WorldWideScience

Sample records for absolute configurational entropies

  1. Adaptive anisotropic kernels for nonparametric estimation of absolute configurational entropies in high-dimensional configuration spaces.

    Hensen, Ulf; Grubmüller, Helmut; Lange, Oliver F

    2009-07-01

    The quasiharmonic approximation is the most widely used estimate for the configurational entropy of macromolecules from configurational ensembles generated from atomistic simulations. This method, however, rests on two assumptions that severely limit its applicability, (i) that a principal component analysis yields sufficiently uncorrelated modes and (ii) that configurational densities can be well approximated by Gaussian functions. In this paper we introduce a nonparametric density estimation method which rests on adaptive anisotropic kernels. It is shown that this method provides accurate configurational entropies for up to 45 dimensions thus improving on the quasiharmonic approximation. When embedded in the minimally coupled subspace framework, large macromolecules of biological interest become accessible, as demonstrated for the 67-residue coldshock protein. PMID:19658735

  2. Configurational Entropy Revisited

    Lambert, Frank L.

    2007-09-01

    Entropy change is categorized in some prominent general chemistry textbooks as being either positional (configurational) or thermal. In those texts, the accompanying emphasis on the dispersal of matter—independent of energy considerations and thus in discord with kinetic molecular theory—is most troubling. This article shows that the variants of entropy can be treated from a unified viewpoint and argues that to decrease students' confusion about the nature of entropy change these variants of entropy should be merged. Molecular energy dispersal in space is implicit but unfortunately tacit in the cell models of statistical mechanics that develop the configurational entropy change in gas expansion, fluids mixing, or the addition of a non-volatile solute to a solvent. Two factors are necessary for entropy change in chemistry. An increase in thermodynamic entropy is enabled in a process by the motional energy of molecules (that, in chemical reactions, can arise from the energy released from a bond energy change). However, entropy increase is only actualized if the process results in a larger number of arrangements for the system's energy, that is, a final state that involves the most probable distribution for that energy under the new constraints. Positional entropy should be eliminated from general chemistry instruction and, especially benefiting "concrete minded" students, it should be replaced by emphasis on the motional energy of molecules as enabling entropy change.

  3. Configurational entropy of native proteins.

    Karplus, M.; Ichiye, T; Pettitt, B. M.

    1987-01-01

    Simulations of the residual configurational entropy of a protein in the native state suggest that it is nearly an order of magnitude larger than the entropy of denaturation. The implications of this result are discussed.

  4. Maximum entropy tokamak configurations

    The new entropy concept for the collective magnetic equilibria is applied to the description of the states of a tokamak subject to ohmic and auxiliary heating. The condition for the existence of steady state plasma states with vanishing entropy production implies, on one hand, the resilience of specific current density profiles and, on the other, severe restrictions on the scaling of the confinement time with power and current. These restrictions are consistent with Goldston scaling and with the existence of a heat pinch. (author)

  5. Configurational entropy of Wigner crystals

    Radzvilavičius, Arūnas; 10.1088/0953-8984/23/7/075302

    2012-01-01

    We present a theoretical study of classical Wigner crystals in two- and three-dimensional isotropic parabolic traps aiming at understanding and quantifying the configurational uncertainty due to the presence of multiple stable configurations. Strongly interacting systems of classical charged particles confined in traps are known to form regular structures. The number of distinct arrangements grows very rapidly with the number of particles, many of these arrangements have quite low occurrence probabilities and often the lowest-energy structure is not the most probable one. We perform numerical simulations on systems containing up to 100 particles interacting through Coulomb and Yukawa forces, and show that the total number of metastable configurations is not a well defined and representative quantity. Instead, we propose to rely on the configurational entropy as a robust and objective measure of uncertainty. The configurational entropy can be understood as the logarithm of the effective number of states; it is...

  6. Configurational entropy in brane-world models

    Correa, R. A. C., E-mail: fis04132@gmail.com [CCNH, Universidade Federal do ABC, 09210-580, Santo André, SP (Brazil); Rocha, Roldão da, E-mail: roldao.rocha@ufabc.edu.br [CMCC, Universidade Federal do ABC, 09210-580, Santo André, SP (Brazil); International School for Advanced Studies (SISSA), Via Bonomea 265, 34136, Trieste (Italy)

    2015-11-02

    In this work we investigate the entropic information on thick brane-world scenarios and its consequences. The brane-world entropic information is studied for the sine-Gordon model and hence the brane-world entropic information measure is shown to be an accurate way for providing the most suitable range for the bulk AdS curvature, in particular from the informational content of physical solutions. Besides, the brane-world configurational entropy is employed to demonstrate a high organisational degree in the structure of the configuration of the system, for large values of a parameter of the sine-Gordon model but the one related to the AdS curvature. The Gleiser and Stamatopoulos procedure is finally applied in order to achieve a precise correlation between the energy of the system and the brane-world configurational entropy.

  7. Configurational entropy in brane-world models

    In this work we investigate the entropic information on thick brane-world scenarios and its consequences. The brane-world entropic information is studied for the sine-Gordon model and hence the brane-world entropic information measure is shown to be an accurate way for providing the most suitable range for the bulk AdS curvature, in particular from the informational content of physical solutions. Besides, the brane-world configurational entropy is employed to demonstrate a high organisational degree in the structure of the configuration of the system, for large values of a parameter of the sine-Gordon model but the one related to the AdS curvature. The Gleiser and Stamatopoulos procedure is finally applied in order to achieve a precise correlation between the energy of the system and the brane-world configurational entropy

  8. Configurational entropy in brane-world models

    In this work we investigate the entropic information on thick brane-world scenarios and its consequences. The brane-world entropic information is studied for the sine-Gordon model and hence the brane-world entropic information measure is shown to be an accurate way for providing the most suitable range for the bulk AdS curvature, in particular from the informational content of physical solutions. Besides, the brane-world configurational entropy is employed to demonstrate a high organisational degree in the structure of the configuration of the system, for large values of a parameter of the sine-Gordon model but the one related to the AdS curvature. The Gleiser and Stamatopoulos procedure is finally applied in order to achieve a precise correlation between the energy of the system and the brane-world configurational entropy. (orig.)

  9. Total Synthesis and Absolute Configuration of the Marine Norditerpenoid Xestenone

    Hiroaki Miyaoka

    2009-11-01

    Full Text Available Xestenone is a marine norditerpenoid found in the northeastern Pacific sponge Xestospongia vanilla. The relative configuration of C-3 and C-7 in xestenone was determined by NOESY spectral analysis. However the relative configuration of C-12 and the absolute configuration of this compound were not determined. The authors have now achieved the total synthesis of xestenone using their developed one-pot synthesis of cyclopentane derivatives employing allyl phenyl sulfone and an epoxy iodide as a key step. The relative and absolute configurations of xestenone were thus successfully determined by this synthesis.

  10. Absolute Configuration of the Levocloperastine Fendizoate

    ZHOU Min; YU Kai-Bei; HU Hong-Gang; LI Feng; LONG Yuan-De

    2011-01-01

    Crystal structure of the levocloperastine fendizoate (C80H76Cl2N2O10, C20H25ClNO+· C20H13O4-) has been determined by single-crystal X-ray diffraction. The crystal is of triclinic system, space group P1 with a = 10.1059(18), b = 11.957(2), c = 15.383(3) , α = 104.666(2), β = 90.9700(10), γ = 110.744(2)°, Z = 1, V = 1670.0(5) 3, Dc = 1.289 g/cm3, F(000) = 684, μ(MoKα) = 0.161 mm-1, Mr = 1296.33, the final R = 0.0343 and wR = 0.0676. The cations and anions are linked by the COO…NH hydrogen bonds of 2.709(3) and 2.690(3)  and COO…OH hydrogen bonds of 2.632(3) and 2.631(3) . The configuration of the only one chiral carbon atom in this compound is R(rectus).

  11. The Role of Configurational Entropy in Amorphous Systems

    Kirsten A. Graeser; Patterson, James E.; J. Axel Zeitler; Thomas Rades

    2010-01-01

    Configurational entropy is an important parameter in amorphous systems. It is involved in the thermodynamic considerations, plays an important role in the molecular mobility calculations through its appearance in the Adam-Gibbs equation and provides information on the solubility increase of an amorphous form compared to its crystalline counterpart. This paper presents a calorimetric method which enables the scientist to quickly determine the values for the configurational entropy at any tempe...

  12. On determining absolute entropy without quantum theory or the third law of thermodynamics

    Steane, Andrew M.

    2016-04-01

    We employ classical thermodynamics to gain information about absolute entropy, without recourse to statistical methods, quantum mechanics or the third law of thermodynamics. The Gibbs–Duhem equation yields various simple methods to determine the absolute entropy of a fluid. We also study the entropy of an ideal gas and the ionization of a plasma in thermal equilibrium. A single measurement of the degree of ionization can be used to determine an unknown constant in the entropy equation, and thus determine the absolute entropy of a gas. It follows from all these examples that the value of entropy at absolute zero temperature does not need to be assigned by postulate, but can be deduced empirically.

  13. Absolute configuration of some dinorlabdanes from the copaiba oil

    A novel ent-dinorlabdane (Ι)-13(R)-14,15-dinorlabd-8(17)-ene-3,13-diol was isolated from commercial copaiba oil along with two known dinorlabdanes. The absolute configuration of these dinorditerpenes was established for the first time through synthesis starting from known (Ι)-3-hydroxycopalic acid, which was also isolated from the same oleoresin. (author)

  14. Absolute configuration of some dinorlabdanes from the copaiba oil

    Romero, Adriano L.; Baptistela, Lucia H.B.; Imamura, Paulo M. [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Inst. de Quimica], e-mail: imam@iqm.unicamp.br

    2009-07-01

    A novel ent-dinorlabdane ({iota})-13(R)-14,15-dinorlabd-8(17)-ene-3,13-diol was isolated from commercial copaiba oil along with two known dinorlabdanes. The absolute configuration of these dinorditerpenes was established for the first time through synthesis starting from known ({iota})-3-hydroxycopalic acid, which was also isolated from the same oleoresin. (author)

  15. Absolute configurations of zingiberenols isolated from ginger (Zingiber officinale) rhizomes

    The sesquiterpene alcohol zingiberenol, or 1,10-bisaboladien-3-ol, was isolated some time ago from ginger, Zingiber officinale, rhizomes, but its absolute configuration had not been determined. With three chiral centers present in the molecule, zingiberenol can exist in eight stereoisomeric forms. ...

  16. Confirmation of the absolute configuration of (−)-aurantioclavine

    Behenna, Douglas C.

    2011-04-01

    We confirm our previous assignment of the absolute configuration of (-)-aurantioclavine as 7R by crystallographically characterizing an advanced 3-bromoindole intermediate reported in our previous synthesis. This analysis also provides additional support for our model of enantioinduction in the palladium(II)-catalyzed oxidative kinetic resolution of secondary alcohols. © 2010 Elsevier Ltd. All rights reserved.

  17. Configurational entropy of hydrogen-disordered ice polymorphs

    Herrero, Carlos P., E-mail: ch@icmm.csic.es; Ramírez, Rafael [Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, 28049 Madrid (Spain)

    2014-06-21

    The configurational entropy of several H-disordered ice polymorphs is calculated by means of a thermodynamic integration along a path between a totally H-disordered state and one fulfilling the Bernal-Fowler ice rules. A Monte Carlo procedure based on a simple energy model is used, so that the employed thermodynamic path drives the system from high temperatures to the low-temperature limit. This method turns out to be precise enough to give reliable values for the configurational entropy s{sub th} of different ice phases in the thermodynamic limit (number of molecules N → ∞). The precision of the method is checked for the ice model on a two-dimensional square lattice. Results for the configurational entropy are given for H-disordered arrangements on several polymorphs, including ices Ih, Ic, II, III, IV, V, VI, and XII. The highest and lowest entropy values correspond to ices VI and XII, respectively, with a difference of 3.3% between them. The dependence of the entropy on the ice structures has been rationalized by comparing it with structural parameters of the various polymorphs, such as the mean ring size. A particularly good correlation has been found between the configurational entropy and the connective constant derived from self-avoiding walks on the ice networks.

  18. Configurational entropy of hydrogen-disordered ice polymorphs

    Herrero, Carlos P.; Ramírez, Rafael

    2014-06-01

    The configurational entropy of several H-disordered ice polymorphs is calculated by means of a thermodynamic integration along a path between a totally H-disordered state and one fulfilling the Bernal-Fowler ice rules. A Monte Carlo procedure based on a simple energy model is used, so that the employed thermodynamic path drives the system from high temperatures to the low-temperature limit. This method turns out to be precise enough to give reliable values for the configurational entropy sth of different ice phases in the thermodynamic limit (number of molecules N → ∞). The precision of the method is checked for the ice model on a two-dimensional square lattice. Results for the configurational entropy are given for H-disordered arrangements on several polymorphs, including ices Ih, Ic, II, III, IV, V, VI, and XII. The highest and lowest entropy values correspond to ices VI and XII, respectively, with a difference of 3.3% between them. The dependence of the entropy on the ice structures has been rationalized by comparing it with structural parameters of the various polymorphs, such as the mean ring size. A particularly good correlation has been found between the configurational entropy and the connective constant derived from self-avoiding walks on the ice networks.

  19. Configuration Entropy Calculations for Complex Compounds Technetium

    Recently, the study of technetium complexes is rapidly increasing, due to the benefit of 99mTc complexes (one of Tc nuclear isomers), which are widely used for diagnostics. Study of the structure-stability relationship of Tc complexes based on solid angle has been done by Kung using a Solid Angle Factor Sum (SAS). The SAS is hypothesized to be related to stability. SAS has been used by several researchers either for synthesis or designing the reaction route of the Tc complex formation and predicting the geometry of complex structures. Although the advantages of the SAS were very gratifying, but the model does not have the theoretical basis which is able to explain the correlation of steric parameters to physicochemical properties of complexes especially to those connected to a complex's stability. To improve the SAS model, in this research the model was modified by providing a theoretical basis for SAS. The results obtained from the correlation of the SAS value to the thermodynamic stability parameters of simple complexes show the values to have a similar trend as the standard entropy (S0). The entropy approximation model was created by involving some factors which are not used in Kung's model. Entropy optimization to the bond length (ML) has also been done to several complexes. The calculations of SAS value using the calculated R for more than 100 Tc complexes provide a normalized mean value of 0.8545 ± 0.0851 and have similar curve profiles as those of Kung's model. The entropy value can be obtained by multiplying the natural logarithm of the a priori degeneracy of a certain distribution (Ω) and the Boltzmann constant. The results of Ω and In Ω of the Tc complexes have a narrow range. The results of this research are able to provide a basic concept for the SAS to explain the structure-stability relationship and to improve Kung's model. (author)

  20. The Role of Configurational Entropy in Amorphous Systems

    Kirsten A. Graeser

    2010-05-01

    Full Text Available Configurational entropy is an important parameter in amorphous systems. It is involved in the thermodynamic considerations, plays an important role in the molecular mobility calculations through its appearance in the Adam-Gibbs equation and provides information on the solubility increase of an amorphous form compared to its crystalline counterpart. This paper presents a calorimetric method which enables the scientist to quickly determine the values for the configurational entropy at any temperature and obtain the maximum of information from these measurements.

  1. Absolute Configurations of Zingiberenols Isolated from Ginger (Zingiber officinale) Rhizomes.

    Khrimian, Ashot; Shirali, Shyam; Guzman, Filadelfo

    2015-12-24

    Two stereoisomeric zingiberenols in ginger were identified as (3R,6R,7S)-1,10-bisaboladien-3-ol (2) and (3S,6R,7S)-1,10-bisaboladien-3-ol (5). Absolute configurations were assigned by utilizing 1,10-bisaboladien-3-ol stereoisomers and two gas-chromatography columns: a 25 m Hydrodex-β-6TBDM and 60 m DB-5MS. The C-6 and C-7 absolute configurations in both zingiberenols match those of zingiberene present abundantly in ginger rhizomes. Interestingly, zingiberenol 2 has recently been identified as a male-produced sex pheromone of the rice stink bug, Oebalus poecilus, thus indicating that ginger plants may be a potential source of the sex pheromone of this bug. PMID:26606508

  2. Synthesis and Absolute Configuration of the Diynediol from Psathyrella scobinacea

    WU Jianzhong; WU Yikang; JIAN Yajun; ZHANG Yihua

    2009-01-01

    All the four isomers of Scobidiynediol (hepta-4,6-diyne-2,3-diol), a natural product isolated from white-rot fungus Psathyrella scobinacea, were synthesized using either (R)-or(S)-lactate as the source of chirality. The rela-tive configurations of the diols were established by NOE experiments performed on the cyclic acetonides. The rela-tive as well as absolute configurations of the natural Scobidiynediol was assigned as (2S,3S) through comparison of the optical rotation and 1H NMR data.

  3. Assignment of Absolute Configuration to SCH 351448 via Total Synthesis∫

    Lael L. Cheung; Marumoto, Shinji; Anderson, Christopher D.; Rychnovsky, Scott D.

    2008-01-01

    The synthesis and absolute configuration of SCH 351448, an interesting ionophoric natural product, are reported herein. Mukaiyama aldol-Prins and segment-coupling Prins reactions were employed to construct the constituent tetrahydropyrans of SCH 351448. Efforts to assemble the C2-symmetric core of the natural product by a templated olefin metathesis strategy are described, however, a stepwise fragment assembly was ultimately utilized to complete the target molecule.

  4. Configurational entropy of hydrogen-disordered ice polymorphs

    Herrero, Carlos P

    2014-01-01

    The configurational entropy of several H-disordered ice polymorphs is calculated by means of a thermodynamic integration along a path between a totally H-disordered state and one fulfilling the Bernal-Fowler ice rules. A Monte Carlo procedure based on a simple energy model is used, so that the employed thermodynamic path drives the system from high temperatures to the low-temperature limit. This method turns out to be precise enough to give reliable values for the configurational entropy of different ice phases in the thermodynamic limit (number of molecules N --> infinity). The precision of the method is checked for the ice model on a two-dimensional square lattice. Results for the configurational entropy are given for H-disordered arrangements on several polymorphs, including ices Ih, Ic, II, III, IV, V, VI, and XII. The highest and lowest entropy values correspond to ices VI and XII, respectively, with a difference of 3.3\\% between them. The dependence of the entropy on the ice structures has been rational...

  5. Sequence-Dependent Configurational Entropy Change of DNA upon Intercalation

    Kolář, Michal; Kubař, T.; Hobza, Pavel

    2010-01-01

    Roč. 114, č. 42 (2010), s. 13446-13454. ISSN 1520-6106 R&D Projects: GA MŠk LC512; GA ČR GA203/06/1727 Institutional research plan: CEZ:AV0Z40550506 Keywords : configurational entropy * dna...ligand binding * molecular dynamic Subject RIV: CC - Organic Chemistry Impact factor: 3.603, year: 2010

  6. Absolute configuration and antimicrobial activity of acylhomoserine lactones.

    Pomini, Armando M; Marsaioli, Anita J

    2008-06-01

    (S)-N-Heptanoylhomoserine lactone is an uncommon acyl odd-chain natural product employed by many Gram-negative bacteria as a signaling substance in chemical communication mechanisms known as quorum sensing. The absolute configuration determination of the metabolite produced by the phytopathogen Pantoea ananatis Serrano is reported herein. As with all other substances of this class, the lactone moiety possesses S configuration, corroborating the hypothesis that it shares the same biosynthetic pathway as the (S)-N-hexanoylhomoserine lactone and also that some LuxI homologues can accept both hexanoyl- and heptanoyl-ACP as precursors. Evaluation of the antimicrobial activity of enantiomeric acylhomoserine lactones against three Gram-positive bacteria (Bacillus cereus, B. subtilis, and Staphylococcus aureus) revealed important features between absolute configuration and antimicrobial activity. The N-heptanoylhomoserine lactone was considerably less active than the 3-oxo derivatives. Surprisingly, non-natural (R)-N-(3-oxo-octanoyl)homoserine lactone was as active as the S enantiomer against B. cereus, while the synthetic racemic product was less active than either enantiomer. PMID:18465897

  7. Configurational entropy in $f(R,T)$ brane models

    Correa, R A C

    2015-01-01

    In this work we investigate generalized theories of gravity in the so-called configurational entropy (CE) context. We show, by means of this information-theoretical measure, that a stricter bound on the parameter of $f(R,T)$ brane models arises from the CE. We find that these bounds are characterized by a valley region in the CE profile, where the entropy is minimal. We argue that the CE measure can open a new role and an important additional approach to select parameters in modified theories of gravitation.

  8. Configurational entropy in f(R,T) brane models

    Correa, R.A.C. [Universidade Federal do ABC, CCNH, Santo Andre, Sao Paulo (Brazil); Moraes, P.H.R.S. [ITA, Instituto Tecnologico de Aeronautica, Sao Jose dos Campos, Sao Paulo (Brazil)

    2016-02-15

    In this work we investigate generalized theories of gravity in the so-called configurational entropy (CE) context. We show, by means of this information-theoretical measure, that a stricter bound on the parameter of f(R, T) brane models arises from the CE. We find that these bounds are characterized by a valley region in the CE profile, where the entropy is minimal. We argue that the CE measure can play a new role and might be an important additional approach to selecting parameters in modified theories of gravitation. (orig.)

  9. Configurational Information as Potentially Negative Entropy: The Triple Helix Model

    Loet Leydesdorff

    2008-10-01

    Full Text Available Configurational information is generated when three or more sources of variance interact. The variations not only disturb each other relationally, but by selecting upon each other, they are also positioned in a configuration. A configuration can be stabilized and/or globalized. Different stabilizations can be considered as second-order variation, and globalization as a second-order selection. The positive manifestations and the negative selections operate upon one another by adding and reducing uncertainty, respectively. Reduction of uncertainty in a configuration can be measured in bits of information. The variables can also be considered as dimensions of the probabilistic entropy in the system(s under study. The configurational information then provides us with a measure of synergy within a complex system. For example, the knowledge base of an economy can be considered as such a synergy in the otherwise virtual (that is, fourth dimension of a regime

  10. Enhanced Configurational Entropy in High-Density Nanoconfined Bilayer Ice

    Corsetti, Fabiano; Zubeltzu, Jon; Artacho, Emilio

    2016-02-01

    A novel kind of crystal order in high-density nanoconfined bilayer ice is proposed from molecular dynamics and density-functional theory simulations. A first-order transition is observed between a low-temperature proton-ordered solid and a high-temperature proton-disordered solid. The latter is shown to possess crystalline order for the oxygen positions, arranged on a close-packed triangular lattice with A A stacking. Uniquely among the ice phases, the triangular bilayer is characterized by two levels of disorder (for the bonding network and for the protons) which results in a configurational entropy twice that of bulk ice.

  11. Turning intractable counting into sampling: Computing the configurational entropy of three-dimensional jammed packings.

    Martiniani, Stefano; Schrenk, K Julian; Stevenson, Jacob D; Wales, David J; Frenkel, Daan

    2016-01-01

    We present a numerical calculation of the total number of disordered jammed configurations Ω of N repulsive, three-dimensional spheres in a fixed volume V. To make these calculations tractable, we increase the computational efficiency of the approach of Xu et al. [Phys. Rev. Lett. 106, 245502 (2011)10.1103/PhysRevLett.106.245502] and Asenjo et al. [Phys. Rev. Lett. 112, 098002 (2014)10.1103/PhysRevLett.112.098002] and we extend the method to allow computation of the configurational entropy as a function of pressure. The approach that we use computes the configurational entropy by sampling the absolute volume of basins of attraction of the stable packings in the potential energy landscape. We find a surprisingly strong correlation between the pressure of a configuration and the volume of its basin of attraction in the potential energy landscape. This relation is well described by a power law. Our methodology to compute the number of minima in the potential energy landscape should be applicable to a wide range of other enumeration problems in statistical physics, string theory, cosmology, and machine learning that aim to find the distribution of the extrema of a scalar cost function that depends on many degrees of freedom. PMID:26871142

  12. A simplified confinement method for calculating absolute free energies and free energy and entropy differences.

    Ovchinnikov, Victor; Cecchini, Marco; Karplus, Martin

    2013-01-24

    A simple and robust formulation of the path-independent confinement method for the calculation of free energies is presented. The simplified confinement method (SCM) does not require matrix diagonalization or switching off the molecular force field, and has a simple convergence criterion. The method can be readily implemented in molecular dynamics programs with minimal or no code modifications. Because the confinement method is a special case of thermodynamic integration, it is trivially parallel over the integration variable. The accuracy of the method is demonstrated using a model diatomic molecule, for which exact results can be computed analytically. The method is then applied to the alanine dipeptide in vacuum, and to the α-helix ↔ β-sheet transition in a 16-residue peptide modeled in implicit solvent. The SCM requires less effort for the calculation of free energy differences than previous formulations because it does not require computing normal modes. The SCM has a diminished advantage for determining absolute free energy values, because it requires decreasing the MD integration step to obtain accurate results. An approximate confinement procedure is introduced, which can be used to estimate directly the configurational entropy difference between two macrostates, without the need for additional computation of the difference in the free energy or enthalpy. The approximation has convergence properties similar to those of the standard confinement method for the calculation of free energies. The use of the approximation requires about 5 times less wall-clock simulation time than that needed to compute enthalpy differences to similar precision from an MD trajectory. For the biomolecular systems considered in this study, the errors in the entropy approximation are under 10%. Practical applications of the methods to proteins are currently limited to implicit solvent simulations. PMID:23268557

  13. Redetermined structure, intermolecular interactions and absolute configuration of royleanone

    Hoong-Kun Fun

    2011-05-01

    Full Text Available The structure of the title diterpenoid, C20H28O3, {systematic name: (4bS,8aS-3-hydroxy-2-isopropyl-4b,8,8-trimethyl-4b,5,6,7,8,8a,9,10-octahydrophenanthrene-1,4-dione} is confirmed [Eugster et al. (1993. Private communication (refcode HACGUN. CCDC, Union Road, Cambridge] and its packing is now described. Its absolute structure was established by refinement against data collected with Cu radiation: the two stereogenic centres both have S configurations. One cyclohexane ring adopts a chair conformation whereas the other cyclohexane ring is in a half-chair conformation and the benzoquinone ring is slightly twisted. An intramolecular O—H...O hydrogen bond generates an S(5 ring motif. In the crystal, molecules are linked into chains along [010] by O—H...O hydrogen bonds and weak C—H...O interactions. The packing also features C...O [3.131 (3 Å] short contacts.

  14. Cold spots in quantum systems far from equilibrium: Local entropies and temperatures near absolute zero

    Shastry, Abhay; Stafford, Charles A.

    2015-12-01

    We consider a question motivated by the third law of thermodynamics: Can there be a local temperature arbitrarily close to absolute zero in a nonequilibrium quantum system? We consider nanoscale quantum conductors with the source reservoir held at finite temperature and the drain held at or near absolute zero, a problem outside the scope of linear response theory. We obtain local temperatures close to absolute zero when electrons originating from the finite temperature reservoir undergo destructive quantum interference. The local temperature is computed by numerically solving a nonlinear system of equations describing equilibration of a scanning thermoelectric probe with the system, and we obtain excellent agreement with analytic results derived using the Sommerfeld expansion. A local entropy for a nonequilibrium quantum system is introduced and used as a metric quantifying the departure from local equilibrium. It is shown that the local entropy of the system tends to zero when the probe temperature tends to zero, consistent with the third law of thermodynamics.

  15. Topological Research on Standard Absolute Entropies,S(○)298, for Binary Inorganic Compounds

    2008-01-01

    For predicting the standard entropy of a binary inorganic compound, two novel connectivity indexes mQ,mG and their converse indexes mQ',mG' based on adjacency matrix of molecular graphs and ionic parameters gi, qi were pro-posed. The qi and gi are defined as qi=(1.1+Zi1.1)/(1.7+ni), gi:(1.4d-Zi)/(0.9+ri+ri-1), where Zi, ni, ri are the charge numbers, the outer electronic shell primary quantum numbers, and the radii of ionic I respectively. The good Quantitative Structure-Property Relationship (QSPR) models for the standard entropies of binary inorganic com-pound can be constructed from 0Q,0Q',1G, and 1G', by using a multivariate linear regression (MLR) method and an artificial neural network (NN) method. The correlation coefficient r, the standard error s, and the average absolute deviation of the MLR model and the NN model are 0.9905, 8.29 J·K-1,mol-1 and 6.48 J·K-1·mol-1, and 0.9960,5.37 J·K-1·mol-1 and 3.90 J·K-1·mol-1, respectively, for 371 binary inorganic compounds (training set). The cross-validation by using the leave-one-out method demonstrates that the MLR model is highly reliable from the point of view of statistics. The correlation coefficients, standard deviations and average absolute deviations of pre-dicted values of the standard entropies of other 185 binary inorganic compounds (test set) are 0.9897, 8.64 J·K-1·mol-1 and 6.84 J·K-1·mol-1, and 0.9957, 5.63 J·K-1·mol-1 and 4.18 J·K-1·mol-1 for the MLR model and the Nnmodel, respectively. The results show that the current method is more effective than literature methods for estimat-ing the standard entropy of a binary inorganic compound. Both MLR and NN methods can provide acceptable mod-els for the prediction of the standard entropies of binary inorganic compounds. The NN model for the standard en-tropies appears to be more reliable than the MLR model.

  16. Elucidating the Energetics of Entropically Driven Protein–Ligand Association: Calculations of Absolute Binding Free Energy and Entropy

    Deng, Nan-jie; Zhang, Peng; Cieplak, Piotr; Lai, Luhua

    2014-01-01

    The binding of proteins and ligands is generally associated with the loss of translational, rotational, and conformational entropy. In many cases, however, the net entropy change due to binding is positive. To develop a deeper understanding of the energetics of entropically driven protein–ligand binding, we calculated the absolute binding free energies and binding entropies for two HIV-1 protease inhibitors Nelfinavir and Amprenavir using the double-decoupling method with molecular dynamics simulations in explicit solvent. For both ligands, the calculated absolute binding free energies are in general agreement with experiments. The statistical error in the computed ΔG(bind) due to convergence problem is estimated to be ≥2 kcal/mol. The decomposition of free energies indicates that, although the binding of Nelfinavir is driven by nonpolar interaction, Amprenavir binding benefits from both nonpolar and electrostatic interactions. The calculated absolute binding entropies show that (1) Nelfinavir binding is driven by large entropy change and (2) the entropy of Amprenavir binding is much less favorable compared with that of Nelfinavir. Both results are consistent with experiments. To obtain qualitative insights into the entropic effects, we decomposed the absolute binding entropy into different contributions based on the temperature dependence of free energies along different legs of the thermodynamic pathway. The results suggest that the favorable entropic contribution to binding is dominated by the ligand desolvation entropy. The entropy gain due to solvent release from binding site appears to be more than offset by the reduction of rotational and vibrational entropies upon binding. PMID:21899337

  17. Elucidating the energetics of entropically driven protein-ligand association: calculations of absolute binding free energy and entropy.

    Deng, Nan-jie; Zhang, Peng; Cieplak, Piotr; Lai, Luhua

    2011-10-20

    The binding of proteins and ligands is generally associated with the loss of translational, rotational, and conformational entropy. In many cases, however, the net entropy change due to binding is positive. To develop a deeper understanding of the energetics of entropically driven protein-ligand binding, we calculated the absolute binding free energies and binding entropies for two HIV-1 protease inhibitors Nelfinavir and Amprenavir using the double-decoupling method with molecular dynamics simulations in explicit solvent. For both ligands, the calculated absolute binding free energies are in general agreement with experiments. The statistical error in the computed ΔG(bind) due to convergence problem is estimated to be ≥2 kcal/mol. The decomposition of free energies indicates that, although the binding of Nelfinavir is driven by nonpolar interaction, Amprenavir binding benefits from both nonpolar and electrostatic interactions. The calculated absolute binding entropies show that (1) Nelfinavir binding is driven by large entropy change and (2) the entropy of Amprenavir binding is much less favorable compared with that of Nelfinavir. Both results are consistent with experiments. To obtain qualitative insights into the entropic effects, we decomposed the absolute binding entropy into different contributions based on the temperature dependence of free energies along different legs of the thermodynamic pathway. The results suggest that the favorable entropic contribution to binding is dominated by the ligand desolvation entropy. The entropy gain due to solvent release from binding site appears to be more than offset by the reduction of rotational and vibrational entropies upon binding. PMID:21899337

  18. Configurational Entropy,Diffusivity and Potential Energy Landscape in Liquid Argon

    DUAN Yong-Ping; MA Cong-Xiao; LI Jia-Yun; LI Cong; WANG Dan; LI Mei-Li; SUN Min-Hua

    2009-01-01

    The configurational entropy, diffusion coefficient, dynamics and thermodynamics fragility indices of liquid argon are calculated using molecular dynamics simulations at two densities. The relationship between dynamics and thermodynamics properties is studied. The diffusion coefficient depends linearly on configurational entropy, which is consistent with the hypothesis of Adam-Gibbs. The consistence of dynamics and thermodynamics fragility indices demonstrates that dynamical behaviour is governed by thermodynamics behaviour in glass transition of liquid argon.

  19. Antiausterity activity of arctigenin enantiomers: importance of (2R,3R)-absolute configuration.

    Awale, Suresh; Kato, Mamoru; Dibwe, Dya Fita; Li, Feng; Miyoshi, Chika; Esumi, Hiroyasu; Kadota, Shigetoshi; Tezuka, Yasuhiro

    2014-01-01

    From a MeOH extract of powdered roots of Wikstroemia indica, six dibenzyl-gamma-butyrolactone-type lignans with (2S,3S)-absolute configuration [(+)-arctigenin (1), (+)-matairesinol (2), (+)-trachelogenin (3), (+)-nortrachelogenin (4), (+)-hinokinin (5), and (+)-kusunokinin (6)] were isolated, whereas three dibenzyl-gamma-butyrolactone-type lignans with (2R,3R)-absolute configuration [(-)-arctigenin (1*), (-)-matairesinol (2*), (-)-trachelogenin (3*)] were isolated from Trachelospermum asiaticum. The in vitro preferential cytotoxic activity of the nine compounds was evaluated against human pancreatic PANC-1 cancer cells in nutrient-deprived medium (NDM), but none of the six lignans (1-6) with (2S,3S)-absolute configuration showed preferential cytotoxicity. On the other hand, three lignans (1*-3*) with (2R,3R)-absolute configuration exhibited preferential cytotoxicity in a concentration-dependent manner with PC50 values of 0.54, 6.82, and 5.85 microM, respectively. Furthermore, the effect of (-)- and (+)-arctigenin was evaluated against the activation of Akt, which is a key process in the tolerance to nutrition starvation. Interestingly, only (-)-arctigenin (1*) strongly suppressed the activation of Akt. These results indicate that the (2R,3R)-absolute configuration of (-)-enantiomers should be required for the preferential cytotoxicity through the inhibition of Akt activation. PMID:24660468

  20. A "configurational-entropy-loss" law for the non-Arrhenius relaxation in disordered systems

    Wang, Yi-zhen; Zhang, Jin-xiu

    2012-01-01

    Based on Nowick's self-induced ordering theory, we develop a new configurational-entropy relation to describe the non-Arrhenius temperature(T)-dependent relaxation in disordered systems. Both the configurational-entropy loss and the coupling interaction among relaxing units (RUs) are explicitly introduced in this relation; thus, it offers a novel connection between kinetics and thermodynamics that is different from the Adam-Gibbs (A-G) entropy relation, and it generalizes several well-known currently used relations. The present relation can provide direct and more accurate estimates of (i) the intrinsic activation enthalpy, (ii) the T-evolvement of the systematic configurational entropy loss and (iii) the self-induced ordering temperature Tc, which characterizes the coupling interaction among RUs. Application of the theory to experimental relaxation-time data for typical organic liquids demonstrates its validity.

  1. Chiral liquid chromatography contribution to the determination of the absolute configuration of enantiomers.

    Roussel, Christian; Del Rio, Alberto; Pierrot-Sanders, Johanna; Piras, Patrick; Vanthuyne, Nicolas

    2004-05-28

    The review covers examples in which chiral HPLC, as a source of pure enantiomers, has been combined with classical methods (X-ray, vibrational circular dichroism (VCD), enzymatic resolutions, nuclear magnetic resonance (NMR) techniques, optical rotation, circular dichroism (CD)) for the on- or off-line determination of absolute configuration of enantiomers. Furthermore, it is outlined that chiral HPLC, which associates enantioseparation process and classical purification process, opens new perspectives in the classical determination of absolute configuration by chemical correlation or chemical interconversion methods. The review also contains a discussion about the various approaches to predict the absolute configuration from the retention behavior of the enantiomers on chiral stationary phases (CSPs). Some examples illustrate the advantages and limitations of molecular modeling methods and the use of chiral recognition models. The assumptions underlying some of these methods are critically analyzed and some possible emerging new strategies are outlined. PMID:15214673

  2. Determination of the absolute configuration of sialic acids in gangliosides from the sea cucumber Cucumaria echinata.

    Kisa, Fumiaki; Yamada, Koji; Miyamoto, Tomofumi; Inagaki, Masanori; Higuchi, Ryuichi

    2007-07-01

    Enantiomeric pairs of sialic acid, D- and L-NeuAc (N-acetylneuraminic acid), were converted to D- and L-arabinose, respectively, by chemical degradation. Using this method, the absolute configuration of the sialic acid residues, NeuAc and NeuGc (N-glycolylneuraminic acid), in the gangliosides from the sea cucumber Cucumaria echinata was determined to be the D-form. Although naturally occurring sialic acids have been believed to be the D-form on the basis of biosynthetic evidence, this is the first report of the determination of the absolute configuration of the sialic acid residues in gangliosides using chemical methods. PMID:17603199

  3. Configurational entropy of polar glass formers and the effect of electric field on glass transition

    Matyushov, Dmitry V.

    2016-07-01

    A model of low-temperature polar liquids is constructed that accounts for the configurational heat capacity, entropy, and the effect of a strong electric field on the glass transition. The model is based on the Padé-truncated perturbation expansions of the liquid state theory. Depending on parameters, it accommodates an ideal glass transition of vanishing configurational entropy and its avoidance, with a square-root divergent enumeration function at the point of its termination. A composite density-temperature parameter ργ/T, often used to represent combined pressure and temperature data, follows from the model. The theory is in good agreement with the experimental data for excess (over the crystal state) thermodynamics of molecular glass formers. We suggest that the Kauzmann entropy crisis might be a signature of vanishing configurational entropy of a subset of degrees of freedom, multipolar rotations in our model. This scenario has observable consequences: (i) a dynamical crossover of the relaxation time and (ii) the fragility index defined by the ratio of the excess heat capacity and excess entropy at the glass transition. The Kauzmann temperature of vanishing configurational entropy and the corresponding glass transition temperature shift upward when the electric field is applied. The temperature shift scales quadratically with the field strength.

  4. Methods for calculating the absolute entropy and free energy of biological systems based on ideas from polymer physics.

    Meirovitch, Hagai

    2010-01-01

    The commonly used simulation techniques, Metropolis Monte Carlo (MC) and molecular dynamics (MD) are of a dynamical type which enables one to sample system configurations i correctly with the Boltzmann probability, P(i)(B), while the value of P(i)(B) is not provided directly; therefore, it is difficult to obtain the absolute entropy, S approximately -ln P(i)(B), and the Helmholtz free energy, F. With a different simulation approach developed in polymer physics, a chain is grown step-by-step with transition probabilities (TPs), and thus their product is the value of the construction probability; therefore, the entropy is known. Because all exact simulation methods are equivalent, i.e. they lead to the same averages and fluctuations of physical properties, one can treat an MC or MD sample as if its members have rather been generated step-by-step. Thus, each configuration i of the sample can be reconstructed (from nothing) by calculating the TPs with which it could have been constructed. This idea applies also to bulk systems such as fluids or magnets. This approach has led earlier to the "local states" (LS) and the "hypothetical scanning" (HS) methods, which are approximate in nature. A recent development is the hypothetical scanning Monte Carlo (HSMC) (or molecular dynamics, HSMD) method which is based on stochastic TPs where all interactions are taken into account. In this respect, HSMC(D) can be viewed as exact and the only approximation involved is due to insufficient MC(MD) sampling for calculating the TPs. The validity of HSMC has been established by applying it first to liquid argon, TIP3P water, self-avoiding walks (SAW), and polyglycine models, where the results for F were found to agree with those obtained by other methods. Subsequently, HSMD was applied to mobile loops of the enzymes porcine pancreatic alpha-amylase and acetylcholinesterase in explicit water, where the difference in F between the bound and free states of the loop was calculated. Currently

  5. Synthesis and Determination of Absolute Configuration of a Divergent Polyhydroxy Enyne Compound

    Zhi Jie XUE; Yuan Chao LI

    2005-01-01

    Polyhydroxy enyne compound (+)-(1'S, 2R, 3S, 5S, 6S)-5,6-dimethoxy-5, 6-dimethyl-2-(1'-hydroxylpropyl-2-ne)-3-vinyl-1,4-dioxane has been synthesized from D-(-)-tartaric acid. A new chiral center was established by nucleophilic addition with 87% de. The modified Mosher's method was employed to confirm the absolute configuration of 17, which assigned the S-configuration at the new chiral center.

  6. Structure and Absolute Configuration of Nyasol and Hinokiresinol via Synthesis and Vibrational Circular Dichroism Spectroscopy

    Lassen, Peter Rygaard

    2005-01-01

    enables establishment of the absolute configuration of (-)-hinokiresinol, which is concluded to be S. A total synthesis and resolution of hinokiresinol has been performed to resolve the conflicting reports of the coupling constant of the vinylic protons of the disubstituted double bond in this molecule...

  7. Structure determination and absolute configuration of cannabichromanone derivatives from high potency Cannabis sativa

    Ahmed, Safwat A.; Ross, Samir A.; Slade, Desmond; Radwan, Mohamed M.; Khan, Ikhlas A.; Mahmoud A. ElSohly

    2008-01-01

    Three new cannabichromanone derivatives were isolated from high potency cannabis, along with the known cannabichromanone. Full spectroscopic data, including the use of electronic circular dichroism and Mosher ester analysis to determine the absolute configuration of these compounds, are reported. All isolates were tested for antimicrobial, antimalarial, antileishmanial and anti-oxidant activity.

  8. QSPR study of standard absolute entropies for gaseous organic compounds using novel molecular connectivity indexes and Ring parameter

    Highlights: ► Variable atomic valence connectivity index δ′i, Ring parameter H, and variable molecular connectivity index mχ′k were proposed. ► A good four-parameter model can be constructed from H and mχ′k by using the best subsets regression analysis method. ► The MLR method can provide an accurate model for the prediction of the standard absolute entropies of gaseous organic compounds. - Abstract: For predicting the standard absolute entropies of gaseous organic compounds, variable molecular connectivity index mχ′k and Ring parameter H, based on adjacency matrix of molecular graphs, variable atomic valence connectivity index δ′i, and the numbers of chains (cycles) atomic of molecule niR, were proposed. The optimal values of parameters c, a, mi, and y included in the definition of δ′i, and mχ′k can be found by optimization method. When c = 0.91, a = 1.3, and y = 0.22, a good four-parameter model can be constructed from H and mχ′k by using the best subsets regression analysis method for the standard absolute entropies of gaseous organic compounds. The results show that the MLR method can provide an accurate model for the prediction of the standard absolute entropies of gaseous organic compounds.

  9. Communication: Probing the absolute configuration of chiral molecules at aqueous interfaces

    We demonstrate that the enantiomers of chiral macromolecules at an aqueous interface can be distinguished with monolayer sensitivity using heterodyne-detected vibrational sum-frequency generation (VSFG). We perform VSFG spectroscopy with a polarization combination that selectively probes chiral molecular structures. By using frequencies far detuned from electronic resonances, we probe the chiral macromolecular structures with high surface specificity. The phase of the sum-frequency light generated by the chiral molecules is determined using heterodyne detection. With this approach, we can distinguish right-handed and left-handed helical peptides at a water-air interface. We thus show that heterodyne-detected VSFG is sensitive to the absolute configuration of complex, interfacial macromolecules and has the potential to determine the absolute configuration of enantiomers at interfaces

  10. Communication: Probing the absolute configuration of chiral molecules at aqueous interfaces

    Lotze, Stephan, E-mail: lotze@amolf.nl; Versluis, Jan [FOM Institute for Atomic and Molecular Physics, Science Park 104, 1098 XG Amsterdam (Netherlands); Olijve, Luuk L. C.; Schijndel, Luuk van; Milroy, Lech G.; Voets, Ilja K. [Laboratory of Macromolecular and Organic Chemistry, Department of Chemical Engineering and Chemistry, and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (Netherlands); Bakker, Huib J., E-mail: bakker@amolf.nl [FOM Institute AMOLF, Science Park 104, 1098 XG Amsterdam (Netherlands)

    2015-11-28

    We demonstrate that the enantiomers of chiral macromolecules at an aqueous interface can be distinguished with monolayer sensitivity using heterodyne-detected vibrational sum-frequency generation (VSFG). We perform VSFG spectroscopy with a polarization combination that selectively probes chiral molecular structures. By using frequencies far detuned from electronic resonances, we probe the chiral macromolecular structures with high surface specificity. The phase of the sum-frequency light generated by the chiral molecules is determined using heterodyne detection. With this approach, we can distinguish right-handed and left-handed helical peptides at a water-air interface. We thus show that heterodyne-detected VSFG is sensitive to the absolute configuration of complex, interfacial macromolecules and has the potential to determine the absolute configuration of enantiomers at interfaces.

  11. Three Sesquiterpenoid Dimers from Chloranthus japonicus: Absolute Configuration of Chlorahololide A and Related Compounds.

    Shi, Xin-Wei; Lu, Qiang-Qiang; Pescitelli, Gennaro; Ivšić, Trpimir; Zhou, Jun-Hui; Gao, Jin-Ming

    2016-02-01

    A novel sesquiterpenoid dimer, named multistalide C (1), together with two known congeners, shizukaols C (2) and D (3), was isolated from the whole plant of Chloranthus japonicus Sieb. The structures of compounds 1-3 were elucidated by extensive HR-ESI-MS, 1D, and 2D NMR spectroscopic analysis. Compounds 1-3 exhibited significant toxic effects on brine shrimp larvae (Artemia salina). The absolute configuration of 1 was established by CD/TDDFT calculations. The related compound chlorahololide A was also reinvestigated. The previous assignment of the absolute configuration of chlorahololide A and several related sesquiterpenoid dimers, based on an incorrect application of the exciton chirality method, is criticized. PMID:26708509

  12. Enantioselective Total Synthesis of (+)-Steenkrotin A and Determination of Its Absolute Configuration.

    Pan, Saiyong; Gao, Beiling; Hu, Jialei; Xuan, Jun; Xie, Hujun; Ding, Hanfeng

    2016-01-18

    The first enantioselective total synthesis of (+)-steenkrotin A has been achieved in 18 steps and 4.2 % overall yield. The key features of the strategy entail a Rh-catalyzed O-H bond insertion followed by an intramolecular carbonyl-ene reaction, two sequential SmI2 -mediated Ueno-Stork and ketyl-olefin cyclizations, and a cascade intramolecular aldol condensation/vinylogous retro-aldol/aldol process with inversion of the relative configuration at the C7 position. The absolute configuration of (+)-steenkrotin A was determined based on the stepwise construction of the stereocenters during the total synthesis. PMID:26660855

  13. Asymmetric Synthesis and Absolute Configuration Assignment of a New Type of Bedaquiline Analogue

    Chang-Jiang Qiao; Xiao-Kui Wang; Fei Xie; Wu Zhong; Song Li

    2015-01-01

    Bedaquiline is the first FDA-approved new chemical entity to fight multidrug-resistant tuberculosis in the last forty years. Our group replaced the quinoline ring with a naphthalene ring, leading to a new type of triarylbutanol skeleton. An asymmetric synthetic route was established for our bedaquiline analogues, and the goal of assigning their absolute configurations was achieved by comparison of experimental and calculated electronic circular dichroism spectra, and was confirmed by the comb...

  14. A critical assessment of possible pitfalls in absolute configuration assignment using Vibrational Circular Dichroism

    Debie, Elke

    2009-01-01

    Vibrational Circular Dichroism (VCD) is no longuer a curious novelty in the field of molecular spectroscopy as VCD spectrometers are commercially available as well as the algorithms to calculate the spectra, which are implemented in various software packages. This makes VCD routinely applicable for the determination of absolute configurations. The VCD technique is gaining interest in mainly pharmaceutical industry and the technique also has been accepted by regulatory agencies (e.g. FDA) as a...

  15. Enantiomeric Lignans and Neolignans from Phyllanthus glaucus: Enantioseparation and Their Absolute Configurations.

    Wu, Zhaodi; Lai, Yongji; Zhou, Lei; Wu, Ye; Zhu, Hucheng; Hu, Zhengxi; Yang, Jing; Zhang, Jinwen; Wang, Jianping; Luo, Zengwei; Xue, Yongbo; Zhang, Yonghui

    2016-01-01

    Eight pairs of enantiomeric neolignans, norlignans, and sesquineolignans (1a/1b-8a/8b), together with five known neolignans (9a/9b and 10-12), have been isolated from 70% acetone extract of the whole plants of Phyllanthus glaucus Wall. (Euphorbiaceae). The racemic or partial racemic mixtures were successfully separated by chiral HPLC using different types of chiral columns with various mobile phases. Their structures were elucidated on the basis of extensive spectroscopic data. The absolute configurations of 2a/2b were determined by computational analysis of their electronic circular dichroism (ECD) spectrum, and the absolute configurations of other isolates were ascertained by comparing their experimental ECD spectra and optical rotation values with those of structure-relevant compounds reported in literatures. Compounds 4a/4b featured unique sesquineolignan skeletons with a novel 7-4'-epoxy-8'-8''/7'-2'' scaffold, consisting of an aryltetrahydronaphthalene and a dihydrobenzofuran moiety. The planar structures of compounds 2, 3, 7, and 8 were documented previously; however, their absolute configurations were established for the first time in this study. The antioxidant activities of 1a/1b-8a/8b were evaluated using DPPH free radical scavenging assay, and the results demonstrated that compounds 1b and 3b showed potent DPPH radical scavenging activities with IC50 values of 5.987 ± 1.212 and 9.641 ± 0.865 μg/mL, respectively. PMID:27126373

  16. PARENT: A Parallel Software Suite for the Calculation of Configurational Entropy in Biomolecular Systems.

    Fleck, Markus; Polyansky, Anton A; Zagrovic, Bojan

    2016-04-12

    Accurate estimation of configurational entropy from the in silico-generated biomolecular ensembles, e.g., from molecular dynamics (MD) trajectories, is dependent strongly on exhaustive sampling for physical reasons. This, however, creates a major computational problem for the subsequent estimation of configurational entropy using the Maximum Information Spanning Tree (MIST) or Mutual Information Expansion (MIE) approaches for internal molecular coordinates. In particular, the available software for such estimation exhibits serious limitations when it comes to molecules with hundreds or thousands of atoms, because of its reliance on a serial program architecture. To overcome this problem, we have developed a parallel, hybrid MPI/openMP C++ implementation of MIST and MIE, called PARENT, which is particularly optimized for high-performance computing and provides efficient estimation of configurational entropy in different biological processes (e.g., protein-protein interactions). In addition, PARENT also allows for a detailed mapping of intramolecular allosteric networks. Here, we benchmark the program on a set of 1-μs-long MD trajectories of 10 different protein complexes and their components, demonstrating robustness and good scalability. A direct comparison between MIST and MIE on the same dataset demonstrates a superior convergence behavior for the former approach, when it comes to total simulation length and configurational-space binning. PMID:26989950

  17. Enantiomeric Lignans and Neolignans from Phyllanthus glaucus: Enantioseparation and Their Absolute Configurations

    Wu, Zhaodi; Lai, Yongji; Zhou, Lei; Wu, Ye; Zhu, Hucheng; Hu, Zhengxi; Yang, Jing; Zhang, Jinwen; Wang, Jianping; Luo, Zengwei; Xue, Yongbo; Zhang, Yonghui

    2016-01-01

    Eight pairs of enantiomeric neolignans, norlignans, and sesquineolignans (1a/1b–8a/8b), together with five known neolignans (9a/9b and 10–12), have been isolated from 70% acetone extract of the whole plants of Phyllanthus glaucus Wall. (Euphorbiaceae). The racemic or partial racemic mixtures were successfully separated by chiral HPLC using different types of chiral columns with various mobile phases. Their structures were elucidated on the basis of extensive spectroscopic data. The absolute configurations of 2a/2b were determined by computational analysis of their electronic circular dichroism (ECD) spectrum, and the absolute configurations of other isolates were ascertained by comparing their experimental ECD spectra and optical rotation values with those of structure-relevant compounds reported in literatures. Compounds 4a/4b featured unique sesquineolignan skeletons with a novel 7-4′-epoxy-8′-8′′/7′-2′′ scaffold, consisting of an aryltetrahydronaphthalene and a dihydrobenzofuran moiety. The planar structures of compounds 2, 3, 7, and 8 were documented previously; however, their absolute configurations were established for the first time in this study. The antioxidant activities of 1a/1b–8a/8b were evaluated using DPPH free radical scavenging assay, and the results demonstrated that compounds 1b and 3b showed potent DPPH radical scavenging activities with IC50 values of 5.987 ± 1.212 and 9.641 ± 0.865 μg/mL, respectively. PMID:27126373

  18. Configurational entropy as a bounding of Gauss-Bonnet braneworld models

    Correa, R A C; Dutra, A de Souza; de Paula, W; Frederico, T

    2016-01-01

    Configurational entropy has been revealed as a reliable method for constraining some parameters of a given model [Phys. Rev. D \\textbf{92} (2015) 126005, Eur. Phys. J. C \\textbf{76} (2016) 100]. In this letter we calculate the configurational entropy in Gauss-Bonnet braneworld models. Our results restrict the range of acceptability of the Gauss-Bonnet scalar values. In this way, the information theoretical measure in Gauss-Bonnet scenarios opens a new window to probe situations where the additional parameters, responsible for the Gauss-Bonnet sector, are arbitrary. We also show that such an approach is very important in applications that include p and Dp-branes and various superstring-motivated theories.

  19. Asymmetric Synthesis and Absolute Configuration Assignment of a New Type of Bedaquiline Analogue

    Chang-Jiang Qiao

    2015-12-01

    Full Text Available Bedaquiline is the first FDA-approved new chemical entity to fight multidrug-resistant tuberculosis in the last forty years. Our group replaced the quinoline ring with a naphthalene ring, leading to a new type of triarylbutanol skeleton. An asymmetric synthetic route was established for our bedaquiline analogues, and the goal of assigning their absolute configurations was achieved by comparison of experimental and calculated electronic circular dichroism spectra, and was confirmed by the combined use of circular dichroism and NMR spectroscopy.

  20. Asymmetric Synthesis and Absolute Configuration Assignment of a New Type of Bedaquiline Analogue.

    Qiao, Chang-Jiang; Wang, Xiao-Kui; Xie, Fei; Zhong, Wu; Li, Song

    2015-01-01

    Bedaquiline is the first FDA-approved new chemical entity to fight multidrug-resistant tuberculosis in the last forty years. Our group replaced the quinoline ring with a naphthalene ring, leading to a new type of triarylbutanol skeleton. An asymmetric synthetic route was established for our bedaquiline analogues, and the goal of assigning their absolute configurations was achieved by comparison of experimental and calculated electronic circular dichroism spectra, and was confirmed by the combined use of circular dichroism and NMR spectroscopy. PMID:26690407

  1. Vibrational Circular Dichroism: Recent Advances for the Assignment of the Absolute Configuration of Natural Products.

    Burgueño-Tapia, Eleuterio; Joseph-Nathan, Pedro

    2015-10-01

    Vibrational circular dichroism (VCD) emerged during the last decade as a reliable tool for the absolute configuration (AC) determination of organic compounds. The principles, instrumentation, and methodology applied prior to early 2013 were recently reviewed by us. Since VCD is a very dynamic field, the aim of this review is to update VCD advances for the AC assignment of terpenoids, aromatic compounds, alkaloids, and other natural products for the 2013-2014 period, when VCD was applied to the AC assignment of some 70 natural products. In addition, although discovered in 2012, a brief introduction to the VCD exciton coupling approach and its applications in natural products AC assignment is presented. PMID:26669125

  2. Absolute Configuration of (-)-Centratherin, a Sesquiterpenoid Lactone, Defined by Means of Chiroptical Spectroscopy.

    Junior, Fernando M S; Covington, Cody L; de Albuquerque, Ana Carolina F; Lobo, Jonathas F R; Borges, Ricardo M; de Amorim, Mauro B; Polavarapu, Prasad L

    2015-11-25

    (-)-Centratherin is a bioactive sesquiterpenoid lactone, whose absolute configuration (AC) was not established, but has been proposed based on those of germacrane precursors. To verify this proposal, the experimental electronic circular dichroism (ECD), electronic dissymmetry factor (EDF), optical rotatory dispersion (ORD), vibrational circular dichroism (VCD), and vibrational dissymmetry factor (VDF) spectra of (-)-centratherin have been analyzed with the corresponding density functional theoretical predictions. These analyses suggest the AC of naturally occurring (-)-centratherin to be (6R,7R,8S,10R,2'Z). PMID:26565920

  3. Enantioselective total synthesis of the novel tricyclic sesquiterpene (−)-sulcatine G. Absolute configuration of the natural product

    Mehta, Goverdhan; Sreenivas, K.

    2002-01-01

    An enantioselective total synthesis of (−)-sulcatine G 4 from the readily available (+)-diquinane diol 6 has been accomplished. This leads to the establishment of the absolute configuration of the natural product (+)-sulcatine G as 1.

  4. Absolute configuration of 2-sec-butyl-4,5-dihydrothiazole in male mouse urine.

    Cavaggioni, Andrea; Mucignat-Caretta, Carla; Zagotto, Giuseppe

    2003-11-01

    The absolute configuration of 2-sec-butyl-4,5-dihydrothiazole (DHT) in urine of adult male mice was determined through chiral trifluoroacetyl derivative capillary chromatography by comparing the retention time with synthetic standards. (S)-DHT was extracted from fresh urine, while neither (R)-DHT nor the racemization of (S)-DHT were detected. We can conclude that DHT in urine possesses the S configuration, although we cannot exclude a minor component in the R configuration. (S)-DHT was then characterized for binding to the complex of major urinary proteins of male mouse urine (MUP) and for a behavioral response, the competitive scent marking behavior (countermarking). The binding constant of (S)-DHT to MUP (determined by competitive displacement) was 8.2 +/- 0.6 microM (mean +/- SD) and was 10.5 +/- 0.6 microM for R-DHT, thus excluding a relevant difference in binding. (S)-DHT modified countermarking in a peculiar way. Male mice were slow in countermarking urinary spots streaked 2 days earlier and on top of which (S)-DHT was added shortly before the test. This response was not seen when adding (S)-DHT to freshly streaked urinary spots or to clean paper. Unlike (S)-DHT, (R)-DHT prompted countermarking rather than delaying it. We can further conclude that (S)-DHT in male mouse urine is an aversive chemosignal for countermarking. PMID:14654447

  5. Assignment of absolute configurations of highly flexible linear diterpenes from the brown alga Bifurcaria bifurcata by VCD spectroscopy.

    Merten, Christian; Smyrniotopoulos, Vangelis; Tasdemir, Deniz

    2015-11-21

    Correct assignment of the stereogenic centers of highly flexible linear diterpenes (LDs) is challenging. Herein we report the first application of VCD spectroscopy for the absolute configuration determination of LDs of algal origin and provide experimental and computational procedures, such as a fragmentation approach, which will facilitate the use of VCD spectroscopy for configuration assignments of LDs. PMID:26399505

  6. Determination of absolute configuration using ab initio calculation of optical rotation.

    Stephens, P J; Devlin, F J; Cheeseman, J R; Frisch, M J; Bortolini, O; Besse, P

    2003-01-01

    Ab initio Density Functional Theory (DFT) calculations of transparent spectral region, discrete frequency specific rotations were used to assign the absolute configurations (ACs) of: 1, 2H-naphtho[1,8-bc]thiophene 1-oxide; 2, m-F-phenyl glycidic acid methyl ester; 3, o-Br-phenyl glycidic acid methyl ester; 4, p-CH(3)-phenyl glycidic acid methyl ester; 5, 2-(1-hydroxyethyl)-chromen-4-one; and 6, 6-Br-2-(1-hydroxyethyl)-chromen-4-one. The ACs of 5 and 6 were previously determined via X-ray crystallography to be: 5, R(-)/S(+); 6, R(+)/S(-). The ACs obtained using [alpha](D) are the same for both 5 and 6: R(+)/S(-). We conclude that the previously reported AC of 5 is incorrect. PMID:12884375

  7. Miniature high-throughput chemosensing of yield, ee, and absolute configuration from crude reaction mixtures.

    Bentley, Keith W; Zhang, Peng; Wolf, Christian

    2016-02-01

    High-throughput experimentation (HTE) has emerged as a widely used technology that accelerates discovery and optimization processes with parallel small-scale reaction setups. A high-throughput screening (HTS) method capable of comprehensive analysis of crude asymmetric reaction mixtures (eliminating product derivatization or isolation) would provide transformative impact by matching the pace of HTE. We report how spontaneous in situ construction of stereodynamic metal probes from readily available, inexpensive starting materials can be applied to chiroptical chemosensing of the total amount, enantiomeric excess (ee), and absolute configuration of a wide variety of amines, diamines, amino alcohols, amino acids, carboxylic acids, α-hydroxy acids, and diols. This advance and HTS potential are highlighted with the analysis of 1 mg of crude reaction mixtures of a catalytic asymmetric reaction. This operationally simple assay uses a robust mix-and-measure protocol, is amenable to microscale platforms and automation, and provides critical time efficiency and sustainability advantages over traditional serial methods. PMID:26933684

  8. Long-chain acyl-homoserine lactones from Methylobacterium mesophilicum: synthesis and absolute configuration.

    Pomini, Armando M; Cruz, Pedro L R; Gai, Cláudia; Araújo, Welington L; Marsaioli, Anita J

    2009-12-01

    The acyl-homoserine lactones (acyl-HSLs) produced by Methylobacterium mesophilicum isolated from orange trees infected with the citrus variegated chlorosis (CVC) disease have been studied, revealing the occurrence of six long-chain acyl-HSLs, i.e., the saturated homologues (S)-N-dodecanoyl (1) and (S)-N-tetradecanoyl-HSL (5), the uncommon odd-chain N-tridecanoyl-HSL (3), the new natural product (S)-N-(2E)-dodecenoyl-HSL (2), and the rare unsaturated homologues (S)-N-(7Z)-tetradecenoyl (4) and (S)-N-(2E,7Z)-tetradecadienyl-HSL (6). The absolute configurations of all HSLs were determined as 3S. Compounds 2 and 6 were synthesized for the first time. Antimicrobial assays with synthetic acyl-HSLs against Gram-positive bacterial endophytes co-isolated with M. mesophilicum from CVC-infected trees revealed low or no antibacterial activity. PMID:19919062

  9. Total synthesis and absolute configuration assignment of MRSA active garcinol and isogarcinol.

    Socolsky, Cecilia; Plietker, Bernd

    2015-02-01

    A short total synthesis of (±)-garcinol and (±)-isogarcinol, two endo-type B PPAPs with reported activity against methiciline resistant Staphylococcus aureus (MRSA), is presented. The separation of framework-constructing from framework-decorating steps and the application of two highly regio- and stereoselective Pd-catalysed allylations, that is, the Pd-catalysed decarboxylative Tsuji-Trost allylation and the diastereoselective Pd-catalysed allyl-allyl cross-coupling, are key elements that allowed the total synthesis to be accomplished within 13 steps starting from acetylacetone. After separation of the enantiomers the absolute configurations of the four natural products (i.e., (-)-garcinol, (+)-guttiferone E (i.e., ent-garcinol), (-)-isogarcinol, and (+)-isoxanthochymol (i.e., ent-isogarcinol)) were assigned based on ECD spectroscopy. PMID:25537962

  10. Synthesis, Crystal Structure and Absolute Configuration of(+)-O-Phenyl Cyclophosphorodiamidate

    何可; 周正洪; 李康应; 赵国锋; 唐除痴; 王宏根

    2003-01-01

    The title compound, (+)-O-phenyl cyclophosphorodiamidate (C28H33N2O2P, Mr = 460.53), has been synthesized and characterized by 31P NMR, 1H NMR and elemental analysis. X-ray diffraction analysis at 273(2) K indicates that it belongs to orthorhombic system, space group P212121 with a = 11.518(4), b = 13.449(4), c = 16.539(5)(A°), V = 2562(1)(A°)3, Z = 4, Dc = 1.194 g/cm3, F(000) = 984 and μ(MoKα) = 0.134 mm-1. The structure parameters were refined by full-matrix least-squares on F2 to R = 0.0459 and wR = 0.0640. The flack x parameter is 0.03(10), and the absolute configuration of the phosphorus atom in the title compound is S.

  11. Structure and Absolute Configuration of Ginkgolide B Characterized by IR- and VCD Spectroscopy

    Andersen, Niels Højmark; Christensen, N.J.; Lassen, Peter Rygaard; Freedman, T.B.N.; Nafie, L.A.; Stromgaard, K.; Hemmingsen, L.

    2010-01-01

    Experimental and calculated (B3LYP/6-31G(d)) vibrational Circular dichroism (VCD) and IR spectra are compared, illustrating that the structure and absolute configuration of ginkgolide B (GB) may be characterized directly in solution. A conformational search for GB using MacroModel and subsequent......, displaying different intramolecular hydrogen bonding. Differences between measured and calculated IR and VCD spectra for GB at certain wavenumbers are rationalized in terms of interactions with solvent, intermolecular GB-GB interactions, and the potential presence of more than one conformer. This is the...... first detailed investigation of the spectroscopic fingerprint region (850-1300 cm(-1)) of the natural product GB employing infrared absorption and VCD spectroscopy. Chirality 22:217-223, 2010....

  12. Absolute Configuration Determination of Azulenyl Diols Isolated From Asymmetric Pinacol Coupling.

    Dragu, Eugenia Andreea; Naubron, Jean-Valere; Hanganu, Anamaria; Razus, Alexandru C; Nica, Simona

    2015-11-01

    A convenient enantioselective approach for the pinacol coupling of 1-acetylazulene involving easily accessible (R)- or (S)-BINOLs as chiral additive is reported. This supposes the preformation of the chiral titanium-BINOL complex in 1:2 ratio and subsequent reduction with zinc when, 2,3-di(azulen-1-yl)butane-2,3-diol can be isolated in around 60% enantiomeric excess. The absolute configuration of the isolated enantiomers was assigned by comparison of the experimental and Boltzmann-weighted calculated VCD and ECD spectra and assigned as (+)-(2S;3S)-di(azulen-1-yl)butane-2,3-diol. Chirality 27:826-834, 2015. © 2015 Wiley Periodicals, Inc. PMID:26364568

  13. Cyclotriveratrylene-BINOL-Based Host Compounds: Synthesis, Absolute Configuration Assignment, and Recognition Properties.

    Lefevre, Sara; Héloin, Alexandre; Pitrat, Delphine; Mulatier, Jean-Christophe; Vanthuyne, Nicolas; Jean, Marion; Dutasta, Jean-Pierre; Guy, Laure; Martinez, Alexandre

    2016-04-15

    New host compounds combining a cyclotriveratrylene (CTV) unit and three binaphthol moieties have been synthesized enantiomerically and diastereomerically pure. The use of a chemical correlation allows for the assignment of their absolute configuration. The energy barrier of epimerization was measured, suggesting that no intramolecular hydrogen bonding occurs between the hydroxyl groups of the binaphthols. These open-shell host compounds were then tested in the recognition of carbohydrates; a preferential binding of mannose toward glucose was observed, and good diastereoselectivities were reached (up to 1:10). This recognition of sugar derivatives by open-shell CTV-based host compounds is unprecedented and opens up the way for a wider use of this easily accessible class of molecules as chiral sensors. PMID:27010215

  14. Structure and Absolute Configuration of Jurassic Polyketide-Derived Spiroborate Pigments Obtained from Microgram Quantities.

    Wolkenstein, Klaus; Sun, Han; Falk, Heinz; Griesinger, Christian

    2015-10-28

    Complete structural elucidation of natural products is often challenging due to structural complexity and limited availability. This is true for present-day secondary metabolites, but even more for exceptionally preserved secondary metabolites of ancient organisms that potentially provide insights into the evolutionary history of natural products. Here, we report the full structure and absolute configuration of the borolithochromes, enigmatic boron-containing pigments from a Jurassic putative red alga, from samples of less than 50 μg using microcryoprobe NMR, circular dichroism spectroscopy, and density functional theory calculations and reveal their polyketide origin. The pigments are identified as spiroborates with two pentacyclic sec-butyl-trihydroxy-methyl-benzo[gh]tetraphen-one ligands and less-substituted derivatives. The configuration of the sec-butyl group is found to be (S). Because the exceptional benzo[gh]tetraphene scaffold is otherwise only observed in the recently discovered polyketide clostrubin from a present-day Clostridium bacterium, the Jurassic borolithochromes now can be unambiguously linked to the modern polyketide, providing evidence that the fossil pigments are almost originally preserved secondary metabolites and suggesting that the pigments in fact may have been produced by an ancient bacterium. The borolithochromes differ fundamentally from previously described boronated polyketides and represent the first boronated aromatic polyketides found so far. Our results demonstrate the potential of microcryoprobe NMR in the analysis of previously little-explored secondary metabolites from ancient organisms and reveal the evolutionary significance of clostrubin-type polyketides. PMID:26443920

  15. Configurational entropy and cooperativity between ligand binding and dimerization in glycopeptide antibiotics.

    Jusuf, Sutjano; Loll, Patrick J; Axelsen, Paul H

    2003-04-01

    Oligomerization and ligand binding are thermodynamically cooperative processes in many biochemical systems, and the mechanisms giving rise to cooperative behavior are generally attributed to changes in structure. In glycopeptide antibiotics, however, these cooperative processes are not accompanied by significant structural changes. To investigate the mechanism by which cooperativity arises in these compounds, fully solvated molecular dynamics simulations and quasiharmonic normal-mode analysis were performed on chloroeremomycin, vancomycin, and dechlorovancomycin. Configurational entropies were derived from the vibrational modes recovered from ligand-free and ligand-bound forms of the monomeric and dimeric species. Results indicate that both ligand binding and dimerization incur an entropic cost as vibrational activity in the central core of the antibiotic is shifted to higher frequencies with lower amplitudes. Nevertheless, ligand binding and dimerization are cooperative because the entropic cost of both processes occurring together is less than the cost of these processes occurring separately. These reductions in configurational entropy are more than sufficient in magnitude to account for the experimentally observed cooperativity between dimerization and ligand binding. We conclude that biochemical cooperativity can be mediated through changes in vibrational activity, irrespective of the presence or absence of concomitant structural change. This may represent a general mechanism of allostery underlying cooperative phenomena in diverse macromolecular systems. PMID:12656635

  16. The sesquiterpenoid nootkatone and the absolute configuration of a dibromo derivative.

    Sauer, Anne M; Fronczek, Frank R; Zhu, Betty C R; Crowe, William E; Henderson, Gregg; Laine, Roger A

    2003-05-01

    Nootkatone, or (4R,4aS,6R)-4,4a,5,6,7,8-hexahydro-4,4a-dimethyl-6-(1-methylethenyl)naphthalen-2(3H)-one, C(15)H(22)O, a sesquiterpene with strong repellent properties against Formosan subterranean termites and other insects, has the valencene skeleton. The dibromo derivative (1S,3R,4S,4aS,6R,8aR)-1,3-dibromo-6-isopropyl-4,4a-dimethyl-1,2,3,4,5,6,7,8-octahydronaphthalen-2-one, C(15)H(24)Br(2)O, has two independent molecules in the asymmetric unit, which differ in the rotation of the isopropyl group with respect to the main skeleton. The C-Br distances are in the range 1.950 (4)-1.960 (4) A. Both independent molecules form zigzag chains, with very short intermolecular carbonyl-carbonyl interactions, having the perpendicular motif and O...C distances of 2.886 (6) and 2.898 (6) A. These chains are flanked by intermolecular Br...Br interactions of distances in the range 4.067 (1)-4.218 (1) A. The absolute configuration of the dibromo derivative was determined, from which that of nootkatone was inferred. PMID:12743407

  17. Synthesis, Crystal Structure and Absolute Configuration of (+)-(а-Hydroxybenzyl)phenylphosphinic acid

    蔡觉晓; 周正洪; 唐除痴; 王宏根

    2002-01-01

    The title compound (+)-((-hydroxybenzyl)phenylphosphinic acid (C13H13O3P, Mr = 248.20) has been synthesized and characterized by 31P NMR, 1H NMR and elemental analysis. X-ray diffraction analysis at 293(2) K indicates that the compound belongs to monoclinic system, space group C2 with cell parameters: a = 23.560(8), b = 6.947(2), c = 7.854(3) (A。), β = 91.273(6)°, V = 1285.2(7) (A。)3, Z = 4, Dc = 1.283 g/cm3, F(000) = 520 and ((MoK() = 0.207 mm-1. The number of independent reflections amounts to 1991, of which 1507 are observed reflections. The crystal structure has been determined by direct methods (SHELXL-97). The structure parameters are refined by full-matrix least-squares on F2 to R = 0.0437 and wR = 0.0893. The flack x parameter is - 0.0001. The absolute configuration of the (-carbon in the title compound is S.

  18. Redetermined structure, inter-molecular inter-actions and absolute configuration of royleanone.

    Fun, Hoong-Kun; Chantrapromma, Suchada; Salae, Abdul Wahab; Razak, Ibrahim Abdul; Karalai, Chatchanok

    2011-05-01

    The structure of the title diterpenoid, C(20)H(28)O(3), {systematic name: (4bS,8aS)-3-hy-droxy-2-isopropyl-4b,8,8-trimethyl-4b,5,6,7,8,8a,9,10-octa-hydro-phenanthrene-1,4-dione} is confirmed [Eugster et al. (1993 ▶). Private communication (refcode HACGUN). CCDC, Union Road, Cambridge] and its packing is now described. Its absolute structure was established by refinement against data collected with Cu radiation: the two stereogenic centres both have S configurations. One cyclo-hexane ring adopts a chair conformation whereas the other cyclo-hexane ring is in a half-chair conformation and the benzoquinone ring is slightly twisted. An intra-molecular O-H⋯O hydrogen bond generates an S(5) ring motif. In the crystal, mol-ecules are linked into chains along [010] by O-H⋯O hydrogen bonds and weak C-H⋯O inter-actions. The packing also features C⋯O [3.131 (3) Å] short contacts. PMID:21754362

  19. Direct determination of absolute configuration: a vibrational circular dichroism study on dimethyl-substituted phenyloxiranes synthesized by Shi epoxidation

    Fristrup, Peter; Lassen, Peter Rygaard; Tanner, David Ackland;

    2008-01-01

    obtained using DFT/B3LYP calculations, and the differences between experiment and theory are discussed. The absolute configuration at the benzylic position was established as being (R), (S) and (R) for the cis, trans and geminal dimethylsubstituted phenyloxiranes, respectively. In all three cases the...

  20. The iso-structural viscosity, configurational entropy and fragility of oxide liquids

    Yue, Yuanzheng

    2009-01-01

    This paper describes how the fragility of a liquid is linked to the ratio between the energy barrier (Eeq) for the equilibrium viscous behavior and that (Eiso) for the non-equilibrium iso-structural viscous behavior. Using the concept of iso-structural viscosity, two functions describing the...... variation of the configurational entropy (Sc) with temperature (T) are obtained from the Avramov-Milchev (AM) and the Vogel-Fulcher- Tammann (VFT) viscosity equations, respectively. The two Sc(T) functions exhibit different relations to the liquid fragility. The AM Sc(T) function is a power function with...... VFT equation is not only a dynamical, but also a thermodynamic model. It is proved that for oxide liquids, the VFT equation describes viscosity data better than the AM equation, provided the pre-exponential factor η0 is fixed to a generally accepted value, e.g., 10-3.5 Pa s....

  1. Absolute configurations of phytotoxins seiricardine A and inuloxin A obtained by chiroptical studies.

    Santoro, Ernesto; Mazzeo, Giuseppe; Petrovic, Ana G; Cimmino, Alessio; Koshoubu, Jun; Evidente, Antonio; Berova, Nina; Superchi, Stefano

    2015-08-01

    The absolute configuration (AC) of the plant phytotoxin inuloxin A, produced by Inula viscosa, and of the fungal phytotoxin seiricardine A, obtained from Seiridium fungi, pathogen for cypress, has been determined by experimental measurements and theoretical simulations of chiroptical properties of three related methods, namely, Optical Rotatory Dispersion (ORD), Electronic Circular Dichroism (ECD), and Vibrational Circular Dichroism (VCD). Computational prediction by Density Functional Theory (DFT) of VCD spectra and by Time-dependent DFT (TDDFT) of ORD and ECD spectra allowed to assign (7R,8R,10S) AC to naturally occurring (+)-inuloxin A. In the case of compound (-)-seiricardine A, which lacks useful for the analysis UV-Vis absorption, and thus provides a hardly detectable ECD spectrum and quite low ORD values, an introduction of a suitable chromophore by chemical derivatization was performed. The corresponding derivative, 2-O-p-bromobenzoate ester, gave rise to an intense ECD spectrum and higher ORD and VCD values. The comparison of computed spectra with the experimental ones allowed to assign (1S,2R,3aS,4S,5R,7aS) AC to (-)-2-O-p-bromobenzoate ester of seiricardine A and then to (-)-seiricardine A. This study further supports a recent trend of concerted application of more than a single chiroptical technique toward an unambiguous assignment of AC of flexible and complex natural products. Moreover, the use of chemical derivatization, with insertion of suitable chromophoric moieties has allowed to treat also UV-Vis transparent molecules by ECD and ORD spectroscopies. PMID:25817835

  2. Absolute configurations of phytotoxic inuloxins B and C based on experimental and computational analysis of chiroptical properties.

    Evidente, Marco; Santoro, Ernesto; Petrovic, Ana G; Cimmino, Alessio; Koshoubu, Jun; Evidente, Antonio; Berova, Nina; Superchi, Stefano

    2016-10-01

    The absolute configuration of phytotoxins inuloxins B and C, produced by Inula viscosa, and with potential herbicidal activity for the management of parasitic plants, has been determined by Time-dependent density functional theory computational prediction of electronic circular dichroism and optical rotatory dispersion spectra. The inuloxin B has been converted to its 5-O-acetyl derivative, which due to its more constrained conformational features facilitated the computational analysis of its chiroptical properties. The analysis based on experimental and computed data led to assignment of absolute configuration to naturally occurring (+)-inuloxin B and (-)-inuloxin C as (7R,8R,10S,11S) and (5S,7S,8S,10S), respectively. PMID:27498046

  3. Importance of polar solvation and configurational entropy for design of antiretroviral drugs targeting HIV-1 protease.

    Kar, Parimal; Lipowsky, Reinhard; Knecht, Volker

    2013-05-16

    Both KNI-10033 and KNI-10075 are high affinity preclinical HIV-1 protease (PR) inhibitors with affinities in the picomolar range. In this work, the molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) method has been used to investigate the potency of these two HIV-1 PR inhibitors against the wild-type and mutated proteases assuming that potency correlates with the affinity of the drugs for the target protein. The decomposition of the binding free energy reveals the origin of binding affinities or mutation-induced affinity changes. Our calculations indicate that the mutation I50V causes drug resistance against both inhibitors. On the other hand, we predict that the mutant I84V causes drug resistance against KNI-10075 while KNI-10033 is more potent against the I84V mutant compared to wild-type protease. Drug resistance arises mainly from unfavorable shifts in van der Waals interactions and configurational entropy. The latter indicates that neglecting changes in configurational entropy in the computation of relative binding affinities as often done is not appropriate in general. For the bound complex PR(I50V)-KNI-10075, an increased polar solvation free energy also contributes to the drug resistance. The importance of polar solvation free energies is revealed when interactions governing the binding of KNI-10033 or KNI-10075 to the wild-type protease are compared to the inhibitors darunavir or GRL-06579A. Although the contributions from intermolecular electrostatic and van der Waals interactions as well as the nonpolar component of the solvation free energy are more favorable for PR-KNI-10033 or PR-KNI-10075 compared to PR-DRV or PR-GRL-06579A, both KNI-10033 and KNI-10075 show a similar affinity as darunavir and a lower binding affinity relative to GRL-06579A. This is because of the polar solvation free energy which is less unfavorable for darunavir or GRL-06579A relative to KNI-10033 or KNI-10075. The importance of the polar solvation as revealed here

  4. Exciton Coupling in Circular Dichroic Spectroscopy as a Tool for Establishing the Absolute Configuration of alpha,beta-Unsaturated Esters of Allylic Alcohols

    Lauridsen, A.; Cornett, Claus; Christensen, S. B.

    1991-01-01

    alpha-beta-Unsaturated esters of allylic alcohols have been shown to exhibit exciton coupling by circular dichroic spectroscopy. This coupling permits the establishment of the absolute configuration. The method was used to prove the absolute configuration at C-2 of archangelolide. Detailed NMR sp...... spectral studies of the prepared model structures may be used as a reference for stereoisomeric guaianolides....

  5. Absolute configuration and crystal packing for three chiral drugs prone to spontaneous resolution: Guaifenesin, methocarbamol and mephenesin

    Bredikhin, Alexander A.; Gubaidullin, Aidar T.; Bredikhina, Zemfira A.; Krivolapov, Dmitry B.; Pashagin, Alexander V.; Litvinov, Igor A.

    2009-02-01

    Popular chiral drugs, guaifenesin, methocarbamol, and mephenesin were investigated by single-crystal X-ray analysis both for enantiopure and racemic samples. The absolute configurations for all substances were established through Flack parameter method. The conglomerate-forming nature for the compounds was confirmed by equivalence of crystal characteristics of enantiopure and racemic samples. The molecular structures and crystal packing details were evaluated and compared with one another for all three investigated substances.

  6. Network Entropy Based on Topology Configuration and Its Computation to Random Networks

    LI Ji; WANG Bing-Hong; WANG Wen-Xu; ZHOU Tao

    2008-01-01

    A definition of network entropy is presented, and as an example, the relationship between the value of network entropy of ER network model and the connect probability p as well as the total nodes N is discussed. The theoretical result and the simulation result based on the network entropy of the ER network are in agreement well with each other. The result indicated that different from the other network entropy reported before, the network entropy defined here has an obvious difference from different type of random networks or networks having different total nodes. Thus, this network entropy may portray the characters of complex networks better. It is also pointed out that, with the aid of network entropy defined, the concept of equilibrium networks and the concept of non-equilibrium networks may be introduced, and a quantitative measurement to describe the deviation to equilibrium state of a complex network is carried out.

  7. Determination of the absolute configuration of selenomethionine from antarctic krill by RP-HPLC/ICP-MS using chiral derivatization agents

    Bergmann, Jan; Lassen, Stephan; Prange, Andreas [GKSS Research Center Geesthacht, Institute for Coastal Research, Max-Planck Strasse, 21502, Geesthacht (Germany)

    2004-03-01

    A fast and sensitive method was developed for the determination of the absolute configuration of selenomethionine. The enantiomers of selenomethionine were converted into diastereomeric isoindole derivatives by reaction with o-phthaldialdehyde and N-isobutyryl-l-cysteine. This easy-to-handle reaction proceeds quantitatively in a few minutes at room temperature. Separation and detection of the diastereomers was achieved by reversed-phase high-performance liquid chromatography-inductively coupled plasma-mass spectrometry (RP-HPLC/ICP-MS) using a conventional C18 reversed-phase column. Detection limits of about 4 {mu}g L{sup -1} were obtained. The method was applied to the determination of the configuration of selenomethionine extracted from antarctic krill, which turned out to possess the l-configuration. (orig.)

  8. Effect of Counterion and Configurational Entropy on the Surface Tension of Aqueous Solutions of Ionic Surfactant and Electrolyte Mixtures

    Youichi Takata

    2010-04-01

    Full Text Available In order to clarify the adsorption behavior of cationic surfactants on the air/aqueous electrolyte solution surface, we derived the theoretical equation for the surface tension. The equation includes the electrical work required for charging the air/water surface and the work attributable to the configurational entropy in the adsorbed film. By fitting the equation to the experimental data, we determined the binding constant between adsorbed surfactant ion and counterion, and found that the bromide ions, rather than the chloride ions, are preferentially adsorbed by the air/water surface. Furthermore, it was suggested that the contribution of configurational entropy to the surface tension is predominant in the presence of electrolytes because of the increase in the surface density of surfactant molecules associated with decreasing the repulsive interaction between their hydrophilic groups.

  9. Development of methodology to assign absolute configurations using vibrational circular dichroism

    Kuppens, T

    2006-01-01

    De kennis van de 3D structuur van actieve bestanddelen van chirale medicijnen is zeer belangrijk, aangezien stereo-isomeren dikwijls een verschillende activiteit vertonen. Er zijn meerdere technieken beschikbaar om deze Absolute Configuratie te bepalen (eenkristal x-straal diffractie bijv.). Een nieuwe methode die sterk in opmars is en heel wat voordelen biedt is gebaseerd op het vibrationeel circulair dichroïsme (VCD). Het VCD fenomeen is een gevolg van de optische activiteit van een medium ...

  10. Effect of total and pair configurational entropy in determining dynamics of supercooled liquids over a range of densities

    Banerjee, Atreyee; Nandi, Manoj Kumar; Sastry, Srikanth; Bhattacharyya, Sarika Maitra

    2016-01-01

    In this paper, we present a study of supercooled liquids interacting with the Lennard Jones (LJ) potential and the corresponding purely repulsive (Weeks-Chandler-Andersen or WCA) potential, over a range of densities and temperatures, in order to understand the origin of their different dynamics in spite of their structures being similar. Using the configurational entropy as the thermodynamic marker via the Adam Gibbs (AG) relation, we show that the difference in the dynamics of these two syst...

  11. Effect of Counterion and Configurational Entropy on the Surface Tension of Aqueous Solutions of Ionic Surfactant and Electrolyte Mixtures

    Youichi Takata; Hiroaki Tagashira; Atsushi Hyono; Hiroyuki Ohshima

    2010-01-01

    In order to clarify the adsorption behavior of cationic surfactants on the air/aqueous electrolyte solution surface, we derived the theoretical equation for the surface tension. The equation includes the electrical work required for charging the air/water surface and the work attributable to the configurational entropy in the adsorbed film. By fitting the equation to the experimental data, we determined the binding constant between adsorbed surfactant ion and counterion, and found that the br...

  12. Structures and Absolute Configurations of Sulfate-Conjugated Triterpenoids Including an Antifungal Chemical Defense of the Green Macroalga Tydemania expeditionis

    Jiang, Ren-Wang; Lane, Amy L.; Mylacraine, Lauren; Hardcastle, Kenneth I.; Fairchild, Craig R.; Aalbersberg, William; Hay, Mark E.; Kubanek, Julia

    2012-01-01

    Cytotoxicity-guided fractionation of the green macroalga Tydemania expeditionis led to isolation of four sulfate-conjugated triterpenoids including one new lanostane-type triterpenoid disulfate, lanosta-8-en-3,29-diol-23-oxo-3,29-disodium sulfate (1), and three known cycloartane-type triterpenoid disulfates, cycloartan-3,29-diol-23-one 3,29-disodium sulfate (2), cycloart-24-en-3,29-diol-23-one 3,29-disodium sulfate (3), and cycloartan-3,23,29-triol 3,29-disodium sulfate (4). Extensive 1D and 2D NMR analyses in combination with X-ray crystallography established the structure and absolute configuration of 1 and allowed determination of the absolute configurations of 2–4 with a revision of previously assigned configuration at C-5. Each natural product was moderately cytotoxic in tumor cell and invertebrate toxicity assays. Of the natural products, only 4 exhibited significant antifungal activity at whole-tissue natural concentrations against the marine pathogen Lindra thalassiae. Comparison of the biological activities of natural products with their desulfated derivatives indicated that sulfation does not appear to confer cytotoxicity or antifungal activity. PMID:18763828

  13. The absolute configuration of (+)-oxopropaline D by theoretical calculation of specific rotation and asymmetric synthesis.

    Kuwada, Takeshi; Fukui, Miyako; Hata, Toshiyuki; Choshi, Tominari; Nobuhiro, Junko; Ono, Yukio; Hibino, Satoshi

    2003-01-01

    The specific optical rotations of (R)-oxopropaline D calculated by two ab initio MO methods were +52+/-31 degrees and +61+/-29 degrees, respectively, and (+)-oxopropaline D (3) was presumed to have an R-configuration. On the basis of this theoretical result, the reaction of 1-litio-beta-carboline with (R)-glyceraldehyde acetonide followed by oxidation with MnO(2) gave (R)-oxopropaline D acetonide (4a), which was consistent with the previously synthesized (+)-oxopropaline D acetonide (4) in all respects. From the results of theoretical calculations and the experimental synthesis, we determined that natural (+)-oxopropaline D (3) has an R-configuration. PMID:12520122

  14. Lipase-catalyzed Remote Kinetic Resolution of Quaternary Carbon-containing Alcohols and Determination of Their Absolute Configuration

    The quaternary carbon-containing alcohols (1-6) were resolved enantioselectively by various lipases such as PFL (Pseudomonas fluorescens lipase), LAK (Pseudomonas fluorescens lipase), CRL (Candida rugosa lipase) and PCL (Pseudomonas cepacia lipase). The enzymatic resolution of racemic alcohol (±)-2 gave the excellent enantioselectivity in favor of (S)-2d in 99% ee, while those of the racemic alcohols (1, 3, 4, 5 and 6) gave the resolved alcohols with moderate to good enantioselectivity. Also, their absolute configurations were determined by chemical transformation to the known compounds

  15. Isolation of austroinulin possessing cell cycle inhibition activity from Blumea glomerata and revision of its absolute configuration.

    Ohtsuki, Takashi; Koyano, Takashi; Kowithayakorn, Thaworn; Yamaguchi, Naoto; Ishibashi, Masami

    2004-12-01

    A labdane-diterpene, austroinulin (1), together with several known flavonoids and sesquiterpenes were isolated from leaves of Blumea glomerata (Compositae). Austroinulin (1) and most of the flavonoids showed cytotoxicity against HeLa cells, while austroinulin (1) exhibited a cell cycle inhibition effect at the G1 stage at the concentration of 15.2 microg/mL (47.2 microM). The absolute configuration of 1 was revised as 5S,6R,7S,8S,9R,10R on the basis of the modified Mosher's method. PMID:15643553

  16. Determination of the absolute configuration of a chiral epoxide using foil induced Coulomb explosion imaging

    Herwig, P.; Zawatzky, K.; Schwalm, D.; Grieser, M.; Heber, O.; Jordon-Thaden, B.; Krantz, C.; Novotný, O.; Repnow, R.; Schurig, V.; Vager, Z.; Wolf, A.; Trapp, O.; Kreckel, H.

    2015-09-01

    We have applied the method of foil-induced Coulomb Explosion Imaging (FCEI) to determine the handedness of a homochiral sample of the compound trans-2,3-dideuterooxirane C2OH2D2. We determined the compound to be of the (R, R)-econfiguration with a statistical significance of 5σ. As the molecular sample was chemically linked to the stereochemical reference standard glyceraldehyde, our assignment constitutes an independent verification of the absolute handedness of all compounds linked to this reference substance.

  17. [HPLC enantioseparation, absolute configuration determination and anti-HIV-1 activity of (±)-F18 enantiomers].

    Zhang, Lei-lei; Xue, Hai; Li, Li; Lu, Xiao-fan; Chen, Zhi-wei; Lu, Gang

    2015-06-01

    Racemic (±)-F18 (10-chloromethyl-11-demethyl-12-oxo-calanolide A), an analog of nature product (+)-calanolide A, is a new anti-HIV-1 nonnucleoside reverse transcript inhibitor (NNRTI). A successful enantioseparation of (±)-F18 offering (R)-F18 and (S)-F18 was achieved by a chiral stationary phase prepared HPLC. Their absolute configurations were determined by measurement of their electronic circular dichroisms combined with modem quantum-chemical calculations. Further investigation revealed that (R)-F18 and (S)-F18 shared a similar anti-HIV activities, however, (R)-F18 was more potent than (S)-F18 against wild-type virus, K101E mutation and P225H mutation pseudoviruses. PMID:26521445

  18. Revised Absolute Configuration of Sibiricumin A: Substituent Effects in Simplified Model Structures Used for Quantum Mechanical Predictions of Chiroptical Properties.

    Zhao, Dan; Li, Zheng-Qiu; Cao, Fei; Liang, Miao-Miao; Pittman, Charles U; Zhu, Hua-Jie; Li, Li; Yu, Shi-Shan

    2016-08-01

    This study discusses the choice of different simplified models used in computations of electronic circular dichroism (ECD) spectra and other chiroptical characteristics used to determine the absolute configuration (AC) of the complex natural product sibiricumin A. Sections of molecules containing one chiral center with one near an aromatic group have large effects on the ECD spectra. Conversely, when the phenyl group is present on a substituent without a nonstereogenic center, removal of this section will have little effect on ECD spectra. However, these nonstereogenic-center-containing sections have large effects on calculated optical rotations (OR) values since the OR value is more sensitive to the geometries of sections in a molecule. In this study, the wrong AC of sibiricumin A was reassigned as (7R,8S,1'R,7'R,8'S)-. Chirality 28:612-617, 2016. © 2016 Wiley Periodicals, Inc. PMID:27428019

  19. Structure and Absolute Configuration of Kongiidiazadione, a New Phytotoxic 3-Substituted-5-Diazenylcyclopentendione Produced by Diaporthe Kongii.

    Evidente, Marco; Boari, Angela; Vergura, Stefania; Cimmino, Alessio; Vurro, Maurizio; Ash, Gavin; Superchi, Stefano; Evidente, Antonio

    2015-09-01

    A new 3-substituted-5-diazenylcyclopentendione named kongiidiazadione was isolated from culture filtrates of Diaporthe kongii, associated with stem cankers on sunflower in Australia. Kongiidiazadione was characterized by spectroscopic (essentially nuclear magnetic resonance [NMR] and high-resolution, electrospray ionization, mass spectrometry [HRESIMS]) methods as (-)-5-diazenyl-3-hydroxymethyl-cyclopent-3-en-1,2-dione. The stereochemistry of the diazenyl group was determined by IR spectroscopy, while the (R) absolute configuration at C(5) was assigned by computational analysis of its electronic circular dichroism (ECD) spectrum. When assayed on leaf disks of different plant species at 5 mM, the kongiidiazadione had a differential impact, causing clear necrosis, in particular to Helianthus annuus. Moreover, kongiidiazadione proved to have a weak antibacterial activity against gram-positive Bacillus amyloliquefaciens. PMID:26011252

  20. Effect of total and pair configurational entropy in determining dynamics of supercooled liquids over a range of densities

    Banerjee, Atreyee; Nandi, Manoj Kumar; Sastry, Srikanth; Bhattacharyya, Sarika Maitra

    2016-07-01

    In this paper, we present a study of supercooled liquids interacting with the Lennard Jones potential and the corresponding purely repulsive (Weeks-Chandler-Andersen) potential, over a range of densities and temperatures, in order to understand the origin of their different dynamics in spite of their structures being similar. Using the configurational entropy as the thermodynamic marker via the Adam Gibbs relation, we show that the difference in the dynamics of these two systems at low temperatures can be explained from thermodynamics. At higher densities both the thermodynamical and dynamical difference between these model systems decrease, which is quantitatively demonstrated in this paper by calculating different parameters. The study also reveals the origin of the difference in pair entropy despite the similarity in the structure. Although the maximum difference in structure is obtained in the partial radial distribution function of the B type of particles, the rdf of AA pairs and AB pairs gives rise to the differences in the entropy and dynamics. This work supports the observation made in an earlier study [A. Banerjee et al., Phys. Rev. Lett. 113, 225701 (2014)] and shows that they are generic in nature, independent of density.

  1. Absolute configuration of micromelin

    Hoong-Kun Fun

    2011-07-01

    Full Text Available The title compound {systematic name: 7-methoxy-6-[(1R,2R,5R-5-methyl-4-oxo-3,6-dioxabicyclo[3.1.0]hexan-2-yl]-2H-chromen-2-one}, C15H12O6, is a coumarin, which was isolated from the roots of Micromelum glanduliferum. There are two molecules in the asymmetric unit with slight differences in bond angles. In both molecules, the furan ring adopts a flattened envelope conformation. In the crystal, molecules are linked by weak C—H...O interactions into chains along the a axis. Aromatic π–π stacking interactions with centroid–centroid distances in the range 3.6995 (11–3.8069 (11 Å and C...O short contacts [3.030 (2–3.171 (3 Å] also occur.

  2. Solving absolute value equation based on maximum entropy Newton- SOR algorithm%极大熵Newton-SOR迭代算法求解绝对值方程

    邓永坤

    2012-01-01

    主要研究绝对值方程Ax+B|z|=b的求解问题.首先通过利用极大熵理论将该绝对值方程转化为光滑方程组,建立求解该形式绝对值问题的Newton-SOR方法,并对算法的收敛性进行分析和证明;最后通过数值试验对算法的有效性进行测试.%This paper is concerned with the absolute value equation Ax + B | x | = b. First, using the maximum entropy function, and absolute value equations problem could be transformed into the approximation unconstrained differentiable problem, then using the Newton -SOR method to solve this problem. Theoretic analysis shows that the proposed method is effective. Numerical results indicate that the method is feasible and effective to absolute value equations problem.

  3. Determination of the Absolute Configurations Using Exciton Chirality Method for Vibrational Circular Dichroism: Right Answers for the Wrong Reasons?

    Covington, Cody L; Nicu, Valentin P; Polavarapu, Prasad L

    2015-10-22

    Quantum chemical (QC) predictions of vibrational circular dichroism (VCD) spectra for the keto form of 3-benzoylcamphor and conformationally flexible diacetates of spiroindicumide A and B are presented. The exciton chirality (EC) model has been briefly reviewed, and a procedure to evaluate the relevance of the EC model has been presented. The QC results are compared with literature experimental VCD spectra as well as with those obtained using the EC model for VCD. These comparisons reveal that the EC contributions to bisignate VCD couplets associated with the C═O stretching vibrations of benzoylcamphor, spiroindicumide A diacetate, and spiroindicumide B diacetate are only ∼30%, ∼3%, and ∼15%, respectively. With such meager EC contributions, the correct absolute configurations (ACs) suggested in the literature for spiroindicumide A diacetate and spiroindicumide B diacetate molecules using the EC concepts can be considered fortuitous. The possibilities for obtaining wrong AC predictions using the EC concepts for VCD are identified, and guidelines for the future use of this model are presented. PMID:26401833

  4. Entropic measure for localized energy configurations: Kinks, bounces, and bubbles

    Gleiser, Marcelo, E-mail: mgleiser@dartmouth.edu [Department of Physics and Astronomy, Dartmouth College, Hanover, NH 03755 (United States); Stamatopoulos, Nikitas, E-mail: nstamato@dartmouth.edu [Department of Physics and Astronomy, Dartmouth College, Hanover, NH 03755 (United States)

    2012-07-09

    We construct a configurational entropy measure in functional space. We apply it to several nonlinear scalar field models featuring solutions with spatially-localized energy, including solitons and bounces in one spatial dimension, and critical bubbles in three spatial dimensions, typical of first-order phase transitions. Such field models are of widespread interest in many areas of physics, from high energy and cosmology to condensed matter. Using a variational approach, we show that the higher the energy of a trial function that approximates the actual solution, the higher its relative configurational entropy, defined as the absolute difference between the configurational entropy of the actual solution and of the trial function. Furthermore, we show that when different trial functions have degenerate energies, the configurational entropy can be used to select the best fit to the actual solution. The configurational entropy relates the dynamical and informational content of physical models with localized energy configurations.

  5. Combined use of three forms of chiroptical spectroscopies in the study of the absolute configuration and conformational properties of 3-phenylcyclopentanone, 3-phenylcyclohexanone, and 3-phenylcycloheptanone

    Scafato, P.; Caprioli, F.; Pisani, L.; Padula, Daniele; Santoro, F.; Mazzeo, G.; Abbate, S.; Lebon, F.; Longhi, G.

    2013-01-01

    Roč. 69, č. 50 (2013), s. 10752-10762. ISSN 0040-4020 Institutional support: RVO:61388963 Keywords : ORD * ECD * VCD * vibronic features * absolute configuration * conformations * phenyl hindered rotation Subject RIV: CC - Organic Chemistry Impact factor: 2.817, year: 2013

  6. Stability of the Free and Bound Microstates of a Mobile Loop of α-Amylase Obtained from the Absolute Entropy and Free Energy.

    Cheluvaraja, Srinath; Meirovitch, Hagai

    2008-01-01

    The hypothetical scanning molecular dynamics (HSMD) method is a relatively new technique for calculating the absolute entropy, S, and free energy, F, from a given sample generated by any simulation procedure. Thus, each sample conformation, i, is reconstructed by calculating transition probabilities that their product leads to the probability of i, hence to the entropy. HSMD is an exact method where all interactions are considered, and the only approximation is due to insufficient sampling. In previous studies HSMD (and HS Monte Carlo - HSMC) has been applied very successfully to liquid argon, TIP3P water, self-avoiding walks, and peptides in a α-helix, extended, and hairpin microstates. In this paper HSMD is developed further as applied to the flexible 7-residue surface loop, 304-310 (Gly-His-Gly-Ala-Gly-Gly-Ser) of the enzyme porcine pancreatic α-amylase. We are mainly interested in entropy and free energy differences ΔS = Sfree - Sbound (and ΔF=Ffree-Fbound) between the free and bound microstates of the loop, which are obtained from two separate MD samples of these microstates without the need to carry out thermodynamic integration. As for peptides, we find that relatively large systematic errors in Sfree and Sbound (and Ffree and Fbound) are cancelled in ΔS (ΔF) which is thus obtained efficiently with high accuracy, i.e., with a statistical error of 0.1-0.2 kcal/mol (T=300 K) using the AMBER force field and AMBER with the implicit solvation GB/SA. We provide theoretical arguments in support of this cancellation, discuss in detail the problems involved in the computational definition of a microstate in conformational space, suggest potential ways for enhancing efficiency further, and describe the next development where explicit water will replace implicit solvation. PMID:26619992

  7. Determination of the absolute configuration of natural products%天然产物绝对构型的确定

    孔令义; 王鹏

    2013-01-01

    天然产物结构研究一直是天然药物化学相关领域最重要的工作之一,尤其对天然产物绝对构型(AC)的确定更是具有挑战性的研究内容,目前得到国内外学者越来越多的关注.在过去的几十年里已发展了许多技术和方法用来确定天然产物的绝对构型,包括直接法(或绝对方法),例如X射线单晶衍射(XRD)、电子圆二色谱(ECD)、振动圆二色谱(VCD)及拉曼光学活性(ROA);使用已知绝对构型的参照物或衍生化试剂的间接法(或相对方法),例如利用经验规则的圆二色谱,以及利用手性衍生化试剂各向异性效应的核磁共振法(NMR).但由于这些方法适用的化合物类型和结构不尽相同,目前尚没有一种通用技术涵盖所有类型天然产物绝对构型的测定,我们只能灵活应用各种技术和方法才能确定大部分天然产物的绝对构型.本综述总结了大多数当前天然产物绝对构型测定中常用的以及具有潜在前景的技术和方法,并简要介绍了它们的原理及特点.%Structural elucidation of natural products is always one of the most important tasks for natural product researchers in related fields.Particularly,the absolute configuration (AC),being a great challenge for natural product chemists,has attracted much attention.During the past few decades,many techniques and approaches have been developed to determine the AC of natural products,including direct (or absolute) methods,e.g.X-ray diffraction (XRD),electronic and vibrational circular dichroism (ECD and VCD),and Raman optical activity (ROA),as well as indirect (or relative) methods using a reference or a derivatizing agent with known AC,e.g.CD with empirical rules and nuclear magnetic resonance (NMR) utilizing anisotropic effects of chiral derivatizing agents.However,none of the currently applied techniques is capable of dominating AC determination,since they each have their respective limitations corresponding to the

  8. Resolution and Determination of the Absolute Configuration of a Twisted Bis-Lactam Analogue of Troger's Base: A Comparative Spectroscopic and Computational Study

    Rúnarsson, Ögmundur Vidar; Benkhäuser, Christian; Christensen, Niels Johan;

    2015-01-01

    /6-31G(d,p) level of theory. The absolute configuration of (+)-2 was also determined to (R,R)-2 by anomalous X-ray diffraction (AXRD) in a chiral space group P2(1)2(1)2(1) using Cu-irradiation resulting in a very low Flack parameter of -0.06(3), despite the heaviest element being an oxygen atom, thus......The first reported twisted bis-lactam, a racemic Troger's base (TB) analogue (2), was resolved into its enantiomers on a chiral stationary phase HPLC column. The absolute configuration of (+)-2 was determined to be (R,R)-2 by comparing experimental and calculated vibrational circular dichroism (VCD......) and electronic circular dichroism (ECD) spectra. The absolute configuration of (-)-2 was determined by comparing experimental and calculated electronic circular dichroism (ECD) spectra. The corresponding theoretical spectra were calculated using the lowest energy conformation of (R,R)-2 and (S,S)-2 at the B3LYP...

  9. Resolution and Determination of the Absolute Configuration of a Twisted Bis-Lactam Analogue of Tröger's Base: A Comparative Spectroscopic and Computational Study.

    Rúnarsson, Ögmundur Vidar; Benkhäuser, Christian; Christensen, Niels Johan; Ruiz, Josep Artacho; Ascic, Erhad; Harmata, Michael; Snieckus, Victor; Rissanen, Kari; Fristrup, Peter; Lützen, Arne; Wärnmark, Kenneth

    2015-08-21

    The first reported twisted bis-lactam, a racemic Tröger's base (TB) analogue (2), was resolved into its enantiomers on a chiral stationary phase HPLC column. The absolute configuration of (+)-2 was determined to be (R,R)-2 by comparing experimental and calculated vibrational circular dichroism (VCD) and electronic circular dichroism (ECD) spectra. The absolute configuration of (-)-2 was determined by comparing experimental and calculated electronic circular dichroism (ECD) spectra. The corresponding theoretical spectra were calculated using the lowest energy conformation of (R,R)-2 and (S,S)-2 at the B3LYP/6-31G(d,p) level of theory. The absolute configuration of (+)-2 was also determined to (R,R)-2 by anomalous X-ray diffraction (AXRD) in a chiral space group P212121 using Cu-irradiation resulting in a very low Flack parameter of -0.06(3), despite the heaviest element being an oxygen atom, thus unambiguously confirming the results from the spectroscopic studies. We conclude that, for the Tröger's base (TB) analogue (2), we may rank the reliability of the individual methods for AC determination as AXRD ≫ VCD > ECD, while the synergy of all three methods provides very strong confidence in the assigned ACs of (+)-(R,R)-2 and (-)-(S,S)-2. PMID:26244379

  10. The nonadditive entropy $S_q$: A door open to the nonuniversality of the mathematical expression of the Clausius thermodynamic entropy in terms of the probabilities of the microscopic configurations

    Tsallis, Constantino

    2011-01-01

    Clausius introduced, in the 1860s, a thermodynamical quantity which he named {\\it entropy} $S$. This thermodynamically crucial quantity was proposed to be {\\it extensive}, i.e., in contemporary terms, $S(N) \\propto N$ in the thermodynamic limit $N \\to\\infty$. A decade later, Boltzmann proposed a functional form for this quantity which connects $S$ with the occurrence probabilities of the microscopic configurations (referred to as {\\it complexions} at that time) of the system. This functional ...

  11. Absolute configuration and enantiomeric composition of partially resolved mandelic, atrolactic and lactic acids by {sup 1}H NMR of their (S)-2-methylbutyl esters

    Andrade, Francisco A. da C.; Mendes, Maricleide P. de L.; Fonseca, Neuracy C. da, E-mail: fandrade@ufba.br [Universidade Federal da Bahia (UFBA), Salvador, BA (Brazil). Instituto de Quimica. Departamento de Quimica Organica

    2013-06-15

    The mandelic, atrolactic and lactic acid esters of the (S)-2-methyl-1-butanol were examined as diastereomeric derivatives for the stereochemical analysis of the mentioned acids by {sup 1}H nuclear magnetic resonance (NMR) at 300 MHz. The diastereomeric esters showed distinctive signals in the methylenic absorption range (O-CH{sub 2}-CH) of the alcoholic moieties. By spectral analysis at this region, absolute configurations were attributed, chemical shifts of the correspondent pro-(R) and pro-(S) hydrogens from the methylene group of the alcohol moiety were assigned and enantiomeric compositions were determined for the original partially resolved acids. (author)

  12. Absolute configuration of fusarone, a new azaphilone from the endophytic fungus Fusarium sp. isolated from Melia azedarach, and of related azaphilones.

    Yang, Sheng-Xiang; Gao, Jin-Ming; Laatsch, Hartmut; Tian, Jun-Mian; Pescitelli, Gennaro

    2012-08-01

    A new azaphilone derivative, named fusarone (1), has been isolated from the ethyl acetate soluble extract of the fermentation broth of an endophytic fungus, Fusarium sp. LN-12, isolated from the leaves of Melia azedarach Linn. The structure of the new compound was established on the basis of extensive spectroscopic analysis, including 1D-NMR and 2D-NMR ((1) H-(1)H COSY, TOCSY, HSQC, HMBC, and NOESY) experiments. The absolute configurations of fusarone (1) and of a second related azaphilone were determined by means of electronic circular dichroism spectroscopy and optical rotation calculations. PMID:22678988

  13. Absolute configuration and enantiomeric composition of partially resolved mandelic, atrolactic and lactic acids by 1H NMR of their (S)-2-methylbutyl esters

    The mandelic, atrolactic and lactic acid esters of the (S)-2-methyl-1-butanol were examined as diastereomeric derivatives for the stereochemical analysis of the mentioned acids by 1H nuclear magnetic resonance (NMR) at 300 MHz. The diastereomeric esters showed distinctive signals in the methylenic absorption range (O-CH2-CH) of the alcoholic moieties. By spectral analysis at this region, absolute configurations were attributed, chemical shifts of the correspondent pro-(R) and pro-(S) hydrogens from the methylene group of the alcohol moiety were assigned and enantiomeric compositions were determined for the original partially resolved acids. (author)

  14. Structure-configurational entropy and its effect on the thermodynamic stability of uranyl phases: With special application for geological disposal of nuclear waste

    CHEN; Fanrong(陈繁荣); Rodney; C.Ewing

    2003-01-01

    Spent UO2 fuel will rapidly be altered to U6+ phases in nuclear waste repositories. Because most uranyl phases are based on sheet or chain structures and usually contain several molecular water groups, site-mixing, vacancies, as well as disorder in the orientation of hydrogen bonds may occur. A systematic survey of the published crystallographic data for uranates, uranyl oxide hydrates, phosphates, silicates, carbonates, and sulfates demonstrates that site-mixing apparently occurs in the structures of at least 31 uranyl phases. Calculations of the ideal site-mixing entropy indicate that the residual contribution that arises from substitution and vacancies to the third-law entropies of some uranyl phases is large. A brief examination of the crystal chemistry of water molecules in uranyl phases suggests that considerable residual entropy may be caused by the disorder of hydrogen bonds associated with interstitial H2O groups. In the geochemical environment that expected to occur in the near-field of nuclear waste repositories, the existence of structure-configurational entropy may reduce the uranium concentration of several log units in solutions equilibrated with some uranyl phases. Therefore, compositional analysis and structural determinations must be made on the samples used in calorimetric measurements, and the calorimetric data must be combined with solubility data to evaluate the thermodynamic stability of the interested phases.

  15. Total Synthesis, Proof of Absolute Configuration, and Biosynthetic Origin of Stylopsal, the First Isolated Sex Pheromone of Strepsiptera

    Lagoutte, Roman; Šebesta, Petr; Jiroš, Pavel; Kalinová, Blanka; Jirošová, Anna; Straka, J.; Černá, K.; Šobotník, Jan; Cvačka, Josef; Jahn, Ullrich

    2013-01-01

    Roč. 19, č. 26 (2013), s. 8515-8524. ISSN 0947-6539 R&D Projects: GA ČR GAP506/10/1466 Institutional support: RVO:61388963 Keywords : asymmetric synthesis * configuration determination * pheromones * total synthesis * Wittig reactions Subject RIV: CC - Organic Chemistry Impact factor: 5.696, year: 2013

  16. (RS)-Propranolol: enantioseparation by HPLC using newly synthesized (S)-levofloxacin-based reagent, absolute configuration of diastereomers and recovery of native enantiomers by detagging.

    Alwera, Shiv; Bhushan, Ravi

    2016-08-01

    Diastereomers of (RS)-propranolol were synthesized using (S)-levofloxacin-based new chiral derivatizing reagents (CDRs). Levofloxacin was chosen as the pure (S)-enantiomer for its high molar absorptivity (εo  ∼ 24000) and availability at a low price. Its -COOH group had N-hydroxysuccinimide and N-hydroxybenzotriazole, which acted as good leaving groups during nucleophilic substitution by the amino group of the racemic (RS)-propranolol; the CDRs were characterized by UV, IR, (1) H-NMR, high resolution mass spectrometry (HRMS) and carbon, hydrogen, nitrogen, and sulphur fundamental elemental components analyser (CHNS). Diastereomers were separated quantitatively using open column chromatography; absolute configuration of the diastereomers was established and the reagent moiety was detagged under microwave-assisted acidic conditions. (S)- and (R)-propranolol as pure enantiomers and (S)-levofloxacin were separated, isolated and characterized. Optimized lowest-energy structures of the diastereomers were developed using Gaussian 09 Rev. A.02 program and hybrid density functional B3LYP with 6-31G* basis set (based on density functional theory) for explanation of elution order and configuration. In addition, RP HPLC conditions for separation of diastereomers were optimized with respect to pH, concentration of buffer, flow rate of mobile phase and nature of organic modifier. HPLC separation method was validated as per International Conference on Harmonization guidelines. With the systematic application of various analytical techniques, absolute configuration of the diastereomers (and the native enantiomers) of (RS)-propranolol was established. Copyright © 2016 John Wiley & Sons, Ltd. PMID:26682898

  17. Structure and Absolute Configuration of 20β-Hydroxyprednisolone, a Biotransformed Product of Predinisolone by the Marine Endophytic Fungus Penicilium lapidosum

    Sadia Sultan

    2014-09-01

    Full Text Available The anti-inflammatory drug predinisolone (1 was reduced to 20β-hydroxyprednisolone (2 by the marine endophytic fungus Penicilium lapidosum isolated from an alga. The structural elucidation of 2 was achieved by 1D- and 2D-NMR, MS, IR data. Although, 2 is a known compound previously obtained through microbial transformation, the data provided failed to prove the C20 stereochemistry. To solve this issue, DFT and TD-DFT calculations have been carried out at the B3LYP/6–31+G (d,p level of theory in gas and solvent phase. The absolute configuration of C20 was eventually assigned by combining experimental and calculated electronic circular dichroism spectra and 3JHH chemical coupling constants.

  18. Enantiomeric 4-Acylamino-6-alkyloxy-2 Alkylthiopyrimidines As Potential A3 Adenosine Receptor Antagonists: HPLC Chiral Resolution and Absolute Configuration Assignment by a Full Set of Chiroptical Spectroscopy.

    Rossi, Daniela; Nasti, Rita; Marra, Annamaria; Meneghini, Silvia; Mazzeo, Giuseppe; Longhi, Giovanna; Memo, Maurizio; Cosimelli, Barbara; Greco, Giovanni; Novellino, Ettore; Da Settimo, Federico; Martini, Claudia; Taliani, Sabrina; Abbate, Sergio; Collina, Simona

    2016-05-01

    The chiral separation of enantiomeric couples of three potential A3 adenosine receptor antagonists: (R/S)-N-(6-(1-phenylethoxy)-2-(propylthio)pyrimidin-4-yl)acetamide (), (R/S)-N-(2-(1-phenylethylthio)-6-propoxypyrimidin-4-yl)acetamide (), and (R/S)-N-(2-(benzylthio)-6-sec-butoxypyrimidin-4-yl)acetamide () was achieved by high-performance liquid chromatography (HPLC). Three types of chiroptical spectroscopies, namely, optical rotatory dispersion (ORD), electronic circular dichroism (ECD), and vibrational circular dichroism (VCD), were applied to enantiomeric compounds. Through comparison with Density Functional Theory (DFT) calculations, encompassing extensive conformational analysis, full assignment of the absolute configuration (AC) for the three sets of compounds was obtained. Chirality 28:434-440, 2016. © 2016 Wiley Periodicals, Inc. PMID:27095007

  19. Structural reassignment, absolute configuration, and conformation of hypurticin, a highly flexible polyacyloxy-6-heptenyl-5,6-dihydro-2H-pyran-2-one.

    Mendoza-Espinoza, José Alberto; López-Vallejo, Fabian; Fragoso-Serrano, Mabel; Pereda-Miranda, Rogelio; Cerda-García-Rojas, Carlos M

    2009-04-01

    The structural reassignment, absolute configuration, and conformational behavior of the highly flexible natural product hypurticin (pectinolide E), 6S-[3'S,5'R,6'S-triacetoxy-1Z-heptenyl]-5S-acetoxy-5,6-dihydro-2H-pyran-2-one (1), were ascertained by a molecular modeling protocol, which includes extensive conformational searching, geometry optimization by DFT B3LYP/DGDZVP calculations, and comparison between the theoretical (DFT) and experimental (1)H-(1)H NMR coupling constants. Hyptolide (2), a related cytotoxic 5,6-dihydro-2H-pyran-2-one that increased the S phase of the HeLa cell cycle, was employed as a reference substance to validate the theoretical protocol designed to characterize the 3D properties of compound 1. The related synthetic derivative, tri-O-acetyl-3,6-dideoxy-d-glucose diphenyldithioacetal (14), was prepared by a six-step reaction sequence starting from d-glucose and served as an enantiopure building block to reinforce the structural and configurational assignment of 1. This protocol proved to be an important tool for the structural characterization of highly flexible bioactive polyoxygenated natural products. PMID:19265396

  20. Exact Solution to the Extended Zwanzig Model for Quasi-Sigmoidal Chemically Induced Denaturation Profiles: Specific Heat and Configurational Entropy

    Aguilar-Pineda, G. E.; Olivares-Quiroz, L.

    2014-01-01

    Temperature and chemically induced denaturation comprise two of the most characteristic mechanisms to achieve the passage from the native state N to any of the unstructured states Dj in the denatured ensemble in proteins and peptides. In this work we present a full analytical solution for the configurational partition function qs of a homopolymer chain poly-X in the extended Zwanzig model (EZM) for a quasisigmoidal denaturation profile. This solution is built up from an EZM exact solution in...

  1. Easy Absolute Values? Absolutely

    Taylor, Sharon E.; Mittag, Kathleen Cage

    2015-01-01

    The authors teach a problem-solving course for preservice middle-grades education majors that includes concepts dealing with absolute-value computations, equations, and inequalities. Many of these students like mathematics and plan to teach it, so they are adept at symbolic manipulations. Getting them to think differently about a concept that they…

  2. The final power calibration of the IPEN/MB-01 nuclear reactor for various configurations obtained from the measurements of the absolute average neutron flux

    Silva, Alexandre Fonseca Povoa da, E-mail: alexandre.povoa@mar.mil.br [Centro Tecnologico da Marinha em Sao Paulo (CTMSP), Sao Paulo, SP (Brazil); Bitelli, Ulysses d' Utra; Mura, Luiz Ernesto Credidio; Lima, Ana Cecilia de Souza; Betti, Flavio; Santos, Diogo Feliciano dos, E-mail: ubitelli@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2015-07-01

    The use of neutron activation foils is a widely spread technique applied to obtain nuclear parameters then comparing the results with those calculated using specific methodologies and available nuclear data. By irradiation of activation foils and subsequent measurement of its induced activity, it is possible to determine the neutron flux at the position of irradiation. The power level during operation of the reactor is a parameter which is directly proportional to the average neutron flux throughout the core. The objective of this work is to gather data from irradiation of gold foils symmetrically placed along a cylindrically configured core which presents only a small excess reactivity in order to derive the power generated throughout the spatial thermal and epithermal neutron flux distribution over the core of the IPEN/MB-01 Nuclear Reactor, eventually lending to a proper calibration of its nuclear channels. The foils are fixed in a Lucite plate then irradiated with and without cadmium sheaths so as to obtain the absolute thermal and epithermal neutron flux. The correlation between the average power neutron flux resulting from the gold foils irradiation, and the average power digitally indicated by the nuclear channel number 6, allows for the calibration of the nuclear channels of the reactor. The reactor power level obtained by thermal neutron flux mapping was (74.65 ± 2.45) watts to a mean counting per seconds of 37881 cps to nuclear channel number 10 a pulse detector, and 0.719.10{sup -5} ampere to nuclear linear channel number 6 (a non-compensated ionization chamber). (author)

  3. The final power calibration of the IPEN/MB-01 nuclear reactor for various configurations obtained from the measurements of the absolute average neutron flux

    The use of neutron activation foils is a widely spread technique applied to obtain nuclear parameters then comparing the results with those calculated using specific methodologies and available nuclear data. By irradiation of activation foils and subsequent measurement of its induced activity, it is possible to determine the neutron flux at the position of irradiation. The power level during operation of the reactor is a parameter which is directly proportional to the average neutron flux throughout the core. The objective of this work is to gather data from irradiation of gold foils symmetrically placed along a cylindrically configured core which presents only a small excess reactivity in order to derive the power generated throughout the spatial thermal and epithermal neutron flux distribution over the core of the IPEN/MB-01 Nuclear Reactor, eventually lending to a proper calibration of its nuclear channels. The foils are fixed in a Lucite plate then irradiated with and without cadmium sheaths so as to obtain the absolute thermal and epithermal neutron flux. The correlation between the average power neutron flux resulting from the gold foils irradiation, and the average power digitally indicated by the nuclear channel number 6, allows for the calibration of the nuclear channels of the reactor. The reactor power level obtained by thermal neutron flux mapping was (74.65 ± 2.45) watts to a mean counting per seconds of 37881 cps to nuclear channel number 10 a pulse detector, and 0.719.10-5 ampere to nuclear linear channel number 6 (a non-compensated ionization chamber). (author)

  4. Low-temperature heat capacity of diopside glass (CaMgSi2O6): A calorimetric test of the configurational-entropy theory applied to the viscosity of liquid silicates

    Richet, P.; Robie, R.A.; Hemingway, B.S.

    1986-01-01

    Heat-capacity measurements have been made between 8 and 370 K on an annealed and a rapidly quenched diopside glass. Between 15 and 200 K, Cp does not depend significantly on the thermal history of the glass. Below 15 K Cp is larger for the quenched than for the annealed specimen. The opposite is true above 200 K as a result of what is interpreted as a secondary relaxation around room temperature. The magnitude of these effects, however, is small enough that the relative entropies S(298)-S(0) of the glasses differ by only 0.5 J/mol K, i.e., a figure within the combined experimental uncertainties. The insensitivity of relative entropies to thermal history supports the assumption that the configurational heat capacity of the liquid may be taken as the heat capacity difference between the liquid and the glass (??Cp). Furthermore, this insensitivity allows calculation of the residual entropies at 0 K of diopside glasses as a function of the fictive temperature from the entropy of fusion of diopside and the heat capacities of the crystalline, glassy and liquid phases. For a glass with a fictive temperature of 1005 K, for example, this calorimetric residual entropy is 24.3 ?? 3 J/mol K, in agreement with the prediction made by RICHET (1984) from an analysis of the viscosity data with the configurational-entropy theory of relaxation processes of Adam and Gibbs (1965). In turn, all the viscosity measurements for liquid diopside, which span the range 0.5-4?? 1013 poise, can be quantitatively reproduced through this theory with the calorimetrically determined entropies and ??Cp data. Finally, the unclear significance of "activation energies" for structural interpretations of viscosity data is emphasized, and the importance of ??Cp and glass-transition temperature systematics for determining the composition and temperature dependences of the viscosity is pointed out. ?? 1986.

  5. Theoretical searches and spectral computations of preferred conformations of various absolute configurations for a cyclodipeptide, cordycedipeptide A from the culture liquid of Cordyceps sinensis

    Mang, Chao-Yong; Liu, Cai-Ping; Liu, Guang-Ming; Jiang, Bei; Lan, Hai; Wu, Ke-Chen; Yan, Ya; Li, Hai-Fei; Yang, Ming-Hui; Zhao, Yu

    2015-02-01

    A cyclic dipeptide often has the multiple configurations and the abundant conformations. The density functional theory (DFT) method is used to search the preferred conformation of the most probable configuration for cordycedipeptide A isolated from the culture liquid of Cordyceps sinensis. The time-dependent DFT approach is exploited to describe the profile of electronic circular dichroism (CD). The calculated results show that the most probable configuration is 3S6R7S, whose preferred conformation has a negative optical rotation and a positive lowest energy electronic CD band.

  6. Development of Several New Reactions and Their Application to the Total Synthesis of Biologically Active Natural Products :Synthesis of Linderol A and Determination of Its Absolute Configuration

    Shunsaku Ohta

    2005-01-01

    @@ 1Introduction Linderol A (1), a monoterpene-polyketide, was isolated in 1995 from the fresh bark of Lindera umbellata (Lauraceae), and its absolute structure was not determined[1]. It was also reported potent inhibitory activity of 1 on the melanin biosynthesis of the cultured B-16 melanoma cells[1]. See Fig. 1. On the other hand,we reported in 1995 an interesting multi-tandem reaction of coumarin derivatives (2; W = electron withdrawing group) by treatment with CH2 = S(O)Me2 to yield stereoselectively a tricyclic 2-substituted cyclopenta [ b ] benzofuran-3-ol derivative (4) via a cyclopropane intermediate (3) (Scheme 1)[2].

  7. Multi-period Mean-absolute Deviation Fuzzy Portfolio Selection Model with Entropy Constraints%具有熵约束的多阶段均值-绝对偏差模糊投资组合决策

    张鹏; 张卫国; 曾玉婷

    2016-01-01

    文章运用可能性绝对偏差和比例熵分别度量风险和分散化程度,提出了具有风险控制和线性交易成本的终期财富最大化的多阶段模糊投资组合模型。运用可能理论,将该模型转化为显示的非线性动态优化问题。由于投资过程存在交易成本,上述模型为具有路径依赖性的动态优化问题。文章提出了前向动态规划方法求解。最后,通过实证研究比较了不同熵的取值投资组合最优投资比例和最终财富的变化。%This paper considers a multi-period fuzzy portfolio selection problem maximizing the terminal wealth imposed by risk control, in which risk of assets and the divergence measure of portfolio are, respectively, meas-ured by fuzzy absolute deviation and proportion entropy.Based on the theories of possibility theory, the proposed model is transformed into a crisp nonlinear programming problem.Because of the transaction costs, the multi-period portfolio selection is a dynamic optimization problem with path dependence.Furthermore, a forward dynamic programming method is designed to obtain the optimal portfolio strategy.Finally, an example is given to illustrate the behavior of the proposed model and the designed algorithm.

  8. Bekenstein Entropy is String Entropy

    Halyo, Edi

    2009-01-01

    We argue that Bekenstein entropy can be interpreted as the entropy of an effective string with a rescaled tension. Using the AdS/CFT correspondence we show that the Bekenstein entropy on the boundary CFT is given by the entropy of a string at the stretched horizon of the AdS black hole in the bulk. The gravitationally redshifted tension and energy of the string match those required to reproduce Bekenstein entropy.

  9. Time, absolute.

    Mughal, Muhammad Aurang Zeb

    2009-01-01

    The concept of absolute time is a hypothetical model from the laws of classical physics postulated by Isaac Newton in the Principia in 1687. Although the Newtonian model of absolute time has since been opposed and rejected in light of more recent scholarship, it still provides a way to study science with reference to time and understand the phenomena of time within the scientific tradition. According to this model, it is assumed that time runs at the same rate for all the observers in the uni...

  10. Absolute beginners

    Costa, Carlos Casimiro da; Costa, Jacinta Casimiro da

    2012-01-01

    Tomorrow, I m recovering my Thursday child as an absolute beginner , Transporting you to the essential touch of surface skin and space, Only for you, i do not regret, looking for education in a materia set. My love is your love , my materiality is you making things, The legacy of our ethnography, craftsmen s old and disappear, make me strong hard feelings, Recovering experiences and knowledge sprinkled in powder of stone, wood and metal ( ) reflecting in your dirty face the ...

  11. Basis Entropy

    Chen, Xing

    2016-01-01

    Projective measurement can increase the entropy of a state $\\rho$, the increased entropy is not only up to the basis of projective measurement, but also has something to do with the properties of the state itself. In this paper we define this increased entropy as basis entropy. And then we discuss the usefulness of this new concept by showing its application in explaining the success probability of Grover's algorithm and the existence of quantum discord. And as shown in the paper, this new co...

  12. Absolute Summ

    Phillips, Alfred, Jr.

    Summ means the entirety of the multiverse. It seems clear, from the inflation theories of A. Guth and others, that the creation of many universes is plausible. We argue that Absolute cosmological ideas, not unlike those of I. Newton, may be consistent with dynamic multiverse creations. As suggested in W. Heisenberg's uncertainty principle, and with the Anthropic Principle defended by S. Hawking, et al., human consciousness, buttressed by findings of neuroscience, may have to be considered in our models. Predictability, as A. Einstein realized with Invariants and General Relativity, may be required for new ideas to be part of physics. We present here a two postulate model geared to an Absolute Summ. The seedbed of this work is part of Akhnaton's philosophy (see S. Freud, Moses and Monotheism). Most important, however, is that the structure of human consciousness, manifest in Kenya's Rift Valley 200,000 years ago as Homo sapiens, who were the culmination of the six million year co-creation process of Hominins and Nature in Africa, allows us to do the physics that we do. .

  13. Determination of the absolute configuration of chiral α-aryloxypropanoic acids using vibrational circular dichroism studies: 2-(2-chlorophenoxy) propanoic acid and 2-(3-chlorophenoxy) propanoic acid

    He, Jiangtao; Polavarapu, Prasad L.

    2005-05-01

    The enantiomers of 2-(2-chlorophenoxy) propanoic acid and 2-(3-chlorophenoxy) propanoic acid were resolved on a chiral HPLC column and investigated using mid-infrared vibrational circular dichroism (VCD). Experimental infrared vibrational absorption and VCD spectra were measured in CDCl 3 solution in the 2000-900 cm -1 region and compared with the ab initio predictions of absorption and VCD spectra. The predicted spectra were obtained with density functional theory using B3LYP/6-31G* basis set for the stable and dominant conformers. But the predicted spectra did not provide unambiguous structural information due to intermolecular hydrogen bonding in solution. To eliminate the hydrogen bonding effects, the acids were converted to the corresponding methyl esters and the experimental absorbance and VCD spectra of methyl esters were measured. B3LYP predicted spectra were also obtained for the stable and dominant conformers of the esters. From a comparison of the experimental VCD spectra of methyl esters with corresponding ab initio predictions, the absolute configurations of esters, and therefore of their parent acids, are unambiguously determined to be (+)-( R).

  14. Volume Entropy

    Astuti, Valerio; Christodoulou, Marios; Rovelli, Carlo

    2016-01-01

    Building on a technical result by Brunnemann and Rideout on the spectrum of the Volume operator in Loop Quantum Gravity, we show that the dimension of the space of the quadrivalent states --with finite-volume individual nodes-- describing a region with total volume smaller than $V$, has \\emph{finite} dimension, bounded by $V \\log V$. This allows us to introduce the notion of "volume entropy": the von Neumann entropy associated to the measurement of volume.

  15. Universal entropy relations: entropy formulae and entropy bound

    Liu, Hang; Meng, Xin-he; Xu, Wei; Zhu, Bin

    2016-01-01

    We survey the applications of universal entropy relations in black holes with multi-horizons. In sharp distinction to conventional entropy product, the entropy relationship here not only improve our understanding of black hole entropy but was introduced as an elegant technique trick for handling various entropy bounds and sum. Despite the primarily technique role, entropy relations have provided considerable insight into several different types of gravity, including massive gravity, Einstein-...

  16. Arithmetic of quantum entropy function

    Quantum entropy function is a proposal for computing the entropy associated with the horizon of a black hole in the extremal limit, and is related via AdS/CFT correspondence to the dimension of the Hilbert space in a dual quantum mechanics. We show that in N = 4 supersymmetric string theories, quantum entropy function formalism naturally explains the origin of the subtle differences between the microscopic degeneracies of quarter BPS dyons carrying different torsion, i.e. different arithmetical properties. These arise from additional saddle points in the path integral - whose existence depends on the arithmetical properties of the black hole charges - constructed as freely acting orbifolds of the original AdS2 x S2 near horizon geometry. During this analysis we demonstrate that the quantum entropy function is insensitive to the details of the infrared cutoff used in the computation, and the details of the boundary terms added to the action. We also discuss the role of the asymptotic symmetries of AdS2 in carrying out the path integral in the definition of quantum entropy function. Finally we show that even though quantum entropy function is expected to compute the absolute degeneracy in a given charge and angular momentum sector, it can also be used to compute the index. This can then be compared with the microscopic computation of the index.

  17. Entropy Maximization

    K B Athreya

    2009-09-01

    It is shown that (i) every probability density is the unique maximizer of relative entropy in an appropriate class and (ii) in the class of all pdf that satisfy $\\int fh_id_=_i$ for $i=1,2,\\ldots,\\ldots k$ the maximizer of entropy is an $f_0$ that is proportional to $\\exp(\\sum c_i h_i)$ for some choice of $c_i$. An extension of this to a continuum of constraints and many examples are presented.

  18. Geometric Entropy

    Das, Diptarka

    2010-01-01

    The laws of mechanics of stationary black holes bear a close resemblance with the laws of thermodynamics. This is not only a mathematical analogy but also a physical one that helps us answer deep questions related to the thermodynamic properties of the black holes. It turns out that we can define an entropy which is purely geometrical for black holes. In this thesis we explain Wald's formulation which identifies black hole entropy for an arbitrary covariant theory of gravity. We would like to know precisely what inputs go into arriving at Wald's formalism. This expression for the entropy clearly depends on the precise form of the action. The secondary theme of this thesis is to distinguish thermodynamic laws which are kinematic from those which are dynamical. We would like to see explicitly in the derivation of these laws, where exactly the form of action plays a role. In the beginning we motivate the definition of entropy using the Einstein-Hilbert Lagrangian. We encounter the Zeroth law, the Hawking radiati...

  19. Carnot to Clausius: caloric to entropy

    This paper discusses how the Carnot engine led to the formulation of the second law of thermodynamics and entropy. The operation of the engine is analysed both in terms of heat as the caloric fluid and heat as a form of energy. A keystone of Carnot's thinking was the absolute conservation of caloric. Although the Carnot analysis was partly incorrect, Clausius showed that by reinterpreting Carnot's caloric as entropy he was able to formulate the second law

  20. Pesin's Entropy Formula for Systems Between and

    Tian, Xueting

    2014-09-01

    In this article we give a new observation of Pesin's entropy formula, motivated from Mañé's proof of (Ergod Theory Dyn Sys 1:95-102, 1981). Let be a compact Riemann manifold and be a diffeomorphism on . If is an -invariant probability measure which is absolutely continuous relative to Lebesgue measure and nonuniformly-Hlder-continuous(see Definition 1.1), then we have Pesin's entropy formula, i.e., the metric entropy satisfies where are the Lyapunov exponents at with respect to Nonuniformly-H lder-continuous is a new notion from probabilistic perspective weaker than

  1. Global Entropy

    Thien Nguyen; Lukas Schmid; Mariano Croce

    2014-01-01

    The recent fiscal crisis in the EU and the slow-down of the BRICS countries have raised world-wide concerns about future global growth prospects. We examine the role of doubts about both local and foreign economic shocks by constructing an international endogenous growth model with technology diffusion across countries. In this setting, endogenous technology spillovers generate global growth shocks. When agents have concerns for robustness, country-specific shocks (1) alter global entropy, an...

  2. Universal entropy relations: entropy formulae and entropy bound

    Liu, Hang; Xu, Wei; Zhu, Bin

    2016-01-01

    We survey the applications of universal entropy relations in black holes with multi-horizons. In sharp distinction to conventional entropy product, the entropy relationship here not only improve our understanding of black hole entropy but was introduced as an elegant technique trick for handling various entropy bounds and sum. Despite the primarily technique role, entropy relations have provided considerable insight into several different types of gravity, including massive gravity, Einstein-Dilaton gravity and Horava-Lifshitz gravity. We present and discuss the results for each one.

  3. Teaching Absolute Value Meaningfully

    Wade, Angela

    2012-01-01

    What is the meaning of absolute value? And why do teachers teach students how to solve absolute value equations? Absolute value is a concept introduced in first-year algebra and then reinforced in later courses. Various authors have suggested instructional methods for teaching absolute value to high school students (Wei 2005; Stallings-Roberts…

  4. Entropy Bounds for Constrained Two-Dimensional Fields

    Forchhammer, Søren Otto; Justesen, Jørn

    1999-01-01

    The maximum entropy and thereby the capacity of 2-D fields given by certain constraints on configurations are considered. Upper and lower bounds are derived.......The maximum entropy and thereby the capacity of 2-D fields given by certain constraints on configurations are considered. Upper and lower bounds are derived....

  5. On the Absolute Continuity of the Blackwell Measure

    Bárány, Balázs; Kolossváry, István

    2015-04-01

    In 1957, Blackwell expressed the entropy of hidden Markov chains using a measure which can be characterised as an invariant measure for an iterated function system with place-dependent weights. This measure, called the Blackwell measure, plays a central role in understanding the entropy rate and other important characteristics of fundamental models in information theory. We show that for a suitable set of parameter values the Blackwell measure is absolutely continuous for almost every parameter in the case of binary symmetric channels.

  6. Carnot to Clausius: Caloric to Entropy

    Newburgh, Ronald

    2009-01-01

    This paper discusses how the Carnot engine led to the formulation of the second law of thermodynamics and entropy. The operation of the engine is analysed both in terms of heat as the caloric fluid and heat as a form of energy. A keystone of Carnot's thinking was the absolute conservation of caloric. Although the Carnot analysis was partly…

  7. Eosinophil count - absolute

    Eosinophils; Absolute eosinophil count ... the white blood cell count to give the absolute eosinophil count. ... than 500 cells per microliter (cells/mcL). Normal value ranges may vary slightly among different laboratories. Talk ...

  8. Entropy and Energy, – a Universal Competition

    Ingo Müller

    2008-01-01

    When a body approaches equilibrium, energy tends to a minimum and entropy tends to a maximum. Often, or usually, the two tendencies favour different configurations of the body. Thus energy is deterministic in the sense that it favours fixed positions for the atoms, while entropy randomizes the positions. Both may exert considerable forces in the attempt to reach their objectives. Therefore they have to compromise; indeed, under most circumstances it is the available free energy which achieves...

  9. Entropy from the foam, 2

    Garattini, R

    2002-01-01

    A simple model of spacetime foam, made by two different types of wormholes in a semiclassical approximation, is taken under examination: one type is a collection of $N_{w}$ Schwarzschild wormholes, while the other one is made by Schwarzschild-Anti-de Sitter wormholes. The area quantization related to the entropy via the Bekenstein-Hawking formula hints a possible selection between the two configurations. Application to the charged black hole are discussed.

  10. Entropy from the Foam II

    Garattini, Remo

    A simple model of space-time foam, made by two different types of wormholes in a semiclassical approximation, is taken under examination: one type is a collection of Nw Schwarzschild wormholes, while the other one is made by Schwarzschild-Anti-de Sitter wormholes. The area quantization related to the entropy via the Bekenstein-Hawking formula hints a possible selection between the two configurations. Application to the charged black hole are discussed.

  11. Topological entropy of autonomous flows

    Badii, R. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-06-01

    When studying fluid dynamics, especially in a turbulent regime, it is crucial to estimate the number of active degrees of freedom or of localized structures in the system. The topological entropy quantifies the exponential growth of the number of `distinct` orbits in a dynamical system as a function of their length, in the infinite spatial resolution limit. Here, I illustrate a novel method for its evaluation, which extends beyond maps and is applicable to any system, including autonomous flows: these are characterized by lack of a definite absolute time scale for the orbit lengths. (author) 8 refs.

  12. Absolute nuclear material assay

    Prasad, Manoj K.; Snyderman, Neal J.; Rowland, Mark S.

    2010-07-13

    A method of absolute nuclear material assay of an unknown source comprising counting neutrons from the unknown source and providing an absolute nuclear material assay utilizing a model to optimally compare to the measured count distributions. In one embodiment, the step of providing an absolute nuclear material assay comprises utilizing a random sampling of analytically computed fission chain distributions to generate a continuous time-evolving sequence of event-counts by spreading the fission chain distribution in time.

  13. Absolute nuclear material assay

    Prasad, Manoj K.; Snyderman, Neal J.; Rowland, Mark S.

    2012-05-15

    A method of absolute nuclear material assay of an unknown source comprising counting neutrons from the unknown source and providing an absolute nuclear material assay utilizing a model to optimally compare to the measured count distributions. In one embodiment, the step of providing an absolute nuclear material assay comprises utilizing a random sampling of analytically computed fission chain distributions to generate a continuous time-evolving sequence of event-counts by spreading the fission chain distribution in time.

  14. Bekenstein-Hawking Entropy as Entanglement Entropy

    Feng, Yu-Lei

    2015-01-01

    We show that the Bekenstein-Hawking entropy $S_{BH}$ should be treated as an entanglement entropy, provided that the formation and evaporation of a black hole can be described by quantum unitary evolutions. To confirm this statement, we derive statistical mechanics from quantum mechanics effectively by means of open quantum systems. Then a new definition of Boltzmann entropy for a quantum closed system is given to count microstates in a way consistent with the superposition principle. In particular, this new Boltzmann entropy is a constant that depends only on the dimension of the system's relevant Hilbert subspace. Based on this new definition, some kind of "detailed balance" condition is obtained to stabilize the thermal equilibrium between two macroscopic subsystems within a larger closed system. However, the required "detailed balance" condition between black hole and matter would be broken, if the Bekenstein-Hawking entropy was treated as Boltzmann entropy together with the Hawking temperature as thermal...

  15. ABSOLUTE NEUTRINO MASSES

    Schechter, J.; Shahid, M. N.

    2012-01-01

    We discuss the possibility of using experiments timing the propagation of neutrino beams over large distances to help determine the absolute masses of the three neutrinos.......We discuss the possibility of using experiments timing the propagation of neutrino beams over large distances to help determine the absolute masses of the three neutrinos....

  16. The Nernst theorem and the statistical entropy of the NUT-Kerr-Newman black hole

    Using quantum statistical method, we obtain the partition function of Bose field and Fermi field on the background of the axisymmetrical NUT-Kerr-Newman black hole. The difficult to solve wave equation is avoided. Then via the membrane model we calculate the entropy of Bose field and Fermi field of the black hole. Though discussing, we derive that the black hole's entropy consists of two parts. According to the property that the entropy is an extensive quantity, we know that the entropy is the contribution of two thermodynamic systems. On this basis, a new Bekenstein-Smarr formula is given. It is shown that the entropy expressed by two thermodynamic systems will approach zero, when the radiation temperature approaches absolute zero.It satisfies Nernst theorem. The entropy can be taken as the Planck absolute entropy. (authors)

  17. Quantum dynamical entropy revisited

    We define a new quantum dynamical entropy, which is a 'hybrid' of the closely related, physically oriented entropy introduced by Alicki and Fannes in 1994, and of the mathematically well-developed, single-argument entropy introduced by Connes, Narnhofer and Thirring in 1987. We show that this new quantum dynamical entropy has many properties similar to the ones of the Alicki-Fannes entropy, and also inherits some additional properties from the CNT entropy. In particular, the 'hybrid' entropy interpolates between the two different ways in which both the AF and the CNT entropy of the shift automorphism on the quantum spin chain agree with the usual quantum entropy density, resulting in even better agreement. Also, the new quantum dynamical entropy generalizes the classical dynamical entropy of Kolmogorov and Sinai in the same way as does the AF entropy. Finally, we estimate the 'hybrid' entropy both for the Powers-Price shift systems and for the noncommutative Arnold map on the irrational rotation C*-algebra, leaving some interesting open problems. (author)

  18. Calculation of the entropy and free energy of peptides by molecular dynamics simulations using the hypothetical scanning molecular dynamics method.

    Cheluvaraja, Srinath; Meirovitch, Hagai

    2006-07-14

    Hypothetical scanning (HS) is a method for calculating the absolute entropy S and free energy F from a sample generated by any simulation technique. With this approach each sample configuration is reconstructed with the help of transition probabilities (TPs) and their product leads to the configuration's probability, hence to the entropy. Recently a new way for calculating the TPs by Monte Carlo (MC) simulations has been suggested, where all system interactions are taken into account. Therefore, this method--called HSMC--is in principle exact where the only approximation is due to insufficient sampling. HSMC has been applied very successfully to liquid argon, TIP3P water, self-avoiding walks on a lattice, and peptides. Because molecular dynamics (MD) is considered to be significantly more efficient than MC for a compact polymer chain, in this paper HSMC is extended to MD simulations as applied to peptides. Like before, we study decaglycine in vacuum but for the first time also a peptide with side chains, (Val)(2)(Gly)(6)(Val)(2). The transition from MC to MD requires implementing essential changes in the reconstruction process of HSMD. Results are calculated for three microstates, helix, extended, and hairpin. HSMD leads to very stable differences in entropy TDeltaS between these microstates with small errors of 0.1-0.2 kcal/mol (T=100 K) for a wide range of calculation parameters with extremely high efficiency. Various aspects of HSMD and plans for future work are discussed. PMID:16848609

  19. Physical entropy, information entropy and their evolution equations

    2001-01-01

    Inspired by the evolution equation of nonequilibrium statistical physics entropy and the concise statistical formula of the entropy production rate, we develop a theory of the dynamic information entropy and build a nonlinear evolution equation of the information entropy density changing in time and state variable space. Its mathematical form and physical meaning are similar to the evolution equation of the physical entropy: The time rate of change of information entropy density originates together from drift, diffusion and production. The concise statistical formula of information entropy production rate is similar to that of physical entropy also. Furthermore, we study the similarity and difference between physical entropy and information entropy and the possible unification of the two statistical entropies, and discuss the relationship among the principle of entropy increase, the principle of equilibrium maximum entropy and the principle of maximum information entropy as well as the connection between them and the entropy evolution equation.

  20. ENTROPY - OUR BEST FRIEND

    Urban Kordes

    2005-10-01

    Full Text Available The paper tries to tackle the question of connection between entropy and the living. Definitions of life as the phenomenon that defies entropy are overviewed and the conclusion is reached that life is in a way dependant on entropy - it couldn't exist without it. Entropy is a sort of medium, a fertile soil, that gives life possibility to blossom. Paper ends with presenting some consequences for the field of artificial intelligence.

  1. Entropy - our best friend

    Urban Kordes

    2015-01-01

    The paper tries to tackle the question of connection between entropy and the living. Definitions of life as the phenomenon that defies entropy are overviewed and the conclusion is reached that life is in a way dependant on entropy - it couldn't exist without it. Entropy is a sort of medium, a fertile soil, that gives life possibility to blossom. Paper ends with presenting some consequences for the field of artificial intelligence.

  2. Entropy of Baker's Transformation

    栾长福

    2003-01-01

    Four theorems about four different kinds of entropies for Baker's transformation are presented. The Kolmogorov entropy of Baker's transformation is sensitive to the initial flips by the time. The topological entropy of Baker's transformation is found to be log k. The conditions for the state of Baker's transformation to be forbidden are also derived. The relations among the Shanonn, Kolmogorov, topological and Boltzmann entropies are discussed in details.

  3. Structure–Activity Relationship Study of Selective Excitatory Amino Acid Transporter Subtype 1 (EAAT1) Inhibitor 2-Amino-4-(4-methoxyphenyl)-7-(naphthalen-1-yl)-5-oxo-5,6,7,8-tetrahydro-4H-chromene-3-carbonitrile (UCPH-101) and Absolute Configurational Assignment Using Infrared and Vibrational

    Huynh, Tri H.V.; Shim, Irene; Bohr, Henrik;

    2012-01-01

    diastereomeric pairs 11a/11b and 12a/12b were separated by HPLC and the absolute configuration assigned by VCD technique in combination with ab initio Hartree–Fock calculations. Analogues 11a (RS-isomer) and 12b (RR-isomer) inhibited EAAT1 (IC50 values 5.5 and 3.8 μM, respectively), whereas analogues 11b (SS...... rodents, respectively. In this paper, we present the design, synthesis, and pharmacological evaluation of seven 7-N-substituted analogues of UCPH-101/102. Analogue 9 inhibited EAAT1 in the micromolar range (IC50 value 20 μM), whereas analogues 8 and 10 were inactive (IC50 values >100 μM). The......-isomer) and 12a (SR-isomer) failed to inhibit EAAT1 uptake (IC50 values >300 μM)....

  4. Entropies and fractal dimensions

    Sparavigna, Amelia Carolina

    2016-01-01

    In this paper, we discuss the relation between entropy and the fractal dimension, a statistical index which is measuring the complexity of a given pattern, embedded in given spatial dimensions. We will consider the Shannon entropy and the generalized entropies of Tsallis and Kaniadakis

  5. Entropy and Fractal Antennas

    Emanuel Guariglia

    2016-01-01

    The entropies of Shannon, Rényi and Kolmogorov are analyzed and compared together with their main properties. The entropy of some particular antennas with a pre-fractal shape, also called fractal antennas, is studied. In particular, their entropy is linked with the fractal geometrical shape and the physical performance.

  6. Entropy estimates for simple random fields

    Forchhammer, Søren; Justesen, Jørn

    We consider the problem of determining the maximum entropy of a discrete random field on a lattice subject to certain local constraints on symbol configurations. The results are expected to be of interest in the analysis of digitized images and two dimensional codes. We shall present some examples...

  7. NGS Absolute Gravity Data

    National Oceanic and Atmospheric Administration, Department of Commerce — The NGS Absolute Gravity data (78 stations) was received in July 1993. Principal gravity parameters include Gravity Value, Uncertainty, and Vertical Gradient. The...

  8. Absolute Pitch on Music

    Çuhadar, C.Hakan

    2008-01-01

    Musicians are debated people in the academic circles with the claim of they have both various characteristics and different cognitive personalities on the analogy those other people. One of these different characteristics is absolute pitch ability. Absolute pitch (AP) is a cognitive ability which can be characterized as to identify any tones (labeling) at a given pitch without using any external references. According to the different studies which were held in different times, the prevalence ...

  9. Absolute polarimetry at RHIC

    Okada, H.; Alekseev, I.; Bravar, A; Bunce, G.; Dhawan, S.; Eyser, K. O.; Gill, R; Haeberli, W.; Huang, H.; Jinnouchi, O.; Makdisi, Y.; Nakagawa, I.; Nass, A.; Saito, N; Stephenson, E.

    2007-01-01

    Precise and absolute beam polarization measurements are critical for the RHIC spin physics program. Because all experimental spin-dependent results are normalized by beam polarization, the normalization uncertainty contributes directly to final physics uncertainties. We aimed to perform the beam polarization measurement to an accuracy of $\\Delta P_{beam}/P_{beam} < 5%$. The absolute polarimeter consists of Polarized Atomic Hydrogen Gas Jet Target and left-right pairs of silicon strip detector...

  10. Absolute surface energy determination

    Metois, J. J.; Muller, P.

    2007-01-01

    Experimental determination of absolute surface energies remains a challenge. We propose a simple method based on two independent measurements on 3D and 2D equilibrium shapes completed by the analysis of the thermal fluctuation of an isolated step. Using then basic equations (Wulff' theorem, Gibbs-Thomson equation, thermodynamics fluctuation of an isolated step) allows us to extract the absolute surface free energy of a singular face. The so-proposed method can be applied when (i) all orientat...

  11. Finiteness of entropy for granular media equations

    Tugaut, Julian

    2015-01-01

    The current work deals with the granular media equation, which prob-abilistic interpretation is the McKean-Vlasov diffusion. It is well-known that the Laplacian provides a regularization of the solution. Indeed, for any t > 0, the solution is absolutely continuous with respect to the Lebesgue measure. It has also been proven that all the moments are bounded for positive t. However, the finiteness of the entropy of the solution is a new result, that we present here.

  12. Entropy and information

    Volkenstein, Mikhail V

    2009-01-01

    The book "Entropy and Information" deals with the thermodynamical concept of entropy and its relationship to information theory. It is successful in explaining the universality of the term "Entropy" not only as a physical phenomenon, but reveals its existence also in other domains. E.g., Volkenstein discusses the "meaning" of entropy in a biological context and shows how entropy is related to artistic activities. Written by the renowned Russian bio-physicist Mikhail V. Volkenstein, this book on "Entropy and Information" surely serves as a timely introduction to understand entropy from a thermodynamic perspective and is definitely an inspiring and thought-provoking book that should be read by every physicist, information-theorist, biologist, and even artist.

  13. The Nernst theorem and statistical entropy in a (1+1)-dimensional charged black hole

    It was derived that the bosonic and fermionic entropies in (1+1)-dimensional charged black hole directly by using the quantum statistical method. The result is the same as the integral expression obtained by solving the wave equation approximately. Then it is obtained the statistical entropy of the black hole by integration via the improved brick-wall method, membrane model. The derived entropy satisfies the thermodynamic relation. When the radiation temperature of the black hole tends to zero, so does the entropy. It obeys Nernst theorem. So it can be taken as Planck absolute entropy

  14. RNA Thermodynamic Structural Entropy.

    Juan Antonio Garcia-Martin

    Full Text Available Conformational entropy for atomic-level, three dimensional biomolecules is known experimentally to play an important role in protein-ligand discrimination, yet reliable computation of entropy remains a difficult problem. Here we describe the first two accurate and efficient algorithms to compute the conformational entropy for RNA secondary structures, with respect to the Turner energy model, where free energy parameters are determined from UV absorption experiments. An algorithm to compute the derivational entropy for RNA secondary structures had previously been introduced, using stochastic context free grammars (SCFGs. However, the numerical value of derivational entropy depends heavily on the chosen context free grammar and on the training set used to estimate rule probabilities. Using data from the Rfam database, we determine that both of our thermodynamic methods, which agree in numerical value, are substantially faster than the SCFG method. Thermodynamic structural entropy is much smaller than derivational entropy, and the correlation between length-normalized thermodynamic entropy and derivational entropy is moderately weak to poor. In applications, we plot the structural entropy as a function of temperature for known thermoswitches, such as the repression of heat shock gene expression (ROSE element, we determine that the correlation between hammerhead ribozyme cleavage activity and total free energy is improved by including an additional free energy term arising from conformational entropy, and we plot the structural entropy of windows of the HIV-1 genome. Our software RNAentropy can compute structural entropy for any user-specified temperature, and supports both the Turner'99 and Turner'04 energy parameters. It follows that RNAentropy is state-of-the-art software to compute RNA secondary structure conformational entropy. Source code is available at https://github.com/clotelab/RNAentropy/; a full web server is available at http

  15. Thermodynamic efficiency and entropy production in the climate system.

    Lucarini, Valerio

    2009-08-01

    We present an outlook on the climate system thermodynamics. First, we construct an equivalent Carnot engine with efficiency eta and frame the Lorenz energy cycle in a macroscale thermodynamic context. Then, by exploiting the second law, we prove that the lower bound to the entropy production is eta times the integrated absolute value of the internal entropy fluctuations. An exergetic interpretation is also proposed. Finally, the controversial maximum entropy production principle is reinterpreted as requiring the joint optimization of heat transport and mechanical work production. These results provide tools for climate change analysis and for climate models' validation. PMID:19792088

  16. Maximum-entropy probability distributions under Lp-norm constraints

    Dolinar, S.

    1991-01-01

    Continuous probability density functions and discrete probability mass functions are tabulated which maximize the differential entropy or absolute entropy, respectively, among all probability distributions with a given L sub p norm (i.e., a given pth absolute moment when p is a finite integer) and unconstrained or constrained value set. Expressions for the maximum entropy are evaluated as functions of the L sub p norm. The most interesting results are obtained and plotted for unconstrained (real valued) continuous random variables and for integer valued discrete random variables. The maximum entropy expressions are obtained in closed form for unconstrained continuous random variables, and in this case there is a simple straight line relationship between the maximum differential entropy and the logarithm of the L sub p norm. Corresponding expressions for arbitrary discrete and constrained continuous random variables are given parametrically; closed form expressions are available only for special cases. However, simpler alternative bounds on the maximum entropy of integer valued discrete random variables are obtained by applying the differential entropy results to continuous random variables which approximate the integer valued random variables in a natural manner. All the results are presented in an integrated framework that includes continuous and discrete random variables, constraints on the permissible value set, and all possible values of p. Understanding such as this is useful in evaluating the performance of data compression schemes.

  17. Relative entropy equals bulk relative entropy

    Jafferis, Daniel L; Maldacena, Juan; Suh, S Josephine

    2015-01-01

    We consider the gravity dual of the modular Hamiltonian associated to a general subregion of a boundary theory. We use it to argue that the relative entropy of nearby states is given by the relative entropy in the bulk, to leading order in the bulk gravitational coupling. We also argue that the boundary modular flow is dual to the bulk modular flow in the entanglement wedge, with implications for entanglement wedge reconstruction.

  18. Statistical entropy of de Sitter space

    Quantum gravity in 2+1 dimensions with a positive cosmological constant can be represented as an SL(2,C) Chern-Simons gauge theory. The symmetric vacuum of this theory is a degenerate configuration for which the gauge fields and spacetime metric vanish, while de Sitter space corresponds to a highly excited thermal state. Carlip's approach to black hole entropy can be adapted in this context to determine the statistical entropy of de Sitter space. We find that it equals one-quarter the area of the de Sitter horizon, in agreement with the semiclassical formula. (author)

  19. Generalized quantum entropies

    A deduction of generalized quantum entropies within the Tsallis and Kaniadakis frameworks is derived using a generalization of the ordinary multinomial coefficient. This generalization is based on the respective deformed multiplication and division. We show that the two above entropies are consistent with ones arbitrarily assumed at other contexts. -- Highlights: → Derivation of generalized quantum entropies. → Generalized combinatorial method. → Non-Gaussian quantum statistics.

  20. RNA thermodynamic structural entropy

    Garcia-Martin, Juan Antonio; Clote, Peter

    2015-01-01

    Conformational entropy for atomic-level, three dimensional biomolecules is known experimentally to play an important role in protein-ligand discrimination, yet reliable computation of entropy remains a difficult problem. Here we describe the first two accurate and efficient algorithms to compute the conformational entropy for RNA secondary structures, with respect to the Turner energy model, where free energy parameters are determined from UV absorption experiments. An algorithm to compute th...

  1. Calibration with Absolute Shrinkage

    Øjelund, Henrik; Madsen, Henrik; Thyregod, Poul

    2001-01-01

    In this paper, penalized regression using the L-1 norm on the estimated parameters is proposed for chemometric je calibration. The algorithm is of the lasso type, introduced by Tibshirani in 1996 as a linear regression method with bound on the absolute length of the parameters, but a modification...

  2. Black Hole Entropy from Entropy of Hawking Radiation

    Aghapour, Sajad

    2016-01-01

    We provide a simple way for calculating the entropy of a Schwarzschild black hole from the entropy of its Hawking radiation. To this end, we show that if a thermodynamic system loses its energy only through the black body radiation, its loss of entropy is always 3/4 of the entropy of the emitted radiation. This proposition enables us to relate the entropy of an evaporating black hole to the entropy of its Hawking radiation. Explicitly, by calculating the entropy of the Hawking radiation emitted in the full period of evaporation of the black hole, we find the Bekenstein-Hawking entropy of the initial black hole.

  3. Renyi extrapolation of Shannon entropy

    Zyczkowski, K

    2003-01-01

    Relations between Shannon entropy and Renyi entropies of integer order are discussed. For any N-point discrete probability distribution for which the Renyi entropies of order two and three are known, we provide an lower and an upper bound for the Shannon entropy. The average of both bounds provide an explicit extrapolation for this quantity. These results imply relations between the von Neumann entropy of a mixed quantum state, its linear entropy and traces.

  4. Quantum Fine-Grained Entropy

    WANG, DONG-SHENG

    2012-01-01

    Regarding the strange properties of quantum entropy and entanglement, e.g., the negative quantum conditional entropy, we revisited the foundations of quantum entropy, namely, von Neumann entropy, and raised the new method of quantum fine-grained entropy. With the applications in entanglement theory, quantum information processing, and quantum thermodynamics, we demonstrated the capability of quantum fine-grained entropy to resolve some notable confusions and problems, including the measure of...

  5. Generalized quantum entropies

    Santos, A. P.; Silva, R.; Alcaniz, J. S.; Anselmo, D. H. A. L.

    2011-08-01

    A deduction of generalized quantum entropies within the Tsallis and Kaniadakis frameworks is derived using a generalization of the ordinary multinomial coefficient. This generalization is based on the respective deformed multiplication and division. We show that the two above entropies are consistent with ones arbitrarily assumed at other contexts.

  6. Entropy of the Universe

    Berman, Marcelo Samuel

    2009-01-01

    After a discussion on several limiting cases where General Relativity turns into less sophisticated theories, we find that in the correct thermodynamical and cosmological weak field limit of Einstein's field equations the entropy of the Universe is R^(3/2) -- dependent, where R stands for the radius of the causally related Universe. Thus, entropy grows in the Universe, contrary to Standard Cosmology prediction.

  7. Entropy and Ionic Conductivity

    Zhang, Yong-Jun

    2012-01-01

    It is known that the ionic conductivity can be obtained by using the diffusion constant and the Einstein relation. We derive it here by extracting it from the steady electric current which we calculate in three ways, using statistics analysis, an entropy method, and an entropy production approach.

  8. ENTROPY AND SOCIETY

    Tanase, Viorel Iulian; Balan, Mihai; Paraschiv, Ruxandra Victoria

    2011-01-01

    The article shows that the repartition of the maximum entropy is the uniform repartition and contains the highest disorder degree which means the highest quantity of information in potential status. Entropy which measures the disorder is not opposite to the Quantity of Information (the dimension for order) but the potential of the Quantity of Information.

  9. Fractal von Neumann entropy

    da Cruz, Wellington

    2002-01-01

    We consider the {\\it fractal von Neumann entropy} associated with the {\\it fractal distribution function} and we obtain for some {\\it universal classes h of fractons} their entropies. We obtain also for each of these classes a {\\it fractal-deformed Heisenberg algebra}. This one takes into account the braid group structure of these objects which live in two-dimensional multiply connected space.

  10. Evolution and Earth's Entropy

    Klauber, Robert D.

    2010-01-01

    Entropy decreases on the Earth due to day/night temperature differences. This decrease exceeds the decrease in entropy on the Earth related to evolution by many orders of magnitude. Claims by creationists that science is somehow inconsistent with regard to evolution are thus show to be baseless.

  11. Entropy in Rhetoric.

    Marder, Daniel

    The Second Law of Thermodynamics demonstrates the idea of entropy, the tendency of ordered energy to free itself and thus break apart the system that contains it and dissipate that system into chaos. When applied to communications theory, entropy increases not only with noise but with the density of information--particles of possible meaning…

  12. Entropy in Urban Systems

    Pedro Cabral

    2013-11-01

    Full Text Available Entropy is a useful concept that has been used to describe the structure and behavior of different systems. We summarize its multifaceted character with regard to its implications for urban sprawl, and propose a framework to apply the concept of entropy to urban sprawl for monitoring and management.

  13. Absolute Neutrino Masses

    Since the recent convincing evidence for massive neutrinos in oscillation experiments, the next task is to determine the absolute masses of neutrinos. A unique pattern of neutrino masses will be hopefully fixed in the future superbeam experiments and neutrino factories. However, the determination of the exact scale is more complicated and depends on the mass of the lightest neutrino ( mμ )min . If ( mμ)min ≥ 0.35 eV, the future tritium β decay experiments ( e.g. KATRIN) will have a chance to establish absolute neutrino masses. For smaller masses, 0.004 eV ≤ (mμ)min ≤ 0.35 eV, if neutrinos are Majorana particles, an additional information can be derived from the neutrinoless double β decay (ββ)0μ of nuclei and again the absolute neutrino masses can be fixed. If, however, (mμ)min ≤ 0.004 eV, none of the present and foreseeable future experiments is known to be able to fix the mass scale. (author)

  14. On Lieb's entropy conjecture

    The reformulation of Lieb's entropy conjecture, in the frame of the harmonic analysis on the SO(3) group, makes it evident that the exact value of the classical entropy of a pure quantum state, which belongs to the Hilbert space Hsub(J) of a (2J+1) - dimensional, unitary, irreducible representation Usub(J) of the SO(3) group, depends only on the parameters which characterize the orbits of Usub(J) in Hsub(J). In the case J = 1 we give the exact analytic dependence of the classical entropy of a quantum state on the parameter which characterizes the orbits and as a consequence we obtain a verification of Lieb's entropy conjecture. We verify this conjecture also for any value of J for the states of the canonical basis of Hsub(J). A natural generalization of Lieb's entropy conjecture, which is a new ''phenomenon'' in the harmonic analysis on SO(3), is discussed in the case J = 1. (author)

  15. Entropy, Perception, and Relativity

    Jaeger, Stefan

    2008-01-01

    In this paper, I expand Shannon's definition of entropy into a new form of entropy that allows integration of information from different random events. Shannon's notion of entropy is a special case of my more general definition of entropy. I define probability using a so-called performance function, which is de facto an exponential distribution. Assuming that my general notion of entropy reflects the true uncertainty about a probabilistic event, I understand that our perceived uncertainty differs. I claim that our perception is the result of two opposing forces similar to the two famous antagonists in Chinese philosophy: Yin and Yang. Based on this idea, I show that our perceived uncertainty matches the true uncertainty in points determined by the golden ratio. I demonstrate that the well-known sigmoid function, which we typically employ in artificial neural networks as a non-linear threshold function, describes the actual performance. Furthermore, I provide a motivation for the time dilation in Einstein's Sp...

  16. Entropic Measure for Localized Energy Configurations: Kinks, Bounces, and Bubbles

    Gleiser, Marcelo

    2011-01-01

    We construct a configurational entropy measure in functional space. We apply it to several nonlinear scalar field models featuring solutions with spatially-localized energy, including solitons and bounces in one spatial dimension, and critical bubbles in three spatial dimensions, typical of first-order phase transitions. Such field models are of widespread interest in many areas of physics, from high energy and cosmology to condensed matter. Using a variational approach, we show that the higher the energy of a trial function that approximates the actual solution, the higher its relative configurational entropy. Furthermore, we show that when different trial functions have degenerate energies, the configurational entropy can be used to select the best fit to the actual solution. The configurational entropy relates the dynamical and informational content of physical models and can be applied to any nonlinear field model.

  17. Entanglement Entropy of AdS Black Holes

    Maurizio Melis

    2010-11-01

    Full Text Available We review recent progress in understanding the entanglement entropy of gravitational configurations for anti-de Sitter gravity in two and three spacetime dimensions using the AdS/CFT correspondence. We derive simple expressions for the entanglement entropy of two- and three-dimensional black holes. In both cases, the leading term of the entanglement entropy in the large black hole mass expansion reproduces exactly the Bekenstein-Hawking entropy, whereas the subleading term behaves logarithmically. In particular, for the BTZ black hole the leading term of the entanglement entropy can be obtained from the large temperature expansion of the partition function of a broad class of 2D CFTs on the torus.

  18. Numerical viscosity of entropy stable schemes for systems of conservation laws. Final Report

    Discrete approximations to hyperbolic systems of conservation laws are studied. The amount of numerical viscosity present in such schemes is quantified and related to their entropy stability by means of comparison. To this end conservative schemes which are also entropy conservative are constructed. These entropy conservative schemes enjoy second-order accuracy; moreover, they admit a particular interpretation within the finite-element frameworks, and hence can be formulated on various mesh configurations. It is then shown that conservative schemes are entropy stable if and only if they contain more viscosity than the mentioned above entropy conservative ones

  19. The numerical viscosity of entropy stable schemes for systems of conservation laws. I

    Tadmor, Eitan

    1987-01-01

    Discrete approximations to hyperbolic systems of conservation laws are studied. The amount of numerical viscosity present in such schemes is quantified and related to their entropy stability by means of comparison.To this end, conservative schemes which are also entropy-conservative are constructed. These entropy-conservative schemes enjoy second-order accuracy; moreover, they can be interpreted as piecewise-linear finite-element methods, and hence can be formulated on various mesh configurations. It is then shown that conservative schemes are entropy stable, if and (for three-point schemes) only they contain more viscosity than that present in the above-mentioned entropy-conservative ones.

  20. The numerical viscosity of entropy stable schemes for systems of conservation laws

    Tadmor, E.

    1985-01-01

    Discrete approximations to hyperbolic systems of conservation laws are studied. The amount of numerical viscosity present in such schemes, is quantified and related to their entropy stability by means of comparison. To this end, conservative schemes which are also entropy conservative are constructed. These entropy conservative schemes enjoy second-order accuracy; moreover, they admit a particular interpretation within the finite-element frameworks, and hence can be formulated on various mesh configurations. It is then shown that conservative schemes are entropy stable if and only if they contain more viscosity than the mentioned above entropy conservative ones.

  1. Black hole thermodynamical entropy

    Tsallis, Constantino [Centro Brasileiro de Pesquisas Fisicas and National Institute of Science and Technology for Complex Systems, Rio de Janeiro, RJ (Brazil); Santa Fe Institute, Santa Fe, NM (United States); Cirto, Leonardo J.L. [Centro Brasileiro de Pesquisas Fisicas and National Institute of Science and Technology for Complex Systems, Rio de Janeiro, RJ (Brazil)

    2013-07-15

    As early as 1902, Gibbs pointed out that systems whose partition function diverges, e.g. gravitation, lie outside the validity of the Boltzmann-Gibbs (BG) theory. Consistently, since the pioneering Bekenstein-Hawking results, physically meaningful evidence (e.g., the holographic principle) has accumulated that the BG entropy S{sub BG} of a (3+1) black hole is proportional to its area L{sup 2} (L being a characteristic linear length), and not to its volume L{sup 3}. Similarly it exists the area law, so named because, for a wide class of strongly quantum-entangled d-dimensional systems, S{sub BG} is proportional to lnL if d=1, and to L{sup d-1} if d>1, instead of being proportional to L{sup d} (d {>=} 1). These results violate the extensivity of the thermodynamical entropy of a d-dimensional system. This thermodynamical inconsistency disappears if we realize that the thermodynamical entropy of such nonstandard systems is not to be identified with the BG additive entropy but with appropriately generalized nonadditive entropies. Indeed, the celebrated usefulness of the BG entropy is founded on hypothesis such as relatively weak probabilistic correlations (and their connections to ergodicity, which by no means can be assumed as a general rule of nature). Here we introduce a generalized entropy which, for the Schwarzschild black hole and the area law, can solve the thermodynamic puzzle. (orig.)

  2. Entropy Production of Stars

    Leonid M. Martyushev

    2015-06-01

    Full Text Available The entropy production (inside the volume bounded by a photosphere of main-sequence stars, subgiants, giants, and supergiants is calculated based on B–V photometry data. A non-linear inverse relationship of thermodynamic fluxes and forces as well as an almost constant specific (per volume entropy production of main-sequence stars (for 95% of stars, this quantity lies within 0.5 to 2.2 of the corresponding solar magnitude is found. The obtained results are discussed from the perspective of known extreme principles related to entropy production.

  3. ABSOLUTE POLARIMETRY AT RHIC.

    OKADA; BRAVAR, A.; BUNCE, G.; GILL, R.; HUANG, H.; MAKDISI, Y.; NASS, A.; WOOD, J.; ZELENSKI, Z.; ET AL.

    2007-09-10

    Precise and absolute beam polarization measurements are critical for the RHIC spin physics program. Because all experimental spin-dependent results are normalized by beam polarization, the normalization uncertainty contributes directly to final physics uncertainties. We aimed to perform the beam polarization measurement to an accuracy Of {Delta}P{sub beam}/P{sub beam} < 5%. The absolute polarimeter consists of Polarized Atomic Hydrogen Gas Jet Target and left-right pairs of silicon strip detectors and was installed in the RHIC-ring in 2004. This system features proton-proton elastic scattering in the Coulomb nuclear interference (CNI) region. Precise measurements of the analyzing power A{sub N} of this process has allowed us to achieve {Delta}P{sub beam}/P{sub beam} = 4.2% in 2005 for the first long spin-physics run. In this report, we describe the entire set up and performance of the system. The procedure of beam polarization measurement and analysis results from 2004-2005 are described. Physics topics of AN in the CNI region (four-momentum transfer squared 0.001 < -t < 0.032 (GeV/c){sup 2}) are also discussed. We point out the current issues and expected optimum accuracy in 2006 and the future.

  4. Absolute polarimetry at RHIC

    Okada, H; Bravar, A; Bunce, G; Dhawan, S; Eyser, K O; Gill, R; Haeberli, W; Huang, H; Jinnouchi, O; Makdisi, Y; Nakagawa, I; Nass, A; Saitô, N; Stephenson, E; Sviridia, D; Wise, T; Wood, J; Zelenski, A

    2007-01-01

    Precise and absolute beam polarization measurements are critical for the RHIC spin physics program. Because all experimental spin-dependent results are normalized by beam polarization, the normalization uncertainty contributes directly to final physics uncertainties. We aimed to perform the beam polarization measurement to an accuracy of $\\Delta P_{beam}/P_{beam} < 5%$. The absolute polarimeter consists of Polarized Atomic Hydrogen Gas Jet Target and left-right pairs of silicon strip detectors and was installed in the RHIC-ring in 2004. This system features \\textit{proton-proton} elastic scattering in the Coulomb nuclear interference (CNI) region. Precise measurements of the analyzing power $A_N$ of this process has allowed us to achieve $\\Delta P_{beam}/P_{beam} =4.2%$ in 2005 for the first long spin-physics run. In this report, we describe the entire set up and performance of the system. The procedure of beam polarization measurement and analysis results from 2004-2005 are described. Physics topics of $A...

  5. Entropy in Corporate Information Systems

    Victor Y. Tsvetkov

    2014-03-01

    Full Text Available This paper describes the stages of entropy formation. It depicts the basic definitions of the corporate information systems. This paper describes the quality of entropy, the duration of the entropy in the corporate information system. The article also gives a paradigmatic description of the action of information entropy in time.

  6. Renormalized entanglement entropy

    Taylor, Marika

    2016-01-01

    We develop a renormalization method for holographic entanglement entropy based on area renormalization of entangling surfaces. The renormalized entanglement entropy is derived for entangling surfaces in asymptotically locally anti-de Sitter spacetimes in general dimensions and for entangling surfaces in four dimensional holographic renormalization group flows. The renormalized entanglement entropy for disk regions in $AdS_4$ spacetimes agrees precisely with the holographically renormalized action for $AdS_4$ with spherical slicing and hence with the F quantity, in accordance with the Casini-Huerta-Myers map. We present a generic class of holographic RG flows associated with deformations by operators of dimension $3/2 < \\Delta < 5/2$ for which the F quantity increases along the RG flow, hence violating the strong version of the F theorem. We conclude by explaining how the renormalized entanglement entropy can be derived directly from the renormalized partition function using the replica trick i.e. our re...

  7. Anomalies and entanglement entropy

    Nishioka, Tatsuma; Yarom, Amos(Department of Physics, Technion, Haifa, 32000, Israel)

    2016-01-01

    We initiate a systematic study of entanglement and Renyi entropies in the presence of gauge and gravitational anomalies in even-dimensional quantum field theories. We argue that the mixed and gravitational anomalies are sensitive to boosts and obtain a closed form expression for their behavior under such transformations. Explicit constructions exhibiting the dependence of entanglement entropy on boosts is provided for theories on spacetimes with non-trivial magnetic fluxes and (or) non-vanish...

  8. Psychotherapy as entropy management

    McKenzie, Karen; Murray, George

    2013-01-01

    We present the hypothesis that the laws of thermodynamics can be usefully applied to psychotherapy. In this model psychotherapy is presented as a means of entropy management, whereby the patient trades entropy (in this case the expressed symptoms of mental disorder) with the therapist. The therapist serves to increase the capacity of the patient, both through developing a shared understanding of the challenges the patient faces and through generating shared solutions. This process can be unde...

  9. Feasible Histories, Maximum Entropy

    We consider the broadest possible consistency condition for a family of histories, which extends all previous proposals. A family that satisfies this condition is called feasible. On each feasible family of histories we choose a probability measure by maximizing entropy, while keeping the probabilities of commuting histories to their quantum mechanical values. This procedure is justified by the assumption that decoherence increases entropy. Finally, a criterion for identifying the nearly classical families is proposed

  10. Asymptotic Entropy Bounds

    Bousso, Raphael

    2016-01-01

    We show that known entropy bounds constrain the information carried off by radiation to null infinity. We consider distant, planar null hypersurfaces in asymptotically flat spacetime. Their focussing and area loss can be computed perturbatively on a Minkowski background, yielding entropy bounds in terms of the energy flux of the outgoing radiation. In the asymptotic limit, we obtain boundary versions of the Quantum Null Energy Condition, of the Generalized Second Law, and of the Quantum Bousso Bound.

  11. Challenges about entropy

    Gross, D. H. E.

    2006-01-01

    The physical meaning of entropy is analyzed in the context of statistical, nuclear, atomic physics and cosmology. Only the microcanonical Boltzmann entropy leads to no contradictions in several simple, elementary and for thermodynamics important situations. The conventional canonical statistics implies several serious errors and misinterpretations. This has far reaching consequences for phase-separations as well for the usual formulations of the second law. Applications in cosmology suffer un...

  12. Entropy Production at RHIC

    Pal, Subrata; Pratt, Scott

    2003-01-01

    For central heavy ion collisions at the RHIC energy, the entropy per unit rapidity dS/dy at freeze-out is extracted with minimal model dependence from available experimental measurements of particle yields, spectra, and source sizes estimated from two-particle interferometry. The extracted entropy rapidity density is consistent with lattice gauge theory results for a thermalized quark-gluon plasma with an energy density estimated from transverse energy production at RHIC.

  13. Entropy and Economics

    John Scales Avery

    2012-01-01

    In this essay, human society is regarded as a “superorganism”, analogous to colonies of social insects. The digestive system of the human superorganism is the global economy, which ingests both free energy and resources, and later excretes them in a degraded form. This process involves an increase in entropy. Early in the 20th century, both Frederick Soddy and Nicholas Georgescu-Roegen discussed the relationship between entropy and economics. Soddy called for an index system to regulate the m...

  14. Entropy and economic modelling

    D F Batten; Roy, J R

    1982-01-01

    Entropy-maximizing models have been focused predominantly at the microscopic level of social and economic activities, their use being advocated by urban geographers, mathematicians, and microeconomists. By maintaining a sharp distinction between the behavioural and statistical aspects of entropy, various submodels may be formulated to generate the most probable pattern of individual choice behaviour. It may nevertheless be possible to regard each submodel of activity as an essential component...

  15. Anomalies and Entanglement Entropy

    Nishioka, Tatsuma

    2015-01-01

    We initiate a systematic study of entanglement and Renyi entropies in the presence of gauge and gravitational anomalies in even-dimensional quantum field theories. We argue that the mixed and gravitational anomalies are sensitive to boosts and obtain a closed form expression for their behavior under such transformations. Explicit constructions exhibiting the dependence of entanglement entropy on boosts is provided for theories on spacetimes with non-trivial magnetic fluxes and (or) non-vanishing Pontryagin classes.

  16. Quantum Games Entropy

    Guevara, E

    2006-01-01

    We propose the study of quantum games from the point of view of quantum information theory and statistical mechanics. Every game can be described by a density operator, with its entropy equal to von Neumann's and its evolution given by the quantum replicator dynamics. There exists a strong relationship between game theory, quantum information theory and statistical physics. The density operator and entropy are the bonds between these theories. The analysis we propose for the study of these games is based on the properties of entropy, the amount of information that a player can obtain about his opponent and a maximum or minimum entropy criterion. The natural trend of a physical system is to its maximum entropy state. The minimum entropy state is a characteristic of a "manipulated" system i.e. externally controlled or imposed. There exists tacit rules inside a system that do not need to be specified nor clarified and search the system equilibrium under the collective welfare principle. The other rules are impos...

  17. Optical tweezers absolute calibration

    Dutra, R S; Neto, P A Maia; Nussenzveig, H M

    2014-01-01

    Optical tweezers are highly versatile laser traps for neutral microparticles, with fundamental applications in physics and in single molecule cell biology. Force measurements are performed by converting the stiffness response to displacement of trapped transparent microspheres, employed as force transducers. Usually, calibration is indirect, by comparison with fluid drag forces. This can lead to discrepancies by sizable factors. Progress achieved in a program aiming at absolute calibration, conducted over the past fifteen years, is briefly reviewed. Here we overcome its last major obstacle, a theoretical overestimation of the peak stiffness, within the most employed range for applications, and we perform experimental validation. The discrepancy is traced to the effect of primary aberrations of the optical system, which are now included in the theory. All required experimental parameters are readily accessible. Astigmatism, the dominant effect, is measured by analyzing reflected images of the focused laser spo...

  18. Measurement of the absolute \

    Aunion, Jose Luis Alcaraz; /Barcelona, IFAE

    2010-07-01

    This thesis presents the measurement of the charged current quasi-elastic (CCQE) neutrino-nucleon cross section at neutrino energies around 1 GeV. This measurement has two main physical motivations. On one hand, the neutrino-nucleon interactions at few GeV is a region where existing old data are sparse and with low statistics. The current measurement populates low energy regions with higher statistics and precision than previous experiments. On the other hand, the CCQE interaction is the most useful interaction in neutrino oscillation experiments. The CCQE channel is used to measure the initial and final neutrino fluxes in order to determine the neutrino fraction that disappeared. The neutrino oscillation experiments work at low neutrino energies, so precise measurement of CCQE interactions are essential for flux measurements. The main goal of this thesis is to measure the CCQE absolute neutrino cross section from the SciBooNE data. The SciBar Booster Neutrino Experiment (SciBooNE) is a neutrino and anti-neutrino scattering off experiment. The neutrino energy spectrum works at energies around 1 GeV. SciBooNE was running from June 8th 2007 to August 18th 2008. In that period, the experiment collected a total of 2.65 x 10{sup 20} protons on target (POT). This thesis has used full data collection in neutrino mode 0.99 x 10{sup 20} POT. A CCQE selection cut has been performed, achieving around 70% pure CCQE sample. A fit method has been exclusively developed to determine the absolute CCQE cross section, presenting results in a neutrino energy range from 0.2 to 2 GeV. The results are compatible with the NEUT predictions. The SciBooNE measurement has been compared with both Carbon (MiniBoonE) and deuterium (ANL and BNL) target experiments, showing a good agreement in both cases.

  19. Swiveled Rényi entropies

    Dupuis, Frédéric; Wilde, Mark M.

    2016-03-01

    This paper introduces "swiveled Rényi entropies" as an alternative to the Rényi entropic quantities put forward in Berta et al. (Phys Rev A 91(2):022333, 2015). What distinguishes the swiveled Rényi entropies from the prior proposal of Berta et al. is that there is an extra degree of freedom: an optimization over unitary rotations with respect to particular fixed bases (swivels). A consequence of this extra degree of freedom is that the swiveled Rényi entropies are ordered, which is an important property of the Rényi family of entropies. The swiveled Rényi entropies are, however, generally discontinuous at α =1 and do not converge to the von Neumann entropy-based measures in the limit as α rightarrow 1, instead bounding them from above and below. Particular variants reduce to known Rényi entropies, such as the Rényi relative entropy or the sandwiched Rényi relative entropy, but also lead to ordered Rényi conditional mutual information and ordered Rényi generalizations of a relative entropy difference. Refinements of entropy inequalities such as monotonicity of quantum relative entropy and strong subadditivity follow as a consequence of the aforementioned properties of the swiveled Rényi entropies. Due to the lack of convergence at α =1, it is unclear whether the swiveled Rényi entropies would be useful in one-shot information theory, so that the present contribution represents partial progress toward this goal.

  20. Absolute neutrino mass measurements

    Wolf, Joachim

    2011-10-01

    The neutrino mass plays an important role in particle physics, astrophysics and cosmology. In recent years the detection of neutrino flavour oscillations proved that neutrinos carry mass. However, oscillation experiments are only sensitive to the mass-squared difference of the mass eigenvalues. In contrast to cosmological observations and neutrino-less double beta decay (0v2β) searches, single β-decay experiments provide a direct, model-independent way to determine the absolute neutrino mass by measuring the energy spectrum of decay electrons at the endpoint region with high accuracy. Currently the best kinematic upper limits on the neutrino mass of 2.2eV have been set by two experiments in Mainz and Troitsk, using tritium as beta emitter. The next generation tritium β-experiment KATRIN is currently under construction in Karlsruhe/Germany by an international collaboration. KATRIN intends to improve the sensitivity by one order of magnitude to 0.2eV. The investigation of a second isotope (137Rh) is being pursued by the international MARE collaboration using micro-calorimeters to measure the beta spectrum. The technology needed to reach 0.2eV sensitivity is still in the R&D phase. This paper reviews the present status of neutrino-mass measurements with cosmological data, 0v2β decay and single β-decay.

  1. Comparisons of Black Hole Entropy

    Kupferman, Judy

    2016-01-01

    In this thesis I examine several different concepts of black hole entropy in order to understand whether they describe the same quantity. I look at statistical and entanglement entropies, Wald entropy and Carlip's entropy from conformal field theory, and compare their behavior in a few specific aspects: divergence at the BH horizon, dependence on space time curvature and behavior under a geometric variation. I find that statistical and entanglement entropy may be similar but they seem to differ from the entropy of Wald and Carlip. Chapters 2 and 3 overlap with 1010.4157 and 1310.3938. Chapter 4 does not appear elsewhere.

  2. The Elusive Nature of Entropy and Its Physical Meaning

    Milivoje M. Kostic

    2014-02-01

    Full Text Available Entropy is the most used and often abused concept in science, but also in philosophy and society. Further confusions are produced by some attempts to generalize entropy with similar but not the same concepts in other disciplines. The physical meaning of phenomenological, thermodynamic entropy is reasoned and elaborated by generalizing Clausius definition with inclusion of generated heat, since it is irrelevant if entropy is changed due to reversible heat transfer or irreversible heat generation. Irreversible, caloric heat transfer is introduced as complementing reversible heat transfer. It is also reasoned and thus proven why entropy cannot be destroyed but is always generated (and thus over-all increased locally and globally, at every space and time scales, without any exception. It is concluded that entropy is a thermal displacement (dynamic thermal-volume of thermal energy due to absolute temperature as a thermal potential (dQ = TdS, and thus associated with thermal heat and absolute temperature, i.e., distribution of thermal energy within thermal micro-particles in space. Entropy is an integral measure of (random thermal energy redistribution (due to heat transfer and/or irreversible heat generation within a material system structure in space, per absolute temperature level: dS = dQSys/T = mCSysdT/T, thus logarithmic integral function, with J/K unit. It may be also expressed as a measure of “thermal disorder”, being related to logarithm of number of all thermal, dynamic microstates W (their position and momenta, S = kBlnW, or to the sum of their logarithmic probabilities S = −kB∑pilnpi, that correspond to, or are consistent with the given thermodynamic macro-state. The number of thermal microstates W, is correlated with macro-properties temperature T and volume V for ideal gases. A system form and/or functional order or disorder are not (thermal energy order/disorder and the former is not related to Thermodynamic entropy. Expanding

  3. Entropy and quantum gravity

    Kay, Bernard S

    2015-01-01

    We give an account of the matter-gravity entanglement hypothesis which, unlike the standard approach to entropy based on coarse-graining, offers a definition for the entropy of a closed system as a real and objective quantity. We explain how this new approach offers an explanation for the Second Law of Thermodynamics in general and a non-paradoxical understanding of information loss during black hole formation and evaporation in particular. We also very briefly review some recent related work on the nature of equilibrium states involving quantum black holes and point out how it promises to resolve some puzzling issues in the current version of the string theory approach to black hole entropy.

  4. Classifying Entropy Measures

    Angel Garrido

    2011-07-01

    Full Text Available Our paper analyzes some aspects of Uncertainty Measures. We need to obtain new ways to model adequate conditions or restrictions, constructed from vague pieces of information. The classical entropy measure originates from scientific fields; more specifically, from Statistical Physics and Thermodynamics. With time it was adapted by Claude Shannon, creating the current expanding Information Theory. However, the Hungarian mathematician, Alfred Rényi, proves that different and valid entropy measures exist in accordance with the purpose and/or need of application. Accordingly, it is essential to clarify the different types of measures and their mutual relationships. For these reasons, we attempt here to obtain an adequate revision of such fuzzy entropy measures from a mathematical point of view.

  5. Information Entropy Dynamics and Maximum Entropy Production Principle

    Fradkov, Alexander L.; Shalymov, Dmitry S.

    2014-01-01

    The asymptotic convergence of probability density function (pdf) and convergence of differential entropy are examined for the non-stationary processes that follow the maximum entropy principle (MaxEnt) and maximum entropy production principle (MEPP). Asymptotic convergence of pdf provides new justification of MEPP while convergence of differential entropy is important in asymptotic analysis of communication systems. A set of equations describing the dynamics of pdf under mass conservation and...

  6. Estimating Absolute Site Effects

    Malagnini, L; Mayeda, K M; Akinci, A; Bragato, P L

    2004-07-15

    The authors use previously determined direct-wave attenuation functions as well as stable, coda-derived source excitation spectra to isolate the absolute S-wave site effect for the horizontal and vertical components of weak ground motion. They used selected stations in the seismic network of the eastern Alps, and find the following: (1) all ''hard rock'' sites exhibited deamplification phenomena due to absorption at frequencies ranging between 0.5 and 12 Hz (the available bandwidth), on both the horizontal and vertical components; (2) ''hard rock'' site transfer functions showed large variability at high-frequency; (3) vertical-motion site transfer functions show strong frequency-dependence, and (4) H/V spectral ratios do not reproduce the characteristics of the true horizontal site transfer functions; (5) traditional, relative site terms obtained by using reference ''rock sites'' can be misleading in inferring the behaviors of true site transfer functions, since most rock sites have non-flat responses due to shallow heterogeneities resulting from varying degrees of weathering. They also use their stable source spectra to estimate total radiated seismic energy and compare against previous results. they find that the earthquakes in this region exhibit non-constant dynamic stress drop scaling which gives further support for a fundamental difference in rupture dynamics between small and large earthquakes. To correct the vertical and horizontal S-wave spectra for attenuation, they used detailed regional attenuation functions derived by Malagnini et al. (2002) who determined frequency-dependent geometrical spreading and Q for the region. These corrections account for the gross path effects (i.e., all distance-dependent effects), although the source and site effects are still present in the distance-corrected spectra. The main goal of this study is to isolate the absolute site effect (as a function of frequency

  7. Dimensional Equations of Entropy

    Sparavigna, Amelia Carolina

    2015-01-01

    Entropy is a quantity which is of great importance in physics and chemistry. The concept comes out of thermodynamics, proposed by Rudolf Clausius in his analysis of Carnot cycle and linked by Ludwig Boltzmann to the number of specific ways in which a physical system may be arranged. Any physics classroom, in its task of learning physics, has therefore to face this crucial concept. As we will show in this paper, the lectures can be enriched by discussing dimensional equations linked to the entropy of some physical systems.

  8. Entropy and Graphs

    Rezaei, Seyed Saeed Changiz

    2013-01-01

    The entropy of a graph is a functional depending both on the graph itself and on a probability distribution on its vertex set. This graph functional originated from the problem of source coding in information theory and was introduced by J. K\\"{o}rner in 1973. Although the notion of graph entropy has its roots in information theory, it was proved to be closely related to some classical and frequently studied graph theoretic concepts. For example, it provides an equivalent definition for a gra...

  9. Entanglement Entropy and Duality

    Radicevic, Djordje

    2016-01-01

    Using the algebraic approach to entanglement entropy, we study several dual pairs of lattice theories and show how the entropy is completely preserved across each duality. Our main result is that a maximal algebra of observables in a region typically dualizes to a non-maximal algebra in a dual region. In particular, we show how the usual notion of tracing out external degrees of freedom dualizes to a tracing out coupled to an additional summation over superselection sectors. We briefly comment on possible extensions of our results to more intricate dualities, including holographic ones.

  10. Maximum entropy methods

    For some years now two different expressions have been in use for maximum entropy image restoration and there has been some controversy over which one is appropriate for a given problem. Here two further entropies are presented and it is argued that there is no single correct algorithm. The properties of the four different methods are compared using simple 1D simulations with a view to showing how they can be used together to gain as much information as possible about the original object. (orig.)

  11. Challenges about entropy

    Gross, D H E

    2006-01-01

    The physical meaning of entropy is analyzed in the context of statistical, nuclear, atomic physics and cosmology. Only the microcanonical Boltzmann entropy leads to no contradictions in several simple, elementary and for thermodynamics important situations. The conventional canonical statistics implies several serious errors and misinterpretations. This has far reaching consequences for phase-separations as well for the usual formulations of the second law. Applications in cosmology suffer under the ubiquitous use of canonical statistics. New reformulations in terms of microcanonical statistics are highly demanded but certainly difficult.

  12. Maximum Entropy Fundamentals

    F. Topsøe

    2001-09-01

    Full Text Available Abstract: In its modern formulation, the Maximum Entropy Principle was promoted by E.T. Jaynes, starting in the mid-fifties. The principle dictates that one should look for a distribution, consistent with available information, which maximizes the entropy. However, this principle focuses only on distributions and it appears advantageous to bring information theoretical thinking more prominently into play by also focusing on the "observer" and on coding. This view was brought forward by the second named author in the late seventies and is the view we will follow-up on here. It leads to the consideration of a certain game, the Code Length Game and, via standard game theoretical thinking, to a principle of Game Theoretical Equilibrium. This principle is more basic than the Maximum Entropy Principle in the sense that the search for one type of optimal strategies in the Code Length Game translates directly into the search for distributions with maximum entropy. In the present paper we offer a self-contained and comprehensive treatment of fundamentals of both principles mentioned, based on a study of the Code Length Game. Though new concepts and results are presented, the reading should be instructional and accessible to a rather wide audience, at least if certain mathematical details are left aside at a rst reading. The most frequently studied instance of entropy maximization pertains to the Mean Energy Model which involves a moment constraint related to a given function, here taken to represent "energy". This type of application is very well known from the literature with hundreds of applications pertaining to several different elds and will also here serve as important illustration of the theory. But our approach reaches further, especially regarding the study of continuity properties of the entropy function, and this leads to new results which allow a discussion of models with so-called entropy loss. These results have tempted us to speculate over

  13. MULTISCALE COMPLEXITY/ENTROPY

    Y. BAR-YAM

    2004-01-01

    We discuss the role of scale dependence of entropy/complexity and its relationship to component interdependence. The complexity as a function of scale of observation is expressed in terms of subsystem entropies for a system having a description in terms of variables that have the same a priori scale. The sum of the complexity over all scales is the same for any system with the same number of underlying degrees of freedom (variables), even though the complexity at specific scales differs due t...

  14. A Causal Entropy Bound

    Brustein, Ram

    2000-01-01

    The identification of a causal-connection scale motivates us to propose a new covariant bound on entropy within a generic space-like region. This "causal entropy bound", scaling as the square root of EV, and thus lying around the geometric mean of Bekenstein's S/ER and holographic S/A bounds, is checked in various "critical" situations. In the case of limited gravity, Bekenstein's bound is the strongest while naive holography is the weakest. In the case of strong gravity, our bound and Bousso's holographic bound are stronger than Bekenstein's, while naive holography is too tight, and hence typically wrong.

  15. A Causal Entropy Bound

    Brustein, R; Veneziano, G

    1999-01-01

    The identification of a causal-connection scale motivates us to propose a new covariant bound on entropy within a generic space-like region. This "causal entropy bound", scaling as the square root of EV, and thus lying around the geometric mean of Bekenstein's S/ER and holographic S/A bounds, is checked in various "critical" situations. In the case of limited gravity, Bekenstein's bound is the strongest while naive holography is the weakest. In the case of strong gravity, our bound and Bousso...

  16. Third law of thermodynamics as a key test of generalized entropies.

    Bento, E P; Viswanathan, G M; da Luz, M G E; Silva, R

    2015-02-01

    The laws of thermodynamics constrain the formulation of statistical mechanics at the microscopic level. The third law of thermodynamics states that the entropy must vanish at absolute zero temperature for systems with nondegenerate ground states in equilibrium. Conversely, the entropy can vanish only at absolute zero temperature. Here we ask whether or not generalized entropies satisfy this fundamental property. We propose a direct analytical procedure to test if a generalized entropy satisfies the third law, assuming only very general assumptions for the entropy S and energy U of an arbitrary N-level classical system. Mathematically, the method relies on exact calculation of β=dS/dU in terms of the microstate probabilities p(i). To illustrate this approach, we present exact results for the two best known generalizations of statistical mechanics. Specifically, we study the Kaniadakis entropy S(κ), which is additive, and the Tsallis entropy S(q), which is nonadditive. We show that the Kaniadakis entropy correctly satisfies the third law only for -1law for q<1. Finally, we give a concrete example of the power of our proposed method by applying it to a paradigmatic system: the one-dimensional ferromagnetic Ising model with nearest-neighbor interactions. PMID:25768456

  17. Nernst Theorem and Statistical Entropy of 5-Dimensional Rotating Black Hole

    ZHAO Ren; WU Yue-Qin; ZHANG Li-Chun

    2003-01-01

    In this paper, by using quantum statistical method, we obtain the partition function of Bose field and Fermi field on the background of the 5-dimensional rotating black hole. Then via the improved brick-wall method and membrane model, we calculate the entropy of Bose field and Fermi field of the black hole. And it is obtained that the entropy of the black hole is not only related to the area of the outer horizon but also is the function of inner horizon's area. In our results, there are not the left out term and the divergent logarithmic term in the original brick-wall method.The doubt that why the entropy of the scalar or Dirac field outside the event horizon is the entropy of the black hole in the original brick-wall method does not exist. The influence of spinning degeneracy of particles on entropy of the black hole is also given. It is shown that the entropy determined by the areas of the inner and outer horizons will approach zero,when the radiation temperature of the black hole approaches absolute zero. It satisfies Nernst theorem. The entropy can be taken as the Planck absolute entropy. We provide a way to study higher dimensional black hole.

  18. Third law of thermodynamics as a key test of generalized entropies

    Bento, E. P.; Viswanathan, G. M.; da Luz, M. G. E.; Silva, R.

    2015-02-01

    The laws of thermodynamics constrain the formulation of statistical mechanics at the microscopic level. The third law of thermodynamics states that the entropy must vanish at absolute zero temperature for systems with nondegenerate ground states in equilibrium. Conversely, the entropy can vanish only at absolute zero temperature. Here we ask whether or not generalized entropies satisfy this fundamental property. We propose a direct analytical procedure to test if a generalized entropy satisfies the third law, assuming only very general assumptions for the entropy S and energy U of an arbitrary N -level classical system. Mathematically, the method relies on exact calculation of β =d S /d U in terms of the microstate probabilities pi. To illustrate this approach, we present exact results for the two best known generalizations of statistical mechanics. Specifically, we study the Kaniadakis entropy Sκ, which is additive, and the Tsallis entropy Sq, which is nonadditive. We show that the Kaniadakis entropy correctly satisfies the third law only for -1 law for q <1 . Finally, we give a concrete example of the power of our proposed method by applying it to a paradigmatic system: the one-dimensional ferromagnetic Ising model with nearest-neighbor interactions.

  19. Dynamical entropy of quasifree automorphisms

    The dynamical entropy of quasifree automorphisms and quasifree states is calculated and shown to be the entropy of the shift created by the group velocity. Some continuity properties are proved. (Author)

  20. The role of configurational entropy in biochemical cooperativity.

    Jusuf, Sutjano; Loll, Patrick J; Axelsen, Paul H

    2002-04-10

    Cooperativity is a common biochemical phenomenon in which two or more otherwise independent processes are thermodynamically coupled. Because cooperative processes are usually attended by changes in molecular conformation, thermodynamic coupling is usually attributed to an enthalpy-driven mechanism. In the family of glycopeptide antibiotics that includes vancomycin, however, cooperative phenomena occur that cannot be explained by conformational change. In this communication, we demonstrate that cooperativity in these systems can arise solely from changes in vibrational activity. PMID:11929222

  1. Algebraic entropy for algebraic maps

    We propose an extension of the concept of algebraic entropy, as introduced by Bellon and Viallet for rational maps, to algebraic maps (or correspondences) of a certain kind. The corresponding entropy is an index of the complexity of the map. The definition inherits the basic properties from the definition of entropy for rational maps. We give an example with positive entropy, as well as two examples taken from the theory of Bäcklund transformations. (letter)

  2. A consistent flow of entropy

    Ansari, Mohammad H.

    2016-01-01

    A common approach to evaluate entropy in quantum systems is to solve a master-Bloch equation to determine density matrix and substitute it in entropy definition. However, this method has been recently understood to lack many energy correlators. The new correlators make entropy evaluation to be different from the substitution method described above. The reason for such complexity lies in the nonlinearity of entropy. In this paper we present a pedagogical approach to evaluate the new correlator...

  3. Be Resolute about Absolute Value

    Kidd, Margaret L.

    2007-01-01

    This article explores how conceptualization of absolute value can start long before it is introduced. The manner in which absolute value is introduced to students in middle school has far-reaching consequences for their future mathematical understanding. It begins to lay the foundation for students' understanding of algebra, which can change…

  4. Entropy Effects in Chelation Reactions.

    Chung, Chung-Sun

    1984-01-01

    The entropy change for a reaction in aqueous solution can be evaluated as a combination of entropy factors. Valuable insight or understanding can be obtained from a detailed examination of these factors. Several entropy effects of inorganic chemical reactions are discussed as examples. (Author/JN)

  5. A Note on Quantum Entropy

    Hansen, Frank

    2016-06-01

    Incremental information, as measured by the quantum entropy, is increasing when two ensembles are united. This result was proved by Lieb and Ruskai, and it is the foundation for the proof of strong subadditivity of quantum entropy. We present a truly elementary proof of this fact in the context of the broader family of matrix entropies introduced by Chen and Tropp.

  6. Entropy is a Mathematical Formula

    Garai, Jozsef

    2003-01-01

    The microscopic explanation of entropy has been challenged from both experimental and theoretical point of view. The expression of entropy is derived from the first law of thermodynamics indicating that entropy or the second law of thermodynamics is not an independent law.

  7. Relations Among Some Fuzzy Entropy Formulae

    卿铭

    2004-01-01

    Fuzzy entropy has been widely used to analyze and design fuzzy systems, and many fuzzy entropy formulae have been proposed. For further in-deepth analysis of fuzzy entropy, the axioms and some important formulae of fuzzy entropy are introduced. Some equivalence results among these fuzzy entropy formulae are proved, and it is shown that fuzzy entropy is a special distance measurement.

  8. Rescaling Temperature and Entropy

    Olmsted, John, III

    2010-01-01

    Temperature and entropy traditionally are expressed in units of kelvin and joule/kelvin. These units obscure some important aspects of the natures of these thermodynamic quantities. Defining a rescaled temperature using the Boltzmann constant, T' = k[subscript B]T, expresses temperature in energy units, thereby emphasizing the close relationship…

  9. Stationarity of extremum entropy fluid bodies in general relativity

    Schiffrin, Joshua S.

    2015-09-01

    We consider perfect fluid bodies (‘stars’) in general relativity that are axisymmetric, asymptotically flat, and that admit a maximal hypersurface. We show that configurations that extremize the total entropy at fixed ADM mass, ADM angular momentum, and total particle number are stationary with circular flow. For such stars, this establishes that thermodynamic equilibrium implies dynamic equilibrium.

  10. Entropy and cosmology.

    Zucker, M. H.

    This paper is a critical analysis and reassessment of entropic functioning as it applies to the question of whether the ultimate fate of the universe will be determined in the future to be "open" (expanding forever to expire in a big chill), "closed" (collapsing to a big crunch), or "flat" (balanced forever between the two). The second law of thermodynamics declares that entropy can only increase and that this principle extends, inevitably, to the universe as a whole. This paper takes the position that this extension is an unwarranted projection based neither on experience nonfact - an extrapolation that ignores the powerful effect of a gravitational force acting within a closed system. Since it was originally presented by Clausius, the thermodynamic concept of entropy has been redefined in terms of "order" and "disorder" - order being equated with a low degree of entropy and disorder with a high degree. This revised terminology more subjective than precise, has generated considerable confusion in cosmology in several critical instances. For example - the chaotic fireball of the big bang, interpreted by Stephen Hawking as a state of disorder (high entropy), is infinitely hot and, thermally, represents zero entropy (order). Hawking, apparently focusing on the disorderly "chaotic" aspect, equated it with a high degree of entropy - overlooking the fact that the universe is a thermodynamic system and that the key factor in evaluating the big-bang phenomenon is the infinitely high temperature at the early universe, which can only be equated with zero entropy. This analysis resolves this confusion and reestablishes entropy as a cosmological function integrally linked to temperature. The paper goes on to show that, while all subsystems contained within the universe require external sources of energization to have their temperatures raised, this requirement does not apply to the universe as a whole. The universe is the only system that, by itself can raise its own

  11. Entropy equilibrium equation and dynamic entropy production in environment liquid

    2002-01-01

    The entropy equilibrium equation is the basis of the nonequilibrium state thermodynamics. But the internal energy implies the kinetic energy of the fluid micelle relative to mass center in the classical entropy equilibrium equation at present. This internal energy is not the mean kinetic energy of molecular movement in thermodynamics. Here a modified entropy equilibrium equation is deduced, based on the concept that the internal energy is just the mean kinetic energy of the molecular movement. A dynamic entropy production is introduced into the entropy equilibrium equation to describe the dynamic process distinctly. This modified entropy equilibrium equation can describe not only the entropy variation of the irreversible processes but also the reversible processes in a thermodynamic system. It is more reasonable and suitable for wider applications.

  12. Speeding up Derivative Configuration from Product Platforms

    Ruben Heradio

    2014-06-01

    Full Text Available To compete in the global marketplace, manufacturers try to differentiate their products by focusing on individual customer needs. Fulfilling this goal requires that companies shift from mass production to mass customization. Under this approach, a generic architecture, named product platform, is designed to support the derivation of customized products through a configuration process that determines which components the product comprises. When a customer configures a derivative, typically not every combination of available components is valid. To guarantee that all dependencies and incompatibilities among the derivative constituent components are satisfied, automated configurators are used. Flexible product platforms provide a big number of interrelated components, and so, the configuration of all, but trivial, derivatives involves considerable effort to select which components the derivative should include. Our approach alleviates that effort by speeding up the derivative configuration using a heuristic based on the information theory concept of entropy.

  13. ROE Absolute Sea Level Changes

    U.S. Environmental Protection Agency — This raster dataset represents changes in absolute sea level along U.S. coasts from 1993 to 2014. Data were provided by the University of Colorado at Boulder (2015)...

  14. Gyrokinetic Statistical Absolute Equilibrium and Turbulence

    Jian-Zhou Zhu and Gregory W. Hammett

    2011-01-10

    A paradigm based on the absolute equilibrium of Galerkin-truncated inviscid systems to aid in understanding turbulence [T.-D. Lee, "On some statistical properties of hydrodynamical and magnetohydrodynamical fields," Q. Appl. Math. 10, 69 (1952)] is taken to study gyrokinetic plasma turbulence: A finite set of Fourier modes of the collisionless gyrokinetic equations are kept and the statistical equilibria are calculated; possible implications for plasma turbulence in various situations are discussed. For the case of two spatial and one velocity dimension, in the calculation with discretization also of velocity v with N grid points (where N + 1 quantities are conserved, corresponding to an energy invariant and N entropy-related invariants), the negative temperature states, corresponding to the condensation of the generalized energy into the lowest modes, are found. This indicates a generic feature of inverse energy cascade. Comparisons are made with some classical results, such as those of Charney-Hasegawa-Mima in the cold-ion limit. There is a universal shape for statistical equilibrium of gyrokinetics in three spatial and two velocity dimensions with just one conserved quantity. Possible physical relevance to turbulence, such as ITG zonal flows, and to a critical balance hypothesis are also discussed.

  15. Gyrokinetic Statistical Absolute Equilibrium and Turbulence

    A paradigm based on the absolute equilibrium of Galerkin-truncated inviscid systems to aid in understanding turbulence (T.-D. Lee, 'On some statistical properties of hydrodynamical and magnetohydrodynamical fields,' Q. Appl. Math. 10, 69 (1952)) is taken to study gyrokinetic plasma turbulence: A finite set of Fourier modes of the collisionless gyrokinetic equations are kept and the statistical equilibria are calculated; possible implications for plasma turbulence in various situations are discussed. For the case of two spatial and one velocity dimension, in the calculation with discretization also of velocity v with N grid points (where N + 1 quantities are conserved, corresponding to an energy invariant and N entropy-related invariants), the negative temperature states, corresponding to the condensation of the generalized energy into the lowest modes, are found. This indicates a generic feature of inverse energy cascade. Comparisons are made with some classical results, such as those of Charney-Hasegawa-Mima in the cold-ion limit. There is a universal shape for statistical equilibrium of gyrokinetics in three spatial and two velocity dimensions with just one conserved quantity. Possible physical relevance to turbulence, such as ITG zonal flows, and to a critical balance hypothesis are also discussed.

  16. Holographic Entanglement Entropy

    Rangamani, Mukund

    2016-01-01

    We review the developments in the past decade on holographic entanglement entropy, a subject that has garnered much attention owing to its potential to teach us about the emergence of spacetime in holography. We provide an introduction to the concept of entanglement entropy in quantum field theories, review the holographic proposals for computing the same, providing some justification for where these proposals arise from in the first two parts. The final part addresses recent developments linking entanglement and geometry. We provide an overview of the various arguments and technical developments that teach us how to use field theory entanglement to detect geometry. Our discussion is by design eclectic; we have chosen to focus on developments that appear to us most promising for further insights into the holographic map. This is a preliminary draft of a few chapters of a book which will appear sometime in the near future, to be published by Springer. The book in addition contains a discussion of application o...

  17. Negative Entropy of Life

    Goradia, Shantilal

    2015-10-01

    We modify Newtonian gravity to probabilistic quantum mechanical gravity to derive strong coupling. If this approach is valid, we should be able to extend it to the physical body (life) as follows. Using Boltzmann equation, we get the entropy of the universe (137) as if its reciprocal, the fine structure constant (ALPHA), is the hidden candidate representing the negative entropy of the universe which is indicative of the binary information as its basis (http://www.arXiv.org/pdf/physics0210040v5). Since ALPHA relates to cosmology, it must relate to molecular biology too, with the binary system as the fundamental source of information for the nucleotides of the DNA as implicit in the book by the author: ``Quantum Consciousness - The Road to Reality.'' We debate claims of anthropic principle based on the negligible variation of ALPHA and throw light on thermodynamics. We question constancy of G in multiple ways.

  18. Forecasting using relative entropy

    Robertson, John C.; Ellis W. Tallman; Charles H. Whiteman

    2002-01-01

    The paper describes a relative entropy procedure for imposing moment restrictions on simulated forecast distributions from a variety of models. Starting from an empirical forecast distribution for some variables of interest, the technique generates a new empirical distribution that satisfies a set of moment restrictions. The new distribution is chosen to be as close as possible to the original in the sense of minimizing the associated Kullback-Leibler Information Criterion, or relative entrop...

  19. Hyperspherical entanglement entropy

    Dowker, J S, E-mail: dowker@man.ac.u [Theory Group, School of Physics and Astronomy, University of Manchester, Manchester (United Kingdom)

    2010-11-05

    The coefficient of the log term in the entanglement entropy associated with hyperspherical surfaces in flat spacetime is shown to equal the conformal anomaly by conformally transforming Euclideanized spacetime to a sphere and using already existing formulae for the relevant heat-kernel coefficients after cyclic factoring. The result follows from the fact that the conformal anomaly on this lune has an extremum at the ordinary sphere limit. A proof is given. Agreement with a recent evaluation of the coefficient is found.

  20. Entropy in Social Networks

    Pfaltz, John L.

    2012-01-01

    We introduce the concepts of closed sets and closure operators as mathematical tools for the study of social networks. Dynamic networks are represented by transformations. It is shown that under continuous change/transformation, all networks tend to "break down" and become less complex. It is a kind of entropy. The product of this theoretical decomposition is an abundance of triadically closed clusters which sociologists have observed in practice. This gives credence to the relevance of this ...

  1. Preimage entropy dimension of topological dynamical systems

    Liu, Lei; Zhou, Xiaomin; Zhou, Xiaoyao

    2014-01-01

    We propose a new definition of preimage entropy dimension for continuous maps on compact metric spaces, investigate fundamental properties of the preimage entropy dimension, and compare the preimage entropy dimension with the topological entropy dimension. The defined preimage entropy dimension holds various basic properties of topological entropy dimension, for example, the preimage entropy dimension of a subsystem is bounded by that of the original system and topologically conjugated system...

  2. Entropy and Quantum Gravity

    Bernard S. Kay

    2015-12-01

    Full Text Available We give a review, in the style of an essay, of the author’s 1998 matter-gravity entanglement hypothesis which, unlike the standard approach to entropy based on coarse-graining, offers a definition for the entropy of a closed system as a real and objective quantity. We explain how this approach offers an explanation for the Second Law of Thermodynamics in general and a non-paradoxical understanding of information loss during black hole formation and evaporation in particular. It also involves a radically different from usual description of black hole equilibrium states in which the total state of a black hole in a box together with its atmosphere is a pure state—entangled in just such a way that the reduced state of the black hole and of its atmosphere are each separately approximately thermal. We also briefly recall some recent work of the author which involves a reworking of the string-theory understanding of black hole entropy consistent with this alternative description of black hole equilibrium states and point out that this is free from some unsatisfactory features of the usual string theory understanding. We also recall the author’s recent arguments based on this alternative description which suggest that the Anti de Sitter space (AdS/conformal field theory (CFT correspondence is a bijection between the boundary CFT and just the matter degrees of freedom of the bulk theory.

  3. Warped entanglement entropy

    We study the applicability of the covariant holographic entanglement entropy proposal to asymptotically warped AdS3 spacetimes with an SL(2,ℝ)×U(1) isometry. We begin by applying the proposal to locally AdS3 backgrounds which are written as an ℝ1 fibration over AdS2. We then perturb away from this geometry by considering a warping parameter a=1+δ to get an asymptotically warped AdS3 spacetime and compute the dual entanglement entropy perturbatively in δ. We find that for large separation in the fiber coordinate, the entanglement entropy can be computed to all orders in δ and takes the universal form appropriate for two-dimensional CFTs. The warping-dependent central charge thus identified exactly agrees with previous calculations in the literature. Performing the same perturbative calculations for the warped BTZ black hole again gives universal two-dimensional CFT answers, with the left-moving and right-moving temperatures appearing appropriately in the result

  4. Information and Entropy

    Caticha, Ariel

    2007-11-01

    What is information? Is it physical? We argue that in a Bayesian theory the notion of information must be defined in terms of its effects on the beliefs of rational agents. Information is whatever constrains rational beliefs and therefore it is the force that induces us to change our minds. This problem of updating from a prior to a posterior probability distribution is tackled through an eliminative induction process that singles out the logarithmic relative entropy as the unique tool for inference. The resulting method of Maximum relative Entropy (ME), which is designed for updating from arbitrary priors given information in the form of arbitrary constraints, includes as special cases both MaxEnt (which allows arbitrary constraints) and Bayes' rule (which allows arbitrary priors). Thus, ME unifies the two themes of these workshops—the Maximum Entropy and the Bayesian methods—into a single general inference scheme that allows us to handle problems that lie beyond the reach of either of the two methods separately. I conclude with a couple of simple illustrative examples.

  5. Information and Entropy

    Caticha, Ariel

    2007-01-01

    What is information? Is it physical? We argue that in a Bayesian theory the notion of information must be defined in terms of its effects on the beliefs of rational agents. Information is whatever constrains rational beliefs and therefore it is the force that induces us to change our minds. This problem of updating from a prior to a posterior probability distribution is tackled through an eliminative induction process that singles out the logarithmic relative entropy as the unique tool for inference. The resulting method of Maximum relative Entropy (ME), which is designed for updating from arbitrary priors given information in the form of arbitrary constraints, includes as special cases both MaxEnt (which allows arbitrary constraints) and Bayes' rule (which allows arbitrary priors). Thus, ME unifies the two themes of these workshops -- the Maximum Entropy and the Bayesian methods -- into a single general inference scheme that allows us to handle problems that lie beyond the reach of either of the two methods ...

  6. Physical Metallurgy of High-Entropy Alloys

    Yeh, Jien-Wei

    2015-08-01

    Two definitions of high-entropy alloys (HEAs), based on composition and entropy, are reviewed. Four core effects, i.e., high entropy, sluggish diffusion, severe lattice distortion, and cocktail effects, are mentioned to show the uniqueness of HEAs. The current state of physical metallurgy is discussed. As the compositions of HEAs are entirely different from that of conventional alloys, physical metallurgy principles might need to be modified for HEAs. The thermodynamics, kinetics, structure, and properties of HEAs are briefly discussed relating with the four core effects of HEAs. Among these, a severe lattice distortion effect is particularly emphasized because it exerts direct and indirect influences on many aspects of microstructure and properties. Because a constituent phase in HEAs can be regarded as a whole-solute matrix, every lattice site in the matrix has atomic-scale lattice distortion. In such a distorted lattice, point defects, line defects, and planar defects are different from those in conventional matrices in terms of atomic configuration, defect energy, and dynamic behavior. As a result, mechanical and physical properties are significantly influenced by such a distortion. Suitable mechanisms and theories correlating composition, microstructure, and properties for HEAs are required to be built in the future. Only these understandings make it possible to complete the physical metallurgy of the alloy world.

  7. Quantum Dynamical Entropies and Gács Algorithmic Entropy

    Fabio Benatti

    2012-07-01

    Full Text Available Several quantum dynamical entropies have been proposed that extend the classical Kolmogorov–Sinai (dynamical entropy. The same scenario appears in relation to the extension of algorithmic complexity theory to the quantum realm. A theorem of Brudno establishes that the complexity per unit time step along typical trajectories of a classical ergodic system equals the KS-entropy. In the following, we establish a similar relation between the Connes–Narnhofer–Thirring quantum dynamical entropy for the shift on quantum spin chains and the Gács algorithmic entropy. We further provide, for the same system, a weaker linkage between the latter algorithmic complexity and a different quantum dynamical entropy proposed by Alicki and Fannes.

  8. An exploration for the macroscopic physical meaning of entropy

    2010-01-01

    The macroscopic physical meaning of entropy is analyzed based on the exergy (availability) of a combined system (a closed system and its environment), which is the maximum amount of useful work obtainable from the system and the environment as the system is brought into equilibrium with the environment. The process the system experiences can be divided in two sequent sub-processes, the process at constant volume, which represents the heat interaction of the system with the environment, and the adiabatic process, which represents the work interaction of the system with the environment. It is shown that the macroscopic physical meaning of entropy is a measure of the unavailable energy of a closed system for doing useful work through heat interaction. This statement is more precise than those reported in prior literature. The unavailability function of a closed system can be defined as T0S and p0V in volume constant process and adiabatic process, respectively. Their changes, that is, AiTgS) and A (p0V) represent the unusable parts of the internal energy of a closed system for doing useful work in corresponding processes. Finally, the relation between Clausius entropy and Boltzmann entropy is discussed based on the comparison of their expressions for absolute entropy.

  9. Entropy Meters and the Entropy of Non-extensive Systems

    Lieb, Elliott H

    2014-01-01

    In our derivation of the second law of thermodynamics from the relation of adiabatic accessibility of equilibrium states we stressed the importance of being able to scale a system's size without changing its intrinsic properties. This leaves open the question of defining the entropy of macroscopic, but unscalable systems, such as gravitating bodies or systems where surface effects are important. We show here how the problem can be overcome, in principle, with the aid of an `entropy meter'. An entropy meter can also be used to determine entropy functions for non-equilibrium states and mesoscopic systems.

  10. Entropy in Signal Processing (Entropie en Traitement du Signal)

    Mohammad-Djafari, Ali

    2001-01-01

    R\\'esum\\'e: Le principal objet de cette communication est de faire une r\\'etro perspective succincte de l'utilisation de l'entropie et du principe du maximum d'entropie dans le domaine du traitement du signal. Apr\\`es un bref rappel de quelques d\\'efinitions et du principe du maximum d'entropie, nous verrons successivement comment l'entropie est utilis\\'ee en s\\'eparation de sources, en mod\\'elisation de signaux, en analyse spectrale et pour la r\\'esolution des probl\\`emes inverses lin\\'eaire...

  11. Entropy: From Thermodynamics to Hydrology

    Demetris Koutsoyiannis

    2014-02-01

    Full Text Available Some known results from statistical thermophysics as well as from hydrology are revisited from a different perspective trying: (a to unify the notion of entropy in thermodynamic and statistical/stochastic approaches of complex hydrological systems and (b to show the power of entropy and the principle of maximum entropy in inference, both deductive and inductive. The capability for deductive reasoning is illustrated by deriving the law of phase change transition of water (Clausius-Clapeyron from scratch by maximizing entropy in a formal probabilistic frame. However, such deductive reasoning cannot work in more complex hydrological systems with diverse elements, yet the entropy maximization framework can help in inductive inference, necessarily based on data. Several examples of this type are provided in an attempt to link statistical thermophysics with hydrology with a unifying view of entropy.

  12. A consistent flow of entropy

    Ansari, Mohammad H

    2016-01-01

    A common approach to evaluate entropy in quantum systems is to solve a master-Bloch equation to determine density matrix and substitute it in entropy definition. However, this method has been recently understood to lack many energy correlators. The new correlators make entropy evaluation to be different from the substitution method described above. The reason for such complexity lies in the nonlinearity of entropy. In this paper we present a pedagogical approach to evaluate the new correlators and explain their contribution in the analysis. We show that the inherent nonlinearity in entropy makes the second law of thermodynamics to carry new terms associated to the new correlators. Our results show important new remarks on quantum black holes. Our formalism reveals that the notion of degeneracy of states at the event horizon makes an indispensable deviation from black hole entropy in the leading order.

  13. On quantum Rényi entropies

    Müller-Lennert, Martin; Dupont-Dupuis, Fréderic; Szehr, Oleg;

    2013-01-01

    in information theory and beyond. Various generalizations of Rényi entropies to the quantum setting have been proposed, most prominently Petz's quasi-entropies and Renner's conditional min-, max-, and collision entropy. However, these quantum extensions are incompatible and thus unsatisfactory. We propose a new...... quantum generalization of the family of Rényi entropies that contains the von Neumann entropy, min-entropy, collision entropy, and the max-entropy as special cases, thus encompassing most quantum entropies in use today. We show several natural properties for this definition, including data...

  14. Entropy: From Thermodynamics to Hydrology

    Demetris Koutsoyiannis

    2014-01-01

    Some known results from statistical thermophysics as well as from hydrology are revisited from a different perspective trying: (a) to unify the notion of entropy in thermodynamic and statistical/stochastic approaches of complex hydrological systems and (b) to show the power of entropy and the principle of maximum entropy in inference, both deductive and inductive. The capability for deductive reasoning is illustrated by deriving the law of phase change transition of water (Clausius-Clapeyron)...

  15. Entropy and its relationship to allometry

    Shour, Robert

    2008-01-01

    The entropy of an organism's capacity to supply energy through its circulatory system is 4/3 the entropy of the organism's energy requirements. Organisms appear to maximize entropy. The concept of entropy enables shorter derivations of some allometric equations, further evidence of the concept's utility. Entropy helps explain emergence in social, lexical, and biological networks.

  16. Entanglement Entropy of Black Holes

    Sergey N. Solodukhin

    2011-10-01

    Full Text Available The entanglement entropy is a fundamental quantity, which characterizes the correlations between sub-systems in a larger quantum-mechanical system. For two sub-systems separated by a surface the entanglement entropy is proportional to the area of the surface and depends on the UV cutoff, which regulates the short-distance correlations. The geometrical nature of entanglement-entropy calculation is particularly intriguing when applied to black holes when the entangling surface is the black-hole horizon. I review a variety of aspects of this calculation: the useful mathematical tools such as the geometry of spaces with conical singularities and the heat kernel method, the UV divergences in the entropy and their renormalization, the logarithmic terms in the entanglement entropy in four and six dimensions and their relation to the conformal anomalies. The focus in the review is on the systematic use of the conical singularity method. The relations to other known approaches such as ’t Hooft’s brick-wall model and the Euclidean path integral in the optical metric are discussed in detail. The puzzling behavior of the entanglement entropy due to fields, which non-minimally couple to gravity, is emphasized. The holographic description of the entanglement entropy of the black-hole horizon is illustrated on the two- and four-dimensional examples. Finally, I examine the possibility to interpret the Bekenstein-Hawking entropy entirely as the entanglement entropy.

  17. Dimensional Equations of Entropy

    Sparavigna, Amelia Carolina

    2015-01-01

    Entropy is a quantity which is of great importance in physics and chemistry. The concept comes out of thermodynamics, proposed by Rudolf Clausius in his analysis of Carnot cycle and linked by Ludwig Boltzmann to the number of specific ways in which a physical system may be arranged. Any physics classroom, in its task of learning physics, has therefore to face this crucial concept. As we will show in this paper, the lectures can be enriched by discussing dimensional equations linked to the ent...

  18. Sphere Renyi entropies

    Dowker, J S

    2012-01-01

    I give some scalar field theory calculations on a d-dimensional lune of arbitrary angle, evaluating, numerically, the effective action which is expressed as a simple quadrature, for conformal coupling. Using this, the entanglement and Renyi entropies are computed. Massive fields are also considered and a renormalisation to make the (one-loop) effective action vanish for infinite mass is suggested and used, not entirely successfully. However a universal coefficient is derived from the large mass expansion. For the round sphere, I show how to convert the quadrature form of the conformal Laplacian determinant into the more usual sum of Riemann zeta functions (and log2).

  19. Note on entropies for quantum dynamical systems.

    Watanabe, Noboru

    2016-05-28

    Quantum entropy and channel are fundamental concepts for quantum information theory progressed recently in various directions. We will review the fundamental aspects of mean entropy and mean mutual entropy and calculate them for open system dynamics. PMID:27091165

  20. Entropy and Economics

    John Scales Avery

    2012-04-01

    Full Text Available In this essay, human society is regarded as a “superorganism”, analogous to colonies of social insects. The digestive system of the human superorganism is the global economy, which ingests both free energy and resources, and later excretes them in a degraded form. This process involves an increase in entropy. Early in the 20th century, both Frederick Soddy and Nicholas Georgescu-Roegen discussed the relationship between entropy and economics. Soddy called for an index system to regulate the money supply and a reform of the fractional reserve banking system, while Georgescu-Roegen pointed to the need for Ecological Economics, a steady-state economy, and population stabilization. As we reach the end of the fossil fuel era and as industrial growth falters, massive unemployment can only be avoided by responsible governmental action. The necessary steps include shifting labor to projects needed for a sustainable economy, dividing the available work fairly among those seeking employment, and reforming the practices of the financial sector.

  1. Absolute transition probabilities of phosphorus.

    Miller, M. H.; Roig, R. A.; Bengtson, R. D.

    1971-01-01

    Use of a gas-driven shock tube to measure the absolute strengths of 21 P I lines and 126 P II lines (from 3300 to 6900 A). Accuracy for prominent, isolated neutral and ionic lines is estimated to be 28 to 40% and 18 to 30%, respectively. The data and the corresponding theoretical predictions are examined for conformity with the sum rules.-

  2. A direct way to observe absolute molecular handedness

    Vager, Zeev

    2014-01-01

    Unique labeling of chiral stereo-centers must include their handedness. The conventional method that has been developed to do this was originated by three chemists: R.S. Cahn, C. Ingold, and V. Prelog (CIP) and is formally known as R,S nomenclature. It requires knowledge of the spatial absolute configuration of that center. Traditionally, experimental methods of extracting handedness go through the absolute configuration and only then through the application of the CIP convention. Here we show that a direct experimental method of determination of the natural handedness by the polarization of tunneling electrons is almost always compatible with the CIP convention. By the sole use of symmetry arguments we show that the chiral molecule symmetry withdraws the need of fine structure splitting. As a consequence, the polarization of electrons tunneling through the molecular electric dipole direction uniquely determines their handedness. The symmetry breaking argument that induces lack of fine-structure splitting eli...

  3. Entropy and the uncertainty principle

    Frank, Rupert L

    2011-01-01

    We generalize, improve and unify theorems of Rumin, and Maassen--Uffink about classical entropies associated to quantum density matrices. These theorems refer to the classical entropies of the diagonals of a density matrix in two different bases. Thus they provide a kind of uncertainty principle. Our inequalities are sharp because they are exact in the high-temperature or semi-classical limit.

  4. Conditional entropy of glueball states

    Bernardini, Alex E; da Rocha, Roldao

    2016-01-01

    The conditional entropy of glueball states is calculated using a holographic description. Glueball states are represented by a supergravity dual picture, consisting of a 5-dimensional graviton-dilaton action of a dynamical holographic AdS/QCD model. The conditional entropy is studied as a function of the glueball spin and of the mass, providing information about the stability of the glueball states.

  5. Trajectory versus probability density entropy

    Bologna, Mauro; Grigolini, Paolo; Karagiorgis, Markos; Rosa, Angelo

    2001-07-01

    We show that the widely accepted conviction that a connection can be established between the probability density entropy and the Kolmogorov-Sinai (KS) entropy is questionable. We adopt the definition of density entropy as a functional of a distribution density whose time evolution is determined by a transport equation, conceived as the only prescription to use for the calculation. Although the transport equation is built up for the purpose of affording a picture equivalent to that stemming from trajectory dynamics, no direct use of trajectory time evolution is allowed, once the transport equation is defined. With this definition in mind we prove that the detection of a time regime of increase of the density entropy with a rate identical to the KS entropy is possible only in a limited number of cases. The proposals made by some authors to establish a connection between the two entropies in general, violate our definition of density entropy and imply the concept of trajectory, which is foreign to that of density entropy.

  6. Entropy, Its Language, and Interpretation

    Leff, Harvey S.

    2007-12-01

    The language of entropy is examined for consistency with its mathematics and physics, and for its efficacy as a guide to what entropy means. Do common descriptors such as disorder, missing information, and multiplicity help or hinder understanding? Can the language of entropy be helpful in cases where entropy is not well defined? We argue in favor of the descriptor spreading, which entails space, time, and energy in a fundamental way. This includes spreading of energy spatially during processes and temporal spreading over accessible microstates states in thermodynamic equilibrium. Various examples illustrate the value of the spreading metaphor. To provide further support for this metaphor’s utility, it is shown how a set of reasonable spreading properties can be used to derive the entropy function. A main conclusion is that it is appropriate to view entropy’s symbol S as shorthand for spreading.

  7. Colossal dielectric constant in high entropy oxides

    Berardan, David; Franger, Sylvain; Dragoe, Diana; Meena, Arun Kumar; Dragoe, Nita [ICMMO (UMR 8182 CNRS), Universite Paris-Sud, Universite Paris-Saclay, 91405, Orsay (France)

    2016-04-15

    Entropic contributions to the stability of solids are very well understood and the mixing entropy has been used for forming various solids, for instance such as inverse spinels, see Nawrotsky et al., J. Inorg. Nucl. Chem. 29, 2701 (1967) [1]. A particular development was related to high entropy alloys by Yeh et al., Adv. Eng. Mater. 6, 299 (2004) [2] and Cantor et al., Mater. Sci. Eng. A 375-377, 213 (2004) [3] (for recent reviews see Zhang et al., Prog. Mater. Sci. 61, 1 (2014) [4] and Tsai et al., Mater. Res. Lett. 2, 107 (2014) [5]) in which the configurational disorder is responsible for forming simple solid solutions and which are thoroughly studied for various applications especially due to their mechanical properties, e.g. Gludovatz et al., Science 345, 1153 (2014) [6] and Lu et al., Sci. Rep. 4, 6200 (2014) [7], but also electrical properties, Kozelj et al., Phys. Rev. Lett. 113, 107001 (2014) [8], hydrogen storage, Kao et al., Int. J. Hydrogen Energy 35, 9046 (2010) [9], magnetic properties, Zhang et al., Sci. Rep. 3, 1455 (2013) [10]. Many unexplored compositions and properties still remain for this class of materials due to their large phase space. In a recent report it has been shown that the configurational disorder can be used for stabilizing simple solid solutions of oxides, which should normally not form solid solutions, see Rost et al., Nature Commun. 6, 8485 (2015) [11] these new materials were called ''entropy-stabilized oxides''. In this pioneering report, it was shown that mixing five equimolar binary oxides yielded, after heating at high temperature and quenching, an unexpected rock salt structure compound with statistical distribution of the cations in a face centered cubic lattice. Following this seminal study, we show here that these high entropy oxides (named HEOx hereafter) can be substituted by aliovalent elements with a charge compensation mechanism. This possibility largely increases the potential development of new

  8. Introduction to maximum entropy

    The maximum entropy (MaxEnt) principle has been successfully used in image reconstruction in a wide variety of fields. We review the need for such methods in data analysis and show, by use of a very simple example, why MaxEnt is to be preferred over other regularizing functions. This leads to a more general interpretation of the MaxEnt method, and its use is illustrated with several different examples. Practical difficulties with non-linear problems still remain, this being highlighted by the notorious phase problem in crystallography. We conclude with an example from neutron scattering, using data from a filter difference spectrometer to contrast MaxEnt with a conventional deconvolution. 12 refs., 8 figs., 1 tab

  9. Numerical Investigation of the Entropy Crisis in Model Glass Formers

    Brumer, Yisroel; Reichman, David R.

    2004-01-01

    We investigate numerically the low temperature equilibration of glassy systems via non-local Monte Carlo methods. We re-examine several systems that have been studied previously and investigate new systems in order to test the performance of such methods near the putative Kauzmann temperature, $T_K$, where the configurational entropy is presumed to vanish. Our results suggest that previous numerical claims in favor of and against a thermodynamic transition at a finite $T_K$ must be re-evaluat...

  10. The concept of entropy. Relation between action and entropy

    J.-P.Badiali

    2005-01-01

    Full Text Available The Boltzmann expression for entropy represents the traditional link between thermodynamics and statistical mechanics. New theoretical developments like the Unruh effect or the black hole theory suggest a new definition of entropy. In this paper we consider the thermodynamics of black holes as seriously founded and we try to see what we can learn from it in the case of ordinary systems for which a pre-relativistic description is sufficient. We introduce a space-time model and a new definition of entropy considering the thermal equilibrium from a dynamic point of view. Then we show that for black hole and ordinary systems we have the same relation relating a change of entropy to a change of action.

  11. Entropy distance: New quantum phenomena

    Weis, Stephan [Max Planck Institute for Mathematics in the Sciences, Inselstr. 22, D-04103 Leipzig (Germany); Knauf, Andreas [Department of Mathematics, Friedrich-Alexander-University Erlangen-Nuremberg, Cauerstr. 11, D-91058 Erlangen (Germany)

    2012-10-15

    We study a curve of Gibbsian families of complex 3 Multiplication-Sign 3-matrices and point out new features, absent in commutative finite-dimensional algebras: a discontinuous maximum-entropy inference, a discontinuous entropy distance, and non-exposed faces of the mean value set. We analyze these problems from various aspects including convex geometry, topology, and information geometry. This research is motivated by a theory of infomax principles, where we contribute by computing first order optimality conditions of the entropy distance.

  12. Shannon's information is not entropy

    In this letter we clear up the long-standing misidentification of Shannon's Information with Entropy. We show that Information, in contrast to Entropy, is not invariant under unitary transformations and that these quantities are only equivalent for representations consisting of Hamiltonian eigenstates. We illustrate this fact through a toy system consisting of a harmonic oscillator in a coherent state. It is further proved that the representations which maximize the information are those which are energy-eigenstates. This fact sets the entropy as an upper bound for Shannon's Information. (author)

  13. Gravitational Entropy and Global Structure

    Hawking, Stephen William

    1999-01-01

    The underlying reason for the existence of gravitational entropy is traced to the impossibility of foliating topologically non-trivial Euclidean spacetimes with a time function to give a unitary Hamiltonian evolution. In $d$ dimensions the entropy can be expressed in terms of the $d-2$ obstructions to foliation, bolts and Misner strings, by a universal formula. We illustrate with a number of examples including spaces with nut charge. In these cases, the entropy is not just a quarter the area of the bolt, as it is for black holes.

  14. Gravitational entropy and global structure

    Hawking, S. W.; Hunter, C. J.

    1999-02-01

    The underlying reason for the existence of gravitational entropy is traced to the impossibility of foliating topologically non-trivial Euclidean spacetimes with a time function to give a unitary Hamiltonian evolution. In d dimensions the entropy can be expressed in terms of the d-2 obstructions to foliation, bolts and Misner strings, by a universal formula. We illustrate with a number of examples including spaces with nut charge. In these cases, the entropy is not just a quarter the area of the bolt, as it is for black holes.

  15. Relative Entropy and Torsion Coupling

    Lin, Feng-Li

    2016-01-01

    We evaluate the relative entropy on a ball region near the UV fixed point of a holographic conformal field theory deformed by a fermionic operator of nonzero vacuum expectation value. The positivity of the relative entropy considered here is implied by the expected monotonicity of decrease of quantum entanglement under RG flow. The calculations are done in the perturbative framework of Einstein-Cartan gravity in four-dimensional asymptotically anti-de Sitter space with a postulated standard bilinear coupling between axial fermion current and torsion. Our results however imply that the positivity of the relative entropy disfavors such a coupling.

  16. Rindler Energy is Wald Entropy

    Halyo, Edi

    2014-01-01

    We show that, in any theory of gravity, the entropy of any nonextreme black hole is given by $2 \\pi E_R$ where $E_R$ is the dimensionless Rindler energy. Separately, we show that $E_R$ is exactly Wald's Noether charge and therefore this entropy is identical to Wald entropy. However, it is off--shell and derived solely from the time evolution of the black hole. We examine Gauss--Bonnet black holes as an example and speculate on the degrees of freedom that $E_R$ counts.

  17. Zero Modes and Entanglement Entropy

    Yazdi, Yasaman K

    2016-01-01

    Ultraviolet divergences are widely discussed in studies of entanglement entropy. Also present, but much less understood, are infrared divergences due to zero modes in the field theory. In this note, we discuss the importance of carefully handling zero modes in entanglement entropy. We give an explicit example for a chain of harmonic oscillators in 1D, where a mass regulator is necessary to avoid an infrared divergence due to a zero mode. We also comment on a surprising contribution of the zero mode to the UV-scaling of the entanglement entropy.

  18. Interval Entropy and Informative Distance

    Fakhroddin Misagh

    2012-03-01

    Full Text Available The Shannon interval entropy function as a useful dynamic measure of uncertainty for two sided truncated random variables has been proposed in the literature of reliability. In this paper, we show that interval entropy can uniquely determine the distribution function. Furthermore, we propose a measure of discrepancy between two lifetime distributions at the interval of time in base of Kullback-Leibler discrimination information. We study various properties of this measure, including its connection with residual and past measures of discrepancy and interval entropy, and we obtain its upper and lower bounds.

  19. Black Hole Entropy, Topological Entropy and Noncommutative Geometry

    Zois, Ioannis P.

    2001-01-01

    Foliated manifolds are particular examples of noncommutative spaces. In this article we try to give a qualitative description of the Godbillon-Vey class and its relation on the one hand to the holonomy and on the other hand to the topological entropy of a foliation, using a remarkable theorem proved recently by G. Duminy relating these three notions in the case of codim-1 foliations. Moreover we shall investigate its possible relation with the black hole entropy adopting the superstring theor...

  20. Universal Entropy Bound for Rotating Systems

    Hod, Shahar

    1999-01-01

    We conjecture a universal upper bound to the entropy of a rotating system. The entropy bound follows from application of the generalized second law of thermodynamics to an idealized gedanken experiment in which an entropy-bearing rotating system falls into a black hole. This bound is stronger than the Bekenstein entropy bound for non-rotating systems.

  1. Dynamical entropy for infinite quantum systems

    We review the recent physical application of the so-called Connes-Narnhofer-Thirring entropy, which is the successful quantum mechanical generalization of the classical Kolmogorov-Sinai entropy and, by its very conception, is a dynamical entropy for infinite quantum systems. We thus comparingly review also the physical applications of the classical dynamical entropy for infinite classical systems. 41 refs. (Author)

  2. Holographic entropy increases in quadratic curvature gravity

    Bhattacharjee, Srijit; Sarkar, Sudipta; Wall, Aron C.

    2015-09-01

    Standard methods for calculating the black hole entropy beyond general relativity are ambiguous when the horizon is nonstationary. We fix these ambiguities in all quadratic curvature gravity theories, by demanding that the entropy be increasing at every time, for linear perturbations to a stationary black hole. Our result matches with the entropy formula found previously in holographic entanglement entropy calculations. We explicitly calculate the entropy increase for Vaidya-like solutions in Ricci-tensor gravity to show that (unlike the Wald entropy) the holographic entropy obeys a second law.

  3. Gravitation and vacuum entanglement entropy

    Jacobson, Ted

    2012-01-01

    The vacuum of quantum fields contains correlated fluctuations. When restricted to one side of a surface these have a huge entropy of entanglement that scales with the surface area. If UV physics renders this entropy finite, then a thermodynamic argument implies the existence of gravity. That is, the causal structure of spacetime must be dynamical and governed by the Einstein equation with Newton's constant inversely proportional to the entropy density. Conversely, the existence of gravity makes the entanglement entropy finite. This thermodynamic reasoning is powerful despite the lack of a detailed description of the dynamics at the cutoff scale, but it has its limitations. In particular, we should not expect to understand corrections to Einstein gravity in this way.

  4. Photosynthesis and negative entropy production.

    Jennings, Robert C; Engelmann, Enrico; Garlaschi, Flavio; Casazza, Anna Paola; Zucchelli, Giuseppe

    2005-09-30

    The widely held view that the maximum efficiency of a photosynthetic pigment system is given by the Carnot cycle expression (1-T/Tr) for energy transfer from a hot bath (radiation at temperature Tr) to a cold bath (pigment system at temperature T) is critically examined and demonstrated to be inaccurate when the entropy changes associated with the microscopic process of photon absorption and photochemistry at the level of single photosystems are considered. This is because entropy losses due to excited state generation and relaxation are extremely small (DeltaS 0.98 and xi > 0.92 respectively, and which, in principle, function with negative entropy production. It is demonstrated that for the case of xi > (1-T/Tr) entropy production is always negative and only becomes positive when xi < (1-T/Tr). PMID:16139784

  5. Renyi entropy and conformal defects

    Bianchi, Lorenzo [Humboldt-Univ. Berlin (Germany). Inst. fuer Physik; Hamburg Univ. (Germany). II. Inst. fuer Theoretische Physik; Meineri, Marco [Scuola Normale Superiore, Pisa (Italy); Perimeter Institute for Theoretical Physics, Waterloo, ON (Canada); Istituto Nazionale di Fisica Nucleare, Pisa (Italy); Myers, Robert C. [Perimeter Institute for Theoretical Physics, Waterloo, ON (Canada); Smolkin, Michael [California Univ., Berkely, CA (United States). Center for Theoretical Physics and Department of Physics

    2016-04-18

    We propose a field theoretic framework for calculating the dependence of Renyi entropies on the shape of the entangling surface in a conformal field theory. Our approach rests on regarding the corresponding twist operator as a conformal defect and in particular, we define the displacement operator which implements small local deformations of the entangling surface. We identify a simple constraint between the coefficient defining the two-point function of the displacement operator and the conformal weight of the twist operator, which consolidates a number of distinct conjectures on the shape dependence of the Renyi entropy. As an example, using this approach, we examine a conjecture regarding the universal coefficient associated with a conical singularity in the entangling surface for CFTs in any number of spacetime dimensions. We also provide a general formula for the second order variation of the Renyi entropy arising from small deformations of a spherical entangling surface, extending Mezei's results for the entanglement entropy.

  6. Two aspects of black hole entropy in Lanczos-Lovelock models of gravity

    Kolekar, Sanved; Kothawala, Dawood; Padmanabhan, T.

    2012-03-01

    We consider two specific approaches to evaluate the black hole entropy which are known to produce correct results in the case of Einstein’s theory and generalize them to Lanczos-Lovelock models. In the first approach (which could be called extrinsic), we use a procedure motivated by earlier work by Pretorius, Vollick, and Israel, and by Oppenheim, and evaluate the entropy of a configuration of densely packed gravitating shells on the verge of forming a black hole in Lanczos-Lovelock theories of gravity. We find that this matter entropy is not equal to (it is less than) Wald entropy, except in the case of Einstein theory, where they are equal. The matter entropy is proportional to the Wald entropy if we consider a specific mth-order Lanczos-Lovelock model, with the proportionality constant depending on the spacetime dimensions D and the order m of the Lanczos-Lovelock theory as (D-2m)/(D-2). Since the proportionality constant depends on m, the proportionality between matter entropy and Wald entropy breaks down when we consider a sum of Lanczos-Lovelock actions involving different m. In the second approach (which could be called intrinsic), we generalize a procedure, previously introduced by Padmanabhan in the context of general relativity, to study off-shell entropy of a class of metrics with horizon using a path integral method. We consider the Euclidean action of Lanczos-Lovelock models for a class of metrics off shell and interpret it as a partition function. We show that in the case of spherically symmetric metrics, one can interpret the Euclidean action as the free energy and read off both the entropy and energy of a black hole spacetime. Surprisingly enough, this leads to exactly the Wald entropy and the energy of the spacetime in Lanczos-Lovelock models obtained by other methods. We comment on possible implications of the result.

  7. Two Aspects of Black hole entropy in Lanczos-Lovelock models of gravity

    Kolekar, Sanved; Padmanabhan, T

    2011-01-01

    We consider two specific approaches to evaluate the black hole entropy which are known to produce correct results in the case of Einstein's theory and generalize them to Lanczos-Lovelock models. In the first approach (which could be called extrinsic) we use a procedure motivated by earlier work by Pretorius, Vollick and Israel, and by Oppenheim, and evaluate the entropy of a configuration of densely packed gravitating shells on the verge of forming a black hole in Lanczos-Lovelock theories of gravity. We find that this matter entropy is not equal to (it is less than) Wald entropy, except in the case of Einstein theory, where they are equal. The matter entropy is proportional to the Wald entropy if we consider a specific m-th order Lanczos-Lovelock model, with the proportionality constant depending on the spacetime dimensions D and the order m of the Lanczos-Lovelock theory as (D-2m)/(D-2). Since the proportionality constant depends on m, the proportionality between matter entropy and Wald entropy breaks down ...

  8. Dynamic black-hole entropy

    Hayward, Sean A.; Mukohyama, Shinji; Ashworth, M. C.

    1998-01-01

    We consider two non-statistical definitions of entropy for dynamic (non-stationary) black holes in spherical symmetry. The first is analogous to the original Clausius definition of thermodynamic entropy: there is a first law containing an energy-supply term which equals surface gravity times a total differential. The second is Wald's Noether-charge method, adapted to dynamic black holes by using the Kodama flow. Both definitions give the same answer for Einstein gravity: one-quarter the area ...

  9. Entropy bounds for uncollapsed matter

    Abreu, Gabriel; Visser, Matt, E-mail: Gabriel.Abreu@msor.vuw.ac.nz, E-mail: Matt.Visser@msor.vuw.ac.nz [School of Mathematics, Statistics and Operation Research Victoria University of Wellington Wellington (New Zealand)

    2011-09-22

    In any static spacetime the quasilocal Tolman mass contained within a volume can be reduced to a Gauss-like surface integral involving the flux of a suitably defined generalized surface gravity. By introducing some basic thermodynamics, and invoking the Unruh effect, one can then develop elementary bounds on the quasilocal entropy that are very similar in spirit to the holographic bound, and closely related to entanglement entropy.

  10. Entropy relaxation of ASDEX plasmas

    In tokamak discharges with improved ohmic confinement (IOC) in ASDEX a transition is observed from flat density profiles towards more peaked ones, while the normalized temperature profile is preserved. For this behaviour of the radial profiles it is shown that the entropy of the plasma increases during the IOC phase. Hence IOC and entropy relaxation are closely related. If the IOC phase is long enough, one finds stationary plasma states, which are compared with the relaxed state described in theory. (orig.)

  11. State Ensembles and Quantum Entropy

    Kak, Subhash

    2016-06-01

    This paper considers quantum communication involving an ensemble of states. Apart from the von Neumann entropy, it considers other measures one of which may be useful in obtaining information about an unknown pure state and another that may be useful in quantum games. It is shown that under certain conditions in a two-party quantum game, the receiver of the states can increase the entropy by adding another pure state.

  12. Entropy of dynamical social networks

    Kun Zhao; Márton Karsai; Ginestra Bianconi

    2012-01-01

    Human dynamical social networks encode information and are highly adaptive. To characterize the information encoded in the fast dynamics of social interactions, here we introduce the entropy of dynamical social networks. By analysing a large dataset of phone-call interactions we show evidence that the dynamical social network has an entropy that depends on the time of the day in a typical week-day. Moreover we show evidence for adaptability of human social behavior showing data on duration of...

  13. Entropy distance: New quantum phenomena

    Weis, Stephan; Knauf, Andreas

    2012-01-01

    We study a curve of Gibbsian families of complex 3 × 3-matrices and point out new features, absent in commutative finite-dimensional algebras: a discontinuous maximum-entropy inference, a discontinuous entropy distance, and non-exposed faces of the mean value set. We analyze these problems from various aspects including convex geometry, topology, and information geometry. This research is motivated by a theory of infomax principles, where we contribute by computing first order optimality cond...

  14. On Entropy Bounds and Holography

    Halyo, Edi

    2009-01-01

    We show that the holographic entropy bound for gravitational systems and the Bekenstein entropy bound for nongravitational systems are holographically related. Using the AdS/CFT correspondence, we find that the Bekenstein bound on the boundary is obtained from the holographic bound in the bulk by minimizing the boundary energy with respect the AdS radius or the cosmological constant. This relation may also ameliorate some problems associated with the Bekenstein bound.

  15. Preference Inconsistence-Based Entropy

    Wei Pan; Kun She; Pengyuan Wei#,

    2016-01-01

    Preference analysis is a class of important issues in ordinal decision making. As available information is usually obtained from different evaluation criteria or experts, the derived preference decisions may be inconsistent and uncertain. Shannon entropy is a suitable measurement of uncertainty. This work proposes the concepts of preference inconsistence set and preference inconsistence degree. Then preference inconsistence entropy is introduced by combining preference inconsistence degree an...

  16. Boundary effects in entanglement entropy

    Berthiere, Clément; Solodukhin, Sergey N.

    2016-09-01

    We present a number of explicit calculations of Renyi and entanglement entropies in situations where the entangling surface intersects the boundary of d-dimensional Minkowski spacetime. When the boundary is a single plane we compute the contribution to the entropy due to this intersection, first in the case of the Neumann and Dirichlet boundary conditions, and then in the case of a generic Robin type boundary condition. The flow in the boundary coupling between the Neumann and Dirichlet phases is analyzed in arbitrary dimension d and is shown to be monotonic, the peculiarity of d = 3 case is noted. We argue that the translational symmetry along the entangling surface is broken due the presence of the boundary which reveals that the entanglement is not homogeneous. In order to characterize this quantitatively, we introduce a density of entanglement entropy and compute it explicitly. This quantity clearly indicates that the entanglement is maximal near the boundary. We then consider the situation where the boundary is composed of two parallel planes at a finite separation and compute the entanglement entropy as well as its density in this case. The complete contribution to entanglement entropy due to the boundaries is shown not to depend on the distance between the planes and is simply twice the entropy in the case of single plane boundary. Additionally, we find how the area law, the part in the entropy proportional to the area of entire entangling surface, depends on the size of the separation between the two boundaries. The latter is shown to appear in the UV finite part of the entropy.

  17. Interval Entropy and Informative Distance

    Fakhroddin Misagh; Gholamhossein Yari

    2012-01-01

    The Shannon interval entropy function as a useful dynamic measure of uncertainty for two sided truncated random variables has been proposed in the literature of reliability. In this paper, we show that interval entropy can uniquely determine the distribution function. Furthermore, we propose a measure of discrepancy between two lifetime distributions at the interval of time in base of Kullback-Leibler discrimination information. We study various properties of this measure, including its conne...

  18. On the Smoothed Minimum Error Entropy Criterion

    Badong Chen; Principe, Jose C.

    2012-01-01

    Recent studies suggest that the minimum error entropy (MEE) criterion can outperform the traditional mean square error criterion in supervised machine learning, especially in nonlinear and non-Gaussian situations. In practice, however, one has to estimate the error entropy from the samples since in general the analytical evaluation of error entropy is not possible. By the Parzen windowing approach, the estimated error entropy converges asymptotically to the entropy of the error plus an indepe...

  19. Software configuration management

    Software Configuration Management is directed towards identifying system configuration at specific points of its life cycle, so as to control changes to the configuration and to maintain the integrity and traceability of the configuration throughout its life. SCM functions and tasks are presented in the paper

  20. Conceptualizing Embedded Configuration

    Oddsson, Gudmundur Valur; Hvam, Lars; Lysgaard, Ole

    and services. The general idea can be named embedded configuration. In this article we intend to conceptualize embedded configuration, what it is and is not. The difference between embedded configuration, sales configuration and embedded software is explained. We will look at what is needed to make...

  1. Android Apps for Absolute Beginners

    Jackson, Wallace

    2011-01-01

    Anybody can start building simple apps for the Android platform, and this book will show you how! Android Apps for Absolute Beginners takes you through the process of getting your first Android applications up and running using plain English and practical examples. It cuts through the fog of jargon and mystery that surrounds Android application development, and gives you simple, step-by-step instructions to get you started.* Teaches Android application development in language anyone can understand, giving you the best possible start in Android development * Provides simple, step-by-step exampl

  2. Bias in Absolute Magnitude Determination from Parallaxes

    Feast, Michael

    2002-01-01

    Relations are given for the correction of bias when mean absolute magnitudes are derived by the method of reduced parallaxes. The bias in the case of the derivation of the absolute magnitudes of individual objects is also considered.

  3. Absolute calibration of JET ELE system

    The first Michelson channel of the JET ECE system has been calibrated absolutely using a new high temperature source. The estimated uncertainties are of order +- 20% in the absolute spectral response and +- 10% in the relative spectral shape

  4. Evolutionary algorithm based configuration interaction approach

    Chakraborty, Rahul

    2016-01-01

    A stochastic configuration interaction method based on evolutionary algorithm is designed as an affordable approximation to full configuration interaction (FCI). The algorithm comprises of initiation, propagation and termination steps, where the propagation step is performed with cloning, mutation and cross-over, taking inspiration from genetic algorithm. We have tested its accuracy in 1D Hubbard problem and a molecular system (symmetric bond breaking of water molecule). We have tested two different fitness functions based on energy of the determinants and the CI coefficients of determinants. We find that the absolute value of CI coefficients is a more suitable fitness function when combined with a fixed selection scheme.

  5. A direct way to observe absolute molecular handedness

    We claim that the polarization of electrons tunneling through the molecular electric dipole direction uniquely determines the handedness of chiral centers. Unique labeling of chiral stereo-centers must include their handedness. The conventional method is formally known as the R, S nomenclature or the Ingold–Prelog priority (CIP) rules. It requires knowledge of the spatial absolute configuration of that center. Traditionally, experimental methods of extracting handedness go through the absolute configuration and only then would the CIP convention be applied. Here we show that a direct experimental method of determination of the natural molecular handedness by the polarization of tunneling electrons is almost always compatible with the CIP convention. By the sole use of symmetry arguments we show that the chiral molecular symmetry eliminates the need of fine structure splitting. As a consequence, the polarization of electrons tunneling through the molecular electric dipole direction uniquely determines their handedness. - Highlights: • Handedness determination through polarization of tunneling electrons. • The asymmetry of chiral centers dictates quenching of angular momentum. • The need for absolute structural information for CIP is circumvented. • The natural definition of handedness of centers. • The importance of electric dipole for the new handedness determination

  6. Einfluss der Gestaltung absoluter Bedieninteraktionen auf die sensomotorische Leistungsfähigkeit

    Schild, Susanne

    2015-01-01

    The purpose of this thesis was to explore user interaction with in vehicle information systems (IVIS) during driving and the influence of the interaction design on users’ performance. The main focus was on absolute touchpad interaction. In such configurations touchpad and display area are directly mapped, viz. the absolute finger position on the touchpad area is represented at the corresponding cursor position on the display area. Four experiments were conducted to assess a) how users can cop...

  7. On the existence, uniqueness and stability of entropy solutions to scalar conservation laws

    Golovaty, Dmitry; Nguyen, Truyen

    We consider one-dimensional scalar conservation laws with and without viscosity where the flux function F(x,t,u) is only assumed to be absolutely continuous in x, locally integrable in t and continuous in u. The existence and uniqueness of entropy solutions for the associated initial-value problem are obtained through the vanishing viscosity method and the doubling variables technique. We also prove the stability of entropy solutions in C([0,T];Lloc1(R)) and in C([0,T];L1(R)) with respect to both initial data and flux functions.

  8. Cosmology with negative absolute temperatures

    Vieira, J. P. P.; Byrnes, Christian T.; Lewis, Antony

    2016-08-01

    Negative absolute temperatures (NAT) are an exotic thermodynamical consequence of quantum physics which has been known since the 1950's (having been achieved in the lab on a number of occasions). Recently, the work of Braun et al. [1] has rekindled interest in negative temperatures and hinted at a possibility of using NAT systems in the lab as dark energy analogues. This paper goes one step further, looking into the cosmological consequences of the existence of a NAT component in the Universe. NAT-dominated expanding Universes experience a borderline phantom expansion (w < ‑1) with no Big Rip, and their contracting counterparts are forced to bounce after the energy density becomes sufficiently large. Both scenarios might be used to solve horizon and flatness problems analogously to standard inflation and bouncing cosmologies. We discuss the difficulties in obtaining and ending a NAT-dominated epoch, and possible ways of obtaining density perturbations with an acceptable spectrum.

  9. Cosmology with Negative Absolute Temperatures

    Vieira, J P P; Lewis, Antony

    2016-01-01

    Negative absolute temperatures (NAT) are an exotic thermodynamical consequence of quantum physics which has been known since the 1950's (having been achieved in the lab on a number of occasions). Recently, the work of Braun et al (2013) has rekindled interest in negative temperatures and hinted at a possibility of using NAT systems in the lab as dark energy analogues. This paper goes one step further, looking into the cosmological consequences of the existence of a NAT component in the Universe. NAT-dominated expanding Universes experience a borderline phantom expansion ($w<-1$) with no Big Rip, and their contracting counterparts are forced to bounce after the energy density becomes sufficiently large. Both scenarios might be used to solve horizon and flatness problems analogously to standard inflation and bouncing cosmologies. We discuss the difficulties in obtaining and ending a NAT-dominated epoch, and possible ways of obtaining density perturbations with an acceptable spectrum.

  10. Entropy of a nonequilibrium system

    Three definitions of entropy for a nonequilibrium system of particles, driven homogeneously by external forces and thermostatted homogeneously by a feedback mechanism, are discussed. The first is proposed to be S(t) = -k, i.e., the nonequilibrium ensemble average of the logarithm of the thermostatted equilibrium distribution function f/sub xi/. We show here, for a specific example, namely, the Nose-Hoover thermostat, that the entropy so defined reduces properly to the equilibrium result when the external forces are turned off, that this entropy behaves correctly when the thermostat is turned off, and that the thermostatted steady state is achievable. A reasonable alternative definition from information theory, namely replacing f/sub xi/ by the nonequilibrium distribution function f, is shown to give incorrect results. If, however, the distribution function f is coarse grained in time to give f-bar, then the resulting coarse-grained information-theory entropy, like the first definition, satisfies the requirements of the nonequilibrium entropy, with the added advantage of being easier to interpret in terms of the number of accessible states. Additional implications are discussed

  11. Information Entropy Production of Spatio-Temporal Maximum Entropy Distributions

    Cofre, Rodrigo

    2015-01-01

    Spiking activity from populations of neurons display causal interactions and memory effects. Therefore, they are expected to show some degree of irreversibility in time. Motivated by the spike train statistics, in this paper we build a framework to quantify the degree of irreversibility of any maximum entropy distribution. Our approach is based on the transfer matrix technique, which enables us to find an homogeneous irreducible Markov chain that shares the same maximum entropy measure. We provide relevant examples in the context of spike train statistics

  12. A unix configuration engine

    A high level description language is presented for the purpose of automatically configuring large heterogeneous networked unix environments, based on class-oriented abstractions. The configuration engine is portable and easily extensible

  13. A Simplified Confinement Method (SCM) for Calculating Absolute Free Energies and Free Energy and Entropy Differences

    Ovchinnikov, Victor; Cecchini, Marco; Karplus, Martin

    2013-01-01

    A simple and robust formulation of the path-independent confinement method for the calculation of free energies is presented. The simplified confinement method (SCM) does not require matrix diagonalization or switching off the molecular force field, and has a simple convergence criterion. The method can be readily implemented in molecular dynamics programs with minimal or no code modifications. Because the confinement method is a special case of thermodynamic integration, it is trivially para...

  14. Operational Dynamic Configuration Analysis

    Lai, Chok Fung; Zelinski, Shannon

    2010-01-01

    Sectors may combine or split within areas of specialization in response to changing traffic patterns. This method of managing capacity and controller workload could be made more flexible by dynamically modifying sector boundaries. Much work has been done on methods for dynamically creating new sector boundaries [1-5]. Many assessments of dynamic configuration methods assume the current day baseline configuration remains fixed [6-7]. A challenging question is how to select a dynamic configuration baseline to assess potential benefits of proposed dynamic configuration concepts. Bloem used operational sector reconfigurations as a baseline [8]. The main difficulty is that operational reconfiguration data is noisy. Reconfigurations often occur frequently to accommodate staff training or breaks, or to complete a more complicated reconfiguration through a rapid sequence of simpler reconfigurations. Gupta quantified a few aspects of airspace boundary changes from this data [9]. Most of these metrics are unique to sector combining operations and not applicable to more flexible dynamic configuration concepts. To better understand what sort of reconfigurations are acceptable or beneficial, more configuration change metrics should be developed and their distribution in current practice should be computed. This paper proposes a method to select a simple sequence of configurations among operational configurations to serve as a dynamic configuration baseline for future dynamic configuration concept assessments. New configuration change metrics are applied to the operational data to establish current day thresholds for these metrics. These thresholds are then corroborated, refined, or dismissed based on airspace practitioner feedback. The dynamic configuration baseline selection method uses a k-means clustering algorithm to select the sequence of configurations and trigger times from a given day of operational sector combination data. The clustering algorithm selects a simplified

  15. A student's guide to entropy

    Lemons, Don S

    2013-01-01

    Striving to explore the subject in as simple a manner as possible, this book helps readers understand the elusive concept of entropy. Innovative aspects of the book include the construction of statistical entropy, the derivation of the entropy of classical systems from purely classical assumptions, and a statistical thermodynamics approach to the ideal Fermi and ideal Bose gases. Derivations are worked through step-by-step and important applications are highlighted in over 20 worked examples. Nearly 50 end-of-chapter exercises test readers' understanding. The book also features a glossary giving definitions for all essential terms, a time line showing important developments, and list of books for further study. It is an ideal supplement to undergraduate courses in physics, engineering, chemistry and mathematics.

  16. Entropy current in conformal hydrodynamics

    In recent work [1, 2], the energy-momentum tensor for the N = 4 SYM fluid was computed up to second derivative terms using holographic methods. The aim of this note is to propose an entropy current (accurate up to second derivative terms) consistent with this energy-momentum tensor and to explicate its relation with the existing theories of relativistic hydrodynamics. In order to achieve this, we first develop a Weyl-covariant formalism which simplifies the study of conformal hydrodynamics. This naturally leads us to a proposal for the entropy current of an arbitrary conformal fluid in any spacetime (with d>3). In particular, this proposal translates into a definite expression for the entropy flux in the case of N = 4 SYM fluid. We conclude this note by comparing the formalism presented here with the conventional Israel-Stewart formalism.

  17. Quantum geometry and gravitational entropy

    Simon, Joan; Balasubramanian, Vijay; Czech, Bart Iomiej; Larjo, Klaus; Marolf, Donald; Simon, Joan

    2007-05-29

    Most quantum states have wavefunctions that are widely spread over the accessible Hilbert space and hence do not have a good description in terms of a single classical geometry. In order to understand when geometric descriptions are possible, we exploit the AdS/CFT correspondence in the half-BPS sector of asymptotically AdS_5 x S5 universes. In this sector we devise a"coarse-grained metric operator" whose eigenstates are well described by a single spacetime topology and geometry. We show that such half-BPS universes have a non-vanishing entropy if and only if the metric is singular, and that the entropy arises from coarse-graining the geometry. Finally, we use our entropy formula to find the most entropic spacetimes with fixed asymptotic moments beyond the global charges.

  18. Quantum-mechanical topological entropy

    We introduce a notion of topological entropy for automorphisms of arbitrary (non-commutative, but unital) nuclear C*-algebras A, generalizing the 'classical' topological entropy of a homeomorphism T: X→X of an arbitrary (compact, but not necessarily metric) space. In the sense that the topological dynamical system (X,T) is equivalently viewed as the C*-dynamical system given by the induced automorphism of the Abelian C*-algebra A=C(x) of all (complex valued) continuous functions on X. We calculate our 'quantum topological' entropy for shift automorphisms on AF-algebras associated with topological Markov chains (i.e. 'quantum topological' Markov chains); and also a natural physical interpretation is added

  19. Boundary effects in entanglement entropy

    Berthiere, Clement

    2016-01-01

    We present a number of explicit calculations of Renyi and entanglement entropies in situations where the entangling surface intersects the boundary in $d$-dimensional Minkowski spacetime. When the boundary is a single plane we compute the contribution to the entropy due to this intersection, first in the case of the Neumann and Dirichlet boundary conditions, and then in the case of a generic Robin type boundary condition. The flow in the boundary coupling between the Neumann and Dirichlet phases is analyzed in arbitrary dimension $d$ and is shown to be monotonic, the peculiarity of $d=3$ case is noted. We argue that the translational symmetry along the entangling surface is broken due the presence of the boundary which reveals that the entanglement is not homogeneous. In order to characterize this quantitatively, we introduce a density of entanglement entropy and compute it explicitly. This quantity clearly indicates that the entanglement is maximal near the boundary. We then consider the situation where the ...

  20. Entropy and Size in HIC

    Barrañon, A; Roa, J E

    2005-01-01

    Distinct entropy definitions have been used to obtain an inverse correlation between the residual size and entropy for Heavy Ion Collisions. This explains the existence of several temperatures for different residual size bins, as reported elsewhere (Natowitz et. al., 2002). HIC collisions were simulated using binary interaction LATINO model where Pandharipande potential replicates internucleonic interaction. System temperature is defined as the temperature obtained when Kinetic Gas Theory is applied to the nucleons in the participant region. Fragments are detected with an Early Cluster Recognition Algorithm that optimizes the partitions in energy space.

  1. Entropy power inequalities for qudits

    Audenaert, Koenraad; Datta, Nilanjana; Ozols, Maris

    2016-05-01

    Shannon's entropy power inequality (EPI) can be viewed as a statement of concavity of an entropic function of a continuous random variable under a scaled addition rule: f ( √{ a } X + √{ 1 - a } Y ) ≥ a f ( X ) + ( 1 - a ) f ( Y ) ∀ a ∈ [ 0 , 1 ] . Here, X and Y are continuous random variables and the function f is either the differential entropy or the entropy power. König and Smith [IEEE Trans. Inf. Theory 60(3), 1536-1548 (2014)] and De Palma, Mari, and Giovannetti [Nat. Photonics 8(12), 958-964 (2014)] obtained quantum analogues of these inequalities for continuous-variable quantum systems, where X and Y are replaced by bosonic fields and the addition rule is the action of a beam splitter with transmissivity a on those fields. In this paper, we similarly establish a class of EPI analogues for d-level quantum systems (i.e., qudits). The underlying addition rule for which these inequalities hold is given by a quantum channel that depends on the parameter a ∈ [0, 1] and acts like a finite-dimensional analogue of a beam splitter with transmissivity a, converting a two-qudit product state into a single qudit state. We refer to this channel as a partial swap channel because of the particular way its output interpolates between the states of the two qudits in the input as a is changed from zero to one. We obtain analogues of Shannon's EPI, not only for the von Neumann entropy and the entropy power for the output of such channels, but also for a much larger class of functions. This class includes the Rényi entropies and the subentropy. We also prove a qudit analogue of the entropy photon number inequality (EPnI). Finally, for the subclass of partial swap channels for which one of the qudit states in the input is fixed, our EPIs and EPnI yield lower bounds on the minimum output entropy and upper bounds on the Holevo capacity.

  2. Entanglement Entropy of Scattering Particles

    Peschanski, Robi

    2016-01-01

    We study the entanglement entropy between the two outgoing particles in an elastic scattering process. It is formulated within an S-matrix formalism using the partial wave expansion of two-body states, which plays a significant role in our computation. As a result, we obtain a novel formula that describes the entanglement entropy in a high energy scattering by the use of physical observables, namely the elastic and total cross sections and a physical bound on the impact parameter range, related to the elastic differential cross-section.

  3. Entanglement entropy of scattering particles

    Peschanski, Robi; Seki, Shigenori

    2016-07-01

    We study the entanglement entropy between the two outgoing particles in an elastic scattering process. It is formulated within an S-matrix formalism using the partial wave expansion of two-body states, which plays a significant role in our computation. As a result, we obtain a novel formula that expresses the entanglement entropy in a high energy scattering by the use of physical observables, namely the elastic and total cross sections and a physical bound on the impact parameter range, related to the elastic differential cross-section.

  4. Linear entropy as an entanglement measure in two-fermion systems

    Buscemi, F; Bordone, P; Bertoni, Andrea; Bordone, Paolo; Buscemi, Fabrizio

    2006-01-01

    We describe an efficient theoretical criterion, suitable for indistinguishable particles to quantify the quantum correlations of any pure two-fermion state, based on the Slater rank concept. It represents the natural generalization of the linear entropy used to treat quantum entanglement in systems of non-identical particles. Such a criterion is here applied to an electron-electron scattering in a two-dimensional system in order to perform a quantitative evaluation of the entanglement dynamics for various spin configurations and to compare the linear entropy with alternative approaches. Our numerical results show the dependence of the entanglement evolution upon the initial state of the system and its spin components. The differences with previous analyses accomplished by using the von Neumann entropy are discussed. The evaluation of the entanglement dynamics in terms of the linear entropy results to be much less demanding from the computational point of view, not requiring the diagonalization of the density ...

  5. Entanglement entropy for non-coplanar regions in quantum field theory

    We study the entanglement entropy in a relativistic quantum field theory for regions which are not included in a single spatial hyperplane. This geometric configuration cannot be treated with the Euclidean time method and the replica trick. Instead, we use a real time method to calculate the entropy for a massive free Dirac field in two dimensions in some approximations. We find some specifically relativistic features of the entropy. First, there is a large enhancement of entanglement due to boosts. As a result, the mutual information between relatively boosted regions does not vanish in the limit of zero volume and large relative boost. We also find extensivity of the information in a deeply Lorentzian regime with large violations of the triangle inequalities for the distances. This last effect is relevant to an interpretation of the amount of entropy enclosed in the Hawking radiation emitted by a black hole.

  6. Absolute Measurement of Quantum-Limited Interferometric Displacements

    Thiel, Valérian; Treps, Nicolas; Roslund, Jonathan

    2016-01-01

    A methodology is introduced that enables an absolute, quantum-limited measurement of sub-wavelength interferometric displacements. The technique utilizes a high-frequency optical path modulation within an interferometer operated in a homodyne configuration. All of the information necessary to fully characterize the resultant path displacement is contained within the relative strengths of the various harmonics of the phase modulation. The method, which is straightforward and readily implementable, allows a direct measurement of the theoretical Cram\\'er-Rao limit of detection without any assumptions on the nature of the light source.

  7. System Design of the ATLAS Absolute Luminosity Monitor

    Anghinolfi, Francis; Franz, Sebastien; Iwanski, W; Lundberg, B; PH-EP

    2007-01-01

    The ATLAS absolute luminosity monitor is composed of 8 roman pots symmetrically located in the LHC tunnel. Each pot contains 23 multi anode photomultiplier tubes, and each one of those is fitted with a front-end assembly called PMF. A PMF provides the high voltage biasing of the tube, the frontend readout chip and the readout logic in a very compact arrangement. The 25 PMFs contained in one roman pot are connected to a motherboard used as an interface to the backend electronics. The system allows to configure the front-end electronics from the ATLAS detector control system and to transmit the luminosity data over Slink.

  8. Residual entropy of ice III from Monte Carlo simulation.

    Kolafa, Jiří

    2016-03-28

    We calculated the residual entropy of ice III as a function of the occupation probabilities of hydrogen positions α and β assuming equal energies of all configurations. To do this, a discrete ice model with Bjerrum defect energy penalty and harmonic terms to constrain the occupation probabilities was simulated by the Metropolis Monte Carlo method for a range of temperatures and sizes followed by thermodynamic integration and extrapolation to N = ∞. Similarly as for other ices, the residual entropies are slightly higher than the mean-field (no-loop) approximation. However, the corrections caused by fluctuation of energies of ice samples calculated using molecular models of water are too large for accurate determination of the chemical potential and phase equilibria. PMID:27036463

  9. Maximum-Entropy Inference with a Programmable Annealer

    Chancellor, Nicholas; Vinci, Walter; Aeppli, Gabriel; Warburton, Paul A

    2015-01-01

    Optimisation problems in science and engineering typically involve finding the ground state (i.e. the minimum energy configuration) of a cost function with respect to many variables. If the variables are corrupted by noise then this approach maximises the likelihood that the solution found is correct. An alternative approach is to make use of prior statistical information about the noise in conjunction with Bayes's theorem. The maximum entropy solution to the problem then takes the form of a Boltzmann distribution over the ground and excited states of the cost function. Here we use a programmable Josephson junction array for the information decoding problem which we simulate as a random Ising model in a field. We show experimentally that maximum entropy decoding at finite temperature can in certain cases give competitive and even slightly better bit-error-rates than the maximum likelihood approach at zero temperature, confirming that useful information can be extracted from the excited states of the annealing...

  10. On Convergence Properties of Shannon Entropy

    Piera, Francisco J.; Parada, Patricio

    2007-01-01

    Convergence properties of Shannon Entropy are studied. In the differential setting, it is shown that weak convergence of probability measures, or convergence in distribution, is not enough for convergence of the associated differential entropies. A general result for the desired differential entropy convergence is provided, taking into account both compactly and uncompactly supported densities. Convergence of differential entropy is also characterized in terms of the Kullback-Liebler discrimi...

  11. Entropy-Based Financial Asset Pricing

    Mihaly Ormos; David Zibriczky

    2014-01-01

    We investigate entropy as a financial risk measure. Entropy explains the equity premium of securities and portfolios in a simpler way and, at the same time, with higher explanatory power than the beta parameter of the capital asset pricing model. For asset pricing we define the continuous entropy as an alternative measure of risk. Our results show that entropy decreases in the function of the number of securities involved in a portfolio in a similar way to the standard deviation, and that eff...

  12. HLT configuration management system

    Daponte, Vincenzo

    2015-01-01

    The CMS High Level Trigger (HLT) is implemented running a streamlined version of the CMS offline reconstruction software running on thousands of CPUs. The CMS software is written mostly in C++, using Python as its configuration language through an embedded CPython interpreter. The configuration of each process is made up of hundreds of modules, organized in sequences and paths. As an example, the HLT configurations used for 2011 data taking comprised over 2200 different modules, organized in more than 400 independent trigger paths. The complexity of the HLT configurations and the large number of configuration produced require the design of a suitable data management system. The present work describes the designed solution to manage the considerable number of configurations developed and to assist the editing of new configurations. The system is required to be remotely accessible and OS-independent as well as easly maintainable easy to use. To meet these requirements a three-layers architecture has been choose...

  13. Holographic entanglement entropy and the extended phase structure of STU black holes

    Caceres, Elena; Pedraza, Juan F

    2015-01-01

    We study the extended thermodynamics, obtained by considering the cosmological constant as a thermodynamic variable, of STU black holes in 4-dimensions in the fixed charge ensemble. The associated phase structure is conjectured to be dual to an RG-flow on the space of field theories. We find that for some charge configurations the phase structure resembles that of a Van der Waals gas: the system exhibits a family of first order phase transitions ending in a second order phase transition at a critical temperature. We calculate the holographic entanglement entropy for several charge configurations and show that for the cases where the gravity background exhibits Van der Waals behavior, the entanglement entropy presents a transition at the same critical temperature. To further characterize the phase transition we calculate appropiate critical exponents show that they coincide. Thus, the holographic entanglement entropy successfully captures the information of the extended phase structure. Finally, we discuss the...

  14. Measurement of the absolute speed is possible?

    Sergey V. Shevchenko; Tokarevsky, Vladimir V.

    2016-01-01

    One of popular problems, which  are experimentally studied in physics in a long time, is the testing of the special relativity theory, first of all – measurements of isotropy and constancy of light speed; as well as attempts to determine so called “absolute speed”, i.e. the Earth speed in the absolute spacetime (absolute reference frame), if this spacetime (ARF) exists.  Corresponding experiments aimed at the measuring of proper speed of some reference frame in oth...

  15. The Entropy of Morbidity Trauma and Mortality

    Neal-Sturgess, Clive

    2010-01-01

    In this paper it is shown that statistical mechanics in the form of thermodynamic entropy can be used as a measure of the severity of individual injuries (AIS), and that the correct way to account for multiple injuries is to sum the entropies. It is further shown that summing entropies according to the Planck-Boltzmann (P-B) definition of entropy is formally the same as ISS, which is why ISS works. Approximate values of the probabilities of fatality are used to calculate the Gibb's entropy, which is more accurate than the P-B entropy far from equilibrium, and are shown to be again proportional to ISS. For the categorisation of injury using entropies it is necessary to consider the underlying entropy of the individuals morbidity to which is added the entropy of trauma, which then may result in death. Adding in the underlying entropy and summing entropies of all AIS3+ values gives a more extended scale than ISS, and so entropy is considered the preferred measure. A small scale trial is conducted of these concep...

  16. Logical entropy of quantum dynamical systems

    Ebrahimzadeh Abolfazl

    2016-01-01

    Full Text Available This paper introduces the concepts of logical entropy and conditional logical entropy of hnite partitions on a quantum logic. Some of their ergodic properties are presented. Also logical entropy of a quantum dynamical system is dehned and ergodic properties of dynamical systems on a quantum logic are investigated. Finally, the version of Kolmogorov-Sinai theorem is proved.

  17. Entropy and temperatures of Nariai black hole

    The statistical entropy of the Nariai black hole in a thermal equilibrium is calculated by using the brick-wall method. Even if the temperature depends on the choice of the timelike Killing vector, the entropy can be written by the ordinary area law which agrees with the Wald entropy. We discuss some physical consequences of this result and the properties of the temperatures

  18. Algebraic entropy for differential-delay equations

    Viallet, Claude M.

    2014-01-01

    We extend the definition of algebraic entropy to a class of differential-delay equations. The vanishing of the entropy, as a structural property of an equation, signals its integrability. We suggest a simple way to produce differential-delay equations with vanishing entropy from known integrable differential-difference equations.

  19. Entropy of a Rindler Observer

    Brauer, O.; Kirchuk, E.; Raviola, L.; Socolovsky, M.

    2013-01-01

    We compute the entropy of a Rindler particle-detector (observer) in the presence of a quantum field in the Minkowski vacuum state; due to the Unruh effect, the observer is immersed in a thermal bath at a temperature proportional to its proper acceleration.

  20. Maximum entropy beam diagnostic tomography

    This paper reviews the formalism of maximum entropy beam diagnostic tomography as applied to the Fusion Materials Irradiation Test (FMIT) prototype accelerator. The same formalism has also been used with streak camera data to produce an ultrahigh speed movie of the beam profile of the Experimental Test Accelerator (ETA) at Livermore

  1. Entropy of Quantum Black Holes

    Romesh K. Kaul

    2012-02-01

    Full Text Available In the Loop Quantum Gravity, black holes (or even more general Isolated Horizons are described by a SU(2 Chern-Simons theory. There is an equivalent formulation of the horizon degrees of freedom in terms of a U(1 gauge theory which is just a gauged fixed version of the SU(2 theory. These developments will be surveyed here. Quantum theory based on either formulation can be used to count the horizon micro-states associated with quantum geometry fluctuations and from this the micro-canonical entropy can be obtained. We shall review the computation in SU(2 formulation. Leading term in the entropy is proportional to horizon area with a coefficient depending on the Barbero-Immirzi parameter which is fixed by matching this result with the Bekenstein-Hawking formula. Remarkably there are corrections beyond the area term, the leading one is logarithm of the horizon area with a definite coefficient −3/2, a result which is more than a decade old now. How the same results are obtained in the equivalent U(1 framework will also be indicated. Over years, this entropy formula has also been arrived at from a variety of other perspectives. In particular, entropy of BTZ black holes in three dimensional gravity exhibits the same logarithmic correction. Even in the String Theory, many black hole models are known to possess such properties. This suggests a possible universal nature of this logarithmic correction.

  2. Entanglement entropy for odd spheres

    Dowker, J S

    2010-01-01

    It is shown, non--rigorously, that the effective action on a Z_q factored odd spheres (lune) has a vanishing derivative at q=1. This leaves the effective action on the ordinary odd d-sphere as (minus) the value of the entanglement entropy associated with a (d-2)-sphere. Some numbers are given.

  3. Beyond Gibbs-Boltzmann-Shannon: General Entropies -- The Gibbs-Lorentzian Example

    Treumann, Rudolf; Baumjohann, Wolfgang

    2014-08-01

    We propose a generalisation of Gibbs' statistical mechanics into the domain of non-negligible phase space correlations. Derived are the probability distribution and entropy as a generalised ensemble average, replacing Gibbs-Boltzmann-Shannon's entropy definition enabling construction of new forms of statistical mechanics. The general entropy may also be of importance in information theory and data analysis. Application to generalised Lorentzian phase space elements yields the Gibbs-Lorentzian power law probability distribution and statistical mechanics. The corresponding Boltzmann, Fermi and Bose-Einstein distributions are found. They apply only to finite temperature states including correlations. As a by-product any negative absolute temperatures are categorically excluded, supporting a recent ``no-negative T" claim.

  4. Business Model Process Configurations

    Taran, Yariv; Nielsen, Christian; Thomsen, Peter;

    2015-01-01

    Purpose – The paper aims: 1) To develop systematically a structural list of various business model process configuration and to group (deductively) these selected configurations in a structured typological categorization list. 2) To facilitate companies in the process of BM innovation......, by developing (inductively) an ontological classification framework, in view of the BM process configurations typology developed. Design/methodology/approach – Given the inconsistencies found in the business model studies (e.g. definitions, configurations, classifications) we adopted the analytical induction...... method of data analysis. Findings - A comprehensive literature review and analysis resulted in a list of business model process configurations systematically organized under five classification groups, namely, revenue model; value proposition; value configuration; target customers, and strategic...

  5. Entropy-Corrected Holographic Dark Energy

    Wei, Hao

    2009-01-01

    The holographic dark energy (HDE) is now an interesting candidate of dark energy, which has been studied extensively in the literature. In the derivation of HDE, the black hole entropy plays an important role. In fact, the entropy-area relation can be modified due to quantum gravity or other reason. With the modified entropy-area relation, we propose the so-called "entropy-corrected holographic dark energy" (ECHDE) in this note. We consider many aspects of ECHDE and find some interesting results. In addition, we also consider the so-called "entropy-corrected agegraphic dark energy" (ECADE) briefly.

  6. Entropy-Corrected Holographic Dark Energy

    The holographic dark energy (HDE) is now an interesting candidate of dark energy, which has been studied extensively in the literature. In the derivation of HDE, the black hole entropy plays an important role. In fact, the entropy-area relation can be modified due to loop quantum gravity or other reasons. With the modified entropy-area relation, we propose the so-called 'entropy-corrected holographic dark energy' (ECHDE) in the present work. We consider many aspects of ECHDE and find some interesting results. In addition, we briefly consider the so-called 'entropy-corrected agegraphic dark energy' (ECADE). (geophysics, astronomy, and astrophysics)

  7. Entropy-Corrected Holographic Dark Energy

    Wei, Hao

    2009-10-01

    The holographic dark energy (HDE) is now an interesting candidate of dark energy, which has been studied extensively in the literature. In the derivation of HDE, the black hole entropy plays an important role. In fact, the entropy-area relation can be modified due to loop quantum gravity or other reasons. With the modified entropy-area relation, we propose the so-called “entropy-corrected holographic dark energy" (ECHDE) in the present work. We consider many aspects of ECHDE and find some interesting results. In addition, we briefly consider the so-called “entropy-corrected agegraphic dark energy" (ECADE).

  8. Enthalpy-entropy compensation in protein unfolding

    2000-01-01

    Enthalpy-entropy compensation was found to be a universal law in protein unfolding based on over 3 000 experimental data. Water molecular reorganization accompanying the protein unfolding was suggested as the origin of the enthalpy-entropy compensation in protein unfolding. It is indicated that the enthalpy-entropy compensation constitutes the physical foundation that satisfies the biological need of the small free energy changes in protein unfolding, without the sacrifice of the bio-diversity of proteins. The enthalpy-entropy compensation theory proposed herein also provides valuable insights into the Privalov's puzzle of enthalpy and entropy convergence in protein unfolding.

  9. Generalized gravitational entropy from total derivative action

    Dong, Xi; Miao, Rong-Xin

    2015-12-01

    We investigate the generalized gravitational entropy from total derivative terms in the gravitational action. Following the method of Lewkowycz and Maldacena, we find that the generalized gravitational entropy from total derivatives vanishes. We compare our results with the work of Astaneh, Patrushev, and Solodukhin. We find that if total derivatives produced nonzero entropy, the holographic and the field-theoretic universal terms of entanglement entropy would not match. Furthermore, the second law of thermodynamics could be violated if the entropy of total derivatives did not vanish.

  10. Towards information inequalities for generalized graph entropies.

    Lavanya Sivakumar

    Full Text Available In this article, we discuss the problem of establishing relations between information measures for network structures. Two types of entropy based measures namely, the Shannon entropy and its generalization, the Rényi entropy have been considered for this study. Our main results involve establishing formal relationships, by means of inequalities, between these two kinds of measures. Further, we also state and prove inequalities connecting the classical partition-based graph entropies and partition-independent entropy measures. In addition, several explicit inequalities are derived for special classes of graphs.

  11. Generalized Gravitational Entropy from Total Derivative Action

    Dong, Xi

    2015-01-01

    We investigate the generalized gravitational entropy from total derivative terms in the gravitational action. Following the method of Lewkowycz and Maldacena, we find that the generalized gravitational entropy from total derivatives vanishes. We compare our results with the work of Astaneh, Patrushev, and Solodukhin. We find that if total derivatives produced nonzero entropy, the holographic and the field-theoretic universal terms of entanglement entropy would not match. Furthermore, the second law of thermodynamics could be violated if the entropy of total derivatives did not vanish.

  12. Negative temperatures and the definition of entropy

    Swendsen, Robert H.; Wang, Jian-Sheng

    2016-07-01

    The concept of negative temperature has recently received renewed interest in the context of debates about the correct definition of the thermodynamic entropy in statistical mechanics. Several researchers have identified the thermodynamic entropy exclusively with the "volume entropy" suggested by Gibbs, and have further concluded that by this definition, negative temperatures violate the principles of thermodynamics. We disagree with these conclusions. We demonstrate that volume entropy is inconsistent with the postulates of thermodynamics for systems with non-monotonic energy densities, while a definition of entropy based on the probability distributions of macroscopic variables does satisfy the postulates of thermodynamics. Our results confirm that negative temperature is a valid extension of thermodynamics.

  13. A violation of the covariant entropy bound?

    Masoumi, Ali

    2014-01-01

    Several arguments suggest that the entropy density at high energy density $\\rho$ should be given by the expression $s=K\\sqrt{\\rho/G}$, where $K$ is a constant of order unity. On the other hand the covariant entropy bound requires that the entropy on a light sheet be bounded by $A/4G$, where $A$ is the area of the boundary of the sheet. We find that in a suitably chosen cosmological geometry, the above expression for $s$ violates the covariant entropy bound. We consider different possible explanations for this fact; in particular the possibility that entropy bounds should be defined in terms of volumes of regions rather than areas of surfaces.

  14. Software configuration management

    Keyes, Jessica

    2004-01-01

    Software Configuration Management discusses the framework from a standards viewpoint, using the original DoD MIL-STD-973 and EIA-649 standards to describe the elements of configuration management within a software engineering perspective. Divided into two parts, the first section is composed of 14 chapters that explain every facet of configuration management related to software engineering. The second section consists of 25 appendices that contain many valuable real world CM templates.

  15. Configuration management at NEK

    Configuration Management (CM) objectives at NEK are to ensure consistency between Design Requirements, Physical Plant Configuration and Configuration Information. Software applications, supporting Design Change, Work Control and Document Control Processes, are integrated in one module-oriented Management Information System (MIS). Master Equipment Component List (MECL) database is central MIS module. Through a combination of centralized database and process migrated activities it is ensured that the CM principles and requirements (accurate, current design data matching plant's physical configuration while complying to applicable requirements), are followed and fulfilled.(author)

  16. Ansible configuration management

    Hall, Daniel

    2013-01-01

    Ansible Configuration Management"" is a step-by-step tutorial that teaches the use of Ansible for configuring Linux machines.This book is intended for anyone looking to understand the basics of Ansible. It is expected that you will have some experience of how to set up and configure Linux machines. In parts of the book we cover configuration files of BIND, MySQL, and other Linux daemons, therefore a working knowledge of these would be helpful but are certainly not required.

  17. CONFIGURATION GENERATOR MODEL

    ''The Disposal Criticality Analysis Methodology Topical Report'' prescribes an approach to the methodology for performing postclosure criticality analyses within the monitored geologic repository at Yucca Mountain, Nevada. An essential component of the methodology is the ''Configuration Generator Model for In-Package Criticality'' that provides a tool to evaluate the probabilities of degraded configurations achieving a critical state. The configuration generator model is a risk-informed, performance-based process for evaluating the criticality potential of degraded configurations in the monitored geologic repository. The method uses event tree methods to define configuration classes derived from criticality scenarios and to identify configuration class characteristics (parameters, ranges, etc.). The probabilities of achieving the various configuration classes are derived in part from probability density functions for degradation parameters. The NRC has issued ''Safety Evaluation Report for Disposal Criticality Analysis Methodology Topical Report, Revision 0''. That report contained 28 open items that required resolution through additional documentation. Of the 28 open items, numbers 5, 6, 9, 10, 18, and 19 were concerned with a previously proposed software approach to the configuration generator methodology and, in particular, the keff regression analysis associated with the methodology. However, the use of a keff regression analysis is not part of the current configuration generator methodology and, thus, the referenced open items are no longer considered applicable and will not be further addressed

  18. Airport Configuration Prediction Project

    National Aeronautics and Space Administration — Airport configuration is a primary factor in various airport characteristics such as arrival and departure capacities and terminal area traffic patterns. These...

  19. New Conformal Invariants in Absolute Parallelism Geometry

    Youssef, Nabil L.; Soleiman, A.; Taha, Ebtsam H.

    2016-01-01

    The aim of the present paper is to investigate conformal changes in absolute parallelism geometry. We find out some new conformal invariants in terms of the Weitzenb\\"ock connection and the Levi-Civita connection of an absolute parallelism space.

  20. Monolithically integrated absolute frequency comb laser system

    Wanke, Michael C.

    2016-07-12

    Rather than down-convert optical frequencies, a QCL laser system directly generates a THz frequency comb in a compact monolithically integrated chip that can be locked to an absolute frequency without the need of a frequency-comb synthesizer. The monolithic, absolute frequency comb can provide a THz frequency reference and tool for high-resolution broad band spectroscopy.

  1. Investigating Absolute Value: A Real World Application

    Kidd, Margaret; Pagni, David

    2009-01-01

    Making connections between various representations is important in mathematics. In this article, the authors discuss the numeric, algebraic, and graphical representations of sums of absolute values of linear functions. The initial explanations are accessible to all students who have experience graphing and who understand that absolute value simply…

  2. Introducing the Mean Absolute Deviation "Effect" Size

    Gorard, Stephen

    2015-01-01

    This paper revisits the use of effect sizes in the analysis of experimental and similar results, and reminds readers of the relative advantages of the mean absolute deviation as a measure of variation, as opposed to the more complex standard deviation. The mean absolute deviation is easier to use and understand, and more tolerant of extreme…

  3. Absolute Income, Relative Income, and Happiness

    Ball, Richard; Chernova, Kateryna

    2008-01-01

    This paper uses data from the World Values Survey to investigate how an individual's self-reported happiness is related to (i) the level of her income in absolute terms, and (ii) the level of her income relative to other people in her country. The main findings are that (i) both absolute and relative income are positively and significantly…

  4. Inequalities, Absolute Value, and Logical Connectives.

    Parish, Charles R.

    1992-01-01

    Presents an approach to the concept of absolute value that alleviates students' problems with the traditional definition and the use of logical connectives in solving related problems. Uses a model that maps numbers from a horizontal number line to a vertical ray originating from the origin. Provides examples solving absolute value equations and…

  5. Black hole entropy and induced gravity

    Jacobson, T

    1994-01-01

    In this short essay we review the arguments showing that black hole entropy is, at least in part, "entanglement entropy", i.e., missing information contained in correlations between quantum field fluctuations inside and outside the event horizon. Although the entanglement entropy depends upon the matter field content of the theory, it turns out that so does the Bekenstein-Hawking entropy A/4\\hbar G_{ren}, in precisely the same way, because the effective gravitational constant G_{ren} is renormalized by the very same quantum fluctuations. It appears most satisfactory if the entire gravitational action is "induced", in the manner suggested by Sakharov, since then the black hole entropy is purebred entanglement entropy, rather than being hybrid with bare gravitational entropy (whatever that might be.)

  6. Entropy-based financial asset pricing.

    Ormos, Mihály; Zibriczky, Dávid

    2014-01-01

    We investigate entropy as a financial risk measure. Entropy explains the equity premium of securities and portfolios in a simpler way and, at the same time, with higher explanatory power than the beta parameter of the capital asset pricing model. For asset pricing we define the continuous entropy as an alternative measure of risk. Our results show that entropy decreases in the function of the number of securities involved in a portfolio in a similar way to the standard deviation, and that efficient portfolios are situated on a hyperbola in the expected return-entropy system. For empirical investigation we use daily returns of 150 randomly selected securities for a period of 27 years. Our regression results show that entropy has a higher explanatory power for the expected return than the capital asset pricing model beta. Furthermore we show the time varying behavior of the beta along with entropy. PMID:25545668

  7. Thermodynamic law from the entanglement entropy bound

    Park, Chanyong

    2016-04-01

    From black hole thermodynamics, the Bekenstein bound has been proposed as a universal thermal entropy bound. It has been further generalized to an entanglement entropy bound which is valid even in a quantum system. In a quantumly entangled system, the non-negativity of the relative entropy leads to the entanglement entropy bound. When the entanglement entropy bound is saturated, a quantum system satisfies the thermodynamicslike law with an appropriately defined entanglement temperature. We show that the saturation of the entanglement entropy bound accounts for a universal feature of the entanglement temperature proportional to the inverse of the system size. In addition, we show that the deformed modular Hamiltonian under a global quench also satisfies the generalized entanglement entropy boundary after introducing a new quantity called the entanglement chemical potential.

  8. Renormalized entanglement entropy flow in mass-deformed ABJM theory

    Kim, Kyung Kiu; Kwon, O.-Kab; Park, Chanyong; Shin, Hyeonjoon

    2014-08-01

    We investigate a mass deformation effect on the renormalized entanglement entropy (REE) near the UV fixed point in (2+1)-dimensional field theory. In the context of the gauge/gravity duality, we use the Lin-Lunin-Maldacena geometries corresponding to the vacua of the mass-deformed ABJM theory. We analytically compute the small mass effect for various droplet configurations and show in holographic point of view that the REE is monotonically decreasing, positive, and stationary at the UV fixed point. These properties of the REE in (2+1)-dimensions are consistent with the Zamolodchikov c-function proposed in (1+1)-dimensional conformal field theory.

  9. Entropy and Entropy Production: Old Misconceptions and New Breakthroughs

    Leonid M. Martyushev

    2013-03-01

    Full Text Available Persistent misconceptions existing for dozens of years and influencing progress in various fields of science are sometimes encountered in the scientific and especially, the popular-science literature. The present brief review deals with two such interrelated misconceptions (misunderstandings. The first misunderstanding: entropy is a measure of disorder. This is an old and very common opinion. The second misconception is that the entropy production minimizes in the evolution of nonequilibrium systems. However, as it has recently become clear, evolution (progress in Nature demonstrates the opposite, i.e., maximization of the entropy production. The principal questions connected with this maximization are considered herein. The two misconceptions mentioned above can lead to the apparent contradiction between the conclusions of modern thermodynamics and the basic conceptions of evolution existing in biology. In this regard, the analysis of these issues seems extremely important and timely as it contributes to the deeper understanding of the laws of development of the surrounding World and the place of humans in it.

  10. Universal crossovers between entanglement entropy and thermal entropy

    Swingle, Brian; Senthil, T.

    2013-01-01

    We postulate the existence of universal crossover functions connecting the universal parts of the entanglement entropy to the low-temperature thermal entropy in gapless quantum many-body systems. These scaling functions encode the intuition that the same low-energy degrees of freedom which control low-temperature thermal physics are also responsible for the long-range entanglement in the quantum ground state. We demonstrate the correctness of the proposed scaling form and determine the scaling function for certain classes of gapless systems whose low-energy physics is described by a conformal field theory. We also use our crossover formalism to argue that local systems which are “natural” can violate the boundary law at most logarithmically. In particular, we show that several non-Fermi-liquid phases of matter have entanglement entropy that is at most of order Ld-1log(L) for a region of linear size L thereby confirming various earlier suggestions in the literature. We also briefly apply our crossover formalism to the study of fluctuations in conserved quantities and discuss some subtleties that occur in systems that spontaneously break a continuous symmetry.

  11. A method to determine the absolute neutron output of small D-T neutron generators

    We propose a standard method of establishing the absolute neutron output from small, D-T, 14 MeV neutron generators. This method uses a copper activation measurement in a configuration that we have calibrated with fission ionization chambers from NIST. The absolute uncertainty in this calibration is less than ± 7%. The copper activation method is insensitive to backgrounds from low energy scattered neutrons because it uses the 63Cu(n, 2n)62Cu reaction which has a 12 MeV threshold. With this calibration method, measurements of absolute neutron output are possible under a variety of experimental conditions, including those simulating nuclear well logging. In addition, the configuration of the copper samples that we propose gives high counting rates so that the statistical precision of the measurement of neutron output, depending upon the generator voltage and beam current, is on the order of 1%. (orig.)

  12. Photochirogenesis: Photochemical models on the absolute asymmetric formation of amino acids in interstellar space

    Meinert, Cornelia; de Marcellus, Pierre; Le Sergeant d'Hendecourt, Louis;

    2011-01-01

    Proteins of all living organisms including plants, animals, and humans are made up of amino acid monomers that show identical stereochemical L-configuration. Hypotheses for the origin of this symmetry breaking in biomolecules include the absolute asymmetric photochemistry model by which interstel......Proteins of all living organisms including plants, animals, and humans are made up of amino acid monomers that show identical stereochemical L-configuration. Hypotheses for the origin of this symmetry breaking in biomolecules include the absolute asymmetric photochemistry model by which....... Further evidence that amino acids and other molecules of prebiotic interest are asymmetrically formed in space comes from studies on the enantioselective photolysis of amino acids by UV-CPL. Also, experiments have been performed on the absolute asymmetric photochemical synthesis of enantiomer...

  13. PIV Logon Configuration Guidance

    Lee, Glen Alan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-03-04

    This document details the configurations and enhancements implemented to support the usage of federal Personal Identity Verification (PIV) Card for logon on unclassified networks. The guidance is a reference implementation of the configurations and enhancements deployed at the Los Alamos National Laboratory (LANL) by Network and Infrastructure Engineering – Core Services (NIE-CS).

  14. Entropy: The Markov Ordering Approach

    Gorban, A N; Judge, G

    2010-01-01

    The focus of this article is on entropy and Markov processes. We study the properties of functionals which are invariant with respect to monotonic transformations and analyze two invariant "additivity" properties: (i) existence of a monotonic transformation which makes the functional additive with respect to the joining of independent systems and (ii) existence of a monotonic transformation which makes the functional additive with respect to the partitioning of the space of states. All Lyapunov functionals for Markov chains which have properties (i) and (ii) are derived. We describe the most general ordering of the distribution space, with respect to which all continuous-time Markov processes are monotonic (the {\\em Markov order}). The solution differs significantly from the ordering given by the inequality of entropy growth. For inference, this approach results in a convex compact set of conditionally "most random" distributions.

  15. Entropy of unimodular Lattice Triangulations

    Knauf, Johannes F; Mecke, Klaus

    2014-01-01

    Triangulations are important objects of study in combinatorics, finite element simulations and quantum gravity, where its entropy is crucial for many physical properties. Due to their inherent complex topological structure even the number of possible triangulations is unknown for large systems. We present a novel algorithm for an approximate enumeration which is based on calculations of the density of states using the Wang-Landau flat histogram sampling. For triangulations on two-dimensional integer lattices we achive excellent agreement with known exact numbers of small triangulations as well as an improvement of analytical calculated asymptotics. The entropy density is $C=2.196(3)$ consistent with rigorous upper and lower bounds. The presented numerical scheme can easily be applied to other counting and optimization problems.

  16. Entanglement Entropy in Jammed CFTs

    Mefford, Eric

    2016-01-01

    We construct solutions to the Einstein equations for asymptotically locally Anti-de Sitter spacetimes with four, five, and six dimensional Reissner-Nordstr\\"om boundary metrics. These spacetimes are gravitational duals to "jammed" CFTs on those backgrounds at infinite N and strong coupling. For these spacetimes, we calculate the boundary stress tensor as well as compute entanglement entropies for ball shaped regions as functions of the boundary black hole temperature $T_{BH}$. From this, we see how the CFT prevents heat flow from the black hole to the vacuum at spatial infinity. We also compute entanglement entropies for a three dimensional boundary black hole using the AdS C-metric. We compare our results to previous work done in similar spacetimes.

  17. Preserved entropy and fragile magnetism

    Canfield, Paul C.; Bud’ko, Sergey L.

    2016-08-01

    A large swath of quantum critical and strongly correlated electron systems can be associated with the phenomena of preserved entropy and fragile magnetism. In this overview we present our thoughts and plans for the discovery and development of lanthanide and transition metal based, strongly correlated systems that are revealed by suppressed, fragile magnetism, quantum criticality, or grow out of preserved entropy. We will present and discuss current examples such as YbBiPt, YbAgGe, YbFe2Zn20, PrAg2In, BaFe2As2, CaFe2As2, LaCrSb3 and LaCrGe3 as part of our motivation and to provide illustrative examples.

  18. Entropy favours open colloidal lattices

    Mao, Xiaoming; Chen, Qian; Granick, Steve

    2013-03-01

    Burgeoning experimental and simulation activity seeks to understand the existence of self-assembled colloidal structures that are not close-packed. Here we describe an analytical theory based on lattice dynamics and supported by experiments that reveals the fundamental role entropy can play in stabilizing open lattices. The entropy we consider is associated with the rotational and vibrational modes unique to colloids interacting through extended attractive patches. The theory makes predictions of the implied temperature, pressure and patch-size dependence of the phase diagram of open and close-packed structures. More generally, it provides guidance for the conditions at which targeted patchy colloidal assemblies in two and three dimensions are stable, thus overcoming the difficulty in exploring by experiment or simulation the full range of conceivable parameters.

  19. [Multiscale entropy analysis of electrocardiogram].

    Wang, Jun; Ning, Xinbao; Li, Jin; Ma, Qianli; Xu, Yinlin; Bian, Chunhua

    2007-10-01

    Using the algorithm proposed by Costa M, et al., we studied the multiscale entropy (MSE) of electrocardiogram. The sample entropy (SampEn) of the healthy subjects was found to be higher than that of the subjects with coronary heart disease or myocardial infarction. The healthy subjects' complexity was found to be the highest. The SampEn of the subjects with coronary heart disease was noted to be only slightly higher than that of the subjects with myocardial infarction. These findings show that the complexity of the subjects with coronary heart disease or myocardial infarction is distinctly lower than the complexity of the healthy ones, and the subjects suffereing from coronary heart disease are liable to the onset of myocardial infarction. PMID:18027679

  20. Absolute stability in a collisionless electron-heat-conducting plasma in strong magnetic fields

    de la Torre, A.; Duhau, S.

    1989-02-01

    The dispersion relation obtained from a linear analysis of the hydrodynamic system of equations of Duhau is used to study the behaviour of the fast and slow magnetosonic and entropy modes in an electron-heat-flux-conducting plasma. The evolution of the hydrodynamic modes different from the Alfvén mode are studied as the electron heat flux is increased from zero as well as around the borders of overstable regions, for any anisotropy condition of the ions. The development of the domains of mirror and electron-heat-flux overstabilities are established and the regions of absolute stability are shown

  1. Entropy, Duality and Cross Diffusion

    Desvillettes, Laurent; Lepoutre, Thomas; Moussa, Ayman

    2013-01-01

    This paper is devoted to the use of the entropy and duality methods for the existence theory of reaction-cross diffusion systems consisting of two equations, in any dimension of space. Those systems appear in population dynamics when the diffusion rates of individuals of two species depend on the concentration of individuals of the same species (self-diffusion), or of the other species (cross diffusion).

  2. Entropy-based benchmarking methods

    Temurshoev, Umed

    2012-01-01

    We argue that benchmarking sign-volatile series should be based on the principle of movement and sign preservation, which states that a bench-marked series should reproduce the movement and signs in the original series. We show that the widely used variants of Denton (1971) method and the growth preservation method of Causey and Trager (1981) may violate this principle, while its requirements are explicitly taken into account in the pro-posed entropy-based benchmarking methods. Our illustrati...

  3. Entanglement Entropy in Jammed CFTs

    Mefford, Eric

    2016-01-01

    We construct solutions to the Einstein equations for asymptotically locally Anti-de Sitter spacetimes with four, five, and six dimensional Reissner-Nordstr\\"om boundary metrics. These spacetimes are gravitational duals to "jammed" CFTs on those backgrounds at infinite N and strong coupling. For these spacetimes, we calculate the boundary stress tensor as well as compute entanglement entropies for ball shaped regions as functions of the boundary black hole temperature $T_{BH}$. From this, we s...

  4. Holographic Entanglement Entropy in NMG

    Basanisi, Luca

    2016-01-01

    In this paper, we show that a higher derivative theory, such as New Massive Gravity, allows the existence of new entangling surfaces with non-zero extrinsic curvature. We perform the analysis for Lifshitz and Warped $AdS$ space times, revealing the role of the higher derivative contributions in the calculation of the holographic entanglement entropy. Finally, as an outcome of our holographic analysis we briefly comment on the dual boundary theory.

  5. The entropy of network ensembles

    Bianconi, Ginestra

    2008-01-01

    In this paper we generalize the concept of random networks to describe networks with non trivial features by a statistical mechanics approach. This framework is able to describe ensembles of undirected, directed as well as weighted networks. These networks might have not trivial community structure or, in the case of networks embedded in a given space, non trivial distance dependence of the link probability. These ensembles are characterized by their entropy which evaluate the cardinality of ...

  6. Indistinguishability, symmetrisation and maximum entropy

    It is demonstrated that the distributions over single-particle states for Boltzmann, Bose-Einstein and Fermi-Dirac statistics describing N non-interacting identical particles follow directly from the principle of maximum entropy. It is seen that the notions of indistinguishability and coarse graining are secondary, if not irrelevant. A detailed examination of the structure of the Boltzmann limit is provided. (author)

  7. ASSESSMENT OF MOTIVATION BY ENTROPY

    Tadeusz G³owacki

    2014-01-01

    Motivation is inseparable from human work. It is also one of the five most important elements of the management process. The ability to determine the level of motivation would therefore be very useful in the work of every manager. This paper is an attempt to quantify motivation and evaluate its size, using the concept of entropy. The main reason to try defining a method of measuring the amount of motivation is to improve the management techniques of companies.

  8. Risk-based configuration control

    The presentation discusses the following issues: The Configuration Control; The Risk-based Configuration Control (during power operation mode, and during shutdown mode). PSA requirements. Use of Risk-based Configuration Control System. Configuration Management (basic elements, benefits, information requirements)

  9. ENTROPY OF LANGUAGE SYSTEM AS MAIN DEVELOPMENT INDICATOR

    Ирина Михайловна Некипелова

    2014-01-01

    Article is devoted to the research of language system entropy. It is one of the main concept of synergetics and synergy. Entropy can be applied to description of language processes and detection of functioning and development features of language. Bilateral representation of entropy is caused by dichotomy of language and speech and it is feature of transference of entropy concept to linguistics area. Entropy can be representing by language entropy and speech entropy. These concepts are interd...

  10. The Homological Nature of Entropy

    Pierre Baudot

    2015-05-01

    Full Text Available We propose that entropy is a universal co-homological class in a theory associated to a family of observable quantities and a family of probability distributions. Three cases are presented: (1 classical probabilities and random variables; (2 quantum probabilities and observable operators; (3 dynamic probabilities and observation trees. This gives rise to a new kind of topology for information processes, that accounts for the main information functions: entropy, mutual-informations at all orders, and Kullback–Leibler divergence and generalizes them in several ways. The article is divided into two parts, that can be read independently. In the first part, the introduction, we provide an overview of the results, some open questions, future results and lines of research, and discuss briefly the application to complex data. In the second part we give the complete definitions and proofs of the theorems A, C and E in the introduction, which show why entropy is the first homological invariant of a structure of information in four contexts: static classical or quantum probability, dynamics of classical or quantum strategies of observation of a finite system.

  11. Linearity of Holographic Entanglement Entropy

    Almheiri, Ahmed; Swingle, Brian

    2016-01-01

    We consider the question of whether the leading contribution to the entanglement entropy in holographic CFTs is truly given by the expectation value of a linear operator as is suggested by the Ryu-Takayanagi formula. We investigate this property by computing the entanglement entropy, via the replica trick, in states dual to superpositions of macroscopically distinct geometries and find it consistent with evaluating the expectation value of the area operator within such states. However, we find that this fails once the number of semi-classical states in the superposition grows exponentially in the central charge of the CFT. Moreover, in certain such scenarios we find that the choice of surface on which to evaluate the area operator depends on the density matrix of the entire CFT. This nonlinearity is enforced in the bulk via the homology prescription of Ryu-Takayanagi. We thus conclude that the homology constraint is not a linear property in the CFT. We also discuss the existence of entropy operators in genera...

  12. Economics and Maximum Entropy Production

    Lorenz, R. D.

    2003-04-01

    Price differentials, sales volume and profit can be seen as analogues of temperature difference, heat flow and work or entropy production in the climate system. One aspect in which economic systems exhibit more clarity than the climate is that the empirical and/or statistical mechanical tendency for systems to seek a maximum in production is very evident in economics, in that the profit motive is very clear. Noting the common link between 1/f noise, power laws and Self-Organized Criticality with Maximum Entropy Production, the power law fluctuations in security and commodity prices is not inconsistent with the analogy. There is an additional thermodynamic analogy, in that scarcity is valued. A commodity concentrated among a few traders is valued highly by the many who do not have it. The market therefore encourages via prices the spreading of those goods among a wider group, just as heat tends to diffuse, increasing entropy. I explore some empirical price-volume relationships of metals and meteorites in this context.

  13. Maximum-Entropy Inference with a Programmable Annealer

    Chancellor, Nicholas; Szoke, Szilard; Vinci, Walter; Aeppli, Gabriel; Warburton, Paul A.

    2016-01-01

    Optimisation problems typically involve finding the ground state (i.e. the minimum energy configuration) of a cost function with respect to many variables. If the variables are corrupted by noise then this maximises the likelihood that the solution is correct. The maximum entropy solution on the other hand takes the form of a Boltzmann distribution over the ground and excited states of the cost function to correct for noise. Here we use a programmable annealer for the information decoding problem which we simulate as a random Ising model in a field. We show experimentally that finite temperature maximum entropy decoding can give slightly better bit-error-rates than the maximum likelihood approach, confirming that useful information can be extracted from the excited states of the annealer. Furthermore we introduce a bit-by-bit analytical method which is agnostic to the specific application and use it to show that the annealer samples from a highly Boltzmann-like distribution. Machines of this kind are therefore candidates for use in a variety of machine learning applications which exploit maximum entropy inference, including language processing and image recognition. PMID:26936311

  14. Maximum-Entropy Inference with a Programmable Annealer

    Chancellor, Nicholas; Szoke, Szilard; Vinci, Walter; Aeppli, Gabriel; Warburton, Paul A.

    2016-03-01

    Optimisation problems typically involve finding the ground state (i.e. the minimum energy configuration) of a cost function with respect to many variables. If the variables are corrupted by noise then this maximises the likelihood that the solution is correct. The maximum entropy solution on the other hand takes the form of a Boltzmann distribution over the ground and excited states of the cost function to correct for noise. Here we use a programmable annealer for the information decoding problem which we simulate as a random Ising model in a field. We show experimentally that finite temperature maximum entropy decoding can give slightly better bit-error-rates than the maximum likelihood approach, confirming that useful information can be extracted from the excited states of the annealer. Furthermore we introduce a bit-by-bit analytical method which is agnostic to the specific application and use it to show that the annealer samples from a highly Boltzmann-like distribution. Machines of this kind are therefore candidates for use in a variety of machine learning applications which exploit maximum entropy inference, including language processing and image recognition.

  15. Crowd macro state detection using entropy model

    Zhao, Ying; Yuan, Mengqi; Su, Guofeng; Chen, Tao

    2015-08-01

    In the crowd security research area a primary concern is to identify the macro state of crowd behaviors to prevent disasters and to supervise the crowd behaviors. The entropy is used to describe the macro state of a self-organization system in physics. The entropy change indicates the system macro state change. This paper provides a method to construct crowd behavior microstates and the corresponded probability distribution using the individuals' velocity information (magnitude and direction). Then an entropy model was built up to describe the crowd behavior macro state. Simulation experiments and video detection experiments were conducted. It was verified that in the disordered state, the crowd behavior entropy is close to the theoretical maximum entropy; while in ordered state, the entropy is much lower than half of the theoretical maximum entropy. The crowd behavior macro state sudden change leads to the entropy change. The proposed entropy model is more applicable than the order parameter model in crowd behavior detection. By recognizing the entropy mutation, it is possible to detect the crowd behavior macro state automatically by utilizing cameras. Results will provide data support on crowd emergency prevention and on emergency manual intervention.

  16. Statistical mechanical theory of liquid entropy

    The multiparticle correlation expansion for the entropy of a classical monatomic liquid is presented. This entropy expresses the physical picture in which there is no free particle motion, but rather, each atom moves within a cage formed by its neighbors. The liquid expansion, including only pair correlations, gives an excellent account of the experimental entropy of most liquid metals, of liquid argon, and the hard sphere liquid. The pair correlation entropy is well approximated by a universal function of temperature. Higher order correlation entropy, due to n-particle irreducible correlations for n≥3, is significant in only a few liquid metals, and its occurrence suggests the presence of n-body forces. When the liquid theory is applied to the study of melting, the author discovers the important classification of normal and anomalous melting, according to whether there is not or is a significant change in the electronic structure upon melting, and he discovers the universal disordering entropy for melting of a monatomic crystal. Interesting directions for future research are: extension to include orientational correlations of molecules, theoretical calculation of the entropy of water, application to the entropy of the amorphous state, and correlational entropy of compressed argon. The author clarifies the relation among different entropy expansions in the recent literature

  17. Partial molar entropy of electrons in a jellium model: Implications for thermodynamics of ions in solution and electrons in metals

    A universal relationship between the partial molar entropy of electrons in a conductor and the absolute thermoelectric power of the conductor was previously established using macroscopic thermodynamics. This relationship may depend on temperature but not on the type of material. Building on this, a recent comment published in this journal, as well as some earlier work, has argued that the partial molar entropy of electrons in a conductor is essentially equivalent to the absolute thermoelectric power of the metal. The argument was based on the thermodynamic and transport properties of a free electron Fermi gas. To further validate the relationship the present paper extends this approach to a jellium model of electronic structure. If the proposed equivalence between partial molar entropy and absolute thermoelectric power is valid it opens the way for an experimental thermodynamic method to measure quantities that have previously been considered un-measurable, such as partial molar entropies of ions in solution and electric fields in homogeneous conductors placed in a temperature gradient. It also relates to questions about the completeness of current thermodynamic theory and the possibility of a new principle or law of thermodynamics

  18. Entropy Maximization as a Basis for Information Recovery in Dynamic Economic Behavioral Systems

    George Judge

    2015-02-01

    Full Text Available As a basis for information recovery in open dynamic microeconomic systems, we emphasize the connection between adaptive intelligent behavior, causal entropy maximization and self-organized equilibrium seeking behavior. This entropy-based causal adaptive behavior framework permits the use of information-theoretic methods as a solution basis for the resulting pure and stochastic inverse economic-econometric problems. We cast the information recovery problem in the form of a binary network and suggest information-theoretic methods to recover estimates of the unknown binary behavioral parameters without explicitly sampling the configuration-arrangement of the sample space.

  19. On Thermodynamic Interpretation of Transfer Entropy

    Don C. Price

    2013-02-01

    Full Text Available We propose a thermodynamic interpretation of transfer entropy near equilibrium, using a specialised Boltzmann’s principle. The approach relates conditional probabilities to the probabilities of the corresponding state transitions. This in turn characterises transfer entropy as a difference of two entropy rates: the rate for a resultant transition and another rate for a possibly irreversible transition within the system affected by an additional source. We then show that this difference, the local transfer entropy, is proportional to the external entropy production, possibly due to irreversibility. Near equilibrium, transfer entropy is also interpreted as the difference in equilibrium stabilities with respect to two scenarios: a default case and the case with an additional source. Finally, we demonstrated that such a thermodynamic treatment is not applicable to information flow, a measure of causal effect.

  20. Black hole entropy and the renormalization group

    Satz, Alejandro

    2013-01-01

    Four decades after its first postulation by Bekenstein, black hole entropy remains mysterious. It has long been suggested that the entanglement entropy of quantum fields on the black hole gravitational background should represent at least an important contribution to the total Bekenstein-Hawking entropy, and that the divergences in the entanglement entropy should be absorbed in the renormalization of the gravitational couplings. In this talk, we describe how an improved understanding of black hole entropy is obtained by combining these notions with the renormalization group. By introducing an RG flow scale, we investigate whether the total entropy of the black hole can be partitioned in a "gravitational" part related to the flowing gravitational action, and a "quantum" part related to the unintegrated degrees of freedom. We describe the realization of this idea for free fields, and the complications and qualifications arising for interacting fields.

  1. Black hole versus cosmological horizon entropy

    The generalized second law of thermodynamics states that entropy always increases when all event horizons are attributed with an entropy proportional to their area. We test the generalized second law by investigating the change in entropy when dust, radiation and black holes cross a cosmological event horizon. We generalize for flat, open and closed Friedmann-Robertson-Walker universes by using numerical calculations to determine the cosmological horizon evolution. In most cases, the loss of entropy from within the cosmological horizon is more than balanced by an increase in cosmological event horizon entropy, maintaining the validity of the generalized second law of thermodynamics. However, an intriguing set of open universe models shows an apparent entropy decrease when black holes disappear over the cosmological event horizon. We anticipate that this apparent violation of the generalized second law will disappear when solutions are available for black holes embedded in arbitrary backgrounds

  2. Generalized Gravitational Entropy from Fermion Fields

    Huang, Wung-Hong

    2016-01-01

    The generalized gravitational entropy proposed in recent by Lewkowycz and Maldacena [1] is extended to the system of Fermion fields. We first find the regular wave solution of Fermion field which has arbitrary frequency and mode number on the BTZ spacetime, and then use it to calculate the exact gravitational entropy. The results show that there is a threshold frequency below which the Fermion fields could not contribute the generalized gravitational entropy. Also, the static and zero-mode solutions have not entropy, contrast to that in scalar field. We also found that the entropy of the static scalar fields and non-static fermions is an increasing function of mode number and, after arriving the maximum entropy it becomes a deceasing function and is derived to the asymptotic value.

  3. Entropy type complexity of quantum processes

    von Neumann entropy represents the amount of information in the quantum state, and this was extended by Ohya for general quantum systems [10]. Umegaki first defined the quantum relative entropy for σ-finite von Neumann algebras, which was extended by Araki, and Uhlmann, for general von Neumann algebras and *-algebras, respectively. In 1983 Ohya introduced the quantum mutual entropy by using compound states; this describes the amount of information correctly transmitted through the quantum channel, which was also extended by Ohya for general quantum systems. In this paper, we briefly explain Ohya's S-mixing entropy and the quantum mutual entropy for general quantum systems. By using structure equivalent class, we will introduce entropy type functionals based on quantum information theory to improve treatment for the Gaussian communication process. (paper)

  4. Absolute calibration technique for spontaneous fission sources

    An absolute calibration technique for a spontaneously fissioning nuclide (which involves no arbitrary parameters) allows unique determination of the detector efficiency for that nuclide, hence of the fission source strength

  5. Phenotypic spandrel: absolute discrimination and ligand antagonism

    François, Paul; Johnson, Kyle A.; Saunders, Laura N.

    2015-01-01

    We consider the general problem of absolute discrimination between categories of ligands irrespective of their concentration. An instance of this problem is immune discrimination between self and not-self. We connect this problem to biochemical adaptation, and establish that ligand antagonism - the ability of sub threshold ligands to negatively impact response - is a necessary consequence of absolute discrimination.Thus antagonism constitutes a "phenotypic spandrel": a phenotype existing as a...

  6. Absolute Photoacoustic Thermometry in Deep Tissue

    Yao, Junjie; Ke, Haixin; Tai, Stephen; Zhou, Yong; Wang, Lihong V.

    2013-01-01

    Photoacoustic (PA) thermography is a promising tool for temperature measurement in deep tissue. Here, we propose an absolute temperature measurement method based on the dual temperature dependences of the Grüneisen parameter and the speed of sound in tissue. By taking ratiometric measurements at two adjacent temperatures, we can eliminate the factors that are temperature irrelevant but difficult to correct for in deep tissue. To validate our method, absolute temperatures of blood-filled tubes...

  7. 'Araphid' diatom classification and the 'absolute standard'

    Williams, David M.

    2009-01-01

    'Araphid' diatom classification is discussed from the point of view of an 'absolute standard' for taxonomic rank. The 'absolute standard' is the phylogenetic tree, its nodes, the included monophyletic groups and sub-groups. To illustrate this point a few species from the genus Licmophora are re-analysed and the resulting phylogenetic tree is discussed in terms of a possible classification, the groups and sub-groups and their ranks.

  8. Absolute distance metrology for space interferometers

    Swinkels, B L; Wendrich, T.J.; Bhattacharya, N; Wielders, A.A.; Braat, J.J.M.

    2004-01-01

    Space interferometers consisting of several free flying telescopes, such as the planned Darwin mission, require a complex metrology system to make all the components operate as a single instrument. Our research focuses on one of its sub-systems that measures the absolute distance between two satellites with high accuracy. For Darwin the required accuracy would be in the order of 10 μm over 250 meter. To measure this absolute distance, we are currently exploring the frequency sweeping interfer...

  9. Introducing the mean absolute deviation 'effect' size.

    Gorard, S.

    2015-01-01

    This paper revisits the use of effect sizes in the analysis of experimental and similar results, and reminds readers of the relative advantages of the mean absolute deviation as a measure of variation, as opposed to the more complex standard deviation. The mean absolute deviation is is easier to use and understand, and more tolerant of extreme values. The paper then proposes the use of an easy to comprehend effect size based on the mean difference between treatment groups, divided by the mean...

  10. Firewall Configuration Errors Revisited

    Wool, Avishai

    2009-01-01

    The first quantitative evaluation of the quality of corporate firewall configurations appeared in 2004, based on Check Point FireWall-1 rule-sets. In general that survey indicated that corporate firewalls were often enforcing poorly written rule-sets, containing many mistakes. The goal of this work is to revisit the first survey. The current study is much larger. Moreover, for the first time, the study includes configurations from two major vendors. The study also introduce a novel "Firewall Complexity" (FC) measure, that applies to both types of firewalls. The findings of the current study indeed validate the 2004 study's main observations: firewalls are (still) poorly configured, and a rule-set's complexity is (still) positively correlated with the number of detected risk items. Thus we can conclude that, for well-configured firewalls, ``small is (still) beautiful''. However, unlike the 2004 study, we see no significant indication that later software versions have fewer errors (for both vendors).

  11. Equivariant configuration spaces

    Rourke, Colin; Sanderson, Brian

    1997-01-01

    We use the compression theorem (arxiv:math.GT/9712235) cf section 7, to prove results for equivariant configuration spaces analogous to the well-known non-equivariant results of May, Milgram and Segal.

  12. FEL phased array configurations

    Shellan, Jeffrey B.

    1986-01-01

    The advantages and disadvantages of various phased array and shared aperture concepts for FEL configurations are discussed. Consideration is given to the characteristics of intra- and inter-micropulse phasing; intra-macropulse phasing; an internal coupled resonator configuration; and an injection locked oscillator array. The use of a master oscillator power amplifier (MOPA) configuration with multiple or single master oscillators for FELs is examined. The venetian blind, rotating plate, single grating, and grating rhomb shared aperture concepts are analyzed. It is noted that the shared aperture approach using a grating rhomb and the MOPA concept with a single master oscillator and a coupled resonator are useful for FEL phased array configurations; and the MOPA concept is most applicable.

  13. Determination of DTL configurations

    A computer code (DLT) has been developed for quickly designing and evaluating different drift-tube linac (DLC) configurations. Inputs to the code include the power losses on reference DTL components determined previously by a computer code such as SUPERFISH. The scaling parameters for the new DTL configuration are beta (particle velocity), accelerating gradient, synchronous phase angle, transit-time factor, and the number of cells per DTL tank. Resulting calculations determine cell size, rf power losses, beam energy, and DTL length of the new configuration. A complete new configuration can be generated in a few seconds on an Apple II computer. Accuracy of this code is within 1% of the more sophisticated code PARMILA

  14. Drupal 8 configuration management

    Borchert, Stefan

    2015-01-01

    Drupal 8 Configuration Management is intended for people who use Drupal 8 to build websites, whether you are a hobbyist using Drupal for the first time, a long-time Drupal site builder, or a professional web developer.

  15. Airport Configuration Prediction Project

    National Aeronautics and Space Administration — There is presently poor knowledge throughout the National Airspace System (NAS) of the airport configurations currently in use at each airport. There is even less...

  16. Configuration Management Automation (CMA)

    Department of Transportation — Configuration Management Automation (CMA) will provide an automated, integrated enterprise solution to support CM of FAA NAS and Non-NAS assets and investments. CMA...

  17. Entropy and Correlators in Quantum Field Theory

    2010-01-01

    It is well known that loss of information about a system, for some observer, leads to an increase in entropy as perceived by this observer. We use this to propose an alternative approach to decoherence in quantum field theory in which the machinery of renormalisation can systematically be implemented: neglecting observationally inaccessible correlators will give rise to an increase in entropy of the system. As an example we calculate the entropy of a general Gaussian state and, assuming the o...

  18. Extreme Entropy Machines: Robust information theoretic classification

    Czarnecki, Wojciech Marian; Tabor, Jacek

    2015-01-01

    Most of the existing classification methods are aimed at minimization of empirical risk (through some simple point-based error measured with loss function) with added regularization. We propose to approach this problem in a more information theoretic way by investigating applicability of entropy measures as a classification model objective function. We focus on quadratic Renyi's entropy and connected Cauchy-Schwarz Divergence which leads to the construction of Extreme Entropy Machines (EEM). ...

  19. Entropy In the Universe: A New Approach

    Antonio Alfonso-Faus

    2000-09-01

    Full Text Available Abstract: We propose a new definition of entropy for any mass m, based on gravitation and through the concept of a gravitational cross section. It turns out to be proportional to mass, and therefore extensive, and to the age of the Universe. It is a Machian approach. It is also the number of gravity quanta the mass has emitted through its age. The entropy of the Uni-verse is so determined and the cosmological entropy problem solved.

  20. Remarks on Renormalization of Black Hole Entropy

    Kim, Sang Pyo; Kim, Sung Ku; Soh, Kwang-Sup; Yee, Jae Hyung

    1996-01-01

    We elaborate the renormalization process of entropy of a nonextremal and an extremal Reissner-Nordstr\\"{o}m black hole by using the Pauli-Villars regularization method, in which the regulator fields obey either the Bose-Einstein or Fermi-Dirac distribution depending on their spin-statistics. The black hole entropy involves only two renormalization constants. We also discuss the entropy and temperature of the extremal black hole.

  1. What is the entropy of the universe?

    Frampton, Paul; Stephen D. H. Hsu; Kephart, Thomas W.; Reeb, David

    2008-01-01

    Standard calculations suggest that the entropy of our universe is dominated by black holes, whose entropy is of order their area in Planck units, although they comprise only a tiny fraction of its total energy. Statistical entropy is the logarithm of the number of microstates consistent with the observed macroscopic properties of a system, hence a measure of uncertainty about its precise state. Therefore, assuming unitarity in black hole evaporation, the standard results suggest that the larg...

  2. Quantum aspects of black hole entropy

    Parthasarathi Majumdar

    2000-10-01

    This survey intends to cover recent approaches to black hole entropy which attempt to go beyond the standard semiclassical perspective. Quantum corrections to the semiclassical Bekenstein–Hawking area law for black hole entropy, obtained within the quantum geometry framework, are treated in some detail. Their ramification for the holographic entropy bound for bounded stationary spacetimes is discussed. Four dimensional supersymmetric extremal black holes in string-based = 2 supergravity are also discussed, albeit more briefly.

  3. Time Series Analysis Using Composite Multiscale Entropy

    Kung-Yen Lee; Chun-Chieh Wang; Shiou-Gwo Lin; Chiu-Wen Wu; Shuen-De Wu

    2013-01-01

    Multiscale entropy (MSE) was recently developed to evaluate the complexity of time series over different time scales. Although the MSE algorithm has been successfully applied in a number of different fields, it encounters a problem in that the statistical reliability of the sample entropy (SampEn) of a coarse-grained series is reduced as a time scale factor is increased. Therefore, in this paper, the concept of a composite multiscale entropy (CMSE) is introduced to overcome this difficulty. S...

  4. Entropy Man, Chapter 10 Renewable Resources

    John Bryant

    2015-01-01

    Chapter from a book entitled Entropy Man, which deals with the relationships between the disciplines of thermodynamics and economics. Chapter 1 illusrates how entropy impacts on the world in which we live. Chapter 2 is a short history of human development. Chapter 3 covers such concepts as the distribution of income, elasticity, the first and second laws of thermodynamics and utility. Chapter 4 explores production and consumption. Chapter 5 explores the relationship between economic entropy a...

  5. Entanglement entropy, conformal invariance and extrinsic geometry

    Solodukhin, Sergey N.

    2008-01-01

    We use the conformal invariance and the holographic correspondence to fully specify the dependence of entanglement entropy on the extrinsic geometry of the 2d surface $\\Sigma$ that separates two subsystems of quantum strongly coupled ${\\mathcal{N}}=4$ SU(N) superconformal gauge theory. We extend this result and calculate entanglement entropy of a generic 4d conformal field theory. As a byproduct, we obtain a closed-form expression for the entanglement entropy in flat space-time when $\\Sigma$ ...

  6. Holographic actions from black hole entropy

    Caravelli, Francesco; Modesto, Leonardo

    2010-01-01

    Using the Wald's relation between the Noether charge of diffeomorphisms and the entropy for a generic spacetime possessing a bifurcation surface, we introduce a method to obtain a family of higher order derivatives effective actions from the entropy of black holes. Our point of view is to consider fundamental the black hole entropy and the action an emerged object. We then specialize to a particular class of effective theories: the f(R) theories. We apply the idea, using a simple mind ansatz,...

  7. Computer software configuration management

    This report reviews the basic elements of software configuration management (SCM) as defined by military and industry standards. Several software configuration management standards are evaluated given the requirements of the nuclear industry. A survey is included of available automated tools for supporting SCM activities. Some information is given on the experience of establishing and using SCM plans of other organizations that manage critical software. The report concludes with recommendations of practices that would be most appropriate for the nuclear power industry in Canada

  8. Implementace procesu Configuration management

    Šipka, Ladislav

    2010-01-01

    The aim of this Thesis is to describe the practical implementation of process management in terms of Configuration Management process and subsequent implementation support tool, configuration and management database, focusing on describing and identifying particular steps needed for the definition and implementation process and the subsequent selection and implementation support tools. As an initial base of this Thesis I have used the practical experience of projects focusing on the definitio...

  9. Compact Torsatron configurations

    Low-aspect-ratio stellarator configurations can be realized by using torsatron winding. Plasmas with aspect ratios in the range of 3.5 to 5 can be confined by these Compact Torsatron configurations. Stable operation at high Β should be possible in these devices, if a vertical field coil system is adequately designed to avoid breaking of the magnetic surfaces at finite Β. 17 refs., 21 figs., 1 tab

  10. Configuration by Modularisation

    Riitahuhta, Asko; Andreasen, Mogens Myrup

    1998-01-01

    Globally operating companies have realized that locally customized products and services are today the prerequisite for the success. The capability or the paradigm to act locally in global markets is called Mass Customization [Victor 1997]. The prerequisite for Mass Customization is Configuration...... creation of a structured product family is presented and examples are given. The concepts of a novel Dynamic Modularisation method, Metrics for Modularisation and Design for Configurability are presented....

  11. Entropy landscape of solutions in the binary perceptron problem

    The statistical picture of the solution space for a binary perceptron is studied. The binary perceptron learns a random classification of input random patterns by a set of binary synaptic weights. The learning of this network is difficult especially when the pattern (constraint) density is close to the capacity, which is supposed to be intimately related to the structure of the solution space. The geometrical organization is elucidated by the entropy landscape from a reference configuration and of solution-pairs separated by a given Hamming distance in the solution space. We evaluate the entropy at the annealed level as well as replica symmetric level and the mean field result is confirmed by the numerical simulations on single instances using the proposed message passing algorithms. From the first landscape (a random configuration as a reference), we see clearly how the solution space shrinks as more constraints are added. From the second landscape of solution-pairs, we deduce the coexistence of clustering and freezing in the solution space. (paper)

  12. Entropy of images after wavelet transform

    TIAN Feng-chun; JI Yan-li; HAN Liang; KADRI Chaibou

    2008-01-01

    We studied the variation of image entropy before and after wavelet decomposition, the optimal number of wavelet decomposition layers, and the effect of wavelet bases and image frequency components on entropy. Numerous experiments were done on typical images to calculate (using Matlab) the entropy before and after wavelet transform. It was verified that, to obtain minimal entropy, a three-layer decomposition should be adopted rather than higher orders. The result achieved by using biorthogonal wavelet decomposition is better than that of the orthogonal wavelet decomposition. The results are not directly proportional to the vanishing moment, however.

  13. Entropy-Corrected Holographic Dark Energy

    Wei, Hao

    2009-01-01

    The holographic dark energy (HDE) is now an interesting candidate of dark energy, which has been studied extensively in the literature. In the derivation of HDE, the black hole entropy plays an important role. In fact, the entropy-area relation can be modified due to loop quantum gravity or other reasons. With the modified entropy-area relation, we propose the so-called ``entropy-corrected holographic dark energy'' (ECHDE) in the present work. We consider many aspects of ECHDE and find some i...

  14. Entropy and correlators in quantum field theory

    It is well known that loss of information about a system, for some observer, leads to an increase in entropy as perceived by this observer. We use this to propose an alternative approach to decoherence in quantum field theory in which the machinery of renormalisation can systematically be implemented: neglecting observationally inaccessible correlators will give rise to an increase in entropy of the system. As an example we calculate the entropy of a general Gaussian state and, assuming the observer's ability to probe this information experimentally, we also calculate the correction to the Gaussian entropy for two specific non-Gaussian states.

  15. Limitations on Dimensional Regularization in Renyi Entropy

    Bao, Ning

    2016-01-01

    Dimensional regularization is a common method used to regulate the UV divergence of field theoretic quantities. When it is used in the context of Renyi entropy, however, it is important to consider whether such a procedure eliminates the statistical interpretation thereof as a measure of entanglement of states living on a Hilbert space. We therefore examine the dimensionally regularized Renyi entropy of a 4d unitary CFT and show that it admits no underlying Hilbert space in the state-counting sense. This gives a concrete proof that dimensionally regularized Renyi entropy cannot always be obtained as a limit of the Renyi entropy of some finite-dimensional quantum system.

  16. Standard entropies of anhydrous metal selenates

    Data available in literature on the solubility products and solution heats of difficultly soluble selenates of Ag, Sr, Ba, Tl, and Pb are examined. Standard entropies of the above-mentioned compounds are calculated on the basis of thus selected and recent reference data. A linear correlation between standard entropies of these selenates and corresponding sulfates is found. Standard entropy of RaSeO4 (151.9 J/(mol K)) has been estimated making use of the correlation. Standard entropies of selenates of Cd, Zn, etc., have been estimated, as well. 25 refs.; 3 tabs

  17. Analysis of entropy of XY Spin Chain

    Franchini, F.; Its, A. R.; Jin, B. -Q.; Korepin, V. E.

    2006-01-01

    Entanglement in the ground state of the XY model on the infinite chain can be measured by the von Neumann entropy of a block of neighboring spins. We study a double scaling limit: the size of the block is much larger then 1 but much smaller then the length of the whole chain. In this limit, the entropy of the block approaches a constant. The limiting entropy is a function of the anisotropy and of the magnetic field. The entropy reaches minima at product states and increases boundlessly at pha...

  18. Unrestrained Expansion - A Source of Entropy

    Michaud, L. M.

    2005-12-01

    The paper examines the role of unrestrained expansion in atmospheric entropy production. Lack of mechanical equilibrium is shown to be a far larger producer of internally generated entropy than other internally generated entropy production processes. Isentropic expanders are used to explain atmospheric entropy production. Unrestrained expansion can account for the discrepancy between the energy that would be produced if the heat were carried by Carnot engines and the energy actually produced. Having an expander in more important to mechanical energy production than reducing friction losses. The method of analysis is also applicable to: the solar chimney and to the atmospheric vortex engine.

  19. Holographic actions from black hole entropy

    Caravelli, Francesco

    2010-01-01

    Using the Wald's relation between the Noether charge of diffeomorphisms and the entropy for a generic spacetime possessing a bifurcation surface, we introduce a method to obtain a family of higher order derivatives effective actions from the entropy of black holes. Our point of view is to consider fundamental the black hole entropy and the action an emerged object. We then specialize to a particular class of effective theories: the f(R) theories. We apply the idea, using a simple mind ansatz, to loop quantum gravity and to a general class of log-corrected entropy formulas.

  20. Bulk Entropy in Loop Quantum Gravity

    Livine, Etera R

    2007-01-01

    In the framework of loop quantum gravity (LQG), having quantum black holes in mind, we generalize the previous boundary state counting (gr-qc/0508085) to a full bulk state counting. After a suitable gauge fixing we are able to compute the bulk entropy of a bounded region (the "black hole") with fixed boundary. This allows us to study the relationship between the entropy and the boundary area in details and we identify a holographic regime of LQG where the leading order of the entropy scales with the area. We show that in this regime we can fine tune the factor between entropy and area without changing the Immirzi parameter.

  1. Information Entropy and Co-entropy of Crisp and Fuzzy granulations

    Bianucci, D; G. Cattaneo; Ciucci, DE

    2007-01-01

    The standard approach to information entropy applied to partitions of a universe is equivalently formulated as the entropy of the corresponding crisp identity resolutions, interpreted as crisp granulations, by the corresponding characteristic functionals. Moreover, in this crisp context the co–entropy notion is introduced. The extension to the case of fuzzy identity resolutions, a particular case of fuzzy granulation, is studied.

  2. Total Synthesis, Structure Revision, and Absolute Configuration of (−)-Brevenal

    Fuwa, Haruhiko; Ebine, Makoto; Bourdelais, Andrea J.; Baden, Daniel G.; Sasaki, Makoto

    2006-01-01

    Total synthesis of structure 1 originally proposed for brevenal, a nontoxic polycyclic ether natural product isolated from the Florida red tide dinoflagellate, Karenia brevis, was accomplished. The key features of the synthesis involved (i) convergent assembly of the pentacyclic polyether skeleton based on our developed Suzuki–Miyaura coupling chemistry and (ii) stereoselective construction of the multi-substituted (E,E)-dienal side chain by using copper(I) thiophen-2-carboxylate (CuTC)-promo...

  3. Determination of Absolute Configuration and Conformation of a Cyclic Dipeptide by NMR and Chiral Spectroscopic Methods

    Li, X.; Hopmann, K. H.; Hudecová, Jana; Isaksson, J.; Novotná, J.; Stensen, W.; Andrushchenko, Valery; Urbanová, M.; Svendsen, J. S.; Bouř, Petr; Ruud, K.

    2013-01-01

    Roč. 117, č. 8 (2013), s. 1721-1736. ISSN 1089-5639 R&D Projects: GA MŠk(CZ) LH11033; GA ČR GAP208/10/0559; GA ČR GAP208/11/0105 Grant ostatní: Rada Programu interní podpory projektů mezinárodní spolupráce AV ČR(CZ) M200550902 Institutional support: RVO:61388963 Keywords : density-functional theory * Raman optical activity * vibrational circular dichroism * residual dipolar couplings * crystal structure Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.775, year: 2013

  4. Absolute configuration of alpha- and beta-pinene in essential oils of two Nigella species

    Valterová, Irena; Klouček, P.; Kokoška, L.

    2009-01-01

    Roč. 75, č. 9 (2009), s. 1020-1020. ISSN 0032-0943. [International Congress and Annual Meeting of the Society for Medicinal Plant and Natural Product Research /57./. 16.08.2009-20.08.2009, Geneva] Institutional research plan: CEZ:AV0Z40550506 Keywords : Ranunculaceae * monoterpenes * Nigella nigella strum * Nigella arvensis Subject RIV: CC - Organic Chemistry

  5. Absolute Configuration of (-)-2-(4-Hydroxyphenyl)propionic acid: Stereochemistry of Soy Isoflavone Metabolism

    We have elucidated stereochemistry of (-)-2-HPPA. Determination of (R)-2-HPPA stereochemistry also provided stereochemical information of genistein metabolism. Considering the stereochemistry of 2-HPPA, the precursor of (R)-2-HPPA should be (R)-6'-hydroxy-O-DMA. Besides, it is clear that only (S)-dihydrogenistein is the possible precursor of (R)-6'-hydroxy-O-DMA. Therefore, genistein metabolism is suggested to follow the same stereochemical pathway like daidzein. Biotransformation of natural products by human intestinal bacteria has recently drawn a significant interest, due to the emerging strong correlation between gut microbiota and human health. Microbial metabolism of natural products by intestinal bacteria in small intestine and colon proceeds the phase I and II xenobiotic metabolisms in the liver. The metabolites were found to exhibit different biological activities, and affect human etiology. For example, many beneficial effects of dietary polyphenols in human health are attributed to the microbial metabolites produced by intestinal bacteria and the modulation of gut microbiota composition

  6. Defensive Spiroketals from Asceles glaber (Phasmatodea): Absolute Configuration and Effects on Ants and Mosquitoes

    Recently we discovered that the defensive spray of Asceles glaber, a stick insect native to Thailand, contains two spiroketals (major: 2(S)-(-)-(E,E)-2- methyl-1,7-dioxaspiro[5.5]undecane and minor: 2-ethyl-1,6-dioxaspiro[4.5]decane) and glucose. In this report we: 1) illustrate the identification o...

  7. Absolute Configuration of (-)-2-(4-Hydroxyphenyl)propionic acid: Stereochemistry of Soy Isoflavone Metabolism

    Kim, Mihyang; Han, Jaehong [Chung-Ang Univ., Seoul (Korea, Republic of)

    2014-06-15

    We have elucidated stereochemistry of (-)-2-HPPA. Determination of (R)-2-HPPA stereochemistry also provided stereochemical information of genistein metabolism. Considering the stereochemistry of 2-HPPA, the precursor of (R)-2-HPPA should be (R)-6'-hydroxy-O-DMA. Besides, it is clear that only (S)-dihydrogenistein is the possible precursor of (R)-6'-hydroxy-O-DMA. Therefore, genistein metabolism is suggested to follow the same stereochemical pathway like daidzein. Biotransformation of natural products by human intestinal bacteria has recently drawn a significant interest, due to the emerging strong correlation between gut microbiota and human health. Microbial metabolism of natural products by intestinal bacteria in small intestine and colon proceeds the phase I and II xenobiotic metabolisms in the liver. The metabolites were found to exhibit different biological activities, and affect human etiology. For example, many beneficial effects of dietary polyphenols in human health are attributed to the microbial metabolites produced by intestinal bacteria and the modulation of gut microbiota composition.

  8. Direct Determination of Absolute Configuration of Methyl-Substituted Phenyloxiranes: A Combined Experimental and Theoretical Approach

    Fristrup, Peter; Lassen, Peter Rygaard; Johannessen, Christian; Tanner, David Ackland; Norrby, Per-Ola; Jalkanen, Karl J.; Hemmingsen, Lars Bo Stegeager

    2006-01-01

    Three possible methyl-substituted phenyloxiranes have been synthesized in enantioenriched form (89-99% enantiomeric excess (ee)), and their vibrational absorption (VA) and vibrational circular dichroism (VCD) spectra have been recorded. The experimental spectra are compared to theoretical spectra...... by comparing experimental and theoretical spectra. In addition, we have been able to document the changes that occur both in structures and in the VA and VCD spectra due to substituent effects on the oxirane ring....

  9. Absolute Configuration of a Cyclic Dipeptide Reflected in Vibrational Optical Activity: Ab Initio and Experimental Investigation

    Li, X.; Hopmann, K. H.; Hudecová, Jana; Stensen, W.; Novotná, J.; Urbanová, M.; Svendsen, J. S.; Bouř, Petr; Ruud, K.

    2012-01-01

    Roč. 116, č. 10 (2012), s. 2554-2563. ISSN 1089-5639 R&D Projects: GA ČR GAP208/11/0105; GA MŠk(CZ) LH11033 Grant ostatní: AV ČR(CZ) M200550902 Institutional research plan: CEZ:AV0Z40550506 Keywords : cyclic dipeptide * vibrational otpical activity * density functional theory * dispersion * electronic circular dichroism Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.771, year: 2012

  10. Entropy Evolution and Uncertainty Estimation with Dynamical Systems

    X. San Liang

    2014-06-01

    Full Text Available This paper presents a comprehensive introduction and systematic derivation of the evolutionary equations for absolute entropy H and relative entropy D, some of which exist sporadically in the literature in different forms under different subjects, within the framework of dynamical systems. In general, both H and D are dissipated, and the dissipation bears a form reminiscent of the Fisher information; in the absence of stochasticity, dH/dt is connected to the rate of phase space expansion, and D stays invariant, i.e., the separation of two probability density functions is always conserved. These formulas are validated with linear systems, and put to application with the Lorenz system and a large-dimensional stochastic quasi-geostrophic flow problem. In the Lorenz case, H falls at a constant rate with time, implying that H will eventually become negative, a situation beyond the capability of the commonly used computational technique like coarse-graining and bin counting. For the stochastic flow problem, it is first reduced to a computationally tractable low-dimensional system, using a reduced model approach, and then handled through ensemble prediction. Both the Lorenz system and the stochastic flow system are examples of self-organization in the light of uncertainty reduction. The latter particularly shows that, sometimes stochasticity may actually enhance the self-organization process.

  11. Entanglement Entropy of Periodic Sublattices

    He, Temple; Vandoren, Stefan

    2016-01-01

    We study the entanglement entropy (EE) of Gaussian systems on a lattice with periodic boundary conditions, both in the vacuum and at nonzero temperatures. By restricting the reduced subsystem to periodic sublattices, we can compute the entanglement spectrum and EE exactly. We illustrate this for a free (1+1)-dimensional massive scalar field at a fixed temperature. Consistent with previous literature, we demonstrate that for a sufficiently large periodic sublattice the EE grows extensively, even in the vacuum. Furthermore, the analytic expression for the EE allows us probe its behavior both in the massless limit and in the continuum limit at any temperature.

  12. Urban transfer entropy across scales

    Murcio, Roberto; Gershenson, Carlos; Batty, Michael

    2015-01-01

    The morphology of urban agglomeration is studied here in the context of information exchange between different spatio-temporal scales. Cities are multidimensional non-linear phenomena, so understanding the relationships and connectivity between scales is important in determining how the interplay of local/regional urban policies may affect the distribution of urban settlements. In order to quantify these relationships, we follow an information theoretic approach using the concept of Transfer Entropy. Our analysis is based on a stochastic urban fractal model, which mimics urban growing settlements and migration waves. The results indicate how different policies could affect urban morphology in terms of the information generated across geographical scales.

  13. Disorder, entropy and harmonic functions

    Benjamini, Itai; Kozma, Gady; Yadin, Ariel

    2011-01-01

    We study harmonic functions on random environments with particular emphasis on the case of the infinite cluster of supercritical percolation on Z^d. We prove that the vector space of harmonic functions growing at most linearly is (d+1)-dimensional almost surely. In particular, there are no non-constant sublinear harmonic functions (thus implying the uniqueness of the corrector). A main ingredient of the proof is a quantitative, annealed version of the Avez entropy argument. This also provides bounds on the derivative of the heat kernel, simplifying and generalizing existing results. The argument applies to many different environments, even reversibility is not necessary.

  14. Rotating wave approximation and entropy

    This Letter studies composite quantum systems, like atom-cavity systems and coupled optical resonators, in the absence of external driving by resorting to methods from quantum field theory. Going beyond the rotating wave approximation, it is shown that the usually neglected counter-rotating part of the Hamiltonian relates to the entropy operator and generates an irreversible time evolution. The vacuum state of the system is shown to evolve into a generalized coherent state exhibiting entanglement of the modes in which the counter-rotating terms are expressed. Possible consequences at observational level in quantum optics experiments are currently under study.

  15. Relative crystal stability of AlxFeNiCrCo high entropy alloys from XRD analysis and formation energy calculation

    Electronic structure of AlxFeNiCrCo (x ≤ 3) high-entropy alloys (HEAs) was calculated using the Korringa–Kohn–Rostoker method combined with the coherent potential approximation (KKR-CPA). Total energy minimization was performed for bcc and fcc structures in each alloy composition. The phase stability was investigated from the total energy analysis, which finally allowed to determine the bcc–fcc phase transition for aluminium concentration close to 13 at%. It inspired us to synthesize AlxFeNiCrCo (0 ≤ x ≤ 1.5) using two procedures based on arc melting and sintering to allow for observation of entropy effect on phase formation. The XRD measurements evidently proved an occurence of fcc or bcc structure and their coexistence, depending on Al concentration and temperature. This finding remains in good agreement with theoretical results from free energy analysis, when accounting for KKR-CPA total energy as well as entropy terms. Furthermore, the structure preference, from fcc to bcc HEAs, with increasing Al content was discussed in view of total and atomic-dependent density of states computed in non-magnetic and paramagnetic-like states. - Highlights: • Crystal stability and electronic properties of high entropy alloys from KKR-CPA. • Influence of configuration entropy on phase preference (or coexistence). • Effect of configuration entropy on phase stability: arc melting viz. sintering. • Ab initio calculations (accounting for disorder) of phase preference in HEA

  16. A global algorithm for estimating Absolute Salinity

    T. J. McDougall

    2012-12-01

    Full Text Available The International Thermodynamic Equation of Seawater – 2010 has defined the thermodynamic properties of seawater in terms of a new salinity variable, Absolute Salinity, which takes into account the spatial variation of the composition of seawater. Absolute Salinity more accurately reflects the effects of the dissolved material in seawater on the thermodynamic properties (particularly density than does Practical Salinity.

    When a seawater sample has standard composition (i.e. the ratios of the constituents of sea salt are the same as those of surface water of the North Atlantic, Practical Salinity can be used to accurately evaluate the thermodynamic properties of seawater. When seawater is not of standard composition, Practical Salinity alone is not sufficient and the Absolute Salinity Anomaly needs to be estimated; this anomaly is as large as 0.025 g kg−1 in the northernmost North Pacific. Here we provide an algorithm for estimating Absolute Salinity Anomaly for any location (x, y, p in the world ocean.

    To develop this algorithm, we used the Absolute Salinity Anomaly that is found by comparing the density calculated from Practical Salinity to the density measured in the laboratory. These estimates of Absolute Salinity Anomaly however are limited to the number of available observations (namely 811. In order to provide a practical method that can be used at any location in the world ocean, we take advantage of approximate relationships between Absolute Salinity Anomaly and silicate concentrations (which are available globally.

  17. Time dependence of Hawking radiation entropy

    If a black hole starts in a pure quantum state and evaporates completely by a unitary process, the von Neumann entropy of the Hawking radiation initially increases and then decreases back to zero when the black hole has disappeared. Here numerical results are given for an approximation to the time dependence of the radiation entropy under an assumption of fast scrambling, for large nonrotating black holes that emit essentially only photons and gravitons. The maximum of the von Neumann entropy then occurs after about 53.81% of the evaporation time, when the black hole has lost about 40.25% of its original Bekenstein-Hawking (BH) entropy (an upper bound for its von Neumann entropy) and then has a BH entropy that equals the entropy in the radiation, which is about 59.75% of the original BH entropy 4πM02, or about 7.509M02 ≈ 6.268 × 1076(M0/Msun)2, using my 1976 calculations that the photon and graviton emission process into empty space gives about 1.4847 times the BH entropy loss of the black hole. Results are also given for black holes in initially impure states. If the black hole starts in a maximally mixed state, the von Neumann entropy of the Hawking radiation increases from zero up to a maximum of about 119.51% of the original BH entropy, or about 15.018M02 ≈ 1.254 × 1077(M0/Msun)2, and then decreases back down to 4πM02 = 1.049 × 1077(M0/Msun)2

  18. Assignment of absolute stereostructures through quantum mechanics electronic and vibrational circular dichroism calculations.

    Dai, Peng; Jiang, Nan; Tan, Ren-Xiang

    2016-01-01

    Elucidation of absolute configuration of chiral molecules including structurally complex natural products remains a challenging problem in organic chemistry. A reliable method for assigning the absolute stereostructure is to combine the experimental circular dichroism (CD) techniques such as electronic and vibrational CD (ECD and VCD), with quantum mechanics (QM) ECD and VCD calculations. The traditional QM methods as well as their continuing developments make them more applicable with accuracy. Taking some chiral natural products with diverse conformations as examples, this review describes the basic concepts and new developments of QM approaches for ECD and VCD calculations in solution and solid states. PMID:26880597

  19. Absolute rate of thermal desorption from first-principles simulation

    We present a technique for computing by first-principles simulation the absolute desorption rate γ of adsorbate molecules from a surface for any coverage and temperature. The technique is valid when the thermal equilibration rate on the surface is faster than γ, and is based on an exact expression for γ in terms of the difference of non-configurational chemical potentials of gas-phase and adsorbed molecules. This difference is expressed in terms of a potential of mean force, which is computed by constrained first-principles molecular dynamics. The technique is applied to D2O on the MgO(001) surface at low coverage, using the generalized gradient approximation (GGA) for exchange-correlation energy. Comparisons with experimental temperature programmed desorption data allow an assessment of the accuracy of the GGA for the adsorption of D2O on MgO(001). (letter to the editor)

  20. Exact Probability Distribution versus Entropy

    Kerstin Andersson

    2014-10-01

    Full Text Available The problem  addressed concerns the determination of the average number of successive attempts  of guessing  a word of a certain  length consisting of letters with given probabilities of occurrence. Both first- and second-order approximations  to a natural language are considered.  The guessing strategy used is guessing words in decreasing order of probability. When word and alphabet sizes are large, approximations  are necessary in order to estimate the number of guesses.  Several  kinds of approximations  are discussed demonstrating moderate requirements regarding both memory and central processing unit (CPU time. When considering realistic  sizes of alphabets and words (100, the number of guesses can be estimated  within minutes with reasonable accuracy (a few percent and may therefore constitute an alternative to, e.g., various entropy expressions.  For many probability  distributions,  the density of the logarithm of probability products is close to a normal distribution. For those cases, it is possible to derive an analytical expression for the average number of guesses. The proportion  of guesses needed on average compared to the total number  decreases almost exponentially with the word length. The leading term in an asymptotic  expansion can be used to estimate the number of guesses for large word lengths. Comparisons with analytical lower bounds and entropy expressions are also provided.

  1. Entanglement entropy and algebraic holography

    Kay, Bernard S

    2016-01-01

    In 2006, Ryu and Takayanagi (RT) pointed out that (with a suitable cutoff) the entanglement entropy between two complementary regions of an equal-time surface of a d+1-dimensional conformal field theory on the conformal boundary of AdS_{d+2} is, when the AdS radius is appropriately related to the parameters of the CFT, equal to 1/4G times the area of the d-dimensional minimal surface in the AdS bulk which has the junction of those complementary regions as its boundary, where G is the bulk Newton constant. We point out here that the RT-equality implies that, in the quantum theory on the bulk AdS background which is related to the boundary CFT according to Rehren's 1999 algebraic holography theorem, the entanglement entropy between two complementary bulk Rehren wedges is equal to 1/4G times the (suitably cut off) area of their shared ridge. (This follows because of the geometrical fact that, for complementary ball-shaped regions, the RT minimal surface is precisely the shared ridge of the complementary bulk Reh...

  2. Maximizing Entropy over Markov Processes

    Biondi, Fabrizio; Legay, Axel; Nielsen, Bo Friis; Wąsowski, Andrzej

    The channel capacity of a deterministic system with confidential data is an upper bound on the amount of bits of data an attacker can learn from the system. We encode all possible attacks to a system using a probabilistic specification, an Interval Markov Chain. Then the channel capacity computat......The channel capacity of a deterministic system with confidential data is an upper bound on the amount of bits of data an attacker can learn from the system. We encode all possible attacks to a system using a probabilistic specification, an Interval Markov Chain. Then the channel capacity...... a reward function, a polynomial algorithm to verify the existence of an system maximizing entropy among those respecting a specification, a procedure for the maximization of reward functions over Interval Markov Chains and its application to synthesize an implementation maximizing entropy. We show...... how to use Interval Markov Chains to model abstractions of deterministic systems with confidential data, and use the above results to compute their channel capacity. These results are a foundation for ongoing work on computing channel capacity for abstractions of programs derived from code....

  3. Configuration Control Office

    Beltramello, O

    In order to enable Technical Coordination to manage the detector configuration and to be aware of all changes in this configuration, a baseline of the envelopes has been created in April 2001. Fifteen system and multi-system envelope drawings have been approved and baselined. An EDMS file is associated with each approved envelope, which provides a list of the current known unsolved conflicts related to the envelope and a list of remaining drawing inconsistencies to be corrected. The envelope status with the associated drawings and EDMS file can be found on the web at this adress: http://atlasinfo.cern.ch/Atlas/TCOORD/Activities/Installation/Configuration/ Any modification in the baseline has to be requested via the Engineering Change Requests. The procedure can be found under: http://atlasinfo.cern.ch/Atlas/TCOORD/Activities/TcOffice/Quality/ECR/ TC will review all the systems envelopes in the near future and manage conflict resolution with the collaboration of the systems.

  4. Entropy Generation in a Chemical Reaction

    Miranda, E. N.

    2010-01-01

    Entropy generation in a chemical reaction is analysed without using the general formalism of non-equilibrium thermodynamics at a level adequate for advanced undergraduates. In a first approach to the problem, the phenomenological kinetic equation of an elementary first-order reaction is used to show that entropy production is always positive. A…

  5. Some relations between entropy and approximation numbers

    郑志明

    1999-01-01

    A general result is obtained which relates the entropy numbers of compact maps on Hilbert space to its approximation numbers. Compared with previous works in this area, it is particularly convenient for dealing with the cases where the approximation numbers decay rapidly. A nice estimation between entropy and approximation numbers for noncompact maps is given.

  6. Generalized Additive Entropies in Fully Developed Turbulence

    Ilg, P; Gorban, A N; Gorban, Alexander N.

    2003-01-01

    We explore a possible application of the additive generalization of the Boltzmann-Gibbs-Shannon entropy proposed in [A.N. Gorban, I.V. Karlin, Phys. Rev. E, 67:016104 (2003)] to fully developed turbulence. The predicted probability distribution functions are compared with those obtained from Tsallis' entropy and with experimental data. Consequences of the existence of hidden subsystems are illustrated.

  7. Fractal Statistics and Quantum Black Hole Entropy

    da Cruz, Wellington

    2000-01-01

    Simple considerations about the fractal characteristic of the quantum-mechanical path give us the opportunity to derive the quantum black hole entropy in connection with the concept of fractal statistics. We show the geometrical origin of the numerical factor of four of the quantum black hole entropy expression and the statistics weight appears as a counting of the quanta of geometry.

  8. Chemical Engineering Students' Ideas of Entropy

    Haglund, Jesper; Andersson, Staffan; Elmgren, Maja

    2015-01-01

    Thermodynamics, and in particular entropy, has been found to be challenging for students, not least due to its abstract character. Comparisons with more familiar and concrete domains, by means of analogy and metaphor, are commonly used in thermodynamics teaching, in particular the metaphor "entropy is disorder." However, this particular…

  9. Entropy estimation of very short symbolic sequences

    Lesne, Annick; Blanc, Jean-Luc; Pezard, Laurent

    2009-04-01

    While entropy per unit time is a meaningful index to quantify the dynamic features of experimental time series, its estimation is often hampered in practice by the finite length of the data. We here investigate the performance of entropy estimation procedures, relying either on block entropies or Lempel-Ziv complexity, when only very short symbolic sequences are available. Heuristic analytical arguments point at the influence of temporal correlations on the bias and statistical fluctuations, and put forward a reduced effective sequence length suitable for error estimation. Numerical studies are conducted using, as benchmarks, the wealth of different dynamic regimes generated by the family of logistic maps and stochastic evolutions generated by a Markov chain of tunable correlation time. Practical guidelines and validity criteria are proposed. For instance, block entropy leads to a dramatic overestimation for sequences of low entropy, whereas it outperforms Lempel-Ziv complexity at high entropy. As a general result, the quality of entropy estimation is sensitive to the sequence temporal correlation hence self-consistently depends on the entropy value itself, thus promoting a two-step procedure. Lempel-Ziv complexity is to be preferred in the first step and remains the best estimator for highly correlated sequences.

  10. Energy and entropy of relativistic diffusing particles

    Haba, Z

    2010-01-01

    We discuss energy-momentum tensor and the second law of thermodynamics for a system of relativistic diffusing particles. We calculate the energy and entropy flow in this system. We obtain an exact time dependence of energy, entropy and free energy of a beam of photons in a reservoir of a fixed temperature.

  11. Ehrenfest's Lottery--Time and Entropy Maximization

    Ashbaugh, Henry S.

    2010-01-01

    Successful teaching of the Second Law of Thermodynamics suffers from limited simple examples linking equilibrium to entropy maximization. I describe a thought experiment connecting entropy to a lottery that mixes marbles amongst a collection of urns. This mixing obeys diffusion-like dynamics. Equilibrium is achieved when the marble distribution is…

  12. Descending entropy in expanding the universe

    Portnov, Yuriy A.

    2015-11-01

    Inter-relation between 1-form of nonmetricity and change of entropy in the course of time is considered in the study. It is shown that change of entropy in expanding universe will be always negative. The obtained result contravenes the second law of thermodynamics, however it explains available ordered macrostructures in the universe.

  13. The improvement of Clausius entropy and its application in entropy analysis

    WU Jing; GUO ZengYuan

    2008-01-01

    The defects of Cleusius entropy which Include s premise of reversible process and a process quantlty of heat in Its definition are discussed in this paper. Moreover, the heat temperature quotient under reversible conditions, i.e. (δQ/T)rev, is essentially a process quantity although it is numerically equal to the entropy change. The sum of internal energy temperature quotient and work temperature quotient is defined as the improved form of Clausius entropy and it can be further proved to be a state funcllon. Unlike Clausius entropy, the improved deflnltion consists of system properties wlthout premise just like other state functions, for example, pressure p and enthalpy h, etc. it is unnecessary to invent reversible paths when calculating entropy change for irreversible processes based on the improved form of entropy since it is independent of process. Furthermore, entropy balance equations for internally and externally irreversible processes are deduced respectively based on the concepts of thermal reservoir entropy transfer and system entropy transfer. Finally, some examples are presented to show that the improved deflnitlon of Clausius entropy provides a clear concept as well as a convenient method for en-tropy change calculation.

  14. Entropy as an adiabatic invariant

    Montakhab, Afshin; Tavassoli, Arash

    2016-01-01

    This short article was submitted to Nature Physics as a Correspondence. The intention was to provide a brief albeit significant criticism of the work of J. Dunkel and S. Hilbert, \\textit{Consistent Thermostatistics Forbids Negative Absolute Temperatures}, Nature Physics \\textbf{10}, (2014). The respected editor decided not to publish the Correspondence. We have therefore decided to submit the paper to arXiv. Comments/criticisms are welcomed, particularly from the authors of the mentioned paper.

  15. Control Volume Analysis, Entropy Balance and the Entropy Production in Flow Systems

    Niven, Robert K

    2014-01-01

    This chapter concerns "control volume analysis", the standard engineering tool for the analysis of flow systems, and its application to entropy balance calculations. Firstly, the principles of control volume analysis are enunciated and applied to flows of conserved quantities (e.g. mass, momentum, energy) through a control volume, giving integral (Reynolds transport theorem) and differential forms of the conservation equations. Several definitions of steady state are discussed. The concept of "entropy" is then established using Jaynes' maximum entropy method, both in general and in equilibrium thermodynamics. The thermodynamic entropy then gives the "entropy production" concept. Equations for the entropy production are then derived for simple, integral and infinitesimal flow systems. Some technical aspects are examined, including discrete and continuum representations of volume elements, the effect of radiation, and the analysis of systems subdivided into compartments. A Reynolds decomposition of the entropy ...

  16. Analysis of complex time series using refined composite multiscale entropy

    Wu, Shuen-De; Wu, Chiu-Wen [Department of Mechatronic Technology, National Taiwan Normal University, Taipei 10610, Taiwan (China); Lin, Shiou-Gwo [Department of Communications, Navigation and Control Engineering, National Taiwan Ocean University, Keelung 20224, Taiwan (China); Lee, Kung-Yen [Department of Engineering Science and Ocean Engineering, National Taiwan University, Taipei 10617, Taiwan (China); Peng, Chung-Kang [College of Health Sciences and Technology, National Central University, Chung-Li 32001, Taiwan (China); Division of Interdisciplinary Medicine and Biotechnology, Beth Israel Deaconess Medical Center/Harvard Medical School, Boston (United States)

    2014-04-01

    Multiscale entropy (MSE) is an effective algorithm for measuring the complexity of a time series that has been applied in many fields successfully. However, MSE may yield an inaccurate estimation of entropy or induce undefined entropy because the coarse-graining procedure reduces the length of a time series considerably at large scales. Composite multiscale entropy (CMSE) was recently proposed to improve the accuracy of MSE, but it does not resolve undefined entropy. Here we propose a refined composite multiscale entropy (RCMSE) to improve CMSE. For short time series analyses, we demonstrate that RCMSE increases the accuracy of entropy estimation and reduces the probability of inducing undefined entropy.

  17. What is the entropy of the universe?

    Frampton, Paul H [Department of Physics and Astronomy, UNC-Chapel Hill, NC 27599 (United States); Hsu, Stephen D H; Reeb, David [Institute of Theoretical Science, University of Oregon, Eugene, OR 97403 (United States); Kephart, Thomas W, E-mail: frampton@physics.unc.ed, E-mail: hsu@uoregon.ed, E-mail: tom.kephart@gmail.co, E-mail: dreeb@uoregon.ed [Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37235 (United States)

    2009-07-21

    Standard calculations suggest that the entropy of our universe is dominated by black holes, whose entropy is of order their area in Planck units, although they comprise only a tiny fraction of its total energy. Statistical entropy is the logarithm of the number of microstates consistent with the observed macroscopic properties of a system, hence a measure of uncertainty about its precise state. Therefore, assuming unitarity in black hole evaporation, the standard results suggest that the largest uncertainty in the future quantum state of the universe is due to the Hawking radiation from evaporating black holes. However, the entropy of the matter precursors to astrophysical black holes is enormously less than that given by area entropy. If unitarity relates the future radiation states to the black hole precursor states, then the standard results are highly misleading, at least for an observer that can differentiate the individual states of the Hawking radiation.

  18. What is the entropy of the universe?

    Standard calculations suggest that the entropy of our universe is dominated by black holes, whose entropy is of order their area in Planck units, although they comprise only a tiny fraction of its total energy. Statistical entropy is the logarithm of the number of microstates consistent with the observed macroscopic properties of a system, hence a measure of uncertainty about its precise state. Therefore, assuming unitarity in black hole evaporation, the standard results suggest that the largest uncertainty in the future quantum state of the universe is due to the Hawking radiation from evaporating black holes. However, the entropy of the matter precursors to astrophysical black holes is enormously less than that given by area entropy. If unitarity relates the future radiation states to the black hole precursor states, then the standard results are highly misleading, at least for an observer that can differentiate the individual states of the Hawking radiation.

  19. Entanglement entropy in top-down models

    Jones, Peter A R

    2016-01-01

    We explore holographic entanglement entropy in ten-dimensional supergravity solutions. It has been proposed that entanglement entropy can be computed in such top-down models using minimal surfaces which asymptotically wrap the compact part of the geometry. We show explicitly in a wide range of examples that the holographic entanglement entropy thus computed agrees with the entanglement entropy computed using the Ryu-Takayanagi formula from the lower-dimensional Einstein metric obtained from reduction over the compact space. Our examples include not only consistent truncations but also cases in which no consistent truncation exists and Kaluza-Klein holography is used to identify the lower-dimensional Einstein metric. We then give a general proof, based on the Lewkowycz-Maldacena approach, of the top-down entanglement entropy formula.

  20. The role of entropy in magnetotail dynamics

    Birn, Joachim [Los Alamos National Laboratory; Zaharia, Sorin [Los Alamos National Laboratory; Hesse, Michael [NASA/GSFC; Schindler, K [INSTITUT FOR THEORETISCHE

    2008-01-01

    The role of entropy conservation and loss in magnetospheric dynamics, particularly in relation to substorm phases, is discussed on the basis of MHD theory and simulations, using comparisons with PIC simulations for validation. Entropy conservation appears to be a crucial element leading to the formation of thin embedded current sheets in the late substorm growth phase and the potential loss of equilibrium. Entropy loss (in the form of plasmoids) is essential in the earthward transport of flux tubes (bubbles, bursty bulk flows). Entropy loss also changes the tail stability properties and may render ballooning modes unstable and thus contribute to cross-tail variability. We illustrate these effects through results from theory and simulations. Entropy conservation also governs the accessibility of final states of evolution and the amount of energy that may be released.