WorldWideScience

Sample records for absolute cross sections

  1. Absolute cross sections for dissociative electron attachment to HCCCN

    New absolute cross sections for dissociative electron attachment to HCCCN (cyanoacetylene or propiolonitrile) in the range of 0–10 eV electron energy are presented here, which have been determined from a new analysis of previously reported data (Graupner et al 2006 New J. Phys. 8 117). The highest cross sections are observed for the formation of CN− at 5.3 eV and CCCN− at 5.1 eV; approximately 0.06 Å2 and 0.05 Å2 respectively. As part of the re-analysis, it was necessary to determine absolute cross sections for electron-impact ionization of HCCCN with the binary-encounter Bethe method. These electron-impact ionization absolute cross sections for HCCCN are also presented here; the maximum value was found to be ∼6.6 Å2 at ∼80 eV. (paper)

  2. Absolute Total np and pp Cross Section Determinations

    Arndt, R A; Laptev, A B; Strakovsky, I I; Workman, R L

    2008-01-01

    Absolute total cross sections for np and pp scattering below 1000 MeV are determined based on partial-wave analyses of NN scattering data. These cross sections are compared with most recent ENDF/B and JENDL data files, and the Nijmegen partial-wave analysis. Systematic deviations from the ENDF/B and JENDL evaluations are found to exist in the low-energy region.

  3. Absolute cross-section of turbojet aviation engine calculation

    Ryabokon, Evgen

    2012-01-01

    The calculation method of three-dimensional model of turbojet aviation engine is offered, thus the form of turbine vanes with spiralling is described like parametric surface. The method allows make the calculation of absolute cross-section (ACS) of turbojet aviation engines with different geometrical parameters. The calculation results of ACS of aviation engine are presented.

  4. Absolute photoionization cross-section of the propargyl radical

    Savee, John D.; Welz, Oliver; Taatjes, Craig A.; Osborn, David L. [Sandia National Laboratories, Combustion Research Facility, Livermore, California 94551 (United States); Soorkia, Satchin [Institut des Sciences Moleculaires d' Orsay, Universite Paris-Sud 11, Orsay (France); Selby, Talitha M. [Department of Chemistry, University of Wisconsin, Washington County Campus, West Bend, Wisconsin 53095 (United States)

    2012-04-07

    Using synchrotron-generated vacuum-ultraviolet radiation and multiplexed time-resolved photoionization mass spectrometry we have measured the absolute photoionization cross-section for the propargyl (C{sub 3}H{sub 3}) radical, {sigma}{sub propargyl}{sup ion}(E), relative to the known absolute cross-section of the methyl (CH{sub 3}) radical. We generated a stoichiometric 1:1 ratio of C{sub 3}H{sub 3} : CH{sub 3} from 193 nm photolysis of two different C{sub 4}H{sub 6} isomers (1-butyne and 1,3-butadiene). Photolysis of 1-butyne yielded values of {sigma}{sub propargyl}{sup ion}(10.213 eV)=(26.1{+-}4.2) Mb and {sigma}{sub propargyl}{sup ion}(10.413 eV)=(23.4{+-}3.2) Mb, whereas photolysis of 1,3-butadiene yielded values of {sigma}{sub propargyl}{sup ion}(10.213 eV)=(23.6{+-}3.6) Mb and {sigma}{sub propargyl}{sup ion}(10.413 eV)=(25.1{+-}3.5) Mb. These measurements place our relative photoionization cross-section spectrum for propargyl on an absolute scale between 8.6 and 10.5 eV. The cross-section derived from our results is approximately a factor of three larger than previous determinations.

  5. The absolute threshold photodetachment cross-section of Al-

    The total absolute photodetachment cross-section of the aluminum anion, Al-, is calculated in the threshold spectral region for photons of wave numbers 3400 - 3650cm-1 using the zero-core contribution (ZCC) model. A computer least-squares curve fit is used to test the validity of the Wigner threshold law and the deviation from recent experimental measurements of the relative photodetachment cross-section. It is found that the best agreements is achieved with a smaller core radius rο=1.60 Angstrom rather than the value of 1.82 Angstrom used earlier. (authors). 22 refs., 5 figs., 1 tab

  6. Absolute cross sections for electron collisions with diacetylene: Elastic scattering, vibrational excitation and dissociative attachment

    We present absolute experimental cross sections for elastic scattering, vibrational excitation by electron impact and for dissociative electron attachment to 1,3-butadiyne, as well as calculations of the elastic cross sections.

  7. Absolute measurements of neutron cross sections. Progress report

    In the photoneutron laboratory, we have completed a major refurbishing of experimental facilities and begun work on measurements of the capture cross section in thorium and U-238. In the 14 MeV neutron experimental bay, work continues on the measurement of 14 MeV neutron induced reactions of interest as standards or because of their technological importance. First results have been obtained over the past year, and we are extending these measurements along the lines outlined in our proposal of a year ago

  8. Absolute cross-section normalization of magnetic neutron scattering data

    Xu, Guangyong; Xu, Zhijun; Tranquada, J. M.

    2013-01-01

    We discuss various methods to obtain the resolution volume for neutron scattering experiments, in order to perform absolute normalization on inelastic magnetic neutron scattering data. Examples from previous experiments are given. We also try to provide clear definitions of a number of physical quantities which are commonly used to describe neutron magnetic scattering results, including the dynamic spin correlation function and the imaginary part of the dynamic susceptibility. Formulas that c...

  9. Absolute Differential Cross Sections for Elastic Scattering of Electrons from CO at Intermediate and High Energies

    SHI De-Heng; LIU Yu-Fang; SUN Jin-Feng; YANG Xiang-Dong; ZHU Zun-Lue

    2005-01-01

    @@ The additivity rule model together with the complex optical model potential correlated by the concept of bonded atoms, which considers the overlapping effect of electron clouds between two atoms in a molecule, is firstly employed to calculate the absolute differential cross sections for electrons scattered by carbon monoxide at intermediate and high energies at the Hartree-Fock level. A comparison of elastic differential cross section results, obtained by using the correlated complex optical model potential, with the available experimental data,shows a significant improvement over the uncorrelated ones. The differential cross sections obtained by using the correlated complex optical model potential are in very good agreement with the experimental data. It is shown that the additivity rule model together with the correlated complex optical model potential is suitable for the calculations of the absolute differential cross sections of e-CO scattering.

  10. Absolute Absorption Cross Sections from Photon Recoil in a Matter-Wave Interferometer

    Eibenberger, Sandra; Cheng, Xiaxi; Cotter, J. P.; Arndt, Markus

    2014-06-01

    We measure the absolute absorption cross section of molecules using a matter-wave interferometer. A nanostructured density distribution is imprinted onto a dilute molecular beam through quantum interference. As the beam crosses the light field of a probe laser some molecules will absorb a single photon. These absorption events impart a momentum recoil which shifts the position of the molecule relative to the unperturbed beam. Averaging over the shifted and unshifted components within the beam leads to a reduction of the fringe visibility, enabling the absolute absorption cross section to be extracted with high accuracy. This technique is independent of the molecular density, it is minimally invasive and successfully eliminates many problems related to photon cycling, state mixing, photobleaching, photoinduced heating, fragmentation, and ionization. It can therefore be extended to a wide variety of neutral molecules, clusters, and nanoparticles.

  11. Absolute absorption cross sections from photon recoil in a matter-wave interferometer

    Eibenberger, Sandra; Cotter, J P; Arndt, Markus

    2014-01-01

    We measure the absolute absorption cross section of molecules using a matter-wave interferometer. A nanostructured density distribution is imprinted onto a dilute molecular beam through quantum interference. As the beam crosses the light field of a probe laser some molecules will absorb a single photon. These absorption events impart a momentum recoil which shifts the position of the molecule relative to the unperturbed beam. Averaging over the shifted and unshifted components within the beam leads to a reduction of the fringe visibility, enabling the absolute absorption cross section to be extracted with high accuracy. This technique is independent of the molecular density, it is minimally invasive and successfully eliminates all problems related to photon-cycling, state-mixing, photo-bleaching, photo-induced heating, fragmentation and ionization. It can therefore be extended to a wide variety of neutral molecules, clusters and nanoparticles.

  12. Absolute cross sections for dissociative electron attachment to acetylene and diacetylene

    May, Olivier; Fedor, Juraj; Ibănescu, Bogdan C.; Allan, Michael

    2008-01-01

    Absolute cross sections for the production of the two astronomy-relevant negative ions H−C≡C⁻ and H−C≡C−C≡C⁻ by dissociative electron attachment to acetylene C₂H₂ and diacetylene C₄H₂ were measured (with a ±25% error bar). Acetylene yielded the C₂H⁻ ion at an electron energy of 2.95  eV with a cross section of 3.6±0.9  pm² and also the C₂⁻ ion at 8.1  eV with a cross section of 4.1±1  pm². Diacetylene yielded the C₄H⁻ ion at 2.5  eV with a cross section of 3.0±0.8  pm² and at 5.25  eVwith a c...

  13. Measurements of absolute absorption cross sections of ozone in the 185- to 254-nm wavelength region and the temperature dependence

    Yoshino, K.; Esmond, J. R.; Freeman, D. E.; Parkinson, W. H.

    1993-01-01

    Laboratory measurements of the relative absorption cross sections of ozone at temperatures 195, 228, and 295 K have been made throughout the 185 to 254 nm wavelength region. The absolute absorption cross sections at the same temperatures have been measured at several discrete wavelengths in the 185 to 250 nm region. The absolute cross sections of ozone have been used to put the relative cross sections on a firm absolute basis throughout the 185 to 255 nm region. These recalibrated cross sections are slightly lower than those of Molina and Molina (1986), but the differences are within a few percent and would not be significant in atmospheric applications.

  14. Absolute measurement of the 242Pu neutron-capture cross section

    Buckner, M. Q.; Wu, C. Y.; Henderson, R. A.; Bucher, B.; Chyzh, A.; Bredeweg, T. A.; Baramsai, B.; Couture, A.; Jandel, M.; Mosby, S.; O'Donnell, J. M.; Ullmann, J. L.; Dance Collaboration

    2016-04-01

    The absolute neutron-capture cross section of 242Pu was measured at the Los Alamos Neutron Science Center using the Detector for Advanced Neutron-Capture Experiments array along with a compact parallel-plate avalanche counter for fission-fragment detection. The first direct measurement of the 242Pu(n ,γ ) cross section was made over the incident neutron energy range from thermal to ≈6 keV, and the absolute scale of the (n ,γ ) cross section was set according to the known 239Pu(n ,f ) resonance at En ,R=7.83 eV. This was accomplished by adding a small quantity of 239Pu to the 242Pu sample. The relative scale of the cross section, with a range of four orders of magnitude, was determined for incident neutron energies from thermal to ≈40 keV. Our data, in general, are in agreement with previous measurements and those reported in ENDF/B-VII.1; the 242Pu(n ,γ ) cross section at the En ,R=2.68 eV resonance is within 2.4 % of the evaluated value. However, discrepancies exist at higher energies; our data are ≈30 % lower than the evaluated data at En≈1 keV and are approximately 2 σ away from the previous measurement at En≈20 keV.

  15. Absolute measurement of $sup 235$U fission cross-section for 2200 m/sec neutrons

    Borcea, C.; Borza, A.; Buta, A.

    1973-12-31

    The results of an absolute fission cross-section measurement of /sup 235/ U are presented; the thermal neutrons were selected by the time-of-flight method. The principle of the method and the experimental apparatus are described. The method had the advantage of avoiding the use of an intermediate cross section in the neutron flux determination by choice of a B target thick enough to absorb all thermal neutrons. Target preparation, efficiency determination, corrections, etc., are reported. The value determined was 581.7 plus or minus 7.8 barns. (6 figures, 4 tables) (RWR)

  16. Absolute triple differential cross sections for photo-double ionization of helium-experiment and theory

    Braeuning, H. [Department of Physics, Kansas State University, Manhattan, KA 66506 (United States); Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Doerner, R.; Braeuning-Demian, A.; Mergel, V.; Schmidt-Boecking, H. [Institut fuer Kernphysik, Universitaet Frankfurt, August-Euler-Strasse 6, D60486 Frankfurt (Germany); Cocke, C.L.; Carnes, K.; Richard, P. [Department of Physics, Kansas State University, Manhattan, KA 66506 (United States); Prior, M.H.; Dreuil, S. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Kraessig, B. [Argonne National Laboratory, Argonne, IL 60439 (United States); Kheifets, A.S. [Australian National University, Canberra ACT 0200 (Australia); Bray, I. [Flinders University, GPO Box 2100, Adelaide 5001 (Australia); Ullrich, J. [Universitaet Freiburg, 79104 Freiburg (Germany)

    1998-12-14

    We have measured absolute triple differential cross sections for photo-double ionization of helium at 20 eV excess. The measurement covers the full ranges of energy sharing and emission angles of the two photoelectrons. We compare our data for selected geometries with the convergent close-coupling (CCC) calculations as well as 2SC calculations by Pont and Shakeshaft and 3C calculations by Maulbetsch and Briggs. In terms of the absolute magnitude and the trend in the shapes of the triple differential cross section for different geometries we find good agreement of the CCC and published 2SC calculations with our measurement, though differences with respect to the observed shape of individual patterns still exist. (author)

  17. Absolute X-ray emission cross section measurements of Fe K transitions

    Hell, Natalie; Brown, Gregory V.; Beiersdorfer, Peter; Boyce, Kevin R.; Grinberg, Victoria; Kelley, Richard L.; Kilbourne, Caroline; Leutenegger, Maurice A.; Porter, Frederick Scott; Wilms, Jörn

    2016-06-01

    We have measured the absolute X-ray emission cross sections of K-shell transitions in highly charged L- and K-shell Fe ions using the LLNL EBIT-I electron beam ion trap and the NASA GSFC EBIT Calorimeter Spectrometer (ECS). The cross sections are determined by using the ECS to simultaneously record the spectrum of the bound-bound K-shell transitions and the emission from radiative recombination from trapped Fe ions. The measured spectrum is then brought to an absolute scale by normalizing the measured flux in the radiative recombination features to their theoretical cross sections, which are well known. Once the spectrum is brought to an absolute scale, the cross sections of the K-shell transitions are determined. These measurements are made possible by the ECS, which consists of a 32 channel array, with 14 channels optimized for detecting high energy photons (hν > 10 keV) and 18 channels optimized for detecting low energy photons (hν collection area, relatively high energy resolution, and a large bandpass; all properties necessary for this measurement technique to be successful. These data will be used to benchmark cross sections in the atomic reference data bases underlying the plasma modeling codes used to analyze astrophysical spectra, especially those measured by the Soft X-ray Spectrometer calorimeter instrument recently launched on the Hitomi X-ray Observatory.This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344, and supported by NASA grants to LLNL and NASA/GSFC and by ESA under contract No. 4000114313/15/NL/CB.

  18. On the absolute photoionization cross section and dissociative photoionization of cyclopropenylidene.

    Holzmeier, Fabian; Fischer, Ingo; Kiendl, Benjamin; Krueger, Anke; Bodi, Andras; Hemberger, Patrick

    2016-04-01

    We report the determination of the absolute photoionization cross section of cyclopropenylidene, c-C3H2, and the heat of formation of the C3H radical and ion derived by the dissociative ionization of the carbene. Vacuum ultraviolet (VUV) synchrotron radiation as provided by the Swiss Light Source and imaging photoelectron photoion coincidence (iPEPICO) were employed. Cyclopropenylidene was generated by pyrolysis of a quadricyclane precursor in a 1 : 1 ratio with benzene, which enabled us to derive the carbene's near threshold absolute photoionization cross section from the photoionization yield of the two pyrolysis products and the known cross section of benzene. The cross section at 9.5 eV, for example, was determined to be 4.5 ± 1.4 Mb. Upon dissociative ionization the carbene decomposes by hydrogen atom loss to the linear isomer of C3H(+). The appearance energy for this process was determined to be AE(0K)(c-C3H2; l-C3H(+)) = 13.67 ± 0.10 eV. The heat of formation of neutral and cationic C3H was derived from this value via a thermochemical cycle as Δ(f)H(0K)(C3H) = 725 ± 25 kJ mol(-1) and Δ(f)H(0K)(C3H(+)) = 1604 ± 19 kJ mol(-1), using a previously reported ionization energy of C3H. PMID:26975696

  19. Absolute experimental cross sections for the electron impact ionization of rubidium. Technical summary report

    The absolute cross sections for the double, triple, and quadruple ionization of Rb+ ions by electron impact have been measured from below their respective thresholds to approximately 3000 eV. This determination has been accomplished using a crossed beam facility in which monoenergetic beams of ions and electrons are caused to intersect at right angles in a well-defined collision volume. Multiply charged, product ions born as a result of the electron impact are deflected into their respective detectors by cascaded electrostatic analyzers. The multiply charged beam current component is measured by means of a vibrating reed electrometer operating in the rate-of-charge mode. The required singly charged rubidium ions are produced in a thermionic ion source and pass through a series of focusing, collimating and deflecting structures before entering the interaction region. A thermionically generated, rectangular electron beam intercepts the target ions in a spatially designated collision volume. Just prior to entering this interaction region the two beams can be made to pass through a movable slit scanner which determines their spatial profiles. The various charged particle currents, energies and beam current density distributions represent the experimental data from which the desired absolute cross sections have been determined. The results obtained with this technique are compared with available theoretical predictions of the appropriate cross sections

  20. Absolute absorption cross-section measurements of ozone in the wavelength region 238-335 nm and the temperature dependence

    Yoshino, K.; Freeman, D. E.; Esmond, J. R.; Parkinson, W. H.

    1988-01-01

    The absolute absorption cross-section of ozone has been experimentally determined at the temperatures 195, 228, and 295 K at several discrete wavelengths in the 238-335-nm region. The present results for ozone at 295 K are found to be in agreement with those of Hearn (1961). Absolute cross-section measurements of ozone at 195 K have confirmed previous (Freeman et al., 1984) relative cross-section measurements throughout the 240-335-nm region.

  1. Absolute measurements of the fast neutron capture cross section of 115In

    The 115In(n,#betta#)/sup 116m1/In cross section has been absolutely determined at neutron energies of 23, 265 and 964 keV. These energies are the median neutron energies of the three photo-neutron sources. Sb-Be, Na-CD2 and Na-Be, utilized in this work. The measurements are independent of other cross section data except for corrections amounting to less than 10%. Independent determinations of the reaction rate, detector efficiency, neutron source strength, scalar flux and target masses were performed. Reaction rates were determined by beta counting of the /sup 116ml/In decay activity using a 4π gas flow proportional counter. Detector efficiency was measured using 4π#betta#-#betta# coincidence counting techniques and the foil absorber method of efficiency extrapolation for correction of complex decay scheme effects. Photoneutron source emission rates were determined by intercomparison with the NBS-II calibrated 252Cf spontaneous fission neutron source in the University of Michigan Manganese Bath. The normalized scalar flux was calculated from the neutron emission angular distribution results of the Monte Carlo computer program used to model neutron and gamma transport in the source. Target mass determinations were made with a microbalance. Correction factors were applied for competing reaction activities, neutron scattering from experiment components, room-return induced activities, spectral effects in the manganese bath and the neutron energy spectra of the photoneutron sources. Experimental cross section results were normalized to the source median energy using energy spectra d cross section shape data. The absolute cross sections obtained for the 115In(n,#betta#)/sup 116ml/In reaction were 588 +- 12, 196 +- 4 and 200 +- 3 millibarns at 23, 265 and 964 keV, respectively

  2. Measurement of the absolute values of cross-sections in neutron photoproduction (1962)

    The absolute values of photoneutrons production cross-sections for the case of intermediate and heavy nuclei (lanthanium, cerium, tantalum, gold, lead and bismuth) are determined with an error of 15 per cent. The results obtained agree with theories in which the giant resonance is explained by the collective motion of the protons against the neutrons. The effect of the nuclear deformation on the shape of the giant resonance is seen in the case of Ta181, it will be possible to determine the quadrupole momenta of deformed nuclei with a good accuracy when we shall increase the statistics of measurements. (author)

  3. Absolute absorption cross-section and photolysis rate of I2

    J. M. C. Plane

    2004-05-01

    Full Text Available Following recent observations of molecular iodine (I2 in the coastal marine boundary layer (MBL (Saiz-Lopez and Plane, 2004, it has become important to determine the absolute absorption cross-section of I2 at reasonably high resolution, and also to evaluate the rate of photolysis of the molecule in the lower atmosphere. The absolute absorption cross-section (σ of gaseous I2 at room temperature and pressure (295 K, 760 Torr was therefore measured between 182 and 750 nm using a Fourier Transform spectrometer at a resolution of 4 cm−1 (0.1 nm at λ=500 nm. The maximum absorption cross-section in the visible region was observed at λ=533.0 nm to be σ=(4.84±0.60×10−18cm2 molecule−1. The spectrum is available as supplementary material accompanying this paper. The photo-dissociation rate constant (J of gaseous I2 was also measured directly in a solar simulator, yielding J(I2=0.12±0.03 s−1 for the lower troposphere. This agrees well with the value of 0.15±0.03 s−1 calculated using the measured absorption cross-section, terrestrial solar flux for clear sky conditions and assuming a photo-dissociation yield of unity. A two-stream radiation transfer model was then used to determine the variation in photolysis rate with solar zenith angle (SZA, from which an analytic expression is derived for use in atmospheric models. Photolysis appears to be the dominant loss process for I2 during daytime, and hence an important source of iodine atoms in the lower atmosphere.

  4. Absolute absorption cross-section and photolysis rate of I2

    A. Saiz-Lopez

    2004-01-01

    Full Text Available Following recent observations of molecular iodine (I2 in the coastal marine boundary layer (MBL (Saiz-Lopez and Plane, 2004, it has become important to determine the absolute absorption cross-section of I2 at reasonably high resolution, and also to evaluate the rate of photolysis of the molecule in the lower atmosphere. The absolute absorption cross-section (σ of gaseous I2 at room temperature and pressure (295K, 760Torr was therefore measured between 182 and 750nm using a Fourier Transform spectrometer at a resolution of 4cm-1 (0.1nm at λ=500nm. The maximum absorption cross-section in the visible region was observed at λ=533.0nm to be σ=(4.24±0.50x10-18cm2molecule-1. The spectrum is available as supplementary material accompanying this paper. The photo-dissociation rate constant (J of gaseous I2 was also measured directly in a solar simulator, yielding J(I2=0.12±0.03s-1 for the lower troposphere. This is in excellent agreement with the value of 0.12±0.015s-1 calculated using the measured absorption cross-section, terrestrial solar flux for clear sky conditions and assuming a photo-dissociation yield of unity. A two-stream radiation transfer model was then used to determine the variation in photolysis rate with solar zenith angle (SZA, from which an analytic expression is derived for use in atmospheric models. Photolysis appears to be the dominant loss process for I2 during daytime, and hence an important source of iodine atoms in the lower atmosphere.

  5. Absolute luminosity and proton-proton total cross section measurement for the ATLAS experiment at LHC

    The Large Hadron Collider (LHC) at CERN in Geneva will soon deliver collisions with an energy never reached in a particle accelerator. An energy in the center of mass of 10 and ultimately 14 TeV will allow to go beyond the borders of the physics known so far. ATLAS, the largest detector ever built, will hunt the Higgs boson and search for new physics beyond the Standard Model. Any physical process is described by a cross section that measures its probability to occur. The events resulting from a given process are registered by ATLAS. To determine their according cross section, one has to know the luminosity. For the ATLAS experiment, a relative measurement of the luminosity can be done using the response of several sub-detectors. However to calibrate these detectors, an absolute measurement has to be performed. The ALFA detector has been designed to measure the elastic scattering spectrum that will allow to determine the absolute luminosity and the proton-proton total cross section. This provides an accurate calibration tool at a percent level. These detectors, located 240 m away from the interaction point, are called roman pots, a mechanical system that allows to approach a scintillating fiber tracker a few millimeters to the beam center. The simulation of the measurement requires to use a charged particles transport program. This program has to be carefully chosen because the determination of the protons lost during their travel from the interaction point to the detector has a major impact on the acceptance computation. The systematical uncertainties affecting the luminosity and the total cross section measurements are also determined using the full simulation chain. The ALFA detector operates in a complex environment and consequently its design requires a great care. A large tests campaign has been performed on the front end electronics. The results and the corresponding data analysis have shown that all requirement where fulfilled. A test beam has been

  6. Absolute cross sections for helium single and double ionization in collisions with fast, highly charged projectiles

    Absolute cross sections for single and double ionization of helium have been measured for highly charged (24 ≤ q ≤ 92) and fast (3.6 MeV/u ≤ Ep ≤ 1 GeV/u) heavy-ion impact. The ratio of double to single ionization is found to deviate drastically from the prediction of first order theories: In the strong perturbation regime they fall below the scaling of Knudsen et al. (1984) even for 120 MeV/u U91+ impact, whereas a dramatic increase by a factor of 4 is observed in the regime of low perturbations for 0.5 and 1 GeV/u Kr36+ impact. At low reduced energies of Ep/q 2, as has been observed previously for the regime of strong coupling. (orig.)

  7. Absolute differential and total cross sections for neutral fragments from dissociative collisions of triatomic hydrogen like ions on He

    Yousif, F B [Facultad de Ciencias, Universidad Autonoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, CP 62210, Cuernavaca, Morelos (Mexico); Fuentes, B E [Facultad de Ciencias, Universidad Nacional Autonoma de Mexico, Apdo Postal 70542, 04510 Coyoacan, Mexico, DF (Mexico); MartInez, H [Instituto de Ciencias FIsicas, Universidad Nacional Autonoma de Mexico, Apdo Postal 48-3, 62210, Cuernavaca, Morelos (Mexico)

    2010-12-14

    Neutral fragment products from dissociative collisions of triatomic hydrogen like ions incident on He atoms were studied. Absolute differential and total cross sections are reported here in the energy range of 1.00-5.00 keV and scattering angles between -5.0{sup 0} and 5.0{sup 0}. The differential cross sections show decreasing behaviour with a slight structure around 2.0{sup 0}. The total cross sections for all triatomic molecular ions studied in this work are found to be comparable for the same velocity (E/M). The measured cross sections are between 0.7 x 10{sup -17} cm{sup 2} and 0.9 x 10{sup -16} cm{sup 2}. The present results for the neutral total cross section correlate very well with previously measured total ions cross section for H{sup +}{sub 3}, D{sup +}{sub 3} and HD{sup +}{sub 2} on He.

  8. Absolute differential and total cross sections for neutral fragments from dissociative collisions of triatomic hydrogen like ions on He

    Yousif, F. B.; Fuentes, B. E.; Martínez, H.

    2010-12-01

    Neutral fragment products from dissociative collisions of triatomic hydrogen like ions incident on He atoms were studied. Absolute differential and total cross sections are reported here in the energy range of 1.00-5.00 keV and scattering angles between -5.0° and 5.0°. The differential cross sections show decreasing behaviour with a slight structure around 2.0°. The total cross sections for all triatomic molecular ions studied in this work are found to be comparable for the same velocity (E/M). The measured cross sections are between 0.7 × 10-17 cm2 and 0.9 × 10-16 cm2. The present results for the neutral total cross section correlate very well with previously measured total ions cross section for H+3, D+3 and HD+2 on He.

  9. Absolute high-resolution Se+ photoionization cross-section measurements with Rydberg-series analysis

    Absolute single photoionization cross-section measurements for Se+ ions were performed at the Advanced Light Source (ALS) at Lawrence Berkeley National Laboratory using the photo-ion merged-beams technique. Measurements were made at a photon energy resolution of 5.5 meV from 17.75 to 21.85 eV spanning the 4s24p34S3/2o ground-state ionization threshold and the 2P3/2o,2P1/2o,2D5/2o, and2D3/2o metastable state thresholds. Extensive analysis of the complex resonant structure in this region identified numerous Rydberg series of resonances and obtained the Se2+ 4s24p23P2 and 4s24p21S0 state energies. In addition, particular attention was given to removing significant effects in the measurements due to a small percentage of higher-order undulator radiation.

  10. Absolute total cross sections for the scattering of 2--18-eV electrons by cesium atoms

    Absolute total cross sections for the scattering of electrons by cesium atoms between 2 and 18 eV have been measured using the atomic-recoil technique in the scattering-out mode. Our results are somewhat lower than those of Visconti, Slevin, and Rubin [Phys. Rev. A 3, 1310 (1971)] above 2 eV

  11. Absolute total cross sections for the scattering of 2--18-eV electrons by cesium atoms

    Jaduszliwer, B.; Chan, Y.C. (Electronics Technology Center, The Aerospace Corporation, P. O. Box 92957, Los Angeles, California 90009 (United States))

    1992-01-01

    Absolute total cross sections for the scattering of electrons by cesium atoms between 2 and 18 eV have been measured using the atomic-recoil technique in the scattering-out mode. Our results are somewhat lower than those of Visconti, Slevin, and Rubin (Phys. Rev. A 3, 1310 (1971)) above 2 eV.

  12. A semi-empirical formula for calculation of absolute cross sections for ionization and excitation of atoms by electrons

    Vriens, L.

    1965-01-01

    A simple analytical expression for the absolute ionization and (optically allowed) excitation cross sections, as a function of the electron energy, is “derived”. In this expression there are two parameters. The first one is proportional to the optical oscillator strength and the second one is depend

  13. Absolute cross sections for electronic excitation of pyrimidine by electron impact

    Regeta, Khrystyna; Allan, Michael [Department of Chemistry, University of Fribourg, Chemin du Musée 9, CH-1700 Fribourg (Switzerland); Mašín, Zdeněk [Max-Born Institute for Nonlinear Optics and Short Pulse Spectroscopy, Max-Born-Straße 2A, 12489 Berlin (Germany); Gorfinkiel, Jimena D. [Department of Physical Sciences, The Open University, Walton Hall, Milton Keynes MK7 6AA (United Kingdom)

    2016-01-14

    We measured differential cross sections for electron-impact electronic excitation of pyrimidine, both as a function of electron energy up to 18 eV, and of scattering angle up to 180°. The emphasis of the present work is on recording detailed excitation functions revealing resonances in the excitation process. The differential cross sections were summed to obtain integral cross sections. These are compared to results of R-matrix calculations, which successfully reproduce both the magnitude of the cross section and the major resonant features. Comparison of the experiment to the calculated contributions of different symmetries to the integral cross section permitted assignment of several features to specific core-excited resonances. Comparison of the resonant structure of pyrimidine with that of benzene revealed pronounced similarities and thus a dominant role of π–π{sup ∗} excited states and resonances. Electron energy loss spectra were measured as a preparation for the cross section measurements and vibrational structure was observed for some of the triplet states. A detailed analysis of the electronic excited states of pyrimidine is also presented.

  14. Absolute cross sections for projectile electron loss accompanied by target multiple ionization in collisions of He+ with noble gases

    Santos, A. C. F.; Sigaud, G. M.; Melo, W. S.; Sant'Anna, M. M.; Montenegro, E. C.

    2011-02-01

    Absolute cross sections for projectile electron loss accompanied by target multiple ionization in collisions between He+ ions and noble gases have been measured for energies between 1.0 and 3.5 MeV. The data have been compared with other absolute cross sections that exist in the literature for the same projectile, and with calculations for the screening mode (nucleus-electron interaction) using both perturbative (plane-wave Born approximation (PWBA)) and non-perturbative (extended classical-impulse free-collision model, sudden approximation and coupled-channel method) approaches, and for the antiscreening mode (electron-electron interaction) within the PWBA. The energy dependence of the average number of active electrons for the antiscreening has been described by means of a simple function, which is 'universal' for noble gases but projectile dependent. A previously developed method has been employed to obtain the number of active electrons for each target subshell in the high-velocity regime.

  15. Absolute cross sections for projectile electron loss accompanied by target multiple ionization in collisions of He+ with noble gases

    Absolute cross sections for projectile electron loss accompanied by target multiple ionization in collisions between He+ ions and noble gases have been measured for energies between 1.0 and 3.5 MeV. The data have been compared with other absolute cross sections that exist in the literature for the same projectile, and with calculations for the screening mode (nucleus-electron interaction) using both perturbative (plane-wave Born approximation (PWBA)) and non-perturbative (extended classical-impulse free-collision model, sudden approximation and coupled-channel method) approaches, and for the antiscreening mode (electron-electron interaction) within the PWBA. The energy dependence of the average number of active electrons for the antiscreening has been described by means of a simple function, which is 'universal' for noble gases but projectile dependent. A previously developed method has been employed to obtain the number of active electrons for each target subshell in the high-velocity regime.

  16. Absolute differential, elastic integrated and moment transfer cross sections for electron-OCS collisions at intermediate and high energies

    Shi De-Heng; Sun Jin-Feng; Zhu Zun-Lue; Ma Heng; Liu Yu-Fang; Yang Xiang-Dong

    2007-01-01

    A complex optical model potential modified by incorporating the concept of bonded atom, which takes into consideration the overlapping effect of electron clouds between atoms in a molecule, is firstly employed to calculate the absolute differential, elastic integrated and moment transfer cross sections for electron scattering by OCS over the incident energy range from 200 to 1000 eV using the additivity rule model at Hartree-Fock level. The calculated results are compared with those obtained by experiment and other theories wherever available, and good agreement is obtained over a wide energy range. It is shown that the additivity rule model together with the modified potential is completely suitable for calculating the absolute differential, elastic integrated and moment transfer cross sections of electron scattering by molecules such as OCS.

  17. Absolute total and partial cross sections for ionization of nucleobases by proton impact in the Bragg peak velocity range

    Tabet, J.; Eden, S.; Feil, S.; Abdoul-Carime, H.; Farizon, B.; Farizon, M.; Ouaskit, S.; Märk, T.D.

    2010-01-01

    We present experimental results for 80 keV proton impact ionization of nucleobases (adenine, cytosine, thymine and uracil) based on an event by event analysis of the different ions produced combined with an absolute target density determination. We are able to disentangle in detail the various proton ionization channels from mass analyzed product ion signals in coincidence with the charge-analyzed projectile. Thus, for the first time, cross sections and fragmentation patterns are compared for...

  18. Absolute elastic differential electron scattering cross sections in the intermediate energy region. III - SF6 and UF6

    Srivastava, S. K.; Trajmar, S.; Chutjian, A.; Williams, W.

    1976-01-01

    A recently developed technique has been used to measure the ratios of elastic differential electron scattering cross sections (DCS) for SF6 and UF6 to those of He at electron impact energies of 5, 10, 15, 20, 30, 40, 50, 60, and 75 eV and at scattering angles of 20 to 135 deg. In order to obtain the absolute values of DCS from these ratios, He DCS of McConkey and Preston have been employed in the 20 to 90 deg range. At angles in the 90 to 135 deg range the recently determined cross sections of Srivastava and Trajmar have been utilized. From these DCS, elastic integral and momentum transfer cross sections have been obtained.

  19. Fusion cross sections for 12C+128Te and the deduction of absolute average angular momenta

    Fusion cross sections have been measured for 12C+128Te from Ec.m.=40.4 to 56.6 MeV by direct detection and identification of evaporation residues using a time-of-flight technique. Average angular momenta for fusion are deduced from a sharp cutoff approximation at energies above the Coulomb barrier. These values of left-angle l right-angle and those already obtained from isomer ratio measurements are in very good agreement in the energy region where both methods should be valid

  20. Absolute measurement of 115In capture cross section at 144 and 565 keV

    The cross section of 115In(n, γ) 116mIn reaction are measured at 144 keV and 565 keV neutron energy by activation technique. The neutron fluence is measured by using H2 and CH4 filled proportional counter. A 4πβ counter is used to determine the β activities of 116mIn. The efficiency of the β detector is determined by 4πβ-γ coincidence techniques. A Monte-Carlo program is used to calculate the effect for neutron scattering from target, sample and holder. The results are compared with others

  1. Absolute cross sections for photoionization of Xeq+ ions (1 ⩽ q ⩽ 5) at the 3d ionization threshold

    The photon-ion merged-beams technique has been employed at the new Photon-Ion spectrometer at PETRA III for measuring multiple photoionization of Xeq+ (q = 1–5) ions. Total ionization cross sections have been obtained on an absolute scale for the dominant ionization reactions of the type hν + Xeq+ → Xer+ + (q − r)e− with product charge states q + 2 ⩽ r ⩽ q + 5. Prominent ionization features are observed in the photon-energy range 650–750 eV, which are associated with excitation or ionization of an inner-shell 3d electron. Single-configuration Dirac–Fock calculations agree quantitatively with the experimental cross sections for non-resonant photoabsorption, but fail to reproduce all details of the measured ionization resonance structures. (paper)

  2. Measurement of the absolute νμ-CCQE cross section at the SciBooNE experiment

    This thesis presents the measurement of the charged current quasi-elastic (CCQE) neutrino-nucleon cross section at neutrino energies around 1 GeV. This measurement has two main physical motivations. On one hand, the neutrino-nucleon interactions at few GeV is a region where existing old data are sparse and with low statistics. The current measurement populates low energy regions with higher statistics and precision than previous experiments. On the other hand, the CCQE interaction is the most useful interaction in neutrino oscillation experiments. The CCQE channel is used to measure the initial and final neutrino fluxes in order to determine the neutrino fraction that disappeared. The neutrino oscillation experiments work at low neutrino energies, so precise measurement of CCQE interactions are essential for flux measurements. The main goal of this thesis is to measure the CCQE absolute neutrino cross section from the SciBooNE data. The SciBar Booster Neutrino Experiment (SciBooNE) is a neutrino and anti-neutrino scattering off experiment. The neutrino energy spectrum works at energies around 1 GeV. SciBooNE was running from June 8th 2007 to August 18th 2008. In that period, the experiment collected a total of 2.65 x 1020 protons on target (POT). This thesis has used full data collection in neutrino mode 0.99 x 1020 POT. A CCQE selection cut has been performed, achieving around 70% pure CCQE sample. A fit method has been exclusively developed to determine the absolute CCQE cross section, presenting results in a neutrino energy range from 0.2 to 2 GeV. The results are compatible with the NEUT predictions. The SciBooNE measurement has been compared with both Carbon (MiniBoonE) and deuterium (ANL and BNL) target experiments, showing a good agreement in both cases.

  3. Measurement of the absolute vμ-CCQE cross section at the SciBooNE experiment

    Aunion, Jose Luis Alcaraz [Autonomous Univ. of Barcelona (Spain)

    2010-07-01

    This thesis presents the measurement of the charged current quasi-elastic (CCQE) neutrino-nucleon cross section at neutrino energies around 1 GeV. This measurement has two main physical motivations. On one hand, the neutrino-nucleon interactions at few GeV is a region where existing old data are sparse and with low statistics. The current measurement populates low energy regions with higher statistics and precision than previous experiments. On the other hand, the CCQE interaction is the most useful interaction in neutrino oscillation experiments. The CCQE channel is used to measure the initial and final neutrino fluxes in order to determine the neutrino fraction that disappeared. The neutrino oscillation experiments work at low neutrino energies, so precise measurement of CCQE interactions are essential for flux measurements. The main goal of this thesis is to measure the CCQE absolute neutrino cross section from the SciBooNE data. The SciBar Booster Neutrino Experiment (SciBooNE) is a neutrino and anti-neutrino scattering off experiment. The neutrino energy spectrum works at energies around 1 GeV. SciBooNE was running from June 8th 2007 to August 18th 2008. In that period, the experiment collected a total of 2.65 x 1020 protons on target (POT). This thesis has used full data collection in neutrino mode 0.99 x 1020 POT. A CCQE selection cut has been performed, achieving around 70% pure CCQE sample. A fit method has been exclusively developed to determine the absolute CCQE cross section, presenting results in a neutrino energy range from 0.2 to 2 GeV. The results are compatible with the NEUT predictions. The SciBooNE measurement has been compared with both Carbon (MiniBoonE) and deuterium (ANL and BNL) target experiments, showing a good agreement in both cases.

  4. ABSOLUTE CROSS SECTIONS FOR ONE-PHONON RAMAN SCATTERING FROM SEVERAL INSULATORS AND SEMICONDUCTORS

    Calleja, J; H. Vogt; Cardona, M.

    1981-01-01

    Using the Brillouin-Raman method we have measured the Raman scattering efficiencies for the Ɖ phonons of GaP, ZnTe, ZnSe, ZnS as well as CaF2, SrF2, BaF2. The results for the zincblende-type materials allow us to calibrate in absolute scattering efficiency units the resonance Raman curves found in the literature. From the calibrated resonances the deformation potential do is deduced on the basis of a parabolic band model. For the fluorides the scattering efficiency is attributed to the adge e...

  5. Method for the absolute measurement of the total pair production cross section near threshold using a source of variable energy

    A method for the absolute measurement of the total pair production cross section in germanium near threshold is presented, using a source of photons of variable energy. This source is constituted by Compton scattered photons in lead. The incident beam is produced by the collimation of an intense source of 60Co (8 Ci). By continuous variation of the scattering angle one obtains a continuous variation of the energy of the photons impinging on the target. Measurements are presented for energies ranging between 1240 and 1263 keV and between 1180 and 1207 keV by steps of 2.8 keV. The results are compared with the predictions of different theories (Born approximation, exact calculation without and with screening effects). (Auth.)

  6. Determination of the absolute two-photon ionization cross section of He by an XUV free electron laser

    The resonant and non-resonant two-photon single ionization processes of He were investigated using intense free electron laser light in the extreme ultraviolet (XUV) region (53.4-61.4 nm) covering the 1s-2p and 1s-3p resonant transitions of He. On the basis of the dependences of the yield of He+ on the XUV light-field intensity at 53.4, 58.4, 56.0 and 61.4 nm, the absolute values of the two-photon ionization cross sections of He at the four different wavelengths and their dependence on the light-field intensity were determined for the first time. (fast track communication)

  7. Determination of fission cross-section and absolute fission yields using track-cum gamma-ray spectrometric technique

    The fission cross-section of 233Pa(2nth, f) using fission track technique has been determined for the first time using thermal neutron flux of the reactor APSARA. This is important from the point of view of advance heavy water reactor (AHWR), which is to be described. On the other hand, the yields of fission products in the fast neutron induced fission of minor actinides are important from the point accelerator driven sub critical system (ADSS). In view of that, absolute yields of fission products in the fast neutron induced fission of 238U, 237Np, 238,240Pu, 243Am and 244Cm have been determined using the fission track-cum gamma-ray spectrometric technique. The total number of fission occurring in the target was estimated by track technique, whereas the activities of the fission products have been determined using gamma-ray spectrometric technique. Detailed procedure and its importance are to be discussed. (author)

  8. Absolute differential and total cross sections for charge transfer of O{sup +} ground and mixed states ions in N{sub 2}

    Martinez, H [Centro de Ciencias Fisicas, Universidad Nacional Autonoma de Mexico, Cuernavaca, Morelos, PO Box 48-3, 62251, Cuernavaca, Morelos (Mexico); Hernandez, C L [Centro de Ciencias Fisicas, Universidad Nacional Autonoma de Mexico, Cuernavaca, Morelos, PO Box 48-3, 62251, Cuernavaca, Morelos (Mexico); Yousif, F B [Facultad de Ciencias, Universidad Autonoma del Estado de Morelos, Avenida Universidad 1001, 62210, Cuernavaca, Morelos (Mexico)

    2006-06-14

    We report measurements of the total and absolute differential cross sections for charge transfer of ground- and excited-states O{sup +} ions at 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5 and 5 keV in collisions with N{sub 2} at scattering angles -5.2{sup 0} {<=} {theta} {<=} +5.2{sup 0} in the laboratory frame. Total cross sections for ground- and mixed state ions are compared with previous measurements. The behaviour of the absolute differential cross sections display an expected decreasing behaviour with increasing angle. The mixed state ions cross sections are considerably higher than those measured for the ground state ions.

  9. Absolute cross sections for photoionization of Xe$^{q+}$ ions (1 $\\le$ q $\\le$ 5) at the 3d ionization threshold

    Schippers, S; Buhr, T; Borovik, A; Hellhund, J; Holste, K; Huber, K; Schäfer, H -J; Schury, D; Klumpp, S; Mertens, K; Martins, M; Flesch, R; Ulrich, G; Rühl, E; Jahnke, T; Lower, J; Metz, D; Schmidt, L P H; Schöffler, M; Williams, J B; Glaser, L; Scholz, F; Seltmann, J; Viefhaus, J; Dorn, A; Wolf, A; Ullrich, J; Müller, A

    2014-01-01

    The photon-ion merged-beams technique has been employed at the new Photon-Ion spectrometer at PETRA III (PIPE) for measuring multiple photoionization of Xe$^{q+}$ (q=1-5) ions. Total ionization cross sections have been obtained on an absolute scale for the dominant ionization reactions of the type h\

  10. Measurement of Absolute Atomic Collision Cross Section with Helium Using 87Rb Atoms Confined in Magneto-Optic and Magnetic Traps

    WANG Ji-Cheng; ZHOU Ke-Ya; WANG Yue-Yuan; LIAO Qing-Hong; LIU Shu-Tian

    2011-01-01

    We present the measurements and calculations of the absolute total collision cross sections for a room-temperature gas of helium using 87 Rb atoms confined in either a magneto-optic or a magnetic quadrupole trap. The loss rates from the magneto-optic trap and the pure magnetic trap are compared and show significant differences. The collision cross sections as a function of trap depth for helium gas are obtained. These findings are significant for extracting the information about the different cross sections when the trap depth is changed.%@@ We present the measurements and calculations of the absolute total collision cross sections for a room-temperature gas of helium using 87Rb atoms confined in either a magneto-optic or a magnetic quadrupole trap.The loss rates from the magneto-optic trap and the pure magnetic trap are compared and show significant differences.The collision cross sections as a function of trap depth for helium gas are obtained.These findings are significant for extracting the information about the different cross sections when the trap depth is changed.

  11. Absolute photoionization cross section from the 6s6p {sup 1,3}P{sub 1} excited states of barium

    Kalyar, M A; Rafiq, M; Sami-ul-Haq; Baig, M A [Atomic and Molecular Physics Laboratory, Department of Physics, Quaid-i-Azam University, Islamabad 45320 (Pakistan)

    2007-06-28

    We present photoionization cross section measurements from the 6s6p {sup 1}P{sub 1} and {sup 3}P{sub 1} excited states of barium at and above the first ionization threshold. The experiments have been performed using a thermionic diode ion detector in a space charge limited mode in conjunction with a Nd:YAG laser system and the saturation technique to determine the photoionization cross sections. The absolute values of the photoionization cross section from the 6s6p {sup 1}P{sub 1} and {sup 3}P{sub 1} excited states at the first ionization threshold have been determined as 90 {+-} 14 Mb and 102 {+-} 15 Mb, respectively. The measured values of the photoionization cross section from the 6s6p {sup 1}P{sub 1} excited state are compared with available experimental and theoretical work, while the absolute photoionization cross sections from the 6s6p {sup 3}P{sub 1} excited state are reported for the first time.

  12. Absolute L-shell ionization and X-ray production cross sections of Lead and Thorium by 16-45 keV electron impact

    Rahangdale, H V; De, S; Santos, J P; Mitra, D; Guerra, M; Saha, S

    2015-01-01

    The absolute L subshell specific electron impact ionization cross sections near the ionization threshold (16 < E < 45 keV) of Lead and Thorium are obtained from the measured L X-ray production cross sections. Monte Carlo simulation is done to account for the effect of the backscattered electrons and the final experimental results are compared with calculations performed using distorted wave Born approximation and the modified relativistic binary encounter Bethe model.The sensitivity of the results on the atomic parameters is explored. Observed agreements and discrepancies between the experimental results and theoretical estimates, and their dependence on the specific atomic parameters are reported.

  13. Absolute cascade-free cross-sections for the 2S to 2P transition in Zn(+) using electron-energy-loss and merged-beams methods

    Smith, Steven J.; Man, K.-F.; Chutjian, A.; Mawhorter, R. J.; Williams, I. D.

    1991-01-01

    Absolute cascade-free excitation cross-sections in an ion have been measured for the resonance 2S to 2P transition in Zn(+) using electron-energy-loss and merged electron-ion beams methods. Measurements were carried out at electron energies of below threshold to 6 times threshold. Comparisons are made with 2-, 5-, and 15-state close-coupling and distorted-wave theories. There is good agreement between experiment and the 15-state close-coupling cross-sections over the energy range of the calculations.

  14. Absolute photo-absorption cross sections and electronic state spectroscopy of selected fluorinated hydrocarbons relevant to the plasma processing industry

    Photo-absorption cross sections have been measured for methyl iodide, CF3I (310 nm>λ>110 nm) and dichlorodifluoromethane, CCl2F2 (225 nm>λ>110 nm) using synchrotron radiation. Electron energy loss spectroscopy was also used to probe the electronic and vibronic excitation of CF3I. Electronic states have been assigned to each of the observed absorption bands incorporating both valence and Rydberg transitions. The measured VUV cross sections are used to derive the photolysis rates in the terrestrial atmosphere and hence determine the potential importance of each gas in global warming and ozone depletion

  15. Experimental and theoretical determinations of the absolute ionization cross section of alkali metals by electron impact in the energy range from 100 to 2000 eV

    The absolute electron impact ionization cross sections for the alkali metals in the energy range between 100 eV and 2000 eV were measured by the non-modulated crossed beam technique. The neutral beam of alkali atoms is produced by a Knudsen cell and crossed at right angles with the electron beam. The ions formed are collected on a plate and their intensity determined with a D.C. amplifier. The neutral beam is condensed on a cold trap cooled with liquid nitrogen, this temperature being much lower than that required to obtain total condensation. The amount of metal deposited is measured by the isotopic dilution technique and by atomic absorption, and the density of the atoms in the neutral beam is calculated. The total absolute ionization cross sections can then be determined. All possible errors have been carefully analyzed and their magnitudes estimated. The absolute ionization cross section for Li at an energy of 500 eV is: QLi = 0,358 x 10-16 cm2. This value is half of that obtained by Mac Farland and Kinney. The partial ionization cross sections for the singly and multiply charged ions is determined with a mass spectrometer attached to this apparatus. For the singly charged ions, the variation of the cross section with the energy of the ionizing electrons is in agreement with the optically allowed transition law: Q = A log BE/E. From the variation of Q with E, the squared matrix elements of the transition moment (|Mi|)2 are determined for all the elements studied. New calculations of the ionization cross section of Li and Na were performed in the framework of the Born-Bethe approximation as modified by Gaudin and Botter to take into account collisions with large momentum variation of the incident electron. Hartree-Fock type wave functions for the ground state atom (tabulated by Clementi) were used. The calculated values are in good agreement with our experimental results and with the former theoretical results calculated by various methods. This work also

  16. Calculated absolute electron-impact ionization cross sections for AlO, Al2O, and WOx (x=1-3)

    Deutsch, H.; Hilpert, K.; Becker, K.; Probst, M.; Märk, T. D.

    2001-02-01

    The Deutsch-Märk (DM) formalism was used to calculate absolute electron impact ionization cross sections for the metal oxide molecules AlO, Al2O, and WOx (x=1-3). These molecules are important in materials research and they are also found as impurities in the plasma edge of fusion reactors. We also calculated ionization cross sections for the atoms Al and W. In the case of the Al-containing compounds, we find an unexpected ordering of the maximum ionization cross section σmax, σmax(AlO)<σmax(Al)<σmax(Al2O). Furthermore, the maximum ionization cross section for all four W-containing compounds W, WO, WO2, and WO3 is roughly the same with σmax values in the range of 6-7×10-16 cm2. These findings can be understood by analyzing the DM calculations for these species as well as on the basis of semi-classical arguments. In addition, calculations using the semi-empirical modified additivity rule confirm the trends in the cross section ordering for, respectively, the Al-containing and W-containing compounds that was predicted by the DM formalism, at least qualitatively.

  17. High-resolution absolute photoabsorption cross sections for Ne in the 1s2s and 1s2p resonant double excitation

    Kato, Masahiro [National Institute of Advanced Industrial Science and Technology (AIST), NMIJ, Tsukuba, Ibaraki 305-8568 (Japan); Morishita, Yuichiro [National Institute of Advanced Industrial Science and Technology (AIST), NMIJ, Tsukuba, Ibaraki 305-8568 (Japan); Koike, Fumihiro [School of Medicine, Kitasato University, Kitasato, Sagamihara 228-8555 (Japan); Fritzsche, Stephan [Physics Department, Kassel University, Heinrich-Plett-strasse 40, D-34132 Kassel (Germany); Yamaoka, Hitoshi [RIKEN, Harima Institute, Sayo, Hyogo 679-5148 (Japan); Tamenori, Yusuke [Japan Synchrotron Radiation Research Institute, Sayo, Hyogo 679-5198, Japan (Japan); Okada, Kazumasa [Department of Chemistry, Hiroshima University, Higashi-Hiroshima 739-8526 (Japan); Matsudo, Takahisa [Department of Chemistry, Hiroshima University, Higashi-Hiroshima 739-8526 (Japan); Gejo, Tatsuo [University of Hyogo, Kamigori, Hyogo 678-1297 (Japan); Suzuki, Isao H [National Institute of Advanced Industrial Science and Technology (AIST), NMIJ, Tsukuba, Ibaraki 305-8568 (Japan); Saito, Norio [National Institute of Advanced Industrial Science and Technology (AIST), NMIJ, Tsukuba, Ibaraki 305-8568 (Japan)

    2006-04-28

    The high-resolution absolute photoabsorption cross sections with an absolute photon energy scale for Ne 1s2p/1s2s double excitation in the energy region of 900-940 eV have been measured using a multi-electrode ionization chamber and monochromatized synchrotron radiation. The Ne [1s2p]({sup 3,1}P)nln'l' doubly excited states observed in the energy range of 900-920 eV are analysed with the aid of theoretical calculations based on the multiconfiguration Dirac-Fock method. The second strongest peak in this energy region is assigned to be [1s2p]({sup 3}P)3p4p.

  18. Absolute fragmentation cross sections in atom-molecule collisions: Scaling laws for non-statistical fragmentation of polycyclic aromatic hydrocarbon molecules

    We present scaling laws for absolute cross sections for non-statistical fragmentation in collisions between Polycyclic Aromatic Hydrocarbons (PAH/PAH+) and hydrogen or helium atoms with kinetic energies ranging from 50 eV to 10 keV. Further, we calculate the total fragmentation cross sections (including statistical fragmentation) for 110 eV PAH/PAH+ + He collisions, and show that they compare well with experimental results. We demonstrate that non-statistical fragmentation becomes dominant for large PAHs and that it yields highly reactive fragments forming strong covalent bonds with atoms (H and N) and molecules (C6H5). Thus nonstatistical fragmentation may be an effective initial step in the formation of, e.g., Polycyclic Aromatic Nitrogen Heterocycles (PANHs). This relates to recent discussions on the evolution of PAHNs in space and the reactivities of defect graphene structures

  19. Absolute fragmentation cross sections in atom-molecule collisions: Scaling laws for non-statistical fragmentation of polycyclic aromatic hydrocarbon molecules

    Chen, T.; Gatchell, M.; Stockett, M. H.; Alexander, J. D.; Schmidt, H. T.; Cederquist, H.; Zettergren, H., E-mail: henning@fysik.su.se [Department of Physics, Stockholm University, S-106 91 Stockholm (Sweden); Zhang, Y. [Department of Mathematics, Faculty of Physics, M. V. Lomonosov Moscow State University, Leninskie Gory, 119991 Moscow (Russian Federation); Rousseau, P.; Maclot, S.; Delaunay, R.; Adoui, L. [CIMAP, UMR 6252, CEA/CNRS/ENSICAEN/Université de Caen Basse-Normandie, bd Henri Becquerel, BP 5133, F-14070 Caen Cedex 05 (France); Université de Caen Basse-Normandie, Esplanade de la Paix, F-14032 Caen (France); Domaracka, A.; Huber, B. A. [CIMAP, UMR 6252, CEA/CNRS/ENSICAEN/Université de Caen Basse-Normandie, bd Henri Becquerel, BP 5133, F-14070 Caen Cedex 05 (France); Schlathölter, T. [Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747AG Groningen (Netherlands)

    2014-06-14

    We present scaling laws for absolute cross sections for non-statistical fragmentation in collisions between Polycyclic Aromatic Hydrocarbons (PAH/PAH{sup +}) and hydrogen or helium atoms with kinetic energies ranging from 50 eV to 10 keV. Further, we calculate the total fragmentation cross sections (including statistical fragmentation) for 110 eV PAH/PAH{sup +} + He collisions, and show that they compare well with experimental results. We demonstrate that non-statistical fragmentation becomes dominant for large PAHs and that it yields highly reactive fragments forming strong covalent bonds with atoms (H and N) and molecules (C{sub 6}H{sub 5}). Thus nonstatistical fragmentation may be an effective initial step in the formation of, e.g., Polycyclic Aromatic Nitrogen Heterocycles (PANHs). This relates to recent discussions on the evolution of PAHNs in space and the reactivities of defect graphene structures.

  20. Measurement and Calculation of Absolute Single and Multiple Charge Exchange Cross Sections for Fe^(q+) Ions Impacting H_2O

    Simcic, J.; Schultz, D R; Mawhorter, R.J.; greenwood, jason; Winstead, C.; McKoy, B. V.; S. J. Smith; Chutjian, A.

    2010-01-01

    Charge exchange (CE) plays a fundamental role in the collisions of solar- and stellar-wind ions with lunar and planetary exospheres, comets, and circumstellar clouds. Reported herein are absolute cross sections for single, double, triple, and quadruple CE of Fe^(q+) (q = 5-13) ions with H_2O at a collision energy of 7q keV. One measured value of the pentuple CE is also given for Fe^(9+) ions. An electron cyclotron resonance ion source is used to provide currents of the highly charged Fe ions....

  1. Velocity dependence of the absolute total ionization cross section for collisions of argon atoms with singlet and triplet metastable helium atoms

    Measurements of the velocity dependence of the absolute total ionization cross section of argon atoms upon impact with selected metastable states of helium atoms are reported. A low voltage dc discharge was used as the source of the excited atoms, and a rotating slotted disk selector was used for velocity selection of the excited atoms. Selection of the electronic spin state of the excited atoms was accomplished by irradiation of the excited atoms with radiation from a helium discharge lamp. Ionization of the argon target atoms by metastable helium atoms was studied by the gas cell technique in which all ionization products were collected. The ionization measurements were of sufficient precision to allow simultaneous determination of the cross section and the second electron ejection efficiency for each metastable state of helium. The secondary electron ejection efficiency of triplet metastable helium atoms on an electroplated gold surface was determined to be 0.440 +- 0.018 in the presence of argon gas. The secondary electron ejection efficiency of singlet metastable atoms was determined to be 0.582 +- 0.024 under similar conditions. The total ionization cross section for the He(23S)-Ar system was found to increase almost linearly from 8.8 to 21.95 A2 with an increase of relative velocity from 1162 to 2787 m/sec. After an initial increase of the cross section from 9.8 A2 to 26.2 A2 with an increase in relative velocity from 989 m/sec to 2058 m/sec, the velocity dependence of the cross section of the He(21S)-Ar system entered a saturation region in which the cross section changed very little with relative velocity. The collision energy dependence of the He(23S)-Ar system was also used to determine the values of adjustable parameters present in a current theory based on the potential curve model for Penning and associative Penning ionization

  2. Absolute measurement of excitation cross sections for the 2P-states of atomic hydrogen in charge exchange collisions of protons in argon and nitrogen

    Cross sections for the excitation of the 2P-states of atomic hydrogen in charge exchange collisions of protons in argon and nitrogen were measured by observing the Lyman-α radiation emitted in transitions from this state. For the measurement of the target gas pressure, a modified ionization gauge was developed, which eliminated distortions of pressure measurements due to charging effects on the glass envelope. Because of the lack of light standards in the vacuum ultraviolet region of the spectrum, the major problem of the measurements was the absolute calibration of the L/sub alpha/-photometer. This calibration was obtained from coincidence measurements of H/sub alpha/- and L/sub alpha/-photons in the presence of an electric field. The measurements were corrected for the effect of Doppler shift on photometer sensitivity. For the evaluation of the coincidence measurements, the branching ratio of H/sub alpha/-transitions to the 2S-state and the polarization of Lyman-α radiation, emitted in cascade processes, were needed. These quantities were obtained from quantum mechanical calculations of a hydrogen atom in a weak electric field. Cross sections for the 2P-states were obtained in the energy range from 0.5 to 30 keV. The 2P-cross sections in argon had maxima of 2.23 x 10-17 and 2.68 x 10-17 cm2 at 3.35 and 11.86 keV, respectively, and in N2 maxima of 2.17 x 10-17 and 2.10 x 10-17 cm2 were observed at 3.39 and 11.3 keV, respectively. The energy dependence of the measured cross sections is in agreement with that of published measurements. Differences in the absolute values are discussed

  3. Fast-electron ejection from C, Ni, Ag and Au foils by 36 Ar 18 + (95 MeV/u): Measurements of absolute cross-sections

    de Filippo, E.; Lanzanó, G.; Rothard, H.; Volant, C.; Aiello, S.; Anzalone, A.; Arena, N.; Geraci, M.; Giustolisi, F.; Pagano, A.

    2004-07-01

    Doubly differential electron velocity spectra induced by 36Ar18 + (95 MeV/ u) from thin target foils (C, Ni, Ag, Au) were measured at GANIL (Caen, France) by means of the ARGOS multidetector and the time-of-flight technique. The main features observed in the forward spectra are convoy electrons, binary-encounter electrons, and (for the Au target only) a high-velocity tail which we attribute to a “Fermi shuttle” acceleration mechanism. Backward spectra do not show distinct structures. The spectra allow us to determine absolute singly differential cross-sections as a function of the target material and the emission angle. The convoy electron yield increases with the target atomic number, but for C their yield is so small that our experiment is not able to detect them. Absolute doubly differential cross-sections for binary-encounter electron ejection from C targets are well described by a transport theory which is based on the relativistic electron impact approximation (EIA) for electron production and which accounts for angular deflection, energy loss and energy straggling of the transmitted electrons.

  4. Measurement of Absolute Cross-Sections of Fission Induced by 156-MeV Protons, Using Mica as a Fission Fragment Detector

    The fission of elements of medium Z induced by 156-MeV protons is difficult to demonstrate, owing to the particularly small cross-section of the reaction. The detection of fission fragments by means of sheets of mica seemed to be a technique well suited to this type of experiment. In the sheets of synthetic mica that we used it was only the fission fragments that left microscopically identifiable traces. Moreover, these samples contain very few impurities likely to undergo fission, so practically no parasitic traces are observed. The targets consisted of metals of not less than 99.999% purity. We determined the absolute cross-sections.of fission induced by 156-MeV protons in the case of lanthanum (5 μb) and praseodymium (6 μb), and estimated those of cadmium, indium, tin and antimony (≤ 0.1 μb). The sheets of mica were placed on each side of the metal sheet. The kinetics of the reaction explain why more traces were found on the mica sheets placed on the from face. As thick targets were used to take account of self-absorption, we determined (in the case of uranium and gold) the ratio of yields between a thin target and a thick target, and then extrapolated our results to the other elements. We made checks by comparing the absolute cross-sections for fission (induced by 156-MeV protons) in uranium, bismuth, gold and tantalum, as obtained by this method, with those obtained by counters at this energy. The observed agreement was very good. (author)

  5. Absolute Doubly Differential Cross Sections for Ejection of Electrons in - and Five-Body Collisions of 20 TO 114-KEV Protons on Atomic and Molecular Hydrogen.

    Kerby, George W., III

    A crossed-beam experiment was performed to detect ejected electrons from ground-state atomic and molecular hydrogen after collisions with 20- to 114-keV protons. Because a pure atomic hydrogen target is not readily attainable, a method has been devised which yields atomic to molecular hydrogen doubly differential cross section (DDCS) ratios. Since the molecular hydrogen DDCS's were independently measured, the atomic cross sections could be directly calculated. Absolute cross sections differential in electron energy and angle were measured for electron energies ranging from 1.5 to 400 eV and scattering angles from 15^circ to 165^circ with respect to the fast beam. Electrons and ions were energy analyzed by an electrostatic hemispherical analyzer, which has an energy resolution of 5% and is rotatable in the scattering plane about the collision center. Atomic hydrogen is produced by a radio-frequency discharge of the type devised by J. Slevin. Hydrogen gas effuses from a 1 mm diameter nozzle in a nearly cos theta distribution. The projectile beam intersects the thermal gas targets 4 mm below the tip of the nozzle. Dissociation fractions of 74% and atomic hydrogen densities of 7 times 10 ^{11} cm^ {-3} were typical. The fraction of dissociated hydrogen was measured by detecting the reduced 9-eV ion signal from the molecular target when the RF is on. This characteristic ion signal originates from the coulomb breakup of the molecule and dissociative channels of excited H _sp{2}{+}. An auxiliary experiment was performed to determine the target densities with the aid of a low-resolution magnetic mass spectrometer after the slow recoil ions were extracted from the collision volume by a weak electric field. Comparisons of the atomic cross sections are made with theories such as the classical-trajectory Monte Carlo (CTMC) method, the plane-wave Born approximation (PWBA) and the continuum-distorted-wave eikonal-initial-state (CDW-EIS) approximation.

  6. A novel double-focusing time-of-flight mass spectrometer for absolute recoil ion cross sections measurements.

    Sigaud, L; de Jesus, V L B; Ferreira, Natalia; Montenegro, E C

    2016-08-01

    In this work, the inclusion of an Einzel-like lens inside the time-of-flight drift tube of a standard mass spectrometer coupled to a gas cell-to study ionization of atoms and molecules by electron impact-is described. Both this lens and a conical collimator are responsible for further focalization of the ions and charged molecular fragments inside the spectrometer, allowing a much better resolution at the time-of-flight spectra, leading to a separation of a single mass-to-charge unit up to 100 a.m.u. The procedure to obtain the overall absolute efficiency of the spectrometer and micro-channel plate detector is also discussed. PMID:27587105

  7. Retraction notice to "Measurements of total absolute collision cross section of ultracold Rb atom using magneto-optic and pure magnetic traps" [Chinese Optics Letters 9, 060201 (2011)

    Jicheng Wang; Yueyuan Wang; Yueke Wang; Guangyu Fang; Shutian Liu

    2011-01-01

    This article "Measurements of total absolute collision cross section of ultracold Rb atom using magneto-optic and pure magnetic traps",which was published on Chinese Optics Letters (9,060201 (2011)) has been retracted at the request of the authors.Reason:The first author,Jicheng Wang,participated in a related research in Professor Kirk Madison's group in the Department of Physics & Astronomy at the University of British Columbia,Canada from September 2008 to February 2010.Some of the experimental data have not been authorized for publication,even though they have been consented to be used by Jicheng Wang in his own research.The authors apologize to Professor K.Madison for misunderstanding,and to Chinese Optics Letters and the readers of Chinese Optics Letters for any inconvenience this mistake may have caused.

  8. Assessment of experimental d-PIGE γ-ray production cross sections for 12C, 14N and 16O and comparison with absolute thick target yields

    Csedreki, L.; Halász, Z.; Kiss, Á. Z.

    2016-08-01

    Measured differential cross sections for deuteron induced γ-ray emission from the reactions 12C(d,pγ)13C, (Eγ = 3089 keV), 14N(d,pγ)15N (Eγ = 8310 keV) and 16O(d,pγ)17O (Eγ = 871 keV) available in the literature were assessed. In order to cross check the assessed γ-ray production cross section data, thick target γ-yields calculated from the differential cross sections were compared with available measured thick target yields. Recommended differential cross section data for each reaction were deduced for particle induced γ-ray emission (PIGE) applications.

  9. Measurement of Absolute Hadronic Branching Fractions of D Mesons and e^+ e^- --> D D-bar Cross Sections at the psi(3770)

    Dobbs, S; Seth, K K; Tomaradze, A G; Ecklund, K M; Love, W; Savinov, V; López, A; Mehrabyan, S; Méndez, H; Ramírez, J; Huang, G S; Miller, D H; Pavlunin, V; Sanghi, B; Shipsey, I P J; Xin, B; Adams, G S; Anderson, M; Cummings, J P; Danko, I; Hu, D; Moziak, B; Napolitano, J; He, Q; Insler, J; Muramatsu, H; Park, C S; Thorndike, E H; Yang, F; Artuso, M; Blusk, S; Khalil, S; Li, J; Menaa, N; Mountain, R; Nisar, S; Randrianarivony, K; Sia, R; Skwarnicki, T; Stone, S; Wang, J C; Bonvicini, G; Cinabro, D; Dubrovin, M; Lincoln, A; Asner, D M; Edwards, K W; Naik, P; Briere, R A; Ferguson, T; Tatishvili, G; Vogel, H; Watkins, M E; Rosner, J L; Adam, N E; Alexander, J P; Berkelman, K; Cassel, D G; Duboscq, J E; Ehrlich, R; Fields, L; Gibbons, L; Gray, R; Gray, S W; Hartill, D L; Heltsley, B K; Hertz, D; Jones, C D; Kandaswamy, J; Kreinick, D L; Kuznetsov, V E; Mahlke-Krüger, H; Mohapatra, D; Onyisi, P U E; Patterson, J R; Peterson, D; Pivarski, J; Riley, D; Ryd, A; Sadoff, A J; Schwarthoff, H; Shi, X; Stroiney, S; Sun, W M; Wilksen, T; Athar, S B; Patel, R; Yelton, J; Rubin, P; Cawlfield, C; Eisenstein, B I; Karliner, I; Kim, D; Lowrey, N; Selen, M; White, E J; Wiss, J; Mitchell, R E; Shepherd, M R; Besson, D; Pedlar, T K; Cronin-Hennessy, D; Gao, K Y; Hietala, J; Kubota, Y; Klein, T; Lang, B W; Poling, R; Scott, A W; Smith, A; Zweber, P

    2007-01-01

    Using 281 /pb of e^+ e^- collisions recorded at the psi(3770)resonance with the CLEO-c detector at CESR, we determine absolute hadronic branching fractions of charged and neutral D mesons using a double tag technique. Among measurements for three D0 and six D^+ modes, we obtain reference branching fractions B(D0 --> K^-pi^+) = (3.891 +- 0.035 +- 0.059 +- 0.035)% and B(D^+ --> K^-pi^+pi^+) = (9.15 +- 0.10 +- 0.16 +- 0.07)%, where the first uncertainty is statistical, the second is all systematic errors other than final state radiation (FSR), and the third is the systematic uncertainty due to FSR. We include FSR in these branching fractions by allowing for additional unobserved photons in the final state. Using an independent determination of the integrated luminosity, we also extract the cross sections sigma(e+e- --> D0 D0-bar) = (3.66+- 0.03 +- 0.06) nb and sigma(e+e- --> D^+ D^-) = (2.91+- 0.03 +- 0.05) nb at a center of mass energy, E_cm = 3774 +- 1 MeV.

  10. FEMA DFIRM Cross Sections

    Minnesota Department of Natural Resources — FEMA Cross Sections are required for any Digital Flood Insurance Rate Map database where cross sections are shown on the Flood Insurance Rate Map (FIRM). Normally...

  11. A study of the atmospherically relevant reaction between molecular chlorine and dimethylsulfide (DMS): Establishing the reaction intermediate and measurement of absolute photoionization cross-sections

    In a study using UV photoelectron spectroscopy (PES) of the atmospherically relevant reactionCH3SCH3+Cl2->CH3SCH2Cl+HClbands associated with a reaction intermediate have been observed. These have been assigned to ionization of the covalently bound molecule (CH3)2SCl2 on the basis of the intensity of the observed bands as a function of reaction time, molecular orbital calculations of vertical ionization energies and evidence from infrared spectroscopy. A method has also been developed, with the flow-tube/PE spectrometer combination used, to measure photoionization cross-sections of the reagents and products at the photon energy utilized and this has allowed the photoionization cross-section of the intermediate to be estimated. This work augments an earlier study in which the rate constant of the reaction between CH3SCH3 (DMS) and Cl2 has been measured at room temperature

  12. High precision absolute differential cross-section measurements for proton-proton elastic scattering at 491.9, 575.5, 641.6, 728.2, and 793.0 MeV

    The proton-proton absolute elastic differential cross section, σpp(θ), has been measured at incident proton beam energies of 491.9, 575.5, 641.6, 728.2, and 793.0 MeV at laboratory scattering angles of ∼15 degree to ∼42 degree with a total uncertainty on the order of 1%. The measurements were made at the Clinton P. Anderson Los Alamos Meson Physics Facility (LAMPF) and employed a new beam counting technique which provided a better overall beam normalization compared to previous experiments of this type. The cross section was measured with CH2 targets and a primary liquid, LH2, target to determine the uncertainties in some systematic corrections. Extreme care was taken to reduce individual systematic errors to less than 0.5%

  13. Trends in absolute and relative educational inequalities in four modifiable ischaemic heart disease risk factors: repeated cross-sectional surveys from the Nord-Trøndelag Health Study (HUNT 1984–2008

    Ernstsen Linda

    2012-04-01

    Full Text Available Abstract Background There has been an overall decrease in incident ischaemic heart disease (IHD, but the reduction in IHD risk factors has been greater among those with higher social position. Increased social inequalities in IHD mortality in Scandinavian countries is often referred to as the Scandinavian “public health puzzle”. The objective of this study was to examine trends in absolute and relative educational inequalities in four modifiable ischaemic heart disease risk factors (smoking, diabetes, hypertension and high total cholesterol over the last three decades among Norwegian middle-aged women and men. Methods Population-based, cross-sectional data from The Nord-Trøndelag Health Study (HUNT: HUNT 1 (1984–1986, HUNT 2 (1995–1997 and HUNT 3 (2006–2008, women and men 40–59 years old. Educational inequalities were assessed using the Slope Index of Inequality (SII and The Relative Index of Inequality (RII. Results Smoking prevalence increased for all education groups among women and decreased in men. Relative and absolute educational inequalities in smoking widened in both genders, with significantly higher absolute inequalities among women than men in the two last surveys. Diabetes prevalence increased in all groups. Relative inequalities in diabetes were stable, while absolute inequalities increased both among women (p = 0.05 and among men (p = 0.01. Hypertension prevalence decreased in all groups. Relative inequalities in hypertension widened over time in both genders. However, absolute inequalities in hypertension decreased among women (p = 0.05 and were stable among men (p = 0.33. For high total cholesterol relative and absolute inequalities remained stable in both genders. Conclusion Widening absolute educational inequalities in smoking and diabetes over the last three decades gives rise to concern. The mechanisms behind these results are less clear, and future studies are needed to assess if educational

  14. Total Cross Sections

    G. GiacomelliBologna University and INFN

    2014-01-01

    The measurements of the hadron-hadron total cross sections are the first measurements performed when a new hadron accelerator opens up a new energy region; the measurements were made as function of the incoming beam momentum or c.m. energy and have often been repeated with improved accuracy and finer energy spacing.

  15. Absolute cross section for loss of supercoiled topology induced by 10 eV electrons in highly uniform /DNA/1,3-diaminopropane films deposited on highly ordered pyrolitic graphite

    Boulanouar, Omar; Fromm, Michel [Laboratoire de Chimie Physique et Rayonnements – Alain Chambaudet, LRC CEA, UMR CNRS 6249, Université de Franche-Comté, 16 route de Gray, F-25030 Besançon cedex (France); Bass, Andrew D.; Cloutier, Pierre; Sanche, Léon [Groupe en Sciences des Radiations, Département de Médecine Nucléaire et de Radiobiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Québec J1H 5N4 (Canada)

    2013-08-07

    It was recently shown that the affinity of doubly charged, 1-3 diaminopropane (Dap{sup 2+}) for DNA permits the growth on highly ordered pyrolitic graphite (HOPG) substrates, of plasmid DNA films, of known uniform thickness [O. Boulanouar, A. Khatyr, G. Herlem, F. Palmino, L. Sanche, and M. Fromm, J. Phys. Chem. C 115, 21291–21298 (2011)]. Post-irradiation analysis by electrophoresis of such targets confirms that electron impact at 10 eV produces a maximum in the yield of single strand breaks that can be associated with the formation of a DNA{sup −} transient anion. Using a well-adapted deterministic survival model for the variation of electron damage with fluence and film thickness, we have determined an absolute cross section for strand-break damage by 10 eV electrons and inelastic scattering attenuation length in DNA-Dap complex films.

  16. Withdrawal of Chinese Physics Letters 28 (2011) 043401 “Measurement of Absolute Atomic Collision Cross Section with Helium Using 87Rb Atoms Confined in Magneto-Optic and Magnetic Traps” by WANG Ji-Cheng et al.

    WANG Ji-Cheng; ZHOU Ke-Ya; WANG Yue-Yuan; LIAO Qing-Hong; LIU Shu-Tian

    2011-01-01

    We announce the withdrawal of the article entitled “Measurement of Absolute Atomic Collision Cross Section with Helium Using 87Rb Atoms Confined in Magneto-Optic and Magnetic Traps”,which was published in Chinese Physics Letters [28(4)(2011)043401].The first author,Jicheng Wang,had participated in related research with Professor Kirk Madison's group at the Department of Physics & Astronomy at the University of British Columbia,Canada from September 2008 to February 2010.Even though consent had been granted for some of the experimental data to be used by Jicheng Wang in his own thesis,its publication had not been authorized.We apologize to Professor K.Madison for the misunderstanding,and to Chinese Physics Letters and the readers of Chinese Physics Letters for any inconvenience this mistake may have caused.%We announce the withdrawal of the article entitled "Measurement of Absolute Atomic Collision Cross Section with Helium Using 87Rb Atoms Confined in Magneto-Optic and Magnetic Traps", which was published in Chinese Physics Letters [28(4) (2011)043401]. The first author, Jicheng Wang, had participated in related research with Professor Kirk Madison's group at the Department of Physics & Astronomy at the University of British Columbia, Canada from September 2008 to February 2010. Even though consent had been granted for some of the experimental data to be used by Jicheng Wang in his own thesis, its publication had not been authorized. We apologize to Professor K. Madison for the misunderstanding, and to Chinese Physics Letters ad the readers of Chinese Physics Letters for any inconvenience this mistake may have caused.

  17. Neutrino Cross section Future

    Gollapinni, Sowjanya

    2016-01-01

    The study of neutrino-nucleus interactions has recently received renewed attention due to their importance in interpreting the neutrino oscillation data. Over the past few years, there has been continuous disagreement between neutrino cross section data and predictions due to lack of accurate nuclear models suitable for modern experiments which use heavier nuclear targets. Also, the current short and long-baseline neutrino oscillation experiments focus in the few GeV region where several distinct neutrino processes come into play resulting in complex nuclear effects. Despite recent efforts, more experimental input is needed to improve nuclear models and reduce neutrino interaction systematics which are currently dominating oscillation searches together with neutrino flux uncertainties. A number of new detector concepts with diverse neutrino beams and nuclear targets are currently being developed to provide necessary inputs required for next generation oscillation experiments. This paper summarizes these effor...

  18. Group cross sections calculations

    Just a few methods have been developped to compute multigroup cross-sections from ENDF data. We have developped an original method in order to get accuracy and to reduce the number of discretization points in the same time; this is why we have tried to use polynomial integration. In this paper, we describe this method: in the first part, we recall some physical hypothesis generally used to solve the linear Boltzmann equation: that is the frame in which the numerical method has been developped. Polynomial methods are really powerfull only if discretization points are suitably chosen. This choice is explained in the next part of this paper. In conclusion, some numerical results are given to illustrate our method

  19. Diffractive and rising cross sections

    The energy dependence of the diffractive component of the proton-proton cross section is discussed and its contribution to the rise of the total cross section at high energies is examined. 17 refs., 9 figs

  20. [Fast neutron cross section measurements

    This paper discusses the following topics: 14 MeV pulsed neutron facility; detection and measurement system; 238U capture cross sections at 23 and 964 keV using photon neutron sources; capture cross sections of Au-197 at 23 and 964 keV; and yttrium nuclear cross section measurement

  1. [Fast neutron cross section measurements

    In the 14 MeV Neutron Laboratory, we have continued the development of a facility that is now the only one of its kind in operation in the United States. We have refined the klystron bunching system described in last year's report to the point that 1.2 nanosecond pulses have been directly measured. We have tested the pulse shape discrimination capability of our primary NE 213 neutron detector. We have converted the RF sweeper section of the beamline to a frequency of 1 MHz to replace the function of the high voltage pulser described in last year's report which proved to be difficult to maintain and unreliable in its operation. We have also overcome several other significant experimental difficulties, including a major problem with a vacuum leak in the main accelerator column. We have completed additional testing to prove the remainder of the generation and measurement systems, but overcoming some of these experimental difficulties has delayed the start of actual data taking. We are now in a position to begin our first series of ring geometry elastic scattering measurements, and these will be underway before the end of the current contract year. As part of our longer term planning, we are continuing the conceptual analysis of several schemes to improve the intensity of our current pulsed beam. These include the provision of a duoplasmatron ion source and/or the provision of preacceleration bunching. Additional details are given later in this report. A series of measurements were carried out at the Tandem Dynamatron Facility involving the irradiation of a series of yttrium foils and the determination of activation cross sections using absolute counting techniques. The experimental work has been completed, and final analysis of the cross section data will be completed within several months

  2. (n,2n) cross sections

    Most of the fission products and a few of the actinides in ENDF/B-V do not have (n,2n) cross sections. A complete set of these cross sections is presented in the multigroup structure defined. These were constructed for future use in the DANDE Code System

  3. XCOM: Photon Cross Sections Database

    SRD 8 XCOM: Photon Cross Sections Database (Web, free access)   A web database is provided which can be used to calculate photon cross sections for scattering, photoelectric absorption and pair production, as well as total attenuation coefficients, for any element, compound or mixture (Z <= 100) at energies from 1 keV to 100 GeV.

  4. Cross Sections and Lorentz Violation

    Colladay, Don; Kostelecky, Alan

    2001-01-01

    The derivation of cross sections and decay rates in the Lorentz-violating standard-model extension is discussed. General features of the physics are described, and some conceptual and calculational issues are addressed. As an illustrative example, the cross section for the specific process of electron-positron pair annihilation into two photons is obtained.

  5. Measurement of fission cross sections

    A review is presented on the recent progress in the experiment of fission cross section measurement, including recent activity in Japan being carried out under the project of nuclear data measurement. (author)

  6. The total charm cross section

    R. Vogt

    2007-01-01

    We assess the theoretical uncertainties on the total charm cross section. We discuss the importance of the quark mass, the scale choice and the parton densities on the estimate of the uncertainty. We conclude that due to the small charm quark mass, which amplifies the effect of the other parameters in the calculation, the uncertainty on the total charm cross section is difficult to quantify.

  7. Ratios of dijet production cross sections as a function of the absolute difference in rapidity between jets in proton-proton collisions at $\\sqrt{s}$ = 7 TeV

    Chatrchyan, Serguei; Sirunyan, Albert M; Tumasyan, Armen; Adam, Wolfgang; Bergauer, Thomas; Dragicevic, Marko; Erö, Janos; Fabjan, Christian; Friedl, Markus; Fruehwirth, Rudolf; Ghete, Vasile Mihai; Hammer, Josef; Hoch, Michael; Hörmann, Natascha; Hrubec, Josef; Jeitler, Manfred; Kiesenhofer, Wolfgang; Krammer, Manfred; Liko, Dietrich; Mikulec, Ivan; Pernicka, Manfred; Rahbaran, Babak; Rohringer, Christine; Rohringer, Herbert; Schöfbeck, Robert; Strauss, Josef; Taurok, Anton; Teischinger, Florian; Wagner, Philipp; Waltenberger, Wolfgang; Walzel, Gerhard; Widl, Edmund; Wulz, Claudia-Elisabeth; Mossolov, Vladimir; Shumeiko, Nikolai; Suarez Gonzalez, Juan; Bansal, Sunil; Benucci, Leonardo; Cornelis, Tom; De Wolf, Eddi A; Janssen, Xavier; Luyckx, Sten; Maes, Thomas; Mucibello, Luca; Ochesanu, Silvia; Roland, Benoit; Rougny, Romain; Selvaggi, Michele; Van Haevermaet, Hans; Van Mechelen, Pierre; Van Remortel, Nick; Van Spilbeeck, Alex; Blekman, Freya; Blyweert, Stijn; D'Hondt, Jorgen; Gonzalez Suarez, Rebeca; Kalogeropoulos, Alexis; Maes, Michael; Olbrechts, Annik; Van Doninck, Walter; Van Mulders, Petra; Van Onsem, Gerrit Patrick; Villella, Ilaria; Charaf, Otman; Clerbaux, Barbara; De Lentdecker, Gilles; Dero, Vincent; Gay, Arnaud; Hammad, Gregory Habib; Hreus, Tomas; Léonard, Alexandre; Marage, Pierre Edouard; Thomas, Laurent; Vander Velde, Catherine; Vanlaer, Pascal; Wickens, John; Adler, Volker; Beernaert, Kelly; Cimmino, Anna; Costantini, Silvia; Garcia, Guillaume; Grunewald, Martin; Klein, Benjamin; Lellouch, Jérémie; Marinov, Andrey; Mccartin, Joseph; Ocampo Rios, Alberto Andres; Ryckbosch, Dirk; Strobbe, Nadja; Thyssen, Filip; Tytgat, Michael; Vanelderen, Lukas; Verwilligen, Piet; Walsh, Sinead; Yazgan, Efe; Zaganidis, Nicolas; Basegmez, Suzan; Bruno, Giacomo; Ceard, Ludivine; De Favereau De Jeneret, Jerome; Delaere, Christophe; Du Pree, Tristan; Favart, Denis; Forthomme, Laurent; Giammanco, Andrea; Grégoire, Ghislain; Hollar, Jonathan; Lemaitre, Vincent; Liao, Junhui; Militaru, Otilia; Nuttens, Claude; Pagano, Davide; Pin, Arnaud; Piotrzkowski, Krzysztof; Schul, Nicolas; Beliy, Nikita; Caebergs, Thierry; Daubie, Evelyne; Alves, Gilvan; Correa Martins Junior, Marcos; De Jesus Damiao, Dilson; Martins, Thiago; Pol, Maria Elena; Henrique Gomes E Souza, Moacyr; Aldá Júnior, Walter Luiz; Carvalho, Wagner; Custódio, Analu; Da Costa, Eliza Melo; De Oliveira Martins, Carley; Fonseca De Souza, Sandro; Matos Figueiredo, Diego; Mundim, Luiz; Nogima, Helio; Oguri, Vitor; Prado Da Silva, Wanda Lucia; Santoro, Alberto; Silva Do Amaral, Sheila Mara; Soares Jorge, Luana; Sznajder, Andre; Souza Dos Anjos, Tiago; Bernardes, Cesar Augusto; De Almeida Dias, Flavia; Tomei, Thiago; De Moraes Gregores, Eduardo; Lagana, Caio; Da Cunha Marinho, Franciole; Mercadante, Pedro G; Novaes, Sergio F; Padula, Sandra; Genchev, Vladimir; Iaydjiev, Plamen; Piperov, Stefan; Rodozov, Mircho; Stoykova, Stefka; Sultanov, Georgi; Tcholakov, Vanio; Trayanov, Rumen; Vutova, Mariana; Dimitrov, Anton; Hadjiiska, Roumyana; Karadzhinova, Aneliya; Kozhuharov, Venelin; Litov, Leander; Pavlov, Borislav; Petkov, Peicho; Bian, Jian-Guo; Chen, Guo-Ming; Chen, He-Sheng; Jiang, Chun-Hua; Liang, Dong; Liang, Song; Meng, Xiangwei; Tao, Junquan; Wang, Jian; Wang, Jian; Wang, Xianyou; Wang, Zheng; Xiao, Hong; Xu, Ming; Zang, Jingjing; Zhang, Zhen; Asawatangtrakuldee, Chayanit; Ban, Yong; Guo, Shuang; Guo, Yifei; Li, Wenbo; Liu, Shuai; Mao, Yajun; Qian, Si-Jin; Teng, Haiyun; Wang, Siguang; Zhu, Bo; Zou, Wei; Cabrera, Andrés; Gomez Moreno, Bernardo; Osorio Oliveros, Andres Felipe; Sanabria, Juan Carlos; Godinovic, Nikola; Lelas, Damir; Plestina, Roko; Polic, Dunja; Puljak, Ivica; Antunovic, Zeljko; Dzelalija, Mile; Kovac, Marko; Brigljevic, Vuko; Duric, Senka; Kadija, Kreso; Luetic, Jelena; Morovic, Srecko; Attikis, Alexandros; Galanti, Mario; Mousa, Jehad; Nicolaou, Charalambos; Ptochos, Fotios; Razis, Panos A; Finger, Miroslav; Finger Jr, Michael; Assran, Yasser; Ellithi Kamel, Ali; Khalil, Shaaban; Mahmoud, Mohammed; Radi, Amr; Hektor, Andi; Kadastik, Mario; Müntel, Mait; Raidal, Martti; Rebane, Liis; Tiko, Andres; Azzolini, Virginia; Eerola, Paula; Fedi, Giacomo; Voutilainen, Mikko; Czellar, Sandor; Härkönen, Jaakko; Heikkinen, Mika Aatos; Karimäki, Veikko; Kinnunen, Ritva; Kortelainen, Matti J; Lampén, Tapio; Lassila-Perini, Kati; Lehti, Sami; Lindén, Tomas; Luukka, Panja-Riina; Mäenpää, Teppo; Peltola, Timo; Tuominen, Eija; Tuominiemi, Jorma; Tuovinen, Esa; Ungaro, Donatella; Wendland, Lauri; Banzuzi, Kukka; Korpela, Arja; Tuuva, Tuure; Sillou, Daniel; Besancon, Marc; Choudhury, Somnath; Dejardin, Marc; Denegri, Daniel; Fabbro, Bernard; Faure, Jean-Louis; Ferri, Federico; Ganjour, Serguei; Givernaud, Alain; Gras, Philippe; Hamel de Monchenault, Gautier; Jarry, Patrick; Locci, Elizabeth; Malcles, Julie; Millischer, Laurent; Rander, John; Rosowsky, André; Shreyber, Irina; Titov, Maksym; Baffioni, Stephanie; Beaudette, Florian; Benhabib, Lamia; Bianchini, Lorenzo; Bluj, Michal; Broutin, Clementine; Busson, Philippe; Charlot, Claude; Daci, Nadir; Dahms, Torsten; Dobrzynski, Ludwik; Elgammal, Sherif; Granier de Cassagnac, Raphael; Haguenauer, Maurice; Miné, Philippe; Mironov, Camelia; Ochando, Christophe; Paganini, Pascal; Sabes, David; Salerno, Roberto; Sirois, Yves; Thiebaux, Christophe; Veelken, Christian; Zabi, Alexandre; Agram, Jean-Laurent; Andrea, Jeremy; Bloch, Daniel; Bodin, David; Brom, Jean-Marie; Cardaci, Marco; Chabert, Eric Christian; Collard, Caroline; Conte, Eric; Drouhin, Frédéric; Ferro, Cristina; Fontaine, Jean-Charles; Gelé, Denis; Goerlach, Ulrich; Juillot, Pierre; Karim, Mehdi; Le Bihan, Anne-Catherine; Van Hove, Pierre; Fassi, Farida; Mercier, Damien; Baty, Clement; Beauceron, Stephanie; Beaupere, Nicolas; Bedjidian, Marc; Bondu, Olivier; Boudoul, Gaelle; Boumediene, Djamel; Brun, Hugues; Chasserat, Julien; Chierici, Roberto; Contardo, Didier; Depasse, Pierre; El Mamouni, Houmani; Falkiewicz, Anna; Fay, Jean; Gascon, Susan; Gouzevitch, Maxime; Ille, Bernard; Kurca, Tibor; Le Grand, Thomas; Lethuillier, Morgan; Mirabito, Laurent; Perries, Stephane; Sordini, Viola; Tosi, Silvano; Tschudi, Yohann; Verdier, Patrice; Viret, Sébastien; Lomidze, David; Anagnostou, Georgios; Beranek, Sarah; Edelhoff, Matthias; Feld, Lutz; Heracleous, Natalie; Hindrichs, Otto; Jussen, Ruediger; Klein, Katja; Merz, Jennifer; Ostapchuk, Andrey; Perieanu, Adrian; Raupach, Frank; Sammet, Jan; Schael, Stefan; Sprenger, Daniel; Weber, Hendrik; Wittmer, Bruno; Zhukov, Valery; Ata, Metin; Caudron, Julien; Dietz-Laursonn, Erik; Erdmann, Martin; Güth, Andreas; Hebbeker, Thomas; Heidemann, Carsten; Hoepfner, Kerstin; Klimkovich, Tatsiana; Klingebiel, Dennis; Kreuzer, Peter; Lanske, Dankfried; Lingemann, Joschka; Magass, Carsten; Merschmeyer, Markus; Meyer, Arnd; Olschewski, Mark; Papacz, Paul; Pieta, Holger; Reithler, Hans; Schmitz, Stefan Antonius; Sonnenschein, Lars; Steggemann, Jan; Teyssier, Daniel; Weber, Martin; Bontenackels, Michael; Cherepanov, Vladimir; Davids, Martina; Flügge, Günter; Geenen, Heiko; Geisler, Matthias; Haj Ahmad, Wael; Hoehle, Felix; Kargoll, Bastian; Kress, Thomas; Kuessel, Yvonne; Linn, Alexander; Nowack, Andreas; Perchalla, Lars; Pooth, Oliver; Rennefeld, Jörg; Sauerland, Philip; Stahl, Achim; Zoeller, Marc Henning; Aldaya Martin, Maria; Behrenhoff, Wolf; Behrens, Ulf; Bergholz, Matthias; Bethani, Agni; Borras, Kerstin; Burgmeier, Armin; Cakir, Altan; Calligaris, Luigi; Campbell, Alan; Castro, Elena; Dammann, Dirk; Eckerlin, Guenter; Eckstein, Doris; Flossdorf, Alexander; Flucke, Gero; Geiser, Achim; Hauk, Johannes; Jung, Hannes; Kasemann, Matthias; Katsas, Panagiotis; Kleinwort, Claus; Kluge, Hannelies; Knutsson, Albert; Krämer, Mira; Krücker, Dirk; Kuznetsova, Ekaterina; Lange, Wolfgang; Lohmann, Wolfgang; Lutz, Benjamin; Mankel, Rainer; Marfin, Ihar; Marienfeld, Markus; Melzer-Pellmann, Isabell-Alissandra; Meyer, Andreas Bernhard; Mnich, Joachim; Mussgiller, Andreas; Naumann-Emme, Sebastian; Olzem, Jan; Petrukhin, Alexey; Pitzl, Daniel; Raspereza, Alexei; Ribeiro Cipriano, Pedro M; Rosin, Michele; Salfeld-Nebgen, Jakob; Schmidt, Ringo; Schoerner-Sadenius, Thomas; Sen, Niladri; Spiridonov, Alexander; Stein, Matthias; Tomaszewska, Justyna; Walsh, Roberval; Wissing, Christoph; Autermann, Christian; Blobel, Volker; Bobrovskyi, Sergei; Draeger, Jula; Enderle, Holger; Erfle, Joachim; Gebbert, Ulla; Görner, Martin; Hermanns, Thomas; Höing, Rebekka Sophie; Kaschube, Kolja; Kaussen, Gordon; Kirschenmann, Henning; Klanner, Robert; Lange, Jörn; Mura, Benedikt; Nowak, Friederike; Pietsch, Niklas; Sander, Christian; Schettler, Hannes; Schleper, Peter; Schlieckau, Eike; Schmidt, Alexander; Schröder, Matthias; Schum, Torben; Stadie, Hartmut; Steinbrück, Georg; Thomsen, Jan; Barth, Christian; Berger, Joram; Chwalek, Thorsten; De Boer, Wim; Dierlamm, Alexander; Dirkes, Guido; Feindt, Michael; Gruschke, Jasmin; Guthoff, Moritz; Hackstein, Christoph; Hartmann, Frank; Heinrich, Michael; Held, Hauke; Hoffmann, Karl-Heinz; Honc, Simon; Katkov, Igor; Komaragiri, Jyothsna Rani; Kuhr, Thomas; Martschei, Daniel; Mueller, Steffen; Müller, Thomas; Niegel, Martin; Nürnberg, Andreas; Oberst, Oliver; Oehler, Andreas; Ott, Jochen; Peiffer, Thomas; Quast, Gunter; Rabbertz, Klaus; Ratnikov, Fedor; Ratnikova, Natalia; Renz, Manuel; Röcker, Steffen; Saout, Christophe; Scheurer, Armin; Schieferdecker, Philipp; Schilling, Frank-Peter; Schmanau, Mike; Schott, Gregory; Simonis, Hans-Jürgen; Stober, Fred-Markus Helmut; Troendle, Daniel; Wagner-Kuhr, Jeannine; Weiler, Thomas; Zeise, Manuel; Ziebarth, Eva Barbara; Daskalakis, Georgios; Geralis, Theodoros; Kesisoglou, Stilianos; Kyriakis, Aristotelis; Loukas, Demetrios; Manolakos, Ioannis; Markou, Athanasios; Markou, Christos; Mavrommatis, Charalampos; Ntomari, Eleni; Gouskos, Loukas; Mertzimekis, Theodoros; Panagiotou, Apostolos; Saoulidou, Niki; Stiliaris, Efstathios; Evangelou, Ioannis; Foudas, Costas; Kokkas, Panagiotis; Manthos, Nikolaos; Papadopoulos, Ioannis; Patras, Vaios; Triantis, Frixos A; Aranyi, Attila; Bencze, Gyorgy; Boldizsar, Laszlo; Hajdu, Csaba; Hidas, Pàl; Horvath, Dezso; Kapusi, Anita; Krajczar, Krisztian; Sikler, Ferenc; Veszpremi, Viktor; Vesztergombi, Gyorgy; Beni, Noemi; Molnar, Jozsef; Palinkas, Jozsef; Szillasi, Zoltan; Karancsi, János; Raics, Peter; Trocsanyi, Zoltan Laszlo; Ujvari, Balazs; Beri, Suman Bala; Bhatnagar, Vipin; Dhingra, Nitish; Gupta, Ruchi; Jindal, Monika; Kaur, Manjit; Kohli, Jatinder Mohan; Mehta, Manuk Zubin; Nishu, Nishu; Saini, Lovedeep Kaur; Sharma, Archana; Singh, Anil; Singh, Jasbir; Singh, Supreet Pal; Ahuja, Sudha; Choudhary, Brajesh C; Kumar, Ashok; Kumar, Arun; Malhotra, Shivali; Naimuddin, Md; Ranjan, Kirti; Sharma, Varun; Shivpuri, Ram Krishen; Banerjee, Sunanda; Bhattacharya, Satyaki; Dutta, Suchandra; Gomber, Bhawna; Jain, Sandhya; Jain, Shilpi; Khurana, Raman; Sarkar, Subir; Choudhury, Rajani Kant; Dutta, Dipanwita; Kailas, Swaminathan; Kumar, Vineet; Mohanty, Ajit Kumar; Pant, Lalit Mohan; Shukla, Prashant; Aziz, Tariq; Ganguly, Sanmay; Guchait, Monoranjan; Gurtu, Atul; Maity, Manas; Majumder, Gobinda; Mazumdar, Kajari; Mohanty, Gagan Bihari; Parida, Bibhuti; Saha, Anirban; Sudhakar, Katta; Wickramage, Nadeesha; Banerjee, Sudeshna; Dugad, Shashikant; Mondal, Naba Kumar; Arfaei, Hessamaddin; Bakhshiansohi, Hamed; Etesami, Seyed Mohsen; Fahim, Ali; Hashemi, Majid; Hesari, Hoda; Jafari, Abideh; Khakzad, Mohsen; Mohammadi, Abdollah; Mohammadi Najafabadi, Mojtaba; Paktinat Mehdiabadi, Saeid; Safarzadeh, Batool; Zeinali, Maryam; Abbrescia, Marcello; Barbone, Lucia; Calabria, Cesare; Chhibra, Simranjit Singh; Colaleo, Anna; Creanza, Donato; De Filippis, Nicola; De Palma, Mauro; Fiore, Luigi; Iaselli, Giuseppe; Lusito, Letizia; Maggi, Giorgio; Maggi, Marcello; Manna, Norman; Marangelli, Bartolomeo; My, Salvatore; Nuzzo, Salvatore; Pacifico, Nicola; Pompili, Alexis; Pugliese, Gabriella; Romano, Francesco; Selvaggi, Giovanna; Silvestris, Lucia; Singh, Gurpreet; Tupputi, Salvatore; Zito, Giuseppe; Abbiendi, Giovanni; Benvenuti, Alberto; Bonacorsi, Daniele; Braibant-Giacomelli, Sylvie; Brigliadori, Luca; Capiluppi, Paolo; Castro, Andrea; Cavallo, Francesca Romana; Cuffiani, Marco; Dallavalle, Gaetano-Marco; Fabbri, Fabrizio; Fanfani, Alessandra; Fasanella, Daniele; Giacomelli, Paolo; Grandi, Claudio; Marcellini, Stefano; Masetti, Gianni; Meneghelli, Marco; Montanari, Alessandro; Navarria, Francesco; Odorici, Fabrizio; Perrotta, Andrea; Primavera, Federica; Rossi, Antonio; Rovelli, Tiziano; Siroli, Gianni; Travaglini, Riccardo; Albergo, Sebastiano; Cappello, Gigi; Chiorboli, Massimiliano; Costa, Salvatore; Potenza, Renato; Tricomi, Alessia; Tuve, Cristina; Barbagli, Giuseppe; Ciulli, Vitaliano; Civinini, Carlo; D'Alessandro, Raffaello; Focardi, Ettore; Frosali, Simone; Gallo, Elisabetta; Gonzi, Sandro; Meschini, Marco; Paoletti, Simone; Sguazzoni, Giacomo; Tropiano, Antonio; Benussi, Luigi; Bianco, Stefano; Colafranceschi, Stefano; Fabbri, Franco; Piccolo, Davide; Fabbricatore, Pasquale; Musenich, Riccardo; Benaglia, Andrea; De Guio, Federico; Di Matteo, Leonardo; Fiorendi, Sara; Gennai, Simone; Ghezzi, Alessio; Malvezzi, Sandra; Manzoni, Riccardo Andrea; Martelli, Arabella; Massironi, Andrea; Menasce, Dario; Moroni, Luigi; Paganoni, Marco; Pedrini, Daniele; Ragazzi, Stefano; Redaelli, Nicola; Sala, Silvano; Tabarelli de Fatis, Tommaso; Buontempo, Salvatore; Carrillo Montoya, Camilo Andres; Cavallo, Nicola; De Cosa, Annapaola; Dogangun, Oktay; Fabozzi, Francesco; Iorio, Alberto Orso Maria; Lista, Luca; Merola, Mario; Paolucci, Pierluigi; Azzi, Patrizia; Bacchetta, Nicola; Bellan, Paolo; Bisello, Dario; Branca, Antonio; Carlin, Roberto; Checchia, Paolo; Dorigo, Tommaso; Dosselli, Umberto; Gasparini, Fabrizio; Gasparini, Ugo; Gozzelino, Andrea; Kanishchev, Konstantin; Lacaprara, Stefano; Lazzizzera, Ignazio; Margoni, Martino; Mazzucato, Mirco; Meneguzzo, Anna Teresa; Nespolo, Massimo; Perrozzi, Luca; Pozzobon, Nicola; Ronchese, Paolo; Simonetto, Franco; Torassa, Ezio; Tosi, Mia; Triossi, Andrea; Vanini, Sara; Zotto, Pierluigi; Zumerle, Gianni; Berzano, Umberto; Gabusi, Michele; Ratti, Sergio P; Riccardi, Cristina; Torre, Paola; Vitulo, Paolo; Biasini, Maurizio; Bilei, Gian Mario; Caponeri, Benedetta; Fanò, Livio; Lariccia, Paolo; Lucaroni, Andrea; Mantovani, Giancarlo; Menichelli, Mauro; Nappi, Aniello; Romeo, Francesco; Santocchia, Attilio; Taroni, Silvia; Valdata, Marisa; Azzurri, Paolo; Bagliesi, Giuseppe; Boccali, Tommaso; Broccolo, Giuseppe; Castaldi, Rino; D'Agnolo, Raffaele Tito; Dell'Orso, Roberto; Fiori, Francesco; Foà, Lorenzo; Giassi, Alessandro; Kraan, Aafke; Ligabue, Franco; Lomtadze, Teimuraz; Martini, Luca; Messineo, Alberto; Palla, Fabrizio; Palmonari, Francesco; Rizzi, Andrea; Serban, Alin Titus; Spagnolo, Paolo; Tenchini, Roberto; Tonelli, Guido; Venturi, Andrea; Verdini, Piero Giorgio; Barone, Luciano; Cavallari, Francesca; Del Re, Daniele; Diemoz, Marcella; Fanelli, Cristiano; Grassi, Marco; Longo, Egidio; Meridiani, Paolo; Micheli, Francesco; Nourbakhsh, Shervin; Organtini, Giovanni; Pandolfi, Francesco; Paramatti, Riccardo; Rahatlou, Shahram; Sigamani, Michael; Soffi, Livia; Amapane, Nicola; Arcidiacono, Roberta; Argiro, Stefano; Arneodo, Michele; Biino, Cristina; Botta, Cristina; Cartiglia, Nicolo; Castello, Roberto; Costa, Marco; Demaria, Natale; Graziano, Alberto; Mariotti, Chiara; Maselli, Silvia; Migliore, Ernesto; Monaco, Vincenzo; Musich, Marco; Obertino, Maria Margherita; Pastrone, Nadia; Pelliccioni, Mario; Potenza, Alberto; Romero, Alessandra; Ruspa, Marta; Sacchi, Roberto; Sola, Valentina; Solano, Ada; Staiano, Amedeo; Vilela Pereira, Antonio; Belforte, Stefano; Cossutti, Fabio; Della Ricca, Giuseppe; Gobbo, Benigno; Marone, Matteo; Montanino, Damiana; Penzo, Aldo; Heo, Seong Gu; Nam, Soon-Kwon; Chang, Sunghyun; Chung, Jin Hyuk; Kim, Dong Hee; Kim, Gui Nyun; Kim, Ji Eun; Kong, Dae Jung; Park, Hyangkyu; Ro, Sang-Ryul; Son, Dong-Chul; Kim, Jae Yool; Kim, Zero Jaeho; Song, Sanghyeon; Jo, Hyun Yong; Choi, Suyong; Gyun, Dooyeon; Hong, Byung-Sik; Jo, Mihee; Kim, Hyunchul; Kim, Tae Jeong; Lee, Kyong Sei; Moon, Dong Ho; Park, Sung Keun; Seo, Eunsung; Sim, Kwang Souk; Choi, Minkyoo; Kang, Seokon; Kim, Hyunyong; Kim, Ji Hyun; Park, Chawon; Park, Inkyu; Park, Sangnam; Ryu, Geonmo; Cho, Yongjin; Choi, Young-Il; Choi, Young Kyu; Goh, Junghwan; Kim, Min Suk; Lee, Byounghoon; Lee, Jongseok; Lee, Sungeun; Seo, Hyunkwan; Yu, Intae; Bilinskas, Mykolas Jurgis; Grigelionis, Ignas; Janulis, Mindaugas; Castilla-Valdez, Heriberto; De La Cruz-Burelo, Eduard; Heredia-de La Cruz, Ivan; Lopez-Fernandez, Ricardo; Magaña Villalba, Ricardo; Martínez-Ortega, Jorge; Sánchez-Hernández, Alberto; Villasenor-Cendejas, Luis Manuel; Carrillo Moreno, Salvador; Vazquez Valencia, Fabiola; Salazar Ibarguen, Humberto Antonio; Casimiro Linares, Edgar; Morelos Pineda, Antonio; Reyes-Santos, Marco A; Krofcheck, David; Bell, Alan James; Butler, Philip H; Doesburg, Robert; Reucroft, Steve; Silverwood, Hamish; Ahmad, Muhammad; Asghar, Muhammad Irfan; Hoorani, Hafeez R; Khalid, Shoaib; Khan, Wajid Ali; Khurshid, Taimoor; Qazi, Shamona; Shah, Mehar Ali; Shoaib, Muhammad; Brona, Grzegorz; Cwiok, Mikolaj; Dominik, Wojciech; Doroba, Krzysztof; Kalinowski, Artur; Konecki, Marcin; Krolikowski, Jan; Bialkowska, Helena; Boimska, Bozena; Frueboes, Tomasz; Gokieli, Ryszard; Górski, Maciej; Kazana, Malgorzata; Nawrocki, Krzysztof; Romanowska-Rybinska, Katarzyna; Szleper, Michal; Wrochna, Grzegorz; Zalewski, Piotr; Almeida, Nuno; Bargassa, Pedrame; David Tinoco Mendes, Andre; Faccioli, Pietro; Ferreira Parracho, Pedro Guilherme; Gallinaro, Michele; Musella, Pasquale; Nayak, Aruna; Pela, Joao; Ribeiro, Pedro Quinaz; Seixas, Joao; Varela, Joao; Vischia, Pietro; Afanasiev, Serguei; Belotelov, Ivan; Bunin, Pavel; Gavrilenko, Mikhail; Golutvin, Igor; Gorbunov, Ilya; Karjavin, Vladimir; Konoplyanikov, Viktor; Kozlov, Guennady; Lanev, Alexander; Moisenz, Petr; Palichik, Vladimir; Perelygin, Victor; Shmatov, Sergey; Smirnov, Vitaly; Volodko, Anton; Zarubin, Anatoli; Evstyukhin, Sergey; Golovtsov, Victor; Ivanov, Yury; Kim, Victor; Levchenko, Petr; Murzin, Victor; Oreshkin, Vadim; Smirnov, Igor; Sulimov, Valentin; Uvarov, Lev; Vavilov, Sergey; Vorobyev, Alexey; Vorobyev, Andrey; Andreev, Yuri; Dermenev, Alexander; Gninenko, Sergei; Golubev, Nikolai; Kirsanov, Mikhail; Krasnikov, Nikolai; Matveev, Viktor; Pivovarov, Grigory; Toropin, Alexander; Troitsky, Sergey; Epshteyn, Vladimir; Erofeeva, Maria; Gavrilov, Vladimir; Kossov, Mikhail; Krokhotin, Andrey; Lychkovskaya, Natalia; Popov, Vladimir; Safronov, Grigory; Semenov, Sergey; Stolin, Viatcheslav; Vlasov, Evgueni; Zhokin, Alexander; Belyaev, Andrey; Boos, Edouard; Dubinin, Mikhail; Dudko, Lev; Ershov, Alexander; Khein, Lev; Kodolova, Olga; Lokhtin, Igor; Markina, Anastasia; Obraztsov, Stepan; Perfilov, Maxim; Proskuryakov, Alexander; Sarycheva, Ludmila; Savrin, Viktor; Snigirev, Alexander; Andreev, Vladimir; Azarkin, Maksim; Dremin, Igor; Kirakosyan, Martin; Leonidov, Andrey; Mesyats, Gennady; Rusakov, Sergey V; Vinogradov, Alexey; Azhgirey, Igor; Bayshev, Igor; Bitioukov, Sergei; Grishin, Viatcheslav; Kachanov, Vassili; Konstantinov, Dmitri; Korablev, Andrey; Krychkine, Victor; Petrov, Vladimir; Ryutin, Roman; Sobol, Andrei; Tourtchanovitch, Leonid; Troshin, Sergey; Tyurin, Nikolay; Uzunian, Andrey; Volkov, Alexey; Adzic, Petar; Djordjevic, Milos; Ekmedzic, Marko; Krpic, Dragomir; Milosevic, Jovan; Aguilar-Benitez, Manuel; Alcaraz Maestre, Juan; Arce, Pedro; Battilana, Carlo; Calvo, Enrique; Cerrada, Marcos; Chamizo Llatas, Maria; Colino, Nicanor; De La Cruz, Begona; Delgado Peris, Antonio; Diez Pardos, Carmen; Domínguez Vázquez, Daniel; Fernandez Bedoya, Cristina; Fernández Ramos, Juan Pablo; Ferrando, Antonio; Flix, Jose; Fouz, Maria Cruz; Garcia-Abia, Pablo; Gonzalez Lopez, Oscar; Goy Lopez, Silvia; Hernandez, Jose M; Josa, Maria Isabel; Merino, Gonzalo; Puerta Pelayo, Jesus; Redondo, Ignacio; Romero, Luciano; Santaolalla, Javier; Soares, Mara Senghi; Willmott, Carlos; Albajar, Carmen; Codispoti, Giuseppe; de Trocóniz, Jorge F; Cuevas, Javier; Fernandez Menendez, Javier; Folgueras, Santiago; Gonzalez Caballero, Isidro; Lloret Iglesias, Lara; Piedra Gomez, Jonatan; Vizan Garcia, Jesus Manuel; Brochero Cifuentes, Javier Andres; Cabrillo, Iban Jose; Calderon, Alicia; Chuang, Shan-Huei; Duarte Campderros, Jordi; Felcini, Marta; Fernandez, Marcos; Gomez, Gervasio; Gonzalez Sanchez, Javier; Jorda, Clara; Lobelle Pardo, Patricia; Lopez Virto, Amparo; Marco, Jesus; Marco, Rafael; Martinez Rivero, Celso; Matorras, Francisco; Munoz Sanchez, Francisca Javiela; Rodrigo, Teresa; Rodríguez-Marrero, Ana Yaiza; Ruiz-Jimeno, Alberto; Scodellaro, Luca; Sobron Sanudo, Mar; Vila, Ivan; Vilar Cortabitarte, Rocio; Abbaneo, Duccio; Auffray, Etiennette; Auzinger, Georg; Baillon, Paul; Ball, Austin; Barney, David; Bernet, Colin; Bialas, Wojciech; Bianchi, Giovanni; Bloch, Philippe; Bocci, Andrea; Breuker, Horst; Bunkowski, Karol; Camporesi, Tiziano; Cerminara, Gianluca; Christiansen, Tim; Coarasa Perez, Jose Antonio; Curé, Benoît; D'Enterria, David; De Roeck, Albert; Di Guida, Salvatore; Dobson, Marc; Dupont-Sagorin, Niels; Elliott-Peisert, Anna; Frisch, Benjamin; Funk, Wolfgang; Gaddi, Andrea; Georgiou, Georgios; Gerwig, Hubert; Giffels, Manuel; Gigi, Dominique; Gill, Karl; Giordano, Domenico; Giunta, Marina; Glege, Frank; Gomez-Reino Garrido, Robert; Govoni, Pietro; Gowdy, Stephen; Guida, Roberto; Guiducci, Luigi; Hansen, Magnus; Harris, Philip; Hartl, Christian; Harvey, John; Hegner, Benedikt; Hinzmann, Andreas; Hoffmann, Hans Falk; Innocente, Vincenzo; Janot, Patrick; Kaadze, Ketino; Karavakis, Edward; Kousouris, Konstantinos; Lecoq, Paul; Lenzi, Piergiulio; Lourenco, Carlos; Maki, Tuula; Malberti, Martina; Malgeri, Luca; Mannelli, Marcello; Masetti, Lorenzo; Mavromanolakis, Georgios; Meijers, Frans; Mersi, Stefano; Meschi, Emilio; Moser, Roland; Mozer, Matthias Ulrich; Mulders, Martijn; Nesvold, Erik; Nguyen, Matthew; Orimoto, Toyoko; Orsini, Luciano; Palencia Cortezon, Enrique; Perez, Emmanuelle; Petrilli, Achille; Pfeiffer, Andreas; Pierini, Maurizio; Pimiä, Martti; Piparo, Danilo; Polese, Giovanni; Quertenmont, Loic; Racz, Attila; Reece, William; Rodrigues Antunes, Joao; Rolandi, Gigi; Rommerskirchen, Tanja; Rovelli, Chiara; Rovere, Marco; Sakulin, Hannes; Santanastasio, Francesco; Schäfer, Christoph; Schwick, Christoph; Segoni, Ilaria; Sharma, Archana; Siegrist, Patrice; Silva, Pedro; Simon, Michal; Sphicas, Paraskevas; Spiga, Daniele; Spiropulu, Maria; Stoye, Markus; Tsirou, Andromachi; Veres, Gabor Istvan; Vichoudis, Paschalis; Wöhri, Hermine Katharina; Worm, Steven; Zeuner, Wolfram Dietrich; Bertl, Willi; Deiters, Konrad; Erdmann, Wolfram; Gabathuler, Kurt; Horisberger, Roland; Ingram, Quentin; Kaestli, Hans-Christian; König, Stefan; Kotlinski, Danek; Langenegger, Urs; Meier, Frank; Renker, Dieter; Rohe, Tilman; Sibille, Jennifer; Bäni, Lukas; Bortignon, Pierluigi; Buchmann, Marco-Andrea; Casal, Bruno; Chanon, Nicolas; Chen, Zhiling; Deisher, Amanda; Dissertori, Günther; Dittmar, Michael; Dünser, Marc; Eugster, Jürg; Freudenreich, Klaus; Grab, Christoph; Lecomte, Pierre; Lustermann, Werner; Martinez Ruiz del Arbol, Pablo; Mohr, Niklas; Moortgat, Filip; Nägeli, Christoph; Nef, Pascal; Nessi-Tedaldi, Francesca; Pape, Luc; Pauss, Felicitas; Peruzzi, Marco; Ronga, Frederic Jean; Rossini, Marco; Sala, Leonardo; Sanchez, Ann - Karin; Sawley, Marie-Christine; Starodumov, Andrei; Stieger, Benjamin; Takahashi, Maiko; Tauscher, Ludwig; Thea, Alessandro; Theofilatos, Konstantinos; Treille, Daniel; Urscheler, Christina; Wallny, Rainer; Weber, Hannsjoerg Artur; Wehrli, Lukas; Weng, Joanna; Aguilo, Ernest; Amsler, Claude; Chiochia, Vincenzo; De Visscher, Simon; Favaro, Carlotta; Ivova Rikova, Mirena; Millan Mejias, Barbara; Otiougova, Polina; Robmann, Peter; Snoek, Hella; Verzetti, Mauro; Chang, Yuan-Hann; Chen, Kuan-Hsin; Kuo, Chia-Ming; Li, Syue-Wei; Lin, Willis; Liu, Zong-Kai; Lu, Yun-Ju; Mekterovic, Darko; Volpe, Roberta; Yu, Shin-Shan; Bartalini, Paolo; Chang, Paoti; Chang, You-Hao; Chang, Yu-Wei; Chao, Yuan; Chen, Kai-Feng; Dietz, Charles; Grundler, Ulysses; Hou, George Wei-Shu; Hsiung, Yee; Kao, Kai-Yi; Lei, Yeong-Jyi; Lu, Rong-Shyang; Majumder, Devdatta; Petrakou, Eleni; Shi, Xin; Shiu, Jing-Ge; Tzeng, Yeng-Ming; Wang, Minzu; Adiguzel, Aytul; Bakirci, Mustafa Numan; Cerci, Salim; Dozen, Candan; Dumanoglu, Isa; Eskut, Eda; Girgis, Semiray; Gokbulut, Gul; Hos, Ilknur; Kangal, Evrim Ersin; Karapinar, Guler; Kayis Topaksu, Aysel; Onengut, Gulsen; Ozdemir, Kadri; Ozturk, Sertac; Polatoz, Ayse; Sogut, Kenan; Sunar Cerci, Deniz; Tali, Bayram; Topakli, Huseyin; Uzun, Dilber; Vergili, Latife Nukhet; Vergili, Mehmet; Akin, Ilina Vasileva; Aliev, Takhmasib; Bilin, Bugra; Bilmis, Selcuk; Deniz, Muhammed; Gamsizkan, Halil; Guler, Ali Murat; Ocalan, Kadir; Ozpineci, Altug; Serin, Meltem; Sever, Ramazan; Surat, Ugur Emrah; Yalvac, Metin; Yildirim, Eda; Zeyrek, Mehmet; Deliomeroglu, Mehmet; Gülmez, Erhan; Isildak, Bora; Kaya, Mithat; Kaya, Ozlem; Ozkorucuklu, Suat; Sonmez, Nasuf; Levchuk, Leonid; Bostock, Francis; Brooke, James John; Clement, Emyr; Cussans, David; Flacher, Henning; Frazier, Robert; Goldstein, Joel; Grimes, Mark; Heath, Greg P; Heath, Helen F; Kreczko, Lukasz; Metson, Simon; Newbold, Dave M; Nirunpong, Kachanon; Poll, Anthony; Senkin, Sergey; Smith, Vincent J; Williams, Thomas; Basso, Lorenzo; Bell, Ken W; Belyaev, Alexander; Brew, Christopher; Brown, Robert M; Cockerill, David JA; Coughlan, John A; Harder, Kristian; Harper, Sam; Jackson, James; Kennedy, Bruce W; Olaiya, Emmanuel; Petyt, David; Radburn-Smith, Benjamin Charles; Shepherd-Themistocleous, Claire; Tomalin, Ian R; Womersley, William John; Bainbridge, Robert; Ball, Gordon; Beuselinck, Raymond; Buchmuller, Oliver; Colling, David; Cripps, Nicholas; Cutajar, Michael; Dauncey, Paul; Davies, Gavin; Della Negra, Michel; Ferguson, William; Fulcher, Jonathan; Futyan, David; Gilbert, Andrew; Guneratne Bryer, Arlo; Hall, Geoffrey; Hatherell, Zoe; Hays, Jonathan; Iles, Gregory; Jarvis, Martyn; Karapostoli, Georgia; Lyons, Louis; Magnan, Anne-Marie; Marrouche, Jad; Mathias, Bryn; Nandi, Robin; Nash, Jordan; Nikitenko, Alexander; Papageorgiou, Anastasios; Pesaresi, Mark; Petridis, Konstantinos; Pioppi, Michele; Raymond, David Mark; Rogerson, Samuel; Rompotis, Nikolaos; Rose, Andrew; Ryan, Matthew John; Seez, Christopher; Sparrow, Alex; Tapper, Alexander; Tourneur, Stephane; Vazquez Acosta, Monica; Virdee, Tejinder; Wakefield, Stuart; Wardle, Nicholas; Wardrope, David; Whyntie, Tom; Barrett, Matthew; Chadwick, Matthew; Cole, Joanne; Hobson, Peter R; Khan, Akram; Kyberd, Paul; Leslie, Dawn; Martin, William; Reid, Ivan; Symonds, Philip; Teodorescu, Liliana; Turner, Mark; Hatakeyama, Kenichi; Liu, Hongxuan; Scarborough, Tara; Henderson, Conor; Avetisyan, Aram; Bose, Tulika; Carrera Jarrin, Edgar; Fantasia, Cory; Heister, Arno; St John, Jason; Lawson, Philip; Lazic, Dragoslav; Rohlf, James; Sperka, David; Sulak, Lawrence; Bhattacharya, Saptaparna; Cutts, David; Ferapontov, Alexey; Heintz, Ulrich; Jabeen, Shabnam; Kukartsev, Gennadiy; Landsberg, Greg; Luk, Michael; Narain, Meenakshi; Nguyen, Duong; Segala, Michael; Sinthuprasith, Tutanon; Speer, Thomas; Tsang, Ka Vang; Breedon, Richard; Breto, Guillermo; Calderon De La Barca Sanchez, Manuel; Caulfield, Matthew; Chauhan, Sushil; Chertok, Maxwell; Conway, John; Conway, Rylan; Cox, Peter Timothy; Dolen, James; Erbacher, Robin; Gardner, Michael; Houtz, Rachel; Ko, Winston; Kopecky, Alexandra; Lander, Richard; Mall, Orpheus; Miceli, Tia; Nelson, Randy; Pellett, Dave; Robles, Jorge; Rutherford, Britney; Searle, Matthew; Smith, John; Squires, Michael; Tripathi, Mani; Vasquez Sierra, Ricardo; Andreev, Valeri; Arisaka, Katsushi; Cline, David; Cousins, Robert; Duris, Joseph; Erhan, Samim; Everaerts, Pieter; Farrell, Chris; Hauser, Jay; Ignatenko, Mikhail; Jarvis, Chad; Plager, Charles; Rakness, Gregory; Schlein, Peter; Tucker, Jordan; Valuev, Vyacheslav; Weber, Matthias; Babb, John; Clare, Robert; Ellison, John Anthony; Gary, J William; Giordano, Ferdinando; Hanson, Gail; Jeng, Geng-Yuan; Liu, Hongliang; Long, Owen Rosser; Luthra, Arun; Nguyen, Harold; Paramesvaran, Sudarshan; Sturdy, Jared; Sumowidagdo, Suharyo; Wilken, Rachel; Wimpenny, Stephen; Andrews, Warren; Branson, James G; Cerati, Giuseppe Benedetto; Cittolin, Sergio; Evans, David; Golf, Frank; Holzner, André; Kelley, Ryan; Lebourgeois, Matthew; Letts, James; Macneill, Ian; Mangano, Boris; Padhi, Sanjay; Palmer, Christopher; Petrucciani, Giovanni; Pi, Haifeng; Pieri, Marco; Ranieri, Riccardo; Sani, Matteo; Sfiligoi, Igor; Sharma, Vivek; Simon, Sean; Sudano, Elizabeth; Tadel, Matevz; Tu, Yanjun; Vartak, Adish; Wasserbaech, Steven; Würthwein, Frank; Yagil, Avraham; Yoo, Jaehyeok; Barge, Derek; Bellan, Riccardo; Campagnari, Claudio; D'Alfonso, Mariarosaria; Danielson, Thomas; Flowers, Kristen; Geffert, Paul; Incandela, Joe; Justus, Christopher; Kalavase, Puneeth; Koay, Sue Ann; Kovalskyi, Dmytro; Krutelyov, Vyacheslav; Lowette, Steven; Mccoll, Nickolas; Pavlunin, Viktor; Rebassoo, Finn; Ribnik, Jacob; Richman, Jeffrey; Rossin, Roberto; Stuart, David; To, Wing; Vlimant, Jean-Roch; West, Christopher; Apresyan, Artur; Bornheim, Adolf; Bunn, Julian; Chen, Yi; Di Marco, Emanuele; Duarte, Javier; Gataullin, Marat; Ma, Yousi; Mott, Alexander; Newman, Harvey B; Rogan, Christopher; Timciuc, Vladlen; Traczyk, Piotr; Veverka, Jan; Wilkinson, Richard; Yang, Yong; Zhu, Ren-Yuan; Akgun, Bora; Carroll, Ryan; Ferguson, Thomas; Iiyama, Yutaro; Jang, Dong Wook; Jun, Soon Yung; Liu, Yueh-Feng; Paulini, Manfred; Russ, James; Vogel, Helmut; Vorobiev, Igor; Cumalat, John Perry; Dinardo, Mauro Emanuele; Drell, Brian Robert; Edelmaier, Christopher; Ford, William T; Gaz, Alessandro; Heyburn, Bernadette; Luiggi Lopez, Eduardo; Nauenberg, Uriel; Smith, James; Stenson, Kevin; Ulmer, Keith; Wagner, Stephen Robert; Zang, Shi-Lei; Agostino, Lorenzo; Alexander, James; Chatterjee, Avishek; Eggert, Nicholas; Gibbons, Lawrence Kent; Heltsley, Brian; Hopkins, Walter; Khukhunaishvili, Aleko; Kreis, Benjamin; Mirman, Nathan; Nicolas Kaufman, Gala; Patterson, Juliet Ritchie; Ryd, Anders; Salvati, Emmanuele; Sun, Werner; Teo, Wee Don; Thom, Julia; Thompson, Joshua; Vaughan, Jennifer; Weng, Yao; Winstrom, Lucas; Wittich, Peter; Biselli, Angela; Winn, Dave; Abdullin, Salavat; Albrow, Michael; Anderson, Jacob; Apollinari, Giorgio; Atac, Muzaffer; Bakken, Jon Alan; Bauerdick, Lothar AT; Beretvas, Andrew; Berryhill, Jeffrey; Bhat, Pushpalatha C; Bloch, Ingo; Burkett, Kevin; Butler, Joel Nathan; Chetluru, Vasundhara; Cheung, Harry; Chlebana, Frank; Cihangir, Selcuk; Cooper, William; Eartly, David P; Elvira, Victor Daniel; Esen, Selda; Fisk, Ian; Freeman, Jim; Gao, Yanyan; Gottschalk, Erik; Green, Dan; Gutsche, Oliver; Hanlon, Jim; Harris, Robert M; Hirschauer, James; Hooberman, Benjamin; Jensen, Hans; Jindariani, Sergo; Johnson, Marvin; Joshi, Umesh; Klima, Boaz; Kunori, Shuichi; Kwan, Simon; Leonidopoulos, Christos; Lincoln, Don; Lipton, Ron; Lykken, Joseph; Maeshima, Kaori; Marraffino, John Michael; Maruyama, Sho; Mason, David; McBride, Patricia; Miao, Ting; Mishra, Kalanand; Mrenna, Stephen; Musienko, Yuri; Newman-Holmes, Catherine; O'Dell, Vivian; Pivarski, James; Pordes, Ruth; Prokofyev, Oleg; Schwarz, Thomas; Sexton-Kennedy, Elizabeth; Sharma, Seema; Spalding, William J; Spiegel, Leonard; Tan, Ping; Taylor, Lucas; Tkaczyk, Slawek; Uplegger, Lorenzo; Vaandering, Eric Wayne; Vidal, Richard; Whitmore, Juliana; Wu, Weimin; Yang, Fan; Yumiceva, Francisco; Yun, Jae Chul; Acosta, Darin; Avery, Paul; Bourilkov, Dimitri; Chen, Mingshui; Das, Souvik; De Gruttola, Michele; Di Giovanni, Gian Piero; Dobur, Didar; Drozdetskiy, Alexey; Field, Richard D; Fisher, Matthew; Fu, Yu; Furic, Ivan-Kresimir; Gartner, Joseph; Goldberg, Sean; Hugon, Justin; Kim, Bockjoo; Konigsberg, Jacobo; Korytov, Andrey; Kropivnitskaya, Anna; Kypreos, Theodore; Low, Jia Fu; Matchev, Konstantin; Milenovic, Predrag; Mitselmakher, Guenakh; Muniz, Lana; Remington, Ronald; Rinkevicius, Aurelijus; Schmitt, Michael; Scurlock, Bobby; Sellers, Paul; Skhirtladze, Nikoloz; Snowball, Matthew; Wang, Dayong; Yelton, John; Zakaria, Mohammed; Gaultney, Vanessa; Lebolo, Luis Miguel; Linn, Stephan; Markowitz, Pete; Martinez, German; Rodriguez, Jorge Luis; Adams, Todd; Askew, Andrew; Bochenek, Joseph; Chen, Jie; Diamond, Brendan; Gleyzer, Sergei V; Haas, Jeff; Hagopian, Sharon; Hagopian, Vasken; Jenkins, Merrill; Johnson, Kurtis F; Prosper, Harrison; Sekmen, Sezen; Veeraraghavan, Venkatesh; Weinberg, Marc; Baarmand, Marc M; Dorney, Brian; Hohlmann, Marcus; Kalakhety, Himali; Vodopiyanov, Igor; Adams, Mark Raymond; Anghel, Ioana Maria; Apanasevich, Leonard; Bai, Yuting; Bazterra, Victor Eduardo; Betts, Russell Richard; Callner, Jeremy; Cavanaugh, Richard; Dragoiu, Cosmin; Gauthier, Lucie; Gerber, Cecilia Elena; Hofman, David Jonathan; Khalatyan, Samvel; Kunde, Gerd J; Lacroix, Florent; Malek, Magdalena; O'Brien, Christine; Silkworth, Christopher; Silvestre, Catherine; Strom, Derek; Varelas, Nikos; Akgun, Ugur; Albayrak, Elif Asli; Bilki, Burak; Clarida, Warren; Duru, Firdevs; Griffiths, Scott; Lae, Chung Khim; McCliment, Edward; Merlo, Jean-Pierre; Mermerkaya, Hamit; Mestvirishvili, Alexi; Moeller, Anthony; Nachtman, Jane; Newsom, Charles Ray; Norbeck, Edwin; Olson, Jonathan; Onel, Yasar; Ozok, Ferhat; Sen, Sercan; Tiras, Emrah; Wetzel, James; Yetkin, Taylan; Yi, Kai; Barnett, Bruce Arnold; Blumenfeld, Barry; Bolognesi, Sara; Bonato, Alessio; Fehling, David; Giurgiu, Gavril; Gritsan, Andrei; Guo, Zijin; Hu, Guofan; Maksimovic, Petar; Rappoccio, Salvatore; Swartz, Morris; Tran, Nhan Viet; Whitbeck, Andrew; Baringer, Philip; Bean, Alice; Benelli, Gabriele; Grachov, Oleg; Kenny Iii, Raymond Patrick; Murray, Michael; Noonan, Daniel; Sanders, Stephen; Stringer, Robert; Tinti, Gemma; Wood, Jeffrey Scott; Zhukova, Victoria; Barfuss, Anne-Fleur; Bolton, Tim; Chakaberia, Irakli; Ivanov, Andrew; Khalil, Sadia; Makouski, Mikhail; Maravin, Yurii; Shrestha, Shruti; Svintradze, Irakli; Gronberg, Jeffrey; Lange, David; Wright, Douglas; Baden, Drew; Boutemeur, Madjid; Calvert, Brian; Eno, Sarah Catherine; Gomez, Jaime; Hadley, Nicholas John; Kellogg, Richard G; Kirn, Malina; Kolberg, Ted; Lu, Ying; Marionneau, Matthieu; Mignerey, Alice; Peterman, Alison; Rossato, Kenneth; Rumerio, Paolo; Skuja, Andris; Temple, Jeffrey; Tonjes, Marguerite; Tonwar, Suresh C; Twedt, Elizabeth; Alver, Burak; Bauer, Gerry; Bendavid, Joshua; Busza, Wit; Butz, Erik; Cali, Ivan Amos; Chan, Matthew; Dutta, Valentina; Gomez Ceballos, Guillelmo; Goncharov, Maxim; Hahn, Kristan Allan; Kim, Yongsun; Klute, Markus; Lee, Yen-Jie; Li, Wei; Luckey, Paul David; Ma, Teng; Nahn, Steve; Paus, Christoph; Ralph, Duncan; Roland, Christof; Roland, Gunther; Rudolph, Matthew; Stephans, George; Stöckli, Fabian; Sumorok, Konstanty; Sung, Kevin; Velicanu, Dragos; Wenger, Edward Allen; Wolf, Roger; Wyslouch, Bolek; Xie, Si; Yang, Mingming; Yilmaz, Yetkin; Yoon, Sungho; Zanetti, Marco; Cooper, Seth; Cushman, Priscilla; Dahmes, Bryan; De Benedetti, Abraham; Franzoni, Giovanni; Gude, Alexander; Haupt, Jason; Kao, Shih-Chuan; Klapoetke, Kevin; Kubota, Yuichi; Mans, Jeremy; Pastika, Nathaniel; Rekovic, Vladimir; Rusack, Roger; Sasseville, Michael; Singovsky, Alexander; Tambe, Norbert; Turkewitz, Jared; Cremaldi, Lucien Marcus; Godang, Romulus; Kroeger, Rob; Perera, Lalith; Rahmat, Rahmat; Sanders, David A; Summers, Don; Avdeeva, Ekaterina; Bloom, Kenneth; Bose, Suvadeep; Butt, Jamila; Claes, Daniel R; Dominguez, Aaron; Eads, Michael; Jindal, Pratima; Keller, Jason; Kravchenko, Ilya; Lazo-Flores, Jose; Malbouisson, Helena; Malik, Sudhir; Snow, Gregory R; Baur, Ulrich; Godshalk, Andrew; Iashvili, Ia; Jain, Supriya; Kharchilava, Avto; Kumar, Ashish; Shipkowski, Simon Peter; Smith, Kenneth; Wan, Zongru; Alverson, George; Barberis, Emanuela; Baumgartel, Darin; Chasco, Matthew; Trocino, Daniele; Wood, Darien; Zhang, Jinzhong; Anastassov, Anton; Kubik, Andrew; Mucia, Nicholas; Odell, Nathaniel; Ofierzynski, Radoslaw Adrian; Pollack, Brian; Pozdnyakov, Andrey; Schmitt, Michael; Stoynev, Stoyan; Velasco, Mayda; Won, Steven; Antonelli, Louis; Berry, Douglas; Brinkerhoff, Andrew; Hildreth, Michael; Jessop, Colin; Karmgard, Daniel John; Kolb, Jeff; Lannon, Kevin; Luo, Wuming; Lynch, Sean; Marinelli, Nancy; Morse, David Michael; Pearson, Tessa; Ruchti, Randy; Slaunwhite, Jason; Valls, Nil; Wayne, Mitchell; Wolf, Matthias; Ziegler, Jill; Bylsma, Ben; Durkin, Lloyd Stanley; Hill, Christopher; Killewald, Phillip; Kotov, Khristian; Ling, Ta-Yung; Puigh, Darren; Rodenburg, Marissa; Vuosalo, Carl; Williams, Grayson; Adam, Nadia; Berry, Edmund; Elmer, Peter; Gerbaudo, Davide; Halyo, Valerie; Hebda, Philip; Hegeman, Jeroen; Hunt, Adam; Laird, Edward; Lopes Pegna, David; Lujan, Paul; Marlow, Daniel; Medvedeva, Tatiana; Mooney, Michael; Olsen, James; Piroué, Pierre; Quan, Xiaohang; Raval, Amita; Saka, Halil; Stickland, David; Tully, Christopher; Werner, Jeremy Scott; Zuranski, Andrzej; Acosta, Jhon Gabriel; Huang, Xing Tao; Lopez, Angel; Mendez, Hector; Oliveros, Sandra; Ramirez Vargas, Juan Eduardo; Zatserklyaniy, Andriy; Alagoz, Enver; Barnes, Virgil E; Benedetti, Daniele; Bolla, Gino; Bortoletto, Daniela; De Mattia, Marco; Everett, Adam; Gutay, Laszlo; Hu, Zhen; Jones, Matthew; Koybasi, Ozhan; Kress, Matthew; Laasanen, Alvin T; Leonardo, Nuno; Maroussov, Vassili; Merkel, Petra; Miller, David Harry; Neumeister, Norbert; Shipsey, Ian; Silvers, David; Svyatkovskiy, Alexey; Vidal Marono, Miguel; Yoo, Hwi Dong; Zablocki, Jakub; Zheng, Yu; Guragain, Samir; Parashar, Neeti; Adair, Antony; Boulahouache, Chaouki; Cuplov, Vesna; Ecklund, Karl Matthew; Geurts, Frank JM; Padley, Brian Paul; Redjimi, Radia; Roberts, Jay; Zabel, James; Betchart, Burton; Bodek, Arie; Chung, Yeon Sei; Covarelli, Roberto; de Barbaro, Pawel; Demina, Regina; Eshaq, Yossof; Garcia-Bellido, Aran; Goldenzweig, Pablo; Gotra, Yury; Han, Jiyeon; Harel, Amnon; Miner, Daniel Carl; Petrillo, Gianluca; Sakumoto, Willis; Vishnevskiy, Dmitry; Zielinski, Marek; Bhatti, Anwar; Ciesielski, Robert; Demortier, Luc; Goulianos, Konstantin; Lungu, Gheorghe; Malik, Sarah; Mesropian, Christina; Arora, Sanjay; Atramentov, Oleksiy; Barker, Anthony; Chou, John Paul; Contreras-Campana, Christian; Contreras-Campana, Emmanuel; Duggan, Daniel; Ferencek, Dinko; Gershtein, Yuri; Gray, Richard; Halkiadakis, Eva; Hidas, Dean; Hits, Dmitry; Lath, Amitabh; Panwalkar, Shruti; Park, Michael; Patel, Rishi; Richards, Alan; Rose, Keith; Salur, Sevil; Schnetzer, Steve; Seitz, Claudia; Somalwar, Sunil; Stone, Robert; Thomas, Scott; Cerizza, Giordano; Hollingsworth, Matthew; Spanier, Stefan; Yang, Zong-Chang; York, Andrew; Eusebi, Ricardo; Flanagan, Will; Gilmore, Jason; Kamon, Teruki; Khotilovich, Vadim; Montalvo, Roy; Osipenkov, Ilya; Pakhotin, Yuriy; Perloff, Alexx; Roe, Jeffrey; Safonov, Alexei; Sakuma, Tai; Sengupta, Sinjini; Suarez, Indara; Tatarinov, Aysen; Toback, David; Akchurin, Nural; Bardak, Cemile; Damgov, Jordan; Dudero, Phillip Russell; Jeong, Chiyoung; Kovitanggoon, Kittikul; Lee, Sung Won; Libeiro, Terence; Mane, Poonam; Roh, Youn; Sill, Alan; Volobouev, Igor; Wigmans, Richard; Appelt, Eric; Brownson, Eric; Engh, Daniel; Florez, Carlos; Gabella, William; Gurrola, Alfredo; Issah, Michael; Johns, Willard; Kurt, Pelin; Maguire, Charles; Melo, Andrew; Sheldon, Paul; Snook, Benjamin; Tuo, Shengquan; Velkovska, Julia; Arenton, Michael Wayne; Balazs, Michael; Boutle, Sarah; Conetti, Sergio; Cox, Bradley; Francis, Brian; Goadhouse, Stephen; Goodell, Joseph; Hirosky, Robert; Ledovskoy, Alexander; Lin, Chuanzhe; Neu, Christopher; Wood, John; Yohay, Rachel; Gollapinni, Sowjanya; Harr, Robert; Karchin, Paul Edmund; Kottachchi Kankanamge Don, Chamath; Lamichhane, Pramod; Mattson, Mark; Milstène, Caroline; Sakharov, Alexandre; Anderson, Michael; Bachtis, Michail; Belknap, Donald; Bellinger, James Nugent; Bernardini, Jacopo; Borrello, Laura; Carlsmith, Duncan; Cepeda, Maria; Dasu, Sridhara; Efron, Jonathan; Friis, Evan; Gray, Lindsey; Grogg, Kira Suzanne; Grothe, Monika; Hall-Wilton, Richard; Herndon, Matthew; Hervé, Alain; Klabbers, Pamela; Klukas, Jeffrey; Lanaro, Armando; Lazaridis, Christos; Leonard, Jessica; Loveless, Richard; Mohapatra, Ajit; Ojalvo, Isabel; Pierro, Giuseppe Antonio; Ross, Ian; Savin, Alexander; Smith, Wesley H; Swanson, Joshua

    2012-01-01

    A study of dijet production in proton-proton collisions was performed at $\\sqrt{s}$ = 7 TeV for jets with pt > 35 GeV and abs(y) < 4.7 using data collected with the CMS detector at the LHC in 2010. Events with at least one pair of jets are denoted as "inclusive". Events with exactly one pair of jets are called "exclusive". The ratio of the cross section of all pairwise combinations of jets to the exclusive dijet cross section as a function of the rapidity difference between jets abs(Delta(y)) is measured for the first time up to abs(Delta(y)) = 9.2. The ratio of the cross section for the pair consisting of the most forward and the most backward jet from the inclusive sample to the exclusive dijet cross section is also presented. The predictions of the Monte Carlo event generators PYTHIA6 and PYTHIA8 agree with the measurements. In both ratios the HERWIG++ generator exhibits a more pronounced rise versus abs(Delta(y)) than observed in the data. The BFKL-motivated generators CASCADE and HEJ+ARIADNE predict f...

  8. Revolutionizing Cross-sectional Imaging

    Fan, Yifang; Luo, Liangping; Lin, Wentao; Li, Zhiyu; Zhong, Xin; Shi, Changzheng; Newman, Tony; Zhou, Yi; Lv, Changsheng; Fan, Yuzhou

    2014-01-01

    Cross-sectional imaging is so important that, six Nobel Prizes have been awarded to the field of nuclear magnetic resonance alone because it revolutionized clinical diagnosis. The BigBrain project supported by up to 1 billion euro each over a time period of 10 years predicts to "revolutionize our ability to understand internal brain organization" (Evan 2013). If we claim that cross-sectional imaging diagnosis is only semi-quantitative, some may believe because no doctor would ever tell their patient that we can observe the changes of this cross-sectional image next time. If we claim that BigBrain will make no difference in clinical medicine, then few would believe because no doctor would ever tell their patient to scan this part of the image and compare it with that from the BigBrain. If we claim that the BigBrain Project and the Human Brain Project have defects in their key method, one might believe it. But this is true. The key lies in the reconstruction of any cross-sectional image along any axis. Using Ga...

  9. Terahertz radar cross section measurements

    Iwaszczuk, Krzysztof; Heiselberg, Henning; Jepsen, Peter Uhd

    2010-01-01

    We perform angle- and frequency-resolved radar cross section (RCS) measurements on objects at terahertz frequencies. Our RCS measurements are performed on a scale model aircraft of size 5-10 cm in polar and azimuthal configurations, and correspond closely to RCS measurements with conventional radar...

  10. Cross sections for nuclear astrophysics

    General properties of low-energy cross sections and of reaction rates are presented. We describe different models used in nuclear astrophysics: microscopic models, the potential model, and the R-matrix method. Two important reactions, 7Be(p,γ)8B and 12C(α,γ)16O, are then briefly discussed. (author)

  11. Metonymy and Cross Section Demand

    Evstigneev, Igor V.; Hildenbrand, Werner; Jerison, Michael

    1996-01-01

    Cross section consumer expenditure data are frequently used to make conclusions about consumer demand behavior. Such conclusions, however, can only be justified under certain assumptions, which are often left unstated in the empirical demand literature. An assumption of this type, the metonymy hypothesis, was stated rigorously and then exploited by Hardle, Hildenbrand and Jerison when analyzing the monotonicity property of aggregate demand functions. The purpose of the present paper is to exa...

  12. Wind Turbine Radar Cross Section

    David Jenn; Cuong Ton

    2012-01-01

    The radar cross section (RCS) of a wind turbine is a figure of merit for assessing its effect on the performance of electronic systems. In this paper, the fundamental equations for estimating the wind turbine clutter signal in radar and communication systems are presented. Methods of RCS prediction are summarized, citing their advantages and disadvantages. Bistatic and monostatic RCS patterns for two wind turbine configurations, a horizontal axis three-blade design and a vertical axi...

  13. New activation cross section data

    New nuclear cross section libraries (known as USACT92) have been created for activation calculations. A point-wise file was created from merging the previous version of the activation library, the U.S. Nuclear Data Library (ENDF/B-VI), and the European Activation File (EAF-2). 175 and 99 multi-group versions were also created. All the data are available at the National Energy Research Supercomputer Center

  14. Microscopic cross sections: An utopia?

    Hilaire, S. [CEA Bruyeres-le-Chatel, DIF 91 (France); Koning, A.J. [Nuclear Research and Consultancy Group, PO Box 25, 1755 ZG Petten (Netherlands); Goriely, S. [Institut d' Astronomie et d' Astrophysique, Universite Libre de Bruxelles, Campus de la Plaine, CP 226, 1050 Brussels (Belgium)

    2010-07-01

    The increasing need for cross sections far from the valley of stability poses a challenge for nuclear reaction models. So far, predictions of cross sections have relied on more or less phenomenological approaches, depending on parameters adjusted to available experimental data or deduced from systematical relations. While such predictions are expected to be reliable for nuclei not too far from the experimentally known regions, it is clearly preferable to use more fundamental approaches, based on sound physical bases, when dealing with very exotic nuclei. Thanks to the high computer power available today, all major ingredients required to model a nuclear reaction can now be (and have been) microscopically (or semi-microscopically) determined starting from the information provided by a nucleon-nucleon effective interaction. We have implemented all these microscopic ingredients in the TALYS nuclear reaction code, and we are now almost able to perform fully microscopic cross section calculations. The quality of these ingredients and the impact of using them instead of the usually adopted phenomenological parameters will be discussed. (authors)

  15. [Fast neutron cross section measurements

    In this report, we outline the progress achieved in two distinct under the DOE-sponsored cross section project: the initial results obtained from the pulsed 14 MeV neutron facility, and a cooperative effort with Argonne National Laboratory in the measurement of fast neutron cross sections in yttrium. In the 14 MeV neutron laboratory, this year has seen the maturation of the project into one in which initial scattering measurements are now underway. We have improved the accelerator and ion source in several significant ways, so that neutron intensities have now been proven to be adequate for our series of elastic scattering angular distribution measurements outlined in our initial proposal of two years ago. We have successfully tested all components of the time-of-flight spectrometer and recorded initial neutron spectra from the ring targets that we have obtained for our first angular distribution measurements. Examples of the time-of-flight spectra that have been obtained are given later in this report. At the present time, the accelerator is operating with the highest degree of reliability that we have experienced since installing the pulsing system. Improvements made over the past year have not only increased the available neutron intensity, but also increased our capability to deal with inevitable component failures that require repair or replacement. The measurements carried out in conjunction with Argonne have contributed significantly to the available database on fast neutron interactions in yttrium. Results indicate that the cross section for the 89 Y(n,p)89Sr reaction is substantially higher than represented in ENDF/B-VI

  16. Wind Turbine Radar Cross Section

    David Jenn

    2012-01-01

    Full Text Available The radar cross section (RCS of a wind turbine is a figure of merit for assessing its effect on the performance of electronic systems. In this paper, the fundamental equations for estimating the wind turbine clutter signal in radar and communication systems are presented. Methods of RCS prediction are summarized, citing their advantages and disadvantages. Bistatic and monostatic RCS patterns for two wind turbine configurations, a horizontal axis three-blade design and a vertical axis helical design, are shown. The unique electromagnetic scattering features, the effect of materials, and methods of mitigating wind turbine clutter are also discussed.

  17. Near-Threshold Photodetachment Cross Section of (SF6)(n)(-) Cluster Anions: The Ion Core Structure.

    Luzon, Itamar; Nagler, Maoz; Chandrasekaran, Vijayanand; Heber, Oded; Strasser, Daniel

    2016-01-21

    Photodetachment cross sections as a function of photon energy are measured for cold (SF6)n(-) cluster anions stored in an electrostatic ion beam trap. Absolute photodetachment cross sections near the adiabatic limit are reported. The strong dependence of the SF6(-) absolute photodetachment cross section on the anion equilibrium bond length leads to the conclusion that the excess charge is localized on a SF6(-) ion core that is only subtly perturbed by the neighboring cluster units. PMID:26667587

  18. Electron-Impact Ionization Cross Section Database

    SRD 107 Electron-Impact Ionization Cross Section Database (Web, free access)   This is a database primarily of total ionization cross sections of molecules by electron impact. The database also includes cross sections for a small number of atoms and energy distributions of ejected electrons for H, He, and H2. The cross sections were calculated using the Binary-Encounter-Bethe (BEB) model, which combines the Mott cross section with the high-incident energy behavior of the Bethe cross section. Selected experimental data are included.

  19. Discussion on cross section measurement for DD-bar production around Ψ (3770)

    We give a brief discussion on the measurement of the cross section for DD-bar production around the Ψ (3770) resonance, and point out a new calculation of the cross sections based on the absolute measurements. Compared with single tag and double tag analyses, the new calculation provides us with many more opportunities to perform the cross section measurement. (authors)

  20. Evaluation of cross section for 103Rh

    A completely new evaluation for the neutron cross sections is presented. The experimental data mainly referred to EXFOR, and the recommended cross sections are compared with ENDF/B-6, BROND-2, JENDL-3.2 and JEF-2

  1. Relative vs. absolute physiological measures as predictors of mountain bike cross-country race performance.

    Gregory, John; Johns, David P; Walls, Justin T

    2007-02-01

    The aims of this study were to document the effect terrain has on the physiological responses and work demands (power output) of riding a typical mountain bike cross-country course under race conditions. We were particularly interested in determining whether physiological measures relative to mass were better predictors of race performance than absolute measures. Eleven A-grade male cross-country mountain bike riders (VO2max 67.1 +/- 3.6 ml x kg(-1) x min(-1)) performed 2 tests: a laboratory-based maximum progressive exercise test, and a 15.5-km (six 2.58-km laps) mountain bike cross-country time trial. There were significant differences among the speed, cadence, and power output measured in each of 8 different terrain types found in the cross-country time trial course. The highest average speed was measured during the 10-15% downhill section (22.7 +/- 2.6 km x h(-1)), whereas the cadence was highest in the posttechnical flat sections (74.3 +/- 5.6 rpm) and lowest on the 15-20% downhill sections (6.4 +/- 12.1 rpm). The highest mean heart rate (HR) was obtained during the steepest (15-20% incline) section of the course (179 +/- 8 b x min(-1)), when the power output was greatest (419.8 +/- 39.7 W). However, HR remained elevated relative to power output in the downhill sections of the course. Physiological measures relative to total rider mass correlated more strongly to average course speed than did absolute measures (peak power relative to mass r = 0.93, p < 0.01, vs. peak power r = 0.64, p < 0.05; relative VO2max r = 0.80, p < 0.05, vs. VO2max r = 0.66, p < 0.05; power at anaerobic threshold relative to mass r = 0.78, p < 0.05, vs. power at anaerobic threshold r = 0.5, p < 0.05). This suggests that mountain bike cross-country training programs should focus upon improving relative physiological values rather than focusing upon maximizing absolute values to improve performance. PMID:17313256

  2. Photoproduction total cross section and shower development

    Cornet, F.; García Canal, C. A.; Grau, A.; Pancheri, G.; Sciutto, S. J.

    2015-12-01

    The total photoproduction cross section at ultrahigh energies is obtained using a model based on QCD minijets and soft-gluon resummation and the ansatz that infrared gluons limit the rise of total cross sections. This cross section is introduced into the Monte Carlo system AIRES to simulate extended air showers initiated by cosmic ray photons. The impact of the new photoproduction cross section on common shower observables, especially those related to muon production, is compared with previous results.

  3. Photoproduction total cross section and shower development

    Cornet, F; Grau, A; Pancheri, G; Sciutto, S J

    2015-01-01

    The total photoproduction cross section at ultra-high energies is obtained using a model based on QCD minijets and soft-gluon resummation and the ansatz that infrared gluons limit the rise of total cross sections. This cross section is introduced into the Monte Carlo system AIRES to simulate extended air-showers initiated by cosmic ray photons. The impact of the new photoproduction cross section on common shower observables, especially those related to muon production, is compared with previous results.

  4. JENDL gas-production cross section file

    The JENDL gas-production cross section file was compiled by taking cross-section data from JENDL-3 and by using the ENDF-5 format. The data were given to 23 nuclei or elements in light nuclei and structural materials. Graphs of the cross sections and brief description on their evaluation methods are given in this report. (author)

  5. Temperature dependence of the HNO3 UV absorption cross sections

    Burkholder, James B.; Talukdar, Ranajit K.; Ravishankara, A. R.; Solomon, Susan

    1993-01-01

    The temperature dependence of the HNO3 absorption cross sections between 240 and 360 K over the wavelength range 195 to 350 nm has been measured using a diode array spectrometer. Absorption cross sections were determined using both (1) absolute pressure measurements at 298 K and (2) a dual absorption cell arrangement in which the absorption spectrum at various temperatures is measured relative to the room temperature absorption spectrum. The HNO3 absorption spectrum showed a temperature dependence which is weak at short wavelengths but stronger at longer wavelengths which are important for photolysis in the lower stratosphere. The 298 K absorption cross sections were found to be larger than the values currently recommended for atmospheric modeling (DeMore et al., 1992). Our absorption cross section data are critically compared with the previous measurements of both room temperature and temperature-dependent absorption cross sections. Temperature-dependent absorption cross sections of HNO3 are recommended for use in atmospheric modeling. These temperature dependent HNO3 absorption cross sections were used in a two-dimensional dynamical-photochemical model to demonstrate the effects of the revised absorption cross sections on loss rate of HNO3 and the abundance of NO2 in the stratosphere.

  6. [Fast neutron cross section measurements

    From its inception, the Nuclear Data Project at the University of Michigan has concentrated on two major objectives: (1) to carry out carefully controlled nuclear measurements of the highest possible reliability in support of the national nuclear data program, and (2) to provide an educational opportunity for students with interests in experimental nuclear science. The project has undergone a successful transition from a primary dependence on our photoneutron laboratory to one in which our current research is entirely based on a unique pulsed 14 MeV fast neutron facility. The new experimental facility is unique in its ability to provide nanosecond bursts of 14 MeV neutrons under conditions that are ''clean'' and as scatter-free as possible, and is the only one of its type currently in operation in the United States. It has been designed and put into operation primarily by graduate students, and has met or exceeded all of its important initial performance goals. We have reached the point of its routine operation, and most of the data are now in hand that will serve as the basis for the first two doctoral dissertations to be written by participating graduate students. Our initial results on double differential neutron cross sections will be presented at the May 1993 Fusion Reactor Technology Workshop. We are pleased to report that, after investing several years in equipment assembly and optimization, the project has now entered its ''data production'' phase

  7. SNL RML recommended dosimetry cross section compendium

    Griffin, P.J.; Kelly, J.G.; Luera, T.F. [Sandia National Labs., Albuquerque, NM (United States); VanDenburg, J. [Science and Engineering Associates, Inc., Albuquerque, NM (United States)

    1993-11-01

    A compendium of dosimetry cross sections is presented for use in the characterization of fission reactor spectrum and fluence. The contents of this cross section library are based upon the ENDF/B-VI and IRDF-90 cross section libraries and are recommended as a replacement for the DOSCROS84 multigroup library that is widely used by the dosimetry community. Documentation is provided on the rationale for the choice of the cross sections selected for inclusion in this library and on the uncertainty and variation in cross sections presented by state-of-the-art evaluations.

  8. Recent fission cross section standards measurements

    Wasson, O.A.

    1985-01-01

    The /sup 235/U(n,f) reaction is the standard by which most neutron induced fission cross sections are determined. Most of these cross sections are derived from relatively easy ratio measurements to /sup 235/U. However, the more difficult /sup 235/U(n,f) cross section measurements require the use of advanced neutron detectors for the determination of the incident neutron fluence. Examples of recent standard cross section measurements are discussed, various neutron detectors are described, and the status of the /sup 235/U(n,f) cross section standard is assessed. 23 refs., 8 figs., 4 tabs.

  9. Recent fission cross section standards measurements

    The 235U(n,f) reaction is the standard by which most neutron induced fission cross sections are determined. Most of these cross sections are derived from relatively easy ratio measurements to 235U. However, the more difficult 235U(n,f) cross section measurements require the use of advanced neutron detectors for the determination of the incident neutron fluence. Examples of recent standard cross section measurements are discussed, various neutron detectors are described, and the status of the 235U(n,f) cross section standard is assessed. 23 refs., 8 figs., 4 tabs

  10. Radar Cross-section Measurement Techniques

    V.G. Borkar

    2010-03-01

    Full Text Available Radar cross-section (RCS is an important study parameter for defence applications specially dealing with airborne weapon system. The RCS parameter guides the detection range for a target and is therefore studied to understand the effectiveness of a weapon system. It is not only important to understand the RCS characteristics of a target but also to look into the diagnostic mode of study where factors contributing to a particular RCS values are studied. This further opens up subject like RCS suppression and stealth. The paper discusses the RCS principle, control, and need of measurements. Classification of RCS in terms of popular usage is explained with detailed theory of RF imaging and inverse synthetic aperture radar (ISAR. The various types of RCS measurement ranges are explained with brief discussion on outdoor RCS measurement range. The RCS calibration plays a critical role in referencing the measurement to absolute values and has been described.The RCS facility at Reseach Centre Imarat, Hyderabad, is explained with some details of different activities that are carried out including RAM evaluation, scale model testing, and diagnostic imaging.Defence Science Journal, 2010, 60(2, pp.204-212, DOI:http://dx.doi.org/10.14429/dsj.60.341

  11. Background-cross-section-dependent subgroup parameters

    A new set of subgroup parameters was derived that can reproduce the self-shielded cross section against a wide range of background cross sections. The subgroup parameters are expressed with a rational equation which numerator and denominator are expressed as the expansion series of background cross section, so that the background cross section dependence is exactly taken into account in the parameters. The advantage of the new subgroup parameters is that they can reproduce the self-shielded effect not only by group basis but also by subgroup basis. Then an adaptive method is also proposed which uses fitting procedure to evaluate the background-cross-section-dependence of the parameters. One of the simple fitting formula was able to reproduce the self-shielded subgroup cross section by less than 1% error from the precise evaluation. (author)

  12. Vertically stabilized elongated cross-section tokamak

    Sheffield, George V.

    1977-01-01

    This invention provides a vertically stabilized, non-circular (minor) cross-section, toroidal plasma column characterized by an external separatrix. To this end, a specific poloidal coil means is added outside a toroidal plasma column containing an endless plasma current in a tokamak to produce a rectangular cross-section plasma column along the equilibrium axis of the plasma column. By elongating the spacing between the poloidal coil means the plasma cross-section is vertically elongated, while maintaining vertical stability, efficiently to increase the poloidal flux in linear proportion to the plasma cross-section height to achieve a much greater plasma volume than could be achieved with the heretofore known round cross-section plasma columns. Also, vertical stability is enhanced over an elliptical cross-section plasma column, and poloidal magnetic divertors are achieved.

  13. Measurement of the 242Pu neutron capture cross section

    Buckner, M. Q.; Wu, C. Y.; Henderson, R. A.; Bucher, B.; Bredeweg, T. A.; Baramsai, B.; Couture, A.; Jandel, M.; Mosby, S.; O'Donnell, J. M.; Ullmann, J. L.; Chyzh, A.; Dance Collaboration

    2015-10-01

    Precision (n,f) and (n, γ) cross sections are important for the network calculations of the radiochemical diagnostic chain for the U.S. DOE's Stockpile Stewardship Program. 242Pu(n, γ) cross section is relevant to the network calculations of Pu and Am. Additionally, new reactor concepts have catalyzed considerable interest in the measurement of improved cross sections for neutron-induced reactions on key actinides. To date, little or no experimental data has been reported on 242Pu(n, γ) for incident neutron energy below 50 keV. A new measurement of the 242Pu(n, γ) reaction was performed with the DANCE together with an improved PPAC for fission-fragment detection at LANSCE during FY14. The relative scale of the 242Pu(n, γ) cross section spans four orders of magnitude for incident neutron energies from thermal to ~ 30 keV. The absolute scale of the 242Pu(n, γ) cross section is set according to the measured 239Pu(n,f) resonance at 7.8 eV; the target was spiked with 239Pu for this measurement. The absolute 242Pu(n, γ) neutron capture cross section is ~ 30% higher than the cross section reported in ENDF for the 2.7 eV resonance. Latest results to be reported. Funded by U.S. DOE Contract No. DE-AC52-07NA27344 (LLNL) and DE-AC52-06NA25396 (LANL). U.S. DOE/NNSA Office of Defense Nuclear Nonproliferation Research and Development. Isotopes (ORNL).

  14. Absolute Integral Cross Sections for the State-selected Ion–Molecule Reaction N2+(X2Σg+ v+ = 0–2) + C2H2 in the Collision Energy Range of 0.03–10.00 eV

    Xu, Yuntao; Xiong, Bo; Chung Chang, Yih; Ng, C. Y.

    2016-08-01

    Using the vacuum ultraviolet laser pulsed field ionization-photoion source, together with the double-quadrupole–double-octopole mass spectrometer developed in our laboratory, we have investigated the state-selected ion–molecule reaction {{{{N}}}2}+({X}2{{{{Σ }}}{{g}}}+; v + = 0–2, N+ = 0–9) + C2H2, achieving high internal-state selectivity and high kinetic energy resolution for reactant {{{{N}}}2}+ ions. The charge transfer (CT) and hydrogen-atom transfer (HT) channels, which lead to the respective formation of product {{{C}}}2{{{{H}}}2}+ and N2H+ ions, are observed. The vibrationally selected absolute integral cross sections for the CT [σ CT(v +)] and HT [[σ HT(v +)] channels obtained in the center-of-mass collision energy (E cm) range of 0.03–10.00 eV reveal opposite E cm dependences. The σ CT(v +) is found to increase as E cm is decreased, and is consistent with the long-range exothermic CT mechanism, whereas the E cm enhancement observed for the σ HT(v +) suggests effective coupling of kinetic energy to internal energy, enhancing the formation of N2H+. The σ HT(v +) curve exhibits a step at E cm = 0.70–1.00 eV, suggesting the involvement of the excited {{{C}}}2{{{{H}}}2}+({A}2{{{{Σ }}}{{g}}}+) state in the HT reaction. Contrary to the strong E cm dependences for σ CT(v +) and σ HT(v +), the effect of vibrational excitation of {{{{N}}}2}+ on both the CT and HT channels is marginal. The branching ratios and cross sections for the CT and HT channels determined in the present study are useful for modeling the atmospheric compositions of Saturn's largest moon, Titan. These cross sections and branching ratios are also valuable for benchmarking theoretical calculations on chemical dynamics of the titled reaction.

  15. Measurements of neutron capture cross sections

    A review of measurement techniques for the neutron capture cross sections is presented. Sell transmission method, activation method, and prompt gamma-ray detection method are described using examples of capture cross section measurements. The capture cross section of 238U measured by three different prompt gamma-ray detection methods (large liquid scintillator, Moxon-Rae detector, and pulse height weighting method) are compared and their discrepancies are resolved. A method how to derive the covariance is described. (author)

  16. Compilation of cross-sections. Pt. 2

    A compilation of integrated cross-sections for hadronic reactions is presented. This is an updated version of CERN/HERA 79-1, 79-2, 79-3. It contains all data published up to the beginning of 1982, but some more recent data have also been included. Plots of the cross sections versus incident laboratory momentum are also given. This volume II contains cross-sections for K+ and K- induced reactions. (orig.)

  17. Cross Sections for Electron Collisions with Methane

    Song, Mi-Young, E-mail: mysong@nfri.re.kr; Yoon, Jung-Sik [Plasma Technology Research Center, National Fusion Research Institute, 814-2 Osikdo-dong, Gunsan, Jeollabuk-do 573-540 (Korea, Republic of); Cho, Hyuck [Department of Physics, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Itikawa, Yukikazu [Institute of Space and Astronautical Science, Sagamihara 252-5210 (Japan); Karwasz, Grzegorz P. [Faculty of Physics, Astronomy and Applied Informatics, University Nicolaus Copernicus, Grudziadzka 5, 87100 Toruń (Poland); Kokoouline, Viatcheslav [Department of Physics, University of Central Florida, Orlando, Florida 32816 (United States); Nakamura, Yoshiharu [6-1-5-201 Miyazaki, Miyamae, Kawasaki 216-0033 (Japan); Tennyson, Jonathan [Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT (United Kingdom)

    2015-06-15

    Cross section data are compiled from the literature for electron collisions with methane (CH{sub 4}) molecules. Cross sections are collected and reviewed for total scattering, elastic scattering, momentum transfer, excitations of rotational and vibrational states, dissociation, ionization, and dissociative attachment. The data derived from swarm experiments are also considered. For each of these processes, the recommended values of the cross sections are presented. The literature has been surveyed through early 2014.

  18. Ion and electron impact ionization cross sections

    Several current projects are described in which cross sections of interest to radiation physics are being measured. These include total and multiple ionization cross sections for protons on several gases covering a wide energy range, the measurement of cross sections differential in the angle and energy of ejected electrons for several gases including water vapor, and a review of proton ionization data. The work on water vapor has also been extended to electron and neutral hydrogen impact. A brief discussion is also given of some systematics of ionization cross sections. 13 references

  19. Improved Empirical Parametrization of Fragmentation Cross Sections

    Sümmerer, Klaus

    2012-01-01

    A new version is proposed for the universal empirical formula, EPAX, which describes fragmentation cross sections in high-energy heavy-ion reactions. The new version, EPAX 3, can be shown to yield cross sections that are in better agreement with experimental data for the most neutron-rich fragments than the previous version. At the same time, the very good agreement of EPAX 2 with data on the neutron-deficient side has been largely maintained. Comparison with measured cross sections show that the bulk of the data is reproduced within a factor of about 2, for cross sections down to the pico-barn range.

  20. Damage cross section library (DAMSIG77)

    The damage cross sections of various materials are converted to a data format, which can be used as library for the program SAND-II. The materials available in this library are graphite, stainless steel, aluminium, silicium, chromium, iron, nickel, copper, zirconium, molybdenum, tungsten, vanadium and niobium. A number of these materials have more than one cross section set, originating from different evaluations. Cross sections for some activation reactions, commonly used to determine thermal and fast neutron fluences have been included too. Moreover, also some artificial cross sections are introduced in this library which can be used to derive values for some physical quantities which may characterize neutron spectra

  1. Simultaneous evaluation of interrelated cross sections by generalized least-squares and related data file requirements

    Though several cross sections have been designated as standards, they are not basic units and are interrelated by ratio measurements. Moreover, as such interactions as 6Li + n and 10B + n involve only two and three cross sections respectively, total cross section data become useful for the evaluation process. The problem can be resolved by a simultaneous evaluation of the available absolute and shape data for cross sections, ratios, sums, and average cross sections by generalized least-squares. A data file is required for such evaluation which contains the originally measured quantities and their uncertainty components. Establishing such a file is a substantial task because data were frequently reported as absolute cross sections where ratios were measured without sufficient information on which reference cross section and which normalization were utilized. Reporting of uncertainties is often missing or incomplete. The requirements for data reporting will be discussed

  2. Compilation of cross-sections. Pt. 4

    This is the fourth volume in our series of data compilations on integrated cross-sections for weak, electromagnetic, and strong interaction processes. This volume covers data on reactions induced by photons, neutrinos, hyperons, and KL0. It contains all data published up to June 1986. Plots of the cross-sections versus incident laboratory momentum are also given. (orig.)

  3. Compilation of cross-sections. Pt. 1

    A compilation of integral cross-sections for hadronic reactions is presented. This is an updated version of CERN/HERA 79-1, 79-2, 79-3. It contains all data published up to the beginning of 1982, but some more recent data have also been included. Plots of the cross-sections versus incident laboratory momentum are also given. (orig.)

  4. Nucleon-XcJ Dissociation Cross Sections

    冯又层; 许晓明; 周代翠

    2002-01-01

    Nucleon-XcJ dissociation cross sections are calculated in a constituent interexchange model in which quark-quark potential is derived from the Buchmüller-Tye quark-anti-quark potential. These new cross sections for dominant reaction channels depend on the centre-of-mass energy of the nucleon and the charmonium.

  5. Fission cross section calculations for Pa isotopes

    Based on the recently measured cross-section values for the neutron-induced fission of 231Pa and our experience gained with other isotopes, new self consistent neutron cross section calculations for n+231Pa have been performed up to 30 MeV. The results are quite different to the existing evaluations, especially above the first chance fission threshold. (authors)

  6. Comparative analysis among several cross section sets

    Critical parameters were calculated using the one dimensional multigroup transport theory for several cross section sets. Calculations have been performed for water mixtures of uranium metal, plutonium metal and uranium-thorium oxide, and for metallics systems, to determine the critical dimensions of geometries (sphere and cylinder). For this aim, the following cross section sets were employed: 1) multigroup cross section sets obtained from the GAMTEC-II code; 2) the HANSEN-ROACH cross section sets; 3) cross section sets from the ENDF/B-IV, processed by the NJOY code. Finally, we have also calculated the corresponding critical radius using the one dimensional multigroup transport DTF-IV code. The numerical results agree within a few percent with the critical values obtained in the literature (where the greatest discrepancy occured in the critical dimensions of water mixtures calculated with the values generated by the NJOY code), a very good results in comparison with similar works. (Author)

  7. Photoproton cross section for 17O

    The measurement of the 17O(γ,p)16N reaction from threshold to an excitation energy of 44 MeV is presented. These results have been summed with the previously measured total photoneutron cross section to provide an approximation to the total photoabsorption cross section of 17O. The magnitude of the 17O photoabsorption cross section at the peak of the Giant Dipole Resonance is considerably less than the equivalent value for the photoabsorption cross sections of 16O and 18O. In addition, the integrated total photoabsorption cross section for 17O (up to 40 MeV) exhausts only about 58% of the sum rule; the values for the cases of 16O and 18O are significantly larger than this. The present data along with results from other reaction channels of this nucleus, were used to make spin, parity, and isospin assignments for several states in 17O. 48 refs., 4 tabs., 7 figs

  8. Recommended evaluation procedure for photonuclear cross section

    Lee, Young-Ouk; Chang, Jonghwa; Fukahori, Tokio [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-03-01

    In order to generate photonuclear cross section library for the necessary applications, data evaluation is combined with theoretical evaluation, since photonuclear cross sections measured cannot provide all necessary data. This report recommends a procedure consisting of four steps: (1) analysis of experimental data, (2) data evaluation, (3) theoretical evaluation and, if necessary, (4) modification of results. In the stage of analysis, data obtained by different measurements are reprocessed through the analysis of their discrepancies to a representative data set. In the data evaluation, photonuclear absorption cross sections are evaluated via giant dipole resonance and quasi-deutron mechanism. With photoabsorption cross sections from the data evaluation, theoretical evaluation is applied to determine various decay channel cross sections and emission spectra using equilibrium and preequilibrium mechanism. After this, the calculated results are compared with measured data, and in some cases the results are modified to better describe measurements. (author)

  9. Photoneutron cross sections for the silicon isotopes

    The photoneutron cross sections for 28Si, 29Si, and 30Si have been measured up to 33 MeV with monoenergetic photons from the annihilation in flight of fast positrons, using neutron multiplicity counting. Average neutron energies were obtained simultaneously with the cross-section data by the ring-ratio technique. The giant dipole resonance for 28Si and 30Si exhibit appreciable fragmentation; that for 29Si does not. The (γ,2n) cross section for 30Si is large; that for 29Si is consistent with zero. The (γ,1n) cross section for 30Si decreases sharply with energy to values near zero as the (γ,2n) cross section grows, then increases to appreciable values as the (γ,2n) cross section diminishes; this extreme behavior, although never seen before, is attributable to the competition between the (γ,n), (γ,2n), and (γ,pn) decay channels. Some properties of the isospin components of the giant resonance are inferred. Other features of the data, including the integrated cross sections, are found to be similar in many respects to corresponding results for the oxygen and magnesium isotopes. The 28Si nucleus is found to be a better core for 29Si and 30Si than might have been expected from previous descriptions of its open-shell character

  10. The 42Ca photoneutron cross section

    The measurement of the 42Ca(γ,nsub(t)) is reported here over the energy range 10.5 - 28 MeV. Bremsstrahlung radiation from the 35 MeV Betatron at this University was used to measure a yield curve of photoneutrons, from which the (γ,nsub(t)) cross section was derived. Since proton and neutron emission are the major decay modes of the giant dipole resonance, summing these cross sections approximates the photo-absorption cross section. With this information the theoretical predictions can be checked

  11. Compilation of cross-sections. Pt. 3

    A compilation of integrated cross-sections for hadronic reactions is presented. This is an updated version of CERN/HERA 79-1, 79-2, 79-3. It contains all data published up to the beginning of 1982, but some more recent data, particularly those from the CERN Collider, have also been included. Plots of the cross-sections versus incident laboratory momentum are also given. This volume III contains cross-sections for p and anti p induced reactions. (orig.)

  12. Screening corrections to the Rutherford cross section

    Differential cross sections for elastic p-Au scattering were measured in the energy range between 0.2 and 0.8 MeV for scattering angles from 300 to 1500 in order to determine corrections to the Rutherford cross section due to the screening of the nuclear charge by the atomic electrons. Furthermore, differential cross sections have been calculated in the weakly screening region using various screening functions. A simple analytical expression has been derived for the representation of both experimental and theoretical results. (orig.)

  13. Cross sections for K- and L-shell excitation in energetic ion-atom collisions

    Absolute K- and L-shell vacancy production cross sections have been determined from Auger-electron measurements in various heavy-ion-atom collisions. Collision systems with atomic numbers Z between 5 and 18 and with projectile energies varied between 6 and 600 keV were investigated. From cross section plots for some exemplary collision systems general trends are indicated and discussed in terms of the molecular-orbital (MO) model. Cross section ratios are deduced and compared to theoretical predictions

  14. A nuclear cross section data handbook

    Fisher, H.O.M.

    1989-12-01

    Isotopic information, reaction data, data availability, heating numbers, and evaluation information are given for 129 neutron cross-section evaluations, which are the source of the default cross sections for the Monte Carlo code MCNP. Additionally, pie diagrams for each nuclide displaying the percent contribution of a given reaction to the total cross section are given at 14 MeV, 1 MeV, and thermal energy. Other information about the evaluations and their availability in continuous-energy, discrete-reaction, and multigroup forms is provided. The evaluations come from ENDF/B-V, ENDL85, and the Los Alamos Applied Nuclear Science Group T-2. Graphs of all neutron and photon production cross-section reactions for these nuclides have been categorized and plotted. 21 refs., 5 tabs.

  15. Differential cross sections of positron hydrogen collisions

    于荣梅; 濮春英; 黄晓玉; 殷复荣; 刘旭焱; 焦利光; 周雅君

    2016-01-01

    We make a detailed study on the angular differential cross sections of positron–hydrogen collisions by using the momentum-space coupled-channels optical (CCO) method for incident energies below the H ionization threshold. The target continuum and the positronium (Ps) formation channels are included in the coupled-channels calculations via a complex equivalent-local optical potential. The critical points, which show minima in the differential cross sections, as a function of the scattering angle and the incident energy are investigated. The resonances in the angular differential cross sections are reported for the first time in this energy range. The effects of the target continuum and the Ps formation channels on the different cross sections are discussed.

  16. Systematics of (n,2n) Cross Sections

    2008-01-01

    <正>The experimental data of (n, 2n) cross sections were collected and evaluated as complete as possible. There are 640 sets of experimental data for 130 nuclei. The data were fitted to the expressions that describe the

  17. Photoneutron cross section of 34S

    Using an enriched 34S target, the reaction 34S(γ,sn)33S has been measured from below threshold (10.4 MeV) to 28 MeV by directly counting the photoneutrons as a function of bremsstrahlung energy. The resultant cross section shows gross splitting in the GDR region. The integrated cross section is discussed in the light of the systematics of similar nuclei having two neutrons outside a doubly closed shell/sub-shell core

  18. Photoneutron cross section of 34S

    Using an enriched 34S target, the reaction 34S(γ, sn) has been measured from below threshold (10.4 MeV) to 28 MeV by directly counting the photoneutrons as a function of bremsstrahlung energy. The resultant cross section shows gross splitting in the GDR region. The integrated cross section is discussed in the light of the systematics of similar nuclei having two neutrons outside a doubly closed shell/sub-shell core. (orig.)

  19. Neutron capture cross sections from Surrogate measurements

    Scielzo N.D.; Dietrich F.S.; Escher J.E.

    2010-01-01

    The prospects for determining cross sections for compound-nuclear neutron-capture reactions from Surrogate measurements are investigated. Calculations as well as experimental results are presented that test the Weisskopf-Ewing approximation, which is employed in most analyses of Surrogate data. It is concluded that, in general, one has to go beyond this approximation in order to obtain (n,γ) cross sections of sufficient accuracy for most astrophysical and nuclear-energy applications.

  20. Neutron capture cross sections from Surrogate measurements

    Scielzo N.D.

    2010-03-01

    Full Text Available The prospects for determining cross sections for compound-nuclear neutron-capture reactions from Surrogate measurements are investigated. Calculations as well as experimental results are presented that test the Weisskopf-Ewing approximation, which is employed in most analyses of Surrogate data. It is concluded that, in general, one has to go beyond this approximation in order to obtain (n,γ cross sections of sufficient accuracy for most astrophysical and nuclear-energy applications.

  1. Evaluation methods for neutron cross section standards

    Methods used to evaluate the neutron cross section standards are reviewed and their relative merits, assessed. These include phase-shift analysis, R-matrix fit, and a number of other methods by Poenitz, Bhat, Kon'shin and the Bayesian or generalized least-squares procedures. The problems involved in adopting these methods for future cross section standards evaluations are considered, and the prospects for their use, discussed. 115 references, 5 figures, 3 tables

  2. Methods for calculating anisotropic transfer cross sections

    The Legendre moments of the group transfer cross section, which are widely used in the numerical solution of the transport calculation can be efficiently and accurately constructed from low-order (K = 1--2) successive partial range moments. This is convenient for the generation of group constants. In addition, a technique to obtain group-angle correlation transfer cross section without Legendre expansion is presented. (author)

  3. Absorption Cross Section of Static Einstein-Maxwell Dilation Axion Black Hole for Scalar Particles

    LIU Chang-Qing; JING Ji-Liang

    2007-01-01

    The absorption cross section of the static Einstein-Maxwell dilaton axion (EMDA) black hole for scalar particles is investigated.It is shown that the ratio of the absorption cross section of the EMDA black hole to that of the Schwarzschild black hole decreases as the absolute value of the dilaton increases,and it becomes zero as the dilaton tends to its extremal value.It is also shown that the absorption cross section decreases as both the v and the absolute value of the dilaton increase,and it decreases as the mass of the particle decreases.

  4. Photoproton cross section for 14C

    Using bremsstrahlung, the 14C(γ,p) reaction cross section has been measured from threshold to 29 MeV. The integrated cross section up to 30 MeV is 18±3 MeV mb. Above 23.5 MeV, the reported cross section includes a contribution, estimated at 3.5 MeV mb, due to the 14C(γ,d) and 14Cγ,pn) reactions. Essentially the entire 14C(γ,p) cross section results from decay of T> dipole states. From knowledge of other decay channels estimates of the cross section, integrated to 30 MeV for the T and T> components of the giant resonance (GDR) of 81 MeV mb and 43 MeV mb are obtained. The splitting of the mean energies of the GDR isospin components is 8.5 MeV. Comparisons with several shell-model calculations are made with the data, and general agreement is found. A comparison of photonuclear absorption cross sections for 12,1314C and 16,17,18 O shows dramatic redistribution of dipole strength as neutrons are added to the core nuclei. 41 refs., 1 tab., 7 figs

  5. Elastic electron scattering cross sections for molecular hydrogen

    Khakoo, M. A.; Trajmar, S.

    1986-01-01

    Using an electron-beam - molecular-beam apparatus and employing the relative flow technique, ratios of the differential elastic scattering cross sections (DCSs of H2 to He were measured at incident electron energies of 15-100 eV and over the angular range of 10-125 degrees. From these ratios, the absolute elastic DCSs for H2 were determined by normalization to accurate, available elastic DCSs of He. Since pure rotational structure was not resolved in this work, the DCSs reported are the sum of elastic and rotational excitations of H2 at room temperature. The reliability of the relative flow normalization to He was checked at each energy and angle by performing similar elastic DCS measurements on Ne (for which the cross sections are known). The resulting absolute Ne DCSs were found to be in good agreement (within 10 percent with the Ne elastic DCSs measured previously (Register and Trajmar, 1984). From the DCSs, integral and momentumtransfer cross sections were calculated. The present results are compared with other recent measurements.

  6. abo-cross: Hydrogen broadening cross-section calculator

    Barklem, P. S.; Anstee, S. D.; O'Mara, B. J.

    2015-07-01

    Line broadening cross sections for the broadening of spectral lines by collisions with neutral hydrogen atoms have been tabulated by Anstee & O'Mara (1995), Barklem & O'Mara (1997) and Barklem, O'Mara & Ross (1998) for s-p, p-s, p-d, d-p, d-f and f-d transitions. abo-cross, written in Fortran, interpolates in these tabulations to make these data more accessible to the end user. This code can be incorporated into existing spectrum synthesis programs or used it in a stand-alone mode to compute line broadening cross sections for specific transitions.

  7. A Pebble Bed Reactor cross section methodology

    A method is presented for the evaluation of microscopic cross sections for the Pebble Bed Reactor (PBR) neutron diffusion computational models during convergence to an equilibrium (asymptotic) fuel cycle. This method considers the isotopics within a core spectral zone and the leakages from such a zone as they arise during reactor operation. The randomness of the spatial distribution of fuel grains within the fuel pebbles and that of the fuel and moderator pebbles within the core, the double heterogeneity of the fuel, and the indeterminate burnup of the spectral zones all pose a unique challenge for the computation of the local microscopic cross sections. As prior knowledge of the equilibrium composition and leakage is not available, it is necessary to repeatedly re-compute the group constants with updated zone information. A method is presented to account for local spectral zone composition and leakage effects without resorting to frequent spectrum code calls. Fine group data are pre-computed for a range of isotopic states. Microscopic cross sections and zone nuclide number densities are used to construct fine group macroscopic cross sections, which, together with fission spectra, flux modulation factors, and zone buckling, are used in the solution of the slowing down balance to generate a new or updated spectrum. The microscopic cross-sections are then re-collapsed with the new spectrum for the local spectral zone. This technique is named the Spectral History Correction (SHC) method. It is found that this method accurately recalculates local broad group microscopic cross sections. Significant improvement in the core eigenvalue, flux, and power peaking factor is observed when the local cross sections are corrected for the effects of the spectral zone composition and leakage in two-dimensional PBR test problems.

  8. Isotope effect in dissociative electron attachment cross sections in acetylene

    May, Olivier; Fedor, Juraj; Allan, Michael, E-mail: olivier.may@unifr.c [Department of Chemistry, University of Fribourg, Chemin du Muse 9, 1700 Fribourg (Switzerland)

    2009-11-01

    We present absolute cross section measurement of dissociative electron attachment to C{sub 2}H{sub 2} and C{sub 2}D{sub 2}. The C{sub 2}H{sup -}/ C{sub 2}D{sup -} band at 3 eV shows pronounced isotope effect with the cross section for C{sub 2}H{sub 2} being 14.7 times larger than that for C{sub 2}D{sub 2}. The light fragments H{sup -} and D{sup -} dominate the second dissociative electron attachment band around 8 eV. These bands exhibit much weaker isotope effects which is in agreement with their assignment to Feshbach resonances.

  9. Reduction Methods for Total Reaction Cross Sections

    Gomes, P. R. S.; Mendes Junior, D. R.; Canto, L. F.; Lubian, J.; de Faria, P. N.

    2016-03-01

    The most frequently used methods to reduce fusion and total reaction excitation functions were investigated in a very recent paper Canto et al. (Phys Rev C 92:014626, 2015). These methods are widely used to eliminate the influence of masses and charges in comparisons of cross sections for weakly bound and tightly bound systems. This study reached two main conclusions. The first is that the fusion function method is the most successful procedure to reduce fusion cross sections. Applying this method to theoretical cross sections of single channel calculations, one obtains a system independent curve (the fusion function), that can be used as a benchmark to fusion data. The second conclusion was that none of the reduction methods available in the literature is able to provide a universal curve for total reaction cross sections. The reduced single channel cross sections keep a strong dependence of the atomic and mass numbers of the collision partners, except for systems in the same mass range. In the present work we pursue this problem further, applying the reduction methods to systems within a limited mass range. We show that, under these circumstances, the reduction of reaction data may be very useful.

  10. Neutron capture cross sections of 151,153Eu

    The neutron capture cross section of 151,153Eu nuclei was measured using the Detector for Advanced Neutron Capture Experiments (DANCE) at the Los Alamos Neutron Science Center (LANSCE). Neutrons were produced at the Lujan Neutron Scattering Center and their energies were determined by the time-of-flight technique. The relative yield versus neutron incident energy from 0.1 eV to 2.0 keV for both 151Eu(n,) and 153Eu(n,) reactions was derived from events gated on the total energy and multiplicity measured by the DANCE array. The absolute cross section was determined by scaling the relative yield to the measured cross sections of well-known resonances. The shape of the yield curve agrees well with previous measurements in the resonance region for both 151Eu and 153Eu capture cross sections. New data are reported for neutron incident energies between 100 eV and 2.0 keV. The trend of data in the 0.3 keV to 2.0 keV region of neutron incident energy is consistent with the ENDF/BVI and the measurements of Macklin and Young. Crucial skills, acquired from these measurements in the early implementation of DANCE, are important to plan future experiments, which will yield results up to a few hundred keV neutron incident energy

  11. Elastic differential cross sections for electron collisions with polyatomic molecules

    Experimental data for electron-polyatomic molecule collisions are reviewed in connection with fusion and processing plasmas, as well as with the associated environmental issues. The electron scattering experiments for differential cross section (DCS) measurements for various processes, such as elastic scattering, have been performed across a broad range of energies (1-100 eV), mainly, at Sophia University since 1978, and some done under the collaborations with the Australian National University, Flinders University, and the Chungnam National University. As a benchmark cross section, elastic DCS are essential for the absolute scale conversion of inelastic DCS, as well as for testing computational methods. The need for cross-section data for a wide variety of molecular species is also discussed, because there is an urgent need to develop an international program to provide the scientific and technological communities with authoritative cross sections for electron-molecule interactions. Note that the detailed comparison with other data available is not given here. Ruther, other available data can be found in the references we cite. This course of action was adopted to keep this report to a sensible length, so that only our numerical data is provided here. (author)

  12. Neutron cross section of methane hydrate

    Kiyanagi, Y.; Date, S.; Horikawa, T.; Takamine, J.; Iwasa, H.; Kamiyama, T. [Graduate School of Eng., Hokkaido Univ., Sapporo (Japan); Uchida, T.; Ebinuma, T.; Narrita, H. [National Inst. of Advanced Industrial Science, Tsukisamu, Sapporo (Japan); Bennington, S.M. [ISIS Dept., Rutherford Appleton, Chilton, Didcot, Oxon (United Kingdom)

    2004-03-01

    To estimate the neutronic characteristics of methane hydrate and also to synthesize cross section data for simulation we need neutron scattering data ranging wide energy and momentum region. We performed inelastic neutron scattering experiments to get information about the neutron cross section on methane hydrate. It was found that at high momentum transfer region rotational mode as well as vibration mode showed recoil like behavior. On the other hand, at low momentum region, as well known, free rotation like energy levels were observed. The energy level of ice in methane hydrate was very similar to normal ice. The results suggest that the rough expression of the cross section of the methane hydrate is presented by linear combination of the methane and ice. (orig.)

  13. Prospects for Precision Neutrino Cross Section Measurements

    Harris, Deborah A. [Fermilab

    2016-01-28

    The need for precision cross section measurements is more urgent now than ever before, given the central role neutrino oscillation measurements play in the field of particle physics. The definition of precision is something worth considering, however. In order to build the best model for an oscillation experiment, cross section measurements should span a broad range of energies, neutrino interaction channels, and target nuclei. Precision might better be defined not in the final uncertainty associated with any one measurement but rather with the breadth of measurements that are available to constrain models. Current experience shows that models are better constrained by 10 measurements across different processes and energies with 10% uncertainties than by one measurement of one process on one nucleus with a 1% uncertainty. This article describes the current status of and future prospects for the field of precision cross section measurements considering the metric of how many processes, energies, and nuclei have been studied.

  14. Radiation pressure cross section for fluffy aggregates

    We apply the discrete dipole approximation (DDA) to estimate the radiation pressure cross section for fluffy aggregates by computing the asymmetry parameter and the cross sections for extinction and scattering. The ballistic particle-cluster aggregate and the ballistic cluster-cluster aggregate consisting of either dielectric or absorbing material are considered to represent naturally existing aggregates. We show that the asymmetry parameter perpendicular to the direction of wave propagation is maximized where the wavelength is comparable to the aggregate size, which may be characterized by the area-equivalent radius or the radius of gyration rather than the volume-equivalent radius. The asymmetry parameter for the aggregate depends on the morphology of the particle, but not on the constituent material. Therefore, the dependence of the radiation pressure cross section on the material composition arises mainly from that of the extinction and scattering cross sections, in other words, the single-scattering albedo. We find that aggregates consisting of high-albedo material show a large deviation of radiation pressure from the direction of incident radiation. When the aggregates are illuminated by blackbody radiation, the deviation of the radiation pressure increases with increasing temperature of the blackbody. Since the parallel component of the radiation pressure cross section for the aggregates is smaller than that for the volume-equivalent spheres at the size parameter close to unity, the Planck-mean radiation pressure cross section for the aggregates having radius comparable to the effective wavelength of radiation shows a lower value, compared with the volume-equivalent sphere. Consequently, the slope of the radiation pressure force per mass of the particle as a function of particle mass shows a lower maximum for the aggregates than for compact spherical particles. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam. All rights reserved.)

  15. Charged particle reaction cross sections and nucleosynthesis

    The role of proton and α-particle induced reactions in carbon, neon, oxygen and silicon burning in massive stars is surveyed. The problems associated with determining thermonuclear reaction rates for reactions with widely spaced resonances and with closely spaced or overlapping resonances are discussed and the associated experimental approaches are reviewed. Experimental techniques which have been used in the measurement of reaction cross sections are discussed and their strengths and weaknesses are identified. Recent developments in attempts to establish reliable statistical-model codes for calculation of reaction cross sections are presented and discussed. The results of experimental tests of statistical model codes are summarised and evaluated

  16. Neutron capture cross sections from surrogate measurements

    The prospects for determining cross sections for compound-nuclear neutron-capture reactions from Surrogate measurements are investigated. Calculations as well as experimental results are presented that test the Weisskopf-Ewing approximation, which is employed in most analyses of Surrogate data. The method is applied to the 155Gd(n,γ) reaction. It is concluded that, in general, one has to go beyond this approximation in order to obtain (n,γ) cross sections of sufficient accuracy for most astrophysical and nuclear-energy applications. (authors)

  17. Precise neutron inelastic cross section measurements

    Negret, Alexandru

    2012-11-01

    The design of a new generation of nuclear reactors requires the development of a very precise neutron cross section database. Ongoing experiments performed at dedicated facilities aim to the measurement of such cross sections with an unprecedented uncertainty of the order of 5% or even smaller. We give an overview of such a facility: the Gamma Array for Inelastic Neutron Scattering (GAINS) installed at the GELINA neutron source of IRMM, Belgium. Some of the most challenging difficulties of the experimental approach are emphasized and recent results are shown.

  18. Optical Model and Cross Section Uncertainties

    Herman,M.W.; Pigni, M.T.; Dietrich, F.S.; Oblozinsky, P.

    2009-10-05

    Distinct minima and maxima in the neutron total cross section uncertainties were observed in model calculations using spherical optical potential. We found this oscillating structure to be a general feature of quantum mechanical wave scattering. Specifically, we analyzed neutron interaction with 56Fe from 1 keV up to 65 MeV, and investigated physical origin of the minima.We discuss their potential importance for practical applications as well as the implications for the uncertainties in total and absorption cross sections.

  19. Saturation Effects in Hadronic Cross Sections

    Shoshi, Arif I.; Steffen, Frank D.

    2002-01-01

    We compute total and differential elastic cross sections of high-energy hadronic collisions in the loop-loop correlation model that provides a unified description of hadron-hadron, photon-hadron, and photon-photon reactions. The impact parameter profiles of pp and gamma*p collisions are calculated. For ultra-high energies the hadron opacity saturates at the black disc limit which tames the growth of the hadronic cross sections in agreement with the Froissart bound. We compute the impact param...

  20. Covariance Evaluation Methodology for Neutron Cross Sections

    Herman,M.; Arcilla, R.; Mattoon, C.M.; Mughabghab, S.F.; Oblozinsky, P.; Pigni, M.; Pritychenko, b.; Songzoni, A.A.

    2008-09-01

    We present the NNDC-BNL methodology for estimating neutron cross section covariances in thermal, resolved resonance, unresolved resonance and fast neutron regions. The three key elements of the methodology are Atlas of Neutron Resonances, nuclear reaction code EMPIRE, and the Bayesian code implementing Kalman filter concept. The covariance data processing, visualization and distribution capabilities are integral components of the NNDC methodology. We illustrate its application on examples including relatively detailed evaluation of covariances for two individual nuclei and massive production of simple covariance estimates for 307 materials. Certain peculiarities regarding evaluation of covariances for resolved resonances and the consistency between resonance parameter uncertainties and thermal cross section uncertainties are also discussed.

  1. Atlas of neutron capture cross sections

    This report describes neutron capture cross sections in the range 10-5 eV - 20 MeV as evaluated and compiled in recent activation libraries. The selected subset comprise the (n,γ) cross sections for a total of 739 targets for the elements H (Z = 1, Z = 1) to Cm (Z = 96, A = 238) totaling 972 reactions. Plots of the point-wise data are shown and comparisons are made with the available experimental values at thermal energy, 30 keV and 14.5 MeV. 10 refs, 7 tabs

  2. Verification of important cross section data

    Full text: Continuing efforts in nuclear data development have made the design of a fusion power system less uncertain. The fusion evaluated nuclear data library (FENDL) development effort since 1987 under the leadership of the IAEA Nuclear Data Section has provided a credible international library for the investigation and design of the International Thermonuclear Engineering Reactor (ITER). Integral neutronics experiments are being carried out for ITER and fusion power plant blanket and shield assemblies to validate the available nuclear database and to identify deficiencies for further improvement. Important cross section data need experimental verifications if these data are evaluated based on physics model calculations and there are no measured data points available. A particular reaction cross section is Si28(n,x)Al27, which is the important cross section to determine whether the low activation SiC composite structure can be qualified as low level nuclear waste after life time exposure in the first wall neutron environment in a fusion power plant. Measurements of helium production data for candidate fusion materials are also needed, particularly at energies above 14 MeV for the assessment of materials damage in the IFMIF neutron spectrum. To a less extent, it appears that V51(n,x)Ti50 reaction cross section also needs to be measured to further confirm a recent new evaluation of vanadium for ENDF/B-VII. (author)

  3. Energy and angle differential cross sections for the electron-impact double ionization of helium

    Colgan, James P [Los Alamos National Laboratory; Pindzola, M S [AUBURN; Robicheaux, F [AUBURN

    2008-01-01

    Energy and angle differential cross sections for the electron-impact double ionization of helium are calculated using a non-perturbative time-dependent close-coupling method. Collision probabilities are found by projection of a time evolved nine dimensional coordinate space wave function onto fully antisymmetric products of spatial and spin functions representing three outgoing Coulomb waves. At an incident energy of 106 eV, we present double energy differential cross sections and pentuple energy and angle differential cross sections. The pentuple energy and angle differential cross sections are found to be in relative agreement with the shapes observed in recent (e,3e) reaction microscope experiments. Integration of the differential cross sections over all energies and angles yields a total ionization cross section that is also in reasonable agreement with absolute crossed-beams experiments.

  4. Fusion cross sections and the new dynamics

    The prediction of the need for an extra push over the interaction barrier in order to make the heavier nuclei fuse is made the basis of a simple algebraic theory for the energy-dependence of the fusion cross-section. A comparison with recent experiments promises to provide a quantitative test of the New Dynamics

  5. LSP-Nucleus Elastic Scattering Cross Sections

    Vergados, J. D.; Kosmas, T. S.

    1997-01-01

    We calculate LSP-nucleus elastic scattering cross sections using some representative input in the restricted SUSY parameter space. The coherent matrix elements are computed throughout the periodic table while the spin matrix elements for the proposed $^{207}Pb$ target which has a rather simple nuclear structure. The results are compared to those given from other cold dark matter detection targets.

  6. Electron impact excitation cross sections for carbon

    Ganas, P. S.

    1981-04-01

    A realistic analytic atomic independent particle model is used to generate wave functions for the valence and excited states of carbon. Using these wave functions in conjunction with the Born approximation and the Russell-Saunders LS-coupling scheme, we calculate generalized oscillator strengths and integrated cross sections for various excitations from the 2p 2( 3P O) valence state.

  7. Electron impact excitation cross sections for carbon

    A realistic analytic atomic independent particle model is used to generate wave functions for the valence and excited states of carbon. Using these wave functions in conjunction with the Born approximation and the Russell-Saunders LS-coupling scheme, we calculate generalized oscillator strengths and integrated cross sections for various excitations from the 2p2(3P0) valence state. (orig.)

  8. Top quark cross sections and differential distributions

    Kidonakis, Nikolaos

    2011-01-01

    I present results for the top quark pair total cross section and the top quark transverse momentum distribution at Tevatron and LHC energies. I also present results for single top quark production. All calculations include NNLO corrections from NNLL threshold resummation.

  9. Neutron cross sections of importance to astrophysics

    Neutron reactions of importance to the various stellar burning cycles are discussed. The role of isomeric states in the branched s-process is considered for particular cases. Neutron cross section needs for the 187Re-187Os, 87Rb-87Sr clocks for nuclear cosmochronology are discussed. Other reactions of interest to astrophysical processes are presented. 35 references

  10. Modelisation of the fission cross section

    The neutron cross sections of four nuclear systems (n+235U, n+233U, n+241Am and n+237Np) are studied in the present document. The target nuclei of the first case, like 235U and 239Pu, have a large fission cross section after the absorption of thermal neutrons. These nuclei are called 'fissile' nuclei. The other type of nuclei, like 237Np and 241Am, fission mostly with fast neutrons, which exceed the fission threshold energy. These types of nuclei are called 'fertile'. The compound nuclei of the fertile nuclei have a binding energy higher than the fission barrier, while for the fissile nuclei the binding energy is lower than the fission barrier. In this work, the neutron induced cross sections for both types of nuclei are evaluated in the fast energy range. The total, reaction and shape-elastic cross sections are calculated by the coupled channel method of the optical model code ECIS, while the compound nucleus mechanism are treated by the statistical models implemented in the codes STATIS, GNASH and TALYS. The STATIS code includes a refined model of the fission process. Results from the theoretical calculations are compared with data retrieved from the experimental data base EXFOR. (author)

  11. Neutron Capture Cross Sections for Radioactive Nuclei

    Tonchev, Anton; Bedrossian, Peter; Escher, Jutta; Scielzo, Nicholas

    2015-10-01

    Accurate neutron-capture cross sections for radioactive nuclei near or far away from the line of beta stability are crucial for understanding the nucleosynthesis of heavy elements. However, neutron-capture cross sections for short-lived radionuclides are difficult to measure due to the fact that the measurements require both highly radioactive samples and intense neutron sources. Essential ingredients for describing the γ decays following neutron capture are the γ-ray strength function and level densities. We will compare different indirect approaches for obtaining observables that can constrain Hauser-Feshbach statistical model calculations of capture cross sections. Specifically, we will consider photon scattering, transfer reactions, and beta-delayed neutron emission. Challenges that exist on the path to obtaining neutron-capture cross sections for reactions on isotopes far from stability will be discussed. This work was performed under the auspices of US DOE by LLNL under contract DE-AC52-07NA27344. Funding was provided via the LDRD-ERD-069 project.

  12. Symmetric charge transfer cross section of uranium

    Symmetric charge transfer cross section of uranium was calculated under consideration of reaction paths. In the charge transfer reaction a d3/2 electron in the U atom transfers into the d-electron site of U+(4I9/2) ion. The J value of the U atom produced after the reaction is 6, 5, 4 or 3, at impact energy below several tens eV, only resonant charge transfer in which the product atom is ground state (J=6) takes place. Therefore, the cross section is very small (4-5 x 10-15 cm2) compared with that considered so far. In the energy range of 100-1000eV the cross section increases with the impact energy because near resonant charge transfer in which an s-electron in the U atom transfers into the d-electron site of U+ ion. Charge transfer cross section between U+ in the first excited state (289 cm-1) and U in the ground state was also obtained. (author)

  13. Measurement cross sections for radioisotopes production

    New radioactive isotopes for nuclear medicine can be produced using particle accelerators. This is one goal of Arronax, a high energy - 70 MeV - high intensity - 2*350 μA - cyclotron set up in Nantes. A priority list was established containing β- - 47Sc, 67Cu - β+ - 44Sc, 64Cu, 82Sr/82Rb, 68Ge/68Ga - and α emitters - 211At. Among these radioisotopes, the Scandium 47 and the Copper 67 have a strong interest in targeted therapy. The optimization of their productions required a good knowledge of their cross-sections but also of all the contaminants created during irradiation. We launched on Arronax a program to measure these production cross-sections using the Stacked-Foils' technique. It consists in irradiating several groups of foils - target, monitor and degrader foils - and in measuring the produced isotopes by γ-spectrometry. The monitor - natCu or natNi - is used to correct beam loss whereas degrader foils are used to lower beam energy. We chose to study the natTi(p,X)47Sc and 68Zn(p,2p)67Cu reactions. Targets are respectively natural Titanium foil - bought from Goodfellow - and enriched Zinc 68 deposited on Silver. In the latter case, Zn targets were prepared in-house - electroplating of 68Zn - and a chemical separation between Copper and Gallium isotopes has to be made before γ counting. Cross-section values for more than 40 different reactions cross-sections have been obtained from 18 MeV to 68 MeV. A comparison with the Talys code is systematically done. Several parameters of theoretical models have been studied and we found that is not possible to reproduce faithfully all the cross-sections with a given set of parameters. (author)

  14. A New Neutrino Cross Section Data Ressource

    Whalley, M R

    2005-01-01

    We describe a new web based data resource being developed to provide access to accurate and validated cross sections of low energy neutrino and antineutrino interactions. The proposed content of this database are outlined which cover total and differential cross from inclusive, quasi-elastic and exclusive pion production processes from charged and neutral current interactions. Efforts to obtain these data, which come mainly from old bubble chamber experiments, are described as well as the implementation of an embryonic web site to make the resource generally accessible.

  15. (n,α) cross section measurement of gaseous sample using gridded ionization chamber. Cross section determination

    We are developing a method of (n,α) cross section measurement using gaseous samples in a gridded ionization chamber (GIC). This method enables cross section measurements in large solid angle without the distortion by the energy loss in a sample, but requires a method to estimate the detection efficiency. We solve this problem by using GIC signals and a tight neutron collimation. The validity of this method was confirmed through the 12C(n,α0)9Be measurement. We applied this method to the 16O(n,α)13C cross section around 14.1 MeV. (author)

  16. (n,{alpha}) cross section measurement of gaseous sample using gridded ionization chamber. Cross section determination

    Sanami, Toshiya; Baba, Mamoru; Saito, Keiichiro; Ibara, Yasutaka; Hirakawa, Naohiro [Tohoku Univ., Sendai (Japan). Faculty of Engineering

    1997-03-01

    We are developing a method of (n,{alpha}) cross section measurement using gaseous samples in a gridded ionization chamber (GIC). This method enables cross section measurements in large solid angle without the distortion by the energy loss in a sample, but requires a method to estimate the detection efficiency. We solve this problem by using GIC signals and a tight neutron collimation. The validity of this method was confirmed through the {sup 12}C(n,{alpha}{sub 0}){sup 9}Be measurement. We applied this method to the {sup 16}O(n,{alpha}){sup 13}C cross section around 14.1 MeV. (author)

  17. Structured ion impact: Doubly differential cross sections

    The electron emission in coincidence with a projectile that has been ionized has been measured, thus making it possible to separate and identify electrons resulting from these various mechanisms. In 1985, coincidence doubly differential cross sections were measured for 400 to 750 keV/atomic mass unit (amu) He+ impact on He, Ne, Ar, Kr, and H2O. Cross sections were measured for selected angles and for electron energies ranging from 10 to 1000 eV. Because of the coincidence mode of measurement, the total electron emission was subdivided into its target emission and its projectile emission components. The most interesting findings were that target ionization does not account for the electron emission spectrum at lower electron energies. A sizable percentage of these low-energy electrons were shown to originate as a result of simultaneous projectile/target ionizations. Similar features were observed for all targets and impact energies that were studied

  18. Elliptical cross section fuel rod study II

    In this paper it is continued the behavior analysis and comparison between cylindrical fuel rods of circular and elliptical cross sections. Taking into account the accepted models in the literature, the fission gas swelling and release were studied. An analytical comparison between both kinds of rod reveals a sensible gas release reduction in the elliptical case, a 50% swelling reduction due to intragranular bubble coalescence mechanism and an important swelling increase due to migration bubble mechanism. From the safety operation point of view, for the same linear power, an elliptical cross section rod is favored by lower central temperatures, lower gas release rates, greater gas store in ceramic matrix and lower stored energy rates. (author). 6 refs., 8 figs., 1 tab

  19. Jet cross sections and PDF constraints

    CMS Collaboration

    2012-01-01

    A measurement of inclusive jet and dijet production cross sections is presented. Data from LHC proton-proton collisions at $\\sqrt{s}=7\\TeV$, corresponding to $4.67\\fbinv$ of integrated luminosity, have been collected with the CMS detector. Jets are reconstructed with the anti-$k_T$ clustering algorithm of size parameter $R=0.7$, extending to rapidity $|y|=2.5$, transverse momentum $\\pt=2\\TeV$, and dijet invariant mass $M_{JJ}=5\\TeV$. The measured cross sections are corrected for detector effects and compared to perturbative QCD predictions at next-to-leading order, using various sets of parton distribution functions.

  20. The photoneutron cross section of 20Ne

    The photoneutron cross section of 20Ne has been measured over a photon energy range 16 to 29 MeV in steps of 100 keV. The giant dipole resonance is resolved into three strong peaks below 21 MeV and at least two broader resonances at higher excitations. This structure is consistent with earlier measurements of poorer resolution and shows a correlation with the recent calculations of Schmid and Do Dang. Comparisons with high resolution neutron time-of-flight and electron scattering data indicate that there appear to exist in the giant resonance of 20Ne, regions of structure roughly 2-3 MeV wide which exhibit localised characteristics related to the excitation mechanisms. The role of deformation and configuration splitting effects in the cross section are discussed and possible directions of further study are noted which might clarify the situation more fully

  1. Electron capture cross sections for stellar nucleosynthesis

    Giannaka, P G

    2015-01-01

    In the first stage of this work, we perform detailed calculations for the cross sections of the electron capture on nuclei under laboratory conditions. Towards this aim we exploit the advantages of a refined version of the proton-neutron quasi-particle random-phase approximation (pn-QRPA) and carry out state-by-state evaluations of the rates of exclusive processes that lead to any of the accessible transitions within the chosen model space. In the second stage of our present study, we translate the above mentioned $e^-$-capture cross sections to the stellar environment ones by inserting the temperature dependence through a Maxwell-Boltzmann distribution describing the stellar electron gas. As a concrete nuclear target we use the $^{66}Zn$ isotope, which belongs to the iron group nuclei and plays prominent role in stellar nucleosynthesis at core collapse supernovae environment.

  2. Cross-section analysis for TRADE fuel

    The TRIGA core includes bounded hydrogen in Zirconium hydride in its fuel meat allowing for fast reactivity transients. The inherent safety mechanism is based on the immediate increase of neutron up-scattering by the hydrogen as a result of a fuel temperature increase. The temperature dependent resonance absorption is the second safety feature. The special fuel type together with the introduction of an external source within it for the TRADE project necessitates an accurate evaluation of the bounded hydrogen cross section generation technique as well as of the resonance treatment. By comparing deterministic tools and Monte Carlo solution methods the generated bounded isotopes cross sections are analysed. Further, the importance of the Doppler and the thermal up-scattering effects are quantified and the sensitivities to the solution method are discussed. (authors)

  3. Measurements of neutron spallation cross section. 2

    Kim, E.; Nakamura, T. [Tohoku Univ., Sendai (Japan). Cyclotron and Radioisotope Center; Imamura, M.; Nakao, N.; Shibata, S.; Uwamino, Y.; Nakanishi, N.; Tanaka, Su.

    1997-03-01

    Neutron spallation cross section of {sup 59}Co(n,xn){sup 60-x}Co, {sup nat}Cu(n,sp){sup 56}Mn, {sup nat}Cu(n,sp){sup 58}Co, {sup nat}Cu(n,xn){sup 60}Cu, {sup nat}Cu(n,xn){sup 61}Cu and {sup nat}Cu(n,sp){sup 65}Ni was measured in the quasi-monoenergetic p-Li neutron fields in the energy range above 40 MeV which have been established at three AVF cyclotron facilities of (1) INS of Univ. of Tokyo, (2) TIARA of JAERI and (3) RIKEN. Our experimental data were compared with the ENDF/B-VI high energy file data by Fukahori and the calculated cross section data by Odano. (author)

  4. Total electron scattering cross sections for methanol and ethanol at intermediate energies

    Silva, D G M; Tejo, T; Lopes, M C A [Departamento de Fisica, ICE, Universidade Federal de Juiz de Fora, Juiz de Fora-MG, CEP 36036-330 (Brazil); Muse, J; Romero, D; Khakoo, M A, E-mail: cristina.lopes@ufjf.edu.b [Department of Physics, California State University, Fullerton, CA 92831 (United States)

    2010-01-14

    Absolute total cross section (TCS) measurements of electron scattering from gaseous methanol and ethanol molecules are reported for impact energies from 60 to 500 eV, using the linear transmission method. The attenuation of intensity of a collimated electron beam through the target volume is used to determine the absolute TCS for a given impact energy, using the Beer-Lambert law to first approximation. Besides these experimental measurements, we have also determined TCS using the additivity rule.

  5. Reinforced concrete columns of variable cross section

    Brant, N.F.A.

    1984-01-01

    The results of a series of 19 full scale tests carried out on pin-ended reinforced concrete columns are reported. The columns tested had either tapered rectangular sections along the length or octagonal cross sections. All columns, except the last 6, were subjected to uniaxial eccentricities at one of the ends (the stronger end), and a nominally concentric load at the other end. For the case of the last six columns the loading applied at the stronger end was biaxially eccentric. For each of t...

  6. Neutron capture cross section measurement techniques

    A review of currently-used techniques to measure neutron capture cross sections is presented. Measurements involving use of total absorption and Moxon-Rae detectors are based on low-resolution detection of the prompt γ-ray cascades following neutron captures. In certain energy ranges activation methods are convenient and useful. High resolution γ-ray measurements with germanium detectors can give information on the parameters of resonance capture states. The use of these techniques is described. (U.S.)

  7. Fusion cross sections at deep subbarrier energies

    Hagino, K.; Rowley, N.; Dasgupta, M

    2003-01-01

    A recent publication reports that heavy-ion fusion cross sections at extreme subbarrier energies show a continuous change of their logarithmic slope with decreasing energy, resulting in a much steeper excitation function compared with theoretical predictions. We show that the energy dependence of this slope is partly due to the asymmetric shape of the Coulomb barrier, that is its deviation from a harmonic shape. We also point out that the large low-energy slope is consistent with the surprisi...

  8. How to calculate colourful cross sections efficiently

    Gleisberg, Tanju; Krauss, Frank

    2008-01-01

    Different methods for the calculation of cross sections with many QCD particles are compared. To this end, CSW vertex rules, Berends-Giele recursion and Feynman-diagram based techniques are implemented as well as various methods for the treatment of colours and phase space integration. We find that typically there is only a small window of jet multiplicities, where the CSW technique has efficiencies comparable or better than both of the other two methods.

  9. Jet cross sections in leptoproduction from QCD

    We have calculated the longitudinal and other polarization dependent cross sections for jet production in deep inelastic ep, νp and anti νp scattering up to order αsub(s) of the quark-gluon coupling constant. Fragmentation of final state partons into hadrons is taken into account. Distributions in thrust, p2sub(Tin) and p2sub(Tout) are predicted for all three reactions and various values of W and Q. (orig.)

  10. Measurements of Fission Cross Sections of Actinides

    Wiescher, M; Cox, J; Dahlfors, M

    2002-01-01

    A measurement of the neutron induced fission cross sections of $^{237}$Np, $^{241},{243}$Am and of $^{245}$Cm is proposed for the n_TOF neutron beam. Two sets of fission detectors will be used: one based on PPAC counters and another based on a fast ionization chamber (FIC). A total of 5x10$^{18}$ protons are requested for the entire fission measurement campaign.

  11. Neutron cross section standards and instrumentation

    1992-09-01

    This report from the National Institute of Standards and Technology contains a summary of the accomplishments of the Neutron Cross Section Standards and Instrumentation Project during the second year of a three-year interagency agreement. This program includes a broad range of data measurements and evaluations. An emphasis has been focused on the (sup 10)B cross sections where serious discrepancies in the nuclear data base remain. In particular, there are important problems with the interpretation of the helium gas production associated with diagnostic measurements of interest in nuclear technology. The enhanced use of this isotope for medical treatment is also of significance. New measurements of neutron reaction cross sections for (sup 10)B are in progress in collaboration with scientists at the Oak Ridge National Laboratory. New experiments are in progress on the important dosimetry standards (sup 237)Np(n,f) and (sup 239)Pu(n,f) below 1 MeV neutron energy. In addition, new measurements of charged-particle production in basic biological elements for medical applications are underway. Further measurements are planned or in progress in collaborations which include fission fragment energy and angular distributions, and neutron energy spectra and angular distributions from neutron-induced fission. Also measurements of angular distributions of neutrons from scattering on protons, and determinations of capture cross section of gold are planned for a later time. Data evaluation will shift to include a unified international effort to motivate new measurements and evaluations. In response to the requests of the measurement community, NIST is beginning the formation of a national depository for fissionable isotope mass standards. This action will preserve for future measurements the valuable and irreplaceable critical samples whose masses and composition have been carefully determined and documented over the past 30 years of the nuclear program.

  12. Electron collision cross sections and radiation chemistry

    A survey is given of the cross section data needs in radiation chemistry, and of the recent progress in electron impact studies on dissociative excitation of molecules. In the former some of the important target species, processes, and collision energies are presented, while in the latter it is demonstrated that radiation chemistry is a source of new ideas and information in atomic collision research. 37 references, 4 figures

  13. Atomic-process cross section data, 1

    Compiled by the Data Study Group, the data are intended for fusion plasma physics research. Cross sections of the latest experimental and theoretic studies cover the processes involving H,D,T as principal plasma materials as well as photons and electrons: emission and absorption of electromagnetic wave, electron collision, ion collision, recombination, neutral atom mutual collision, etc. Edition is so made to enable the future renewal by users. (J.P.N.)

  14. Cross section of the CMS solenoid

    Tejinder S. Virdee, CERN

    2005-01-01

    The pictures show a cross section of the CMS solenoid. One can see four layers of the superconducting coil, each of which contains the superconductor (central part, copper coloured - niobium-titanium strands in a copper coating, made into a "Rutherford cable"), surrounded by an ultra-pure aluminium as a magnetic stabilizer, then an aluminium alloy as a mechanical stabilizer. Besides the four layers there is an aluminium mechanical piece that includes pipes that transport the liquid helium.

  15. Neutron cross section standards and instrumentation

    This report from the National Institute of Standards and Technology contains a summary of the accomplishments of the Neutron Cross Section Standards and Instrumentation Project during the second year of a three-year interagency agreement. This program includes a broad range of data measurements and evaluations. An emphasis has been focused on the 10B cross sections where serious discrepancies in the nuclear data base remain. In particular, there are important problems with the interpretation of the helium gas production associated with diagnostic measurements of interest in nuclear technology. The enhanced use of this isotope for medical treatment is also of significance. New measurements of neutron reaction cross sections for 10B are in progress in collaboration with scientists at the Oak Ridge National Laboratory. New experiments are in progress on the important dosimetry standards 237Np(n,f) and 239Pu(n,f) below 1 MeV neutron energy. In addition, new measurements of charged-particle production in basic biological elements for medical applications are underway. Further measurements are planned or in progress in collaborations which include fission fragment energy and angular distributions, and neutron energy spectra and angular distributions from neutron-induced fission. Also measurements of angular distributions of neutrons from scattering on protons, and determinations of capture cross section of gold are planned for a later time. Data evaluation will shift to include a unified international effort to motivate new measurements and evaluations. In response to the requests of the measurement community, NIST is beginning the formation of a national depository for fissionable isotope mass standards. This action will preserve for future measurements the valuable and irreplaceable critical samples whose masses and composition have been carefully determined and documented over the past 30 years of the nuclear program

  16. The Pa-233 fission cross section

    The energy dependent neutron-induced fission cross section of 233Pa has for the first time been measured directly with mono-energetic neutrons. This isotope is produced in the thorium fuel cycle and serves as an intermediate step between the 232Th source material and the 233U fuel material. Four neutron energies between 1.0 and 3.0 MeV have been measured in a first campaign. Some preliminary results are presented and compared to literature. (author)

  17. Fusion cross sections measurements with MUSIC

    Carnelli, P. F. F.; Fernández Niello, J. O.; Almaraz-Calderon, S.; Rehm, K. E.; Albers, M.; Digiovine, B.; Esbensen, H.; Henderson, D.; Jiang, C. L.; Nusair, O.; Palchan-Hazan, T.; Pardo, R. C.; Ugalde, C.; Paul, M.; Alcorta, M.; Bertone, P. F.; Lai, J.; Marley, S. T.

    2014-09-01

    The interaction between exotic nuclei plays an important role for understanding the reaction mechanism of the fusion processes as well as for the energy production in stars. With the advent of radioactive beams new frontiers for fusion reaction studies have become accessible. We have performed the first measurements of the total fusion cross sections in the systems 10 , 14 , 15C + 12C using a newly developed active target-detector system (MUSIC). Comparison of the obtained cross sections with theoretical predictions show a good agreement in the energy region accessible with existing radioactive beams. This type of comparison allows us to calibrate the calculations for cases that cannot be studied in the laboratory with the current experimental capabilities. The high efficiency of this active detector system will allow future measurements with even more neutron-rich isotopes. The interaction between exotic nuclei plays an important role for understanding the reaction mechanism of the fusion processes as well as for the energy production in stars. With the advent of radioactive beams new frontiers for fusion reaction studies have become accessible. We have performed the first measurements of the total fusion cross sections in the systems 10 , 14 , 15C + 12C using a newly developed active target-detector system (MUSIC). Comparison of the obtained cross sections with theoretical predictions show a good agreement in the energy region accessible with existing radioactive beams. This type of comparison allows us to calibrate the calculations for cases that cannot be studied in the laboratory with the current experimental capabilities. The high efficiency of this active detector system will allow future measurements with even more neutron-rich isotopes. This work is supported by the U.S. DOE Office of Nuclear Physics under Contract No. DE-AC02-06CH11357 and the Universidad Nacional de San Martin, Argentina, Grant SJ10/39.

  18. Inclusive jet cross section at D0

    Bhattacharjee, M. [Delhi Univ. (India). Dept. of Physics and Astrophysics

    1996-09-01

    Preliminary measurement of the central ({vert_bar}{eta}{vert_bar} {<=} 0.5) inclusive jet cross sections for jet cone sizes of 1.0, 0.7, and 0.5 at D{null} based on the 1992-1993 (13.7 {ital pb}{sup -1}) and 1994-1995 (90 {ital pb}{sup -1}) data samples are presented. Comparisons to Next-to-Leading Order (NLO) Quantum Chromodynamics (QCD) calculations are made.

  19. Total neutron cross section for 181Ta

    Schilling K.-D.

    2010-10-01

    Full Text Available The neutron time of flight facility nELBE, produces fast neutrons in the energy range from 0.1 MeV to 10 MeV by impinging a pulsed relativistic electron beam on a liquid lead circuit [1]. The short beam pulses (∼10 ps and a small radiator volume give an energy resolution better than 1% at 1 MeV using a short flight path of about 6 m, for neutron TOF measurements. The present neutron source provides 2 ⋅ 104  n/cm2s at the target position using an electron charge of 77 pC and 100 kHz pulse repetition rate. This neutron intensity enables to measure neutron total cross section with a 2%–5% statistical uncertainty within a few days. In February 2008, neutron radiator, plastic detector [2] and data acquisition system were tested by measurements of the neutron total cross section for 181Ta and 27Al. Measurement of 181Ta was chosen because lack of high quality data in an anergy region below 700 keV. The total neutron crosssection for 27Al was measured as a control target, since there exists data for 27Al with high resolution and low statistical error [3].

  20. Cross-section reconstruction during uniaxial loading

    The inelastic response of materials to applied uniaxial loading is typically measured using tensile or compressive specimens of an initially circular cross-section. Under deformation, this cross-section may become elliptical due to anisotropic material behaviour. An optical technique for measuring the elliptical deformation of anisotropic, homogeneous cylindrical specimens undergoing uniaxial deformation is presented. It enables the quantification of anisotropic deformation in situ and provides data for material characterization. Three or more silhouette views of a specimen are obtained using multiple cameras or mirrored views. The positions of the edges are computed using a sub-pixel edge detection method, and 3D tangent rays from the camera through these positions are calculated. These bounding tangents are used as the basis for an elliptical fit by least squares at cross-sections along the length of the specimen. Stochastic error estimates are performed by simulation of the experiment. Error estimates, for the experimental set-up used, are also calculated by reconstructing elliptical prisms of precisely measured dimensions. Example reconstructions from specimens of rolled titanium deformed plastically in tension at quasi-static (7 × 10−4 s−1) and high strain rates (3 × 103 s−1) are presented

  1. Measurement of fast-neutron capture cross sections for 75As

    2001-01-01

    The cross sections of the 75As(n,γ)76As reaction were measured in the neutron energy range from 0.50 to 1.50 MeV by using the activation technique. Neutrons were produced via the T(p,n)3He reaction and the cross sections of the 197Au(n,γ)198Au reaction were used to determine the absolute neutron flux. Present results are compared with existing measurements and evaluations.

  2. Averaging cross section data so we can fit it

    Brown, D. [Brookhaven National Lab. (BNL), Upton, NY (United States). NNDC

    2014-10-23

    The 56Fe cross section we are interested in have a lot of fluctuations. We would like to fit the average of the cross section with cross sections calculated within EMPIRE. EMPIRE is a Hauser-Feshbach theory based nuclear reaction code, requires cross sections to be smoothed using a Lorentzian profile. The plan is to fit EMPIRE to these cross sections in the fast region (say above 500 keV).

  3. Averaging cross section data so we can fit it

    The 56Fe cross section we are interested in have a lot of fluctuations. We would like to fit the average of the cross section with cross sections calculated within EMPIRE. EMPIRE is a Hauser-Feshbach theory based nuclear reaction code, requires cross sections to be smoothed using a Lorentzian profile. The plan is to fit EMPIRE to these cross sections in the fast region (say above 500 keV).

  4. Nuclear interaction cross sections for proton radiotherapy

    Chadwick, M B; Arendse, G J; Cowley, A A; Richter, W A; Lawrie, J J; Newman, R T; Pilcher, J V; Smit, F D; Steyn, G F; Koen, J W; Stander, J A

    1999-01-01

    Model calculations of proton-induced nuclear reaction cross sections are described for biologically-important targets. Measurements made at the National Accelerator Centre are presented for double-differential proton, deuteron, triton, helium-3 and alpha particle spectra, for 150 and 200 MeV protons incident on C, N, and O. These data are needed for Monte Carlo simulations of radiation transport and absorbed dose in proton therapy. Data relevant to the use of positron emission tomography to locate the Bragg peak are also described.

  5. Neutron capture cross section of $^{93}$Zr

    We propose to measure the neutron capture cross section of the radioactive isotope $^{93}$Zr. This project aims at the substantial improvement of existing results for applications in nuclear astrophysics and emerging nuclear technologies. In particular, the superior quality of the data that can be obtained at n_TOF will allow on one side a better characterization of s-process nucleosynthesis and on the other side a more accurate material balance in systems for transmutation of nuclear waste, given that this radioactive isotope is widely present in fission products.

  6. Charge changing cross sections of relativistic uranium

    We report equilibrium charge state distributions of uranium at energies of 962 MeV/nucleon, 437 MeV/nucleon and 200 MeV/nucleon in low Z and high Z targets and the cross sections for U92+ reversible U91+ and U91+ reversible U90+ at 962 MeV/nucleon and 437 MeV/nucleon. Equilibrium thickness Cu targets produce approx. = 5% bare U92+ at 200 MeV/nucleon and 85% U92+ at 962 MeV/nucleon. 7 references, 5 figures

  7. Fission cross section measurements for minor actinides

    Fursov, B. [IPPE, Obninsk (Russian Federation)

    1997-03-01

    The main task of this work is the measurement of fast neutron induced fission cross section for minor actinides of {sup 238}Pu, {sup 242m}Am, {sup 243,244,245,246,247,248}Cm. The task of the work is to increase the accuracy of data in MeV energy region. Basic experimental method, fissile samples, fission detectors and electronics, track detectors, alpha counting, neutron generation, fission rate measurement, corrections to the data and error analysis are presented in this paper. (author)

  8. LEP vacuum chamber, cross-section

    1983-01-01

    Cross-section of the final prototype for the LEP vacuum chamber. The elliptic main-opening is for the beam. The small channel to the left is for the cooling water, to carry away the heat deposited by the synchrotron radiation. The square channel to the right houses the Non-Evaporable Getter (NEG) pump. The chamber is made from extruded aluminium. Its outside is clad with lead, to stop the synchrotron radiation emitted by the beam. For good adherence between Pb and Al, the Al chamber was coated with a thin layer of Ni. Ni being slightly magnetic, some resulting problems had to be overcome. See also 8301153.

  9. Critical behavior of cross sections at LHC

    Dremin, I M

    2016-01-01

    Recent experimental data on elastic scattering of high energy protons show that the critical regime has been reached at LHC energies. The approach to criticality is demonstrated by increase of the ratio of elastic to total cross sections from ISR to LHC energies. At LHC it reaches the value which can result in principal change of the character of proton interactions. The treatment of new physics of hollowed toroid-like hadrons requires usage of another branch of the unitarity condition. Its further fate is speculated and interpreted with the help of the unitarity condition in combination with present experimental data. The gedanken experiments to distinguish between different possibilities are proposed.

  10. Neutron absorption cross section of uranium-236

    U-236 neutron absorption was measured as a function of neutron time-of-flight from 20 eV to 1 MeV. The neutron flux was monitored with a 6Li glass scintillator. Average cross sections from 3 keV to 1 MeV were derived. Estimated uncertainties were less than 5% below 600 keV and increased to 9.5% at 1 MeV. Resonance parametrization from 20 eV to a few keV remains to be done. 17 refs., 5 figs., 3 tabs

  11. 30 CFR 779.25 - Cross sections, maps, and plans.

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Cross sections, maps, and plans. 779.25 Section... RESOURCES § 779.25 Cross sections, maps, and plans. (a) The application shall include cross sections, maps..., maps and plans included in a permit application as required by this section shall be prepared by,...

  12. Total cross section for inclusive electron scattering in the low Q2 region

    Absolute cross sections for inclusive electron scattering on H, D, Be, Al and Si have been measured in the kinematical region 0.08(GeV/c)2 2 2 and 0.3 GeV 0. A careful treatment of radiative corrections due to elastic electron nucleus scattering, quasielastic and inelastic scattering or the bound nucleons has been applied to the measured cross sections. The comparion of the nuclear cross sections with the elementary ones leads to a value of Asub(e)sub(f)sub(f) < A with a rapid onset this effect at small values of the scaling variable x'. (orig.)

  13. Optimising neutron polarisers--measuring a single cross-section

    Goossens, D.J.; Cussen, L.D. E-mail: lcu@ansto.gov.au

    2002-09-01

    This article is part of a series of works exploring the optimisation of neutron polarisation analysis measurements. It deals with measurements of individual spin flip and non-spin flip neutron scattering cross-sections. An instrumental quality factor is presented. The optimum effective thickness for gaseous spin polarised {sup 3}He transmission filters is derived and presented. Cu{sub 2}MnAl Heusler alloy polarising monochromators and supermirror devices are considered using the quality factor. Absolute comparisons are made between these different types of polarisers. The effect of instrumental background is calculated for a wide range of experimental situations. Even very small backgrounds can have a very large effect on the quality of measurements achievable indicating that great attention must be paid to background reduction on polarisation analysis instruments.

  14. Optimising neutron polarisers--measuring a single cross-section

    Goossens, D J

    2002-01-01

    This article is part of a series of works exploring the optimisation of neutron polarisation analysis measurements. It deals with measurements of individual spin flip and non-spin flip neutron scattering cross-sections. An instrumental quality factor is presented. The optimum effective thickness for gaseous spin polarised sup 3 He transmission filters is derived and presented. Cu sub 2 MnAl Heusler alloy polarising monochromators and supermirror devices are considered using the quality factor. Absolute comparisons are made between these different types of polarisers. The effect of instrumental background is calculated for a wide range of experimental situations. Even very small backgrounds can have a very large effect on the quality of measurements achievable indicating that great attention must be paid to background reduction on polarisation analysis instruments.

  15. Windowed multipole for cross section Doppler broadening

    Josey, C.; Ducru, P.; Forget, B.; Smith, K.

    2016-02-01

    This paper presents an in-depth analysis on the accuracy and performance of the windowed multipole Doppler broadening method. The basic theory behind cross section data is described, along with the basic multipole formalism followed by the approximations leading to windowed multipole method and the algorithm used to efficiently evaluate Doppler broadened cross sections. The method is tested by simulating the BEAVRS benchmark with a windowed multipole library composed of 70 nuclides. Accuracy of the method is demonstrated on a single assembly case where total neutron production rates and 238U capture rates compare within 0.1% to ACE format files at the same temperature. With regards to performance, clock cycle counts and cache misses were measured for single temperature ACE table lookup and for windowed multipole. The windowed multipole method was found to require 39.6% more clock cycles to evaluate, translating to a 7.9% performance loss overall. However, the algorithm has significantly better last-level cache performance, with 3 fewer misses per evaluation, or a 65% reduction in last-level misses. This is due to the small memory footprint of the windowed multipole method and better memory access pattern of the algorithm.

  16. The Elusive p-air Cross Section

    Block, Martin M

    2006-01-01

    For the $\\pbar p$ and $pp$ systems, we have used all of the extensive data of the Particle Data Group[K. Hagiwara {\\em et al.} (Particle Data Group), Phys. Rev. D 66, 010001 (2002).]. We then subject these data to a screening process, the ``Sieve'' algorithm[M. M. Block, physics/0506010.], in order to eliminate ``outliers'' that can skew a $\\chi^2$ fit. With the ``Sieve'' algorithm, a robust fit using a Lorentzian distribution is first made to all of the data to sieve out abnormally high $\\delchi$, the individual i$^{\\rm th}$ point's contribution to the total $\\chi^2$. The $\\chi^2$ fits are then made to the sieved data. We demonstrate that we cleanly discriminate between asymptotic $\\ln s$ and $\\ln^2s$ behavior of total hadronic cross sections when we require that these amplitudes {\\em also} describe, on average, low energy data dominated by resonances. We simultaneously fit real analytic amplitudes to the ``sieved'' high energy measurements of $\\bar p p$ and $pp$ total cross sections and $\\rho$-values for $\\...

  17. Cross-section measurements for radioactive samples

    The measurement of (n,p), (n,α) and (n,γ) cross sections for radioactive nuclei is of interest to both nuclear physics and astrophysics. For example, using these reactions, properties of levels in nuclei at high excitation energies, which are difficult or impossible to study using other reactions, can be investigated. Also, reaction rates for both big-bang and stellar nucleosynthesis can be obtained from these measurements. In the past, the large background associated with the sample activity limited these types of measurements to radioisotopes with very long half-lives. The advent of the low-energy, high-intensity neutron source at the Los Alamos Neutron Scattering CEnter (LANSCE) has greatly increased the number of nuclei which can be studied. Examples of (n,p) measurements on samples with half lives as short as fifty-three days will be given. The nuclear physics and astrophysics to be learned from these data will be discussed. Additional difficulties are encountered when making (n,γ) rather than (n,p) or (n,α) measurements. However, with a properly-designed detector, and the high peak neutron intensities now available, (n,γ) measurements can be made for nuclei with half lives as short as several months. Progress on the Los Alamos (n,γ) cross-section measurement program for radioactive samples will be discussed. 39 refs., 7 figs

  18. Calculation of cross sections for heavy isotopes

    In the present work an integrated system of codes for basic neutron data evaluation were assembled and built. Complete evaluations for the isotopes 240Pu, 241Pu, 242Pu and 238Pu were performed. The following cross sections: total, elastic, radiative capture, fission, total inelastic, partial inelastic, (n,2n), (n,3n) and differential elastic were evaluated as well as the average number of neutrons per neutron-induced fission and the average elastic scattering cosine in the lab system.The data for the plutonium isotopes were incorporated into the German KEDAK file. A method was developed for calculating the energy distributions of the second and third secondary neutrons from the A(n,2n) and (n,3n) reactions in the framework of the compound nucleus theory, and utilizing the nuclear data of the nuclei A, A-1, A-2. This method was used to generate the 238U secondary neutron energy distributions in the incident neutron energy range of 6 to 15 MeV. A nuclear data evaluation for 237U in the resolved inelastic scattering range (10-700 keV) was performed. The compound elastic and partial inelastic scattering cross sections were used in the 238U secondary neutron energy distribution calculations. (B.G.)

  19. Measurement of the fast neutron capture cross section of 238U relative to 235U(n,f)

    The capture cross section of 238U was measured using the activation technique and 235U(n,f) as a reference cross section. Capture events were measured by detection of two prominent γ-transitions in the decay of the 239U daughter nuclide, 239Np, employing a high resolution Ge(Li) detector. The system was calibrated with samples activated in a thermal neutron flux relative to the capture cross section of gold, and with an absolutely calibrated α-emitter, 243Am, which decays to 239Np. Cross section measurements were carried out in the neutron energy range from 30 keV to 3 MeV. Emphasis was on absolute values between 150 keV and 1 MeV where the 238U(n,γ) cross section and its cross section is small. Background from fission products was found to restrict the accuracy of the measured data at energies > 1.5 MeV

  20. Double-differential cross-sections of slow neutron scattering by water at high temperatures

    The absolute double-differential scattering cross-sections for light water are measured for two incident neutron energies of 25 meV and 256 meV in the temperature range from 300 to 600 K. The experimental curves are compared with calculations based on two models for frequency distribution functions of water

  1. 30 CFR 783.25 - Cross sections, maps, and plans.

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Cross sections, maps, and plans. 783.25 Section... ENVIRONMENTAL RESOURCES § 783.25 Cross sections, maps, and plans. (a) The application shall include cross sections, maps, and plans showing— (1) Elevations and locations of test borings and core samplings;...

  2. Temperature dependence of the cross section for the fragmentation of thymine via dissociative electron attachment

    Kopyra, Janina [Faculty of Science, Siedlce University, 3 Maja 54, 08-110 Siedlce (Poland); Abdoul-Carime, Hassan, E-mail: hcarime@ipnl.in2p3.fr [Université de Lyon, Université Claude Bernard Lyon1, Institut de Physique Nucléaire de Lyon, CNRS/IN2P3 UMR 5822, 43 Bd du 11 novembre 1918, 69622 Villeurbanne Cedex (France)

    2015-05-07

    Providing experimental values for absolute Dissociative Electron Attachment (DEA) cross sections for nucleobases at realistic biological conditions is a considerable challenge. In this work, we provide the temperature dependence of the cross section, σ, of the dehydrogenated thymine anion (T − H){sup −} produced via DEA. Within the 393-443 K temperature range, it is observed that σ varies by one order of magnitude. By extrapolating to a temperature of 313 K, the relative DEA cross section for the production of the dehydrogenated thymine anion at an incident energy of 1 eV decreases by 2 orders of magnitude and the absolute value reaches approximately 6 × 10{sup −19} cm{sup 2}. These quantitative measurements provide a benchmark for theoretical prediction and also a contribution to a more accurate description of the effects of ionizing radiation on molecular medium.

  3. Elastic cross sections in an RSIIp scenario

    The elastic differential cross section is calculated at low energies (below 100 MeV) for the elements 3He, 20Ne, 40Ar, 14N, 12C, and for the 208Pb using a finite electromagnetic potential, which is obtained by considering a Randall–Sundrum II scenario modified by the inclusion of p compact extra-dimensions. The length scale is adjusted in the potential to compare with known experimental data and to set bounds for the parameter of the model. The effective four-dimensional (4D) electromagnetic potential is produced by a point charge, as seen from the three-brane that contains it, in uniform motion in an RSIIp scenario. (paper)

  4. Lunar Radar Cross Section at Low Frequency

    Rodriguez, P.; Kennedy, E. J.; Kossey, P.; McCarrick, M.; Kaiser, M. L.; Bougeret, J.-L.; Tokarev, Y. V.

    2002-01-01

    Recent bistatic measurements of the lunar radar cross-section have extended the spectrum to long radio wavelength. We have utilized the HF Active Auroral Research Program (HAARP) radar facility near Gakona, Alaska to transmit high power pulses at 8.075 MHz to the Moon; the echo pulses were received onboard the NASA/WIND spacecraft by the WAVES HF receiver. This lunar radar experiment follows our previous use of earth-based HF radar with satellites to conduct space experiments. The spacecraft was approaching the Moon for a scheduled orbit perturbation when our experiment of 13 September 2001 was conducted. During the two-hour experiment, the radial distance of the satellite from the Moon varied from 28 to 24 Rm, where Rm is in lunar radii.

  5. Plasma-based radar cross section reduction

    Singh, Hema; Jha, Rakesh Mohan

    2016-01-01

    This book presents a comprehensive review of plasma-based stealth, covering the basics, methods, parametric analysis, and challenges towards the realization of the idea. The concealment of aircraft from radar sources, or stealth, is achieved through shaping, radar absorbing coatings, engineered materials, or plasma, etc. Plasma-based stealth is a radar cross section (RCS) reduction technique associated with the reflection and absorption of incident electromagnetic (EM) waves by the plasma layer surrounding the structure. A plasma cloud covering the aircraft may give rise to other signatures such as thermal, acoustic, infrared, or visual. Thus it is a matter of concern that the RCS reduction by plasma enhances its detectability due to other signatures. This needs a careful approach towards the plasma generation and its EM wave interaction. The book starts with the basics of EM wave interactions with plasma, briefly discuss the methods used to analyze the propagation characteristics of plasma, and its generatio...

  6. Calculated medium energy fission cross sections

    An analysis has been made of medium-energy nucleon induced fission of 238U and 237Np using detailed models of fission, based upon the Bohr-Wheeler formalism. Two principal motivations were associated with these calculations. The first was determination of barrier parameters for proton-rich uranium and neptunium isotopes normally not accessible in lower energy reactions. The second was examination of the consistency between (p,f) experimental data versus new (n,f) data that has recently become available. Additionally, preliminary investigations were also made concerning the effect of fission dynamics on calculated fission cross sections at higher energies where neutron emission times may be significantly less than those associated with fission

  7. Partial cross sections in H- photodetachment

    This dissertation reports experimental measurements of partial decay cross sections in the H- photodetachment spectrum. Observed decays of the 1P0 H-**(n) doubly-excitedresonances to the H(N=2) continuum are reported for n=2,3, and 4 from 1990 runs in which the author participated. A recent analysis of 1989 data revealing effects of static electric fields on the partial decay spectrum above 13.5 eV is also presented. The experiments were performed at the High Resolution Atomic Beam Facility. the Los Alamos Meson Physics Facility, with a relativistic H-beam (β=0.842)intersecting a ND:YAG laser. Variation of the intersection angle amounts to Doppler-shifting the photon energy, allowing continuous tuning of the laser energy as viewed from the moving ions' frame

  8. Radar Cross Section of Moving Objects

    Gholizade, H

    2013-01-01

    I investigate the effects of movement on radar cross section calculations. The results show that relativistic effects (the constant velocity case) can change the RCS of moving targets by changing the incident plane wave field vectors. As in the Doppler effect, the changes in the fields are proportional to $\\frac{v}{c}$. For accelerated objects, using the Newtonian equations of motion yields an effective electric field (or effective current density) on the object due to the finite mass of the conducting electrons. The results indicate that the magnetic moment of an accelerated object is different from that of an un-accelerated object, and this difference can change the RCS of the object. Results for moving sphere and non-uniformly rotating sphere are given and compared with static (\\textbf{v}=0) case.

  9. GLUCS: a generalized least-squares program for updating cross section evaluations with correlated data sets

    The PDP-10 FORTRAN IV computer programs INPUT.F4, GLUCS.F4, and OUTPUT.F4, which employ Bayes' theorem (or generalized least-squares) for simultaneous evaluation of reaction cross sections, are described. Evaluations of cross sections and covariances are used as input for incorporating correlated data sets, particularly ratios. These data are read from Evaluated Nuclear Data File (ENDF/B-V) formatted files. Measured data sets, including ratios and absolute and relative cross section data, are read and combined with the input evaluations by means of the least-squares technique. The resulting output evaluations have not updated only cross sections and covariances, but also cross-reaction covariances. These output data are written into ENDF/B-V format

  10. Cross section for Ly-alpha emission by electron impact on methane

    Orient, O. J.; Srivastava, S. K.

    1981-01-01

    Utilizing Lyman-alpha emission cross sections for H2 as secondary standards, absolute values of Lyman-alpha emission cross sections for CH4 have been obtained for electron impact energies varying from threshold to 100 eV. A crossed electron beam-molecular beam geometry was employed and the Lyman-alpha radiation was detected at 90 deg and 45 deg with respect to the incident electron beam by a solar blind photomultiplier in tandem with an oxygen filter. The results are compared with previous measurements. Appreciable differences among the various experimental data are found.

  11. Single-level resonance parameters fit nuclear cross-sections

    Drawbaugh, D. W.; Gibson, G.; Miller, M.; Page, S. L.

    1970-01-01

    Least squares analyses of experimental differential cross-section data for the U-235 nucleus have yielded single level Breit-Wigner resonance parameters that fit, simultaneously, three nuclear cross sections of capture, fission, and total.

  12. Residual diagnostics for cross-section time series regression models

    Baum, Christopher F

    2001-01-01

    These routines support the diagnosis of groupwise heteroskedasticity and cross-sectional correlation in the context of a regression model fit to pooled cross-section time series (xt) data. Copyright 2001 by Stata Corporation.

  13. Photoneutron cross sections measured by Saclay and Livermore

    The differences between the Saclay and Livermore photoneutron cross sections are discussed. It is shown that the differences between Saclay and Livermore (γ,n) and (γ,2n) cross sections arise from the neutron multiplicity sorting. (Author)

  14. Electron Elastic-Scattering Cross-Section Database

    SRD 64 NIST Electron Elastic-Scattering Cross-Section Database (PC database, no charge)   This database provides values of differential elastic-scattering cross sections, corresponding total elastic-scattering cross sections, phase shifts, and transport cross sections for elements with atomic numbers from 1 to 96 and for electron energies between 50 eV and 20,000 eV (in steps of 1 eV).

  15. Total cross sections for neutron-nucleus scattering

    Suryanarayana, S. V.; H. Naik; Ganesan, S; Kailas, S; Choudhury, R. K.; Kim, Guinyum

    2010-01-01

    Systematics of neutron scattering cross sections on various materials for neutron energies up to several hundred MeV are important for ADSS applications. Ramsauer model is well known and widely applied to understand systematics of neutron nucleus total cross sections. In this work, we examined the role of nuclear effective radius parameter (r$_0$) on Ramsauer model fits of neutron total cross sections. We performed Ramsauer model global analysis of the experimental neutron total cross section...

  16. Finite sum expressions for elastic and reaction cross sections

    Nuclear cross section calculations are often performed by using the partial wave method or the Eikonal method through Glauber theory. The expressions for the total cross section, total elastic cross section, and total reaction cross section in the partial wave method involve infinite sums and do not utilize simplifying approximations. Conversely, the Eikonal method gives these expressions in terms of integrals but utilizes the high energy and small angle approximations. In this paper, by using the fact that the lth partial wave component of the T-matrix can be very accurately approximated by its Born term, the infinite sums in each of the expressions for the differential cross section, total elastic cross section, total cross section, and total reaction cross section are re-written in terms of finite sums plus closed form expressions. The differential cross sections are compared to the Eikonal results for 16O+16O,12C+12C, and p+12C elastic scattering. Total cross sections, total reaction cross sections, and total elastic cross sections are compared to the Eikonal results for 12C+12C scattering

  17. Cross sections for electron impact excitation of molecules

    The discussion in this chapter is restricted to elastic scattering, rotational, vibrational, and electronic excitation and total scattering cross sections in electron molecule collisions. Experimental data on differential, integral and momentum transfer cross sections are surveyed and short remarks are made on experimental techniques and theoretical approaches used for generating cross section data. 11 references, 3 figures

  18. The correlation of integral experiments and high-energy cross-sections

    The correlation of integral experiments and high-energy cross-sections. Recent work on the correlation of integral experiments and high-energy cross-sections is discussed. The importance of integral data where cross-section measurements are inadequate is pointed out. The sensitivity of estimates of fast fission of U238 to inelastic cross-sections and energy degradation in the MeV energy range is shown by comparison of integral data with Monte Carlo calculations. It is shown that the Snell experiment is a sensitive index to the absolute values of inelastic cross-sections above 1.4 MeV. The results of attempts by the Brookhaven Cross-Section Evaluation Group to reconcile measurements of inelastic cross-sections of U238 are given. Other areas where integral data and critical experiments can be used to reduce computational uncertainties are the fast effect in beryllium, and η of U233 at intermediate energies. Critical experiments can reduce the present uncertainty in Be (n, 2n) cross-sections and in intermediate energy values of η23. (author)

  19. A Robust Hash Function Using Cross-Coupled Chaotic Maps with Absolute-Valued Sinusoidal Nonlinearity

    Wimol San-Um

    2016-01-01

    Full Text Available This paper presents a compact and effective chaos-based keyed hash function implemented by a cross-coupled topology of chaotic maps, which employs absolute-value of sinusoidal nonlinearity, and offers robust chaotic regions over broad parameter spaces with high degree of randomness through chaoticity measurements using the Lyapunov exponent. Hash function operations involve an initial stage when the chaotic map accepts initial conditions and a hashing stage that accepts input messages and generates the alterable-length hash values. Hashing performances are evaluated in terms of original message condition changes, statistical analyses, and collision analyses. The results of hashing performances show that the mean changed probabilities are very close to 50%, and the mean number of bit changes is also close to a half of hash value lengths. The collision tests reveal the mean absolute difference of each character values for the hash values of 128, 160 and 256 bits are close to the ideal value of 85.43. The proposed keyed hash function enhances the collision resistance, comparing to MD5 and SHA1, and the other complicated chaos-based approaches. An implementation of hash function Android application is demonstrated.

  20. Resonance capture cross section of 207Pb

    Domingo-Pardo, C; Aerts, G; Alvarez-Pol, H; Alvarez-Velarde, F; Andrzejewski, J; Andriamonje, Samuel A; Assimakopoulos, P A; Audouin, L; Badurek, G; Baumann, P; Becvar, F; Berthoumieux, E; Bisterzo, S; Calviño, F; Cano-Ott, D; Capote, R; Carrapico, C; Chepel, V; Cennini, P; Chiaveri, Enrico; Colonna, N; Cortés, G; Couture, A; Cox, J; Dahlfors, M; David, S; Dillman, I; Dolfini, R; Dridi, W; Durán, I; Eleftheriadis, C; Embid-Segura, M; Ferrant, L; Ferrari, A; Ferreira-Marques, R; Fitzpatrick, L; Frais-Kölbl, H; Fujii, K; Furman, W; Gallino, R; Gonçalves, I; González-Romero, E M; Goverdovski, A; Gramegna, F; Griesmayer, E; Guerrero, C; Gunsing, F; Haas, B; Haight, R; Heil, M; Herrera-Martínez, A; Igashira, M; Isaev, S; Jericha, E; Kadi, Y; Käppeler, F K; Karamanis, D; Karadimos, D; Kerveno, M; Ketlerov, V; Köhler, P; Konovalov, V; Kossionides, E; Krticka, M; Lamboudis, C; Leeb, H; Lindote, A; Lopes, I; Lozano, M; Lukic, S; Marganiec, J; Marrone, S; Mastinu, P; Mengoni, A; Milazzo, P M; Moreau, C; Mosconi, M; Neves, F; Oberhummer, Heinz; Oshima, M; O'Brien, S; Pancin, J; Papachristodoulou, C; Papadopoulos, C; Paradela, C; Patronis, N; Pavlik, A; Pavlopoulos, P; Perrot, L; Plag, R; Plompen, A; Plukis, A; Poch, A; Pretel, C; Quesada, J; Rauscher, T; Reifarth, R; Rosetti, M; Rubbia, Carlo; Rudolf, G; Rullhusen, P; Salgado, J; Sarchiapone, L; Savvidis, I; Stéphan, C; Tagliente, G; Taín, J L; Tassan-Got, L; Tavora, L; Terlizzi, R; Vannini, G; Vaz, P; Ventura, A; Villamarín, D; Vincente6, M C; Vlachoudis, V; Vlastou, R; Voss, F; Walter, S; Wendler, H; Wiescher, M; Wisshak, K

    2006-01-01

    The radiative neutron capture cross section of 207Pb has been measured at the CERN neutron time of flight installation n_TOF using the pulse height weighting technique in the resolved energy region. The measurement has been performed with an optimized setup of two C6D6 scintillation detectors, which allowed us to reduce scattered neutron backgrounds down to a negligible level. Resonance parameters and radiative kernels have been determined for 16 resonances by means of an R-matrix analysis in the neutron energy range from 3 keV to 320 keV. Good agreement with previous measurements was found at low neutron energies, whereas substantial discrepancies appear beyond 45 keV. With the present results, we obtain an s-process contribution of 77(8)% to the solar abundance of 207Pb. This corresponds to an r-process component of 23(8)%, which is important for deriving the U/Th ages of metal poor halo stars.

  1. Production cross sections from phenomenological constraints

    Hadronic production cross sections ν sub(n) (s) satisfying exactly the high energy empirical laws known for the first, second and third multiplicity moments are determined. The result is obtained in the form of a second order linear differential equation for ν sub(n) (s) which allows one to calculate explicitly all successive moments. In particular, the fourth moment is in excellent agreement with the data. The asymptotic solution of the equation for ν sub(n) (s) is given analytically. KNO scaling turns out to be an asymptotic property of the solution. The full solution for ν sub(n) (s) is studied numerically and the KNO plot is compared with the data. No free parameters are left to be adjusted except for an overall normalization constant. As expected, KNO scaling sets in rather quickly with increasing n and the agreement with the data is progressively good. This agreement becomes excellent for the whole interval of n/ for which data exist (O) approximately equal to 2. It turns out that the asymptotic solution, given in analytic terms, is an excellent approximation to the data and can thus be used for practical purposes instead of the full solution for calculating ν sub(n) (s). (author)

  2. Differential cross section and related integrals for the Moliere potential

    The Moliere potential is widely used in radiation damage simulation studies. It is not much used in analytical transport theory calculations because of the awkward expression for the differential cross section corresponding to the potential. A two step process is followed to obtain a useful cross section: adopting the Lindhard, Nielsen and Scharff (LNS) approximations in order to generate a simpler form of the Moliere cross section and then creating a simple, easy-to-use, fit to that approximate form. Within the framework of the LNS treatment of atomic cross sections, our fit is accurate to 6%. Simple forms for the total cross section and several related quantities are presented. (author)

  3. Graphs of the cross sections in the Alternate Monte Carlo Cross Section library at the Los Alamos Scientific Laboratory

    Graphs of all neutron cross sections and photon production cross sections on the Alternate Monte Carlo Cross Section (AMCCS) library have been plotted along with local neutron heating numbers. The values of ν-bar, the average number of neutrons per fission, are also plotted for appropriate isotopes

  4. Proton-nucleus cross section at high energies

    Wibig, Tadeusz; Sobczynska, Dorota

    1998-01-01

    Cross sections for proton inelastic collision with different nuclei are described within the Glauber and multiple scattering approximations. A significant difference between approximate `Glauber' formula and exact calculations with a geometrical scaling assumption for very high-energy cross section is shown. Experimental values of proton-proton cross sections obtained using extensive air shower data are based on the relationship of proton-proton and respective proton-air absorption cross sect...

  5. New numerical methods for nuclear cross section processing

    Nuclear data allow to describe how a particle interacts with matter. These data are therefore at the basis of neutron transport and reactor physics calculations. Once measured and evaluated, they are given in libraries as a list of parameters. Before they can be used in neutron transport calculations, processing is required which includes taking into account several physical phenomena. This can be done by several softwares, such as NJOY, which all have the drawback to use old numerical methods derived from the same algorithms. For nuclear safety applications, it is important to rely on independent methods, to have a comparison point and to isolate the effects of the treatment on the final results. Moreover, it is important to properly master processing accuracy during its different steps. The objective of this PhD is then to develop independent numerical methods that can guarantee nuclear data processing within a given precision and to implement them practically, with the creation of the GAIA software. Our first step was the reconstruction of cross sections from the parameters given in libraries, with different approximations of the R-matrix theory. Reconstruction using the general formalism, without any approximation, has also been implemented, which has required the development of a new method to calculate the R-matrix. Tests have been performed on all existing formalisms, including the newest one. They have shown a good agreement between GAIA and NJOY. Reconstruction of angular differential cross sections directly from R-matrix parameters, using the Blatt-Biedenharn formula, has also been implemented and tested. The cross sections we have obtained at this point correspond to a target nucleus at absolute zero temperature. Because of thermal agitation, these cross sections are subject to a Doppler effect that is taken into account by integrating them with Solbrig's kernel. Our second step was then to calculate this integral. First, we have elaborated and

  6. Reference solution for cross section parametrization

    Core calculations of nuclear reactors are usually performed by core physics codes (e.g. with NEM or FDM solvers) in diffusion or SP3 approximation of the transport equation. For each fuel type parameterized data libraries are prepared by means of a lattice code. The data libraries are burnup dependent, and the parameterization covers the hyperspace of admissible values of all operational parameters (fuel temperature, moderator density, boron concentration etc.) This approach has two weak spots. The first is, that it is difficult to make perfect parameterization of the data library because of relatively broad range of the parameter values and the fact that the parameters' effect on the macroscopic cross-sections are not mutually independent. The second is that even for perfect parameterizations with precise approximations of the data changes with respect to the feedback parameters the so-called history effects are neglected. It is generally difficult to assess the cumulative errors arising due to the approximative parameterization of the data libraries and due to the history effects. It is as well difficult to assess the efficiency of techniques developed in order to incorporate the history effect in the data library (such as time integration). In this paper we present a tool for reference core calculations in which the above stated approximations are eliminated. This paper presents the solution method, its implementation, as well as the results of a demonstration calculation showing the improvement of the calculation results over the traditional approach, assessing the magnitude of history and parameterization effects importance. The most important feature of the presented method is that it provides the perfect parameterization of macroscopic data, allowing the core physics code developers to understand sources of modeling uncertainties by completely removing the parameterization error (including, unlike other approaches, a complete representation of the

  7. Experimental Photoionization Cross-Section Measurements in the Ground and Metastable State Threshold Region of Se+

    Sterling, N C; Bilodeau, R C; Kilcoyne, A L D; Red, E C; Phaneuf, R A; Aguilar, A

    2010-01-01

    Absolute photoionization cross-section measurements are reported for Se+ in the photon energy range 18.0-31.0 eV, which spans the ionization thresholds of the 4S_{3/2} ground state and the low-lying 2P_{3/2,1/2} and 2D_{5/2,3/2} metastable states. The measurements were performed using the Advanced Light Source synchrotron radiation facility. Strong photoexcitation-autoionization resonances due to 4p-->nd transitions are seen in the cross-section spectrum and identified with a quantum-defect analysis.

  8. Threshold-energy region in the electron-excitation cross sections of the sodium resonant transition

    Ying, C. H.; Perales, F.; Vušković, L.; Bederson, B.

    1993-08-01

    We present measurements of absolute excitation differential cross sections for electron scattering by ground-state sodium in the 3P manifold at 2.3, 2.4, 2.5, 2.6, 3.0, 3.3, and 3.7 eV in the angular range 1° to 60°. No calibration or normalization procedures are involved. Comparisons with computational results of the close-coupling approximation and experimentally obtained ΔMs- and ΔML-changing cross sections are made.

  9. Absorption cross section measurements for 252Cf spontaneous fission neutrons (LWBR development program)

    Absolute absorption cross sections have been measured for 232Th and 197Au for 252Cf spontaneous fission neutrons. Irradiations were performed in an exceptionally low mass source-foil arrangement, providing a ''pure'' spectrum with few corrections. Calibration of the activation detector was achieved by irradiating identical foils in the National Bureau of Standards (NBS) Standard Thermal Flux. A simple ratio technique was also used to obtain an independent estimate of the relative 232Th to 197Au integral cross sections, yielding a value in good agreement with that above. This technique was extended to 181Ta, 98Mo, and 63Cu. (5 tables, 3 figures) (U.S.)

  10. Color dipole cross section and inelastic structure function

    Jeong, Yu Seon; Reno, Mary Hall

    2014-01-01

    Instead of starting from a theoretically motivated form of the color dipole cross section in the dipole picture of deep inelastic scattering, we start with a parametrization of the deep inelastic structure function for electromagnetic scattering with protons, and then extract the color dipole cross section. Using the Donnachie-Landshoff parametrization of $F_2(x,Q^2)$, we find the dipole cross section from an approximate form of the presumed dipole cross section convoluted with the perturbative photon wave function for virtual photon splitting into a color dipole with massless quarks. The color dipole cross section determined this way works quite well in the massive case, reproducing the original Donnachie-Landshoff structure function for $0.1$ GeV$^2\\leq Q^2\\leq 10$ GeV$^2$. We discuss the large and small form of the dipole cross section and compare with other parameterizations.

  11. Polynomial parameterized representation of macroscopic cross section for PWR reactor

    Fiel, Joao Claudio B., E-mail: fiel@ime.eb.br [Instituto Militar de Engenharia (IME), Rio de Janeiro, RJ (Brazil). Departamento de Engenharia Nuclear

    2015-07-01

    The purpose of this work is to describe, by means of Tchebychev polynomial, a parameterized representation of the homogenized macroscopic cross section for PWR fuel element as a function of soluble boron concentration, moderator temperature, fuel temperature, moderator density and {sup 235} U {sub 92} enrichment. Analyzed cross sections are: fission, scattering, total, transport, absorption and capture. This parameterization enables a quick and easy determination of the problem-dependent cross-sections to be used in few groups calculations. The methodology presented here will enable to provide cross-sections values to perform PWR core calculations without the need to generate them based on computer code calculations using standard steps. The results obtained by parameterized cross-sections functions, when compared with the cross-section generated by SCALE code calculations, or when compared with K{sub inf}, generated by MCNPX code calculations, show a difference of less than 0.7 percent. (author)

  12. Resonance Averaged Photoionization Cross Sections for Astrophysical Models

    Bautista, M A; Pradhan, A K

    1997-01-01

    We present ground state photoionization cross sections of atoms and ions averaged over resonance structures for photoionization modeling of astrophysical sources. The detailed cross sections calculated in the close-coupling approximation using the R-matrix method, with resonances delineated at thousands of energies, are taken from the Opacity Project database TOPbase and the Iron Project, including new data for the low ionization stages of iron Fe I--V. The resonance-averaged cross sections are obtained by convolving the detailed cross sections with a Gaussian distribution over the autoionizing resonances. This procedure is expected to minimize errors in the derived ionization rates that could result from small uncertainties in computed positions of resonances, while preserving the overall resonant contribution to the cross sections in the important near threshold regions. The detailed photoionization cross sections at low photon energies are complemented by new relativistic distorted-wave calculations for Z1...

  13. Cross-section measurements for electron-impact ionization of atoms

    Freund, Robert S.; Wetzel, Robert C.; Shul, Randy J.; Hayes, Todd R.

    1990-04-01

    Absolute electron-impact cross sections have been measured from 0 to 200 eV for single ionization of 16 atoms (Mg, Fe, Cu, Ag, Al, Si, Ge, Sn, Pb, P, As, Sb, Bi, S, Se, and Te) with an estimated accuracy of +/-10%. Combined with our recent measurements of He, Ne, Ar, Kr, Xe, F, Cl, Br, I, Ga, and In [Wetzel et al., Phys. Rev. A 35, 559 (1987); Hayes et al., ibid. 35, 578 (1987); Shul, Wetzel, and Freund, ibid. 39, 5588 (1989)], a set of 27 atomic single-ionization cross sections has now been measured with the same apparatus. In addition, cross sections are reported for double ionization of ten atoms and triple ionization of eight atoms. The measurements are made by crossing an electron beam with a 3-keV beam of neutral atoms, prepared by charge-transfer neutralization of a mass-selected ion beam. The critical measurement of absolute neutral beam flux is made with a calibrated pyroelectric crystal. The magnitudes of the single-ionization-peak cross sections decrease monotonically across rows of the periodic table from group IIIA (Al,Ga,In) to group VIIIA (Ar,Kr,Xe), varying much more than predicted by various empirical formulas and classical and quantum-mechanical theories.

  14. Projectile and Lab Frame Differential Cross Sections for Electromagnetic Dissociation

    Norbury, John W.; Adamczyk, Anne; Dick, Frank

    2008-01-01

    Differential cross sections for electromagnetic dissociation in nuclear collisions are calculated for the first time. In order to be useful for three - dimensional transport codes, these cross sections have been calculated in both the projectile and lab frames. The formulas for these cross sections are such that they can be immediately used in space radiation transport codes. Only a limited amount of data exists, but the comparison between theory and experiment is good.

  15. LINX-1: a code for linking polynomial cross section files

    The capabilities of the LINX-1 code are described. It was developed for the purpose of linking seperate fuel assembly and reflector node polynomial cross section files, obtained by the POLX-1 code, together into a single reactor polynomial cross section library. The output of the polynomial cross section library can be in either binary or fixed (BCD) format. Input data requirements and the format of the output file generated by LINX-1 are also described. 2 refs

  16. Theoretical estimates of cross sections for neutron-nucleus collisions

    Mukhopadhyay, Tapan; Lahiri, Joydev; Basu, D. N.

    2010-01-01

    We construct an analytical model derived from nuclear reaction theory and having a simple functional form to demonstrate the quantitative agreement with the measured cross sections for neutron induced reactions. The neutron-nucleus total, reaction and scattering cross sections, for energies ranging from 5 to 700 MeV and for several nuclei spanning a wide mass range are estimated. Systematics of neutron scattering cross sections on various materials for neutron energies upto several hundred Me...

  17. Simulation of cross sections for practical ALCHEMI

    Full text: Precisely known atomic scattering factors are essential for accurate atom location by channeling enhanced microanalysis (ALCHEMI) based on inner-shell ionization. For ALCHEMI using energy dispersive x-ray analysis (EDX), first principles calculations of ionization cross sections, realistically modelling the 'delocalization' of the ionization interaction, give excellent agreement with experiment. Such calculations are complex and computationally intensive. Hence, simple analytic forms are often assumed to describe the ionization potential. Such an approach assumes that the precise shape of the ionization potential is not important but that at least the half width at half maximum (HWHM) should be accurately estimated, for example using estimates of the HWHM from root-mean-square impact parameters for ionization. However this is generally not a good approximation and we have provided more realistic estimates. These are based on accurate atomic scattering form factors for ionization that have been calculated from first principles using relativistic Hartree-Fock wave functions for bound states and Hartree-Slater wave functions for the continuum states. The effective ionization interaction may be approximated by an equivalent local potential. The scattering factors have been calculated for K-shell ionization for elements in the range Z= 6 (carbon) to Z = 50 (tin) and for Z-shell ionization in the range Z = 20 (calcium) to Z = 60 (neodymium). Accurate values of the scattering factors can be obtained by interpolation for incident electron energies between 50 and 400 keV. The utility of these form factors is illustrated, using some data obtained by Matsumura and coworkers during their project to investigate radiation-induced disordering in magnesium aluminate spinel. High angular resolution electron channeling x-ray spectroscopy was employed to investigate ion displacements in MgOnAl2O3 (n = 1.0 and 2.4) irradiated with 1 MeV Ne+ ions or 900 keV electrons at 873

  18. Neutron-capture Cross Sections from Indirect Measurements

    Escher, J E; Burke, J T; Dietrich, F S; Ressler, J J; Scielzo, N D; Thompson, I J

    2011-10-18

    Cross sections for compound-nuclear reactions play an important role in models of astrophysical environments and simulations of the nuclear fuel cycle. Providing reliable cross section data remains a formidable task, and direct measurements have to be complemented by theoretical predictions and indirect methods. The surrogate nuclear reactions method provides an indirect approach for determining cross sections for reactions on unstable isotopes, which are difficult or impossible to measure otherwise. Current implementations of the method provide useful cross sections for (n,f) reactions, but need to be improved upon for applications to capture reactions.

  19. Fano interference and cross-section fluctuations in molecular photodissociation

    We derive an expression for the total photodissociation cross section of a molecule incorporating both direct and indirect processes that proceed through excited resonances, and show that it exhibits generalized Beutler-Fano line shapes. Assuming that the closed system can be modeled by random-matrix theory, we derive the statistical properties of the photodissociation cross section and find that they are significantly affected by the direct processes. In the limit of isolated resonances, we find that direct processes suppress the correlation hole of the cross-section autocorrelation function and lead to a maximum in the cross-section distribution

  20. Positive Scattering Cross Sections using Constrained Least Squares

    A method which creates a positive Legendre expansion from truncated Legendre cross section libraries is presented. The cross section moments of order two and greater are modified by a constrained least squares algorithm, subject to the constraints that the zeroth and first moments remain constant, and that the standard discrete ordinate scattering matrix is positive. A method using the maximum entropy representation of the cross section which reduces the error of these modified moments is also presented. These methods are implemented in PARTISN, and numerical results from a transport calculation using highly anisotropic scattering cross sections with the exponential discontinuous spatial scheme is presented

  1. Systematics of fission cross sections at the intermediate energy region

    Fukahori, Tokio; Chiba, Satoshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-03-01

    The systematics was obtained with fitting experimental data for proton induced fission cross sections of Ag, {sup 181}Ta, {sup 197}Au, {sup 206,207,208}Pb, {sup 209}Bi, {sup 232}Th, {sup 233,235,238}U, {sup 237}Np and {sup 239}Pu above 20 MeV. The low energy cross section of actinoid nuclei is omitted from systematics study, since the cross section has a complicated shape and strongly depends on characteristic of nucleus. The fission cross sections calculated by the systematics are in good agreement with experimental data. (author)

  2. Positive Scattering Cross Sections using Constrained Least Squares

    Dahl, J.A.; Ganapol, B.D.; Morel, J.E.

    1999-09-27

    A method which creates a positive Legendre expansion from truncated Legendre cross section libraries is presented. The cross section moments of order two and greater are modified by a constrained least squares algorithm, subject to the constraints that the zeroth and first moments remain constant, and that the standard discrete ordinate scattering matrix is positive. A method using the maximum entropy representation of the cross section which reduces the error of these modified moments is also presented. These methods are implemented in PARTISN, and numerical results from a transport calculation using highly anisotropic scattering cross sections with the exponential discontinuous spatial scheme is presented.

  3. Double-Cross Instability: An Absolute Instability Caused by Counter-Propagating Positive- and Negative-Energy Waves

    The resonant interaction of a negative-energy wave with a positive-energy wave gives rise to a linear instability. Whereas a single crossing of rays in a nonuniform medium leads to a convectively saturated instability, we show that a double crossing can yield an absolute instability, if the two rays are oppositely directed. We obtain expressions for the growth rate and the threshold, and present one application. copyright 1996 The American Physical Society

  4. Capture cross section measurement analysis in the Californium-252 spectrum with the Monte Carlo method

    Absolute average capture cross sections of gold, thorium, tantalum, molybdenum, copper and strontium in 252Cf spontaneous fission neutron spectrum were simulated for two types of experiment setups preformed by Z. Dezso and J. Csikai and by L. Green. The experiments were simulated with MCNP5 using cross section data from the ENDF/B-VII.0 library. The determination of neutron backscattering was calculated with the use of neutron flagging. Correction factors to experimentally measured values were determined to obtain average cross sections in a pure 252Cf spontaneous fission spectrum. Influence of concrete wall thickness, air moisture and room size on the average cross section was analyzed. Correction factors amounted to about 30%. Corrected values corresponding to average cross sections in a pure 252Cf spectrum were calculated for 197Au, 232Th, 181Ta, 98Mo, 65Cu and 84Sr. Average cross sections were also calculated with the RR-UNC software using IRDFF-v.1.05 and ENDF/B-VII.0 libraries. The revised average radiative capture cross sections are 75.5±0.1 mb for 197Au, 87.0±1.6 mb for 232Th , 98.0±4.5 mb for 181Ta, 21.2±0.5 mb for 98Mo, 10.3±0.3 mb for 63Cu, and 34.9±6.5 mb for 84Sr. - Highlights: • Average capture cross sections in 252Cf spontaneous fission spectrum were simulated. • Calculations were done using MCNP5 code and ENDF/B-VII.0 library. • Correction factors for self-shielding and room return effects were taken into account. • The revised average radiative capture cross sections for different materials are published

  5. Differential measurements of the single top quark cross section in the t-channel with the CMS experiment at $\\sqrt{s}$ = 8 TeV

    Röcker, Steffen

    Measurements of differential single top quark t channel production cross sections as functions of the transverse momentum and the absolute value of the rapidity of the top quark in proton-proton collisions at the LHC are presented.

  6. Determination of the total photo-absorption cross section of 197Au from (γ,chin) reaction cross sections

    Cross sections for the reaction 197Au(γ, chin)(chi<=12) have been measured for bremsstrahlung end-point energies in the range 60-340 MeV. From these dominant cross sections, the total photon absorption cross section is determined using a cascade-evaporation calculation to account for the missing reaction channels. The enhancement factor for the classical E1 sum rule is found to be 0.93+-0.10. (orig.)

  7. Cross Sections for Inner-Shell Ionization by Electron Impact

    An analysis is presented of measured and calculated cross sections for inner-shell ionization by electron impact. We describe the essentials of classical and semiclassical models and of quantum approximations for computing ionization cross sections. The emphasis is on the recent formulation of the distorted-wave Born approximation by Bote and Salvat [Phys. Rev. A 77, 042701 (2008)] that has been used to generate an extensive database of cross sections for the ionization of the K shell and the L and M subshells of all elements from hydrogen to einsteinium (Z = 1 to Z = 99) by electrons and positrons with kinetic energies up to 1 GeV. We describe a systematic method for evaluating cross sections for emission of x rays and Auger electrons based on atomic transition probabilities from the Evaluated Atomic Data Library of Perkins et al. [Lawrence Livermore National Laboratory, UCRL-ID-50400, 1991]. We made an extensive comparison of measured K-shell, L-subshell, and M-subshell ionization cross sections and of Lα x-ray production cross sections with the corresponding calculated cross sections. We identified elements for which there were at least three (for K shells) or two (for L and M subshells) mutually consistent sets of cross-section measurements and for which the cross sections varied with energy as expected by theory. The overall average root-mean-square deviation between the measured and calculated cross sections was 10.9% and the overall average deviation was −2.5%. This degree of agreement between measured and calculated ionization and x-ray production cross sections was considered to be very satisfactory given the difficulties of these measurements

  8. Ni elemental neutron induced reaction cross-section evaluation

    A completely new evaluation of the nickel neutron induced reaction cross sections was undertaken as a part of the ENDF/B-V effort. (n,xy) reactions and capture reaction time from threshold to 20 MeV were considered for 5860616264Ni isotopes to construct the corresponding reaction cross section for natural nickel. Both experimental and theoretical calculated results were used in evaluating different partial cross sections. Precompound effects were included in calculating (n,xy) reaction cross sections. Experimentally measured total section data extending from 0.7 MeV to 20 MeV were used to generate smooth cross section. Below 0.7 to MeV elastic and capture cross sections are represented by resonance parameters. Inelastic angular distributions to the discrete isotopic levels and elemental elastic angular distributions are included in the evaluated data file. Gamma production cross sections and energy distribution due to capture and the (n,xy) reactions were evaluated from experimental data. Finally, error files are constructed for all partial cross sections

  9. ScaRaB: first results of absolute and cross calibration

    Trémas, Thierry L.; Aznay, Ouahid; Chomette, Olivier

    2015-10-01

    ScaRaB (SCAnner for RAdiation Budget) is the name of three radiometers whose two first flight models have been launched in 1994 and 1997. The instruments were mounted on-board Russian satellites, METEOR and RESURS. On October 12th 2011, a last model has been launched from the Indian site of Sriharikota. ScaRaB is a passenger of MEGHA-TROPIQUES, an Indo-French joint Satellite Mission for studying the water cycle and energy exchanges in the tropics. ScaRaB is composed of four parallel and independent channels. Channel-2 and channel-3 are considered as the main ones. Channel-1 is dedicated to measure solar radiance (0.5 to 0.7 μm) while channel-4 (10 to 13 μm) is an infrared window. The absolute calibration of ScaRab is assured by internal calibration sources (black bodies and a lamp for channel-1). However, during the commissioning phase, the lamp used for the absolute calibration of channel-1 revealed to be inaccurate. We propose here an alternative calibration method based on terrestrial targets. Due to the spectral range of channel-1, only calibration over desert sites (temporal monitoring) and clouds (cross band) is suitable. Desert sites have been widely used for sensor calibration since they have a stable spectral response over time. Because of their high reflectances, the atmospheric effect on the upward radiance is relatively minimal. In addition, they are spatially uniform. Their temporal instability without atmospheric correction has been determined to be less than 1-2% over a year. Very-high-altitude (10 km) bright clouds are good validation targets in the visible and near-infrared spectra because of their high spectrally consistent reflectance. If the clouds are very high, there is no need to correct aerosol scattering and water vapor absorption as both aerosol and water vapor are distributed near the surface. Only Rayleigh scattering and ozone absorption need to be considered. This method has been found to give a 4% uncertainty. Radiometric cross

  10. Status update on the NIFFTE high precision fission cross section measurement program

    Laptev, Alexander B [Los Alamos National Laboratory; Tovesson, Fredrik [Los Alamos National Laboratory; Burgett, Eric [GEORGIA INSTITUTE OF TECH; Greife, Uwe [COLORADO SCHOOL OF THE MINES; Grimes, Steven [OHIO UNIV; Heffner, Michael D [LLNL; Hertel, Nolan E [GEORGIA INSTITUTE OF TECH; Hill, Tony [IDAHO NATIONAL LABORATORY; Isenhower, Donald [ABILENE CHRISTIN UNIV; Klay, Jennifer L [CALIFORNIA POLYTECHNIC STATE UNIV; Kornilov, Nickolay [OHIO UNIV; Kudo, Ryuho [CALIFORNIA POLYTECHNIC STATE UNIV; Loveland, Walter [OREGON STATE UNIV; Massey, Thomas [OHIO UNIV; Mc Grath, Chris [IDAHO NATIONAL LABORATORY; Pickle, Nathan [ABILENE CHRISTIAN UNIV; Qu, Hai [ABILENE CHRISTIAN UNIV; Sharma, Sarvagya [ABILENE CHRISTIAN UNIV; Snyder, Lucas [COLORADO SCHOOL OF THE MINES; Thornton, Tyler [ABILENE CHRISTIAN UNIV; Towell, Rusty S [ABILENE CHRISTIAN UNIV; Watson, Shon [ABILENE CHRISTIAN UNIV

    2010-01-01

    The Neutron Induced Fission Fragment Tracking Experiment (NIFFTE) program has been underway for nearly two years. The program's mission is to measure fission cross sections of the primary fissionable and fissile materials ({sup 235}U, {sup 239}Pu, {sup 238}U) as well as the minor actinides across energies from approximately 50 keV up to 20 MeV with an absolute uncertainty of less than one percent while investigating energy ranges from below an eV to 600 MeV. This basic nuclear physics data is being reinvestigated to support the next generation power plants and a fast burner reactor program. Uncertainties in the fast, resolved and unresolved resonance regions in plutonium and other transuranics are extremely large, dominating safety margins in the next generation nuclear power plants and power plants of today. This basic nuclear data can be used to support all aspects of the nuciear renaissance. The measurement campaign is utilizing a Time Projection Chamber or TPC as the tool to measure these cross sections to these unprecedented levels. Unlike traditional fission cross section measurements using time-of-flight and a multiple fission foil configurations in which fission cross sections in relation to that of {sup 235}U are performed, the TPC project uses time-of-flight and hydrogen as the benchmark cross section. Using the switch to hydrogen, a simple, smooth cross section that can be used which removes the uncertainties associated with the resolved and unresolved resonances in {sup 235}U.

  11. Measurements of the Ultraviolet Fluorescence Cross Sections and Spectra of Bacillus Anthracis Simulants

    Stephens, J.R.

    1998-09-01

    Measurements of the ultraviolet autofluorescence spectra and absolute cross sections of the Bacillus anthracis (Ba) simulants Bacillus globigii (Bg), Bacillus megaterium (Bm), Bacillus subtilis (Bs), and Bacillus cereus (Bc) were measured. Fluorescence spectra and cross sections of pine pollen (Pina echinata) were measured for comparison. Both dried vegetative cells and spores separated from the sporulated vegetative material were studied. The spectra were obtained by suspending a small number (<10) of particles in air in our Single Particle Spectroscopy Apparatus (SPSA), illuminating the particles with light from a spectrally filtered arc lamp, and measuring the fluorescence spectra of the particles. The illumination was 280 nm (20 nm FWHM) and the fluorescence spectra was measured between 300 and 450 nm. The fluorescence cross section of vegetative Bg peaks at 320 nm with a maximum cross section of 5 X 10{sup -14} cm{sup 2}/sr-nm-particle while the Bg spore fluorescence peaks at 310 nm with peak fluorescence of 8 X 10{sup -15} cm{sup 2}/sr-nm-particle. Pine pollen particles showed a higher fluorescence peaking at 355 nm with a cross section of 1.7 X 10{sup -13} cm{sup 2}/sr-nm-particle. Integrated cross sections ranged from 3.0 X 10{sup -13} for the Bg spores through 2.25 X 10{sup -12} (cm{sup 2}/sr-particle) for the vegetative cells.

  12. Status update on the NIFFTE high precision fission cross section measurement program

    The Neutron Induced Fission Fragment Tracking Experiment (NIFFTE) program has been underway for nearly two years. The program's mission is to measure fission cross sections of the primary fissionable and fissile materials (235U, 239Pu, 238U) as well as the minor actinides across energies from approximately 50 keV up to 20 MeV with an absolute uncertainty of less than one percent while investigating energy ranges from below an eV to 600 MeV. This basic nuclear physics data is being reinvestigated to support the next generation power plants and a fast burner reactor program. Uncertainties in the fast, resolved and unresolved resonance regions in plutonium and other transuranics are extremely large, dominating safety margins in the next generation nuclear power plants and power plants of today. This basic nuclear data can be used to support all aspects of the nuciear renaissance. The measurement campaign is utilizing a Time Projection Chamber or TPC as the tool to measure these cross sections to these unprecedented levels. Unlike traditional fission cross section measurements using time-of-flight and a multiple fission foil configurations in which fission cross sections in relation to that of 235U are performed, the TPC project uses time-of-flight and hydrogen as the benchmark cross section. Using the switch to hydrogen, a simple, smooth cross section that can be used which removes the uncertainties associated with the resolved and unresolved resonances in 235U.

  13. Benchmark measurements of non-Rutherford proton elastic scattering cross section for boron

    Chiari, M. [INFN-Sezione di Firenze, Sesto Fiorentino, Florence I-50019 (Italy); Bianconi, M. [CNR-IMM-UOS di Bologna, Bologna I-40129 (Italy); Bogdanović Radović, I. [Ruder Boskovic Institute, Zagreb 10002 (Croatia); Mayer, M. [Max-Planck-Institut für Plasmaphysik, D-85748 Garching (Germany)

    2015-01-15

    In the literature several elastic scattering cross-sections data sets are available for protons on {sup 10}B and {sup 11}B at energies and scattering angles suitable for elastic backscattering spectrometry (EBS) analysis. However, agreement between these different data sets is generally poor, with systematic differences up to 20%, well beyond the stated absolute uncertainties. To resolve the conflict between the different data sets in the absence of the evaluated cross-section data, a benchmark experiment was performed. Proton backscattering spectra were obtained with a thick uniform B{sub 4}C target at beam energies in the range of 2.0–4.0 MeV and at different scattering angles, followed by a standard direct simulation with the SIMNRA code using the available experimental cross-section data. As a result, recommendation on the most appropriate data set to be used in proton EBS analysis of boron is given.

  14. Benchmark measurements of non-Rutherford proton elastic scattering cross section for boron

    In the literature several elastic scattering cross-sections data sets are available for protons on 10B and 11B at energies and scattering angles suitable for elastic backscattering spectrometry (EBS) analysis. However, agreement between these different data sets is generally poor, with systematic differences up to 20%, well beyond the stated absolute uncertainties. To resolve the conflict between the different data sets in the absence of the evaluated cross-section data, a benchmark experiment was performed. Proton backscattering spectra were obtained with a thick uniform B4C target at beam energies in the range of 2.0–4.0 MeV and at different scattering angles, followed by a standard direct simulation with the SIMNRA code using the available experimental cross-section data. As a result, recommendation on the most appropriate data set to be used in proton EBS analysis of boron is given

  15. First Measurement of the Muon Neutrino Charged Current Quasielastic Double Differential Cross Section

    Aguilar-Arevalo, A.A.; /Mexico U., CEN; Anderson, C.E.; /Yale U.; Bazarko, A.O.; /Princeton U.; Brice, S.J.; /Fermilab; Brown, B.C.; /Fermilab; Bugel, L.; /Columbia U.; Cao, J.; /Michigan U.; Coney, L.; /Columbia U.; Conrad, J.M.; /MIT; Cox, D.C.; /Indiana U.; Curioni, A.; /Yale U. /Columbia U.

    2010-02-01

    A high-statistics sample of charged-current muon neutrino scattering events collected with the MiniBooNE experiment is analyzed to extract the first measurement of the double differential cross section (d{sup 2}{sigma}/dT{sub {mu}}d cos {theta}{sub {mu}}) for charged-current quasielastic (CCQE) scattering on carbon. This result features minimal model dependence and provides the most complete information on this process to date. With the assumption of CCQE scattering, the absolute cross section as a function of neutrino energy ({sigma}[E{sub {nu}}]) and the single differential cross section (d{sigma}/dQ{sup 2}) are extracted to facilitate comparison with previous measurements. These quantities may be used to characterize an effective axial-vector form factor of the nucleon and to improve the modeling of low-energy neutrino interactions on nuclear targets. The results are relevant for experiments searching for neutrino oscillations.

  16. High spectral resolution ozone absorption cross-sections – Part 2: Temperature dependence

    A. Serdyuchenko

    2013-07-01

    Full Text Available We report on the temperature dependence of ozone absorption cross-sections measured in our laboratory in the spectral range 213–1100 nm with a spectral resolution of 0.02–0.24 nm (Full Width Half Maximum, FWHM in the atmospherically relevant temperature range from 193 to 293 K. The temperature dependence of ozone absorption cross-sections was established using measurements at eleven temperatures. The methodology of the absolute broadband measurements, experimental procedures and spectra processing were described in our companion paper together with the associated error budget. In this paper, we report in detail on our data below room temperature and compare them with literature data using direct comparisons as well as the standard approach using a quadratic polynomial in temperature fitted to the cross-section data.

  17. Cross sections for elastic electron scattering by tetramethylsilane in the intermediate-energy range

    Sugohara, R. T. [Departamento de Fisica, UFSCar, 13565-905 Sao Carlos, SP (Brazil); Lee, M.-T.; Iga, I. [Departamento de Quimica, UFSCar, 13565-905 Sao Carlos, SP (Brazil); Souza, G. L. C. de [Instituto de Ciencias Exatas e Tecnologia, UFAM, 69100-000 Itacoatiara, AM (Brazil); Homem, M. G. P. [Departamento de Fisica, UFSC, 88010-970 Florianopolis, SC (Brazil)

    2011-12-15

    Organosilicon compounds are of current interest due to the numerous applications of these species in industries. Some of these applications require the knowledge of electron collision cross sections, which are scarce for such compounds. In this work, we report absolute values of differential, integral, and momentum-transfer cross sections for elastic electron scattering by tetramethylsilane (TMS) measured in the 100-1000 eV energy range. The relative-flow technique is used to normalize our data. In addition, the independent-atom-model (IAM) and the additivity rule (AR), widely used to model electron collisions with light hydrocarbons, are also applied for e{sup -}-TMS interaction. The comparison of our measured results of cross sections and the calculated data shows good agreement, particularly near the higher-end of incident energies.

  18. Modeling and analysis of ground target radiation cross section

    SHI Xiang; LOU GuoWei; LI XingGuo

    2008-01-01

    Based on the analysis of the passive millimeter wave (MMW) radiometer detection, the ground target radiation cross section is modeled as the new token for the target MMW radiant characteristics. Its ap-plication and actual testing are discussed and analyzed. The essence of passive MMW stealth is target radiation cross section reduction.

  19. Analysis of cross sections using various nuclear potential

    The relevant astrophysical reaction rates which are derived from the reaction cross sections are necessary input to the reaction network. In this work, we analyse several theoretical models of the nuclear potential which give better prediction of the cross sections for some selected reactions

  20. Total Cross Sections at High Energies - An Update

    Fazal-e-Aleem; Sohail Afzal Tahir; M. Alam Saeed; M. Qadeer Afzal

    2002-01-01

    Current and future measurements for the total cross sections at E-811, PP2PP, CSM, FELIX, and TOTEMhave been analyzed using various models. In the light of this study an attempt has been made to focus on the behaviorof total cross section at very high energies.

  1. Surrogate reaction methods for neutron induced cross-sections

    A brief discussion on surrogate reaction methods and some of the recent results on neutron induced fission cross-section measurements carried out by our group and the possibility of extending the measurements for determining (n,g), (n,2n) and (n,p) reaction cross-sections by surrogate reaction method are presented

  2. Cross Sections for Electron Collisions with Carbon Monoxide

    Cross section data are collected and reviewed for electron collisions with carbon monoxide. Collision processes included are total scattering, elastic scattering, momentum transfer, excitations of rotational, vibrational and electronic states, ionization, and dissociation. For each process, recommended values of the cross sections are presented, when possible. The literature has been surveyed through to the end of 2013

  3. Applications of the BEam Cross section Analysis Software (BECAS)

    Blasques, José Pedro Albergaria Amaral; Bitsche, Robert; Fedorov, Vladimir;

    2013-01-01

    A newly developed framework is presented for structural design and analysis of long slender beam-like structures, e.g., wind turbine blades. The framework is based on the BEam Cross section Analysis Software – BECAS – a finite element based cross section analysis tool. BECAS is used for the...

  4. Learning of Cross-Sectional Anatomy Using Clay Models

    Oh, Chang-Seok; Kim, Ji-Young; Choe, Yeon Hyeon

    2009-01-01

    We incorporated clay modeling into gross anatomy and neuro-anatomy courses to help students understand cross-sectional anatomy. By making clay models, cutting them and comparing cut surfaces to CT and MR images, students learned how cross-sectional two-dimensional images were created from three-dimensional structure of human organs. Most students…

  5. On the scattering cross section of passive linear arrays

    Solymar, L.

    1973-01-01

    A general formula is derived for the scattering cross section of a passiven-element linear array consisting of isotropic radiators. When all the reactances are tuned out and scattering in the mirror direction is investigated, it is found thatA_{sr}, the relative scattering cross section is equal to...

  6. Simplified polynomial representation of cross sections for reactor calculation

    It is shown a simplified representation of a cross section library generated by transport theory using the cell model of Wigner-Seitz for typical PWR fuel elements. The effect of burnup evolution through tables of reference cross sections and the effect of the variation of the reactor operation parameters considered by adjusted polynomials are presented. (M.C.K.)

  7. Parametric equations for calculation of macroscopic cross sections

    Botelho, Mario Hugo; Carvalho, Fernando, E-mail: mariobotelho@poli.ufrj.br [Coordenacao dos Programas de Pos-Graduacao em Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Nuclear

    2015-07-01

    Neutronic calculations of the core of a nuclear reactor is one thing necessary and important for the design and management of a nuclear reactor in order to prevent accidents and control the reactor efficiently as possible. To perform these calculations a library of nuclear data, including cross sections is required. Currently, to obtain a cross section computer codes are used, which require a large amount of processing time and computer memory. This paper proposes the calculation of macroscopic cross section through the development of parametric equations. The paper illustrates the proposal for the case of macroscopic cross sections of absorption (Σa), which was chosen due to its greater complexity among other cross sections. Parametric equations created enable, quick and dynamic way, the determination of absorption cross sections, enabling the use of them in calculations of reactors. The results show efficient when compared with the absorption cross sections obtained by the ALPHA 8.8.1 code. The differences between the cross sections are less than 2% for group 2 and less than 0.60% for group 1. (author)

  8. Cross section probability tables in multi-group transport calculations

    The use of cross section probability tables in multigroup transport calculations is presented. Emphasis is placed on how probability table parameters are generated in a multigroup cross section processor and how existing transport codes must be modifed to use them. In order to illustrate the accuracy obtained by using probability tables, results are presented for a variety of neutron and photon transport problems

  9. Possibility of spin mechanism of total cross section growth

    The possibility of existence of the spin mechanism of total cross section growth is considered. A nucleon-nucleon scattering is studied. The energy dependence of scattering amplitude and possible effects related with the spin mechanism of total cross section growth are studied. It is shown that the considered mechanism can play a great role at high energies

  10. Nuclear characteristics of Pu fueled LWR and cross section sensitivities

    Takeda, Toshikazu [Osaka Univ., Suita (Japan). Faculty of Engineering

    1998-03-01

    The present status of Pu utilization to thermal reactors in Japan, nuclear characteristics and topics and cross section sensitivities for analysis of Pu fueled thermal reactors are described. As topics we will discuss the spatial self-shielding effect on the Doppler reactivity effect and the cross section sensitivities with the JENDL-3.1 and 3.2 libraries. (author)

  11. The effect of the decay data on activation cross section

    The effect of the decay data on evaluation of activation cross section is investigated. Present work shows that these effects must be considered carefully when activation cross section is evaluated. Sometime they are main reason for causing the discrepancies among the experimental data

  12. Minijets, soft gluon resummation and photon cross-sections

    Godbole, R. M.; Grau, A.; Pancheri, G.; Srivastava, Y. N.

    2008-01-01

    We compare the high energy behaviour of hadronic photon-photon cross-sections in different models. We find that the photon-photon cross-section appears to rise faster than the purely hadronic ones (proton-proton and proton-antiproton).

  13. K-shell ionization cross sections of Cl and Lα, Lβ X-ray production cross sections of Ba by 6-30 keV electron impact

    The absolute K-shell ionization cross sections of Cl and Lα, Lβ X-ray production cross sections of Ba by 6-30 keV electron impact have been measured. The target was prepared by evaporating the thin film of compound BaCl2 to the thick pure carbon substrate. The effects of multiple scattering of electrons penetrating the target films, electrons reflected from the thick pure carbon substrates and Bremsstrahlung photons produced when incident electrons impacted on the targets are corrected by using Monte Carlo method. For Ba L-shell X-ray characteristic peaks, the spectra were fitted by using spectrum-fitting program ALLFIT to extract more accurately the Lα and Lβ peak counts. The experimental results, reported here for the first time in the energy region of 6-30 keV, were compared with some theoretical results developed recently.

  14. Measurement of the fission cross section of 238Pu

    The fission cross sections of 238Pu have been measured from 0.1 eV to 80 keV energy range using the Rensselaer Intense Neutron Spectrometer. The cross sections were normalized to the 235U ENDF/B-V data broadened to the resolution of the Rensselaer Intense Neutron Spectrometer system. The fission areas and widths were determined for the resolved low-energy resonances. The ENDF/B-V fission cross sections for the 238Pu isotope are, in general, not in good agreement with the measured cross sections and a new evaluation is recommended. The observations of structure in the unresolved fission cross sections is suggestive of the existence of intermediate structure. 18 refs., 1 fig., 1 tab

  15. Capture cross-section of threading dislocations in thin films

    Highlights: ► We study the effect of film stress on capture cross-section of interacting threads. ► Capture cross-section area diverges near film channeling stress. ► Thread interactions are much more likely when local stress is near critical stress. - Abstract: The capture cross section for annihilation of two threads with opposite Burgers vectors moving on orthogonal slip planes in a thin film is examined using a numerical model. The initial configurations of threads that lead to annihilation are mapped out for a range of applied film stresses. The area of the region of initial configurations that lead to annihilation at a given stress and thickness is the capture cross-section. The size of the capture cross-section is shown to be highly sensitive to the applied stress relative to the critical stress for dislocation motion imposed by the film thickness.

  16. Anomalously large neutron capture cross sections: a random phenomenon?

    Carlson, B V; Kerman, A K

    2015-01-01

    We discuss the existence of huge thermal neutron capture cross sections in several nuclei. The values of the cross sections are several orders of magnitude bigger than expected at these very low energies. We lend support to the idea that this phenomenon is random in nature and is similar to what we have learned from the study of parity violation in the actinide region. The idea of statistical doorways is advanced as a unified concept in the delineation of large numbers in the nuclear world. The average number of maxima per unit mass, $$ in the capture cross section is calculated and related to the underlying cross section correlation function and found to be $ = \\frac{3}{\\pi \\sqrt{2}\\gamma_{A}}$, where $\\gamma_{A}$ is a characteristic mass correlation width which designates the degree of remnant coherence in the system. We trace this coherence to nucleosynthesis which produced the nuclei whose neutron capture cross sections are considered here.

  17. Narrowing the uncertainty on the total charm cross section and its effect on the J/\\psi\\ cross section

    Nelson, R; R. Vogt; Frawley, A. D.

    2012-01-01

    We explore the available parameter space that gives reasonable fits to the total charm cross section to make a better estimate of its true uncertainty. We study the effect of the parameter choices on the energy dependence of the J/\\psi\\ cross section.

  18. Meeting cross-section requirements for nuclear-energy design

    Current requirements in cross-section data that are essential to nuclear-energy programmes are summarized and explained and some insight into how these data might be obtained is provided. The six sections of the paper describe: design parameters and target accuracies; data collection, evaluation and analysis; determination of high-accuracy differential nuclear data for technological applications; status of selected evaluated nuclear data; analysis of benchmark testing; identification of important cross sections and inferred needs. (U.K.)

  19. Meeting cross section requirements for nuclear energy design

    The purpose of this report is to summarize and explain current requirements in cross section data that are essential to nuclear energy programs and to provide some insight into how these data might be obtained. The report is divided into six sections that describe: design parameters and target accuracies; data collection, evaluation, and analysis; determination of high accuracy differential nuclear data for technological applications; status of selected evaluated nuclear data; analysis of benchmark testing; and identification of important cross sections and inferred needs

  20. Measurement of the nu(mu)-CCQE cross-section in the SciBooNE experiment

    Alcaraz-Aunion, Jose Luis; /Barcelona, IFAE; Walding, Joseph; /Imperial Coll., London

    2009-09-01

    SciBooNE is a neutrino and anti-neutrino cross-section experiment at Fermilab, USA. The SciBooNE experiment is summarized and two independent CCQE analyses are described. For one of the analyses, an absolute {nu}{sub {mu}}-CCQE cross section in the neutrino energy region (0.6-1.6) GeV is shown and the technique developed for such a purpose is also explained. The total cross section measured over this energy range agrees well with expectations, based on the NEUT event generator and using a value of 1.21 GeV for the CCQE axial mass.

  1. Determination of Pb total photonuclear absorption cross section in the Δ resonance range by measurement of photoneutrons cross sections

    The photonuclear absorption cross section of Pb, σ(TOT:Esub(γ), is studied in the 145-440 MeV Δ resonance range using a quasi-monochromatic photon beam obtained by monoenergetic positon in-flight annihilation. This study is deduced of the cross section measurement for at least j neutron emission σsup(j))Esub(γ). The cross sections of reactions with 1 or 0 neutron are evaluated as the same values as the experimental errors. The variation of the photonuclear absorption cross section for a nuclear σ(TOT:Esub(γ)/A is mass independent for A<=4-6. It seems that the damping between σ(TOT:Esub(γ)/A and the cross section of the free nucleon is caused by the Fermi movement of the nucleons. In conclusion: it seems that the excitation of the nucleus in the Δ resonance region is produced on free nucleons and there are no collective states

  2. Neutron standard cross sections in reactor physics - Need and status

    The design and improvement of nuclear reactors require detailed neutronics calculations. These calculations depend on comprehensive libraries of evaluated nuclear cross sections. Most of the cross sections that form the data base for these evaluations have been measured relative to neutron cross-section standards. The use of these standards can often simplify the measurement process by eliminating the need for a direct measurement of the neutron fluence. The standards are not known perfectly, however; thus the accuracy of a cross-section measurement is limited by the uncertainty in the standard cross section relative to which it is measured. Improvements in a standard cause all cross sections measured relative to that standard to be improved. This is the reason for the emphasis on improving the neutron cross-section standards. The continual process of measurement and evaluation has led to improvements in the accuracy and range of applicability of the standards. Though these improvements have been substantial, this process must continue in order to obtain the high-quality standards needed by the user community

  3. The total collision cross section in the glory region

    Chapter 1 presents a calculation of approximate total cross sections in the glory region from noble gas potentials. The relations between the main features of the total cross section and the properties of the potential to which these are sensitive are extensively investigated in chapter II. A beam apparatus has been developed, which allows for accurate measurements on the total cross section. All effects due to the finite angular and velocity resolution of the apparatus can be eliminated from the data to yield actual total cross sections as a function of the relative velocity. This facilitates a comparison to total cross sections predicted by potentials available in the literature. A brief description of the apparatus and of the data reduction is given in chapter III. The total cross section data obtained for various noble gas combinations are presented and analysed in chapter IV, where also a large number of potentials proposed in the literature is tested. In chapter V the quenching of the glories in the case of a non-spherical interaction is analysed. Subsequently, total cross section data for some atom-molecule systems are discussed. (Auth.)

  4. Cross-Sectional Drawing Techniques And The Artist

    Berry, William A.

    1980-07-01

    Although Democritus, a Greek pholosopher of the fifth century B.C. described the use of cross-sections in analyzing a solid form, this method was not extensively developed in art until the Renaissance. The earliest treatise documenting the integration of the cross-section and linear perspective is Piero della Francesca's De prospective pingendi (c. 1480), in which a drawing of the human head is mathematically conceived and plotted by means of cross-section contours. Piero's method anticipates contemporary biostereometric techniques and current theories of visual perception. Outside of theoretical treatises the complete cross-section rarely occurs in art, though certain pictorial elements such as the religious halo can be interpreted as cross-sections. The chan-ging representation of the halo in art of the Medieval, Renaissance and Baroque periods parallels the development of the artist's concepts and techniques for representing form and space. During the Renaissance and Baroque periods the widespread use of contour hatching, a drawing technique based on the cross-section, indicates that the cross-section concept has played a greater role in pictorial representation than has generally been recognized.

  5. Electron impact ionization cross sections of beryllium-tungsten clusters*

    Sukuba, Ivan; Kaiser, Alexander; Huber, Stefan E.; Urban, Jan; Probst, Michael

    2016-01-01

    We report calculated electron impact ionization cross sections (EICSs) of beryllium-tungsten clusters, BenW with n = 1,...,12, from the ionization threshold to 10 keV using the Deutsch-Märk (DM) and the binary-encounter-Bethe (BEB) formalisms. The positions of the maxima of DM and BEB cross sections are mostly close to each other. The DM cross sections are more sensitive with respect to the cluster size. For the clusters smaller than Be4W they yield smaller cross sections than BEB and vice versa larger cross sections than BEB for clusters larger than Be6W. The maximum cross section values for the singlet-spin groundstate clusters range from 7.0 × 10-16 cm2 at 28 eV (BeW) to 54.2 × 10-16 cm2 at 43 eV (Be12W) for the DM cross sections and from 13.5 × 10-16 cm2 at 43 eV (BeW) to 38.9 × 10-16 cm2 at 43 eV (Be12W) for the BEB cross sections. Differences of the EICSs in different isomers and between singlet and triplet states are also explored. Both the DM and BEB cross sections could be fitted perfectly to a simple expression used in modeling and simulation codes in the framework of nuclear fusion research. Contribution to the Topical Issue "Atomic Cluster Collisions (7th International Symposium)", edited by Gerardo Delgado Barrio, Andrey Solov'Yov, Pablo Villarreal, Rita Prosmiti.Supplementary material in the form of one pdf file available from the Journal web page at http://dx.doi.org/10.1140/epjd/e2015-60583-7

  6. Neutron inelastic cross section measurements for 24Mg

    OLACEL A.; Borcea, C.; DESSAGNE Philippe; Kerveno, M.; NEGRET A.; PLOMPEN Arjan

    2014-01-01

    The gamma production cross sections from the neutron inelastic scattering on 24Mg were measured for neutron energies up to 18 MeV at GELINA (Geel Linear Accelerator), the neutron source operated by EC-JRC-IRMM, Belgium. The level cross section and the total inelastic cross section were determined. We used the GAINS (Gamma Array for Inelastic Neutron Scattering) spectrometer with 7 large volume HPGe detectors placed at 110◦ and 150◦ with respect to the beam direction. The neutron flux was dete...

  7. Thermal neutron capture cross-sections and neutron separation energies

    Thermal radiative neutron capture cross-sections have been re-evaluated as part of an ongoing project at the National Nuclear Data Center at Brookhaven National Laboratory at Upton, New York, to update the Neutron Cross-sections compendia, Vol. 1, Parts A and B, Neutron Resonance Parameters and Thermal Capture Cross-sections, published by Academic Press in 1981 and 1984, respectively. Neutron separation energies are evaluated as part of an ongoing project at the Atomic Mass Data Center in Orsay, France. The adopted data are compared with new results derived from this evaluation

  8. Neutron activation cross section measurements and evaluations in CIAE

    The cross sections of 28 reactions have been measured by the activation method since 1995 in CIAE. At the same time the cross sections of 40 reactions which we have measured since 1989 have been compiled and evaluated. A brief description of experimental measurement of activation cross sections is given. The data measured after 1995 by ourselves are listed in Table 4 and our evaluations for 40 reactions are listed in Table 5, respectively. A graphical intercomparison with available experimental data isi given in appendix. (author)

  9. Testing of cross section libraries for TRIGA criticality benchmark

    Influence of various up-to-date cross section libraries on the multiplication factor of TRIGA benchmark as well as the influence of fuel composition on the multiplication factor of the system composed of various types of TRIGA fuel elements was investigated. It was observed that keff calculated by using the ENDF/B VII cross section library is systematically higher than using the ENDF/B-VI cross section library. The main contributions (∼220 pcm) are from 235U and Zr. (author)

  10. Neutron total scattering cross sections of elemental antimony

    Neutron total cross sections are measured from 0.8 to 4.5 MeV with broad resolutions. Differential-neutron-elastic-scattering cross sections are measured from 1.5 to 4.0 MeV at intervals of 50 to 200 keV and at scattering angles distributed between 20 and 160 degrees. Lumped-level neutron-inelastic-scattering cross sections are measured over the same angular and energy range. The exPerimental results are discussed in terms of an optical-statistical model and are compared with respective values given in ENDF/B-V

  11. A method for measuring light ion reaction cross-sections

    An experimental procedure for measuring reaction cross-sections of light ions in the energy range 20-50 MeV/nucleon, using a modified attenuation technique, is described. The detection method incorporates a forward detector that simultaneously measures the reaction cross-sections for five different sizes of the solid angle in steps from 99.1% to 99.8% of the total solid angle. The final reaction cross-section values are obtained by extrapolation to the full solid angle

  12. Evaluation of neutron induced reaction cross sections on Rh isotopes

    Evaluations of neutron nuclear data on 101,102,103,105Rh in the incident energies up to 20 MeV were performed, using theoretical nuclear reaction model code CCONE. The calculated cross sections of stable 103Rh are in good agreement with measured inelastic scattering, capture, (n, 2n), (n, p), (n, α) and (n, nα) reaction cross sections. The production cross section for the meta-state of 99Tc with half-life of 6.0 h was evaluated for the estimation of nuclear medicine use and resulted in 2.4 mb at a maximum. (author)

  13. Resonance interaction effects in photonucleon reaction cross sections

    The fine structure of a giant dipole resonance in the photonuclear reaction cross section is investigated. Developed is a diagram of parametrization of cross sections, angular distribution and polarization for two resonances, one of which is directly excited by gamma-quantum, the second - due to internal and external mixing with the first state. It is shown, that for several reaction channels the interaction effects significantly the energy dependence of the cross sections and results in qualitative effects in the photonuclear angular distributions and polarization of photonucleons

  14. Comparison of fission and capture cross sections of minor actinides

    Nakagawa, T

    2003-01-01

    The fission and capture cross sections of minor actinides given in JENDL-3.3 are compared with other evaluated data and experimental data. The comparison was made for 32 nuclides of Th-227, 228, 229, 230, 233, 234, Pa-231, 232, 233, U-232, 234, 236, 237, Np-236, 237, 238, Pu-236, 237, 238, 242, 244, Am-241, 242, 242m, 243, Cm-242, 243, 244, 245, 246, 247 and 248. Given in the present report are figures of these cross sections and tables of cross sections at 0.0253 eV and resonance integrals.

  15. Neutron-induced fission cross-section of 231Pa

    A first series of fission cross-section measurements for incident neutron energies between 0.6 and 3.4 MeV has confirmed a first chance threshold value around 1b. In contrast to our findings for the fission cross-section in 233Pa, both the direct and the surrogate cross-section data lead to the same result. This seems to support the assumption, that only in cases, where ingoing and outgoing particle are similar, particle-transfer reactions give results that are in agreement with those obtained from direct compound nuclear reactions

  16. Total cross sections of beauty and charmed mesons on protons

    Using a simple scaling law we predict the values of the total cross sections σ(B±p), σBd,s0, σ(bar Bd,s0P), σ(Dd,s±P), σ(D0p), σ(bar D0p) from known total Kp cross sections. We assume that mesons with the same light valence quark, q, and differing only by their heavy valence quark content, Q, have total cross sections on protons which scale as the inverse of the nth power of the reduced mass of the meson. We predict that σ(Q bar q)p > σ(bar Qq)p

  17. Comparison of fission and capture cross sections of minor actinides

    The fission and capture cross sections of minor actinides given in JENDL-3.3 are compared with other evaluated data and experimental data. The comparison was made for 32 nuclides of Th-227, 228, 229, 230, 233, 234, Pa-231, 232, 233, U-232, 234, 236, 237, Np-236, 237, 238, Pu-236, 237, 238, 242, 244, Am-241, 242, 242m, 243, Cm-242, 243, 244, 245, 246, 247 and 248. Given in the present report are figures of these cross sections and tables of cross sections at 0.0253 eV and resonance integrals. (author)

  18. Measurements of fission cross-sections. Chapter 4

    The steps involved in the measurement of fission cross sections are summarized and the range of techniques available are considered. Methods of fission detection are described with particular emphasis on the neutron energy dependent properties of the fission process and the details of fragment energy loss which can lead to energy-dependent changes in detector efficiency. Selected examples of fission cross-section measurements are presented and methods of data reduction, storage, analysis and evaluation, are examined. Finally requested accuracies for fission cross section data are compared to estimated available accuracies. (U.K.)

  19. Photodetachment cross-section of the negatively charged hydrogen ion

    Frolov, Alexei M.

    2015-01-01

    Photodetachment cross-section $\\sigma_{ph}(p_e)$ of the negatively charged hydrogen ion H$^{-}$ is determined with the use of highly accurate variational wave functions constructed for this ion. Photodetachment cross-sections of the H$^{-}$ ion are also studied for very small and very large values of the photo-electron momentum $p_e$. Maximum of this cross-section and its location have been evaluated to high accuracy. In particular, we have found that $[\\sigma_{ph}(p_e)]_{\\max} \\approx$ 3.862...

  20. Cross Section to Multiplicity Ratios at Very High Energy

    Block, M M

    2014-01-01

    Recent data from the LHC makes it possible to examine an old speculation that at very high energy the total multiplicity and the cross section in elementary particle interactions vary in parallel with energy. Using fits incorporating the new data, it appears that the ratios of the total, elastic, and inelastic cross sections to the average multiplicity N can in fact approach constants at very high energy. The approach to the limit is however quite slow for the total and inelastic cross sections and is not yet reached at LHC energies. The elastic ratio sigma^{el}/N at 7 TeV, however, is not far from its asymptotic value.

  1. A measurement of the cross section for electron impact ionisation of singly charged tungsten ions

    The crossed ion and electron beams technique has been used to make an absolute measurement of the cross section for the ionisation process e + W+ → 2e + W2+ at energies ranging from below threshold up to 750 eV. The W+ ions are probably mainly in the 6D ground state but with a significant fraction in the 4D metastable state. Comparison of the present data with the scaled Born prediction of earlier workers shows quite good agreement above about 50 eV, but the theory seriously underestimates the cross section at lower energies. The measured ionisation threshold for the ground-state ion is 16.1 +- 1.0 eV, compared with the 17.7 eV from a previous study of screening constants. (author)

  2. Thermal neutron radiative cross sections for Li,76,9Be,B,1110,C,1312, and N,1514

    Firestone, R. B.; Revay, Zs.

    2016-05-01

    Total thermal radiative neutron cross sections have been measured on natural and enriched isotopic targets containing Li,76,9Be,B,1110,C,1312, and N,1514 with neutron beams from the Budapest Reactor. Complete neutron capture γ -ray decay schemes were measured for each isotope. Absolute transition probabilities have been determined by a least-squares fit of the transition intensities, corrected for internal conversion, to the (n ,γ ) decay schemes. The γ -ray cross sections were standardized using stoichiometric compounds containing both the isotope of interest and another element whose γ -ray cross sections are well known. Total cross sections σ0 were then determined for each isotope from the γ -ray cross sections and transition probabilities. For the 11B(n ,γ )12B reaction decay transition probabilities were determined for the γ rays from 12B (t1 /2=20.20 ms) β- decay.

  3. Integral elastic, electronic-state, ionization, and total cross sections for electron scattering with furfural

    Jones, D. B.; da Costa, R. F.; Varella, M. T. do N.; Bettega, M. H. F.; Lima, M. A. P.; Blanco, F.; García, G.; Brunger, M. J.

    2016-04-01

    We report absolute experimental integral cross sections (ICSs) for electron impact excitation of bands of electronic-states in furfural, for incident electron energies in the range 20-250 eV. Wherever possible, those results are compared to corresponding excitation cross sections in the structurally similar species furan, as previously reported by da Costa et al. [Phys. Rev. A 85, 062706 (2012)] and Regeta and Allan [Phys. Rev. A 91, 012707 (2015)]. Generally, very good agreement is found. In addition, ICSs calculated with our independent atom model (IAM) with screening corrected additivity rule (SCAR) formalism, extended to account for interference (I) terms that arise due to the multi-centre nature of the scattering problem, are also reported. The sum of those ICSs gives the IAM-SCAR+I total cross section for electron-furfural scattering. Where possible, those calculated IAM-SCAR+I ICS results are compared against corresponding results from the present measurements with an acceptable level of accord being obtained. Similarly, but only for the band I and band II excited electronic states, we also present results from our Schwinger multichannel method with pseudopotentials calculations. Those results are found to be in good qualitative accord with the present experimental ICSs. Finally, with a view to assembling a complete cross section data base for furfural, some binary-encounter-Bethe-level total ionization cross sections for this collision system are presented.

  4. Influence of screening length modification on the scattering cross section in LEIS

    Primetzhofer, D.; Markin, S.N. [Institut fuer Experimentalphysik, Abt., Atom- und Oberflaechenphysik, Johannes Kepler Universitaet, Altenbergerstr. 69, A-4040 Linz (Austria); Efrosinin, D.V. [Institut fuer Stochastik, Johannes Kepler Universitaet, Altenbergerstr. 69, A-4040 Linz (Austria); Steinbauer, E.; Andrzejewski, R. [Institut fuer Experimentalphysik, Abt., Atom- und Oberflaechenphysik, Johannes Kepler Universitaet, Altenbergerstr. 69, A-4040 Linz (Austria); Bauer, P., E-mail: peter.bauer@jku.at [Institut fuer Experimentalphysik, Abt., Atom- und Oberflaechenphysik, Johannes Kepler Universitaet, Altenbergerstr. 69, A-4040 Linz (Austria)

    2011-06-01

    Scattering cross sections for He{sup +} ions in the energy range of 100 eV to 100 keV and for Al, Cu and Au target atoms were calculated. Employing the Thomas-Fermi-Moliere model the potential strength was tuned by variation of the screening length. The resulting change in scattering cross section was analyzed and the absolute value is compared to cross sections obtained from potentials commonly employed in the medium-energy ion scattering (MEIS) regime. A large influence on the scattering cross section is observed for targets with large atomic number in the very low energy range. For instance, the scattering cross section for 100 eV He{sup +}-ions scattered from Au by 129 deg. changes by a factor of 2.5 between different potential strengths claimed in the literature to be suitable for low-energy ion scattering (LEIS) energies. An experiment to determine electronic energy loss of very slow ions in metals is presented. It shows how uncertainties in the scattering potential strength can lead to systematically wrong results, although perfect agreement between experimental data and simulations is found. The impact of these results on quantitative surface structure and composition analysis is discussed.

  5. Integral elastic, electronic-state, ionization, and total cross sections for electron scattering with furfural.

    Jones, D B; da Costa, R F; Varella, M T do N; Bettega, M H F; Lima, M A P; Blanco, F; García, G; Brunger, M J

    2016-04-14

    We report absolute experimental integral cross sections (ICSs) for electron impact excitation of bands of electronic-states in furfural, for incident electron energies in the range 20-250 eV. Wherever possible, those results are compared to corresponding excitation cross sections in the structurally similar species furan, as previously reported by da Costa et al. [Phys. Rev. A 85, 062706 (2012)] and Regeta and Allan [Phys. Rev. A 91, 012707 (2015)]. Generally, very good agreement is found. In addition, ICSs calculated with our independent atom model (IAM) with screening corrected additivity rule (SCAR) formalism, extended to account for interference (I) terms that arise due to the multi-centre nature of the scattering problem, are also reported. The sum of those ICSs gives the IAM-SCAR+I total cross section for electron-furfural scattering. Where possible, those calculated IAM-SCAR+I ICS results are compared against corresponding results from the present measurements with an acceptable level of accord being obtained. Similarly, but only for the band I and band II excited electronic states, we also present results from our Schwinger multichannel method with pseudopotentials calculations. Those results are found to be in good qualitative accord with the present experimental ICSs. Finally, with a view to assembling a complete cross section data base for furfural, some binary-encounter-Bethe-level total ionization cross sections for this collision system are presented. PMID:27083717

  6. Cross polarization caused by perturbed circular cross sections of waveguides and horn antennas

    Lier, Erik

    1987-03-01

    The cross polarization caused by a perturbed cross section of the conical hybrid-mode horn is analyzed. The perturbed cross section is assumed to be slightly elliptical. The theory of Lier and Bergh (1986) for cross polarization in a smooth-walled waveguide supporting the TE11-mode is referred and applied to the HE11 mode as well. Simple analytical formulas which are sufficiently accurate for small ellipticites of the cross-section ellipse are presented. These show that the tolerances on the waveguide diameter are extremely strong, typically on the order of 0.02-0.04 mm in the horn throat for typical horn geometries at 12 GHz.

  7. A genetic algorithm to reduce stream channel cross section data

    Berenbrock, C.

    2006-01-01

    A genetic algorithm (GA) was used to reduce cross section data for a hypothetical example consisting of 41 data points and for 10 cross sections on the Kootenai River. The number of data points for the Kootenai River cross sections ranged from about 500 to more than 2,500. The GA was applied to reduce the number of data points to a manageable dataset because most models and other software require fewer than 100 data points for management, manipulation, and analysis. Results indicated that the program successfully reduced the data. Fitness values from the genetic algorithm were lower (better) than those in a previous study that used standard procedures of reducing the cross section data. On average, fitnesses were 29 percent lower, and several were about 50 percent lower. Results also showed that cross sections produced by the genetic algorithm were representative of the original section and that near-optimal results could be obtained in a single run, even for large problems. Other data also can be reduced in a method similar to that for cross section data.

  8. Measurement of the Drell--Yan differential cross section with the CMS detector at the LHC

    Svyatkovskiy, Alexey

    This thesis describes precision measurements of electroweak interactions in a new energy regime and the application of these measurements to improve our understanding of the structure of the proton. The results are based on proton-proton collision data at √s = 7 and 8TeV recorded with the Compact Muon Solenoid detector at the CERN Large Hadron Collider during the first years of operation. Measurements of the differential Drell-Yan cross section in the dimuon and dielectron channels covering the dilepton mass range of 15 to 2000GeV and absolute dilepton rapidity from 0 to 2.4 are presented. The Drell-Yan cross section in proton-proton collisions depends on empirical quantities known as parton distribution functions (PDFs) which parameterize the structure of the proton. In addition to the differential cross sections, the measurements of ratios of the normalized differential cross sections (double ratios) at √s = 7 and 8TeV are performed in order to provide further constraints for PDFs, substantially reducing theoretical systematic uncertainties due to correlations. These measurements are compared to predictions of perturbative QCD at the next-to-next-to-leading order computed with various sets of PDFs. The measured differential cross section and double ratio in bins of absolute rapidity are sufficiently precise to constrain the proton parton distribution functions. The inclusion of Drell-Yan data in PDF fits provides substantial constraints for the strange quark and the light sea quark distribution functions in a region of phase space which has not been accessible at hadron colliders in the past.

  9. Local Deplanation Of Double Reinforced Beam Cross Section Under Bending

    Baltov, Anguel; Yanakieva, Ana

    2015-12-01

    Bending of beams, double reinforced by means of thin composite layers, is considered in the study. Approximate numerical solution is proposed, considering transitional boundary areas, where smooth quadratic transition of the elasticity modulus and deformations take place. Deplanation of the cross section is also accounted for in the areas. Their thickness is found equalizing the total stiffness of the cross section and the layer stiffness. Deplanation of the cross section of the transitional area is determined via the longitudinal deformation in the reinforcing layer, accounting for the equilibrium between the internal and the external moment, generated by the longitudinal stresses in the cross section. A numerical example is given as an illustration demonstrating model's plausibility. The model allows the design and the calculation of recycled concrete beams double reinforced by means of thin layers. The approach is in agreement with modern design of nearly zero energy buildings (NZEB).

  10. Electronic stopping cross sections for use in ion range calculation

    Theoretical and empirical methods of determining the electronic stopping cross sections are discussed. The values used by various authors in ion range calculations are outlined. Recommendations are made for future range calculations. (author)

  11. Nonelastic-scattering cross sections of elemental nickel

    Neutron total cross sections of elemental nickel were measured from 1.3 to 4.5 MeV, at intervals of approx. 50 keV, with resolutions of 30 to 50 keV and to accuracies of 1 to 2.5%. Neutron differential-elastic-scattering cross sections were measured from 1.45 to 3.8 MeV, at intervals and with resolutions comparable to those of the total cross sections, and to accuracies of 3 to 5%. The nonelastic-scattering cross section is derived from the measured values to accuracies of greater than or equal to 6%. The experimental results are compared with previously reported values as represented by ENDF/B-V, and areas of consistency and discrepancy, noted. The measured results are shown to be in good agreement with the predictions of a model previously reported by the authors. 4 figures, 1 table

  12. Longitudinal Vibrations of Rheological Rod With Variable Cross Section

    Katica(Stevanovic)HEDRIH; AleksandarFILIPOVSKI

    1999-01-01

    Longitudinal vibrations of rheological rod with variable cross section are examined.Particular solutions and eigenfunction are accomplished for natural vibrations of the rod with hereditary material of standard hereditary body.Some examples are given.

  13. Fission cross section for 242Am.met

    The neutron-induced fission cross section for 242Am.met (152y) was measured at the Livermore 100-MeV electron linac in the neutron energy range of 0.01 eV to 20 MeV. Fission fragments were detected using a hemispherical fission chamber. The neutron flux was measured below 10 keV using lithium glass scintillators. Above 10 keV, the 242Am.met fission cross section was measured relative to the 235U fission cross section. Below 20 eV, the data were fit with a sum of single-level Breit-Wigner resonances. Results for the distribution of fission widths, the average fission width, and the average level spacing are presented. The fission cross section in the 100 keV to 20 MeV range is compared with previous measurements

  14. Differential cross sections of positron–hydrogen collisions

    Rong-Mei, Yu; Chun-Ying, Pu; Xiao-Yu, Huang; Fu-Rong, Yin; Xu-Yan, Liu; Li-Guang, Jiao; Ya-Jun, Zhou

    2016-07-01

    We make a detailed study on the angular differential cross sections of positron–hydrogen collisions by using the momentum-space coupled-channels optical (CCO) method for incident energies below the H ionization threshold. The target continuum and the positronium (Ps) formation channels are included in the coupled-channels calculations via a complex equivalent-local optical potential. The critical points, which show minima in the differential cross sections, as a function of the scattering angle and the incident energy are investigated. The resonances in the angular differential cross sections are reported for the first time in this energy range. The effects of the target continuum and the Ps formation channels on the different cross sections are discussed. Project supported by the Nanyang Normal University Science Foundation of China (Grant No. ZX2013017) and the National Natural Science Foundation of China (Grant Nos. 11174066, 61306007, and U1304114).

  15. Local Deplanation Of Double Reinforced Beam Cross Section Under Bending*

    Baltov Anguel

    2015-12-01

    Full Text Available Bending of beams, double reinforced by means of thin composite layers, is considered in the study. Approximate numerical solution is proposed, considering transitional boundary areas, where smooth quadratic transition of the elasticity modulus and deformations take place. Deplanation of the cross section is also accounted for in the areas. Their thickness is found equalizing the total stiffness of the cross section and the layer stiffness. Deplanation of the cross section of the transitional area is determined via the longitudinal deformation in the reinforcing layer, accounting for the equilibrium between the internal and the external moment, generated by the longitudinal stresses in the cross section. A numerical example is given as an illustration demonstrating model’s plausibility. The model allows the design and the calculation of recycled concrete beams double reinforced by means of thin layers. The approach is in agreement with modern design of nearly zero energy buildings (NZEB.

  16. Scaling of Cross Sections for Ion-atom Impact Ionization

    The values of ion-atom ionization cross sections are frequently needed for many applications that utilize the propagation of fast ions through matter. When experimental data and theoretical calculations are not available, approximate formulas are frequently used. This paper briefly summarizes the most important theoretical results and approaches to cross section calculations in order to place the discussion in historical perspective and offer a concise introduction to the topic. Based on experimental data and theoretical predictions, a new fit for ionization cross sections is proposed. The range of validity and accuracy of several frequently used approximations (classical trajectory, the Born approximation, and so forth) are discussed using, as examples, the ionization cross sections of hydrogen and helium atoms by various fully stripped ions

  17. The neutron cross-sections of Xe135

    Measurements of the total and absorption cross-sections of Xe135 reviewed briefly. The low-energy cross-section is very large and dominated by a single resonance at 0.084 eV; the spin state for this level is not known, this being one of the major uncertainties in the data. The resonance parameters given in the literature were found to give a good fit to the total cross-section but failed to reproduce the preferred 2200 m/sec. value of σγ. A new set of parameters was therefore deduced, by a least-squares analysis, which gave this preferred value of σγ and fitted the shape of the total cross section curve. To obtain this fit it was necessary to re-normalise the curve of σT by 4%. The new parameters are listed, and a discussion of the probable accuracy of the data is included. (author)

  18. Radiative neutron capture cross sections on 176Lu at DANCE

    Roig, O.; Jandel, M.; Méot, V.; Bond, E. M.; Bredeweg, T. A.; Couture, A. J.; Haight, R. C.; Keksis, A. L.; Rundberg, R. S.; Ullmann, J. L.; Vieira, D. J.

    2016-03-01

    The cross section of the neutron capture reaction 176Lu(n ,γ ) has been measured for a wide incident neutron energy range with the Detector for Advanced Neutron Capture Experiments at the Los Alamos Neutron Science Center. The thermal neutron capture cross section was determined to be (1912 ±132 ) b for one of the Lu natural isotopes, 176Lu. The resonance part was measured and compared to the Mughabghab's atlas using the R -matrix code, sammy. At higher neutron energies the measured cross sections are compared to ENDF/B-VII.1, JEFF-3.2, and BRC evaluated nuclear data. The Maxwellian averaged cross sections in a stellar plasma for thermal energies between 5 keV and 100 keV were extracted using these data.

  19. Macroscopic cross section measurements in materials by neutron radiography technique

    Macroscopic cross-section of materials play an important role in the study of material properties. Number of materials are used for shielding against penetrating radiation like X-rays, gamma rays and neutrons and exhibit different attenuation cross-sections. Neutron radiography technique is a multi discipline non-destructive technique with a large number of applications. The technique was applied to study and analyze the behavior of different shielding materials against thermal neutrons. Samples as step wedges of graphite, copper, brass and acrylic etc. were fabricated. The test samples were exposed to a beam of thermal neutrons at neutron radiography facility and the transmittance of neutrons through different materials was measured. Gamma-ray contribution and scattered radiation were subtracted from the observed neutron intensities to calculate the neutron macroscopic cross-section. Calculated values of the macroscopic cross-section were compared with the values given in the literature. (author)

  20. Scaling of Cross Sections for Ion-atom Impact Ionization

    Kaganovich, I D; Startsev, E

    2003-01-01

    The values of ion-atom ionization cross sections are frequently needed for many applications that utilize the propagation of fast ions through matter. When experimental data and theoretical calculations are not available, approximate formulas are frequently used. This paper briefly summarizes the most important theoretical results and approaches to cross section calculations in order to place the discussion in historical perspective and offer a concise introduction to the topic. Based on experimental data and theoretical predictions, a new fit for ionization cross sections is proposed. The range of validity and accuracy of several frequently used approximations (classical trajectory, the Born approximation, and so forth) are discussed using, as examples, the ionization cross sections of hydrogen and helium atoms by various fully stripped ions.

  1. Models for Photon-photon Total Cross-sections

    Godbole, RM; Grau, A.; Pancheri, G.

    1999-01-01

    We present here a brief overview of recent models describing the photon-photon cross-section into hadrons. We shall show in detail results from the eikonal minijet model, with and without soft gluon summation.

  2. Collision Cross Sections for 20 Protonated Amino Acids: Fourier Transform Ion Cyclotron Resonance and Ion Mobility Results.

    Anupriya; Jones, Chad A; Dearden, David V

    2016-08-01

    We report relative dephasing cross sections for the 20 biogenic protonated amino acids measured using the cross sectional areas by Fourier transform ion cyclotron resonance (CRAFTI) technique at 1.9 keV in the laboratory reference frame, as well as momentum transfer cross sections for the same ions computed from Boltzmann-weighted structures determined using molecular mechanics. Cross sections generally increase with increasing molecular weight. Cross sections for aliphatic and aromatic protonated amino acids are larger than the average trend, suggesting these side chains do not fold efficiently. Sulfur-containing protonated amino acids have smaller than average cross sections, reflecting the mass of the S atom. Protonated amino acids that can internally hydrogen-bond have smaller than average cross sections, reflecting more extensive folding. The CRAFTI measurements correlate well with results from drift ion mobility (IMS) and traveling wave ion mobility (TWIMS) spectrometric measurements; CRAFTI results correlate with IMS values approximately as well as IMS and TWIMS values from independent measurements correlate with each other. Both CRAFTI and IMS results correlate well with the computed momentum transfer cross sections, suggesting both techniques provide accurate molecular structural information. Absolute values obtained using the various methods differ significantly; in the case of CRAFTI, this may be due to errors in measurements of collision gas pressure, measurement of excitation voltage, and/or dependence of cross sections on kinetic energy. Graphical Abstract ᅟ. PMID:27220844

  3. Collision Cross Sections for 20 Protonated Amino Acids: Fourier Transform Ion Cyclotron Resonance and Ion Mobility Results

    Anupriya; Jones, Chad A.; Dearden, David V.

    2016-08-01

    We report relative dephasing cross sections for the 20 biogenic protonated amino acids measured using the cross sectional areas by Fourier transform ion cyclotron resonance (CRAFTI) technique at 1.9 keV in the laboratory reference frame, as well as momentum transfer cross sections for the same ions computed from Boltzmann-weighted structures determined using molecular mechanics. Cross sections generally increase with increasing molecular weight. Cross sections for aliphatic and aromatic protonated amino acids are larger than the average trend, suggesting these side chains do not fold efficiently. Sulfur-containing protonated amino acids have smaller than average cross sections, reflecting the mass of the S atom. Protonated amino acids that can internally hydrogen-bond have smaller than average cross sections, reflecting more extensive folding. The CRAFTI measurements correlate well with results from drift ion mobility (IMS) and traveling wave ion mobility (TWIMS) spectrometric measurements; CRAFTI results correlate with IMS values approximately as well as IMS and TWIMS values from independent measurements correlate with each other. Both CRAFTI and IMS results correlate well with the computed momentum transfer cross sections, suggesting both techniques provide accurate molecular structural information. Absolute values obtained using the various methods differ significantly; in the case of CRAFTI, this may be due to errors in measurements of collision gas pressure, measurement of excitation voltage, and/or dependence of cross sections on kinetic energy.

  4. Electron Swarm Parameters and Electron Collision Cross Sections

    Electron collision cross section data for atoms and molecules and electron swarm data in respective gases are important for quantitative modeling of related plasmas. This fact and wide application of plasmas in various fields boos data collection and evaluation activities worldwide. We have been measuring electron swarm parameters (drift velocity, longitudinal diffusion coefficient, ionization/attachment coefficients, and so on) over a wide E/N range (where E is the electric field and N the gas number density) in a number of gases. We also derived a set of electron collision cross sections for each gas so that the set was consistent with our experimental swarm data. Our speciality in studying molecular target is to measure swarm parameters not only in the pure molecular gas but also in dilute molecular gas-argon gas mixtures, the mix rations of the molecule are 0.5-5.0%. The swarm parameters in pure molecular gas depend primarily on the elastic momentum transfer cross section of the molecule and its vibrational excitation cross sections. Those in the mixtures, on the other hand, depend mainly on the elastic momentum transfer cross section of major argon atom and the vibrational cross sections of minor admixed molecule. Alternative use of swarm parameters in pure molecular gas and those in the mixtures enable us to derive the momentum transfer cross section and vibrational cross sections for the molecule separately. Combination of the Ramsauer-Townsend minimum of argon atom and sharp structures in vibrational cross sections of the molecule frequently gives rise prominent E/N dependences in swarm parameters, which can be used to determine the position and magnitude of resonances in the vibrational excitation cross sections. Detailed accounts of the procedure, including estimated uncertainty in our electron swarm data and also in the resultant set of electron collision cross sections, will be given in the presentation by referring to our recent results. Stress will be

  5. Total cross-section measurements progress in nuclear physics

    Giacomelli, G; Mulvey, J H

    2013-01-01

    Total Cross-Section Measurements discusses the cross-sectional dimensions of elementary hadron collisions. The main coverage of the book is the resonance and high energy area of the given collision. A section of the book explains in detail the characteristic of a resonance region. Another section is focused on the location of the high energy region of collision. Parts of the book define the meaning of resonance in nuclear physics. Also explained are the measurement of resonance and the identification of the area where the resonance originates. Different experimental methods to measure the tota

  6. Singly differential cross sections with exchange for Ps-fragmentation

    Ray, Hasi

    2008-01-01

    Ps ionization in Ps-atom scattering is of fundamental importance. The singly differential cross sections (SDCS) provides more accurate information to test a theory than integrated or total ionization cross section since the averaging over one parameter is not required. We evaluate the SDCS for Ps-ionization with respect to the longitudinal energy distribution of the break-up positron and electron in Ps-H and Ps-He scattering and compare them with the recently available experimental and theore...

  7. Photoproduction models for total cross section and shower development

    Cornet Fernando

    2015-01-01

    Full Text Available A model for the total photoproduction cross section, based on the ansatz that resummation of infrared gluons limits the rise induced by QCD minijets in all the total cross-sections, is used to simulate extended air showers initiated by cosmic rays with the AIRES simulation program. The impact on common shower observables, especially those related with muon production, is analysed and compared with the corresponding results obtained with previous photoproduction models.

  8. Measurement of fusion cross section with neutron halo nuclei

    Fusion cross sections of 11Be, 10Be and 9Be have been measured on 209Bi target at 30-70MeV. Due to the neutron halo effect of 11Be, a large enhancement or suppression of the fusion cross section around the Coulomb barrier was theoretically predicted. Comparing the excitation function of 11Be with 10Be at near the Coulomb barrier region, no significant difference has been observed. ((orig.))

  9. Top Quark Pair Production Cross Section at the Tevatron

    Peters, Reinhild Yvonne [Manchester U.

    2015-09-25

    The top quark, discovered in 1995 by the CDF and D0 collaborations at the Tevatron proton antiproton collider at Fermilab, has undergone intense studies in the last 20 years. Currently, CDF and D0 converge on their measurements of top-antitop quark production cross sections using the full Tevatron data sample. In these proceedings, the latest results on inclusive and differential measurements of top-antitop quark production cross sections at the Tevatron are reported.

  10. Elastic cross sections for electron-carbon scattering

    Liu Jun-Bo; Wang Yang; Zhou Ya-Jun

    2007-01-01

    We used the close-coupling optical (CCO) approach to investigate the open-shell carbon atom. The elastic cross sections have been presented at the energies below 90eV, and the present CCO results have been compared with other theoretical results. We found that polarization and the continuum states have significant contributions to the elastic cross sections. The present calculations show that the CCO method is capable of calculating electron scattering from open-shell atoms.

  11. Thermal neutron capture cross sections of tellurium isotopes

    New values for thermal neutron capture cross sections of the tellurium isotopes 122Te, 124Te, 125Te, 126Te, 128Te, and 130Te are reported. These values are based on a combination of newly determined partial g-ray cross sections obtained from experiments on targets contained natural Te and gamma intensities per capture of individual Te isotopes. Isomeric ratios for the thermal neutron capture on the even tellurium isotopes are also given

  12. Thermal neutron capture cross sections of tellurium isotopes

    New values for thermal neutron capture cross sections of the tellurium isotopes 122Te,124Te,125Te,126Te,128Te, and 130Te are reported. These values are based on a combination of newly determined partial γ-ray cross sections obtained from experiments on targets contained natural Te and γ intensities per capture of individual Te isotopes. Isomeric ratios for the thermal neutron capture on the even tellurium isotopes are also given

  13. Thermal neutron capture cross sections of tellurium isotopes

    Tomandl, I.; Honzatko, J.; von Egidy, T.; Wirth, H.-F.; Belgya, T.; Lakatos, M.; Szentmiklosi, L.; Revay, Zs.; Molnar, G.L.; Firestone, R.B.; Bondarenko, V.

    2004-03-01

    New values for thermal neutron capture cross sections of the tellurium isotopes 122Te, 124Te, 125Te, 126Te, 128Te, and 130Te are reported. These values are based on a combination of newly determined partial g-ray cross sections obtained from experiments on targets contained natural Te and gamma intensities per capture of individual Te isotopes. Isomeric ratios for the thermal neutron capture on the even tellurium isotopes are also given.

  14. Evaluation of neutron reaction cross sections for astrophysics

    We have developed a code system to evaluate nuclear reaction cross sections for the nucleosynthesis. The system includes an interface to Reference Input Parameter Library (RIPL), as well as some systematics to extrapolate the parameters into unstable regions. We are focusing on neutron capture processes important for s- and r-processes. The structure of the system is reviewed, and calculated capture cross sections in the fission product mass region are compared with experimental data available. (author)

  15. Majorana Dark Matter Cross Sections with Nucleons at High Energies

    Jeong, Yu Seon; Kim, C. S.; Reno, Mary Hall

    2012-01-01

    Non-relativistic dark matter scattering with nucleons is constrained by direct detection experiments. We use the XENON constraints on the spin-independent and spin-dependent cross section for dark matter scattering with nucleons to constrain a hypothetical Majorana fermionic dark matter particle's couplings to the Higgs boson and Z boson. In the procedure we illustrate the change in the dark matter nucleon cross section as one goes from non-relativistic, coherent scattering to relativistic, i...

  16. Modelling of reaction cross sections and prompt neutron emission

    Oberstedt S.; Tudora A.; Hambsch F.-J.

    2010-01-01

    Accurate nuclear data concerning reaction cross sections and the emission of prompt fission neutrons (i.e. multiplicity and spectra) as well as other fission fragment data are of great importance for reactor physics design, especially for the new Generation IV nuclear energy systems. During the past years for several actinides (238U(n, f) and 237Np(n, f)) both the reaction cross sections and prompt neutron multiplicities and spectra have been calculated within the frame of the EFNUDAT project.

  17. Measurement of distribution density of total neutron cross-sections

    Problems of energy resolutions together with difficulties of multilevel analysis make desirable the application of the statistical approach to the description of total cross-section irregularities for intermediate and fast neutrons. Total neutron cross-section probability distributions were found from the analysis of the transmission nonexponentiality. The results for intervals adopted in reactor calculations are compared with recommended values and with those found from high resolution measurements

  18. Determination of molecular ionization cross sections in an ICR spectrometer

    Ionization cross sections have been determined for simple gases at 75eV in an ICR spectrometer. Results obtained using a calibrated ion gauge as a pressure indicator yield values which are consistently higher than accepted values by as much as 15%. These results suggest that a more convenient way to measure pressure in ICR experiments might be to record the total ion current and to use the tabulated ionization cross sections where available

  19. Burnup-dependent cross section data for research reactors

    Studies currently in progress consider research and test reactors which commonly have burnups of 50 atom percent in 235-U and may reach as high a 70 atom percent. At these levels of burnup changes in cross-section data with burnup become significant. Some preliminary studies of these effects lead to the development of a modified version of REBUS-2 which supports changes in cross-section data with burnup. This version of REBUS-2 allows for changes in the cross-section data only at each time sub-interval in the problem, and these cross-section changes for capture and fission are based on a least squares polynomial fit as a function of burnup. In this paper an attempt is made to evaluate the importance of burnup dependent data for the various isotopes and/or groups, and to assess the accuracy of this method by comparing the REBUS-2 results with results obtained from PDQ-7. The 10 MW IAEA benchmark problem has been selected for this study. A description of the reactor and the XY model can be found in the IAEA Guidebook. The EPRI-CELL4 code was used to generate burnup dependent cross section data for use with both REBUS-2 and PDQ-7. Cross-section data were generated at 10 time steps to a burnup of approximately 50 atom percent in 235-U. The agreement between the PDQ-7 results and the REBUS-2 results with fitted burnup dependent cross-section data are quite good. Burnup dependent cross sections are essential for accurate estimates of cycle lengths and reactivities, and low order polynomial fits of capture and fission data for selected isotopes and energy groups can provide this capability

  20. Unified approach to the multilevel parametrization of resonance cross sections

    A combined method of parametrization in the resolved resonance region and an approach to modelling the resonance structure in the unresolved region are suggested. The most typical case for the resonances of the non fissile nuclei with one neutron channel (s-wave resonances or resonances of an arbitrary l and a zero spin of the target nucleus) are considered. It is shown that for such systems the total cross section as well as the absorption cross section can be expressed as ratios of sums of pole terms with respect to energy. The modeling of the resonance structure in the unresolved region is needed for the examination of the resonance self-shielding effects in reactor physics. In this region the analysis of the experimental data (average cross sections and average transmissions) permits the determination of only the average resonance parameters - the strength functions Sn, Sγ. And it is necessary to model the resonance cross sections structure and such models should give the correct average cross section and also conserve the information for the cross sections minima to which the values of the transmissions data are very sensitive

  1. Porosity effects in the neutron total cross section of graphite

    Graphite has been used in nuclear reactors since the birth of the nuclear industry due to its good performance as a neutron moderator material. Graphite is still an option as moderator for generation IV reactors due to its good mechanical and thermal properties at high operation temperatures. So, there has been renewed interest in a revision of the computer libraries used to describe the neutron cross section of graphite. For sub-thermal neutron energies, polycrystalline graphite shows a larger total cross section (between 4 and 8 barns) than predicted by existing theoretical models (0.2 barns). In order to investigate the origin of this discrepancy we measured the total cross section of graphite samples of three different origins, in the energy range from 0.001 eV to 10 eV. Different experimental arrangements and sample treatments were explored, to identify the effect of various experimental parameters on the total cross section measurement. The experiments showed that the increase in total cross section is due to neutrons scattered around the forward direction. We associate these small-angle scattered neutrons (SANS) to the porous structure of graphite, and formulate a very simple model to compute its contribution to the total cross section of the material. This results in an analytic expression that explicitly depends on the density and mean size of the pores, which can be easily incorporated in nuclear library codes.

  2. Development of automatic cross section compilation system for MCNP

    A development of a code system to automatically convert cross-sections for MCNP is in progress. The NJOY code is, in general, used to convert the data compiled in the ENDF format (Evaluated Nuclear Data Files by BNL) into the cross-section libraries required by various reactor physics codes. While the cross-section library: FSXLIB-J3R2 was already converted from the JENDL-3.2 version of Japanese Evaluated Nuclear Data Library for a continuous energy Monte Carlo code MCNP, the library keeps only the cross-sections at room temperature (300 K). According to the users requirements which want to have cross-sections at higher temperature, say 600 K or 900 K, a code system named 'autonj' is under development to provide a set of cross-section library of arbitrary temperature for the MCNP code. This system can accept any of data formats adopted JENDL that may not be treated by NJOY code. The input preparation that is repeatedly required at every nuclide on NJOY execution is greatly reduced by permitting the conversion process of as many nuclides as the user wants in one execution. A few MCNP runs were achieved for verification purpose by using two libraries FSXLIB-J3R2 and the output of autonj'. The almost identical MCNP results within the statistical errors show the 'autonj' output library is correct. In FY 1998, the system will be completed, and in FY 1999, the user's manual will be published. (K. Tsuchihashi)

  3. Asymptotic behaviour of pion-pion total cross-sections

    We derive a sum rule which shows that the Froissart-Martin bound for the asymptotic behaviour of the ππ total cross sections at high energies, if modulated by the Lukaszuk-Martin coefficient of the leading log2 s behaviour, cannot be an optimal bound in QCD. We next compute the total cross sections for π+π−, π±π0 and π0π0 scattering within the framework of the constituent chiral quark model (CχQM) in the limit of a large number of colours Nc and discuss their asymptotic behaviours. The same ππ cross sections are also discussed within the general framework of Large-Nc QCD and we show that it is possible to make an Ansatz for the isospin I=1 and I=0 spectrum which satisfy the Froissart-Martin bound with coefficients which, contrary to the Lukaszuk-Martin coefficient, are not singular in the chiral limit and have the correct Large-Nc counting. We finally propose a simple phenomenological model which matches the low energy behaviours of the σπ±π0total(s) cross section predicted by the CχQM with the high energy behaviour predicted by the Large-Nc Ansatz. The magnitude of these cross sections at very high energies is of the order of those observed for the pp and pp-bar scattering total cross sections

  4. Studies of 54,56Fe Neutron Scattering Cross Sections

    Hicks S. F.

    2015-01-01

    Full Text Available Elastic and inelastic neutron scattering differential cross sections and γ-ray production cross sections have been measured on 54,56Fe at several incident energies in the fast neutron region between 1.5 and 4.7 MeV. All measurements were completed at the University of Kentucky Accelerator Laboratory (UKAL using a 7-MV Model CN Van de Graaff accelerator, along with the neutron production and neutron and γ-ray detection systems located there. The facilities at UKAL allow the investigation of both elastic and inelastic scattering with nearly mono-energetic incident neutrons. Time-of-flight techniques were used to detect the scattered neutrons for the differential cross section measurements. The measured cross sections are important for fission reactor applications and also for testing global model calculations such as those found at ENDF, since describing both the elastic and inelastic scattering is important for determining the direct and compound components of the scattering mechanism. The γ-ray production cross sections are used to determine cross sections to unresolved levels in the neutron scattering experiments. Results from our measurements and comparisons to model calculations are presented.

  5. Updating the IST-LISBON electron cross sections for nitrogen

    Alves, L. L.; Sombreireiro, L.; Viegas, P.; Guerra, V.

    2013-09-01

    In this work we update the complete and consistent set of nitrogen (N2) electron-impact cross-section with the IST-LISBON database, available on the LXCat website. The update has extended, in energy scale up to 1 keV, the cross sections for effective momentum-transfer, excitation to electronic states and ionization. The set further accounts for excitation to rotational and vibrational excited states. Calculations using BOLSIG + with the new cross sections give swarm parameters in very good agreement with available experimental data for the reduced mobility, the characteristic energy and the reduced ionization coefficient, for a very extended E / N range up to 1000 Td. The influence of rotational excitations/de-excitations at low E / N and different rotational temperatures is discussed. A critical evaluation of similarities and differences with sets of N2 cross sections from other databases is carried out. Moreover, the procedure to de-convolute global cross sections into state-to-state vibrational level dependent cross sections is outlined and discussed. Work partially supported by FCT (Pest-OE/SADG/LA0010/2011).

  6. Updated ozone absorption cross section will reduce air quality compliance

    Sofen, E. D.; Evans, M. J.; Lewis, A. C.

    2015-12-01

    Photometric ozone measurements rely upon an accurate value of the ozone absorption cross section at 253.65 nm. This has recently been re-evaluated by Viallon et al. (2015) as 1.8 % smaller than the accepted value (Hearn, 1961) used for the preceding 50 years. Thus, ozone measurements that applied the older cross section systematically underestimate the amount of ozone in air. We correct the reported historical surface data from North America and Europe and find that this modest change in cross section has a significant impact on the number of locations that are out of compliance with air quality regulations if the air quality standards remain the same. We find 18, 23, and 20 % increases in the number of sites that are out of compliance with current US, Canadian, and European ozone air quality health standards for the year 2012. Should the new cross-section value be applied, it would impact attainment of air quality standards and compliance with relevant clean air acts, unless the air quality target values themselves were also changed proportionately. We draw attention to how a small change in gas metrology has a global impact on attainment and compliance with legal air quality standards. We suggest that further laboratory work to evaluate the new cross section is needed and suggest three possible technical and policy responses should the new cross section be adopted.

  7. Calculation of the intermediate energy activation cross section

    Furihata, Shiori; Yoshizawa, Nobuaki [Mitsubishi Research Inst., Inc., Tokyo (Japan)

    1997-03-01

    We discussed the activation cross section in order to predict accurately the activation of soil around an accelerator with high energy and strong intensity beam. For the assessment of the accuracy of activation cross sections estimated by a numerical model, we compared the calculated cross section with various experimental data, for Si(p,x){sup 22}Na, Al(p,x){sup 22}Na, Fe(p,x){sup 22}Na, Si(p,x){sup 7}Be, O(p,x){sup 3}H, Al(p,x){sup 3}H and Si(p,x){sup 3}H reactions. We used three computational codes, i.e., quantum molecular dynamics (QMD) plus statistical decay model (SDM), HETC-3STEP and the semiempirical method developed by Silberberg et.al. It is observed that the codes are accurate above 1GeV, except for {sup 7}Be production. We also discussed the difference between the activation cross sections of proton- and neutron-induced reaction. For the incident energy at 40MeV, it is found that {sup 3}H production cross sections of neutron-induced reaction are ten times as large as those of proton-induced reaction. It is also observed that the choice of the activation cross sections seriously affects to the estimate of saturated radioactivity, if the maximum energy of neutron flux is below 100MeV. (author)

  8. Elastic scattering cross sections of metastable barium on helium and argon

    Barium atoms in the 1D2, 3D2 and 3D3 metastable excited states have been observed by their low field Zeeman resonances using an Atomic Beam Magnetic Resonance Spectrometer. The 1S0 ground state is also observed. The scattering of Ba atoms in each of these states by helium or argon atoms (in their ground states) was performed by allowing a secondary beam to intersect the Ba beam at 900 (crossed beam geometry). The ratio of the cross sections for scattering from different excited Ba states and the same target atom was measured to a precision of 1 to 2 percent. By a combination of further experiment and calculation the absolute cross sections were also measured. It is argued that the elastic scattering dominates so that the measured cross section is sigma/sub elastic/. Comparison of the scattering of Ba(1S0) and Ba(1,3D2,3) for either target gas shows that the ground state cross section is larger by a factor of 1.8 than for the excited states. This somewhat surprising result is in accord with naive pictures of the ''size'' of the 5d 6s electronic configuration of the excited barium compared with the ground state configuration, 6s2

  9. Cross sections of negative ion production in electron collisions with adenine molecules

    Full text: We report absolute cross sections for the formation negative ions resulting from electron interactions with adenine. Interest in experimental studies of the processes of electron impact ion production in the molecules of biological relevance is related, first of all, to the significance of the problem of intracellular irradiation of biological structures by secondary electrons produced in the substance in quite considerable amounts under the influence of different-type radiation. It has been shown in our preliminary experiments carried out with the heterocyclic components of the above molecules that under electron impact different physical processes occur: molecules excitation, ionization, dissociative excitation and dissociative ionization. Physical modeling of these processes and estimation of their radiobiological consequences require knowledge of their basic characteristics - absolute ionization cross sections. Reliable data on the ionization cross sections could be obtained only in a precise experiment, in which the role of environment is minimized. Such approach was applied in this work. Production of negative ions of adenine molecules (nucleic acid base) has been studied using a crossed electron and molecular beam technique. The method developed by the authors enabled the molecular beam intensity to be measured and the electron dependences and the absolute values of the total cross sections of production of negative adenine ions to be determined. A five-electrode electron gun with a thoriated tungsten cathode was used as an electron beam source. Electron gun temperature was about 400 K providing gun parameter stability during operation. Electrons having passed the interaction region were trapped by a Faraday cup kept at the positive potential. Measurements were carried out at the 10-7 - 10-6 AA electron beam current and the ΔE1/2 ∼ 0.3 eV (FWHM) energy spread. Electron gun was immersed into the longitudinal magnetic field (induction B = 1

  10. Measurement of the fast neutron capture cross section of /sup 238/U relative to /sup 235/U(n,f)

    Fawcett, L.R. Jr.; Poenitz, W.P.; Smith, D.L.

    1979-01-01

    The capture cross section of /sup 238/U was measured using the activation technique and /sup 235/U(n,f) as a reference cross section. Capture events were measured by detection of two prominent ..gamma..-transitions in the decay of the /sup 239/U daughter nuclide, /sup 239/Np, employing a high resolution Ge(Li) detector. The system was calibrated with samples activated in a thermal neutron flux relative to the capture cross section of gold, and with an absolutely calibrated ..cap alpha..-emitter, /sup 243/Am, which decays to /sup 239/Np. Cross section measurements were carried out in the neutron energy range from 30 keV to 3 MeV. Emphasis was on absolute values between 150 keV and 1 MeV where the /sup 238/U(n,..gamma..) cross section and its cross section is small. Background from fission products was found to restrict the accuracy of the measured data at energies > 1.5 MeV.

  11. Photoionization cross-sections using the polarization propagator approach

    It is shown that the imaginary part of the polarization propagator (PP), when computed at complex frequencies, w+i η, can be, in the limit η -> 0, directly related to the photoionization cross-section. Total photoionization cross-sections can be evaluated directly from the PP, and partial croos-sections can be computed from individual excitation frequencies and transition moments, using the spectral representation of the PP. For complex frequencies not only the real part of the PP but also its imaginary part is propotional to the complex dynamic polarizability. (Author)

  12. Measurements of neutron cross sections of radioactive waste nuclides

    Katoh, Toshio [Gifu College of Medical Technology, Seki, Gifu (Japan); Harada, Hideo; Nakamura, Shoji; Tanase, Masakazu; Hatsukawa, Yuichi

    1998-01-01

    Accurate nuclear reaction cross sections of radioactive fission products and transuranic elements are required for research on nuclear transmutation methods in nuclear waste management. Important fission products in the nuclear waste management are {sup 137}Cs, {sup 135}Cs, {sup 90}Sr, {sup 99}Tc and {sup 129}I because of their large fission yields and long half-lives. The present authors have measured the neutron capture cross sections and resonance integrals of {sup 137}Cs, {sup 90}Sr and {sup 99}Tc. The purpose of this study is to measure the neutron capture cross sections and resonance integrals of nuclides, {sup 129}I and {sup 135}Cs accurately. Preliminary experiments were performed by using Rikkyo University Reactor and JRR-3 reactor at Japan Atomic Energy Research Institute (JAERI). Then, it was decided to measure the cross section and resonance integral of {sup 135}Cs by using the JRR-3 Reactor because this measurement required a high flux reactor. On the other hand, those of {sup 129}I were measured at the Rikkyo Reactor because the product nuclides, {sup 130}I and {sup 130m}I, have short half-lives and this reactor is suitable for the study of short lived nuclide. In this report, the measurements of the cross section and resonance integral of {sup 135}Cs are described. To obtain reliable values of the cross section and resonance integral of {sup 135}Cs(n, {gamma}){sup 136}Cs reaction, a quadrupole mass spectrometer was used for the mass analysis of nuclide in the sample. A progress report on the cross section of {sup 134}Cs, a neighbour of {sup 135}Cs, is included in this report. A report on {sup 129}I will be presented in the Report on the Joint-Use of Rikkyo University Reactor. (author)

  13. 242Am/sup m/ fission cross section

    The neutron-induced fission cross section of 242Am/sup m/ has been measured over the energy region from 10-3 eV to approx.20 MeV in a series of experiments utilizing a linac-produced ''white'' neutron source and a monoenergetic source of 14.1 MeV neutrons. The cross section was measured relative to that of 235U in the thermal (0.001 to approx.3 eV) and high energy (1 keV to approx.20 MeV) regions and normalized to the ENDF/B-V 235U(n,f) evaluated cross section. In the resonance energy region (0.5 eV to 10 keV) the neutron flux was measured using thin lithium glass scintillators and the relative cross section thus obtained was normalized to the thermal energy measurement. This procedure allowed a consistency check between the thermal and high energy data. The cross section data have a statistical accuracy of approx.0.5% at thermal energies and in the 1-MeV energy region, and a systematic uncertainty of approx.5%. We confirmed that 242Am/sup m/ has the largest thermal fission cross section known with a 2200 m/sec value of 6328 b. Results of a Breit-Wigner sum-of-single-levels analysis of 48 fission resonances up to 20 eV are presented and the connection of these resonance properties to the large thermal cross section is discussed. Our measurements are compared with previously reported results

  14. Handbook of LHC Higgs Cross Sections: 3. Higgs Properties: Report of the LHC Higgs Cross Section Working Group

    2013-01-01

    This Report summarizes the results of the activities in 2012 and the first half of 2013 of the LHC Higgs Cross Section Working Group. The main goal of the working group was to present the state of the art of Higgs Physics at the LHC, integrating all new results that have appeared in the last few years. This report follows the first working group report Handbook of LHC Higgs Cross Sections: 1. Inclusive Observables (CERN-2011-002) and the second working group report Handbook of LHC Higgs Cross...

  15. Improved Actinide Neutron Capture Cross Sections Using Accelerator Mass Spectrometry

    Bauder, W.; Pardo, R. C.; Kondev, F. G.; Kondrashev, S.; Nair, C.; Nusair, O.; Palchan, T.; Scott, R.; Seweryniak, D.; Vondrasek, R.; Collon, P.; Paul, M.; Youinou, G.; Salvatores, M.; Palmotti, G.; Berg, J.; Maddock, T.; Imel, G.

    2014-09-01

    The MANTRA (Measurement of Actinide Neutron TRAnsmutations) project will improve energy-integrated neutron capture cross section data across the actinide region. These data are incorporated into nuclear reactor models and are an important piece in understanding Generation IV reactor designs. We will infer the capture cross sections by measuring isotopic ratios from actinide samples, irradiated in the Advanced Test Reactor at INL, with Accelerator Mass Spectrometry (AMS) at ATLAS (ANL). The superior sensitivity of AMS allows us to extract multiple cross sections from a single sample. In order to analyze the large number of samples needed for MANTRA and to meet the goal of extracting multiple cross sections per sample, we have made a number of modifications to the AMS setup at ATLAS. In particular, we are developing a technique to inject solid material into the ECR with laser ablation. With laser ablation, we can better control material injection and potentially increase efficiency in the ECR, thus creating less contamination in the source and reducing cross talk. I will present work on the laser ablation system and preliminary results from our AMS measurements. The MANTRA (Measurement of Actinide Neutron TRAnsmutations) project will improve energy-integrated neutron capture cross section data across the actinide region. These data are incorporated into nuclear reactor models and are an important piece in understanding Generation IV reactor designs. We will infer the capture cross sections by measuring isotopic ratios from actinide samples, irradiated in the Advanced Test Reactor at INL, with Accelerator Mass Spectrometry (AMS) at ATLAS (ANL). The superior sensitivity of AMS allows us to extract multiple cross sections from a single sample. In order to analyze the large number of samples needed for MANTRA and to meet the goal of extracting multiple cross sections per sample, we have made a number of modifications to the AMS setup at ATLAS. In particular, we are

  16. Integral capture cross-section measurements in the CFRMF for LMFBR control materials

    Integral capture-cross sections for separated isotopes of Eu and Ta are reported for measurements in the Coupled Fast Reactivity Measurements Facility (CFRMF). These cross sections along with that measured in the CFRMF for 10B(n,α) provide an absolute standard for evaluating the relative reactivity worth of Eu2O3, B4C and Ta in neutron fields typical of an LMFBR core. Based on these measurements and for neutron fields characterized by the 235U:238U reaction rate spectral index ranging from 23 to 50, the infinitely dilute relative worth of Eu2O3 has been estimated to be 25 to 40 percent higher than that for B4C and 80 percent to 100 percent higher than that for Ta. 11 references

  17. Measurement of the thermal neutron capture cross section and the resonance integral of radioactive Hf182

    Vockenhuber, C.; Bichler, M.; Wallner, A.; Kutschera, W.; Dillmann, I.; Käppeler, F.

    2008-04-01

    The neutron capture cross sections of the radioactive isotope Hf182 (t1/2=8.9×106 yr) in the thermal and epithermal energy regions have been measured by activation at the TRIGA Mark-II reactor of the Atomic Institute of the Austrian Universities in Vienna, Austria, and subsequent γ-ray spectroscopy of Hf183. High values for the thermal (kT=25 meV) cross section σ0=133±10 b and for the resonance integral I0=5850±660 b were found. Additionally, the absolute intensities of the main γ-ray transitions in the decay of Hf182 have been considerably improved.

  18. The effect of dynamical screening on helium (e, 2e) fully differential cross-sections

    Sun Shi-Yan; Jia Xiang-Fu; Miao Xiang-Yang; Zhang Jun-Feng; Xie Yi; Li Xiong-Wei; Shi Wen-Qiang

    2009-01-01

    This paper presents the fully differential cross sections (FDCS) for 102eV electron impact single ionization of helium for both the coplanar and perpendicular plane asymmetric geometries within the framework of dynamically screened three-Coulomb-wave theory. Comparisons are made with the experimental data and those of the three-Coulomb wave function model and second-order distorted-wave Born method. The angular distribution and relative heights of the present FDCS is found to be in very good agreement with the experimental data in the perpendicular plane geometry.It is shown that dynamical screening effects are significant in this geometry. Three-body coupling is expected to be weak in the coplanar geometry, although the precise absolute value of the cross section is still sensitive to the interaction details.

  19. EDDIX--a database of ionisation double differential cross sections.

    MacGibbon, J H; Emerson, S; Liamsuwan, T; Nikjoo, H

    2011-02-01

    The use of Monte Carlo track structure is a choice method in biophysical modelling and calculations. To precisely model 3D and 4D tracks, the cross section for the ionisation by an incoming ion, double differential in the outgoing electron energy and angle, is required. However, the double differential cross section cannot be theoretically modelled over the full range of parameters. To address this issue, a database of all available experimental data has been constructed. Currently, the database of Experimental Double Differential Ionisation Cross sections (EDDIX) contains over 1200 digitalised experimentally measured datasets from the 1960s to present date, covering all available ion species (hydrogen to uranium) and all available target species. Double differential cross sections are also presented with the aid of an eight parameter functions fitted to the cross sections. The parameters include projectile species and charge, target nuclear charge and atomic mass, projectile atomic mass and energy, electron energy and deflection angle. It is planned to freely distribute EDDIX and make it available to the radiation research community for use in the analytical and numerical modelling of track structure. PMID:21113060

  20. Electromagnetic Dissociation Cross Sections using Weisskopf-Ewing Theory

    Adamczyk, Anne M.; Norbury, John W.

    2011-01-01

    It is important that accurate estimates of crew exposure to radiation are obtained for future long-term space missions. Presently, several space radiation transport codes exist to predict the radiation environment, all of which take as input particle interaction cross sections that describe the nuclear interactions between the particles and the shielding material. The space radiation transport code HZETRN uses the nuclear fragmentation model NUCFRG2 to calculate Electromagnetic Dissociation (EMD) cross sections. Currently, NUCFRG2 employs energy independent branching ratios to calculate these cross sections. Using Weisskopf-Ewing (WE) theory to calculate branching ratios, however, is more advantageous than the method currently employed in NUCFRG2. The WE theory can calculate not only neutron and proton emission, as in the energy independent branching ratio formalism used in NUCFRG2, but also deuteron, triton, helion, and alpha particle emission. These particles can contribute significantly to total exposure estimates. In this work, photonuclear cross sections are calculated using WE theory and the energy independent branching ratios used in NUCFRG2 and then compared to experimental data. It is found that the WE theory gives comparable, but mainly better agreement with data than the energy independent branching ratio. Furthermore, EMD cross sections for single neutron, proton, and alpha particle removal are calculated using WE theory and an energy independent branching ratio used in NUCFRG2 and compared to experimental data.

  1. Experience With the SCALE Criticality Safety Cross Section Libraries

    Bowman, S.M.

    2000-08-21

    This report provides detailed information on the SCALE criticality safety cross-section libraries. Areas covered include the origins of the libraries, the data on which they are based, how they were generated, past experience and validations, and performance comparisons with measured critical experiments and numerical benchmarks. The performance of the SCALE criticality safety cross-section libraries on various types of fissile systems are examined in detail. Most of the performance areas are demonstrated by examining the performance of the libraries vs critical experiments to show general trends and weaknesses. In areas where directly applicable critical experiments do not exist, performance is examined based on the general knowledge of the strengths and weaknesses of the cross sections. In this case, the experience in the use of the cross sections and comparisons with the results of other libraries on the same systems are relied on for establishing acceptability of application of a particular SCALE library to a particular fissile system. This report should aid in establishing when a SCALE cross-section library would be expected to perform acceptably and where there are known or suspected deficiencies that would cause the calculations to be less reliable. To determine the acceptability of a library for a particular application, the calculational bias of the library should be established by directly applicable critical experiments.

  2. Technical study on cross section measurement with Al activation

    The method of Al activation relative measurement of cross section has been studied. The cross sections of 27Al(n,α)24Na have been measured in 13.4 MeV to 14.7 MeV. The PD-300 accelerator offered D-T neutron source. The distance from sample to Tritium target is 20 cm. It spent 5 h to radiate sample with neutron. The intensity of neutron source is monitored by the α-particles from the T(d, n) 4He reaction. The induced neutron energy is determined using ratio of Nb(n,2n) and Zr(n,2n) cross section. The activated gamma ray is measured using GEM60P HPGe detector. The results of 27Al(n, α)24Na cross sections are compared with the nuclear data standard, and the deviation is less than 1%. It showed that the method of Al activation relative measurement of cross section is credible. (authors)

  3. Penning ionization cross sections of excited rare gas atoms

    Electronic energy transfer processes involving excited rare gas atoms play one of the most important roles in ionized gas phenomena. Penning ionization is one of the well known electronic energy transfer processes and has been studied extensively both experimentally and theoretically. The present paper reports the deexcitation (Penning ionization) cross sections of metastable state helium He(23S) and radiative He(21P) atoms in collision with atoms and molecules, which have recently been obtained by the authors' group by using a pulse radiolysis method. Investigation is made of the selected deexcitation cross sections of He(23S) by atoms and molecules in the thermal collisional energy region. Results indicate that the cross sections are strongly dependent on the target molecule. The deexcitation probability of He(23S) per collision increases with the excess electronic energy of He(23S) above the ionization potential of the target atom or molecule. Another investigation, made on the deexcitation of He(21P), suggests that the deexcitation cross section for He(21P) by Ar is determined mainly by the Penning ionization cross section due to a dipole-dipole interaction. Penning ionization due to the dipole-dipole interaction is also important for deexcitation of He(21P) by the target molecules examined. (N.K.)

  4. Optical excitation cross-sections for electron collisions with atoms and molecules

    A brief review of the status of absolute electron-impact excitation cross-section measurements for atoms and molecules is presented. Some of the reasons for the wide discrepancies which exist in the published data are discussed. Tables are presented of recent publications in the field which are not included in the J.I.L.A. compilations. A tabular compilation of the existing data for e-impact on H2O is also given and discussed. Some recent experiments of particular interest to the development of the theory of electron-molecule excitation are mentioned. 112 references, 3 figures, 3 tables

  5. Thermal neutron capture cross sections for 16,171,18O and 2H

    Firestone, R. B.; Revay, Zs.

    2016-04-01

    Thermal neutron capture γ -ray spectra for 16,17,18O and 2H have been measured with guided cold neutron beams from the Forschungs-Neutronenquelle Heinz Maier-Leibnitz (FRM II) reactor and the Budapest Research Reactor (BRR) on natural and O,1817 enriched D2O targets. Complete neutron capture γ -ray decay schemes for the 16,17,18O(n ,γ ) reactions were measured. Absolute transition probabilities were determined for each reaction by a least-squares fit of the γ -ray intensities to the decay schemes after accounting for the contribution from internal conversion. The transition probability for the 870.76-keV γ ray from 16O(n ,γ ) was measured as Pγ(871 )=96.6 ±0.5 % and the thermal neutron cross section for this γ ray was determined as 0.164 ±0.003 mb by internal standardization with multiple targets containing oxygen and stoichiometric quantities of hydrogen, nitrogen, and carbon whose γ -ray cross sections were previously standardized. The γ -ray cross sections for the O,1817(n ,γ ) and 2H(n ,γ ) reactions were then determined relative to the 870.76-keV γ -ray cross section after accounting for the isotopic abundances in the targets. We determined the following total radiative thermal neutron cross sections for each isotope from the γ -ray cross sections and transition probabilities; σ0(16O )=0.170 ±0.003 mb; σ0(17O )=0.67 ±0.07 mb; σ0(18O )=0.141 ±0.006 mb; and σ0(2H )=0.489 ±0.006 mb.

  6. Measurement of the Drell-Yan Differential Cross Section with the CMS Detector at the LHC

    Svyatkovskiy, Alexey

    This thesis describes precision measurements of electroweak interactions in a new energy regime and the application of these measurements to improve our understanding of the structure of the proton. The results are based on proton-proton collision data at √s = 7 and 8 TeV recorded with the Compact Muon Solenoid detector at the CERN Large Hadron Collider during the first years of operation. Measurements of the differential Drell-Yan cross section in the dimuon and dielectron channels covering the dilepton mass range of 15 to 2000 GeV and absolute dilepton rapidity from 0 to 2.4 are presented. The Drell-Yan cross section in proton-proton collisions depends on empirical quantities known as parton distribution functions (PDFs) which parameterize the structure of the proton. In addition to the differential cross sections, the measurements of ratios of the normalized differential cross sections (double ratios) at √s = 7 and 8 TeV are performed in order to provide further constraints for PDFs, substantially redu...

  7. Scaled plane-wave Born cross sections for atoms and molecules

    Tanaka, H.; Brunger, M. J.; Campbell, L.; Kato, H.; Hoshino, M.; Rau, A. R. P.

    2016-04-01

    Integral cross sections for optically allowed electronic-state excitations of atoms and molecules by electron impact, by applying scaled plane-wave Born models, are reviewed. Over 40 years ago, Inokuti presented an influential review of charged-particle scattering, based on the theory pioneered by Bethe forty years earlier, which emphasized the importance of reliable cross-section data from low eV energies to high keV energies that are needed in many areas of radiation science with applications to astronomy, plasmas, and medicine. Yet, with a couple of possible exceptions, most computational methods in electron-atom scattering do not, in general, overlap each other's validity range in the region from threshold up to 300 eV and, in particular, in the intermediate region from 30 to 300 eV. This is even more so for electron-molecule scattering. In fact this entire energy range is of great importance and, to bridge the gap between the two regions of low and high energy, scaled plane-wave Born models were developed to provide reliable, comprehensive, and absolute integral cross sections, first for ionization by Kim and Rudd and then extended to optically allowed electronic-state excitation by Kim. These and other scaling models in a broad, general application to electron scattering from atoms and molecules, their theoretical basis, and their results for cross sections along with comparison to experimental measurements are reviewed. Where possible, these data are also compared to results from other computational approaches.

  8. (n,α) reactions cross sections research at IPPE

    During last few years systematic studies of (n,α) reactions cross sections on a set of nuclei for wide neutron energy region was carried out in IPPE. This research was done with new spectrometer based on an ionisation chamber with Frisch grid and a wave form digitizer. Both methods for gaseous and solid targets were developed. Information extracted from digital signals allows us to significantly decrease background from parasitic reactions and reach higher reliability for obtained cross section values. The description of experiment specialities and cross section measurement results for 16O(n,α), 14N(n,α), 14N(n,t), 20Ne(n,α), 36,40Ar(n,α), 10B(n,α) and 50Cr(n,α) reactions are given in the report

  9. Inelastic cross sections for positron scattering from atomic hydrogen

    Positronium formation (Ps) cross sections for positrons impinging on atomic hydrogen were measured in the impact energy range from 13eV to 255eV at the High Intensity Positron (HIP) beam at Brookhaven National Laboratory (BNL). The Ps-formation cross section was found to rise rapidly from the threshold at 6.8eV to a maximum value of (2.98 ± 0.18) x 10-16 cm2 for ∼ 15eV positrons. By 75eV it drops below the detection limit of 0.17 x 10-16 cm2 which is the present level of statistical uncertainty. The experiment was modified to enable the measurement of doubly differential scattering cross sections

  10. Inelastic cross sections for positron scattering from atomic hydrogen

    Weber, M.; Hofmann, A.; Raith, W.; Sperber, W. [Bielefeld Univ. (Germany). Fakultaet fuer Physik; Jacobsen, F.; Lynn, K.G. [Brookhaven National Lab., Upton, NY (United States)

    1994-12-31

    Positronium formation (Ps) cross sections for positrons impinging on atomic hydrogen were measured in the impact energy range from 13eV to 255eV at the High Intensity Positron (HIP) beam at Brookhaven National Laboratory (BNL). The Ps-formation cross section was found to rise rapidly from the threshold at 6.8eV to a maximum value of (2.98 {plus_minus} 0.18) {times} 10{sup {minus}16} cm{sup 2} for {approx} 15eV positrons. By 75eV it drops below the detection limit of 0.17 {times} 10{sup {minus}16} cm{sup 2} which is the present level of statistical uncertainty. The experiment was modified to enable the measurement of doubly differential scattering cross sections.

  11. Integral test of fission-product cross sections

    A test of more than 50 nuclides of the fission-product file of the JEF-1 data library has been performed, using integral data measured in Dutch, French and US facilities. Some results are given for the capture cross sections of the 40 most important fission products in a fast reactor. The inelastic scattering cross sections of many even-mass nuclides are systematically too low due to neglect of direct-collective effects. In lumped fission-product cross sections the uncertainties due to the release of gaseous products have been reduced by means of a new burn-up model with parameters tuned to leakage data of irradiated PHENIX fuel pins

  12. High Energy Measurement of the Deuteron Photodisintegration Differential Cross Section

    Elaine Schulte

    2002-05-01

    New measurements of the high energy deuteron photodisintegration differential cross section were made at the Thomas Jefferson National Accelerator Facility in Newport News, Virginia. Two experiments were performed. Experiment E96-003 was performed in experimental Hall C. The measurements were designed to extend the highest energy differential cross section values to 5.5 GeV incident photon energy at forward angles. This builds upon previous high energy measurements in which scaling consistent with the pQCD constituent counting rules was observed at 90 degrees and 70 degrees in the center of mass. From the new measurements, a threshold for the onset of constituent counting rule scaling seems present at transverse momentum approximately 1.3 GeV/c. The second experiment, E99-008, was performed in experimental Hall A. The measurements were designed to explore the angular distribution of the differential cross section at constant energy. The measurements were made symmetric about 90 degrees

  13. Measurement of the ZZ production cross section with ATLAS

    Ellinghaus, Frank; Schmitz, Simon; Tapprogge, Stefan [Institut fuer Physik, Johannes Gutenberg-Universitaet Mainz (Germany); Collaboration: ATLAS-Collaboration

    2015-07-01

    The study of the ZZ production has an excellent potential to test the electroweak sector of the Standard Model, where Z boson pairs can be produced via non-resonant processes or via Higgs decays. A deviation from the Standard Model expectation for the ZZ production cross section would be an indication for new physics. This could manifest itself in so called triple gauge couplings via ZZZ or ZZγ, which the Standard Model forbids at tree level. The measurement of the ZZ production cross section is based on an integrated luminosity of 20.3 fb{sup -1} of proton-proton collision data at √(s) = 8 TeV recorded with the ATLAS detector in 2012. Measurements of differential cross sections as well as searches for triple gauge couplings have been performed. This talk presents the measurement and analysis details of the ZZ production in the ZZ → 4l channel.

  14. Cross section versus time delay and trapping probability

    Luna-Acosta, G. A.; Fernández-Marín, A. A.; Méndez-Bermúdez, J. A.; Poli, Charles

    2016-07-01

    We study the behavior of the s-wave partial cross section σ (k), the Wigner-Smith time delay τ (k), and the trapping probability P (k) as function of the wave number k. The s-wave central square well is used for concreteness, simplicity, and to elucidate the controversy whether it shows true resonances. It is shown that, except for very sharp structures, the resonance part of the cross section, the trapping probability, and the time delay, reach their local maxima at different values of k. We show numerically that τ (k) > 0 at its local maxima, occurring just before the resonant part of the cross section reaches its local maxima. These results are discussed in the light of the standard definition of resonance.

  15. Measurement of charm and beauty dijet cross sections in photoproduction

    A measurement of charm and beauty dijet photoproduction cross sections at the ep collider HERA is presented. The positron data of the years 1999 and 2000 are analysed, corresponding to an integrated luminosity of 56.8 pb-1. Events are selected with two or more jets of transverse momentum ptjet1(2)>11(8) GeV in the central range of pseudo-rapidity -0.9jet1(2)γobs. Taking into account the theoretical uncertainties, the charm cross sections are consistent with a QCD calculation in next-to-leading order, while the predicted cross sections for beauty production are somewhat lower than the measurement. (orig.)

  16. Fast-neutron total and scattering cross sections of niobium

    Neutron total cross sections of niobium were measured from approx. = 0.7 to 4.5 MeV at intervals of less than or equal to 50 keV with broad resolution. Differential-elastic-scattering cross sections were measured from approx. = 1.5 to 4.0 MeV at intervals of 0.1 to 0.2 MeV and at 10 to 20 scattering angles distributed between approx. = 20 and 160 degrees. Inelastically-scattered neutrons, corresponding to the excitation of levels at: 788 +- 23, 982 +- 17, 1088 +- 27, 1335 +- 35, 1504 +- 30, 1697 +- 19, 1971 +- 22, 2176 +- 28, 2456 +- (.), and 2581 +- (.) keV, were observed. An optical-statistical model, giving a good description of the observables, was deduced from the measured differential-elastic-scattering cross sections. The experimental-results were compared with the respective evaluated quantities given in ENDF/B-V

  17. Majorana Dark Matter Cross Sections with Nucleons at High Energies

    Jeong, Yu Seon; Reno, Mary Hall

    2012-01-01

    Non-relativistic dark matter scattering with nucleons is constrained by direct detection experiments. We use the XENON constraints on the spin-independent and spin-dependent cross section for dark matter scattering with nucleons to constrain a hypothetical Majorana fermionic dark matter particle's couplings to the Higgs boson and Z boson. In the procedure we illustrate the change in the dark matter nucleon cross section as one goes from non-relativistic, coherent scattering to relativistic, incoherent scattering. While the Z invisible decay width excludes directly couplings of dark matter to ordinary matter, by introducing a light Z' portal to the dark sector, a relatively large dark matter nucleon cross section can be preserved even with accelerator experiment constraints for dark matter with a mass of ~10 GeV

  18. Ionization cross sections for low energy electron transport

    Seo, Hee; Saracco, Paolo; Kim, Chan Hyeong

    2011-01-01

    Two models for the calculation of ionization cross sections by electron impact on atoms, the Binary-Encouter-Bethe and the Deutsch-Maerk models, have been implemented; they are intended to extend and improve Geant4 simulation capabilities in the energy range below 1 keV. The physics features of the implementation of the models are described, and their differences with respect to the original formulations are discussed. Results of the verification with respect to the original theoretical sources and of extensive validation with respect to experimental data are reported. The validation process also concerns the ionization cross sections included in the Evaluated Electron Data Library used by Geant4 for low energy electron transport. Among the three cross section options, the Deutsch-Maerk model is identified as the most accurate at reproducing experimental data over the energy range subject to test.

  19. The photon scattering cross-sections of atomic hydrogen

    Grunefeld, Swaantje J; Cheng, Yongjun

    2016-01-01

    We present a unified view of the frequency dependence of the various scattering processes involved when a neutral hydrogen atom interacts with a monochromatic, linearly-polarized photon. A computational approach is employed of the atom trapped by a finite-sized-box due to a finite basis-set expansion, which generates a set of transition matrix elements between $E0$ pseudostates. We introduce a general computational methodology that enables the computation of the frequency-dependent dipole transition polarizability with one real and two different imaginary contributions. These dipole transition polarizabilities are related to the cross-sections of one-photon photoionization, Rayleigh, Raman, and Compton scattering. Our numerical calculations reveal individual Raman scattering cross-sections above threshold that can rapidly vanish and revive. Furthermore, our numerical Compton cross-sections do not overtly suffer from the infra-red divergence problem, and are three orders-of-magnitude higher than previous analy...

  20. 63Ni (n ,γ ) cross sections measured with DANCE

    Weigand, M.; Bredeweg, T. A.; Couture, A.; Göbel, K.; Heftrich, T.; Jandel, M.; Käppeler, F.; Lederer, C.; Kivel, N.; Korschinek, G.; Krtička, M.; O'Donnell, J. M.; Ostermöller, J.; Plag, R.; Reifarth, R.; Schumann, D.; Ullmann, J. L.; Wallner, A.

    2015-10-01

    The neutron capture cross section of the s -process branch nucleus 63Ni affects the abundances of other nuclei in its region, especially 63Cu and 64Zn. In order to determine the energy-dependent neutron capture cross section in the astrophysical energy region, an experiment at the Los Alamos National Laboratory has been performed using the calorimetric 4 π BaF2 array DANCE. The (n ,γ ) cross section of 63Ni has been determined relative to the well-known 197Au standard with uncertainties below 15%. Various 63Ni resonances have been identified based on the Q value. Furthermore, the s -process sensitivity of the new values was analyzed with the new network calculation tool NETZ.

  1. Proton-air and proton-proton cross sections

    Ulrich Ralf

    2013-06-01

    Full Text Available Different attempts to measure hadronic cross sections with cosmic ray data are reviewed. The major results are compared to each other and the differences in the corresponding analyses are discussed. Besides some important differences, it is crucial to see that all analyses are based on the same fundamental relation of longitudinal air shower development to the observed fluctuation of experimental observables. Furthermore, the relation of the measured proton-air to the more fundamental proton-proton cross section is discussed. The current global picture combines hadronic proton-proton cross section data from accelerator and cosmic ray measurements and indicates a good consistency with predictions of models up to the highest energies.

  2. Aerodynamic characteristics of bodies with rectangular cross section

    Knoche, H. G.; Schamel, W.; Esch, H.; Schneider, W.

    Systematic wind tunnel tests for a series of missile bodies were conducted by varying cross section shape and body length in the subsonic Mach number range and up to high angles of attack. Tests with a body-wing and a body-tail configuration were performed in order to investigate the body-wing and body-tail interference for bodies of revolution and bodies with rectangular cross section. At a constant angle of attack, the boxlike body supplies far more normal force than the body of revolution with the same cross section area. The boxlike body shows strong coupling effects between the pitch, yaw and roll. The interference effect of the wing and body can be described well, in the case of boxlike bodies with wings in high or low wing positions, by the known slender body interference factors, assuming the width of the box to be the diameter of an equivalent, axially symetrical body.

  3. Electron impact double ionization cross sections of light elements

    A simple user-friendly semiempirical model is proposed to calculate electron impact double ionization cross sections of He, Li, Li+, B+, C+, C3+, O, O2+, O3+, Ne, Ne+, Ne2+, Na, Mg, Al3+, S, and Arq+ (q equals 0 - 7) targets for the incident electron energies from threshold to 106 eV. The contributions in the total double ionization cross sections from the direct double ionization and inner-shell ionization processes are taken into account on the basis of experimental data considered. The results of the present analysis are compared with the available experimental data and theoretical calculations. The model is found successful for the description of experimental cross sections. Since, this model may be a prudent selection to meet the demand level in plasma modeling due to its simple inherent structure. (authors)

  4. Photodetachment cross-section of the negatively charged hydrogen ion

    Frolov, Alexei M

    2015-01-01

    Photodetachment cross-section $\\sigma_{ph}(p_e)$ of the negatively charged hydrogen ion H$^{-}$ is determined with the use of highly accurate variational wave functions constructed for this ion. Photodetachment cross-sections of the H$^{-}$ ion are also studied for very small and very large values of the photo-electron momentum $p_e$. Maximum of this cross-section has been evaluated to very high accuracy and we have found that $[\\sigma_{ph}(p_e)]_{\\max} \\approx$ 3.8627035742 $\\cdot 10^{-17}$ $cm^2$ at $p_e \\approx$ 0.113206(1) $a.u.$ Photodetachment of the H$^{-}$ ion at very small and very large $p_e$ values is also considered. Our method is based upon the Rayleigh's formula for spherical Bessel functions.

  5. Near threshold photodetachment cross section of negative atomic oxygen ions

    Wu Jian-Hua(吴建华); Yuan Jian-Min(袁建民); Vo Ky Lan

    2003-01-01

    A 40-target state close-coupling calculation for the photodetachment cross section of negative atomic oxygen near threshold is carried out with core-valence electron correlation by using the R-matrix method. It was shown that after considering the excitations of two electrons from the 2s shell, the electron affinity of O- (2s22p5 2po) agrees with the experimental result much better than that just considering the excitations of electrons only from the 2p shell as well as only one electron from the 2s shell. Total cross section as well as the main contribution of the ionization channels to the partial cross section are illustrated to show the structure near threshold clearly.

  6. Differences between stellar and laboratory reaction cross sections

    Rauscher, T

    2010-01-01

    Nuclear reactions proceed differently in stellar plasmas than in the laboratory due to the thermal effects in the plasma. On one hand, a target nucleus is bombarded by projectiles distributed in energy with a distribution defined by the plasma temperature. The most relevant energies are low by nuclear physics standards and thus require an improved description of low-energy properties, such as optical potentials, required for the calculation of reaction cross sections. Recent studies of low-energy cross sections suggest the necessity of a modification of the proton optical potential. On the other hand, target nuclei are in thermal equilibrium with the plasma and this modifies their reaction cross sections. It is generally expected that this modification is larger for endothermic reactions. We show that there are many exceptions to this rule.

  7. Total Cross Section in $\\gamma\\gamma$ Collisions at LEP

    Acciarri, M; Adriani, O; Aguilar-Benítez, M; Alcaraz, J; Alemanni, G; Allaby, James V; Aloisio, A; Alviggi, M G; Ambrosi, G; Anderhub, H; Andreev, V P; Angelescu, T; Anselmo, F; Arefev, A; Azemoon, T; Aziz, T; Bagnaia, P; Bajo, A; Baksay, L; Balandras, A; Baldew, S V; Todorova-Nová, S; Banerjee, Sw; Barczyk, A; Barillère, R; Bartalini, P; Basile, M; Batalova, N; Battiston, R; Bay, A; Becattini, F; Becker, U; Behner, F; Bellucci, L; Berbeco, R; Berdugo, J; Berges, P; Bertucci, B; Betev, B L; Bhattacharya, S; Biasini, M; Biland, A; Blaising, J J; Blyth, S C; Bobbink, Gerjan J; Böhm, A; Boldizsar, L; Borgia, B; Bourilkov, D; Bourquin, Maurice; Braccini, S; Branson, J G; Brochu, F; Buffini, A; Buijs, A; Burger, J D; Burger, W J; Cai, X D; Capell, M; Cara Romeo, G; Carlino, G; Cartacci, A M; Casaus, J; Castellini, G; Cavallari, F; Cavallo, N; Cecchi, C; Cerrada, M; Cesaroni, F; Chamizo-Llatas, M; Chang, Y H; Chaturvedi, U K; Chemarin, M; Chen, A; Chen, G; Chen, G M; Chen, H F; Chen, H S; Chiefari, G; Cifarelli, Luisa; Cindolo, F; Civinini, C; Clare, I; Clare, R; Coignet, G; Colino, N; Costantini, S; Cotorobai, F; de la Cruz, B; Csilling, Akos; Cucciarelli, S; Dai, T S; van Dalen, J A; D'Alessandro, R; De Asmundis, R; Déglon, P L; Degré, A; Deiters, K; Della Volpe, D; Delmeire, E; Denes, P; De Notaristefani, F; De Salvo, A; Diemoz, M; Dierckxsens, M; Van Dierendonck, D N; Dionisi, C; Dittmar, Michael; Dominguez, A; Doria, A; Dova, M T; Duchesneau, D; Dufournaud, D; Duinker, P; El-Mamouni, H; Engler, A; Eppling, F J; Erné, F C; Ewers, A; Extermann, Pierre; Fabre, M; Falagán, M A; Falciano, S; Favara, A; Fay, J; Fedin, O; Felcini, Marta; Ferguson, T; Fesefeldt, H S; Fiandrini, E; Field, J H; Filthaut, Frank; Fisher, P H; Fisk, I; Forconi, G; Freudenreich, Klaus; Furetta, C; Galaktionov, Yu; Ganguli, S N; García-Abia, P; Gataullin, M; Gau, S S; Gentile, S; Gheordanescu, N; Giagu, S; Gong, Z F; Grenier, G; Grimm, O; Grünewald, M W; Guida, M; van Gulik, R; Gupta, V K; Gurtu, A; Gutay, L J; Haas, D; Hasan, A; Hatzifotiadou, D; Hebbeker, T; Hervé, A; Hidas, P; Hirschfelder, J; Hofer, H; Holzner, G; Hoorani, H; Hou, S R; Hu, Y; Iashvili, I; Jin, B N; Jones, L W; de Jong, P; Josa-Mutuberria, I; Khan, R A; Käfer, D; Kaur, M; Kienzle-Focacci, M N; Kim, D; Kim, J K; Kirkby, Jasper; Kiss, D; Kittel, E W; Klimentov, A; König, A C; Kopal, M; Kopp, A; Koutsenko, V F; Kräber, M H; Krämer, R W; Krenz, W; Krüger, A; Kunin, A; Ladrón de Guevara, P; Laktineh, I; Landi, G; Lebeau, M; Lebedev, A; Lebrun, P; Lecomte, P; Lecoq, P; Le Coultre, P; Lee, H J; Le Goff, J M; Leiste, R; Levchenko, P M; Li Chuan; Likhoded, S A; Lin, C H; Lin, W T; Linde, Frank L; Lista, L; Liu, Z A; Lohmann, W; Longo, E; Lü, Y S; Lübelsmeyer, K; Luci, C; Luckey, D; Lugnier, L; Luminari, L; Lustermann, W; Ma Wen Gan; Maity, M; Malgeri, L; Malinin, A; Maña, C; Mangeol, D J J; Mans, J; Marian, G; Martin, J P; Marzano, F; Mazumdar, K; McNeil, R R; Mele, S; Merola, L; Meschini, M; Metzger, W J; Von der Mey, M; Mihul, A; Milcent, H; Mirabelli, G; Mnich, J; Mohanty, G B; Moulik, T; Muanza, G S; Muijs, A J M; Musicar, B; Musy, M; Napolitano, M; Nessi-Tedaldi, F; Newman, H; Niessen, T; Nisati, A; Nowak, H; Ofierzynski, R A; Organtini, G; Oulianov, A; Palomares, C; Pandoulas, D; Paoletti, S; Paolucci, P; Paramatti, R; Park, H K; Park, I H; Passaleva, G; Patricelli, S; Paul, T; Pauluzzi, M; Paus, C; Pauss, Felicitas; Pedace, M; Pensotti, S; Perret-Gallix, D; Petersen, B; Piccolo, D; Pierella, F; Pieri, M; Piroué, P A; Pistolesi, E; Plyaskin, V; Pohl, M; Pozhidaev, V; Postema, H; Pothier, J; Prokofiev, D O; Prokofev, D; Quartieri, J; Rahal-Callot, G; Rahaman, M A; Raics, P; Raja, N; Ramelli, R; Rancoita, P G; Ranieri, R; Raspereza, A V; Raven, G; Razis, P A; Ren, D; Rescigno, M; Reucroft, S; Riemann, S; Riles, K; Rodin, J; Roe, B P; Romero, L; Rosca, A; Rosier-Lees, S; Roth, S; Rosenbleck, C; Roux, B; Rubio, Juan Antonio; Ruggiero, G; Rykaczewski, H; Saremi, S; Sarkar, S; Salicio, J; Sánchez, E; Sanders, M P; Schäfer, C; Shchegelskii, V; Schmidt-Kärst, S; Schmitz, D; Schopper, Herwig Franz; Schotanus, D J; Schwering, G; Sciacca, C; Seganti, A; Servoli, L; Shevchenko, S; Shivarov, N; Shoutko, V; Shumilov, E; Shvorob, A V; Siedenburg, T; Son, D; Smith, B; Spillantini, P; Steuer, M; Stickland, D P; Stone, A; Stoyanov, B; Strässner, A; Sudhakar, K; Sultanov, G G; Sun, L Z; Sushkov, S V; Suter, H; Swain, J D; Szillási, Z; Sztaricskai, T; Tang, X W; Tauscher, Ludwig; Taylor, L; Tellili, B; Teyssier, D; Timmermans, C; Ting, Samuel C C; Ting, S M; Tonwar, S C; Tóth, J; Tully, C; Tung, K L; Uchida, Y; Ulbricht, J; Valente, E; Vesztergombi, G; Vetlitskii, I; Vicinanza, D; Viertel, Gert M; Villa, S; Vivargent, M; Vlachos, S; Vodopyanov, I; Vogel, H; Vogt, H; Vorobev, I; Vorobyov, A A; Vorvolakos, A; Wadhwa, M; Wallraff, W; Wang, M; Wang, X L; Wang, Z M; Weber, A; Weber, M; Wienemann, P; Wilkens, H; Wu, S X; Wynhoff, S; Xia, L; Xu, Z Z; Yamamoto, J; Yang, B Z; Yang, C G; Yang, H J; Yang, M; Ye, J B; Yeh, S C; Zalite, A; Zalite, Yu; Zhang, Z P; Zhu, G Y; Zhu, R Y; Zichichi, A; Zilizi, G; Zimmermann, B; Zöller, M

    2001-01-01

    The reaction e+e- -> e+e- gamma* gamma* -> e+e- hadrons for quasi-real photons is studied using data from root(s) = 183 GeV up to 202 GeV. Results on the total cross sections sigma(e+e- -> e+e- hadrons) and sigma(+e- gamma* gamma* -> e+e- hadrons) are given for the two-photon centre-of-mass energies 5 GeV < Wgammagamma < 185 GeV. The total cross section of two real photons is described by a Regge parametrisation. We observe a steeper rise with the two-photon centre-of-mass energy as compared to the hadron-hadron and the photon-proton cross sections. The data are also compared to the expectations of different theoretical models.

  8. The 233Pa fission cross-section measurement and evaluation

    233Pa is a conspicuous example of strongly discrepant data in the accepted nuclear data evaluations. The precise knowledge of the neutron-induced reaction cross-section of this highly β-active nuclide (T1/2 = 27.0 d) is essential for the successful implementation of the thorium-based fuel cycle in advanced nuclear applications. The reactions involving 233Pa are responsible for the balance of nuclei as well as the average number of prompt fission neutrons in a contemplated reactor scenario. In an IAEA report, it is stated that there is a need to know the 233Pa(n, f) cross-section with an accuracy of 20%. The different evaluated neutron data libraries show, however, a difference of a factor of two for this cross-section. It has previously been deemed not feasible to measure this reaction directly due to its short half-life, high radioactivity and the in-growth of the daughter product 233U. Hence, the entries in the neutron libraries are based on theoretical predictions, which explains the large discrepancies. As reported recently the neutron-induced fission cross-section of 233Pa has been measured for the first time directly with mono-energetic neutrons from 1.0 to 3.0 MeV at the Van-de-Graaff facility of the IRMM. In the meantime, during two further measurement campaigns, the energy range has been extended up to 8.5 MeV. The experimental results will be presented together with recent model calculations of the fission cross-section applying the statistical model code STATIS, which improve the cross-section evaluation up to the second chance fission threshold. (authors)

  9. Measurements of minor actinides cross sections for transmutation

    The existing reactors produce two kinds of nuclear waste: the fission products and heavy nuclei beyond uranium called minor actinides (Americium and Curium isotopes). Two options are considered: storage in deep geological site and/or transmutation by fast neutron induced fission. These studies involve many neutron data. Unfortunately, these data bases have still many shortcomings to achieve reliable results. The aim of these measurements is to update nuclear data and complement them. We have measured the fission cross section of 243Am (7370 y) in reference to the (n,p) elastic scattering to provide new data in a range of fast neutrons (1-8 MeV). A statistical model has been developed to describe the reaction 243Am (n,f). Moreover, the cross sections from the following reactions have been be extracted from these calculations: inelastic scattering 243Am (n,n') and radiative capture 243Am (n,γ) cross sections. The direct measurements of neutron cross sections are often a challenge considering the short half-lives of minor actinides. To overcome this problem, a surrogate method using transfer reactions has been used to study few isotopes of curium. The reactions 243Am (3He, d)244Cm, 243Am (3He, t)243Cm and 243Am (3He, α)242Am allowed to measure the fission probabilities of 243,244Cm and 242Am. The fission cross sections of 242,243Cm (162,9 d, 28,5 y) and 241Am (431 y) have been obtained by multiplying these fission probabilities by the calculated compound nuclear neutron cross section relative to each channel. For each measurement, an accurate assessment of the errors was realized through variance-covariance studies. For measurements of the reaction 243Am(n,f), the analysis of error correlations allowed to interpret the scope of these measures within the existing measurements. (author)

  10. Cross section library based discrepancies in MCNP criticality calculations

    In nuclear engineering several reactor physics problems can be approached using Monte Carlo neutron transport techniques, which usually give reliable results when properly used. The quality of the results is largely determined by the accuracy of the geometry model and the statistical uncertainty of the Monte Carlo calculation. There is, however, another potential source of error, namely the cross section data used with the Monte Carlo codes. It has been shown in several studies that there may be significant discrepancies between results calculated using cross section libraries based on different evaluated nuclear data files. These discrepancies are well known to the evaluators of nuclear data but less acknowledged by reactor physicists, who often rely on a single cross section library in their calculations. In this study, discrepancies originating from base nuclear data were investigated in a systematic manner using the MCNP4C code. Calculations on simplified UOX and MOX fuelled LWR lattices were carried out using cross section libraries based on ENDF/B-VI.8, JEFF-3.0, JENDL-3.3, JEF-2.2 and JENDL-3.2 evaluated data files. The neutron spectrum of the system was varied over a wide range by changing the ratio of hydrogen to heavy metal atoms. The essential isotopes underlying the discrepancies were identified and the roles of fission and absorption cross sections of the most important nuclides assessed. The results confirm that there are large systematic differences up to a few per cent in the multiplication factors of LWR lattices. The discrepancies are strongly dependent on material compositions and neutron spectra, and largely originate from U-238 and the primary fissile isotopes. It is concluded that these discrepancies should be taken into account in all reactor physics calculations, and that reactor physicists should not rely on results based on a single cross section library. (author)

  11. A semi-empirical concept for the calculation of electron-impact ionization cross sections of neutral and ionized fullerenes

    A semi-empirical approach to the calculation of cross section functions (absolute value and energy dependence) for the electron-impact ionization of several neutral and ionized fullerenes C60n+ (n =0-3) was developed, for which reliable experimental data have been reported. In particular, it is proposed a modification of the simplistic assumption that the ionization cross section of a cluster/fullerene is given as the product of the monomer ionization cross section and a factor ma, where 'm' is the number of monomers in the ensemble and 'a' is a constant. A comparison between these calculations and the available experimental data reveals good agreement for n = 0,103. In the case of ionization of C602+ (n = 2) the calculation lies significantly below the measured cross section which it was interpret as an indication that additional indirect ionization processes are present for this charge state. (nevyjel)

  12. Calculation of the neutron induced fission cross-section of 233Pa up to 20 MeV

    Since very recently, direct measurements of the 233Pa(n,f) cross-section are available in the energy range from 1.0 to 8.5 MeV. This has stimulated a new, self-consistent, neutron cross-section evaluation for the n+233Pa system, in the incident neutron energy range 0.01-20 MeV. Since higher fission chances are involved also the lighter Pa-isotopes had to be re-evaluated in a consistent manner. The results are quite different compared to earlier evaluation attempts. Since 233Pa is a key isotope in the thorium based fuel cycle the quality of its reaction cross-sections is important for the modeling of future advanced fuel and reactor concepts. The present status of the evaluated libraries is that they differ by a factor of two in the absolute fission cross-section and also in the threshold energy value

  13. Revised transport cross-sections for the WIMS library

    WIMS transport cross-sections above 4 eV are formed by a column-sum correction in which an assumed current spectrum is used to weight the P1 scattering data for a given isotope. Revised weighting spectra lead to improved transport cross-sections for the principal moderators: the effect on calculations of k-infinity is small but leakage calculations, for the homogenised cell, are now in close agreement with corresponding B1 calculations using explicit P1 data. Energy condensation of the B0 (transport corrected) equations appears to be more valid than the procedure used to condense the B1 equations. (author)

  14. Kriging approach for the experimental cross-section covariances estimation

    In the classical use of a generalized χ2 to determine the evaluated cross section uncertainty, we need the covariance matrix of the experimental cross sections. The usual propagation error method to estimate the covariances is hardly usable and the lack of data prevents from using the direct empirical estimator. We propose in this paper to apply the kriging method which allows to estimate the covariances via the distances between the points and with some assumptions on the covariance matrix structure. All the results are illustrated with the 2555Mn nucleus measurements. (authors)

  15. Testing weak cross-sectional dependence in large panels

    Pesaran, Hashem

    2012-01-01

    This paper considers testing the hypothesis that errors in a panel data model are weakly cross sectionally dependent, using the exponent of cross-sectional dependence , introduced recently in Bailey, Kapetanios and Pesaran (2012). It is shown that the implicit null of the CD test depends on the relative expansion rates of N and T. When T = O , for some , then the implicit null of the CD test is given by , which gives , when N and T tend to infinity at the same rate such that T/N , with being...

  16. High-mass dijet cross sections in photoproduction at HERA

    Abe, T; Adamczyk, L; Adamus, M; Aghuzumtsyan, G; Ahn, S H; Antonioli, P; Antonov, A; Arneodo, M; Bailey, D S; Bamberger, A; Barakbaev, A N; Barbagli, G; Barbi, M; Bari, G; Barreiro, F; Bartsch, D; Bashkirov, V; Basile, M; Bauerdick, L A T; Bednarek, B; Behrens, U; Bell, M; Bellagamba, L; Benen, A; Bertolin, A; Bhadra, S; Bodmann, B; Bokel, C; Boogert, S; Boos, E G; Borras, K; Boscherini, D; Breitweg, J; Brock, I; Brook, N H; Brugnera, R; Brümmer, N; Bruni, A; Bruni, G; Bussey, P J; Butterworth, J M; Bylsma, B; Caldwell, A; Capua, M; Cara Romeo, G; Carli, T; Carlin, R; Cartiglia, N; Catterall, C D; Chapin, D; Chekanov, S; Chiochia, V; Chwastowski, J; Ciborowski, J; Ciesielski, R; Cifarelli, Luisa; Cindolo, F; Cirio, R; Cloth, P; Coldewey, C; Cole, J E; Collins-Tooth, C; Contin, A; Cooper-Sarkar, A M; Coppola, N; Cormack, C; Corradi, M; Corriveau, F; Costa, M; Crittenden, J; Cross, R; D'Agostini, Giulio; Dagan, S; Dal Corso, F; Danilov, P; Dannheim, D; De Pasquale, S; Dementiev, R K; Derrick, M; Deshpande, Abhay A; Desler, K; Devenish, R C E; Dhawan, S; Dolgoshein, B A; Doyle, A T; Drews, G; Durkin, L S; Dusini, S; Eisenberg, Y; Engelen, J; Ermolov, P F; Eskreys, Andrzej; Ferrando, J; Ferrero, M I; Figiel, J; Filges, D; Foster, B; Foudas, C; Fourletov, S; Fourletova, J; Fox-Murphy, A; Fricke, U; Fusayasu, T; Gabareen, A; Galea, R; Gallo, E; García, G; Garfagnini, A; Geiser, A; Genta, C; Gialas, I; Gilmore, J; Ginsburg, C M; Giusti, P; Gladilin, L K; Gladkov, D; Glasman, C; Göbel, F; Goers, S; Golubkov, Yu A; Goncalo, R; González, O; Göttlicher, P; Grabowska-Bold, I; Graciani, R; Grijpink, S; Grzelak, G; Gwenlan, C; Haas, T; Hain, W; Hall-Wilton, R; Hamatsu, R; Hanlon, S; Hart, J C; Hartmann, H; Hartner, G F; Hayes, M E; Heaphy, E A; Heath, G P; Heath, H F; Helbich, M; Heusch, C A; Hilger, E; Hillert, S; Hirose, T; Hochman, D; Holm, U; Hughes, V W; Iacobucci, G; Iga, Y; Inuzuka, M; Irrgang, P; Jakob, H P; Jelen, K; Jeoung, H Y; Jones, T W; Kananov, S; Kappes, A; Karshon, U; Katkov, I I; Katz, U F; Kcira, D; Kerger, R; Khein, L A; Kim, C L; Kim, J Y; Kind, O; Kisielewska, D; Kitamura, S; Klimek, K; Koffeman, E; Kohno, T; Kooijman, P; Koop, T; Korotkova, N A; Korzhavina, I A; Kotanski, A; Kötz, U; Kowal, A M; Kowal, M; Kowalski, H; Kowalski, T; Krakauer, D A; Kreisel, A; Kuze, M; Kuzmin, V A; Labarga, L; Labes, H; Lammers, S; Lane, J B; Lee, J H; Lee, S B; Lee, S W; Lelas, D; Levchenko, B B; Levi, G; Levman, G M; Levy, A; Lightwood, M S; Lim, H; Lim, I T; Limentani, S; Ling, T Y; Liu, X; Löhr, B; Lohrmann, E; Long, K R; Longhin, A; Lopez-Duran Viani, A; Lukina, O Yu; Lupi, A; Ma, K J; Maddox, E; Magill, S; Mankel, R; Margotti, A; Marini, G; Markun, P; Martens, J; Martin, J F; Martínez, M; Maselli, S; Massam, Thomas; Mastroberardino, A; Matsushita, T; Matsuzawa, K; Mattingly, M C K; McCubbin, N A; Mellado, B; Menary, S R; Metlica, F; Meyer, A; Milite, M; Miller, D B; Mindur, B; Mirea, A; Monaco, V; Moritz, M; Musgrave, B; Nagano, K; Nania, R; Nigro, A; Nishimura, T; Notz, D; Nowak, R J; Ochs, A; Oh, B Y; Olkiewicz, K; Pac, M Y; Padhi, S; Paganis, S; Palmonari, F; Parenti, A; Park, I H; Park, S K; Paul, E; Pavel, N; Pawlak, J M; Pelfer, P G; Pellegrino, A; Peroni, C; Pesci, A; Petrucci, M C; Plucinsky, P P; Pokrovskiy, N S; Polini, A; Posocco, M; Proskuryakov, A S; Przybycien, M B; Raach, H; Rautenberg, J; Redondo, I; Reeder, D D; Renner, R; Repond, J; Rigby, M; Robins, S; Rodrigues, E; Rulikowska-Zarebska, E; Ruske, O; Ruspa, M; Sabetfakhri, A; Sacchi, R; Salehi, H; Sar, G; Saull, P R B; Savin, A A; Saxon, D H; Schagen, S; Schioppa, M; Schlenstedt, S; Schmidke, W B; Schneekloth, U; Schnurbusch, H; Sciulli, F; Scott, J; Selonke, F; Shche, L M; Skillicorn, I O; Slominski, W; Smalska, B; Smith, W H; Soares, M; Solano, A; Solomin, A N; Son, D; Sosnovtsev, V V; Saint-Laurent, M G; Staiano, A; Stairs, D G; Stanco, L; Standage, J; Stifutkin, A; Stonjek, S; Stopa, P; Straub, P B; Suchkov, S; Surrow, B; Susinno, G; Suszycki, L; Sutton, M R; Sztuk, J; Szuba, D; Szuba, J; Tandler, J; Tapper, A D; Tapper, R J; Tassi, E; Terron, J; Tiecke, H G; Tokushuku, K; Tsurugai, T; Tuning, N; Turcato, M; Tymieniecka, T; Ukleja, A; Ukleja, J; Umemori, K; Vázquez, M; Velthuis, J J; Vlasov, N N; Voss, K C; Walczak, R; Walker, R; Weber, A; Wessoleck, H; West, B J; Whitmore, J J; Wichmann, R; Wick, K; Wiggers, L; Wing, M; Wolf, G; Wölfle, S; Yamada, S; Yamashita, T; Yamazaki, Y; Yoshida, R; Youngman, C; Za, L; Zakrzewski, J A; Zeuner, W; Zhautykov, B O; Zichichi, A; Ziegler, A; Zotkin, S A; De Wolf, E; Del Peso, J

    2002-01-01

    Dijet differential cross sections for the reaction e+p -> e+ + jet + jet + X in the photoproduction regime have been measured with the ZEUS detector at HERA using an integrated luminosity of 42.7 pb**{-1}. The cross sections are given for photon-proton centre-of-mass energies in the range 134 e+ Z0 X} < 5.9 pb. Upper limits on the photoproduction of new heavy resonances decaying into two jets are also presented for masses in the range between 60 GeV and 155 GeV.

  17. Controlling inclusive cross sections in parton shower + matrix element merging

    Plaetzer, Simon

    2012-11-15

    We propose an extension of matrix element plus parton shower merging at tree level to preserve inclusive cross sections obtained from the merged and showered sample. Implementing this constraint generates approximate next-to-leading order (NLO) contributions similar to the LoopSim approach. We then show how full NLO, or in principle even higher order, corrections can be added consistently, including constraints on inclusive cross sections to account for yet missing parton shower accuracy at higher logarithmic order. We also show how NLO accuracy below the merging scale can be obtained.

  18. Inactivation cross section of yeast cells irradiated by heavy ions

    1999-01-01

    Inactivation cross sections for haploid yeast cell strain211a have been calculated as 1-hit detector based on the tracktheory in an extended target mode and a numerical calculation ofradial dose distribution. In the calculations, characteristic dose D0 is a fitted parameter which is obtained to be 42 Gy, and "radius"of hypothetical target a0 is chosen to be 0.5μm which is about the sizeof nucleus of yeast cells for obtaining an overall agreement withexperimental cross sections. The results of the calculations are inagreement with the experimental data in high LET (linear energy transfer) including the thindown region.

  19. Modelling of reaction cross sections and prompt neutron emission

    Oberstedt S.

    2010-10-01

    Full Text Available Accurate nuclear data concerning reaction cross sections and the emission of prompt fission neutrons (i.e. multiplicity and spectra as well as other fission fragment data are of great importance for reactor physics design, especially for the new Generation IV nuclear energy systems. During the past years for several actinides (238U(n, f and 237Np(n, f both the reaction cross sections and prompt neutron multiplicities and spectra have been calculated within the frame of the EFNUDAT project.

  20. SU-E-I-43: Photoelectric Cross Section Revisited

    Purpose: The importance of the precision in photoelectric cross-section value increases for recent developed technology such as dual energy computed tomography, in which some reconstruction algorithms require the energy dependence of the photo-absorption in each material composition of human being. In this study, we revisited the photoelectric cross-section calculation by self-consistent relativistic Hartree-Fock (HF) atomic model and compared with that widely distributed as “XCOM database” in National Institute of Standards and Technology, which was evaluated with localdensity approximation for electron-exchange (Fock)z potential. Methods: The photoelectric cross section can be calculated with the electron wave functions in initial atomic state (bound electron) and final continuum state (photoelectron). These electron states were constructed based on the selfconsistent HF calculation, where the repulsive Coulomb potential from the electron charge distribution (Hartree term) and the electron exchange potential with full electromagnetic interaction (Fock term) were included for the electron-electron interaction. The photoelectric cross sections were evaluated for He (Z=2), Be (Z=4), C (Z=6), O (Z=8), and Ne (Z=10) in energy range of 10keV to 1MeV. The Result was compared with XCOM database. Results: The difference of the photoelectric cross section between the present calculation and XCOM database was 8% at a maximum (in 10keV for Be). The agreement tends to be better as the atomic number increases. The contribution from each atomic shell has a considerable discrepancy with XCOM database except for K-shell. However, because the photoelectric cross section arising from K-shell is dominant, the net photoelectric cross section was almost insensitive to the different handling in Fock potential. Conclusion: The photoelectric cross-section program has been developed based on the fully self-consistent relativistic HF atomic model. Due to small effect on the Fock

  1. Reaction cross sections of hypernuclei and the shrinkage effect

    Akaishi, T

    2013-01-01

    We calculate the reaction cross sections for $^6{\\rm Li}$ and $^7_{\\Lambda}{\\rm Li}$ on a $^{12}{\\rm C}$ target at $100\\,{\\rm MeV/nucleon}$ using the Glauber theory. To this end, we assume a two-body cluster structure for $^6$Li and $^7_{\\Lambda}{\\rm Li}$, and employ the few-body treatment of the Glauber theory, that is beyond the well known optical limit approximation. We show that the reaction cross section for $^7_{\\Lambda}{\\rm Li}$ is smaller than that for $^6$Li by about 4\\%, reflecting the shrinkage effect of the $\\Lambda$ particle.

  2. Cross section inference based on PDE-constrained optimization

    The problem of inferring the material properties (cross section) in noninvasive inverse problems is formulated as a PDE-constrained optimization problem, where the governing laws of the chosen physics act as a constraint. A standard Lagrangian functional, containing the objective function to be minimized and the constraints to satisfy, is formed. The resolution of the optimality conditions lead to a nonlinear problem that is tackled with a Gauss-Newton procedure. Results of cross section inference are presented in the case of 1-group 2D neutron diffusion theory. (authors)

  3. Charged particle cross-section data and their systematization

    The reaction cross-sections and the thick target yields of (α,αxn) and (α,xn), induced by the alpha particles from the Buenos Aires 60 inch synchrocyclotron for Cu, Y, Zr, Rh, Te, Ta, Au and Pb were obtained. The ''stocked foil'' method was applied. The ''nuclear spin density'' parameter was determined using a phenomenological approximation from the cross section data for 181Ta(α,n) reaction producing isomeric pairs of sup(184m)Re and sup(184g)Re. The systematic behaviour of the present result and the results of other authors were demonstrated

  4. Electron transport in silicon nanowires having different cross-sections

    Muscato Orazio

    2016-06-01

    Full Text Available Transport phenomena in silicon nanowires with different cross-section are investigated using an Extended Hydrodynamic model, coupled to the Schrödinger-Poisson system. The model has been formulated by closing the moment system derived from the Boltzmann equation on the basis of the maximum entropy principle of Extended Thermodynamics, obtaining explicit closure relations for the high-order fluxes and the production terms. Scattering of electrons with acoustic and non polar optical phonons have been taken into account. The bulk mobility is evaluated for square and equilateral triangle cross-sections of the wire.

  5. Update to the R33 cross section file format

    In September 1991, in response to the workshop on cross sections for Ion Beam Analysis (IBA) held in Namur (July 1991, Nuclear Instruments and Methods B66(1992)), a simple ascii format was proposed to facilitate transfer and collation of nuclear reaction cross section data for Ion Beam Analysis (IBA) and especially for Nuclear Reaction Analysis (NRA). Although intended only as a discussion document, the ascii format - referred to as the R33 (Report 33) format - has become a de facto standard. In the decade since this first proposal there have been spectacular advances in computing power and in software usability, however the cross-platform compatibility of the ascii character set has ensured that the need for an ascii format remains. Nuclear reaction cross section data for Nuclear Reaction analysis has been collected and archived on internet web sites over the last decade. This data has largely been entered in the R33 format, although there is a series of elastic cross sections that are expressed as the ratio to the corresponding Rutherford cross sections that have been entered in a format referred to as RTR (ratio to Rutherford). During this time the R33 format has been modified and added to - firstly to take into account angular distributions, which were not catered for in the first proposal, and more recently to cater for elastic cross sections expressed as the ratio-to- Rutherford, which it is useful to have for some elastic scattering programs. It is thus timely to formally update the R33 format. There also exists the large nuclear cross section data collections of the Nuclear Data Network - of which the core centres are the OECD NEA Nuclear Data Bank, the IAEA Nuclear Data Section, the Brookhaven National Laboratory National Nuclear Data Centre and CJD IPPE Obninsk, Russia. The R33 format is now proposed to become a legal computational format for the NDN. It is thus also necessary to provide an updated formal definition of the R33 format in order to provide

  6. Photon gluon fusion cross sections at HERA energy

    Engelen, J. J.; Dejong, S. J.; Poletiek, M.; Vermaseren, J. A. M.

    1988-01-01

    Cross sections for heavy flavor production through photon gluon fusion in electron proton collisions are presented. The electron photon vertex is taken into account explicitly, and the Q sq of the exchanged photon ranges from nearly zero (almost real photon) to the kinematically allowed maximum. The QCD scale is set by the mass of the produced quarks. The formalism is also applicable to the production of light quarks as long as the invariant mass of the pair is sufficiently high, so cross sections for u anti-u, d anti-d, and s anti-s production are also given.

  7. Total cross section of electron scattering by fluorocarbon molecules

    Yamada, T [Department of Electrical Engineering and Electronics, Daido Institute of Technology, 10-3 Takiharu-cho, Minami-ku, Nagoya 457-8530 (Japan); Ushiroda, S [Department of Electrical Engineering and Electronics, Toyota College of Technology, 2-1 Eisei-cho, Toyota-Shi 471-8525 (Japan); Kondo, Y [Kaela Research and Development Corporation, Incubation Office No 2 in Nagoya Institute of Technology, Gokiso-cho, Shouwa-ku, Nagoya 466-8555 (Japan)

    2008-12-14

    A compact linear electron transmission apparatus was used for the measurement of the total electron scattering cross section at 4-500 eV. Total cross sections of chlorofluorocarbon (CCl{sub 2}F{sub 2}), hydrochlorofluorocarbon (CHClF{sub 2}), perfluoropropane (C{sub 3}F{sub 8}), perfluoro-n-pentane (C{sub 5}F{sub 12}), perfluoro-n-hexane (C{sub 6}F{sub 14}) and perfluoro-n-octane (C{sub 8}F{sub 18}) were obtained experimentally and compared with the values obtained from a theoretical calculation and semi-empirical model calculation.

  8. Evaluation of neutron resonance cross section data at GELINA

    BECKER BJÖRN; Capote, R; EMILIANI FEDERICA; Guber, K. H.; HEYSE JAN; KAUWENBERGHS KIM JOSEPHA; Kopecky, Stefan; LAMPOUDIS CHRISTOS; Massimi, C.; MONDELAERS Willy; Moxon, M.; Noguere, G.; Plompen, Arjan; PRONAYEV V.; SIEGLER Peter

    2013-01-01

    Over the last decade, the EC–JRC–IRMM, in collaboration with other institutes such as INRNE Sofia (BG), INFN Bologna (IT), ORNL (USA), CEA Cadarache (FR) and CEA Saclay (FR), has made an intense effort to improve the quality of neutron-induced cross section data in the resonance region. These improvements relate to both the infrastructure of the facility and the measurement setup, and the data reduction and analysis procedures. As a result total and reaction cross section data in the resonanc...

  9. Fast-neutron scattering cross sections of elemental zirconium

    Differential neturon-elastic-scattering cross sections of elemental zirconium are measured from 1.5 to 4.0 MeV at intervals of less than or equal to 200 keV. Inelastic-neutron-scattering cross sections corresponding to the excitation of levels at observed energies of: 914 +- 25, 1476 +- 37, 1787 +- 23, 2101 +- 26, 2221 +- 17, 2363 +- 14, 2791 +- 15 and 3101 +- 25 keV are determined. The experimental results are interpreted in terms of the optical-statistical model and are compared with corresponding quantities given in ENDF/B-V

  10. Evaluation of the 238U neutron total cross section

    Experimental energy-averaged neutron total cross sections of 238U were evaluated from 0.044 to 20.0 MeV using regorous numerical methods. The evaluated results are presented together with the associated uncertainties and correlation matrix. They indicate that this energy-averaged neutron total cross section is known to better than 1% over wide energy regions. There are somwewhat larger uncertainties at low energies (e.g., less than or equal to 0.2 MeV), near 8 MeV and above 15 MeV. The present evaluation is compard with values given in ENDF/B-V

  11. Top quark pair cross section measurements in CMS

    Brochero Cifuentes, Javier Andres

    2016-01-01

    This document presents the latest results in the measurement of the top-quark pair production cross section obtained with data collected by the CMS detector at LHC accelerator. The analyses are performed in the dilepton, single lepton and full hadronic decay modes. Additionally to the inclusive measurements of $\\mathrm{\\sigma_{\\mathrm{t\\bar{t}}}}$ at 7, 8 and 13$\\mathrm{\\;TeV}$, the CMS collaboration provides for the first time the cross section at 5.02$\\mathrm{\\;TeV}$. Results are confronted with the latest and most precise theoretical calculations.

  12. Cross Section and Experimental Data Analysis Using EViews

    Agung, I Gusti Ngurah

    2011-01-01

    A practical guide to selecting and applying the most appropriate model for analysis of cross section data using EViews. " This book is a reflection of the vast experience and knowledge of the author. It is a useful reference for students and practitioners dealing with cross sectional data analysis ... The strength of the book lies in its wealth of material and well structured guidelines ..." Prof. Yohanes Eko Riyanto , Nanyang Technological University, Singapore. " This is superb and brilliant. Prof. Agung has skilfully transformed his best experiences into new knowledge ... creating a new way

  13. Total photoproduction cross section at very high energy

    In this paper we apply to the photoproduction total cross section a model we have proposed for purely hadronic processes and which is based on QCD mini-jets and soft gluon re-summation. We compare the predictions of our model with the HERA data as well as with other models. For cosmic rays, our model predicts substantially higher cross sections at TeV energies than models based on factorization, but lower than models based on mini-jets alone, without soft gluons. We discuss the origin of this difference. (orig.)

  14. Precision measurement of cross sections by isomer ratio method

    A possibility of determining the cross sections of isomer states measuring the ratio of yields of ground and isomer states (or σm/σg cross section ratio) by γ spectroscopy methods is investigated. Isomer ratio (IR) for 185Re(γ, n)184mgRe, 181Ta(α, n)184mgRe, 82Se(γ, n)81mSe and 39K(γ, n)38mgK reactions are studied. The IR determination error makes up several per cents. 6 refs.; 4 figs.; 1 tab

  15. Photon-photon cross sections in the resonance region

    Possible contributions to the photon-photon cross section in the region where the vector dominated thresholds are closed are evaluated. All two body processes diagonal and off diagonal are summed explicitly and the multibody processes are calculated by a method introduced previously. It is found that, excluding s-channel resonances, the cross section is very small for all channels, and purely real except for resonances. It is concluded that the possibility of studying s-channel resonances in electron colliding machines is probably far better than it was believed. These possibilities are discussed in a separate paper. (author)

  16. Neutrino absorption cross sections in 16O and 40Ar

    Recently the study of total cross sections in the neutrino (antineutrino) - nucleus reactions has been done for the lepton detection particularly for the nuclear targets used in various ongoing atmospheric neutrino experiments at IMB, Superkamiokande, and ICARUS. The inclusive cross sections have been studied for these reactions using local density approximations (LDA) for the neutrinos moving in the nuclear medium and taking into account the renormalization of weak coupling constants due to the presence of strongly interacting nucleons in the nuclear medium and compared with the calculations done in Fermi gas model (FGM)

  17. Medium effects in the nucleon- nucleus reaction cross-section

    The nucleon-nucleus reaction cross-section, σR , has been calculated using Gabblers multiple scattering theory in its optical limit, A medium modified nuclear phase shift function has been obtained for nucleon-nucleus scattering using a medium two body scattering amplitude. In the present calculations, the Coulomb modified Glauber model is used. Also different forms of Gaussian density distribution, for the target nucleus, are used. A comparison of medium modified calculations with the corresponding experimental data has shown that application of the medium effect in the total reaction cross- section plays an important role for low values of energy

  18. Inactivation cross section of yeast cells irradiation by heavy ions

    Inactivation cross sections for haploid yeast cell strain 211a have been calculated as 1-hit detector based on the track theory in an extended target mode and a numerical calculation of radial dose distribution. In the calculations, characteristic dose D0 is a fitted parameter which is obtained to be 42 Gy, and 'radius' of hypothetical target a0 is chosen to be 0.5 μm which is about the size of nucleus of yeast cells for obtaining an overall agreement with experimental cross sections. The results of the calculations are in agreement with the experimental data in high LET (linear energy transfer) including the thin down region

  19. Total cross section of electron scattering by fluorocarbon molecules

    A compact linear electron transmission apparatus was used for the measurement of the total electron scattering cross section at 4-500 eV. Total cross sections of chlorofluorocarbon (CCl2F2), hydrochlorofluorocarbon (CHClF2), perfluoropropane (C3F8), perfluoro-n-pentane (C5F12), perfluoro-n-hexane (C6F14) and perfluoro-n-octane (C8F18) were obtained experimentally and compared with the values obtained from a theoretical calculation and semi-empirical model calculation.

  20. Activities of the JILA Atomic Collisions Cross Sections Data Center

    The JILA Atomic Collisions Cross Sections Data Center compiles, critically evaluates, and reviews cross sections and rates for low energy (<100 keV) collisions of electrons, photons, and heavy particles with atoms, ions, and simple molecules. Reports are prepared which provide easily accessible recommended data with error limits, list the fundamental literature related to specific topics, identify regions where data are missing, and point out inconsistencies in existing data. The general methodology used in producing evaluated compilations is described. Recently completed projects and work in progress are reported

  1. Approximate formulas for total cross section for moderately small eikonal

    Kisselev, A V

    2016-01-01

    The eikonal representation for the total cross section is considered. The approximate formulas for a moderately small eikonal are derived. In contrast to the standard eikonal integrals, they contain no Bessel functions, and, hence, no rapidly oscillating integrands. The formulas obtained are applied to numerical evaluations of the total cross section for a number of particular expressions for the eikonal. It is shown that for pure imaginary eikonals the relative error of O(10^(-5)) can be achieved. Also two improper triple integrals are analytically calculated.

  2. International evaluation cooperation Subgroup 7: Multigroup cross section processing

    Roussin, R.W.; White, J.E. (Oak Ridge National Lab., TN (USA)); Sartori, E. (NEA Data Bank, 91 - Gif-sur-Yvette (France)); Panini, G. (ENEA, Bologna (Italy)); MacFarlane, R. (Los Alamos National Lab., NM (USA)); Muir, D. (International Atomic Energy Agency, Vienna (Austria). Nuclear Data Section); Mattes, M. (Stuttgart Univ. (Germany, F.R.). Inst. fuer Kernenergetik und Energiesysteme); Hasegawa, I

    1991-01-01

    The chairmen of the ENDF/B, JEF, EFF, and JENDL evaluated data files adopted a proposal to develop a fine-group processed cross section library based on the VITAMIN'' concept. The authors listed above, with support from others, are participating in this project. The end result will be a pseudo-problem-independent fine-group cross section library generated from the latest evaluated data in ENDF/B-VI, JEF-2, EFF-2, and JENDL-3. Initial applications of the library will be for shielding, fast reactor physics, and fusion neutronics. Progress made to date will be discussed. 8 refs.

  3. 55Mn(n,n'γ) cross-section studies for Esub(n)=1.0-3.6 MeV

    Absolute 55Mn(n,n'γ) γ-ray production cross sections have been measured for 19 transitions from levels up to and including the 2429 keV state in 55Mn over the energy range Esub(n)=1.0-3.6 MeV. Angular distributions were also measured for 6 of the transitions. Branching ratios were extracted and total inelastic neutron cross sections were inferred for these 55Mn excited states. The measured and inferred cross sections are compared with calculated cross sections using the statistical compound nucleus theory. (Auth.)

  4. Collision cross sections for few electron systems. Final report, August 1, 2992--July 31, 1995

    The purpose of this project was to produce accurate cross sections for collisionally induced reactions from the ground stated and excited states of species of ions and at present in a hot fusion plasma. The collisional constituents may be divided into two categories for the purpose of calculations: Those in which a bare projectile excites a one electron or two electron ion or atom from its ground state, or excited states to higher excited states or ionized states. Those in which the projectile has one or more electrons attached to it and excites a one electron or two electron ion or atom from its ground state, or excited states to higher excited states or ionized states. During the collision the projectile itself may change its state being simultaneously excited or ionized. Cross sections are needed typically over the whole energy range from low velocities where molecular, orbitals begin to form to high velocities where first Born or more sophisticated asymptotic theories can be used. These high energy cross sections are very useful for experimentalists to check the absolute normalization of their cross sections. The theoretical tools used were therefore both analytical and numerical in character. Numerical calculations were restricted to expansions of the wavefunctions in a set of finite hilbert basis states (FHBS). The many body aspects of the problem, i.e. the important presence of the interelectron force, or correlation mandate a careful systematic approach. But this section was tempered in our strategy by the fact that many of the cross sections needed, especially from excited states, have never been calculated or measured at all. Thus any information we can provide is useful even if later work may modify our results

  5. Displacement cross sections and PKA spectra: tables and applications

    Damage energy cross sections to 20 MeV are given for aluminum, vanadium, chromium, iron, nickel, copper, zirconium, niobium, molybdenum, tantalum, tungsten, lead, and 18Cr10Ni stainless steel. They are based on ENDF/B-IV nuclear data and the Lindhard energy partition model. Primary knockon atom (PKA) spectra are given for aluminum, iron, niobium, tantalum, and lead for neutron energies up to 15 MeV at approximately one-quarter lethargy intervals. The contributions of various reactions to both the displacement cross sections (taken to be proportional to the damage energy cross sections) and the PKA spectra are presented graphically. Spectral-averaged values of the displacement cross sections are given for several spectra, including approximate maps for the Experimental Breeder Reactor-II (EBR-II) and several positions in the Fast Test Reactor (FTR). Flux values are included to permit estimation of displacement rates. Graphs show integral PKA spectra for the five metals listed above for neutron spectra corresponding to locations in the EBR-II, the High Flux Isotope Reactor (HFIR), and a conceptual fusion reactor (UWMAK-I). Detailed calculations are given only for cases not previously documented. Uncertainty estimates are included

  6. Mid-infrared absorption cross sections for acetone (propanone)

    Infrared absorption cross sections for acetone (propanone) have been determined in the 830-1950 cm-1 spectral region from spectra recorded using a high-resolution FTIR spectrometer (Bruker IFS 125HR) and a multipass cell with a maximum optical path length of 19.3 m. The spectra of mixtures of acetone with dry synthetic air were recorded at 0.015 cm-1 resolution (calculated as 0.9/MOPD using the Bruker definition of resolution) at a number of temperatures between 194 and 251 K and pressures appropriate for atmospheric conditions. Intensities were calibrated using three acetone spectra (recorded at 278, 293 and 323 K) taken from the Pacific Northwest National Laboratory (PNNL) IR database. The new absorption cross sections have been combined with previous high spectral resolution results to create a more complete set of acetone absorption cross sections appropriate for atmospheric remote sensing. These cross sections will provide an accurate basis for upper tropospheric/lower stratospheric retrievals of acetone in the mid-infrared spectral region from ACE and MIPAS satellite data.

  7. Neutron cross sections at 14 MeV

    Neutron activation cross sections on Nd isotopes at 14 MeV were measured using the Ge(Li) gamma-ray spectroscopy. The nonlinear least square method was used for resolving the gamma spectra. The results obtained are discussed in detail and compared with theoretical results on other isotopes

  8. Cross-sectional investigation of HEMS activities in Europe

    Di Bartolomeo, Stefano; Gava, Paolo; Truhlář, Anatolij;

    2014-01-01

    OBJECTIVES: To gather information on helicopter emergency medical services (HEMSs) activities across Europe. METHODS: Cross-sectional data-collection on daily (15 November 2013) activities of a sample of European HEMSs. A web-based questionnaire with both open and closed questions was used, devel...

  9. Elemental composition of paint cross sections by nuclear microprobe analysis

    Physico-chemical characterization of pigments used in artistic painting give precious indications on age of paintings and sometimes on geographical origin of ores. After recalling the principle of protons microprobe, first results obtained by microanalysis of painting cross sections for non destructive microanalysis of impurities in white lead are given

  10. Longitudinal cross section and asymmetries for jets in leptoproduction

    We have calculated the longitudinal and other polarization dependent cross sections for jet production in deep inelastic electron-proton scattering up to order αs of the quark-gluon coupling constant and compared them with estimates of the non-perturbative contributions. (orig.)

  11. State-selective radiative recombination cross sections of argon ions

    The n-, (n,l)- and fine-structure level state-selective radiative recombinations (RR) cross sections of argon ions Ar18+,Ar13+,Ar7+ and Ar+ are obtained with the semi-classical Kramer formula, the relativistic self-consistent field (RSCF) method and the relativistic configuration interaction (RCI) method. It is found that for the highly charged ions with few electrons, the cross sections calculated with these three methods are in good agreement with each other. But as the number of electrons increases, the Kramer formula deviates from the RSCF and RCI results. For instance, when the energy of the incident electron is larger than 100 eV, the n-state selective cross sections of Ar7+ calculated from the Kramer formula are underestimated for more than 50%. The RSCF results are in general agreement with the RCI results. However, for the low charged ions, a clear distinction appears due to the strong configuration interaction, especially near the Cooper minimum. The n-resolved (n≤10) and total Maxwellian averaged rate coefficients are calculated, and the analytic fitting parameters are also provided. -- Highlights: ► The RR cross sections of Ar18+, Ar13+, Ar7+ and Ar+ are obtained. ► The Kramer formula, the relativistic self-consistent field and RCI methods are used. ► Results from three methods are compared with each other.

  12. Measurement of antiproton-proton cross sections at low momenta

    The present thesis describes an experiment which serves for the study of the antiproton-proton interaction at laboratory momenta between 150 MeV/c and 600 MeV/c. The arrangement permits the measurement of differential cross sections of the elastic scattering and the charge-exchange reaction as well as the cross section of the annihilation into charged and neutral pions. By the availability of an intense beam with low momentum uncertainty from the LEAR storage ring for low energy antiprotons at CERN a clear improvement of the measurement accuracy compared to earlier experiments at separated antiproton beams can be reached. A prototype of the antineutron calorimeter used for the measurement of the angular distribution of the charge-exchange reaction was subjected to a careful test in a separated beam. The results were compared with the results of a Monte-Carlo simulation of the antineutron detection. The cross sections measured in two beam periods in November and December 1983 are consistent with the published data in the hitherto available momentum range above about 350 MeV/c. Especially in the cross section of the annihilation into charged pions a statistically significant signal at a mass of 1937 MeV/c2 appears. However further measurements are necessary to study all systematic causes of errors. (orig.)

  13. Annual Cross-Sectional Study of Nurse-Sensitive Problems

    Færch, Jane; Tewes, Marianne; Overgaard, Dorthe;

    2015-01-01

    A cross-sectional evaluation of nurse-sensitive problems in hospitalized patients is conducted once per year to monitor patient problems identified by nurses, whether nurses implement interventions to overcome the problems, and if the problems are solved. This article describes a systematic metho...

  14. Accurate momentum transfer cross section for the attractive Yukawa potential

    Khrapak, S. A., E-mail: Sergey.Khrapak@dlr.de [Forschungsgruppe Komplexe Plasmen, Deutsches Zentrum für Luft- und Raumfahrt, Oberpfaffenhofen (Germany)

    2014-04-15

    Accurate expression for the momentum transfer cross section for the attractive Yukawa potential is proposed. This simple analytic expression agrees with the numerical results better than to within ±2% in the regime relevant for ion-particle collisions in complex (dusty) plasmas.

  15. Inelastic neutron scattering cross section in ferromagnetic nanowires

    This article presents the first theoretical study of the inelastic neutron cross section in arrays of cylindrical ferromagnetic nanowires. The recently developed dipolar-exchange theory of spin-wave excitations in such wires is used. Results are represented for the few lowest bulk quantized spin-wave modes of different forms

  16. Ratio of the hydrogen and manganese cross sections

    A summary of the results of measurements of hydrogen to manganese cross section ratios are tabulated using weighted fits to the experimental data. Comparison of results using volumetric, gravimetric, and densimetric concentration measurements with and without contaminant corrections indicates that the methods are capable of equal accuracy

  17. Systematic analysis of reaction cross sections of carbon isotopes

    Horiuchi, W; Kohama, A; Suzuki, Y

    2006-01-01

    We systematically analyze total reaction cross sections of carbon isotopes with N=6--16 on a $^{12}$C target for wide range of incident energy. The intrinsic structure of the carbon isotope is described by a Slater determinant generated from a phenomenological mean-field potential, which reasonably well reproduces the ground state properties for most of the even $N$ isotopes. We need separate studies not only for odd nuclei but also for $^{16}$C and $^{22}$C. The density of the carbon isotope is constructed by eliminating the effect of the center of mass motion. For the calculations of the cross sections, we take two schemes: one is the Glauber approximation, and the other is the eikonal model using a global optical potential. We find that both of the schemes successfully reproduce low and high incident energy data on the cross sections of $^{12}$C, $^{13}$C and $^{16}$C on $^{12}$C. The calculated reaction cross sections of $^{15}$C are found to be considerably smaller than the empirical values observed at l...

  18. Plots of the experimental and evaluated photoneutron cross-sections

    Graphical plots of experimental data of photon induced nuclear reaction cross-sections are given for many elements and isotopes. The numerical data were taken from the international EXFOR data library which is available from the nuclear data centers. For selected nuclides evaluated data have been included in the plots. (author). Refs, 3 tabs

  19. Deep spallation cross sections in high energy protons - uranium interactions

    Cross sections of deep spallation products - from phosphorus to hafnium - formed in uranium by high energy protons (Ep > or approx. 10 GeV) have been calculated with a simple semi-empirical formula. The results are in excellent agreement with experimental data. (orig.)

  20. Top quark production cross-section at the Tevatron Collider

    Ranjan, Kirti; /Delhi U. /Fermilab

    2005-06-01

    We present the preliminary results of the t{bar t} pair production cross-section measurements and the single top quark exclusion limits carried out by the D0 and the CDF collaborations in Run II of the Tevatron. The dataset for the various measurements ranges from 140 pb{sup -1} to 350 pb{sup -1}.

  1. Measurement, calculation and evaluation of photon production cross-sections

    The meeting proceedings were divided into three sessions devoted to the following topics: Experimental measurement and techniques (3 papers), calculation of photon cross-sections (9 papers), and evaluation (2 papers). A separate abstract was prepared for each of these papers. Refs, figs and tabs

  2. Total cross section of ultra-relativistic heavy ion collisions

    A possible increase of nuclear cross section at ultra-relativistic energies is suggested. Such an increase is expected to start much earlier than in the case of proton-proton reactions due to more diffused nuclear surface compared to that of proton. Experimental data seem to be consistent with this picture. (author)

  3. Cross-sectional imaging patterns of desmoplastic fibroma

    Mahnken, A.H.; Nolte-Ernsting, C.C.; Wildberger, J.E.; Guenther, R.W. [Dept. of Diagnostic Radiology, University Hospital, University of Technology, Aachen (Germany); Wirtz, D.C. [Dept. of Orthopaedics, University Hospital, University of Technology, Aachen (Germany)

    2001-07-01

    The aim of this study was to work out the cross-sectional imaging characteristics of desmoplastic fibroma (DF). In 3 patients with histologically proven DF, the imaging characteristics obtained with cross-sectional techniques were reviewed retrospectively. Radiographs and CT scans were available in all patients, and plain and contrast-enhanced MR examinations in 2 patients. Compared with conventional radiographs, CT allowed more accurate assessment of the extent of bone destruction including cortical breakthrough and articular invasion. Intramedullary tumor growth and soft tissue extension was best detected with MRI. Apart from heterogeneity on MR images, DF displayed nonspecific low signal intensity on unenhanced T1-weighted images and an intermediate to high signal intensity including areas of low intensity on T2-weighted images. Desmoplastic fibroma showed a distinct, inhomogeneous gadolinium enhancement. Although cross-sectional imaging features of DF are nonspecific, some MR characteristics, such as inhomogeneous contrast enhancement and the presence of low-intensity regions on T2-weighted images, are helpful in determining the differential diagnosis. Cross-sectional imaging of DF is useful for local staging of the tumor because it provides valuable information about the extent of bone destruction as well as medullary and extraosseous spread. (orig.)

  4. Double differential cross sections for methane molecules at intermediate energies

    Double differential cross sections (DDCS) can be obtained by the measurements of energy and angular distributions of one of the two outgoing electrons by a detector. In this pespective, we used methane molecule as a target that is reasonable to expect to understand ionization mechanisms of polyatomic molecular systems.

  5. Single top cross section and properties measurements in CMS

    Komm, Matthias

    2016-01-01

    Single top quarks can be produced via the t, tW, and s channel. Studying these processes provides a test of the theory of electroweak interactions involving heavy quarks. Recent results on cross section and property measurements in pp collisions by the CMS collaboration at center-of-mass energies of 7, 8, and 13 TeV are reviewed.

  6. Recent integral cross section validation measurements at the ASP facility

    Packer, L.W., E-mail: lee.packer@ccfe.ac.uk [Culham Centre for Fusion Energy, Culham Science Centre, Abingdon, Oxfordshire OX14 3DB (United Kingdom); Hughes, S. [AWE, Aldermaston, Reading, Berkshire RG7 4PR (United Kingdom); Gilbert, M.; Lilley, S.; Pampin, R. [Culham Centre for Fusion Energy, Culham Science Centre, Abingdon, Oxfordshire OX14 3DB (United Kingdom)

    2013-10-15

    Highlights: • Recent results of integral cross section measurements at ASP obtained using high purity elemental are detailed. • Details of the data processing tools and method are included which allows to preserve reaction product decay information. • C/E plots for measurements taken for number of reactions and the European Activation File 2010 cross section evaluation. • New integral data included for Ti-46(n,p)Sc-46m. -- Abstract: This work presents new integral data measured at the ASP 14 MeV neutron irradiation facility at Aldermaston in the UK, which has recently become available for fusion-related work through the CCFE materials programme. Measurements of reaction products from activation experiments using elemental foils were carried out using gamma spectrometry in a high efficiency, high-purity germanium (HPGe) detector and associated digital signal processing hardware. Following irradiation and rapid extraction to the measurement cell, gamma emissions were acquired with both energy and time bins. Integral cross section and half-life data have been derived from these measurements. Selected integral cross section values are presented from the measurement campaigns. Details of the data processing approach and outputs generated are highlighted for measurement of the {sup 186}W(n,2n){sup 185m}W reaction—a selected short-lived reaction resulting from W foil irradiations; C/E results are reported along with the associated uncertainties and compared using the SAFEPAQ-II tool against existing available data.

  7. Event history analysis and the cross-section

    Keiding, Niels

    2006-01-01

    Examples are given of problems in event history analysis, where several time origins (generating calendar time, age, disease duration, time on study, etc.) are considered simultaneously. The focus is on complex sampling patterns generated around a cross-section. A basic tool is the Lexis diagram....

  8. Commentary: Mediation Analysis, Causal Process, and Cross-Sectional Data

    Shrout, Patrick E.

    2011-01-01

    Maxwell, Cole, and Mitchell (2011) extended the work of Maxwell and Cole (2007), which raised important questions about whether mediation analyses based on cross-sectional data can shed light on longitudinal mediation process. The latest article considers longitudinal processes that can only be partially explained by an intervening variable, and…

  9. Evaluation of the neutron cross sections for Pu-240

    The present evaluation is proposed to supersede the ENDF/B-V, Revision 2 file for 240Pu. In this work, resonance parameters, cross sections, energy distributions, and angular distributions have been modified. These changes are outlined in detail and appropriate references included. 37 refs., 21 figs., 2 tabs

  10. Capital yields assessment trough cross section production function

    Kodera, Jan; Pánková, V.

    2001-01-01

    Roč. 8, č. 14 (2001), s. 79-87. ISSN 1212-074X R&D Projects: GA ČR GA402/00/0439 Institutional research plan: AV0Z1075907 Keywords : yield of capital * cross-section production function * maximisation of profit Subject RIV: AH - Economics

  11. (, 3) Differential cross section of He (21) and He (23)

    Kshamata Muktavat; M K Srivastava

    2002-01-01

    The angular distribution of the five-fold differential cross section for the electron impact double ionization of He (21 ) and He (23 ) has been studied. The kinematical conditions for maxima/minima in the angular distribution for the two cases have been compared. The two-step process for the double ionization is found to contribute very little in the triplet case.

  12. Alternating series fit to the total cross sections

    It is show by a simple Regge-type fit suggested recently by Donnachie and Landshoff that the universal pomeron contribution to various total cross sections may be represented by an alternating series a - b log s + c (log s)2 corresponding to a series of Regge multipoles. (author). 9 refs., 5 tabs., 5 figs

  13. Measurement of the cross sections of the minor transactinium isotopes

    Measurements of neutron cross sections of the minor transactinium isotopes performed since the 1975 IAEA meeting on transactinium isotope nuclear data are reviewed. Some of the recent developments in experimental techniques are briefly described. As two specific examples measurements on 241Am and 230Th(n,f) are discussed in some detail

  14. Electron scattering cross sections pertinent to electron microscopy

    Some elements of the physics that determine cross sections are discussed, and various sources of data are indicated that should be useful for analytical microscopy. Atoms, molecules, and to some extent, solids are considered. Inelastic and elastic scattering of electrons and some solid-state effects are treated. 30 references

  15. Generation of neutron scattering cross sections for silicon dioxide

    A set of neutron scattering cross sections for silicon and oxygen bound in silicon dioxide were generated and validated. The cross sections were generated in the ACE format for MCNP using the nuclear data processing system NJOY, and the validation was done with published experimental data. This cross section library was applied to the calculation of five critical configurations published in the benchmark Critical Experiments with Heterogeneous Compositions of Highly Enriched Uranium, Silicon Dioxide and Polyethylene. The original calculations did not use the thermal scattering libraries generated in this work and presented significant differences with the experimental results. For this reason, the newly generated library was added to the input and the multiplication factor for each configuration was recomputed. The utilization of the thermal scattering libraries did not result in an improvement of the computational results. Based on this we conclude that integral experiments to validate this type of thermal cross sections need to be designed with a higher influence of thermal scattering in the measured result, and the experiments have to be performed under more controlled conditions.

  16. C+C Fusion Cross Sections Measurements for Nuclear Astrophysics

    Almaraz-Calderon, S.; Carnelli, P. F. F.; Rehm, K. E.; Albers, M.; Alcorta, M.; Bertone, P. F.; Digiovine, B.; Esbensen, H.; Fernandez Niello, J. O.; Henderson, D.; Jiang, C. L.; Lai, J.; Marley, S. T.; Nusair, O.; Palchan-Hazan, T.; Pardo, R. C.; Paul, M.; Ugalde, C.

    2015-06-01

    Total fusion cross section of carbon isotopes were obtained using the newly developed MUSIC detector. MUSIC is a highly efficient, active target-detector system designed to measure fusion excitation functions with radioactive beams. The present measurements are relevant for understanding x-ray superbursts. The results of the first MUSIC campaign as well as the astrophysical implications are presented in this work.

  17. Neutron cross section covariances in the resolved resonance region.

    Herman,M.; Mughabghab, S.F.; Oblozinsky, P.; Pigni, M.T.; Rochman, D.

    2008-04-01

    We present a detailed analysis of the impact of resonance parameter uncertainties on covariances for neutron capture and fission cross sections in the resolved resonance region. Our analysis uses the uncertainties available in the recently published Atlas of Neutron Resonances employing the Multi-Level Breit-Wigner formalism. We consider uncertainties on resonance energies along with those on neutron-, radiative-, and fission-widths and examine their impact on cross section uncertainties and correlations. We also study the effect of the resonance parameter correlations deduced from capture and fission kernels and illustrate our approach on several practical examples. We show that uncertainties of neutron-, radiative- and fission-widths are important, while the uncertainties of resonance energies can be effectively neglected. We conclude that the correlations between neutron and radiative (fission) widths should be taken into account. The multi-group cross section uncertainties can be properly generated from both the resonance parameter covariance format MF32 and the cross section covariance format MF33, though the use of MF32 is more straightforward and hence preferable.

  18. Electron-metastable-helium differential and integral cross sections

    The differential and integral cross sections for the excitation of the 23P and the 33L (L≡ S, P and D) states of He from the metastable 23S state are calculated using the semiclassical multichannel eikonal theory with a nine-channel basis set. Comparison is made with recent experimental results. (Author)

  19. Testing of cross section libraries on zirconium benchmarks

    Highlights: ► Calculations with ENDF/B-VII.0 nuclear data overpredict keff of Zr benchmarks. ► TRIGA criticality benchmark sensitive to Zr data. ► Zr scattering cross section responsible for differences in keff. ► Need for new experimental data on Zr cross sections. - Abstract: In this paper we investigate the influence of various up-to-date nuclear data libraries, such as ENDF/B-VI.6, ENDF/B-VII.0 and JEFF 3.1, on the multiplication factor of the TRIGA benchmark with fuel made of enriched uranium and zirconium hydride and SB light-water reactor benchmarks with fuel made of fissile material in zirconium matrix. The calculations are performed with the Monte Carlo computer code MCNP. Differences of ∼600 pcm in keff are observed for the benchmark model of the TRIGA reactor, while there are practically no differences in the kinf of the fuel. Therefore, an investigation is performed also for hypothetical homogeneous and heterogeneous systems with different leakage. The uncertainty analysis shows that the most important contributors to the difference in keff are the Zr isotopes (especially 90Zr and 91Zr) and thermal scattering data for H and Zr in ZrH. As the differences in keff due to the use of different cross section libraries are relatively large, there is certainly a need for a review of the evaluated cross section data of the zirconium isotopes.

  20. Compound-nuclear reaction cross sections via surrogate reactions

    The surrogate reaction method is an indirect technique for determining cross sections for nuclear reactions that proceed through a well-defined compound nucleus. In this method, the same compound nucleus is produced by an alternate ('surrogate') reaction and its decay products measured. The assumptions underlying the method are examined for the special case of 235U(n, f)

  1. Uptake of atmospheric molecules by ice nanoparticles: Pickup cross sections

    Lengyel, J.; Kočišek, J.; Poterya, V.; Pysanenko, A.; Svrčková, P.; Fárník, M.; Zaouris, D. K.; Fedor, J.

    2012-07-01

    Uptake of several atmospheric molecules on free ice nanoparticles was investigated. Typical examples were chosen: water, methane, NOx species (NO, NO2), hydrogen halides (HCl, HBr), and volatile organic compounds (CH3OH, CH3CH2OH). The cross sections for pickup of these molecules on ice nanoparticles (H2O)N with the mean size of bar{N} ≈ 260 (diameter ˜2.3 nm) were measured in a molecular beam experiment. These cross sections were determined from the cluster beam velocity decrease due to the momentum transfer during the pickup process. For water molecules molecular dynamics simulations were performed to learn the details of the pickup process. The experimental results for water are in good agreement with the simulations. The pickup cross sections of ice particles of several nanometers in diameter can be more than 3 times larger than the geometrical cross sections of these particles. This can have significant consequences in modelling of atmospheric ice nanoparticles, e.g., their growth.

  2. Microscopic approach for the description of neutron cross section fluctuations

    In the frame of the shell model approach to nuclear reactions, the elastic, inelastic and total cross section fluctuations are analyzed taking into account the structure of the nucleus under investigation (compound nucleus, doorway states, collective states). For the case of overlapping compound nucleus resonances a modified Hauser-Feshbach formula, which is assymetric relative to the inelastic and elastic channels, is obtained. (author)

  3. Applications of cross sections for electron-molecule collision processes

    The role of electron-molecule collision cross sections is discussed for the study of the ionospheric and auroral processes in planetary atmospheres and of discharge-pumped lasers. These two areas emphasize the importance of further theoretical and experimental studies concerning electron-impact processes. 13 refs., 3 figs., 2 tabs

  4. Measurement of MA fission cross sections at YAYOI

    Ohkawachi, Yasushi; Ohki, Shigeo; Wakabayashi, Toshio [Power Reactor and Nuclear Fuel Development Corp., Oarai, Ibaraki (Japan). Oarai Engineering Center

    1998-03-01

    Fission cross section ratios of minor actinide nuclides (Am-241, Am-243) relative to U-235 in the fast neutron energy region have been measured using a back-to-back (BTB) fission chamber at YAYOI fast neutron source reactor. A small BTB fission chamber was developed to measure the fission cross section ratios in the center of the core at YAYOI reactor. Dependence of the fission cross section ratios on neutron spectra was investigated by changing the position of the detector in the reactor core. The measurement results were compared with the fission cross sections in the JENDL-3.2, ENDF/B-VI and JEF-2.2 libraries. It was found that calculated values of Am-241 using the JENDL-3.2, ENDF/B-VI and JEF-2.2 data are lower by about 15% than the measured value in the center of the core (the neutron average energy is 1.44E+6(eV)). And, good agreement can be seen the measured value and calculated value of Am-243 using the JENDL-3.2 data in the center of the core (the neutron average energy is 1.44E+6)(eV), but calculated values of Am-243 using the ENDF/B-VI and JEF-2.2 data are lower by 11% and 13% than the measured value. (author)

  5. Measurement of inclusive jet cross sections in photoproduction at HERA

    Adloff, C; Andrieu, B; Anthonis, T; Astvatsatourov, A; Babaev, A; Bähr, J; Baranov, P S; Barrelet, E; Bartel, Wulfrin; Baumgartner, S; Becker, J; Beckingham, M; Beglarian, A; Behnke, O; Belousov, A; Berger, C; Berndt, T; Bizot, J C; Böhme, J; Boudry, V; Braunschweig, W; Brisson, V; Broker, H B; Brown, D P; Bruncko, Dusan; Büsser, F W; Bunyatyan, A; Burrage, A; Buschhorn, G; Bystritskaya, L; Campbell, A J; Caron, S; Cassol-Brunner, F; Chekelian, V; Clarke, D; Collard, Caroline; Contreras, J G; Coppens, Y R; Coughlan, J A; Cousinou, M C; Cox, B E; Cozzika, G; Cvach, J; Dainton, J B; Dau, W D; Daum, K; Davidsson, M; Delcourt, B; Delerue, N; Demirchyan, R A; de Roeck, A; De Wolf, E A; Diaconu, C A; Dingfelder, J; Dixon, P; Dodonov, V; Dowell, John D; Dubak, A; Duprel, C; Eckerlin, G; Eckstein, D; Efremenko, V; Egli, S; Eichler, R; Eisele, Franz; Eisenhandler, Eric F; Ellerbrock, M; Elsen, E; Erdmann, M; Erdmann, W; Faulkner, P J W; Favart, L; Fedotov, A; Felst, R; Ferencei, J; Ferron, S; Fleischer, M; Fleischmann, P; Fleming, Y H; Flucke, G; Flügge, G; Fomenko, A; Foresti, I; Formánek, J; Franke, G; Frising, G; Gabathuler, Erwin; Gabathuler, K; Garvey, J; Gassner, J; Gayler, J; Gerhards, R; Gerlich, C; Ghazaryan, S; Görlich, L; Gogitidze, N; Grab, C; Grabskii, V; Grässler, Herbert; Greenshaw, T; Grindhammer, G; Haidt, Dieter; Hajduk, L; Haller, J; Heinemann, B; Heinzelmann, G; Henderson, R C W; Hengstmann, S; Henschel, H; Henshaw, O; Heremans, R; Herrera-Corral, G; Herynek, I; Hildebrandt, M; Hilgers, M; Hiller, K H; Hladky, J; Hoting, P; Hoffmann, D; Horisberger, R P; Hovhannisyan, A V; Ibbotson, M; Issever, C; Jacquet, M; Jaffré, M; Janauschek, L; Janssen, X; Jemanov, V; Jönsson, L B; Johnson, C; Johnson, D P; Jones, M A S; Jung, H; Kant, D; Kapichine, M; Karlsson, M; Karschnick, O; Katzy, J; Keil, F; Keller, N; Kennedy, J; Kenyon, Ian Richard; Kiesling, C; Kjellberg, P; Klein, M; Kleinwort, C; Kluge, T; Knies, G; Koblitz, B; Kolya, S D; Korbel, V; Kostka, P; Koutouev, R; Koutov, A; Kroseberg, J; Krüger, K; Kuhr, T; Lamb, D; Landon, M P J; Lange, W; Lastoviicka, T; Laycock, P; Lebailly, E; Lebedev, A; Leiner, B; Lemrani, R; Lendermann, V; Levonian, S; List, B; Lobodzinska, E; Lobodzinski, B; Loginov, A; Loktionova, N A; Lubimov, V; Lüders, S; Lüke, D; Lytkin, L; Malden, N; Malinovskii, E I; Mangano, S; Marage, P; Marks, J; Marshall, R; Martyn, H U; Martyniak, J; Maxfield, S J; Meer, D; Mehta, A; Meier, K; Meyer, A B; Meyer, H; Meyer, J; Michine, S; Mikocki, S; Milstead, D; Mohrdieck, S; Mondragón, M N; Moreau, F; Morozov, A; Morris, J V; Müller, K; Murn, P; Nagovizin, V; Naroska, Beate; Naumann, J; Naumann, T; Newman, P R; Niebergall, F; Niebuhr, C B; Nix, O; Nowak, G; Nozicka, M; Olivier, B; Olsson, J E; Ozerov, D; Panassik, V; Pascaud, C; Patel, G D; Peez, M; Pérez, E; Petrukhin, A; Phillips, J P; Pitzl, D; Pöschl, R; Potachnikova, I; Povh, B; Rauschenberger, J; Reimer, P; Reisert, B; Risler, C; Rizvi, E; Robmann, P; Roosen, R; Rostovtsev, A A; Rusakov, S V; Rybicki, K; Sankey, D P C; Sauvan, E; Schatzel, S; Scheins, J; Schilling, F P; Schleper, P; Schmidt, D; Schmidt, S; Schmitt, S; Schneider, M; Schoeffel, L; Schöning, A; Schörner-Sadenius, T; Schröder, V; Schultz-Coulon, H C; Schwanenberger, C; Sedlak, K; Sefkow, F; Shevyakov, I; Shtarkov, L N; Sirois, Y; Sloan, Terence; Smirnov, P; Soloviev, Yu; South, D; Spaskov, V N; Specka, A E; Spitzer, H; Stamen, R; Stella, B; Stiewe, J; Strauch, I; Straumann, U; Chechelnitskii, S; Thompson, G; Thompson, P D; Tomasz, F; Traynor, D; Truöl, P; Tsipolitis, G; Tsurin, I; Turnau, J; Turney, J E; Tzamariudaki, E; Uraev, A; Urban, M; Usik, A; Valkár, S; Valkárová, A; Vallée, C; Van Mechelen, P; Vargas-Trevino, A; Vasilev, S; Vazdik, Ya A; Veelken, C; Vest, A; Vichnevski, A; Volchinski, V; Wacker, K; Wagner, J; Wallny, R; Waugh, B; Weber, G; Weber, R; Wegener, D; Werner, C; Werner, N; Wessels, M; Wiesand, S; Winde, M; Winter, G G; Wissing, C; Wobisch, M; Woerling, E E; Wünsch, E; Wyatt, A C; Zácek, J; Zaleisak, J; Zhang, Z; Zhokin, A; Zomer, F; Zur Nedden, M

    2003-01-01

    Inclusive jet cross sections are measured in photoproduction at HERA using the H1 detector. The data sample of e+ p -> e+ + jet + X events in the kinematic range of photon virtualities Q^2 < 1 GeV^2 and photon-proton centre-of-mass energies 95 < W_gammap < 285 GeV represents an integrated luminosity of 24.1 pb^-1. Jets are defined using the inclusive k_T algorithm. Single- and multi-differential cross sections are measured as functions of jet transverse energy E_T^jet and pseudorapidity \\eta^jet in the domain 5 < E_T^jet < 75 GeV and -1 < \\eta^jet < 2.5. The cross sections are found to be in good agreement with next-to-leading order perturbative QCD calculations corrected for fragmentation and underlying event effects. The cross section differential in E_T^jet, which varies by six orders of magnitude over the measured range, is compared with similar distributions from p pbar colliders at equal and higher energies.

  6. Cross-sectional study of health effects of cryolite production

    Friis, Henrik; Clausen, J; Gyntelberg, F

    1989-01-01

    A cross-sectional health study of 101 cryolite workers was performed, using spirometry and a questionnaire. Multiple regression analysis revealed a significant correlation between the index of smoking and a decrease in FEV1 (per cent). There was no significant correlation between work...

  7. Skin Diseases: Cross-section of human skin

    Skip Navigation Bar Home Current Issue Past Issues Skin Diseases Cross-section of human skin Past Issues / Fall 2008 Table of Contents For ... Logical Images, Inc. I n the areas of skin health and skin diseases, the NIH's National Institute ...

  8. Analytical formulas for elastic neutrino-fermion scattering cross sections

    Linder, J

    2005-01-01

    In this paper, we give a detailed and pedagogical derivation of cross sections for elastic eutrino-fermion scattering reactions. These are evaluated in the limit where the neutrino mass is neglible compared to the incoming momentum. Basic knowledge of QFT is assumed.

  9. Accurate momentum transfer cross section for the attractive Yukawa potential

    Khrapak, Sergey

    2014-01-01

    Accurate expression for the momentum transfer cross section for the attractive Yukawa potential is proposed. This simple analytic expression agrees with the numerical results better than to within 2% in the regime relevant for ion-particle collisions in complex (dusty) plasmas.

  10. Accurate momentum transfer cross section for the attractive Yukawa potential

    Khrapak, S. A.

    2014-01-01

    Accurate expression for the momentum transfer cross section for the attractive Yukawa potential is proposed. This simple analytic expression agrees with the numerical results better than to within $\\pm 2\\%$ in the regime relevant for ion-particle collisions in complex (dusty) plasmas.

  11. Photon-Photon total inelastic cross-section

    Corsetti, A; Godbole, RM; Pancheri, G.

    1997-01-01

    We discuss predictions for the total inelastic gamma-gamma cross-section and their model dependence on the input parameters. We compare results from a simple extension of the Regge Pomeron exchange model as well as predictions from the eikonalized mini-jet model with recent LEP data.

  12. C+C Fusion Cross Sections Measurements for Nuclear Astrophysics

    Total fusion cross section of carbon isotopes were obtained using the newly developed MUSIC detector. MUSIC is a highly efficient, active target-detector system designed to measure fusion excitation functions with radioactive beams. The present measurements are relevant for understanding x-ray superbursts. The results of the first MUSIC campaign as well as the astrophysical implications are presented in this work

  13. Measurement of the Inclusive Jet Cross Section in pp Collisions at $\\sqrt{s}$ = 7 TeV

    Chatrchyan, Serguei; Sirunyan, Albert M; Tumasyan, Armen; Adam, Wolfgang; Bergauer, Thomas; Dragicevic, Marko; Erö, Janos; Fabjan, Christian; Friedl, Markus; Fruehwirth, Rudolf; Ghete, Vasile Mihai; Hammer, Josef; Haensel, Stephan; Hoch, Michael; Hörmann, Natascha; Hrubec, Josef; Jeitler, Manfred; Kiesenhofer, Wolfgang; Krammer, Manfred; Liko, Dietrich; Mikulec, Ivan; Pernicka, Manfred; Rohringer, Herbert; Schöfbeck, Robert; Strauss, Josef; Taurok, Anton; Teischinger, Florian; Wagner, Philipp; Waltenberger, Wolfgang; Walzel, Gerhard; Widl, Edmund; Wulz, Claudia-Elisabeth; Mossolov, Vladimir; Shumeiko, Nikolai; Suarez Gonzalez, Juan; Bansal, Sunil; Benucci, Leonardo; De Wolf, Eddi A; Janssen, Xavier; Maes, Joris; Maes, Thomas; Mucibello, Luca; Ochesanu, Silvia; Roland, Benoit; Rougny, Romain; Selvaggi, Michele; Van Haevermaet, Hans; Van Mechelen, Pierre; Van Remortel, Nick; Blekman, Freya; Blyweert, Stijn; D'Hondt, Jorgen; Devroede, Olivier; Gonzalez Suarez, Rebeca; Kalogeropoulos, Alexis; Maes, Michael; Van Doninck, Walter; Van Mulders, Petra; Van Onsem, Gerrit Patrick; Villella, Ilaria; Charaf, Otman; Clerbaux, Barbara; De Lentdecker, Gilles; Dero, Vincent; Gay, Arnaud; Hammad, Gregory Habib; Hreus, Tomas; Marage, Pierre Edouard; Thomas, Laurent; Vander Velde, Catherine; Vanlaer, Pascal; Adler, Volker; Cimmino, Anna; Costantini, Silvia; Grunewald, Martin; Klein, Benjamin; Lellouch, Jérémie; Marinov, Andrey; Mccartin, Joseph; Ryckbosch, Dirk; Thyssen, Filip; Tytgat, Michael; Vanelderen, Lukas; Verwilligen, Piet; Walsh, Sinead; Zaganidis, Nicolas; Basegmez, Suzan; Bruno, Giacomo; Caudron, Julien; Ceard, Ludivine; Cortina Gil, Eduardo; De Favereau De Jeneret, Jerome; Delaere, Christophe; Favart, Denis; Giammanco, Andrea; Grégoire, Ghislain; Hollar, Jonathan; Lemaitre, Vincent; Liao, Junhui; Militaru, Otilia; Ovyn, Severine; Pagano, Davide; Pin, Arnaud; Piotrzkowski, Krzysztof; Schul, Nicolas; Beliy, Nikita; Caebergs, Thierry; Daubie, Evelyne; Alves, Gilvan; De Jesus Damiao, Dilson; Pol, Maria Elena; Henrique Gomes E Souza, Moacyr; Carvalho, Wagner; Da Costa, Eliza Melo; De Oliveira Martins, Carley; Fonseca De Souza, Sandro; Mundim, Luiz; Nogima, Helio; Oguri, Vitor; Prado Da Silva, Wanda Lucia; Santoro, Alberto; Silva Do Amaral, Sheila Mara; Sznajder, Andre; Bernardes, Cesar Augusto; De Almeida Dias, Flavia; Tomei, Thiago; De Moraes Gregores, Eduardo; Lagana, Caio; Da Cunha Marinho, Franciole; Mercadante, Pedro G; Novaes, Sergio F; Padula, Sandra; Darmenov, Nikolay; Dimitrov, Lubomir; Genchev, Vladimir; Iaydjiev, Plamen; Piperov, Stefan; Rodozov, Mircho; Stoykova, Stefka; Sultanov, Georgi; Tcholakov, Vanio; Trayanov, Rumen; Vankov, Ivan; Dimitrov, Anton; Hadjiiska, Roumyana; Karadzhinova, Aneliya; Kozhuharov, Venelin; Litov, Leander; Mateev, Matey; Pavlov, Borislav; Petkov, Peicho; Bian, Jian-Guo; Chen, Guo-Ming; Chen, He-Sheng; Jiang, Chun-Hua; Liang, Dong; Liang, Song; Meng, Xiangwei; Tao, Junquan; Wang, Jian; Wang, Jian; Wang, Xianyou; Wang, Zheng; Xiao, Hong; Xu, Ming; Zang, Jingjing; Zhang, Zhen; Ban, Yong; Guo, Shuang; Guo, Yifei; Li, Wenbo; Mao, Yajun; Qian, Si-Jin; Teng, Haiyun; Zhang, Linlin; Zhu, Bo; Zou, Wei; Cabrera, Andrés; Gomez Moreno, Bernardo; Ocampo Rios, Alberto Andres; Osorio Oliveros, Andres Felipe; Sanabria, Juan Carlos; Godinovic, Nikola; Lelas, Damir; Lelas, Karlo; Plestina, Roko; Polic, Dunja; Puljak, Ivica; Antunovic, Zeljko; Dzelalija, Mile; Brigljevic, Vuko; Duric, Senka; Kadija, Kreso; Morovic, Srecko; Attikis, Alexandros; Galanti, Mario; Mousa, Jehad; Nicolaou, Charalambos; Ptochos, Fotios; Razis, Panos A; Finger, Miroslav; Finger Jr, Michael; Assran, Yasser; Khalil, Shaaban; Mahmoud, Mohammed; Hektor, Andi; Kadastik, Mario; Müntel, Mait; Raidal, Martti; Rebane, Liis; Azzolini, Virginia; Eerola, Paula; Fedi, Giacomo; Czellar, Sandor; Härkönen, Jaakko; Heikkinen, Mika Aatos; Karimäki, Veikko; Kinnunen, Ritva; Kortelainen, Matti J; Lampén, Tapio; Lassila-Perini, Kati; Lehti, Sami; Lindén, Tomas; Luukka, Panja-Riina; Mäenpää, Teppo; Tuominen, Eija; Tuominiemi, Jorma; Tuovinen, Esa; Ungaro, Donatella; Wendland, Lauri; Banzuzi, Kukka; Korpela, Arja; Tuuva, Tuure; Sillou, Daniel; Besancon, Marc; Choudhury, Somnath; Dejardin, Marc; Denegri, Daniel; Fabbro, Bernard; Faure, Jean-Louis; Ferri, Federico; Ganjour, Serguei; Gentit, François-Xavier; Givernaud, Alain; Gras, Philippe; Hamel de Monchenault, Gautier; Jarry, Patrick; Locci, Elizabeth; Malcles, Julie; Marionneau, Matthieu; Millischer, Laurent; Rander, John; Rosowsky, André; Shreyber, Irina; Titov, Maksym; Verrecchia, Patrice; Baffioni, Stephanie; Beaudette, Florian; Benhabib, Lamia; Bianchini, Lorenzo; Bluj, Michal; Broutin, Clementine; Busson, Philippe; Charlot, Claude; Dahms, Torsten; Dobrzynski, Ludwik; Elgammal, Sherif; Granier de Cassagnac, Raphael; Haguenauer, Maurice; Miné, Philippe; Mironov, Camelia; Ochando, Christophe; Paganini, Pascal; Sabes, David; Salerno, Roberto; Sirois, Yves; Thiebaux, Christophe; Wyslouch, Bolek; Zabi, Alexandre; Agram, Jean-Laurent; Andrea, Jeremy; Bloch, Daniel; Bodin, David; Brom, Jean-Marie; Cardaci, Marco; Chabert, Eric Christian; Collard, Caroline; Conte, Eric; Drouhin, Frédéric; Ferro, Cristina; Fontaine, Jean-Charles; Gelé, Denis; Goerlach, Ulrich; Greder, Sebastien; Juillot, Pierre; Karim, Mehdi; Le Bihan, Anne-Catherine; Mikami, Yoshinari; Van Hove, Pierre; Fassi, Farida; Mercier, Damien; Baty, Clement; Beauceron, Stephanie; Beaupere, Nicolas; Bedjidian, Marc; Bondu, Olivier; Boudoul, Gaelle; Boumediene, Djamel; Brun, Hugues; Chasserat, Julien; Chierici, Roberto; Contardo, Didier; Depasse, Pierre; El Mamouni, Houmani; Fay, Jean; Gascon, Susan; Ille, Bernard; Kurca, Tibor; Le Grand, Thomas; Lethuillier, Morgan; Mirabito, Laurent; Perries, Stephane; Sordini, Viola; Tosi, Silvano; Tschudi, Yohann; Verdier, Patrice; Lomidze, David; Anagnostou, Georgios; Edelhoff, Matthias; Feld, Lutz; Heracleous, Natalie; Hindrichs, Otto; Jussen, Ruediger; Klein, Katja; Merz, Jennifer; Mohr, Niklas; Ostapchuk, Andrey; Perieanu, Adrian; Raupach, Frank; Sammet, Jan; Schael, Stefan; Sprenger, Daniel; Weber, Hendrik; Weber, Martin; Wittmer, Bruno; Ata, Metin; Bender, Walter; Dietz-Laursonn, Erik; Erdmann, Martin; Frangenheim, Jens; Hebbeker, Thomas; Hinzmann, Andreas; Hoepfner, Kerstin; Klimkovich, Tatsiana; Klingebiel, Dennis; Kreuzer, Peter; Lanske, Dankfried; Magass, Carsten; Merschmeyer, Markus; Meyer, Arnd; Papacz, Paul; Pieta, Holger; Reithler, Hans; Schmitz, Stefan Antonius; Sonnenschein, Lars; Steggemann, Jan; Teyssier, Daniel; Bontenackels, Michael; Davids, Martina; Duda, Markus; Flügge, Günter; Geenen, Heiko; Giffels, Manuel; Haj Ahmad, Wael; Heydhausen, Dirk; Kress, Thomas; Kuessel, Yvonne; Linn, Alexander; Nowack, Andreas; Perchalla, Lars; Pooth, Oliver; Rennefeld, Jörg; Sauerland, Philip; Stahl, Achim; Thomas, Maarten; Tornier, Daiske; Zoeller, Marc Henning; Aldaya Martin, Maria; Behrenhoff, Wolf; Behrens, Ulf; Bergholz, Matthias; Bethani, Agni; Borras, Kerstin; Cakir, Altan; Campbell, Alan; Castro, Elena; Dammann, Dirk; Eckerlin, Guenter; Eckstein, Doris; Flossdorf, Alexander; Flucke, Gero; Geiser, Achim; Hauk, Johannes; Jung, Hannes; Kasemann, Matthias; Katkov, Igor; Katsas, Panagiotis; Kleinwort, Claus; Kluge, Hannelies; Knutsson, Albert; Krämer, Mira; Krücker, Dirk; Kuznetsova, Ekaterina; Lange, Wolfgang; Lohmann, Wolfgang; Mankel, Rainer; Marienfeld, Markus; Melzer-Pellmann, Isabell-Alissandra; Meyer, Andreas Bernhard; Mnich, Joachim; Mussgiller, Andreas; Olzem, Jan; Pitzl, Daniel; Raspereza, Alexei; Raval, Amita; Rosin, Michele; Schmidt, Ringo; Schoerner-Sadenius, Thomas; Sen, Niladri; Spiridonov, Alexander; Stein, Matthias; Tomaszewska, Justyna; Walsh, Roberval; Wissing, Christoph; Autermann, Christian; Blobel, Volker; Bobrovskyi, Sergei; Draeger, Jula; Enderle, Holger; Gebbert, Ulla; Kaschube, Kolja; Kaussen, Gordon; Klanner, Robert; Lange, Jörn; Mura, Benedikt; Naumann-Emme, Sebastian; Nowak, Friederike; Pietsch, Niklas; Sander, Christian; Schettler, Hannes; Schleper, Peter; Schröder, Matthias; Schum, Torben; Schwandt, Joern; Stadie, Hartmut; Steinbrück, Georg; Thomsen, Jan; Barth, Christian; Bauer, Julia; Buege, Volker; Chwalek, Thorsten; De Boer, Wim; Dierlamm, Alexander; Dirkes, Guido; Feindt, Michael; Gruschke, Jasmin; Hackstein, Christoph; Hartmann, Frank; Heinrich, Michael; Held, Hauke; Hoffmann, Karl-Heinz; Honc, Simon; Komaragiri, Jyothsna Rani; Kuhr, Thomas; Martschei, Daniel; Mueller, Steffen; Müller, Thomas; Niegel, Martin; Oberst, Oliver; Oehler, Andreas; Ott, Jochen; Peiffer, Thomas; Quast, Gunter; Rabbertz, Klaus; Ratnikov, Fedor; Ratnikova, Natalia; Renz, Manuel; Saout, Christophe; Scheurer, Armin; Schieferdecker, Philipp; Schilling, Frank-Peter; Schott, Gregory; Simonis, Hans-Jürgen; Stober, Fred-Markus Helmut; Troendle, Daniel; Wagner-Kuhr, Jeannine; Weiler, Thomas; Zeise, Manuel; Zhukov, Valery; Ziebarth, Eva Barbara; Daskalakis, Georgios; Geralis, Theodoros; Kesisoglou, Stilianos; Kyriakis, Aristotelis; Loukas, Demetrios; Manolakos, Ioannis; Markou, Athanasios; Markou, Christos; Mavrommatis, Charalampos; Ntomari, Eleni; Petrakou, Eleni; Gouskos, Loukas; Mertzimekis, Theodoros; Panagiotou, Apostolos; Stiliaris, Efstathios; Evangelou, Ioannis; Foudas, Costas; Kokkas, Panagiotis; Manthos, Nikolaos; Papadopoulos, Ioannis; Patras, Vaios; Triantis, Frixos A; Aranyi, Attila; Bencze, Gyorgy; Boldizsar, Laszlo; Hajdu, Csaba; Hidas, Pàl; Horvath, Dezso; Kapusi, Anita; Krajczar, Krisztian; Sikler, Ferenc; Veres, Gabor Istvan; Vesztergombi, Gyorgy; Beni, Noemi; Molnar, Jozsef; Palinkas, Jozsef; Szillasi, Zoltan; Veszpremi, Viktor; Raics, Peter; Trocsanyi, Zoltan Laszlo; Ujvari, Balazs; Beri, Suman Bala; Bhatnagar, Vipin; Dhingra, Nitish; Gupta, Ruchi; Jindal, Monika; Kaur, Manjit; Kohli, Jatinder Mohan; Mehta, Manuk Zubin; Nishu, Nishu; Saini, Lovedeep Kaur; Sharma, Archana; Singh, Anil; Singh, Jasbir; Singh, Supreet Pal; Ahuja, Sudha; Bhattacharya, Satyaki; Choudhary, Brajesh C; Gomber, Bhawna; Gupta, Pooja; Jain, Sandhya; Jain, Shilpi; Khurana, Raman; Kumar, Ashok; Naimuddin, Md; Ranjan, Kirti; Shivpuri, Ram Krishen; Choudhury, Rajani Kant; Dutta, Dipanwita; Kailas, Swaminathan; Kumar, Vineet; Mehta, Pourus; Mohanty, Ajit Kumar; Pant, Lalit Mohan; Shukla, Prashant; Aziz, Tariq; Guchait, Monoranjan; Gurtu, Atul; Maity, Manas; Majumder, Devdatta; Majumder, Gobinda; Mazumdar, Kajari; Mohanty, Gagan Bihari; Saha, Anirban; Sudhakar, Katta; Wickramage, Nadeesha; Banerjee, Sudeshna; Dugad, Shashikant; Mondal, Naba Kumar; Arfaei, Hessamaddin; Bakhshiansohi, Hamed; Etesami, Seyed Mohsen; Fahim, Ali; Hashemi, Majid; Jafari, Abideh; Khakzad, Mohsen; Mohammadi, Abdollah; Mohammadi Najafabadi, Mojtaba; Paktinat Mehdiabadi, Saeid; Safarzadeh, Batool; Zeinali, Maryam; Abbrescia, Marcello; Barbone, Lucia; Calabria, Cesare; Colaleo, Anna; Creanza, Donato; De Filippis, Nicola; De Palma, Mauro; Fiore, Luigi; Iaselli, Giuseppe; Lusito, Letizia; Maggi, Giorgio; Maggi, Marcello; Manna, Norman; Marangelli, Bartolomeo; My, Salvatore; Nuzzo, Salvatore; Pacifico, Nicola; Pierro, Giuseppe Antonio; Pompili, Alexis; Pugliese, Gabriella; Romano, Francesco; Roselli, Giuseppe; Selvaggi, Giovanna; Silvestris, Lucia; Trentadue, Raffaello; Tupputi, Salvatore; Zito, Giuseppe; Abbiendi, Giovanni; Benvenuti, Alberto; Bonacorsi, Daniele; Braibant-Giacomelli, Sylvie; Brigliadori, Luca; Capiluppi, Paolo; Castro, Andrea; Cavallo, Francesca Romana; Cuffiani, Marco; Dallavalle, Gaetano-Marco; Fabbri, Fabrizio; Fanfani, Alessandra; Fasanella, Daniele; Giacomelli, Paolo; Giunta, Marina; Grandi, Claudio; Marcellini, Stefano; Masetti, Gianni; Meneghelli, Marco; Montanari, Alessandro; Navarria, Francesco; Odorici, Fabrizio; Perrotta, Andrea; Primavera, Federica; Rossi, Antonio; Rovelli, Tiziano; Siroli, Gianni; Travaglini, Riccardo; Albergo, Sebastiano; Cappello, Gigi; Chiorboli, Massimiliano; Costa, Salvatore; Tricomi, Alessia; Tuve, Cristina; Barbagli, Giuseppe; Ciulli, Vitaliano; Civinini, Carlo; D'Alessandro, Raffaello; Focardi, Ettore; Frosali, Simone; Gallo, Elisabetta; Gonzi, Sandro; Lenzi, Piergiulio; Meschini, Marco; Paoletti, Simone; Sguazzoni, Giacomo; Tropiano, Antonio; Benussi, Luigi; Bianco, Stefano; Colafranceschi, Stefano; Fabbri, Franco; Piccolo, Davide; Fabbricatore, Pasquale; Musenich, Riccardo; Benaglia, Andrea; De Guio, Federico; Di Matteo, Leonardo; Gennai, Simone; Ghezzi, Alessio; Malvezzi, Sandra; Martelli, Arabella; Massironi, Andrea; Menasce, Dario; Moroni, Luigi; Paganoni, Marco; Pedrini, Daniele; Ragazzi, Stefano; Redaelli, Nicola; Sala, Silvano; Tabarelli de Fatis, Tommaso; Buontempo, Salvatore; Carrillo Montoya, Camilo Andres; Cavallo, Nicola; De Cosa, Annapaola; Fabozzi, Francesco; Iorio, Alberto Orso Maria; Lista, Luca; Merola, Mario; Paolucci, Pierluigi; Azzi, Patrizia; Bacchetta, Nicola; Bellan, Paolo; Bisello, Dario; Branca, Antonio; Carlin, Roberto; Checchia, Paolo; De Mattia, Marco; Dorigo, Tommaso; Dosselli, Umberto; Fanzago, Federica; Gasparini, Fabrizio; Gasparini, Ugo; Gozzelino, Andrea; Lacaprara, Stefano; Lazzizzera, Ignazio; Margoni, Martino; Mazzucato, Mirco; Meneguzzo, Anna Teresa; Nespolo, Massimo; Perrozzi, Luca; Pozzobon, Nicola; Ronchese, Paolo; Simonetto, Franco; Torassa, Ezio; Tosi, Mia; Vanini, Sara; Zotto, Pierluigi; Zumerle, Gianni; Baesso, Paolo; Berzano, Umberto; Ratti, Sergio P; Riccardi, Cristina; Torre, Paola; Vitulo, Paolo; Viviani, Claudio; Biasini, Maurizio; Bilei, Gian Mario; Caponeri, Benedetta; Fanò, Livio; Lariccia, Paolo; Lucaroni, Andrea; Mantovani, Giancarlo; Menichelli, Mauro; Nappi, Aniello; Romeo, Francesco; Santocchia, Attilio; Taroni, Silvia; Valdata, Marisa; Azzurri, Paolo; Bagliesi, Giuseppe; Bernardini, Jacopo; Boccali, Tommaso; Broccolo, Giuseppe; Castaldi, Rino; D'Agnolo, Raffaele Tito; Dell'Orso, Roberto; Fiori, Francesco; Foà, Lorenzo; Giassi, Alessandro; Kraan, Aafke; Ligabue, Franco; Lomtadze, Teimuraz; Martini, Luca; Messineo, Alberto; Palla, Fabrizio; Segneri, Gabriele; Serban, Alin Titus; Spagnolo, Paolo; Tenchini, Roberto; Tonelli, Guido; Venturi, Andrea; Verdini, Piero Giorgio; Barone, Luciano; Cavallari, Francesca; Del Re, Daniele; Di Marco, Emanuele; Diemoz, Marcella; Franci, Daniele; Grassi, Marco; Longo, Egidio; Nourbakhsh, Shervin; Organtini, Giovanni; Pandolfi, Francesco; Paramatti, Riccardo; Rahatlou, Shahram; Rovelli, Chiara; Amapane, Nicola; Arcidiacono, Roberta; Argiro, Stefano; Arneodo, Michele; Biino, Cristina; Botta, Cristina; Cartiglia, Nicolo; Castello, Roberto; Costa, Marco; Demaria, Natale; Graziano, Alberto; Mariotti, Chiara; Marone, Matteo; Maselli, Silvia; Migliore, Ernesto; Mila, Giorgia; Monaco, Vincenzo; Musich, Marco; Obertino, Maria Margherita; Pastrone, Nadia; Pelliccioni, Mario; Romero, Alessandra; Ruspa, Marta; Sacchi, Roberto; Sola, Valentina; Solano, Ada; Staiano, Amedeo; Vilela Pereira, Antonio; Belforte, Stefano; Cossutti, Fabio; Della Ricca, Giuseppe; Gobbo, Benigno; Montanino, Damiana; Penzo, Aldo; Heo, Seong Gu; Nam, Soon-Kwon; Chang, Sunghyun; Chung, Jin Hyuk; Kim, Dong Hee; Kim, Gui Nyun; Kim, Ji Eun; Kong, Dae Jung; Park, Hyangkyu; Ro, Sang-Ryul; Son, Dohhee; Son, Dong-Chul; Son, Taejin; Kim, Jaeho; Kim, Jae Yool; Song, Sanghyeon; Choi, Suyong; Hong, Byung-Sik; Jeong, Min-Soo; Jo, Mihee; Kim, Hyunchul; Kim, Ji Hyun; Kim, Tae Jeong; Lee, Kyong Sei; Moon, Dong Ho; Park, Sung Keun; Rhee, Han-Bum; Seo, Eunsung; Shin, Seungsu; Sim, Kwang Souk; Choi, Minkyoo; Kang, Seokon; Kim, Hyunyong; Park, Chawon; Park, Inkyu; Park, Sangnam; Ryu, Geonmo; Choi, Young-Il; Choi, Young Kyu; Goh, Junghwan; Kim, Min Suk; Kwon, Eunhyang; Lee, Jongseok; Lee, Sungeun; Seo, Hyunkwan; Yu, Intae; Bilinskas, Mykolas Jurgis; Grigelionis, Ignas; Janulis, Mindaugas; Martisiute, Dalia; Petrov, Pavel; Sabonis, Tomas; Castilla-Valdez, Heriberto; De La Cruz-Burelo, Eduard; Heredia-de La Cruz, Ivan; Lopez-Fernandez, Ricardo; Magaña Villalba, Ricardo; Sánchez-Hernández, Alberto; Villasenor-Cendejas, Luis Manuel; Carrillo Moreno, Salvador; Vazquez Valencia, Fabiola; Salazar Ibarguen, Humberto Antonio; Casimiro Linares, Edgar; Morelos Pineda, Antonio; Reyes-Santos, Marco A; Krofcheck, David; Tam, Jason; Yiu, Chun Hin; Butler, Philip H; Doesburg, Robert; Silverwood, Hamish; Ahmad, Muhammad; Ahmed, Ijaz; Asghar, Muhammad Irfan; Hoorani, Hafeez R; Khan, Wajid Ali; Khurshid, Taimoor; Qazi, Shamona; Brona, Grzegorz; Cwiok, Mikolaj; Dominik, Wojciech; Doroba, Krzysztof; Kalinowski, Artur; Konecki, Marcin; Krolikowski, Jan; Frueboes, Tomasz; Gokieli, Ryszard; Górski, Maciej; Kazana, Malgorzata; Nawrocki, Krzysztof; Romanowska-Rybinska, Katarzyna; Szleper, Michal; Wrochna, Grzegorz; Zalewski, Piotr; Almeida, Nuno; Bargassa, Pedrame; David Tinoco Mendes, Andre; Faccioli, Pietro; Ferreira Parracho, Pedro Guilherme; Gallinaro, Michele; Musella, Pasquale; Nayak, Aruna; Ribeiro, Pedro Quinaz; Seixas, Joao; Varela, Joao; Belotelov, Ivan; Bunin, Pavel; Golutvin, Igor; Kamenev, Alexey; Karjavin, Vladimir; Konoplyanikov, Viktor; Kozlov, Guennady; Lanev, Alexander; Moisenz, Petr; Palichik, Vladimir; Perelygin, Victor; Shmatov, Sergey; Smirnov, Vitaly; Volodko, Anton; Zarubin, Anatoli; Golovtsov, Victor; Ivanov, Yury; Kim, Victor; Levchenko, Petr; Murzin, Victor; Oreshkin, Vadim; Smirnov, Igor; Sulimov, Valentin; Uvarov, Lev; Vavilov, Sergey; Vorobyev, Alexey; Vorobyev, Andrey; Andreev, Yuri; Dermenev, Alexander; Gninenko, Sergei; Golubev, Nikolai; Kirsanov, Mikhail; Krasnikov, Nikolai; Matveev, Viktor; Pashenkov, Anatoli; Toropin, Alexander; Troitsky, Sergey; Epshteyn, Vladimir; Gavrilov, Vladimir; Kaftanov, Vitali; Kossov, Mikhail; Krokhotin, Andrey; Lychkovskaya, Natalia; Popov, Vladimir; Safronov, Grigory; Semenov, Sergey; Stolin, Viatcheslav; Vlasov, Evgueni; Zhokin, Alexander; Boos, Edouard; Dubinin, Mikhail; Dudko, Lev; Ershov, Alexander; Gribushin, Andrey; Kodolova, Olga; Lokhtin, Igor; Markina, Anastasia; Obraztsov, Stepan; Perfilov, Maxim; Petrushanko, Sergey; Sarycheva, Ludmila; Savrin, Viktor; Snigirev, Alexander; Andreev, Vladimir; Azarkin, Maksim; Dremin, Igor; Kirakosyan, Martin; Leonidov, Andrey; Rusakov, Sergey V; Vinogradov, Alexey; Azhgirey, Igor; Bitioukov, Sergei; Grishin, Viatcheslav; Kachanov, Vassili; Konstantinov, Dmitri; Korablev, Andrey; Krychkine, Victor; Petrov, Vladimir; Ryutin, Roman; Slabospitsky, Sergey; Sobol, Andrei; Tourtchanovitch, Leonid; Troshin, Sergey; Tyurin, Nikolay; Uzunian, Andrey; Volkov, Alexey; Adzic, Petar; Djordjevic, Milos; Krpic, Dragomir; Milosevic, Jovan; Aguilar-Benitez, Manuel; Alcaraz Maestre, Juan; Arce, Pedro; Battilana, Carlo; Calvo, Enrique; Cepeda, Maria; Cerrada, Marcos; Chamizo Llatas, Maria; Colino, Nicanor; De La Cruz, Begona; Delgado Peris, Antonio; Diez Pardos, Carmen; Domínguez Vázquez, Daniel; Fernandez Bedoya, Cristina; Fernández Ramos, Juan Pablo; Ferrando, Antonio; Flix, Jose; Fouz, Maria Cruz; Garcia-Abia, Pablo; Gonzalez Lopez, Oscar; Goy Lopez, Silvia; Hernandez, Jose M; Josa, Maria Isabel; Merino, Gonzalo; Puerta Pelayo, Jesus; Redondo, Ignacio; Romero, Luciano; Santaolalla, Javier; Soares, Mara Senghi; Willmott, Carlos; Albajar, Carmen; Codispoti, Giuseppe; de Trocóniz, Jorge F; Cuevas, Javier; Fernandez Menendez, Javier; Folgueras, Santiago; Gonzalez Caballero, Isidro; Lloret Iglesias, Lara; Vizan Garcia, Jesus Manuel; Brochero Cifuentes, Javier Andres; Cabrillo, Iban Jose; Calderon, Alicia; Chuang, Shan-Huei; Duarte Campderros, Jordi; Felcini, Marta; Fernandez, Marcos; Gomez, Gervasio; Gonzalez Sanchez, Javier; Jorda, Clara; Lobelle Pardo, Patricia; Lopez Virto, Amparo; Marco, Jesus; Marco, Rafael; Martinez Rivero, Celso; Matorras, Francisco; Munoz Sanchez, Francisca Javiela; Piedra Gomez, Jonatan; Rodrigo, Teresa; Rodríguez-Marrero, Ana Yaiza; Ruiz-Jimeno, Alberto; Scodellaro, Luca; Sobron Sanudo, Mar; Vila, Ivan; Vilar Cortabitarte, Rocio; Abbaneo, Duccio; Auffray, Etiennette; Auzinger, Georg; Baillon, Paul; Ball, Austin; Barney, David; Bell, Alan James; Benedetti, Daniele; Bernet, Colin; Bialas, Wojciech; Bloch, Philippe; Bocci, Andrea; Bolognesi, Sara; Bona, Marcella; Breuker, Horst; Bunkowski, Karol; Camporesi, Tiziano; Cerminara, Gianluca; Coarasa Perez, Jose Antonio; Curé, Benoît; D'Enterria, David; De Roeck, Albert; Di Guida, Salvatore; Dupont-Sagorin, Niels; Elliott-Peisert, Anna; Frisch, Benjamin; Funk, Wolfgang; Gaddi, Andrea; Georgiou, Georgios; Gerwig, Hubert; Gigi, Dominique; Gill, Karl; Giordano, Domenico; Glege, Frank; Gomez-Reino Garrido, Robert; Gouzevitch, Maxime; Govoni, Pietro; Gowdy, Stephen; Guiducci, Luigi; Hansen, Magnus; Hartl, Christian; Harvey, John; Hegeman, Jeroen; Hegner, Benedikt; Hoffmann, Hans Falk; Honma, Alan; Innocente, Vincenzo; Janot, Patrick; Kaadze, Ketino; Karavakis, Edward; Lecoq, Paul; Lourenco, Carlos; Maki, Tuula; Malberti, Martina; Malgeri, Luca; Mannelli, Marcello; Masetti, Lorenzo; Maurisset, Aurelie; Meijers, Frans; Mersi, Stefano; Meschi, Emilio; Moser, Roland; Mozer, Matthias Ulrich; Mulders, Martijn; Nesvold, Erik; Nguyen, Matthew; Orimoto, Toyoko; Orsini, Luciano; Perez, Emmanuelle; Petrilli, Achille; Pfeiffer, Andreas; Pierini, Maurizio; Pimiä, Martti; Piparo, Danilo; Polese, Giovanni; Racz, Attila; Rodrigues Antunes, Joao; Rolandi, Gigi; Rommerskirchen, Tanja; Rovere, Marco; Sakulin, Hannes; Schäfer, Christoph; Schwick, Christoph; Segoni, Ilaria; Sharma, Archana; Siegrist, Patrice; Simon, Michal; Sphicas, Paraskevas; Spiropulu, Maria; Stoye, Markus; Tadel, Matevz; Tropea, Paola; Tsirou, Andromachi; Vichoudis, Paschalis; Voutilainen, Mikko; Zeuner, Wolfram Dietrich; Bertl, Willi; Deiters, Konrad; Erdmann, Wolfram; Gabathuler, Kurt; Horisberger, Roland; Ingram, Quentin; Kaestli, Hans-Christian; König, Stefan; Kotlinski, Danek; Langenegger, Urs; Meier, Frank; Renker, Dieter; Rohe, Tilman; Sibille, Jennifer; Starodumov, Andrei; Bortignon, Pierluigi; Caminada, Lea; Chanon, Nicolas; Chen, Zhiling; Cittolin, Sergio; Dissertori, Günther; Dittmar, Michael; Eugster, Jürg; Freudenreich, Klaus; Grab, Christoph; Hervé, Alain; Hintz, Wieland; Lecomte, Pierre; Lustermann, Werner; Marchica, Carmelo; Martinez Ruiz del Arbol, Pablo; Meridiani, Paolo; Milenovic, Predrag; Moortgat, Filip; Nägeli, Christoph; Nef, Pascal; Nessi-Tedaldi, Francesca; Pape, Luc; Pauss, Felicitas; Punz, Thomas; Rizzi, Andrea; Ronga, Frederic Jean; Rossini, Marco; Sala, Leonardo; Sanchez, Ann - Karin; Sawley, Marie-Christine; Stieger, Benjamin; Tauscher, Ludwig; Thea, Alessandro; Theofilatos, Konstantinos; Treille, Daniel; Urscheler, Christina; Wallny, Rainer; Weber, Matthias; Wehrli, Lukas; Weng, Joanna; Aguilo, Ernest; Amsler, Claude; Chiochia, Vincenzo; De Visscher, Simon; Favaro, Carlotta; Ivova Rikova, Mirena; Millan Mejias, Barbara; Otiougova, Polina; Regenfus, Christian; Robmann, Peter; Schmidt, Alexander; Snoek, Hella; Chang, Yuan-Hann; Chen, Kuan-Hsin; Dutta, Suchandra; Kuo, Chia-Ming; Li, Syue-Wei; Lin, Willis; Liu, Zong-Kai; Lu, Yun-Ju; Mekterovic, Darko; Volpe, Roberta; Wu, Jing-Han; Yu, Shin-Shan; Bartalini, Paolo; Chang, Paoti; Chang, You-Hao; Chang, Yu-Wei; Chao, Yuan; Chen, Kai-Feng; Hou, George Wei-Shu; Hsiung, Yee; Kao, Kai-Yi; Lei, Yeong-Jyi; Lu, Rong-Shyang; Shiu, Jing-Ge; Tzeng, Yeng-Ming; Wang, Minzu; Adiguzel, Aytul; Bakirci, Mustafa Numan; Cerci, Salim; Dozen, Candan; Dumanoglu, Isa; Eskut, Eda; Girgis, Semiray; Gokbulut, Gul; Hos, Ilknur; Kangal, Evrim Ersin; Kayis Topaksu, Aysel; Onengut, Gulsen; Ozdemir, Kadri; Ozturk, Sertac; Polatoz, Ayse; Sogut, Kenan; Sunar Cerci, Deniz; Tali, Bayram; Topakli, Huseyin; Uzun, Dilber; Vergili, Latife Nukhet; Vergili, Mehmet; Yilmaz, Sedat; Akin, Ilina Vasileva; Aliev, Takhmasib; Bilmis, Selcuk; Deniz, Muhammed; Gamsizkan, Halil; Guler, Ali Murat; Ocalan, Kadir; Ozpineci, Altug; Serin, Meltem; Sever, Ramazan; Surat, Ugur Emrah; Yildirim, Eda; Zeyrek, Mehmet; Deliomeroglu, Mehmet; Demir, Durmus; Gülmez, Erhan; Isildak, Bora; Kaya, Mithat; Kaya, Ozlem; Ozkorucuklu, Suat; Sonmez, Nasuf; Levchuk, Leonid; Bostock, Francis; Brooke, James John; Cheng, Teh Lee; Clement, Emyr; Cussans, David; Frazier, Robert; Goldstein, Joel; Grimes, Mark; Hansen, Maria; Hartley, Dominic; Heath, Greg P; Heath, Helen F; Kreczko, Lukasz; Metson, Simon; Newbold, Dave M; Nirunpong, Kachanon; Poll, Anthony; Senkin, Sergey; Smith, Vincent J; Ward, Simon; Basso, Lorenzo; Bell, Ken W; Belyaev, Alexander; Brew, Christopher; Brown, Robert M; Camanzi, Barbara; Cockerill, David JA; Coughlan, John A; Harder, Kristian; Harper, Sam; Jackson, James; Kennedy, Bruce W; Olaiya, Emmanuel; Petyt, David; Radburn-Smith, Benjamin Charles; Shepherd-Themistocleous, Claire; Tomalin, Ian R; Womersley, William John; Worm, Steven; Bainbridge, Robert; Ball, Gordon; Ballin, Jamie; Beuselinck, Raymond; Buchmuller, Oliver; Colling, David; Cripps, Nicholas; Cutajar, Michael; Davies, Gavin; Della Negra, Michel; Ferguson, William; Fulcher, Jonathan; Futyan, David; Gilbert, Andrew; Guneratne Bryer, Arlo; Hall, Geoffrey; Hatherell, Zoe; Hays, Jonathan; Iles, Gregory; Jarvis, Martyn; Karapostoli, Georgia; Lyons, Louis; MacEvoy, Barry C; Magnan, Anne-Marie; Marrouche, Jad; Mathias, Bryn; Nandi, Robin; Nash, Jordan; Nikitenko, Alexander; Papageorgiou, Anastasios; Pesaresi, Mark; Petridis, Konstantinos; Pioppi, Michele; Raymond, David Mark; Rogerson, Samuel; Rompotis, Nikolaos; Rose, Andrew; Ryan, Matthew John; Seez, Christopher; Sharp, Peter; Sparrow, Alex; Tapper, Alexander; Tourneur, Stephane; Vazquez Acosta, Monica; Virdee, Tejinder; Wakefield, Stuart; Wardle, Nicholas; Wardrope, David; Whyntie, Tom; Barrett, Matthew; Chadwick, Matthew; Cole, Joanne; Hobson, Peter R; Khan, Akram; Kyberd, Paul; Leslie, Dawn; Martin, William; Reid, Ivan; Teodorescu, Liliana; Hatakeyama, Kenichi; Liu, Hongxuan; Bose, Tulika; Carrera Jarrin, Edgar; Fantasia, Cory; Heister, Arno; St John, Jason; Lawson, Philip; Lazic, Dragoslav; Rohlf, James; Sperka, David; Sulak, Lawrence; Avetisyan, Aram; Bhattacharya, Saptaparna; Chou, John Paul; Cutts, David; Ferapontov, Alexey; Heintz, Ulrich; Jabeen, Shabnam; Kukartsev, Gennadiy; Landsberg, Greg; Luk, Michael; Narain, Meenakshi; Nguyen, Duong; Segala, Michael; Sinthuprasith, Tutanon; Speer, Thomas; Tsang, Ka Vang; Breedon, Richard; Calderon De La Barca Sanchez, Manuel; Chauhan, Sushil; Chertok, Maxwell; Conway, John; Cox, Peter Timothy; Dolen, James; Erbacher, Robin; Friis, Evan; Ko, Winston; Kopecky, Alexandra; Lander, Richard; Liu, Haidong; Maruyama, Sho; Miceli, Tia; Nikolic, Milan; Pellett, Dave; Robles, Jorge; Salur, Sevil; Schwarz, Thomas; Searle, Matthew; Smith, John; Squires, Michael; Tripathi, Mani; Vasquez Sierra, Ricardo; Veelken, Christian; Andreev, Valeri; Arisaka, Katsushi; Cline, David; Cousins, Robert; Deisher, Amanda; Duris, Joseph; Erhan, Samim; Farrell, Chris; Hauser, Jay; Ignatenko, Mikhail; Jarvis, Chad; Plager, Charles; Rakness, Gregory; Schlein, Peter; Tucker, Jordan; Valuev, Vyacheslav; Babb, John; Chandra, Avdhesh; Clare, Robert; Ellison, John Anthony; Gary, J William; Giordano, Ferdinando; Hanson, Gail; Jeng, Geng-Yuan; Kao, Shih-Chuan; Liu, Feng; Liu, Hongliang; Long, Owen Rosser; Luthra, Arun; Nguyen, Harold; Shen, Benjamin C; Stringer, Robert; Sturdy, Jared; Sumowidagdo, Suharyo; Wilken, Rachel; Wimpenny, Stephen; Andrews, Warren; Branson, James G; Cerati, Giuseppe Benedetto; Sudano, Elizabeth; Evans, David; Golf, Frank; Holzner, André; Kelley, Ryan; Lebourgeois, Matthew; Letts, James; Mangano, Boris; Padhi, Sanjay; Palmer, Christopher; Petrucciani, Giovanni; Pi, Haifeng; Pieri, Marco; Ranieri, Riccardo; Sani, Matteo; Sharma, Vivek; Simon, Sean; Tu, Yanjun; Vartak, Adish; Wasserbaech, Steven; Würthwein, Frank; Yagil, Avraham; Yoo, Jaehyeok; Barge, Derek; Bellan, Riccardo; Campagnari, Claudio; D'Alfonso, Mariarosaria; Danielson, Thomas; Flowers, Kristen; Geffert, Paul; Incandela, Joe; Justus, Christopher; Kalavase, Puneeth; Koay, Sue Ann; Kovalskyi, Dmytro; Krutelyov, Vyacheslav; Lowette, Steven; Mccoll, Nickolas; Pavlunin, Viktor; Rebassoo, Finn; Ribnik, Jacob; Richman, Jeffrey; Rossin, Roberto; Stuart, David; To, Wing; Vlimant, Jean-Roch; Apresyan, Artur; Bornheim, Adolf; Bunn, Julian; Chen, Yi; Gataullin, Marat; Ma, Yousi; Mott, Alexander; Newman, Harvey B; Rogan, Christopher; Shin, Kyoungha; Timciuc, Vladlen; Traczyk, Piotr; Veverka, Jan; Wilkinson, Richard; Yang, Yong; Zhu, Ren-Yuan; Akgun, Bora; Carroll, Ryan; Ferguson, Thomas; Iiyama, Yutaro; Jang, Dong Wook; Jun, Soon Yung; Liu, Yueh-Feng; Paulini, Manfred; Russ, James; Vogel, Helmut; Vorobiev, Igor; Cumalat, John Perry; Dinardo, Mauro Emanuele; Drell, Brian Robert; Edelmaier, Christopher; Ford, William T; Gaz, Alessandro; Heyburn, Bernadette; Luiggi Lopez, Eduardo; Nauenberg, Uriel; Smith, James; Stenson, Kevin; Ulmer, Keith; Wagner, Stephen Robert; Zang, Shi-Lei; Agostino, Lorenzo; Alexander, James; Cassel, David; Chatterjee, Avishek; Das, Souvik; Eggert, Nicholas; Gibbons, Lawrence Kent; Heltsley, Brian; Hopkins, Walter; Khukhunaishvili, Aleko; Kreis, Benjamin; Nicolas Kaufman, Gala; Patterson, Juliet Ritchie; Puigh, Darren; Ryd, Anders; Salvati, Emmanuele; Shi, Xin; Sun, Werner; Teo, Wee Don; Thom, Julia; Thompson, Joshua; Vaughan, Jennifer; Weng, Yao; Winstrom, Lucas; Wittich, Peter; Biselli, Angela; Cirino, Guy; Winn, Dave; Abdullin, Salavat; Albrow, Michael; Anderson, Jacob; Apollinari, Giorgio; Atac, Muzaffer; Bakken, Jon Alan; Banerjee, Sunanda; Bauerdick, Lothar AT; Beretvas, Andrew; Berryhill, Jeffrey; Bhat, Pushpalatha C; Bloch, Ingo; Borcherding, Frederick; Burkett, Kevin; Butler, Joel Nathan; Chetluru, Vasundhara; Cheung, Harry; Chlebana, Frank; Cihangir, Selcuk; Cooper, William; Eartly, David P; Elvira, Victor Daniel; Esen, Selda; Fisk, Ian; Freeman, Jim; Gao, Yanyan; Gottschalk, Erik; Green, Dan; Gunthoti, Kranti; Gutsche, Oliver; Hanlon, Jim; Harris, Robert M; Hirschauer, James; Hooberman, Benjamin; Jensen, Hans; Johnson, Marvin; Joshi, Umesh; Khatiwada, Rakshya; Klima, Boaz; Kousouris, Konstantinos; Kunori, Shuichi; Kwan, Simon; Leonidopoulos, Christos; Limon, Peter; Lincoln, Don; Lipton, Ron; Lykken, Joseph; Maeshima, Kaori; Marraffino, John Michael; Mason, David; McBride, Patricia; Miao, Ting; Mishra, Kalanand; Mrenna, Stephen; Musienko, Yuri; Newman-Holmes, Catherine; O'Dell, Vivian; Pordes, Ruth; Prokofyev, Oleg; Saoulidou, Niki; Sexton-Kennedy, Elizabeth; Sharma, Seema; Spalding, William J; Spiegel, Leonard; Tan, Ping; Taylor, Lucas; Tkaczyk, Slawek; Uplegger, Lorenzo; Vaandering, Eric Wayne; Vidal, Richard; Whitmore, Juliana; Wu, Weimin; Yang, Fan; Yumiceva, Francisco; Yun, Jae Chul; Acosta, Darin; Avery, Paul; Bourilkov, Dimitri; Chen, Mingshui; De Gruttola, Michele; Di Giovanni, Gian Piero; Dobur, Didar; Drozdetskiy, Alexey; Field, Richard D; Fisher, Matthew; Fu, Yu; Furic, Ivan-Kresimir; Gartner, Joseph; Kim, Bockjoo; Konigsberg, Jacobo; Korytov, Andrey; Kropivnitskaya, Anna; Kypreos, Theodore; Matchev, Konstantin; Mitselmakher, Guenakh; Muniz, Lana; Prescott, Craig; Remington, Ronald; Schmitt, Michael; Scurlock, Bobby; Sellers, Paul; Skhirtladze, Nikoloz; Snowball, Matthew; Wang, Dayong; Yelton, John; Zakaria, Mohammed; Ceron, Cristobal; Gaultney, Vanessa; Kramer, Laird; Lebolo, Luis Miguel; Linn, Stephan; Markowitz, Pete; Martinez, German; Mesa, Dalgis; Rodriguez, Jorge Luis; Adams, Todd; Askew, Andrew; Bochenek, Joseph; Chen, Jie; Diamond, Brendan; Gleyzer, Sergei V; Haas, Jeff; Hagopian, Sharon; Hagopian, Vasken; Jenkins, Merrill; Johnson, Kurtis F; Prosper, Harrison; Quertenmont, Loic; Sekmen, Sezen; Veeraraghavan, Venkatesh; Baarmand, Marc M; Dorney, Brian; Guragain, Samir; Hohlmann, Marcus; Kalakhety, Himali; Ralich, Robert; Vodopiyanov, Igor; Adams, Mark Raymond; Anghel, Ioana Maria; Apanasevich, Leonard; Bai, Yuting; Bazterra, Victor Eduardo; Betts, Russell Richard; Callner, Jeremy; Cavanaugh, Richard; Dragoiu, Cosmin; Gauthier, Lucie; Gerber, Cecilia Elena; Hamdan, Saleh; Hofman, David Jonathan; Khalatyan, Samvel; Kunde, Gerd J; Lacroix, Florent; Malek, Magdalena; O'Brien, Christine; Silvestre, Catherine; Smoron, Agata; Strom, Derek; Varelas, Nikos; Akgun, Ugur; Albayrak, Elif Asli; Bilki, Burak; Clarida, Warren; Duru, Firdevs; Lae, Chung Khim; McCliment, Edward; Merlo, Jean-Pierre; Mermerkaya, Hamit; Mestvirishvili, Alexi; Moeller, Anthony; Nachtman, Jane; Newsom, Charles Ray; Norbeck, Edwin; Olson, Jonathan; Onel, Yasar; Ozok, Ferhat; Sen, Sercan; Wetzel, James; Yetkin, Taylan; Yi, Kai; Barnett, Bruce Arnold; Blumenfeld, Barry; Bonato, Alessio; Eskew, Christopher; Fehling, David; Giurgiu, Gavril; Gritsan, Andrei; Guo, Zijin; Hu, Guofan; Maksimovic, Petar; Rappoccio, Salvatore; Swartz, Morris; Tran, Nhan Viet; Whitbeck, Andrew; Baringer, Philip; Bean, Alice; Benelli, Gabriele; Grachov, Oleg; Kenny Iii, Raymond Patrick; Murray, Michael; Noonan, Daniel; Sanders, Stephen; Wood, Jeffrey Scott; Zhukova, Victoria; Barfuss, Anne-fleur; Bolton, Tim; Chakaberia, Irakli; Ivanov, Andrew; Khalil, Sadia; Makouski, Mikhail; Maravin, Yurii; Shrestha, Shruti; Svintradze, Irakli; Wan, Zongru; Gronberg, Jeffrey; Lange, David; Wright, Douglas; Baden, Drew; Boutemeur, Madjid; Eno, Sarah Catherine; Ferencek, Dinko; Gomez, Jaime; Hadley, Nicholas John; Kellogg, Richard G; Kirn, Malina; Lu, Ying; Mignerey, Alice; Rossato, Kenneth; Rumerio, Paolo; Santanastasio, Francesco; Skuja, Andris; Temple, Jeffrey; Tonjes, Marguerite; Tonwar, Suresh C; Twedt, Elizabeth; Alver, Burak; Bauer, Gerry; Bendavid, Joshua; Busza, Wit; Butz, Erik; Cali, Ivan Amos; Chan, Matthew; Dutta, Valentina; Everaerts, Pieter; Gomez Ceballos, Guillelmo; Goncharov, Maxim; Hahn, Kristan Allan; Harris, Philip; Kim, Yongsun; Klute, Markus; Lee, Yen-Jie; Li, Wei; Loizides, Constantinos; Luckey, Paul David; Ma, Teng; Nahn, Steve; Paus, Christoph; Ralph, Duncan; Roland, Christof; Roland, Gunther; Rudolph, Matthew; Stephans, George; Stöckli, Fabian; Sumorok, Konstanty; Sung, Kevin; Wenger, Edward Allen; Xie, Si; Yang, Mingming; Yilmaz, Yetkin; Yoon, Sungho; Zanetti, Marco; Cooper, Seth; Cushman, Priscilla; Dahmes, Bryan; De Benedetti, Abraham; Dudero, Phillip Russell; Franzoni, Giovanni; Haupt, Jason; Klapoetke, Kevin; Kubota, Yuichi; Mans, Jeremy; Rekovic, Vladimir; Rusack, Roger; Sasseville, Michael; Singovsky, Alexander; Cremaldi, Lucien Marcus; Godang, Romulus; Kroeger, Rob; Perera, Lalith; Rahmat, Rahmat; Sanders, David A; Summers, Don; Bloom, Kenneth; Bose, Suvadeep; Butt, Jamila; Claes, Daniel R; Dominguez, Aaron; Eads, Michael; Keller, Jason; Kelly, Tony; Kravchenko, Ilya; Lazo-Flores, Jose; Malbouisson, Helena; Malik, Sudhir; Snow, Gregory R; Baur, Ulrich; Godshalk, Andrew; Iashvili, Ia; Jain, Supriya; Kharchilava, Avto; Kumar, Ashish; Shipkowski, Simon Peter; Smith, Kenneth; Alverson, George; Barberis, Emanuela; Baumgartel, Darin; Boeriu, Oana; Chasco, Matthew; Reucroft, Steve; Swain, John; Trocino, Daniele; Wood, Darien; Zhang, Jinzhong; Anastassov, Anton; Kubik, Andrew; Odell, Nathaniel; Ofierzynski, Radoslaw Adrian; Pollack, Brian; Pozdnyakov, Andrey; Schmitt, Michael; Stoynev, Stoyan; Velasco, Mayda; Won, Steven; Antonelli, Louis; Berry, Douglas; Hildreth, Michael; Jessop, Colin; Karmgard, Daniel John; Kolb, Jeff; Kolberg, Ted; Lannon, Kevin; Luo, Wuming; Lynch, Sean; Marinelli, Nancy; Morse, David Michael; Pearson, Tessa; Ruchti, Randy; Slaunwhite, Jason; Valls, Nil; Wayne, Mitchell; Ziegler, Jill; Bylsma, Ben; Durkin, Lloyd Stanley; Gu, Jianhui; Hill, Christopher; Killewald, Phillip; Kotov, Khristian; Ling, Ta-Yung; Rodenburg, Marissa; Williams, Grayson; Adam, Nadia; Berry, Edmund; Elmer, Peter; Gerbaudo, Davide; Halyo, Valerie; Hebda, Philip; Hunt, Adam; Jones, John; Laird, Edward; Lopes Pegna, David; Marlow, Daniel; Medvedeva, Tatiana; Mooney, Michael; Olsen, James; Piroué, Pierre; Quan, Xiaohang; Saka, Halil; Stickland, David; Tully, Christopher; Werner, Jeremy Scott; Zuranski, Andrzej; Acosta, Jhon Gabriel; Huang, Xing Tao; Lopez, Angel; Mendez, Hector; Oliveros, Sandra; Ramirez Vargas, Juan Eduardo; Zatserklyaniy, Andriy; Alagoz, Enver; Barnes, Virgil E; Bolla, Gino; Borrello, Laura; Bortoletto, Daniela; Everett, Adam; Garfinkel, Arthur F; Gutay, Laszlo; Hu, Zhen; Jones, Matthew; Koybasi, Ozhan; Kress, Matthew; Laasanen, Alvin T; Leonardo, Nuno; Liu, Chang; Maroussov, Vassili; Merkel, Petra; Miller, David Harry; Neumeister, Norbert; Shipsey, Ian; Silvers, David; Svyatkovskiy, Alexey; Yoo, Hwi Dong; Zablocki, Jakub; Zheng, Yu; Jindal, Pratima; Parashar, Neeti; Boulahouache, Chaouki; Cuplov, Vesna; Ecklund, Karl Matthew; Geurts, Frank JM; Padley, Brian Paul; Redjimi, Radia; Roberts, Jay; Zabel, James; Betchart, Burton; Bodek, Arie; Chung, Yeon Sei; Covarelli, Roberto; de Barbaro, Pawel; Demina, Regina; Eshaq, Yossof; Flacher, Henning; Garcia-Bellido, Aran; Goldenzweig, Pablo; Gotra, Yury; Han, Jiyeon; Harel, Amnon; Miner, Daniel Carl; Orbaker, Douglas; Petrillo, Gianluca; Vishnevskiy, Dmitry; Zielinski, Marek; Bhatti, Anwar; Ciesielski, Robert; Demortier, Luc; Goulianos, Konstantin; Lungu, Gheorghe; Malik, Sarah; Mesropian, Christina; Yan, Ming; Atramentov, Oleksiy; Barker, Anthony; Duggan, Daniel; Gershtein, Yuri; Gray, Richard; Halkiadakis, Eva; Hidas, Dean; Hits, Dmitry; Lath, Amitabh; Panwalkar, Shruti; Patel, Rishi; Richards, Alan; Rose, Keith; Schnetzer, Steve; Somalwar, Sunil; Stone, Robert; Thomas, Scott; Cerizza, Giordano; Hollingsworth, Matthew; Spanier, Stefan; Yang, Zong-Chang; York, Andrew; Eusebi, Ricardo; Gilmore, Jason; Gurrola, Alfredo; Kamon, Teruki; Khotilovich, Vadim; Montalvo, Roy; Osipenkov, Ilya; Pakhotin, Yuriy; Pivarski, James; Safonov, Alexei; Sengupta, Sinjini; Tatarinov, Aysen; Toback, David; Weinberger, Michael; Akchurin, Nural; Bardak, Cemile; Damgov, Jordan; Jeong, Chiyoung; Kovitanggoon, Kittikul; Lee, Sung Won; Mane, Poonam; Roh, Youn; Sill, Alan; Volobouev, Igor; Wigmans, Richard; Yazgan, Efe; Appelt, Eric; Brownson, Eric; Engh, Daniel; Florez, Carlos; Gabella, William; Issah, Michael; Johns, Willard; Kurt, Pelin; Maguire, Charles; Melo, Andrew; Sheldon, Paul; Snook, Benjamin; Tuo, Shengquan; Velkovska, Julia; Arenton, Michael Wayne; Balazs, Michael; Boutle, Sarah; Cox, Bradley; Francis, Brian; Hirosky, Robert; Ledovskoy, Alexander; Lin, Chuanzhe; Neu, Christopher; Yohay, Rachel; Gollapinni, Sowjanya; Harr, Robert; Karchin, Paul Edmund; Lamichhane, Pramod; Mattson, Mark; Milstène, Caroline; Sakharov, Alexandre; Anderson, Michael; Bachtis, Michail; Bellinger, James Nugent; Carlsmith, Duncan; Dasu, Sridhara; Efron, Jonathan; Flood, Kevin; Gray, Lindsey; Grogg, Kira Suzanne; Grothe, Monika; Hall-Wilton, Richard; Herndon, Matthew; Klabbers, Pamela; Klukas, Jeffrey; Lanaro, Armando; Lazaridis, Christos; Leonard, Jessica; Loveless, Richard; Mohapatra, Ajit; Palmonari, Francesco; Reeder, Don; Ross, Ian; Savin, Alexander; Smith, Wesley H; Swanson, Joshua; Weinberg, Marc

    2011-01-01

    The inclusive jet cross section is measured in pp collisions with a center-of-mass energy of 7 TeV at the LHC using the CMS experiment. The data sample corresponds to an integrated luminosity of 34 inverse picobarns. The measurement is made for jet transverse momenta in the range 18-1100 GeV and for absolute values of rapidity less than 3. The measured cross section extends to the highest values of jet pT ever observed and, within the experimental and theoretical uncertainties, is generally in agreement with next-to-leading-order perturbative QCD predictions.

  14. Improved absorption cross-sections of oxygen in the wavelength region 205-240 nm of the Herzberg continuum

    Yoshino, K.; Cheung, A. S.-C.; Esmond, J. R.; Parkinson, W. H.; Freeman, D. E.

    1988-01-01

    The laboratory values of the Herzberg continuum absorption cross-section of oxygen at room temperature from Cheung et al. (1986) and Jenouvrier et al. (1986) are compared and analyzed. It is found that there is no discrepancy between the absolute values of these two sets of independent measurements. The values are combined in a linear least-squares fit to obtain improved values of the Herzberg continuum cross-section of oxygen at room temperature throughout the wavelength region 205-240 nm. The results are compared with in situ and other laboratory measurements.

  15. Measurement of the Inclusive Jet Cross Section in pp Collisions at √(s)=7 TeV

    The inclusive jet cross section is measured in pp collisions with a center-of-mass energy of 7 TeV at the Large Hadron Collider using the CMS experiment. The data sample corresponds to an integrated luminosity of 34 pb-1. The measurement is made for jet transverse momenta in the range 18-1100 GeV and for absolute values of rapidity less than 3. The measured cross section extends to the highest values of jet pT ever observed and, within the experimental and theoretical uncertainties, is generally in agreement with next-to-leading-order perturbative QCD predictions.

  16. Measurement of the Inclusive Jet Cross Section in pp Collisions at sqrt[s]=7 TeV

    Chatrchyan, Serguei; et al.

    2011-09-01

    The inclusive jet cross section is measured in pp collisions with a center-of-mass energy of 7 TeV at the LHC using the CMS experiment. The data sample corresponds to an integrated luminosity of 34 inverse picobarns. The measurement is made for jet transverse momenta in the range 18-1100 GeV and for absolute values of rapidity less than 3. The measured cross section extends to the highest values of jet pT ever observed and, within the experimental and theoretical uncertainties, is generally in agreement with next-to-leading-order perturbative QCD predictions.

  17. Recent progress in fast neutron activation cross section data

    A brief review is given of some significant investigations performed during the past few years in the area of fast neutron activation cross sections that may be relevant for the use of nuclear techniques in the exploration of mineral resources, in process and quality control in industry as well as for general analytical purposes. Differential capture cross sections are considered for the natural elements or isotopes of Fe, Cu, Se, Y, Nb, Cd, In, Gd, W, Os and Au. Some of the data are compared with statistical model calculations. Experimental and evaluated average cross sections for capture and threshold reactions in the spontaneous fission neutron field of 252Cf are reviewed taking into account the elements or isotopes of Mg, Al, Si, S, Ti, V, Mn, Fe, Co, Ni, Cu, Zn, Sr, Zr, Nb, Cd, In, Ba, Ta and Au. A summary of recent studies of differential cross sections for threshold reactions comprises data on Al, Si, S, Ti, Fe, Co, Ni, Cu, Zn, Zr, Nb, Ta, W and Au. Besides experimental investigations, evaluations and theoretical model calculations are considered. Cross sections at 14 MeV and in the region around this energy are reviewed for Na, Mg, Al, Cl, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Br, Sr, Zr, Nb, In, Er, Yb, Ta, W, Os, Ir, Au and Pb. Particular emphasis is laid on (n,p), (n,2n) and (n,α) reactions. (n,n') reactions are allowed for if the half-life of the metastable state excited permits elemental analyses by common experimental techniques. (orig.)

  18. Recent progress in fast neutron activation cross section data

    A brief review is given of some significant investigations performed during the past few years in the area of fast neutron activation cross sections that may be relevant for the use of nuclear techniques in the exploration of mineral resources, in process and quality control in industry as well as for general analytical purposes. Differential capture cross sections are considered for the natural elements or isotopes of Fe, Cu, Se, Y, Nb, Cd, In, Gd, W, Os and Au. Some of the data are compared with statistical model calculations. Experimental and evaluated average cross sections for capture and threshold reactions in the spontaneous fission neutron field of 252Cf are reviewed taking into account the elements or isotopes of Mg, Al, Si, S, Ti, V, Mn, Fe, Co, Ni, Cu, Zn, Sr, Zr, Nb, Cd, In, Ba, Ta and Au. A summary of recent studies of differential cross sections for threshold reactions comprises data on Al, Si, S, Ti, Fe, Co, Ni, Cu, Zn, Zr, Nb, Ta, W and Au. Besides experimental investigations, evaluations and theoretical model calculations are considered. Cross sections at 14 MeV and in the region around this energy are reviewed for Na, Mg, Al, Cl, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Br, Sr, Zr, Nb, In, Er, Yb, Ta, W, Os, Ir, Au and Pb. Particular emphasis is laid on (n,p), (n,2n) and (n,α) reactions. (n,n') reactions are allowed for if the half-life of the metastable state excited permits elemental analyses by common experimental techniques. (author)

  19. Displacement cross section and DPA calculations using NMTC/JAERI

    A new function calculating displacement cross sections using the Lindhard-Robinson model is implemented in the nucleon-meson transport code NMTC/JAERI. The nucleon-nucleus cross sections in the energy region above 950 MeV and the angular distribution data of elastic scattering are also modified to evaluate the displacement cross sections as accurate as possible. The displacement cross sections of Cr, Fe Ni, and type 316 stainless steel are calculated with the updated version of NMTC/JAERI. It is confirmed that the calculated displacement cross sections caused by the elastic scattering connect smoothly with the value of the JENDL PKA File at 20 MeV. With these calculation values, the displacement per atoms (DPA) in the beam window and target vessel of a mercury target are estimated in a framework of the neutronics design study of the spallation target bombarded with 1.5 GeV protons with a power of 5 MW. The following three beam conditions are selected in this calculation; (a) uniform distribution with average current density of 48 μA/cm2, (b) parabolic distribution with average current density of 48 μA/cm2, and (c) that with average current density of 24 μA/cm2. The DPAs are estimated as (a) 68, (b) 114, and (c) 70 DPA/yr at the beam windows, and (a) 41, (b) 52, and (c) 37 DPA/yr at the target vessel for the three cases, respectively. It is found that the DPAs obtained in this study are almost the same as the results of other design studies for spallation neutron source facilities. (author)

  20. 149Sm(n,alpha)146Nd cross sections in the MeV energy region

    Zhang, Guohui [Peking University; Gledenov, Yu. M. [Joint Institute for Nuclear Research, Dubna, Russia; Khuukhenkhuu, G [National University of Mongolia; Sedysheva, M. V. [Joint Institute for Nuclear Research, Dubna, Russia; Szalanski, P. [University of Lodz; Koehler, Paul Edward [ORNL; Voronov, Yu. N. [Joint Institute for Nuclear Research, Dubna, Russia; Liu, Jiaming [Peking University; Liu, Xiang [Peking University; Han, Jinhua [Peking University; Chen, Jinxiang [Peking University

    2011-01-01

    We have measured the {sup 149}Sm(n,{alpha}){sup 146}Nd cross section at 4.5, 5.0, 5.5, 6.0, and 6.5 MeV. Measurements were performed at the 4.5 MV Van de Graaff accelerator of Peking University with monoenergetic neutrons produced via the {sup 2}H(d,n){sup 3}He reaction using a deuterium gas target. Alpha particles were detected with a double-section gridded ionization chamber having two back-to-back {sup 149}Sm{sub 2}O{sub 3} samples attached to the common cathode. Absolute neutron flux was measured using a small {sup 238}U fission chamber and monitored by a BF{sub 3} long counter. These are the first reported cross sections for this reaction at these energies, except at 6.0 eV, where our new data are in good agreement with our earlier result. The present results help to much better constrain the {sup 149}Sm(n,{alpha}){sup 146}Nd cross section in a region where its energy dependence is changing fairly rapidly and there are large differences between evaluated nuclear data libraries.