nuclides at one or more neutron incident energies and/or for spontaneous fission. Currently there are 50 yield sets and for each we have independent and cumulative yields and uncertainties for approximately 1100 fission products. When finalized, the recommended data will become part of the next version of the US Evaluated Nuclear Data File (ENDF/B-VI). The complete set of data, including the basic input of measured yields, will be issued as a sequel to the General Electric evaluation reports (better known by the authors' names: Rider - or earlier - Meek and Rider). 16 references
Fission yields in the thermal neutron fission of plutonium-239
Fission yields for 27 mass numbers were determined in the thermal neutron fission of 239Pu using high resolution gamma ray spectrometry and radiochemical method. The results obtained using gamma ray spectrometry and from the investigations on the fission yield of 99Mo using radiochemical method were reported earlier. These data along with fission yields for 19 mass numbers determined using radiochemical method formed a part of Ph.D. thesis. The data given here are a compilation of all the results and are presented considering the neutron temperature correction to 239Pu fission cross-section which is used for calculating the total number of fissions in these studies. A comparison is made of the resulting fission yield values with the latest experimentally determined values and those given in two recent compilations. (author)
Fission Yields in the Iodine Region
Independent yields of all iodine isotopes from l118 to I134 except I122 (short-lived), I127(stable) and I129(long-lived) resulting from irradiating natural uranium with 590-MeV and 19-GeV protons have been measured. In addition, cross-sections (mostly cumulative) of many xenon and tellurium isotopes have been obtained. In the experiments extensive use has been made of an electromagnetic isotope separator, constructed at CERN for nuclear reaction studies, by which the iodine (or tellurium) isotopes were separated from samples chemically isolated from the irradiated targets. In the study of xenon isotopes the uranium target was heated in a small oven connected to the separator via a cold trap to stop unwanted activities. After the separation, the activity of the samples was measured by counting methods. In certain cases (I118, I119, I120,I121, Xe118, Xe119, Xe120, Xe121) spectroscopic investigations were performed to provide information for the conversion of the counting data to absolute counting-rates needed for the determination of the fission yields. The experiments show a significant shift in the isotopic cross-section distribution when the 19-GeV results are compared with those obtained at the lower irradiation energy. The yields far out ai the neutron-deficient wing increase considerably whereas the other part of the distribution is depressed. A comparison with spallation data indicates that the neutron-deficient part of the distribution might result from the spallation of uranium. Spallation gives negligible yields in the iodine regional 590 MeV, but at 19 GeV these cross-sections a re expected to be much larger. The competition with spallation decreases the probability for fission, and consequently the yields of the fission products will decrease. (author)
Present status of fission yield data
Fission yield data of minor actinides are needed for transmutation of nuclear waste by an ADS system. The yield data, however, are not enough for the application. The present status of the yield data is presented in this report. (author)
Systematics of Fission-Product Yields
Empirical equations representing systematics of fission-product yields have been derived from experimental data. The systematics give some insight into nuclear-structure effects on yields, and the equations allow estimation of yields from fission of any nuclide with atomic number ZF = 90 thru 98, mass number AF = 230 thru 252, and precursor excitation energy (projectile kinetic plus binding energies) PE = 0 thru ∼200 MeV--the ranges of these quantities for the fissioning nuclei investigated. Calculations can be made with the computer program CYFP. Estimates of uncertainties in the yield estimates are given by equations, also in CYFP, and range from ∼ 15% for the highest yield values to several orders of magnitude for very small yield values. A summation method is used to calculate weighted average parameter values for fast-neutron (∼ fission spectrum) induced fission reactions
Precise Measurement of the Absolute Fluorescence Yield
Ave, M.; Bohacova, M.; Daumiller, K.; Di Carlo, P.; di Giulio, C.; San Luis, P. Facal; Gonzales, D.; Hojvat, C.; Hörandel, J. R.; Hrabovsky, M.; Iarlori, M.; Keilhauer, B.; Klages, H.; Kleifges, M.; Kuehn, F.; Monasor, M.; Nozka, L.; Palatka, M.; Petrera, S.; Privitera, P.; Ridky, J.; Rizi, V.; D'Orfeuil, B. Rouille; Salamida, F.; Schovanek, P.; Smida, R.; Spinka, H.; Ulrich, A.; Verzi, V.; Williams, C.
2011-09-01
We present preliminary results of the absolute yield of fluorescence emission in atmospheric gases. Measurements were performed at the Fermilab Test Beam Facility with a variety of beam particles and gases. Absolute calibration of the fluorescence yield to 5% level was achieved by comparison with two known light sources--the Cherenkov light emitted by the beam particles, and a calibrated nitrogen laser. The uncertainty of the energy scale of current Ultra-High Energy Cosmic Rays experiments will be significantly improved by the AIRFLY measurement.
The SPIDER fission fragment spectrometer for fission product yield measurements
The SPectrometer for Ion DEtermination in fission Research (SPIDER) has been developed for measuring mass yield distributions of fission products from spontaneous and neutron-induced fission. The 2E–2v method of measuring the kinetic energy (E) and velocity (v) of both outgoing fission products has been utilized, with the goal of measuring the mass of the fission products with an average resolution of 1 atomic mass unit (amu). The SPIDER instrument, consisting of detector components for time-of-flight, trajectory, and energy measurements, has been assembled and tested using 229Th and 252Cf radioactive decay sources. For commissioning, the fully assembled system measured fission products from spontaneous fission of 252Cf. Individual measurement resolutions were met for time-of-flight (250 ps FWHM), spacial resolution (2 mm FHWM), and energy (92 keV FWHM for 8.376 MeV). Mass yield results measured from 252Cf spontaneous fission products are reported from an E–v measurement
The SPIDER fission fragment spectrometer for fission product yield measurements
Meierbachtol, K.; Tovesson, F. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Shields, D. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Colorado School of Mines, Golden, CO 80401 (United States); Arnold, C. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Blakeley, R. [University of New Mexico, Albuquerque, NM 87131 (United States); Bredeweg, T.; Devlin, M. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Hecht, A.A.; Heffern, L.E. [University of New Mexico, Albuquerque, NM 87131 (United States); Jorgenson, J.; Laptev, A. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Mader, D. [University of New Mexico, Albuquerque, NM 87131 (United States); O' Donnell, J.M.; Sierk, A.; White, M. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)
2015-07-11
The SPectrometer for Ion DEtermination in fission Research (SPIDER) has been developed for measuring mass yield distributions of fission products from spontaneous and neutron-induced fission. The 2E–2v method of measuring the kinetic energy (E) and velocity (v) of both outgoing fission products has been utilized, with the goal of measuring the mass of the fission products with an average resolution of 1 atomic mass unit (amu). The SPIDER instrument, consisting of detector components for time-of-flight, trajectory, and energy measurements, has been assembled and tested using {sup 229}Th and {sup 252}Cf radioactive decay sources. For commissioning, the fully assembled system measured fission products from spontaneous fission of {sup 252}Cf. Individual measurement resolutions were met for time-of-flight (250 ps FWHM), spacial resolution (2 mm FHWM), and energy (92 keV FWHM for 8.376 MeV). Mass yield results measured from {sup 252}Cf spontaneous fission products are reported from an E–v measurement.
Fine structure in the fission fragment yields
Discussed are the most interesting experiments on the fine structure of fission product yields of U, Pu, Th, Cf, Es, Cm, Fr, Np isotopes. Modern comprehension of the fine structure nature in connection with other problems of fission dynamics is considered. It is noted, that the fine structure results from pairing correlations in a nucleus. The conclusion is drawn, that the available set of experimental data is not sufficient to elucidate the fine structure nature
Fission Yields of Some Isotopes in the Fission of Th232 by Reactor Neutrons
The fission yields of the longer-lived isotopes produced in the fission of Th232 are not very well known; existing data show rather large discrepancies and/or uncertainties. Since we feel that at least some of these discrepancies arise from difficulties in measuring the absolute activities of the fission products, we measured the fission yield of 10 selected isotopes whose decay schemes are well understood. The thorium foils were irradiated in a position at the edge of the core of the SAPHIR swimming pool reactor. Following irradiation, the thorium was dissolved after addition of appropriate carriers. The fission products of interest were determined by conventional radiochemical methods that had to be modified slightly to ensure good decontamination from the abundantly formed Pa233 . The chemical yields were determined by gravimetric methods. Counting was done preferentially on a γ-spectrometer that had been calibrated at 11 different energies by standards either obtained from the IAEA or prepared by 4πβ-counting. In the case of Sr90, Ru106 and Ce144 a β-proportional counter was used that had been calibrated for these isotopes. In addition to the sought elements, Mo99 was isolated from each foil to serve as an internal monitor for the number of fissions taking place. The experiment thus gave the ratio of the yield of the sought element to the yield of Mo99. This ratio ''R'' was obtained for Sr90, Ru103, Ru106, Ag111, Pd112, I131, Cs137, Ba140, Ba141, Ce141 and Ce144, Results indicate the existence of a third peak in the yield mass curve in the region of symmetric fission. Yields of fission products relative to the Mo99 yields are given, and the absolute yields calculated by assuming y Mo99 = 2.78%. This number was derived from the work of Iyer et al., and was obtained by normalizing the area under the yield mass curve to 200%. (author)
Model Calculation of Fission Product Yields Data using GEF Code
Fission yields data are classified with spontaneous fission data and neutron induced fission data. The fission product yields data at several energy points for the limited actinides are included in nuclear data libraries such as ENDF/B, JEFF and JENDL because production of those is based mainly on experimental results and it is very difficult to conduct experiments for all actinides and continuous energies. Therefore, in order to obtain fission yields data without experimental data, a theoretical fission model should be introduced to produce the yields data. GEneral Fission model (GEF) is developed to predict the properties for fissioning systems that have not been measured and that are not accessible to experiment. In this study, the fission yields data generated from GEF code are compared with the measured data and the recently available nuclear data libraries. The GEF code is very powerful tool to generate fission yields without measurements. Also, it can produce the distribution of fission product yields for continuous neutron energy while measured data are given only at several energies. The fission yields data of 235U have been tentatively generated with GEF code in this work. Comparing GEF results with measurements and recently released evaluated fission yields data, it is confirmed that GEF code can successfully predict the fission yields data. With its sophisticated model, GEF code is playing a significant role in nuclear industry
Revision of the JENDL FP Fission Yield Data
Katakura Jun-ichi
2016-01-01
Full Text Available Some fission yields data of JENDL FP Fission Yields Data File 2011 (JENDL/FPY-2011 revealed inadequacies when applied to delayed neutron related subjects. The sensitivity analyses of decay heat summation calculations also showed some problems. From these results the fission yields of JENDL/FPY-2011 have been revised. The present report describes the revision of the yield data by emphasizing the sensitivity analyses.
Revision of the JENDL FP Fission Yield Data
Katakura, Jun-ichi; Minato, Futoshi; Ohgama, Kazuya
2016-03-01
Some fission yields data of JENDL FP Fission Yields Data File 2011 (JENDL/FPY-2011) revealed inadequacies when applied to delayed neutron related subjects. The sensitivity analyses of decay heat summation calculations also showed some problems. From these results the fission yields of JENDL/FPY-2011 have been revised. The present report describes the revision of the yield data by emphasizing the sensitivity analyses.
Absolute Quantum Yield Measurement of Powder Samples
Moreno, Luis A.
2012-01-01
Measurement of fluorescence quantum yield has become an important tool in the search for new solutions in the development, evaluation, quality control and research of illumination, AV equipment, organic EL material, films, filters and fluorescent probes for bio-industry.
Energy Dependence of Plutonium Fission-Product Yields
A method is developed for interpolating between and/or extrapolating from two pre-neutron-emission first-chance mass-asymmetric fission-product yield curves. Measured 240Pu spontaneous fission and thermal-neutron-induced fission of 239Pu fission-product yields (FPY) are extrapolated to give predictions for the energy dependence of the n + 239Pu FPY for incident neutron energies from 0 to 16 MeV. After the inclusion of corrections associated with mass-symmetric fission, prompt-neutron emission, and multi-chance fission, model calculated FPY are compared to data and the ENDF/B-VII.1 evaluation. The ability of the model to reproduce the energy dependence of the ENDF/B-VII.1 evaluation suggests that plutonium fission mass distributions are not locked in near the fission barrier region, but are instead determined by the temperature and nuclear potential-energy surface at larger deformation.
Energy Dependence of Plutonium Fission-Product Yields
Lestone, J. P.
2011-12-01
A method is developed for interpolating between and/or extrapolating from two pre-neutron-emission first-chance mass-asymmetric fission-product yield curves. Measured 240Pu spontaneous fission and thermal-neutron-induced fission of 239Pu fission-product yields (FPY) are extrapolated to give predictions for the energy dependence of the n + 239Pu FPY for incident neutron energies from 0 to 16 MeV. After the inclusion of corrections associated with mass-symmetric fission, prompt-neutron emission, and multi-chance fission, model calculated FPY are compared to data and the ENDF/B-VII.1 evaluation. The ability of the model to reproduce the energy dependence of the ENDF/B-VII.1 evaluation suggests that plutonium fission mass distributions are not locked in near the fission barrier region, but are instead determined by the temperature and nuclear potential-energy surface at larger deformation.
Highlights: • Fission yield data and uncertainty comparison between major nuclear data libraries. • Fission yield covariance generation through Bayesian technique. • Study of the effect of fission yield correlations on decay heat calculations. • Covariance information contribute to reduce fission pulse decay heat uncertainty. - Abstract: Fission product yields are fundamental parameters in burnup/activation calculations and the impact of their uncertainties was widely studied in the past. Evaluations of these uncertainties were released, still without covariance data. Therefore, the nuclear community expressed the need of full fission yield covariance matrices to be able to produce inventory calculation results that take into account the complete uncertainty data. State-of-the-art fission yield data and methodologies for fission yield covariance generation were researched in this work. Covariance matrices were generated and compared to the original data stored in the library. Then, we focused on the effect of fission yield covariance information on fission pulse decay heat results for thermal fission of 235U. Calculations were carried out using different libraries and codes (ACAB and ALEPH-2) after introducing the new covariance values. Results were compared with those obtained with the uncertainty data currently provided by the libraries. The uncertainty quantification was performed first with Monte Carlo sampling and then compared with linear perturbation. Indeed, correlations between fission yields strongly affect the uncertainty of decay heat. Eventually, a sensitivity analysis of fission product yields to fission pulse decay heat was performed in order to provide a full set of the most sensitive nuclides for such a calculation
Fission product yield distribution in the 12, 14, and 16 MeV bremsstrahlung-induced fission of 232Th
The absolute cumulative yields of various fission products in the 12, 14, and 16 MeV bremsstrahlung-induced fission of 232Th were determined using a recoil catcher and an off-line γ -ray spectrometric technique using the ELBE electron linac of Helmholtz-Zentrum Dresden-Rossendorf in Dresden, Germany. The mass chain yields were obtained from the absolute cumulative yields by correcting the charge distribution. The peak-to-valley ratio, average light mass (left angle AL right angle) and heavy mass (left angle AH right angle) values, and average number of neutrons (left angle n right angle exp) in the bremsstrahlung-induced fission of 232Th at different excitation energies were obtained from the mass chain yield data. The present study and existing literature data for the 232Th(γ, f) reaction are compared with similar data for the 238U(γ, f) reaction at various excitation energies, and surprisingly different behavior was found in the two fissioning systems. (orig.)
Revisiting the even-odd staggering in fission fragment yields
Caamano, M.; Rejmund, F.; Schmidt, K. -H.
2009-01-01
The even-odd staggering observed in the experimental fission-fragment nuclear-charge yields is investigated over a wide systematics of fission fragments measured at Lohengrin in direct kinematics and at GSI in inverse kinematics. The general increase of the even-odd staggering in the fission-fragment charge yields towards asymmetric charge splits is explained by the absorption of the unpaired nucleons by the heavy fragment. As a consequence, the well established trend of evenodd staggering in...
The fission fragment yields at the photofission of actinide nuclei
The fission fragment yields of isotopes 101Mo, 135I, 135mCs were measured at the photo-fission of actinide nuclei 232Th, 238U, 237Np. These fission fragments have some peculiarities in nuclear structure or in practical using. The measurements were performed on the microtron bremsstrahlung at the Flerov Laboratory of Nuclear Reactions, JINR, at the electron energy 22 MeV. The activation method with an HPGe detector was used in these measurements of the yields
Compilation and evaluation of fission yield nuclear data
The task of this meeting was to review the progress made since the previous meeting on fission yield evaluation and to define the tasks for an IAEA Co-ordinated Research Programme in detail. Improvements have been noted in measured data, model calculations and the situation of fission yield evaluation. Tabs
On the absolute value of the air-fluorescence yield
Rosado Vélez, Jaime; Blanco Ramos, Francisco; Arqueros Martínez, Fernando
2014-01-01
The absolute value of the air-fluorescence yield is a key parameter for the energy reconstruction of extensive air showers registered by fluorescence telescopes. In previous publications, we reported a detailed Monte Carlo simulation of the air-fluorescence generation that allowed the theoretical evaluation of this parameter. This simulation has been upgraded in the present work. As a result, we determined an updated absolute value of the fluorescence yield of 7.9 +/- 2.0 ph/MeV for the band ...
Study of Relationship Between Neutron Energy and Fission Yields of 95Zr, 140Ba and 147Nd From 235U
2001-01-01
This work measures fission yields of 235U induced by neutrons with energy of thermal, 3.0, 5.0, 5.5, 8.0 and 14.8 MeV. The main purpose is to study the relationship between neutron energy and fission fields of 95Zr,140Ba and 147Nd from 235U by measuring the radioactivity of foil with direct gamma spectrometry. The fission yields induced by fast neutrons are get by fast-thermal-ratio method which based on yields from thermal neutrons, yields by thermal neutron are come from absolute measurement. Since fast-thermal-ratio method eliminates uncertainties of gamma intensity, gamma
Determination of fission gas yields from isotope ratios
Mogensen, Mogens Bjerg
1983-01-01
This paper describes a method of calculating the actual fission yield of Kr and Xe in nuclear fuel including the effect of neutron capture reactions and decay. The bases for this calculation are the cumulative yields (ref. 1) of Kr and Xe isotopes (or pairs of isotopes) which are unaffected by...... neutron capture reactions, and measured Kr and Xe isotope ratios. Also the burnup contribution from the different fissile heavy isotopes must be known in order to get accurate fission gas yields....
FFTF (FAST FLUX TEST FACILITY) REACTOR CHARACTERIZATION PROGRAM ABSOLUTE FISSION RATE MEASUREMENTS
FULLER JL; GILLIAM DM; GRUNDL JA; RAWLINS JA; DAUGHTRY JW
1981-05-01
Absolute fission rate measurements using modified National Bureau of Standards fission chambers were performed in the Fast Flux Test Facility at two core locations for isotopic deposits of {sup 232}Th, {sup 233}U, {sup 235}U, {sup 238}U, {sup 237}Np, {sup 239}Pu, {sup 240}Pu, and {sup 241}Pu. Monitor chamber results at a third location were analyzed to support other experiments involving passive dosimeter fission rate determinations.
FFTF (Fast Flux Test Facility) Reactor Characterization Program: Absolute Fission-rate Measurements
Fuller, J.L.; Gilliam, D.M.; Grundl, J.A.; Rawlins, J.A.; Daughtry, J.W.
1981-05-01
Absolute fission rate measurements using modified National Bureau of Standards fission chambers were performed in the Fast Flux Test Facility at two core locations for isotopic deposits of {sup 232}Th, {sup 233}U, {sup 235}U, {sup 238}U, {sup 237}Np, {sup 239}Pu, {sup 240}Pu, and {sup 241}Pu. Monitor chamber results at a third location were analyzed to support other experiments involving passive dosimeter fission rate determinations.
Some 235U reference fission product yield data evaluation
To satisfy the requirement of application for reference fission product yield data, the data have been and will be continuously evaluated. Present work, in which the reference data for 20 product nuclides from 235U fission were evaluated, is a part of the whole work
Absolute differential yield of parametric x-ray radiation
The results of measurements of absolute differential yield of parametric X-ray radiation (PXR) in thin single crystal are presented for the first time. It has been established that the experimental results are in good agreement with theoretical calculations according with kinematical theory. The influence of density effect on PXR properties is discussed. (author). 19 refs., 7 figs
Relative fission product yield determination in the USGS TRIGA Mark I reactor
Koehl, Michael A.
Fission product yield data sets are one of the most important and fundamental compilations of basic information in the nuclear industry. This data has a wide range of applications which include nuclear fuel burnup and nonproliferation safeguards. Relative fission yields constitute a major fraction of the reported yield data and reduce the number of required absolute measurements. Radiochemical separations of fission products reduce interferences, facilitate the measurement of low level radionuclides, and are instrumental in the analysis of low-yielding symmetrical fission products. It is especially useful in the measurement of the valley nuclides and those on the extreme wings of the mass yield curve, including lanthanides, where absolute yields have high errors. This overall project was conducted in three stages: characterization of the neutron flux in irradiation positions within the U.S. Geological Survey TRIGA Mark I Reactor (GSTR), determining the mass attenuation coefficients of precipitates used in radiochemical separations, and measuring the relative fission products in the GSTR. Using the Westcott convention, the Westcott flux, modified spectral index, neutron temperature, and gold-based cadmium ratios were determined for various sampling positions in the USGS TRIGA Mark I reactor. The differential neutron energy spectrum measurement was obtained using the computer iterative code SAND-II-SNL. The mass attenuation coefficients for molecular precipitates were determined through experiment and compared to results using the EGS5 Monte Carlo computer code. Difficulties associated with sufficient production of fission product isotopes in research reactors limits the ability to complete a direct, experimental assessment of mass attenuation coefficients for these isotopes. Experimental attenuation coefficients of radioisotopes produced through neutron activation agree well with the EGS5 calculated results. This suggests mass attenuation coefficients of molecular
Compilation of fission product yields Vallecitos Nuclear Center
This document is the ninth in a series of compilations of fission yield data made at Vallecitos Nuclear Center in which fission yield measurements reported in the open literature and calculated charge distributions have been utilized to produce a recommended set of yields for the known fission products. The original data with reference sources, as well as the recommended yields are presented in tabular form for the fissionable nuclides U-235, Pu-239, Pu-241, and U-233 at thermal neutron energies; for U-235, U-238, Pu-239, and Th-232 at fission spectrum energies; and U-235 and U-238 at 14 MeV. In addition, U-233, U-236, Pu-240, Pu-241, Pu-242, Np-237 at fission spectrum energies; U-233, Pu-239, Th-232 at 14 MeV and Cf-252 spontaneous fission are similarly treated. For 1979 U234F, U237F, Pu249H, U234He, U236He, Pu238F, Am241F, Am243F, Np238F, and Cm242F yields were evaluated. In 1980, Th227T, Th229T, Pa231F, Am241T, Am241H, Am242Mt, Cm245T, Cf249T, Cf251T, and Es254T are also evaluated
Evaluation and compilation of fission product yields 1993
This document is the latest in a series of compilations of fission yield data. Fission yield measurements reported in the open literature and calculated charge distributions have been used to produce a recommended set of yields for the fission products. The original data with reference sources, and the recommended yields axe presented in tabular form. These include many nuclides which fission by neutrons at several energies. These energies include thermal energies (T), fission spectrum energies (F), 14 meV High Energy (H or HE), and spontaneous fission (S), in six sets of ten each. Set A includes U235T, U235F, U235HE, U238F, U238HE, Pu239T, Pu239F, Pu241T, U233T, Th232F. Set B includes U233F, U233HE, U236F, Pu239H, Pu240F, Pu241F, Pu242F, Th232H, Np237F, Cf252S. Set C includes U234F, U237F, Pu240H, U234HE, U236HE, Pu238F, Am241F, Am243F, Np238F, Cm242F. Set D includes Th227T, Th229T, Pa231F, Am241T, Am241H, Am242MT, Cm245T, Cf249T, Cf251T, Es254T. Set E includes Cf250S, Cm244S, Cm248S, Es253S, Fm254S, Fm255T, Fm256S, Np237H, U232T, U238S. Set F includes Cm243T, Cm246S, Cm243F, Cm244F, Cm246F, Cm248F, Pu242H, Np237T, Pu240T, and Pu242T to complete fission product yield evaluations for 60 fissioning systems in all. This report also serves as the primary documentation for the second evaluation of yields in ENDF/B-VI released in 1993
Evaluation and compilation of fission product yields 1993
England, T.R.; Rider, B.F.
1995-12-31
This document is the latest in a series of compilations of fission yield data. Fission yield measurements reported in the open literature and calculated charge distributions have been used to produce a recommended set of yields for the fission products. The original data with reference sources, and the recommended yields axe presented in tabular form. These include many nuclides which fission by neutrons at several energies. These energies include thermal energies (T), fission spectrum energies (F), 14 meV High Energy (H or HE), and spontaneous fission (S), in six sets of ten each. Set A includes U235T, U235F, U235HE, U238F, U238HE, Pu239T, Pu239F, Pu241T, U233T, Th232F. Set B includes U233F, U233HE, U236F, Pu239H, Pu240F, Pu241F, Pu242F, Th232H, Np237F, Cf252S. Set C includes U234F, U237F, Pu240H, U234HE, U236HE, Pu238F, Am241F, Am243F, Np238F, Cm242F. Set D includes Th227T, Th229T, Pa231F, Am241T, Am241H, Am242MT, Cm245T, Cf249T, Cf251T, Es254T. Set E includes Cf250S, Cm244S, Cm248S, Es253S, Fm254S, Fm255T, Fm256S, Np237H, U232T, U238S. Set F includes Cm243T, Cm246S, Cm243F, Cm244F, Cm246F, Cm248F, Pu242H, Np237T, Pu240T, and Pu242T to complete fission product yield evaluations for 60 fissioning systems in all. This report also serves as the primary documentation for the second evaluation of yields in ENDF/B-VI released in 1993.
Covariance Matrix Evaluations for Independent Mass Fission Yields
Terranova, N., E-mail: nicholas.terranova@unibo.it [Industrial Engineering Department (DIN), University of Bologna (Italy); Serot, O.; Archier, P.; De Saint Jean, C. [CEA, DEN, DER/SPRC, Cadarache, F-13108 Saint Paul lez Durance (France); Sumini, M. [Industrial Engineering Department (DIN), University of Bologna (Italy)
2015-01-15
Recent needs for more accurate fission product yields include covariance information to allow improved uncertainty estimations of the parameters used by design codes. The aim of this work is to investigate the possibility to generate more reliable and complete uncertainty information on independent mass fission yields. Mass yields covariances are estimated through a convolution between the multi-Gaussian empirical model based on Brosa's fission modes, which describe the pre-neutron mass yields, and the average prompt neutron multiplicity curve. The covariance generation task has been approached using the Bayesian generalized least squared method through the CONRAD code. Preliminary results on mass yields variance-covariance matrix will be presented and discussed from physical grounds in the case of {sup 235}U(n{sub th}, f) and {sup 239}Pu(n{sub th}, f) reactions.
The fission of elements of medium Z induced by 156-MeV protons is difficult to demonstrate, owing to the particularly small cross-section of the reaction. The detection of fission fragments by means of sheets of mica seemed to be a technique well suited to this type of experiment. In the sheets of synthetic mica that we used it was only the fission fragments that left microscopically identifiable traces. Moreover, these samples contain very few impurities likely to undergo fission, so practically no parasitic traces are observed. The targets consisted of metals of not less than 99.999% purity. We determined the absolute cross-sections.of fission induced by 156-MeV protons in the case of lanthanum (5 μb) and praseodymium (6 μb), and estimated those of cadmium, indium, tin and antimony (≤ 0.1 μb). The sheets of mica were placed on each side of the metal sheet. The kinetics of the reaction explain why more traces were found on the mica sheets placed on the from face. As thick targets were used to take account of self-absorption, we determined (in the case of uranium and gold) the ratio of yields between a thin target and a thick target, and then extrapolated our results to the other elements. We made checks by comparing the absolute cross-sections for fission (induced by 156-MeV protons) in uranium, bismuth, gold and tantalum, as obtained by this method, with those obtained by counters at this energy. The observed agreement was very good. (author)
Fission Yields and Other Diagnostics for Nuclear Performance
I summarize advances in our understanding of basic nuclear physics cross sections and decay properties that are needed to characterize the magnitude and energy-dependence of a neutron flux, and to determine the amount of fission burnup in plutonium fuel. The number of fissions that have occurred in a neutron environment can be deduced from measurements of the fission products created, providing that the fission product yields are known accurately. I describe how our understanding of plutonium fission product yields has improved in recent years through a meta-analysis of various measured data, and through identification of fission product yield incident-energy dependencies over the 0.2-2 MeV fast energy region. This led to the resolution of a previous discrepancy between the Los Alamos and Lawrence Livermore National Laboratories in their plutonium yield assessments in the fast energy region, although more experimental work is still needed to resolve discrepancies at 14 MeV. Work is also described that has improved our understanding of (n,2n) cross sections that are used as diagnostics of the high-energy neutron spectrum – both on plutonium and americium, and on the radiochemical detectors yttrium, iridium, and thulium. Finally, some observations are made on the importance of continuing to develop our Evaluated Nuclear Data Files (ENDF) database using physics insights from differential cross section and integral laboratory experiments and from nuclear theory advances
Development of JENDL Decay and Fission Yield Data Libraries
Katakura, J.
2014-04-01
Decay and fission yield data of fission products have been developed for decay heat calculations to constitute one of the special purpose files of JENDL (Japanese Nuclear Data Library). The decay data in the previous JENDL decay data file have been updated based on the data extracted from ENSDF (Evaluated Nuclear Structure Data File) and those by Total Absorption Gamma-ray Spectroscopy (TAGS) measurements reported recently. Fission yield data have also been updated in order to maintain consistency between the decay and yield data files. Decay heat calculations were performed using the updated decay and yield data, and the results were compared with measured decay heat data to demonstrate their applicability. The uncertainties of the calculated results were obtained by sensitivity analyses. The resulting JENDL calculations and their uncertainty were compared with those from the ENDF and JEFF evaluated files.
Microscopic description of Cf-252 cold fission yields
Mirea, M.; Delion, D. S.; Sandulescu, A.
2009-01-01
We investigate the cold fission of 252Cf within the two center shell model to compute the potential energy surface. The fission yields are estimated by using the semiclassical penetration approach. It turns out that the inner cold valley of the total potential energy is strongly connected with Z=50 magic number. The agreement with experimental values is very much improved only by considering mass and charge asymmetry degrees of freedom. Thus, indeed cold fission of 252Cf is a Sn-like radioact...
Fission yields of molybdenum in the Oklo natural reactor
The isotopic compositions of molybdenum in six uranium-rich samples from the Oklo Zone 9 natural reactor were accurately measured by thermal ionization mass spectrometry. The samples were subjected to an ion exchange separation process that removed the isobaric elements zirconium and ruthenium, with high efficiency and a low blank. Molybdenum possesses seven isotopes of which 92,94,96Mo are unaffected by the fission process, enabling the raw data to be corrected for isotope fractionation by normalising to 92Mo/96Mo, and to use 94Mo to correct for the primordial component in each of the fission-produced isotopes. This enables the relative fission yields of Mo to be calculated from the isotopic composition measurements, to give cumulative fission yields of 1:0.941:0.936:1.025 for 95,97,98,100Mo, respectively. These data demonstrate that the most important nuclear process involved in reactor Zone 9 was the thermal neutron fission of 235U. The consistency of the relative cumulative fission yields of all six samples from different locations in the reactor, implies that Mo is a mobile element in the uraninite comprising Zone 9, and that a significant fraction of molybdenum was mobilized within the reactor zone and probably escaped from Zone 9, a conclusion in agreement with earlier published work. (author)
A program has been initiated to measure the energy dependence of selected high-yield fission products used in the analysis of nuclear test data. We present out initial work of neutron activation using a dual-fission chamber with quasi-monoenergetic neutrons and gamma-counting method. Quasi-monoenergetic neutrons of energies from 0.5 to 15 MeV using the TUNL 10 MV FM tandem to provide high-precision and self-consistent measurements of fission product yields (FPY). The final FPY results will be coupled with theoretical analysis to provide a more fundamental understanding of the fission process. To accomplish this goal, we have developed and tested a set of dual-fission ionization chambers to provide an accurate determination of the number of fissions occurring in a thick target located in the middle plane of the chamber assembly. Details of the fission chamber and its performance are presented along with neutron beam production and characterization. Also presented are studies on the background issues associated with room-return and off-energy neutron production. We show that the off-energy neutron contribution can be significant, but correctable, while room-return neutron background levels contribute less than <1% to the fission signal
Bhatia, C.; Fallin, B. [Department of Physics, Duke University, Durham, NC 27708 (United States); Triangle Universities Nuclear Laboratory, Durham, NC 27708 (United States); Gooden, M.E., E-mail: megooden@tunl.duke.edu [Triangle Universities Nuclear Laboratory, Durham, NC 27708 (United States); Department of Physics, North Carolina State University, Raleigh, NC 27605 (United States); Howell, C.R. [Department of Physics, Duke University, Durham, NC 27708 (United States); Triangle Universities Nuclear Laboratory, Durham, NC 27708 (United States); Kelley, J.H. [Triangle Universities Nuclear Laboratory, Durham, NC 27708 (United States); Department of Physics, North Carolina State University, Raleigh, NC 27605 (United States); Tornow, W. [Department of Physics, Duke University, Durham, NC 27708 (United States); Triangle Universities Nuclear Laboratory, Durham, NC 27708 (United States); Arnold, C.W.; Bond, E.M.; Bredeweg, T.A.; Fowler, M.M.; Moody, W.A.; Rundberg, R.S.; Rusev, G.; Vieira, D.J.; Wilhelmy, J.B. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Becker, J.A.; Macri, R.; Ryan, C.; Sheets, S.A.; Stoyer, M.A. [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); and others
2014-09-01
A program has been initiated to measure the energy dependence of selected high-yield fission products used in the analysis of nuclear test data. We present out initial work of neutron activation using a dual-fission chamber with quasi-monoenergetic neutrons and gamma-counting method. Quasi-monoenergetic neutrons of energies from 0.5 to 15 MeV using the TUNL 10 MV FM tandem to provide high-precision and self-consistent measurements of fission product yields (FPY). The final FPY results will be coupled with theoretical analysis to provide a more fundamental understanding of the fission process. To accomplish this goal, we have developed and tested a set of dual-fission ionization chambers to provide an accurate determination of the number of fissions occurring in a thick target located in the middle plane of the chamber assembly. Details of the fission chamber and its performance are presented along with neutron beam production and characterization. Also presented are studies on the background issues associated with room-return and off-energy neutron production. We show that the off-energy neutron contribution can be significant, but correctable, while room-return neutron background levels contribute less than <1% to the fission signal.
A Covariance Generation Methodology for Fission Product Yields
Terranova N.
2016-01-01
Full Text Available Recent safety and economical concerns for modern nuclear reactor applications have fed an outstanding interest in basic nuclear data evaluation improvement and completion. It has been immediately clear that the accuracy of our predictive simulation models was strongly affected by our knowledge on input data. Therefore strong efforts have been made to improve nuclear data and to generate complete and reliable uncertainty information able to yield proper uncertainty propagation on integral reactor parameters. Since in modern nuclear data banks (such as JEFF-3.1.1 and ENDF/BVII.1 no correlations for fission yields are given, in the present work we propose a covariance generation methodology for fission product yields. The main goal is to reproduce the existing European library and to add covariance information to allow proper uncertainty propagation in depletion and decay heat calculations. To do so, we adopted the Generalized Least Square Method (GLSM implemented in CONRAD (COde for Nuclear Reaction Analysis and Data assimilation, developed at CEA-Cadarache. Theoretical values employed in the Bayesian parameter adjustment are delivered thanks to a convolution of different models, representing several quantities in fission yield calculations: the Brosa fission modes for pre-neutron mass distribution, a simplified Gaussian model for prompt neutron emission probability, theWahl systematics for charge distribution and the Madland-England model for the isomeric ratio. Some results will be presented for the thermal fission of U-235, Pu-239 and Pu-241.
A Covariance Generation Methodology for Fission Product Yields
Terranova, N.; Serot, O.; Archier, P.; Vallet, V.; De Saint Jean, C.; Sumini, M.
2016-03-01
Recent safety and economical concerns for modern nuclear reactor applications have fed an outstanding interest in basic nuclear data evaluation improvement and completion. It has been immediately clear that the accuracy of our predictive simulation models was strongly affected by our knowledge on input data. Therefore strong efforts have been made to improve nuclear data and to generate complete and reliable uncertainty information able to yield proper uncertainty propagation on integral reactor parameters. Since in modern nuclear data banks (such as JEFF-3.1.1 and ENDF/BVII.1) no correlations for fission yields are given, in the present work we propose a covariance generation methodology for fission product yields. The main goal is to reproduce the existing European library and to add covariance information to allow proper uncertainty propagation in depletion and decay heat calculations. To do so, we adopted the Generalized Least Square Method (GLSM) implemented in CONRAD (COde for Nuclear Reaction Analysis and Data assimilation), developed at CEA-Cadarache. Theoretical values employed in the Bayesian parameter adjustment are delivered thanks to a convolution of different models, representing several quantities in fission yield calculations: the Brosa fission modes for pre-neutron mass distribution, a simplified Gaussian model for prompt neutron emission probability, theWahl systematics for charge distribution and the Madland-England model for the isomeric ratio. Some results will be presented for the thermal fission of U-235, Pu-239 and Pu-241.
Construction of covariance matrix for absolute fission yield data measurement
The purpose is to provide a tool for experimenters and evaluators to conveniently construct the covariance based on the information of the experiment. The method used is so called as parameter analysis one. The basic method and formula are given in the first section, a practical program is introduced in the second section, and finally, some examples are given in the third section
Comparison of Fission Product Yields and Their Impact
S. Harrison
2006-02-01
This memorandum describes the Naval Reactors Prime Contractor Team (NRPCT) Space Nuclear Power Program (SNPP) interest in determining the expected fission product yields from a Prometheus-type reactor and assessing the impact of these species on materials found in the fuel element and balance of plant. Theoretical yield calculations using ORIGEN-S and RACER computer models are included in graphical and tabular form in Attachment, with focus on the desired fast neutron spectrum data. The known fission product interaction concerns are the corrosive attack of iron- and nickel-based alloys by volatile fission products, such as cesium, tellurium, and iodine, and the radiological transmutation of krypton-85 in the coolant to rubidium-85, a potentially corrosive agent to the coolant system metal piping.
Reducing uncertainties for short lived cumulative fission product yields
Uncertainties associated with short lived (halflives less than 1 day) fission product yields listed in databases such as the National Nuclear Data Center's ENDF/B-VII are large enough for certain isotopes to provide an opportunity for new precision measurements to offer significant uncertainty reductions. A series of experiments has begun where small samples of 235U are irradiated with a pulsed, fission neutron spectrum at the Nevada National Security Site and placed between two broad-energy germanium detectors. The amount of various isotopes present immediately following the irradiation can be determined given the total counts and the calibrated properties of the detector system. The uncertainty on the fission yields for multiple isotopes has been reduced by nearly an order of magnitude. (author)
Investigation of the fission yields of the fast neutron-induced fission of 233U
As a stars, a survey of the different methods of investigations of the fission product yields and the experimental data status have been studied, showing advantages and shortcomings for the different approaches. An overview of the existing models for the fission product distributions has been as well intended. The main part of this thesis was the measurement of the independent yields of the fast neutron-induced fission of233U, never investigated before this work. The experiment has been carried out using the mass separator OSIRIS (Isotope Separator On-Line). Its integrated ion-source and its specific properties required an analysis of the delay-parameter and ionisation efficiency for each chemical species. On the other hand, this technique allows measurement of independent yields and cumulative yields for elements from Cu to Ba, covering most of the fission yield distribution. Thus, we measured about 180 independent yields from Zn (Z=30) to Sr (Z=38) in the mass range A=74-99 and from Pd (Z=46) to Ba (Z=56) in the mass range A=113-147, including many isomeric states. An additional experiment using direct γ-spectroscopy of aggregates of fission products was used to determine more than 50 cumulative yields of element with half-life from 15 min to a several days. All experimental data have been compared to estimates from a semi-empirical model, to calculated values and to evaluated values from the European library JEF 2.2. Furthermore, a study of both thermal and fast neutron-induced fission of 233U measured at Studsvik, the comparison of the OSIRIS and LOHENGRIN facilities and the trends in new data for the Reactors Physics have been discussed. (author)
ENDF/B-6 fission-product yield sublibraries
The contents and the documentation of the ENDF/B-6 fission-product yield sublibraries which were released in 1991 and updated in 1993, are summarized. Copies of the data libraries are available on magnetic tape of PC diskettes from the IAEA Nuclear Data Section, costfree upon request. (author). 1 tab
Isotopic yield in alpha accompanied ternary fission of 252Cf
The cold ternary fission of 252Cf with 4He as light charged particle (LCP) is studied with fragments in the equatorial and collinear configuration, taking the interacting barrier as the sum of the Coulomb and proximity potential. The favorable fragment combinations are obtained from the cold valley plot and by calculating the yield for charge-minimized fragments. In both equatorial and collinear configurations, the highest yield is obtained for the fragment combination 116Pd + 4He + 132Sn, which possess doubly magic nuclei 132Sn(N = 82, Z = 50). The presence of doubly or near doubly magic nuclei (132Sn, 130Sn etc.) and higher Q value plays an important role in the alpha accompanied cold ternary fission of 252Cf. The comparison of the relative yield for equatorial configuration with that of collinear configuration, points to the fact that equatorial configuration is the preferred configuration for the LCP (4He) accompanied ternary fission in 252Cf isotope. The yields obtained for the alpha accompanied cold ternary fission of 252Cf in equatorial and collinear configuration are compared with the experimental data. The emission probability of long range alpha (LRA) particle from 252Cf isotope is predicted using our formalism and is found to be in agreement with experimental value. (author)
Absolute fission rate measurement of 238U induced by 14 MeV neutrons penetrated composite material
In order to prove the model calculation method and parameter, the 238U absolute fission rate in the case of 14 MeV neutrons penetrating through the special composite material was measured by minitype slab uranium fission chambers. The measuring spots are distributed in the surface of iron ball hull along the different position of equator. The calculated results are compared with the experiment results. The total error of measured 238U absolute fission rate is 6.1%. (author)
Fission fragment formation and fission yields in the model of octupole neutron-proton oscillations
Yavshits S.
2010-03-01
Full Text Available The fission fragment formation is considered as a result of neck instability in the process of octupole oscillations of neutrons and protons near the scission point. To describe such a phenomenon the potential surface of fissionning nucleus with neck radius about 1 fm was calculated with shell correction approach. The new version of smooth liquid drop part of deformation energy is proposed. The liquid drop part is formulated in a double folding model with n-n, p-p, and n-p Yukawa interaction potential. Fission fragment mass and charge distributions correspond approximately to isoscalar and isovector modes of vibrations and are defined by wave functions of oscillations. The preliminary calculation results have shown a rather good description of main integral fission yield observables.
The SOFIA experiment: Measurement of 236U fission fragment yields in inverse kinematics
Grente L.
2016-01-01
Full Text Available The SOFIA (Studies On FIssion with Aladin experiment aims at measuring fission-fragments isotopic yields with high accuracy using inverse kinematics at relativistic energies. This experimental technique allows to fully identify the fission fragments in nuclear charge and mass number, thus providing very accurate isotopic yields for low energy fission of a large variety of fissioning systems. This report focuses on the latest results obtained with this set-up concerning electromagnetic-induced fission of 236U.
In spite of the huge amount of fission yield data available in different libraries, more accurate values are still needed for nuclear energy applications and to improve our understanding of the fission process. Thus measurements of fission yields were performed at the mass spectrometer Lohengrin at the Institut Laue-Langevin in Grenoble, France. The mass separator Lohengrin is situated at the research reactor of the institute and permits the placement of an actinide layer in a high thermal neutron flux. It separates fragments according to their atomic mass, kinetic energy and ionic charge state by the action of magnetic and electric fields. Coupled to a high resolution ionization chamber the experiment was used to investigate the mass and isotopic yields of the light mass region. Almost all fission yields of isotopes from Th to Cf have been measured at Lohengrin with this method. To complete and improve the nuclear data libraries, these measurements have been extended in this work to the heavy mass region for the reactions 235U(nth,f), 239Pu(nth,f) and 241Pu(nth,f). For these higher masses an isotopic separation is no longer possible. So, a new method was undertaken with the reaction 239Pu(nth,f) to determine the isotopic yields by spectrometry. These experiments have allowed to reduce considerably the uncertainties. Moreover the ionic charge state and kinetic energy distributions were specifically studied and have shown, among others, nanosecond isomers for some masses. (author)
Radiochemical measurement of 10-15 MeV proton induced fission yields for U-238
The production of realistic nuclear forensics debris requires an accurate knowledge of cross sections and fission yields for large number of systems. Proton induced fission of U-238 was examined for incident energies in the range of 10-15 MeV. Fission yields were first measured directly from the irradiated materials. The valley and wing fission products were then isolated in various chemical fractions in order to increase the counting statistics leading to improvements in the fission yields. In addition to the total fission cross section and the fission mass yields for U-238, proton based reaction cross sections on U-238 and U-235 were also measured. (author)
Microscopic description of Cf-252 cold fission yields
Mirea, M; Sandulescu, A
2009-01-01
We investigate the cold fission of 252Cf within the two center shell model to compute the potential energy surface. The fission yields are estimated by using the semiclassical penetration approach. It turns out that the inner cold valley of the total potential energy is strongly connected with Z=50 magic number. The agreement with experimental values is very much improved only by considering mass and charge asymmetry degrees of freedom. Thus, indeed cold fission of 252Cf is a Sn-like radioactivity, related the other two "magic radioactivities", namely alpha-decay and heavy-cluster decay, called also Pb-like radioactivity. This calculation provides the necessary theoretical confidence to estimate the penetration cross section in producing superheavy nuclei, by using the inverse fusion process.
Audouin, L.; Pellereau, E.; Taieb, J.; Boutoux, G.; Béliera, G.; Chatillon, A.; Ebran, A.; Gorbinet, T.; Laurent, B.; Martin, J.-F.; Tassan-Got, L.; Jurado, B.; Alvarez-Pol, H.; Ayyad, Y.; Benlliure, J.; Caamano, M.; Cortina-Gil, D.; Fernandez-Dominguez, B.; Paradela, C.; Rodriguez-Sanchez, J.-L.; Vargas, J.; Casarejos, E.; Heinz, A.; Kelic-Heil, A.; Kurz, N.; Nociforo, C.; Pietri, S.; Prochazka, A.; Rossi, D.; Schmidt, K.-H.; Simon, H.; Voss, B.; Weick, H.; Winfield, J. S.
2015-10-01
Fission fragments play an important role in nuclear reactors evolution and safety. However, fragments yields are poorly known : data are essentially limited to mass yields from thermal neutron-induced fissions on a very few nuclei. SOFIA (Study On FIssion with Aladin) is an innovative experimental program on nuclear fission carried out at the GSI facility, which aims at providing isotopic yields on a broad range of fissioning systems. Relativistic secondary beams of actinides and pre-actinides are selected by the Fragment Separator (FRS) and their fission is triggered by electromagnetic interaction. The resulting excitation energy is comparable to the result of an interaction with a low-energy neutron, thus leading to useful data for reactor simulations. For the first time ever, both fission fragments are completely identified in charge and mass in a new recoil spectrometer, allowing for precise yields measurements. The yield of prompt neutrons can then be deduced, and the fission mechanism can be ascribed, providing new constraints for fission models. During the first experiment, all the technical challenges were matched : we have thus set new experimental standards in the measurements of relativistic heavy ions (time of flight, position, energy loss).This communication presents a first series of results obtained on the fission of 238U; many other fissioning systems have also been measured and are being analyzed presently. A second SOFIA experiment is planned in September 2014, and will be focused on the measurement of the fission of 236U, the analog of 235U+n.
Fission Product Yields from Fission Spectrum n+239Pu for ENDF/B-VII.1
We describe a new cumulated fission product yield (FPY) evaluation for fission spectrum neutrons on plutonium that updates the ENDF/B-VI evaluation by England and Rider, for the forthcoming ENDF/B-VII.1 database release. We focus on FPs that are needed for high accuracy burnup assessments; that is, for inferring the number of fissions in a neutron environment. Los Alamos conducted an experiment in the 1970s in the Bigten fast critical assembly to determine fission product yields as part of the Interlaboratory Reaction Rate (ILRR) collaboration, and this has defined the Laboratory's fission standard to this day. Our evaluation includes use of the LANL-ILRR measurements (not previously available to evaluators) as well as other Laboratory FPY measurements published in the literature, especially the high-accuracy mass spectrometry data from Maeck and others. Because the measurement database for some of the FPs is small - especially for 99Mo - we use a meta-analysis that incorporates insights from other accurately-measured benchmark FP data, using R-value ratio measurements. The meta-analysis supports the FP measurements from the LANL-ILRR experiment. Differences between our new evaluations and ENDF/B-VI are small for some FPs (less than 1-2%-relative for 95Zr, 140Ba, 144Ce), but are larger for 99Mo (4%-relative) and 147Nd (5%-relative, at 1.5 MeV) respectively. We present evidence for an incident neutron energy dependence to the 147Nd fission product yield that accounts for observed differences in the FPY at a few-hundred keV average energy in fast reactors versus measurements made at higher average neutron energies in Los Alamos' fast critical assemblies. Accounting for such FPY neutron energy dependencies is important if one wants to reach a goal of determining the number of fissions to accuracies of 1-2%. An evaluation of the energy-dependence of fission product yields is given for all A values based on systematical trends in the measured data, with a focus on the
Some Yields in the Thermal- and Epi-Cadmium-Neutron Fission of Pu239
The yields of several nuclides in the thermal- and epi-cadmium-neutron fission of Pu239 have been measured and are reported. In epi-cadmium-neutron fission a decrease, relative to thermal fission, in the yields of Ag111 and Ag113, i.e. an increased peak-to-valley ratio, was found. The yield of As77 and As78, which represent, highly unsymmetrical fission, were found to be greater in epi-cadmium-neutron fission than in thermal fission. This result is' shown to be inconsistent with the simple two mode of fission hypothesis. (author)
Absolute Energy Calibration of Solid-State Detectors for Fission Fragments and Heavy Ions
Detailed measurements of the pulse-height response of silicon solid-state detectors to energetic heavy ions and fission fragments have been made. These studies have now led to a reliable method of absolute energy calibration of solid-state detectors for fission fragments, as well as to a better understanding of the somewhat peculiar response characteristics of the detectors to fission fragments and heavy ions. The use of silicon solid-state detectors in fragment kinetic energy measurements in recent years has been widespread; at the same time, questions have been raised about the detailed interpretation of such measurements because of the increasing evidence for anomalous behaviour in charge production, charge collection and charge multiplication in the case of densely ionizing particles. The present report discusses systematics and possible origins of these effects. Application of the absolute energy calibration method, which takes into account the mass and energy dependence of the response, is based simply on a Cf252 or U235 fragment pulse- height spectrum. Our studies were carried out with mono-energetic Br71, Br81 and I127 ions of energies from 30 to 120 MeV, and with fission fragments from spontaneous fission of Cf252 and neutron-induced fission of U235 and Pu239. It is shown that for a given fragment mass, over a wide energy range, the fragment energy versus pulse-height relationship is of the form E = ax + b, where E is the fragment energy and x is the measured pulse height. A dependence of pulse height on fragment mass has also been established, which leads to an energy versus pulse-height relationship, for the range of fission-fragment masses and energies, of the form E = (a + a'm)x + b + b'M, where M is the fragment mass. The effect of detector window and of detector type, resistivity and electric field have been studied. Guides to the selection of detectors and to their use with fission fragments are given. The effect of the more exact calibration
NEANDC specialists meeting on yields and decay data of fission product nuclides
Chrien, R.E.; Burrows, T.W. (eds.)
1983-01-01
Separate abstracts were prepared for the 29 papers presented. Workshop reports on decay heat, fission yields, beta- and gamma-ray spectroscopy, and delayed neutrons are included. An appendix contains a survey of the most recent compilations and evaluations containing fission product yield, fission product decay data, and delayed neutron yield information. (WHK)
NEANDC specialists meeting on yields and decay data of fission product nuclides
Separate abstracts were prepared for the 29 papers presented. Workshop reports on decay heat, fission yields, beta- and gamma-ray spectroscopy, and delayed neutrons are included. An appendix contains a survey of the most recent compilations and evaluations containing fission product yield, fission product decay data, and delayed neutron yield information
Nuclear model calculation on neutron induced fission fragment mass yields of 238U
The fission fragment mass yield is one of the most important characteristics of the fission process in both applications and basic nuclear physics. In nuclear energy applications, the configuration of fission products must be known because they are accumulated during the operation of a nuclear reactor. In theoretical physics, the ability to describe and predict fission yields is required for an effective nuclear fission model. Since the nuclear fission process is described by a great number of parameters, and the existing theoretical models fail to describe the fission process completely, the fission yields are amongst the most important consequences to benchmark the validity of fission models. In the present study, two different approaches to predict the neutron-induced fission fragment mass distribution of 238U has been applied. The first approach is temperature dependent Brosa model, and the other based on GEF model. The model-based predicted results are in good agreement with the experimental data
Evaluation of independent and cumulative fission product yields with gamma spectrometry
Fission product yields are critical data for a variety of nuclear science and engineering applications; however, independent yields have not been extensively measured to date. We have previously documented a methodology to measure the cumulative and independent fission product yields using gamma spectrometry and nuclide buildup and decay modeling, and numerical optimization. We have produced fission products by bombarding 235U with 14.1 MeV neutrons and made measurements of fission product yields. In this paper, we summarize our approach, describe initial experiments, and present preliminary results where we have determined nine fission product yields for long-lived nuclides. (author)
A review of libraries of fission product yields
Several libraries of fission product yields are in use internationally. This paper summarizes and compares Chinese, French, UK and US libraries. These, being in the same format, can be quite readily compared. The different methods and philosophies of evaluation are reviewed, especially as they affect the recommended uncertainties. Detailed comparisons of the libraries are presented, and some of the larger differences studied in depth. The effects of any discrepancies on decay heat calculations are discussed. It is also noted that differences in uncertainties in yield data lead to some differences in uncertainties in summation calculations. There is great advantage in maintaining at least two independent yield libraries, and it is hoped that the libraries described will be continually improved and updated. Suggestions for improvements in evaluation methods, and for collaboration at various pre-evaluation stages are made
UKFY2: The UK fission product yield library version 2, 1991
The UKFY2 Fission Product Yields Library contains 7 files with fission yield information in different formats and references, as received at the IAEA Nuclear Data Section in February 1991. File 2 contains the complete set of adjusted independent and cumulative yields in ENDF-6 format as adopted for the JEF-2 fission product yield file. It contains yields for 21 different fissioning nuclides. Many more chain yield and fractional yield sets are given in tabular form in other files of this library. The data are available costfree on magnetic tape from the IAEA Nuclear Data Section. (author)
Fission Product Yields from Fission Spectrum n+ 239Pu for ENDF/B-VII.1
Chadwick, M. B.; Kawano, T.; Barr, D. W.; Mac Innes, M. R.; Kahler, A. C.; Graves, T.; Selby, H.; Burns, C. J.; Inkret, W. C.; Keksis, A. L.; Lestone, J. P.; Sierk, A. J.; Talou, P.
2010-12-01
We describe a new cumulated fission product yield (FPY) evaluation for fission spectrum neutrons on plutonium that updates the ENDF/B-VI evaluation by England and Rider, for the forthcoming ENDF/B-VII.1 database release. We focus on FPs that are needed for high accuracy burnup assessments; that is, for inferring the number of fissions in a neutron environment. Los Alamos conducted an experiment in the 1970s in the Bigten fast critical assembly to determine fission product yields as part of the Interlaboratory Reaction Rate (ILRR) collaboration, and this has defined the Laboratory's fission standard to this day. Our evaluation includes use of the LANL-ILRR measurements (not previously available to evaluators) as well as other Laboratory FPY measurements published in the literature, especially the high-accuracy mass spectrometry data from Maeck and others. Because the measurement database for some of the FPs is small — especially for 99Mo — we use a meta-analysis that incorporates insights from other accurately-measured benchmark FP data, using R-value ratio measurements. The meta-analysis supports the FP measurements from the LANL-ILRR experiment. Differences between our new evaluations and ENDF/B-VI are small for some FPs (less than 1-2%-relative for 95Zr, 140Ba, 144Ce), but are larger for 99Mo (4%-relative) and 147Nd (5%-relative, at 1.5 MeV) respectively. We present evidence for an incident neutron energy dependence to the 147Nd fission product yield that accounts for observed differences in the FPY at a few-hundred keV average energy in fast reactors versus measurements made at higher average neutron energies in Los Alamos' fast critical assemblies. Accounting for such FPY neutron energy dependencies is important if one wants to reach a goal of determining the number of fissions to accuracies of 1-2%. An evaluation of the energy-dependence of fission product yields is given for all A values based on systematical trends in the measured data, with a focus on
Fission yield calculation using toy model based on Monte Carlo simulation
Jubaidah, E-mail: jubaidah@student.itb.ac.id [Nuclear Physics and Biophysics Division, Department of Physics, Bandung Institute of Technology. Jl. Ganesa No. 10 Bandung – West Java, Indonesia 40132 (Indonesia); Physics Department, Faculty of Mathematics and Natural Science – State University of Medan. Jl. Willem Iskandar Pasar V Medan Estate – North Sumatera, Indonesia 20221 (Indonesia); Kurniadi, Rizal, E-mail: rijalk@fi.itb.ac.id [Nuclear Physics and Biophysics Division, Department of Physics, Bandung Institute of Technology. Jl. Ganesa No. 10 Bandung – West Java, Indonesia 40132 (Indonesia)
2015-09-30
Toy model is a new approximation in predicting fission yield distribution. Toy model assumes nucleus as an elastic toy consist of marbles. The number of marbles represents the number of nucleons, A. This toy nucleus is able to imitate the real nucleus properties. In this research, the toy nucleons are only influenced by central force. A heavy toy nucleus induced by a toy nucleon will be split into two fragments. These two fission fragments are called fission yield. In this research, energy entanglement is neglected. Fission process in toy model is illustrated by two Gaussian curves intersecting each other. There are five Gaussian parameters used in this research. They are scission point of the two curves (R{sub c}), mean of left curve (μ{sub L}) and mean of right curve (μ{sub R}), deviation of left curve (σ{sub L}) and deviation of right curve (σ{sub R}). The fission yields distribution is analyses based on Monte Carlo simulation. The result shows that variation in σ or µ can significanly move the average frequency of asymmetry fission yields. This also varies the range of fission yields distribution probability. In addition, variation in iteration coefficient only change the frequency of fission yields. Monte Carlo simulation for fission yield calculation using toy model successfully indicates the same tendency with experiment results, where average of light fission yield is in the range of 90fission yield is in about 135
Fission yield calculation using toy model based on Monte Carlo simulation
Toy model is a new approximation in predicting fission yield distribution. Toy model assumes nucleus as an elastic toy consist of marbles. The number of marbles represents the number of nucleons, A. This toy nucleus is able to imitate the real nucleus properties. In this research, the toy nucleons are only influenced by central force. A heavy toy nucleus induced by a toy nucleon will be split into two fragments. These two fission fragments are called fission yield. In this research, energy entanglement is neglected. Fission process in toy model is illustrated by two Gaussian curves intersecting each other. There are five Gaussian parameters used in this research. They are scission point of the two curves (Rc), mean of left curve (μL) and mean of right curve (μR), deviation of left curve (σL) and deviation of right curve (σR). The fission yields distribution is analyses based on Monte Carlo simulation. The result shows that variation in σ or µ can significanly move the average frequency of asymmetry fission yields. This also varies the range of fission yields distribution probability. In addition, variation in iteration coefficient only change the frequency of fission yields. Monte Carlo simulation for fission yield calculation using toy model successfully indicates the same tendency with experiment results, where average of light fission yield is in the range of 90fission yield is in about 135
Absolute measurement of $sup 235$U fission cross-section for 2200 m/sec neutrons
Borcea, C.; Borza, A.; Buta, A.
1973-12-31
The results of an absolute fission cross-section measurement of /sup 235/ U are presented; the thermal neutrons were selected by the time-of-flight method. The principle of the method and the experimental apparatus are described. The method had the advantage of avoiding the use of an intermediate cross section in the neutron flux determination by choice of a B target thick enough to absorb all thermal neutrons. Target preparation, efficiency determination, corrections, etc., are reported. The value determined was 581.7 plus or minus 7.8 barns. (6 figures, 4 tables) (RWR)
Final report on ARPA fission yield project work at Battelle-Northwest, April 1970--April 1973
The overall objective has been to measure the independent and cumulative fission yields of selected halogen and rare gas nuclides for application to characterization of underground nuclear detonations. The studies have included fission yield measurements for thermal, fission spectrum, and 15 MeV neutron-induced fission events. Target materials included 235U, 238U and 239Pu. The research effort was divided into two basic parts. In one part, the nuclides of interest were separated radiochemically and determined by gamma-ray spectrometry. This approach provides information on the independent and cumulative yields of nuclides with half-lives of a few seconds or greater. The second part of our effort involved the use of on-line mass separation techniques. This approach yields information on independent fission yields of nuclides with half-lives ranging down to fractions of a second and provides data on all significant isotopes of a given fission product element in one set of measurements. The main effort in the radiochemistry program was centered on measurements of the cumulative fission yield of 89Kr. Cumulative fission yields of 89Kr were measured for thermal-neutron fission of 239Pu and for fission-spectrum and 15-MeV neutron fission of 235U, 238U and 239Pu. In addition, cumulative fission yields of the other rare gas radionuclides, /sup 85m/Kr, 87Kr, 88Kr, 137Xe, 138Xe, were measured for the same fission type events. Fractional independent yields of 89Rb and 138Cs were also measured for a limited number of fission systems. On-line mass spectrometer facilities were established at a Van de Graaff accelerator and at a nuclear reactor. Measurements were made of relative independent fission yields of rubidium isotopes of masses 89 through 97 and of cesium isotopes of masses 139 through 145.(U.S.)
The latest evaluation of delayed neutron constants was made for main fuel nuclides (235U, 238U, 239Pu) within an working group under the auspices of the Nuclear Energy Agency’s (NEA) Working Party on International Evaluation Cooperation (WPEC), Subgroup 6 (SG6) in 1999 [1]. As a result of this work the total delayed yields for the above nuclides were essentially corrected as compared with Tuttle’s recommended data set [2]. For the total delayed yields from 238U correction is +5.6%, for thermal induced fission of 239Pu - +3.4% and for fast neutron induced fission of 239Pu - +3.2%. This is a direct indication that there is a need for a continuing effort on delayed neutron data improving. From now, this will be mainly directed at satisfying new requirements emerging from the current trends in reactor technology, such as: the use of high burn-up fuel, the burning of plutonium stocks, the general growing interest in fuel recycling strategies, and new concept of actinide burners
Chadwick, Mark B.
2009-10-01
Los Alamos conducted a dual fission-chamber experiment in the 1970s in the Bigten critical assembly to determine fission product data in a fast (fission neutron spectrum) environment, and this defined the Laboratory's fission basis today. We describe how the data from this experiment are consistent with other benchmark fission product yield measurements for 95,97Zr, 140Ba, 143,144Ce, 137Cs from the NIST-led ILRR fission chamber experiments, and from Maeck's mass-spectrometry data. We perform a new evaluation of the fission product yields that is planned for ENDF/B-VII.1. Because the measurement database for some of the FPs is small—especially for 147Nd and 99Mo—we use a meta-analysis that incorporates insights from other accurately-measured benchmark FP data. The %-relative changes compared to ENDF/B-VI are small for some FPs (less than 1% for 95Zr, 140Ba, 144Ce), but are larger for 99Mo (3%) and 147Nd (5%). We suggest an incident neutron energy dependence to the 147Nd fission product yield that accounts for observed differences in the FPY at a few-hundred keV average energy in fast reactors versus measurements made at higher average energies.
EDB-II validated, key fission product yields for fast reactor application
Relative fission yields were measured for three different locations in the row 4 ''Test Region'' of the EBR-II reactor. Correlation of the relative fission yields to the measured average energy (anti E) and the measured 137Cs 238U/235U spectral indices have been made. The measured relative fission yields for selected fission products from 235U, 238U, 239Pu and 237Np have been compared with those values reported by the Interlaboratory Reaction Rate (ILRR) program, EBR-II fast reactor yields from destructive analysis and summation, and the March 1977 version of ENDF/B-V
Absolute Fluorescence Spectrum and Yield Measurements for a wide range of experimental conditions
Monnier Ragaigne, D.; Gorodetzky, P.; Moretto, C; Blaksley, C.; Dagoret-Campagne, D.; Gonnin, A.; Miyamoto, H.; Monard, H.; Wicek, F.
2013-01-01
For the JEM-EUSO Collaboration The fluorescence yield is a key ingredient in cosmic ray energy determination. It is sensitive to pressure, temperature and humidity. Up to now the fluorescence yield of the brightest line at 337 nm has been measured in an absolute way in one set of conditions, whereas fluorescence yields at the other wavelengths have been relatively measured for different conditions. Thus, absolute calibration for all the lines is unclear. We will do all measurements at once...
Testing actinide fission yield treatment in CINDER90 for use in MCNP6 burnup calculations
Most of the development of the MCNPX/6 burnup capability focused on features that were applied to the Boltzman transport or used to prepare coefficients for use in CINDER90, with little change to CINDER90 or the CINDER90 data. Though a scheme exists for best solving the coupled Boltzman and Bateman equations, the most significant approximation is that the employed nuclear data are correct and complete. Thus, the CINDER90 library file contains 60 different actinide fission yields encompassing 36 fissionable actinides (thermal, fast, high energy and spontaneous fission). Fission reaction data exists for more than 60 actinides and as a result, fission yield data must be approximated for actinides that do not possess fission yield information. Several types of approximations are used for estimating fission yields for actinides which do not possess explicit fission yield data. The objective of this study is to test whether or not certain approximations of fission yield selection have any impact on predictability of major actinides and fission products. Further we assess which other fission products, available in MCNP6 Tier 3, result in the largest difference in production. Because the CINDER90 library file is in ASCII format and therefore easily amendable, we assess reasons for choosing, as well as compare actinide and major fission product prediction for the H. B. Robinson benchmark for, three separate fission yield selection methods: (1) the current CINDER90 library file method (Base); (2) the element method (Element); and (3) the isobar method (Isobar). Results show that the three methods tested result in similar prediction of major actinides, Tc-99 and Cs-137; however, certain fission products resulted in significantly different production depending on the method of choice
Evolution of isotopic fission-fragment yields with excitation energy
Two fission experiments have been performed at GANIL using 238U beams at different energies and light targets. Different fissioning systems were produced with excitation energies from 10 to 230 MeV and their decay by fission was investigated with GANIL spectrometers. Preliminary fission-fragment isotopic distributions have been obtained. The evolution with impinging energy of their properties, the neutron excess and the width of the neutron-number distributions, gives important insights into the dynamics of fusion-fission mechanism. (authors)
Evolution of isotopic fission-fragment yields with excitation energy
Bazin D.
2012-07-01
Full Text Available Two fission experiments have been performed at GANIL using 238U beams at different energies and light targets. Different fissioning systems were produced with excitation energies from 10 to 230 MeV and their decay by fission was investigated with GANIL spectrometers. Preliminary fission-fragment isotopic distributions have been obtained. The evolution with impinging energy of their properties, the neutron excess and the width of the neutron-number distributions, gives important insights into the dynamics of fusion-fission mechanism.
Measurement of fission products yields in the quasi-mono-energetic neutron-induced fission of 232Th
Naik, H.; Mukherji, Sadhana; Suryanarayana, S. V.; Jagadeesan, K. C.; Thakare, S. V.; Sharma, S. C.
2016-08-01
The cumulative yields of various fission products in the 232Th(n, f) reaction at average neutron energies of 5.42, 7.75, 9.35 and 12.53 MeV have been determined by using an off-line γ-ray spectrometric technique. The neutron beam was produced from the 7Li(p, n) reaction by using the proton energies of 7.8, 12, 16 and 20 MeV. The mass chain yields were obtained from the cumulative fission yields by using the charge distribution correction of medium energy fission. The fine structure in the mass yield distribution was interpreted from the point of nuclear structure effect. On the other hand, the higher yield around mass number 133-134 and 143-144 as well as their complementary products were explained based on the standard I and standard II asymmetric mode of fission. From the mass yield data, the average value of light mass (), heavy mass (), the average number of neutrons () and the peak-to-valley (P / V) ratios at different neutron energies of present work and literature data were obtained in the 232Th(n, f) reaction. The different parameters of the mass yield distribution in the 232Th(n, f) reaction were compared with the similar data in the 232Th(γ, f) reaction at comparable excitation energy and a surprising difference was observed.
Role of energy cost in the yield of cold ternary fission of 252Cf
P V Kunhikrishnan; K P Santhosh
2013-01-01
The energy costs in the cold ternary fission of 252Cf for various light charged particle emission are calculated by includingWong's correction for Coulomb potential. Energy cost is found to be higher in cold fission than in normal fission. It is found that energy cost always increases with decrease in experimental yield in all the light charged particle emissions. The higher ground state deformation of the fragments, the odd–even effect and the enhanced yield in the octupole region observed in cold fission are found to be consistent with the concept of energy cost.
Assessment of fission product yields data needs in nuclear reactor applications
Studies on the build-up of fission products in fast reactors have been performed, with particular emphasis on the effects related to the physics of the nuclear fission process. Fission product yields, which are required for burn-up calculations, depend on the proton and neutron number of the target nucleus as well as on the incident neutron energy. Evaluated nuclear data on fission product yields are available for all relevant target nuclides in reactor applications. However, the description of their energy dependence in evaluated data is still rather rudimentary, which is due to the lack of experimental fast fission data and reliable physical models. Additionally, physics studies of evaluated JEFF-3.1.1 fission yields data have shown potential improvements, especially for various fast fission data sets of this evaluation. In recent years, important progress in the understanding of the fission process has been made, and advanced model codes are currently being developed. This paper deals with the semi-empirical approach to the description of the fission process, which is used in the GEF code being developed by K.-H. Schmidt and B. Jurado on behalf of the OECD Nuclear Energy Agency, and with results from the corresponding author's diploma thesis. An extended version of the GEF code, supporting the calculation of spectrum weighted fission product yields, has been developed. It has been applied to the calculation of fission product yields in the fission rate spectra of a MOX fuelled sodium-cooled fast reactor. Important results are compared to JEFF-3.1.1 data and discussed in this paper. (authors)
The main purpose of this work was to measure independent yields, in the thermal neutron fission of 235U, of fission products which lie far from the centers of the isotopic and isobaric yield distributions. These measurements were used to test the predictions of semi-empirical systematics of fission yields and theoretical fission models. Delay times were measured as a function of temperature in the range 1200-2000degC. The very low delay times achieved in the present work permitted expanding the measurable region to the isotopes 147,148Cs and 99Rb which are of special interest in the present work. The delay times of Sr and Ba isotopes achieved were more than two orders of magnitude lower than values reported in the literature and thus short-lived isotopes of these elements could be separated for the first time by mass spectrometry. The half-lives of 147Ba, 148Ba, 149La and 149Ce were measured for the first time. The isotopic distributions of fission yields were measured for the elements Rb, Sr, Cs and Ba in the thermal neutron fission of 235U, those of 99Rb, 147Cs and 148Cs having been measured for the first time. A comparison of the experimental yields with the predictions of the currently accepted semi-empirical systematics of fission yields, which is the odd-even effect systematics, shows that the systematics succeeds in accounting for the strong odd-even proton effect and the weaker odd-even neutron effect and also in predicting the shape of the distributions in the central region. It is shown that prompt neutron emission broadens the distribution only slightly in the wing of heavy isotopes and more significantly in the wing of light isotopes. But the effect of prompt neutron emission cannot explain the large discrepancies existing between the predictions of fission models and the experimentally measured fission yield in the wings of the isotopic distributions. (B.G.)
Absolute measurement of the DT primary neutron yield on the National Ignition Facility
Leeper R.J.; Bleuel D. L.; Frenje J.A.; Eckart M.J.; Hartouni E.; Kilkenny J.D.; Casey D.T.; Chandler G.A.; Cooper G.W.; Glebov V.Yu.; Hagmann C.; Johnson M. Gatu; Knauer J.P.; Knittel K.M.; Linden-Levy L.A.
2013-01-01
The measurement of the absolute neutron yield produced in inertial confinement fusion target experiments conducted on the National Ignition Facility (NIF) is essential in benchmarking progress towards the goal of achieving ignition on this facility. This paper describes three independent diagnostic techniques that have been developed to make accurate and precise DT neutron yield measurements on the NIF.
Absolute measurement of the DT primary neutron yield on the National Ignition Facility
Leeper R.J.
2013-11-01
Full Text Available The measurement of the absolute neutron yield produced in inertial confinement fusion target experiments conducted on the National Ignition Facility (NIF is essential in benchmarking progress towards the goal of achieving ignition on this facility. This paper describes three independent diagnostic techniques that have been developed to make accurate and precise DT neutron yield measurements on the NIF.
Absolute measurement of the DT primary neutron yield on the National Ignition Facility
The measurement of the absolute neutron yield produced in inertial confinement fusion target experiments conducted on the National Ignition Facility (NIF) is essential in benchmarking progress towards the goal of achieving ignition on this facility. This paper describes three independent diagnostic techniques that have been developed to make accurate and precise DT neutron yield measurements on the NIF. (authors)
Independent isotopic yields in 25 MeV and 50 MeV proton-induced fission of natU
Penttilä, H.; Gorelov, D.; Elomaa, V.-V.; Eronen, T.; Hager, U.; Hakala, J.; Jokinen, A.; Kankainen, A.; Karvonen, P.; Moore, I. D.; Parkkonen, J.; Peräjärvi, K.; Pohjalainen, I.; Rahaman, S.; Rinta-Antila, S.; Rissanen, J.; Rubchenya, V. A.; Saastamoinen, A.; Simutkin, V.; Sonoda, T.; Weber, C.; Voss, A.; Äystö, J.
2016-04-01
Independent isotopic yields for elements from Zn to La in the 25 MeV proton-induced fission of {}^{nat}U were determined with the JYFLTRAP facility. In addition, isotopic yields for Zn, Ga, Rb, Sr, Zr, Pd and Xe in the 50 MeV proton-induced fission of {}^{nat}U were measured. The deduced isotopic yield distributions are compared with a Rubchenya model, the GEF model with universal parameters and the semi-empirical Wahl model. Of these, the Rubchenya model gives the best overall agreement with the obtained data. Combining the isotopic yield data with mass yield data to obtain the absolute independent yields was attempted. The result depends on the mass yield distribution.
Advanced model for the prediction of the neutron-rich fission product yields
Rubchenya V. A.
2013-12-01
Full Text Available The consistent models for the description of the independent fission product formation cross sections in the spontaneous fission and in the neutron and proton induced fission at the energies up to 100 MeV is developed. This model is a combination of new version of the two-component exciton model and a time-dependent statistical model for fusion-fission process with inclusion of dynamical effects for accurate calculations of nucleon composition and excitation energy of the fissioning nucleus at the scission point. For each member of the compound nucleus ensemble at the scission point, the primary fission fragment characteristics: kinetic and excitation energies and their yields are calculated using the scission-point fission model with inclusion of the nuclear shell and pairing effects, and multimodal approach. The charge distribution of the primary fragment isobaric chains was considered as a result of the frozen quantal fluctuations of the isovector nuclear matter density at the scission point with the finite neck radius. Model parameters were obtained from the comparison of the predicted independent product fission yields with the experimental results and with the neutron-rich fission product data measured with a Penning trap at the Accelerator Laboratory of the University of Jyväskylä (JYFLTRAP.
Revisiting the even-odd staggering in fission-fragment yields
The even-odd staggering observed in the experimental fission-fragment nuclear-charge yields is investigated over a wide systematics of fission fragments measured at Lohengrin in direct kinematics and at GSI in inverse kinematics. The general increase of the even-odd staggering in the fission-fragment charge yields towards asymmetric charge splits is explained by the absorption of the unpaired nucleons by the heavy fragment. As a consequence, the well established trend of even-odd staggering in the fission fragment charge yields to decrease with the fissility is attributed in part to the asymmetry evolution of the charge distribution. This interpretation is strongly supported by the data measured at GSI, which cover the complete charge distribution and include precise yields at symmetry. They reveal that the even-odd effect around symmetry remains constant over a large range of fissility. (authors)
The LANL C-NR counting room and fission product yields
This PowerPoint presentation focused on the following areas: LANL C-NR counting room; Fission product yields; Los Alamos Neutron wheel experiments; Recent experiments ad NCERC; and Post-detonation nuclear forensics
The LANL C-NR counting room and fission product yields
Jackman, Kevin Richard [Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)
2015-09-21
This PowerPoint presentation focused on the following areas: LANL C-NR counting room; Fission product yields; Los Alamos Neutron wheel experiments; Recent experiments ad NCERC; and Post-detonation nuclear forensics
IAEA CRP on Fission Yield Data and activity of WG in Japanese Nuclear Data Committee
The outline of the coordinate research program on fission yield data organized by International Atomic Energy Agency and the working group on the subject newly organized in Japanese Nuclear Data Committee are presented. (author)
Neutron and fragment yields in proton-induced fission of 238U at intermediate energies
The primary fission fragment mass and kinetic energy distributions, and neutron multiplicities as function of fragment mass have been measured in the proton-induced fission of 238U at energies Ep=20, 35, 50 and 60 MeV using time-of-flight technique. Pre-scission and post-scission neutron multiplicities have been extracted from double differential distributions. The fragment mass dependence of the post-scission neutron multiplicities reveals the gross nuclear shell structure effect even at the higher proton energies we measured. The yields of neutron-rich fission products in the fission of 238U by 25 MeV protons were measured using an ion guide-based isotope separator technique. The results indicate enhancement for superasymmetric mass division at intermediate excitation energy of the fissioning nucleus. The experimental results have been analysed in the framework of a time-dependent statistical model with inclusion of nuclear friction effects in the fission process
Fission product yields measurement of 232Th induced by 14.8 MeV neutron
The relative cumulative yields of 62 fission products were determined using γ-spectrum method for 232Th induced by 14.8 MeV neutron. Using chain yields summation 200% normalization method, 47 chain yields were given, and the data precision is better than 10%. (authors)
The dependence of cumulative 238U(n,f) fission yield on incident-neutron energy
ZHENG Na; ZHONG Chunlai; MA Liyong; CHEN Zhongjing; LI Xiangqing; LIU Tingjin; CHEN Jinxiang; FAN Tieshuan
2009-01-01
This work is aim at studying the dependence of fission yields on incident neutron energy,so as to produce evaluated yield sets of the energy dependence.Experimental data at different neutron energies for gas fission products 85m,87,88Kr and 138Xe resulting from the 238U(n,f) reaction are processed using codes AVERAGE for weighed average and ZOTT for simultaneous evaluation.Energy dependence of the cumulative fission product yields on the incident neutron is presented.The evaluated curve of product yield is compared with the results calculated by the TALYS-0.64 code.The present evaluation is consistent with other main libraries in error permission.The fit curve of 87,88Kr can be recommended to predict the unmeasured fission yields.Comparisons of the evaluated energy dependence curves with theoretical calculated results show that the predictions using purely theoretical model for the fission process are not sufficiently accurate and reliable for the calculations of the cumulative fission yields for the 238U(n,f).
Determination of isobar composition and yields of 239Pu fission-products by thermal neutrons
On the research nuclear reactor WWR-SM of INP Uz AS by means of mass-spectrometer the heavy fission-products of 239Pu nuclei induced by thermal neutrons are measured in ranges of mass Ai = 125 -157, kinetic energies Ek = 45 - 87 MeV and effective ionic charges z* = 18 - 30. 102 isobar nuclei in composition of the measured fission-products, also the partial yields of the each element giving the contribution to formation of a total yield of heavy fission-product with mass Ai are defined. (authors)
Äystö J.; Penttilä H.; Gorelov D.; Rubchenya V.A.
2012-01-01
A new method to measure the fission product independent yields employing the ion guide technique and a Penning trap as a precision mass filter, which allows an unambiguous identification of the nuclides is presented. The method was used to determine the independent yields in the proton-induced fission of 232Th and 238U at 25 MeV. The data were analyzed with the consistent model for description of the fission product formation cross section at the projectile energies up to 100 MeV. Pre-compoun...
Influence of asymmetry and fissility on even-odd effect in fission-fragment yields
Rejmund F.; Caamaño M.; Schmidt K.-H
2010-01-01
Based on a wide systematics of fragment distributions measured in thermal-neutron induced fission, the even-odd staggering in the fission-fragment element yields is investigated. The asymmetry evolution of the element yield distribution with the fissility of the fissioning nucleus is shown to be for an important part responsible for the decrease of the even-odd staggering with the fissility. The even-odd staggering close to symmetry is shown to be a small contribution to the global even-odd e...
Determination of short-lived fission product yields with gamma spectrometry
The majority of fission yield measurements to date have examined cumulative yields of long-lived nuclides. We present a method for determining independent as well as cumulative fission yields using gamma spectrometry and a Bayesian inverse analysis. This paper outlines the impetus for new fission product yield measurements, the methodology developed to measure these and other nuclear parameters, and initial experimental results for long-lived nuclides and sensitivity analyses. In initial scoping measurements, the cumulative yield of 140Ba was estimated as 4.9966±0.3309 %, and the independent yield of 140La was estimated to be 0.0045±0.0022 %. These estimated values are commensurate with existing literature values. (author)
Pigni, Marco T [ORNL; Francis, Matthew W [ORNL; Gauld, Ian C [ORNL
2015-01-01
A recent implementation of ENDF/B-VII. independent fission product yields and nuclear decay data identified inconsistencies in the data caused by the use of updated nuclear scheme in the decay sub-library that is not reflected in legacy fission product yield data. Recent changes in the decay data sub-library, particularly the delayed neutron branching fractions, result in calculated fission product concentrations that are incompatible with the cumulative fission yields in the library, and also with experimental measurements. A comprehensive set of independent fission product yields was generated for thermal and fission spectrum neutron induced fission for ^{235,238}U and ^{239,241}Pu in order to provide a preliminary assessment of the updated fission product yield data consistency. These updated independent fission product yields were utilized in the ORIGEN code to evaluate the calculated fission product inventories with experimentally measured inventories, with particular attention given to the noble gases. An important outcome of this work is the development of fission product yield covariance data necessary for fission product uncertainty quantification. The evaluation methodology combines a sequential Bayesian method to guarantee consistency between independent and cumulative yields along with the physical constraints on the independent yields. This work was motivated to improve the performance of the ENDF/B-VII.1 library in the case of stable and long-lived cumulative yields due to the inconsistency of ENDF/B-VII.1 fission p;roduct yield and decay data sub-libraries. The revised fission product yields and the new covariance data are proposed as a revision to the fission yield data currently in ENDF/B-VII.1.
Measuring the absolute DT neutron yield using the Magnetic Recoil Spectrometer at OMEGA and the NIF
A Magnetic Recoil Spectrometer (MRS) has been installed and extensively used on OMEGA and the National Ignition Facility (NIF) for measurements of the absolute neutron spectrum from inertial confinement fusion (ICF) implosions. From the neutron spectrum measured with the MRS, many critical implosion parameters are determined including the primary DT neutron yield, the ion temperature, and the down-scattered neutron yield. As the MRS detection efficiency is determined from first principles, the absolute DT neutron yield is obtained without cross-calibration to other techniques. The MRS primary DT neutron measurements at OMEGA and the NIF are shown to be in excellent agreement with previously established yield diagnostics on OMEGA, and with the newly commissioned nuclear activation diagnostics on the NIF.
Measuring the absolute DT neutron yield using the Magnetic Recoil Spectrometer at OMEGA and the NIF
Mackinnon, A; Casey, D; Frenje, J A; Johnson, M G; Seguin, F H; Li, C K; Petrasso, R D; Glebov, V Y; Katz, J; Knauer, J; Meyerhofer, D; Sangster, T; Bionta, R; Bleuel, D; Hachett, S P; Hartouni, E; Lepape, S; Mckernan, M; Moran, M; Yeamans, C
2012-05-03
A Magnetic Recoil Spectrometer (MRS) has been installed and extensively used on OMEGA and the National Ignition Facility (NIF) for measurements of the absolute neutron spectrum from inertial confinement fusion (ICF) implosions. From the neutron spectrum measured with the MRS, many critical implosion parameters are determined including the primary DT neutron yield, the ion temperature, and the down-scattered neutron yield. As the MRS detection efficiency is determined from first principles, the absolute DT neutron yield is obtained without cross-calibration to other techniques. The MRS primary DT neutron measurements at OMEGA and the NIF are shown to be in excellent agreement with previously established yield diagnostics on OMEGA, and with the newly commissioned nuclear activation diagnostics on the NIF.
A novel method for the absolute fluorescence yield measurement by AIRFLY
Ave, M
2008-01-01
One of the goals of the AIRFLY (AIR FLuorescence Yield) experiment is to measure the absolute fluorescence yield induced by electrons in air to better than 10% precision. We introduce a new technique for measurement of the absolute fluorescence yield of the 337 nm line that has the advantage of reducing the systematic uncertainty due to the detector calibration. The principle is to compare the measured fluorescence yield to a well known process - the Cerenkov emission. Preliminary measurements taken in the BFT (Beam Test Facility) in Frascati, Italy with 350 MeV electrons are presented. Beam tests in the Argonne Wakefield Accelerator at the Argonne National Laboratory, USA with 14 MeV electrons have also shown that this technique can be applied at lower energies.
Primary fragment mass-yield distributions for asymmetric fission path of heavy nuclei
The primary fragment mass-yield distribution for the asymmetric fission path in heavy nuclei, 233Pa, 239Np, 245Am and 249Bk at the excitation energy of ∼20 MeV are experimentally constructed based on the intensities of total kinetic energies for individual mass splits. The results revealed an interesting phenomenon: in all the studied fissioning systems, the inner wings of the mass-yield distributions in the asymmetric fission path appear along the same mass-wall of A = 130 fragment mass. The asymmetric mass-yield distribution indicates the strong effect of structural shells in fragments on the final mass division process of the asymmetric fission path. (author)
Compilation of data related to fission products. I - Chain total yields
As the theoretical study of the formation and evolution of fission products in a pile fuel requires the knowledge of a large number of data (fission product characteristics, parameters related to fission mechanism), and in the frame of such a type a study which aimed at taking, non only fuel irradiation conditions and fuel composition, but also the evolution of these features in time into account, the authors have been leaded to perform a large compilation of data required by the calculation, and also to make a choice among the available data. This volume gathers data related to the total yields of fission product chains. The first part contains chain total yields from different documents. These data deal with various energies and concern the following products: 233U, 235U, 238U, 239Pu, 241Pu. The second part proposes curves which, for 235U and 239Pu, give the total yields as a function of incident neutron energy
The Criticality Calculation Of Fission Yield Of U-235 Solution And Its Radiation Dose
The calculation assesment of fission yield of U-235 solution in the extraction and evaporation units has been performed for the prediction of that when the criticality accident occurs in the production of fuel element for the research reactor. The Grover Tuck and fission distribution probability methods are used in this case. The calculation result using the fission distribution probability methods show the fission of 2,7 x 1018 for the uranium concentration of 200 grams/litre and that of 2,5 x 1018 fissions for U of 40 grams/litre in the extraction unit. The calculation results from the evaporation unit revealed the fission of 3,1 x 1018 for 400 grams/litre uranium and 1,77 x 1018 fissions for 80 grams/litre uranium. Using the Grover Tuck calculation method give results that 8,267 x 1017 fissions and 2,878 x 1017 fissions respectively. Radiation dose of 200 gram/litre solution is about 1450,29 Rad for neutron and 4785,96 Rad for gamma ray
The independent and cumulative fission product yields (FPYs) are obtained by using the Bayesian technique based on the evaluated mass chain yield, where required constraints such as the normalization can be straightforwardly included. We apply this technique to the 239Pu FPY data at neutron incident energies of 0.5, 2.0, and 14 MeV, where the most updated mass chain yield ENDF/B-VII.1 data are available. The obtained yield data are compared with the evaluated values by England and Rider in ENDF/B-VI, and differences from their values are investigated. We show that the modern decay data used, such as branching ratios to ground and metastable states, cause differences in the evaluated individual and cumulative fission yields. (author)
It has been found possible to account for the fine structure in the neutron yield versus mass distribution. The prediction is based on the assumption of a prompt independent curve obtained from the equal-charge-displacement (ECD) postulate and a linear dependence of fission-fragment excitation energy with mass. The method adopted for calculating neutron yields has been used to investigate the effect of neutron emission on independent yields. Independent yields after neutron emission have been calculated using ECD and a ''transition-state'' method to describe the prompt charge distribution. The calculated independent yields have been compared with some recent data. (author)
A recent implementation of ENDF/B-VII.1 independent fission product yields and nuclear decay data identified inconsistencies in the data caused by the use of updated nuclear schemes in the decay sub-library that are not reflected in legacy fission product yield data. Recent changes in the decay data sub-library, particularly the delayed neutron branching fractions, result in calculated fission product concentrations that do not agree with the cumulative fission yields in the library as well as with experimental measurements. To address these issues, a comprehensive set of independent fission product yields was generated for thermal and fission spectrum neutron-induced fission for 235,238U and 239,241Pu in order to provide a preliminary assessment of the updated fission product yield data consistency. These updated independent fission product yields were utilized in the ORIGEN code to compare the calculated fission product inventories with experimentally measured inventories, with particular attention given to the noble gases. Another important outcome of this work is the development of fission product yield covariance data necessary for fission product uncertainty quantification. The evaluation methodology combines a sequential Bayesian method to guarantee consistency between independent and cumulative yields along with the physical constraints on the independent yields. This work was motivated to improve the performance of the ENDF/B-VII.1 library for stable and long-lived fission products. The revised fission product yields and the new covariance data are proposed as a revision to the fission yield data currently in ENDF/B-VII.1
Fission fragment formation and fission yields in the model of octupole neutron-proton oscillations
Yavshits S.
2010-01-01
The fission fragment formation is considered as a result of neck instability in the process of octupole oscillations of neutrons and protons near the scission point. To describe such a phenomenon the potential surface of fissionning nucleus with neck radius about 1 fm was calculated with shell correction approach. The new version of smooth liquid drop part of deformation energy is proposed. The liquid drop part is formulated in a double folding model with n-n, p-p, and n-p Yukawa interac...
Comparison of Yields of neutron rich nuclei in Proton and Photon induced $^{238}$U fission
Khan, F A; Basu, D N; Farooq, M; Chakrabarti, Alok
2016-01-01
A comparative study of fission of actinides specially $^{238}$U, by proton and bremsstrahlung photon is performed. Relative mass distribution of $^{238}$U fission fragments have been explored theoretically for both proton and photon induced fission. The integrated yield along with charge distribution of the products are calculated to find out the neutron richness in comparison to the nuclei produced by r-process in nucleosynthesis. Some r-process nuclei in intermediate mass range for symmetric fission mode are found to be produced almost two order of magnitude more for proton induced fission than photofission, although rest of the neutron rich nuclei in the asymmetric mode are produced in comparable proportion for both the processes.
Nuclear fission allows us to produce and study the properties of the nuclei with a higher neutron to proton ratio. Spectroscopic studies of such neutron-rich fragment nuclei provide direct information on the nuclear excited states. Such studies help to explore the new regions of nuclear deformations, and to extend the theoretical model(s) to regions which have hitherto been inaccessible. A lot of work has already been done on these set of nuclei by means of spontaneous fission of 252Cf and 248Cm sources, heavy-ion induced fusion-fission reactions, and also using deep-inelastic reactions. More recently, spectroscopic studies were performed using thermal neutron induced fission of 235U using CIRUS reactor facility. Here we report the yield distribution of the isotopes, produced in thermal neutron induced fission of 235U, using prompt γ-γ coincidence measurement technique
Measurement of the hydrogen yield in the radiolysis of water by dissolved fission products
Hydrogen from the radiolysis of water by dissolved fission products is stripped from the solution and collected by bubbling CO2 through the solution. Quantitative measurements of the G value for hydrogen show that the yield is essentially the same as would be obtained by external gamma radiolysis of nonradioactive solutions of the same chemical composition. The hydrogen yield can be enhanced by addition of a hydrogen-atom donor, such as formic acid, to the solution. The yield of hydrogen from fission-waste solutions is discussed with respect to the question of whether it represents a significant energy source
The production and transmission of covariance in the evaluation processing of fission yield data
The production and transmission of correlation in the evaluation processing of fission yield data, including average with weight, ratio and sum consistence adjusting, are researched. The variation of the averaged and adjusted yields and/or rations with the correlation coefficient of the input data are investigated. The results obtained are reasonable in physics
Yield-Energy Evaluation of 85Kr of 239Pu+n Fission
2008-01-01
<正>The yields of 85Kr, the important production of the 239Pu fission, were re-evaluated over the incident neutron energy 1-15 MeV, based upon all the experimental data. The yields as function of energ
SOFIA: An innovative setup to measure complete isotopic yield of fission fragments
Pellereau E.
2013-12-01
Full Text Available We performed an experiment dedicated to the accurate isotopic yield measurement of fission fragments over the whole range. SOFIA exploits the inverse kinematics technique: using heavy ion beams at relativistic energies, fission is induced by Coulomb excitation in a high-Z target. The fragments are emitted forward and both of them are identified in charge and mass. The setup will be presented, as well as preliminary spectra.
SOFIA: An innovative setup to measure complete isotopic yield of fission fragments
We performed an experiment dedicated to the accurate isotopic yield measurement of fission fragments over the whole range. SOFIA exploits the inverse kinematics technique: using heavy ion beams at relativistic energies, fission is induced by Coulomb excitation in a high-Z target. The fragments are emitted forward and both of them are identified in charge and mass. The setup will be presented, as well as preliminary spectra. (authors)
JENDL FP decay data file 2011 and fission yields data file 2011
The decay and fission yield data of fission products were compiled as JENDL FP Decay Data File 2011 (JENDL/FPD-2011) and JENDL FP Fission Yields Data File 2011 (JENDL/FPY-2011). After the release of JENDL FP Decay Data File 2000 (JENDL/FPD-2000) in 2000, new measured data have been accumulated and new TAGS (Total Absorption Gamma-ray Spectroscopy) data have been published. This new release is to reflect such new measured and available data. The file contains the decay data of 1284 FP nuclides (of which 142 nuclides are stable). In the compilation of the decay data, data of some nuclides were newly added and those of some nuclides were deleted. In order to keep the consistency between the number of nuclides contained of the decay data file and fission yields file, the JENDL/FPY-2011 file was also compiled. The decay heat calculation for various kinds of fissioning nuclides were performed to confirm the validity of the JENDL/FPD-2011 and JENDL/FPY-2011 files. The calculated results were compared with the measured data and showed good agreement. The uncertainty analyses of the decay heat calculation were carried out by the method of sensitivity analysis. It was shown that the uncertainty was about 10 % at 0.1 s after a burst fission. (author)
Caamano, M.; Rejmund, F.; Schmidt, K. -H.
2009-01-01
Based on a wide systematics of fission-fragment distributions measured in low-energy fission, the even-odd staggering in the fission-fragment element yields is investigated. The well-established evolution of the global even-odd effect with the fissioning system is found to be only a partial aspect of the even-odd structure. Indeed, it is shown that the global even-odd effect is varying systematically with the mean asymmetry of the fission-fragment distribution, and that the general increase o...
The cumulative yields of various fission products in the 232Th(γ,f) with end-point Bremsstrahlung energy of 14 MeV having have been determined using off-line γ-ray spectrometric technique. The end-point Bremsstrahlung energy of 14 MeV was generated by impinging the electron beam on a solid graphite beam dump of the 20 electron LINAC (ELBE) at Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany. From the cumulative fission yields, the mass chain yields were obtained by using charge distribution correction of medium energy. The fine structure in the mass yield distribution was interpreted from the point of nuclear structure effect such as shell closure proximity and even-odd effect. The mass yield distribution in 232Th(γ,f) is triple humped unlike 238U(γ,f), where it is double humped. This different behaviour in between 232Th* and 238U* was explained from the point of different potential energy surfaces between two systems. (author)
Fission Product Yields for 14 MeV Neutrons on 235U, 238U and 239Pu
Mac Innes, M.; Chadwick, M. B.; Kawano, T.
2011-12-01
We report cumulative fission product yields (FPY) measured at Los Alamos for 14 MeV neutrons on 235U, 238U and 239Pu. The results are from historical measurements made in the 1950s-1970s, not previously available in the peer reviewed literature, although an early version of the data was reported in the Ford and Norris review. The results are compared with other measurements and with the ENDF/B-VI England and Rider evaluation. Compared to the Laurec (CEA) data and to ENDF/B-VI evaluation, good agreement is seen for 235U and 238U, but our FPYs are generally higher for 239Pu. The reason for the higher plutonium FPYs compared to earlier Los Alamos assessments reported by Ford and Norris is that we update the measured values to use modern nuclear data, and in particular the 14 MeV 239Pu fission cross section is now known to be 15-20% lower than the value assumed in the 1950s, and therefore our assessed number of fissions in the plutonium sample is correspondingly lower. Our results are in excellent agreement with absolute FPY measurements by Nethaway (1971), although Nethaway later renormalized his data down by 9% having hypothesized that he had a normalization error. The new ENDF/B-VII.1 14 MeV FPY evaluation is in good agreement with our data.
Fission Product Yields for 14 MeV Neutrons on 235U, 238U and 239Pu
We report cumulative fission product yields (FPY) measured at Los Alamos for 14 MeV neutrons on 235U, 238U and 239Pu. The results are from historical measurements made in the 1950s–1970s, not previously available in the peer reviewed literature, although an early version of the data was reported in the Ford and Norris review. The results are compared with other measurements and with the ENDF/B-VI England and Rider evaluation. Compared to the Laurec (CEA) data and to ENDF/B-VI evaluation, good agreement is seen for 235U and 238U, but our FPYs are generally higher for 239Pu. The reason for the higher plutonium FPYs compared to earlier Los Alamos assessments reported by Ford and Norris is that we update the measured values to use modern nuclear data, and in particular the 14 MeV 239Pu fission cross section is now known to be 15–20% lower than the value assumed in the 1950s, and therefore our assessed number of fissions in the plutonium sample is correspondingly lower. Our results are in excellent agreement with absolute FPY measurements by Nethaway (1971), although Nethaway later renormalized his data down by 9% having hypothesized that he had a normalization error. The new ENDF/B-VII.1 14 MeV FPY evaluation is in good agreement with our data.
Precise Measurement of the Absolute Yield of Fluorescence Photons in Atmospheric Gases
Ave, M; Daumiller, K; Di Carlo, P; Di Giulio, C; Luis, P Facal San; Gonzales, D; Hojvat, C; Hörandel, J R; Hrabovský, M; Iarlori, M; Keilhauer, B; Klages, H; Kleifges, M; Kuehn, F; Monasor, M; Nožka, L; Palatka, M; Petrera, S; Privitera, P; Ridky, J; Rizi, V; d'Orfeuil, B Rouillé; Salamida, F; Schovánek, P; Šmida, R; Spinka, H; Ulrich, A; Verzi, V; Williams, C
2011-01-01
We have performed a measurement of the absolute yield of fluorescence photons at the Fermilab Test Beam. A systematic uncertainty at 5% level was achieved by the use of Cherenkov radiation as a reference calibration light source. A cross-check was performed by an independent calibration using a laser light source. A significant improvement on the energy scale uncertainty of Ultra-High Energy Cosmic Rays is expected.
Optimal version of a detector for relative measuring of fission neutron yield
A fission neutron detector ( anti ν-detector), registration efficiency E of which does not depend on neutron energy is discussed. The detector represents a cylindrical moderator (polyethylene) along the axis of which a channel for the fission detector is located. Coaxially with the central channel 3He or BF3 cylindrical counters are located in several raws. The account of neutron energy effect on E is carried out by simultaneous measurement of anti ν and THETA, where anti ν - fission neutron yield, THETA-neutron ''temperature'', connected with the mean energy by the relation anti E=3/2 THETA. The method of simultaneous measurements of anti ν and THETA suggests the pulse coincidence registration from the BF3 or 3H counters with pulses from the fission detector. Ratio of the coincidence numbers is used for determining THETA and the sum for anti ν. As an example presented are the results of measuring the 244Cm fission neutron yield with respect to anti νsub(o) in the case of 252Cf spontaneous fission by means of the detector, containing four raws of counters. The data obtained satisfactorily agree with the data published earlier
Study of asymmetric fission yield behavior from neutron-deficient Hg isotope
Perkasa, Y. S. [Department of Physics, Sunan Gunung Djati State Islamic University Bandung, Jl. A.H Nasution No. 105 Cibiru, Bandung (Indonesia); Waris, A., E-mail: awaris@fi.itb.ac.id; Kurniadi, R., E-mail: awaris@fi.itb.ac.id; Su' ud, Z., E-mail: awaris@fi.itb.ac.id [Nuclear Physics and Biophysics Research Division, Department of Physics, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jl. Ganesa No. 10 Bandung 40132 (Indonesia)
2014-09-30
A study of asymmetric fission yield behavior from a neutron-deficient Hg isotope has been conducted. The fission yield calculation of the neutron-deficient Hg isotope using Brownian Metropolis shape had showed unusual result at decreasing energy. In this paper, this interesting feature will be validated by using nine degree of scission shapes parameterization from Brosa model that had been implemented in TALYS nuclear reaction code. This validation is intended to show agreement between both model and the experiment result. The expected result from these models considered to be different due to dynamical properties that implemented in both models.
Sonzogni, A A; McCutchan, E A; Johnson, T D; Dimitriou, P
2016-04-01
Fission yields form an integral part of the prediction of antineutrino spectra generated by nuclear reactors, but little attention has been paid to the quality and reliability of the data used in current calculations. Following a critical review of the thermal and fast ENDF/B-VII.1 ^{235}U fission yields, deficiencies are identified and improved yields are obtained, based on corrections of erroneous yields, consistency between decay and fission yield data, and updated isomeric ratios. These corrected yields are used to calculate antineutrino spectra using the summation method. An anomalous value for the thermal fission yield of ^{86}Ge generates an excess of antineutrinos at 5-7 MeV, a feature which is no longer present when the corrected yields are used. Thermal spectra calculated with two distinct fission yield libraries (corrected ENDF/B and JEFF) differ by up to 6% in the 0-7 MeV energy window, allowing for a basic estimate of the uncertainty involved in the fission yield component of summation calculations. Finally, the fast neutron antineutrino spectrum is calculated, which at the moment can only be obtained with the summation method and may be relevant for short baseline reactor experiments using highly enriched uranium fuel. PMID:27081973
Sonzogni, A. A.; McCutchan, E. A.; Johnson, T. D.; Dimitriou, P.
2016-04-01
Fission yields form an integral part of the prediction of antineutrino spectra generated by nuclear reactors, but little attention has been paid to the quality and reliability of the data used in current calculations. Following a critical review of the thermal and fast ENDF/B-VII.1 235U 235 fission yields, deficiencies are identified and improved yields are obtained, based on corrections of erroneous yields, consistency between decay and fission yield data, and updated isomeric ratios. These corrected yields are used to calculate antineutrino spectra using the summation method. An anomalous value for the thermal fission yield of 86Ge generates an excess of antineutrinos at 5-7 MeV, a feature which is no longer present when the corrected yields are used. Thermal spectra calculated with two distinct fission yield libraries (corrected ENDF/B and JEFF) differ by up to 6% in the 0-7 MeV energy window, allowing for a basic estimate of the uncertainty involved in the fission yield component of summation calculations. Finally, the fast neutron antineutrino spectrum is calculated, which at the moment can only be obtained with the summation method and may be relevant for short baseline reactor experiments using highly enriched uranium fuel.
A Covariance Generation Methodology for Fission Product Yields
Terranova N.; Serot O.; Archier P.; Vallet V.; De Saint Jean C.; Sumini M.
2016-01-01
Recent safety and economical concerns for modern nuclear reactor applications have fed an outstanding interest in basic nuclear data evaluation improvement and completion. It has been immediately clear that the accuracy of our predictive simulation models was strongly affected by our knowledge on input data. Therefore strong efforts have been made to improve nuclear data and to generate complete and reliable uncertainty information able to yield proper uncertainty propagation on integral reac...
Model-based generation of neutron induced fission yields up to 20 MeV by the GEF code
Model-based fission product yields from the fission of various important target nuclides have been calculated for incident neutron energies up to 20 MeV, divided into a 77 energy group structure. The calculations have been performed with two versions of the GEF code, which have been externally coupled to TALYS-1.4. In this application, the TALYS-1.4 code calculates any pre-fission nucleon or gamma emission from the compound nucleus as well as the probabilities of excitation states at the time it undergoes fission. The obtained quantities, fully characterizing the fissioning nucleus, are then passed to GEF, which generates the corresponding primary fission product yields in a Monte Carlo calculation. Cumulative fission product yields have been calculated using these primary fission product yields together with evaluated radioactive decay data as input. The interim and final results from the modelling, i.e. cross-sections, independent and cumulative fission yields, have been compared to experimental data. Important results from this, as well as sensitivities and reliabilities of the models, are discussed in this paper. The objective of this work was to generate energy dependent fission product yields data to serve as a basis for further investigations on potential improvements of evaluated data for nuclear reactor applications, which are beyond the scope of this publication. (author)
Influence of asymmetry and fissility on even-odd effect in fission-fragment yields
Rejmund F.
2010-10-01
Full Text Available Based on a wide systematics of fragment distributions measured in thermal-neutron induced fission, the even-odd staggering in the fission-fragment element yields is investigated. The asymmetry evolution of the element yield distribution with the fissility of the fissioning nucleus is shown to be for an important part responsible for the decrease of the even-odd staggering with the fissility. The even-odd staggering close to symmetry is shown to be a small contribution to the global even-odd effect, and seems to vary little with the fissility of the nucleus. These experimental observations show that the established interpretation in which the intrinsic excitation energy at scission is accountable for the even-odd staggering amplitude has to be reconsidered.
Precise measurement of the absolute fluorescence yield of the 337 nm band in atmospheric gases
Ave, M.; Bohacova, M.; Curry, E.; Di Carlo, P.; Di Giulio, C.; Facal San Luis, P.; Gonzales, D.; Hojvat, C.; Hörandel, J.; Hrabovsky, M.; Iarlori, M.; Keilhauer, B.; Klages, H.; Kleifges, M.; Kuehn, F.; Li, S.; Monasor, M.; Nozka, L.; Palatka, M.; Petrera, S.; Privitera, P.; Ridky, J.; Rizi, V.; Rouille D'Orfeuil, B.; Salamida, F.; Schovanek, P.; Smida, R.; Spinka, H.; Ulrich, A.; Verzi, V.; Williams, C.
2013-02-01
A measurement of the absolute fluorescence yield of the 337 nm nitrogen band, relevant to ultra-high energy cosmic ray (UHECR) detectors, is reported. Two independent calibrations of the fluorescence emission induced by a 120 GeV proton beam were employed: Cherenkov light from the beam particle and calibrated light from a nitrogen laser. The fluorescence yield in air at a pressure of 1013 hPa and temperature of 293 K was found to be Y337=5.61±0.06stat±0.22syst photons/MeV. When compared to the fluorescence yield currently used by UHECR experiments, this measurement improves the uncertainty by a factor of three, and has a significant impact on the determination of the energy scale of the cosmic ray spectrum.
Precise measurement of the absolute fluorescence yield of the 337 nm band in atmospheric gases
Ave, M; Curry, E; Di Carlo, P; Di Giulio, C; Luis, P Facal San; Gonzales, D; Hojvat, C; Hörandel, J; Hrabovsky, M; Iarlori, M; Keilhauer, B; Klages, H; Kleifges, M; Kuehn, F; Li, S; Monasor, M; Nozka, L; Palatka, M; Petrera, S; Privitera, P; Ridky, J; Rizi, V; D'Orfeuil, B Rouille; Salamida, F; Schovanek, P; Smida, R; Spinka, H; Ulrich, A; Verzi, V; Williams, C
2012-01-01
A measurement of the absolute fluorescence yield of the 337 nm nitrogen band, relevant to ultra-high energy cosmic ray (UHECR) detectors, is reported. Two independent calibrations of the fluorescence emission induced by a 120 GeV proton beam were employed: Cherenkov light from the beam particle and calibrated light from a nitrogen laser. The fluorescence yield in air at a pressure of 1013 hPa and temperature of 293 K was found to be $Y_{337} = 5.61\\pm 0.06_{stat} \\pm 0.21_{syst}$ photons/MeV. When compared to the fluorescence yield currently used by UHECR experiments, this measurement improves the uncertainty by a factor of three, and has a significant impact on the determination of the energy scale of the cosmic ray spectrum.
Äystö J.
2012-02-01
Full Text Available A new method to measure the fission product independent yields employing the ion guide technique and a Penning trap as a precision mass filter, which allows an unambiguous identification of the nuclides is presented. The method was used to determine the independent yields in the proton-induced fission of 232Th and 238U at 25 MeV. The data were analyzed with the consistent model for description of the fission product formation cross section at the projectile energies up to 100 MeV. Pre-compound nucleon emission is described with the two-component exciton model using Monte Carlo method. Decay of excited compound nuclei is treated within time-dependent statistical model with inclusion of the nuclear friction effect. The charge distribution of the primary fragment isobaric chain was considered as a result of frozen quantal fluctuations of the isovector nuclear density. The theoretical predictions of the independent fission product cross sections are used for normalization of the measured fission product isotopic distributions.
Absolute determination of the neutron source yield using melamine as a neutron detector
Ciechanowski, M.; Bolewski, A., Jr.; Kreft, A.
2015-01-01
A new approach to absolute determination of the neutron source yield is presented. It bases on the application of melamine (C3H6N6) to neutron detection combined with Monte Carlo simulations of neutron transport. Melamine has the ability to detect neutrons via 14N(n, p)14C reaction and subsequent determination of 14C content. A cross section for this reaction is relatively high for thermal neutrons (1.827 b) and much lower for fast neutrons. A concentration of 14C nuclei created in the irradiated sample of melamine can be reliably measured with the aid of the accelerator mass spectrometry (AMS). The mass of melamine sufficient for this analysis is only 10 mg. Neutron detection is supported by Monte Carlo simulations of neutron transport carried out with the use of MCNP-4C code. These simulations are aimed at computing the probability of 14C creation in the melamine sample per the source neutron. The result of AMS measurements together with results of MCNP calculations enable us to determine the number of neutrons emitted from the source during the irradiation of melamine. The proposed method was applied for determining the neutron emission from a commercial 252Cf neutron source which was independently calibrated. The measured neutron emission agreed with the certified one within uncertainty limits. The relative expanded uncertainty (k=2) of the absolute neutron source yield determination was estimated at 2.6%. Apart from calibration of radionuclide neutron sources the proposed procedure could facilitate absolute yield measurements for more complex sources. Potential applications of this methodology as it is further developed include diagnostics of inertial confinement fusion and plasma-focus experiments, calibration of neutron measurement systems at tokamaks and accelerator-based neutron sources as well as characterization of neutron fields generated in large particle detectors during collisions of hadron beams.
Isotopic yield in cold binary fission of even-even 244-258Cf isotopes
Santhosh, K. P.; Cyriac, Annu; Krishnan, Sreejith
2016-05-01
The cold binary fission of even-even 244-258Cf isotopes has been studied by taking the interacting barrier as the sum of Coulomb and proximity potential. The favorable fragment combinations are obtained from the cold valley plot (plot of driving potential vs. mass number of fragments) and by calculating the yield for charge minimized fragments. It is found that for 244,246,248Cf isotopes highest yield is for the fragments with isotope of Pb (Z = 82) as one fragment, whereas for 250Cf and 252Cf isotopes the highest yield is for the fragments with isotope of Hg (Z = 80) as one fragment. In the case of 254,256,258Cf isotopes the highest yield is for the fragments with Sn (Z = 50) as one fragment. Thus, the fragment combinations with maximum yield reveal the role of doubly magic and near doubly magic nuclei in binary fission. It is found that asymmetric splitting is favored for Cf isotopes with mass number A ≤ 250 and symmetric splitting is favored for Cf isotopes with A > 252. In the case of Cf isotope with A = 252, there is an equal probability for asymmetric and symmetric splitting. The individual yields obtained for the cold fission of 252Cf isotope are compared with the experimental data taken from the γ- γ- γ coincidences technique using Gammasphere.
Gibbs, A.; Thomason, R.S.
2000-09-05
This compilation was undertaken to update the data used in calculation of curie and heat loadings of waste containers in the Solid Waste Management Facility. The data has broad general use and has been cross-checked extensively in order to be of use in the Materials Accountability arena. The fission product cross-sections have been included because they are of use in the Environmental Remediation and Waste Management areas where radionuclides which are not readily detectable need to be calculated from the relative fission yields and material dispersion data.
This compilation was undertaken to update the data used in calculation of curie and heat loadings of waste containers in the Solid Waste Management Facility. The data has broad general use and has been cross-checked extensively in order to be of use in the Materials Accountability arena. The fission product cross-sections have been included because they are of use in the Environmental Remediation and Waste Management areas where radionuclides which are not readily detectable need to be calculated from the relative fission yields and material dispersion data
Improving the prediction of radiation parameters and reliability of fuel behaviour under different irradiation modes is particularly relevant for new fuel compositions, including recycled nuclear fuel. For fast reactors there is a strong dependence of nuclide accumulations on the nuclear data libraries. The effect of fission yield libraries on irradiated fuel is studied in MONTEBURNS-MCNP5-ORIGEN2 calculations of sodium fast reactors. Fission yield libraries are generated for sodium fast reactors with MOX fuel, using ENDF/B-VII.0, JEFF3.1, original library FY-Koldobsky, and GEFY 3.3 as sources. The transport libraries are generated from ENDF/B-VII.0 and JEFF-3.1. Analysis of irradiated MOX fuel using different fission yield libraries demonstrates the considerable spread in concentrations of fission products. The discrepancies in concentrations of inert gases being ∼25%, up to 5 times for stable and long-life nuclides, and up to 10 orders of magnitude for short-lived nuclides. (authors)
Caamaño, Manuel; Rejmund, Fanny; Schmidt, Karl-Heinz
2011-01-01
Abstract Based on a comprehensive set of fission-fragment distributions measured in low-energy fission, the even-odd staggering in the fission-fragment element yields is investigated. The well-established evolution of the global even-odd effect with the fissioning system is found to be only a partial aspect of the even-odd structure. Indeed, it is shown that the global even-odd effect varies systematically with the mean asymmetry of the fission-fragment distribution, and that the general i...
Regression analysis for a bottom-up approach to analyzing semi-prompt fission gamma yields
Highlights: ► Fitting the semi-prompt non-resolved photon spectrum after fission. ► Energy–time dependence can be factorized. ► Physical model, statistical model, sampling procedure. ► The best fit is: lognormal for energy and F for time. - Abstract: We present an empirical model that describes the yield of gamma rays emitted by fission in the time interval from 20 to 958 ns following a fission event. The analysis is based on experimental data from neutron-induced fission of 235U and 239Pu. The model is devised by first using regression analysis to identify likely patterns in the data and to choose plausible fitting functions. We provide statistical and physical arguments in support of time and energy independence. The intensity of the emitted gamma rays can be described as a bivariate distribution that is the product of independent variates for energy and time. We test several plausible distribution families for the energy and time variates and use maximum likelihood and minimum χ2 to estimate distribution parameters. Because of the uncertainty in the experimental data, multiple combinations of variate pairs give rise to a surface that plausibly well fits the observations well. The best-fit variate turns out to be lognormal in energy and F in time. The findings illustrated in this paper can be used to simulate gamma ray de-excitation from fission in Monte Carlo codes.
Absolute calibration method for laser megajoule neutron yield measurement by activation diagnostics.
Landoas, Olivier; Glebov, Vladimir Yu; Rossé, Bertrand; Briat, Michelle; Disdier, Laurent; Sangster, Thomas C; Duffy, Tim; Marmouget, Jean Gabriel; Varignon, Cyril; Ledoux, Xavier; Caillaud, Tony; Thfoin, Isabelle; Bourgade, Jean-Luc
2011-07-01
The laser megajoule (LMJ) and the National Ignition Facility (NIF) plan to demonstrate thermonuclear ignition using inertial confinement fusion (ICF). The neutron yield is one of the most important parameters to characterize ICF experiment performance. For decades, the activation diagnostic was chosen as a reference at ICF facilities and is now planned to be the first nuclear diagnostic on LMJ, measuring both 2.45 MeV and 14.1 MeV neutron yields. Challenges for the activation diagnostic development are absolute calibration, accuracy, range requirement, and harsh environment. At this time, copper and zirconium material are identified for 14.1 MeV neutron yield measurement and indium material for 2.45 MeV neutrons. A series of calibrations were performed at Commissariat à l'Energie Atomique (CEA) on a Van de Graff facility to determine activation diagnostics efficiencies and to compare them with results from calculations. The CEA copper activation diagnostic was tested on the OMEGA facility during DT implosion. Experiments showed that CEA and Laboratory for Laser Energetics (LLE) diagnostics agree to better than 1% on the neutron yield measurement, with an independent calibration for each system. Also, experimental sensitivities are in good agreement with simulations and allow us to scale activation diagnostics for the LMJ measurement range. PMID:21806179
The study of fission yields has a major impact on the characterization and understanding of the fission process and is mandatory for reactor applications. While the yields are known for the major actinides (U-235, Pu-239) in the thermal neutron-induced fission, only few measurements were performed on Am-242. Moreover, the two main data libraries do not agree among each other on the light peak. Am-241 and Am-242 are nuclei of interest for the MOX-fuel reactors and for the reduction of nuclear waste radiotoxicity using transmutation reactions. Thus, a campaign of precise measurement of the fission mass yields from the reaction Am-241(2n,f) was performed at the Lohengrin mass spectrometer (ILL, France) for both the light and the heavy peak. Forty-one masses were measured. Moreover, the measurement of the isotopic fission yields on the heavy peak by gamma-ray spectrometry led to the extraction of 20 independent isotopic yields. Our measurement was also meant to determine whether there is a difference in fission yields between the Am-242 isomeric state and its ground state as it exists in fission cross sections. The experimental method used to answer this question is based on the measurement a set of fission mass yields as a function of the ratio of Am-242gs to Am-242m fission rate. Results show that the mass yields are independent of the fission rate ratio. A future experimental campaign is proposed to observe a possible influence on the isomeric yields. The theoretical models are nowadays unable to predict the fission yields with enough accuracy and therefore we have to rely on experimental data and phenomenological models. The accuracy of the predictions of the semi empirical GEF fission model predictions makes it a useful tool for evaluation. This thesis also presents the physical content and part of the development of this model. Validation of the kinetic energy distributions, isomeric yields and fission yields predictions was performed. The extension of the GEF
Measurement of Delayed Neutron Yields from Thermal Neutron Induced Fission of $^{237}$Np
Gundorin, N A; Pikelner, L B; Revrova, N V; Salamatin, I M; Smirnov, V I; Zhdanova, K V; Zhuchko, V E
2005-01-01
This paper reports about the measurement of delayed neutron yields from a thermal neutron induced fission of $^{237}$Np. The method based on periodic irradiation of the sample in pulsed neutron beam with the subsequent registration of neutrons in intervals between pulses is used in the experiment. The method is realized on the "Isomer-M" installation, located on the channel of the IBR-2 pulsed reactor. A description of the installation and a technique of the experiment are presented, a thorough analysis of background processes is performed, results of measurements are shown in this paper. The value of delayed neutron yields from thermal neutron induced fission of $^{237}$Np obtained in the present investigation is $\
Relative Yields of 149-153Pr in Spontaneous Fission of 252Cf
Eldridge, Jonathan; Wang, Enhong; Hwang, J. K.; Hamilton, Joe; Ramayya, A. V.; Luo, Y. X.; Rasmussen, J. O.; Zhu, S. J.; Liu, S. H.; Ter-Akopian, G. M.; Oganessian, Yu. Ts.
2013-10-01
The relative yields of the fission partners of 149-153Pr, resulting from the spontaneous fission of 252Cf, were studied. This study was done by means of γ - γ - γ , and γ - γ - γ - γ coincidence data taken in 2000 by the multi-HPGe, Compton-suppressed, gamma detector array, Gammasphere, at Lawrence Berkeley National Lab. The coincidence data were analyzed by double- and triple-gating on transitions in 149-153Pr and obtaining the intensities of the 93-101Y transitions. For 150 , 151 , 152 , 153Pr the 3n channel was found to be the strongest. The 149Pr, however, was found to peak at the 4n channel. These results were used to verify the assignments of the level schemes of 151 , 152 , 153Pr. The data are found to be in agreement with Wahl's independent yield tables.
Fractional independent yields of 141La and 142La from thermal-neutron-induced fission of 233U
The fractional independent yields of 141La and 142La from thermal-neutron-induced fission of 233U were found to be 0.026 +- 0.006 and 0.068 +- 0.010, respectively. These yields are consistent with charge distributions for which σ = 0.56 +- 0.02 and 0.52 +- 0.02, respectively. These results are in good agreement with similar yields measured for fission of 235U, but not with those from fission of 249Cf. (author)
Cumulative fission-product yields have been determined for 13 gamma rays emitted during the decay of 12 fission products created by thermal-neutron fission of 243Cm. A high-resolution low-energy germanium detector was used to measure the pulse-height spectra of gamma rays emitted from a 77-nanogram sample of 243Cm after the sample had been irradiated by thermal neutrons. Analysis of the data resulted in the identification and matching of gamma-ray energies and half-lives to individual radioisotopes. From these results, 12 cumulative fission product yields were deduced for radionuclides with half-lives between 4.2 min and 84.2 min. 7 references
Design of a High Intensity Neutron Source for Neutron-Induced Fission Yield Studies
The upgraded IGISOL facility with JYFLTRAP, at the accelerator laboratory of the University of Jyväskylä, has been supplied with a new cyclotron which will provide protons of the order of 100 μA with up to 30 MeV energy, or deuterons with half the energy and intensity. This makes it an ideal place for measurements of neutron-induced fission products from various actinides, in view of proposed future nuclear fuel cycles. The groups at Uppsala University and University of Jyväskylä are working on the design of a neutron converter that will be used as neutron source in fission yield studies. The design is based on simulations with Monte Carlo codes and a benchmark measurement that was recently performed at The Svedberg Laboratory in Uppsala. In order to obtain a competitive count rate the fission targets will be placed very close to the neutron converter. The goal is to have a flexible design that will enable the use of neutron fields with different energy distributions. In the present paper, some considerations for the design of the neutron converter will be discussed, together with different scenarios for which fission targets and neutron energies to focus on. (author)
Microscopic predictions of fission yields based on the time dependent GCM formalism
Regnier D.
2016-01-01
Full Text Available Accurate knowledge of fission fragment yields is an essential ingredient of numerous applications ranging from the formation of elements in the r-process to fuel cycle optimization in nuclear energy. The need for a predictive theory applicable where no data is available, together with the variety of potential applications, is an incentive to develop a fully microscopic approach to fission dynamics. One of the most promising theoretical frameworks is the time-dependent generator coordinate method (TDGCM applied under the Gaussian overlap approximation (GOA. Previous studies reported promising results by numerically solving the TDGCM+GOA equation with a finite difference technique. However, the computational cost of this method makes it difficult to properly control numerical errors. In addition, it prevents one from performing calculations with more than two collective variables. To overcome these limitations, we developed the new code FELIX-1.0 that solves the TDGCM+GOA equation based on the Galerkin finite element method. In this article, we briefly illustrate the capabilities of the solver FELIX-1.0, in particular its validation for n+239Pu low energy induced fission. This work is the result of a collaboration between CEA,DAM,DIF and LLNL on nuclear fission theory.
Microscopic predictions of fission yields based on the time dependent GCM formalism
Regnier, D.; Dubray, N.; Schunck, N.; Verrière, M.
2016-03-01
Accurate knowledge of fission fragment yields is an essential ingredient of numerous applications ranging from the formation of elements in the r-process to fuel cycle optimization in nuclear energy. The need for a predictive theory applicable where no data is available, together with the variety of potential applications, is an incentive to develop a fully microscopic approach to fission dynamics. One of the most promising theoretical frameworks is the time-dependent generator coordinate method (TDGCM) applied under the Gaussian overlap approximation (GOA). Previous studies reported promising results by numerically solving the TDGCM+GOA equation with a finite difference technique. However, the computational cost of this method makes it difficult to properly control numerical errors. In addition, it prevents one from performing calculations with more than two collective variables. To overcome these limitations, we developed the new code FELIX-1.0 that solves the TDGCM+GOA equation based on the Galerkin finite element method. In this article, we briefly illustrate the capabilities of the solver FELIX-1.0, in particular its validation for n+239Pu low energy induced fission. This work is the result of a collaboration between CEA,DAM,DIF and LLNL on nuclear fission theory.
Cabellos, O.; de Fusco, V.; Diez de la Obra, C. J.; Martinez, J. S.; Gonzalez, E.; Cano-Ott, D.; Alvarez-Velarde, F.
2014-04-01
The aim of this work is to test the present status of Evaluated Nuclear Decay and Fission Yield Data Libraries to predict decay heat and delayed neutron emission rate, average neutron energy and neutron delayed spectra after a neutron fission pulse. Calculations are performed with JEFF-3.1.1 and ENDF/B-VII.1, and these are compared with experimental values. An uncertainty propagation assessment of the current nuclear data uncertainties is performed.
Isotopic yield in cold binary fission of even-even $^{244-258}$Cf isotopes
Santhosh, K P; Krishnan, Sreejith
2016-01-01
The cold binary fission of even-even 244-258Cf isotopes has been studied by taking the interacting barrier as the sum of Coulomb and proximity potential. The favorable fragment combinations are obtained from the cold valley plot (plot of driving potential vs. mass number of fragments) and by calculating the yield for charge minimized fragments. It is found that highest yield for 244,246,248Cf isotopes are for the fragments with isotope of Pb (Z=82) as one fragment, whereas for 250Cf and 252Cf isotopes the highest yield is for the fragments with isotope of Hg (Z=80) as one fragment. In the case of 254,256,258Cf isotopes the highest yield is for the fragments with Sn (Z=50) as one fragment. Thus, the fragment combinations with maximum yield reveal the role of doubly magic and near doubly magic nuclei in binary fission. It is found that asymmetric splitting is favoured for Cf isotopes with mass number A 252. In the case of Cf isotope with A=252, there is an equal probability for asymmetric and symmetric splitti...
A set of ash layer samples within the uppermost Upper Freshwater Molasse (OSM) sediments (N and E of Frauenfeld, Switzerland) was dated by apatite fission track (FT) means. The ages indicate an early Tortonian (perhaps latest Serravallian) eruption and sedimentation age of 11.5 ± 0.3 Ma. The age is in agreement with time constraints by Mammalian relicts which point to MN7-8. Due to the position of the ash layers close to the erosional gap and overlying Quaternary cover, the age represents a maximum age for the cessation of OSM sedimentation in the Swiss Molasse Basin. However, the end of Molasse sedimentation in this region had not stopped before the cover of OSM sediments by volcanic ash layers at the Hoewenegg volcano (southern Germany), an event further constrained by an apatite FT age of 9.8 (-0.7/+0.8) Ma from a hornblende-bearing ash layer at Hoewenegg. An isolated bentonitic ash layer occurring 25 km to the WSW of the main set of dated ashes (near Humlikon) has an age component identical to the OSM ash layers near Frauenfeld. The age suggests a source for this material within the Hegau, but is too young to be related to the volcanic activity at the Kaiserstuhl. The apatites from the ash layer samples show two distinct compositional populations, one very close to a Cl end member and one with apatites of equal proportions of Cl and OH end member. These populations are interpreted to have possibly originated from at least two distinct igneous sources for the ashes, separated by their eruption site or eruption time or both. The distinct compositional data on the volcanic apatites may provide a basis to clarify their origin in future work. (author)
This paper presents measurements of the concentrations of 42 of the long-lived U-235 fission products in a high-level radioactive waste sludge stored at Savannah River Site. The 42 fision products make up 98% of the waste sludge. We used inductively coupled plasma-mass spectroscopy for the analysis. The relative yields for most of the fission products are in complete agreement with the known relative yields for the beta decay chains of the two asymmetric branches of the slow neutron fission of U-235. Disagreements can be reconciled based on the chemistry of the fission products in the caustic waste sludges, the neutron fluences in SRS reactors, or interferences in the ICP-MS analyses. This paper presents measurements of the concentrations of 42 (98%) of the long-lived U-235 fission products in a high-level radioactive waste sludge stored at the Savannah River Site. We analyzed the sludge with inductively coupled plasma-mass spectroscopy. The relative yields for most of the fission products agree completely with the known relative vields for the beta decay chains of the two asymmetric: branches of the slow neutron fission of U-235. The chemistry of the fission products in the caustic waste sludges, the neutron fluences in SRS reactors, or interferences in the ICP-MS analyses explain the differences in the measured and calculated results
Finn, Erin C.; Metz, Lori A.; Greenwood, Lawrence R.; Pierson, Bruce; Wittman, Richard S.; Friese, Judah I.; Kephart, Rosara F.
2015-04-09
The availability of gamma spectroscopy data on samples containing mixed fission products at short times after irradiation is limited. Due to this limitation, data interpretation methods for gamma spectra of mixed fission product samples, where the individual fission products have not been chemically isolated from interferences, are not well-developed. The limitation is particularly pronounced for fast pooled neutron spectra because of the lack of available fast reactors in the United States. Samples containing the actinide isotopes 233, 235, 238U, 237Np, and 239Pu individually were subjected to a 2$ pulse in the Washington State University 1 MW TRIGA reactor. To achieve a fission-energy neutron spectrum, the spectrum was tailored using a natural abundance boron carbide capsule to absorb neutrons in the thermal and epithermal region of the spectrum. Our tailored neutron spectrum is unique to the WSU reactor facility, consisting of a soft fission spectrum that contains some measurable flux in the resonance region. This results in a neutron spectrum at greater than 0.1 keV with an average energy of 70 keV, similar to fast reactor spectra and approaching that of 235U fission. Unique fission product gamma spectra were collected from 4 minutes to 1 week after fission using single-crystal high purity germanium detectors. Cumulative fission product yields measured in the current work generally agree with published fast pooled fission product yield values from ENDF/B-VII, though a bias was noted for 239Pu. The present work contributes to the compilation of energy-resolved fission product yield nuclear data for nuclear forensic purposes.
Rajput, M. U.; Ali, N.; Hussain, S.; Mujahid, S. A.; MacMahon, D.
2012-04-01
The radionuclide 125Sb is a long-lived fission product, which decays to 125Te by negative beta emission with a half-life of 1008 day. The beta decay is followed by the emission of several gamma radiations, ranging from low to medium energy, that can suitably be used for high-resolution detector calibrations, decay heat calculations and in many other applications. In this work, the beta decay of 125Sb has been studied in detail. The complete published experimental data of relative gamma ray intensities in the beta decay of the radionuclide 125Sb has been compiled. The consistency analysis was performed and discrepancies found at several gamma ray energies. Evaluation of the discrepant data was carried out using Normalized Residual and RAJEVAL methods. The decay scheme balance was carried out using beta branching ratios, internal conversion coefficients, populating and depopulating gamma transitions to 125Te levels. The work has resulted in the consistent conversion factor equal to 29.59(13) %, and determined a new evaluated set of the absolute gamma ray emission probabilities. The work has also shown 22.99% of the delayed intensity fraction as outgoing from the 58 d isomeric 144 keV energy level and 77.01% of the prompt intensity fraction reaching to the ground state from the other excited states. The results are discussed and compared with previous evaluations. The present work includes additional experimental data sets which were not included in the previous evaluations. A new set of recommended relative and absolute gamma ray emission probabilities is presented.
JENDL-3.2/FPY. The JENDL-3.2 fission-product yield data library. Contents and documentation
This data library contains neutron-induced fission-product yield data for ten fissile nuclides, some of them at 3 incident neutron energies, including independent yields and cumulative yields. The data library, which is in ENDF-6 format, is available, costfree, on magnetic tape or on diskette(s). (author)
Martin, Julie-Fiona; Taieb, Julien; Chatillon, Audrey; Bélier, Gilbert; Boutoux, Guillaume; Ebran, Adeline; Gorbinet, Thomas; Grente, Lucie; Laurent, Benoit; Pellereau, Eric; Alvarez-Pol, Héctor; Audouin, Laurent; Aumann, Thomas; Ayyad, Yassid; Benlliure, Jose; Casarejos, Enrique; Cortina Gil, Dolores; Caamaño, Manuel; Farget, Fanny; Fernández Domínguez, Beatriz; Heinz, Andreas; Jurado, Beatriz; Kelić-Heil, Aleksandra; Kurz, Nikolaus; Nociforo, Chiara; Paradela, Carlos; Pietri, Stéphane; Ramos, Diego; Rodríguez-Sànchez, Jose-Luis; Rodríguez-Tajes, Carme; Rossi, Dominic; Schmidt, Karl-Heinz; Simon, Haik; Tassan-Got, Laurent; Vargas, Jossitt; Voss, Bernd; Weick, Helmut
2015-12-01
A novel technique for fission studies, based on the inverse kinematics approach, is presented. Following pioneering work in the nineties, the SOFIA Collaboration has designed and built an experimental set-up dedicated to the simultaneous measurement of isotopic yields, total kinetic energies and total prompt neutron multiplicities, by fully identifying both fission fragments in coincidence, for the very first time. This experiment, performed at GSI, permits to study the fission of a wide variety of fissioning systems, ranging from mercury to neptunium, possibly far from the valley of stability. A first experiment, performed in 2012, has provided a large array of unprecedented data regarding the nuclear fission process. An excerpt of the results is presented. With this solid starter, further improvements of the experimental set-up are considered, which are consistent with the expected developments at the GSI facility, in order to measure more fission observables in coincidence. The completeness reached in the SOFIA data, permits to scrutinize the correlations between the interesting features of fission, offering a very detailed insight in this still unraveled mechanism.
Martin, Julie-Fiona; Taieb, Julien; Chatillon, Audrey; Belier, Gilbert; Boutoux, Guillaume; Ebran, Adeline; Gorbinet, Thomas; Grente, Lucie; Laurent, Benoit; Pellereau, Eric [CEA DAM Bruyeres-le-Chatel, Arpajon (France); Alvarez-Pol, Hector; Ayyad, Yassid; Benlliure, Jose; Cortina Gil, Dolores; Caamano, Manuel; Fernandez Dominguez, Beatriz; Paradela, Carlos; Ramos, Diego; Rodriguez-Sanchez, Jose-Luis; Vargas, Jossitt [Universidad de Santiago de Compostela, Santiago de Compostela (Spain); Audouin, Laurent; Tassan-Got, Laurent [CNRS/IN2P3, IPNO, Orsay (France); Aumann, Thomas [Technische Universitaet Darmstadt, Darmstadt (Germany); Casarejos, Enrique [Universidad de Vigo, Vigo (Spain); Farget, Fanny; Rodriguez-Tajes, Carme [CNRS/IN2P3, GANIL, Caen (France); Heinz, Andreas [Chalmers University of Technology, Gothenburg (Sweden); Jurado, Beatriz [CNRS/IN2P3, CENBG, Gradignan (France); Kelic-Heil, Aleksandra; Kurz, Nikolaus; Nociforo, Chiara; Pietri, Stephane; Rossi, Dominic; Schmidt, Karl-Heinz; Simon, Haik; Voss, Bernd; Weick, Helmut [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany)
2015-12-15
A novel technique for fission studies, based on the inverse kinematics approach, is presented. Following pioneering work in the nineties, the SOFIA Collaboration has designed and built an experimental set-up dedicated to the simultaneous measurement of isotopic yields, total kinetic energies and total prompt neutron multiplicities, by fully identifying both fission fragments in coincidence, for the very first time. This experiment, performed at GSI, permits to study the fission of a wide variety of fissioning systems, ranging from mercury to neptunium, possibly far from the valley of stability. A first experiment, performed in 2012, has provided a large array of unprecedented data regarding the nuclear fission process. An excerpt of the results is presented. With this solid starter, further improvements of the experimental set-up are considered, which are consistent with the expected developments at the GSI facility, in order to measure more fission observables in coincidence. The completeness reached in the SOFIA data, permits to scrutinize the correlations between the interesting features of fission, offering a very detailed insight in this still unraveled mechanism. (orig.)
A novel technique for fission studies, based on the inverse kinematics approach, is presented. Following pioneering work in the nineties, the SOFIA Collaboration has designed and built an experimental set-up dedicated to the simultaneous measurement of isotopic yields, total kinetic energies and total prompt neutron multiplicities, by fully identifying both fission fragments in coincidence, for the very first time. This experiment, performed at GSI, permits to study the fission of a wide variety of fissioning systems, ranging from mercury to neptunium, possibly far from the valley of stability. A first experiment, performed in 2012, has provided a large array of unprecedented data regarding the nuclear fission process. An excerpt of the results is presented. With this solid starter, further improvements of the experimental set-up are considered, which are consistent with the expected developments at the GSI facility, in order to measure more fission observables in coincidence. The completeness reached in the SOFIA data, permits to scrutinize the correlations between the interesting features of fission, offering a very detailed insight in this still unraveled mechanism. (orig.)
A new evaluation has been prepared of the independent and cumulative yields of the products of fission induced by thermal, fast, and 14 MeV neutrons in nuclides important for reactor design and operation and for fuel and waste management. Three spontaneously fissioning nuclides were also considered. The evaluation used a database that is considered to be complete up to early 1989. Careful study was made of experimental uncertainties and discrepancies, emphasising the need for further measurements. Gaps in the data were filled by interpolation and extrapolation, using fits to empirical models. The yields were adjusted to fit physical constraints of the fissioning process. The present report contains Tables of cumulative and chain yields, and of fractional independent yields. Each set of Tables gives all the relevant measurements in the database, with uncertainties. Recommended weighted averages are included with standard deviations, discrepant sets of measurements are clearly indicated and references to all the entries in the database are listed. (author)
Casey, D. T.; Frenje, J. A.; Gatu Johnson, M.; Seguin, F. H.; Li, C. K.; Petrasso, R. D. [Plasma Science and Fusion Center, MIT, Cambridge, Massachusetts 02139 (United States); Glebov, V. Yu.; Katz, J.; Knauer, J. P.; Meyerhofer, D. D.; Sangster, T. C. [Laboratory for Laser Energetics, UR, Rochester, New York 14623 (United States); Bionta, R. M.; Bleuel, D. L.; Doeppner, T.; Glenzer, S.; Hartouni, E.; Hatchett, S. P.; Le Pape, S.; Ma, T.; MacKinnon, A. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); and others
2012-10-15
A magnetic recoil spectrometer (MRS) has been installed and extensively used on OMEGA and the National Ignition Facility (NIF) for measurements of the absolute neutron spectrum from inertial confinement fusion implosions. From the neutron spectrum measured with the MRS, many critical implosion parameters are determined including the primary DT neutron yield, the ion temperature, and the down-scattered neutron yield. As the MRS detection efficiency is determined from first principles, the absolute DT neutron yield is obtained without cross-calibration to other techniques. The MRS primary DT neutron measurements at OMEGA and the NIF are shown to be in excellent agreement with previously established yield diagnostics on OMEGA, and with the newly commissioned nuclear activation diagnostics on the NIF.
A magnetic recoil spectrometer (MRS) has been installed and extensively used on OMEGA and the National Ignition Facility (NIF) for measurements of the absolute neutron spectrum from inertial confinement fusion implosions. From the neutron spectrum measured with the MRS, many critical implosion parameters are determined including the primary DT neutron yield, the ion temperature, and the down-scattered neutron yield. As the MRS detection efficiency is determined from first principles, the absolute DT neutron yield is obtained without cross-calibration to other techniques. The MRS primary DT neutron measurements at OMEGA and the NIF are shown to be in excellent agreement with previously established yield diagnostics on OMEGA, and with the newly commissioned nuclear activation diagnostics on the NIF.
Casey, D T; Frenje, J A; Gatu Johnson, M; Séguin, F H; Li, C K; Petrasso, R D; Glebov, V Yu; Katz, J; Knauer, J P; Meyerhofer, D D; Sangster, T C; Bionta, R M; Bleuel, D L; Döppner, T; Glenzer, S; Hartouni, E; Hatchett, S P; Le Pape, S; Ma, T; MacKinnon, A; McKernan, M A; Moran, M; Moses, E; Park, H-S; Ralph, J; Remington, B A; Smalyuk, V; Yeamans, C B; Kline, J; Kyrala, G; Chandler, G A; Leeper, R J; Ruiz, C L; Cooper, G W; Nelson, A J; Fletcher, K; Kilkenny, J; Farrell, M; Jasion, D; Paguio, R
2012-10-01
A magnetic recoil spectrometer (MRS) has been installed and extensively used on OMEGA and the National Ignition Facility (NIF) for measurements of the absolute neutron spectrum from inertial confinement fusion implosions. From the neutron spectrum measured with the MRS, many critical implosion parameters are determined including the primary DT neutron yield, the ion temperature, and the down-scattered neutron yield. As the MRS detection efficiency is determined from first principles, the absolute DT neutron yield is obtained without cross-calibration to other techniques. The MRS primary DT neutron measurements at OMEGA and the NIF are shown to be in excellent agreement with previously established yield diagnostics on OMEGA, and with the newly commissioned nuclear activation diagnostics on the NIF. PMID:23126915
Fission product yields are fundamental parameters for several nuclear engineering calculations and in particular for burn-up/activation problems. The impact of their uncertainties was widely studied in the past and evaluations were released, although still incomplete. Recently, the nuclear community expressed the need for full fission yield covariance matrices to produce inventory calculation results that take into account the complete uncertainty data. In this work, we studied and applied a Bayesian/generalised least-squares method for covariance generation, and compared the generated uncertainties to the original data stored in the JEFF-3.1.2 library. Then, we focused on the effect of fission yield covariance information on fission pulse decay heat results for thermal fission of 235U. Calculations were carried out using different codes (ACAB and ALEPH-2) after introducing the new covariance values. Results were compared with those obtained with the uncertainty data currently provided by the library. The uncertainty quantification was performed with the Monte Carlo sampling technique. Indeed, correlations between fission yields strongly affect the statistics of decay heat. (authors)
Analysis of effects of updated decay and fission yield data on ORIGEN 2 results
Work has been performed to improve the accuracy of ORIGEN2 results by updating both the decay library and the fission yield data in the cross-section library. This effort was performed under the auspices of Oak Ridge National Laboratory (ORNL) to ensure that ORIGEN2 uses the most up-to-date data. The impact of the new data was then quantitatively evaluated by solving a set of standard light water reactor (LWR) problems solved with ORIGEN2. The ORIGEN code, developed at ORNL in the late 1960's, is a point depletion code used to determine the composition and characteristics of spent fuel. The results from calculations performed with the code often form the basis for the study and design of reprocessing plants, spent-fuel shipping casks, waste treatment systems, and disposal facilities. The decay data were updated using data from ENDF/B-VI; fission yield data were updated using data from ENDF/B-V. The impact of these new data was then evaluated
Direct physical measurements of independent fission yields at a 1-MW research reactor
Over the past 20 yr, the number of nuclear reactors on university campuses in the United States has decreased from >70 to <40. Contrary to this trend, the University of Texas at Austin recently completed construction of a new reactor facility at a cost of $5.8 million. The TRIGA Mark II reactor in this facility will be licensed for 1.1-MW steady-state operation and $3.00 power-pulse transients. The new reactor facility was established to enhance the instructional and research opportunities in nuclear science and engineering for both undergraduate and graduate students at the University of Texas. In addition to neutron activation analysis, programs are being planned and equipment is being designed for neutron depth profiling, prompt gamma activation analysis, neutron radiography, and cold neutron research. Because of continued interest in fission-yield system developed by the author when he was at the University of Illinois. The operation of this unique system for the direct physical measurement of independent yields in thermal-neutron fission is reviewed in this paper
Accurate measurements of fission-fragment yields in 234,235,236,238U(γ,f) with the SOFIA set-up
Chatillon, A.; Taïeb, J.; Martin, J.-F.; Pellereau, E.; Boutoux, G.; Gorbinet, T.; Grente, L.; Bélier, G.; Laurent, B.; Alvarez-Pol, H.; Ayyad, Y.; Benlliure, J.; Caamaño, M.; Audouin, L.; Casarejos, E.; Cortina-Gil, D.; Farget, F.; Fernández-Domínguez, B.; Heinz, A.; Jurado, B.; Kelić-Heil, A.; Kurz, N.; Lindberg, S.; Löher, B.; Nociforo, C.; Paradela, C.; Pietri, S.; Ramos, D.; Rodriguez-Sanchez, J.-L.; Rodrìguez-Tajes, C.; Rossi, D.; Schmidt, K.-H.; Simon, H.; Tassan-Got, L.; Törnqvist, H.; Vargas, J.; Voss, B.; Weick, H.; Yan, Y.
2016-03-01
SOFIA (Studies On Fission with Aladin) is a new experimental set-up dedicated to accurate measurement of fission-fragments isotopic yields. It is located at GSI, the only place to use inverse kinematics at relativistic energies in order to study the (γ,f) electromagnetic-induced fission. The SOFIA set-up is a large-acceptance magnetic spectrometer, which allows to fully identify both fission fragments in coincidence on the whole fission-fragment range. This paper will report on fission yields obtained in 234,235,236,238U(γ,f) reactions.
Accurate measurements of fission-fragment yields in $^{234,235,236,238}$U(γ,f) with the SOFIA set-up
Chatillon A.; Taïeb J.; MARTIN J. - F.; Pellereau E.; Boutoux G.; Gorbinet T.; Grente L.; Bélier G.; Laurent B.; Alvarez-Pol H.; Ayyad Y.; Benlliure J.; Caamaño M.; Audouin L.; Casarejos E.
2015-01-01
SOFIA (Studies On Fission with Aladin) is a new experimental set-up dedicated to accurate measurement of fission-fragments isotopic yields. It is located at GSI, the only place to use inverse kinematics at relativistic energies in order to study the (γ,f) electromagnetic-induced fission. The SOFIA set-up is a large-acceptance magnetic spectrometer, which allows to fully identify both fission fragments in coincidence on the whole fission-fragment range. This paper will report on fission yields...
Accurate measurements of fission-fragment yields in 234,235,236,238U(γ,f with the SOFIA set-up
Chatillon A.
2016-01-01
Full Text Available SOFIA (Studies On Fission with Aladin is a new experimental set-up dedicated to accurate measurement of fission-fragments isotopic yields. It is located at GSI, the only place to use inverse kinematics at relativistic energies in order to study the (γ,f electromagnetic-induced fission. The SOFIA set-up is a large-acceptance magnetic spectrometer, which allows to fully identify both fission fragments in coincidence on the whole fission-fragment range. This paper will report on fission yields obtained in 234,235,236,238U(γ,f reactions.
Bhatia, C.; Fallin, B. F.; Gooden, M. E.; Howell, C. R.; Kelley, J. H.; Tornow, W.; Arnold, C. W.; Bond, E.; Bredeweg, T. A.; Fowler, M. M.; Moody, W.; Rundberg, R. S.; Rusev, G. Y.; Vieira, D. J.; Wilhelmy, J. B.; Becker, J. A.; Macri, R.; Ryan, C.; Sheets, S. A.; Stoyer, M. A.; Tonchev, A. P.
2015-06-01
Using dual-fission chambers each loaded with a thick (200 -400 -mg /c m2) actinide target of 235 ,238U or 239Pu and two thin (˜10 -100 -μ g /c m2) reference foils of the same actinide, the cumulative yields of fission products ranging from 92Sr to 147Nd have been measured at En= 8.9 MeV . The 2H(d ,n ) 3He reaction provided the quasimonoenergetic neutron beam. The experimental setup and methods used to determine the fission product yield (FPY) are described, and results for typically eight high-yield fission products are presented. Our FPYs for 235U(n ,f ) , 238U(n ,f ) , and 239Pu(n ,f ) at 8.9 MeV are compared with the existing data below 8 MeV from Glendenin et al. [Phys. Rev. C 24, 2600 (1981), 10.1103/PhysRevC.24.2600], Nagy et al. [Phys. Rev. C 17, 163 (1978), 10.1103/PhysRevC.17.163], Gindler et al. [Phys. Rev. C 27, 2058 (1983), 10.1103/PhysRevC.27.2058], and those of Mac Innes et al. [Nucl. Data Sheets 112, 3135 (2011), 10.1016/j.nds.2011.11.009] and Laurec et al. [Nucl. Data Sheets 111, 2965 (2010), 10.1016/j.nds.2010.11.004] at 14.5 and 14.7 MeV, respectively. This comparison indicates a negative slope for the energy dependence of most fission product yields obtained from 235U and 239Pu , whereas for 238U the slope issue remains unsettled.
Galy, J
1999-09-01
As a stars, a survey of the different methods of investigations of the fission product yields and the experimental data status have been studied, showing advantages and shortcomings for the different approaches. An overview of the existing models for the fission product distributions has been as well intended. The main part of this thesis was the measurement of the independent yields of the fast neutron-induced fission of{sup 233}U, never investigated before this work. The experiment has been carried out using the mass separator OSIRIS (Isotope Separator On-Line). Its integrated ion-source and its specific properties required an analysis of the delay-parameter and ionisation efficiency for each chemical species. On the other hand, this technique allows measurement of independent yields and cumulative yields for elements from Cu to Ba, covering most of the fission yield distribution. Thus, we measured about 180 independent yields from Zn (Z=30) to Sr (Z=38) in the mass range A=74-99 and from Pd (Z=46) to Ba (Z=56) in the mass range A=113-147, including many isomeric states. An additional experiment using direct {gamma}-spectroscopy of aggregates of fission products was used to determine more than 50 cumulative yields of element with half-life from 15 min to a several days. All experimental data have been compared to estimates from a semi-empirical model, to calculated values and to evaluated values from the European library JEF 2.2. Furthermore, a study of both thermal and fast neutron-induced fission of {sup 233}U measured at Studsvik, the comparison of the OSIRIS and LOHENGRIN facilities and the trends in new data for the Reactors Physics have been discussed. (author)
The heat reaches about 1.5% after one hour and falls to 0.4% after a day. After a week it will be about 0.2%. The reactor, however, still requires further cooling for several years to keep the fuel rods safe. In general, the decay heat in the reactors can be calculated using a summation calculation method, which is simply the sum of the activities of the fission products produced during the fission process and after the reactor shutdown weighted by the mean decay energies. Consequently, the method is strongly dependent on the available nuclear structure data. Nowadays, the method has been implemented in various burnup and depletion programs such as ORIGEN and CINDER. In this study, the decay heat measurements after thermal-neutron fission of 235U and 239Pu have been evaluated by the ORIGEN-S with the decay data and fission product yield libraries included in the SCALE-6.1.3 software package. The new libraries were applied to the decay heat calculations, and the results were compared with those by the ORIGEN reference calculation. The decay heat measurements for very short cooling times after thermal-neutron fission of 235U and 239Pu have been evaluated by the ORIGEN-S summation calculation. The reference calculation results by the latest ORIGEN data libraries of the SCALE-6.1.3 have been validated with the measurements by ORNL and Studsvik. In addition, the generation of the new ORIGEN yield libraries has been completed based on the ENDF/B-VII.1, JEFF-3.1.1, JENDL/FPY-2011, and JENDL-4.0. The new libraries have been successfully applied to the decay heat calculations and comparative analyses have been devoted to verifying the importance of the fission product yield data when estimating the decay heat values for each isotope in a very short time. The decay data library occupies an important position in the ORIGEN summation calculation along with the fission product yield library
Measurement of fission yields from the 241Am(2nth,f reaction at the Lohengrin Spectrometer
Amouroux Ch.
2013-12-01
Full Text Available The study of fission yields has a major impact on the characterization and understanding of the fission process and is mandatory for reactor applications. While the yields are known for the major actinides (235U, 239Pu in the thermal neutron-induced fission, only few measurements have been performed on 242Am. This paper presents the results of a measurement at the Lohengrin mass spectrometer (ILL, France on the reaction 241Am(2nth,f: a total of 41 mass yields in the light and the heavy peaks have been measured and compared with the fission process simulation code GEF. Modus operandi and first results of a second experiment performed in May 2013 on the same reaction but with the goal of extracting the isotopic yields are presented as well: 8 mass yields were re-measured and 18 isotopic yields have been investigated and are being analyzed. Results concerning the kinetic energy and its comparison with the GEF Code are also presented in this paper.
The isotopic fission yields of U 238 following the SOFIA experiment, conducted at the GSI facility (Darmstadt), are presented here. This experiment takes advantage of the inverse kinematics technique at relativistic energies. Benefits are several: fission fragments are highly focused (high geometrical efficiency) and are also completely stripped, which greatly simplifies their nuclear charge measurement. The first detector of the SOFIA setup is an active target in which fission occurs via electromagnetic excitation, followed by an ionization chamber to measure the nuclear charge and the horizontal angle of both fission fragments. The masses are deduced by the bending radius measurement of the fragments, deflected by a strong magnet (ALADIN), thanks to two position detectors (MWPC), and also by a highly resolved time-of-flight measurement (40 ps FWHM) so that heavy neighboring isotopes can be separated. The data analysis shows that the main goals are achieved since the isotopic separation is reached over the whole range of the fission fragments. A strong even-odd effect is seen in the charge spectrum, which also exhibits a mean heavy charge close to Z = 54. Surprisingly, the neutron even-odd effect of the light region is seen to be very close to the one in thermal neutron induced fission. The peak-to-valley ratio of the mass spectrum confirms that the mean excitation energy at fission is close to the expected one (14 MeV). The GEF code is used for comparison and always gives results very close to ours. (author)
Determination of 235U isotope abundance by difference method of fission yield
Background: Determination of the uranium isotope abundance ratio of fuel pins is a significant stage for the quality control in safe operations of reactor. Purpose: The aim is to establish a method to examine the 235U abundance of fuel rod with fast neutron as an excitation source. Methods: Taking the fission-yield ratios of Y-bar88Rb/Y-bar104Tc and Y-bar92Sr/Y-bar104Tc as the subjects of research, the relation curves between the average yield ratios and the 235U isotopic abundance as well as the expressions Y-bar1/Y-bar2=f(H0), in which the average yield ratio (Y-bari/Y-barj ) is a function of the 235U isotopic abundance (H0), were obtained and presented based on the previous studies. Results: In order to testify the accuracy of the method, the simulation sample of 72.2% is measured by working curve, and RSD is less than 2%. Within the limit of error, the results of sample analysis are in correspondence with those of passive gamma ray method. Conclusion: All of these results indicate that the method is feasible to determine the 235U abundance of fuel rod. (authors)
Gika, V; Maltezos, S
2016-01-01
In this work, we present a method for absolute measurement of air fluorescence yield based on high resolution optical emission spectroscopy. The absolute measurement of the air fluorescence yield is feasible using the Cherenkov light, emitted by an electron beam simultaneously with the fluorescence light, as a "standard candle". The separation of these two radiations can be accomplished exploiting the "dark" spectral regions of the emission band systems of the molecular spectrum of nitrogen. In these "dark" regions the net Cherenkov light can be recorded experimentally and be compared with the calculated one. The instrumentation for obtaining the nitrogen molecular spectra in high resolution and the noninvasive method for monitoring the rotational temperature of the emission process are also described. For the experimental evaluation of the molecular spectra analysis we used DC normal glow discharges in air performed in an appropriate spectral lamp considered as an air-fluorescence light emulator. The propose...
Fission product yields are required at several stages of the nuclear fuel cycle and are therefore included in all large international data files for reactor calculations and related applications. Such files are maintained and disseminated by the Nuclear Data Section of the IAEA as a member of an international data centres network. Users of these data are from the fields of reactor design and operation, waste management and nuclear materials safeguards, all of which are essential parts of the IAEA programme. In the 1980s, the number of measured fission yields increased so drastically that the manpower available for evaluating them to meet specific user needs was insufficient. To cope with this task, it was concluded in several meetings on fission product nuclear data, some of them convened by the IAEA, that international co-operation was required, and an IAEA co-ordinated research project (CRP) was recommended. This recommendation was endorsed by the International Nuclear Data Committee, an advisory body for the nuclear data programme of the IAEA. As a consequence, the CRP on the Compilation and Evaluation of Fission Yield Nuclear Data was initiated in 1991, after its scope, objectives and tasks had been defined by a preparatory meeting. The different tasks, such as special evaluations and development of improved methods, were distributed among participants. The results of the research work were discussed and approved by all participants in research co-ordination meetings. For a successful development of theoretical and empirical models, experiments had to be recommended and their results to be awaited, which made necessary an extension of the CRP by two years. This TECDOC is the result of a joint effort of all participants in this CRP. The individual sections represent CRP tasks and were prepared by the participants responsible for doing the research, some of which comprise significant new scientific developments. The appendices to this book contain voluminous
Advanced model for the prediction of the neutron-rich fission product yields
Rubchenya V.A.; Gorelov D.; Jokinen A.; Penttilä H.; Äystö J.
2013-01-01
The consistent models for the description of the independent fission product formation cross sections in the spontaneous fission and in the neutron and proton induced fission at the energies up to 100 MeV is developed. This model is a combination of new version of the two-component exciton model and a time-dependent statistical model for fusion-fission process with inclusion of dynamical effects for accurate calculations of nucleon composition and excitation energy of the fissioning nucleus a...
Mass Yields and Average Total Kinetic Energy Release in Fission for 235U, 238U, and 239Pu
Duke, Dana
2015-10-01
Mass yield distributions and average total kinetic energy (TKE) in neutron induced fission of 235U, 238U, and 239Pu targets were measured with a gridded ionization chamber. Despite decades of fission research, our understanding of how fragment mass yields and TKE depend on incident neutron energy is limited, especially at higher energies (above 5-10 MeV). Improved accuracy in these quantities is important for nuclear technology as it enhances our simulation capabilities and increases the confidence in diagnostic tools. The data can also guide and validate theoretical fission models where the correlation between the fragment mass and TKE is of particular value for constraining models. The Los Alamos Neutron Science Center - Weapons Neutron Research (LANSCE - WNR) provides a neutron beam with energies from thermal to hundreds of MeV, well-suited for filling in the gaps in existing data and exploring fission behavior in the fast neutron region. The results of the studies on target nuclei 235U, 238U, and 239Pu will be presented with a focus on exploring data trends as a function of neutron energy from thermal through 30 MeV. Results indicate clear evidence of structure due to multi-chance fission in the TKE . LA-UR-15-24761.
Fission gamma radiation yields as functions of the total fragment kinetic energy were obtained for 235U thermal-neutron induced fission. The fragments were detected with silicon surface-barrier detectors and the gamma radiation with a Nal(Tl) scintillator. In some of the measurements mass selection was used so that the gamma radiation could also be measured as a function of fragment mass. Time discrimination between the fission gammas and the prompt neutrons released in the fission process was employed to reduce the background. The gamma radiation emitted during different time intervals after the fission event was studied with the help of a collimator, the position of which was changed along the path of the fission fragments. Fission-neutron and gamma-ray data of previous experiments were used for comparisons of the yields, and estimates were made of the variation of the prompt gamma-ray energy with the total fragment kinetic energy
Fission fragment mass yield deduced from density distribution in the pre-scission configuration
Warda, M.; Zdeb, A.
2015-01-01
Static self-consistent methods usually allow to determine the most probable fission fragments mass asymmetry. We have applied random neck rupture mechanism to the nuclei in the configuration at the end of fission paths. Fission fragment mass distributions have been deduced from the pre-scission nuclear density distribution obtained from the self-consistent calculations. Potential energy surfaces as well as nuclear shapes have been calculated in the fully microscopic theory, namely the constra...
On the absolute calibration of a DT fusion neutron yield diagnostic
Ruiz C.L.
2013-11-01
Full Text Available Recent advances in Inertial Confinement Fusion (ICF experiments at Lawrence Livermore National Laboratory's National Ignition Facility (NIF have underscored the need for accurate total yield measurements of DT neutrons because yield measurements provide a measure of the predicted performance of the experiments. Future gas-puff DT experiments at Sandia National Laboratory's Z facility will also require similar measurements. For ICF DT experiments, the standard technique for measuring the neutron (14.1 MeV yield, counts the activity (counts/minute induced in irradiated copper samples. This activity occurs by the 63Cu(n,2n62Cu reaction where 62Cu decays by positrons (β+ with a half-life of 9.67 minutes. The calibrations discussed here employ the associated-particle method (APM, where the α (4He particles from the T(d,n4He reaction are measured to infer neutron fluxes on a copper sample. The flux induces 62Cu activity, measured in a coincidence counting system. The method leads to a relationship between a DT neutron yield and copper activity known as the F-factor. The goal in future experiments is to apply this calibration to measure the yield at NIF with a combined uncertainty approaching 5%.
The object of this work is the study of techniques of measurement of the absolute activity of electron capture nuclides. Two methods have been specially studied. Determination of the number of X rays emitted from the K shell due to the reorganization of atomic electrons following electron capture. This measurement was made with a high pressure (5 kg/cm2) 4π proportional counter. The absorption in the source and the backing were also studied. To determine the absolute activity it is necessary to know the fluorescence yield and the different capture probabilities PL and PK. When the electron capture is followed by γ emission (within the resolution time of the coincidence circuit) the activity was determined through the X-γ coincidence method. In such a case it is not necessary to know the fluorescence yield and the capture probabilities. Various corrections - dead time, chance coincidences - were also studied. This method minimizes the decay scheme corrections. By applying these two methods to the following nuclides: Cr51, Mn54 and Zn65, the corresponding fluorescence yields have been determined: vanadium ωK = 0.191 ±0.002, chromium ωK = 0.262 ± 0.002 and copper ωK = 0.390 ± 0.004. (author)
The present study is a first attempt to determine electron impact ionization efficiencies for C2 and C3. A novel method has been applied to obtain the partial cross-section values for the reactions C2+e→C+,C2+e→C2+ and C3+e→C+,C3+e→C2+ and C3+e→C3+. The neutral target consisting of C, C2 and C3 is produced by thermal evaporation from a heated graphite sample and the neutral precursors in the subsequent ionization process can be distinguished by their different flight-time distributions acquired in the evaporation process. The partial ionization cross-section ratios obtained in this experiment have been calibrated with calculated absolute total ionization cross section curves of C2 and C3 using the Deutsch-Maerk (DM) formalism
Bentley, Keith W; Zhang, Peng; Wolf, Christian
2016-02-01
High-throughput experimentation (HTE) has emerged as a widely used technology that accelerates discovery and optimization processes with parallel small-scale reaction setups. A high-throughput screening (HTS) method capable of comprehensive analysis of crude asymmetric reaction mixtures (eliminating product derivatization or isolation) would provide transformative impact by matching the pace of HTE. We report how spontaneous in situ construction of stereodynamic metal probes from readily available, inexpensive starting materials can be applied to chiroptical chemosensing of the total amount, enantiomeric excess (ee), and absolute configuration of a wide variety of amines, diamines, amino alcohols, amino acids, carboxylic acids, α-hydroxy acids, and diols. This advance and HTS potential are highlighted with the analysis of 1 mg of crude reaction mixtures of a catalytic asymmetric reaction. This operationally simple assay uses a robust mix-and-measure protocol, is amenable to microscale platforms and automation, and provides critical time efficiency and sustainability advantages over traditional serial methods. PMID:26933684
Precise measurement of the absolute fluorescence yield of the 337 nm band in atmospheric gases
Ave, M.; Boháčová, Martina; Curry, E.; Di Carlo, P.; Di Giulio, C.; Facal San Luis, P.; Gonzales, D.; Hojvat, C.; Hörandel, J.; Hrabovský, M.; Iarlori, M.; Keilhauer, B.; Klages, H.; Kleifges, M.; Kuehn, F.; Li, S.; Monasor, M.; Nožka, Libor; Palatka, Miroslav; Petrera, S.; Privitera, P.; Řídký, Jan; Rizi, V.; Rouille D’Orfeuil, B.; Salamida, F.; Schovánek, Petr; Smida, R.; Spinka, H.; Ulrich, A.; Verzi, V.; Williams, C.
2013-01-01
Roč. 42, Feb (2013), 90-102. ISSN 0927-6505 R&D Projects: GA MŠk(CZ) LA08016 Institutional support: RVO:68378271 Keywords : nitrogen fluorescence yield * air fluorescence detection * ultra-high energy cosmic rays Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 4.450, year: 2013
Energy dependence of 238U fission yields investigated in inverse kinematics
Veselsky M.
2010-03-01
Full Text Available The production cross sections of neutron-rich fission residues produced in reactions induced by a 238U beam impinging onto Pb and Be targets were investigated at the Fragment Separator (FRS at GSI using the inverse kinematic technique. These data allowed us to discuss the optimum energies in fission for producing the most neutron-rich residues.
A new evaluation has been prepared of the independent and cumulative yields of the products of fission induced by thermal, fast, and 14 MeV neutrons in nuclides important for reactor design and operation and for fuel and waste management. Three spontaneously fissioning nuclides were also considered. The evaluation used a database that is considered to be complete up to early 1989. Careful study was made of experimental uncertainties and discrepancies, emphasising the need for further measurements. Gaps in the data were filled by interpolation and extrapolation, using fits to empirical models. The yields were adjusted to fit physical constraints of the fissioning process. The present report contains lists of chain and independent yields for which the experimental data may be regarded as inadequate. An entry is made if (i) there are no measurements, (ii) there is only one measurement, or (iii) there are several measurements but they are discrepant in the sense that the probability of the calculated value of χ2 arising by chance is less than 10%. So that the source of each measurement may be identified, the database reference list is included as an Appendix. (author)
This paper presents the measurement of fission product yields from the neutron induced fission of 232Th. These measurements were carried out using the neutron source from 7Li (p,n) reaction at TIFR-BARC Pelletron facility. The yields were obtained using activation and off-line gamma ray spectroscopic technique. The fission yields values are reported for twelve fission products. Activated targets were counted in highly shielded HPGe detectors over a period of several weeks to identify decaying fission products. The results obtained from the present work were compared with the similar data of mono-energetic neutrons of comparable energy from literature and are found to be in good agreement
Systematic determination of the JET absolute neutron yield using the MPR spectrometer
This thesis describes the first high-statistics systematic analysis of JET neutron yield and rate measurements obtained by using data acquired with the Magnetic Proton Recoil (MPR) neutron spectrometer. The neutron yield and rate were determined by using the count-rate from the MPR neutron spectrometer together with neutron profile information from other neutron diagnostic systems. This has previously been done manually for a few pulses. To be able to do this in a more systematic way a part of the neutron spectrum evaluation code was extracted and put into a separate custom-made program and modifications were done to extract sets of MPR data automatically. The codes have been used for analysis of a large set of pulses from the deuterium-tritium campaign at JET in 1997. Several results were obtained, the most significant of which was the clear improvement seen when neutron profile corrections were applied. Neutron yield-rates derived from MPR count-rate are shown to be in excellent agreement with other JET neutron diagnostic data
Systematic determination of the JET absolute neutron yield using the MPR spectrometer
Kronborg-Pettersson, N
2003-04-01
This thesis describes the first high-statistics systematic analysis of JET neutron yield and rate measurements obtained by using data acquired with the Magnetic Proton Recoil (MPR) neutron spectrometer. The neutron yield and rate were determined by using the count-rate from the MPR neutron spectrometer together with neutron profile information from other neutron diagnostic systems. This has previously been done manually for a few pulses. To be able to do this in a more systematic way a part of the neutron spectrum evaluation code was extracted and put into a separate custom-made program and modifications were done to extract sets of MPR data automatically. The codes have been used for analysis of a large set of pulses from the deuterium-tritium campaign at JET in 1997. Several results were obtained, the most significant of which was the clear improvement seen when neutron profile corrections were applied. Neutron yield-rates derived from MPR count-rate are shown to be in excellent agreement with other JET neutron diagnostic data.
Bail, A.
2009-05-15
In spite of the huge amount of fission yield data available in different libraries, more accurate values are still needed for nuclear energy applications and to improve our understanding of the fission process. Thus measurements of fission yields were performed at the mass spectrometer Lohengrin at the Institut Laue-Langevin in Grenoble, France. The mass separator Lohengrin is situated at the research reactor of the institute and permits the placement of an actinide layer in a high thermal neutron flux. It separates fragments according to their atomic mass, kinetic energy and ionic charge state by the action of magnetic and electric fields. Coupled to a high resolution ionization chamber the experiment was used to investigate the mass and isotopic yields of the light mass region. Almost all fission yields of isotopes from Th to Cf have been measured at Lohengrin with this method. To complete and improve the nuclear data libraries, these measurements have been extended in this work to the heavy mass region for the reactions {sup 235}U(n{sub th},f), {sup 239}Pu(n{sub th},f) and {sup 241}Pu(n{sub th},f). For these higher masses an isotopic separation is no longer possible. So, a new method was undertaken with the reaction {sup 239}Pu(n{sub th},f) to determine the isotopic yields by spectrometry. These experiments have allowed to reduce considerably the uncertainties. Moreover the ionic charge state and kinetic energy distributions were specifically studied and have shown, among others, nanosecond isomers for some masses. (author)
In this paper, nuclear reaction cross sections for 24 fission-like fragments (30≤Z≤60) have been measured for the 6.5 MeV/A 16O + 181Ta system. The recoil-catcher activation technique was employed followed by off-line γ spectroscopy. The isotopic yield distributions for yttrium and indium isotopes have been obtained from the experimental data. The variance of the presently measured isotopic yield distributions have been found to be in agreement with the literature values. However, the variance of the mass distribution of fission residues has found to be narrower as compared to other relatively heavier systems. A self-consistent approach to determining the isobaric charge dispersion parameters has been adopted. The measured fission cross sections at 97 and 100 MeV are satisfactorily described by a statistical model code. An attempt has been made to explain the production cross sections of intermediate mass residues in the fission of heavy residues populated via complete and/or incomplete fusion processes.
The prediction of fission products and the impact of their uncertainties to different safety-related spent fuel applications (burn-up credit, decay heat generation, radiological safety, waste management, burn-up prediction) are required for the evaluation of spent fuel system designs and safety analysis options. One of the nuclear data needs to this prediction is the independent fission yields. The mostly used general-purpose evaluated nuclear data libraries provide these data including their uncertainties as standard deviation, with no-correlation between fission yields. However, new developments in the theory and measurements of fission product yields are expected to result in new evaluated files in the next coming years. These files will include considerably more accurate yields including neutron energy dependence combined with new covariance information allowing realistic uncertainty estimates. In this paper, we focused on the effect of fission yield covariance information on criticality and depletion calculations. A LWR pin-cell burn-up benchmark, proposed in the general framework of the OECD/UAM Benchmark is analyzed to address the impact of independent fission yield uncertainties. Calculations were performed with the SCALE6 system and the ENDF/B-VII.1 fission yield data library, adding covariance data obtained from including covariance info of mass yields. Results are compared with those obtained with the uncertainty data currently provided by ENDF/B-VII.1. The uncertainty quantification is performed with a Monte Carlo sampling and then compared with linear perturbation. (author)
The yields of various fission products in the neutron-induced fission of 238U with the flux-weighted averaged neutron energies of 9.35 MeV and 12.52 MeV were determined by using an off-line gamma ray spectroscopic technique. The neutrons were generated using the 7Li(p, n) reaction at Bhabha Atomic Research Centre-Tata Institute of Fundamental Research Pelletron facility, Mumbai. The gamma- ray activities of the fission products were counted in a highly-shielded HPGe detector over a period of several weeks to identify the decaying fission products. At both the neutron energies, the fission-yield values are reported for twelve fission product. The results obtained from the present work have been compared with the similar data for mono-energetic neutrons of comparable energy from the literature and are found to be in good agreement. The peak-to-valley (P/V) ratios were calculated from the fission-yield data and were found to decreases for neutron energy from 9.35 to 12.52 MeV, which indicates the role of excitation energy. The effect of the nuclear structure on the fission product-yield is discussed.
Determination of fission yield of mass 121 and of cumulative yields of members of that decay chain have been made as part of a study of symmetric and near-symmetric fission of uranium-235 with thermal neutrons. Fast chemical separation methods have been developed that permit isolation of selected fission product elements in 3-30 s. The methods have been applied to identification and characterization of new, short-lived radionuclides in addition to their use in studies of distribution of nuclear charge in fission. The cumulative fission yield of Sn121 (27.5h) was measured to be (1.1±0.1) 10-2% as compared to the single literature value of 1.5 x 10-2%. Taking the cumulative yield of Sn121m (∼25 yr) as 0,08 x 10-2%, and making the reasonable assumption that the independent fission yield of Sb121 is negligible, we obtain a fission mass yield of (1.2±0.1) 10-2% for mass chain 121 in thermal-neutron fission of uranium-235. Identification of Cd121 was made. Its half-life and cumulative fission yield were determined to be 12.8+0.4-0.3 s and (6.4±0.5) 10-3% respectively. If the nuclear charge distribution curve is Gaussian and if a width parameter o of 0.62 as given by Wahl et al. is taken, the cumulative fission yield of Cd121 leads to a value of 48.35 for the most probable nuclear charge (Zp) for mass chain 121. This value of Zp, combined with published values for other mais chains more removed from symmetric fission, indicates in a preliminary way that the Zp function proceeds towards the point of symmetric fission by a gentle rather than an abrupt approach. Fast chemical separation techniques have been developed based on sublimation of metal chelates, precipitation and metal reduction reactions. Isolation of indium in about 30 s was accomplished by precipitation and sublimation of its acetylacetonate. With this procedure the cumulative fission yield of In121 (3.1 min) was determined to be 3.2 x 10-3%. Cadmium as an ammine complex was separated in 3 s from hydroxide
Isoscaling and fission modes in the yields of the Kr and Xe isotopes from photofission of actinides
Drnoyan, J.; Zhemenik, V. I.; Mishinsky, G. V.
2016-05-01
Yields of Kr and Xe isotopes in photofission of 232Th, 238U, 237Np, 244Pu, 243Am, and 248Cm were tested for isoscaling dependence. Isoscaling for Kr is revealed. For Xe, isoscaling is found to be affected by the STI and STII fission modes governed by the N = 82 and N = 88 neutron shells. The work was performed at the Flerov Laboratory of Nuclear Reactions, Joint Institute for Nuclear Research (JINR).
Fission fragment mass yield deduced from density distribution in the pre-scission configuration
Warda, M
2015-01-01
Static self-consistent methods usually allow to determine the most probable fission fragments mass asymmetry. We have applied random neck rupture mechanism to the nuclei in the configuration at the end of fission paths. Fission fragment mass distributions have been deduced from the pre-scission nuclear density distribution obtained from the self-consistent calculations. Potential energy surfaces as well as nuclear shapes have been calculated in the fully microscopic theory, namely the constrained Hartree-Fock-Bogolubov model with the effective Gogny D1S density-dependent interaction. The method has been applied for analysis of fission of Fm-256,258, Cf-252 and Hg-180 and compared with the experimental data.
Fission fragment mass yield deduced from density distribution in the pre-scission configuration
Warda, M.; Zdeb, A.
2015-11-01
Static self-consistent methods usually allow one to determine the most probable fission fragments mass asymmetry. We have applied random neck rupture mechanism to the nuclei in the configuration at the end of fission paths. Fission fragment mass distributions have been deduced from the pre-scission nuclear density distribution obtained from the self-consistent calculations. Potential energy surfaces as well as nuclear shapes have been calculated in the fully microscopic theory, namely the constrained Hartree-Fock-Bogoliubov model with the effective Gogny D1S density-dependent interaction. The method has been applied for analysis of fission of {}{256,258}Fm, 252Cf and 180Hg and compared with the experimental data.
Absolute nuclear material assay
Prasad, Manoj K.; Snyderman, Neal J.; Rowland, Mark S.
2010-07-13
A method of absolute nuclear material assay of an unknown source comprising counting neutrons from the unknown source and providing an absolute nuclear material assay utilizing a model to optimally compare to the measured count distributions. In one embodiment, the step of providing an absolute nuclear material assay comprises utilizing a random sampling of analytically computed fission chain distributions to generate a continuous time-evolving sequence of event-counts by spreading the fission chain distribution in time.
Absolute nuclear material assay
Prasad, Manoj K.; Snyderman, Neal J.; Rowland, Mark S.
2012-05-15
A method of absolute nuclear material assay of an unknown source comprising counting neutrons from the unknown source and providing an absolute nuclear material assay utilizing a model to optimally compare to the measured count distributions. In one embodiment, the step of providing an absolute nuclear material assay comprises utilizing a random sampling of analytically computed fission chain distributions to generate a continuous time-evolving sequence of event-counts by spreading the fission chain distribution in time.
Martinez, G.; Barreau, G.; Sicre, A.; Doan, T.P.; Audouard, P.; Leroux, B. (CEA Centre d' Etudes Nucleaires de Bordeaux-Gradignan, 33 - Gradignan (France)); Arafa, W.; Brissot, R.; Bocquet, J.P. (Grenoble-1 Univ., 38 (France). Inst. des Sciences Nucleaires); Faust, H. (Institut Max von Laue - Paul Langevin, 38 - Grenoble (France)); Koczon, P.; Mutterer, M. (Technische Hochschule Darmstadt (Germany, F.R.). Inst. fuer Kernphysik); Goennenwein, F. (Tuebingen Univ. (Germany, F.R.). Physikalisches Inst.); Asghar, M. (Universite des Sciences et de la Technologie Houari Boumediene, Algiers (Algeria). Inst. de Physique); Quade, U.; Rudolph, K. (Muenchen Univ. (Germany, F.R.)); Engelhardt, D. (Karlsruhe Univ. (T.H.) (Germany, F.R.)); Piasecki, E. (Warsaw Univ. (Poland))
1990-09-03
The recoil mass separator LOHENGRIN of the Laue-Langevin Institute Grenoble has been used to measure for the first time, the yields of light fission fragments from the fissioning system: {sub 93}{sup 239}Np; this odd-Z nucleus is formed after double thermal neutron capture in a {sub 93}{sup 237}Np target. The mass distributions were measured for different kinetic energies between 92 and 115.5 MeV, but the nuclear charge distributions were determined only up to 112 MeV. These distributions are compared to the distributions obtained for the even-even system {sub 94}{sup 240}Pu. At high kinetic energy, the mass distribution shows a prominent peak around mass number A{sub L}=106. These cold fragmentations are discussed in terms of a calculation based on a scission point model extrapolated to the cold fission case. As expected for an odd-Z fissioning nucleus, the nuclear charge distributions do not reveal any odd-even effect. The global neutron odd-even effect is found to be (8.1{plus minus}1.5)%. A simple model has been used to show that most of the neutron odd-even effect results from prompt neutron evaporation from the fragments. (orig.).
Benchmarking Nuclear Fission Theory
G. F. Bertsch(INT, Seattle, USA); Loveland, W.; Nazarewicz, W.; Talou, P.
2015-01-01
We suggest a small set of fission observables to be used as test cases for validation of theoretical calculations. The purpose is to provide common data to facilitate the comparison of different fission theories and models. The proposed observables are chosen from fission barriers, spontaneous fission lifetimes, fission yield characteristics, and fission isomer excitation energies.
Simultaneous measurement of the neutron capture and fission yields of {sup 233}U
Berthoumieux, E.; Abbondanno, U.; Aerts, G.; Alvarez, H.A.; Alvarez-Velarde, F.A.; Andriamonje, S.; Andrzejewski, J.; Assimakopoulos, P.; Audouin, L.; Badurek, G.; Baumann, P.; Becvar, F.; Calvino, F.; Calviani, M.; Cano Ott, D.; Capote, R.; Carrapic, C.; Cennini, P.; Chepel, V.; Chiaveri, E.; Colonna, N.; Cortes, G.; Couture, A.; Cox, J.; Dahlfors, M.; David, S.; Dillmann, I.; Domingo-Pardo, C.; Dridi, W.; Duran, I.; Eleftheriadis, C.; Embid-Segura, M.; Ferrant, L.; Ferrari, A.; Ferreira-Marques, R.; Fujii, K.; Furman, W.; Goncalves, I.; Gonzalez-Romero, E.; Gramegna, F.; Guerrero, C.; Gunsing, F.; Haas, B.; Haight, R.; Heil, M.; Herrera-Martinez, A.; Igashira, M.; Jericha, E.; Kappeler, F.; Kadi, Y.; Karadimos, D.; Karamanis, D.; Kerveno, M.; Koehler, P.; Kossionides, E.; Krticka, M.; Lampoudis, C.; Leeb, H.; Lindote, A.; Lopes, I.; Lozano, M.; Lukic, S.; Marganiec, J.; Marrone, S.; Martinez, T.; Massimi, C.; Mastinu, P.; Mengoni, A.; Milazzo, P.M.; Moreau, C.; Mosconi, M.; Neves, F.; Oberhummer, H.; O' Brien, S.; Pancin, J.; Papachristodoulou, C.; Papadopoulos, C.; Paradela, C.; Patronis, N.; Pavlik, A.; Pavlopoulos, P.; Perrot, L.; Pigni, M.T.; Plag, R.; Plompen, A.; Plukis, A.; Poch, A.; Praena, J.; Pretel, C.; Quesada, J.; Rauscher, T.; Reifarth, R.; Rubbia, C.; Rudolf, G.; Rullhusen, P.; Salgado, J.; Santos, C.; Sarchiapone, L.; Savvidis, I.; Stephan, C.; Tagliente, G.; Tain, J.L.; Tassan-Got, L.; Tavora, L.; Terlizzi, R.; Vannini, G.; Vaz, P.; Ventura, A.; Villamarin, D.; Vincente, M.C.; Vlachoudis, V.; Vlastou, R.; Voss, F.; Walter, S.; Wiescher, M.; Wisshak, K
2008-07-01
We have measured the neutron capture and fission cross section of {sup 233}U at the neutron time-of-flight facility n-TOF at CERN in the energy range from 1 eV to 1 MeV with high accuracy by using a high performance 4{pi} BaF{sub 2} Total Absorption Calorimeter (TAC) as a detection device. The method, based on the shape analysis of the TAC energy response, allowing to disentangle between {gamma}'s originating from fission and capture will be presented as well as the first very preliminary results. (authors)
Simultaneous measurement of the neutron capture and fission yields of 233U
We have measured the neutron capture and fission cross section of 233U at the neutron time-of-flight facility n-TOF at CERN in the energy range from 1 eV to 1 MeV with high accuracy by using a high performance 4π BaF2 Total Absorption Calorimeter (TAC) as a detection device. The method, based on the shape analysis of the TAC energy response, allowing to disentangle between γ's originating from fission and capture will be presented as well as the first very preliminary results. (authors)
The aim of this thesis was to develop a new measuring apparature and measuring method which allows to study together with the mass separator 'Lohengrin' at the high flux reactor in Grenoble in realizable measurement times detailedly the unknown mass, nuclear charge, and energy distributions of the fission products resulting from the fission of 233U with thermal neutrons. First the yields and the energy distributions of the masses, thereafter the yields and the energy distributions of the isobaric nuclear charges of the light fission products in the mass range 79<=Asub(L)<=106 are measured. The measuring method for the determination of the mass yields consists of a energy measurement of the fission products separated in the mass separator by a ionization chamber. The isobaric nuclear charges and their yields are determined by the nuclear-charge-specific energy-loss method from the residual-energy spectra behind an absorber. (orig./HSI)
The measurement of electromagnetic radiations is difficult in the energy range 20-100 keV. We made suitable for this purpose a regular proportional counter, modifying both the nature and pressure of the gaseous mixture filling the detector volume. We selected the CPEN-SAIP counter, which is able to withstand such modifications. In the energy range considered, the counter is to be standardized with radioactive sources. Such standards were selected according to their disintegration schemes. We thus defined the conditions of use (resolution, yield) of the CPN counter, filled with an argon-methane mixture under a pressure of about 3 bars, in the energy range 5-100 keV. With such an equipment, we were able to measure the absolute disintegration rate for the X-rays of 133 Ba and 75 Se, then to perform the study of a mixed fission products sample. In the same way, we used xenon-based gaseous mixtures, in order to improve the detector yield; in the later case, we carefully examined the limitations introduced by the presence of many parasite rays emitted by the gas. We thus displayed in addition to the leakage peak, the fluorescence ray of the gas, whose origin is difficult to explain. (author)
High Triplet Yield from Singlet Fission in a Thin Film of 1,3-Diphenylisobenzofuran
Johnson, J. C.; Nozik, A. J.; Michl, Josef
2010-01-01
Roč. 132, č. 46 (2010), s. 16302-16303. ISSN 0002-7863 Grant ostatní: Department of Energy(US) XAT-5-33636-01; Department of Energy(US) DE-FG36-08GO18017 Institutional research plan: CEZ:AV0Z40550506 Keywords : singlet fission * thin solid films * heterocycles Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 9.019, year: 2010
A rapid radiochemical procedure for Pd separation was developed. It was the first time to use radiochemical techniques to determine 114Pd cumulative yield (2.50 ± 0.14)% in 252Cf spontaneous fission. The cumulative yields of (3.50 ± 0.13)% and (3.70 ± 0.11)% for 112Pd and 113gAg were also obtained. These are in agreement with Skovorodkin's results. The cumulative yields determined show that there is a fine-structure at light peak of mass number A = 113 in the mass distribution of 252Cf spontaneous fission
The aim of this work was to study the peak position of the photoabsorption peak as a function of the interaction distance from the photomultiplier window in order to get some information about the light attenuation length, internal reflectivity and absolute light yield for a 2 x 2 x 30 mm3 YAP:Ce scintillator
Microstructural origins of yield strength changes in AISI 316 during fission or fusion irradiation
The changes in yield strength of AISI 316 irradiated in breeder reactors have been successfully modeled in terms of concurrent changes in microstructural components. Two new insights involving the strength contributions of voids and Frank loops have been incorporated into the hardening models. Both the radiation-induced microstructure and the yield strength exhibit transients which are then followed by saturation at a level dependent on the irradiation temperature. Extrapolation to anticipated fusion behavior based on microstructural comparisons leads to the conclusion that the primary influence of transmutational differences is only to alter the transient behavior and not the saturation level of yield strength
Reliability of Monte Carlo simulations in modeling neutron yields from a shielded fission source
McArthur, Matthew S.; Rees, Lawrence B.; Czirr, J. Bart
2016-08-01
Using the combination of a neutron-sensitive 6Li glass scintillator detector with a neutron-insensitive 7Li glass scintillator detector, we are able to make an accurate measurement of the capture rate of fission neutrons on 6Li. We used this detector with a 252Cf neutron source to measure the effects of both non-borated polyethylene and 5% borated polyethylene shielding on detection rates over a range of shielding thicknesses. Both of these measurements were compared with MCNP calculations to determine how well the calculations reproduced the measurements. When the source is highly shielded, the number of interactions experienced by each neutron prior to arriving at the detector is large, so it is important to compare Monte Carlo modeling with actual experimental measurements. MCNP reproduces the data fairly well, but it does generally underestimate detector efficiency both with and without polyethylene shielding. For non-borated polyethylene it underestimates the measured value by an average of 8%. This increases to an average of 11% for borated polyethylene.
A library is described of data for 584 isotopes of fission products, including decay constants, branching ratios (both burn-up and decay), the type of emitted radiation, relative and absolute yields, capture cross sections for thermal neutrons, and resonance integrals. When a detailed decay scheme is not known, the mean energies of beta particles and neutrino and gamma radiations are given. In the ZVJE SKODA system the library is named BIBFP and is stored on film No 49 of the NE 803 B computer. It is used in calculating the inventory of fission products in fuel elements (and also determining absorption cross sections for burn-up calculations, gamma ray sources, heat generation) and in solving radioactivity transport problems in the primary circuit. It may also be used in the spectrometric method for burn-up determination of fuel elements. The library comprises the latest literary data available. It serves as the basis for library BIBGRFP storing group constants of fission products with independent yields of isotopes from fission. This, in turn, forms the basis for the BIBDN library collecting data on the precursors of delayed neutron emitters. (author)
Simutkin, V. D.; Pomp, S.; Blomgren, J.; Österlund, M.; Andersson, P.; Bevilacqua, R.; Ryzhov, I. V.; Tutin, G. A.; Khlopin, V. G.; Onegin, M. S.; Vaishnene, L. A.; Meulders, J. P.; Prieels, R.
2011-10-01
Over the past years, a significant effort has been devoted to measurements of neutron-induced fission cross-sections at intermediate energies but there is a lack of experimental data on fission yields. Here we describe recent measurements of pre-neutron emission fragment mass distributions from intermediate energy neutron-induced fission of 232Th and 238U. The measurements have been done at the quasi-monoenergetic neutron beam of the Louvain-la-Neuve cyclotron facility CYCLONE and neutron peak energies at 32.8, 45.3 and 59.9 MeV. A multi-section Frisch-gridded ionization chamber was used as a fission fragment detector. The measurement results are compared with available experimental data. Some TALYS code modifications done to describe the experimental results are discussed.
Neutron time of flight (nTOF) detectors are used routinely to measure the absolute DD neutron yield at OMEGA. To check the DD yield calibration of these detectors, originally calibrated using indium activation systems, which in turn were cross-calibrated to NOVA nTOF detectors in the early 1990s, a direct in situ calibration method using CR-39 range filter proton detectors has been successfully developed. By measuring DD neutron and proton yields from a series of exploding pusher implosions at OMEGA, a yield calibration coefficient of 1.09 ± 0.02 (relative to the previous coefficient) was determined for the 3m nTOF detector. In addition, comparison of these and other shots indicates that significant reduction in charged particle flux anisotropies is achieved when bang time occurs significantly (on the order of 500 ps) after the trailing edge of the laser pulse. This is an important observation as the main source of the yield calibration error is due to particle anisotropies caused by field effects. The results indicate that the CR-39-nTOF in situ calibration method can serve as a valuable technique for calibrating and reducing the uncertainty in the DD absolute yield calibration of nTOF detector systems on OMEGA, the National Ignition Facility, and laser megajoule
Waugh, C J; Rosenberg, M J; Zylstra, A B; Frenje, J A; Séguin, F H; Petrasso, R D; Glebov, V Yu; Sangster, T C; Stoeckl, C
2015-05-01
Neutron time of flight (nTOF) detectors are used routinely to measure the absolute DD neutron yield at OMEGA. To check the DD yield calibration of these detectors, originally calibrated using indium activation systems, which in turn were cross-calibrated to NOVA nTOF detectors in the early 1990s, a direct in situ calibration method using CR-39 range filter proton detectors has been successfully developed. By measuring DD neutron and proton yields from a series of exploding pusher implosions at OMEGA, a yield calibration coefficient of 1.09 ± 0.02 (relative to the previous coefficient) was determined for the 3m nTOF detector. In addition, comparison of these and other shots indicates that significant reduction in charged particle flux anisotropies is achieved when bang time occurs significantly (on the order of 500 ps) after the trailing edge of the laser pulse. This is an important observation as the main source of the yield calibration error is due to particle anisotropies caused by field effects. The results indicate that the CR-39-nTOF in situ calibration method can serve as a valuable technique for calibrating and reducing the uncertainty in the DD absolute yield calibration of nTOF detector systems on OMEGA, the National Ignition Facility, and laser megajoule. PMID:26026524
Neutron time of flight (nTOF) detectors are used routinely to measure the absolute DD neutron yield at OMEGA. To check the DD yield calibration of these detectors, originally calibrated using indium activation systems, which in turn were cross-calibrated to NOVA nTOF detectors in the early 1990s, a direct in situ calibration method using CR-39 range filter proton detectors has been successfully developed. By measuring DD neutron and proton yields from a series of exploding pusher implosions at OMEGA, a yield calibration coefficient of 1.09 ± 0.02 (relative to the previous coefficient) was determined for the 3m nTOF detector. In addition, comparison of these and other shots indicates that significant reduction in charged particle flux anisotropies is achieved when bang time occurs significantly (on the order of 500 ps) after the trailing edge of the laser pulse. This is an important observation as the main source of the yield calibration error is due to particle anisotropies caused by field effects. The results indicate that the CR-39-nTOF in situ calibration method can serve as a valuable technique for calibrating and reducing the uncertainty in the DD absolute yield calibration of nTOF detector systems on OMEGA, the National Ignition Facility, and laser megajoule
Waugh, C. J., E-mail: cjwaugh@mit.edu; Zylstra, A. B.; Frenje, J. A.; Séguin, F. H.; Petrasso, R. D. [Plasma Science and Fusion Center, MIT, Cambridge, Massachusetts 02139 (United States); Rosenberg, M. J.; Glebov, V. Yu.; Sangster, T. C.; Stoeckl, C. [Laboratory for Laser Energetics, Rochester, New York 14623 (United States)
2015-05-15
Neutron time of flight (nTOF) detectors are used routinely to measure the absolute DD neutron yield at OMEGA. To check the DD yield calibration of these detectors, originally calibrated using indium activation systems, which in turn were cross-calibrated to NOVA nTOF detectors in the early 1990s, a direct in situ calibration method using CR-39 range filter proton detectors has been successfully developed. By measuring DD neutron and proton yields from a series of exploding pusher implosions at OMEGA, a yield calibration coefficient of 1.09 ± 0.02 (relative to the previous coefficient) was determined for the 3m nTOF detector. In addition, comparison of these and other shots indicates that significant reduction in charged particle flux anisotropies is achieved when bang time occurs significantly (on the order of 500 ps) after the trailing edge of the laser pulse. This is an important observation as the main source of the yield calibration error is due to particle anisotropies caused by field effects. The results indicate that the CR-39-nTOF in situ calibration method can serve as a valuable technique for calibrating and reducing the uncertainty in the DD absolute yield calibration of nTOF detector systems on OMEGA, the National Ignition Facility, and laser megajoule.
A review of fission product yields and delayed neutron data for Np-237, Pu-242, Am-242m, Am-243, Cm-243 and Cm-245 has been undertaken. Gaps in understanding and inconsistencies in existing data were identified and priority areas for further experimental, theoretical and evaluation investigation detailed
These measurements were undertaken to obtain additional information on the fission process, and to investigate the application of this information to the assignment of J-values to resonance levels, as the usual methods of determining J-values are of limited applicability in the case of fissile isotopes. An earlier study of U235 showed that the fission-fragment kinetic energy and the alpha yield varied significantly from level to level, and fell into two groups suggestive of the two possible J-values. The present paper reports on measurements on Pu239. A study of 19 levels shows 15 levels with high average kinetic energy and 4 levels with low average kinetic energy, the former being assigned J -1 and the latter J = 0 on the basis of the expected ratio of population of the two spin states and also for maximum compatibility with other determinations. Some variation of relative alpha-particle yield was found. It is concluded that (1) there are definite variations of kinetic energy of the fragments from level to level; (2) the variation in the case of U235 is correlated with the relative yield of symmetric fission; (3) there is some indication in the case of Pu239 that the variation of fragment energy is correlated with the J-values; and (4) the relative yield of alpha particles varies in an expected fashion. (author)
The even-odd effect in fission-fragment Z yields – a new kind of nuclear clock
Jurado Beatriz; Schmidt Karl-Heinz
2013-01-01
A model for the even-odd effect in fission based on statistical mechanics is presented. It reveals that the variation of the even-odd effect with the mass of the fissioning nucleus and the increase towards asymmetric splits is due to the important statistical weight of configurations where the light fission fragment populates the ground state of an even-even nucleus. This implies that excitation energy and unpaired nucleons are predominantly transferred to the heavy fragment. Our results indi...
Simutkin, V. D.; Pomp, S.; Blomgren, J.; Österlund, M.; R. Bevilacqua; Ryzhov, I. V.; Tutin, G. A.; Yavshits, S. G.; Vaishnene, L. A.; Onegin, M S; Meulders, J.P.; Prieels, R.
2013-01-01
Development of nuclear energy applications requires data for neutron-induced reactions for actinides in a wide neutron energy range. Here we describe measurements of pre-neutron emission fission fragment mass yields of 232Th and 238U at incident neutron energies from 10 to 33 MeV. The measurements were done at the quasi-monoenergetic neutron beam of the Louvain-la-Neuve cyclotron facility CYCLONE; a multi-section twin Frisch-gridded ionization chamber was used to detect fission fragments. For...
In this paper measurements of mass- and ioncharge distributions of the lower mass 235U(nsub(th),f)-fission products, performed with the 'Lohengrin' recoil spectrometer of the Institut Lane-Langevin at Grenoble, are reported. The uranium targets used led to an energy loss of the fission fragments of only 1 to 2 MeV, so their energy was well defined. The mass abundance have been measured for the following fragment energies: E = 83.6, 88.5, 93.4, 98.3, 103.1, 108.0, 112.0 MeV. The energy integrated mass distributions were compared with recent data collections of fission yields. For nearly all masses the abundancies agree well within the limits of error. So these maesurements can be used as an independent source of data. (orig./RW)
Goverdovski, A.A.; Khryachkov, V.A.; Ketlerov, V.V.; Mitrofanov, V.F.; Ostapenko, Yu.B.; Semenova, N.N.; Fomichev, A.N.; Rodina, L.F. [Institute of Physics and Power Engineering, Obninsk (Russian Federation)
1997-03-01
Twin gridded ionization chamber and corresponding software was designed for measurements of masses, kinetic energies and nuclear charges of fission fragments from fast neutron induced fission of {sup 237}Np. The ionization detector design, electronics, data acquisition and processing system and the test results are presented in this paper. (J.P.N.)
Energies and Yields of Prompt Gamma Rays from Fragments in Slow-Neutron Induced Fission of 235U
Measurements were made on the gamma radiation emitted from fission fragments in slow-neutron induced fission of 235U. The fragments were detected with solid state detectors of the surface barrier type and the gamma radiation with a Nal(Tl) scintillator. Mass selection was used so that the gamma radiation could be measured as a function of fragment mass. Time discrimination between the fission gammas and the prompt neutrons released in the fission process was employed to reduce the background. The gamma radiation emitted during different time intervals after the fission event was studied with the help of a collimator, the position of which was changed along the path of the fission fragments. In this way it was possible to select various collimator settings and let gamma radiation of different half-lives be enhanced. Gamma-ray energy spectra from these time components were then recorded as function of mass. The spectrum shape differed greatly depending on the half-life of the radiation and the fragment from which it was emitted. The results of the present measurements were discussed in the light of existing fission models, and comparisons were made with prompt gamma-ray and neutron data from other fission experiments
Electron-stimulated desorption of neutral aluminum from the system CH3O/Al(111) has been directly monitored via quasiresonant photoionization with 193 nm excimer laser light and confirmed by two-step resonant ionization, utilizing the Al 3d 2D manifold. Velocity distribution measurements for the neutral Al peak at ∼ 800 m/s for 1 keV incident electron energy. An absolute yield of 3.2 x 10-6 Al atoms/electron was determined by comparison with sputtering measurements in the same apparatus. This is the first observation of electron-stimulated metal desorption from adsorbate-covered metallic surfaces
The even-odd effect in fission-fragment Z yields – a new kind of nuclear clock
Jurado Beatriz
2013-12-01
Full Text Available A model for the even-odd effect in fission based on statistical mechanics is presented. It reveals that the variation of the even-odd effect with the mass of the fissioning nucleus and the increase towards asymmetric splits is due to the important statistical weight of configurations where the light fission fragment populates the ground state of an even-even nucleus. This implies that excitation energy and unpaired nucleons are predominantly transferred to the heavy fragment. Our results indicate that the time for transfer of excitation energy and nucleons is shorter than the saddle-to-scission time.
The even-odd effect in fission-fragment Z yields - A new kind of nuclear clock
A model for the even-odd effect in fission based on statistical mechanics is presented. It reveals that the variation of the even-odd effect with the mass of the fissioning nucleus and the increase towards asymmetric splits is due to the important statistical weight of configurations where the light fission fragment populates the ground state of an even-even nucleus. This implies that excitation energy and unpaired nucleons are predominantly transferred to the heavy fragment. Our results indicate that the time for transfer of excitation energy and nucleons is shorter than the saddle-to-scission time. (authors)
Monte Carlo analysis of the measurements of Smith et al. of the number of fission neutrons produced per neutron absorbed, eta, for 2200 m/sec neutrons absorbed by 233U and 235U yields: eta2200233 = 2.2993 +- 0.0082 and eta2200235 = 2.0777 +- 0.0064. The standard deviations include Monte Carlo, cross section, and experimental uncertainties. The Monte Carlo analysis was confirmed by calculating measured quantities used by the experimentalists in determining eta2200
Rare-gas yields in 238U and 232Th fission by 14MeV neutrons, measured by an emanating method
A direct method, using emanation of rare gases by uranyle stearate and thorium stearate, has been applied to the measurement of cumulative fractional yields of certain isotopes of krypton and xenon, in the fissions of 238U and 232Th by 14MeV-neutrons. The independent yields of the same isotopes were measured previously by means of isotopic on-line separation. From these results, the widths of the mass and charge distributions, the relative chain yields, the fractional cumulative yields of certain bromine and iodine isotopes, the values of Zsub(p) the most probable charge, in the isobaric chains 87-93 and 137-142, and the elemental yields of krypton and xenon were calculated
Easy Absolute Values? Absolutely
Taylor, Sharon E.; Mittag, Kathleen Cage
2015-01-01
The authors teach a problem-solving course for preservice middle-grades education majors that includes concepts dealing with absolute-value computations, equations, and inequalities. Many of these students like mathematics and plan to teach it, so they are adept at symbolic manipulations. Getting them to think differently about a concept that they…
The study of the energy spectrum of ultra-high energy cosmic rays (E > 1020 eV) requires to determine the energy with much more precision than what is currently achieved. The shower of particles created in the atmosphere can be detected either by sampling particle on the ground, or by detecting the fluorescence induced by the excitation of nitrogen by shower electrons. At present, the measurement of the fluorescence is the simplest and the most reliable method, since it does not call upon hadronic physics laws at extreme energies, a field still inaccessible to accelerators. The precise knowledge of the conversion factor between deposited energy and the number of fluorescence photons produced (the yield) is thus essential. Up to now, it has been determined with an accuracy of 15 % only. This main goal of this work is to measure this yield to better than 5 per cent. To do this, 1 MeV electrons from a radioactive source excite nitrogen of the air. The accuracy has been reached thanks to the implementation of a new method for the absolute calibration of the photomultipliers detecting the photons, to better than 2 per cent. The fluorescence yield, measured and normalized to 0.85 MeV, 760 mmHg and 15 Celsius degrees, is (4.23 ± 0.20) photons per meter, or (20.46 ± 0.98) photons per deposited MeV. In addition, and for the first time, the absolute fluorescence spectrum of nitrogen excited by a source has been measured with an optical grating spectrometer. (author)
Technique of absolute efficiency determination for gamma radiation semiconductor detectors
Simple technique is suggested to determine the absolute efficiency (E) of semiconductor detectors (SCD) which employes low-intensity neutron sources wide spread in scientific laboratories. The technique is based on using radioactive nuclide gamma radiation in decay chains of heavy element fission fragments, uranium-235, for example. Cumulative yields of a number of nulcides following heavy element fission are measured to a high accuracy (1-5%), which permits to . the value E is determined for a wide energy range (from X- ray to some MeV); using a nuclide with a well known decay scheme and measured to a high accuracy cumulative yield 140La, for example, one can calibrate in absolute values comparatively easily obtained plots of the SCD relative efficiency. The technique allows to determine the E value for extended plane (and volumetric) sources of an arbitrary form. Some nuclides, convenient for the determination of E, and their nuclear characteristics are tabulated
Simutkin, V D; Blomgren, J; Österlund, M; Bevilacqua, R; Ryzhov, I V; Tutin, G A; Yavshits, S G; Vaishnene, L A; Onegin, M S; Meulders, J P; Prieels, R
2013-01-01
Development of nuclear energy applications requires data for neutron-induced reactions for actinides in a wide neutron energy range. Here we describe measurements of pre-neutron emission fission fragment mass yields of 232Th and 238U at incident neutron energies from 10 to 33 MeV. The measurements were done at the quasi-monoenergetic neutron beam of the Louvain-la-Neuve cyclotron facility CYCLONE; a multi-section twin Frisch-gridded ionization chamber was used to detect fission fragments. For the peak neutron energies at 33, 45 and 60 MeV, the details of the data analysis and the experimental results have been published before and in this work we present data analysis in the low-energy tail of the neutron energy spectra. The preliminary measurement results are compared with available experimental data and theoretical predictions.
Mohammed Abu-Bajeh; Melanie Cameron; Kyung-Hoon Jung; Christoph Kappel; Almuth Läuter; Kyoung-Seok Lee; Hari P Upadhyaya; Rajesh K Vatsa; Hans-Robert Volpp
2002-12-01
The dynamics of formation of oxygen atoms after UV photoexcitation of SO2 in the gas-phase was studied by pulsed laser photolysis-laser-induced fluorescence `pump-and-probe' technique in a flow reactor. SO2 at room-temperature was excited at the KrCl excimer laser wavelength (222.4 nm) and O(3P) photofragments were detected under collision-free conditions by vacuum ultraviolet laser-induced fluorescence. The use of narrow-band probe laser radiation, generated via resonant third-order sum-difference frequency conversion of dye laser radiation in Krypton, allowed the measurement of the nascent O(3P=2,1,0) fine-structure state distribution: =2/=1/=0 = (0.88 ± 0.02)/(0.10 ± 0.01)/(0.02 ± 0.01). Employing NO2 photolysis as a reference, a value of O(3P) = 0.13 ± 0.05 for the absolute O(3P) atom quantum yield was determined. The measured O(3P) quantum yield is compared with the results of earlier fluorescence quantum yield measurements. A suitable mechanism is suggested in which the dissociation proceeds via internal conversion from high rotational states of the initially excited SO2(∼ 1 B2) (1, 2, 2) vibronic level to nearby continuum states of the electronic ground state.
An apparatus for simultaneously recording the velocities of both fission fragments and the velocity of a neutron at any one of four angles to the fragment direction has been used to investigate the neutron-emission properties of individual fragments. Early results for U233 exhibit the saw-tooth variation of v, the neutron yield per fragment, observed in the spontaneous fission of Cf252 The yields in the vicinity of mass 130 are consistent with no neutrons being emitted from these fragments. Unlike the neutron yields, the average neutron kinetic energy is symmetric about the symmetric mass point, being high near this point and low at the most probable mass division. The paradox between very small yields and high apparent nuclear temperatures has been qualitatively explained on the basis of a model that takes account of shell structure in the level densities and assumes that at the time of scission the fragments are cold but in some cases highly deformed, in others nearly spherical. The model is supported by the fact that in fissions with more than the average total excitation energy, the fragments near mass 130 and 80 receive much less than half the increase in energy and the other fragment of the pair much more. The experiment is now being conducted with U235 under considerably improved conditions. The background per channel under the neutron spectrum has been reduced by nearly a factor of three, so that 0.39 of all recorded events in the 10° detector are useful neutron events with a corresponding increase in statistical accuracy. Better time resolution in the fragment system (1.5 ns, full width at half maximum) has allowed the. flight paths to be shortened to 125 and 100 cm (formerly 145-145 cm) with a concomitant higher countings rate. (author)
Bellido, A.V.
1995-07-01
The theoretical principles and the laboratory set-up for the fission products yields measurements are described. The procedures for the experimental determinations are explain in detail. (author). 43 refs., 5 figs.
Bigazzi, G; Hadler-Neto, J C; Iunes, P J; Paulo, S R; Oddone, M; Osorio, A M A; Zúñiga, A G
1999-01-01
Neutron dosimetry using natural uranium and thorium thin films makes possible that mineral dating by the fission-track method can be accomplished, even when poor thermalized neutron facilities are employed. In this case, the contributions of the fissions of sup 2 sup 3 sup 5 U, sup 2 sup 3 sup 8 U and sup 2 sup 3 sup 2 Th induced by thermal, epithermal and fast neutrons to the population of tracks produced during irradiation are quantified through the combined use of natural uranium and thorium films. If the Th/U ratio of the sample is known, only one irradiation (where the sample and the films of uranium and thorium are present) is necessary to perform the dating. However, if that ratio is unknown, it can be determined through another irradiation where the mineral to be dated and both films are placed inside a cadmium box. Problems related with film manufacturing and calibration are discussed. Special attention is given to the utilization of thin films having very low uranium content. The problems faced sugg...
Nolen, J.A.; Ahmad, I.; Back, B.B. [and others
1995-08-01
An experiment was performed at the Michigan State University cyclotron to determine the yields of neutron-rich fission products in the reaction of {sup 238}U with 100-MeV neutrons, 200-MeV deuterons and 200-MeV protons. Several 1-mm-thick {sup 238}U foils were irradiated for 100-second intervals sequentially for each configuration and the ten spectra were added for higher statistics. The three successive spectra, each for a 40 s period, were accumulated for each sample. Ten foils were irradiated. Successive spectra allowed us to determine approximate half-lives of the gamma peaks. Several arrangements, which were similar to the setup we plan to use in our radioactive beam proposal, were used for the production of fission products. For the high-energy neutron irradiation, U foils were placed after a 5-inch-long, 1-inch-diameter Be cylinder which stopped the 200-MeV deuteron beam generating 100-MeV neutrons. Arrangements for deuteron irradiation included direct irradiation of U foils, placing U foils after different lengths of (0.5 inch, 1.0 inch and 1.5 inch) 2-inch diameter U cylinder. Since the deuteron range in uranium is 17 mm, some of the irradiations were due to the secondary neutrons from the deuteron-induced fission of U. Similar arrangements were also used for the 200-MeV proton irradiation of the {sup 238}U foils. In all cases, several neutron-rich fission products were identified and their yields determined. In particular, we were able to observe Sn in all the runs and determine its yield. The data show that with our proposed radioactive device we will be able to produce more than 10{sup 12} {sup 132}Sn atoms per second in the target. Assuming an overall efficiency of 1 %, we will be able to deliver one particle nanoampere of {sup 132}Sn beam at a target location. Detailed analysis of the {gamma}-ray spectra is in progress.
S. A. Carl
2008-10-01
Full Text Available The absolute rate constant for the reaction that is the major source of stratospheric NOx, O(1D+N2O → products, has been determined in the temperature range 227 K to 719 K, and, in the temperature range 248 K to 600 K, the fraction of the reaction that yields O(3P. Both the rate constants and product yields were determined using a recently-developed chemiluminescence technique for monitoring O(1D that allows for higher precision determinations for both rate constants, and, particularly, O(3P yields, than do other methods. We found the rate constant, kR1, to be essentially independent of temperature between 400 K and 227 K, having a value of (1.37±0.11×10−10 cm3 s−1, and for temperatures greater than 450 K a marked decrease in rate constant was observed, with a rate constant of only (0.94±0.11×10−10 cm3 s−1 at 719 K. The rate constants determined over the 227 K–400 K range show very low scatter and are significantly greater, by 20% at room temperature and 15% at 227 K, than the current recommended values. The fraction of O(3P produced in this reaction was determined to be 0.002±0.002 at 250 K rising steadily to 0.010±0.004 at 600 K, thus the channel producing O(3P can be entirely neglected in atmospheric kinetic modeling calculations. A further result of this study is an expression of the relative quantum yields as a function of temperature for the chemiluminescence reactions (kCL1C2H + O(1D → CH(A + CO and (kCL2C2H + O(3P → CH(A + CO, both followed by CH(A → CH(X + hν, as kCL1(T/kCL2(T=(32.8T−3050/(6.29T+398.
Simutkin, V. D.; Pomp, S.; Blomgren, J.; Österlund, M.; Bevilacqua, R.; Andersson, P.; Ryzhov, I. V.; Tutin, G. A.; Yavshits, S. G.; Vaishnene, L. A.; Onegin, M. S.; Meulders, J. P.; Prieels, R.
2014-05-01
Development of nuclear energy applications requires data for neutron-induced reactions for actinides in a wide neutron energy range. Here we describe measurements of pre-neutron emission fission fragment mass yields of 232Th and 238U at incident neutron energies from 10 to 33 MeV. The measurements were done at the quasi-monoenergetic neutron beam of the Louvain-la-Neuve cyclotron facility CYCLONE; a multi-section twin Frisch-gridded ionization chamber was used to detect fission fragments. For the peak neutron energies at 33, 45 and 60 MeV, the details of the data analysis and the experimental results were published in Ref. [I.V. Ryzhov, S.G. Yavshits, G.A. Tutin et al., Phys. Rev. C 83, 054603 (2011)]. In this work we present data analysis in the low-energy tail of the neutron energy spectra. The preliminary measurement results are compared with available experimental data and theoretical predictions.