WorldWideScience

Sample records for abscisic acid effects

  1. Effects of high night temperature and abscisic acid (ABA) on rice (Oryza sativa L.) physiology

    High night temperature (HNT) is known to decrease rice yields. The impact of abscisic acid (ABA) on plants has been the subject of many studies. However, little or no work has been carried out on rice response to ABA under HNT-stress conditions. This study determined the effects of ABA on rice leaf ...

  2. Effects of Abscisic Acid, Gibberellin, Ethylene and Their Interactions on Production of Phenolic Acids in Salvia miltiorrhiza Bunge Hairy Roots

    Liang, Zongsuo; Ma, Yini; Xu, Tao; Cui, Beimi; Liu, Yan; Guo, Zhixin; Yang, Dongfeng

    2013-01-01

    Salvia miltiorrhiza is one of the most important traditional Chinese medicinal plants because of its excellent performance in treating coronary heart disease. Phenolic acids mainly including caffeic acid, rosmarinic acid and salvianolic acid B are a group of active ingredients in S. miltiorrhiza. Abscisic acid (ABA), gibberellin (GA) and ethylene are three important phytohormones. In this study, effects of the three phytohormones and their interactions on phenolic production in S. miltiorrhiz...

  3. Effects of mechanical stress or abscisic acid on growth, water status and leaf abscisic acid content of eggplant seedlings

    Latimer, J. G.; Mitchell, C. A.

    1988-01-01

    Container-grown eggplant (Solanum melongena L. var esculentum Nees. 'Burpee's Black Beauty') seedlings were conditioned with brief, periodic mechanical stress or abscisic acid (ABA) in a greenhouse prior to outdoor exposure. Mechanical stress consisted of seismic (shaking) or thigmic (stem flexing) treatment. Exogenous ABA (10(-3) or 10(-4)M) was applied as a soil drench 3 days prior to outdoor transfer. During conditioning, only thigmic stress reduced stem elongation and only 10(-3) M ABA reduced relative growth rate (RGR). Both conditioning treatments increased leaf specific chlorophyll content, but mechanical stress did not affect leaf ABA content. Outdoor exposure of unconditioned eggplant seedlings decreased RGR and leaf-specific chlorophyll content, but tended to increase leaf ABA content relative to that of plants maintained in the greenhouse. Conditioning did not affect RGR of plants subsequently transferred outdoors, but did reduce stem growth. Seismic stress applied in the greenhouse reduced dry weight gain by plants subsequently transferred outdoors. Mechanical stress treatments increased leaf water potential by 18-25% relative to that of untreated plants.

  4. Effect of drought and abscisic acid application on the osmotic adjustment of four wheat cultivars

    The accumulation of osmolytes in leaf tissues and the abscisic acid-induced stomatal closure are well-recognized mechanisms associated with drought tolerance in crop plants. We determine the response in terms of osmotic potential and the contents of leaf proline, glycine betaine and soluble sugar at booting and grain filling stages of four wheat (Triticum aestivum L.) cultivars to drought and exogenously applied abscisic acid (ABA) in a pot study. Leaf sample were collected 3, 6 and 9 days after drought induction and at 48 and 72 h of re-watering (recovery). Marked decreases in osmotic potential associated with the accumulation of proline, glycine betaine and soluble sugars occurred under conditions of drought stress Accession 011320 was most sensitive to drought and showed the largest decrease in osmotic potential and least accumulation of proline, sugar and glycine betaine The inhibitory effects of drought stress were ameliorated by exogenous application of ABA. This ameliorating effect was more pronounced at the booting than at grain filling stage particularly in the sensitive accession 011320. Upon rewatering the recovery from drought stress was found to be greater in case of abscisic acid application. The leaf praline content is seen to be a suitable indicator for selecting drought-tolerant genotypes. (author)

  5. EFFECT OF EXOGENOUS ABSCISIC ACID ON GROWTH AND BIOCHEMICAL CHANGES IN THE HALOPHYTE SUAEDA MARITIMA

    Anbarasi G.

    2015-04-01

    Full Text Available Different types of phytohormones are being extensively used to alleviate the adverse effect of salinity stress on plant growth. Among those, Abscisic acid (ABA is a plant stress hormone and one of the most important signaling molecules in plants. Drought and salinity activate De-novo abscisic acid synthesis prevent further water loss by evaporation through stomata, mediated by changes in the guard cell turgor pressure. Under osmotic stress abscisic acid induce the accumulation of protein involved in the biosynthesis of osmolites which increasing the stress tolerance of plant. In addition, exogenous application of ABA enhances the tolerance of plants or plant cells to cold, heat, drought, anoxia and heavy metal stresses. This study was carried out to study the exogenous abscisic (ABA acid induced regulatory role on the growth, water content, protein content, chlorophyll content, osmolyte accumulation and protein profiling through SDS PAGE in a halophyte, Suaeda maritima. The osmolyte accumulation of proline and glycine betaine was found to be more in 50 µM ABA concentrations. The protein profiling through SDS PAGE revealed that ̴ 66KDa proteins was not expressed in the control plant and in 10μM ABA treated plants. Interestingly, the ABA treatment induced a new protein of 14.2KDa in 10μM concentration. The ABA treated plants with concentrations 50μM, 100μM and 150μM showed changes in the expression of protein in abundance than the control and 10μM ABA treated plants. The findings in this study indicate that among all the concentrations, 50μM ABA concentration treated plants exhibited higher growth rate.

  6. Exogenous Abscisic Acid and Gibberellic Acid Elicit Opposing Effects on Fusarium graminearum Infection in Wheat.

    Buhrow, Leann M; Cram, Dustin; Tulpan, Dan; Foroud, Nora A; Loewen, Michele C

    2016-09-01

    Although the roles of salicylate (SA) and jasmonic acid (JA) have been well-characterized in Fusarium head blight (FHB)-infected cereals, the roles of other phytohormones remain more ambiguous. Here, the association between an array of phytohormones and FHB pathogenesis in wheat is investigated. Comprehensive profiling of endogenous hormones demonstrated altered cytokinin, gibberellic acid (GA), and JA metabolism in a FHB-resistant cultivar, whereas challenge by Fusarium graminearum increased abscisic acid (ABA), JA, and SA in both FHB-susceptible and -resistant cultivars. Subsequent investigation of ABA or GA coapplication with fungal challenge increased and decreased FHB spread, respectively. These phytohormones-induced effects may be attributed to alteration of the F. graminearum transcriptome because ABA promoted expression of early-infection genes, including hydrolases and cytoskeletal reorganization genes, while GA suppressed nitrogen metabolic gene expression. Neither ABA nor GA elicited significant effects on F. graminearum fungal growth or sporulation in axenic conditions, nor do these phytohormones affect trichothecene gene expression, deoxynivalenol mycotoxin accumulation, or SA/JA biosynthesis in F. graminearum-challenged wheat spikes. Finally, the combined application of GA and paclobutrazol, a Fusarium fungicide, provided additive effects on reducing FHB severity, highlighting the potential for combining fungicidal agents with select phytohormone-related treatments for management of FHB infection in wheat. PMID:27135677

  7. Abscisic Acid Signaling in Plants

    Vaňková, Radomíra

    NEW YORK : Springer, 2012 - (Ahmad, P.; Prasad, M.), s. 359-368 ISBN 978-1-4614-0633-4 R&D Projects: GA ČR GA522/09/2058 Institutional research plan: CEZ:AV0Z50380511 Keywords : PP2C * PYR/PYL/RCAR proteins * Abscisic acid Subject RIV: ED - Physiology

  8. Effect of abscisic acid and blue radiation on photosynthesis and growth of pea plants

    The effect of abscisic acid (ABA) on the net photosynthetic rate (PN), the ribulose 1,5-bisphosphate carboxylase (RuBPC) and the phosphoenolpyruvate carboxylase (PEPC) activities, the chlorophyll (Chl) content and growth of pea plants (Pisum sativum) grown under ''white'' (WR) or blue radiation (BR), were investigated. BR as compared to WR enhanced PN, the activities of examined enzymes, and Chl content. In spite of higher PN of the plants grown under BR, dry matter of their shoots was lower in comparison with WR. ABA-treated plants grown under both WR and BR showed reduction in PN. ABA had no effect on the activities of both RuBPC and PEPC and the Chl content. Independent on the radiation quality, ABA reduced stem elongation, but did not affect the biomass of whole shoots

  9. Study of endogenic abscisic acids and cytokinin content in soybean crops of variable salt sensitivity as well as the effect of exogenically applied abscisic acid on Cl/sup -/ translocation. [in German

    Roeb, G.

    1981-05-01

    A study of the phytohormones abscisic acid and cytokinin with respect to plant salt stress and its relationship to genetic control over endogen content. An analysis is made of the acid cytokinin content, and an investigation is made of the influence exerted by exogenic applied synthetic abscisic acid on Cl/sup -/ uptake and accumulation. 275 references, 14 figures, 11 tables.

  10. Effects of abscisic acid and xanthoxin on elongation and gravitropism in primary roots of Zea mays

    Lee, J. S.; Hasenstein, K. H.; Mulkey, T. J.; Yang, R. L.; Evans, M. L.

    1990-01-01

    We examined the involvement of abscisic acid (ABA) and xanthoxin (Xan) in maize root gravitropism by (1) testing the ability of ABA to allow positive gravitropism in dark-grown seedlings of the maize cultivar LG11, a cultivar known to require light for positive gravitropism of the primary root, (2) comparing curvature in roots in which half of the cap had been excised and replaced with agar containing either ABA or indole-3-acetic acid (IAA), (3) measuring gravitropism in roots of seedlings submerged in oxygenated solutions of ABA or IAA and (4) testing the effect of Xan on root elongation. Using a variety of methods of applying ABA to the root, we found that ABA did not cause horizontally-oriented primary roots of dark-grown seedlings to become positively gravitropic. Replacing half of the root cap of vertically oriented roots with an agar block containing ABA had little or no effect on curvature relative to that of controls in which the half cap was replaced by a plain agar block. Replacement of the removed half cap with IAA either canceled or reversed the curvature displayed by controls. When light-grown seedlings were submerged in ABA they responded strongly to gravistimulation while those in IAA did not. Xan (up to 0.1 mM) did not affect root elongation. The results indicate that ABA is not a likely mediator of root gravitropism and that the putative ABA precursor, Xan, lacks the appropriate growth-inhibiting properties to serve as a mediator of root gravitropism.

  11. Alleviation of Osmotic Stress Effects by Exogenous Application of Salicylic or Abscisic Acid on Wheat Seedlings

    Katarzyna Cyganek

    2013-06-01

    Full Text Available The aim of the study was to assess the role of salicylic acid (SA and abscisic acid (ABA in osmotic stress tolerance of wheat seedlings. This was accomplished by determining the impact of the acids applied exogenously on seedlings grown under osmotic stress in hydroponics. The investigation was unique in its comprehensiveness, examining changes under osmotic stress and other conditions, and testing a number of parameters simultaneously. In both drought susceptible (SQ1 and drought resistant (CS wheat cultivars, significant physiological and biochemical changes were observed upon the addition of SA (0.05 mM or ABA (0.1 μM to solutions containing half-strength Hoagland medium and PEG 6000 (−0.75 MPa. The most noticeable result of supplementing SA or ABA to the medium (PEG + SA and PEG + ABA was a decrease in the length of leaves and roots in both cultivars. While PEG treatment reduced gas exchange parameters, chlorophyll content in CS, and osmotic potential, and conversely, increased lipid peroxidation, soluble carbohydrates in SQ1, proline content in both cultivars and total antioxidants activity in SQ1, PEG + SA or PEG + ABA did not change the values of these parameters. Furthermore, PEG caused a two-fold increase of endogenous ABA content in SQ1 and a four-fold increase in CS. PEG + ABA increased endogenous ABA only in SQ1, whereas PEG + SA caused a greater increase of ABA content in both cultivars compared to PEG. In PEG-treated plants growing until the harvest, a greater decrease of yield components was observed in SQ1 than in CS. PEG + SA, and particularly PEG + ABA, caused a greater increase of these yield parameters in CS compared to SQ1. In conclusion, SA and ABA ameliorate, particularly in the tolerant wheat cultivar, the harmful effects and after effects of osmotic stress induced by PEG in hydroponics through better osmotic adjustment achieved by an increase in proline and carbohydrate content as well as by an increase in antioxidant

  12. Effect of abscisic acid, Paclobutrazol and Salicylic acid on the growth and Pigment variation in Solanum Trilobatum (l

    D. Nivedithadevi

    2012-09-01

    Full Text Available Solanum trilobatum (Family: Solanaceae is one of the common Indian medicinal plants and it has been used in traditional medicine for many centuries. This plant is a thorny creeper with bluish violet flower, more commonly available in southern India has been used traditional in Siddha system of medicines to treat various diseases. The roots, leaves, berries and flowers are used for cough. The decoction of entire Solanum trilobatum plant is used to treat acute and chronic bronchitis. It has been widely used to treat respiratory disorders. This plant is commonly used to treat asthma, cough, dysonoea, chronic febrile infections and difficult parturition. The constituents of this plant include sobatum, -solamarine, solanine, solasodine, glycoalkaloid, diosogenin and tomatidine. Plant growth regulators are substance that influences physiological processes of plants at very low concentration. Abscisic acid is a many important plant growth development processed. Paclobutrazol is a triazolic group of fungicide which has plant growth regulating properties. Salicylic acid is phenolic phytohormones and is formed in plants with role of plant growth and development. The given treatments were started at 70th day followed by 80th, 90th and 100th days. The groups were treated with respect growth hormones by spraying method. After 10th day, the plants were harvested for further analysis. On over all physical assessment plants treated with paclobutrazol were found to have more whole plant fresh weight, dry weight, root length and stem length followed by abscisic acid and salicylic acid. After the physical evaluation, the leaves were collected from each group for pigment analysis. Chlorophyll, carotenoid, anthocyanin and xanthophylls pigment contents were increased in abscisic acid followed by paclobutrazol and salicylic acid.

  13. Comparative effects of auxin and abscisic acid on growth, hydrogen ion efflux and gravitropism in primary roots of maize

    Evans, M. L.; Mulkey, T. J.

    1984-01-01

    In order to test the idea that auxin action on root growth may be mediated by H(+) movement, the correlation of auxin action on growth and H(+) movement in roots was examined along with changes in H(+) efflux patterns associated with the asymmetric growth which occurs during gravitropism. The effects of indoleacetic acid (IAA) and abscisic acid (AbA) on growth, H(+) secretion, and gravitropism in roots were compared. Results show a close correlation existent between H(+) efflux and growth in maize roots. In intact roots there is strong H(+) efflux from the elongation zone. Growth-promoting concentrations of IAA stimulate H(+) efflux. During gravitropism the H(+) efflux from the elongation zone becomes asymmetric; the evidence indicates that auxin redistribution contributes to the development of acid efflux asymmetry. That AbA stimulates root growth is reflected in its ability to stimulate H(+) efflux from apical root segments.

  14. Transcriptomic insights into antagonistic effects of gibberellin and abscisic acid on petal growth in Gerbera hybrida.

    Li, Lingfei; Zhang, Wenbin; Zhang, Lili; Li, Na; Peng, Jianzong; Wang, Yaqin; Zhong, Chunmei; Yang, Yuping; Sun, Shulan; Liang, Shan; Wang, Xiaojing

    2015-01-01

    Petal growth is central to floral morphogenesis, but the underlying genetic basis of petal growth regulation is yet to be elucidated. In this study, we found that the basal region of the ray floret petals of Gerbera hybrida was the most sensitive to treatment with the phytohormones gibberellin (GA) and abscisic acid (ABA), which regulate cell expansion during petal growth in an antagonistic manner. To screen for differentially expressed genes (DEGs) and key regulators with potentially important roles in petal growth regulation by GA or/and ABA, the RNA-seq technique was employed. Differences in global transcription in petals were observed in response to GA and ABA and target genes antagonistically regulated by the two hormones were identified. Moreover, we also identified the pathways associated with the regulation of petal growth after application of either GA or ABA. Genes relating to the antagonistic GA and ABA regulation of petal growth showed distinct patterns, with genes encoding transcription factors (TFs) being active during the early stage (2 h) of treatment, while genes from the "apoptosis" and "cell wall organization" categories were expressed at later stages (12 h). In summary, we present the first study of global expression patterns of hormone-regulated transcripts in G. hybrida petals; this dataset will be instrumental in revealing the genetic networks that govern petal morphogenesis and provides a new theoretical basis and novel gene resources for ornamental plant breeding. PMID:25852718

  15. Effects of Formulated Fertilizer Synergist on Abscisic Acid Accumulation, Proline Content and Photosynthetic Characteristics of Rice under Drought

    WANG Shao-xian; XIA Shi-tou; PENG Ke-qin; KUANG Feng-chun; CAO Yong; XIAO Lang-tao

    2007-01-01

    To investigate the effects of formulated fertilizer synergist on the drought tolerance in rice, pot experiment was conducted to analyze the photosynthetic characteristics and the accumulation of abscisic acid (ABA) and proline in middle-season rice variety Peiliangyou 93. The synergist could improve the net photosynthetic rate, and coordination between the water loss and the CO2 absorption as well as reduce the harmful effect on photosynthetic process under drought conditions. Under drought, the ABA accumulated massively both in roots and leaves, while the ABA content in roots was far higher than that in leaves. The results indicate that synergist could increase the ABA accumulation, but reduce the proline accumulation in rice plant under drought.

  16. Effect of exogenous abscisic acid on stomatal characteristics during acclimation of in vitro-grown tobacco (Nicotiana tabacum L.) plants

    Tichá, I.; Pospíšilová, Jana

    2008-01-01

    Roč. 133, - (2008), P09-131. ISSN 0031-9317 R&D Projects: GA ČR GA522/07/0227 Institutional research plan: CEZ:AV0Z50380511 Keywords : fluorescence * abscisic acid * antioxidative enzymes Subject RIV: ED - Physiology Impact factor: 2.334, year: 2008

  17. Roles of Abscisic Acid in Fruit Ripening

    Sutthiwal SETHA

    2012-12-01

    Full Text Available Abscisic acid (ABA is a plant growth regulator, and it plays a variety of important roles throughout a plant’s life cycle. These roles include seed development and dormancy, plant response to environmental stresses, and fruit ripening. ABA concentration is very low in unripe fruit, but it increases as a fruit ripens, so it is therefore believed that ABA plays an important role in regulating the rate of fruit ripening. This article reviews the effect of ABA on ripening and quality of climacteric and non-climacteric fruits. The effects of ABA application on fruit ripening are subsequently discussed. Moreover, it is found that during fruit ripening, ABA also contributes to other functions, such as ethylene and respiratory metabolism, pigment and color changes, phenolic metabolism and nutritional contents, cell wall metabolism and fruit softening, and sugar and acid metabolism. These processes are all discussed as part of the relationship between ABA and fruit ripening, and the possibilities for its commercial application and use are highlighted.

  18. Ex vitro transfer and abscisic acid

    Pospíšilová, Jana; Synková, Helena; Haisel, Daniel; Vágner, Martin; Baťková, Petra

    Faro, 2007. s. 33-33. [International Symposium on Acclimatization and Establishment of Micropropagated Plants /3./. 12.09.2007-15.09.2007, University of Algarve] R&D Projects: GA ČR GA522/07/0227 Institutional research plan: CEZ:AV0Z50380511 Source of funding: V - iné verejné zdroje Keywords : abscisic acid * antioxidants * ex vitro transfer * in vitro growth * stomata * photoinhibition * xanthophyll cycl Subject RIV: ED - Physiology

  19. Effects of Exterior Abscisic Acid on Calcium Distribution of Mesophyll Cells and Calcium Concentration of Guard Cells in Maize Seedlings

    GUO Xiu-lin; MA Yuan-yuan; LIU Zi-hui; LIU Bin-hui

    2008-01-01

    In this study, the direct effects of exterior abscisic acid (ABA) on both calcium distribution of mesophyll cells and cytosolic calcium concentration of guard cells were examined. The distribution of Ca2+ localization were observed with calcium antimonate precipitate-electromicroscopic-cyto-chemical methods after treated with ABA and pretreated with ethylene glycol-bis-(2-aminoethylether)-N,N,N',N'-tetraacetic acid (EGTA), verapamil (Vp), and trifluoperazine (TFP). The laser scanning confocal microscopy was used to measure the cytosolic calcium concentrations of guard cells under different treatments. The results showed that the cytosolic Ca2+ concentration of mesophyll cells was induced to increase by ABA, but to decrease in both outside cell and the vacuoles within 10 min after treatments. The cytosolic calcium concentration of guard cells was increased gradually with the lag in treatment time. However, both EGTA and TFP could inverse those effects, indicating that the increase of cytosolic calcium induced by exterior ABA was mainly caused by calcium influx. The results also showed that calmodulin could influence both the calcium distribution of mesophyll cells and calcium concentration of guard cells. It shows that calmodulin participates in the process of ABA signal transduction, but the mechanism is not known as yet. The changes both calcium distribution of mesophyll cells and calcium concentration of guard cells further proved that the variations of cytosolic Ca2+ concentration induced by ABA were involved in the stomatal movements of maize seedlings.

  20. Implication of abscisic acid on ripening and quality in sweet cherries: differential effects during pre- and postharvest

    Verónica eTijero

    2016-05-01

    Full Text Available Sweet cherry, a non-climacteric fruit, is usually cold-stored during postharvest to prevent over-ripening. The aim of the study was to evaluate the role of abscisic acid (ABA on fruit growth and ripening of this fruit, considering as well its putative implication in over-ripening and effects on quality. We measured the endogenous concentrations of ABA during the ripening of sweet cherries (Prunus avium L. var. Prime Giant collected from orchard trees and in cherries exposed to 4ºC and 23ºC during 10d of postharvest. Furthermore, we examined to what extent endogenous ABA concentrations were related to quality parameters, such as fruit biomass, anthocyanin accumulation and levels of vitamins C and E. Endogenous concentrations of ABA in fruits increased progressively during fruit growth and ripening on the tree, to decrease later during postharvest at 23ºC. Cold treatment, however, increased ABA levels and led to an inhibition of over-ripening. Furthermore, ABA levels positively correlated with anthocyanin and vitamin E levels during preharvest, but not during postharvest. We conclude that ABA plays a major role in sweet cherry development, stimulating its ripening process and positively influencing quality parameters during preharvest. The possible influence of ABA preventing over-ripening in cold-stored sweet cherries is also discussed.

  1. Implication of Abscisic Acid on Ripening and Quality in Sweet Cherries: Differential Effects during Pre- and Post-harvest.

    Tijero, Verónica; Teribia, Natalia; Muñoz, Paula; Munné-Bosch, Sergi

    2016-01-01

    Sweet cherry, a non-climacteric fruit, is usually cold-stored during post-harvest to prevent over-ripening. The aim of the study was to evaluate the role of abscisic acid (ABA) on fruit growth and ripening of this fruit, considering as well its putative implication in over-ripening and effects on quality. We measured the endogenous concentrations of ABA during the ripening of sweet cherries (Prunus avium L. var. Prime Giant) collected from orchard trees and in cherries exposed to 4°C and 23°C during 10 days of post-harvest. Furthermore, we examined to what extent endogenous ABA concentrations were related to quality parameters, such as fruit biomass, anthocyanin accumulation and levels of vitamins C and E. Endogenous concentrations of ABA in fruits increased progressively during fruit growth and ripening on the tree, to decrease later during post-harvest at 23°C. Cold treatment, however, increased ABA levels and led to an inhibition of over-ripening. Furthermore, ABA levels positively correlated with anthocyanin and vitamin E levels during pre-harvest, but not during post-harvest. We conclude that ABA plays a major role in sweet cherry development, stimulating its ripening process and positively influencing quality parameters during pre-harvest. The possible influence of ABA preventing over-ripening in cold-stored sweet cherries is also discussed. PMID:27200070

  2. Presence of abscisic acid, a phytohormone, in the mammalian brain

    This paper reports the presence of abscisic acid, one of the most important phytohormones, in the central nervous system of pigs and rats. The identification of this hormone in brain was made after extensive purification by using a radioimmunoassay that is very specific for (+)-cis-abscisic acid. The final product of purification from mammalian brain has the same properties as authentic abscisic acid: it crossreacts in the radioimmunoassay for the phytohormone and it has the same retention properties and the same gas chromatography/mass spectrometry characteristics. Moreover, like (+)-cis-abscisic acid itself, the brain factor inhibits stomatal apertures of abaxial epidermis strips of Setcreasea purpurea Boom (Commelinaceae). The presence of abscisic acid conjugates that are present in plants has also been identified in brain

  3. Presence of abscisic acid, a phytohormone, in the mammalian brain

    Le Page-Degivry, M.T.; Bidard, J.N.; Rouvier, E.; Bulard, C.; Lazdunski, M.

    1986-02-01

    This paper reports the presence of abscisic acid, one of the most important phytohormones, in the central nervous system of pigs and rats. The identification of this hormone in brain was made after extensive purification by using a radioimmunoassay that is very specific for (+)-cis-abscisic acid. The final product of purification from mammalian brain has the same properties as authentic abscisic acid: it crossreacts in the radioimmunoassay for the phytohormone and it has the same retention properties and the same gas chromatography/mass spectrometry characteristics. Moreover, like (+)-cis-abscisic acid itself, the brain factor inhibits stomatal apertures of abaxial epidermis strips of Setcreasea purpurea Boom (Commelinaceae). The presence of abscisic acid conjugates that are present in plants has also been identified in brain.

  4. Effect of Abscisic Acid and Polyethylene Glycol on the Synchronization of Somatic Embryo Development in Date Palm (Phoenix dactylifera L.

    Abdulaziz M. Al-Bahrany

    2012-01-01

    Full Text Available Somatic embryogenesis provides the best method for commercial micropropagation of date palm (Phoenix dactylifera L.; however, a current limitation is the lack of synchronization of developing somatic embryos. The objective of this study was to evaluate the effect of Abscisic Acid (ABA and polyethylene glycol (PEG combinations on the synchronization of embryo development in date palm cell suspension. Callus maintained on MS medium containing 54 μM Naphthalene Acetic Acid (NAA and 7 μM 2-isopentenyladenine (2iP was transferred to regeneration liquid medium supplemented with ABA at 0-100 μM and PEG at 0-15%. Maximum fresh culture weight was obtained with 10% PEG in the absence of ABA. The addition of as low as 1 μM ABA to the suspensions inhibited growth. In the absence of ABA, increasing PEG concentration increased total somatic embryo numbers reaching a maximum number at 10% PEG. Various embryo sizes differing in abundance were associated with different treatments. The highest percentage of medium size embryos, 52%, was obtained at 10 μM ABA; whereas, the highest percentage of small embryos was obtained at 50-100 μM ABA. The small embryos exhibited a state of synchronization. Although, treating suspensions with ABA and PEG affected embryo size distribution, germination was influenced by embryo developmental phase, expressed in size. Germination of 43, 63, 52 and 23% was obtained from the small, medium, large and very large embryos, respectively. Retardation of somatic embryo development caused by ABA can be further exploited to optimize culture synchronization.

  5. Effects of abscisic acid and high osmoticum on storage protein gene expression in microspore embryos of Brassica napus

    Storage protein gene expression, characteristic of mid- to late embryogenesis, was investigated in microspore embryos of rapeseed (Brassica napus). These embryos, derived from the immature male gametophyte, accumulate little or no detectable napin or cruciferin mRNA when cultured on hormone-free medium containing 13% sucrose. The addition of abscisic acid (ABA) to the medium results in an increase in detectable transcripts encoding both these polypeptides. Storage protein mRNA is induced at 1 micromolar ABA with maximum stimulation occurring between 5 and 50 micromolar. This hormone induction results in a level of storage protein mRNA that is comparable to that observed in zygotic embryos of an equivalent morphological stage. Effects similar to that of ABA are noted when 12.5% sorbitol is added to the microspore embryo medium (osmotic potential = 25.5 bars). Time course experiments, to study the induction of napin and cruciferin gene expression demonstrated that the ABA effect occurred much more rapidly than the high osmoticum effect, although after 48 hours, the levels of napin or cruciferin mRNA detected were similar in both treatments. This difference in the rates of induction is consistent with the idea that the osmotic effect may be mediated by ABA which is synthesized in response to the reduced water potential. Measurements of ABA (by gas chromatography-mass spectrometry using [2H6]ABA as an internal standard) present in microspore embryos during sorbitol treatment and in embryos treated with 10 micromolar ABA were performed to investigate this possibility. Within 2 hours of culture on high osmoticum the level of ABA increased substantially and significantly above control and reached a maximum concentration within 24 hours. This elevated concentration was maintained for 48 hours after culturing and represents a sixfold increase over control embryos

  6. GENETIC ANALYSIS OF ABSCISIC ACID BIOSYNTHESIS

    MCCARTY D R

    2012-01-10

    The carotenoid cleavage dioxygenases (CCD) catalyze synthesis of a variety of apo-carotenoid secondary metabolites in plants, animals and bacteria. In plants, the reaction catalyzed by the 11, 12, 9-cis-epoxy carotenoid dioxygenase (NCED) is the first committed and key regulated step in synthesis of the plant hormone, abscisic acid (ABA). ABA is a key regulator of plant stress responses and has critical functions in normal root and seed development. The molecular mechanisms responsible for developmental control of ABA synthesis in plant tissues are poorly understood. Five of the nine CCD genes present in the Arabidopsis genome encode NCED's involved in control of ABA synthesis in the plant. This project is focused on functional analysis of these five AtNCED genes as a key to understanding developmental regulation of ABA synthesis and dissecting the role of ABA in plant development. For this purpose, the project developed a comprehensive set of gene knockouts in the AtNCED genes that facilitate genetic dissection of ABA synthesis. These mutants were used in combination with key molecular tools to address the following specific objectives: (1) the role of ABA synthesis in root development; (2) developmental control of ABA synthesis in seeds; (3) analysis of ATNCED over-expressers; (4) preliminary crystallography of the maize VP14 protein.

  7. Incorporation of oxygen into abscisic acid and phaseic acid for molecular oxygen

    Abscisic acid accumulates in detached, wilted leaves of Xanthium strumariu. When these leaves are subsequently rehydrated, phaseic acid, a catabolite of abscisic acid, accumulates. Analysis by gas chromatography-mass spectrometry of phaseic acid isolated from stressed and subsequently rehydrated leaves placed in an atmosphere containing 20% 18O2 and 80% N2 indicates that one atom of 18O is incorporated in the 6'-hydroxymethyl group of phaseic acid. This suggests that the enzyme that converts abscisic acid to phaseic acid is an oxygenase. Analysis by gas chromatography-mass spectrometry of abscisic acid isolated from stressed leaves kept in an atmosphere containing 18O2 indicates that one atom of 18O is presented in the carboxyl group of abscisic acid. Thus, when abscisic acid accumulates in water-streesed leaves, only one of the four oxygens present in the abscisic acid molecule is derived from molecular oxygen. This suggest that either (a) the oxygen present in the 1'-, 4'-, and one of the two oxygens at the 1-position of abscisic acid arise from water, or (b) there exists a stored precursor with oxygen atoms already present in the 1'- and 4'-positions of abscisic acid which is converted to abscisic acid under conditions of water stress. 17 references, 2 figures, 1 tables

  8. Regulation of erucic acid accumulation in oilseed rape (Brassica napus L.). Effects of temperature and abscisic acid.

    Wilmer, J.A.

    1997-01-01

    Vegetable oils are an important commodity world-wide with an annual production of about 70 million tonnes. Oilseed rape is one of the four major crops, providing about 10% of the total production. Quality of vegetable oils is determined by the fatty acid composition of the triacylglycerols (TAG) that constitute such oils. These fatty acids comprise a range of chain lengths and desaturated and oxidised residues. A small group of fatty acids dominates the edible oils which are the predominant p...

  9. Regulation of erucic acid accumulation in oilseed rape (Brassica napus L.). Effects of temperature and abscisic acid.

    Wilmer, J.A.

    1997-01-01

    Vegetable oils are an important commodity world-wide with an annual production of about 70 million tonnes. Oilseed rape is one of the four major crops, providing about 10% of the total production. Quality of vegetable oils is determined by the fatty acid composition of the triacylglycerols (TAG) tha

  10. Effect of abscisic acid on biochemical constituents, enzymatic and non enzymatic antioxidant status of lettuce (Lactuca sativa L. under varied irrigation regimes

    Mohamed A. Al Muhairi

    2015-12-01

    Full Text Available Economically important vegetable crop lettuce (Lactuca sativa L. of family Asteraceae was selected for the present investigation. It is being cultivated in UAE due to its commercial importance. In lettuce cultivation, the major problem is the requirement of large quantities of irrigation water. The present study was aimed to reduce the water consumption of lettuce cultivation; for that, a varied irrigation regime was used with the application of abscisic acid (ABA. The parameters studied were biochemical constituents, antioxidant potential and antioxidant enzymes’ activities in lettuce plants under drought stress and its response to ABA under stress. Drought stress caused an increase in the biochemical constituents like proline and amino acid contents when compared with control and also increased under individual ABA treatments and treatments under drought stress. The non-enzymatic antioxidant molecules like ascorbate and α-tocopherol showed significant increase under drought condition in lettuce. ABA slightly reduced these contents. The antioxidant enzymes like superoxide dismutase, catalase and peroxidase showed significant increase under drought condition and ABA caused significant enhancement in these antioxidant enzymes under drought stress and also in unstressed conditions, thereby protecting the plants from the deleterious effects of drought stress. From the results of this investigation, it can be concluded that ABA in 10 mg g−1 can be used as a potential tool to minimise the drought stress effects in lettuce cultivation.

  11. Maturation in Corymbia torelliana × C. citriodora Stock Plants: Effects of Pruning Height on Shoot Production, Adventitious Rooting Capacity, Stem Anatomy, and Auxin and Abscisic Acid Concentrations

    Ivar Wendling

    2015-10-01

    Full Text Available Repeated pruning of stock plants is a common approach to delaying maturation and maintaining the propagation ability of cuttings, but little is known about the hormonal or anatomical basis for this phenomenon. We tested the effect of two different stock-plant pruning heights (15 cm and 30 cm on shoot production, rooting capacity and rooted cutting vigour of six clones of the eucalypt Corymbia torelliana × C. citriodora. We determined whether differences in rooting potential were related to indole-3-acetic (IAA and abscisic acid (ABA concentrations, or the degree of lignification or sclerification, of the cuttings. Maintaining stock plants at 15 cm height sometimes reduced the production of stem cuttings. However, it often increased the ensuing percentage of cuttings that formed roots, with mean rooting across all clones increasing from 30%–53%. Therefore, the number of rooted cuttings produced by short stock plants was similar to, or higher than, the number produced by tall stock plants. Cuttings from shorter stock plants had faster root elongation and occasionally greater root dry mass, shoot dry mass or shoot height than cuttings from tall stock plants. These differences in rooting potential were generally not related to differences in IAA or ABA concentrations of the cuttings or to differences in their stem anatomy. Pruning at the lower height was more effective in maintaining clonal juvenility, supporting previous findings that stock plant maturation is a limiting factor in clonal propagation of Corymbia torelliana × C. citriodora.

  12. Radioimmunoassay for free and bound forms of abscisic acid

    A radioimmunoassay (RIA) for the quanitation of abscisic acid (ABA) has been developed. The assay is extremely sensitive and measuring ranges extend from 10 pg to 10 ng. Although the assay was free of contaminant interference when applied to avocado material, crude extract analysis yielded a composite of free and bound forms of ABA. Equivalents of 20 mg of plant material were spotted onto silica gel plates (GF245 solvent:toluene:ethyl acetate : acetic acid 25:15:3), developed and the relative Rf zones removed and subjected to RIA. The technique was tested on avocados

  13. Abscisic Acid and Abiotic Stress Tolerance in Crop Plants

    Sah, Saroj K.; Reddy, Kambham R.; Li, Jiaxu

    2016-01-01

    Abiotic stress is a primary threat to fulfill the demand of agricultural production to feed the world in coming decades. Plants reduce growth and development process during stress conditions, which ultimately affect the yield. In stress conditions, plants develop various stress mechanism to face the magnitude of stress challenges, although that is not enough to protect them. Therefore, many strategies have been used to produce abiotic stress tolerance crop plants, among them, abscisic acid (ABA) phytohormone engineering could be one of the methods of choice. ABA is an isoprenoid phytohormone, which regulates various physiological processes ranging from stomatal opening to protein storage and provides adaptation to many stresses like drought, salt, and cold stresses. ABA is also called an important messenger that acts as the signaling mediator for regulating the adaptive response of plants to different environmental stress conditions. In this review, we will discuss the role of ABA in response to abiotic stress at the molecular level and ABA signaling. The review also deals with the effect of ABA in respect to gene expression. PMID:27200044

  14. Abscisic acid and pyrabactin improve vitamin C contents in raspberries.

    Miret, Javier A; Munné-Bosch, Sergi

    2016-07-15

    Abscisic acid (ABA) is a plant growth regulator with roles in senescence, fruit ripening and environmental stress responses. ABA and pyrabactin (a non-photosensitive ABA agonist) effects on red raspberry (Rubus idaeus L.) fruit development (including ripening) were studied, with a focus on vitamin and antioxidant composition. Application of ABA and/or pyrabactin just after fruit set did not affect the temporal pattern of fruit development and ripening; neither provitamin A (carotenoids) nor vitamin E contents were modified. In contrast, ABA and pyrabactin altered the vitamin C redox state at early stages of fruit development and more than doubled vitamin C contents at the end of fruit ripening. These were partially explained by changes in ascorbate oxidation and recycling. Therefore, ABA and pyrabactin applications may be used to increase vitamin C content of ripe fruits, increasing fruit quality and value. However, treatments containing pyrabactin-combined with ABA or alone-diminished protein content, thus partially limiting its potential applicability. PMID:26948608

  15. Action of Abscisic Acid on Auxin Transport and its Relation to Phototropism

    Naqvi, S. M.; Engvild, Kjeld Christensen

    1974-01-01

    The action of abscisic acid on the kinetics of auxin transport through Zea mays L. (cv. Goudster) coleoptiles has been investigated. Abscisic acid applied simultaneously with indoleacetic acid-2-14C in the donor block reduced the transport intensity without materially affecting the basipetal...

  16. Low Temperature-Induced 30 (LTI30) positively regulates drought stress resistance in Arabidopsis: effect on abscisic acid sensitivity and hydrogen peroxide accumulation

    Shi, Haitao; Chen, Yinhua; Qian, Yongqiang; Chan, Zhulong

    2015-01-01

    As a dehydrin belonging to group II late embryogenesis abundant protein (LEA) family, Arabidopsis Low Temperature-Induced 30 (LTI30)/XERO2 has been shown to be involved in plant freezing stress resistance. However, the other roles of AtLTI30 remain unknown. In this study, we found that the expression of AtLTI30 was largely induced by drought stress and abscisic acid (ABA) treatments. Thereafter, AtLTI30 knockout mutants and overexpressing plants were isolated to investigate the possible invol...

  17. Plant water stress: Associations between ethylene and abscisic acid response

    Carolina Salazar

    2015-08-01

    Full Text Available Agriculture is severely impacted by water stress due either to excess (hypoxia/anoxia or deficit of water availability. Hypoxia/anoxia is associated with oxygen (O2 deficiency or depletion, inducing several anatomical, morphological, physiological, and molecular changes. The majority of these alterations are adaptive mechanisms to cope with low O2 availability; among them, alterations in shoot length, aerenchyma formation and adventitious roots have been described in several studies. The aim of this review was to address the association between abscisic acid (ABA and ethylene in function of water availability in plants. The major physiological responses to low O2 are associated with changes in root respiration, stomatal conductance, photosynthesis, and fermentation pathways in roots. In addition, several changes in gene expression have been associated with pathways that are not present under normal O2 supply. The expression of ethylene receptor genes is up-regulated by low O2, and ethylene seems to have a crucial role in anatomical and physiological effects during hypoxia/anoxia. During O2 depletion, ethylene accumulation down-regulates ABA by inhibiting rate-limiting enzymes in ABA biosynthesis and by activating ABA breakdown to phaseic acid. With regard to water deficit, drought is primarily sensed by the roots, inducing a signal cascade to the shoots via xylem causing physiological and morphological changes. Several genes are regulated up or down with osmotic stress; the majority of these responsive genes can be driven by either an ABA-dependent or ABA-independent pathway. Some studies suggest that ethylene shuts down leaf growth very fast after the plant senses limited water availability. Ethylene accumulation can antagonize the control of gas exchange and leaf growth upon drought and ABA accumulation.

  18. Amelioration of Chilling Injuries in Watermelon Seedlings by Abscisic Acid

    Korkmaz, Ahmet

    2002-01-01

    A greenhouse study, designed in a randomized complete block design with five replications, was carried out at Clemson University, Clemson, SC, USA, in the spring of 1997. The objective of the study was to investigate whether abscisic acid (ABA) would mitigate chilling damages in the watermelon, a chilling-sensitive plant. 'Crimson Sweet' [Citrullus lanatus (Thumb) Matsum. & Nakai.] watermelon seedlings were grown in a greenhouse with a temperature regime of 25ºC (day) and 20ºC...

  19. Radioimmunoassay for the determination of free and conjugated abscisic acid

    The characterization and application of a radioimmunoassay specific for free and conjugated abscisic acid (ABA) is reported, The antibodies produced against a bovine serum albumin-(+-)-ABA conjugate have a high affinity for ABA (Ka= 1.3 x 109 l mol-1). Trans, trans-ABA and related compounds, such as xanthoxin, phaseic acid, dihydrophaseic acid, vomifoliol or violaxanthin do not interfere with the assay. The detection limit of this method is 0.25 x 10-12 mol ABA, the measuring range extends to 20 x 10-12 mol, and average recoveries are 103%. Because of the high specificity of this immunoassay, no extract purification steps are required prior to analysis. Several hundred plants can be analyzed per day in a semi-automatic assay performance. ABA has been detected in all higher plant families examined, but was absent in the blue-green alga, Spirulina platensis, the liverwort Marchantia polymorpha, and two species of fungi. (orig.)

  20. Abscisic acid ameliorates the systemic sclerosis fibroblast phenotype in vitro

    Bruzzone, Santina, E-mail: santina.bruzzone@unige.it [Department of Experimental Medicine, Section of Biochemistry, University of Genova, Viale Benedetto XV 1, 16132 Genova (Italy); Centre of Excellence for Biomedical Research, University of Genova, Viale Benedetto XV 9, 16132 Genova (Italy); Advanced Biotechnology Center, Largo Rosanna Benzi 10, 16132 Genova (Italy); Battaglia, Florinda [Centre of Excellence for Biomedical Research, University of Genova, Viale Benedetto XV 9, 16132 Genova (Italy); Mannino, Elena [Department of Experimental Medicine, Section of Biochemistry, University of Genova, Viale Benedetto XV 1, 16132 Genova (Italy); Parodi, Alessia [Centre of Excellence for Biomedical Research, University of Genova, Viale Benedetto XV 9, 16132 Genova (Italy); Fruscione, Floriana [Department of Experimental Medicine, Section of Biochemistry, University of Genova, Viale Benedetto XV 1, 16132 Genova (Italy); Advanced Biotechnology Center, Largo Rosanna Benzi 10, 16132 Genova (Italy); Basile, Giovanna [Department of Experimental Medicine, Section of Biochemistry, University of Genova, Viale Benedetto XV 1, 16132 Genova (Italy); Salis, Annalisa; Sturla, Laura [Department of Experimental Medicine, Section of Biochemistry, University of Genova, Viale Benedetto XV 1, 16132 Genova (Italy); Centre of Excellence for Biomedical Research, University of Genova, Viale Benedetto XV 9, 16132 Genova (Italy); Negrini, Simone; Kalli, Francesca; Stringara, Silvia [Centre of Excellence for Biomedical Research, University of Genova, Viale Benedetto XV 9, 16132 Genova (Italy); Filaci, Gilberto [Centre of Excellence for Biomedical Research, University of Genova, Viale Benedetto XV 9, 16132 Genova (Italy); Department of Internal Medicine, Viale Benedetto XV 6, 16132 Genova (Italy); and others

    2012-05-25

    Highlights: Black-Right-Pointing-Pointer ABA is an endogenous hormone in humans, regulating different cell responses. Black-Right-Pointing-Pointer ABA reverts some of the functions altered in SSc fibroblasts to a normal phenotype. Black-Right-Pointing-Pointer UV-B irradiation increases ABA content in SSc cultures. Black-Right-Pointing-Pointer SSc fibroblasts could benefit from exposure to ABA and/or to UV-B. -- Abstract: The phytohormone abscisic acid (ABA) has been recently identified as an endogenous hormone in humans, regulating different cell functions, including inflammatory processes, insulin release and glucose uptake. Systemic sclerosis (SSc) is a chronic inflammatory disease resulting in fibrosis of skin and internal organs. In this study, we investigated the effect of exogenous ABA on fibroblasts obtained from healthy subjects and from SSc patients. Migration of control fibroblasts induced by ABA was comparable to that induced by transforming growth factor-{beta} (TGF-{beta}). Conversely, migration toward ABA, but not toward TGF-{beta}, was impaired in SSc fibroblasts. In addition, ABA increased cell proliferation in fibroblasts from SSc patients, but not from healthy subjects. Most importantly, presence of ABA significantly decreased collagen deposition by SSc fibroblasts, at the same time increasing matrix metalloproteinase-1 activity and decreasing the expression level of tissue inhibitor of metalloproteinase (TIMP-1). Thus, exogenously added ABA appeared to revert some of the functions altered in SSc fibroblasts to a normal phenotype. Interestingly, ABA levels in plasma from SSc patients were found to be significantly lower than in healthy subjects. UV-B irradiation induced an almost 3-fold increase in ABA content in SSc cultures. Altogether, these results suggest that the fibrotic skin lesions in SSc patients could benefit from exposure to high(er) ABA levels.

  1. Abscisic acid ameliorates the systemic sclerosis fibroblast phenotype in vitro

    Highlights: ► ABA is an endogenous hormone in humans, regulating different cell responses. ► ABA reverts some of the functions altered in SSc fibroblasts to a normal phenotype. ► UV-B irradiation increases ABA content in SSc cultures. ► SSc fibroblasts could benefit from exposure to ABA and/or to UV-B. -- Abstract: The phytohormone abscisic acid (ABA) has been recently identified as an endogenous hormone in humans, regulating different cell functions, including inflammatory processes, insulin release and glucose uptake. Systemic sclerosis (SSc) is a chronic inflammatory disease resulting in fibrosis of skin and internal organs. In this study, we investigated the effect of exogenous ABA on fibroblasts obtained from healthy subjects and from SSc patients. Migration of control fibroblasts induced by ABA was comparable to that induced by transforming growth factor-β (TGF-β). Conversely, migration toward ABA, but not toward TGF-β, was impaired in SSc fibroblasts. In addition, ABA increased cell proliferation in fibroblasts from SSc patients, but not from healthy subjects. Most importantly, presence of ABA significantly decreased collagen deposition by SSc fibroblasts, at the same time increasing matrix metalloproteinase-1 activity and decreasing the expression level of tissue inhibitor of metalloproteinase (TIMP-1). Thus, exogenously added ABA appeared to revert some of the functions altered in SSc fibroblasts to a normal phenotype. Interestingly, ABA levels in plasma from SSc patients were found to be significantly lower than in healthy subjects. UV-B irradiation induced an almost 3-fold increase in ABA content in SSc cultures. Altogether, these results suggest that the fibrotic skin lesions in SSc patients could benefit from exposure to high(er) ABA levels.

  2. Exogenous abscisic acid significantly affects proteome in tea plant (Camellia sinensis) exposed to drought stress

    Lin Zhou; Hui Xu; Sue Mischke; Meinhardt, Lyndel W.; Dapeng Zhang; Xujun Zhu; Xinghui Li; Wanping Fang

    2014-01-01

    Tea [Camellia sinensis (L.) O. Kuntze] is an important economic crop, and drought is the most important abiotic stress affecting yield and quality. Abscisic acid (ABA) is an important phytohormone responsible for activating drought resistance. Increased understanding of ABA effects on tea plant under drought stress is essential to develop drought-tolerant tea genotypes, along with crop management practices that can mitigate drought stress. The objective of the present investigation is evaluat...

  3. The Abscisic Acid Levels of Wheat (Triticum aestivum L. cv. Çakmak 79) Seeds that were Germinated under Heavy Metal(Hg++,Cd++,Cu++)Stress

    MUNZUROĞLU, Ömer; KIRBAĞ ZENGİN, Fikriye; YAHYAGİL, Zübeyde

    2010-01-01

    The purpose of this study was to investigate the level of endogenous abscisic acid of wheat seeds germinated in the presence of 60, 90 and 120 ppm of mercury, cadmium and copper salt solutions for 16 hours in order to see their effects on the germination. The levels of abscisic acid were analysed by High Performance Liquid Chromatography (HPLC). The results indicated that abscisic acid levels were affected by the kind and level of heavy metals used in the experiments. The effects of these tox...

  4. Arabidopsis YAK1 regulates abscisic acid response and drought resistance.

    Kim, Dongjin; Ntui, Valentine Otang; Xiong, Liming

    2016-07-01

    Abscisic acid (ABA) is an important phytohormone that controls several plant processes such as seed germination, seedling growth, and abiotic stress response. Here, we report that AtYak1 plays an important role in ABA signaling and postgermination growth in Arabidopsis. AtYak1 knockout mutant plants were hyposensitive to ABA inhibition of seed germination, cotyledon greening, seedling growth, and stomatal movement. atyak1-1 mutant plants display reduced drought stress resistance, as evidenced by water loss rate and survival rate. Molecular genetic analysis revealed that AtYak1 deficiency led to elevated expression of stomatal-related gene, MYB60, and down-regulation of several stress-responsive genes. Altogether, these results indicate that AtYak1 plays a role as a positive regulator in ABA-mediated drought response in Arabidopsis. PMID:27264339

  5. Long-term effects of abscisic acid (ABA) on the grape berry phenylpropanoid pathway: Gene expression and metabolite content.

    Villalobos-González, Luis; Peña-Neira, Alvaro; Ibáñez, Freddy; Pastenes, Claudio

    2016-08-01

    ABA has been proposed as the main signal triggering the onset of the ripening process in grapes, and modulating the secondary metabolism in grape berry skins. To determine the effect of ABA on secondary metabolism in berries, clusters of Carménère were sprayed with 0 μLL(-1) ABA; 50 μLL(-1) ABA and 100 μLL(-1) ABA during pre-véraison, and the gene expression of the transcription factors and enzymes of the phenylpropanoid pathway were assessed from véraison to 70 days after véraison (DAV). Additionally, flavonols, tannins and anthocyanins were assessed from véraison until harvest (110 DAV). ABA accelerated sugar and anthocyanin accumulation at véraison. The grape transcript abundance of VvDFR, VvANS, VvUFGT and VvMybA1, all peaking around véraison mimicked the concentration of ABA throughout the season. The highest anthocyanin concentration occurred 35 DAV for all treatments, but higher pigment concentrations were observed in ABA-treated berries at véraison and from 60 to 70 DAV to harvest. VvPAL was also increased by treatment at the higher concentration of ABA from véraison to 40 DAV. Regarding flavanol synthesis, VvLAR2 and VvMyb4A decreased from véraison until 40 DAV and then increased again until 70 DAV. Compared to the control, both ABA treatments resulted in a less-than-proportional reduction of the expression of both genes compared to the control and, after 40 DAV, in a more-than-proportional increase compared to the control, suggesting a long-term effect of the pre-véraison ABA spray on the berries. A concomitant increase in flavanols was observed in berries after 40 DAV, and this occurred at a higher extent in berries treated with the highest ABA concentration. PMID:27116369

  6. Effect of 2,4-D on content of abscisic and 3-indoleacetic acids in corn coleoptile segments

    The authors studied the influence of growth-stimulating (10-4 M), growth-inhibiting (3 x 10-3 M), lethal (7.5 x 10-3 M) concentrations of 2,4-D on content of ABA and IAA, as well as on entry and conversion of [1-14C]-2,4-D, in corn (Zea mays L.) coleoptile segments. Increase of ABA content was observed at 6 h after influence of a stimulating dose of 2,4-D, an inhibiting dose caused no changes of ABA content, and a lethal dose led to decline of its level. The content of IAA declined sharply at all of the studied 2,4-D concentrations. This effect was accompanied neither by intensification of IAA-oxidase activity nor by increase in the content of bound forms of IAA. Metabolism of 2,4-D was realized mainly via hydroxylation of the benzene ring with subsequent hydroxylation, as well as by means of glucose ester formation. These processes transpired most intensively in the case of a stimulating dose of 2,4-D and less intensively in the case of an inhibiting dose and especially in that of a lethal dose

  7. Induction of phytic acid synthesis by abscisic acid in suspension-cultured cells of rice

    Matsuno, Koya; Fujimura, Tatsuhito

    2014-01-01

    A pathway of phytic acid (PA) synthesis in plants has been revealed via investigations of low phytic acid mutants. However, the regulation of this pathway is not well understood because it is difficult to control the environments of cells in the seeds, where PA is mainly synthesized. We modified a rice suspension culture system in order to study the regulation of PA synthesis. Rice cells cultured with abscisic acid (ABA) accumulate PA at higher levels than cells cultured without ABA, and PA a...

  8. Characterization and Functional Analysis of Pyrabactin Resistance-Like Abscisic Acid Receptor Family in Rice

    Tian, Xiaojie; Wang, Zhenyu; Li, Xiufeng; Lv, Tianxiao; Liu, Huazhao; Wang, Lizhi; Niu, Hongbin; Bu, Qingyun

    2015-01-01

    Background Abscisic acid (ABA) plays crucial roles in regulating plant growth and development, especially in responding to abiotic stress. The pyrabactin resistance-like (PYL) abscisic acid receptor family has been identified and widely characterized in Arabidopsis. However, PYL families in rice were largely unknown. In the present study, 10 out of 13 PYL orthologs in rice (OsPYL) were isolated and investigated. Results Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) an...

  9. Low Temperature-Induced 30 (LTI30 positively regulates drought stress resistance in Arabidopsis: effect on abscisic acid sensitivity and hydrogen peroxide accumulation

    Haitao eShi

    2015-10-01

    Full Text Available As a dehydrin belonging to group II late embryogenesis abundant protein (LEA family, Arabidopsis Low Temperature-Induced 30 (LTI30/XERO2 has been shown to be involved in plant freezing stress resistance. However, the other roles of AtLTI30 remain unknown. In this study, we found that the expression of AtLTI30 was largely induced by drought stress and abscisic acid (ABA treatments. Thereafter, AtLTI30 knockout mutants and overexpressing plants were isolated to investigate the possible involvement of AtLTI30 in ABA and drought stress responses. AtLTI30 knockout mutants were less sensitive to ABA-mediated seed germination, while AtLTI30 overexpressing plants were more sensitive to ABA compared with wild type (WT. Consistently, the AtLTI30 knockout mutants displayed decreased drought stress resistance, while the AtLTI30 overexpressing plants showed improved drought stress resistance compared with WT, as evidenced by a higher survival rate and lower leaf water loss than WT after drought stress. Moreover, manipulation of AtLTI30 expression positively regulated the activities of catalases (CATs and endogenous proline content, as a result, negatively regulated drought stress-triggered hydrogen peroxide (H2O2 accumulation. All these results indicate that AtLTI30 is a positive regulator of plant drought stress resistance, partially through the modulation of ABA sensitivity, H2O2 and proline accumulation.

  10. Compartmentation and equilibration of abscisic acid in isolated Xanthium cells

    Bray, E.A.; Zeevaart, J.A.D.

    1986-01-01

    The compartmentation of endogenous abscisic acid (ABA), applied (+/-)-(/sup 3/H)ABA, and (+/-)-trans-ABA was measured in isolated mesophyll cells of the Chicago strain of Xanthium strumarium L. The release of ABA to the medium in the presence or absence of DMSO was used to determine the equilibration of ABA in the cells. It was found that a greater percentage of the (+/-)-(/sup 3/H)ABA and the (+/-)-trans-ABA was released into the medium than of the endogenous ABA, indicating that applied ABA did not equilibrate with the endogenous material. Therefore, in further investigations only the compartmentation of endogenous ABA was studied. Endogenous ABA was released from Xanthium cells according to the pH gradients among the various cellular compartments. Thus, darkness, high external pH, KNO/sub 2/, and drought-stress all increased the efflux of ABA from the cells. Efflux of ABA from the cells in the presence of 0.6 M mannitol occurred within 30 seconds, but only 8% of the endogenous material was released during the 20 minute treatment.

  11. Possible role for abscisic acid in regulation of photosynthetic and photorespiratory carbon metabolism in barley leaves

    The influence of abscisic acid (ABA) on carbon metabolism, rate of photorespiration, and the activity of the photorespiratory enzymes ribulose bisphosphate oxygenase and glycolate oxidase in 7-day-old barley seedlings (Hordeum vulgare L. var. Alfa) was investigated. Plants treated with ABA had enhanced incorporation of labeled carbon from 14CO2 into glycolic acid, glycine, and serine, while 14C incorporation into 3-phosphoglyceric acid and sugarphosphate esters was depressed. Parallel with this effect, treated plants showed a rise in activity of RuBP oxygenase and glycolic acid oxidase. The rate of photorespiration was increased twofold by ABA treatment at IO-6 molar while the CO2-compensation point increased 46% and stomatal resistance increased more than twofold over control plants

  12. Salicylic acid antagonizes abscisic acid inhibition of shoot growth and cell cycle progression in rice

    Meguro, Ayano; Sato, Yutaka

    2014-04-01

    We analysed effects of abscisic acid (ABA, a negative regulatory hormone), alone and in combination with positive or neutral hormones, including salicylic acid (SA), on rice growth and expression of cell cycle-related genes. ABA significantly inhibited shoot growth and induced expression of OsKRP4, OsKRP5, and OsKRP6. A yeast two-hybrid assay showed that OsKRP4, OsKRP5, and OsKRP6 interacted with OsCDKA;1 and/or OsCDKA;2. When SA was simultaneously supplied with ABA, the antagonistic effect of SA completely blocked ABA inhibition. SA also blocked ABA inhibition of DNA replication and thymidine incorporation in the shoot apical meristem. These results suggest that ABA arrests cell cycle progression by inducing expression of OsKRP4, OsKRP5, and OsKRP6, which inhibit the G1/S transition, and that SA antagonizes ABA by blocking expression of OsKRP genes.

  13. Transcriptional Responses to Gibberellin and Abscisic Acid in Barley Aleurone

    Kegui Chen; Yong-Qiang Charles An

    2006-01-01

    Cereal aleurone has been established as a model system to investigate giberrellin (GA) and abscisic acid (ABA) responses. Using Barley 1 GeneChip, we examined the mRNA accumulation of over 22 000 genes in de-embryonated barley aleurone treated with GA and ABA. We observed that 1328 genes had more than a threefold change in response to GA treatment, whereas 206 genes had a more than threefold change in response to ABA treatment. Interestingly, approximately 2.5-fold more genes were up-regulated than downregulated by ABA. Eighty-three genes were differentially regulated by both GA and ABA. Most of the genes were subject to antagonistic regulation by ABA and GA, particularly for genes related to seed maturation and germination, such as genes encoding late embryogenesis abundant proteins and storage mobilization enzymes. This supports the antagonistic roles of GA and ABA in seed maturation and seed germination.Interestingly, we observed that a significant percentage of the genes were coordinately regulated by both GA and ABA. Some GA-responsive genes encoded proteins involved in ethylene, jasmonate, brassinosteroid and auxin metabolic and signaling transduction pathways, suggesting their potential interaction with the GA response. We also identified a group of transcription factor genes, such as MYB and Homeobox genes, that were differentially regulated by GA. In addition, a number of GA- and/or ABA-responsive genes encoded components potentially involved in GA and ABA signal transduction pathway. Overall, the present study provides a comprehensive and global view of transcript expression accompanying the GA and ABA response in barley aleurone and identifies a group of genes with potential regulatory functions in GA- and ABA-signaling pathways for future functional validation.

  14. In vitro reconstitution of an abscisic acid signalling pathway

    Fujii, Hiroaki

    2009-11-18

    The phytohormone abscisic acid (ABA) regulates the expression of many genes in plants; it has critical functions in stress resistance and in growth and development. Several proteins have been reported to function as ABA receptors, and many more are known to be involved in ABA signalling. However, the identities of ABA receptors remain controversial and the mechanism of signalling from perception to downstream gene expression is unclear. Here we show that by combining the recently identified ABA receptor PYR1 with the type 2C protein phosphatase (PP2C) ABI1, the serine/threonine protein kinase SnRK2.6/OST1 and the transcription factor ABF2/AREB1, we can reconstitute ABA-triggered phosphorylation of the transcription factor in vitro. Introduction of these four components into plant protoplasts results in ABA-responsive gene expression. Protoplast and test-tube reconstitution assays were used to test the function of various members of the receptor, protein phosphatase and kinase families. Our results suggest that the default state of the SnRK2 kinases is an autophosphorylated, active state and that the SnRK2 kinases are kept inactive by the PP2Cs through physical interaction and dephosphorylation. We found that in the presence of ABA, the PYR/PYL (pyrabactin resistance 1/PYR1-like) receptor proteins can disrupt the interaction between the SnRK2s and PP2Cs, thus preventing the PP2C-mediated dephosphorylation of the SnRK2s and resulting in the activation of the SnRK2 kinases. Our results reveal new insights into ABA signalling mechanisms and define a minimal set of core components of a complete major ABA signalling pathway. © 2009 Macmillan Publishers Limited. All rights reserved.

  15. Analysis of the plant hormones Abscisic acid and Xanthoxin in trees of the two stands No. 79 and 109 in the Hils

    Majcherczyk, A.; Huettermann, A.

    1984-01-01

    Pilca abies of two different treations were compared. The phytohormones Abscisic acid and Xanthoxin were analysed. The role and the content of abscisic acid and Xanthoxin in trees under stress induced by acid rain were investigated.

  16. Abscisic acid biosynthesis in leaves and roots of Xanthium strumarium

    Creelman, R.A.; Gage, D.A.; Stults, J.T.; Zeevaart, J.A.D.

    1987-11-01

    Research on the biosynthesis of abscisic acid (ABA) has focused primarily on two pathways: (a) the direct pathway from farnesyl pyrophosphate, and (b) the indirect pathway involving a carotenoid precursor. The authors have investigated which biosynthetic pathway is operating in turgid and stressed Xanthium leaves, and in stressed Xanthium roots using long-term incubations in /sup 18/O/sub 2/. It was found that in stressed leaves three atoms of /sup 18/O from /sup 18/O/sub 2/ are incorporated into the ABA molecule, and that the amount of /sup 18/O incorporated increases with time. One /sup 18/O atom is incorporated rapidly into the carboxyl group of ABA, whereas the other two atoms are very slowly incorporated into the ring oxygens. The fourth oxygen atom in the carboxyl group of ABA is derived from water. ABA from stressed roots of Xanthium incubated in /sup 18/O/sub 2/ shows a labeling pattern similar to that of ABA in stressed leaves, but with incorporation of more /sup 18/O into the tertiary hydroxyl group at C-1' after 6 and 12 hours than found in ABA from stressed leaves. It is proposed that the precursors to stress-induced ABA are xanthophylls, and that a xanthophyll lacking an oxygen function at C-6 plays a crucial role in ABA biosynthesis in Xanthium roots. In turgid Xanthium leaves, /sup 18/O is incorporated into ABA to a much lesser extent that it is in stressed leaves, whereas exogenously applied /sup 14/C-ABA is completely catabolized within 48 hours. This suggests that ABA in turgid leaves is either (a) made via a biosynthetic pathway which is different from the one in stressed leaves, or (b) has a half-life on the order of days as compared with a half-life of 15.5 hours in water-stressed Xanthium leaves. Phaseic acid showed a labeling pattern similar to that of ABA, but with an additional /sup 18/O incorporated during 8'-hydroxylation of ABA to phaseic acid.

  17. Characterization of major ripening events during softening in grape: turgor, sugar accumulation, abscisic acid metabolism, colour development, and their relationship with growth

    Castellarin, Simone D.; Gambetta, Gregory A.; Wada, Hiroshi; Krasnow, Mark N.; Cramer, Grant R.; Peterlunger, Enrico; Shackel, Kenneth A.; Matthews, Mark A.

    2015-01-01

    Highlight The earliest events in ripening are decreases in turgor, softening, and increases in abscisic acid. Later events integral to regulating colour development include growth, further increases in abscisic acid, and sugar accumulation.

  18. Movement of abscisic acid into the apoplast in response to water stress in Xanthium strumarium L

    Cornish, K.; Zeevaart, J.A.D.

    1985-07-01

    The effect of water stress on the redistribution of abscisic acid (ABA) in mature leaves of Xanthium strumarium L. was investigated using a pressure dehydration technique. In both turgid and stressed leaves, the ABA in the xylem exudate, the apoplastic ABA, increased before bulk leaf stress-induced ABA accumulation began. In the initially turgid leaves, the ABA level remained constant in both the apoplast and the leaf as a whole until wilting symptoms appeared. Following turgor loss, sufficient quantities of ABA moved into the apoplast to stimulate stomatal closure. Thus, the initial increase of apoplastic ABA may be relevant to the rapid stomatal closure seen in stressed leaves before their bulk leaf ABA levels rise. Following recovery from water stress, elevated levels of ABA remained in the apoplast after the bulk leaf contents had returned to their prestress values. This apoplastic ABA may retard stomatal reopening during the initial recovery period. 32 references, 5 figures.

  19. Interactions between abscisic acid and cytokinins during water stress and subsequent rehydration

    Pospíšilová, Jana; Vágner, Martin; Malbeck, Jiří; Trávníčková, Alena; Baťková, Petra

    2005-01-01

    Roč. 49, - (2005), s. 533-540. ISSN 0006-3134 R&D Projects: GA ČR GA522/02/1099; GA AV ČR(CZ) IAA638105 Institutional research plan: CEZ:AV0Z50380511 Keywords : abscisic acid * cytokinins * water stress Subject RIV: EF - Botanics Impact factor: 0.792, year: 2005

  20. Plant Responses to Water Stress as Affected by Abscisic Acid and Benzyladenine

    Pospíšilová, Jana; Haisel, Daniel; Schnablová, Renáta; Synková, Helena; Baťková, Petra

    Montreal : International Society of Photosynthesis , 2005 - (Van der Est, A.; Bruce, D.), s. 593-595 R&D Projects: GA ČR GA522/02/1099 Institutional research plan: CEZ:AV0Z50380511 Keywords : abscisic acid * benzyladenine * chlorophyl content Subject RIV: ED - Physiology

  1. Endogenous cytokinins, auxins, and abscisic acid in red algae from Brazil

    Yokoya, N. S.; Stirk, W. A.; van Staden, J.; Novák, Ondřej; Turečková, Veronika; Pěnčík, Aleš; Strnad, Miroslav

    2010-01-01

    Roč. 46, č. 6 (2010), s. 1198-1205. ISSN 0022-3646 R&D Projects: GA ČR GA301/08/1649 Institutional research plan: CEZ:AV0Z50380511 Keywords : ENDOGENOUS * CYTOKININS * AUXINS * ABSCISIC ACID * RED * ALGAE * BRAZIL Subject RIV: EF - Botanics Impact factor: 2.239, year: 2010

  2. Diurnal variation of cytokinin, auxin and abscisic acid levels in tobacco leaves

    Nováková, Marie; Motyka, Václav; Dobrev, Petre; Malbeck, Jiří; Gaudinová, Alena

    2005-01-01

    Roč. 56, č. 421 (2005), s. 2877-2883. ISSN 0022-0957 R&D Projects: GA ČR GA206/03/0369; GA MŠk LN00A081 Institutional research plan: CEZ:AV0Z50380511 Keywords : abscisic acid * auxin * cytokinin Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.336, year: 2005

  3. Crucial Roles of Abscisic Acid Biogenesis in Virulence of Rice Blast Fungus Magnaporthe oryzae

    Spence, Carla A.; Lakshmanan, Venkatachalam; Donofrio, Nicole; Bais, Harsh P.

    2015-01-01

    Rice suffers dramatic yield losses due to blast pathogen Magnaporthe oryzae. Pseudomonas chlororaphis EA105, a bacterium that was isolated from the rice rhizosphere, inhibits M. oryzae. It was shown previously that pre-treatment of rice with EA105 reduced the size of blast lesions through jasmonic acid (JA)- and ethylene (ETH)-mediated ISR. Abscisic acid (ABA) acts antagonistically toward salicylic acid (SA), JA, and ETH signaling, to impede plant defense responses. EA105 may be reducing the ...

  4. Quantification of Abscisic Acid, Cytokinin, and Auxin Content in Salt-Stressed Plant Tissues

    Dobrev, P.; Vaňková, R. (Radomíra)

    2012-01-01

    Plant hormones cytokinins, auxin (indole-3-acetic acid), and abscisic acid are central to regulation of plant growth and defence to abiotic stresses such as salinity. Quantification of the hormone levels and determination of their ratios can reveal different plant strategies to cope with the stress, e.g., suppression of growth or mobilization of plant metabolism. This chapter describes a procedure enabling such quantification. Due to the high variability of these hormones in plant tissues, it...

  5. Abscisic Acid and Cytokinin-Induced Osmotic and Antioxidant Regulation in Two Drought-Tolerant and Drought-Sensitive Cultivars of Wheat During Grain Filling Under Water Deficit in Field Conditions

    2014-01-01

    Phytohormones play critical roles in regulating plant responses to stress. The present study investigates the effect of cytokinin, abscisic acid and cytokinin/abscisic acid interaction on some osmoprotectants and antioxidant parameters induced by drought stress in two wheat cultivars (Triticum aestivum L.) of ‘Pishgam’ and ‘MV-17’ as tolerant and sensitive to drought during post-anthesis phase, respectively grown in field conditions. The most considerable effect of the treatments was exhibite...

  6. Response of cytokinin pool and cytokinin oxidase/dehydrogenase activity to abscisic acid exhibits organ specificity in peas

    Vaseva, I.; Todorova, D.; Malbeck, Jiří; Trávníčková, Alena; Macháčková, Ivana

    2008-01-01

    Roč. 30, č. 2 (2008), s. 151-155. ISSN 0137-5881 Institutional research plan: CEZ:AV0Z50380511 Keywords : Abscisic acid * Cytokinins * Cytokinin Subject RIV: EF - Botanics Impact factor: 0.807, year: 2008

  7. Starch and sucrose synthesis in Phaseolus vulgaris as affected by light, CO2, and abscisic acid

    Phaseolus vulgaris L. leaves were subjected to various light, CO2, and O2 levels and abscisic acid, then given a 10 minute pulse of 14CO2 followed by a 5 minute chase with unlabeled CO2. After the chase period, very little label remained in the ionic fractions except at low CO2 partial pressure. Most label was found in the neutral, alcohol soluble fraction or in the insoluble fraction digestable by amyloglucosidase. Sucrose formation was linearly related to assimilation rate. Starch formation increased linearly with assimilation rate, but did not occur if the assimilation rate was below 4 micromoles per square meter per second. Neither abscisic acid, nor high CO2 in combination with low O2 caused significant perturbations of the sucrose/starch formation ratio. These studies indicate that the pathways for starch and sucrose synthesis both are controlled by the rate of net CO2 assimilation, with sucrose the preferred product at very low assimilation rates

  8. Karrikins delay soybean seed germination by mediating abscisic acid and gibberellin biogenesis under shaded conditions

    Yongjie Meng; Feng Chen; Haiwei Shuai; Xiaofeng Luo; Jun Ding; Shengwen Tang; Shuanshuan Xu; Jianwei Liu; Weiguo Liu; Junbo Du; Jiang Liu; Feng Yang; Xin Sun; Taiwen Yong; Xiaochun Wang

    2016-01-01

    Karrikins (KAR) are a class of signal compounds, discovered in wildfire smoke, which affect seed germination. Currently, numerous studies have focused on the model plant Arabidopsis in the KAR research field, rather than on crops. Thus the regulatory mechanisms underlying KAR regulation of crop seed germination are largely unknown. Here, we report that KAR delayed soybean seed germination through enhancing abscisic acid (ABA) biosynthesis, while impairing gibberellin (GA) biogenesis. Interest...

  9. Abscisic acid, gibberellins and brassinosteroids in Kelpak (R), a commercial seaweed extract made from Ecklonia maxima

    Stirk, W. A.; Tarkowská, Danuše; Turečková, Veronika; Strnad, Miroslav; van Staden, J.

    2014-01-01

    Roč. 26, č. 1 (2014), s. 561-567. ISSN 0921-8971 R&D Projects: GA MŠk LK21306; GA ČR GA206/09/1284; GA MŠk(CZ) LO1204 Grant ostatní: GA MŠk(CZ) ED0007/01/01 Institutional support: RVO:61389030 Keywords : Abscisic acid * Agricultural biostimulant * Brassinosteroids Subject RIV: EF - Botanics Impact factor: 2.559, year: 2014

  10. Quantification of Abscisic Acid, Cytokinin, and Auxin Content in Salt-Stressed Plant Tissues

    Dobrev, Petre; Vaňková, Radomíra

    Vol. 913. New York: Humana Press, 2012 - (Shabala, S.; Cuin, T.), s. 251-261. (Methods in Molecular Biology). ISBN 978-1-61779-985-3 R&D Projects: GA MŠk(CZ) LD11073 Institutional research plan: CEZ:AV0Z50380511 Keywords : Abscisic acid * Auxin * Cytokinin Subject RIV: ED - Physiology http://home.ueb.cas.cz/publikace/2012_Dobrev.pdf

  11. Sugar and abscisic acid signaling orthologs are activated at the onset of ripening in grape

    Gambetta, Gregory A.; Matthews, Mark A.; Shaghasi, Tarana H.; McElrone, Andrew J.; Castellarin, Simone D.

    2010-01-01

    The onset of ripening involves changes in sugar metabolism, softening, and color development. Most understanding of this process arises from work in climacteric fruits where the control of ripening is predominately by ethylene. However, many fruits such as grape are nonclimacteric, where the onset of ripening results from the integration of multiple hormone signals including sugars and abscisic acid (ABA). In this study, we identified ten orthologous gene families in Vitis vinifera containing...

  12. Abscisic acid is not necessary for gravitropism in primary roots of Zea mays

    Moore, R.

    1990-01-01

    Primary roots of Zea mays L. cv. Tx 5855 treated with fluridone are strongly graviresponsive, but have undetectable levels of abscisic acid (ABA). Primary roots of the carotenoid-deficient w-3, vp-5, and vp-7 mutants of Z. mays are also graviresponsive despite having undetectable amounts of ABA. Graviresponsive roots of untreated and wild-type seedlings contain 286 to 317 ng ABA g-1 f. wt, respectively. These results indicate that ABA is not necessary for root gravicurvature.

  13. Immunoaffinity chromatography of abscisic acid combined with electrospray liquid chromatography–mass spectrometry

    Hradecká, Veronika; Novák, Ondřej; Havlíček, Libor; Strnad, Miroslav

    2007-01-01

    Roč. 847, č. 2 (2007), s. 162-173. ISSN 1570-0232 R&D Projects: GA MŠk(CZ) LC06034; GA AV ČR IBS5038351 Institutional research plan: CEZ:AV0Z50380511 Source of funding: V - iné verejné zdroje ; V - iné verejné zdroje Keywords : abscisic acid * immunoaffinity chromatography * liquid chromatography-mass spectrometry Subject RIV: ED - Physiology Impact factor: 2.935, year: 2007

  14. Abscisic Acid and Cytokinin-Induced Osmotic and Antioxidant Regulation in Two Drought-Tolerant and Drought-Sensitive Cultivars of Wheat During Grain Filling Under Water Deficit in Field Conditions

    Mohammad-Reza SARAFRAZ-ARDAKANI

    2014-09-01

    Full Text Available Phytohormones play critical roles in regulating plant responses to stress. The present study investigates the effect of cytokinin, abscisic acid and cytokinin/abscisic acid interaction on some osmoprotectants and antioxidant parameters induced by drought stress in two wheat cultivars (Triticum aestivum L. of ‘Pishgam’ and ‘MV-17’ as tolerant and sensitive to drought during post-anthesis phase, respectively grown in field conditions. The most considerable effect of the treatments was exhibited 21 days after anthesis. Under drought conditions, the flag leaf soluble carbohydrate content increased in both cultivars while starch content was remarkably decreased in ‘Pishgam’ as compared to ‘MV-17’. Abscisic acid increased total soluble sugar and reduced starch more than other hormonal treatments, although it decreased studied monosaccharaides in ‘Pishgam’, especially. Drought stress induced high proportion of gylycinebetain and free proline in ‘Pishgam’ cultivar. Application of abscisic acid and cytokinin/abscisic acid interaction increased gylycinebetain and proline content in both cultivars under irrigation and drought conditions. The tolerant cultivar exhibited less accumulation of hydrogen peroxide and malondialdehyde in relation to significant increase of catalase and peroxidase activities and α-tocpherol content under drought conditions. All hormonal treatments increased the named enzyme activities under both irrigation and drought conditions, while higher accumulation of α-tocopherol was only showed in case of cytokinin application. Also, abscisic acid and cytokinin/abscisic acid could decrease drought-induced hydrogen peroxide and malondialdehyde level to some extent, although abscisic acid increased both of hydrogen peroxide andmalondialdehyde content in irrigation phase, especially.

  15. K-channels inhibited by hydrogen peroxide mediate abscisic acid signaling in Vicia guard cells

    2001-01-01

    A number of studies show that environmental stress conditions increase abscisic acid (ABA) and hydrogen peroxide (H2O2) levels in plant cells. Despite this central role of ABA in altering stomatal aperture by regulating guard cell ion transport, little is known concerning the relationship between ABA and H2O2 in signal transduction leading to stomatal movement. Epidermal strip bioassay illustrated that ABA-inhibited stomatal opening and ABA-induced stomatal closure were abolished partly by externally added catalase (CAT) or diphenylene iodonium (DPI), which are a H2O2 scavenger and a NADPH oxidase inhibitor respectively. In contrast, internally added CAT or DPI nearly completely or partly reversed ABA-induced closure in half-stoma. Consistent with these results, whole-cell patch-clamp analysis showed that intracellular application of CAT or DPI partly abolished ABA-inhibited inward K+ current across the plasma membrane of guard cells. H2O2 mimicked ABA to inhibit inward K+ current, an effect which was reversed by the addition of ascorbic acid (Vc) in patch clamping micropipettes. These results suggested that H2O2 mediated ABA-induced stomatal movement by targeting inward K+ channels at plasma membrane.

  16. Reactive oxygen species, abscisic acid and ethylene interact to regulate sunflower seed germination.

    El-Maarouf-Bouteau, Hayat; Sajjad, Yasar; Bazin, Jérémie; Langlade, Nicolas; Cristescu, Simona M; Balzergue, Sandrine; Baudouin, Emmanuel; Bailly, Christophe

    2015-02-01

    Sunflower (Helianthus annuus L.) seed dormancy is regulated by reactive oxygen species (ROS) and can be alleviated by incubating dormant embryos in the presence of methylviologen (MV), a ROS-generating compound. Ethylene alleviates sunflower seed dormancy whereas abscisic acid (ABA) represses germination. The purposes of this study were to identify the molecular basis of ROS effect on seed germination and to investigate their possible relationship with hormone signalling pathways. Ethylene treatment provoked ROS generation in embryonic axis whereas ABA had no effect on their production. The beneficial effect of ethylene on germination was lowered in the presence of antioxidant compounds, and MV suppressed the inhibitory effect of ABA. MV treatment did not alter significantly ethylene nor ABA production during seed imbibition. Microarray analysis showed that MV treatment triggered differential expression of 120 probe sets (59 more abundant and 61 less abundant genes), and most of the identified transcripts were related to cell signalling components. Many transcripts less represented in MV-treated seeds were involved in ABA signalling, thus suggesting an interaction between ROS and ABA signalling pathways at the transcriptional level. Altogether, these results shed new light on the crosstalk between ROS and plant hormones in seed germination. PMID:24811898

  17. Stomatal response to abscisic Acid is a function of current plant water status.

    Tardieu, F; Davies, W J

    1992-02-01

    We investigated, under laboratory and field conditions, the possibility that increasing abscisic acid (ABA) concentrations and decreasing water potentials can interact in their effects on stomata. One experiment was carried out with epidermal pieces of Commelina communis incubated in media with a variety of ABA and polyethylene glycol concentrations. In the media without ABA, incubation in solutions with water potentials between -0.3 and -1.5 megapascals had no significant effect on stomatal aperture. Conversely, the sensitivity of stomatal aperture to ABA was trebled in solutions at -1.5 megapascals compared with sensitivity at -0.3 megapascals. The effect of the change in sensitivity was more important than the absolute effect of ABA at the highest water potential. In a field experiment, sensitivity of maize stomatal conductance to the concentration of ABA in the xylem sap varied strongly with the time of the day. We consider that the most likely explanation for this is the influence of a change in leaf or epidermal water potential that accompanies an increase in irradiance and saturation deficit as the day progresses. These observations suggest that epidermal water relations may act as a modulator of the responses of stomata to ABA. We argue that such changes must be taken into account in studies or modeling of plant responses to drought stress. PMID:16668674

  18. Abscisic Acid Control of rbcS and cab Transcription in Tomato Leaves.

    Bartholomew, D M; Bartley, G E; Scolnik, P A

    1991-05-01

    Leaves of tomato (Lycopersicon esculentum) plants grown in soil in which moisture was lowered from field capacity to levels approaching permanent wilting point show a 10-fold increase in abscisic acid (ABA) and a 60 to 70 percent decrease in rbcS and cab steady-state mRNA levels. As indicated by transcription run-on experiments, the effect occurs primarily at the transcriptional level. Similar water deficit had only a minor effect on ABA level and on rbcS and cab expression in leaves of sitiens, an ABA mutant of tomato. Expression of rbcL, the chloroplast gene coding for the large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase, is not affected by water stress. Application of exogenous ABA results in decreased rbcS and cab expression in both wild-type and sitiens leaves. Analysis of the expression of individual members of the rbcS gene family indicates that under water-deficit conditions, expression derives primarily from only three of the five rbcS genes. Effects of dark adaptation and water deficit are additive for cab but not for rbcS expression. These results support the hypothesis that, at least under water-deficit conditions, ABA or a derivative thereof mediates a negative regulation of rbcS and cab transcription in tomato plants. PMID:16668167

  19. Exogenous application of abscisic acid may improve the growth and yield of sunflower hybrids under drought

    Sunflower genotypes perform differently under different water regimes. Drought stress at various growth stages drastically reduces the growth, development and yield of sunflower hybrids. However, exogenous application of abscisic acid helps in mitigating drought stress by improving growth, development and yield of sunflower. In the present study, three sunflower hybrids viz. DK-4040 (large stature), S-278 (medium stature) and SF-187 (short stature) were exposed to varied irrigation regimes and abscisic acid application schedule i.e. T1: four irrigations with schedule (25DAS, at bud, flower initiation and at achene formation) and with no ABA spray,T/sub 2/: three irrigations with schedule (25DAS, at flower initiation and at achene formation) and with no ABA spray, T/sub 3/: three irrigations with schedule (25DAS, at flower initiation and at achene formation) and with 8 mu MABA spray at bud initiation, T/sub 4/: three irrigations with schedule (25DAS, at bud initiation and at achene formation) and with no ABA spray, T/sub 5/: three irrigations with schedule (25DAS, at bud initiation and at achene formation) and with 8 mu M ABA spray at flower initiation. Experiment was laid out in Randomized Complete Design with factorial arrangement having three replications. ABA application at bud or at flower initiation under drought stress helped in mitigating the detrimental effects by improving growth and yield of sunflower hybrids. Enhancement in drought tolerance of sunflower genotypes was better when ABA was applied at bud initiation stage than that of at flower initiation stage under drought. Improvements in head diameter, achenes per head, 1000-achene weight, achene yield, oil yield, biological yield, harvest index, leaf area index and crop growth rate was recorded. Sunflower hybrid DK-4040 showed more improvement in drought tolerance byfoliar application of ABA under water deficit stress than that of the SF-187 and S-278. It is suggested that sunflower hybrid DK 4040

  20. Proanthocyanidins Inhibit Seed Germination by Maintaining a High Level of Abscisic Acid in Arabidopsis thaliana

    Liguo Jia; Jianhua Zhang; Qiuyu Wu; Nenghui Ye; Rui Liu; Lu Shi; Weifeng Xu; Hui Zhi; A. N. M. Rubaiyath Bin Rahman; Yiji Xia

    2012-01-01

    Proanthocyanidins (PAs) are the main products of the flavonoid biosynthetic pathway in seeds,but their biological function during seed germination is still unclear.We observed that seed germination is delayed with the increase of exogenous PA concentration in Arabidopsis.A similar inhibitory effect occurred in peeled Brassica napus seeds,which was observed by measuring radicle elongation.Using abscisic acid (ABA),a biosynthetic and metabolic inhibitor,and gene expression analysis by real-time polymerase chain reaction,we found that the inhibitory effect of PAs on seed germination is due to their promotion of ABA via de novo biogenesis,rather than by any inhibition of its degradation.Consistent with the relationship between PA content and ABA accumulation in seeds,PA-deficient mutants maintain a lower level of ABA compared with wild-types during germination.Our data suggest that PA distribution in the seed coat can act as a doorkeeper to seed germination.PA regulation of seed germination is mediated by the ABA signaling pathway.

  1. The Dynamics of Embolism Refilling in Abscisic Acid (ABA-Deficient Tomato Plants

    Francesca Secchi

    2012-12-01

    Full Text Available Plants are in danger of embolism formation in xylem vessels when the balance between water transport capacity and transpirational demand is compromised. To maintain this delicate balance, plants must regulate the rate of transpiration and, if necessary, restore water transport in embolized vessels. Abscisic acid (ABA is the dominant long-distance signal responsible for plant response to stress, and it is possible that it plays a role in the embolism/refilling cycle. To test this idea, a temporal analysis of embolism and refilling dynamics, transpiration rate and starch content was performed on ABA-deficient mutant tomato plants. ABA-deficient mutants were more vulnerable to embolism formation than wild-type plants, and application of exogenous ABA had no effect on vulnerability. However, mutant plants treated with exogenous ABA had lower stomatal conductance and reduced starch content in the xylem parenchyma cells. The lower starch content could have an indirect effect on the plant’s refilling activity. The results confirm that plants with high starch content (moderately stressed mutant plants were more likely to recover from loss of water transport capacity than plants with low starch content (mutant plants with application of exogenous ABA or plants experiencing severe water stress. This study demonstrates that ABA most likely does not play any direct role in embolism refilling, but through the modulation of carbohydrate content, it could influence the plant’s capacity for refilling.

  2. Postharvest Exogenous Application of Abscisic Acid Reduces Internal Browning in Pineapple.

    Zhang, Qin; Liu, Yulong; He, Congcong; Zhu, Shijiang

    2015-06-10

    Internal browning (IB) is a postharvest physiological disorder causing economic losses in pineapple, but there is no effective control measure. In this study, postharvest application of 380 μM abscisic acid (ABA) reduced IB incidence by 23.4-86.3% and maintained quality in pineapple fruit. ABA reduced phenolic contents and polyphenol oxidase and phenylalanine ammonia lyase activities; increased catalase and peroxidase activities; and decreased O2(·-), H2O2, and malondialdehyde levels. This suggests ABA could control IB through inhibiting phenolics biosynthesis and oxidation and enhancing antioxidant capability. Furthermore, the efficacy of IB control by ABA was not obviously affected by tungstate, ABA biosynthesis inhibitor, nor by diphenylene iodonium, NADPH oxidase inhibitor, nor by lanthanum chloride, calcium channel blocker, suggesting that ABA is sufficient for controlling IB. This process might not involve H2O2 generation, but could involve the Ca(2+) channels activation. These results provide potential for developing effective measures for controlling IB in pineapple. PMID:26007196

  3. Ascorbic acid and reactive oxygen species are involved in the inhibition of seed germination by abscisic acid in rice seeds

    Ye, Nenghui; Zhu, Guohui; Liu, Yinggao; Zhang, Aying; Li, Yingxuan; Liu, Rui; Shi, Lu; Jia, Liguo; Zhang, Jianhua

    2011-01-01

    The antagonism between abscisic acid (ABA) and gibberellin (GA) plays a key role in controlling seed germination, but the mechanism of antagonism during this process is not known. The possible links among ABA, reactive oxygen species (ROS), ascorbic acid (ASC), and GA during rice seed germination were investigated. Unlike in non-seed tissues where ROS production is increased by ABA, ABA reduced ROS production in imbibed rice seeds, especially in the embryo region. Such reduced ROS also led to...

  4. Antagonism between abscisic acid and gibberellins is partially mediated by ascorbic acid during seed germination in rice

    Ye, Nenghui; Zhang, Jianhua

    2012-01-01

    The antagonism between abscisic acid (ABA) and gibberellin (GA) plays a key role in controlling seed germination,1,2 but the mechanism of antagonism during this process is not known. In the associated study,3 we investigated the relationship among ABA, reactive oxygen species (ROS), ascorbic acid (ASC) and GA during rice seed germination. ROS production is reduced by ABA, which hence results in decreasing ASC accumulation during imbibition. GA accumulation was also suppressed by a reduced ROS...

  5. Abscisic acid induces biosynthesis of bisbibenzyls and tolerance to UV-C in the liverwort Marchantia polymorpha.

    Kageyama, Akito; Ishizaki, Kimitsune; Kohchi, Takayuki; Matsuura, Hideyuki; Takahashi, Kosaku

    2015-09-01

    Environmental stresses are effective triggers for the biosynthesis of various secondary metabolites in plants, and phytohormones such as jasmonic acid and abscisic acid are known to mediate such responses in flowering plants. However, the detailed mechanism underlying the regulation of secondary metabolism in bryophytes remains unclear. In this study, the induction mechanism of secondary metabolites in the model liverwort Marchantia polymorpha was investigated. Abscisic acid (ABA) and ultraviolet irradiation (UV-C) were found to induce the biosynthesis of isoriccardin C, marchantin C, and riccardin F, which are categorized as bisbibenzyls, characteristic metabolites of liverworts. UV-C led to the significant accumulation of ABA. Overexpression of MpABI1, which encodes protein phosphatase 2C (PP2C) as a negative regulator of ABA signaling, suppressed accumulation of bisbibenzyls in response to ABA and UV-C irradiation and conferred susceptibility to UV-C irradiation. These data show that ABA plays a significant role in the induction of bisbibenzyl biosynthesis, which might confer tolerance against UV-C irradiation in M. polymorpha. PMID:26055979

  6. Role of abscisic acid (aba) in modulating the responses of two apple rootstocks to drought stress

    Drought stress is considered as the main limiting factor for apple (Malus domestica L.) production in some semi-arid areas of China. In this study, we investigated the modulation role of abscisic acid (ABA) and fluridone (ABA synthesis inhibitor) on water relations and antioxidant enzyme system in 2-year-old seedlings of two apple rootstocks i.e. Malus sieversii (Ledeb.) Roem. (MS) and Malus hupehensis (Pamp.) Rehd. (MH). Drought stress induced ion leakage, accumulation of malondiadehyde (MDA) and decreases in leaf water potential and relative water content (RWC) in both rootstocks, which were significantly alleviated by exogenous ABA application. Drought stress also induced markedly increases in endogenous ABA content and activities of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), ascorbate peroxidase (APX), dehydroascorbate reductase (DHAR), monodehydroascorbate reductase (MDHAR), and glutathione reductase (GR), to a greater magnitude in MS as compared to MH rootstock. Concentration of 100 mol/L and 50 mol/L ABA had the most positive effects on drought-stressed rootstocks of MS and MH, respectively. Spraying optimum exogenous ABA contributed to enhancement in most of the above antioxidant enzymes activities but reduction in content of MDA and maintained the appropriate leaf water potential and RWC in both rootstocks. Pretreatment with fluridone aggravated ion leakage and the accumulation of MDA in two apple rootstocks under drought stress, which was overcome by exogenous ABA application to some extent. In conclusion, the endogenous ABA was probably involved in the regulation of two apple rootstocks in responses to drought stress. (author)

  7. UV-induced cross-linking of abscisic acid to binding proteins

    Conditions for UV-induced cross-linking of abscisic acid (ABA) through its enone chromophore to binding proteins were evaluated. The effects of a UV-light band between 260 and 530 nm on both unconjugated and protein-conjugated ABA, as well as on anti-ABA antibodies as models of ABA-binding proteins were determined. UV irradiation caused both isomerization and photolysis of ABA, but increasing the lower irradiation boundary to 345 nm strongly reduced photolysis and largely prevented isomerization. When conjugated to alkaline phosphatase (AP), ABA remained stable when using either a 320 or a 345 nm filter. At these wavelengths both binding of ABA to antibodies as well as AP enzymatic activity were maintained. UV-induced cross-linking of monoclonal anti-ABA antibodies to immobilized ABA was analysed by immunoassays. Optimal cross-linking was achieved after a 5 min irradiation period at 0°, using a long pass, cut-on filter to quench wavelengths below 290 nm. This cross-linking faithfully reflected cognate binding activity. (author)

  8. Interactions between ethylene, abscisic acid and cytokinin during germination and seedling establishment in Arabidopsis

    Veeraputhiran Subbiah; Karingu Janardhan Reddy

    2010-09-01

    In order to investigate the interaction of the plant hormones ethylene, abscisic acid (ABA) and cytokinin in seed germination and early seedling development, we studied germination in ethylene-related mutants of Arabidopsis. Mutations in the genes etr1 and ein2, which reduce ethylene responses, showed increased dormancy and a delay in germination in comparison with wild type. Mutations in etr1, ein2 and ein6 also resulted in increased sensitivity to ABA with respect to inhibition of germination. Conversely, mutations in ctr1 and eto3, which lead to an increased ethylene response and overproduction of ethylene, respectively, decreased sensitivity to ABA during germination. Increased ABA sensitivity was also effected in wild type seeds by the presence during germination of AgNO3, an inhibitor of ethylene action. The addition of the cytokinin N-6 benzyl adenine (BA) reversed the increased sensitivity of ethylene-resistant mutants to ABA. The action of cytokinin in reversing increased ABA sensitivity of ethylene-resistant mutants also suggests that at least part of the action of cytokinin in promoting germination is independent of its role in stimulating ethylene production. These observations further extend the evidence in support of interaction between ethylene, ABA and cytokinin signalling in controlling seed germination and early seedling development in Arabidopsis.

  9. Growth, Gas Exchange, Abscisic Acid, and Calmodulin Response to Salt Stress in Three Poplars

    2006-01-01

    In the present study, we investigated the effects of increasing salinity on growth, gas exchange, abscisic acid(ABA), calmodulin (CAM), and the relevance to salt tolerance in seedlings of Populus euphratica Oliv. and cuttings of P. "pupularis 35-44" (P. popularis) and P. x euramericana cv. 1-214 (P. cv. Italica). The relative growth rates of shoot height (RGRH) for P. cv. Italica and P. popularis were severely reduced by increasing salt stress,whereas the growth reduction was relatively less in P. euphratica. Similarly, P. euphratica maintained higher net photosynthetic rates (Pn) and unit transpiration rates (TRN) than P. cv. Italica and P. popularis under conditions of higher salinity. Salinity caused a significant increase in leaf ABA and CaM in the three genotypes after the onset of stress, but NaCl-induced ABA and CaM accumulation was more pronounced in P. euphratica,suggesting that P. euphratica plants are more sensitive in sensing soil salinity than the other two poplars.Furthermore, P. euphratica maintained relatively higher ABA and CaM concentrations under conditions of high salinity. The higher capacity to synthesize stress signals, namely ABA and CaM, in P. euphratica and the contribution of this to the salt resistance of P. euphratica are discussed.

  10. Up-regulation of abscisic acid signaling pathway facilitates aphid xylem absorption and osmoregulation under drought stress.

    Guo, Huijuan; Sun, Yucheng; Peng, Xinhong; Wang, Qinyang; Harris, Marvin; Ge, Feng

    2016-02-01

    The activation of the abscisic acid (ABA) signaling pathway reduces water loss from plants challenged by drought stress. The effect of drought-induced ABA signaling on the defense and nutrition allocation of plants is largely unknown. We postulated that these changes can affect herbivorous insects. We studied the effects of drought on different feeding stages of pea aphids in the wild-type A17 of Medicago truncatula and ABA signaling pathway mutant sta-1. We examined the impact of drought on plant water status, induced plant defense signaling via the abscisic acid (ABA), jasmonic acid (JA), and salicylic acid (SA) pathways, and on the host nutritional quality in terms of leaf free amino acid content. During the penetration phase of aphid feeding, drought decreased epidermis/mesophyll resistance but increased mesophyll/phloem resistance of A17 but not sta-1 plants. Quantification of transcripts associated with ABA, JA and SA signaling indicated that the drought-induced up-regulation of ABA signaling decreased the SA-dependent defense but increased the JA-dependent defense in A17 plants. During the phloem-feeding phase, drought had little effect on the amino acid concentrations and the associated aphid phloem-feeding parameters in both plant genotypes. In the xylem absorption stage, drought decreased xylem absorption time of aphids in both genotypes because of decreased water potential. Nevertheless, the activation of the ABA signaling pathway increased water-use efficiency of A17 plants by decreasing the stomatal aperture and transpiration rate. In contrast, the water potential of sta-1 plants (unable to close stomata) was too low to support xylem absorption activity of aphids; the aphids on sta-1 plants had the highest hemolymph osmolarity and lowest abundance under drought conditions. Taken together this study illustrates the significance of cross-talk between biotic-abiotic signaling pathways in plant-aphid interaction, and reveals the mechanisms leading to alter

  11. Application time and concentrations of abscisic acid on the color development of ‘Isabel’ grapes

    Renata Koyama

    2014-09-01

    Full Text Available The grape ‘Isabel’ main cultivar used for juice production in Brazil has a deficiency of coloring and an alternative is the application of abscisic acid (S-ABA, since the accumulation of anthocyanins, pigment that interferes in the color of berries, appears to be regulated by this growth regulator. The aim of this research was to evaluate the effect of different concentrations of S-ABA applied at different times in the clusters of ‘Isabel’ grapes to improve their color attributes. The vines were conducted in a vertical support structure, spaced 2 x 1 m in cordon. A randomized block design was used as a statistical model, with 4 replications and 5 treatments, as follows: control; S-ABA 200 mg L-1 applied seven days after veraison (DAV; S-ABA 400 mg L-1 7 DAV; S-ABA 200 mg L-1 7 DAV +S-ABA 200 mg L-1 10 days before harvest (DBH; S-ABA 400 mg L-1 7 DAV + 400 mg L-1 10 DBH. At harvest the following variables were evaluated: mass and diameter of the berries, mass and length of the clusters; soluble solids (SS, titratable acidity (TA and maturation index (TSS/TA. It was also evaluated the concentration of anthocyanins and total polyphenol index in wine and juice, prepared by the extraction method of the pan and color of the berries by colorimetry. The application of S-ABA did not influence the physical characteristics of the grapes, however, favored the increase of SS and SS/TA of the berries, except for the concentration of 200 mg L-1 applied seven days after veraison. The S-ABA has an effect on improving the content of anthocyanins of the berries and the juice of the ‘Isabel’ grape, mainly in the 400 mg L-1 applied 7 DAV + 10 DBH, besides enabling the improvement in the color attribute of berries.

  12. Nitric oxide functions in both methyl jasmonate signaling and abscisic acid signaling in Arabidopsis guard cells

    Saito, Naoki; Nakamura, Yoshimasa; Mori, Izumi C.; Murata, Yoshiyuki

    2009-01-01

    Intracellular components in methyl jasmonate (MeJA) signaling remain largely unknown, to compare those in well-understood abscisic acid (ABA) signaling. We have reported that nitric oxide (NO) is a signaling component in MeJA-induced stomatal closure, as well as ABA-induced stomatal closure in the previous study. To gain further information about the role of NO in the guard cell signaling, NO production was examined in an ABA- and MeJA-insensitive Arabidopsis mutant, rcn1. Neither MeJA nor AB...

  13. ATAF1 transcription factor directly regulates abscisic acid biosynthetic gene NCED3 in Arabidopsis thaliana

    Jensen, Michael Krogh; Lindemose, Søren; De Masi, Federico;

    2013-01-01

    ATAF1, an Arabidopsis thaliana NAC transcription factor, plays important roles in plant adaptation to environmental stress and development. To search for ATAF1 target genes, we used protein binding microarrays and chromatin-immunoprecipitation (ChIP). This identified T[A,C,G]CGT[A,G] and TT...... key abscisic acid (ABA) phytohormone biosynthetic gene NCED3. ChIP-qPCR and expression analysis showed that ATAF1 binding to the NCED3 promoter correlated with increased NCED3 expression and ABA hormone levels. These results indicate that ATAF1 regulates ABA biosynthesis....

  14. Abscisic acid-cytokinin antagonism modulates resistance against pseudomonas syringae in Tobacco

    Grosskinsky, Dominik Kilian; van der Graaff, Eric; Roitsch, Thomas Georg

    2014-01-01

    Phytohormones are known as essential regulators of plant defenses, with ethylene, jasmonic acid, and salicylic acid as the central immunity backbone, while other phytohormones have been demonstrated to interact with this. Only recently, a function of the classic phytohormone cytokinin in plant...... immunity has been described in Arabidopsis, rice, and tobacco. Although interactions of cytokinins with salicylic acid and auxin have been indicated, the complete network of cytokinin interactions with other immunity-relevant phytohormones is not yet understood. Therefore, we studied the interaction...... of kinetin and abscisic acid as a negative regulator of plant immunity to modulate resistance in tobacco against Pseudomonas syringae. By analyzing infection symptoms, pathogen proliferation, and accumulation of the phytoalexin scopoletin as a key mediator of kinetin-induced resistance in tobacco...

  15. Abscisic Acid Induces Rapid Reductions in Mesophyll Conductance to Carbon Dioxide.

    Giuseppe Sorrentino

    Full Text Available The rate of photosynthesis (A of plants exposed to water deficit is a function of stomatal (gs and mesophyll (gm conductance determining the availability of CO2 at the site of carboxylation within the chloroplast. Mesophyll conductance often represents the greatest impediment to photosynthetic uptake of CO2, and a crucial determinant of the photosynthetic effects of drought. Abscisic acid (ABA plays a fundamental role in signalling and co-ordination of plant responses to drought; however, the effect of ABA on gm is not well-defined. Rose, cherry, olive and poplar were exposed to exogenous ABA and their leaf gas exchange parameters recorded over a four hour period. Application with ABA induced reductions in values of A, gs and gm in all four species. Reduced gm occurred within one hour of ABA treatment in three of the four analysed species; indicating that the effect of ABA on gm occurs on a shorter timescale than previously considered. These declines in gm values associated with ABA were not the result of physical changes in leaf properties due to altered turgor affecting movement of CO2, or caused by a reduction in the sub-stomatal concentration of CO2 (Ci. Increased [ABA] likely induces biochemical changes in the properties of the interface between the sub-stomatal air-space and mesophyll layer through the actions of cooporins to regulate the transport of CO2. The results of this study provide further evidence that gm is highly responsive to fluctuations in the external environment, and stress signals such as ABA induce co-ordinated modifications of both gs and gm in the regulation of photosynthesis.

  16. Ammonium regulates embryogenic potential in Cucurbita pepo through pH-mediated changes in endogenous auxin and abscisic acid

    Pěnčík, Aleš; Turečková, Veronika; Paulisić, S.; Rolčík, Jakub; Strnad, Miroslav; Mihaljević, S.

    2015-01-01

    Roč. 122, č. 1 (2015), s. 89-100. ISSN 0167-6857 Grant ostatní: GA MŠk(CZ) ED0007/01/01 Institutional support: RVO:61389030 Keywords : Abscisic acid * Ammonium * Indole-3-acetic acid Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.125, year: 2014

  17. Abscisic acid content and stomatal sensitivity to CO/sub 2/ in leaves of Xanthium strumarium L. after pretreatments in warm and cold growth chambers

    Raschke, K.; Pierce, M.; Popiela, C.C.

    1976-01-01

    The degree of stomatal sensitivity to CO/sub 2/ was positively correlated with the content of abscisic acid of leaves of Xanthium strumarium grown in a greenhouse and then transferred for 24 hours or more to a cold (5/10 C, night/day) or a warm growth chamber (20/23 C). This correlation did not exist in plants kept in the greenhouse continuously (high abscisic acid, no CO/sub 2/ sensitivity), nor in plants transferred from the cold to the warm chamber (low absicisic acid, high CO/sub 2/ sensitivity). The abscisic acid content of leaves was correlated with water content only within narrow limits, if at all. At equal water contents, prechilled leaves contained more abscisic acid than leaves of plants pretreated in the warm chamber. There appear to be at least two compartments for abscisic acid in the leaf.

  18. Abscisic acid metabolism in relation to water stress and leaf age in Xanthium strumarium

    Cornish, K.; Zeevaart, J.A.D.

    1984-12-01

    Intact plants of Xanthium strumarium L. were subjected to a water stress-recovery cycle. As the stress took effect, leaf growth ceased and stomatal resistance increased. The mature leaves then wilted, followed by the half expanded ones. Water, solute, and pressure potentials fell steadily in all leaves during the rest of the stress period. After 3 days, the young leaves lost turgor and the plants were rewatered. All the leaves rapidly regained turgor and the younger ones recommenced elongation. Stomatal resistance declined, but several days elapsed before pre-stress values were attained. Abscisic aid (ABA) and phaseic acid (PA) levels rose in all the leaves after the mature ones wilted. ABA-glucose ester (ABA-GE) levels increased to a lesser extent, and the young leaves contained little of this conjugate. PA leveled off in the older leaves during the last 24 hours of stress, and ABA levels declined slightly. The young leaves accumulated ABA and PA throughout the stress period and during the 14-hour period immediately following rewatering. The ABA and PA contents, expressed per unit dry weight, were highest in the young leaves. Upon rewatering, large quantities of PA appeared in the mature leaves as ABA levels fell to the pre-stress level within 14 hours. In the half expanded and young leaves, it took several days to reach pre-stress ABA values. ABA-GE synthesis ceased in the mature leaves, once the stress was relieved, but continued in the half expanded and young leaves for 2 days. Mature leaves, when detached and stressed, accumulated an amount of ABA similar to that in leaves on the intact plant. In contrast, detached and stressed young leaves produced little ABA. Studies with radioactive (+/-)-ABA indicated that in young leaves the conversion of ABA to PA took place at a much lower rate than in mature ones. 25 references, 10 figures, 2 tables.

  19. Large-scale proteome analysis of abscisic acid and ABSCISIC ACID INSENSITIVE3-dependent proteins related to desiccation tolerance in Physcomitrella patens.

    Yotsui, Izumi; Serada, Satoshi; Naka, Tetsuji; Saruhashi, Masashi; Taji, Teruaki; Hayashi, Takahisa; Quatrano, Ralph S; Sakata, Yoichi

    2016-03-18

    Desiccation tolerance is an ancestral feature of land plants and is still retained in non-vascular plants such as bryophytes and some vascular plants. However, except for seeds and spores, this trait is absent in vegetative tissues of vascular plants. Although many studies have focused on understanding the molecular basis underlying desiccation tolerance using transcriptome and proteome approaches, the critical molecular differences between desiccation tolerant plants and non-desiccation plants are still not clear. The moss Physcomitrella patens cannot survive rapid desiccation under laboratory conditions, but if cells of the protonemata are treated by the phytohormone abscisic acid (ABA) prior to desiccation, it can survive 24 h exposure to desiccation and regrow after rehydration. The desiccation tolerance induced by ABA (AiDT) is specific to this hormone, but also depends on a plant transcription factor ABSCISIC ACID INSENSITIVE3 (ABI3). Here we report the comparative proteomic analysis of AiDT between wild type and ABI3 deleted mutant (Δabi3) of P. patens using iTRAQ (Isobaric Tags for Relative and Absolute Quantification). From a total of 1980 unique proteins that we identified, only 16 proteins are significantly altered in Δabi3 compared to wild type after desiccation following ABA treatment. Among this group, three of the four proteins that were severely affected in Δabi3 tissue were Arabidopsis orthologous genes, which were expressed in maturing seeds under the regulation of ABI3. These included a Group 1 late embryogenesis abundant (LEA) protein, a short-chain dehydrogenase, and a desiccation-related protein. Our results suggest that at least three of these proteins expressed in desiccation tolerant cells of both Arabidopsis and the moss are very likely to play important roles in acquisition of desiccation tolerance in land plants. Furthermore, our results suggest that the regulatory machinery of ABA- and ABI3-mediated gene expression for desiccation

  20. β-Aminobutyric acid increases abscisic acid accumulation and desiccation tolerance and decreases water use but fails to improve grain yield in two spring wheat cultivars under soil drying

    Du, Yan-Lei; Wang, Zhen-Yu; Fan, Jing-Wei; Turner, Neil C.; Wang, Tao; Li, Feng-Min

    2012-01-01

    A pot experiment was conducted to investigate the effect of the non-protein amino acid, β-aminobutyric acid (BABA), on the homeostasis between reactive oxygen species (ROS) and antioxidant defence during progressive soil drying, and its relationship with the accumulation of abscisic acid (ABA), water use, grain yield, and desiccation tolerance in two spring wheat (Triticum aestivum L.) cultivars released in different decades and with different yields under drought. Drenching the soil with 100...

  1. Abscisic acid as a factor in regulation of photosynthetic carbon metabolism of pea seedlings

    Maria Faltynowicz

    2014-02-01

    Full Text Available The influence of abscisic acid (ABA on carbon metabolism and the activity of ribulosebisphosphate (RuBP and phosphoenolpyruvate (PEP carboxylases in 8-day-old pea seedlings was investigated. It was endeavoured to correlate the changes observed in metabolic processes with the endogenous ABA level. In plants treated with ABA incorporation of labeled carbon into sucrose, glucose, fructose and sugar phosphates was depressed, while 14C incorporation into starch, ribulose and malic acid was enhanced. The activity of RuBP carboxylase was considerably lowered, whereas that of PEP carboxylase was slightly increased. It is considered that inhibition of photosynthesis due to the action of ABA is caused to a great extent by the obstruction of the C-3 pathway and reduced activity of RuBP carboxylase, whereas (β-carboxylation was not blocked.

  2. The antagonistic regulation of abscisic acid-inhibited root growth by brassinosteroids is partially mediated via direct suppression of ABSCISIC ACID INSENSITIVE 5 expression by BRASSINAZOLE RESISTANT 1.

    Yang, Xiaorui; Bai, Yang; Shang, Jianxiu; Xin, Ruijiao; Tang, Wenqiang

    2016-09-01

    Brassinosteroids (BRs) and abscisic acid (ABA) are plant hormones that antagonistically regulate many aspects of plant growth and development; however, the mechanisms that regulate the crosstalk of these two hormones are still not well understood. BRs regulate plant growth and development by activating BRASSINAZOLE RESISTANT 1 (BZR1) family transcription factors. Here we show that the crosstalk between BRs and ABA signalling is partially mediated by BZR1 regulated gene expression. bzr1-1D is a dominant mutant with enhanced BR signalling; our results showed that bzr1-1D mutant is less sensitive to ABA-inhibited primary root growth. By RNA sequencing, a subset of BZR1 regulated ABA-responsive root genes were identified. Of these genes, the expression of a major ABA signalling component ABA INSENSITIVE 5 (ABI5) was found to be suppressed by BR and by BZR1. Additional evidences showed that BZR1 could bind strongly with several G-box cis-elements in the promoter of ABI5, suppress the expression of ABI5 and make plants less sensitive to ABA. Our study demonstrated that ABI5 is a direct target gene of BZR1, and modulating the expression of ABI5 by BZR1 plays important roles in regulating the crosstalk between the BR and ABA signalling pathways. PMID:27149247

  3. Functional annotation of the transcriptome of Sorghum bicolor in response to osmotic stress and abscisic acid

    Kumari Sunita

    2011-10-01

    Full Text Available Abstract Background Higher plants exhibit remarkable phenotypic plasticity allowing them to adapt to an extensive range of environmental conditions. Sorghum is a cereal crop that exhibits exceptional tolerance to adverse conditions, in particular, water-limiting environments. This study utilized next generation sequencing (NGS technology to examine the transcriptome of sorghum plants challenged with osmotic stress and exogenous abscisic acid (ABA in order to elucidate genes and gene networks that contribute to sorghum's tolerance to water-limiting environments with a long-term aim of developing strategies to improve plant productivity under drought. Results RNA-Seq results revealed transcriptional activity of 28,335 unique genes from sorghum root and shoot tissues subjected to polyethylene glycol (PEG-induced osmotic stress or exogenous ABA. Differential gene expression analyses in response to osmotic stress and ABA revealed a strong interplay among various metabolic pathways including abscisic acid and 13-lipoxygenase, salicylic acid, jasmonic acid, and plant defense pathways. Transcription factor analysis indicated that groups of genes may be co-regulated by similar regulatory sequences to which the expressed transcription factors bind. We successfully exploited the data presented here in conjunction with published transcriptome analyses for rice, maize, and Arabidopsis to discover more than 50 differentially expressed, drought-responsive gene orthologs for which no function had been previously ascribed. Conclusions The present study provides an initial assemblage of sorghum genes and gene networks regulated by osmotic stress and hormonal treatment. We are providing an RNA-Seq data set and an initial collection of transcription factors, which offer a preliminary look into the cascade of global gene expression patterns that arise in a drought tolerant crop subjected to abiotic stress. These resources will allow scientists to query gene

  4. The p450 monooxygenase BcABA1 is essential for abscisic acid biosynthesis in Botrytis cinerea

    Siewers, V.; Smedsgaard, Jørn; Tudzynski, P.

    2004-01-01

    The phytopathogenic ascomycete Botrytis cinerea is known to produce abscisic acid (ABA), which is thought to be involved in host-pathogen interaction. Biochemical analyses had previously shown that, in contrast to higher plants, the fungal ABA biosynthesis probably does not proceed via carotenoids...

  5. Exogenous abscisic acid application during grain filling in winter wheat improves cold tolerance of offspring's seedlings

    Li, X.; Cai, J.; Liu, Fulai;

    2014-01-01

    Low temperature seriously depresses seed germination and seedling growth in winter wheat (Triticum aestivum L.). In this study, wheat plants were sprayed with abscisic acid (ABA) and fluridone (inhibitor of ABA biosynthesis) at 19 days after anthesis (DAA) and repeated at 26 DAA. The seeds of those...... plants were harvested, and seed germination and offspring's seedling growth under low temperature were evaluated. The results showed that exogenous ABA application decreased seed weight and slightly reduced seed set and seed number per spike. Under low temperature, seeds from ABA-treated plants showed...... reduced germination rate, germination index, growth of radicle and coleoptile, amylase activity and depressed starch degradation as compared with seeds from non-ABA-treated plants; however, activities of the antioxidant enzymes in both germinating seeds and seedling were enhanced from those exposed to...

  6. Isolation and Crystal Structure of 1′,4′-Trans-diol of Abscisic Acid

    WANG Tian-Shan; ZHOU Jin-Yan; TAN Hong

    2006-01-01

    1 ′,4′-Trans-diol of abscisic acid was isolated from botrytis cinerea as a colorless crystal. The molecular and crystal structures have been determined by X-ray diffraction analysis. It crystallizes in orthorhombic system, space group P212121 with a = 6.724(3), b = 17.559(6), c =12.265(2) (A), a = β = y = 90°, V = 1448.1(8) (A)3, Z = 4, Dx = 1.222 g/cm3, F(000) = 576 and μ(MoKa) = 0.087 mm-1. The final R = 0.0628 and wR = 0.1604 for 2501 independent reflections with Rint = 0.0160 and 1679 observed reflections with I >2σ(Ⅰ). There are three intermolecular hydrogen bonds in a unit cell.

  7. A central role of abscisic acid in stress-regulated carbohydrate metabolism.

    Stefan Kempa

    Full Text Available BACKGROUND: Abiotic stresses adversely affect plant growth and development. The hormone abscisic acid (ABA plays a central role in the response and adaptation to environmental constraints. However, apart from the well established role of ABA in regulating gene expression programmes, little is known about its function in plant stress metabolism. PRINCIPAL FINDINGS: Using an integrative multiparallel approach of metabolome and transcriptome analyses, we studied the dynamic response of the model glyophyte Arabidopsis thaliana to ABA and high salt conditions. Our work shows that salt stress induces complex re-adjustment of carbohydrate metabolism and that ABA triggers the initial steps of carbon mobilisation. SIGNIFICANCE: These findings open new perspectives on how high salinity and ABA impact on central carbohydrate metabolism and highlight the power of iterative combinatorial approaches of non-targeted and hypothesis-driven experiments in stress biology.

  8. Involvement of Polyamine Oxidase in Abscisic Acid induced Cytosolic Antioxidant Defense in Leaves of Maize

    Beibei Xue; Aying Zhang; Mingyi Jiang

    2009-01-01

    Using pharmacological and biochemical approaches, the role of maize polyamine oxidase (MPAO) in abscisic acid (ABA)induced antioxidant defense in leaves of maize (Zea mays L.) plants was investigated. Exogenous ABA treatment enhanced the expression of the MPAO gene and the activities of apoplastic MPAO. Pretreatment with two different inhibitors for apoplastic MPAO partly reduced hydrogen peroxide (H2O2) accumulation induced by ABA and blocked the ABA-induced expression of the antioxidant genes superoxide dismutase 4 and cytosolic ascorbate peroxidase and the activities of the cytosolic antioxidant enzymes. Treatment with spermidine, the optimum substrate of MPAO, also induced the expression and the activities of the antioxidant enzymes, and the upregulation of the antioxidant enzymes was prevented by two inhibitors of MPAO and two scavengers of H2O2. These results suggest that MPAO contributes to ABA-induced cytosolic antioxidant defense through H2O2, a Spd catabolic product.

  9. QTLs and candidate genes for desiccation and abscisic acid content in maize kernels

    Charcosset Alain

    2010-01-01

    Full Text Available Abstract Background Kernel moisture at harvest is an important trait since a low value is required to prevent unexpected early germination and ensure seed preservation. It is also well known that early germination occurs in viviparous mutants, which are impaired in abscisic acid (ABA biosynthesis. To provide some insight into the genetic determinism of kernel desiccation in maize, quantitative trait loci (QTLs were detected for traits related to kernel moisture and ABA content in both embryo and endosperm during kernel desiccation. In parallel, the expression and mapping of genes involved in kernel desiccation and ABA biosynthesis, were examined to detect candidate genes. Results The use of an intermated recombinant inbred line population allowed for precise QTL mapping. For 29 traits examined in an unreplicated time course trial of days after pollination, a total of 78 QTLs were detected, 43 being related to kernel desiccation, 15 to kernel weight and 20 to ABA content. Multi QTL models explained 35 to 50% of the phenotypic variation for traits related to water status, indicating a large genetic control amenable to breeding. Ten of the 20 loci controlling ABA content colocated with previously detected QTLs controlling water status and ABA content in water stressed leaves. Mapping of candidate genes associated with kernel desiccation and ABA biosynthesis revealed several colocations between genes with putative functions and QTLs. Parallel investigation via RT-PCR experiments showed that the expression patterns of the ABA-responsive Rab17 and Rab28 genes as well as the late embryogenesis abundant Emb5 and aquaporin genes were related to desiccation rate and parental allele effect. Database searches led to the identification and mapping of two zeaxanthin epoxidase (ZEP and five novel 9-cis-epoxycarotenoid dioxygenase (NCED related genes, both gene families being involved in ABA biosynthesis. The expression of these genes appeared independent in

  10. Low irradiances affect abscisic acid, indole-3-acidic acid, and cytokinin levels of wheat (Triticum aestivum L.) tissues

    Nan, R.; Carman, J. G.; Salisbury, F. B.

    1999-01-01

    Wheat (Triticum aestivum L.) plants were grown under four irradiance levels: 1,400, 400, 200, and 100 micromol m-2 s-1. Leaves and roots were sampled before, during, and after the boot stage, and levels of abscisic acid (ABA), indole-3-acetic acid (IAA), zeatin, zeatin riboside, dihydrozeatin, dihydrozeatin riboside, isopentenyl adenine, and isopentenyl adenosine were quantified using noncompetitive indirect ELISA systems. Levels of IAA in leaves and roots of plants exposed to 100 micromol m-2 s-1 of irradiance were 0.7 and 2.9 micromol kg-1 dry mass (DM), respectively. These levels were 0.2 and 1.0 micromol kg-1 DM, respectively, when plants were exposed to 1,400 micromol m-2 s-1. Levels of ABA in leaves and roots of plants exposed to 100 micromol m-2 s-1 were 0.65 and 0.55 micromol kg-1 DM, respectively. They were 0.24 micromol kg-1 DM (both leaves and roots) when plants were exposed to 1,400 micromol m-2 s-1. Levels of isopentenyl adenosine in leaves (24.3 nmol kg-1 DM) and roots (29.9 nmol kg-1 DM) were not affected by differences in the irradiance regime. Similar values were obtained in a second experiment. Other cytokinins could not be detected (<10 nmol kg 1 DM) in either experiment with the sample sizes used (150-600 mg DM for roots and shoots, respectively).

  11. An Abscisic Acid-Independent Oxylipin Pathway Controls Stomatal Closure and Immune Defense in Arabidopsis

    Mondy, Samuel; Tranchimand, Sylvain; Rumeau, Dominique; Boudsocq, Marie; Garcia, Ana Victoria; Douki, Thierry; Bigeard, Jean; Laurière, Christiane; Chevalier, Anne; Castresana, Carmen; Hirt, Heribert

    2013-01-01

    Plant stomata function in innate immunity against bacterial invasion and abscisic acid (ABA) has been suggested to regulate this process. Using genetic, biochemical, and pharmacological approaches, we demonstrate that (i) the Arabidopsis thaliana nine-specific-lipoxygenase encoding gene, LOX1, which is expressed in guard cells, is required to trigger stomatal closure in response to both bacteria and the pathogen-associated molecular pattern flagellin peptide flg22; (ii) LOX1 participates in stomatal defense; (iii) polyunsaturated fatty acids, the LOX substrates, trigger stomatal closure; (iv) the LOX products, fatty acid hydroperoxides, or reactive electrophile oxylipins induce stomatal closure; and (v) the flg22-mediated stomatal closure is conveyed by both LOX1 and the mitogen-activated protein kinases MPK3 and MPK6 and involves salicylic acid whereas the ABA-induced process depends on the protein kinases OST1, MPK9, or MPK12. Finally, we show that the oxylipin and the ABA pathways converge at the level of the anion channel SLAC1 to regulate stomatal closure. Collectively, our results demonstrate that early biotic signaling in guard cells is an ABA-independent process revealing a novel function of LOX1-dependent stomatal pathway in plant immunity. PMID:23526882

  12. Influence of abscisic acid on growth, biomass and lipid yield of Scenedesmus quadricauda under nitrogen starved condition.

    Sulochana, Sujitha Balakrishnan; Arumugam, Muthu

    2016-08-01

    Scenedesmus quadricauda, accumulated more lipid but with a drastic reduction in biomass yield during nitrogen starvation. Abscisic acid (ABA) being a stress responsible hormone, its effect on growth and biomass with sustainable lipid yield during nitrogen depletion was studied. The result revealed that the ABA level shoots up at 24h (27.21pmol/L) during the onset of nitrogen starvation followed by a sharp decline. The external supplemented ABA showed a positive effect on growth pattern (38×10(6)cells/ml) at a lower concentration. The dry biomass yield is also increasing up to 2.1 fold compared to nitrogen deficient S. quadricauda. The lipid content sustains in 1 and 2μM concentration of ABA under nitrogen-deficient condition. The fatty acid composition of ABA treated S. quadricauda cultures with respect to nitrogen-starved cells showed 11.17% increment in saturated fatty acid content, the desired lipid composition for biofuel application. PMID:26949054

  13. 1-Aminocyclopropane-1-carboxylic acid and abscisic acid during the germination of sugar beet (Beta vulgaris L.): a comparative study of fruits and seeds

    Hermann, K.; Meinhard, J.; Dobrev, Petre; Linkies, A.; Pešek, Bedřich; Heß, B.; Macháčková, Ivana; Fischer, U.; Leubner-Metzger, G.

    2007-01-01

    Roč. 58, č. 11 (2007), s. 3047-3060. ISSN 0022-0957 Institutional research plan: CEZ:AV0Z50380511 Keywords : abscisic acid (ABA) * ABA 8'-hydroxylase (CYP707A) * 1-aminocyclopropane-1-carboxylic acid (ACC) Subject RIV: EF - Botanics Impact factor: 3.917, year: 2007

  14. Hydrogen peroxide modulates abscisic acid signaling in root growth and development in Arabidopsis

    BAI Ling; ZHOU Yun; ZHANG XiaoRan; SONG ChunPeng; Gao MingQing

    2007-01-01

    Exogenous abscisic acid (ABA) can inhibit root growth and promote formation of more root hairs in the root tip of Arabidopsis. However, the molecular mechanisms that underlie root ABA signaling are largely unknown. We report here that hydrogen peroxide (H2O2) reduces the root growth of wild type,and the phenotype of H2O2 on the root growth is similar to ABA response. Meanwhile ABA-induced changes in the morphology of root system can be partly reversed by ascorbic acid in wild type and abolished in NADPH oxidase defective mutant atrbohF and atrbohC. Further, ABA can induce H2O2 accumulation in the root cells and enhance transcription level of OXI1, which is necessary for many more AOS-dependent processes such as root hair growth in Arabidopsis. Our results suggest that H2O2 as an important signal molecule is required for the ABA-regulated root growth and development in Arabidopsis.

  15. Relative quantification of phosphoproteomic changes in grapevine (Vitis vinifera L.) leaves in response to abscisic acid

    Rattanakan, Supakan; George, Iniga; Haynes, Paul A; Cramer, Grant R

    2016-01-01

    In a previous transcriptomic analysis, abscisic acid (ABA) was found to affect the abundance of a number of transcripts in leaves of Cabernet Sauvignon grapevines with roots that had been exposed to 10 μm ABA for 2 h. Other work has indicated that ABA affects protein abundance and protein phosphorylation as well. In this study we investigated changes in protein abundance and phosphorylation of Cabernet Sauvignon grapevine leaves. Protein abundance was assessed by both label-free and isobaric-label quantitive proteomic methods. Each identified common proteins, but also additional proteins not found with the other method. Overall, several thousand proteins were identified and several hundred were quantified. In addition, hundreds of phosphoproteins were identified. Tens of proteins were found to be affected in the leaf after the roots had been exposed to ABA for 2 h, more than half of them were phosphorylated proteins. Many phosphosites were confirmed and several new ones were identified. ABA increased the abundance of some proteins, but the majority of the proteins had their protein abundance decreased. Many of these proteins were involved in growth and plant organ development, including proteins involved in protein synthesis, photosynthesis, sugar and amino-acid metabolism. This study provides new insights into how ABA regulates plant responses and acclimation to water deficits. PMID:27366326

  16. Phenolic compounds in juice of “Isabel” grape treated with abscisic acid for color improvement

    Yamamoto Lilian Yukari

    2015-01-01

    Full Text Available Isabel grape is the main cultivar used to produce juice in Brazil, which has rusticity and high productivity, but it is deficient in anthocyanins, a pigment responsible for the color. Thus, an alternative is the application of abscisic acid (S-ABA, which is responsible to promote the synthesis of anthocyanins. The aim of this work was to evaluate the phenolic compounds composition in “Isabel” grape juice treated with S-ABA, by HPLC-DAD–ESI-MS/MS technique. The results showed the increasing in total anthocyanin concentration in juices, with S-ABA treatments, as well as the proportion of B-ring tri-substituted anthocyanidins. Regarding total flavonols, differences were only significant in juices obtained in 2012 season. S-ABA treatments did not significantly affect the hydroxycinnamic acid derivatives, flavan-3-ols, resveratrol and antioxidant capacity of juices. Juice from “Isabel” grapes treated with S-ABA provides an enhancement of total anthocyanin concentration, mainly when grapes are treated before or at the onset of véraison.

  17. Proline and Abscisic Acid Content in Droughted Corn Plant Inoculated with Azospirillum sp. and Arbuscular Mycorrhizae Fungi

    NOVRI YOULA KANDOWANGKO

    2009-03-01

    Full Text Available Plants that undergo drought stress perform a physiological response such as accumulation of proline in the leaves and increased content abscisic acid. A research was conducted to study proline and abscisic acid (ABA content on drought-stressed corn plant with Azospirillum sp. and arbuscular mycorrhizae fungi (AMF inoculated at inceptisol soil from Bogor, West Java. The experiments were carried out in a green house from June up to September 2003, using a factorial randomized block design. In pot experiments, two factors were assigned, i.e. inoculation with Azospirillum (0, 0.50, 1.00, 1.50 ml/pot and inoculation with AMF Glomus manihotis (0, 12.50, 25.00, 37.50 g/pot. The plants were observed during tasseling up to seed filling periods. Results of experiments showed that the interaction between Azospirillum sp. and AMF was synergistically increased proline, however it decreased ABA.

  18. Cytokinin, auxin, and abscisic acid dynamics during flower development in white and red currants infected with Blackcurrant reversion virus

    Gaudinová, Alena; Malbeck, Jiří; Dobrev, Petre; Kubelková, Darina; Špak, Josef; Vaňková, Radomíra

    2009-01-01

    Roč. 73, č. 6 (2009), s. 119-125. ISSN 0885-5765 R&D Projects: GA MŠk 1P05OC052; GA MŠk OC09084 Institutional research plan: CEZ:AV0Z50380511; CEZ:AV0Z50510513 Keywords : Full blossom disease * Cytokinin * Auxin * Abscisic acid Subject RIV: ED - Physiology Impact factor: 1.407, year: 2009

  19. Gibberellin-to-abscisic acid balances govern development and differentiation of the nucellar projection of barley grains

    Weier, D.; Thiel, J.; Kohl, S.; Tarkowská, Danuše; Strnad, Miroslav; Schaarschmidt, S.; Weschke, W.; Weber, H.; Hause, B.

    2014-01-01

    Roč. 65, č. 18 (2014), s. 5291-5304. ISSN 0022-0957 R&D Projects: GA MŠk LK21306 Grant ostatní: GA MŠk(CZ) ED0007/01/01 Institutional support: RVO:61389030 Keywords : Assimilate transfer * barley endosperm * gibberellin-to-abscisic acid balances Subject RIV: EF - Botanics Impact factor: 5.526, year: 2014

  20. Jasmonate signaling involves the abscisic acid receptor PYL4 to regulate metabolic reprogramming in Arabidopsis and tobacco

    Lackman, P.; Gonzalez-Guzman, M.; Tilleman, S.; Carqueijeiro, I.; Perez, A.C.; Moses, T.; Seo, M.; Kanno, Y; Hakkinen, S. T.; Van Montagu, M. C. E.; Thevelein, J M; Maaheimo, H.; Oksman-Caldentey, K.-M.; Rodriguez, P L; Rischer, H.

    2011-01-01

    The phytohormones jasmonates (JAs) constitute an important class of elicitors for many plant secondary metabolic pathways. However, JAs do not act independently but operate in complex networks with crosstalk to several other phytohormonal signaling pathways. Here, crosstalk was detected between the JA and abscisic acid (ABA) signaling pathways in the regulation of tobacco (Nicotiana tabacum) alkaloid biosynthesis. A tobacco gene from the PYR/PYL/RCAR family, NtPYL4, the expression of which is...

  1. Foliar abscisic acid-to-ethylene accumulation and response regulate shoot growth sensitivity to mild drought in wheat

    Valluru, Ravi; Davies, William John; Reynolds, Matthew; Dodd, Ian Charles

    2016-01-01

    Although, plant hormones play an important role in adjusting growth in response to environmental perturbation, the relative contributions of abscisic acid (ABA) and ethylene remain elusive. Using six spring wheat genotypes differing for stress tolerance, we show that young seedlings of the drought-tolerant (DT) group maintained or increased shoot dry weight (SDW) while the drought-susceptible (DS) group decreased SDW in response to mild drought. Both the DT and DS groups increased endogenous ...

  2. Foliar abscisic acid-to-ethylene accumulation and response regulate shoot growth sensitivity to mild drought in wheat

    Ravi eValluru; William J eDavies; Matthew P eReynolds; Ian C eDodd

    2016-01-01

    Although plant hormones play an important role in adjusting growth in response to environmental perturbation, the relative contributions of abscisic acid (ABA) and ethylene remain elusive. Using six spring wheat genotypes differing for stress tolerance, we show that young seedlings of the drought-tolerant (DT) group maintained or increased shoot dry weight (SDW) while the drought-susceptible (DS) group decreased SDW in response to mild drought. Both the DT and DS groups increased endogenous A...

  3. Gene Overexpression and RNA Silencing Tools for the Genetic Manipulation of the S-(+)-Abscisic Acid Producing Ascomycete Botrytis cinerea

    Zhong-Tao Ding; Zhi Zhang; Di Luo; Jin-Yan Zhou; Juan Zhong; Jie Yang; Liang Xiao; Dan Shu; Hong Tan

    2015-01-01

    The phytopathogenic ascomycete Botrytis cinerea produces several secondary metabolites that have biotechnical significance and has been particularly used for S-(+)-abscisic acid production at the industrial scale. To manipulate the expression levels of specific secondary metabolite biosynthetic genes of B. cinerea with Agrobacterium tumefaciens-mediated transformation system, two expression vectors (pCBh1 and pCBg1 with different selection markers) and one RNA silencing vector, pCBSilent1, w...

  4. Functional annotation of the transcriptome of Sorghum bicolor in response to osmotic stress and abscisic acid

    Kumari Sunita; Klein Robert R; Olsen Andrew; Monaco Marcela K; Dugas Diana V; Ware Doreen; Klein Patricia E

    2011-01-01

    Abstract Background Higher plants exhibit remarkable phenotypic plasticity allowing them to adapt to an extensive range of environmental conditions. Sorghum is a cereal crop that exhibits exceptional tolerance to adverse conditions, in particular, water-limiting environments. This study utilized next generation sequencing (NGS) technology to examine the transcriptome of sorghum plants challenged with osmotic stress and exogenous abscisic acid (ABA) in order to elucidate genes and gene network...

  5. Abscisic acid enhances tolerance of wheat seedlings to drought and regulates transcript levels of genes encoding ascorbate-glutathione biosynthesis

    Wei, Liting; Wang, Lina; Yang, Yang; Wang, Pengfei; Guo, Tiancai; Kang, Guozhang

    2015-01-01

    Glutathione (GSH) and ascorbate (ASA) are associated with the abscisic acid (ABA)-induced abiotic tolerance in higher plant, however, its molecular mechanism remains obscure. In this study, exogenous application (10 μM) of ABA significantly increased the tolerance of seedlings of common wheat (Triticum aestivum L.) suffering from 5 days of 15% polyethylene glycol (PEG)-stimulated drought stress, as demonstrated by increased shoot lengths and shoot and root dry weights, while showing decreased...

  6. Crystallization and preliminary X-ray diffraction studies of the abscisic acid receptor PYL3 and its complex with pyrabactin

    Crystals of the abscisic acid receptor PYL3 and of the PYL3–pyrabactin complex were obtained and optimized in order to obtain high-quality diffraction data. Diffraction data sets were collected and processed to 2.5 and 1.83 Å resolution, respectively. Abscisic acid (ABA) modulates many developmental processes and responses to environmental stress. Recently, a family of pyrabactin resistance-like proteins (PYLs) in Arabidopsis thaliana were identified to be abscisic acid receptors. Although the 14 PYLs members share a similar sequence identity, they exhibit different responses toward pyrabactin. Apo-PYL3 is a dimer; however, its oligomeric state changes greatly on the addition of pyrabactin. Moreover, pyrabactin binds dimeric PYL3 in a nonproductive mode which prevents receptor activation and inhibition of PP2Cs. Here, the expression, purification and crystallization of apo-PYL3 and of PYL3 complexed with pyrabactin are reported. Diffraction data were optimized to 2.5 Å resolution for apo-PYL3 and to 1.83 Å resolution for PYL3–pyrabactin. The crystals of apo-PYL3 and PYL3–pyrabactin belonged to space groups P41212 and P212121, respectively

  7. A gate-latch-lock mechanism for hormone signalling by abscisic acid receptors

    Melcher, Karsten; Ng, Ley-Moy; Zhou, X Edward; Soon, Fen-Fen; Xu, Yong; Suino-Powell, Kelly M; Park, Sang-Youl; Weiner, Joshua J; Fujii, Hiroaki; Chinnusamy, Viswanathan; Kovach, Amanda; Li, Jun; Wang, Yonghong; Li, Jiayang; Peterson, Francis C; Jensen, Davin R; Yong, Eu-Leong; Volkman, Brian F; Cutler, Sean R; Zhu, Jian-Kang; Xu, H Eric; (NU Sinapore); (Van Andel); (MCW); (UCR); (Chinese Aca. Sci.)

    2010-01-12

    Abscisic acid (ABA) is a ubiquitous hormone that regulates plant growth, development and responses to environmental stresses. Its action is mediated by the PYR/PYL/RCAR family of START proteins, but it remains unclear how these receptors bind ABA and, in turn, how hormone binding leads to inhibition of the downstream type 2C protein phosphatase (PP2C) effectors. Here we report crystal structures of apo and ABA-bound receptors as well as a ternary PYL2-ABA-PP2C complex. The apo receptors contain an open ligand-binding pocket flanked by a gate that closes in response to ABA by way of conformational changes in two highly conserved β-loops that serve as a gate and latch. Moreover, ABA-induced closure of the gate creates a surface that enables the receptor to dock into and competitively inhibit the PP2C active site. A conserved tryptophan in the PP2C inserts directly between the gate and latch, which functions to further lock the receptor in a closed conformation. Together, our results identify a conserved gate-latch-lock mechanism underlying ABA signalling.

  8. Supplementation with Abscisic Acid Reduces Malaria Disease Severity and Parasite Transmission.

    Glennon, Elizabeth K K; Adams, L Garry; Hicks, Derrick R; Dehesh, Katayoon; Luckhart, Shirley

    2016-06-01

    Nearly half of the world's population is at risk for malaria. Increasing drug resistance has intensified the need for novel therapeutics, including treatments with intrinsic transmission-blocking properties. In this study, we demonstrate that the isoprenoid abscisic acid (ABA) modulates signaling in the mammalian host to reduce parasitemia and the formation of transmissible gametocytes and in the mosquito host to reduce parasite infection. Oral ABA supplementation in a mouse model of malaria was well tolerated and led to reduced pathology and enhanced gene expression in the liver and spleen consistent with infection recovery. Oral ABA supplementation also increased mouse plasma ABA to levels that can signal in the mosquito midgut upon blood ingestion. Accordingly, we showed that supplementation of a Plasmodium falciparum-infected blood meal with ABA increased expression of mosquito nitric oxide synthase and reduced infection prevalence in a nitric oxide-dependent manner. Identification of the mechanisms whereby ABA reduces parasite growth in mammals and mosquitoes could shed light on the balance of immunity and metabolism across eukaryotes and provide a strong foundation for clinical translation. PMID:27001761

  9. Microarray Analysis of Transcriptional Responses to Abscisic Acid and Salt Stress in Arabidopsis thaliana

    Yucheng Wang

    2013-05-01

    Full Text Available Abscisic acid (ABA plays a crucial role in plant responses to abiotic stress. To investigate differences in plant responses to salt and ABA stimulus, differences in gene expression in Arabidopsis in response to salt and ABA were compared using an Agilent oligo microarray. A total of 144 and 139 genes were significantly up- and downregulated, respectively, under NaCl stress, while 406 and 381 genes were significantly up- and downregulated, respectively, under ABA stress conditions. In addition, 31 genes were upregulated by both NaCl and ABA stresses, and 23 genes were downregulated by these stressors, suggesting that these genes may play similar roles in plant responses to salt and ABA stress. Gene ontology (GO analysis revealed four subgroups of genes, including genes in the GO categories “Molecular transducer activity”, “Growth”, “Biological adhesion” and “Pigmentation”, which were expressed in response to ABA stress but not NaCl stress. In addition, genes that play specific roles during salt or ABA stress were identified. Our results may help elucidate differences in the response of plants to salt and ABA stress.

  10. Production of Polyamines Is Enhanced by Endogenous Abscisic Acid in Maize Seedlings Subjected to Salt Stress

    Jun LIU; Ming-Yi JIANG; Yi-Feng ZHOU; You-Liang LIU

    2005-01-01

    It is known that salt stress and exogenously applied abscisic acid (ABA) can enhance the polyamine content in plants and that salt stress itself can lead to an increase in endogenous ABA production.In the present study, the relationships between salt-induced ABA and polyamine accumulation were investigated using ABA-deficient mutant (vp5/vp5) maize (Zea mays L.) seedlings and ABA and polyamine :biosynthesis inhibitors. The results show that reduced endogenous ABA levels, as a result of either the mutation or by using a chemical inhibitor (sodium tungstate), also reduced the accumulation of polyamines in salt-stressed leaves of maize seedlings. The polyamine synthesis inhibitors D-arginine and αdifluoromethylornithine also reduced the polyamine content of the leaves of maize seedling under salt stress. Both ABA and polyamine enhanced the dry weight accumulation of salt-stressed seedlings and also increased the activities of the two dominant tonoplast membrane enzymes, H+-ATPase and H+-PPase, when plants were under salt stress. The results suggest that salt stress induces an increase in endogenous ABA levels, which then enhances polyamine synthesis. Such responses may increase a plant's tolerance to salt.

  11. A gate-latch-lock mechanism for hormone signalling by abscisic acid receptors

    Melcher, Karsten

    2009-12-03

    Abscisic acid (ABA) is a ubiquitous hormone that regulates plant growth, development and responses to environmental stresses. Its action is mediated by the PYR/PYL/RCAR family of START proteins, but it remains unclear how these receptors bind ABA and, in turn, how hormone binding leads to inhibition of the downstream type 2C protein phosphatase (PP2C) effectors. Here we report crystal structures of apo and ABA-bound receptors as well as a ternary PYL2-ABA-PP2C complex. The apo receptors contain an open ligand-binding pocket flanked by a gate that closes in response to ABA by way of conformational changes in two highly conserved ?-loops that serve as a gate and latch. Moreover, ABA-induced closure of the gate creates a surface that enables the receptor to dock into and competitively inhibit the PP2C active site. A conserved tryptophan in the PP2C inserts directly between the gate and latch, which functions to further lock the receptor in a closed conformation. Together, our results identify a conserved gate-latch-lock mechanism underlying ABA signalling. © 2009 Macmillan Publishers Limited. All rights reserved.

  12. Ubiquitin-specific protease 24 negatively regulates abscisic acid signalling in Arabidopsis thaliana.

    Zhao, Jinfeng; Zhou, Huapeng; Zhang, Ming; Gao, Yanan; Li, Long; Gao, Ying; Li, Ming; Yang, Yuhong; Guo, Yan; Li, Xueyong

    2016-02-01

    Abscisic acid (ABA) is an important plant hormone integrating environmental stress and plant growth. Protein ubiquitination and deubiquitination are reversible processes catalysed by E3 ubiquitin ligase and deubiquitinating enzyme, respectively. Lots of E3 ubiquitin ligase and transcriptional factors modified by ubiquitination were reported to modulate ABA signalling. However, no deubiquitinating enzyme has been identified that functions in ABA signalling until now. Here, we isolated an ABA overly sensitive mutant, ubp24, in which the gene encoding ubiquitin-specific protease 24 (UBP24, At4g30890) was disrupted by a T-DNA insertion. The ubp24 mutant was hypersensitive to ABA and salt stress in both post-germinative growth and seedling growth. However, stomata closure in the ubp24 mutant was less sensitive to ABA, and the ubp24 mutant showed drought sensitivity. UBP24 possessed deubiquitinating enzyme activity, and the activity was essential for UBP24 function. Additionally, UBP24 formed homodimer in vivo. UBP24 was genetically upstream of ABI2, and the phosphatase activity of protein phosphatase 2C was decreased in the ubp24 mutant compared with the wild type in the presence of ABA. These results uncover an important regulatory role for the ubiquitin-specific protease in response to ABA and salt stress in plant. PMID:26290265

  13. The Arabidopsis Vacuolar Sorting Receptor1 Is Required for Osmotic Stress-Induced Abscisic Acid Biosynthesis

    Wang, Zhen-Yu

    2014-11-21

    Osmotic stress activates the biosynthesis of the phytohormone abscisic acid (ABA) through a pathway that is rate limited by the carotenoid cleavage enzyme 9-cis-epoxycarotenoid dioxygenase (NCED). To understand the signal transduction mechanism underlying the activation of ABA biosynthesis, we performed a forward genetic screen to isolate mutants defective in osmotic stress regulation of the NCED3 gene. Here, we identified the Arabidopsis (Arabidopsis thaliana) Vacuolar Sorting Receptor1 (VSR1) as a unique regulator of ABA biosynthesis. The vsr1 mutant not only shows increased sensitivity to osmotic stress, but also is defective in the feedback regulation of ABA biosynthesis by ABA. Further analysis revealed that vacuolar trafficking mediated by VSR1 is required for osmotic stress-responsive ABA biosynthesis and osmotic stress tolerance. Moreover, under osmotic stress conditions, the membrane potential, calcium flux, and vacuolar pH changes in the vsr1 mutant differ from those in the wild type. Given that manipulation of the intracellular pH is sufficient to modulate the expression of ABA biosynthesis genes, including NCED3, and ABA accumulation, we propose that intracellular pH changes caused by osmotic stress may play a signaling role in regulating ABA biosynthesis and that this regulation is dependent on functional VSR1.

  14. Functional analysis of a Lemna gibba rbcS promoter regulated by abscisic acid and sugar

    Youru Wang

    2013-04-01

    Photosynthesis-associated nuclear genes (PhANGs) are able to respond to multiple environmental and developmental signals, including light, sugar and abscisic acid (ABA). PhANGs have been extensively studied at the level of transcriptional regulation, and several cis-acting elements important for light responsiveness have been identified in their promoter sequences. However, the regulatory elements involved in sugar and ABA regulation of PhANGs have not been completely characterized. A ribulose-1,5-bisphosphate carboxylase small subunit gene (rbcS) promoter (SSU5C promoter) was isolated from duckweed (Lemna gibba). A series of SSU5C promoter 5′ deletion fragments were fused to an intron–gus gene, and transgenic tobacco suspension cell lines were generated. Assay of tobacco suspension cell line harbouring the complete promoter in the fusion construct indicated that SSU5C promoter was negatively regulated by sugar and ABA under the condition of regular photoperiod. 5′ deletion analysis of SSU5C promoter in transgenic tobacco suspension cell lines confirmed that a region between positions $-310$ and $-152$ included the ABA-response region, and that sugar-response cis-acting elements might be located in the region between $-152$ and $-117$. Taken together, our results confirmed that the cis-regulatory region responsible for repression by ABA and sugar in the SSU5C promoter was located between $-310$ and $-117$.

  15. Abscisic acid - an overlooked player in plant-microbe symbioses formation?

    Stec, Natalia; Banasiak, Joanna; Jasiński, Michał

    2016-01-01

    Abscisic acid (ABA) is an ubiquitous plant hormone and one of the foremost signalling molecules, controlling plants' growth and development, as well as their response to environmental stresses. To date, the function of ABA has been extensively investigated as an abiotic stress molecule which regulates the plants' water status. However, in the context of symbiotic associations, ABA is less recognized. In contrast to well-described auxin/cytokinin and gibberellin/strigolactone involvement in symbioses, ABA has long been underestimated. Interestingly, ABA emerges as an important player in arbuscular mycorrhiza and legume-rhizobium symbiosis. The plant's use of stress hormones like ABA in regulation of those interactions directly links the efficiency of these processes to the environmental status of the plant, notably during drought stress. Here we provide an overview of ABA interplay in beneficial associations of plants with microorganisms and propose ABA as a potential factor determining whether the investment in establishing the interaction is higher than the profit coming from it. PMID:26828669

  16. Calcium partitioning and allocation and blossom-end rot development in tomato plants in response to whole-plant and fruit-specific abscisic acid treatments

    Tonetto de Freitas, Sergio; McElrone, Andrew J.; Shackel, Kenneth A.; Mitcham, Elizabeth J

    2013-01-01

    The mechanisms regulating Ca2+ partitioning and allocation in plants and fruit remain poorly understood. The objectives of this study were to determine Ca2+ partitioning and allocation in tomato plants and fruit in response to whole-plant and fruit-specific abscisic acid (ABA) treatments, as well as to analyse the effect of changes in Ca2+ partitioning and allocation on fruit susceptibility to the Ca2+ deficiency disorder blossom-end rot (BER) under water stress conditions. Tomato plants of t...

  17. Abscisic acid regulates root growth under osmotic stress conditions via an interacting hormonal network with cytokinin, ethylene and auxin.

    Rowe, James H; Topping, Jennifer F; Liu, Junli; Lindsey, Keith

    2016-07-01

    Understanding the mechanisms regulating root development under drought conditions is an important question for plant biology and world agriculture. We examine the effect of osmotic stress on abscisic acid (ABA), cytokinin and ethylene responses and how they mediate auxin transport, distribution and root growth through effects on PIN proteins. We integrate experimental data to construct hormonal crosstalk networks to formulate a systems view of root growth regulation by multiple hormones. Experimental analysis shows: that ABA-dependent and ABA-independent stress responses increase under osmotic stress, but cytokinin responses are only slightly reduced; inhibition of root growth under osmotic stress does not require ethylene signalling, but auxin can rescue root growth and meristem size; osmotic stress modulates auxin transporter levels and localization, reducing root auxin concentrations; PIN1 levels are reduced under stress in an ABA-dependent manner, overriding ethylene effects; and the interplay among ABA, ethylene, cytokinin and auxin is tissue-specific, as evidenced by differential responses of PIN1 and PIN2 to osmotic stress. Combining experimental analysis with network construction reveals that ABA regulates root growth under osmotic stress conditions via an interacting hormonal network with cytokinin, ethylene and auxin. PMID:26889752

  18. Genetic analyses of interactions among gibberellin, abscisic acid, and brassinosteroids in the control of flowering time in Arabidopsis thaliana.

    Malgorzata A Domagalska

    Full Text Available BACKGROUND: Genetic interactions between phytohormones in the control of flowering time in Arabidopsis thaliana have not been extensively studied. Three phytohormones have been individually connected to the floral-timing program. The inductive function of gibberellins (GAs is the most documented. Abscisic acid (ABA has been demonstrated to delay flowering. Finally, the promotive role of brassinosteroids (BRs has been established. It has been reported that for many physiological processes, hormone pathways interact to ensure an appropriate biological response. METHODOLOGY: We tested possible genetic interactions between GA-, ABA-, and BR-dependent pathways in the control of the transition to flowering. For this, single and double mutants deficient in the biosynthesis of GAs, ABA, and BRs were used to assess the effect of hormone deficiency on the timing of floral transition. Also, plants that over-express genes encoding rate-limiting enzymes in each biosynthetic pathway were generated and the flowering time of these lines was investigated. CONCLUSIONS: Loss-of-function studies revealed a complex relationship between GAs and ABA, and between ABA and BRs, and suggested a cross-regulatory relation between GAs to BRs. Gain-of-function studies revealed that GAs were clearly limiting in their sufficiency of action, whereas increases in BRs and ABA led to a more modest phenotypic effect on floral timing. We conclude from our genetic tests that the effects of GA, ABA, and BR on timing of floral induction are only in partially coordinated action.

  19. Gene Overexpression and RNA Silencing Tools for the Genetic Manipulation of the S-(+-Abscisic Acid Producing Ascomycete Botrytis cinerea

    Zhong-Tao Ding

    2015-05-01

    Full Text Available The phytopathogenic ascomycete Botrytis cinerea produces several secondary metabolites that have biotechnical significance and has been particularly used for S-(+-abscisic acid production at the industrial scale. To manipulate the expression levels of specific secondary metabolite biosynthetic genes of B. cinerea with Agrobacterium tumefaciens-mediated transformation system, two expression vectors (pCBh1 and pCBg1 with different selection markers and one RNA silencing vector, pCBSilent1, were developed with the In-Fusion assembly method. Both expression vectors were highly effective in constitutively expressing eGFP, and pCBSilent1 effectively silenced the eGFP gene in B. cinerea. Bcaba4, a gene suggested to participate in ABA biosynthesis in B. cinerea, was then targeted for gene overexpression and RNA silencing with these reverse genetic tools. The overexpression of bcaba4 dramatically induced ABA formation in the B. cinerea wild type strain Bc-6, and the gene silencing of bcaba4 significantly reduced ABA-production in an ABA-producing B. cinerea strain.

  20. Abscisic acid and ethylene in mutants of Arabidopsis thaliana differing in their resistance to ultraviolet (UV-B) radiation stress

    The effects of ultraviolet irradiation (between 280 and 320 nm) on plant survival, ethylene evolution, and abscisic acid (ABA) content were studied in Arabidopsis thaliana (L.) Heunh. plants. Three genetic lines of Arabidopsis differing in their resistance to ultraviolet (UV-B) radiation stress were used. UV-B irradiation had detrimental effects on plant survival, enhanced ethylene evolution, and increased ABA content in the plants of all three lines. The higher ultraviolet dose was absorbed, the less was the number of surviving plants and the higher were the levels of both phytohormones. The maximum ethylene evolution occurred during the initial two to four hours after irradiation, but the ABA content peaked only after 24 h. The most resistant line showed the highest ABA content and the fastest ethylene evolution, whereas, in the susceptible line, both indices were the lowest. After UV-B treatment, the ABA-deficient Arabidopsis mutant evolved four to six times more ethylene than the plants with normal ABA content. Stress ethylene production evidently did not depend on the level of endogenous ABA as the kinetics of ethylene evolution was similar in the ABA-deficient mutant and in other studied Arabidopsis lines

  1. LTP3 contributes to disease susceptibility in Arabidopsis by enhancing abscisic acid (ABA) biosynthesis.

    Gao, Shan; Guo, Wenya; Feng, Wen; Liu, Liang; Song, Xiaorui; Chen, Jian; Hou, Wei; Zhu, Hongxia; Tang, Saijun; Hu, Jian

    2016-04-01

    Several plant lipid transfer proteins (LTPs) act positively in plant disease resistance. Here, we show that LTP3 (At5g59320), a pathogen and abscisic acid (ABA)-induced gene, negatively regulates plant immunity in Arabidopsis. The overexpression of LTP3 (LTP3-OX) led to an enhanced susceptibility to virulent bacteria and compromised resistance to avirulent bacteria. On infection of LTP3-OX plants with Pseudomonas syringae pv. tomato, genes involved in ABA biosynthesis, NCED3 and AAO3, were highly induced, whereas salicylic acid (SA)-related genes, ICS1 and PR1, were down-regulated. Accordingly, in LTP3-OX plants, we observed increased ABA levels and decreased SA levels relative to the wild-type. We also showed that the LTP3 overexpression-mediated enhanced susceptibility was partially dependent on AAO3. Interestingly, loss of function of LTP3 (ltp3-1) did not affect ABA pathways, but resulted in PR1 gene induction and elevated SA levels, suggesting that LTP3 can negatively regulate SA in an ABA-independent manner. However, a double mutant consisting of ltp3-1 and silent LTP4 (ltp3/ltp4) showed reduced susceptibility to Pseudomonas and down-regulation of ABA biosynthesis genes, suggesting that LTP3 acts in a redundant manner with its closest homologue LTP4 by modulating the ABA pathway. Taken together, our data show that LTP3 is a novel negative regulator of plant immunity which acts through the manipulation of the ABA-SA balance. PMID:26123657

  2. Regulation of auxin, abscisic acid and salicylic acid levels by ascorbate application under heat stress in sensitive and tolerant maize leaves.

    Dinler, Burcu Seckin; Demir, Emel; Kompe, Yasemin Ozdener

    2014-12-01

    In the present study, the effect of ascorbic acid (5 mM) on some physiological parameters and three hormones (auxin, abscisic acid, salicylic acid) was determined under heat stress (40 °C) in maize tolerant cv. (MAY 69) and sensitive cv. SHEMAL (SH) at 0 h, 4 h and 8 h. Heat stress reduced total chlorophyll content (CHL), relative water content (RWC) and stomatal conductance (gs) in SH but did not lead to changes in MAY 69 at 4 h and 8 h. However, pretreatment with ascorbic acid increased (CHL), (RWC) and (gs) in SH under heat stress while it reduced MDA content significantly in both cv. We also observed that heat stress led to a reduction in SA level but increased ABA and IAA levels in SH, whereas it increased SA and IAA levels but did not change ABA level in MAY 69 at 4 h. Furthermore, in SH, ASC application under heat stress increased SA level and decreased IAA and ABA levels at 4 h, but it had no effect on SA and ABA at 8 h. PMID:25475985

  3. An Ancestral Role for CONSTITUTIVE TRIPLE RESPONSE1 Proteins in Both Ethylene and Abscisic Acid Signaling.

    Yasumura, Yuki; Pierik, Ronald; Kelly, Steven; Sakuta, Masaaki; Voesenek, Laurentius A C J; Harberd, Nicholas P

    2015-09-01

    Land plants have evolved adaptive regulatory mechanisms enabling the survival of environmental stresses associated with terrestrial life. Here, we focus on the evolution of the regulatory CONSTITUTIVE TRIPLE RESPONSE1 (CTR1) component of the ethylene signaling pathway that modulates stress-related changes in plant growth and development. First, we compare CTR1-like proteins from a bryophyte, Physcomitrella patens (representative of early divergent land plants), with those of more recently diverged lycophyte and angiosperm species (including Arabidopsis [Arabidopsis thaliana]) and identify a monophyletic CTR1 family. The fully sequenced P. patens genome encodes only a single member of this family (PpCTR1L). Next, we compare the functions of PpCTR1L with that of related angiosperm proteins. We show that, like angiosperm CTR1 proteins (e.g. AtCTR1 of Arabidopsis), PpCTR1L modulates downstream ethylene signaling via direct interaction with ethylene receptors. These functions, therefore, likely predate the divergence of the bryophytes from the land-plant lineage. However, we also show that PpCTR1L unexpectedly has dual functions and additionally modulates abscisic acid (ABA) signaling. In contrast, while AtCTR1 lacks detectable ABA signaling functions, Arabidopsis has during evolution acquired another homolog that is functionally distinct from AtCTR1. In conclusion, the roles of CTR1-related proteins appear to have functionally diversified during land-plant evolution, and angiosperm CTR1-related proteins appear to have lost an ancestral ABA signaling function. Our study provides new insights into how molecular events such as gene duplication and functional differentiation may have contributed to the adaptive evolution of regulatory mechanisms in plants. PMID:26243614

  4. Identification of Interactions between Abscisic Acid and Ribulose-1,5-Bisphosphate Carboxylase/Oxygenase.

    Marek M Galka

    Full Text Available Abscisic acid ((+-ABA is a phytohormone involved in the modulation of developmental processes and stress responses in plants. A chemical proteomics approach using an ABA mimetic probe was combined with in vitro assays, isothermal titration calorimetry (ITC, x-ray crystallography and in silico modelling to identify putative (+-ABA binding-proteins in crude extracts of Arabidopsis thaliana. Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco was identified as a putative ABA-binding protein. Radiolabelled-binding assays yielded a Kd of 47 nM for (+-ABA binding to spinach Rubisco, which was validated by ITC, and found to be similar to reported and experimentally derived values for the native ribulose-1,5-bisphosphate (RuBP substrate. Functionally, (+-ABA caused only weak inhibition of Rubisco catalytic activity (Ki of 2.1 mM, but more potent inhibition of Rubisco activation (Ki of ~ 130 μM. Comparative structural analysis of Rubisco in the presence of (+-ABA with RuBP in the active site revealed only a putative low occupancy (+-ABA binding site on the surface of the large subunit at a location distal from the active site. However, subtle distortions in electron density in the binding pocket and in silico docking support the possibility of a higher affinity (+-ABA binding site in the RuBP binding pocket. Overall we conclude that (+-ABA interacts with Rubisco. While the low occupancy (+-ABA binding site and weak non-competitive inhibition of catalysis may not be relevant, the high affinity site may allow ABA to act as a negative effector of Rubisco activation.

  5. Abscisic acid and stress signals induce Viviparous1 expression in seed and vegetative tissues of maize.

    Cao, Xueyuan; Costa, Liliana M; Biderre-Petit, Corinne; Kbhaya, Bouchab; Dey, Nrisingha; Perez, Pascual; McCarty, Donald R; Gutierrez-Marcos, Jose F; Becraft, Philip W

    2007-02-01

    Viviparous1 (Vp1) encodes a B3 domain-containing transcription factor that is a key regulator of seed maturation in maize (Zea mays). However, the mechanisms of Vp1 regulation are not well understood. To examine physiological factors that may regulate Vp1 expression, transcript levels were monitored in maturing embryos placed in culture under different conditions. Expression of Vp1 decreased after culture in hormone-free medium, but was induced by salinity or osmotic stress. Application of exogenous abscisic acid (ABA) also induced transcript levels within 1 h in a dose-dependent manner. The Vp1 promoter fused to beta-glucuronidase or green fluorescent protein reproduced the endogenous Vp1 expression patterns in transgenic maize plants and also revealed previously unknown expression domains of Vp1. The Vp1 promoter is active in the embryo and aleurone cells of developing seeds and, upon drought stress, was also found in phloem cells of vegetative tissues, including cobs, leaves, and stems. Sequence analysis of the Vp1 promoter identified a potential ABA-responsive complex, consisting of an ACGT-containing ABA response element (ABRE) and a coupling element 1-like motif. Electrophoretic mobility shift assay confirmed that the ABRE and putative coupling element 1 components specifically bound proteins in embryo nuclear protein extracts. Treatment of embryos in hormone-free Murashige and Skoog medium blocked the ABRE-protein interaction, whereas exogenous ABA or mannitol treatment restored this interaction. Our data support a model for a VP1-dependent positive feedback mechanism regulating Vp1 expression during seed maturation. PMID:17208960

  6. NFX1-LIKE2 (NFXL2 suppresses abscisic acid accumulation and stomatal closure in Arabidopsis thaliana.

    Janina Lisso

    Full Text Available The NFX1-LIKE1 (NFXL1 and NFXL2 genes were identified as regulators of salt stress responses. The NFXL1 protein is a nuclear factor that positively affects adaptation to salt stress. The nfxl1-1 loss-of-function mutant displayed reduced survival rates under salt and high light stress. In contrast, the nfxl2-1 mutant, defective in the NFXL2 gene, and NFXL2-antisense plants exhibited enhanced survival under these conditions. We show here that the loss of NFXL2 function results in abscisic acid (ABA overaccumulation, reduced stomatal conductance, and enhanced survival under drought stress. The nfxl2-1 mutant displayed reduced stomatal aperture under all conditions tested. Fusicoccin treatment, exposition to increasing light intensities, and supply of decreasing CO(2 concentrations demonstrated full opening capacity of nfxl2-1 stomata. Reduced stomatal opening presumably is a consequence of elevated ABA levels. Furthermore, seedling growth, root growth, and stomatal closure were hypersensitive to exogenous ABA. The enhanced ABA responses may contribute to the improved drought stress resistance of the mutant. Three NFXL2 splice variants were cloned and named NFXL2-78, NFXL2-97, and NFXL2-100 according to the molecular weight of the putative proteins. Translational fusions to the green fluorescent protein suggest nuclear localisation of the NFXL2 proteins. Stable expression of the NFXL2-78 splice variant in nfxl2-1 plants largely complemented the mutant phenotype. Our data show that NFXL2 controls ABA levels and suppresses ABA responses. NFXL2 may prevent unnecessary and costly stress adaptation under favourable conditions.

  7. Influence Mechanism of Endogenous Abscisic Acid on Storage Softening Process of Hardy Kiwifruit

    Li Shuqian

    2014-01-01

    Full Text Available In order to study the relation of Abscisic Acid (ABA with other biochemistry factors during hardy kiwifruit softening process. The changing trend of ABA under the fruits storage conditions of 20 and 0C was analyzed. A conclusion is drawn as below: During storage under 20C, it shows the highest content of ABA in 4 days to 222.19 &mu g/L, which reaches the almost same content in 3 and 5 days. The value keeps inclining since 5 days and decline rate is lower in 7 and 8 days. The lowest value is reached to 20.88 &mug/L in 10 days. During storage under 0C, ABA content is at a relatively high level but shows the slow down trend. ABA content falls greatly from 9 to 11 days. After this period, ABA content still follows up-trend and declining then. The peak appears in 15 days to 90.49 &mug/L, but it is lower than that in the first nine days. Moreover, peak during storage in environment under 0C is lower than that during the storage in environment at normal temperature, accordingly delaying fruit softening. As the ABA content rises to the highest level, the fruit hardness drops drastically. When ABA content slightly changes, the hardness decreases gently. ABA content is featured that same changing trend of ethylene content, respiratory intensity, pectase content and amylase content. Moreover, ABA has the same peak appearance time as amylase but it is later than appearance of both pectase and ethylene, they basically match each other. The rule of peak appearance time is not obvious for ABA and amylase. Mutual inhibition exists between peak appearance time of ABA and respiratory intensity. Quick ABA rise is accompanied with slow amylase rise and vice versa.

  8. Studies on the growth and indole-3-acetic acid and abscisic acid content of Zea mays seedlings grown in microgravity

    Schulze, A.; Jensen, P. J.; Desrosiers, M.; Buta, J. G.; Bandurski, R. S.

    1992-01-01

    Measurements were made of the fresh weight, dry weight, dry weight-fresh weight ratio, free and conjugated indole-3-acetic acid, and free and conjugated abscisic acid in seedlings of Zea mays grown in darkness in microgravity and on earth. Imbibition of the dry kernels was 17 h prior to launch. Growth was for 5 d at ambient orbiter temperature and at a chronic accelerational force of the order of 3 x 10(-5) times earth gravity. Weights and hormone content of the microgravity seedlings were, with minor exceptions, not statistically different from seedlings grown in normal gravity. The tissues of the shuttle-grown plants appeared normal and the seedlings differed only in the lack of orientation of roots and shoots. These findings, based upon 5 d of growth in microgravity, cannot be extrapolated to growth in microgravity for weeks, months, and years, as might occur on a space station. Nonetheless, it is encouraging, for prospects of bioregeneration of the atmosphere and food production in a space station, that no pronounced differences in the parameters measured were apparent during the 5 d of plant seedling growth in microgravity.

  9. Growth and graviresponsiveness of primary roots of Zea mays seedlings deficient in abscisic acid and gibberellic acid

    Moore, R.; Dickey, K.

    1985-01-01

    The objective of this research was to determine if gibberellic acid (GA) and/or abscisic acid (ABA) are necessary for graviresponsiveness by primary roots of Zea mays. To accomplish this objective we measured the growth and graviresponsiveness of primary roots of seedlings in which the synthesis of ABA and GA was inhibited collectively and individually by genetic and chemical means. Roots of seedlings treated with Fluridone (an inhibitor of ABA biosynthesis) and Ancymidol (an inhibitor of GA biosynthesis) were characterized by slower growth rates but not significantly different gravicultures as compared to untreated controls. Gravicurvatures of primary roots of d-5 mutants (having undetectable levels of GA) and vp-9 mutants (having undectable levels of ABA) were not significantly different from those of wild-type seedlings. Roots of seedlings in which the biosynthesis of ABA and GA was collectively inhibited were characterized by gravicurvatures not significantly different for those of controls. These results (1) indicate that drastic reductions in the amount of ABA and GA in Z. mays seedlings do not significantly alter root graviresponsiveness, (2) suggest that neither ABA nor GA is necessary for root gravicurvature, and (3) indicate that root gravicurvature is not necessarily proportional to root elongation.

  10. H2O2 mediates the crosstalk of brassinosteroid and abscisic acid in tomato responses to heat and oxidative stresses

    Zhou, Jie; Wang, Jian; Li, Xin; Xia, Xiao-Jian; Zhou, Yan-Hong; Shi, Kai; Chen, Zhixiang; Yu, Jing-Quan

    2014-01-01

    The production of H2O2 is critical for brassinosteroid (BR)- and abscisic acid (ABA)-induced stress tolerance in plants. In this study, the relationship between BR and ABA in the induction of H2O2 production and their roles in response to heat and paraquat (PQ) oxidative stresses were studied in tomato. Both BR and ABA induced increases in RBOH1 gene expression, NADPH oxidase activity, apoplastic H2O2 accumulation, and heat and PQ stress tolerance in wild-type plants. BR could only induced tr...

  11. Altered cytokinin metabolism affects cytokinin, auxin, and abscisic acid contents in leaves and chloroplasts, and chloroplast ultrastructure in transgenic tobacco

    Polanská, Lenka; Vičánková, Anna; Nováková, Marie; Malbeck, Jiří; Dobrev, Petre; Brzobohatý, Břetislav; Vaňková, Radomíra; Macháčková, Ivana

    2007-01-01

    Roč. 58, č. 3 (2007), s. 637-649. ISSN 0022-0957 R&D Projects: GA ČR GA206/03/0369; GA ČR GA206/06/1306; GA AV ČR IAA600040612 Institutional research plan: CEZ:AV0Z50380511; CEZ:AV0Z50040507 Source of funding: V - iné verejné zdroje ; V - iné verejné zdroje Keywords : abscisic acid * auxin * chloroplast ultrastructure Subject RIV: EF - Botanics Impact factor: 3.917, year: 2007

  12. Influence of mineral nutrition, ozone, and acid fog on abscisic acid and indole acetic acid in needles of Picea abies (L. ) Karst

    Fackler, U.; Huber, W.; Hock, B.

    1986-09-01

    The phytohormones abscisic acid and auxin (total, free, and alkali-labile IAA) were quantified in needles from spruces which had been exposed to air pollutants under different controlled climatic conditions within the MAGL pilot project. Increased concentrations of ABA were found especially in the most recent needles after ozone treatment. Noticeable changes in auxin concentrations could not be observed. These results should be backed up by further experiments with more samples in order to gain insight into the hormonal balance of plants under stress by air pollution.

  13. Arabidopsis cysteine-rich receptor-like kinase 45 functions in the responses to abscisic acid and abiotic stresses

    Zhang, Xiujuan

    2013-06-01

    The phytohormone abscisic acid (ABA) regulates seed germination, plant growth and development, and response to abiotic stresses such as drought and salt stresses. Receptor-like kinases are well known signaling components that mediate plant responses to developmental and environmental stimuli. Here, we characterized the biological function of an ABA and stress-inducible cysteine-rich receptor-like protein kinase, CRK45, in ABA signaling in Arabidopsis thaliana. The crk45 mutant was less sensitive to ABA than the wild type during seed germination and early seedling development, whereas CRK45 overexpression plants were more sensitive to ABA compared to the wild type. Furthermore, overexpression of CRK45 led to hypersensitivity to salt and glucose inhibition of seed germination, whereas the crk45 mutant showed the opposite phenotypes. In addition, CRK45 overexpression plants had enhanced tolerance to drought. Gene expression analyses revealed that the expression of representative stress-responsive genes was significantly enhanced in CRK45 overexpression plants in response to salt stress. ABA biosynthetic genes such as NCED3,. 22NCED3, 9-Cis-Epoxycarotenoid Dioxygenase 3.NCED5,. 33NCED5, 9-Cis-Epoxycarotenoid Dioxygenase 5.ABA2,. 44ABA2, Abscisic Acid Deficient 2. and AAO355AAO3, Abscisic Aldehyde Oxidase 3. were also constitutively elevated in the CRK45 overexpression plants. We concluded that CRK45 plays an important role in ABA signaling that regulates Arabidopsis seeds germination, early seedling development and abiotic stresses response, by positively regulating ABA responses in these processes. © 2013 Elsevier Masson SAS.

  14. Conclusion on the peer review of the pesticide risk assessment of the active substance S-abscisic acid

    European Food Safety Authority

    2013-08-01

    Full Text Available The conclusions of the European Food Safety Authority (EFSA following the peer review of the initial risk assessments carried out by the competent authority of the rapporteur Member State the Netherlands, for the pesticide active substance S-abscisic acid are reported. The context of the peer review was that required by Commission Regulation EU No 188/2011. The conclusions were reached on the basis of the evaluation of the representative uses of S-abscisic acid as a plant growth regulator on tomato seedlings and grapes. The reliable endpoints concluded as being appropriate for use in regulatory risk assessment, derived from the available studies and literature in the dossier peer reviewed, are presented. Missing information identified as being required by the regulatory framework is listed. Concerns are identified in the areas of residues and ecotoxicology, as the consumer risk assessment and the risk assessment for higher aquatic plants for some metabolites could not be finalised based on the data available.

  15. Arabidopsis plastid AMOS1/EGY1 integrates abscisic acid signaling to regulate global gene expression response to ammonium stress

    Li, Baohai

    2012-10-12

    Ammonium (NH4 +) is a ubiquitous intermediate of nitrogen metabolism but is notorious for its toxic effects on most organisms. Extensive studies of the underlying mechanisms of NH4 + toxicity have been reported in plants, but it is poorly understood how plants acclimate to high levels of NH4 +. Here, we identified an Arabidopsis (Arabidopsis thaliana) mutant, ammonium overly sensitive1 (amos1), that displays severe chlorosis under NH4 + stress. Map-based cloning shows amos1 to carry a mutation in EGY1 (for ethylene-dependent, gravitropism-deficient, and yellow-green-like protein1), which encodes a plastid metalloprotease. Transcriptomic analysis reveals that among the genes activated in response to NH4 +, 90% are regulated dependent on AMOS1/ EGY1. Furthermore, 63% of AMOS1/EGY1-dependent NH4 +-activated genes contain an ACGTG motif in their promoter region, a core motif of abscisic acid (ABA)-responsive elements. Consistent with this, our physiological, pharmacological, transcriptomic, and genetic data show that ABA signaling is a critical, but not the sole, downstream component of the AMOS1/EGY1-dependent pathway that regulates the expression of NH4 +-responsive genes and maintains chloroplast functionality under NH4 + stress. Importantly, abi4 mutants defective in ABA-dependent and retrograde signaling, but not ABA-deficient mutants, mimic leaf NH4 + hypersensitivity of amos1. In summary, our findings suggest that an NH4 +-responsive plastid retrograde pathway, which depends on AMOS1/EGY1 function and integrates with ABA signaling, is required for the regulation of expression of the presence of high NH4 + levels. © 2012 American Society of Plant Biologists. All Rights Reserved.

  16. Ectopic expression of ABSCISIC ACID 2/GLUCOSE INSENSITIVE 1 in Arabidopsis promotes seed dormancy and stress tolerance.

    Lin, Pei-Chi; Hwang, San-Gwang; Endo, Akira; Okamoto, Masanori; Koshiba, Tomokazu; Cheng, Wan-Hsing

    2007-02-01

    Abscisic acid (ABA) is an important phytohormone that plays a critical role in seed development, dormancy, and stress tolerance. 9-cis-Epoxycarotenoid dioxygenase is the key enzyme controlling ABA biosynthesis and stress tolerance. In this study, we investigated the effect of ectopic expression of another ABA biosynthesis gene, ABA2 (or GLUCOSE INSENSITIVE 1 [GIN1]) encoding a short-chain dehydrogenase/reductase in Arabidopsis (Arabidopsis thaliana). We show that ABA2-overexpressing transgenic plants with elevated ABA levels exhibited seed germination delay and more tolerance to salinity than wild type when grown on agar plates and/or in soil. However, the germination delay was abolished in transgenic plants showing ABA levels over 2-fold higher than that of wild type grown on 250 mm NaCl. The data suggest that there are distinct mechanisms underlying ABA-mediated inhibition of seed germination under diverse stress. The ABA-deficient mutant aba2, with a shorter primary root, can be restored to normal root growth by exogenous application of ABA, whereas transgenic plants overexpressing ABA2 showed normal root growth. The data reflect that the basal levels of ABA are essential for maintaining normal primary root elongation. Furthermore, analysis of ABA2 promoter activity with ABA2::beta-glucuronidase transgenic plants revealed that the promoter activity was enhanced by multiple prolonged stresses, such as drought, salinity, cold, and flooding, but not by short-term stress treatments. Coincidently, prolonged drought stress treatment led to the up-regulation of ABA biosynthetic and sugar-related genes. Thus, the data support ABA2 as a late expression gene that might have a fine-tuning function in mediating ABA biosynthesis through primary metabolic changes in response to stress. PMID:17189333

  17. Chemical ionization mass spectrometry of indol-3yl-acetic acid and cis-abscisic acid: evaluation of negative ion detection and quantification of cis-abscisic acid in growing maize roots

    Mass spectra of the derivatives of indol-3yl-acetic acid and cis-abscisic acid were obtained in electron impact and chemical ionization positive ion and negative ion modes. The respective merits of methane, isobutane, and ammonia as reagent gases for structure determination and sensitive detection were compared using the methyl esters. From one to 10 fluorine atoms were attached to IAA to improve the electron-capturing properties of the molecule. The best qualitative information was obtained when using positive ion chemical ionization with methane. However, the most sensitive detection, with at least two ions per molecule, was achieved by electron impact on the IAA-HFB-ME derivative and by negative ion chemical ionization with NH3 on the ABA-methyl ester derivative. p ]Quantitative analyses of ABA in different parts of maize (Zea mays cv. LG 11) root tips were performed by the latter technique. It was found that the cap and apex contained less ABA than the physiologically older parts of the root such as the elongation zone and the more differentiated tissues. This technique was also used to show a relation between maize root growth and the endogenous ABA level of the elongation zone and root tip: there is more ABA in the slowly growing roots than in the rapidly growing ones. (author)

  18. Solanum lycopersicum IAA15 functions in the 2,4-dichlorophenoxyacetic acid herbicide mechanism of action by mediating abscisic acid signalling.

    Xu, Tao; Wang, Yanling; Liu, Xin; Gao, Song; Qi, Mingfang; Li, Tianlai

    2015-07-01

    2,4-Dichlorophenoxyacetic acid (2,4-D), an important plant growth regulator, is the herbicide most commonly used worldwide to control weeds. However, broad-leaf fruits and vegetables are extremely sensitive to herbicides, which can cause damage and result in lost crops when applied in a manner inconsistent with the directions. Despite detailed knowledge of the mechanism of 2,4-D, the regulation of auxin signalling is still unclear. For example, although the major mediators of auxin signalling, including auxin/indole acetic acid (AUX/IAA) proteins and auxin response factors (ARFs), are known to mediate auxinic herbicides, the underlying mechanisms are still unclear. In this study, the effects of 2,4-D on AUX/IAA gene expression in tomato were investigated, and the two most notably up-regulated genes, SlIAA15 and SlIAA29, were selected for further study. Western blotting revealed the substantial accumulation of both SlIAA15 and SlIAA29, and the expression levels of the corresponding genes were increased following abscisic acid (ABA) and ethylene treatment. Overexpressing SlIAA15, but not SlIAA29, induced a 2,4-D herbicide damage phenotype. The 35S::SlIAA15 line exhibited a strong reduction in leaf stomatal density and altered expression of some R2R3 MYB genes that are putatively involved in the regulation of stomatal differentiation. Further study revealed that root elongation in 35S::SlIAA15 was sensitive to ABA treatment, and was most probably due to the altered expression of an ABA signal transduction gene. In addition, the altered auxin sensitivities of SlIAA15 transformants were also explored. These results suggested that SlIAA15 plays an important role in determining the effects of the herbicide 2,4-D. PMID:25948703

  19. Reduced de-etiolation of hypocotyl growth in a tomato mutant is associated with hypersensitivity to, and high endogenous levels of, abscisic acid

    Fellner, Martin; Zhang, R.; Pharis, R.; Sawhney, V.

    2001-01-01

    Roč. 52, č. 357 (2001), s. 725-738. ISSN 0022-0957 R&D Projects: GA ČR GV521/96/K117 Institutional research plan: CEZ:AV0Z5038910 Keywords : Abscisic acid * elongated mutant * fluridone Subject RIV: EF - Botanics Impact factor: 2.433, year: 2001

  20. Fast and efficient separation of cytokinins from auxin and abscisic acid and their purification using mixed-mode solid-phase extraction

    Dobrev, Petre; Kamínek, Miroslav

    2002-01-01

    Roč. 950, č. 1 (2002), s. 21-29. ISSN 0021-9673 R&D Projects: GA ČR GA206/02/0967; GA ČR GA522/02/0530 Institutional research plan: CEZ:AV0Z5038910 Keywords : cytokinins * abscisic acid * extraction Subject RIV: EF - Botanics Impact factor: 3.098, year: 2002

  1. Characterization of major ripening events during softening in grape: turgor, sugar accumulation, abscisic acid metabolism, colour development, and their relationship with growth.

    Castellarin, Simone D; Gambetta, Gregory A; Wada, Hiroshi; Krasnow, Mark N; Cramer, Grant R; Peterlunger, Enrico; Shackel, Kenneth A; Matthews, Mark A

    2016-02-01

    Along with sugar accumulation and colour development, softening is an important physiological change during the onset of ripening in fruits. In this work, we investigated the relationships among major events during softening in grape (Vitis vinifera L.) by quantifying elasticity in individual berries. In addition, we delayed softening and inhibited sugar accumulation using a mechanical growth-preventing treatment in order to identify processes that are sugar and/or growth dependent. Ripening processes commenced on various days after anthesis, but always at similarly low elasticity and turgor. Much of the softening occurred in the absence of other changes in berry physiology investigated here. Several genes encoding key cell wall-modifying enzymes were not up-regulated until softening was largely completed, suggesting softening may result primarily from decreases in turgor. Similarly, there was no decrease in solute potential, increase in sugar concentration, or colour development until elasticity and turgor were near minimum values, and these processes were inhibited when berry growth was prevented. Increases in abscisic acid occurred early during softening and in the absence of significant expression of the V. vinifera 9-cis-epoxycarotenoid dioxygenases. However, these increases were coincident with decreases in the abscisic acid catabolite diphasic acid, indicating that initial increases in abscisic acid may result from decreases in catabolism and/or exogenous import. These data suggest that softening, decreases in turgor, and increases in abscisic acid represent some of the earliest events during the onset of ripening. Later, physical growth, further increases in abscisic acid, and the accumulation of sugar are integral for colour development. PMID:26590311

  2. Structural Insights into Maize Viviparous14, a Key Enzyme in the Biosynthesis of the Phytohormone Abscisic Acid W

    Messing, S.; Gabelli, S; Echeverria, I; Vogel, J; Guan, J; Tan, B; Klee, H; McCarty, D; Amzela, M

    2010-01-01

    The key regulatory step in the biosynthesis of abscisic acid (ABA), a hormone central to the regulation of several important processes in plants, is the oxidative cleavage of the 11,12 double bond of a 9-cis-epoxycarotenoid. The enzyme viviparous14 (VP14) performs this cleavage in maize (Zea mays), making it a target for the rational design of novel chemical agents and genetic modifications that improve plant behavior through the modulation of ABA levels. The structure of VP14, determined to 3.2-{angstrom} resolution, provides both insight into the determinants of regio- and stereospecificity of this enzyme and suggests a possible mechanism for oxidative cleavage. Furthermore, mutagenesis of the distantly related CCD1 of maize shows how the VP14 structure represents a template for all plant carotenoid cleavage dioxygenases (CCDs). In addition, the structure suggests how VP14 associates with the membrane as a way of gaining access to its membrane soluble substrate.

  3. Structural Insights into Maize Viviparous14, a Key Enzyme in the Biosynthesis of the Phytohormone Abscisic Acid

    Messing, Simon A.J.; Gabelli, Sandra B.; Echeverria, Ignacia; Vogel, Jonathan T.; Guan, Jiahn Chou; Tan, Bao Cai; Klee, Harry J.; McCarty, Donald R.; Amzel, L. Mario (JHU); (Florida)

    2011-09-06

    The key regulatory step in the biosynthesis of abscisic acid (ABA), a hormone central to the regulation of several important processes in plants, is the oxidative cleavage of the 11,12 double bond of a 9-cis-epoxycarotenoid. The enzyme viviparous14 (VP14) performs this cleavage in maize (Zea mays), making it a target for the rational design of novel chemical agents and genetic modifications that improve plant behavior through the modulation of ABA levels. The structure of VP14, determined to 3.2-{angstrom} resolution, provides both insight into the determinants of regio- and stereospecificity of this enzyme and suggests a possible mechanism for oxidative cleavage. Furthermore, mutagenesis of the distantly related CCD1 of maize shows how the VP14 structure represents a template for all plant carotenoid cleavage dioxygenases (CCDs). In addition, the structure suggests how VP14 associates with the membrane as a way of gaining access to its membrane soluble substrate.

  4. A GH3 family member, OsGH3-2, modulates auxin and abscisic acid levels and differentially affects drought and cold tolerance in rice

    Du, Hao; Wu, Nai; Fu, Jing; Wang, Shiping; Li, Xianghua; Xiao, Jinghua; Xiong, Lizhong

    2012-01-01

    Plant responses to abiotic stresses are coordinated by arrays of growth and developmental processes. Indole-3-acetic acid (IAA) and abscisic acid (ABA) play critical roles in developmental programmes and environmental responses, respectively, through complex signalling and metabolism networks. However, crosstalk between the two phytohormones in the stress responses remains largely unknown. Here, it is reported that a GH3 family gene, OsGH3-2, encoding an enzyme catalysing IAA conjugation to a...

  5. Transport and concentration of abscisic acid (ABA) and auxin (IAA) in deciduous and coniferous trees. Transport und Gehalt von Abscisinsaeure (ABA) und Auxin (IAA) in Laub- und Nadelblaettern

    Hartung, W.

    1988-09-01

    Abscisic acid and indoleacetic acid were chosen to examine whether intact deciduous and coniferous tissues from spruce, hemlock fir, spinage, barley and sorrel or isolated mesophyll protoplasts from barley and closing cell preparations from Valerianella locusta are affected by sulphur dioxide in terms of changes in the concentration, transportation and distribution of such plant hormones. The distribution of phytohormones like ABA and IAA over the individual cell compartments is determined by the different pH gradients of the latter. Owing to their acidity these hormones are accumulated in alkaline cell inclusion bodies like chloroplasts and cytosol. Potentially acid air pollutants like SO{sub 2} and NO{sub x} lead to acidification of previously alkaline cell compartments, due to which fact the cellular pH gradients are reduced. This, in turn, gives rise to a redistribution of phytohormones to the effect that certain target cells such as closing cells of leaves or meristem cells come under the influence of altered hormone concentrations and compositions. This is bound to affect the processes controlling the development, growth and stress behaviour of plants. (orig.) With 55 refs., 2 tabs., 16 figs.

  6. Separation of Abscisic Acid, Indole-3-Acetic Acid, Gibberellic Acid in 99 R (Vitis berlandieri x Vitis rupestris) and Rose Oil (Rosa damascena Mill.) by Reversed Phase Liquid Chromatography

    KELEN, Mustafa

    2004-01-01

    Plant hormones, specialized chemical substances produced by plants, are the main internal factors controlling growth and development. In this study the pH and polarity of the mobile phase were taken into consideration to optimize the mobile phase for the chromatographic separation of 3 important plant hormones: abscisic acid (ABA), indole-3-acetic acid (IAA) and gibberellic acid (GA3). pKa values of ABA, IAA and GA3 were determined using retention factors. These 3 hormones were extr...

  7. Kinetic Characterisation of a Single Chain Antibody against the Hormone Abscisic Acid: Comparison with Its Parental Monoclonal

    Badescu, George O.; Marsh, Andrew; Smith, Timothy R.; Thompson, Andrew J.; Napier, Richard M.

    2016-01-01

    A single-chain Fv fragment antibody (scFv) specific for the plant hormone abscisic acid (ABA) has been expressed in the bacterium Escherichia coli as a fusion protein. The kinetics of ABA binding have been measured using surface plasmon resonance spectrometry (BIAcore 2000) using surface and solution assays. Care was taken to calculate the concentration of active protein in each sample using initial rate measurements under conditions of partial mass transport limitation. The fusion product, parental monoclonal antibody and the free scFv all have low nanomolar affinity constants, but there is a lower dissociation rate constant for the parental monoclonal resulting in a three-fold greater affinity. Analogue specificity was tested and structure-activity binding preferences measured. The biologically-active (+)-ABA enantiomer is recognised with an affinity three orders of magnitude higher than the inactive (-)-ABA. Metabolites of ABA including phaseic acid, dihydrophaseic acid and deoxy-ABA have affinities over 100-fold lower than that for (+)-ABA. These properties of the scFv make it suitable as a sensor domain in bioreporters specific for the naturally occurring form of ABA. PMID:27023768

  8. Abscisic acid content, transpiration, and stomatal conductance as related to leaf age in plants Xanthium strumarium L

    Raschke, K.; Zeevaart, J.A.D.

    1976-01-01

    Among the four uppermost leaves of greenhouse-grown plants of Xanthium strumarium L., the content of abscisic acid per unit fresh or dry weight was highest in the youngest leaf and decreased gradually with increasing age of the leaves. Expressed per leaf, the second youngest leaf was richest in ABA; the amount of ABA per leaf declined only slightly as the leaves expanded. Transpiration and stomatal conductance were negatively correlated with the ABA concentration in the leaves; the youngest leaf lost the least amount of water. This correlation was always very good if the youngest leaf was compared with the older leaves but not always good among the older leaves. Since stomatal sensitivity to exogenous (+-)-ABA was the same in leaves of all four age groups ABA may be in at least two compartments in the leaf, one of which is isolated from the guard cells. The ability to synthesize ABA in response to wilting or chilling was strongly expressed in young leaves and declined with leaf age. There was no difference between leaves in their content of the metabolites of ABA, phaseic, and dihydrophaseic acid, expressed per unit weight.

  9. Plant, cell, and molecular mechanisms of abscisic-acid regulation of stomatal apertures. In vivo phosphorylation of phosphoenolpyruvate carboxylase in guard cells of Vicia faba L. is enhanced by fusicoccin and suppressed by abscisic acid

    Du, Z.; Aghoram, K.; Outlaw, W.H. Jr.

    1996-12-31

    Plants regulate water loss and CO{sub 2} gain by modulating the aperture sizes of stomata that penetrate the epidermis. Aperture size itself is increased by osmolyte accumulation and consequent turgor increase in the pair of guard cells that flank each stoma. Guard-cell phosphoenolpyruvate carboxylase, which catalyzes the regulated step leading to malate synthesis, is crucial for charge and pH maintenance during osmolyte accumulation. Regulation of this cytosolic enzyme by effectors is well documented, but additional regulation by posttranslational modification is predicted by the alteration of PEPC kinetics during stomatal opening. In this study, the authors have investigated whether this alteration is associated with the phosphorylation status of this enzyme. Using sonicated epidermal peels (isolated guard cells) pre-loaded with {sub 32}PO{sub 4}, the authors induced stomatal opening and guard-cell malate accumulation by incubation with 5 {micro}M fusicoccin (FC). In corroboratory experiments, guard cells were incubated with 5 {micro}M fusicoccin (FC). In corroboratory experiments, guard cells were incubated with the FC antagonist, 10 {micro}M abscisic acid (ABA). The phosphorylation status of PEPC was assessed by immunoprecipitation, electrophoresis, immunoblotting, and autoradiography. PEPC was phosphorylated when stomata were stimulated to open, and phosphorylation was lessened by incubation with ABA.

  10. Major latex protein-like protein 43 (MLP43) functions as a positive regulator during abscisic acid responses and confers drought tolerance in Arabidopsis thaliana

    WANG, YANPING; Yang, Li; Chen, Xi; Ye, Tiantian; Zhong, Bao; Liu, Ruijie; Wu, Yan; Chan, Zhulong

    2015-01-01

    Drought stress is one of the disadvantageous environmental conditions for plant growth and reproduction. Given the importance of abscisic acid (ABA) to plant growth and abiotic stress responses, identification of novel components involved in ABA signalling transduction is critical. In this study, we screened numerous Arabidopsis thaliana mutants by seed germination assay and identified a mutant mlp43 (major latex protein-like 43) with decreased ABA sensitivity in seed germination. The mlp43 m...

  11. Antagonistic roles of abscisic acid and cytokinin during response to nitrogen depletion in oleaginous microalga Nannochloropsis oceanica expand the evolutionary breadth of phytohormone function

    Lu, Y.; Tarkowská, Danuše; Turečková, Veronika; Luo, T.; Xin, Y.; Li, J.; Wang, Q.; Jiao, N.; Strnad, Miroslav; Xu, J.

    2014-01-01

    Roč. 80, č. 1 (2014), s. 52-68. ISSN 0960-7412 R&D Projects: GA ČR GA206/09/1284; GA MŠk LK21306; GA MŠk(CZ) LO1204 Grant ostatní: GA MŠk(CZ) ED0007/01/01 Institutional support: RVO:61389030 Keywords : Nannochloropsis oceanica * antagonistic synergy * abscisic acid Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 5.972, year: 2014

  12. ASCORBATE PEROXIDASE6 protects Arabidopsis desiccating and germinating seeds from stress and mediates cross talk between reactive oxygen species, abscisic acid, and auxin

    Chen, Ch.; Letnik, I.; Hacham, Y.; Dobrev, Petre; Ben-Daniel, B.H.; Vaňková, Radomíra; Amir, R.; Miller, G.

    2014-01-01

    Roč. 166, č. 1 (2014), s. 370-383. ISSN 0032-0889 R&D Projects: GA ČR GA206/09/2062 Institutional support: RVO:61389030 Keywords : Arabidopsis thaliana * abscisic acid * germinating seeds Subject RIV: ED - Physiology Impact factor: 6.841, year: 2014 http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=MEDLINE&DestLinkType=FullRecord&UT=25049361

  13. Comparative Transcriptome Analysis Reveals the Influence of Abscisic Acid on the Metabolism of Pigments, Ascorbic Acid and Folic Acid during Strawberry Fruit Ripening.

    Dongdong Li

    Full Text Available A comprehensive investigation of abscisic acid (ABA biosynthesis and its influence on other important phytochemicals is critical for understanding the versatile roles that ABA plays during strawberry fruit ripening. Using RNA-seq technology, we sampled strawberry fruit in response to ABA or nordihydroguaiaretic acid (NDGA; an ABA biosynthesis blocker treatment during ripening and assessed the expression changes of genes involved in the metabolism of pigments, ascorbic acid (AsA and folic acid in the receptacles. The transcriptome analysis identified a lot of genes differentially expressed in response to ABA or NDGA treatment. In particular, genes in the anthocyanin biosynthesis pathway were actively regulated by ABA, with the exception of the gene encoding cinnamate 4-hydroxylase. Chlorophyll degradation was accelerated by ABA mainly owing to the higher expression of gene encoding pheide a oxygenase. The decrease of β-carotene content was accelerated by ABA treatment and delayed by NDGA. A high negative correlation rate was found between ABA and β-carotene content, indicating the importance of the requirement for ABA synthesis during fruit ripening. In addition, evaluation on the folate biosynthetic pathway indicate that ABA might have minor function in this nutrient's biosynthesis process, however, it might be involved in its homeostasis. Surprisingly, though AsA content accumulated during fruit ripening, expressions of genes involved in its biosynthesis in the receptacles were significantly lower in ABA-treated fruits. This transcriptome analysis expands our understanding of ABA's role in phytochemical metabolism during strawberry fruit ripening and the regulatory mechanisms of ABA on these pathways were discussed. Our study provides a wealth of genetic information in the metabolism pathways and may be helpful for molecular manipulation in the future.

  14. The parasitic plant Cuscuta australis is highly insensitive to abscisic acid-induced suppression of hypocotyl elongation and seed germination.

    Li, Juan; Hettenhausen, Christian; Sun, Guiling; Zhuang, Huifu; Li, Jian-Hong; Wu, Jianqiang

    2015-01-01

    Around 1% of angiosperms are parasitic plants. Their growth and development solely or partly depend on host plants from which they extract water, nutrients, and other molecules using a parasitic plant-specific organ, the haustorium. Strong depletion of nutrients can result in serious growth retardation and in some cases, death of the hosts. The genus Cuscuta (dodder) comprises about 200 holoparasitic species occurring on all continents. Their seedlings have no roots and cotyledons but are only string-like hypocotyls. When they contact suitable host plants, haustoria are formed and thereafter seedlings rapidly develop into vigorously growing branches without roots and leaves. This highly specialized lifestyle suggests that Cuscuta plants likely have unique physiology in development and stress responses. Using germination and seedling growth assays, we show that C. australis seeds and seedlings are highly insensitive to abscisic acid (ABA). Transcriptome analysis and protein sequence alignment with Arabidopsis, tomato, and rice homologs revealed that C. australis most likely consists of only four functional ABA receptors. Given that Cuscuta plants are no longer severely challenged by drought stress, we hypothesize that the ABA-mediated drought resistance pathway in Cuscuta spp. might have had degenerated over time during evolution. PMID:26258814

  15. The plant cuticle is required for osmotic stress regulation of abscisic acid biosynthesis and osmotic stress tolerance in Arabidopsis

    Wang, Zhenyu

    2011-05-01

    Osmotic stress activates the biosynthesis of abscisic acid (ABA). One major step in ABA biosynthesis is the carotenoid cleavage catalyzed by a 9-cis epoxycarotenoid dioxygenase (NCED). To understand the mechanism for osmotic stress activation of ABA biosynthesis, we screened for Arabidopsis thaliana mutants that failed to induce the NCED3 genee xpression in response to osmotic stress treatments. The ced1 (for 9-cis epoxycarotenoid dioxy genase defective 1) mutant isolated in this study showed markedly reduced expression of NCED3 in response to osmotic stress (polyethylene glycol)treatments compared with the wild type. Other ABA biosynthesis genes are also greatly reduced in ced1 under osmotic stress. ced1 mutant plants are very sensitive to even mild osmotic stress. Map-based cloning revealed unexpectedly thatCED1 encodes a putative a/b hydrolase domain-containing protein and is allelic to the BODYGUARD gene that was recently shown to be essential for cuticle biogenesis. Further studies discovered that other cut in biosynthesis mutants are also impaired in osmotic stress induction of ABA biosynthesis genes and are sensitive to osmotic stress. Our work demonstrates that the cuticle functions not merely as a physical barrier to minimize water loss but also mediates osmotic stress signaling and tolerance by regulating ABA biosynthesis and signaling. © 2011 American Society of Plant Biologists. All rights reserved.

  16. Abscisic acid-induced rearrangement of intracellular structures associated with freezing and desiccation stress tolerance in the liverwort Marchantia polymorpha.

    Akter, Khaleda; Kato, Masahiro; Sato, Yuki; Kaneko, Yasuko; Takezawa, Daisuke

    2014-09-15

    The plant growth regulator abscisic acid (ABA) is known to be involved in triggering responses to various environmental stresses such as freezing and desiccation in angiosperms, but little is known about its role in basal land plants, especially in liverworts, representing the earliest land plant lineage. We show here that survival rate after freezing and desiccation of Marchantia polymorpha gemmalings was increased by pretreatment with ABA in the presence of increasing concentrations of sucrose. ABA treatment increased accumulation of soluble sugars in gemmalings, and sugar accumulation was further increased by addition of sucrose to the culture medium. ABA treatment of gemmalings also induced accumulation of transcripts for proteins with similarity to late embryogenesis abundant (LEA) proteins, which accumulate in association with acquisition of desiccation tolerance in maturing seeds. Observation by light and electron microscopy indicated that the ABA treatment caused fragmentation of vacuoles with increased cytosolic volume, which was more prominent in the presence of a high concentration of external sucrose. ABA treatment also increased the density of chloroplast distribution and remarkably enlarged their volume. These results demonstrate that ABA induces drastic physiological changes in liverwort cells for stress tolerance, accompanied by accumulation of protectants against dehydration and rearrangement and morphological alterations of cellular organelles. PMID:25046754

  17. Epoxycarotenoid-mediated synthesis of abscisic acid in Physcomitrella patens implicating conserved mechanisms for acclimation to hyperosmosis in embryophytes.

    Takezawa, Daisuke; Watanabe, Naoki; Ghosh, Totan Kumar; Saruhashi, Masashi; Suzuki, Atsushi; Ishiyama, Kanako; Somemiya, Shinnosuke; Kobayashi, Masatomo; Sakata, Yoichi

    2015-04-01

    Plants acclimate to environmental stress signals such as cold, drought and hypersalinity, and provoke internal protective mechanisms. Abscisic acid (ABA), a carotenoid-derived phytohormone, which increases in response to the stress signals above, has been suggested to play a key role in the acclimation process in angiosperms, but the role of ABA in basal land plants such as mosses, including its biosynthetic pathways, has not been clarified. Targeted gene disruption of PpABA1, encoding zeaxanthin epoxidase in the moss Physcomitrella patens was conducted to determine the role of endogenous ABA in acclimation processes in mosses. The generated ppaba1 plants were found to accumulate only a small amount of endogenous ABA. The ppaba1 plants showed reduced osmotic acclimation capacity in correlation with reduced dehydration tolerance and accumulation of late embryogenesis abundant proteins. By contrast, cold-induced freezing tolerance was less affected in ppaba1, indicating that endogenous ABA does not play a major role in the regulation of cold acclimation in the moss. Our results suggest that the mechanisms for osmotic acclimation mediated by carotenoid-derived synthesis of ABA are conserved in embryophytes and that acquisition of the mechanisms played a crucial role in terrestrial adaptation and colonization by land plant ancestors. PMID:25545104

  18. Putrescine is involved in Arabidopsis freezing tolerance and cold acclimation by regulating abscisic acid levels in response to low temperature.

    Cuevas, Juan C; López-Cobollo, Rosa; Alcázar, Rubén; Zarza, Xavier; Koncz, Csaba; Altabella, Teresa; Salinas, Julio; Tiburcio, Antonio F; Ferrando, Alejandro

    2008-10-01

    The levels of endogenous polyamines have been shown to increase in plant cells challenged with low temperature; however, the functions of polyamines in the regulation of cold stress responses are unknown. Here, we show that the accumulation of putrescine under cold stress is essential for proper cold acclimation and survival at freezing temperatures because Arabidopsis (Arabidopsis thaliana) mutants defective in putrescine biosynthesis (adc1, adc2) display reduced freezing tolerance compared to wild-type plants. Genes ADC1 and ADC2 show different transcriptional profiles upon cold treatment; however, they show similar and redundant contributions to cold responses in terms of putrescine accumulation kinetics and freezing sensitivity. Our data also demonstrate that detrimental consequences of putrescine depletion during cold stress are due, at least in part, to alterations in the levels of abscisic acid (ABA). Reduced expression of NCED3, a key gene involved in ABA biosynthesis, and down-regulation of ABA-regulated genes are detected in both adc1 and adc2 mutant plants under cold stress. Complementation analysis of adc mutants with ABA and reciprocal complementation tests of the aba2-3 mutant with putrescine support the conclusion that putrescine controls the levels of ABA in response to low temperature by modulating ABA biosynthesis and gene expression. PMID:18701673

  19. Characterization of the 9-cis-epoxycarotenoid dioxygenase gene family and the regulation of abscisic acid biosynthesis in avocado.

    Chernys, J T; Zeevaart, J A

    2000-09-01

    Avocado (Persea americana Mill. cv Lula) is a climacteric fruit that exhibits a rise in ethylene as the fruit ripens. This rise in ethylene is followed by an increase in abscisic acid (ABA), with the highest level occurring just after the peak in ethylene production. ABA is synthesized from the cleavage of carotenoid precursors. The cleavage of carotenoid precursors produces xanthoxin, which can subsequently be converted into ABA via ABA-aldehyde. Indirect evidence indicates that the cleavage reaction, catalyzed by 9-cis-epoxycarotenoid dioxygenase (NCED), is the regulatory step in ABA synthesis. Three genes encoding NCED cleavage-like enzymes were cloned from avocado fruit. Two genes, PaNCED1 and PaNCED3, were strongly induced as the fruit ripened. The other gene, PaNCED2, was constitutively expressed during fruit ripening, as well as in leaves. This gene lacks a predicted chloroplast transit peptide. It is therefore unlikely to be involved in ABA biosynthesis. PaNCED1 was induced by water stress, but expression of PaNCED3 was not detectable in dehydrated leaves. Recombinant PaNCED1 and PaNCED3 were capable of in vitro cleavage of 9-cis-xanthophylls into xanthoxin and C(25)-apocarotenoids, but PaNCED2 was not. Taken together, the results indicate that ABA biosynthesis in avocado is regulated at the level of carotenoid cleavage. PMID:10982448

  20. Endogenous abscisic acid promotes hypocotyl growth and affects endoreduplication during dark-induced growth in tomato (Solanum lycopersicum L..

    Jan F Humplík

    Full Text Available Dark-induced growth (skotomorphogenesis is primarily characterized by rapid elongation of the hypocotyl. We have studied the role of abscisic acid (ABA during the development of young tomato (Solanum lycopersicum L. seedlings. We observed that ABA deficiency caused a reduction in hypocotyl growth at the level of cell elongation and that the growth in ABA-deficient plants could be improved by treatment with exogenous ABA, through which the plants show a concentration dependent response. In addition, ABA accumulated in dark-grown tomato seedlings that grew rapidly, whereas seedlings grown under blue light exhibited low growth rates and accumulated less ABA. We demonstrated that ABA promotes DNA endoreduplication by enhancing the expression of the genes encoding inhibitors of cyclin-dependent kinases SlKRP1 and SlKRP3 and by reducing cytokinin levels. These data were supported by the expression analysis of the genes which encode enzymes involved in ABA and CK metabolism. Our results show that ABA is essential for the process of hypocotyl elongation and that appropriate control of the endogenous level of ABA is required in order to drive the growth of etiolated seedlings.

  1. Meristem maintenance, auxin, jasmonic and abscisic acid pathways as a mechanism for phenotypic plasticity in Antirrhinum majus.

    Weiss, Julia; Alcantud-Rodriguez, Raquel; Toksöz, Tugba; Egea-Cortines, Marcos

    2016-01-01

    Plants grow under climatic changing conditions that cause modifications in vegetative and reproductive development. The degree of changes in organ development i.e. its phenotypic plasticity seems to be determined by the organ identity and the type of environmental cue. We used intraspecific competition and found that Antirrhinum majus behaves as a decoupled species for lateral organ size and number. Crowding causes decreases in leaf size and increased leaf number whereas floral size is robust and floral number is reduced. Genes involved in shoot apical meristem maintenance like ROA and HIRZ, cell cycle (CYCD3a; CYCD3b, HISTONE H4) or organ polarity (GRAM) were not significantly downregulated under crowding conditions. A transcriptomic analysis of inflorescence meristems showed Gene Ontology enriched pathways upregulated including Jasmonic and Abscisic acid synthesis and or signalling. Genes involved in auxin synthesis such as AmTAR2 and signalling AmANT were not affected by crowding. In contrast, AmJAZ1, AmMYB21, AmOPCL1 and AmABA2 were significantly upregulated. Our work provides a mechanistic working hypothesis where a robust SAM and stable auxin signalling enables a homogeneous floral size while changes in JA and ABA signalling maybe responsible for the decreased leaf size and floral number. PMID:26804132

  2. Abscisic acid as an internal integrator of multiple physiological processes modulates leaf senescence onset in Arabidopsis thaliana

    Yuwei eSong

    2016-02-01

    Full Text Available Many studies have shown that exogenous abscisic acid (ABA promotes leaf abscission and senescence. However, owing to a lack of genetic evidence, ABA function in plant senescence has not been clearly defined. Here, two-leaf early-senescence mutants (eas that were screened by chlorophyll fluorescence imaging and named eas1-1 and eas1-2 showed high photosynthetic capacity in the early stage of plant growth compared with the wild type. Gene mapping showed that eas1-1 and eas1-2 are two novel ABA2 allelic mutants. Under unstressed conditions, the eas1 mutations caused plant dwarf, early germination, larger stomatal apertures, and early leaf senescence compared with those of the wild type. Flow cytometry assays showed that the cell apoptosis rate in eas1 mutant leaves was higher than that of the wild type after day 30. A significant increase in the transcript levels of several senescence-associated genes, especially SAG12, was observed in eas1 mutant plants in the early stage of plant growth. More importantly, ABA-activated calcium channel activity in plasma membrane and induced the increase of cytoplasmic calcium concentration in guard cells are suppressed due to the mutation of EAS1. In contrast, the eas1 mutants lost chlorophyll and ion leakage significant faster than in the wild type under treatment with calcium channel blocker. Hence, our results indicate that endogenous ABA level is an important factor controlling the onset of leaf senescence through Ca2+ signaling.

  3. Meristem maintenance, auxin, jasmonic and abscisic acid pathways as a mechanism for phenotypic plasticity in Antirrhinum majus

    Weiss, Julia; Alcantud-Rodriguez, Raquel; Toksöz, Tugba; Egea-Cortines, Marcos

    2016-01-01

    Plants grow under climatic changing conditions that cause modifications in vegetative and reproductive development. The degree of changes in organ development i.e. its phenotypic plasticity seems to be determined by the organ identity and the type of environmental cue. We used intraspecific competition and found that Antirrhinum majus behaves as a decoupled species for lateral organ size and number. Crowding causes decreases in leaf size and increased leaf number whereas floral size is robust and floral number is reduced. Genes involved in shoot apical meristem maintenance like ROA and HIRZ, cell cycle (CYCD3a; CYCD3b, HISTONE H4) or organ polarity (GRAM) were not significantly downregulated under crowding conditions. A transcriptomic analysis of inflorescence meristems showed Gene Ontology enriched pathways upregulated including Jasmonic and Abscisic acid synthesis and or signalling. Genes involved in auxin synthesis such as AmTAR2 and signalling AmANT were not affected by crowding. In contrast, AmJAZ1, AmMYB21, AmOPCL1 and AmABA2 were significantly upregulated. Our work provides a mechanistic working hypothesis where a robust SAM and stable auxin signalling enables a homogeneous floral size while changes in JA and ABA signalling maybe responsible for the decreased leaf size and floral number. PMID:26804132

  4. Interaction between abscisic acid and nitric oxide in PB90-induced catharanthine biosynthesis of catharanthus roseus cell suspension cultures.

    Chen, Qian; Chen, Zunwei; Lu, Li; Jin, Haihong; Sun, Lina; Yu, Qin; Xu, Hongke; Yang, Fengxia; Fu, Mengna; Li, Shengchao; Wang, Huizhong; Xu, Maojun

    2013-01-01

    Elicitations are considered to be an important strategy to improve production of secondary metabolites of plant cell cultures. However, mechanisms responsible for the elicitor-induced production of secondary metabolites of plant cells have not yet been fully elucidated. Here, we report that treatment of Catharanthus roseus cell suspension cultures with PB90, a protein elicitor from Phytophthora boehmeriae, induced rapid increases of abscisic acid (ABA) and nitric oxide (NO), subsequently followed by the enhancement of catharanthine production and up-regulation of Str and Tdc, two important genes in catharanthine biosynthesis. PB90-induced catharanthine production and the gene expression were suppressed by the ABA inhibitor and NO scavenger respectively, showing that ABA and NO are essential for the elicitor-induced catharanthine biosynthesis. The relationship between ABA and NO in mediating catharanthine biosynthesis was further investigated. Treatment of the cells with ABA triggered NO accumulation and induced catharanthine production and up-regulation of Str and Tdc. ABA-induced catharanthine production and gene expressions were suppressed by the NO scavenger. Conversely, exogenous application of NO did not stimulate ABA generation and treatment with ABA inhibitor did not suppress NO-induced catharanthine production and gene expressions. Together, the results showed that both NO and ABA were involved in PB90-induced catharanthine biosynthesis of C. roseus cells. Furthermore, our data demonstrated that ABA acted upstream of NO in the signaling cascade leading to PB90-induced catharanthine biosynthesis of C. roseus cells. PMID:23554409

  5. Jasmonate signaling involves the abscisic acid receptor PYL4 to regulate metabolic reprogramming in Arabidopsis and tobacco

    Lackman, Petri; González-Guzmán, Miguel; Tilleman, Sofie; Carqueijeiro, Inês; Pérez, Amparo Cuéllar; Moses, Tessa; Seo, Mitsunori; Kanno, Yuri; Häkkinen, Suvi T.; Van Montagu, Marc C. E.; Thevelein, Johan M.; Maaheimo, Hannu; Oksman-Caldentey, Kirsi-Marja; Rodriguez, Pedro L.; Rischer, Heiko; Goossens, Alain

    2011-01-01

    The phytohormones jasmonates (JAs) constitute an important class of elicitors for many plant secondary metabolic pathways. However, JAs do not act independently but operate in complex networks with crosstalk to several other phytohormonal signaling pathways. Here, crosstalk was detected between the JA and abscisic acid (ABA) signaling pathways in the regulation of tobacco (Nicotiana tabacum) alkaloid biosynthesis. A tobacco gene from the PYR/PYL/RCAR family, NtPYL4, the expression of which is regulated by JAs, was found to encode a functional ABA receptor. NtPYL4 inhibited the type-2C protein phosphatases known to be key negative regulators of ABA signaling in an ABA-dependent manner. Overexpression of NtPYL4 in tobacco hairy roots caused a reprogramming of the cellular metabolism that resulted in a decreased alkaloid accumulation and conferred ABA sensitivity to the production of alkaloids. In contrast, the alkaloid biosynthetic pathway was not responsive to ABA in control tobacco roots. Functional analysis of the Arabidopsis (Arabidopsis thaliana) homologs of NtPYL4, PYL4 and PYL5, indicated that also in Arabidopsis altered PYL expression affected the JA response, both in terms of biomass and anthocyanin production. These findings define a connection between a component of the core ABA signaling pathway and the JA responses and contribute to the understanding of the role of JAs in balancing tradeoffs between growth and defense. PMID:21436041

  6. Graviresponsiveness and abscisic-acid content of roots of carotenoid-deficient mutants of Zea mays L

    Moore, R.; Smith, J. D.

    1985-01-01

    The abscisic-acid (ABA) content of roots of the carotenoid-deficient w-3, vp-5, and vp-7 mutants of Z. mays was analyzed using gas chromatography-mass spectrometry with an analysis sensitivity of 6 ng ABA g-1 fresh weight (FW). Roots of normal seedlings of the same lines were characterized by the following amounts of ABA (as ng ABA g-1 FW, +/- standard deviation): w-3, 279 +/- 43; vp-5, 237 +/- 26; vp-7, 338 +/- 61. We did not detect any ABA in roots of any of the mutants. Thus, the lack of carotenoids in these mutants correlated positively with the apparent absence of ABA. Primary roots of normal and mutant seedlings were positively gravitropic, with no significant differences in the curvatures of roots of normal as compared with mutant seedlings. These results indicate that ABA 1) is synthesized in maize roots via the carotenoid pathway, and 2) is not necessary for positive gravitropism by primary roots of Z. mays.

  7. Genetic interaction of two abscisic acid signaling regulators, HY5 and FIERY1, in mediating lateral root formation

    Chen, Hao

    2011-01-01

    Root architecture is continuously shaped in a manner that helps plants to better adapt to the environment. Gene regulation at the transcriptional or post-transcriptional levels largely controls this environmental response. Recently, RNA silencing has emerged as an important player in gene regulation and is involved in many aspects of plant development, including lateral root formation. In a recent study, we found that FIERY1, a bifunctional abiotic stress and abscisic acid (ABA) signaling regulator and an endogenous RNA silencing suppressor, mediates auxin response during lateral root formation in Arabidopsis. We proposed that FRY1 regulates lateral root development through its activity on adenosine 3,5-bisphosphate (PAP), a strong inhibitor of exoribonucleases (XRNs). Interestingly, some of the phenotypes of fry1, such as enhanced response to light in repressing hypocotyl elongation and hypersensitivity to ABA in lateral root growth, are opposite to those of another light- and ABA-signaling mutant, hy5. Here we analyzed the hy5 fry1 double mutant for root and hypocotyl growth. We found that the hy5 mutation can suppress the enhanced light sensitivity in fry1 hypocotyl elongation and restore the lateral root formation. The genetic interaction between HY5 and FRY1 indicates that HY5 and FRY1 may act in overlapping pathways that mediate light signaling and lateral root development. © 2011 Landes Bioscience.

  8. Eucalyptus ESTs involved in the production of 9-cis epoxycarotenoid dioxygenase, a regulatory enzyme of abscisic acid production

    Iraê A. Guerrini

    2005-01-01

    Full Text Available Abscisic acid (ABA regulates stress responses in plants, and genomic tools can help us to understand the mechanisms involved in that process. FAPESP, a Brazilian research foundation, in association with four private forestry companies, has established the FORESTs database (https://forests.esalq.usp.br. A search was carried out in the Eucalyptus expressed sequence tag database to find ESTs involved with 9-cis epoxycarotenoid dioxygenase (NCED, the regulatory enzyme for ABA biosynthesis, using the basic local BLAST alignment tool. We found four clusters (EGEZLV2206B11.g, EGJMWD2252H08.g, EGBFRT3107F10.g, and EGEQFB1200H10.g, which represent similar sequences of the gene that produces NCED. Data showed that the EGBFRT3107F10.g cluster was similar to the maize (Zea mays NCED enzyme, while EGEZLV2206B11.g and EGJMWD2252H08.g clusters were similar to the avocado (Persea americana NCED enzyme. All Eucalyptus clusters were expressed in several tissues, especially in flower buds, where ABA has a special participation during the floral development process.

  9. Evidence for a universal pathway of abscisic acid biosynthesis in higher plants from sup 18 O incorporation patterns

    Zeevaart, J.A.D.; Heath, T.G.; Gage, D.A. (Michigan State University, East Lansing (USA))

    1989-12-01

    Previous labeling studies of abscisic acid (ABA) with {sup 18}O{sub 2} have been mainly conducted with water-stressed leaves. In this study, {sup 18}O incorporation into ABA of stressed leaves of various species was compared with {sup 18}O labeling of ABA of turgid leaves and of fruit tissue in different stages of ripening. In stressed leaves of all six species investigated, avocado (Persea americana), barley (Hordeum vulgare), bean (Phaseolus vulgaris), cocklebur (Xanthium strumarium), spinach (Spinacia oleracea), and tobacco (Nicotiana tabacum), {sup 18}O was most abundant in the carboxyl group, whereas incorporation of a second and third {sup 18}O in the oxygen atoms on the ring of ABA was much less prominent after 24 h in {sup 18}O{sub 2}. ABA from turgid bean leaves showed significant {sup 18}O incorporation, again with highest {sup 18}O enrichment in the carboxyl group. On the basis of {sup 18}O-labeling patterns observed in ABA from different tissues it is concluded that, despite variations in precusor pool sizes and intermediate turnover rates, there is a universal pathway of ABA biosynthesis in higher plants which involves cleavage of a larger precursor molecule, presumably an oxygenated carotenoid.

  10. Integrin-like Protein Is Involved in the Osmotic Stress-induced Abscisic Acid Biosynthesis in Arabidopsis thaliana

    Bing Lü; Feng Chen; Zhong-Hua Gong; Hong Xie; Jian-Sheng Liang

    2007-01-01

    We studied the perception of plant cells to osmotic stress that leads to the accumulation of abscisic acid (ABA) in stressed Arabidopsis thaliana L. cells. A significant difference was found between protoplasts and cells in terms of their responses to osmotic stress and ABA biosynthesis, implying that cell wall and/or cell wall-plasma membrane interaction are essential in identifying osmotic stress. Western blotting and immunofluorescence localization experiments, using polyclonal antibody against human integrin β1, revealed the existence of a protein similar to the integrin protein of animals in the suspension-cultured cells located in the plasma membrane fraction.Treatment with a synthetic pentapeptide, Gly-Arg-Gly-Asp-Ser (GRGDS), which contains an RGD domain and interacts specifically with integrin protein and thus blocks the cell wall-plasma membrane interaction, significantly inhibited osmotic stress-induced ABA biosynthesis in cells, but not in protoplasts. These results demonstrate that cell wall and/or cell wall-plasma membrane interaction mediated by integrin-like proteins played important roles in osmotic stress-induced ABA biosynthesis in Arabidopsis thaliana.

  11. Analysis of Global Expression Profiles of Arabidopsis Genes Under Abscisic Acid and H2O2 Applications

    Peng-Cheng Wang; Yan-Yan Du; Guo-Yong An; Yun Zhou; Chen Miao; Chun-Peng Song

    2006-01-01

    To gain insight into the coordination of gene expression profiles under abscisic acid (ABA) and H2O2 applications,global changes in gene expression in response to ABA and H2O2 in Arabidopsis seedlings were investigated using GeneChip (Santa Clara, CA, USA) arrays. Among over 24 000 genes present in the arrays, 459 transcripts were found to be significantly increased, whereas another 221 decreased following H2O2 treatment compared with control. Similar to treatment with H2O2, ABA treatment elevated the transcription of 391 genes and repressed that of 322 genes. One hundred and forty-three upregulated genes and 75 downregulated genes were shared between the two treatments and these genes were mainly involved in metabolism, signal transduction, transcription, defense, and resistance. Only two genes, which encode an APETALA2/dehydration-responsive element binding protein (AP2/DREBP) family transcriptional factor and a late embryogenesisabundant protein, were downregulated by H2O2, but upregulated by ABA. These results suggest that, similar to ABA, H2O2 plays a global role in gene transcription of Arabidopsisseedlings. The transcriptional responses induced by the application of exogenous ABA and H2O2 overlapped substantially. These two treatments regulated most of the downstream genes in a coordinated manner.

  12. Light-harvesting complexes in photosystem II regulate glutathione-induced sensitivity of Arabidopsis guard cells to abscisic acid.

    Jahan, Md Sarwar; Nozulaidi, Mohd; Khairi, Mohd; Mat, Nashriyah

    2016-05-20

    Light-harvesting complexes (LHCs) in photosystem II (PSII) regulate glutathione (GSH) functions in plants. To investigate whether LHCs control GSH biosynthesis that modifies guard cell abscisic acid (ABA) sensitivity, we evaluated GSH content, stomatal aperture, reactive oxygen species (ROS), weight loss and plant growth using a ch1-1 mutant that was defective of LHCs and compared this with wild-type (WT) Arabidopsis thaliana plants. Glutathione monoethyl ester (GSHmee) increased but 1-chloro-2,4 dinitrobenzene (CDNB) decreased the GSH content in the guard cells. The guard cells of the ch1-1 mutants accumulated significantly less GSH than the WT plants. The guard cells of the ch1-1 mutants also showed higher sensitivity to ABA than the WT plants. The CDNB treatment increased but the GSHmee treatment decreased the ABA sensitivity of the guard cells without affecting ABA-induced ROS production. Dark and light treatments altered the GSH content and stomatal aperture of the guard cells of ch1-1 and WT plants, irrespective of CDNB and GSHmee. The ch1-1 mutant contained fewer guard cells and displayed poor growth, late flowering and stumpy weight loss compared with the WT plants. This study suggests that defective LHCs reduced the GSH content in the guard cells and increased sensitivity to ABA, resulting in stomatal closure. PMID:26970687

  13. Evidence for a universal pathway of abscisic acid biosynthesis in higher plants from 18O incorporation patterns

    Previous labeling studies of abscisic acid (ABA) with 18O2 have been mainly conducted with water-stressed leaves. In this study, 18O incorporation into ABA of stressed leaves of various species was compared with 18O labeling of ABA of turgid leaves and of fruit tissue in different stages of ripening. In stressed leaves of all six species investigated, avocado (Persea americana), barley (Hordeum vulgare), bean (Phaseolus vulgaris), cocklebur (Xanthium strumarium), spinach (Spinacia oleracea), and tobacco (Nicotiana tabacum), 18O was most abundant in the carboxyl group, whereas incorporation of a second and third 18O in the oxygen atoms on the ring of ABA was much less prominent after 24 h in 18O2. ABA from turgid bean leaves showed significant 18O incorporation, again with highest 18O enrichment in the carboxyl group. On the basis of 18O-labeling patterns observed in ABA from different tissues it is concluded that, despite variations in precusor pool sizes and intermediate turnover rates, there is a universal pathway of ABA biosynthesis in higher plants which involves cleavage of a larger precursor molecule, presumably an oxygenated carotenoid

  14. Overexpression of OsWRKY72 gene interferes in the abscisic acid signal and auxin transport pathway of Arabidopsis

    Song Yu; Chen Ligang; Zhang Liping; Yu Diqiu

    2010-09-01

    Through activating specific transcriptional programmes, plants can launch resistance mechanisms to stressful environments and acquire a new equilibrium between development and defence. To screen the rice WRKY transcription factor which functions in abiotic stress tolerance and modulates the abscisic acid (ABA) response, we generated a whole array of 35S-OsWRKY transgenic Arabidopsis. In this study, we report that 35S-OsWRKY72 transgenic Arabidopsis, whose seed germination was retarded under normal conditions, emerged more sensitive to mannitol, NaCl, ABA stresses and sugar starvation than vector plants. Meanwhile, 35S-OsWRKY72 transgenic Arabidopsis displayed early flowering, reduced apical dominance, lost high temperature-induced hypocotyl elongation response, and enhanced gravitropism response, which were similar to the auxin-related gene mutants aux1, axr1 and bud1. Further, semi-quantitative RT-PCR showed that the expression patterns of three auxin-related genes AUX1, AXR1 and BUD1 were significantly altered in rosette leaves and inflorescences of 35S-OsWRKY72 plants compared with control Arabidopsis, and two ABA-related genes ABA2 and ABI4 were induced in 35S-OsWRKY72 seedlings. In addition, northern blot analysis indicated that, in rice, OsWRKY72 was inducible by polyethylene glycol (PEG), NaCl, naphthalene acetic acid (NAA), ABA and 42°C, similar to its orthologue AtWRKY75 in Arabidopsis, implying that these two WRKY genes might be required for multiple physiological processes in their plants. Together, these results suggest that OsWRKY72 interferes in the signal cross-talk between the ABA signal and auxin transport pathway in transgenic Arabidopsis.

  15. Foliar abscisic acid-to-ethylene accumulation and response regulate shoot growth sensitivity to mild drought in wheat

    Ravi eValluru

    2016-04-01

    Full Text Available Although plant hormones play an important role in adjusting growth in response to environmental perturbation, the relative contributions of abscisic acid (ABA and ethylene remain elusive. Using six spring wheat genotypes differing for stress tolerance, we show that young seedlings of the drought-tolerant (DT group maintained or increased shoot dry weight (SDW while the drought-susceptible (DS group decreased SDW in response to mild drought. Both the DT and DS groups increased endogenous ABA and ethylene concentrations under mild drought compared to control. The DT and DS groups exhibited different SDW response trends, whereby the DS group decreased while the DT group increased SDW, to increased concentrations of ABA and ethylene under mild drought, although both groups decreased ABA/ethylene ratio under mild drought albeit at different levels. We concluded that SDW of the DT and DS groups might be distinctly regulated by specific ABA:ethylene ratio. Further, a foliar-spray of low concentrations (0.1 μM of ABA increased shoot relative growth rate (RGR in the DS group while ACC (1-aminocyclopropane-1-carboxylic acid, ethylene precursor spray increased RGR in both groups compared to control. Furthermore, the DT group accumulated a significantly higher galactose while a significantly lower maltose in the shoot compared to the DS group. Taken all together, these results suggest an impact of ABA, ethylene and ABA:ethylene ratio on SDW of wheat seedlings that may partly underlie a genotypic variability of different shoot growth sensitivities to drought among crop species under field conditions. We propose that phenotyping based on hormone accumulation, response and hormonal ratio would be a viable, rapid, and an early–stage selection tool aiding genotype selection for stress tolerance.

  16. Foliar Abscisic Acid-To-Ethylene Accumulation and Response Regulate Shoot Growth Sensitivity to Mild Drought in Wheat.

    Valluru, Ravi; Davies, William J; Reynolds, Matthew P; Dodd, Ian C

    2016-01-01

    Although, plant hormones play an important role in adjusting growth in response to environmental perturbation, the relative contributions of abscisic acid (ABA) and ethylene remain elusive. Using six spring wheat genotypes differing for stress tolerance, we show that young seedlings of the drought-tolerant (DT) group maintained or increased shoot dry weight (SDW) while the drought-susceptible (DS) group decreased SDW in response to mild drought. Both the DT and DS groups increased endogenous ABA and ethylene concentrations under mild drought compared to control. The DT and DS groups exhibited different SDW response trends, whereby the DS group decreased while the DT group increased SDW, to increased concentrations of ABA and ethylene under mild drought, although both groups decreased ABA/ethylene ratio under mild drought albeit at different levels. We concluded that SDW of the DT and DS groups might be distinctly regulated by specific ABA:ethylene ratio. Further, a foliar-spray of low concentrations (0.1 μM) of ABA increased shoot relative growth rate (RGR) in the DS group while ACC (1-aminocyclopropane-1-carboxylic acid, ethylene precursor) spray increased RGR in both groups compared to control. Furthermore, the DT group accumulated a significantly higher galactose while a significantly lower maltose in the shoot compared to the DS group. Taken all together, these results suggest an impact of ABA, ethylene, and ABA:ethylene ratio on SDW of wheat seedlings that may partly underlie a genotypic variability of different shoot growth sensitivities to drought among crop species under field conditions. We propose that phenotyping based on hormone accumulation, response and hormonal ratio would be a viable, rapid, and an early-stage selection tool aiding genotype selection for stress tolerance. PMID:27148292

  17. Translation initiation factor 5A in Picrorhiza is up-regulated during leaf senescence and in response to abscisic acid.

    Parkash, Jai; Vaidya, Tanmay; Kirti, Shruti; Dutt, Som

    2014-05-25

    Translation initiation, the first step of protein synthesis process is the principal regulatory step controlling translation and involves a pool of translation initiation factors. In plants, from recent studies it is becoming evident that these translation initiation factors impact various aspects of plant growth and development in addition to their role in protein synthesis. Eukaryotic translation initiation factor eIF5A is one such factor which functions in start site selection for the eIF2-GTP-tRNAi ternary complex within the ribosomal-bound preinitiation complex and also stabilizes the binding of GDP to eIF2. In the present study we have cloned and analysed a gene (eIF5a) encoding eIF5A from Picrorhiza (Picrorhiza kurrooa Royle ex Benth.) a medicinal plant of the western Himalayan region. The full length eIF5a cDNA consisted of 838 bp with an open reading frame of 480 bp, 88 bp 5' untranslated region and 270 bp 3' untranslated region. The deduced eIF5A protein contained 159 amino acids with a molecular weight of 17.359 kDa and an isoelectric point of 5.59. Secondary structure analysis revealed eIF5A having 24.53% α-helices, 8.81% β-turns, 23.27% extended strands and 43.40% random coils. pk-eIF5a transcript was found to be expressing during the active growth phase as well as during leaf senescence stage, however, highest expression was observed during leaf senescence stage. Further, its expression was up-regulated in response to exogenous application of abscisic acid. Both high intensity as well as low intensity light decreased the expression of pk-eIF5a. The findings suggest eIF5a to be an important candidate to develop genetic engineering based strategies for delaying leaf senescence. PMID:24656625

  18. Abscisic acid enhances tolerance of wheat seedlings to drought and regulates transcript levels of genes encoding ascorbate-glutathione biosynthesis.

    Wei, Liting; Wang, Lina; Yang, Yang; Wang, Pengfei; Guo, Tiancai; Kang, Guozhang

    2015-01-01

    Glutathione (GSH) and ascorbate (ASA) are associated with the abscisic acid (ABA)-induced abiotic tolerance in higher plant, however, its molecular mechanism remains obscure. In this study, exogenous application (10 μM) of ABA significantly increased the tolerance of seedlings of common wheat (Triticum aestivum L.) suffering from 5 days of 15% polyethylene glycol (PEG)-stimulated drought stress, as demonstrated by increased shoot lengths and shoot and root dry weights, while showing decreased content of hydrogen peroxide (H2O2) and malondialdehyde (MDA). Under drought stress conditions, ABA markedly increased content of GSH and ASA in both leaves and roots of ABA-treated plants. Temporal and spatial expression patterns of eight genes encoding ASA and GSH synthesis-related enzymes were measured using quantitative real-time reverse transcription polymerase chain reaction (qPCR). The results showed that ABA temporally regulated the transcript levels of genes encoding ASA-GSH cycle enzymes. Moreover, these genes exhibited differential expression patterns between the root and leaf organs of ABA-treated wheat seedlings during drought stress. These results implied that exogenous ABA increased the levels of GSH and ASA in drought-stressed wheat seedlings in time- and organ-specific manners. Moreover, the transcriptional profiles of ASA-GSH synthesis-related enzyme genes in the leaf tissue were compared between ABA- and salicylic acid (SA)-treated wheat seedlings under PEG-stimulated drought stress, suggesting that they increased the content of ASA and GSH by differentially regulating expression levels of ASA-GSH synthesis enzyme genes. Our results increase our understanding of the molecular mechanism of ABA-induced drought tolerance in higher plants. PMID:26175737

  19. Water stress responses of tomato mutants impaired in hormone biosynthesis reveal abscisic acid, jasmonic acid and salicylic acid interactions

    Valeria eMuñoz

    2015-11-01

    Full Text Available To investigate the putative crosstalk between JA and ABA in Solanum lycopersicum plants in response to drought, suppressor of prosystemin-mediated responses2 (spr2, JA-deficient and flacca (flc, ABA-deficient mutants together with the naphthalene/salicylate hydroxylase (NahG transgenic (SA-deficient line were used. Hormone profiling and gene expression of key enzymes in ABA, JA and SA biosynthesis were analyzed during early stages of drought. ABA accumulation was comparable in spr2 and wild type (WT plants whereas expression of 9-cis-epoxycarotenoid dioxygenase 1 (NCED1 and NCED2 was different, implying a compensation mechanism between NCED genes and an organ-specific regulation of NCED1 expression. JA levels and 12-oxo-phytodienoic acid reductase 3 (OPR3 expression in flc plants suggest that ABA regulates the induction of the OPR3 gene in roots. By contrast, ABA treatment to flc plants leads to a reduction of JA and SA contents. Furthermore, different pattern of SA accumulation (and expression of isochorismate synthase and phenylalanine ammonia lyase 1 was observed between WT seedlings and mutants, suggesting that SA plays an important role on the early response of tomato plants to drought and also that JA and ABA modulate its biosynthesis. Finally, hormone profiling in spr2 and NahG plants indicate a crosstalk between JA and SA that could enhance tolerance of tomato to water stress.

  20. Water Stress Responses of Tomato Mutants Impaired in Hormone Biosynthesis Reveal Abscisic Acid, Jasmonic Acid and Salicylic Acid Interactions.

    Muñoz-Espinoza, Valeria A; López-Climent, María F; Casaretto, José A; Gómez-Cadenas, Aurelio

    2015-01-01

    To investigate the putative crosstalk between JA and ABA in Solanum lycopersicum plants in response to drought, suppressor of prosystemin-mediated responses2 (spr2, JA-deficient) and flacca (flc, ABA-deficient) mutants together with the naphthalene/salicylate hydroxylase (NahG) transgenic (SA-deficient) line were used. Hormone profiling and gene expression of key enzymes in ABA, JA and SA biosynthesis were analyzed during early stages of drought. ABA accumulation was comparable in spr2 and wild type (WT) plants whereas expression of 9-cis-epoxycarotenoid dioxygenase 1 (NCED1) and NCED2 was different, implying a compensation mechanism between NCED genes and an organ-specific regulation of NCED1 expression. JA levels and 12-oxo-phytodienoic acid reductase 3 (OPR3) expression in flc plants suggest that ABA regulates the induction of the OPR3 gene in roots. By contrast, ABA treatment to flc plants leads to a reduction of JA and SA contents. Furthermore, different pattern of SA accumulation (and expression of isochorismate synthase and phenylalanine ammonia lyase 1) was observed between WT seedlings and mutants, suggesting that SA plays an important role on the early response of tomato plants to drought and also that JA and ABA modulate its biosynthesis. Finally, hormone profiling in spr2 and NahG plants indicate a crosstalk between JA and SA that could enhance tolerance of tomato to water stress. PMID:26635826

  1. Distinct abscisic acid signaling pathways for modulation of guard cell versus mesophyll cell potassium channels revealed by expression studies in Xenopus laevis oocytes

    Sutton, F.; Paul, S. S.; Wang, X. Q.; Assmann, S. M.; Evans, M. L. (Principal Investigator)

    2000-01-01

    Regulation of guard cell ion transport by abscisic acid (ABA) and in particular ABA inhibition of a guard cell inward K(+) current (I(Kin)) is well documented. However, little is known concerning ABA effects on ion transport in other plant cell types. Here we applied patch clamp techniques to mesophyll cell protoplasts of fava bean (Vicia faba cv Long Pod) plants and demonstrated ABA inhibition of an outward K(+) current (I(Kout)). When mesophyll cell protoplast mRNA (mesophyll mRNA) was expressed in Xenopus laevis oocytes, I(Kout) was generated that displayed similar properties to I(Kout) observed from direct analysis of mesophyll cell protoplasts. I(Kout) expressed by mesophyll mRNA-injected oocytes was inhibited by ABA, indicating that the ABA signal transduction pathway observed in mesophyll cells was preserved in the frog oocytes. Co-injection of oocytes with guard cell protoplast mRNA and cRNA for KAT1, an inward K(+) channel expressed in guard cells, resulted in I(Kin) that was similarly inhibited by ABA. However, oocytes co-injected with mesophyll mRNA and KAT1 cRNA produced I(Kin) that was not inhibited by ABA. These results demonstrate that the mesophyll-encoded signaling mechanism could not substitute for the guard cell pathway. These findings indicate that mesophyll cells and guard cells use distinct and different receptor types and/or signal transduction pathways in ABA regulation of K(+) channels.

  2. Identification of quantitative trait locus for abscisic acid responsiveness on chromosome 5A and association with dehydration tolerance in common wheat seedlings.

    Iehisa, Julio C M; Matsuura, Takakazu; Mori, Izumi C; Takumi, Shigeo

    2014-01-15

    The phytohormone abscisic acid (ABA) plays important roles in response to environmental stress as well as in seed maturation and dormancy. In common wheat, quantitative trait loci (QTLs) for ABA responsiveness at the seedling stage have been reported on chromosomes 1B, 2A, 3A, 6D and 7B. In this study, we identified a novel QTL for ABA responsiveness on chromosome 5A using an F2 population derived from a cross between the common wheat cultivar Chinese Spring (CS) and a chromosome substitution line of CS with chromosome 5A of cultivar Hope (Hope5A). This QTL was found in a similar chromosomal region to previously reported QTLs for drought tolerance and seed dormancy. Physiological characterization of the QTL revealed a small effect on dehydration tolerance and seed dormancy. The rate of water loss from leaves during dehydration was lower, and transcript accumulation of the cold responsive (COR)/late embryogenesis abundant (LEA) genes Wrab18 and Wdhn13 tended to be higher under dehydration stress in F2 individuals carrying the Hope allele of the QTL, which also showed higher ABA responsiveness than the CS allele-carrying individuals. Seed dormancy of individuals carrying the Hope allele also tended to be lower than those carrying the CS allele. Our results suggest that variation in ABA responsiveness among common wheat cultivars is at least partly determined by the 5A QTL, and that this QTL contributes to development of dehydration and preharvest sprouting tolerance. PMID:24331416

  3. Chloride-inducible transient apoplastic alkalinizations induce stomata closure by controlling abscisic acid distribution between leaf apoplast and guard cells in salt-stressed Vicia faba.

    Geilfus, Christoph-Martin; Mithöfer, Axel; Ludwig-Müller, Jutta; Zörb, Christian; Muehling, Karl H

    2015-11-01

    Chloride stress causes the leaf apoplast transiently to alkalize, an event that is presumed to contribute to the ability of plants to adapt to saline conditions. However, the initiation of coordinated processes downstream of the alkalinization is unknown. We hypothesize that chloride-inducible pH dynamics are a key chemical feature modulating the compartmental distribution of abscisic acid (ABA) and, as a consequence, affecting stomata aperture. Apoplastic pH and stomata aperture dynamics in intact Vicia faba leaves were monitored by microscopy-based ratio imaging and porometric measurements of stomatal conductance. ABA concentrations in leaf apoplast and guard cells were compared with pH dynamics by gas-chromatography-mass-spectrometry (GC-MS) and liquid-chromatography-tandem-mass spectrometry (LC-MS/MS). Results demonstrate that, upon chloride addition to roots, an alkalizing factor that initiates the pH dynamic propagates from root to leaf in a way similar to xylem-distributed water. In leaves, it induces a systemic transient apoplastic alkalinization that causes apoplastic ABA concentration to increase, followed by an elevation of endogenous guard cell ABA. We conclude that the transient alkalinization, which is a remote effect of chloride stress, modulates the compartmental distribution of ABA between the leaf apoplast and the guard cells and, in this way, is instrumental in inducing stomata closure during the beginning of salinity. PMID:26096890

  4. Abscisic acid, a stress hormone helps in improving water relations and yield of sunflower (helianthus annuus l.) hybrids under drought

    Genotypic variation in water relations under drought is an important index of studying drought tolerance of crops. Abscisic acid (ABA) application helped in mitigating drought stress by improving water relations and yield. Three sunflower hybrids viz., DK-4040 (tall stature), S-278 (medium stature) and SF-187 (short stature) were subjected to different irrigation and ABA application regimes i.e., four irrigations (25 days after sowing (DAS), at bud initiation, at flower initiation and at achene formation) and with no ABA spray, three irrigations (25 days after sowing, at flower initiation and at achene formation) and with no ABA spray, three irrigations (25 days after sowing, at flower initiation and at achene formation) and with ABA spray at bud initiation, three irrigations (25 days after sowing), at bud initiation and at achene formation) and with no ABA spray, three irrigations (25 days after sowing), at bud initiation and at achene formation) and with ABA spray at flower initiation. The experiment was laid out in randomized complete block design with split plot arrangement and had three replications. Exogenous application of ABA under drought at either stage (bud or flower initiation) was helpful in ameliorating drought stress by improving water relations and yield of sunflower hybrids; however response was better when ABA was applied under drought at bud initiation than at flower initiation stage. Sunflower hybrid DK- 4040 showed better enhancement of drought tolerance by exogenous application of ABA under drought than SF-187 and S-278 because it showed more improvement in water potential, osmotic potential, turgor pressure, relative leaf water contents and achene yield. (author)

  5. Structural basis for basal activity and autoactivation of abscisic acid (ABA) signaling SnRK2 kinases

    Ng, Ley-Moy; Soon, Fen-Fen; Zhou, X. Edward; West, Graham M.; Kovach, Amanda; Suino-Powell, Kelly M.; Chalmers, Michael J.; Li, Jun; Yong, Eu-Leong; Zhu, Jian-Kang; Griffin, Patrick R.; Melcher, Karsten; Xu, H. Eric (Van Andel); (Scripps); (Purdue); (NU Singapore)

    2014-10-02

    Abscisic acid (ABA) is an essential hormone that controls plant growth, development, and responses to abiotic stresses. Central for ABA signaling is the ABA-mediated autoactivation of three monomeric Snf1-related kinases (SnRK2.2, -2.3, and -2.6). In the absence of ABA, SnRK2s are kept in an inactive state by forming physical complexes with type 2C protein phosphatases (PP2Cs). Upon relief of this inhibition, SnRK2 kinases can autoactivate through unknown mechanisms. Here, we report the crystal structures of full-length Arabidopsis thaliana SnRK2.3 and SnRK2.6 at 1.9- and 2.3-{angstrom} resolution, respectively. The structures, in combination with biochemical studies, reveal a two-step mechanism of intramolecular kinase activation that resembles the intermolecular activation of cyclin-dependent kinases. First, release of inhibition by PP2C allows the SnRK2s to become partially active because of an intramolecular stabilization of the catalytic domain by a conserved helix in the kinase regulatory domain. This stabilization enables SnRK2s to gain full activity by activation loop autophosphorylation. Autophosphorylation is more efficient in SnRK2.6, which has higher stability than SnRK2.3 and has well-structured activation loop phosphate acceptor sites that are positioned next to the catalytic site. Together, these data provide a structural framework that links ABA-mediated release of PP2C inhibition to activation of SnRK2 kinases.

  6. Abscisic acid activates a Ca2+-calmodulin-stimulated protein kinase involved in antioxidant defense in maize leaves

    Shucheng Xu

    2010-01-01

     The role of a calcium-dependent and calmodulin(CaM)stimulated protein kinase in abscisic acid(ABA)-induced antioxidant defense was determined in leaves of maize (Zea mays).In-gel kinase assays showed that treatments with ABA or H2O2 induced the activation of a 49-kDa protein kinase and a 52-kDa protein kinase significantly.Furthermore,we showed that the 52-kDa protein kinase has the characteristics of CaM-stimulating activity and is sensitive to calcium-CaM-dependent protein kinase Ⅱ (CaMK Ⅱ)inhibitor KN-93 or CaM antagonist W-7.Treatments with ABA or H2O2 not only induced the acti vation of the 52-kDa protein kinase,but also enhanced the total activities of the antioxidant enzymes,including catalase,ascorbate peroxidase,glutathione reductase,and superoxide dismutase.Such enhancements were blocked by pretreatment with a CaMK inhibitor and a reactive oxygen species(ROS)inhibitor or scavenger.Pretreatment with the CaMK inhibitor also substantially arrested the ABA-induced H2O2 production.Kinase activity enhancements induced by ABA were attenuated by pretreatment with an ROS inhibitor or scavenger.These results suggest that the 52-kDa CaMK is involved in ABA-induced antioxidant defense and that cross-talk between CaMK and H2O2 plays a pivotal role in ABA signaling.We infer that CaMK acts both upstream and downstream of H2O2,but mainly acts between ABA and H2O2 in ABA-induced antioxidant-defensive signaling.

  7. Genome-Wide Analysis of MicroRNA Responses to the Phytohormone Abscisic Acid in Populus euphratica.

    Duan, Hui; Lu, Xin; Lian, Conglong; An, Yi; Xia, Xinli; Yin, Weilun

    2016-01-01

    MicroRNA (miRNA) is a type of non-coding small RNA with a regulatory function at the posttranscriptional level in plant growth development and in response to abiotic stress. Previous studies have not reported on miRNAs responses to the phytohormone abscisic acid (ABA) at a genome-wide level in Populus euphratica, a model tree for studying abiotic stress responses in woody plants. Here we analyzed the miRNA response to ABA at a genome-wide level in P. euphratica utilizing high-throughput sequencing. To systematically perform a genome-wide analysis of ABA-responsive miRNAs in P. euphratica, nine sRNA libraries derived from three groups (control, treated with ABA for 1 day and treated with ABA for 4 days) were constructed. Each group included three libraries from three individual plantlets as biological replicate. In total, 151 unique mature sequences belonging to 75 conserved miRNA families were identified, and 94 unique sequences were determined to be novel miRNAs, including 56 miRNAs with miRNA(*) sequences. In all, 31 conserved miRNAs and 31 novel miRNAs response to ABA significantly differed among the groups. In addition, 4132 target genes were predicted for the conserved and novel miRNAs. Confirmed by real-time qPCR, expression changes of miRNAs were inversely correlated with the expression profiles of their putative targets. The Populus special or novel miRNA-target interactions were predicted might be involved in some biological process related stress tolerance. Our analysis provides a comprehensive view of how P. euphratica miRNA respond to ABA, and moreover, different temporal dynamics were observed in different ABA-treated libraries. PMID:27582743

  8. ZmABA2, an interacting protein of ZmMPK5, is involved in abscisic acid biosynthesis and functions.

    Ma, Fangfang; Ni, Lan; Liu, Libo; Li, Xi; Zhang, Huan; Zhang, Aying; Tan, Mingpu; Jiang, Mingyi

    2016-02-01

    In maize (Zea mays), the mitogen-activated protein kinase ZmMPK5 has been shown to be involved in abscisic acid (ABA)-induced antioxidant defence and to enhance the tolerance of plants to drought, salt stress and oxidative stress. However, the underlying molecular mechanisms are poorly understood. Here, using ZmMPK5 as bait in yeast two-hybrid screening, a protein interacting with ZmMPK5 named ZmABA2, which belongs to a member of the short-chain dehydrogenase/reductase family, was identified. Pull-down assay and bimolecular fluorescence complementation analysis and co-immunoprecipitation test confirmed that ZmMPK5 interacts with ZmABA2 in vitro and in vivo. Phosphorylation of Ser173 in ZmABA2 by ZmMPK5 was shown to increase the activity of ZmABA2 and the protein stability. Various abiotic stimuli induced the expression of ZmABA2 in leaves of maize plants. Pharmacological, biochemical and molecular biology and genetic analyses showed that both ZmMPK5 and ZmABA2 coordinately regulate the content of ABA. Overexpression of ZmABA2 in tobacco plants was found to elevate the content of ABA, regulate seed germination and root growth under drought and salt stress and enhance the tolerance of tobacco plants to drought and salt stress. These results suggest that ZmABA2 is a direct target of ZmMPK5 and is involved in ABA biosynthesis and functions. PMID:26096642

  9. Abscisic acid refines the synthesis of chloroplast proteins in maize (Zea mays in response to drought and light.

    Xiuli Hu

    Full Text Available To better understand abscisic acid (ABA regulation of the synthesis of chloroplast proteins in maize (Zea mays L. in response to drought and light, we compared leaf proteome differences between maize ABA-deficient mutant vp5 and corresponding wild-type Vp5 green and etiolated seedlings exposed to drought stress. Proteins extracted from the leaves of Vp5 and vp5 seedlings were used for two-dimensional electrophoresis (2-DE and subsequent matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF mass spectrometry (MS. After Coomassie brilliant blue staining, approximately 450 protein spots were reproducibly detected on 2-DE gels. A total of 36 differentially expressed protein spots in response to drought and light were identified using MALDI-TOF MS and their subcellular localization was determined based on the annotation of reviewed accession in UniProt Knowledgebase and the software prediction. As a result, corresponding 13 proteins of the 24 differentially expressed protein spots were definitely localized in chloroplasts and their expression was in an ABA-dependent way, including 6 up-regulated by both drought and light, 5 up-regulated by drought but down-regulated by light, 5 up-regulated by light but down-regulated by drought; 5 proteins down-regulated by drought were mainly those involved in photosynthesis and ATP synthesis. Thus, the results in the present study supported the vital role of ABA in regulating the synthesis of drought- and/or light-induced proteins in maize chloroplasts and would facilitate the functional characterization of ABA-induced chloroplast proteins in C(4 plants.

  10. Cross-talk between calcium-calmodulin and nitric oxide in abscisic acid signaling in leaves of maize plants

    Jianrong Sang; Aying Zhang; Fan Lin; Mingpu Tan; Mingyi Jiang

    2008-01-01

    Using pharmacological and biochemical approaches,the signaling pathways between hydrogen peroxide (H2O2),calcium (Ca2+)-calmodulin (CAM),and nitric oxide (NO) in abscisic acid (ABA)-induced antioxidant defense were investigated in leaves of maize (Zea mays L.) plants.Treatments with ABA,H2O2,and CaCI2 induced increases in the generation of NO in maize mesophyll cells and the activity of nitric oxide synthase (NOS) in the cytosolic and microsomal fractions of maize leaves.However,such increases were blocked by the pretreatments with Ca2+ inhibitors and CaM antagonists.Meanwhile,pretreatments with two NOS inhibitors also suppressed the Ca2+-induced increase in the production of NO.On the other hand,treatments with ABA and the NO donor sodium nitroprusside (SNP) also led to increases in the concentration of cytosolic Ca2+ in protoplasts of mesophyll cells and in the expression of calmodulin 1 (CaMI) gene and the contents of CaM in leaves of maize plants,and the increases induced by ABA were reduced by the pretreatments with a NO scavenger and a NOS inhibitor.Moreover,SNP-induced increases in the expression of the antioxidant genes superoxide dismutase 4 (SOD4),cytosolic ascorbate peroxidase (cAPX),and glutathione reductase 1 (GRI) and the activities of the chloroplastic and cytosolic antioxidant enzymes were arrested by the pretreatments with Ca2+ inhibitors and CaM antagonists.Our results suggest that Ca2+-CaM functions both upstream and downstream of NO production,which is mainly from NOS,in ABA- and H2O2-induced antioxidant defense in leaves of maize plants.

  11. Molecular cloning and characterization of drought stress responsive abscisic acid-stress-ripening (Asr 1) gene from wild jujube, Ziziphus nummularia (Burm.f.) Wight & Arn.

    Padaria, Jasdeep Chatrath; Yadav, Radha; Tarafdar, Avijit; Lone, Showkat Ahmad; Kumar, Kanika; Sivalingam, Palaiyur Nanjappan

    2016-08-01

    Drought is a calamitous abiotic stress hampering agricultural productivity all over the world and its severity is likely to increase further. Abscisic acid-stress-ripening proteins (ASR), are a group of small hydrophilic proteins which are induced by abscisic acid, stress and ripening in many plants. In the present study, ZnAsr 1 gene was fully characterized for the first time from Ziziphus nummularia, which is one of the most low water forbearing plant. Full length ZnAsr 1 gene was characterised and in silico analysis of ZnASR1 protein was done for predicting its phylogeny and physiochemical properties. To validate transcriptional pattern of ZnAsr 1 in response to drought stress, expression profiling in polyethylene glycol (PEG) induced Z. nummularia seedlings was studied by RT-qPCR analysis and heterologous expression of the recombinant ZnAsr1 in Escherichia coli. The nucleotide sequence analysis revealed that the complete open reading frame of ZnAsr 1 is 819 bp long encoding a protein of 273 amino acid residues, consisting of a histidine rich N terminus with an abscisic acid/water deficit stress domain and a nuclear targeting signal at the C terminus. In expression studies, ZnAsr 1 gene was found to be highly upregulated under drought stress and recombinant clones of E. coli cells expressing ZnASR1 protein showed better survival in PEG containing media. ZnAsr1 was proven to enhance drought stress tolerance in the recombinant E.coli cells expressing ZnASR1. The cloned ZnAsr1 after proper validation in a plant system, can be used to develop drought tolerant transgenic crops. PMID:27209581

  12. Onset of herbivore-induced resistance in systemic tissue primed for jasmonate-dependent defenses is activated by abscisic acid

    Irene A. Vos

    2013-12-01

    Full Text Available In Arabidopsis, the MYC2 transcription factor on the one hand and the AP2/ERF transcription factors ORA59 and ERF1 on the other hand regulate distinct branches of the jasmonic acid (JA signaling pathway in an antagonistic fashion, co-regulated by abscisic acid (ABA and ethylene, respectively. Feeding by larvae of the specialist herbivorous insect Pieris rapae (small cabbage white butterfly results in activation of the MYC-branch and concomitant suppression of the ERF-branch in insect-damaged leaves. Here we investigated differential JA signaling activation in undamaged systemic leaves of P. rapae-infested plants. We found that the MYC2 transcription factor gene was induced both in the local insect-damaged leaves and the systemic undamaged leaves of P. rapae-infested Arabidopsis plants. However, in contrast to the insect-damaged leaves, the undamaged tissue did not show activation of the MYC-branch marker gene VSP1. Comparison of the hormone signal signature revealed that the levels of JA and (+-7-iso-jasmonoyl-L-isoleucine (JA-Ile raised to similar extents in locally damaged and systemically undamaged leaves, but the production of ABA and the JA precursor 12-oxo-phytodienoic acid (OPDA was enhanced only in the local herbivore-damaged leaves, and not in the distal undamaged leaves. Challenge of undamaged leaves of pre-infested plants with either P. rapae larvae or exogenously applied ABA led to potentiated expression levels of MYC2 and VSP1, with the latter reaching extremely high expression levels. Moreover, P. rapae-induced resistance, as measured by reduction of caterpillar growth on pre-infested plants, was blocked in the ABA biosynthesis mutant aba2-1, that was also impaired in P. rapae-induced expression of VSP1. Together, these results suggest that ABA is a crucial regulator of herbivore-induced resistance by activating primed JA-regulated defense responses upon secondary herbivore attack in Arabidopsis.

  13. Polyphenolic responses of grapevine berries to light, temperature, oxidative stress, abscisic acid and jasmonic acid show specific developmental-dependent degrees of metabolic resilience to perturbation.

    Degu, Asfaw; Ayenew, Biruk; Cramer, Grant R; Fait, Aaron

    2016-12-01

    Grape-berries are exposed to a plethora of abiotic and biotic stimuli during their development. The developmental and temporal regulation of grape berry polyphenol metabolism in response to various cues was investigated using LC-QTOF-MS based metabolite profiling. High light (2500μmolm(-2)s(-1)), high temperature (40°C), jasmonic acid (200μM), menadione (120μM) and abscisic acid (3.026mM) treatments were applied to detached berries. Greater magnitudes of metabolite fluctuations characterize the pre-veraison berries than the veraison stage in response to the treatments. Furthermore, a tighter co-response of metabolic processes was shown at veraison, likely supporting the resilience to change in response to stress. High temperature and ABA treatments led to greater magnitudes of change during the course of the experiment. The present study demonstrates the occurrence of differential patterns of metabolic responses specific to individual cues and berry developmental stage, which in the field are commonly associated and thus hardly discernable. PMID:27374601

  14. Analysis of ADP-glucose pyrophosphorylase expression during turion formation induced by abscisic acid in Spirodela polyrhiza (greater duckweed

    Wang Wenqin

    2012-01-01

    Full Text Available Abstract Background Aquatic plants differ in their development from terrestrial plants in their morphology and physiology, but little is known about the molecular basis of the major phases of their life cycle. Interestingly, in place of seeds of terrestrial plants their dormant phase is represented by turions, which circumvents sexual reproduction. However, like seeds turions provide energy storage for starting the next growing season. Results To begin a characterization of the transition from the growth to the dormant phase we used abscisic acid (ABA, a plant hormone, to induce controlled turion formation in Spirodela polyrhiza and investigated their differentiation from fronds, representing their growth phase, into turions with respect to morphological, ultra-structural characteristics, and starch content. Turions were rich in anthocyanin pigmentation and had a density that submerged them to the bottom of liquid medium. Transmission electron microscopy (TEM of turions showed in comparison to fronds shrunken vacuoles, smaller intercellular space, and abundant starch granules surrounded by thylakoid membranes. Turions accumulated more than 60% starch in dry mass after two weeks of ABA treatment. To further understand the mechanism of the developmental switch from fronds to turions, we cloned and sequenced the genes of three large-subunit ADP-glucose pyrophosphorylases (APLs. All three putative protein and exon sequences were conserved, but the corresponding genomic sequences were extremely variable mainly due to the invasion of miniature inverted-repeat transposable elements (MITEs into introns. A molecular three-dimensional model of the SpAPLs was consistent with their regulatory mechanism in the interaction with the substrate (ATP and allosteric activator (3-PGA to permit conformational changes of its structure. Gene expression analysis revealed that each gene was associated with distinct temporal expression during turion formation. APL2 and

  15. Regulation of the High-Affinity Nitrate Transport System in Wheat Roots by Exogenous Abscisic Acid and Glutamine

    Chao Cai; Xue-Qiang Zhao; Yong-Guan Zhu; Bin Li; Yi-Ping Tong; Zhen-Sheng Li

    2007-01-01

    Nitrate is a major nitrogen (N) source for most crops.Nitrate uptake by root cells is a key step of nitrogen metabolism and has been widely studied at the physiological and molecular levels.Understanding how nitrate uptake is regulated will help us engineer crops with improved nitrate uptake efficiency.The present study investigated the regulation of the high-affinity nitrate transport system (HATS) by exogenous abscisic acid (ABA) and glutamine (Gin) in wheat (Triticum aestivum L.) roots.Wheat seedlings grown in nutrient solution containing 2 mmollL nitrate as the only nitrogen source for 2 weeks were deprived of N for 4d and were then transferred to nutrient solution containing 50 μmol/L ABA, and 1 mmol/L Gin in the presence or absence of 2 mmol/L nitrate for 0, 0.5, 1, 2, 4, and 8 h.Treated wheat plants were then divided into two groups.One group of plants was used to investigate the mRNA levels of the HATS components NRT2 and NAR2 genes in roots through semi-quantitative RT-PCR approach, and the other set of plants were used to measure high-affinity nitrate influx rates in a nutrient solution containing 0.2 mmol/L 15 N-labeled nitrate.The results showed that exogenous ABA induced the expression of the TaNRT2.1, TaNRT2.2, TaNRT2.3, TaNAR2.1, and TaNAR2.2 genes in roots when nitrate was not present in the nutrient solution, but did not further enhance the induction of these genes by nitrate.Glutamine, which has been shown to inhibit the expression of NRT2 genes when nitrate is present in the growth media, did not inhibit this induction.When Gin was supplied to a nitrate-free nutrient solution, the expression of these five genes in roots was induced.These results imply that the inhibition by Gin of NRT2 expression occurs only when nitrate is present in the growth media.Although exogenous ABA and Gin induced HATS genes in the roots of wheat, they did not induce nitrate influx.

  16. The small ethylene response factor ERF96 is involved in the regulation of the abscisic acid response in Arabidopsis

    Xiaoping eWang

    2015-11-01

    Full Text Available Ethylene regulates many aspects of plant growth and development including seed germination, leaf senescence, and fruit ripening, and of plant responses to environmental stimuli including both biotic and abiotic stresses. Ethylene Response Factors (ERFs are plant-specific transcription factors and are a subfamily of the AP2 (APETALA2/ERF transcription factor family. The function of many members in this large gene family remains largely unknown. ERF96, a member of the Group IX ERF family transcription factors, has recently been shown to be a transcriptional activator that is involved in plant defense response in Arabidopsis. Here we provide evidence that ERF96 is a positive regulator of abscisic acid (ABA responses. Bioinformatics analysis indicated that there are a total four small ERFs in Arabidopsis including ERF95, ERF96, ERF97 and ERF98, and that ERF96 forms a cluster with ERF95 and ERF97. By using quantitative RT-PCR, we found that ERF96 is expressed in all tissues and organs examined except roots, with relatively high expression in flowers and seeds. Results from the protoplast transfection assay results indicated that the EDLL motif-containing C-terminal domain is responsible for ERF96’s transcriptional activity. Although loss-of-function mutant of ERF96 was morphologically similar to wild type plants, transgenic plants overexpressing ERF96 had smaller rosette size and were delayed in flowering time. In ABA sensitivity assays, we found that ERF96 overexpression plants were hypersensitive to ABA in terms of ABA inhibition of seed germination, early seedling development and root elongation. Consistent with these observations, elevated transcript levels of some ABA-responsive genes including RD29A, ABI5, ABF3, ABF4, P5CS and COR15A were observed in the transgenic plants in the presence of ABA. However, in the absence of ABA treatment, the transcript levels of these ABA-responsive genes remained largely unchanged. Our experiments also showed

  17. Role of abscisic acid and proline in salinity tolerance of wheat genotypes

    Wheat genotypes were evaluated for salinity tolerance under 3 diverse environments of Yar Hussain, Baboo Dehari (District Swabi KPK Pakistan) and Khitab Koroona (District Charsadda KPK Pakistan). Eleven genotypes (Local, SR-24, SR-25, SR-7, SR-22, SR-4, SR-20, SR-19, SR-2, SR-23 and SR-40) were tested for their salinity tolerance. These locations had different salinity profile (i.e. Yar Hussain, EC. 3-3.5 dS m/sup -1/; Baboo Dehari, EC. 4-4.5 dS m/sup -1/ and Khitab Koroona, EC. 5-5.30 dSm/sup -1/). Different locations and wheat genotypes had a significant (p < 0.05) effect on endogenous shoot proline, shoot ABA (3, 6 and 9 weeks after emergence) and straw yield. Maximum endogenous shoot proline and ABA levels (3, 6 and 9 weeks after emergence) were recorded in genotype SR-40 followed by genotype SR-23. The results further indicated that minimum endogenous shoot proline and ABA concentrations (3, 6 and 9 weeks after emergence) were recorded at Yar Hussain. Maximum endogenous shoot proline and ABA concentration (3, 6 and 9 weeks after emergence) were observed at Khitab Koroona. (author)

  18. Increased abscisic acid levels in transgenic maize overexpressing AtLOS5 mediated root ion fluxes and leaf water status under salt stress.

    Zhang, Juan; Yu, Haiyue; Zhang, Yushi; Wang, Yubing; Li, Maoying; Zhang, Jiachang; Duan, Liusheng; Zhang, Mingcai; Li, Zhaohu

    2016-03-01

    Abscisic acid (ABA) is a vital cellular signal in plants, and effective ABA signalling is pivotal for stress tolerance. AtLOS5 encoding molybdenum cofactor sulphurase is a key regulator of ABA biosynthesis. Here, transgenic AtLOS5 plants were generated to explore the role of AtLOS5 in salt tolerance in maize. AtLOS5 overexpression significantly up-regulated the expression of ZmVp14-2, ZmAO, and ZmMOCO, and increased aldehyde oxidase activities, which enhanced ABA accumulation in transgenic plants under salt stress. Concurrently, AtLOS5 overexpression induced the expression of ZmNHX1, ZmCBL4, and ZmCIPK16, and enhanced the root net Na(+) efflux and H(+) influx, but decreased net K(+) efflux, which maintained a high cytosolic K(+)/Na(+) ratio in transgenic plants under salt stress. However, amiloride or sodium orthovanadate could significantly elevate K(+) effluxes and decrease Na(+) efflux and H(+) influx in salt-treated transgenic roots, but the K(+) effluxes were inhibited by TEA, suggesting that ion fluxes regulated by AtLOS5 overexpression were possibly due to activation of Na(+)/H(+) antiport and K(+) channels across the plasma membrane. Moreover, AtLOS5 overexpression could up-regulate the transcripts of ZmPIP1:1, ZmPIP1:5, and ZmPIP2:4, and enhance root hydraulic conductivity. Thus transgenic plants had higher leaf water potential and turgor, which was correlated with greater biomass accumulation under salt stress. Thus AtLOS5 overexpression induced the expression of ABA biosynthetic genes to promote ABA accumulation, which activated ion transporter and PIP aquaporin gene expression to regulate root ion fluxes and water uptake, thus maintaining high cytosolic K(+) and Na(+) homeostasis and better water status in maize exposed to salt stress. PMID:26743432

  19. Fruit load induces changes in global gene expression and in abscisic acid (ABA) and indole acetic acid (IAA) homeostasis in citrus buds.

    Shalom, Liron; Samuels, Sivan; Zur, Naftali; Shlizerman, Lyudmila; Doron-Faigenboim, Adi; Blumwald, Eduardo; Sadka, Avi

    2014-07-01

    Many fruit trees undergo cycles of heavy fruit load (ON-Crop) in one year, followed by low fruit load (OFF-Crop) the following year, a phenomenon known as alternate bearing (AB). The mechanism by which fruit load affects flowering induction during the following year (return bloom) is still unclear. Although not proven, it is commonly accepted that the fruit or an organ which senses fruit presence generates an inhibitory signal that moves into the bud and inhibits apical meristem transition. Indeed, fruit removal from ON-Crop trees (de-fruiting) induces return bloom. Identification of regulatory or metabolic processes modified in the bud in association with altered fruit load might shed light on the nature of the AB signalling process. The bud transcriptome of de-fruited citrus trees was compared with those of ON- and OFF-Crop trees. Fruit removal resulted in relatively rapid changes in global gene expression, including induction of photosynthetic genes and proteins. Altered regulatory mechanisms included abscisic acid (ABA) metabolism and auxin polar transport. Genes of ABA biosynthesis were induced; however, hormone analyses showed that the ABA level was reduced in OFF-Crop buds and in buds shortly following fruit removal. Additionally, genes associated with Ca(2+)-dependent auxin polar transport were remarkably induced in buds of OFF-Crop and de-fruited trees. Hormone analyses showed that auxin levels were reduced in these buds as compared with ON-Crop buds. In view of the auxin transport autoinhibition theory, the possibility that auxin distribution plays a role in determining bud fate is discussed. PMID:24706719

  20. Changes in abundance of an abscisic acid-responsive, early cysteine-labeled metallothionein transcript during pollen embryogenesis in bread wheat (Triticum aestivum).

    Reynolds, T L; Crawford, R L

    1996-12-01

    A clone for an embryoid-abundant, early cysteine-labeled metallothionein (EcMt) gene has been isolated from a wheat pollen embryoid cDNA library. The transcript of this gene was only expressed in embryogenic microspores, pollen embryoids, and developing zygotic embryos of wheat. Accumulation of the EcMt mRNA showed a direct and positive correlation with an increase of the plant hormone, abscisic acid (ABA) in developing pollen embryoids. Treating cultures with an inhibitor of ABA biosynthesis, fluridone, suppressed not only ABA accumulation but also the appearance of the EcMt gene transcript and the ability of microspores to form embryoids. These results suggest that the EcMt gene may act as a molecular marker for pollen embryogenesis because ABA biosynthesis is accompanied by the increased expression of the EcMt transcript that coincides with the differentiation of pollen embryoids in wheat anther cultures. PMID:8980534

  1. A maize calcium-dependent protein kinase gene, ZmCPK4, positively regulated abscisic acid signaling and enhanced drought stress tolerance in transgenic Arabidopsis.

    Jiang, Shanshan; Zhang, Dan; Wang, Li; Pan, Jiaowen; Liu, Yang; Kong, Xiangpei; Zhou, Yan; Li, Dequan

    2013-10-01

    Calcium-dependent protein kinases (CDPKs) play essential roles in calcium-mediated signal transductions in plant response to abiotic stress. Several members have been identified to be regulators for plants response to abscisic acid (ABA) signaling. Here, we isolated a subgroup I CDPK gene, ZmCPK4, from maize. Quantitative real time PCR (qRT-PCR) analysis revealed that the ZmCPK4 transcripts were induced by various stresses and signal molecules. Transient and stable expression of the ZmCPK4-GFP fusion proteins revealed ZmCPK4 localized to the membrane. Moreover, overexpression of ZmCPK4 in the transgenic Arabidopsis enhanced ABA sensitivity in seed germination, seedling growth and stomatal movement. The transgenic plants also enhanced drought stress tolerance. Taken together, the results suggest that ZmCPK4 might be involved in ABA-mediated regulation of stomatal closure in response to drought stress. PMID:23911729

  2. Up-regulating the abscisic acid inactivation gene ZmABA8ox1b contributes to seed germination heterosis by promoting cell expansion.

    Li, Yangyang; Wang, Cheng; Liu, Xinye; Song, Jian; Li, Hongjian; Sui, Zhipeng; Zhang, Ming; Fang, Shuang; Chu, Jinfang; Xin, Mingming; Xie, Chaojie; Zhang, Yirong; Sun, Qixin; Ni, Zhongfu

    2016-04-01

    Heterosis has been widely used in agriculture, but the underlying molecular principles are still largely unknown. During seed germination, we observed that maize (Zea mays) hybrid B73/Mo17 was less sensitive than its parental inbred lines to exogenous abscisic acid (ABA), and endogenous ABA content in hybrid embryos decreased more rapidly than in the parental inbred lines. ZmABA8ox1b, an ABA inactivation gene, was consistently more highly up-regulated in hybrid B73/Mo17 than in its parental inbred lines at early stages of seed germination. Moreover, ectopic expression of ZmABA8ox1b obviously promoted seed germination in Arabidopsis Remarkably, microscopic observation revealed that cell expansion played a major role in the ABA-mediated maize seed germination heterosis, which could be attributed to the altered expression of cell wall-related genes. PMID:27034328

  3. In vitro Transient Expression System of Latex C-serum was used for Analysis of Hevein Promoter in Response to Abscisic Acid in Hevea brasiliensis

    Xiao-Wen Fei; Xiao-Dong Deng

    2008-01-01

    Hevein has been found to be an essential element in coagulation of rubber particles in latex of rubber trees. In a previous study, we cloned a 1 241-bp fragment of a 5' upstream region of the hevein gene by genome walking. This fragment was analyzed by a 5' end nested deletion method in the present study, fused with a uidA (gus) gene to produce a series of tested constructs, which were transferred into C-serum of latex and the Gus activities were detected. Results showed that the fragment from -749 to -292 was sufficient for expression of gus gene in latex, and the fragment from -292 to -168 was crucial in response to abscisic acid inducement. In a transient transgenic test of rubber leaf with particle bombardment, construct Hev749 conferred gus-specific expression in veins, in which the latex tubes mainly distributed. This implies that the fragment from -749 to -292 was laticiferous-specific.

  4. The putative E3 ubiquitin ligase ECERIFERUM9 regulates abscisic acid biosynthesis and response during seed germination and postgermination growth in arabidopsis

    Zhao, Huayan

    2014-05-08

    The ECERIFERUM9 (CER9) gene encodes a putative E3 ubiquitin ligase that functions in cuticle biosynthesis and the maintenance of plant water status. Here, we found that CER9 is also involved in abscisic acid (ABA) signaling in seeds and young seedlings of Arabidopsis (Arabidopsis thaliana). The germinated embryos of the mutants exhibited enhanced sensitivity to ABA during the transition from reversible dormancy to determinate seedling growth. Expression of the CER9 gene is closely related to ABA levels and displays a similar pattern to that of ABSCISIC ACID-INSENSITIVE5 (ABI5), which encodes a positive regulator of ABA responses in seeds. cer9 mutant seeds exhibited delayed germination that is independent of seed coat permeability. Quantitative proteomic analyses showed that cer9 seeds had a protein profile similar to that of the wild type treated with ABA. Transcriptomics analyses revealed that genes involved in ABA biosynthesis or signaling pathways were differentially regulated in cer9 seeds. Consistent with this, high levels of ABA were detected in dry seeds of cer9. Blocking ABA biosynthesis by fluridone treatment or by combining an ABA-deficient mutation with cer9 attenuated the phenotypes of cer9. Whereas introduction of the abi1-1, abi3-1, or abi4-103 mutation could completely eliminate the ABA hypersensitivity of cer9, introduction of abi5 resulted only in partial suppression. These results indicate that CER9 is a novel negative regulator of ABA biosynthesis and the ABA signaling pathway during seed germination. © 2014 American Society of Plant Biologists. All Rights Reserved.

  5. Nucleotide Variation in the NCED3 Region of Arabidopsis thaliana and its Association Study with Abscisic Acid Content under Drought Stress

    Gang-Ping Hao; Xiu-Hai Zhang; Yong-Qin Wang; Zhong-Yi Wu; Cong-Lin Huang

    2009-01-01

    Drought tolerance is a comprehensive quantitative trait that is being understood further at the molecular genetic level. Abscisic acid (ABA) is the main drought-induced hormone that regulates the expression of many genes related to drought responses. 9-cis-epoxycarotenoid dioxygenase (NCED3) is thought to be a key enzyme in ABA biosynthesis. In this paper, we measured the ABA content increase under drought stress, and sequenced and compared the sequence of AtNCED3 among 22 Arabidopsis thaliana accessions. The results showed that the fold of ABA content increase under drought stress was highly variable among these accessions. High density single nucleotide polymorphism (SNP) and insertion/deletion (indel) were found in the AtNCED3 region, on average one SNP per 87.4 bp and one indel per 502 bp. Nucleotide diversity was significantly lower in the coding region than that in non-coding regions. The results of an association study with ANOVA analysis suggested that the 274th site (P←→S) and the 327th site (P←→R) amino acid variations might be the cause of ABA content increase of 163av accession under drought stress.

  6. The potato suberin feruloyl transferase FHT which accumulates in the phellogen is induced by wounding and regulated by abscisic and salicylic acids.

    Boher, Pau; Serra, Olga; Soler, Marçal; Molinas, Marisa; Figueras, Mercè

    2013-08-01

    The present study provides new insights on the role of the potato (Solanum tuberosum) suberin feruloyl transferase FHT in native and wound tissues, leading to conclusions about hitherto unknown properties of the phellogen. In agreement with the enzymatic role of FHT, it is shown that its transcriptional activation and protein accumulation are specific to tissues that undergo suberization such as the root boundary layers of the exodermis and the endodermis, along with the tuber periderm. Remarkably, FHT expression and protein accumulation within the periderm is restricted to the phellogen derivative cells with phellem identity. FHT levels in the periderm are at their peak near harvest during periderm maturation, with the phellogen becoming meristematically inactive and declining thereafter. However, periderm FHT levels remain high for several months after harvest, suggesting that the inactive phellogen retains the capacity to synthesize ferulate esters. Tissue wounding induces FHT expression and the protein accumulates from the first stages of the healing process onwards. FHT is up-regulated by abscisic acid and down-regulated by salicylic acid, emphasizing the complex regulation of suberin synthesis and wound healing. These findings open up new prospects important for the clarification of the suberization process and yield important information with regard to the skin quality of potatoes. PMID:23918964

  7. AtPUB 19, a U-Box E3 Ubiquitin Ligase, Negatively Regulates Abscisic Acid and Drought Responses in Arabidopsis thaliana

    Yong-Chang Liu; Yao-Rong Wu; Xia-He Huang; Jie Sun; Qi Xie

    2011-01-01

    Ubiquitination is an important protein post-translational modification,which is involved in various cellular processes in higher plants,and U-box E3 ligases play important roles in diverse functions in eukaryotes.Here,we describe the functions of Arabidopsis thaliana PUB19 (AtPUB19),which we demonstrated in an in vitro assay to encode a U-box type E3 ubiquitin ligase.AtPUB19 was up-regulated by drought,salt,cold,and abscisic acid (ABA).Down-regulation of AtPUB19led to hypersensitivity to ABA,enhanced ABA-induced stomatal closing,and enhanced drought tolerance,while AtPUB 19overexpression resulted in the reverse phenotypes.Molecular analysis showed that the expression levels of a number of ABA and stress marker genes were altered in both AtPUB 19 overexpressing and atpub 19-1 mutant plants.In summary,our data show that AtPUB19 negatively regulates ABA and drought responses in A.thaliana.

  8. The pepper late embryogenesis abundant protein CaLEA1 acts in regulating abscisic acid signaling, drought and salt stress response.

    Lim, Chae Woo; Lim, Sohee; Baek, Woonhee; Lee, Sung Chul

    2015-08-01

    As sessile organisms, plants are constantly challenged by environmental stresses, including drought and high salinity. Among the various abiotic stresses, osmotic stress is one of the most important factors for growth and significantly reduces crop productivity in agriculture. Here, we report a function of the CaLEA1 protein in the defense responses of plants to osmotic stress. Our analyses showed that the CaLEA1 gene was strongly induced in pepper leaves exposed to drought and increased salinity. Furthermore, we determined that the CaLEA1 protein has a late embryogenesis abundant (LEA)_3 homolog domain highly conserved among other known group 5 LEA proteins and is localized in the processing body. We generated CaLEA1-silenced peppers and CaLEA1-overexpressing (OX) transgenic Arabidopsis plants to evaluate their responses to dehydration and high salinity. Virus-induced gene silencing of CaLEA1 in pepper plants conferred enhanced sensitivity to drought and salt stresses, which was accompanied by high levels of lipid peroxidation in dehydrated and NaCl-treated leaves. CaLEA1-OX plants exhibited enhanced sensitivity to abscisic acid (ABA) during seed germination and in the seedling stage; furthermore, these plants were more tolerant to drought and salt stress than the wild-type plants because of enhanced stomatal closure and increased expression of stress-responsive genes. Collectively, our data suggest that CaLEA1 positively regulates drought and salinity tolerance through ABA-mediated cell signaling. PMID:25302464

  9. Putrescine Is Involved in Arabidopsis Freezing Tolerance and Cold Acclimation by Regulating Abscisic Acid Levels in Response to Low Temperature1

    Cuevas, Juan C.; López-Cobollo, Rosa; Alcázar, Rubén; Zarza, Xavier; Koncz, Csaba; Altabella, Teresa; Salinas, Julio; Tiburcio, Antonio F.; Ferrando, Alejandro

    2008-01-01

    The levels of endogenous polyamines have been shown to increase in plant cells challenged with low temperature; however, the functions of polyamines in the regulation of cold stress responses are unknown. Here, we show that the accumulation of putrescine under cold stress is essential for proper cold acclimation and survival at freezing temperatures because Arabidopsis (Arabidopsis thaliana) mutants defective in putrescine biosynthesis (adc1, adc2) display reduced freezing tolerance compared to wild-type plants. Genes ADC1 and ADC2 show different transcriptional profiles upon cold treatment; however, they show similar and redundant contributions to cold responses in terms of putrescine accumulation kinetics and freezing sensitivity. Our data also demonstrate that detrimental consequences of putrescine depletion during cold stress are due, at least in part, to alterations in the levels of abscisic acid (ABA). Reduced expression of NCED3, a key gene involved in ABA biosynthesis, and down-regulation of ABA-regulated genes are detected in both adc1 and adc2 mutant plants under cold stress. Complementation analysis of adc mutants with ABA and reciprocal complementation tests of the aba2-3 mutant with putrescine support the conclusion that putrescine controls the levels of ABA in response to low temperature by modulating ABA biosynthesis and gene expression. PMID:18701673

  10. Mapping intercellular CO2 mole fraction (Ci) in rosa rubiginosa leaves fed with abscisic acid by using chlorophyll fluorescence imaging. Significance Of ci estimated from leaf gas exchange

    Meyer; Genty

    1998-03-01

    Imaging of photochemical yield of photosystem II (PSII) computed from leaf chlorophyll fluorescence images and gas-exchange measurements were performed on Rosa rubiginosa leaflets during abscisic acid (ABA) addition. In air ABA induced a decrease of both the net CO2 assimilation (An) and the stomatal water vapor conductance (gs). After ABA treatment, imaging in transient nonphotorespiratory conditions (0.1% O2) revealed a heterogeneous decrease of PSII photochemical yield. This decline was fully reversed by a transient high CO2 concentration (7400 mol mol-1) in the leaf atmosphere. It was concluded that ABA primarily affected An by decreasing the CO2 supply at ribulose-1,5-bisphosphate carboxylase/oxygenase. Therefore, the An versus intercellular mole fraction (Ci) relationship was assumed not to be affected by ABA, and images of Ci and gs were constructed from images of PSII photochemical yield under nonphotorespiratory conditions. The distribution of gs remained unimodal following ABA treatment. A comparison of calculations of Ci from images and gas exchange in ABA-treated leaves showed that the overestimation of Ci estimated from gas exchange was only partly due to heterogeneity. This overestimation was also attributed to the cuticular transpiration, which largely affects the calculation of the leaf conductance to CO2, when leaf conductance to water is low. PMID:9501127

  11. Induction of Protection against Paraquat-induced Oxidative Damage by Abscisic Acid in Maize Leaves is Mediated through Mitogen-activated Protein Kinase

    Hai-Dong Ding; Xiao-Hua Zhang; Shu-Cheng Xu; Li-Li Sun; Ming-Yi Jiang; A-Ying Zhang; Yin-Gen Jin

    2009-01-01

    Mitogen-activated protein kinase (MAPK) cascade has been shown to be important components In stress signal trans-duction pathway. In the present study, protection of maize seedlings (Zea mays L.) against paraquat-generated oxidative toxicity by abscisic acid (ABA), its association with MAPK and ZmMPK5, a candidate for MAPK were investigated. Treatment of maize leaves with exogenous ABA led to significant decreases in the content of malondialdehyde, the percentage of ion leakage and the level of protein oxidation (in terms of carbonyl groups) under paraquat (PQ) stress. However, such decreases were blocked by the pretreatment with two MAPK kinase inhibitors PD98059 and U0126. The damage caused by PQ was further aggravated by inhibitors. Two inhibitors also suppressed the total activities of the antioxidant enzymes superoxide dismutase (SOD, EC 1.15.1.1), catalase (CAT, EC 1.11.1.6), ascorbate peroxidase (APX, EC 1.11.1.11), and glutathione reductase (GR, EC 1.6.4.2). Besides, treatment with PQ stimulated the activation of a 46 kDa MAPK, which was identified as ZmMPK5 by in-gel kinase assay with immunoprecipitation. These results reveal that ABA-induced protection against PQ-generated oxidative damage is mediated through MAPK cascade in maize leaves, in which ZmMPK5, a candidate for MAPK, is demonstrated to be involved.

  12. Genetic Analysis of Physcomitrella patens Identifies ABSCISIC ACID NON-RESPONSIVE, a Regulator of ABA Responses Unique to Basal Land Plants and Required for Desiccation Tolerance[OPEN

    Kamisugi, Yasuko; Trinh, Chi H.; Schmutz, Jeremy; Muchero, Wellington; Melkonian, Michael; Rothfels, Carl J.; Li, Fay-Wei; Larsson, Anders; Edwards, Thomas A.

    2016-01-01

    The anatomically simple plants that first colonized land must have acquired molecular and biochemical adaptations to drought stress. Abscisic acid (ABA) coordinates responses leading to desiccation tolerance in all land plants. We identified ABA nonresponsive mutants in the model bryophyte Physcomitrella patens and genotyped a segregating population to map and identify the ABA NON-RESPONSIVE (ANR) gene encoding a modular protein kinase comprising an N-terminal PAS domain, a central EDR domain, and a C-terminal MAPKKK-like domain. anr mutants fail to accumulate dehydration tolerance-associated gene products in response to drought, ABA, or osmotic stress and do not acquire ABA-dependent desiccation tolerance. The crystal structure of the PAS domain, determined to 1.7-Å resolution, shows a conserved PAS-fold that dimerizes through a weak dimerization interface. Targeted mutagenesis of a conserved tryptophan residue within the PAS domain generates plants with ABA nonresponsive growth and strongly attenuated ABA-responsive gene expression, whereas deleting this domain retains a fully ABA-responsive phenotype. ANR orthologs are found in early-diverging land plant lineages and aquatic algae but are absent from more recently diverged vascular plants. We propose that ANR genes represent an ancestral adaptation that enabled drought stress survival of the first terrestrial colonizers but were lost during land plant evolution. PMID:27194706

  13. A new role for an old enzyme: Nitrate reductase-mediated nitric oxide generation is required for abscisic acid-induced stomatal closure in Arabidopsis thaliana

    Desikan, Radhika; Griffiths, Rachael; Hancock, John; Neill, Steven

    2002-01-01

    The plant hormone abscisic acid (ABA), synthesized in response to water-deficit stress, induces stomatal closure via activation of complex signaling cascades. Recent work has established that nitric oxide (NO) is a key signaling molecule mediating ABA-induced stomatal closure. However, the biosynthetic origin of NO in guard cells has not yet been resolved. Here, we provide pharmacological, physiological, and genetic evidence that NO synthesis in Arabidopsis guard cells is mediated by the enzyme nitrate reductase (NR). Guard cells of wild-type Arabidopsis generate NO in response to treatment with ABA and nitrite, a substrate for NR. Moreover, NR-mediated NO synthesis is required for ABA-induced stomatal closure. However, in the NR double mutant, nia1, nia2 that has diminished NR activity, guard cells do not synthesize NO nor do the stomata close in response to ABA or nitrite, although stomatal opening is still inhibited by ABA. Furthermore, by using the ABA-insensitive (ABI) abi1–1 and abi2–1 mutants, we show that the ABI1 and ABI2 protein phosphatases are downstream of NO in the ABA signal-transduction cascade. These data demonstrate a previously uncharacterized signaling role for NR, that of mediating ABA-induced NO synthesis in Arabidopsis guard cells. PMID:12446847

  14. Osabc1k8, an abc1-like kinase gene, mediates abscisic acid sensitivity and dehydration tolerance response in rice seedlings

    The activity of bc1 complex kinase (ABC1K) protein family, which widely exists in prokaryotes and eukaryotes, consists of 15 members in rice, and the role of this family in plants has not yet been studied in details. In this study, a novel function of OsABC1K8 (LOC-Os06g48770), a member of rice ABC1K family, was characterized. The transcript level of OsABC1K8 changes in response to salt, dehydration, cold, PEG, oxidative (H/sub 2/O/sub 2/) stresses, or abscisic acid (ABA) treatment. Overexpression of OsABC1K8 significantly increased sensitivity to dehydration and reduced sensitivity to ABA. In the contrast, RNAi transgenic lines displayed significantly reduced sensitivity to dehydration stress and increased sensitivity to ABA. Furthermore, the transcriptional levels of several ABA/stress-regulated responsive genes were suppressed in OsABC1K8 over-expressing plants under dehydration stress. In conclusion, our results suggested that OsABC1K8 is a negative regulator in response to dehydration stress through an ABA-dependent pathway. (author)

  15. Expression of Stipa purpurea SpCIPK26 in Arabidopsis thaliana Enhances Salt and Drought Tolerance and Regulates Abscisic Acid Signaling

    Zhou, Yanli; Sun, Xudong; Yang, Yunqiang; Li, Xiong; Cheng, Ying; Yang, Yongping

    2016-01-01

    Stipa purpurea (S. purpurea) is the dominant plant species in the alpine steppe of the Qinghai-Tibet Plateau, China. It is highly resistant to cold and drought conditions. However, the underlying mechanisms regulating the stress tolerance are unknown. In this study, a CIPK gene from S. purpurea (SpCIPK26) was isolated. The SpCIPK26 coding region consisted of 1392 bp that encoded 464 amino acids. The protein has a highly conserved catalytic structure and regulatory domain. The expression of SpCIPK26 was induced by drought and salt stress. SpCIPK26 overexpression in Arabidopsis thaliana (A. thaliana) plants provided increased tolerance to drought and salt stress in an abscisic acid (ABA)-dependent manner. Compared with wild-type A. thaliana plants, SpCIPK26-overexpressing plants had higher survival rates, water potentials, and photosynthetic efficiency (Fv/Fm), as well as lower levels of reactive oxygen species (ROS) following exposure to drought and salt stress. Gene expression analyses indicated stress-inducible genes (RD29A, RD29B, and ABF2) and a ROS-scavenger gene (CAT1) were upregulated in SpCIPK26-overexpressing plants after stress treatments. All of these marker genes are associated with ABA-responsive cis-acting elements. Additionally, the similarities in the gene expression patterns following ABA, mannitol, and NaCl treatments suggest SpCIPK26 has an important role during plant responses to drought and salt stress and in regulating ABA signaling. PMID:27338368

  16. Changes in the levels of abscisic acid and its metabolites in excised leaf blades of Xanthium strumarium during and after water stress

    Zeevaart, J.A.D.

    1980-10-01

    The time course of abscisic acid (ABA) accumulation during water stress and of degradation following rehydration was investigated by analyzing the levels of ABA and its metabolites phaseic acid (PA) and alkalihydrolyzable conjugated ABA in excised leaf blades of Xanthium strumarium. Initial purification was by reverse-phase, preparative, high performance liquid chromatography (HPLC) which did not require prior partitioning. ABA and PA were purified further by analytical HPLC with a ..mu..Bondapak-NH/sub 2/ column, and quantified by GLC with an electron capture detector. The ABA content of stressed leaves increased for 4 to 5 hours and then leveled off due to a balance between synthesis and degradation. Since PA accumulated at a constant rate throughout the wilting period, it was concluded that the rate of ABA synthesis decreased after the first 4 to 5 hours stress. Conjugated ABA increased at a low rate during stress. This is interpreted to indicate that free ABA was converted to the conjugated form, rather than the reverse. Following rehydration of wilted leaves, the ABA level immediately ceased increasing; it remained constant for 1 hour and then declined rapidly to the prestress level over a 2- to 3-hour period with a concomitant rise in the PA level. In contrast to the rapid disappearance of ABA after relief of stress, the high PA content of rehydrated leaves declined only slowly. The level of conjugated ABA did not change following rehydration, indicating that conjugation of ABA was irreversible. Detached Xanthium leaves that were subjected to a wilting-recovery-rewilting cycle in darkness responded to the second wilting period by formation of the same amount of ABA as accumulated after the first stress period.

  17. Abscisic Acid Induced Changes in Production of Primary and Secondary Metabolites, Photosynthetic Capacity, Antioxidant Capability, Antioxidant Enzymes and Lipoxygenase Inhibitory Activity of Orthosiphon stamineus Benth.

    Mohd Hafiz Ibrahim

    2013-07-01

    Full Text Available An experiment was conducted to investigate and distinguish the relationships in the production of total phenolics, total flavonoids, soluble sugars, H2O2, O2−, phenylalanine ammonia lyase (PAL activity, leaf gas exchange, antioxidant activity, antioxidant enzyme activity [ascorbate peroxidase (APX, catalase (CAT, superoxide dismutase (SOD and Lipoxygenase inhibitory activity (LOX] under four levels of foliar abscisic acid (ABA application (0, 2, 4, 6 µM for 15 weeks in Orthosiphon stamineus Benth. It was found that the production of plant secondary metabolites, soluble sugars, antioxidant activity, PAL activity and LOX inhibitory activity was influenced by foliar application of ABA. As the concentration of ABA was increased from 0 to 6 µM the production of total phenolics, flavonoids, sucrose, H2O2, O2−, PAL activity and LOX inhibitory activity was enhanced. It was also observed that the antioxidant capabilities (DPPH and ORAC were increased. This was followed by increases in production of antioxidant enzymes APX, CAT and SOD. Under high application rates of ABA the net photosynthesis and stomatal conductance was found to be reduced. The production of primary and secondary metabolites displayed a significant positive relationship with H2O2 (total phenolics, r2 = 0.877; total flavonoids, r2 = 0.812; p ≤ 0.05 and O2− (total phenolics, r2 = 0.778; total flavonoids, r2 = 0.912; p ≤ 0.05. This indicated that increased oxidative stress at high application rates of ABA, improved the production of phytochemicals.

  18. The APETALA-2-like transcription factor OsAP2-39 controls key interactions between abscisic acid and gibberellin in rice.

    Mahmoud W Yaish

    2010-09-01

    Full Text Available The interaction between phytohormones is an important mechanism which controls growth and developmental processes in plants. Deciphering these interactions is a crucial step in helping to develop crops with enhanced yield and resistance to environmental stresses. Controlling the expression level of OsAP2-39 which includes an APETALA 2 (AP2 domain leads to phenotypic changes in rice. Overexpression of OsAP2-39 leads to a reduction in yield by decreasing the biomass and the number of seeds in the transgenic rice lines. Global transcriptome analysis of the OsAP2-39 overexpression transgenic rice revealed the upregulation of a key abscisic acid (ABA biosynthetic gene OsNCED-I which codes for 9-cis-epoxycarotenoid dioxygenase and leads to an increase in the endogenous ABA level. In addition to OsNCED-1, the gene expression analysis revealed the upregulation of a gene that codes for the Elongation of Upper most Internode (EUI protein, an enzyme that catalyzes 16α, 17-epoxidation of non-13-hydroxylated GAs, which has been shown to deactivate gibberellins (GAs in rice. The exogenous application of GA restores the wild-type phenotype in the transgenic line and ABA application induces the expression of EUI and suppresses the expression of OsAP2-39 in the wild-type line. These observations clarify the antagonistic relationship between ABA and GA and illustrate a mechanism that leads to homeostasis of these hormones. In vivo and in vitro analysis showed that the expression of both OsNCED-1 and EUI are directly controlled by OsAP2-39. Together, these results reveal a novel mechanism for the control of the ABA/GA balance in rice which is regulated by OsAP2-39 that in turn regulates plant growth and seed production.

  19. OsDMI3 Is a Novel Component of Abscisic Acid Signaling in the Induction of Antioxidant Defense in Leaves of Rice

    Ben Shi; Lan Ni; Aying Zhang; Jianmei Cao; Hong Zhang; Tingting Qin; Mingpu Tan; Jianhua Zhang; Mingyi Jiang

    2012-01-01

    Ca2+ and calmodulin (CaM) have been shown to play an important role in abscisic acid (ABA)-induced antioxidant defense.However,it is unknown whether Ca2+/CaM-dependent protein kinase (CCaMK) is involved in the process.In the present study,the role of rice CCaMK,OsDMI3,in ABA-induced antioxidant defense was investigated in leaves of rice (Oryza sativa) plants.Treatments with ABA,H2O2,and polyethylene glycol (PEG) induced the expression of OsDMI3 and the activity of OsDMI3,and H2O2 is required for the ABA-induced increases in the expression and the activity of OsDMI3 under water stress.Subcellular localization analysis showed that OsDMI3 is located in the nucleus,the cytoplasm,and the plasma membrane.The analysis of the transient expression of OsDMI3 in rice protoplasts and the RNA interference (RNAi) silencing of OsDMI3 in rice protoplasts showed that OsDMI3 is required for ABA-induced increases in the expression and the activities of superoxide dismutase (SOD) and catalase (CAT).Further,the oxidative damage induced by higher concentrations of PEG and H2O2 was aggravated in the mutant of OsDMI3.Moreover,the analysis of the RNAi silencing of OsDMI3 in protoplasts and the mutant of OsDMI3 showed that higher levels of H2O2 accumulation require OsDMI3 activation in ABA signaling,but the initial H2O2 production induced by ABA is not dependent on the activation of OsDMI3 in leaves of rice plants.Our data reveal that OsDMI3 is an important component in ABA-induced antioxidant defense in rice.

  20. Gene expression and metabolite profiling of developing highbush blueberry fruit indicates transcriptional regulation of flavonoid metabolism and activation of abscisic acid metabolism.

    Zifkin, Michael; Jin, Alena; Ozga, Jocelyn A; Zaharia, L Irina; Schernthaner, Johann P; Gesell, Andreas; Abrams, Suzanne R; Kennedy, James A; Constabel, C Peter

    2012-01-01

    Highbush blueberry (Vaccinium corymbosum) fruits contain substantial quantities of flavonoids, which are implicated in a wide range of health benefits. Although the flavonoid constituents of ripe blueberries are known, the molecular genetics underlying their biosynthesis, localization, and changes that occur during development have not been investigated. Two expressed sequence tag libraries from ripening blueberry fruit were constructed as a resource for gene identification and quantitative real-time reverse transcription-polymerase chain reaction primer design. Gene expression profiling by quantitative real-time reverse transcription-polymerase chain reaction showed that flavonoid biosynthetic transcript abundance followed a tightly regulated biphasic pattern, and transcript profiles were consistent with the abundance of the three major classes of flavonoids. Proanthocyanidins (PAs) and corresponding biosynthetic transcripts encoding anthocyanidin reductase and leucoanthocyanidin reductase were most concentrated in young fruit and localized predominantly to the inner fruit tissue containing the seeds and placentae. Mean PA polymer length was seven to 8.5 subunits, linked predominantly via B-type linkages, and was relatively constant throughout development. Flavonol accumulation and localization patterns were similar to those of the PAs, and the B-ring hydroxylation pattern of both was correlated with flavonoid-3'-hydroxylase transcript abundance. By contrast, anthocyanins accumulated late in maturation, which coincided with a peak in flavonoid-3-O-glycosyltransferase and flavonoid-3'5'-hydroxylase transcripts. Transcripts of VcMYBPA1, which likely encodes an R2R3-MYB transcriptional regulator of PA synthesis, were prominent in both phases of development. Furthermore, the initiation of ripening was accompanied by a substantial rise in abscisic acid, a growth regulator that may be an important component of the ripening process and contribute to the regulation of

  1. Release of GTP Exchange Factor Mediated Down-Regulation of Abscisic Acid Signal Transduction through ABA-Induced Rapid Degradation of RopGEFs

    Waadt, Rainer; Schroeder, Julian I.

    2016-01-01

    The phytohormone abscisic acid (ABA) is critical to plant development and stress responses. Abiotic stress triggers an ABA signal transduction cascade, which is comprised of the core components PYL/RCAR ABA receptors, PP2C-type protein phosphatases, and protein kinases. Small GTPases of the ROP/RAC family act as negative regulators of ABA signal transduction. However, the mechanisms by which ABA controls the behavior of ROP/RACs have remained unclear. Here, we show that an Arabidopsis guanine nucleotide exchange factor protein RopGEF1 is rapidly sequestered to intracellular particles in response to ABA. GFP-RopGEF1 is sequestered via the endosome-prevacuolar compartment pathway and is degraded. RopGEF1 directly interacts with several clade A PP2C protein phosphatases, including ABI1. Interestingly, RopGEF1 undergoes constitutive degradation in pp2c quadruple abi1/abi2/hab1/pp2ca mutant plants, revealing that active PP2C protein phosphatases protect and stabilize RopGEF1 from ABA-mediated degradation. Interestingly, ABA-mediated degradation of RopGEF1 also plays an important role in ABA-mediated inhibition of lateral root growth. The presented findings point to a PP2C-RopGEF-ROP/RAC control loop model that is proposed to aid in shutting off ABA signal transduction, to counteract leaky ABA signal transduction caused by “monomeric” PYL/RCAR ABA receptors in the absence of stress, and facilitate signaling in response to ABA. PMID:27192441

  2. Phosphorylation of serine residue modulates cotton Di19-1 and Di19-2 activities for responding to high salinity stress and abscisic acid signaling

    Qin, Li-Xia; Nie, Xiao-Ying; Hu, Rong; Li, Gang; Xu, Wen-Liang; Li, Xue-Bao

    2016-01-01

    Di19 (drought-induced protein 19) family is a novel type of Cys2/His2 zinc-finger proteins. In this study, we demonstrated that cotton Di19-1 and Di19-2 (GhDi19-1/-2) proteins could be phosphorylated in vitro by the calcium-dependent protein kinase (CDPK). Mutation of Ser to Ala in N-terminus of GhDi19-1/-2 led to the altered subcellular localization of the two proteins, but the constitutively activated form (Ser was mutated to Asp) of GhDi19-1/-2 still showed the nuclear localization. GhDi19-1/-2 overexpression transgenic Arabidopsis seedlings displayed the hypersensitivity to high salinity and abscisic acid (ABA). However, Ser site-mutated GhDi19-1(S116A) and GhDi19-2(S114A), and Ser and Thr double sites-mutated GhDi19-1(S/T-A/A) and GhDi19-2(S/T-A/A) transgenic Arabidopsis did not show the salt- and ABA-hypersensitive phenotypes. In contrast, overexpression of Thr site-mutated GhDi19-1(T114A) and GhDi19-2(T112A) in Arabidopsis still resulted in salt- and ABA-hypersensitivity phenotypes, like GhDi19-1/-2 transgenic lines. Overexpression of GhDi19-1/-2 and their constitutively activated forms in Atcpk11 background could recover the salt- and ABA-insensitive phenotype of the mutant. Thus, our results demonstrated that Ser phosphorylation (not Thr phosphorylation) is crucial for functionally activating GhDi19-1/-2 in response to salt stress and ABA signaling during early plant development, and GhDi19-1/-2 proteins may be downstream targets of CDPKs in ABA signal pathway. PMID:26829353

  3. The upregulation of thiamine (vitamin B1 biosynthesis in Arabidopsis thaliana seedlings under salt and osmotic stress conditions is mediated by abscisic acid at the early stages of this stress response

    Rapala-Kozik Maria

    2012-01-01

    Full Text Available Abstract Background Recent reports suggest that vitamin B1 (thiamine participates in the processes underlying plant adaptations to certain types of abiotic and biotic stress, mainly oxidative stress. Most of the genes coding for enzymes involved in thiamine biosynthesis in Arabidopsis thaliana have been identified. In our present study, we examined the expression of thiamine biosynthetic genes, of genes encoding thiamine diphosphate-dependent enzymes and the levels of thiamine compounds during the early (sensing and late (adaptation responses of Arabidopsis seedlings to oxidative, salinity and osmotic stress. The possible roles of plant hormones in the regulation of the thiamine contribution to stress responses were also explored. Results The expression of Arabidopsis genes involved in the thiamine diphosphate biosynthesis pathway, including that of THI1, THIC, TH1 and TPK, was analyzed for 48 h in seedlings subjected to NaCl or sorbitol treatment. These genes were found to be predominantly up-regulated in the early phase (2-6 h of the stress response. The changes in these gene transcript levels were further found to correlate with increases in thiamine and its diphosphate ester content in seedlings, as well as with the enhancement of gene expression for enzymes which require thiamine diphosphate as a cofactor, mainly α-ketoglutarate dehydrogenase, pyruvate dehydrogenase and transketolase. In the case of the phytohormones including the salicylic, jasmonic and abscisic acids which are known to be involved in plant stress responses, only abscisic acid was found to significantly influence the expression of thiamine biosynthetic genes, the thiamine diphosphate levels, as well as the expression of genes coding for main thiamine diphosphate-dependent enzymes. Using Arabidopsis mutant plants defective in abscisic acid production, we demonstrate that this phytohormone is important in the regulation of THI1 and THIC gene expression during salt stress

  4. AtPP2CG1, a protein phosphatase 2C, positively regulates salt tolerance of Arabidopsis in abscisic acid-dependent manner

    Liu, Xin, E-mail: fangfei6073@126.com [Plant Bioengineering Laboratory, Northeast Agricultural University, Harbin 150030 (China); Zhu, Yanming, E-mail: ymzhu2001@neau.edu.cn [Plant Bioengineering Laboratory, Northeast Agricultural University, Harbin 150030 (China); Zhai, Hong, E-mail: Zhai.h@neigaehrb.ac.cn [Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150040 (China); Cai, Hua, E-mail: small-big@sohu.com [Plant Bioengineering Laboratory, Northeast Agricultural University, Harbin 150030 (China); Ji, Wei, E-mail: iwei_j@hotmail.com [Plant Bioengineering Laboratory, Northeast Agricultural University, Harbin 150030 (China); Luo, Xiao, E-mail: luoxiao2010@yahoo.cn [Plant Bioengineering Laboratory, Northeast Agricultural University, Harbin 150030 (China); Li, Jing, E-mail: lijing@neau.edu.cn [Plant Secondary Metabolism Laboratory, Northeast Agricultural University, Harbin 150030 (China); Bai, Xi, E-mail: baixi@neau.edu.cn [Plant Bioengineering Laboratory, Northeast Agricultural University, Harbin 150030 (China)

    2012-06-15

    Highlights: Black-Right-Pointing-Pointer AtPP2CG1 positively regulates salt tolerance in ABA-dependent manner. Black-Right-Pointing-Pointer AtPP2CG1 up-regulates the expression of marker genes in different pathways. Black-Right-Pointing-Pointer AtPP2CG1 expresses in the vascular system and trichomes of Arabidopsis. -- Abstract: AtPP2CG1 (Arabidopsis thaliana protein phosphatase 2C G Group 1) was predicted as an abiotic stress candidate gene by bioinformatic analysis in our previous study. The gene encodes a putative protein phosphatase 2C that belongs to Group G of PP2C. There is no report of Group G genes involved in abiotic stress so far. Real-time RT-PCR analysis showed that AtPP2CG1 expression was induced by salt, drought, and abscisic acid (ABA) treatment. The expression levels of AtPP2CG1 in the ABA synthesis-deficient mutant abi2-3 were much lower than that in WT plants under salt stress suggesting that the expression of AtPP2CG1 acts in an ABA-dependent manner. Over-expression of AtPP2CG1 led to enhanced salt tolerance, whereas its loss of function caused decreased salt tolerance. These results indicate that AtPP2CG1 positively regulates salt stress in an ABA-dependent manner. Under salt treatment, AtPP2CG1 up-regulated the expression levels of stress-responsive genes, including RD29A, RD29B, DREB2A and KIN1. GUS activity was detected in roots, leaves, stems, flower, and trichomes of AtPP2CG1 promoter-GUS transgenic plants. AtPP2CG1 protein was localized in nucleus and cytoplasm via AtPP2CG1:eGFP and YFP:AtPP2CG1 fusion approaches.

  5. Modulation of Root Signals in Relation to Stomatal Sensitivity to Root-sourced Abscisic Acid in Drought-affected Plants

    2007-01-01

    Stomatal sensitivity to root signals induced by soil drying may vary between environments and plant species. This is likely central role in root to shoot signaling. pH and hydraulic signals may interact with ABA signals and thus, jointly regulate stomatal responses to changed soil water status. pH itself can be modified by several factors, among which the chemical compositions In the xylem stream and the live cells surrounding the vessels play crucial roles. In addition to the xylem pH,more attention should be paid to the direct modulation of leaf apoplastic pH, because many chemical compositions might strongly modify the leaf apoplastlc pH while having no significant effect on the xylem pH. The direct modulation of the ABA signal intensity may be more important for the regulation of stomatal responses to soil drying than the ABA signal per se.The ABA signal is also regulated by the ABA catabolism and the supply of precursors to the roots If a sustained root to shoot communication of soil drying operates at the whole plant level. More importantly, ABA catabolism could play crucial roles In the determination of the fate of the ABA signal and thereby control the stomatal behavior of the root-sourced ABA signal.

  6. ORA47 (octadecanoid-responsive AP2/ERF-domain transcription factor 47) regulates jasmonic acid and abscisic acid biosynthesis and signaling through binding to a novel cis-element.

    Chen, Hsing-Yu; Hsieh, En-Jung; Cheng, Mei-Chun; Chen, Chien-Yu; Hwang, Shih-Ying; Lin, Tsan-Piao

    2016-07-01

    ORA47 (octadecanoid-responsive AP2/ERF-domain transcription factor 47) of Arabidopsis thaliana is an AP2/ERF domain transcription factor that regulates jasmonate (JA) biosynthesis and is induced by methyl JA treatment. The regulatory mechanism of ORA47 remains unclear. ORA47 is shown to bind to the cis-element (NC/GT)CGNCCA, which is referred to as the O-box, in the promoter of ABI2. We proposed that ORA47 acts as a connection between ABA INSENSITIVE1 (ABI1) and ABI2 and mediates an ABI1-ORA47-ABI2 positive feedback loop. PORA47:ORA47-GFP transgenic plants were used in a chromatin immunoprecipitation (ChIP) assay to show that ORA47 participates in the biosynthesis and/or signaling pathways of nine phytohormones. Specifically, many abscisic acid (ABA) and JA biosynthesis and signaling genes were direct targets of ORA47 under stress conditions. The JA content of the P35S:ORA47-GR lines was highly induced under wounding and moderately induced under water stress relative to that of the wild-type plants. The wounding treatment moderately increased ABA accumulation in the transgenic lines, whereas the water stress treatment repressed the ABA content. ORA47 is proposed to play a role in the biosynthesis of JA and ABA and in regulating the biosynthesis and/or signaling of a suite of phytohormone genes when plants are subjected to wounding and water stress. PMID:26974851

  7. The nitrate transporter MtNPF6.8 (MtNRT1.3) transports abscisic acid and mediates nitrate regulation of primary root growth in Medicago truncatula.

    Pellizzaro, Anthoni; Clochard, Thibault; Cukier, Caroline; Bourdin, Céline; Juchaux, Marjorie; Montrichard, Françoise; Thany, Steeve; Raymond, Valérie; Planchet, Elisabeth; Limami, Anis M; Morère-Le Paven, Marie-Christine

    2014-12-01

    Elongation of the primary root during postgermination of Medicago truncatula seedlings is a multigenic trait that is responsive to exogenous nitrate. A quantitative genetic approach suggested the involvement of the nitrate transporter MtNPF6.8 (for Medicago truncatula NITRATE TRANSPORTER1/PEPTIDE TRANSPORTER Family6.8) in the inhibition of primary root elongation by high exogenous nitrate. In this study, the inhibitory effect of nitrate on primary root elongation, via inhibition of elongation of root cortical cells, was abolished in npf6.8 knockdown lines. Accordingly, we propose that MtNPF6.8 mediates nitrate inhibitory effects on primary root growth in M. truncatula. pMtNPF6.8:GUS promoter-reporter gene fusion in Agrobacterium rhizogenes-generated transgenic roots showed the expression of MtNPF6.8 in the pericycle region of primary roots and lateral roots, and in lateral root primordia and tips. MtNPF6.8 expression was insensitive to auxin and was stimulated by abscisic acid (ABA), which restored the inhibitory effect of nitrate in npf6.8 knockdown lines. It is then proposed that ABA acts downstream of MtNPF6.8 in this nitrate signaling pathway. Furthermore, MtNPF6.8 was shown to transport ABA in Xenopus spp. oocytes, suggesting an additional role of MtNPF6.8 in ABA root-to-shoot translocation. (15)NO3(-)-influx experiments showed that only the inducible component of the low-affinity transport system was affected in npf6.8 knockdown lines. This indicates that MtNPF6.8 is a major contributor to the inducible component of the low-affinity transport system. The short-term induction by nitrate of the expression of Nitrate Reductase1 (NR1) and NR2 (genes that encode two nitrate reductase isoforms) was greatly reduced in the npf6.8 knockdown lines, supporting a role of MtNPF6.8 in the primary nitrate response in M. truncatula. PMID:25367858

  8. Effect of abscisic acid on photosynthetic parameters during ex vitro transfer of micropropagated tobacco plantlets

    Pospíšilová, Jana; Synková, Helena; Haisel, Daniel; Baťková, Petra

    2009-01-01

    Roč. 53, č. 1 (2009), s. 11-20. ISSN 0006-3134 R&D Projects: GA ČR GA522/07/0227 Institutional research plan: CEZ:AV0Z50380511 Keywords : carotenoids * chlorophyll contents * chlorophyll fluorescence Subject RIV: ED - Physiology Impact factor: 1.656, year: 2009

  9. Stomatal and non-stomatal effects of exogenous abscisic acid during plant hardening

    Pospíšilová, Jana; Synková, Helena; Haisel, Daniel; Baťková, Petra

    2008-01-01

    Roč. 133, - (2008), P09-131. ISSN 0031-9317 R&D Projects: GA ČR GA522/07/0227 Institutional research plan: CEZ:AV0Z50380511 Keywords : phytohormones * micropropagation * photosynthesis Subject RIV: ED - Physiology Impact factor: 2.334, year: 2008

  10. Arabidopsis CALCIUM-DEPENDENT PROTEIN KINASE8 and CATALASE3 Function in Abscisic Acid-Mediated Signaling and H2O2 Homeostasis in Stomatal Guard Cells under Drought Stress.

    Zou, Jun-Jie; Li, Xi-Dong; Ratnasekera, Disna; Wang, Cun; Liu, Wen-Xin; Song, Lian-Fen; Zhang, Wen-Zheng; Wu, Wei-Hua

    2015-05-01

    Drought is a major threat to plant growth and crop productivity. Calcium-dependent protein kinases (CDPKs, CPKs) are believed to play important roles in plant responses to drought stress. Here, we report that Arabidopsis thaliana CPK8 functions in abscisic acid (ABA)- and Ca(2+)-mediated plant responses to drought stress. The cpk8 mutant was more sensitive to drought stress than wild-type plants, while the transgenic plants overexpressing CPK8 showed enhanced tolerance to drought stress compared with wild-type plants. ABA-, H2O2-, and Ca(2+)-induced stomatal closing were impaired in cpk8 mutants. Arabidopsis CATALASE3 (CAT3) was identified as a CPK8-interacting protein, confirmed by yeast two-hybrid, coimmunoprecipitation, and bimolecular fluorescence complementation assays. CPK8 can phosphorylate CAT3 at Ser-261 and regulate its activity. Both cpk8 and cat3 plants showed lower catalase activity and higher accumulation of H2O2 compared with wild-type plants. The cat3 mutant displayed a similar drought stress-sensitive phenotype as cpk8 mutant. Moreover, ABA and Ca(2+) inhibition of inward K(+) currents were diminished in guard cells of cpk8 and cat3 mutants. Together, these results demonstrated that CPK8 functions in ABA-mediated stomatal regulation in responses to drought stress through regulation of CAT3 activity. PMID:25966761

  11. Cloning of 9-cis-epoxycarotenoid dioxygenase (NCED) gene encoding a key enzyme during abscisic acid (ABA) biosynthesis and ABA-regulated ethylene production in detached young persimmon calyx

    LENG Ping; ZHANG GuangLian; LI XiangXin; WANG LiangHe; ZHENG ZhongMing

    2009-01-01

    Unlike the typical climacteric fruits,persimmons (Diospyros kaki Thunb.) produce higher levels of ethylene when they are detached from trees at a younger stage.In order to obtain detailed information on the role of abscisic acid (ABA) in ripening,we cloned the DKNCED1,DKACS2,and DKAC01 genes from the calyx.Water loss was first noted in the calyx lobe,and DKNCED1 was highly expressed 1 d after the fruits were detached,coinciding with an increase in the ABA content.Then,the DKACS2 and DKAC01 genes were expressed after some delay.In the calyx,the ABA peak was observed 2 d after the fruits were harvested,and this peak preceded the ethylene peak observed on day 3.The fruit firmness rapidly decreased on day 4,and the fruits softened completely 6 d after they were harvested.The increases in the expressions of ABA,ethylene,and the genes in the calyxes occurred earlier than the corresponding increases in the pulp,although the 3 increases occurred on different days.Exogenous ABA treatment increased ABA concentration,induced expression of both ACS and ACO,and promoted ethylene synthesis and young-fruit softening;by contrast,treatment with NDGA inhibited the gene expressions and ethylene synthesis and delayed young-fruit softening.These results indicate that ethylene biosynthesis in the detached young persimmon fruits is initially triggered by ABA,which is induced by water loss in the calyx,through the induction of DKACS2 and DKAC01 expressions.The ethylene produced in the calyx subsequently diffuses into the pulp tissue,where it induces autocatalytic ethylene biosynthesis,resulting in an abrupt increase in ethylene production.

  12. A link between magnesium-chelatase H subunit and sucrose nonfermenting 1 (SNF1)-related protein kinase SnRK2.6/OST1 in Arabidopsis guard cell signalling in response to abscisic acid.

    Liang, Shan; Lu, Kai; Wu, Zhen; Jiang, Shang-Chuan; Yu, Yong-Tao; Bi, Chao; Xin, Qi; Wang, Xiao-Fang; Zhang, Da-Peng

    2015-10-01

    Magnesium-chelatase H subunit [CHLH/putative abscisic acid (ABA) receptor ABAR] positively regulates guard cell signalling in response to ABA, but the molecular mechanism remains largely unknown. A member of the sucrose nonfermenting 1 (SNF1)-related protein kinase 2 family, SnRK2.6/open stomata 1 (OST1)/SRK2E, which plays a critical role in ABA signalling in Arabidopsis guard cells, interacts with ABAR/CHLH. Neither mutation nor over-expression of the ABAR gene affects significantly ABA-insensitive phenotypes of stomatal movement in the OST1 knockout mutant allele srk2e. However, OST1 over-expression suppresses ABA-insensitive phenotypes of the ABAR mutant allele cch in stomatal movement. These genetic data support that OST1 functions downstream of ABAR in ABA signalling in guard cells. Consistent with this, ABAR protein is phosphorylated, but independently of the OST1 protein kinase. Two ABAR mutant alleles, cch and rtl1, show ABA insensitivity in ABA-induced reactive oxygen species and nitric oxide production, as well as in ABA-activated phosphorylation of a K(+) inward channel KAT1 in guard cells, which is consistent with that observed in the pyr1 pyl1 pyl2 pyl4 quadruple mutant of the well-characterized ABA receptor PYR/PYL/RCAR family acting upstream of OST1. These findings suggest that ABAR shares, at least in part, downstream signalling components with PYR/PYL/RCAR receptors for ABA in guard cells; though cch and rtl1 show strong ABA-insensitive phenotypes in both ABA-induced stomatal closure and inhibition of stomatal opening, while the pyr1 pyl1 pyl2 pyl4 quadruple mutant shows strong ABA insensitivity only in ABA-induced stomatal closure. These data establish a link between ABAR/CHLH and SnRK2.6/OST1 in guard cell signalling in response to ABA. PMID:26175350

  13. The role of abscisic acid in the defence response of tomato (Solanum lycopersicum) to the necrotrophic pathogens Botrytis cinerea and Erwinia chrysanthemi

    Asselbergh, B.

    2007-01-01

    In order to cope with the constant threat of a wide range of potentially harmful micro-organisms, plants have developed an impressive constitutive and inducible defensive machinery of enormous complexity to combat pathogen invasion. Plant hormones are not only important for controlling plant development, but are also essential to regulate plant responses to the environment. The plant hormones salicylic acid (SA), jasmonate (JA) and ethylene (ET) are classically associated with plant pathogen ...

  14. Effects of phaseic acid and dihydrophaseic acid on stomata and the photosynthetic apparatus

    Sharkey, T.D.; Raschke, K.

    1980-02-01

    Plant extracts containing phaseic acid (PA), as well as solutions of purified PA and dihydrophaseic acid (DPA) were applied to leaves, isolated mesophyll cells, and isolated epidermal strips. In Commelina communis, stomatal closure began 4 minutes after the addition of either 20 micromolar (+-)-abscisic acid or 10 micromolar PA. Stomata closed less rapidly after treatment with 10 micromolar PA than after treatment with 10 micromolar (+-)-abscisic acid in Amaranthus powelli, Hordeum vulgare, Xanthium strumarium, and Zea mays and did not respond at all to PA in Vicia faba. DPA (10 micromolar) did not cause stomatal closure in any species. Plant extracts containing PA reduced photosynthesis. Subsequent experiments with PA purified by crystallization and with residues of solvents employed in the extraction of PA proved that it was not PA that impaired photosynthetic O/sub 2/ evolution or CO/sub 2/ uptake but unidentified contaminants of the allegedly pure solvents.

  15. A transcript profiling approach reveals an abscisic acid specific glycosyltransferase (UGT73C14) induced in developing fiber of Ligon lintless-2 mutant of cotton (Gossypium hirsutum L.)

    Ligon lintless-2, a monogenic dominant cotton (Gossypium hirsutum L.) fiber mutation, causing extreme reduction in lint fiber length with no pleiotropic effects on vegetative growth, represents an excellent model system to study fiber elongation. A UDP-glycosyltransferase that was highly expressed i...

  16. OsRACK1 is involved in abscisic acid- and H2O2-mediated signaling to regulate seed germination in rice (Oryza sativa, L..

    Dongping Zhang

    Full Text Available The receptor for activated C kinase 1 (RACK1 is one member of the most important WD repeat-containing family of proteins found in all eukaryotes and is involved in multiple signaling pathways. However, compared with the progress in the area of mammalian RACK1, our understanding of the functions and molecular mechanisms of RACK1 in the regulation of plant growth and development is still in its infancy. In the present study, we investigated the roles of rice RACK1A gene (OsRACK1A in controlling seed germination and its molecular mechanisms by generating a series of transgenic rice lines, of which OsRACK1A was either over-expressed or under-expressed. Our results showed that OsRACK1A positively regulated seed germination and negatively regulated the responses of seed germination to both exogenous ABA and H2O2. Inhibition of ABA biosynthesis had no enhancing effect on germination, whereas inhibition of ABA catabolism significantly suppressed germination. ABA inhibition on seed germination was almost fully recovered by exogenous H2O2 treatment. Quantitative analyses showed that endogenous ABA levels were significantly higher and H2O2 levels significantly lower in OsRACK1A-down regulated transgenic lines as compared with those in wildtype or OsRACK1A-up regulated lines. Quantitative real-time PCR analyses showed that the transcript levels of OsRbohs and amylase genes, RAmy1A and RAmy3D, were significantly lower in OsRACK1A-down regulated transgenic lines. It is concluded that OsRACK1A positively regulates seed germination by controlling endogenous levels of ABA and H2O2 and their interaction.

  17. Effects of Gibberellic Acid Treatment for Pollen Sterility Induction on the Physiological Activity and Endogenous Hormone Levels of the Seed in Safflower

    Hasan BAYDAR

    2002-01-01

    In this research, our aim was to determine the effects of gibberellic acid, which was applied to safflower plants (Carthamus tinctorius L. cv. Dinçer 5-118) for pollen sterility induction, on some physiological activity and endogenous hormone levels of the seeds. Exogenously applied gibberellic acid (GA3) strongly influenced the endogenous hormone levels of the seeds by decreasing the levels of GA3 and zeatin, and increasing the levels of indole-3-acetic acid (IAA) and abscisic acid (ABA). Th...

  18. EL ÁCIDO ABSCÍSICO ACELERA EL DESARROLLO FLORAL DE SOLIDAGO EN DÍAS CORTOS ABSCISIC ACID SPEED UP FLORAL DEVELOPMENT OF SOLIDAGO UNDER SHORT DAYS

    Víctor Julio Flórez Roncancio

    2009-06-01

    Full Text Available Solidago x luteus (M. L. Greene Broulliet y Semple (= x Solidaster hybridus, x S. luteus es una planta que responde a días cortos (DC para el desarrollo floral. En este proceso se ha establecido la participación de varias fitohormonas, entre éstas, la presencia del ácido abscísico (ABA en zonas y periodos específicos durante el desarrollo de la flor lo cual sugiere su acción promotora en la velocidad de antesis floral de esta especie en DC. En este trabajo se buscaron nuevos indicios de la participación de fitohormonas presentes en la fracción ácida con el proceso de floración. En una primera etapa, extractos foliares provenientes de hojas de plantas en días largos (caracterizadas por menor velocidad de antesis floral se aplicaron en botones florales de plantas en días cortos (caracterizadas por una mayor velocidad de antesis floral. Se realizaron ocho aplicaciones con diferentes frecuencias totalizando un periodo de tratamiento de 25 días. Los resultados mostraron que las sustancias presentes en los extractos de la fracción ácida, no alteran la velocidad promedio de antesis floral en los botones florales de plantas en DC. En la segunda etapa del experimento, la cuantificación de los extractos por ELISA, permitió establecer una mayor concentración de ABA en los extractos de hojas y de botones florales de plantas en DC y de botones florales en el inicio del tratamiento. Estos resultados confirman la relación del ABA con la mayor velocidad de antesis floral en plantas de Solidago x luteus en condiciones de DC.Solidago x luteus (M.L. Greene Broulliet & Semple (= x Solidaster hybridus, x S. luteus is a plant that respond to short days (SD for flower development. In this process, there has been established the involvement of many phytohormones, between these, the presence of the abscisic acid (ABA in zones and specific periods during flower development, suggests its promoter roll on the floral anthesis period of this species under

  19. Isolation and identification of phosphatidic acid targets from plants.

    C. Testerink; H.L. Dekker; Z.-Y. Lim; M.K. Johns; A.B. Holmes; C.G. de Koster; N.T. Ktisakis; T. Munnik

    2004-01-01

    Phosphatidic acid (PA) is emerging as an important lipid signalling molecule. In plants, it is implicated in various stress-signalling pathways and is formed in response to wounding, osmotic stress, cold stress, pathogen elicitors, Nod factors, ethylene and abscisic acid. How PA exerts its effects i

  20. Acclimation of plantlets to ex vitro conditions: effects of air humidity, irradiance, CO2 concentration and abscisic acid

    Pospíšilová, Jana; Synková, Helena; Haisel, Daniel; Semorádová, Šárka

    2007-01-01

    Roč. 748, - (2007), s. 29-38. ISSN 0567-7572 R&D Projects: GA ČR GA522/02/1099; GA ČR GA522/07/0227 Institutional research plan: CEZ:AV0Z50380511 Source of funding: V - iné verejné zdroje ; V - iné verejné zdroje Keywords : chlorophyll fluorescence * micropropagation * photoinhibition * photosynthesis * stomatal conductance * transpiration rate * water relations Subject RIV: ED - Physiology

  1. Mesophyll conductance to CO2 transport estimated by two independent methods: effect of variable CO2 concentration and abscisic acid

    Vrábl, D.; Vašková, M.; Hronková, Marie; Flexas, J.; Šantrůček, Jiří

    2009-01-01

    Roč. 60, č. 8 (2009), s. 2315-2323. ISSN 0022-0957 R&D Projects: GA AV ČR(CZ) IAA601410505 Institutional research plan: CEZ:AV0Z50510513 Keywords : Carbon dioxide * mesophyll conductance * Helianthus annuus Subject RIV: ED - Physiology Impact factor: 4.271, year: 2009

  2. Effects of abscisic acid or benzyladenine on pigment contents, chlorophyll fluorescence, and chloroplast ultrastructure during water stress and after rehydration

    Haisel, Daniel; Pospíšilová, Jana; Synková, Helena; Schnablová, Renáta; Baťková, Petra

    2006-01-01

    Roč. 44, č. 4 (2006), s. 606-614. ISSN 0300-3604 R&D Projects: GA ČR GA522/04/0549 Institutional research plan: CEZ:AV0Z50380511 Source of funding: V - iné verejné zdroje Keywords : Beta vulgaris * Nicotiana tabacum * Phaseolus vulgaris * starch content * Zea mays Subject RIV: ED - Physiology Impact factor: 0.782, year: 2006

  3. Long-term and short-term effects of abscisic acid on plantlet acclimatization to ex vitro conditions

    Pospíšilová, Jana; Haisel, Daniel; Synková, Helena; Baťková, Petra

    Ciego de Avila : University of Ciego, 2009, s. 1-6. [Congreso International de Biotecnología Vegetal. Congreso International de Biotecnología Vegetal (ES), 05.10.2009-07.10.2009] R&D Projects: GA ČR GA522/07/0227 Institutional research plan: CEZ:AV0Z50380511 Keywords : carotenoids * chlorophyll contents * chlorophyll fluorescence Subject RIV: ED - Physiology

  4. EFFECT OF ACIDITY ON ACID-SENSITIVE UV CURING SYSTEM

    Qi-dao Chen; Bing Wu; Xiao-yin Hong

    1999-01-01

    By using diphenyliodonium salts with different counterions as photo acid generators (PAGs), the effect of acidity on ring-opening polymerization of epoxy monomers and polycondensation of polyol with hexamethoxymethyl melamine (HMMM) was studied. The result shows that the rate of ring-opening polymerization is evidently dependent on the acidity of the acid and strong photo-generated acid is required.However, there is a leveling effect in the polycondensation system; if the photo-generated acid is stronger than protonated HMMM, the acidity does not obviously affect the polycondensation rate.

  5. 枸杞脱落酸生物合成关键酶基因NCED的克隆及表达分析%Cloning and Characterization of 9-cis-epoxycarotenoid Dioxygenase Gene(NCED) Encoding a Key Enzyme during Abscisic Acid Biosynthesis in Lycium barbarum L.

    陆平; 田跃胜; 王名雪; 李杉; 赵静雅

    2013-01-01

    Abscisic acid(ABA) regulates the essential physiological and developmental processes of plants and plays imporant roles in plant responses to various environmental stresses. 9-cis-epoxycarotenoid dioxygenase ( NCED)is the key regulatory enzyme in the biosynthesis pathway of ABA in higher plants. In the study,a full-lengh cDNA of NCED gene( LbNCED) was fristly isolated and characterized from the leaves of L. barbarum. LbNCED was 2316 bp, containing a 1824 bp ORF and encoding 607 amino acids. Comparative and bioinformatics analysis revealed that the homology amino acid sequence of Lycopersicon esculentum and Solarium tuberosum LbNCED was 90%. At the N-terminus of the LbNCED located a 15 amino acids putative chloroplast transit peptide. Southern blot analysis revealed that it was a low-copy gene in the genome of L. barbarum. Real-time Quantitative PCR ( RT-QPCR) analysis showed that LbNCED mRNA most abundantly accumulated in leaves. The RT-QPCR analysis revealed that dehydration and salt stress signficantly enhanced LbNCED transcript expression and ABA content accumulation.%脱落酸(abscisic acid,ABA)对植物的生长发育具有独特的调控功能,并在植物适应逆境环境中发挥重要作用.9-顺式环氧类胡萝卜素双加氧酶(NCED)是高等植物中ABA生物合成途径的一个关键酶.根据GenBank中的植物NCED基因的同源序列设计简并引物,通过RT-PCR及RACE技术从枸杞叶片中克隆到1个编码NCED的基因,命名为LbNCED.其cDNA全长为2316 bp,含有1个1824 bp的开放阅读框,编码1个含607氨基酸残基,分子量为67.38 kDa、等电点(pI)为6.43的假定蛋白,其氨基酸序列与番茄(Lycopersicon esculentum)和马铃薯(Solanum tuberosum)的同源性达90%,在N-末端具有1个含15个氨基酸的叶绿体转运肽.Southern杂交结果表明,该基因在枸杞基因组中以低拷贝形式存在.盐处理和脱水处理的枸杞叶片中LbNCED基因的表达与内源ABA的积累同步变化.

  6. β-Amino-n-butyric Acid Regulates Seedling Growth and Disease Resistance of Kimchi Cabbage

    Kim, Yeong Chae; Kim, Yeon Hwa; Lee, Young Hee; Lee, Sang Woo; Chae, Yun-Soek; Kang, Hyun-Kyung; Yun, Byung-Wook; Hong, Jeum Kyu

    2013-01-01

    Non-protein amino acid, β-amino-n-butyric acid (BABA), has been involved in diverse physiological processes including seedling growth, stress tolerance and disease resistance of many plant species. In the current study, treatment of kimchi cabbage seedlings with BABA significantly reduced primary root elongation and cotyledon development in a dose-dependent manner, which adverse effects were similar to the plant response to exogenous abscisic acid (ABA) application. BABA was synergistically c...

  7. A transcript profiling approach reveals an abscisic acid-specific glycosyltransferase (UGT73C14 induced in developing fiber of Ligon lintless-2 mutant of cotton (Gossypium hirsutum L..

    Matthew K Gilbert

    Full Text Available Ligon lintless-2, a monogenic dominant cotton (Gossypium hirsutum L. fiber mutation, causing extreme reduction in lint fiber length with no pleiotropic effects on vegetative growth, represents an excellent model system to study fiber elongation. A UDP-glycosyltransferase that was highly expressed in developing fibers of the mutant Ligon lintless-2 was isolated. The predicted amino acid sequence showed ~53% similarity with Arabidopsis UGT73C sub-family members and the UDP-glycosyltransferase was designated as UGT73C14. When expressed in Escherichia coli as a recombinant protein with a maltose binding protein tag, UGT73C14 displayed enzymatic activity toward ABA and utilized UDP-glucose and UDP-galactose as the sugar donors. The recombinant UGT73C14 converted natural occurring isoform (+-cis, trans-ABA better than (+-trans, trans-ABA and (--cis, trans-ABA. Transgenic Arabidopsis plants constitutively overexpressing UGT73C14 did not show phenotypic changes under standard growth conditions. However, the increased glycosylation of ABA resulted in phenotypic changes in post-germinative growth and seedling establishment, confirming in vivo activity of UGT73C14 for ABA. This suggests that the expression level of UGT73C14 is regulated by the observed elevated levels of ABA in developing fibers of the Li 2 mutant line and may be involved in the regulation of ABA homeostasis.

  8. Effect of salicylic acid on physiological and biochemical characterization of maize grown in saline area

    The aim of the present investigation was to determine the effect of exogenously applied salicylic acid (SA) on physiology of maize (Zea mays L.) hybrid cv. 3025 grown in saline field (pH 8.4 and EC 4.2 ds/m) as well as on the nutrient status of saline soil. The salicylic acid (10/sup -5/M) was applied as foliar spray, 40 days after sowing (DAS) at vegetative stage of maize plants. The salinity significantly increased sugar contents, protein, proline and superoxide dismutase (SOD), peroxidase (POD), catalase (CAT) and ascorbate peroxidase (APOX) activities but the chlorophyll, carotenoid contents, osmotic potential and membrane stability index (MSI) were lower than the control. Foliar application of salicylic acid (SA) to salt stressed plants further augmented the sugar, protein, proline, superoxide dismutase (SOD), peroxidase (POD) ascorbate peroxidase (APOX) activities, endogenous abscisic acid (ABA) , indole acetic acid (IAA) content, and root length, fresh and dry weights of roots whereas, the chlorophyll a/b and ABA/IAA ratio were decreased. The exogenous application of SA significantly decreased the Na/sup +/, Ni/sup +3/, Pb/sup +4/, Zn/sup +2/, and Na/sup +//K/sup +/ content of soil and roots while increased the Co/sup +3/, Mn/sup +2/, Cu/sup +3/, Fe/sup +2/, K/sup +/ and Mg/sup +2/ content under salinity stress. It can be inferred that exogenous application of SA (10/sup -5/M) was effective in ameliorating the adverse effects of salinity on nutrient status of soil. SA (10/sup -5/M) can be implicated to mitigate the adverse effects of salinity on maize plants. (author)

  9. Hypocholesterolemic Effects of Eicosapentaenoic Acid and Docosahexaenoic Acid in Rats

    KANAZAWA, Akio; TESHIMA, Shin-ichi; TOKIWA, Shigeru; IMATANAKA, Nobuya; カナザワ, アキオ; テシマ, シンイチ; トキワ, シゲル; イマタナカ, ノブヤ; 金沢, 昭夫; 手島, 新一; 常盤, 繁; 今田中, 伸哉

    1984-01-01

    Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) methylesters (ME) were preparedfrom a squid-liver oil and their hypocholesterolemic activities examined with rats. The supplementof 0.3% EPA-ME to the diet containing 1.0% cholesterol and 4.0% butter as lipids reduced a serum-cholesterollevel markedly, whereas DHA-ME gave almost no effect on the serum-cholesterol level.Both EPA-ME and DHA-ME reduced the liver-cholesterol level as effectively as linoleic acid did.The supplement of smal...

  10. 外源ABA缓解黄瓜幼苗中低温诱导的氧化损伤%Exogenous abscisic acid alleviates low temperature-induced oxidative damage in seedlings of Cucumis sativus.L

    张颖; 蒋卫杰; 余宏军; 杨学勇

    2012-01-01

    脱落酸作为胁迫激素可提高植物对胁迫的抵抗能力,但亚适温下合理应用脱落酸提高植物抗性的研究较少.该文研究了脱落酸(ABA)预处理对亚低温环境下津研4号(低温敏感型品种)和中农27号(耐低温品种)的影响.于黄瓜三叶期分别喷施200 μmol/L ABA或清水,预处理12 h后分为2组,放入温度分别为25/18℃(昼/夜)和10/10℃(昼/夜)2个人工气候室培养7d.测定电导率、组织含水量、叶绿素含量,抗氧化酶活性以及相关酶的基因表达变化.结果表明,低温处理后,2黄瓜品种幼苗的电导率增加,组织含水量和叶绿素含量下降,过氧化物酶(POD)和超氧化物歧化酶(SOD)的活性增加,而过氧化氢酶(CAT)活性降低.与清水对照相比,ABA预处理有效的缓解了上述生理指标在低温下的变化.此外,低温处理后CAT基因表达量下调,SOD基因的表达量上调,而喷施ABA同样缓解了低温下CAT的下调表达和SOD的上调表达.说明ABA通过平衡活性氧的产生和清除来减轻低温对黄瓜幼苗的伤害,为外源ABA应用于植物抗低温生产提供理论依据.%Absicsic acid (ABA) as a kind of stress hormone has been applied to enhance a plant's resistance to various abiotic stresses,but the effect of ABA on sub-optimal temperature stress has not been clarified.The effects of ABA pretreatment on two cultivars of cucumber seedlings (chilling sensitive Jinyan 4 and chilling tolerant Zhongnong 27)under chilling stress were investigated.The cucumber seedlings were pretreated with 200 μmol/L ABA or water for 12 h,then divided into two groups and cultivated separately in two phytotrons with temperatures 25/18℃ and 10/10℃(day/night) for seven days,respectively.The level of electrolyte leakage,the tissue water content (TWC),the chlorophyll content,the antioxidant enzyme activities and the transcriptional levels of the genes encoding these enzymes were measured.The results showed that the level of

  11. Uric Acid and Antioxidant Effects of Wine

    Boban, Mladen; Modun, Darko

    2010-01-01

    The aim of this article is to review the role of uric acid in the context of antioxidant effects of wine and its potential implication to human health. We described and discussed the mechanisms of increase in plasma antioxidant capacity after consumption of moderate amounts of wine. Because this effect is largely contributed by acute elevation in plasma uric acid, we paid special attention to wine constituents and metabolic processes that are likely to be involved in uric acid elevation.

  12. Effect of fatty acids on leukocyte function

    Pompéia C.

    2000-01-01

    Full Text Available Fatty acids have various effects on immune and inflammatory responses, acting as intracellular and intercellular mediators. Polyunsaturated fatty acids (PUFAs of the omega-3 family have overall suppressive effects, inhibiting lymphocyte proliferation, antibody and cytokine production, adhesion molecule expression, natural killer cell activity and triggering cell death. The omega-6 PUFAs have both inhibitory and stimulatory effects. The most studied of these is arachidonic acid that can be oxidized to eicosanoids, such as prostaglandins, leukotrienes and thromboxanes, all of which are potent mediators of inflammation. Nevertheless, it has been found that many of the effects of PUFA on immune and inflammatory responses are not dependent on eicosanoid generation. Fatty acids have also been found to modulate phagocytosis, reactive oxygen species production, cytokine production and leukocyte migration, also interfering with antigen presentation by macrophages. The importance of fatty acids in immune function has been corroborated by many clinical trials in which patients show improvement when submitted to fatty acid supplementation. Several mechanisms have been proposed to explain fatty acid modulation of immune response, such as changes in membrane fluidity and signal transduction pathways, regulation of gene transcription, protein acylation, and calcium release. In this review, evidence is presented to support the proposition that changes in cell metabolism also play an important role in the effect of fatty acids on leukocyte functioning, as fatty acids regulate glucose and glutamine metabolism and mitochondrial depolarization.

  13. Unnatural agrochemical ligands for engineered abscisic acid receptors.

    Rodriguez, Pedro L; Lozano-Juste, Jorge

    2015-06-01

    Existing agrochemicals can be endowed with new applications through protein engineering of plant receptors. A recent study shows an engineered PYR1 ABA receptor can be activated by mandipropamid. Plants engineered with such PYR1 variant are responsive to this agrochemical, which confers protection against drought through activation of ABA signaling. PMID:25891067

  14. Relationships of abscised cotton fruit to boll weevil (Coleoptera: Curculionidae) feeding, oviposition, and development.

    Showler, Allan T

    2008-02-01

    Abscised cotton, Gossypium hirsutum L., fruit in field plots planted at different times were examined to assess adult boll weevil, Anthonomus grandis grandis Boheman (Coleoptera: Curculionidae), use of squares and bolls during 2002 and 2003 in the Lower Rio Grande Valley of Texas. Although boll abscission is not necessarily related to infestation, generally more bolls abscised than squares and abundances of fallen bolls were not related to the planting date treatments. During 2003, fallen squares were most abundant in the late-planted treatment. Although large squares (5.5-8-mm-diameter) on the plant are preferred for boll weevil oviposition, diameter of abscised squares is not a reliable measurement because of shrinkage resulting from desiccation and larval feeding. Fallen feeding-punctured squares and bolls were most abundant in late plantings but differences between fallen feeding-punctured squares versus fallen feeding-punctured bolls were found in only one treatment in 2003. During the same year, fallen oviposition-punctured squares were more numerous in the late-planted treatment than in the earlier treatments. Treatment effects were not found on numbers of oviposition-punctured bolls, but fallen oviposition-punctured squares were more common than bolls in the late-planted treatment compared with earlier treatments each year. Dead weevil eggs, larvae, and pupae inside fallen fruit were few and planting date treatment effects were not detected. Living third instars and pupae were more abundant in fallen squares of the late-planted treatment than in the earlier treatments and bolls of all three treatments. This study shows that fallen squares in late-planted cotton contribute more to adult boll weevil populations than bolls, or squares of earlier plantings. PMID:18330118

  15. Mutagenic effect of incorporated tritium amino acids

    Genetic effect of tritium labelled amino acids was studied. The experiments were carried out on white mongreal rats, genetic effects were evaluated by dominant lethal mutation frequency in male germ cells. It was shown that administration of tritium amino acids results in genetic violations in male germ cells manifested in progeny death. Assessment of integral temporal indices of induced post implantation embryos death showed that 3H-lysine effect exceeds tritium oxide effect by 1.5-2 fold in case of equal absorbed doses. The obtained results are used in alculation of radiation hygienic standards for biogenic tritium compounds. 4 refs.; 1 tab

  16. Salvaging effect of triacontanol on plant growth, thermotolerance, macro-nutrient content, amino acid concentration and modulation of defense hormonal levels under heat stress.

    Waqas, Muhammad; Shahzad, Raheem; Khan, Abdul Latif; Asaf, Sajjad; Kim, Yoon-Ha; Kang, Sang-Mo; Bilal, Saqib; Hamayun, Muhammad; Lee, In-Jung

    2016-02-01

    In this study, it was hypothesized that application of triacontanol, a ubiquitous saturated primary alcohol, at different times-before (TBHS), mid (TMHS), and after (TAHS) heat stress-will extend heat stress (HS) protection in mungbean. The effect of triacontanol on the levels of defense hormones abscisic acid (ABA) and jasmonic acid (JA) was investigated along with the plant growth promotion, nutrient and amino acid content with and without heat stress. Heat stress caused a prominent reduction in plant growth attributes, nutrient and amino acid content, which were attributed to the decreased level of ABA and JA. However, application of triacontanol, particularly in the TBHS and TMHS treatments, reversed the deleterious effects of HS by showing increased ABA and JA levels that favored the significant increase in plant growth attributes, enhanced nutrient content, and high amount of amino acid. TAHS, a short-term application of triacontanol, also significantly increased ABA and JA levels and thus revealed important information of its association with hormonal modulation. The growth-promoting effect of triacontanol was also confirmed under normal growth conditions. To the best of our knowledge, this study is the first to demonstrate the beneficial effects of triacontanol, with or without heat stress, on mungbean and its interaction with or regulation of the levels of defense hormones. PMID:26744997

  17. The sporostatic effect of cannabidiolic acid

    A study was undertaken to clarify whether cannabidiolic acid could be made to enhance the microbiological effect of food preservation by heat treatment or irradiation. Cannabidiolic acid was found to have a high inhibiting effect on the spores of Bacillus cereus. Its sporostatic effect is roughly equivalent to that of the antibiotics nisin and tylosin. The aqueous solution of the phytoncide of 50 μg ml-1 concentration (containing 2.5% alcohol) resisted, without a reduction of its activity, a heat treatment of 30 min at 110 deg C. Its activity was reduced by only 15% upon treatment with 400 krad. Hereafter the influence of cannabidiolic acid, added to the brine of canned peas at a concentration of 10 μgml-1, was studied on samples exposed to treatment with 500 krad or given a heat treatment equivalent to F0=4.8. In these combination treatments cannabidiolic acid added at the above concentration proved to be ineffective. On investigating the cause of this phenomenon, cannabidiolic acid was found to react with protein of peas prior to irradiation or heat treatment, or in an early phase of treatment loosing thereby its microbiological effect. On the other hand, since cannabidiolic acid cannot react with proteins denatured by heat, it was found active in a sterilized nutrient medium containing denatured protein. (F.J.)

  18. Effect of arachidonic acid on anthralin inflammation.

    Lawrence, C.M.; Shuster, S.

    1987-01-01

    1 The effect of topical arachidonic acid on anthralin inflammation was studied using sequential measurements of erythema (reflectance photometry) and oedema (calipers). 2 Topical arachidonic acid in concentrations which produced a small short-lived inflammatory response greatly augmented the initial phase and depressed the later phase of the inflammatory response to anthralin. 3 The initial augmentation was inhibited by concomitant administration of alpha-tocopherol. 4 It is suggested that fr...

  19. Acids and bases solvent effects on acid-base strenght

    Cox, Brian G

    2013-01-01

    Acids and bases are ubiquitous in chemistry. Our understanding of them, however, is dominated by their behaviour in water. Transfer to non-aqueous solvents leads to profound changes in acid-base strengths and to the rates and equilibria of many processes: for example, synthetic reactions involving acids, bases and nucleophiles; isolation of pharmaceutical actives through salt formation; formation of zwitter- ions in amino acids; and chromatographic separation of substrates. This book seeks to enhance our understanding of acids and bases by reviewing and analysing their behaviour in non-aqueous solvents. The behaviour is related where possible to that in water, but correlations and contrasts between solvents are also presented.

  20. Effects of simulated acid rain on vegetation

    Ferenbaugh, R.W.

    1974-01-01

    Experiments were performed to determine the effects of simulated acid rain on Chenopodium quinoa, Hordeum vulgare and Phaseolus vulgaris. Because of differential species' susceptibility, detailed experiments were conducted only on Phaseolus vulgaris. Acid rain was simulated by spraying the plants with a hand-held atomizer. Sulfuric acid solutions covering a pH range of 1.5 to 3.5 in one half pH unit increments were used. Gross morphological effects noted at lower pH values included failure to attain normal height, necrosis and wrinkling of leaves, excessive and adventitious budding, and premature abscission of primary leaves. Histological effects included smaller cell size, a decreased amount of intercellular space, hypertrophied nuclei and nucleoli, and a reduction in the size of starch granules within the chloroplasts. Dry weight remained an approximately constant percentage of fresh weight, and chlorophyll analyses showed that both chlorophyll concentration and ratio of chlorophyll 'a' to chlorophyll 'b' also remained constant. Respirometer studies showed that, while respiration rate increased only slightly at low pH values, photosynthetic rate increased dramatically. Quantitative analyses indicated that carbohydrate content was reduced at low pH values, with starch content reduced much more than sugar content. Root biomass was also reduced at low pH values. Application of Congo red indicator solution to the acid treated tissue showed that it was being acidified to a pH of below 4. 114 references, 23 figures, 12 tables.

  1. Effect of simulated acid rain on vegetation

    Ferenbaugh, R.W.

    1974-01-01

    Experiments were performed to determine the effects of simulated acid rain on Chenopodium quinoa, Hordeum vulgare and Phaseolus vulgaris. Detailed experiments were conducted only on Phaseolus vulgaris. Sulfuric acid solutions covering a pH range of 1.5 to 3.5 were used. Gross morphological effects noted at lower pH values included failure to attain normal height, necrosis and wrinkling of leaves, excessive and adventitious budding, and premature abscission of primary leaves. Histological effects included smaller cell size, a decreased amount of intercellular space, hypertrophied nuclei and nucleoli, and a reduction in the size of starch granules within the chloroplasts. Dry weight remained an approximately constant percentage of fresh weight, and chlorophyll analyses showed that both chlorophyll concentration and ratio of chlorophyll to chlorophyll also remained constant. Respirometer studies showed that respiration rate increased slightly and photosynthetic rate increased dramatically. Quantitative analyses indicated that carbohydrate content was reduced at low pH values. Root biomass was also reduced. Application of Congo red indicator solution to the acid treated tissue showed that it was being acidified to a pH of below 4. Experiments involving aspiration of control tissue in acid solutions suggest that the increase in photosynthetic rate and the decreases in carbohydrate content and root biomass were caused by an uncoupling of photophosphorylation of adenosine diphosphate. Uncoupling was probably caused by hydrogen ion interference with proton pumps associated with the electron transport chain in the light reactions of photosynthesis. 128 references. (MDF)

  2. Ethanol Effects On Physiological Retinoic Acid Levels

    Napoli, Joseph L.

    2011-01-01

    All-trans-retinoic acid (atRA) serves essential functions during embryogenesis and throughout post-natal vertebrate life. Insufficient or excess atRA causes teratogenic and/or toxic effects in the developing embryo: interference with atRA biosynthesis or signaling likely underlies some forms of cancer. Many symptoms of vitamin A (atRA precursor) deficiency and/or toxicity overlap with those of another pleiotropic agent—ethanol. These overlapping symptoms have prompted research to understand w...

  3. Interference effects from coexisting fatty acids on elaidic acid separation by fractionating crystallization: A model study

    Jala, Ram Chandra Reddy; Guo, Zheng; Bjerring, Thomas;

    2010-01-01

    A multi-stage temperature-programmed fractionating crystallization process was carried out to examine the effects of the presence of stearic acid (SA), oleic acid (OA), and linoleic acid (LA) on the separation of elaidic acid (EA). The results showed that the efficiency of fractionating...

  4. Fatty acid effects on fibroblast cholesterol synthesis

    Two cell lines of normal (CRL 1475, GM5565) and of familial hypercholesterolemia (FH) (CM 486,488) fibroblasts were preincubated with medium containing the growth factor ITS, 2.5 mg/ml fatty acid-free BSA, or 35.2 μmol/ml of these fatty acids complexed with 2.5 mg BSA/ml: stearic (18:0), caprylic (8:0), oleic (18:1;9), linoleic (18:2;9,12), linolenic (18:3;9,12,15), docosahexaenoic (22:6;4,7,10,13,16,19)(DHA) or eicosapentaenoic (20:5;5,8,11,14,17)(EPA). After 20 h, cells were incubated for 2 h with 0.2 μCi [14C]acetate/ml. Cells were hydrolyzed; an aliquot was quantitated for radioactivity and protein. After saponification and extraction with hexane, radioactivity in the aqueous and organic phases was determined. The FH cells always incorporated 30-90% more acetate/mg protein than normal cells but the pattern of the fatty acid effects was similar in both types. When the values were normalized to 1 for the BSA-only group, cells with ITS had the greatest [14C]acetate incorporation (1.45) followed by the caprylic group (1.14). Cells incubated with 18:3, 20:6 or 22:6 incorporated about the same amount as BSA-only. Those preincubated with 18:2, 18:1, 18:0 showed the least acetate incorporation (0.87, 0.59 and 0.52, respectively). The percentage of total 14C counts which extracted into hexane was much greater in FH cells; however, these values varied with the fatty acid, e.g., 1.31(18:0) and 0.84(8:0) relative to 1

  5. Fatty acid effects on fibroblast cholesterol synthesis

    Shireman, R.B.; Muth, J.; Lopez, C.

    1987-05-01

    Two cell lines of normal (CRL 1475, GM5565) and of familial hypercholesterolemia (FH) (CM 486,488) fibroblasts were preincubated with medium containing the growth factor ITS, 2.5 mg/ml fatty acid-free BSA, or 35.2 ..mu..mol/ml of these fatty acids complexed with 2.5 mg BSA/ml: stearic (18:0), caprylic (8:0), oleic (18:1;9), linoleic (18:2;9,12), linolenic (18:3;9,12,15), docosahexaenoic (22:6;4,7,10,13,16,19)(DHA) or eicosapentaenoic (20:5;5,8,11,14,17)(EPA). After 20 h, cells were incubated for 2 h with 0.2 ..mu..Ci (/sup 14/C)acetate/ml. Cells were hydrolyzed; an aliquot was quantitated for radioactivity and protein. After saponification and extraction with hexane, radioactivity in the aqueous and organic phases was determined. The FH cells always incorporated 30-90% more acetate/mg protein than normal cells but the pattern of the fatty acid effects was similar in both types. When the values were normalized to 1 for the BSA-only group, cells with ITS had the greatest (/sup 14/C)acetate incorporation (1.45) followed by the caprylic group (1.14). Cells incubated with 18:3, 20:6 or 22:6 incorporated about the same amount as BSA-only. Those preincubated with 18:2, 18:1, 18:0 showed the least acetate incorporation (0.87, 0.59 and 0.52, respectively). The percentage of total /sup 14/C counts which extracted into hexane was much greater in FH cells; however, these values varied with the fatty acid, e.g., 1.31(18:0) and 0.84(8:0) relative to 1(BSA).

  6. The greenhouse effect and acid rain

    The concentrations of carbon dioxide, methane, sulfur dioxide, nitrous oxides and chlorofluorocarbons is increasing in the earth's atmosphere. Increased concentrations of these trace gases could lead to global warming, increased acid rain and increased UV radiation on the earth's surface; however, the actual impacts are still uncertain and are also the subject of great debate. Application of clean energy sources such as geothermal are obviously desirable for decreasing these effects and improving our overall general environment. This paper briefly summarizes the global environmental concerns, providing a backdrop for the following papers which describe the geothermal role in future environmental considerations

  7. Decontamination effectiveness of mixtures of citric acid, oxalic acid and EDTA

    An experimental study of the decontamination effectiveness of citric acid, oxalic acid and EDTA mixtures was conducted to assess whether oxalic acid could be removed from decontamination solutions to minimize corrosion. In loop experiments, radioactive specimens from two boiling water reactors and one pressurized water reactor were suspended in solutions of single acids or in mixtures of reagents at total reagent concentrations of less than 0.1 wt% under conditions similar to those used to decontaminate reactor systems. Rate constants for dissolution of oxides and decontamination factors were measured. Based on the results, it was concluded that under certain conditions, oxalic acid was the most effective reagent for the dissolution of oxides. It was also found, however, that conditions under which effective dissolution occurred in solutions of oxalic acid and/or citric acid were difficult to define and control. EDTA was found to be an effective reagent for dissolution of oxides such that rates of dissolution in EDTA containing solutions at 117 degrees Celsius were comparable to rates in oxalic acid containing solutions. At 90 degrees Celsius, EDTA acted synergistically with oxalic acid such that the rate of dissolution of oxides in citric-acid/oxalic-acid/EDTA solutions was higher than in citric-acid/EDTA solutions. The rates of dissolution of oxides were significantly reduced when 60 mg/kg of ferric ion was added to the citric-acid/oxalic-acid, citric-acid/EDTA and citric-acid/oxalic-acid/EDTA solutions. It was concluded that effective decontaminations of BWR and PWR systems could be achieved with mixtures of citric acid and EDTA

  8. Risk and Health Effect of Boric Acid

    Ang S. See

    2010-01-01

    Full Text Available Problem statement: Boric acid is a pesticide usually used to kill mites, fungi, plants and insect including fleas, termites, cockroaches and wood decay fungi. Besides, it was also used in many fields such as food preservative, in newborn baby’s nurseries and antiseptic. Many reports indicated that boric acid poisoning occurred due to the misuse of household product and illegal use of boric acid in food product. In this study, the concern issue was the usage of boric acid that may lead to boric acid poisoning. Approach: This review had shown some information for boric acid such as its usage, the existent method for detection of boric acid in food. Besides, this review also discussed about the toxicology and pharmacokinetic of boric acid and the health impact of boric acid on human and animal. Result: Previous studies showed that food products such as yellow noodles contain boric acid. The boric acid level in most foods was different among the factory and the production period. It is due to the lack of standard measurement during the processing. Conclusion: Since boric acid was harmful to human health and may cause poisoning, hence, the control and the awareness of the usage of boric acid especially in food should be increased. There are numerous methods available for quantification of boric acid such as mannitol titration technique, colorimetric method. Accordingly, the analysis of boric acid is essential.

  9. Effect of Vermicompost Tea on the Growth and Yield of Tomato Plants and Suppression of Root Knot Nematode in the Soil

    Selvaraj, Abira

    2011-01-01

    Vermicompost teas (VCT) are documented to increase plant growth and yield and reduce plant fungal and bacterial diseases and nematode infestation in the soil. However, the underlying mechanisms for these results remain obscure. Radioimmnoassay was used to identify and quantify phytohormones present in commercially prepared "growth-promoting" VCT. Isopentenyladenine (IPA) and indole-3-acetic acid (IAA) were detected in VCT, along with a low amount of abscisic acid (ABA). Comparison of effects ...

  10. Effects of acidic precipitation on vegetation

    Jacobson, J.S.; van Leuken, P.

    1977-01-01

    An experimental study of the effect of simulated acidic rain on greenhouse and field grown conifers and herbaceous vegetation was conducted. Pinus strobus (Eastern white pine), P. sylvestris (Scotch pine), Helianthus annus (sunflower), Phaseolus vulgaris (bean) and Spinacea oleracea (spinach) were sprayed with simulated rain. pH of solutions was adjusted by H/sub 2/SO/sub 4/ and HNO/sub 3/ to a range of 2.2 to 3.4. Plants were examined for injury following completion of treatment(s). Symptoms consisted of necrotic lesions. On pine, lesions developed at the apical and mid-portion of needles. Dormant conifers were tolerant while injury developed more readily on older needles. White pine was more susceptible than Scotch pine. On bean leaves, lesions were scattered over the leaf and were tan to dark brown. Symptoms on sunflower and spinach leaves consisted of light brown irregularly shaped lesions. Foliar injury to herbaceous plants increased with increasing treatment time and acidity. Injury was induced at pH 2.6 after one minute, at pH 3.0 after 1.5 hours, at pH 3.2 after 3 hours and at pH 3.4 after 9 hours. No aberrant growth or development was observed in conifers. Necrosis is the typical response to acidic rain. A relationship between treatment duration and pH is drawn. It shows that long duration at a pH as high as 3.4 can produce necrosis of herbaceous species. Herbaceous species are more susceptible than conifers.

  11. Electrostatic effects on hyaluronic acid configuration

    Berezney, John; Saleh, Omar

    2015-03-01

    In systems of polyelectrolytes, such as solutions of charged biopolymers, the electrostatic repulsion between charged monomers plays a dominant role in determining the molecular conformation. Altering the ionic strength of the solvent thus affects the structure of such a polymer. Capturing this electrostatically-driven structural dependence is important for understanding many biological systems. Here, we use single molecule manipulation experiments to collect force-extension behavior on hyaluronic acid (HA), a polyanion which is a major component of the extracellular matrix in all vertebrates. By measuring HA elasticity in a variety of salt conditions, we are able to directly assess the contribution of electrostatics to the chain's self-avoidance and local stiffness. Similar to recent results from our group on single-stranded nucleic acids, our data indicate that HA behaves as a swollen chain of electrostatic blobs, with blob size proportional to the solution Debye length. Our data indicate that the chain structure within the blob is not worm-like, likely due to long-range electrostatic interactions. We discuss potential models of this effect.

  12. More on Effects Controlling Carboxylic Acidity.

    Schwartz, Lowell M.

    1981-01-01

    Gas phase acidity data shown are offered to writers of elementary organic chemistry texts for replacement of the aqueous phase data that are universally used. Relative acidities in the gas phase are controlled virtually exclusively by enthalpic factors. Structural-energetic explanations of acidic trends can therefore be used. (SK)

  13. An Effective Acid Combination for Enhanced Properties and Corrosion Control of Acidizing Sandstone Formation

    Umer Shafiq, Mian; Khaled Ben Mahmud, Hisham

    2016-03-01

    To fulfill the demand of the world energy, more technologies to enhance the recovery of oil production are being developed. Sandstone acidizing has been introduced and it acts as one of the important means to increase oil and gas production. Sandstone acidizing operation generally uses acids, which create or enlarge the flow channels of formation around the wellbore. In sandstone matrix acidizing, acids are injected into the formation at a pressure below the formation fracturing pressure, in which the injected acids react with mineral particles that may restrict the flow of hydrocarbons. Most common combination is Hydrofluoric Acid - Hydrochloric with concentration (3% HF - 12% HCl) known as mud acid. But there are some problems associated with the use of mud acid i.e., corrosion, precipitation. In this paper several new combinations of acids were experimentally screened to identify the most effective combination. The combinations used consist of fluoboric, phosphoric, formic and hydrofluoric acids. Cores were allowed to react with these combinations and results are compared with the mud acid. The parameters, which are analyzed, are Improved Permeability Ratio, strength and mineralogy. The analysis showed that the new acid combination has the potential to be used in sandstone acidizing.

  14. Effect of fatty acids on phase behavior of hydrated dipalmitoylphosphatidylcholine bilayer: saturated versus unsaturated fatty acids.

    Inoue, T; Yanagihara, S; Misono, Y; Suzuki, M

    2001-02-01

    The effect of some fatty acids on the phase behavior of hydrated dipalmitoylphosphatidylcholine (DPPC) bilayer was investigated with special interest in possible difference between saturated and unsaturated fatty acids. The phase behavior of hydrated DPPC bilayer was followed by a differential scanning calorimetry and a Fourier transform infrared spectroscopy. The addition of palmitic acid (PA) increased the bilayer phase transition temperature with the increase of the PA content in the mixture. In addition, DPPC molecules in gel phase bilayer became more rigid in the presence of PA compared with those in the absence of PA. This effect of PA on the phase behavior of hydrated DPPC bilayer is common to other saturated fatty acids, stearic acid, myristic acid, and also to unsaturated fatty acid with trans double bond, elaidic acid. Contrary to these fatty acids, oleic acid (OA), the unsaturated fatty acid with cis double bond in the acyl chain, exhibited quite different behavior. The effect of OA on the bilayer phase transition temperature was rather small, although a slight decrease in the temperature was appreciable. Furthermore, the IR spectral results demonstrated that the perturbing effect of OA on the gel phase bilayer of DPPC was quite small. These results mean that OA does not disturb the hydrated DPPC bilayer significantly. PMID:11269932

  15. Effects of Lactic Acid Bacteria Inoculated Fermentation on Pickled Cucumbers

    Xiaoyi Ji; Yuan Wu; Xingzhu Wu; Yonghua Lin; Weiwei Xu; Hui Ruan; Guoqing He

    2013-01-01

    The aim of this study was to determine the effects of Lactic Acid Bacteria (LAB) fermentation on the texture and organic acid of pickled cucumbers. Texture and sensory evaluation as well as a microscopic observation were performed to study the textural differences among fresh cucumber, Spontaneous fermentation (SF) cucumber and LAB Inoculating Fermentation (LABIF) cucumber. Accumulation of seven organic acids i.e., oxalic, tartaric, malic, lactic, acetic, citric and succinic acid during cucum...

  16. Effects of Exogenous Amino Acids on the Contents of Amino Acids in Tobacco Leaves

    WU Xue-ping; LIU Guo-shun; ZHU Kai; PENG Sa; GUO Qiao-yan

    2005-01-01

    The effect of three amino acids on the growth of flue-cured tobacco was studied with water culture. The results showed that the three amino acids improved the growth of flue-cured tobacco and increased the contents of chlorophyll a,chlorophyll b and carotenoid in tobacco. At the same time, the activities of NR (nitrate reductase), INV(invertase) and root growth activity were also significantly enhanced. The exogenous glutamic, aspartate and phenylalanine all increased the amino acid contents of tobacco leaves. Of these three amino acids, glutamic had the greatest effect, the next was aspartate,and phenylalanine had the least effect. These three amino acids all had significantly increased the accumulation of amino acids in the leaves of individual plants of tobacco; and the magnitude of accumulation indicated aspartate > glutamic >phenylalanine.

  17. Effect of Organic Acids Supplement on Performance of Broiler Chickens

    Ján Kopecký

    2012-05-01

    Full Text Available This study was conducted in order to evaluate effect of organic acids on broiler performance. Totally 180 chickens of Ross 308 hybrid were divided to three groups. Experimental group no. 1 (n=60 received acetic acid in drinking water with concentration 0.25% from day 1 to day 42. Experimental group no. 2 (n=60 received citric acid in drinking water with concentration 0.25% from day 1 to day 42. Control group (n=60 received drinking water without any additives. The average body weight, feed consumption, mortality and carcass characteristics were analyzed and compared finally. The results showed no significant effects of diets with addition of organic acids (P<0.05 on body weight. Supplementation of citric acid caused decrease in total feed consumption. Addition of organic acids affected positive total mortality of broiler chickens. There were no significant effects of organic acids supplementation on carcass characteristics.

  18. Effect of citric acid on noncovalent interactions in biopolymer jellies

    Kuanyzhbek Musabekov

    2015-09-01

    Full Text Available The effect of citric acid on the formation of gels based on gelatine, melon pulp and sugar has been studied. It is found that the structuring of gelatin the presence of melon pulp is due to hydrogen bonds between the amino acids of gelatin and pectin melon by hydrogen bonds. It is shown that the structuring of gelatin and gelatin – melon pulp depends on the concentration of sugar. The addition of acid in the pectin-gelatin composition reduces the pH, the solubility of pectin and accelerates the formation of jelly. This is due to the fact that in the presence of citric acid reduced the degree of dissociation of galacturonic acid. The intensity of the effect of citric acid on the structure in the presence of melon pulp could be explained by the formation of hydrogen bonds between pectin and citric acid.

  19. Effect of amino acids and amino acid derivatives on crystallization of hemoglobin and ribonuclease A

    The effect of the addition of amino acids and amino acid derivatives on the crystallization of hemoglobin and ribonuclease A has been evaluated. The results showed that certain types of additives expand the concentration conditions in which crystals are formed. Determination of the appropriate conditions for protein crystallization remains a highly empirical process. Preventing protein aggregation is necessary for the formation of single crystals under aggregation-prone solution conditions. Because many amino acids and amino acid derivatives offer a unique combination of solubility and stabilizing properties, they open new avenues into the field of protein aggregation research. The use of amino acids and amino acid derivatives can potentially influence processes such as heat treatment and refolding reactions. The effect of the addition of several amino acids, such as lysine, and several amino acid derivatives, such as glycine ethyl ester and glycine amide, on the crystallization of equine hemoglobin and bovine pancreatic ribonuclease A has been examined. The addition of these amino acids and amino acid derivatives expanded the range of precipitant concentration in which crystals formed without aggregation. The addition of such additives appears to promote the crystallization of proteins

  20. Effect of amino acids and amino acid derivatives on crystallization of hemoglobin and ribonuclease A

    Ito, Len, E-mail: len@ksc.kwansei.ac.jp; Kobayashi, Toyoaki [School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337 (Japan); Shiraki, Kentaro [Institute of Applied Physics, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573 (Japan); Yamaguchi, Hiroshi [School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337 (Japan)

    2008-05-01

    The effect of the addition of amino acids and amino acid derivatives on the crystallization of hemoglobin and ribonuclease A has been evaluated. The results showed that certain types of additives expand the concentration conditions in which crystals are formed. Determination of the appropriate conditions for protein crystallization remains a highly empirical process. Preventing protein aggregation is necessary for the formation of single crystals under aggregation-prone solution conditions. Because many amino acids and amino acid derivatives offer a unique combination of solubility and stabilizing properties, they open new avenues into the field of protein aggregation research. The use of amino acids and amino acid derivatives can potentially influence processes such as heat treatment and refolding reactions. The effect of the addition of several amino acids, such as lysine, and several amino acid derivatives, such as glycine ethyl ester and glycine amide, on the crystallization of equine hemoglobin and bovine pancreatic ribonuclease A has been examined. The addition of these amino acids and amino acid derivatives expanded the range of precipitant concentration in which crystals formed without aggregation. The addition of such additives appears to promote the crystallization of proteins.

  1. Effect of phytic acid, ethylenediaminetetraacetic acid, and chitosan solutions on microhardness of the human radicular dentin

    Vineeta Nikhil; Shikha Jaiswal; Parul Bansal; Rohit Arora; Shalya Raj; Pulkit Malhotra

    2016-01-01

    Aim: The purpose of this study was to evaluate the effect of phytic acid, ethylenediaminetetraacetic acid (EDTA), and chitosan solutions on the microhardness of human radicular dentin. Materials and Methods: Thirty dentin specimens were randomly divided into three groups of 10 specimens each according to the irrigant used: G1 - 1% phytic acid, G2 - 17% EDTA, and G3 - 0.2% chitosan. A standardized volume of each chelating solution was used for 3 min. Dentin microhardness was measured befo...

  2. Effect of Stearic Acid on Ettringite Formation

    2002-01-01

    The hydration reaction of a mixture of tricalcium aluminate (C3A) and gypsum with the molar ratio of 1:3 was carried out at room temperature and a water/solid ratio of 4.0. The hydration was carried out in presence of 0, 1and 3% stearic acid and the mixes were designated as A, B and C, respectively. Ettringite was the only hydration product formed in the presence and absence of stearic acid. Phase composition, microstructure, infra-red analysis as well as degree of hydration were carried out for the different hydration mixtures. The rate of ettringite formation in the presence of 3% stearic acid was accelerated during the first half hour of hydration, and then retardation was occurred. In the presence of 1% stearic acid the ettringite formation was accelerated first till 3 days, then retardation was observed at later hydration ages.

  3. Effects of acid deposition on tree roots

    Persson, H. [Swedish Univ. of Agricultural Sciences (Sweden). Dept. of Ecology and Environmental Research

    1995-12-31

    Large forest regions in SW Sweden have been exposed to high levels of acid deposition for many decades, causing soil acidification in forest soils. Historically, SO{sub 2} has been the major acidification agent, but lately nitrogen compounds increasingly have become important. The amount and chemical form of nitrogen strongly affects the pH in the rhizosphere and rhizoplane. Many forest stands show a positive growth response to increased nitrogen input, even in heavily N-loaded areas. Nitrogen fertilization experiments suggest that part of the increased forest production is caused by a translocation of biomass production from below-ground to above-ground parts. At the same time fine-root growth dynamics are strongly affected by the high N supply. Deficiencies of various nutrients (Mg,Ca,K,Mn and Zn) obtained from needle analyses have been reported from different Picea abies stands. In areas with more extensive acidification and nutrient leaching, a decline in tree vitality has been observed. Although deficiency symptoms in forest trees may be reflected in nitrogen/cation ratios in fine roots, few attempts have been made to explain forest damage symptoms from fine-root chemistry. Root damage is often described as a decline in the amount of living fine roots, an increase in the amount of dead versus live fine roots (a lower live/dead ratio) and an increasing amount of dead medium and coarse roots. The primary objectives of the present presentation were to analyse available data on the effects of high nitrogen and sulphur deposition on mineral nutrient balance in tree fine roots and to evaluate the risk of Al interference with cation uptake by roots

  4. EFFECTS OF MYCOTOXINS, KOJIC ACID AND OXALIC ACID, ON BIOLOGICAL FITNESS OF LYGUS HESPERUS (HETEROPTERA: MIRIDAE)

    Mycotoxins kojic acid and oxalic acid are produced by many species of fungi, including Aspergillus niger, a common contaminant in insectaries. It has been previously shown by this laboratory to have detrimental effects on the biological fitness of Lygus hesperus Knight (Heteroptera: Miridae). We e...

  5. Alginic acid and hyaluronic acid, effective stabilizers of carthamin red colour in aqueous solutions

    Koshi Saito

    2014-02-01

    Full Text Available Sodium salts and free forms of two heterosaccharides, alginic and hyaluronic acids were mixed with carthamin in a buffer at pH 5.5 and their preservation effects of carthamin red colour were screened after incubation for 24 h at 3-5oC in the dark. The effects observed were (alginic acid/hyaluronic acid, % on average: 69.3/60.3, for which the values are higher by 40.9 and 29.1%, respectively, compared with those of the control which was conducted with no addition of heterosaccharides. Alginic acid is a more promising stabilizer than haluronic acid, indicating that active groups such as hydroxyls, carboxyls and amino groups on the building units of the macromolecules are associated closely with the carthamin red colour preservation. The empirical outcomes are referred to the practical application of carthamin as a colourant of food products.

  6. The effect of sulfuric acid on pore initiation in anodic alumina formed in oxalic acid

    Behnam Hafezi

    2014-07-01

    Full Text Available In this work, a tracer study on pore initiation in anodic alumina in oxalic acid was performed. Effects of some experimental parameters such as applied electrical potential, electrolyte composition and heat pretreatment were evaluated. Electrochemical and morphological experiments were performed using potentiostatic anodizing and scanning electron microscopy (SEM techniques, respectively. Effect of electrolyte composition on current density was discussed. In various electrical potentials, electrolyte composition had different effects on current density. Addition of sulfuric acid into oxalic acid increased porosity. Also, distribution of pore size and pore diameter were influenced by presence of sulfuric acid. Effect of electrolyte composition on the morphology of aluminum surface layer depended on the electric potential. Current density and porosity of aluminum surface layer was decreased by heat pretreatment.

  7. Effect of Long-Chain Fatty Acids on Anaerobic Digestion

    Qian, Cheng

    2013-01-01

    An investigation was carried out to study whether long-chain fatty acids (LCFAs) have an effect on digestion of waste sludge under anaerobic conditions. Four different kinds of LCFAs were used in this study. The 18 carbon series with 0, 1, 2 and 3 double bonds were studied to evaluate the degree of saturation on fatty acid degradation. Due to their molecular structure, unsaturated LCFAs are more soluble than saturated LCFAs. Oleic, linoleic, linolenic acid with an ascending number of double b...

  8. Probiotic and Acetic Acid Effect on Broiler Chickens Performance

    Martin Král; Mária Angelovičová; Ľubica Mrázová; Jana Tkáčová; Martin Kliment

    2011-01-01

    Probiotics and organic acids are widely accepted as an alternative to in-feed antibiotics in poultry production. We carried the experiment with broiler chickens. In experiment we research effect of probiotic and acetic acids on the performance of broiler chickens. A total number of 200 one day old broiler chickens were distributed to two dietary groups. Broiler chickens in control group were fed with standard feed mixture and experimental group 1% vinegar contained 5% acetic acid used in drin...

  9. Effects of Ultrasonic and Acid Pretreatment on Food Waste Disintegration and Volatile Fatty Acid Production

    Qinglian Wu; Wanqian Guo∗; Shanshan Yang; Haichao Luo; Simai Peng; Nanqi Ren

    2015-01-01

    This study aims at investigating the effects of ultrasonic and acid pretreatment on food waste ( FW) disintegration and volatile fatty acid ( VFA ) production. Single⁃factor experiments are carried out to obtain optimal conditions of individual ultrasonic and acid pretreatment, and response surface method ( RSM ) is applied to optimize the conditions of the combination of ultrasonic and acid ( UA) pretreatment. Results show that the optimal acid, ultrasonic and UA pretreatments conditions are individual pH 2, individual ultrasonic energy density of 1�0 W/mL and the combination of ultrasonic energy density1�11 W/mL and pH 1�43, respectively. Correspondingly, the maximum disintegration degrees ( DD) of 46�90%, 57�38% and68�83%are obtained by acid, ultrasonic and UA pretreatments, respectively. After optimizing pretreatment conditions, batch experiments are operated to produce VFA from raw and pretreated FW under anaerobic fermentation process. Both the maximum VFA production ( 976�17 mg COD/gVS) and VFA/SCOD ( 72�89%) are obtained with ultrasonic pretreatment, followed by UA pretreatment, non⁃pretreatment and acid pretreatment, respectively. This observation demonstrates that a higher acidity on acid and UA pretreatments inhibits the generation of VFA. Results suggest that ultrasonic pretreatment is preferable to promote the disintegration degree of FW and VFA production.

  10. Lysophosphatidic acid effects on atherosclerosis and thrombosis

    Cui, Mei-Zhen

    2011-01-01

    Lysophosphatidic acid (LPA) has been found to accumulate in high concentrations in atherosclerotic lesions. LPA is a bioactive phospholipid produced by activated platelets and formed during the oxidation of LDL. Accumulating evidence suggests that this lipid mediator may serve as an important risk factor for development of atherosclerosis and thrombosis. The role of LPA in atherogenesis is supported by the evidence that LPA: stimulates endothelial cells to produce adhesion molecules and chemo...

  11. The effect of humic acid on processing uranium ores

    The effect of humic acid contained in uranium ores on processing uranium ores is presented. Some characters of humic acid are described. Some harms, such as lowering the percolation rate in heap leaching with sulphuric acid, decreasing the extraction capacity of amine extractants, decreasing the adsorption capacity of resins, raising difficulties in phases separation, promoting emulsification in extraction and stripping, raising cost of organic phase, increasing NaOH consumption and reducing precipitation efficiency of uranium, are explained. The methods of removing humic acid are given

  12. EFFECT OF TEMPERATURE AND CONCENTRATION ON THE VISCOSITY OF AQUEOUS SOLUTIONS OF 3-AMINOPROPANOIC ACID, 4-AMINOBUTANOIC ACID, 5-AMINOPENTANOIC ACID, 6-AMINOHEXANOIC ACID

    Carmen María Romero

    2011-12-01

    Full Text Available In this work we present the effect of temperatureon the viscosities of aqueous solutionsof 3-aminopropanoic acid, 4-aminobutanoicacid, 5-aminopentanoic acidand 6-aminohexanoic acid as a functionof concentration. The experimental measurementswere done from 293.15 K to308.15 K. At each temperature the experimentaldata were fi tted to the Tsangaris-Martin equation and the B viscosity coefficient was determined. The dependenceof the B coeffi cients on the number ofcarbon atoms of the amino acids is linear,so the contribution of polar and apolargroups was established. The results areinterpreted in terms of amino acid hydration.

  13. Inhibiting Effect of Nicotinic Acid Hydrazide on Corrosion of Aluminum and Mild Steel in Acidic Medium

    Bhat, J. Ishwara [Mangalore Univ., Karnataka (India); Alva, Vijaya D. P. [Shree Devi Institute of Technology, Karnataka (India)

    2014-02-15

    The corrosion behavior of aluminum and mild steel in hydrochloric acid medium was studied using a nicotinic acid hydrazide as inhibitor by potentiodynamic polarization, electrochemical impedance spectroscopy technique and gravimetric methods. The effects of inhibitor concentration and temperature were investigated. The experimental results suggested, nicotinic acid hydrazide is a good corrosion inhibitor for both aluminum and mild steel in hydrochloric acid medium and the inhibition efficiency increased with increase in the inhibitor concentration. The polarization studies revealed that nicotinic acid hydrazide exhibits mixed type of inhibition. The inhibition was assumed to occur via adsorption of the inhibitor molecules on the aluminum and mild steel surface and inhibits corrosion by blocking the reaction sites on the surface of aluminum.

  14. Inhibiting Effect of Nicotinic Acid Hydrazide on Corrosion of Aluminum and Mild Steel in Acidic Medium

    The corrosion behavior of aluminum and mild steel in hydrochloric acid medium was studied using a nicotinic acid hydrazide as inhibitor by potentiodynamic polarization, electrochemical impedance spectroscopy technique and gravimetric methods. The effects of inhibitor concentration and temperature were investigated. The experimental results suggested, nicotinic acid hydrazide is a good corrosion inhibitor for both aluminum and mild steel in hydrochloric acid medium and the inhibition efficiency increased with increase in the inhibitor concentration. The polarization studies revealed that nicotinic acid hydrazide exhibits mixed type of inhibition. The inhibition was assumed to occur via adsorption of the inhibitor molecules on the aluminum and mild steel surface and inhibits corrosion by blocking the reaction sites on the surface of aluminum

  15. Ancillary effects of selected acid deposition control policies

    Moe, R.J.; Lyke, A.J.; Nesse, R.J.

    1986-08-01

    NAPAP is examining a number of potential ways to reduce the precursors (sulfur dioxide and nitrogen oxides) to acid deposition. However, the policies to reduce acid deposition will have other physical, biological and economic effects unrelated to acid deposition. For example, control policies that reduce sulfur dioxide emissions may also increase visibility. The effects of an acid deposition policy that are unrelated to acid deposition are referred to as ''ancillary'' effects. This reserch identifies and characterizes the principle physical and economic ancillary effects associated with acid deposition control and mitigation policies. In this study the ancillary benefits associated with four specific acid deposition policy options were investigated. The four policy options investigated are: (1) flue gas desulfurization, (2) coal blending or switching, (3) reductions in automobile emissions of NO/sub x/, and (4) lake liming. Potential ancillary benefits of each option were identified and characterized. Particular attention was paid to the literature on economic valuation of potential ancillary effects.

  16. Effect of fatty acids on energy coupling processes in mitochondria.

    Wojtczak, L; Schönfeld, P

    1993-11-01

    Long-chain fatty acids are natural uncouplers of oxidative phosphorylation in mitochondria. The protonophoric mechanism of this action is due to transbilayer movement of undissociated fatty acid in one direction and the passage of its anion in the opposite direction. The transfer of the dissociated form of fatty acid can be, at least in some kinds of mitochondrion, facilitated by adenine nucleotide translocase. Apart from dissipating the electrochemical proton gradient, long-chain fatty acids decrease the activity of the respiratory chain by mechanism(s) not fully understood. In intact cells and tissues fatty acids operate mostly as excellent respiratory substrates, providing electrons to the respiratory chain. This function masks their potential uncoupling effect which becomes apparent only under special physiological or pathological conditions characterized by unusual fatty acid accumulation. Short- and medium-chain fatty acids do not have protonophoric properties. Nevertheless, they contribute to energy dissipation because of slow intramitochondrial hydrolysis of their activation products, acyl-AMP and acyl-CoA. Long-chain fatty acids increase permeability of mitochondrial membranes to alkali metal cations. This is due to their ionophoric mechanism of action. Regulatory function of fatty acids with respect to specific cation channels has been postulated for the plasma membrane of muscle cells, but not demonstrated in mitochondria. Under cold stress, cold acclimation and arousal from hibernation the uncoupling effect of fatty acids may contribute to increased thermogenesis, especially in the muscle tissue. In brown adipose tissue, the special thermogenic organ of mammals, long-chain fatty acids promote operation of the unique natural uncoupling protein, thermogenin. As anionic amphiphiles, long-chain fatty acids increase the negative surface charge of biomembranes, thus interfering in their enzymic and transporting functions. PMID:8399375

  17. Glycolic Acid Physical Properties, Impurities, And Radiation Effects Assessment

    The DWPF is pursuing alternative reductants/flowsheets to increase attainment to meet closure commitment dates. In fiscal year 2009, SRNL evaluated several options and recommended the further assessment of the nitric/formic/glycolic acid flowsheet. SRNL is currently performing testing with this flowsheet to support the DWPF down-select of alternate reductants. As part of the evaluation, SRNL was requested to determine the physical properties of formic and glycolic acid blends. Blends of formic acid in glycolic acid were prepared and their physical properties tested. Increasing amounts of glycolic acid led to increases in blend density, viscosity and surface tension as compared to the 90 wt% formic acid that is currently used at DWPF. These increases are small, however, and are not expected to present any difficulties in terms of processing. The effect of sulfur impurities in technical grade glycolic acid was studied for its impact on DWPF glass quality. While the glycolic acid specification allows for more sulfate than the current formic acid specification, the ultimate impact is expected to be on the order of 0.03 wt% sulfur in glass. Note that lower sulfur content glycolic acid could likely be procured at some increased cost if deemed necessary. A paper study on the effects of radiation on glycolic acid was performed. The analysis indicates that substitution of glycolic acid for formic acid would not increase the radiolytic production rate of H2 and cause an adverse effect in the SRAT or SME process. It has been cited that glycolic acid solutions that are depleted of O2 when subjected to large radiation doses produced considerable quantities of a non-diffusive polymeric material. Considering a constant air purge is maintained in the SRAT and the solution is continuously mixed, oxygen depletion seems unlikely, however, if this polymer is formed in the SRAT solution, the rheology of the solution may be affected and pumping of the solution may be hindered. A series

  18. Effect of hyaluronic acid on chondrocyte apoptosis

    Barreto, Ronald Bispo; Sadigursky, David; de Rezende, Marcia Uchoa; Hernandez, Arnaldo José

    2015-01-01

    OBJECTIVE: To determine the percentage of apoptotic cells in a contusion model of osteoarthritis (OA) and to assess whether intra-articular injection of high doses of hyaluronic acid (HA) immediately after trauma reduces chondrocyte apoptosis. METHODS: Forty knees from adult rabbits were impacted thrice with a 1 kg block released through a 1 meter tall cylinder (29.4 Joules). Subsequently, 2 mL of HA was injected in one knee and 2 mL saline in the contra-lateral knee. Medication were administ...

  19. Comparative Effects of Retinoic Acid or Glycolic Acid Vehiculated in Different Topical Formulations

    Patrícia Maria Berardo Gonçalves Maia Campos

    2015-01-01

    Full Text Available Retinoids and hydroxy acids have been widely used due to their effects in the regulation of growth and in the differentiation of epithelial cells. However, besides their similar indication, they have different mechanisms of action and thus they may have different effects on the skin; in addition, since the topical formulation efficiency depends on vehicle characteristics, the ingredients of the formulation could alter their effects. Thus the objective of this study was to compare the effects of retinoic acid (RA and glycolic acid (GA treatment on the hairless mouse epidermis thickness and horny layer renewal when added in gel, gel cream, or cream formulations. For this, gel, gel cream, and cream formulations (with or without 6% GA or 0.05% RA were applied in the dorsum of hairless mice, once a day for seven days. After that, the skin was analyzed by histopathologic, morphometric, and stereologic techniques. It was observed that the effects of RA occurred independently from the vehicle, while GA had better results when added in the gel cream and cream. Retinoic acid was more effective when compared to glycolic acid, mainly in the cell renewal and the exfoliation process because it decreased the horny layer thickness.

  20. Anti-angiogenic effect of high doses of ascorbic acid

    Ichim Thomas E; Mikirova Nina A; Riordan Neil H

    2008-01-01

    Abstract Pharmaceutical doses of ascorbic acid (AA, vitamin C, or its salts) have been reported to exert anticancer activity in vitro and in vivo. One proposed mechanism involves direct cytotoxicity mediated by accumulation of ascorbic acid radicals and hydrogen peroxide in the extracellular environment of tumor cells. However, therapeutic effects have been reported at concentrations insufficient to induce direct tumor cell death. We hypothesized that AA may exert anti-angiogenic effects. To ...

  1. Ascorbic acid study in citrus juice: effect of preservative

    This paper reports the effect of preservative on ascorbic acid extracted from freshly plucked oranges. Colorimetric method was used for the determination of ascorbic. Determination of some inorganic elements like sodium, potassium and lithium were also determined by flame photometry. The preservative was found to have a beneficial effect on the retention of ascorbic acid, particularly when used in high concentration. Metal content, particularly potassium did no alter significantly during preservation for duration of one month. (author)

  2. Effects of inhaled acids on respiratory tract defense mechanisms.

    Schlesinger, R B

    1985-01-01

    The respiratory tract is endowed with an interlocking array of nonspecific and specific defense mechanisms which protect it from the effects of inhaled microbes and toxicants, and reduce the risk of absorption of materials into the bloodstream, with subsequent systemic translocation. Ambient acids may compromise these defenses, perhaps providing a link between exposure and development of chronic and acute pulmonary disease. This paper reviews the effects of inhaled acids upon the nonspecific ...

  3. Gastroprotective effect and cytotoxicity of labdeneamides with amino acids.

    Schmeda-Hirschmann, Guillermo; Rodríguez, Jaime A; Theoduloz, Cristina; Valderrama, Jaime A

    2011-03-01

    Semisynthetic aromatic amides from ARAUCARIA ARAUCANA diterpene acids have been shown to display a relevant gastroprotective effect with low cytotoxicity. The aim of this work was to assess the gastroprotective effect of amino acid amides from imbricatolic acid and its 8(9)-en isomer in the ethanol/HCl-induced gastric lesions model in mice as well as to determine the cytotoxicity of the obtained compounds on the following human cell lines: normal lung fibroblasts (MRC-5), gastric adenocarcinoma (AGS), and liver hepatocellular carcinoma (Hep G2). The diterpenes 15-acetoxyimbricatolic acid, its 8(9)-en isomer, 15-hydroxyimbricatolic acid, and the 8(9)-en derivative, bearing a COOH function at C-19, were used as starting compounds. New amides with C-protected amino acids were prepared. The study reports the effect of a single oral administration of either compound 50 min before the induction of gastric lesions by ethanol/HCl. Some 20 amino acid monoamides were obtained. Dose-response experiments on the glycyl derivatives showed that at a single oral dose of 100 mg/kg, the compounds presented an effect comparable to the reference drug lansoprazole at 20 mg/kg and at 50 mg/kg reduced gastric lesions by about 50%. All derivatives obtained in amounts > 30 mg were compared at a single oral dose of 50 mg/kg. The best gastroprotective effect was observed for the exomethylene derivatives bearing a valine residue at C-19 either with an acetoxy or free hydroxy group at C-15. The tryptophanyl derivative from the acetate belonging to the 8,9-en series presented selective cytotoxicity against hepatocytes. The glycyl amide of 15-acetoxyimbricatolic acid was the most cytotoxic and less selective compound with IC₅₀ values between 47 and 103 µM for the studied cell lines. This is the first report on the obtention of semisynthetic amino acid amides from labdane diterpenes. PMID:20862639

  4. Individual bile acids have differential effects on bile acid signaling in mice

    Song, Peizhen, E-mail: songacad@gmail.com; Rockwell, Cheryl E., E-mail: rockwelc@msu.edu; Cui, Julia Yue, E-mail: juliacui@uw.edu; Klaassen, Curtis D., E-mail: curtisklaassenphd@gmail.com

    2015-02-15

    Bile acids (BAs) are known to regulate BA synthesis and transport by the farnesoid X receptor in the liver (FXR-SHP) and intestine (FXR-Fgf15). However, the relative importance of individual BAs in regulating these processes is not known. Therefore, mice were fed various doses of five individual BAs, including cholic acid (CA), chenodeoxycholic acid (CDCA), deoxoycholic acid (DCA), lithocholic acid (LCA), and ursodeoxycholic acid (UDCA) in their diets at various concentrations for one week to increase the concentration of one BA in the enterohepatic circulation. The mRNA of BA synthesis and transporting genes in liver and ileum were quantified. In the liver, the mRNA of SHP, which is the prototypical target gene of FXR, increased in mice fed all concentrations of BAs. In the ileum, the mRNA of the intestinal FXR target gene Fgf15 was increased at lower doses and to a higher extent by CA and DCA than by CDCA and LCA. Cyp7a1, the rate-limiting enzyme in BA synthesis, was decreased more by CA and DCA than CDCA and LCA. Cyp8b1, the enzyme that 12-hydroxylates BAs and is thus responsible for the synthesis of CA, was decreased much more by CA and DCA than CDCA and LCA. Surprisingly, neither a decrease in the conjugated BA uptake transporter (Ntcp) nor increase in BA efflux transporter (Bsep) was observed by FXR activation, but an increase in the cholesterol efflux transporter (Abcg5/Abcg8) was observed with FXR activation. Thus in conclusion, CA and DCA are more potent FXR activators than CDCA and LCA when fed to mice, and thus they are more effective in decreasing the expression of the rate limiting gene in BA synthesis Cyp7a1 and the 12-hydroxylation of BAs Cyp8b1, and are also more effective in increasing the expression of Abcg5/Abcg8, which is responsible for biliary cholesterol excretion. However, feeding BAs do not alter the mRNA or protein levels of Ntcp or Bsep, suggesting that the uptake or efflux of BAs is not regulated by FXR at physiological and

  5. Individual bile acids have differential effects on bile acid signaling in mice

    Bile acids (BAs) are known to regulate BA synthesis and transport by the farnesoid X receptor in the liver (FXR-SHP) and intestine (FXR-Fgf15). However, the relative importance of individual BAs in regulating these processes is not known. Therefore, mice were fed various doses of five individual BAs, including cholic acid (CA), chenodeoxycholic acid (CDCA), deoxoycholic acid (DCA), lithocholic acid (LCA), and ursodeoxycholic acid (UDCA) in their diets at various concentrations for one week to increase the concentration of one BA in the enterohepatic circulation. The mRNA of BA synthesis and transporting genes in liver and ileum were quantified. In the liver, the mRNA of SHP, which is the prototypical target gene of FXR, increased in mice fed all concentrations of BAs. In the ileum, the mRNA of the intestinal FXR target gene Fgf15 was increased at lower doses and to a higher extent by CA and DCA than by CDCA and LCA. Cyp7a1, the rate-limiting enzyme in BA synthesis, was decreased more by CA and DCA than CDCA and LCA. Cyp8b1, the enzyme that 12-hydroxylates BAs and is thus responsible for the synthesis of CA, was decreased much more by CA and DCA than CDCA and LCA. Surprisingly, neither a decrease in the conjugated BA uptake transporter (Ntcp) nor increase in BA efflux transporter (Bsep) was observed by FXR activation, but an increase in the cholesterol efflux transporter (Abcg5/Abcg8) was observed with FXR activation. Thus in conclusion, CA and DCA are more potent FXR activators than CDCA and LCA when fed to mice, and thus they are more effective in decreasing the expression of the rate limiting gene in BA synthesis Cyp7a1 and the 12-hydroxylation of BAs Cyp8b1, and are also more effective in increasing the expression of Abcg5/Abcg8, which is responsible for biliary cholesterol excretion. However, feeding BAs do not alter the mRNA or protein levels of Ntcp or Bsep, suggesting that the uptake or efflux of BAs is not regulated by FXR at physiological and

  6. Comparison the effectiveness of pyruvic acid 50% and salicylic acid 30% in the treatment of acne

    Fariba Jaffary

    2016-01-01

    Full Text Available Background: Acne vulgaris is a chronic inflammatory disease of the pilosebaceous follicles and one of the most common skin diseases. The peeling method has been recently found to be effective for acne treatment. This study aimed to compare the efficacy of pyruvic acid 50% and salicylic acid 30% peeling in the treatment of mild to moderate acne. Materials and Methods: In a prospective single-blinded clinical trial, 86 patients with acne were randomly assigned into two groups. In both groups, the routine treatment of acne (topical solution of erythromycin 4%, triclorocarban soap, and sunscreen were used twice a day for 8 weeks. In addition, salicylic acid 30% for the control group and pyruvic acid 50% for the case group were used. In both groups, acne severity index (ASI was calculated before and at week 2, 4, 6, and 8 of the treatment. Patient satisfaction was assessed at the end of the treatment. Side effects were recorded using a checklist. Results: In both groups, the reduction in the number of comedones, papules, and ASI were statistically significant (P < 0.001 in the course of treatment. However, it was not significant regarding the number of pustules (P = 0.09. None of the number of comedone, papules, pustules, and ASI was statistically different between study groups. Both treatment groups had similar side effects except for scaling in the fifth session, which was significantly lower in salicylic acid - treated patients (P = 0.015. Conclusion: Both pyruvic acid 50% and salicylic acid 30% are effective in the improvement of mild to moderate acne with no significant difference in efficacy and side effects.

  7. Antioxidant effects of sulfur-containing amino acids.

    Atmaca, Gulizar

    2004-10-31

    Sulfur is an essential element for the entire biological kingdom because of its incorporation into amino acids, proteins and other biomolecules. Sulfur atoms are also important in the iron-containing flavoenzymes. Unlike humans, plants can use inorganic sulfur to synthesize sulfur-containing amino acids. Therefore, plants are an important source of sulfur for humans. Sulfur-containing compounds are found in all body cells and are indispensable for life. Some of sulfur-containing antioxidant compounds are, cysteine, methionine, taurine, glutathione, lipoic acid, mercaptopropionylglycine, N-acetylcysteine, and the three major organosulfur compounds of garlic oil, diallylsulfide, diallyldisulfide and diallyltrisulfide. In a comparison of the structure-function relationship among these sulfur-containing antioxidant compounds, dihydrolipoic acid (the reduced form of LA) is the most effective antioxidant. Dihydrolipoic acid contains two sulfhydryl groups and can undergo further oxidation reaction to form lipoic acid. The antioxidative activities of sulfur-containing compounds follow a general trend, the more highly reduced forms are stronger antioxidants and the number of sulfur atoms determine, at least in part, their modulatory activites on the glutathione related antioxidant enzymes. In this article, the antioxidant effects and the antioxidative activities, of sulfur-containing amino acids, are reviewed. In addition, the general antioxidant effects and the structure-function relationship of some sulfur-containing compounds are also reviewed. PMID:15515186

  8. EFFECT OF TETRACYCLINES ON THE INTRACELLULAR AMINO ACIDS OF MOLDS.

    FREEMAN, B A; CIRCO, R

    1963-07-01

    Freeman, Bob A. (University of Chicago, Chicago, Ill.) and Richard Circo. Effect of tetracyclines on the intracellular amino acids of molds. J. Bacteriol. 86:38-44. 1963.-The tetracycline antibiotics were shown to alter the amino acid metabolism of molds whose growth is not markedly affected. Eight molds were grown in the presence of these antiobiotics; four exhibited a general reduction in the concentration of the intracellular amino acids, except for glutamic acid and alanine. In most of these four cultures, the tetracyclines also caused the complete disappearance of arginine, lysine, proline, phenylalanine, and tyrosine from the intracellular amino acid pool. The significance of these observations and the usefulness of the method in the study of the mechanisms of antibiotic action are discussed. PMID:14051820

  9. Effect of lipid supplementation on milk fatty acid focus on rumenic acid.

    Esperanza Prieto-Manrique

    2016-06-01

    Full Text Available The aim of this study was to review the effect of the lipid supplementation on the concentration of conjugated linoleic acid (CLA-c9t11 or rumenic acid and other unsaturated fatty acids in bovine milk. The study addressed the concept and origin of the CLA-c9t11 in ruminants. There is an international trend to improve nutrition quality , which implies an increase in consumption of animal protein, including the healthy and rich in CLA-c9t11 dairy products. CLA-c9t11 has proved to have anticancer effects in animal models. CLA-c9t11 in the bovine milk results from the consumption of unsaturated fatty acids and from the extent of rumen biohydrogenation. Supplementation with unsaturated fatty acids of vegetable origin allows to increase the concentration of CLA-c9t11 and to decrease the proportion of saturated fatty acids in milk, but the response varies depending on the source of fat used, its level, and its interaction with basal diet

  10. Effect of phytic acid, ethylenediaminetetraacetic acid, and chitosan solutions on microhardness of the human radicular dentin

    Nikhil, Vineeta; Jaiswal, Shikha; Bansal, Parul; Arora, Rohit; Raj, Shalya; Malhotra, Pulkit

    2016-01-01

    Aim: The purpose of this study was to evaluate the effect of phytic acid, ethylenediaminetetraacetic acid (EDTA), and chitosan solutions on the microhardness of human radicular dentin. Materials and Methods: Thirty dentin specimens were randomly divided into three groups of 10 specimens each according to the irrigant used: G1 — 1% phytic acid, G2 — 17% EDTA, and G3 — 0.2% chitosan. A standardized volume of each chelating solution was used for 3 min. Dentin microhardness was measured before and after application at the cervical, middle, and apical levels with a Vickers indenter under a 200-g load and a 10-s dwell time. The results were analyzed using one-way analysis of variance (ANOVA) and Student's t test. Results: Microhardness of the radicular dentin varied at the cervical, middle, and apical levels. EDTA had the greatest overall effect, causing a sharp percentage reduction in dentin microhardness with a significant difference from phytic acid and chitosan (P = 0.002). However, phytic acid and chitosan differed insignificantly from each other (P = 0.887). Conclusion: All tested chelating solutions reduced microhardness of the radicular dentin layer at all the levels. However, reduction was least at the apical level. EDTA caused more reduction in dentin microhardness than chitosan while phytic acid reduced the least. PMID:27099428

  11. Effect of phytic acid, ethylenediaminetetraacetic acid, and chitosan solutions on microhardness of the human radicular dentin

    Vineeta Nikhil

    2016-01-01

    Full Text Available Aim: The purpose of this study was to evaluate the effect of phytic acid, ethylenediaminetetraacetic acid (EDTA, and chitosan solutions on the microhardness of human radicular dentin. Materials and Methods: Thirty dentin specimens were randomly divided into three groups of 10 specimens each according to the irrigant used: G1 - 1% phytic acid, G2 - 17% EDTA, and G3 - 0.2% chitosan. A standardized volume of each chelating solution was used for 3 min. Dentin microhardness was measured before and after application at the cervical, middle, and apical levels with a Vickers indenter under a 200-g load and a 10-s dwell time. The results were analyzed using one-way analysis of variance (ANOVA and Student′s t test. Results: Microhardness of the radicular dentin varied at the cervical, middle, and apical levels. EDTA had the greatest overall effect, causing a sharp percentage reduction in dentin microhardness with a significant difference from phytic acid and chitosan (P = 0.002. However, phytic acid and chitosan differed insignificantly from each other (P = 0.887. Conclusion: All tested chelating solutions reduced microhardness of the radicular dentin layer at all the levels. However, reduction was least at the apical level. EDTA caused more reduction in dentin microhardness than chitosan while phytic acid reduced the least.

  12. Solar sterilization of abscised fruit: a cultural practice to reduce infestations of Anastrepha obliqua around orchards

    Abscised mangoes, Mangifera indica L., of several varieties were stored under varying conditions of insolation, including no sun (stored in a laboratory), shade (stored under the shade of a mango tree), full sun (stored in direct view of the sun), and covered in a black plastic bag and stored in dir...

  13. Analysis of Cytokinin Mutants and Regulation of Cytokinin Metabolic Genes Reveals Important Regulatory Roles of Cytokinins in Drought, Salt and Abscisic Acid Responses, and Abscisic Acid Biosynthesis

    Nishiyama, R.; Watanabe, Y.; Werner, T.; Vaňková, Radomíra; Schmülling, T.; Tran, L. S. P.

    2011-01-01

    Roč. 23, č. 6 (2011), s. 2169-2183. ISSN 1040-4651 Institutional research plan: CEZ:AV0Z50380511 Keywords : TRANSGENIC TOBACCO PLANTS * WATER-STRESS * LEAF SENESCENCE Subject RIV: ED - Physiology Impact factor: 8.987, year: 2011

  14. COPPER AMINE OXIDASE1 (CuA01)of Arabidopsis thaliana Contributes to Abscisic Acid-and Polyamine-Induced Nitric Oxide Biosynthesis and Abscisic Acid Signal Transduction

    Rinukshi Wimalasekera; Corina Villar; Tahmina Begum; Günther F. E. Scherer

    2011-01-01

    Polyamines (PA), polyamine oxidases, copper amine oxidases, and nitric oxide (NO)play important roles in physiology and stress responses in plants. NO biosynthesis as a result of catabolism of PA by polyamine oxidases and copper amine oxidases may explain in part PA-mediated responses. Involvement of a copper amine oxidase gene, COPPER AMINE OXIDASE1 (CuA01), of Arabidopsis was tested for its role in stress responses using the knockouts cuaol.1 and cuaol-2. PA-induced and ABA-induced NO production investigated by fluorometry and fluorescence microscopy showed that the cuaol-1 and cuaol-2 are impaired in NO production, suggesting a function of CuAO1 in PA and ABA-mediated NO production. Furthermore, we found a PA-dependent increase in protein S-nitrosylation. The addition of PA and ABA also resulted in HO increases, cuaol-1 and cuaol-2 showed less sensitivity to exogenous ABA supplementation during ger-mination, seedling establishment, and root growth inhibition as compared to wild-type. In response to ABA treatment,expression levels of the stress-responsive genes RD29A and ADH1 were significantly lower in the knockouts. These obser-vations characterize cuaol-1 and cuaol-2 as ABA-insensitive mutants. Taken together, our findings extend the ABA signal transduction network to include CuAO1 as one potential contributor to enhanced NO production by ABA.

  15. Solvent effects in acid-catalyzed biomass conversion reactions.

    Mellmer, Max A; Sener, Canan; Gallo, Jean Marcel R; Luterbacher, Jeremy S; Alonso, David Martin; Dumesic, James A

    2014-10-27

    Reaction kinetics were studied to quantify the effects of polar aprotic organic solvents on the acid-catalyzed conversion of xylose into furfural. A solvent of particular importance is γ-valerolactone (GVL), which leads to significant increases in reaction rates compared to water in addition to increased product selectivity. GVL has similar effects on the kinetics for the dehydration of 1,2-propanediol to propanal and for the hydrolysis of cellobiose to glucose. Based on results obtained for homogeneous Brønsted acid catalysts that span a range of pKa values, we suggest that an aprotic organic solvent affects the reaction kinetics by changing the stabilization of the acidic proton relative to the protonated transition state. This same behavior is displayed by strong solid Brønsted acid catalysts, such as H-mordenite and H-beta. PMID:25214063

  16. Acid rain effects on aluminum mobilization clarified by inclusion of strong organic acids

    Lawrence, G.B.; Sutherland, J.W.; Boylen, C.W.; Nierzwicki-Bauer, S. W.; Momen, B.; Baldigo, Barry P.; Simonin, H.A.

    2007-01-01

    Assessments of acidic deposition effects on aquatic ecosystems have often been hindered by complications from naturally occurring organic acidity. Measurements of pH and ANCG, the most commonly used indicators of chemical effects, can be substantially influenced by the presence of organic acids. Relationships between pH and inorganic Al, which is toxic to many forms of aquatic biota, are also altered by organic acids. However, when inorganic Al concentrations are plotted against ANC (the sum of Ca2+, Mg 2+, Na+, and K+, minus SO42-, NO3-, and Cl-), a distinct threshold for Al mobilization becomes apparent. If the concentration of strong organic anions is included as a negative component of ANC, the threshold occurs at an ANC value of approximately zero, the value expected from theoretical charge balance constraints. This adjusted ANC is termed the base-cation surplus. The threshold relationship between the base-cation surplus and Al was shown with data from approximately 200 streams in the Adirondack region of New York, during periods with low and high dissolved organic carbon concentrations, and for an additional stream from the Catskill region of New York. These results indicate that (1) strong organic anions can contribute to the mobilization of inorganic Al in combination with SO42- and NO 3-, and (2) the presence of inorganic Al in surface waters is an unambiguous indication of acidic deposition effects. ?? 2007 American Chemical Society.

  17. Effect of Acidity of a Medium on Riboflavin Photodestruction

    Astanov, S. Kh.; Turdiev, M.; Sharipov, M. Z.; Kurtaliev, É. N.; Nizomov, N. N.

    2016-03-01

    Effect of acidity of a medium on the spectroscopic characteristics of riboflavin aqueous solutions is investigated by the method of fluorescent and absorption spectroscopy. Significant deformation of the electronic spectra of riboflavin aqueous solutions irradiated with unfiltered light of a PRK-2 lamp is observed. It is established that riboflavin photostability in an acid medium is about twice as much as the photostability in a neutral medium, which is caused by the formation of a protonated species.

  18. Effects of cholic acid infusion in fetal lambs.

    Campos, G A; Guerra, F A; Israel, E J

    1986-01-01

    The effects of prolonged intravenous infusions of cholic acid into fetal lambs are described in this study. The ewes (n = 10, 11 fetuses) were operated on at 114 days of gestation (term = 150 days) by placing plastic catheters in maternal and fetal vessels and in the amniotic cavity. Gestational ages were confirmed after delivery by radiographic examination of the ossification centers of the fetal legs. Infusions of cholic acid (1.6 mumoles/min-1) started 8 to 10 days after surgery in 5 fetuses (including one twin). The remaining 6 fetuses (also including one twin) were infused with 5% dextrose in water. Total plasma bile acids at the beginning of the experiment were similar in both groups (23.8 +/- 6.6 vs. 24.3 +/- 5.7 microM). No significant changes in fetal heart rate, blood pressure, blood gases or pH were detected during the infusion. Meconium-stained amniotic fluid was observed during the third day of infusion in all the fetuses infused with cholic acid and in one control fetus. Fetuses infused with cholic acid were delivered alive 19-26 days before term. The concentration of plasma bile acids in the experimental group at delivery was 829 +/- 305 microM, i.e. significantly higher than that of the control group (24.4 +/- 5.7 microM). Control fetuses (except one twin) were delivered at term. We concluded that cholic acid, even at the high dose infused, is neither lethal nor severely harmful for the fetus. Meconium passage of the fetuses infused with cholic acid, in our experiment, appeared to be related to the stimulatory effect of cholic acid on fetal colonic motility rather than to fetal hypoxia.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:3716776

  19. Kinetic isotope effect of carbon-13 in decarboxylation of phenylpropiolic acid in anhydrous formic acid

    Carbon-13 kinetic isotope effects in the decarboxylation of phenylpropiolic acid (carboxyl-13C) in formic acid medium and in the decarbonylation of liquid formic acid assisted with phenylpropiolic acid (PPA) and acetophenone (AP) have been studied in the 70-100oC temperature interval. The carboxyl-13C KIEs are in the range 1.0034 at 71.6oC and 1.0047 at 101.2oC respectively. The C-13C KIE, k-12/k-13, in the decarbonylation of liquid formic acid assisted with PPA were found to be of 1.0419 at 71.6oC and 1.0383 at 101.2oC. The C-13 KIE in the decarbonylation of pure formic acid are 1.0464 at 70.2oC and 1.0411 at 98oC respectively. The above experimental results have been discussed and interpreted as indicating that the formation of Cα-H bond preceded by the protonation of triple acetylenic bond of PPA is the rate determining step followed by carbon dioxide splitting. The 13-CO-KIE in the carbon monooxide generation assisted with PPA is much larger than the 13-CO-KIE generated in the presence of phenylacetylene. This shows that the decarboxylation of PPA and decarboxylation of FA are interrelated processes proceeding in the reaction cage. The formic acid involved in the formation of TS is decarbonylating directly avoiding probably largely the formic acid anhydride intermediate formation. (author)

  20. Combinatorial Effects of Fatty Acid Elongase Enzymes on Nervonic Acid Production in Camelina sativa.

    Huai, Dongxin; Zhang, Yuanyuan; Zhang, Chunyu; Cahoon, Edgar B; Zhou, Yongming

    2015-01-01

    Very long chain fatty acids (VLCFAs) with chain lengths of 20 carbons and longer provide feedstocks for various applications; therefore, improvement of VLCFA contents in seeds has become an important goal for oilseed enhancement. VLCFA biosynthesis is controlled by a multi-enzyme protein complex referred to as fatty acid elongase, which is composed of β-ketoacyl-CoA synthase (KCS), β-ketoacyl-CoA reductase (KCR), β-hydroxyacyl-CoA dehydratase (HCD) and enoyl reductase (ECR). KCS has been identified as the rate-limiting enzyme, but little is known about the involvement of other three enzymes in VLCFA production. Here, the combinatorial effects of fatty acid elongase enzymes on VLCFA production were assessed by evaluating the changes in nervonic acid content. A KCS gene from Lunaria annua (LaKCS) and the other three elongase genes from Arabidopsis thaliana were used for the assessment. Five seed-specific expressing constructs, including LaKCS alone, LaKCS with AtKCR, LaKCS with AtHCD, LaKCS with AtECR, and LaKCS with AtKCR and AtHCD, were transformed into Camelina sativa. The nervonic acid content in seed oil increased from null in wild type camelina to 6-12% in LaKCS-expressing lines. However, compared with that from the LaKCS-expressing lines, nervonic acid content in mature seeds from the co-expressing lines with one or two extra elongase genes did not show further increases. Nervonic acid content from LaKCS, AtKCR and AtHCD co-expressing line was significantly higher than that in LaKCS-expressing line during early seed development stage, while the ultimate nervonic acid content was not significantly altered. The results from this study thus provide useful information for future engineering of oilseed crops for higher VLCFA production. PMID:26121034

  1. Gallic acid and gallic acid derivatives: effects on drug metabolizing enzymes.

    Ow, Yin-Yin; Stupans, Ieva

    2003-06-01

    Gallic acid and its structurally related compounds are found widely distributed in fruits and plants. Gallic acid, and its catechin derivatives are also present as one of the main phenolic components of both black and green tea. Esters of gallic acid have a diverse range of industrial uses, as antioxidants in food, in cosmetics and in the pharmaceutical industry. In addition, gallic acid is employed as a source material for inks, paints and colour developers. Studies utilising these compounds have found them to possess many potential therapeutic properties including anti-cancer and antimicrobial properties. In this review, studies of the effects of gallic acid, its esters, and gallic acid catechin derivatives on Phase I and Phase II enzymes are examined. Many published reports of the effects of the in vitro effects of gallic acid and its derivatives on drug metabolising enzymes concern effects directly on substrate (generally drug or mutagen) metabolism or indirectly through observed effects in Ames tests. In the case of the Ames test an antimutagenic effect may be observed through inhibition of CYP activation of indirectly acting mutagens and/or by scavenging of metabolically generated mutagenic electrophiles. There has been considerable interest in the in vivo effects of the gallate esters because of their incorporation into foodstuffs as antioxidants and in the catechin gallates with their potential role as chemoprotective agents. Principally an induction of Phase II enzymes has been observed however more recent studies using HepG2 cells and primary cultures of human hepatocytes provide evidence for the overall complexity of actions of individual components versus complex mixtures, such as those in food. Further systematic studies of mechanisms of induction and inhibition of drug metabolising enzymes by this group of compounds are warranted in the light of their distribution and consequent ingestion, current uses and suggested therapeutic potential. However, it

  2. (Amino acid + silica) adsorption thermodynamics: Effects of temperature

    Highlights: • High resolution, low concentration Gly, Lys and Glu solution adsorption isotherms. • All isotherms fitted with Langmuir–Freundlich isotherm model. • Gly, Lys and Glu show exothermic adsorption processes. • Isosteric heat analyses reveal changes in interaction strength with surface coverage. - Abstract: A thorough understanding of amino acid adsorption by mineral and oxide surfaces has a major impact on a variety of industrial and biomedical applications. Little information currently exists regarding temperature effects on most of these adsorption processes. Deeper thermodynamic analyses of their multiple temperature adsorption isotherms would aid the interpretation of the interfacial interactions. Low solution concentration adsorption isotherms for glycine, lysine and glutamic acid on a silica adsorbent were generated for T = (291, 298 and 310) K. Data analysis via the Clausius–Clapeyron method yielded the isosteric heat of adsorption as a function of fractional monolayer coverage for each adsorptive. Each amino acid showed an exothermic adsorption response. Glycine and lysine experienced a greater negative effect of increased temperature compared with glutamic acid, indicating a greater number of adsorbed molecules than glutamic acid, with the former undergoing intermolecular clustering within the adsorbed phase. Isosteric heat analyses suggest ionic interactions for lysine and hydrogen bonding for glutamic acid, both weakening with increased coverage. In contrast, initial hydrogen bonding led to ionic bonding for glycine with increasing coverage

  3. Transpiration, CO2 assimilation, WUE, and stomatal aperture in leaves of Viscum album (L.): Effect of abscisic acid (ABA) in the xylem sap of its host (Populus x euamericana).

    Escher, Peter; Peuke, Andreas D; Bannister, Peter; Fink, Siegfried; Hartung, Wolfram; Jiang, Fan; Rennenberg, Heinz

    2008-01-01

    Leaves of the mistletoe Viscum album (L.) show a high rate of transpiration, even when the host is under severe drought stress. The hypothesis that a strong control of ABA influx from the xylem sap of the host into the mistletoe prevents stomatal closure in mistletoe leaves was tested under the following conditions: sections of poplar twigs carrying a mistletoe were perfused with artificial xylem sap that contained different ABA concentrations and both transpiration and ABA levels were analysed in mistletoe leaves. Despite variation by a factor of 10(4), the ABA content of the host xylem did not affect ABA levels, leaf transpiration, CO(2) assimilation, WUE, or the degree of stomatal aperture in mistletoe leaves. These observations support the hypothesis of a strong control of ABA influx from the host of the xylem into the mistletoe, although degradation of ABA before it enters the mistletoe leaves cannot be excluded. This mechanism may ensure a water and nutritional status favourable for the mistletoe, even if the water status of the host is impaired. Despite the lack of short-term sensitivity of ABA levels in mistletoe leaves to even strong changes of ABA levels in the xylem sap of the host, ABA levels in mistletoe leaves were relatively high compared to ABA levels in the leaves of several tree species including poplar. Since significant transpiration of the mistletoe leaves was observed despite high ABA levels, a diminished sensitivity of the stomata of mistletoe leaves to ABA has to be concluded. The stomatal density of adaxial Viscum leaves of 89+/-23 stomata per mm is lower than those reported in a study performed at the end of the 19th century. PMID:18042393

  4. Effects of pre-treatments with abscisic acid and/or benzyladenine on gas exchange of French bean, sugar beet, and maize leaves during water stress and after rehydration

    Pospíšilová, Jana; Baťková, P.

    2004-01-01

    Roč. 48, č. 3 (2004), s. 395-399. ISSN 0006-3134 R&D Projects: GA ČR GA522/02/1099 Institutional research plan: CEZ:AV0Z5038910 Keywords : Beta vulgaris * net photosynthetic rate * Phaseolus vulgaris Subject RIV: ED - Physiology Impact factor: 0.744, year: 2004

  5. Dietary hyodeoxycholic acid exerts hypolipidemic effects by reducing farnesoid X receptor antagonist bile acids in mouse enterohepatic tissues.

    Watanabe, Shiro; Fujita, Kyosuke

    2014-10-01

    Mice were fed a control diet or a diet supplemented with hyodeoxycholic acid, the most abundant bile acid contained in pig bile, for 4 weeks, after which their serum and livers were collected. The contents of total fatty acids of serum and liver cholesteryl esters, and of liver triglycerides, were reduced following the administration of the hyodeoxycholic acid-supplemented diet, which was mainly due to the reductions in the contents of monounsaturated fatty acids. Free cholesterol contents in the serum and liver were not changed by hyodeoxycholic acid administration. Hyodeoxycholic acid administration reduced the gene expression levels of sterol regulatory element binding protein 1c, acetyl-CoA carboxylase, fatty acid synthase, and stearoyl-CoA desaturase-1. Hyodeoxycholic acid administration markedly changes the ratio of FXR-antagonist/FXR-agonist bile acids in the enterohepatic tissues of the mice (1.13 and 7.60 in hyodeoxycholic acid and control diet groups, respectively). Our findings demonstrate that hyodeoxycholic acid administration exerts the hypolipidemic effect in mice, in which downregulations of de novo lipogenesis and desaturation of saturated fatty acids are suggested to play important roles. In addition, regulation of FXR activation through the selective modification of the enterohepatic bile acid pool may be involved in the hypolipidemic effect of hyodeoxycholic acid administration. PMID:25189147

  6. Effects of benzoic acid and cadmium toxicity on wheat seedlings

    Kavita Yadav; Singh, N.B.

    2013-01-01

    Benzoic acid (BA) and Cd exhibit cumulative effects on plants due to their accumulation in the soil. The present study reports the effects of BA an allelochemical, Cd and their combinations on seed germination, seedling growth, biochemical parameters, and response of antioxidant enzymes in Triticum aestivum L. The experiment was conducted in sand supplemented with Hoagland nutrient solution. Benzoic acid was applied at concentrations of 0.5, 1.0, and 1.5 mM with or without Cd (7 mg L-1) to ob...

  7. Additive effects of acetic acid upon hydrothermal reaction of amylopectin

    It is well known that over 0.8 kg kg−1 of starch is consisted of amylopectin (AP). In this study, production of glucose for raw material of ethanol by hydrothermal reaction of AP as one of the model compound of food is discussed. Further, additive effects of acetic acid upon hydrothermal reactions of AP are also investigated. During hydrothermal reaction of AP, production of glucose occurred above 453 K, and the glucose yield increased to 0.48 kg kg−1 at 473 K. Upon hydrothermal reaction of AP at 473 K, prolongation of the holding time was not effective for the increase of the glucose yield. Upon hydrothermal reaction of AP at 473 K for 0 s, the glucose yield increased significantly by addition between 0.26 mol L−1 and 0.52 mol L−1 of acetic acid. However, the glucose yield decreased and the yield of the other constituents increased with the increases of concentration of acetic acid from 0.65 mol L−1 to 3.33 mol L−1. It was considered that hydrolysis of AP to yield glucose was enhanced due to the increase of the amount of proton derived from acetic acid during hydrothermal reaction with 0.52 mol L−1 of acetic acid. -- Highlights: ► Glucose production by hydrothermal reaction of amylopectin (AP) at 473 K. ► Glucose yield increased to 0.48 kg kg-1 at 473 K. ► Prolongation of holding time was not effective for glucose yield. ► Glucose yield increased significantly by acetic acid (0.26–0.52 mol L-1) addition. ► Hydrolysis of AP to glucose was enhanced due to increase of proton from acetic acid.

  8. STUDY ON THE EFFECTS OF ACID ETCHING ON AFFECTED ENAMEL

    Simona Stoleriu

    2011-12-01

    Full Text Available The purpose of the study was to establish and compare the effects of ortophosphoric and hydrochloric acids on the enamel affected by incipient carious lesions with different evolution. Materials and method. 20 teeth with acute and chronic non-cavitary carious lesions were considered for the study. The teeth were sectioned in two halves through the middle of the non-cavitary lesions. The halves of 5 white spot-type lesions and of 5 brown spot-type ones were analyzed as to their surface roughness, on an atomic force microscope (AFM. 5 halves with white spot-type lesions and 5 halves with brown spot-type ones were subjected to acid etching with 37% ortophosphoric acid (Scotchbond etchant gel, 3M ESPE, and an equal number of samples was subjected to the action of 15% hydrochloric acid (ICON-etch, DMG Dental Products Ltd for 2 min, then washed with water and analyzed by AFM. Results. The initial surface roughness of the enamel was higher in the white spot–type carious lesions, comparatively with the brown spot-type ones. For both types of carious non-cavitary lesions, acid etching with phosphoric and hydrochloric acid significantly increased the surface roughness of the enamel, comparatively with the status of the enamel surface prior to etching. The hydrochloric acid led to a surface roughness significantly higher than in the case of ortophosphoric acid, in both acute and chronic non-cavitary carious lesions. The roughness values obtained through etching with ortophosphoric and hydrochloric acid were higher in the white spot-type carious lesions, comparatively with the brown spot-type ones. Conclusions. Both the 37% ortophosphoric acid and the 15% hydrochloric acid determined a significantly higher surface roughness of the enamel affected by acute and chronic non-cavitary carious lesions. The surface condition of the brown spot-type carious lesions was less significantly modified, comparatively with that of the white spot-type lesions, by the

  9. Antidiabetic Effects of Simple Phenolic Acids: A Comprehensive Review.

    Vinayagam, Ramachandran; Jayachandran, Muthukumaran; Xu, Baojun

    2016-02-01

    Diabetes mellitus (DM) has become a major public health threat across the globe. Current antidiabetic therapies are based on synthetic drugs that very often have side effects. It has been widely acknowledged that diet plays an important role in the management of diabetes. Phenolic acids are widely found in daily foods such as fruits, vegetables, cereals, legumes, and wine and they provide biological, medicinal, and health properties. Simple phenolic acids have been shown to increase glucose uptake and glycogen synthesis, improve glucose and lipid profiles of certain diseases (obesity, cardiovascular diseases, DM, and its complication). The current review is an attempt to list out the antidiabetic effects of simple phenolic acids from medicinal plants and botanical foods. Copyright © 2015 John Wiley & Sons, Ltd. PMID:26634804

  10. Effect of inclusion complex on nitrous acid reaction with flavonoids

    Khalafi, Lida; Rafiee, Mohammad; Sedaghat, Sajjad

    2011-10-01

    The kinetic of the nitrous acid reactions with quercetin and catechin has been studied using spectrophotometric method in aqueous solution. The results show that these antioxidants participate in oxidation reactions with nitrous acid which is derived from protonation of nitrite ion in mild acidic conditions. Corresponding o-quinones as relatively stable products were detected by spectrophotometric techniques. pH dependence of the reactions has been examined and the rate constants of reactions were obtained by non-linear fitting of kinetic profiles. The effect of β-cyclodextrin on the oxidation pathway was another object of this study. It is shown that β-cyclodextrin has an inhibitory effect on the oxidation reaction. The rate constants of oxidation reactions for complexed forms and their stability constants were obtained based on changes in the reaction rates as a function of β-cyclodextrin concentration.

  11. Bile Acids Improve the Antimicrobial Effect of Rifaximin▿ †

    Darkoh, Charles; Lichtenberger, Lenard M.; Ajami, Nadim; Dial, Elizabeth J.; Jiang, Zhi-Dong; DuPont, Herbert L.

    2010-01-01

    Diarrhea is one of the most common infirmities affecting international travelers, occurring in 20 to 50% of persons from industrialized countries visiting developing regions. Enterotoxigenic Escherichia coli (ETEC) is the most common causative agent and is isolated from approximately half of the cases of traveler's diarrhea. Rifaximin, a largely water-insoluble, nonabsorbable (<0.4%) antibiotic that inhibits bacterial RNA synthesis, is approved for use for the treatment of traveler's diarrhea caused by diarrheagenic E. coli. However, the drug has minimal effect on the bacterial flora or the infecting E. coli strain in the aqueous environment of the colon. The purpose of the present study was to evaluate the antimicrobial effect and bioavailability of rifaximin in aqueous solution in the presence and absence of physiologic concentrations of bile acids. The methods used included growth measurement of ETEC (strain H10407), rifaximin solubility measurements, total bacterial protein determination, and assessment of the functional activity of rifaximin by monitoring inhibition of bacterial β-galactosidase expression. Solubility studies showed rifaximin to be 70- to 120-fold more soluble in bile acids (approximately 30% in 4 mM bile acids) than in aqueous solution. Addition of both purified bile acids and human bile to rifaximin at subinhibitory and inhibitory concentrations significantly improved the drug's anti-ETEC effect by 71% and 73%, respectively, after 4 h. This observation was confirmed by showing a decrease in the overall amount of total bacterial protein expressed during incubation of rifaximin plus bile acids. Rifaximin-treated samples containing bile acids inhibited the expression of ETEC β-galactosidase at a higher magnitude than samples that did not contain bile acids. The study provides data showing that bile acids solubilize rifaximin on a dose-response basis, increasing the drug's bioavailability and antimicrobial effect. These observations suggest

  12. Effects of decreasing acid deposition and climate change on acid extremes in an upland stream

    C. D. Evans

    2008-03-01

    Full Text Available This study assesses the major chemical processes leading to acid extremes in a small, moorland stream in mid-Wales, UK, which has been monitored since 1979. Results suggest that base cation (mainly calcium dilution, the "sea-salt effect", and elevated nitrate pulses, are the major causes of seasonal/episodic minima in acid neutralising capacity (ANC, and that the relative importance of these drivers has remained approximately constant during 25 years of decreasing acid deposition and associated long-term chemical recovery. Many of the chemical variations causing short-term reductions in stream acidity, particularly base cation dilution and organic acid increases, are closely related to changes in water-flowpath and therefore to stream discharge. Changes in the observed pH-discharge relationship over time indicate that high-flow pH has increased more rapidly than mean-flow pH, and therefore that episodes have decreased in magnitude since 1980. However a two-box application of the dynamic model MAGIC, whilst reproducing this trend, suggests that it will not persist in the long term, with mean ANC continuing to increase until 2100, but the ANC of the upper soil (the source of relatively acid water during high-flow episodes stabilising close to zero beyond 2030. With climate change predicted to lead to an increase in maximum flows in the latter half of the century, high-flow related acid episodes may actually become more rather than less severe in the long term, although the model suggests that this effect may be small. Two other predicted climatic changes could also detrimentally impact on acid episodes: increased severity of winter "sea-salt" episodes due to higher wind speeds during winter storms; and larger sulphate pulses due to oxidation of reduced sulphur held in organic soils, during more extreme summer droughts. At the Gwy, the near-coastal location and relatively small extent of peat soils suggest that sea-salt episodes may have the

  13. Effects of Fatty Acid Salts against Trichophyton Violaceum

    Era Mariko

    2016-01-01

    Full Text Available Trichophyton violaceum is an anthropophilic fungus. Dermatophytosis (Tinea is fungal infection that can infect the scalp, glabrous skin, and nails. In general, Tinea can be spread by skin-to-skin contact or bathroom or floor materials. The treatments of Tinea need antifungal medication and good hygiene environment. The effective antifungal medication and infection prevention, and the creation of antifungal medication with high safety are required. In this study was focused on the antifungal effect of fatty acids potassium salts. The antifungal activity of nine fatty acid salts (butyrate, caproate, caprylate, caprate, laurate, myristate, oleate, linoleate, and linolenate was tested on the spores of Trichophyton violaceum NBRC 31064. The results show that C6K, C8K, C10K, C12K, C18:2K, C18:3K was the most inhibit 4-log unit (99.99 % of the fatty acids potassium incubated time for 10 min. It was observed that C12K and C18:3K was most high antifungal activity MIC. Commercially soap was lowest antifungal activity. This is because of the oleic acid is a major component of soap. Although further investigation is necessary to make clear antifungal mechanisms, our results suggest that fatty acid potassium will use to the development of a coating agent such as furniture.

  14. Effects of acid deposition on microbial processes in natural waters

    Biogeochemical processes mediated by microorganisms are not adversely affected by the acidification of natural waters to the same extent as are the life cycles of higher organisms. Basic processes, e.g., primary production and organic matter decomposition, are not slowed in moderately acidified systems and do not generally decline above a pH of 5. More specifically, the individual components of the carbon, nitrogen, and sulfur cycles are, with few exceptions, also acid resistant. The influence of acid deposition on microbial processes is more often stimulation of nitrogen and sulfur cycling, often leading to alkalinity production, which mitigates the effect of strong acid deposition. Bacterial sulfate reduction and denitrification in sediments are two of the major processes that can be stimulated by sulfate and nitrate deposition, respectively, and result in ANC (acid-neutralizing capacity) generation. One of the negative effects of acid deposition is increased mobilization and bioaccumulation of some metals. Bacteria appear to play an important role, especially in mercury cycling, with acidification leading to increased bacterial methylation of mercury and subsequent bioaccumulation in higher organisms

  15. Effects of lactic acid bacteria contamination on lignocellulosic ethanol fermentation

    Slower fermentation rates, mixed sugar compositions, and lower sugar concentrations may make lignocellulosic fermentations more susceptible to contamination by lactic acid bacteria (LAB), which is a common and costly problem to the corn-based fuel ethanol industry. To examine the effects of LAB con...

  16. ACID RAIN AND SOIL MICROBIAL ACTIVITY: EFFECTS AND THEIR MECHANISMS

    In the investigation, our aim was to determine if acid rain affects soil microbial activity and to identify possible mechanisms of observed effects. A Sierran forest soil (pH 6.4) planted with Ponderosa pine seedlings was exposed to simulated rain (pH 2.0, 3.0, 4.0 and 5.6) with ...

  17. The effect of oxalic and itaconic acids on threo-Ds-isocitric acid production from rapeseed oil by Yarrowia lipolytica.

    Kamzolova, Svetlana V; Allayarov, Ramil K; Lunina, Julia N; Morgunov, Igor G

    2016-04-01

    The effect of oxalic and itaconic acids, the inhibitors of the isocitrate lyase, on the production of isocitric acid by the wild strain Yarrowia lipolytica VKM Y-2373 grown in the medium containing rapeseed oil was studied. In the presence of oxalic and itaconic acids, strain Y. lipolytica accumulated in the medium isocitric acid (70.0 and 82.7g/L, respectively) and citric acid (23.0 and 18.4g/L, respectively). In control experiment, when the inhibitors were not added to the medium, the strain accumulated isocitric and citric acids at concentrations of 62.0 and 28.0g/L, respectively. Thus, the use of the oxalic and itaconic acids as additives to the medium is a simple and convenient method of isocitric acid production with a minimum content of citric acid. PMID:26851896

  18. Effect of dietary fatty acids on the postprandial fatty acid composition of triacylglycerol-rich lipoproteins in healthy male subjects

    Bysted, Anette; Holmer, G.; Lund, Pia;

    2005-01-01

    interesterified test fats with equal amounts of palmitic acid ( P fat), stearic acid (S fat), trans-18: 1 isomers (T fat), oleic acid (O fat), or linoleic acid (L fat) were tested. Subjects: A total of 16 healthy, normolipidaemic males ( age 23 +/- 2 y) were recruited. Interventions: The participants ingested fat......Objective: The aim of the present study was to investigate the effect of trans-18: 1 isomers compared to other fatty acids, especially saturates, on the postprandial fatty acid composition of triacylglycerols ( TAG) in chylomicrons and VLDL. Design: A randomised crossover experiment where five......-rich test meals ( 1 g fat per kg body weight) and the fatty acid profiles of chylomicron and VLDL TAG were followed for 8 h. Results: The postprandial fatty acid composition of chylomicron TAG resembled that of the ingested fats. The fatty acids in chylomicron TAG were randomly distributed among the three...

  19. Effect of dietary fatty acids on the postprandial fatty acid composition of triacylglycerol-rich lipoproteins in healthy male subjects

    Bysted, Anette; Holmer, G.; Lund, Pia; Sandstrom, B.; Tholstrup, T.

    2005-01-01

    Objective: The aim of the present study was to investigate the effect of trans-18: 1 isomers compared to other fatty acids, especially saturates, on the postprandial fatty acid composition of triacylglycerols ( TAG) in chylomicrons and VLDL. Design: A randomised crossover experiment where five...... interesterified test fats with equal amounts of palmitic acid ( P fat), stearic acid (S fat), trans-18: 1 isomers (T fat), oleic acid (O fat), or linoleic acid (L fat) were tested. Subjects: A total of 16 healthy, normolipidaemic males ( age 23 +/- 2 y) were recruited. Interventions: The participants ingested fat......-rich test meals ( 1 g fat per kg body weight) and the fatty acid profiles of chylomicron and VLDL TAG were followed for 8 h. Results: The postprandial fatty acid composition of chylomicron TAG resembled that of the ingested fats. The fatty acids in chylomicron TAG were randomly distributed among the three...

  20. Mosquito larvicidal effect of orthophosporic acid and lactic acid individually or their combined form on Aedes aegypti

    Supratik Chakraborty; Someshwar Singha; Goutam Chandra

    2010-01-01

    Objective: To observe the effect of two common organic acids on the larvae of Aedes aegypti (Ae. aegypti) (L), the natural vector of dengue fever/dengue hemorrhage fever, chikugunya and allergic skin reaction especially in children. Methods: Two common organic acids (lactic acid and orthophosporic acid of gradually increasing concentration) were used against laboratory reared third instars larvae of Ae. aegypti in order to observe the rate of mortality after 8, 16 and 24 h of post exposure respectively in laboratory. Results: Larval mortality rates recorded were in the following sequences: orthophosphoric acid and lactic acid at 1:1 combination >orthophosphoric acid>lactic acid. Conclusions: These two organic acids may be used perfectly in combination (1:1) along with other conventional vector control methods to reduce the Ae. aegypti population, especially in those areas where surveillance and supervisory mechanism are poor or insufficient.

  1. Effects of Ascorbic Acid, Phytic Acid and Tannic Acid on Iron Bioavailability from Reconstituted Ferritin Measured by an In Vitro Digestion/Caco-2 Cell Model

    The effects of ascorbic acid, phytate and tannic acid on Fe bioavailability from Fe supplied as ferritin was compared to FeSO4 using an in vitro digestion/Caco-2 cell model. Horse spleen ferritin (HSF) was chemically reconstituted into a plant-type ferritin (P-HSF). In the presence of ascorbic acid...

  2. Ameliorative effects of polyunsaturated fatty acids against palmitic acid-induced insulin resistance in L6 skeletal muscle cells

    Sawada Keisuke

    2012-03-01

    Full Text Available Abstract Background Fatty acid-induced insulin resistance and impaired glucose uptake activity in muscle cells are fundamental events in the development of type 2 diabetes and hyperglycemia. There is an increasing demand for compounds including drugs and functional foods that can prevent myocellular insulin resistance. Methods In this study, we established a high-throughput assay to screen for compounds that can improve myocellular insulin resistance, which was based on a previously reported non-radioisotope 2-deoxyglucose (2DG uptake assay. Insulin-resistant muscle cells were prepared by treating rat L6 skeletal muscle cells with 750 μM palmitic acid for 14 h. Using the established assay, the impacts of several fatty acids on myocellular insulin resistance were determined. Results In normal L6 cells, treatment with saturated palmitic or stearic acid alone decreased 2DG uptake, whereas unsaturated fatty acids did not. Moreover, co-treatment with oleic acid canceled the palmitic acid-induced decrease in 2DG uptake activity. Using the developed assay with palmitic acid-induced insulin-resistant L6 cells, we determined the effects of other unsaturated fatty acids. We found that arachidonic, eicosapentaenoic and docosahexaenoic acids improved palmitic acid-decreased 2DG uptake at lower concentrations than the other unsaturated fatty acids, including oleic acid, as 10 μM arachidonic acid showed similar effects to 750 μM oleic acid. Conclusions We have found that polyunsaturated fatty acids, in particular arachidonic and eicosapentaenoic acids prevent palmitic acid-induced myocellular insulin resistance.

  3. Effect of fatty acids and programming on the immune system

    Fear, Alison Lindsay

    2010-01-01

    Research to date has suggested that fatty acids (FAs) may affect the immune system, through their (and those of their metabolites) effects on membranes, mediators, and gene expression. However, despite the research carried out, there still exist gaps of knowledge where further research is required. In addition, programming by diet in pregnancy may affect the immune system, due to stress and/or structural and functional changes to immune cells, but whether this effect is long-lasting is uncert...

  4. Neurotoxic Effects of trans-Glutaconic Acid in Rats

    Patrícia F. Schuck; Estela N. B. Busanello; Tonin, Anelise M.; Viegas, Carolina M.; Ferreira, Gustavo C.

    2013-01-01

    trans-Glutaconic acid (tGA) is an unsaturated C5-dicarboxylic acid which may be found accumulated in glutaric aciduria type I, whose pathophysiology is still uncertain. In the present work it was investigated the in vitro effect of increasing tGA concentrations on neurochemical and oxidative stress parameters in rat cerebral cortex. We observed that Na+, K+-ATPase activity was reduced by tGA, but not creatine kinase, respiratory chain complex IV, and ATP synthase activities. On the other hand...

  5. Effects of acetlysalicylic acid with indole-3-acetic acid on rooting and pigmentation in Amygdalus L.

    Yiğit, Emel; Beker Akbulut, Gülçin

    2014-01-01

    Vegetative propagation is a key step, playing an important role in the succesful production of elite clones. The use of plant hormanes can increase the rroting capacity of cuttings. In this experiment, we investigated whether exogenously applied acetylsalicylic acid (ASA) with indole-3-acetic acit (IAA) (50, 100 mg/L) through the rooting medium could increase effects on Amygdalus spp or not. In the experiment, one year old semihardwood shootcuttings were used. The highest callus formation was...

  6. Effects of organic acids, amino acids and ethanol on the radio-degradation of patulin in an aqueous model system

    The effects of organic acids, amino acids, and ethanol on the radio-degradation of patulin by gamma irradiation in an aqueous model system were investigated. The patulin, dissolved in distilled water at a concentration of 50 ppm, was practically degraded by the gamma irradiation at the dose of 1.0 kGy, while 33% of the patulin remained in apple juice. In the aqueous model system, the radio-degradation of patulin was partially inhibited by the addition of organic acids, amino acids, and ethanol. The proportions of remaining patulin after irradiation with the dose of 1.0 kGy in the 1% solution of malic acid, citric acid, lactic acid, acetic acid, ascorbic acid, and ethanol were 31.4%, 2.3%, 31.2%, 6.1%, 50.8%, and 12.5%, respectively. During 30 days of storage, the remaining patulin was reduced gradually in the solution of ascorbic acid and malic acid compared to being stable in other samples. The amino acids, serine, threonine, and histidine, inhibited the radio-degradation of patulin. In conclusion, it was suggested that 1 kGy of gamma irradiation (recommended radiation doses for radicidation and/or quarantine in fruits) is effective for the reduction of patulin, but the nutritional elements should be considered because the radio-degradation effects are environment dependent

  7. Effects of organic acids, amino acids and ethanol on the radio-degradation of patulin in an aqueous model system

    Yun, Hyejeong [Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Chonbuk, Jeongeup 580-185 (Korea, Republic of); Department of Food Science and Technology, Kyungpook National University, Daegu 702-701 (Korea, Republic of); Lim, Sangyong [Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Chonbuk, Jeongeup 580-185 (Korea, Republic of); Jo, Cheorun [Department of Animal Science and Biotechnology, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Chung, Jinwoo [Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Chonbuk, Jeongeup 580-185 (Korea, Republic of); Kim, Soohyun [Glycomics Team, Korea Basic Science Institute, Daejeon 305-333 (Korea, Republic of); Kwon, Joong-Ho [Department of Food Science and Technology, Kyungpook National University, Daegu 702-701 (Korea, Republic of); Kim, Dongho [Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Chonbuk, Jeongeup 580-185 (Korea, Republic of)], E-mail: fungikim@kaeri.re.kr

    2008-06-15

    The effects of organic acids, amino acids, and ethanol on the radio-degradation of patulin by gamma irradiation in an aqueous model system were investigated. The patulin, dissolved in distilled water at a concentration of 50 ppm, was practically degraded by the gamma irradiation at the dose of 1.0 kGy, while 33% of the patulin remained in apple juice. In the aqueous model system, the radio-degradation of patulin was partially inhibited by the addition of organic acids, amino acids, and ethanol. The proportions of remaining patulin after irradiation with the dose of 1.0 kGy in the 1% solution of malic acid, citric acid, lactic acid, acetic acid, ascorbic acid, and ethanol were 31.4%, 2.3%, 31.2%, 6.1%, 50.8%, and 12.5%, respectively. During 30 days of storage, the remaining patulin was reduced gradually in the solution of ascorbic acid and malic acid compared to being stable in other samples. The amino acids, serine, threonine, and histidine, inhibited the radio-degradation of patulin. In conclusion, it was suggested that 1 kGy of gamma irradiation (recommended radiation doses for radicidation and/or quarantine in fruits) is effective for the reduction of patulin, but the nutritional elements should be considered because the radio-degradation effects are environment dependent.

  8. Effect of Folic Acid Supplementation in Pregnancy on Preeclampsia: The Folic Acid Clinical Trial Study

    Shi Wu Wen

    2013-01-01

    Full Text Available Preeclampsia (PE is hypertension with proteinuria that develops during pregnancy and affects at least 5% of pregnancies. The Effect of Folic Acid Supplementation in Pregnancy on Preeclampsia: the Folic Acid Clinical Trial (FACT aims to recruit 3,656 high risk women to evaluate a new prevention strategy for PE: supplementation of folic acid throughout pregnancy. Pregnant women with increased risk of developing PE presenting to a trial participating center between 80/7 and 166/7 weeks of gestation are randomized in a 1 : 1 ratio to folic acid 4.0 mg or placebo after written consent is obtained. Intent-to-treat population will be analyzed. The FACT study was funded by the Canadian Institutes of Health Research in 2009, and regulatory approval from Health Canada was obtained in 2010. A web-based randomization system and electronic data collection system provide the platform for participating centers to randomize their eligible participants and enter data in real time. To date we have twenty participating Canadian centers, of which eighteen are actively recruiting, and seven participating Australian centers, of which two are actively recruiting. Recruitment in Argentina, UK, Netherlands, Brazil, West Indies, and United States is expected to begin by the second or third quarter of 2013. This trial is registered with NCT01355159.

  9. Effect of different pectin on bile acid biosynthesis

    The objective of the study was to examine the effects of consumption of different pectins from peach, quince, and apricot on bile flow and bile secretion of bile acids, cholesterol, phospholipids and bilirubin in rats. Six groups of nine rats were fed diets containing pectin 20 mg/kg once a day for two weeks. These groups of rats were compared with the group fed on physiological solution as a control and two groups fed on flamenol. Results of our study indicate that pectins, by decreasing cholesterol levels and enhancing bile acid secretion may cause increased hepatic synthesis of bile acids, phospholipids and reduced bilirubin synthesis. Among the studied pectins the apricot pectin shows in a very consistent lowering of cholesterol and bilirubin levels

  10. Effect of exogenous fatty acids on biotin deprived death of Saccharomyces cerevisiae

    The effect of exogeneous fatty acids on cell growth and death of the biotin-requiring yeast Saccharomyces cerevisiae BA-1 was examined with respect to the mechanism of synthetic pathway of fatty acid under biotin starvation. At a growth temperature of 300C, exogeneous unsaturated fatty acids, such as palmitoleic, oleic, linoleic, and linolenic acids which promote the cell growth and suppress death effectively, were incorporated intactly into the cellular fatty acids, whereas the saturated fatty acid, palmitic acid, which supports growth but some what inhibits death, was once incorporated, and about 60% of incorporated palmitic acid was found to be desaturated. However, at an elevated temperature of 360C, even palmitic acid showed similar effects to unsaturated fatty acids in cell growth and death; following by an increased desaturation of palmitic acid. Thus the data indicate that palmitic aicd, as well as unsaturated fatty acids directly compensate for the deficiency of endogenously synthesized fatty acids caused by biotin starvation. (auth.)

  11. Lipotoxicity: Effects of Dietary Saturated and Transfatty Acids

    Débora Estadella

    2013-01-01

    Full Text Available The ingestion of excessive amounts of saturated fatty acids (SFAs and transfatty acids (TFAs is considered to be a risk factor for cardiovascular diseases, insulin resistance, dyslipidemia, and obesity. The focus of this paper was to elucidate the influence of dietary SFA and TFA intake on the promotion of lipotoxicity to the liver and cardiovascular, endothelial, and gut microbiota systems, as well as on insulin resistance and endoplasmic reticulum stress. The saturated and transfatty acids favor a proinflammatory state leading to insulin resistance. These fatty acids can be involved in several inflammatory pathways, contributing to disease progression in chronic inflammation, autoimmunity, allergy, cancer, atherosclerosis, hypertension, and heart hypertrophy as well as other metabolic and degenerative diseases. As a consequence, lipotoxicity may occur in several target organs by direct effects, represented by inflammation pathways, and through indirect effects, including an important alteration in the gut microbiota associated with endotoxemia. Interactions between these pathways may perpetuate a feedback process that exacerbates an inflammatory state. The importance of lifestyle modification, including an improved diet, is recommended as a strategy for treatment of these diseases.

  12. Antiatherogenic effects of n-3 fatty acids - evidence and mechanisms

    Antonella Zampolli

    2006-12-01

    Full Text Available N-3 (omega-3 (polyunsaturated fatty acids are thought to display a variety of beneficial effects for human health. Clues to the occurrence of cardiovascular protective effects have been, however, the spur for the first biomedical interest in these compounds, and are the best documented. Historically, the epidemiologic association between dietary consumption of n-3 fatty acids and cardiovascular protection was first suggested by Bang and Dyerberg, who identified the high consumption of fish, and therefore, of fish oil-derived n-3 fatty acids, as the likely explanation for the strikingly low rate of coronary heart disease events reported in the Inuit population. Since their initial reports, research has proceeded in parallel to provide further evidence for their cardioprotection and to understand underlying mechanisms. Decreased atherogenesis is currently thought to be a part of the cardiovascular protection by n-3 fatty acids. This article summarizes the evidence for such a claim and the mechanisms putatively involved. (Heart International 2006; 3-4: 141-54

  13. Dispersion Process and Effect of Oleic Acid on Properties of Cellulose Sulfate- Oleic Acid Composite Film

    Guo Chen

    2015-04-01

    Full Text Available The cellulose sulfate (CS is a newly developed cellulose derivative. The work aimed to investigate the effect of oleic acid (OA content on properties of CS-OA film. The process of oleic acid dispersion into film was described to evaluate its effect on the properties of the film. Among the formulations evaluated, the OA addition decreased the solubility and water vapor permeability of the CS-OA film. The surface contact angle changed from 64.2° to 94.0° by increasing CS/OA ratio from 1:0 to 1:0.25 (w/w. The TS increased with OA content below 15% and decreased with OA over 15%, but the ε decreased with higher OA content. The micro-cracking matrices and micro pores in the film indicated the condense structure of the film destroyed by the incorporation of oleic acid. No chemical interaction between the OA and CS was observed in the XRD and FTIR spectrum. Film formulation containing 2% (w/w CS, 0.3% (w/w glycerol and 0.3% (w/w OA, showed good properties of mechanic, barrier to moisture and homogeneity.

  14. The Effect of Opsteoporotic Model Rats Induced by Retinoic Acid

    Xu Peng; Yao Jianfeng; Jin Weizhang; Cai Qiankun; Guo Xiong

    2005-01-01

    Objective: To study the effect of retinoic acid on inducing osteoporosis in female rat. Methods: 48SD female rats were divided randomly into experiment group and control group. Retinoic acid was administered orally to experiment group with 80mg.kg-1d-1 for 15 days. Then the rats were sacrificed on the 0th, 30th, 60th days after last administration. The serum concentration of Ca, P, BGP, E2, AKP and TRAP were detected. Components of collagen and proteoglycan in the bones and BMD were also assayed .The femoral morphometric change and epiphyseal plate cartilage histological changes were observed. Results: After a 15-day period treatment with retinoic acid, charateristics of experiment group were compared with control, it is shown that the concentration of serum E2 and BGP declined, the activity of AKP and TRAP increased while BMP decreased, the bone mass of both spongy bone and cortical bone reduced, the number of spongy bone osteoclasts and their activity increased, number of epiphyseal plate chondrocyte reduced, cartilage hypertrophic zone displayed dyscalcification, and no difference of other markers was found in the two groups. On the 30th day after the last administration, the experiment group appeared a declined number of cancellous bone osteoclast and level of serum AKP yet they were still higher than control. Number of epiphyseal chondrocyte, serum BGP and tibial BMD, though higher than before, were still lower than control. Other markers were no difference. On the 60th day after treatment, although the femoral cancellous bone mass was still less and cancellous osteoblast was more than control, the cortical bone mass, cancellous osteoclast number and level of serum Ca and P were all remained no different between two groups.Conclusion: Retinoic acid possessed a better short-term effect than long-term effect. Cancellous bone loss lasted much longer than cortical bone and more obviously; the bone matrix in this osteoporosis model was able to repair itself

  15. Beneficial effects of humic acid on micronutrient availability to wheat

    Mackowiak, C. L.; Grossl, P. R.; Bugbee, B. G.

    2001-01-01

    Humic acid (HA) is a relatively stable product of organic matter decomposition and thus accumulates in environmental systems. Humic acid might benefit plant growth by chelating unavailable nutrients and buffering pH. We examined the effect of HA on growth and micronutrient uptake in wheat (Triticum aestivum L.) grown hydroponically. Four root-zone treatments were compared: (i) 25 micromoles synthetic chelate N-(4-hydroxyethyl)ethylenediaminetriacetic acid (C10H18N2O7) (HEDTA at 0.25 mM C); (ii) 25 micromoles synthetic chelate with 4-morpholineethanesulfonic acid (C6H13N4S) (MES at 5 mM C) pH buffer; (iii) HA at 1 mM C without synthetic chelate or buffer; and (iv) no synthetic chelate or buffer. Ample inorganic Fe (35 micromoles Fe3+) was supplied in all treatments. There was no statistically significant difference in total biomass or seed yield among treatments, but HA was effective at ameliorating the leaf interveinal chlorosis that occurred during early growth of the nonchelated treatment. Leaf-tissue Cu and Zn concentrations were lower in the HEDTA treatment relative to no chelate (NC), indicating HEDTA strongly complexed these nutrients, thus reducing their free ion activities and hence, bioavailability. Humic acid did not complex Zn as strongly and chemical equilibrium modeling supported these results. Titration tests indicated that HA was not an effective pH buffer at 1 mM C, and higher levels resulted in HA-Ca and HA-Mg flocculation in the nutrient solution.

  16. Genotoxic effect of ethacrynic acid and impact of antioxidants

    Ward, William M.; Hoffman, Jared D.; Loo, George, E-mail: g_loo@uncg.edu

    2015-07-01

    It is known that ethacrynic acid (EA) decreases the intracellular levels of glutathione. Whether the anticipated oxidative stress affects the structural integrity of DNA is unknown. Therefore, DNA damage was assessed in EA-treated HCT116 cells, and the impact of several antioxidants was also determined. EA caused both concentration-dependent and time-dependent DNA damage that eventually resulted in cell death. Unexpectedly, the DNA damage caused by EA was intensified by either ascorbic acid or trolox. In contrast, EA-induced DNA damage was reduced by N-acetylcysteine and by the iron chelator, deferoxamine. In elucidating the DNA damage, it was determined that EA increased the production of reactive oxygen species, which was inhibited by N-acetylcysteine and deferoxamine but not by ascorbic acid and trolox. Also, EA decreased glutathione levels, which were inhibited by N-acetylcysteine. But, ascorbic acid, trolox, and deferoxamine neither inhibited nor enhanced the capacity of EA to decrease glutathione. Interestingly, the glutathione synthesis inhibitor, buthionine sulfoxime, lowered glutathione to a similar degree as EA, but no noticeable DNA damage was found. Nevertheless, buthionine sulfoxime potentiated the glutathione-lowering effect of EA and intensified the DNA damage caused by EA. Additionally, in examining redox-sensitive stress gene expression, it was found that EA increased HO-1, GADD153, and p21mRNA expression, in association with increased nuclear localization of Nrf-2 and p53 proteins. In contrast to ascorbic acid, trolox, and deferoxamine, N-acetylcysteine suppressed the EA-induced upregulation of GADD153, although not of HO-1. Overall, it is concluded that EA has genotoxic properties that can be amplified by certain antioxidants. - Highlights: • Ethacrynic acid (EA) caused cellular DNA damage. • EA-induced DNA damage was potentiated by ascorbic acid or trolox. • EA increased ROS production, not inhibited by ascorbic acid or trolox. • EA

  17. Abscisic (ABA)-aldehyde is a precursor to, and 1',4'-trans-ABA-diol a catabolite of, ABA in apple

    Previous 18O labeling studies of abscisic acid (ABA) have shown that apple (Malus domestica Borkh. cv Granny Smith) fruits synthesize a majority of [18O]ABA with the label incorporated in the 1'-hydroxyl position and unlabeled in the carboxyl group (JAD Zeevaart, TG Heath, DA Gage [1989] Plant Physiol 91: 1594-1601). It was proposed that exchange of 18O in the side chain with the medium occurred at an aldehyde intermediate stage of ABA biosynthesis. We have isolated ABA-aldehyde and 1'-4'-trans-ABA-diol (ABA-trans-diol) from 18O-labeled apple fruit tissue and measured the extent and position of 18O incorporation by tandem mass spectrometry. 18O-Labeling patterns of ABA-aldehyde, ABA-trans-diol, and ABA indicate that ABA-aldehyde is a precursor to, and ABA-trans-diol a catabolite of, ABA. Exchange of 18O in the carbonyl of ABA-aldehyde can be the cause of loss of 18O from the side chain of [18O]ABA. Results of feeding experiments with deuterated substrates provide further support for the precursor-product relationship of ABA-aldehyde → ABA → ABA-trans-diol. The ABA-aldehyde and ABA-trans-diol contents of fruits and leaves were low, approximately 1 and 0.02 nanograms per gram fresh weight for ABA-aldehyde and ABA-trans-diol, respectively, while ABA levels in fruits ranged from 10 to 200 nanograms per gram fresh weight. ABA biosynthesis was about 10-fold lower in fruits than in leaves. In fruits, the majority of ABA was conjugated to β-D-glucopyranosyl abscisate, whereas in leaves ABA was mainly hydroxylated to phaseic acid. Parallel pathways for ABA and trans-ABA biosynthesis and conjugation in fruits and leaves are proposed

  18. Cooperative Effects Between Arginine and Glutamic Acid in the Amino Acid-Catalyzed Aldol Reaction.

    Valero, Guillem; Moyano, Albert

    2016-08-01

    Catalysis of the aldol reaction between cyclohexanone and 4-nitrobenzaldehyde by mixtures of L-Arg and of L-Glu in wet dimethyl sulfoxide (DMSO) takes place with higher enantioselectivity (up to a 7-fold enhancement in the anti-aldol for the 1:1 mixture) than that observed when either L-Glu or L-Arg alone are used as the catalysts. These results can be explained by the formation of a catalytically active hydrogen-bonded complex between both amino acids, and demonstrate the possibility of positive cooperative effects in catalysis by two different α-amino acids. Chirality 28:599-605, 2016. © 2016 Wiley Periodicals, Inc. PMID:27362554

  19. The effect pathway of retinoic acid through regulation of retinoic acid receptor in gastric cancer cells

    Su Liu; Qiao Wu; Zheng-Ming Chen; Wen-Jin Su

    2001-01-01

    AIM To evaluate the role of RARa gene in mediating the growth inhibitory effect of ail-trans retinoic acid (ATRA)on gastric cancer cells.``METHODS The expression levels of retinoic acid receptors (RARs) in gastric cancer cells were detected by Northern blot. Transient transfection and chlorophenicol acetyl transferase (CAT) assay were used to show the transcriptional activity of β retinoic acid response element (βRARE) and AP-l activity. Cell growth inhibition was determined by MTT assay and anchorage-independent growth assay, respectively. Stable transfection was performed by the method of Lipofectamine, and the cells were screened by G418.``RESULTS ATRA could induce expression level of RARα in MGC80-3, BGCC8823 and SGC-7901 cells obviously,resulting in growth inhibition of these cell lines. After sense RARa gene was transfected into MKN-45 cells that expressed rather Iow level of RARα and could not be induced by ATRA, the cell growth was inhibited by ATRA markedly. In contrast, when antisense RARα gene was transfected into BGC-825 cells, a little inhibitory effect by ATRA was seen, compared with the parallel BGC-823cells. In transient transfection assay, ATRA effectively induced transcriptional activity of βRARE in MGC80-3,BGC.823, SGC-7902 and MKN/RARa cell lines, but not in MKN-45 and BGC/aRARa cell lines. Similar results were observed in measuring anti-AP-l activity by ATRA in these cancer cell lines.``CONCLUSION ATRA inhibits the growth of gastric cancer cells by up-regulating the level of RARa; RARa is the major mediator of ATRA action in gastric cancer cells; and adequate level of RAPa is required for ATRA effect on gastric cancer cells.``

  20. Protective effects of isolecanoric acid on neurodegenerative in vitro models.

    de Pedro, Nuria; Cantizani, Juan; Ortiz-López, Francisco Javier; González-Menéndez, Victor; Cautain, Bastien; Rodríguez, Lorena; Bills, Gerald F; Reyes, Fernando; Genilloud, Olga; Vicente, Francisca

    2016-02-01

    Parkinson's disease (PD) and Amyotrophic lateral sclerosis (ALS), are neurodegenerative disorders characterized by loss of dopaminergic or motor neurons, respectively. Although understanding of the PD and ALS pathogenesis remains incomplete, increasing evidence from human and animal studies has suggested that aberrant GSK3β, oxidative stress and mitochondrial damage are involved in their pathogenesis. Using two different molecular models, treatment with L-BMAA for ALS and rotenone for PD the effect of isolecanoric acid, a natural product isolated from a fungal culture, was evaluated. Pre-treatment with this molecule caused inhibition of GSK3β and CK1, and a decrease in oxidative stress, mitochondrial damage, apoptosis and cell death. Taken together, these results indicated that isolecanoric acid might have a protective effect against the development of these neurodegenerative disorders. PMID:26455662

  1. Effect of 82% Lactic Acid in Treatment of Melasma

    Singh, Rashmi; Goyal, Sapna; Ahmed, Qazi Rais; Gupta, Narendra; Singh, Sujata

    2014-01-01

    Melasma is an acquired, chronic, and symmetrical hypermelanosis, characterized by brown patches of variable darkness on sun exposed areas of body. There are numerous modalities of treatment currently in use for this disease, of which the chemical peeling is very commonly used. Therefore, the present work was done to see the effect of 82% lactic acid peel in the treatment of melasma. A total number of 20 patients of either sex attending the OPD of dermatology department with clinically evident...

  2. Rapid and Effective Removal of Perfluorooctanoic Acid from Proteomics Samples

    Kadiyala, Chandra Sekhar Rao; Mullangi, Vennela; Zhou, Xiang; Vukoti, Krishna M.; Miyagi, Masaru

    2012-01-01

    We recently demonstrated that perfluorooctanoic acid (PFOA), a volatile surfactant, is as effective as sodium dodecyl sulfate (SDS) at solubilizing membrane proteins. PFOA can be removed by repeated evaporation prior to mass spectrometry analysis. However, removal of PFOA by evaporation is a lengthy process that takes approximately 6 hrs. Toward the goal of decreasing the length of time required to remove PFOA from protein digests, we tested the efficiency of PFOA removal and subsequent pepti...

  3. Diluent Effects in Amine Extraction of Sulfuric Acid

    Procházka, Jaroslav; Heyberger, Aleš; Volaufová, Eva

    Praha : Process Engineering Publisher, 2004, s. 561. ISBN 80-86059-40-5. [International Congress of Chemical and Process Engineering CHISA 2004 /16./. Praha (CZ), 22.08.2004-26.08.2004] R&D Projects: GA ČR GA104/02/1108 Institutional research plan: CEZ:AV0Z4072921 Keywords : diluent effects * amine extraction * sulfurid acid Subject RIV: CI - Industrial Chemistry, Chemical Engineering

  4. Simulated acid rain effects on soil chemistry and microbiology

    A research study was carried out regarding the effects of artificial rains at different pH's (3.1, 4.0, 5.6) on soil samples from Appiano Gentile pinewood. Chemical parameters, biological activities and microbiological groups, particularly sensitive to possible variations in the presence of pH changes, were monitored after 2, 4 and 6 months of treatment of the soil on eluate obtained from treatment with artificial acid rains. The paper reports the results research

  5. LIME EFFECTIVENESS OF SOME FERTILIZERS IN A TROPICAL ACID ALFISOL

    Mercy Omogbohu Anetor

    2007-11-01

    Full Text Available Liming increases production costs and environmentally unfriendly. Effectiveness of crystalliser (CRYS, single super phosphate (SSP and organic fertilizer (OF for liming was evaluated by determining pH and phosphorus- (P- availability in an acid alfisol incubated with the amendments, Ca(OH2 being reference. Treatments were replicated thrice in completely randomised design. Un-amended soil remained acidic (pH 4.8 but liming raised pH (6.1-6.6, enhancing maximum (15.09-17.33 mg kg-1 P–release (un-amended having 4.24-7.09 mg P kg-1. Lime (L and L+P treatments resulted in maximum pH increases (7.0-7.2, decreasing with incubation. Fertilizer treatments also raised pH (5.0-5.5 for OF, CRYS or SSP; 5.6-5.8 for CRYS +SSP, CRYS+OF and OF+SSP relative to control (5.2. Acid soil infertility-ameliorating potential of CRYS and OF was revealed. They could be used multi-purposely as lime and P fertilizers by poor-resource farmers challenged by acid soil infertility factors.

  6. Effects of benzoic acid and cadmium toxicity on wheat seedlings

    Kavita Yadav

    2013-06-01

    Full Text Available Benzoic acid (BA and Cd exhibit cumulative effects on plants due to their accumulation in the soil. The present study reports the effects of BA an allelochemical, Cd and their combinations on seed germination, seedling growth, biochemical parameters, and response of antioxidant enzymes in Triticum aestivum L. The experiment was conducted in sand supplemented with Hoagland nutrient solution. Benzoic acid was applied at concentrations of 0.5, 1.0, and 1.5 mM with or without Cd (7 mg L-1 to observe effects of allelochemical and Cd alone and in combination on wheat. Both stresses exhibited inhibitory effect on growth and metabolism of wheat seedlings. The allelochemical in single and combined treatments with Cd decreased seedling growth as compared to Cd stress. The two stresses significantly enhanced malondialdehyde content of wheat seedlings. The activity of other antioxidant enzymes, viz. superoxide dismutase (SOD, catalase (CAT, ascorbate peroxidase (APX, and guaiacol peroxidase (POX were also recorded. SOD increased in seedlings under the two stresses. CAT more prominently ameliorates the toxic effects of H2O2 as compared with APX and POX and protected wheat seedlings from oxidative stress. Allelochemical buttressed the toxic effect of Cd on wheat seedlings.

  7. Quinolinic acid effects on amino acid release from the rat cerebral cortex in vitro and in vivo.

    Connick, J. H.; Stone, T. W.

    1988-01-01

    1. The effect of quinolinic acid, N-methyl-D,L-aspartate (NMDLA) and kainate on the release of endogenous and exogenous amino acids from the rat cerebral cortex in vitro and in vivo was studied. 2. Neither quinolinic acid nor NMDLA had any effect on the basal or potassium-evoked release of [3H]-D-aspartate from slices of rat cerebral cortex either in the presence or absence of magnesium. Kainic acid failed to modify the basal efflux of [3H]-D-aspartate but significantly inhibited (by 34.4% +/...

  8. Beta-aminobutyric acid priming of plant defense: the role of ABA and other hormones.

    Baccelli, Ivan; Mauch-Mani, Brigitte

    2016-08-01

    Plants are exposed to recurring biotic and abiotic stresses that can, in extreme situations, lead to substantial yield losses. With the changing environment, the stress pressure is likely to increase and sustainable measures to alleviate the effect on our crops are sought. Priming plants for better stress resistance is one of the sustainable possibilities to reach this goal. Here, we report on the effects of beta-aminobutyric acid, a priming agent with an exceptionally wide range of action and describe its way of preparing plants to defend themselves against various attacks, among others through the modulation of their hormonal defense signaling, and highlight the special role of abscisic acid in this process. PMID:26584561

  9. Preventive and therapeutic effects of tranexamic acid on postpartum bleeding

    Samaneh Solltani

    2014-12-01

    Full Text Available Postpartum hemorrhage is among the leading causes of maternal mortality throughout the world. Severe blood loss contributes to  the increased blood transfusion risk with its concerned inherent adverse events and therefore increased rate of emergency re-operative interventions such as arterial ligation or hysterectomy. It also can lead to protracted anemia, particularly in low or median income countries. Extended application of antifibrinolytic agents such as tranexamic acid has been customary for long years to stop or reduce blood loss in postpartum period. However, there are not enough reliable evidence to approve the real efficacy of these drugs. In this brief and summary review, we pointed to a few conducted studies. The PubMed was searched for keyword including postpartum hemorrhage, tranexamic acid, cesarean section, vaginal delivery, and blood loss prevention. The articles with language other than English were excluded from our review.  We concluded that more convincing information is needed to determine the precise effects of tranexamic acid, and its benefits against adverse effects.

  10. Effects of nocloprost clathrate on absorption of acetylsalicylic acid.

    Siegmund, W; Zschiesche, M; Franke, G; Amon, I

    1994-01-01

    The cytoprotective prostaglandin E2 analog nocloprost clathrate (NOCLO) is tested as a prophylactic for gastrointestinal lesions of NSAID. The effects of 400 micrograms NOCLO versus respective placebos with and without equivalent amounts of beta-cyclodextrin on the pharmacokinetic behavior of acetylsalicylic acid (ASA), given 30 min after NOCLO, were studied in two single-blind, parallel-group trials. The trials were performed in 15 male healthy volunteers (age 21-25 years, body weight 62-94 kg, body height 172-187 cm) with known N-acetylation and debrisoquine type hydroxylation phenotype. ASA, salicylic acid (SA), and salicyluric acid (SU) in plasma and SA and SU in urine were measured by HPLC. NOCLO delayed the absorption of ASA (increased tmax, lower Cmax) significantly in comparison with both placebos. AUC and clearance values were not changed by NOCLO premedication. There were neither differences between the two placebo groups nor between the two groups pretreated with NOCLO with regard to any pharmacokinetic parameter. The changes in drug absorption are caused by the sum of those cytoprotective effects of prostaglandin which are also determinants of drug absorption. PMID:8199752

  11. Effect of supplementation of arachidonic acid (AA) or a combination of AA plus docosahexaenoic acid on breastmilk fatty acid composition

    Smit, EN; Koopmann, M; Boersma, ER; Muskiet, FAJ

    2000-01-01

    We investigated whether supplementation with arachidonic acid (20:4 omega 6; AA), ora combination of AA and docosahexaenoic acid (22:6 omega 3; DHA) would affect human milk polyunsaturated fatty acid (PUFA) composition. Ten women were daily supplemented with 300 mg AA, eight with 300 mg AA, 110 mg e

  12. Effect of humic acid source on humic acid adsorption onto titanium dioxide nanoparticles.

    Erhayem, Mohamed; Sohn, Mary

    2014-02-01

    In many studies, different humic acid (HA) sources are used interchangeably to evaluate the effect of organic matter on geochemical processes in the environment. This research looks more specifically at the effect of HA source on HA adsorption onto nano-TiO2 and how HA adsorption affects the fate and transport of nano-TiO2. In this study, six humic acids (HAs) were studied which were derived from soils (SLHA), or from sediments (SDHA) all originating from the state of Florida. Humic acid adsorption onto titanium dioxide nanoparticles (nano-TiO2) and the sedimentation of HA-coated and uncoated nano-TiO2 were monitored by Ultraviolet-visible (UV-vis) spectroscopy. Synchronous scan fluorescence (SSF) spectroscopy was used to complement the study of HA adsorption onto nano-TiO2. Phosphate buffer was found to reduce the amount of HA adsorbed onto nano-TiO2 relative to solutions of NaCl of the same pH and ionic strength. Adsorption constant values (Kads) for HAs varied in the order SLHA>FSDHA (freshwater sedimentary HA)>ESDHA (estuarine sedimentary HA). SSF results suggested that the more highly conjugated fractions of HA, which are more prevalent in SLHAs versus SDHAs, were preferentially adsorbed. In order to better understand the relationship between adsorption and aggregation, sedimentation studies were conducted and it was found that the percentage of nano-TiO2 sedimentation was preferentially enhanced in the order of the presence of SLHA>FSDHA>ESDHA. The extent of nano-TiO2 sedimentation was decreased with increasing HA concentration. TEM imaging of nano-TiO2 confirmed that nano-TiO2 was aggregated in the presence of HAs. The findings in this study suggest that HAs from different sources influence the fate and transport of nano-TiO2 in the environment differently. PMID:24140685

  13. Effect of mitochondrial ascorbic acid synthesis on photosynthesis.

    Senn, M E; Gergoff Grozeff, G E; Alegre, M L; Barrile, F; De Tullio, M C; Bartoli, C G

    2016-07-01

    Ascorbic acid (AA) is synthesized in plant mitochondria through the oxidation of l-galactono-1,4-lactone (l-GalL) and then distributed to different cell compartments. AA-deficient Arabidopsis thaliana mutants (vtc2) and exogenous applications of l-GalL were used to generate plants with different AA content in their leaves. This experimental approach allows determining specific AA-dependent effects on carbon metabolism. No differences in O2 uptake, malic and citric acid and NADH content suggest that AA synthesis or accumulation did not affect mitochondrial activity; however, l-GalL treatment increased CO2 assimilation and photosynthetic electron transport rate in vtc2 (but not wt) leaves demonstrating a stimulation of photosynthesis after l-GalL treatment. Increased CO2 assimilation correlated with increased leaf stomatal conductance observed in l-GalL-treated vtc2 plants. PMID:27010742

  14. Transcription of storage protein genes in cultured Brassica napus embryos in response to exogenous abscisic acid

    Two major seed storage proteins, cruciferin and napin, accumulate during embryogeny in Brassica napus. We are determining whether the levels of storage protein mRNAs in cultured embryos are controlled at the transcriptional level in response to ABA. The nuclei were isolated from the embryos and incubated in a transcription mix with 32P-GTP, and the incorporation into specific RNAs was determined by DNA excess filter hybridization. The transcription rate of cruciferin increased about 2-fold, and the transcription rate of napin increased about 3- to 4-fold in ABA-treated embryos compared to embryos cultured on basal medium. This increase in transcription rate is consistent with the increases in RNA levels which are seen in parallel experiments. In the same experiments, the transcription rates of actin and the rRNA genes were unaffected by ABA. In reinduction experiments, embryos which were switched from basal medium to medium containing ABA at 12 or 24 h showed an increase in transcription rate of the seed storage protein genes to the same level as those which were cultured on ABA at time 0

  15. Three WRKY transcription factors additively repress abscisic acid and gibberellin signaling in aleurone cells.

    Zhang, Liyuan; Gu, Lingkun; Ringler, Patricia; Smith, Stanley; Rushton, Paul J; Shen, Qingxi J

    2015-07-01

    Members of the WRKY transcription factor superfamily are essential for the regulation of many plant pathways. Functional redundancy due to duplications of WRKY transcription factors, however, complicates genetic analysis by allowing single-mutant plants to maintain wild-type phenotypes. Our analyses indicate that three group I WRKY genes, OsWRKY24, -53, and -70, act in a partially redundant manner. All three showed characteristics of typical WRKY transcription factors: each localized to nuclei and yeast one-hybrid assays indicated that they all bind to W-boxes, including those present in their own promoters. Quantitative real time-PCR (qRT-PCR) analyses indicated that the expression levels of the three WRKY genes varied in the different tissues tested. Particle bombardment-mediated transient expression analyses indicated that all three genes repress the GA and ABA signaling in a dosage-dependent manner. Combination of all three WRKY genes showed additive antagonism of ABA and GA signaling. These results suggest that these WRKY proteins function as negative transcriptional regulators of GA and ABA signaling. However, different combinations of these WRKY genes can lead to varied strengths in suppression of their targets. PMID:26025535

  16. Abscisic acid and other plant hormones: Methods to visualize distribution and signaling

    Waadt, Rainer; Hsu, Po-Kai; Schroeder, Julian I.

    2015-01-01

    The exploration of plant behavior on a cellular scale in a minimal invasive manner is key to understanding plant adaptations to their environment. Plant hormones regulate multiple aspects of growth and development and mediate environmental responses to ensure a successful life cycle. To monitor the dynamics of plant hormone actions in intact tissue, we need qualitative and quantitative tools with high temporal and spatial resolution. Here, we describe a set of biological instruments (reporter...

  17. Interaction of Cytokinins and Abscisic Acid During Regulation of Stomatal Opening in Bean Leaves

    Pospíšilová, Jana

    2003-01-01

    Roč. 41, č. 1 (2003), s. 49-56. ISSN 0300-3604 R&D Projects: GA ČR GA522/02/1099 Institutional research plan: CEZ:AV0Z5038910 Keywords : benzyladenine * net photosynthetic rate * Phaseolus vulgaris Subject RIV: EF - Botanics Impact factor: 0.661, year: 2003

  18. Calcium partitioning and allocation in tomato plants and fruit in response to abscisic acid application

    Although Ca2+ is believed to move in the plant exclusively through the xylem, the mechanisms regulating Ca2+ partitioning and allocation in tomato plants and fruit remain poorly understood. The objectives of this study were to determine Ca2+ partitioning and allocation in tomato plants and fruit in ...

  19. Abscisic Acid-Cytokinin Antagonism Modulates Resistance Against Pseudomonas syringae in Tobacco

    Grosskinsky, D. K.; van der Graaff, E.; Roitsch, Thomas

    2015-01-01

    Roč. 104, č. 12 (2015), s. 1283-1288. ISSN 0031-949X Institutional support: RVO:67179843 Keywords : Nicotiana tabacum * plant-pathogen interaction Subject RIV: EH - Ecology, Behaviour Impact factor: 3.119, year: 2014

  20. CPK12: A Ca2+-dependent protein kinase balancer in abscisic acid signaling

    Zhao, Rui; Wang, Xiao-Fang; Zhang, Da-Peng

    2011-01-01

    Ca2+ is believed to be a critical second messenger in ABA signal transduction. Ca2+-dependent protein kinases (CDPKs) are the best characterized Ca2+ sensors in plants. Recently, we identified an Arabidopsis CDPK member CPK12 as a negative regulator of ABA signaling in seed germination and post-germination growth, which reveals that different members of the CDPK family may constitute a regulation loop by functioning positively and negatively in ABA signal transduction. We observed that both R...

  1. Involvement of Arabidopsis RACK1 in Protein Translation and Its Regulation by Abscisic Acid

    Guo, Jianjun [University of British Columbia, Vancouver; Wang, Shucai [University of British Columbia, Vancouver; Valerius, Oliver [Universitaet Goettingen, Goettingen, Germany; Hall, Hardy [University of British Columbia, Vancouver; Zeng, Qingning [University of British Columbia, Vancouver; Li, Jian-Feng [Harvard University; Weston, David [ORNL; Ellis, Brian [University of British Columbia, Vancouver; Chen, Jay [ORNL

    2011-01-01

    Earlier studies have shown that RACK1 functions as a negative regulator of ABA responses in Arabidopsis, but the molecular mechanism of the action of RACK1 in these processes remains elusive. Global gene expression profiling revealed that approximately 40% of the genes affected by ABA treatment were affected in a similar manner by the rack1 mutation, supporting the view that RACK1 is an important regulator of ABA responses. On the other hand, co-expression analysis revealed that >80% of the genes co-expressed with RACK1 encode ribosome proteins, implying a close relationship between RACK1 s function and the ribosome complex. These results implied that the regulatory role for RACK1 in ABA responses may be partially due to its putative function in protein translation, which is one of the major cellular processes that mammalian and yeast RACK1 is involved in. Consistently, all three Arabidopsis RACK1 homologous genes, namely RACK1A, RACK1B and RACK1C, complemented the growth defects of the S. cerevisiae cpc2/rack1 mutant. In addition, RACK1 physically interacts with Arabidopsis Eukaryotic Initiation Factor 6 (eIF6), whose mammalian homologue is a key regulator of 80S ribosome assembly. Moreover, rack1 mutants displayed hypersensitivity to anisomycin, an inhibitor of protein translation, and displayed characteristics of impaired 80S functional ribosome assembly and 60S ribosomal subunit biogenesis in a ribosome profiling assay. Gene expression analysis revealed that ABA inhibits the expression of both RACK1 and eIF6. Taken together, these results suggest that RACK1 may be required for normal production of 60S and 80S ribosomes and that its action in these processes may be regulated by ABA.

  2. Purification and Analysis of Abscisic Acid-Specifically-Inducible Proteins from Rice Callus

    2007-01-01

    Two ABA-specifically-inducible proteins from rice callus were isolated and purified by precipitation with 65-100 % saturated(NH4)2SO4, followed by the DEAE-sepharose, TSK-gel, and two-dimension electrophoresis. Iso-electric points (pl) of the proteins with the same molecular mass (24.5 kD) were 6.1 and 6.9, respectively. The Western blot analysis indicated that the proteins expressed in different tissues were obviously different. The A1 (pl 6.1) protein was only detected in calli treated with ABA and seed embryos (SE).However, the A2 (pl 6.9) protein was found not only in the calli treated with ABA and SE, but also in the white dry callus. Thus it suggested that the two proteins might play some important roles in the processes of seed embryo (or somatic embryo) formation.

  3. Sequencing and Transcriptional Analysis of the Biosynthesis Gene Cluster of Abscisic Acid-Producing Botrytis cinerea

    Tao Gong; Dan Shu; Jie Yang; Zhong-Tao Ding; Hong Tan

    2014-01-01

    Botrytis cinerea is a model species with great importance as a pathogen of plants and has become used for biotechnological production of ABA. The ABA cluster of B. cinerea is composed of an open reading frame without significant similarities (bcaba3), followed by the genes (bcaba1 and bcaba2) encoding P450 monooxygenases and a gene probably coding for a short-chain dehydrogenase/reductase (bcaba4). In B. cinerea ATCC58025, targeted inactivation of the genes in the cluster suggested at least ...

  4. Abscisic acid content of a nondormant sunflower (Helianthus annuus L.) mutant

    A sunflower (Helianthus annuus L.) mutant was observed in the progeny of a cross between the sunflower cultivar HA 89 and an amphiploid of a H. divaricatus L. x P21 cross that exhibited loss of dormancy induction in the developing embryo. Seeds of this mutant frequently germinate on the head about 4...

  5. Polyethylene glycol and abscisic acid improve maturation and regeneration of Panax ginseng somatic embryos

    Langhansová, Lenka; Konrádová, H.; Vaněk, Tomáš

    2004-01-01

    Roč. 22, - (2004), s. 725-730. ISSN 0721-7714 R&D Projects: GA ČR GP521/02/P064; GA MŠk OC 843.10; GA MŠk ME 671 Institutional research plan: CEZ:AV0Z4055905 Keywords : ABA * Panax ginseng * somatic embryogenesis Subject RIV: EI - Biotechnology ; Bionics Impact factor: 1.457, year: 2004

  6. Depigmenting Effect of Kojic Acid Esters in Hyperpigmented B16F1 Melanoma Cells

    Ahmad Firdaus B. Lajis

    2012-01-01

    Full Text Available The depigmenting effect of kojic acid esters synthesized by the esterification of kojic acid using Rhizomucor miehei immobilized lipase was investigated in B16F1 melanoma cells. The depigmenting effect of kojic acid and kojic acid esters was evaluated by the inhibitory effect of melanin formation and tyrosinase activity on alpha-stimulating hormone- (α-MSH- induced melanin synthesis in B16F1 melanoma cells. The cellular tyrosinase inhibitory effect of kojic acid monooleate, kojic acid monolaurate, and kojic acid monopalmitate was found similar to kojic acid at nontoxic doses ranging from 1.95 to 62.5 μg/mL. However, kojic acid monopalmitate gave slightly higher inhibition to melanin formation compared to other inhibitors at doses ranging from 15.63 to 62.5 μg/mL. Kojic acid and kojic acid esters also show antioxidant activity that will enhance the depigmenting effect. The cytotoxicity of kojic acid esters in B16F1 melanoma cells was significantly lower than kojic acid at high doses, ranging from 125 and 500 μg/mL. Since kojic acid esters have lower cytotoxic effect than kojic acid, it is suggested that kojic acid esters can be used as alternatives for a safe skin whitening agent and potential depigmenting agents to treat hyperpigmentation.

  7. Carbon-13 kinetic isotope effects in the decarbonylation of lactic acid of natural isotopic composition in phosphoric acid medium

    The 13C kinetic isotope effect fractionation in the decarbonylation of lactic acid (LA) of natural isotopic composition by concentrated phosphoric acids (PA) and by 85% H3PO4 has been studied in the temperature interval of 60-150 deg C. The values of the 13C(1) isotope effects in the decarbonylation of lactic acid in 100% H3PO4, in pyrophosphoric acid and in more concentrated phosphoric acids are intermediate between the values calculated assuming that the C(1)-OH bond is broken in the rate-controlling step of dehydration and those calculated for rupture of the carbon-carbon bond in the transition state. In the temperature interval of 90-130 deg C the experimental 13C fractionation factors determined in concentrated PA approach quite closely the 13C fractionation corresponding to C(2)-C(1) bond scission. The 13C(1) kinetic isotope effects in the decarbonylation of LA in 85% orthophosphoric acid in the temperature range of 110-150 deg C coincide with the 13C isotope effects calculated assuming that the frequency corresponding to the C(1)-OH vibration is lost in the transition state of decarbonylation. A change of the mechanism of decarbonylation of LA in going from concentrated PA medium to 85% H3PO4 has been suggested. A possible secondary 18O and a primary18O kinetic isotope effect in decarbonylation of lactic acid in phosphoric acids media have been discussed, too. (author) 21 refs.; 3 tabs

  8. Effect of monoglycerides and fatty acids on a ceramide bilayer.

    Akinshina, Anna; Das, Chinmay; Noro, Massimo G

    2016-07-14

    Monoglycerides and unsaturated fatty acids, naturally present in trace amounts in the stratum corneum (top layer of skin) lipid matrix, are commonly used in pharmaceutical, cosmetic and health care formulations. However, a detailed molecular understanding of how the oil additives get incorporated into the skin lipids from topical application and, once incorporated, how they affect the properties and integrity of the lipid matrix remains unexplored. Using ceramide 2 bilayers as skin lipid surrogates, we use a series of molecular dynamics simulations with six different natural oil ingredients at multiple concentrations to investigate the effect of the oils on the properties and stability of the bilayers. The six oils: monoolein, monostearin, monoelaidin, oleic acid, stearic acid and linoleic acid - all having the same length of the alkyl chain, C18, but a varying degree of saturation, allow us to systematically address the effect of unsaturation in the additives. Our results show that at low oil concentration (∼5%) the mixed bilayers containing any of the oils and ceramide 2 (CER2) become more rigid than pure CER2 bilayers due to more efficient lipid packing. Better packing also results in the formation of larger numbers of hydrogen bonds between the lipids, which occurs at the expense of the hydrogen bonds between lipids and water. The mixed bilayers with saturated or trans-unsaturated oils remain stable over the whole range of oil concentration. In contrast, the presence of the oils with at least one cis-double bond leads to bilayer instability and complete loss of bilayer structure at the oil content of about 50-65%. Two cis-double bonds in the lipid tail induce bilayer disruption at even lower concentration (∼30%). The mixed bilayers remain in the gel phase (without melting to a fluid phase) until the phase transition to a non-bilayer phase occurs. We also demonstrate that the stability of the bilayer strongly correlates with the order parameter of the lipid

  9. Effects of acetic acid and lactic acid on the growth of Saccharomyces cerevisiae in a minimal medium.

    Narendranath, N V; Thomas, K C; Ingledew, W M

    2001-03-01

    Specific growth rates (mu) of two strains of Saccharomyces cerevisiae decreased exponentially (R2 > 0.9) as the concentrations of acetic acid or lactic acid were increased in minimal media at 30 degrees C. Moreover, the length of the lag phase of each growth curve (h) increased exponentially as increasing concentrations of acetic or lactic acid were added to the media. The minimum inhibitory concentration (MIC) of acetic acid for yeast growth was 0.6% w/v (100 mM) and that of lactic acid was 2.5% w/v (278 mM) for both strains of yeast. However, acetic acid at concentrations as low as 0.05-0.1% w/v and lactic acid at concentrations of 0.2-0.8% w/v begin to stress the yeasts as seen by reduced growth rates and decreased rates of glucose consumption and ethanol production as the concentration of acetic or lactic acid in the media was raised. In the presence of increasing acetic acid, all the glucose in the medium was eventually consumed even though the rates of consumption differed. However, this was not observed in the presence of increasing lactic acid where glucose consumption was extremely protracted even at a concentration of 0.6% w/v (66 mM). A response surface central composite design was used to evaluate the interaction between acetic and lactic acids on the specific growth rate of both yeast strains at 30 degrees C. The data were analysed using the General Linear Models (GLM) procedure. From the analysis, the interaction between acetic acid and lactic acid was statistically significant (P < or = 0.001), i.e., the inhibitory effect of the two acids present together in a medium is highly synergistic. PMID:11420658

  10. Hydrogenation Alternatives - Effects of Trans-Fatty-Acids and Stearic-Acid Versus Linoleic-Acid on Serum-Lipids and Lipoproteins in Humans

    Zock, P.L.; Katan, M.B.

    1992-01-01

    The objective of this study was to compare the effects of linoleic acid (cis,cis-C18:2(n-6)) and its hydrogenation products elaidic (trans-C18:1(n-9)) and stearic acid (C18:0) on serum lipoprotein levels in humans.Twenty-six men and 30 women, all nor

  11. Temperature effect on photolysis decomposing of perfluorooctanoic acid.

    Zhang, Tiliang; Pan, Gang; Zhou, Qin

    2016-04-01

    Perfluorooctanoic acid (PFOA) is recalcitrant to degrade and mineralize. Here, the effect of temperature on the photolytic decomposition of PFOA was investigated. The decomposition of PFOA was enhanced from 34% to 99% in 60min of exposure when the temperature was increased from 25 to 85°C under UV light (201-600nm). The limited degree of decomposition at 25°C was due to low quantum yield, which was increased by a factor of 12 at 85°C. Under the imposed conditions, the defluorination ratio increased from 8% at 25°C to 50% at 85°C in 60min. Production of perfluorinated carboxylic acids (PFCAs, C7-C5), PFCAs (C4-C3) and TFA (trifluoroacetic acid, C2) accelerated and attained a maximum within 30 to 90min at 85°C. However, these reactions did not occur at 25°C despite extended irradiation to 180min. PFOA was decomposed in a step-wise process by surrendering one CF2 unit. In each cyclical process, increased temperature enhanced the quantum yields of irradiation and reactions between water molecules and intermediates radicals. The energy consumption for removing each μmol of PFOA was reduced from 82.5kJ at 25°C to 10.9kJ at 85°C using photolysis. Photolysis coupled with heat achieved high rates of PFOA degradation and defluorination. PMID:27090703

  12. Probiotic and Acetic Acid Effect on Broiler Chickens Performance

    Martin Král

    2011-05-01

    Full Text Available Probiotics and organic acids are widely accepted as an alternative to in-feed antibiotics in poultry production. We carried the experiment with broiler chickens. In experiment we research effect of probiotic and acetic acids on the performance of broiler chickens. A total number of 200 one day old broiler chickens were distributed to two dietary groups. Broiler chickens in control group were fed with standard feed mixture and experimental group 1% vinegar contained 5% acetic acid used in drinking water and probiotics mixed with feed mixture. Body weight, FCR and GIT pH were recorded. The performance showed no statistically significant increase in body weight (P>0.05 in the weeks 1, 2, 3 and 4 of age. The body weight of broiler chickens was significant increase (P0.05 in weeks 5, and 6 of age. In different segments of the GIT was not statistically significant (P>0.05 difference of pH between the control and experimental groups.

  13. Effect of fulvic acids on the electrolytes physiology in vertebrates

    Fulvic acids are the active principle in humus fertilizers which are the cause of better absorption of mineral ions from soil to plant tissues. Tested in mice by making use of radioactive labeled ions, they showed their action of enhancing by a factor greater than two the filtration through liver of PO43- and Ca2+ from digestive tract to blood serum as well as through kidney from blood serum to urine. Following this research, Fe3+ and I1- ions labeled with 59Fe and 131I have been tested and reported in the present paper. Results showed that iron ions are completely fixed in red cells, with no residue eliminated by urine, while iodine ions are fixed in thyroid gland, with some residue eliminated by urine. Both ions were fixed in said tissues by factors larger than two when they are escorted by fulvic acids. A general distribution of these ions in blood, urine, feces, liver, kidney and thyroid gland has been surveyed, trying to find the earliest effect of fulvic acids in the physiology of vertebrates.

  14. Organic Field Effect Transistor Based Crosslinked Deoxyribonucleic Acid Gate Dielectric

    Deoxyribonucleic Acid (DNA) derived form marine waste products and modified with surfactant demonstrates excellent passive and active optical properties. In this study, we have fabricated organic field-effect transistors with DNA gate. In organic field effect transistors (OFETs) the gate dielectric plays a crucial role - these highly insulating thin film polymer layers are key-components in state of the art organic transistor devices. When replacing the polymer layer by introducing solution-processed thin film modified bio polymer (DNA) as gate insulator, transistor-characteristics are changed towards remanence-like hysteresis behaviours. The hysteresis-loops probed in bio-organic field effect transistors (BiOFETs) derived from DNA and fullerene derivatives form bistable states which can be used for memory devices at low operating voltage regime compared to similar organic thin film transistors using polymers as gate insulator

  15. Effect of acid additives on grafting efficiency and water absorption of hydrolyzed cassava starch grafted polymers

    Gelatinized cassava starch was radiation graft copolymerized with acrylamide, acrylic acid or their mixture in the presence of sulphuric acid or maleic acid. Various acid concentrations were used from 0.001 to 0.1 M of sulphuric acid while the maleic acid concentrations were varied from 1 to 3% (by weight). The optimum total dose and dose rate were investigated. The saponification temperature and time had the marked effects on grafting characteristics and water absorption capacity. We found that the effect of maleic acid addition gave a profound effect on water absorption. The CHNS/O analyses indicated significant changes in the nitrogen content in the hydrolyzed starch grafted polyacrylamide with 2% maleic acid. The article explains the possible causes for the enhancement influence of mineral acid and maleic acid on grafting behavior and water absorption of the saponified cassava starch grafted polyacrylamide super absorbent polymer. (author)

  16. Effects of ursolic acid and oleanolic acid on human colon carcinoma cell line HCT15

    Jie Li; Wei-Jian Guo; Qing-Yao Yang

    2002-01-01

    AIM: Ursolic acid (UA) and oleanolic acid (OA) aretriperpene acids having a similar chemical structure and aredistributed wildly in plants all over the world. In recentyearn, it was found that they had marked anti-tumor effects.There is little literature currently available regarding theireffects on colon carcinoma cells. The present study wasdesigned to investigate their inhibitory effects on humancolon carcinoma cell line HCT15 METHODS: HCT15 cells were cultured with different drugs.The treated cells were stained with hematoxylin-eosin andtheir morphologic changes observed under a lightmicroscope. The cytotoxicity of these drugs was evaluatedby tetrazolium dye assay. Cell cycle analysis was performedby flow cytometry (FCM). Data were expressed as means +SEM and Analysis of variance and Student' t-test forindividual comparisons.RESULTS: Twenty-four to 72 h after UA or OA 60 μmol/Ltreatment, the numbers of dead cells and cell fragmentswere increased and most cells were dead at the 72 nd hour.The cytotoxicity of UA was stronger than that of OA.Seventy-eight hours after 30 μmol/L of UA or OA treatment,a number of cells were degenerated, but cell fragments wererarely seen. The IC50 values for UA and OA were 30 and 60μmol/L, respectively. Proliferation assay showed thatproliferation of UA and OA-treated cells was slightlyincreased at 24 h and significantly decreased at 48 h and 60h, whereas untreated control cells maintained anexponential growth curve. Cell cycle analysis by FCMshowed HCT15 cells treated with UA 30 and OA 60 for 36 h and72 h gradually accumulated in G0/G1 phase (both drugs P< 0.05 for 72 h), with a concomitant decrease of cell populationsin S phase (both drugs P< 0.01 for 72 h) and no detectableapoptotic fraction.CONCLUSION: UA and OA have significant anti-ttumor activity.The effect of UA is stronger than that of OA. The possiblemechanism of action is that both drugs have an inhibitoryeffect on tumor cell proliferation through cell-cycle arrest.

  17. 40 CFR 72.69 - Issuance and effective date of acid rain permits.

    2010-07-01

    ...) AIR PROGRAMS (CONTINUED) PERMITS REGULATION Federal Acid Rain Permit Issuance Procedures § 72.69 Issuance and effective date of acid rain permits. (a) After the close of the public comment period, the Administrator will issue or deny an Acid Rain permit. The Administrator will serve a copy of any Acid...

  18. Going natural: Effective weed control in squash with pelargonic acid

    Pelargonic acid, a natural, but not certified organic herbicide, has been shown to be phytotoxic, acting as a contact herbicide, injuring and killing plants through cell membrane disruption. Pelargonic acid, a fatty acid also known as nonanoic acid, is a nine-carbon chained organic compound found in...

  19. Effects of phthalic acid esters on the liver and thyroid

    The effects, over periods from 3 days to 9 months of administration, of diets containing di-2-ethylhexyl phthalate are very similar to those observed in rats administered diets containing hypolipidemic drugs such as clofibrate. Changes occur in a characteristic order commencing with alterations in the distribution of lipid within the liver, quickly followed by proliferation of hepatic peroxisomes and induction of the specialized P-450 isoenzyme(s) catalyzing omega oxidation of fatty acids. There follows a phase of mild liver damage indicated by changes in incorporation of 3H-thymidine into DNA, by induction of glucose-6-phosphatase activity and a loss of glycogen, eventually leading to the formation of enlarged lysosomes through autophagy and the accumulation of lipofuscin. Associated changes are found in the kidney and thyroid. The renal changes are limited to the proximal convoluted tubules and are generally similar to changes found in the liver. The effects on the thyroid are more marked. Although the levels of thyroxine in plasma fall to about half normal values, serum triiodothyronine remains close to normal values while the appearance of the thyroid varies, very marked hyperactivity being noted 7 days after commencement of treatment, this is less marked at 14 days, but even after 9 months treatment there is clear cut evidence for hyperactivity with colloid changes which indicate this has persisted for some time. The short-term in vivo hepatic effects of the three phthalate esters can be reproduced in hepatocytes in tissue culture. All three phthalate esters, as well as clofibrate, have early marked effects on the metabolism of fatty acids in isolated hepatocytes. A hypothesis is presented to explain the progress from these initial metabolic effects to the final formation of liver tumors

  20. Effects of phthalic acid esters on the liver and thyroid

    Hinton, R.H.; Mitchell, F.E.; Mann, A.; Chescoe, D.; Price, S.C.; Nunn, A.; Grasso, P.; Bridges, J.W.

    1986-12-01

    The effects, over periods from 3 days to 9 months of administration, of diets containing di-2-ethylhexyl phthalate are very similar to those observed in rats administered diets containing hypolipidemic drugs such as clofibrate. Changes occur in a characteristic order commencing with alterations in the distribution of lipid within the liver, quickly followed by proliferation of hepatic peroxisomes and induction of the specialized P-450 isoenzyme(s) catalyzing omega oxidation of fatty acids. There follows a phase of mild liver damage indicated by changes in incorporation of /sup 3/H-thymidine into DNA, by induction of glucose-6-phosphatase activity and a loss of glycogen, eventually leading to the formation of enlarged lysosomes through autophagy and the accumulation of lipofuscin. Associated changes are found in the kidney and thyroid. The renal changes are limited to the proximal convoluted tubules and are generally similar to changes found in the liver. The effects on the thyroid are more marked. Although the levels of thyroxine in plasma fall to about half normal values, serum triiodothyronine remains close to normal values while the appearance of the thyroid varies, very marked hyperactivity being noted 7 days after commencement of treatment, this is less marked at 14 days, but even after 9 months treatment there is clear cut evidence for hyperactivity with colloid changes which indicate this has persisted for some time. The short-term in vivo hepatic effects of the three phthalate esters can be reproduced in hepatocytes in tissue culture. All three phthalate esters, as well as clofibrate, have early marked effects on the metabolism of fatty acids in isolated hepatocytes. A hypothesis is presented to explain the progress from these initial metabolic effects to the final formation of liver tumors.

  1. Effect of QMix, peracetic acid and ethylenediaminetetraacetic acid on calcium loss and microhardness of root dentine

    Sonali Taneja

    2014-01-01

    Full Text Available Objectives: The objective of this in vitro study was to assess the effect of different chelating agents on the calcium loss and its subsequent effect on the microhardness of the root dentin. Materials and Methods: Ten single rooted lower premolars were selected. The teeth were decoronated and thick transverse sections of 2 mm were obtained from the coronal third of the root. Each section was then divided into four quarters, each part constituting a sample specimen from the same tooth for each group. The treatment groups were: Group 1 (Control: 5% Sodium hypochlorite (NaOCl for 5 min + distilled water for 5 min; Group 2: 5% NaOCl for 5 min + 17% ethylenediaminetetraacetic acid (EDTA for 5 min; Group 3: 5% NaOCl for 5 min + 2.25% Peracetic acid (PAA for 5 min and Group 4: 5% NaOCl for 5 min + QMix for 5 min respectively. The calcium loss of the samples was evaluated using the Atomic Absorption Spectrophotometer followed by determination of their microhardness using Vickers Hardness Tester. Data was analyzed using one-way ANOVA, Post hoc Tukey test and Pearson correlation. Results: The maximum calcium loss and minimum microhardness was observed in Group 3 followed by Group 2, Group 4 and Group 1. There was a statistically significant difference between all the groups except between Groups 2 and 4. Conclusions: Irrigation with NaOCl + 2.25% PAA caused the maximum calcium loss from root dentin and reduced microhardness. A negative correlation existed between the calcium loss and reduction in the microhardness of root dentin.

  2. Effect of deoxyribonucleic acid replication inhibitors on bacterial recombination

    Two inhibitors of replicative deoxyribonucleic acid (DNA) synthesis, nalidixic acid (NAL) and 6-(p-hydroxyphenylazo)-uracil (HPUra), showed different effects on genetic recombination and DNA repair in Bacillus subtilis. Previous work (Pedrini et al., 1972) showed that NAL does not interfere with the transformation process of B. subtilis. The results reported in this work demonstrated that the drug was also without effect on the transfection SPP1 or SPO-1 phage DNA (a process that requires a recombination event). The drug was also ineffective on the host cell reactivation of ultraviolet-irradiated SPP1 phage, as well as on transfection with ultraviolet-irradiated DNA of the same phage. HPUra instead markedly reduced the transformation process, as well as transfection, by SPO-1 DNA, but it did not affect the host cell reactivation of SPO-1 phage. In conclusion, whereas the NAL target seems to be specific for replicative DNA synthesis, the HPUra target (i.e., the DNA polymerase III of B. subtilis) seems to be involved also in recombination, but not in the excision repair process. The mutations conferring NAL and HPUra resistance used in this work were mapped by PBS-1 transduction

  3. The effects of cyclic dicarboxylic acids on spontaneous and amino acid-evoked activity of rat cortical neurones.

    Birley, S.; Collins, J F; Perkins, M. N.; Stone, T. W.

    1982-01-01

    1 A series of cyclic dicarboxylic acids were applied by microiontophoresis to neurones in the cerebral cortex of rats anaesthetized with urethane. The object was to examine effects on spontaneous firing rates and any ability to antagonize responses to excitatory amino acids. 2 At relatively low ejecting currents (10-25 nA) cis-2,3-piperidine dicarboxylic acid (cis-2,3-PDA) had no effect on spontaneous firing but selectively antagonized the excitation evoked by n-methyl-D-aspartate (NMDA) with...

  4. Kinetics and effects of dichloroacetic acid in rainbow trout.

    Fitzsimmons, Patrick N; Hoffman, Alex D; Lien, Gregory J; Hammermeister, Dean E; Nichols, John W

    2009-09-14

    Halogenated acetic acids (HAAs) produced by chlorine disinfection of municipal drinking water represent a potentially important class of environmental contaminants. Little is known, however, about their potential to adversely impact fish and other aquatic life. In this study we examined the kinetics and effects of dichloroacetic acid (DCA) in rainbow trout. Branchial uptake was measured in fish confined to respirometer-metabolism chambers. Branchial uptake efficiency was passive diffusion through aqueous channels in the gill epithelium. DCA concentrations in tissues following prolonged (72, 168, or 336 h) waterborne exposures were expressed as tissue:plasma concentration ratios. Concentration ratios for the kidney and muscle at 168 and 336 h were consistent with the suggestion that DCA distributes primarily to tissue water. Reduced concentration ratios for the liver, particularly at 72 h, indicated that DCA was highly metabolized by this tissue. Routes and rates of elimination were characterized by injecting chambered animals with a high (5.0mg/kg) or low (50 microg/kg) bolus dose. DCA was rapidly cleared by naïve animals resulting in elimination half-lives (t(1/2)) of less than 4h. Waterborne pre-treatment of fish with DCA increased the persistence of a subsequently injected dose. In high dose animals, pre-treatment caused a 4-fold decrease in whole-body clearance (CL(B)) and corresponding increases in the area under the plasma concentration-time curve (extrapolated to infinity; AUC(0-->infinity)) and t(1/2). Qualitatively similar results were obtained in low dose fish, although the magnitude of the pre-treatment effect ( approximately 2.5-fold) was reduced. Renal and branchial clearance contributed little (combined, <3% of CL(B)) to the elimination of DCA. Biliary elimination of DCA was also negligible. The steady-state volume of distribution (V(SS)) did not vary among treatment groups and was consistent with results of the tissue distribution study. DCA had no

  5. Protective effect of hyaluronic acid on cryopreserved boar sperm.

    Qian, Li; Yu, Sijiu; Zhou, Yan

    2016-06-01

    This study aimed to evaluate the effects of supplementing freezing and thawing media with hyaluronic acid (HA) on the quality parameters of frozen-thawed boar spermatozoa. Boar semen samples were collected from seven mature Yorkshire boars once a week using the gloved hand technique; these samples were frozen-thawed in the extender with added HA. Boar sperm was cryopreserved in the extender with HA added at concentrations of 0 (used as control), 4, 6, 8, 8 and 12mg/L, and their effects on the quality of frozen-thawed boar sperm were evaluated. HA addition to the extender significantly improved sperm motility, sperm membrane integrity, mitochondrial activity, acrosomal integrity, superoxide dismutase and catalase activity, but decreased sperm malondialdehyde level (p<0.05). Therefore, HA could be a promising cryoprotectant for boar sperm. PMID:26944660

  6. Bile Acids, FXR, and Metabolic Effects of Bariatric Surgery

    Noel, Olivier F.; Still, Christopher D.; Argyropoulos, George; Edwards, Michael; Gerhard, Glenn S.

    2016-01-01

    Overweight and obesity represent major risk factors for diabetes and related metabolic diseases. Obesity is associated with a chronic and progressive inflammatory response leading to the development of insulin resistance and type 2 diabetes (T2D) mellitus, although the precise mechanism mediating this inflammatory process remains poorly understood. The most effective intervention for the treatment of obesity, bariatric surgery, leads to glucose normalization and remission of T2D. Recent work in both clinical studies and animal models supports bile acids (BAs) as key mediators of these effects. BAs are involved in lipid and glucose homeostasis primarily via the farnesoid X receptor (FXR) transcription factor. BAs are also involved in regulating genes involved in inflammation, obesity, and lipid metabolism. Here, we review the novel role of BAs in bariatric surgery and the intersection between BAs and immune, obesity, weight loss, and lipid metabolism genes. PMID:27006824

  7. Effect of humic acid on the underpotential deposition-stripping voltammetry of copper in acetic acid soil extract solutions at mercaptoacetic acid-modified gold electrodes

    Electrochemical measurements were undertaken for the investigation of the underpotential deposition-stripping process of copper at bare and modified gold electrodes in 0.11 M acetic acid, the first fraction of the European Union's Bureau Communautaire de References (BCR) sequential extraction procedure for fractionating metals within soils and sediments. Gold electrodes modified with mercaptoacetic acid showed higher sensitivity for the detection of copper than bare gold electrodes, both in the absence and in the presence of humic acid in acetic acid solutions, using the underpotential deposition-stripping voltammetry (UPD-SV) method. In the presence of 50 mg l-1 of humic acid, the mercaptoacetic acid modified electrode proved to be 1.5 times more sensitive than the bare gold electrode. The mercaptoacetic acid monolayer formed on the gold surface provided efficient protection against the adsorption of humic acid onto the gold electrode surface. Variation of the humic acid concentration in the solution showed little effect on the copper stripping signal at the modified electrode. UPD-SV at the modified electrode was applied to the analysis of soil extract samples. Linear correlation of the electrochemical results with atomic spectroscopic results yielded the straight-line equation y (μg l-1) = 1.10x - 44 (ppb) (R=0.992, n=6), indicating good agreement between the two methods

  8. Effects of Spray Drying on Physicochemical Properties of Chitosan Acid Salts

    Cervera, Mirna Fernández; Heinämäki, Jyrki; de la Paz, Nilia; López, Orestes; Maunu, Sirkka Liisa; Virtanen, Tommi; Hatanpää, Timo; Antikainen, Osmo; Nogueira, Antonio; Fundora, Jorge; Yliruusi, Jouko

    2011-01-01

    The effects of spray-drying process and acidic solvent system on physicochemical properties of chitosan salts were investigated. Chitosan used in spray dryings was obtained by deacetylation of chitin from lobster (Panulirus argus) origin. The chitosan acid salts were prepared in a laboratory-scale spray drier, and organic acetic acid, lactic acid, and citric acid were used as solvents in the process. The physicochemical properties of chitosan salts were investigated by means of solid-state CP...

  9. Stress hormones and abiotic stresses have different effects on antioxidants in maize lines with different sensitivity.

    Kellos, T; Tímár, I; Szilágyi, V; Szalai, G; Galiba, G; Kocsy, G

    2008-09-01

    The effect of stress hormones and abiotic stress treatments on reactive oxygen species and on antioxidants was compared in two maize (Zea mays L.) lines (Penjalinan and Z7) having different stress tolerance. Following treatment with abscisic acid, salicylic acid or hydrogen peroxide, the amount of hydrogen peroxide and lipid peroxides increased, while after osmotic stress or cultivation in continuous darkness, the levels were unchanged or decreased. The higher amount of lipid peroxides in Penjalinan indicated its greater sensitivity compared to Z7. The level of the examined antioxidants was increased by nearly all treatments. Glutathione and cysteine contents were higher after salicylic acid, hydrogen peroxide and polyethylene glycol treatments and lower after application of abscisic acid, NaCl and growth in darkness in Z7 than in Penjalinan. The activity of glutathione reductase, ascorbate peroxidase, catalase and glutathione S-transferase was higher after almost all treatments in Z7. The expression of the glutathione synthetase (EC 6.3.2.3) gene was not affected by the treatments, while the level of gamma-glutamylcysteine synthetase (EC 6.3.2.2) and glutathione reductase (EC 1.6.4.2) transcripts increased after most treatments. The two stress hormones and the stress treatments resulted in different changes in antioxidant levels in the two maize lines, which indicates the specific, stress tolerance-dependent response of plants to the various growth regulators and adverse environmental effects that were examined. PMID:18761495

  10. Effect of gamma irradiation on the polyunsaturated fatty acids of cooked pork

    The effect of a radurizing gamma radiation dose on the polyunsaturated fatty acid content of cooked pork was studied. Results showed that a 0.6-Mrad dose had no marked effect on the concentration of these acids in roasted pork parts. Irradiated meat products stored for 15 days at room temperature did not show any decrease in the polyunsaturated fatty acids

  11. Effects of amoxicillin/clavulanic acid on the pharmacokinetics of valproic acid

    Lee SY

    2015-08-01

    Full Text Available Soo-Yun Lee,1 Wooseong Huh,2 Jin Ah Jung,3 Hye Min Yoo,2 Jae-Wook Ko,1,2 Jung-Ryul Kim2,4 1Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, 2Department of Clinical Pharmacology and Therapeutics, Samsung Medical Center, Seoul, 3Department of Clinical Pharmacology, Inje University, Busan Paik Hospital, Busan, 4Department of Clinical Research and Evaluation, SAIHST, Sungkyunkwan University, Seoul, Republic of Korea Abstract: Valproic acid (VPA is mainly metabolized via glucuronide, which is hydrolyzed by β-glucuronidase and undergoes enterohepatic circulation. Amoxicillin/clavulanic acid (AMC administration leads to decreased levels of β-glucuronidase-producing bacteria, suggesting that these antibiotics could interrupt enterohepatic circulation and thereby alter the pharmacokinetics of VPA. This study aimed to evaluate the effects of AMC on the pharmacokinetics of VPA. This was an open-label, two-treatment, one-sequence study in 16 healthy volunteers. Two treatments were evaluated; treatment VPA, in which a single dose of VPA 500 mg was administered, and treatment AMC + VPA, in which multiple doses of AMC 500/125 mg were administered three times daily for 7 days and then a single dose of VPA was administered. Blood samples were collected up to 48 hours. Pharmacokinetic parameters were calculated using noncompartmental methods. Fifteen subjects completed the study. Systemic exposures and peak concentrations of VPA were slightly lower with treatment AMC + VPA than with treatment VPA (AUClast, 851.0 h·mg/L vs 889.6 h·mg/L; Cmax, 52.1 mg/L vs 53.0 mg/L. There were no significant between-treatment effects on pharmacokinetics (95% confidence interval [CI] of AUClast and Cmax (95.7 [85.9–106.5] and 98.3 [91.6–105.6], respectively. Multiple doses of AMC had no significant effects on the pharmacokinetics of VPA; thus, no dose adjustment is necessary. Keywords: drug–drug interaction, pharmacokinetics

  12. Fatty acid transporter CD36 mediates hypothalamic effect of fatty acids on food intake in rats.

    Valentine S Moullé

    Full Text Available Variations in plasma fatty acid (FA concentrations are detected by FA sensing neurons in specific brain areas such as the hypothalamus. These neurons play a physiological role in the control of food intake and the regulation of hepatic glucose production. Le Foll et al. previously showed in vitro that at least 50% of the FA sensing in ventromedial hypothalamic (VMH neurons is attributable to the interaction of long chain FA with FA translocase/CD36 (CD36. The present work assessed whether in vivo effects of hypothalamic FA sensing might be partly mediated by CD36 or intracellular events such as acylCoA synthesis or β-oxidation. To that end, a catheter was implanted in the carotid artery toward the brain in male Wistar rats. After 1 wk recovery, animals were food-deprived for 5 h, then 10 min infusions of triglyceride emulsion, Intralipid +/- heparin (IL, IL(H, respectively or saline/heparin (SH were carried out and food intake was assessed over the next 5 h. Experimental groups included: 1 Rats previously injected in ventromedian nucleus (VMN with shRNA against CD36 or scrambled RNA; 2 Etomoxir (CPT1 inhibitor or saline co-infused with IL(H/S(H; and 3 Triacsin C (acylCoA synthase inhibitor or saline co-infused with IL(H/S(H. IL(H significantly lowered food intake during refeeding compared to S(H (p<0.001. Five hours after refeeding, etomoxir did not affect this inhibitory effect of IL(H on food intake while VMN CD36 depletion totally prevented it. Triacsin C also prevented IL(H effects on food intake. In conclusion, the effect of FA to inhibit food intake is dependent on VMN CD36 and acylCoA synthesis but does not required FA oxidation.

  13. Fatty Acids Profile, Phenolic Compounds and Antioxidant Capacity in Elicited Callus ofThevetia peruviana (Pers.) K. Schum.

    Rincón-Pérez, Jack; Rodríguez-Hernández, Ludwi; Ruíz-Valdiviezo, Víctor Manuel; Abud-Archila, Miguel; Luján-Hidalgo, María Celina; Ruiz-Lau, Nancy; González-Mendoza, Daniel; Gutiérrez-Miceli, Federico Antonio

    2016-04-01

    The aim of this study was analyze the effect of jasmonic acid (JA) and abscisic acid (ABA) as elicitors on fatty acids profile (FAP), phenolic compounds (PC) and antioxidant capacity (AC) in callus of Thevetia peruviana. Schenk & Hildebrandt (SH) medium, supplemented with 2 mg/L 2, 4-dichlorophenoxyacetic (2, 4-D) and 0.5 mg/L kinetin (KIN) was used for callus induction. The effect of JA (50, 75 and 100 μM) and ABA (10, 55 and 100 μM) on FAP, PC and AC were analyzed using a response surface design. A maximum of 2.8 mg/g of TPC was obtained with 100 plus 10 µM JA and ABA, respectively, whereas AC maximum (2.17 μg/mL) was obtained with 75 plus 100 µM JA and ABA, respectively. The FAP was affected for JA but not for ABA. JA increased cis-9, cis-12-octadecadienoic acid and decreased dodecanoic acid. Eight fatty acids were identified by GC-MS analysis and cis-9-octadecenoic acid (18:1) was the principal fatty acid reaching 76 % in treatment with 50 μM JA plus 55 μM ABA. In conclusion, JA may be used in T. peruviana callus culture for obtain oil with different fatty acids profile. PMID:26972464

  14. Overview of trans fatty acids: biochemistry and health effects.

    Bhardwaj, Swati; Passi, Santosh Jain; Misra, Anoop

    2011-01-01

    Trans fatty acids (TFA) are unsaturated fatty acids that contain at least one non-conjugated double bond in the trans configuration, resulting in a straighter shape. TFA present in our diet can either be industrially produced and ruminant or natural. The major process contributing to formation of industrial TFA is hydrogenation of vegetable oils. Thermal processes such as edible oil refining and frying also lead to the formation of TFA while, ruminant/natural TFA is formed in the rumen of ruminant animals through bio-hydrogenation. Industrial TFA poses severe effects on our health like cardiovascular problems, insulin resistance, infertility in women, compromised fetal development and cognitive decline. There are strict regulations for limiting/removing the TFA content from food supply across the world. However in India, there is scarcity of data on TFA content in foods and their consumption levels. Given the alarmingly rising trend of diabetes and cardiovascular disease in India, removal of TFA from the food supply along with generating awareness among the masses in this regard is of immense importance. PMID:22813572

  15. High-Pressure Effects in Benzoic Acid Dimers: Vibrational Spectroscopy

    Tao, Yuchuan; Dreger, Zbigniew; Gupta, Yogendra

    2013-06-01

    To understand pressure effects on dimer structure stability, Raman and FTIR spectroscopy were used to examine changes in hydrogen bonded dimers of benzoic acid crystals up to 31 GPa. Raman measurements indicated a phase transition around 7-8 GPa. It is proposed that this transition is caused by a rearrangement of molecules within the dimer leading to a symmetry change from C2h to likely C2 or Cs. This change was reversible upon pressure release from 15 GPa. Pressures above 15 GPa, induced gradual changes in luminescence and a color change in the crystal from white to brownish. FTIR measurements at 31 GPa revealed the formation of a new broad band centered around 3250 cm-1, which was attributed to the stretching vibrations of the O -H bond. It is proposed that hydrogen bonded dimers of benzoic acid transform partially to a covalently bonded compound composed of benzoic anhydride-like molecules and H2O. This study demonstrates that application of high pressure can lead to significant changes in the H-bonded dimer structure, including formation of chemical bonding. Work supported by DOE/NNSA and ONR/MURI.

  16. Effect of acute acid loading on acid-base and calcium metabolism

    Osther, Palle J

    2006-01-01

    OBJECTIVE: To investigate the acid-base and calcium metabolic responses to acute non-carbonic acid loading in idiopathic calcium stone-formers and healthy males using a quantitative organ physiological approach. MATERIAL AND METHODS: Five-h ammonium chloride loading studies were performed in 12...... male recurrent idiopathic calcium stone-formers and 12 matched healthy men using a randomized, placebo-controlled, cross-over design. Arterialized capillary blood, serum and urine were collected hourly for measurement of electrolytes, ionized calcium, magnesium, phosphate, parathyroid hormone and acid-base...... status. Concentrations of non-metabolizable base (NB) and acid (NA) were calculated from measured concentrations of non-metabolizable ions. RESULTS: The extracellular acid-base status in the stone-formers during basal conditions and acid loading was comparable to the levels in the healthy controls...

  17. Effect of amino acids on the interaction between cobalamin(II) and dehydroascorbic acid

    Dereven'kov, I. A.; Thi, Thu Thuy Bui; Salnikov, D. S.; Makarov, S. V.

    2016-03-01

    The kinetics of the reaction between one-electron-reduced cobalamin (cobalamin(II), Cb(II)) and the two-electron-oxidized form of vitamin C (dehydroascorbic acid, DHA) with amino acids in an acidic medium is studied by conventional UV-Vis spectroscopy. It is shown that the oxidation of Cbl(II) by dehydroascorbic acid proceeds only in the presence of sulfur-containing amino acids (cysteine, acetylcysteine). A proposed reaction mechanism includes the step of amino acid coordination on the Co(II)-center through the sulfur atom, along with that of the interaction between this complex and DHA molecules, which results in the formation of ascorbyl radical and the corresponding Co(III) thiolate complex.

  18. Effect of Organic Acids on Bacterial Cellulose Produced by Acetobacter xylinum

    Hongmei Lu

    2016-03-01

    Full Text Available Based on the difference of bacterial cellulose production from rice saccharificate medium and chemical medium under static cultivation, effect of organic acids in the process of bacterial cellulose produced by A. xylinum was studied. The results showed that the kinds and contents of organic acids were different in both culture medium, in which accumulated oxalic acid and tartaric acid inhibited A. xylinum producing BC in chemical medium, while pyruvic acid, malic acid, lactic acid, acetic acid, citric acid and succinic acid, as ethanol, promoted A. xylinum to produce BC. Compared to the blank BC production 1.48 g/L, the optimum addition concentrations of pyruvic acid, malic acid, lactic acid, acetic acid, citric acid, succinic acid, and ethanol in chemical medium were 0.15%, 0.1%, 0.3%, 0.4%, 0.1%, 0.2% , 4% and the BC productions were 2.49 g/L, 2.83 g/L, 2.12 g/L, 2.54 g/L, 2.27 g/L, 1.88 g/L , 2.63 g/L, respectively. The co-existence of above organic acids and ethanol increased BC production even further.

  19. Organic acid effect on calcium uptake by the wheat roots

    Fabrize Caroline Nunes

    2009-02-01

    Full Text Available This work evaluated the effect of the natural organic acids on the uptake of Ca by the wheat roots in a hydroponic solution. The following organic acids were evaluated: citric, oxalic, tartaric, malic, malonic, maleic, DL-malic, p-hydroxybenzoic, aconitic, and salicilic. The organic acids neither enhanced the root growth nor increased Ca uptake. The salicilic and malic acids were highly toxic and decreased the root growth. The citric, tartaric, maleic, aconitic, and salicilic decreased the Ca uptake by the roots due to their higher capacity to form the stable complexes with Ca in solution at pH 6.0. Decreasing the Ca valence from Ca++ to CaL+ or CaL2(0 through the organic ligand complexation reactions decreased the Ca uptake. The results suggested that the wheat roots do not absorb Ca-organic complexes.Ácidos orgânicos possuem grupos funcionais com cargas negativas que complexam íons metálicos em solução. Este trabalho avaliou o efeito de ácidos orgânicos naturais na absorção de Ca pelas raízes de trigo. Foram avaliados os seguintes ácidos orgânicos: cítrico, oxálico, tartarico, málico, malônico, maleico, DL-málico, p-hidroxibenzoico, aconítico e salicílico. Os ácidos orgânicos não estimularam o crescimento das raízes e não aumentaram a absorção de Ca. Os ácidos salicílico e maleico diminuíram drasticamente o crescimento radicular. Os ácidos cítrico, tartárico, maleico, aconítico e salicílico diminuíram a absorção de Ca pelas raízes devido à maior capacidade de formar complexos estáveis com Ca em solução no pH 6,0. A redução da valência de Ca++ para CaL+ e CaL2(0, através das reações de complexação, diminuiu a absorção de Ca pelas raízes. Os resultados sugerem que os complexos de Ca-orgânico não são absorvidos pelas raízes de trigo.

  20. CCN activation experiments with adipic acid: effect of particle phase and adipic acid coatings on soluble and insoluble particles

    S. S. Hings

    2008-07-01

    Full Text Available Slightly soluble atmospherically relevant organic compounds may influence particle CCN activity and therefore cloud formation. Adipic acid is a frequently employed surrogate for such slightly soluble organic materials. The 11 published experimental studies on the CCN activity of adipic acid particles are not consistent with each other nor do they, in most cases, agree with the Köhler theory. The CCN activity of adipic acid aerosol particles was studied over a significantly wider range of conditions than in any previous single study. The work spans the conditions of the previous studies and also provides alternate methods for producing "wet" (deliquesced solution droplets and dry adipic acid particles without the need to produce them by atomization of aqueous solutions. The experiments suggest that the scatter in the previously published CCN measurements is most likely due to the difficulty of producing uncontaminated adipic acid particles by atomization of solutions and possibly also due to uncertainties in the calibration of the instruments. The CCN activation of the small (dm<150 nm initially dry particles is subject to a deliquescence barrier, while for the larger particles the activation follows the Köhler curve. Wet adipic acid particles follow the Köhler curve over the full range of particle diameters studied. In addition, the effect of adipic acid coatings on the CCN activity of both soluble and insoluble particles has also been studied. When a water-soluble core is coated by adipic acid, the CCN-hindering effect of particle phase is eliminated. An adipic acid coating on hydrophobic soot yields a CCN active particle. If the soot particle is relatively small (dcore≤102 nm, the CCN activity of the coated particles approaches the deliquescence line of adipic acid, suggesting that the total size of the particle determines CCN activation and the soot core acts as a scaffold.

  1. Effect of deoxycholic acid and ursodeoxycholic acid on lipid peroxidation in cultured macrophages.

    Ljubuncic, P; Fuhrman, B.; Oiknine, J; Aviram, M.; Bomzon, A

    1996-01-01

    BACKGROUND: Kupffer cells are essential for normal hepatic homeostasis and when stimulated, they secrete reactive oxygen species, nitric oxide, eicosanoids, and cytokines. Some of these products are cytotoxic and attack nucleic acids, thiol proteins, or membrane lipids causing lipid peroxidation. Hydrophobic bile acids, such as deoxycholic acid (DCA), can damage hepatocytes by solubilising membranes and impairing mitochondrial function, as well as increasing the generation of reactive oxygen ...

  2. Anti-inflammatory Effects and M echmdsms of Usnic Acid

    HUANG Zhijun; ZHENG Guohua; TAO Junyan; RUAN Jinlan

    2011-01-01

    The anti-inflammatory effect and mechanism of Usnic acid (UA) were explored on lipopolysaccharide (LPS)-stimulated RAW264.7 cell line.The effects of UA on pro-inflammatory cytokines including tumor necrosis factor-alfa (TNF-a),interleukin-6 (IL-6) and interleukin-I beta (IL-lβ),pro-inflammatory mediators such as nitric oxide (NO),inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2)were studied by sandwich ELISA,real-time PCR and western blot analyses.Similarly,the effect of UA on anti-inflammatory cytokine interleukin- 10 (IL- 10) and anti-inflammatory mediator heme oxygenase- l (HO- 1)were also studied following the same methods.Furthermore,nuclear factor-kB (NF-kB) was assayed by immunocytochemistry.The results showed that UA has anti-inflammatory effect by down-regulatinng iNOS,COX-2,IL-lβ,IL-6 and TNF-a,COX-2 gene expression through the suppression of NF-kB activation and increasing anti-inflammatory cytokine IL-10 and anti-inflammatory mediator HO-1 production.

  3. The effect of gallic acid on Jurkat cell line

    Sourani Zahra

    2015-10-01

    Full Text Available Introduction: Acute lymphoblastic leukemia (ALL is the most prevalent leukemia in children. Fruits and plants have a wide range of biological functions including anti-proliferative effect. Gallic acid (GA, is a polyhydroxyphenolic compound that is widely distributed in the natural plants. The aim of the present study was the evaluation of the effect of GA on proliferation inhibition of Jurkat cells, the lymphoblastic leukemia cell line. Methods: Jurkat cell line was cultured in blood cells culture media in a standard conditions with different concentrations of GA (0-100 μm for 24, 48 and 72 hours. The effect of GA on cell viability was measured using MTS assay. Results: Decline of cell viability to less than 50% was observed at 60, 50 and 30 μm concentrations after 24, 48 and 72 hours incubation time, respectively. Conclusion: The results demonstrated that the polyphenolic compound, GA with antioxidant capability is effective in proliferation inhibition in Jurkat lymphoblastic leukemia cell line with a time and dose dependent manner. Therefore, GA may be a potential compound for cancer prevention and treatment.

  4. The Effect of Copper And Zinc Nanoparticles on the Growth Parameters, Contents of Ascorbic Acid, and Qualitative Composition of Amino Acids and Acylcarnitines in Pistia stratiotes L. (Araceae)

    Olkhovych, Olga; Volkogon, Mykola; Taran, Nataliya; Batsmanova, Lyudmyla; Kravchenko, Inna

    2016-01-01

    The paper covers the research of copper and zinc nanoparticle effect on the content of ascorbic acid, and quantitative and qualitative composition of amino acids and acylcarnitines in Pistia stratiotes L. plants. Plant exposition to copper nanoparticles led to the decrease in (1) the amount of ascorbic acid, (2) the total content of amino acids (by 25 %), and (3) the amount of all studied amino acids except for the glycine amino acid. At this, the amount of 5-oxoproline, arginine, leucine, or...

  5. Effects of hormonal priming on seed germination of pigeon pea under cadmium stress.

    Sneideris, Larissa C; Gavassi, Marina A; Campos, Marcelo L; D'Amico-Damião, Victor; Carvalho, Rogério F

    2015-09-01

    In this work we investigated whether priming with auxin, cytokinin, gibberellin, abscisic acid and ethylene, alters the physiological responses of seeds of pigeon pea germinated under water and cadmium stress. Seeds treated with water or non-treated seeds were used as control. Although compared to non-treated seeds we found that the hormone treatments improve the germination of pigeon pea under cadmium stress, however, these treatments did not differ from water. However, we also observed a trend of tolerance to the effects of cadmium in the presence of ethylene, suggesting that the use of this hormone may be an efficient method to overcome seed germination under metal stress. PMID:26221985

  6. Omega-3 Fatty Acids Moderate Effects of Physical Activity on Cognitive Function

    Leckie, Regina L.; Manuck, Stephen B.; Bhattacharee, Neha; Muldoon, Matthew F.; Flory, Janine M.; Erickson, Kirk I.

    2014-01-01

    Greater amounts of physical activity (PA) and omega-3 fatty acids have both been independently associated with better cognitive performance. Because of the overlapping biological effects of omega-3 fatty acids and PA, fatty acid intake may modify the effects of PA on neurocognitive function. The present study tested this hypothesis by examining whether the ratio of serum omega-6 to omega-3 fatty acid levels would moderate the association between PA and executive and memory functions in 344 pa...

  7. Antimicrobial and cytotoxic effects of phosphoric acid solution compared to other root canal irrigants

    PRADO, Maíra; Emmanuel João Nogueira Leal da SILVA; Thais Mageste DUQUE; ZAIA, Alexandre Augusto; Ferraz, Caio Cezar Randi; de Almeida, José Flávio Affonso; GOMES, Brenda Paula Figueiredo de Almeida

    2015-01-01

    Phosphoric acid has been suggested as an irrigant due to its effectiveness in removing the smear layer. Objectives : The purpose of this study was to compare the antimicrobial and cytotoxic effects of a 37% phosphoric acid solution to other irrigants commonly used in endodontics. Material and Methods : The substances 37% phosphoric acid, 17% EDTA, 10% citric acid, 2% chlorhexidine (solution and gel), and 5.25% NaOCl were evaluated. The antimicrobial activity was tested against Candida albican...

  8. Anti-inflammatory effects of hydroxycinnamic acid derivatives

    NF-κB family of transcription factors are involved in numerous cellular processes, including differentiation, proliferation, and inflammation. It was reported that hydroxycinnamic acid derivatives (HADs) are inhibitors of NF-κB activation. Rice bran oil contains a lot of phytosteryl ferulates, one of HADs. We have investigated effects of phytosteryl ferulates on NF-κB activation in macrophage. Cycloartenyl ferulate (CAF), one of phytosteryl ferulates, significantly reduced lipopolysaccharide (LPS)-induced NO production and mRNA expression of inducible NO synthase and cyclooxygenese-2 but upregulated SOD activity. Electrophoresis mobility shift assay revealed that CAF inhibited DNA-binding of NF-κB. CAF and phytosteryl ferulates probably have potentially anti-inflammatory properties

  9. Peptide nucleic acid (PNA) antisense effects in Escherichia coli

    Good, L; Nielsen, P E

    1999-01-01

    Antisense peptide nucleic acid (PNA) can be used to control cell growth, gene expression and growth phenotypes in the bacteria Escherichia coli. PNAs targeted to the RNA components of the ribosome can inhibit translation and cell growth, and PNAs targeted to mRNA can limit gene expression with gene...... and sequence specificity. In an E. coli cell extract, efficient inhibition is observed when using PNA concentrations in the nanomolar range, whereas micromolar concentrations are required for inhibition in growing cells. A mutant strain of E. coli that is more permeable to antibiotics also is more...... susceptible to antisense PNAs than the wild type. This chapter details methods for testing the antisense activities of PNA in E. coli. As an example of the specific antisense inhibition possible, we show the effects of an anti-beta-galactosidase PNA in comparison to control PNAs. With improvements in cell...

  10. Effect of gamma irradiation on the amino acid contents of seafood cooking drips

    Lee, Ju Woon; Kim, Yeon Joo; Choi, Jong Il; Kim, Yun Joo; Kim, Jae Hun; Kim, Jin Kyu; Byun, Myung Woo [Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup (Korea, Republic of); Kwon, Joong Ho [Dept. of Food Science and Technology, Kyungpook National University, Daegu (Korea, Republic of); Ahn, Dong Hyun; Chun, Byung Soo [Faculty of Food Science and Biotechnology, Pukyung Nationol University, Busan (Korea, Republic of)

    2008-11-15

    In this study, the effects of gamma irradiation on the change of structural and free amino acids contents of cooking drips from Hizikia fusiformis (HF) and Enteroctopus dofleini (ED) were investigated. The main structural amino acids were glutamic acid in HF cooking drip, and glutamic acid, glycine, arginine and aspartic acid in ED cooking drip, respectively. The concentrations of structural amino acids in both cooking drip extracts were decreased by the gamma irradiation at the dose of 10 kGy. Especially, the sulfur-containing amino acids were severely degraded by the irradiation. In free amino acid, ED cooking drip extract was contained the larger amount of free amino acid than that of HF cooking drip affecting its rich flavor. The free amino acid concentrations of cooking drips extracts from HF and ED were both increased by irradiation, and it explained the higher protein content by the irradiation.

  11. Effects of alpha-lipoic acid and eicosapentaenoic acid in overweight and obese women during weight loss

    Huerta, A.E. (Ana E.); S. Navas-Carretero; Prieto-Hontoria, P.L. (Pedro L.); Martinez, J.A.; M. J. Moreno-Aliaga

    2015-01-01

    Objective: To evaluate the potential body weight lowering effects of dietary supplementation with eicosapentaenoic acid (EPA) and α-lipoic acid separately or combined, in healthy overweight/obese women following a hypocaloric diet. Design and Methods: This is a short-term double-blind placebo-controlled lasted 10-weeks study with parallel design. Of the randomized participants, 97 women received the allocated treatment (Control, EPA (1.3 g/d of EPA), α-lipoic acid (0.3 g/d) and...

  12. The Blocking Effect of Phenolic Acid on N—Nitrosomorholine Formation in vitro

    LIPING; WANGHuai-Zhou; 等

    1994-01-01

    Phenolic acid(PAs) are widely found in many daily consumed vegetables and fruits.The inhibitory effects of PAs on N-nitrosomorpholine(NMOR)formation in vitro under simulated gastric juice condition were studied.The results showed that the inhibitory potncy of thirteen varieties of PAs differed greatly,which may be related to their chemical structures;the blockine rate(BR)of different kinds of PAs were as follows:caffeic acid,92.5%;tannic acid,90.0%;gallic acid,86.8%;sinapinic acid,86.2%;ferulic acid,81.1%;chlorogenic acid,69.4%;gentisic acid,69.2%;syringic acid,62.1%;protocatechuic acid,56.0%;p-coumaric acid,52.5%;vannilic acid,35.4%;moreover,p-hydroxybenzoic acid and m-coumaric acid had the least blocking effect or even slight catalyzing effect.The results also demonstrated that amounts of NMOR formed were negatively correlated with molar ratio of PAs to nitrite and that the optimum pH for inhibition was betwwen 2 and 3 .

  13. Proteasome inhibitors: Their effects on arachidonic acid release from cells in culture and arachidonic acid metabolism in rat liver cells

    Levine Lawrence

    2004-01-01

    Abstract Background I have postulated that arachidonic acid release from rat liver cells is associated with cancer chemoprevention. Since it has been reported that inhibition of proteasome activities may prevent cancer, the effects of proteasome inhibitors on arachidonic acid release from cells and on prostaglandin I2 production in rat liver cells were studied. Results The proteasome inhibitors, epoxomicin, lactacystin and carbobenzoxy-leucyl-leucyl-leucinal, stimulate the release of arachido...

  14. EFFECT OF SALICYLIC ACID AND ASCORBIC ACID ON GERMINATION INDEXES AND ENZYME ACTIVITY OF SORGHUM SEEDS UNDER DROUGHT STRESS

    Tabatabaei S. A.

    2013-01-01

    Seed priming methods have been used to increase germination characteristics under stress conditions. The effects of drought stress (0, -4, -8, -12 and -16 bar) and salicylic acid 25 ppm at 15 °C for 15 h and ascorbic acid 25 ppm at 15 °C for 15 h on germination percentage, germination index, means time to germination, normal seedling percentage and enzyme activity were assessed in the laboratory for sorghum seeds (Sorghum bicolor L.). Results showed that the ...

  15. Asiatic Acid Prevents the Deleterious Effects of Valproic Acid on Cognition and Hippocampal Cell Proliferation and Survival

    Jariya Umka Welbat; Apiwat Sirichoat; Wunnee Chaijaroonkhanarak; Parichat Prachaney; Wanassanun Pannangrong; Poungrat Pakdeechote; Bungorn Sripanidkulchai; Peter Wigmore

    2016-01-01

    Valproic acid (VPA) is commonly prescribed as an anticonvulsant and mood stabilizer used in the treatment of epilepsy and bipolar disorder. A recent study has demonstrated that VPA reduces histone deacetylase (HDAC) activity, an action which is believed to contribute to the effects of VPA on neural stem cell proliferation and differentiation which may explain the cognitive impairments produced in rodents and patients. Asiatic acid is a triterpenoid derived from the medicinal plant Centella as...

  16. Effect of benzoic acid supplementation on acid-base status and mineralmetabolism in catheterized growing pigs

    Nørgaard, Jan Værum; Fernández, José Adalberto; Sørensen, Kristina Ulrich;

    2010-01-01

    Benzoic acid (BA) in diets for growing pigs results in urinary acidification and reduced ammonia emission. The objective was to study the impact of BA supplementation on the acid-base status and mineral metabolism in pigs. Eight female 50-kg pigs, fitted with a catheter in the abdominal aorta, were...

  17. Effects of intermediate metabolite carboxylic acids of TCA cycle on Microcystis with overproduction of phycocyanin.

    Bai, Shijie; Dai, Jingcheng; Xia, Ming; Ruan, Jing; Wei, Hehong; Yu, Dianzhen; Li, Ronghui; Jing, Hongmei; Tian, Chunyuan; Song, Lirong; Qiu, Dongru

    2015-04-01

    Toxic Microcystis species are the main bloom-forming cyanobacteria in freshwaters. It is imperative to develop efficient techniques to control these notorious harmful algal blooms (HABs). Here, we present a simple, efficient, and environmentally safe algicidal way to control Microcystis blooms, by using intermediate carboxylic acids from the tricarboxylic acid (TCA) cycle. The citric acid, alpha-ketoglutaric acid, succinic acid, fumaric acid, and malic acid all exhibited strong algicidal effects, and particularly succinic acid could cause the rapid lysis of Microcystis in a few hours. It is revealed that the Microcystis-lysing activity of succinic acid and other carboxylic acids was due to their strong acidic activity. Interestingly, the acid-lysed Microcystis cells released large amounts of phycocyanin, about 27-fold higher than those of the control. On the other hand, the transcription of mcyA and mcyD of the microcystin biosynthesis operon was not upregulated by addition of alpha-ketoglutaric acid and other carboxylic acids. Consider the environmental safety of intermediate carboxylic acids. We propose that administration of TCA cycle organic acids may not only provide an algicidal method with high efficiency and environmental safety but also serve as an applicable way to produce and extract phycocyanin from cyanobacterial biomass. PMID:25342454

  18. Effect of humic acid (HA) on sulfonamide sorption by biochars

    Effect of quantity and fractionation of loaded humic acid (HA) on biochar sorption for sulfonamides was investigated. The HA was applied in two different modes, i.e. pre-coating and co-introduction with sorbate. In pre-coating mode, the polar fractions of HA tended to interact with low-temperature biochars via H-bonding, while the hydrophobic fractions were likely to be adsorbed by high-temperature biochars through hydrophobic and π-π interactions, leading to different composition and structure of the HA adlayers. The influences of HA fractionation on biochar sorption for sulfonamides varied significantly, depending on the nature of interaction between HA fraction and sorbate. Meanwhile, co-introduction of HA with sulfonamides revealed that the effect of HA on sulfonamide sorption was also dependent on HA concentration. These findings suggest that the amount and fractionation of adsorbed HA are tailored by the surface properties of underlying biochars, which differently affect the sorption for organic contaminants. - Highlights: • Effect of quantity and fractionation of coated HA on sorption of sulfonamides by BC was studied. • Fractionation of coated HA is tailored by surface properties of BC. • Roles of HA in BC sorption depend on interaction between HA adlayer and sorbate. • Roles of HA in sulfonamide sorption by BC also depend on HA aqueous concentration. - The quantity and fractionation of adsorbed HA play a major role in sulfonamide sorption by biochars

  19. The amelioration effect of tranexamic acid in wrinkles induced by skin dryness.

    Hiramoto, Keiichi; Sugiyama, Daijiro; Takahashi, Yumi; Mafune, Eiichi

    2016-05-01

    Tranexamic acid (trans-4-aminomethylcyclohexanecarboxylic acid) is a medical amino acid widely used as an anti-inflammatory and a whitening agent. This study examined the effect of tranexamic acid administration in wrinkle formation following skin dryness. We administered tranexamic acid (750mg/kg/day) orally for 20 consecutive days to Naruto Research Institute Otsuka Atrichia (NOA) mice, which naturally develop skin dryness. In these NOA mice, deterioration of transepidermal water loss (TEWL), generation of wrinkles, decrease of collagen type I, and increases in mast cell proliferation and tryptase and matrix metalloproteinase (MMP-1) release were observed. However, these symptoms were improved by tranexamic acid treatment. Moreover, the increase in the β-endorphin level in the blood and the expression of μ-opioid receptor on the surface of fibroblasts increased by tranexamic acid treatment. In addition, when the fibroblasts induced by tranexamic acid treatment were removed, the amelioration effect by tranexamic acid treatment was halved. On the other hand, tranexamic acid treated NOA mice and mast cell removal in tranexamic acid treated NOA mice did not result in changes in the wrinkle amelioration effect. Additionally, the amelioration effect of mast cell deficient NOA mice was half that of tranexamic acid treated NOA mice. These results indicate that tranexamic acid decreased the proliferation of mast cells and increases the proliferation of fibroblasts, subsequently improving wrinkles caused by skin dryness. PMID:27133035

  20. Hemin-mediated Hemolysis in Erythrocytes: Effects of Ascorbic Acid and Glutathione

    Shu-De LI; Yan-Dan SU; Ming LI; Cheng-Gang ZOU

    2006-01-01

    In the present work, we investigated the effect of ascorbic acid and glutathione on hemolysis induced by hemin in erythrocytes. Ascorbic acid not only enhanced hemolysis, but also induced formation of thiobarbituric acid-reactive substances in the presence of hemin. It has been shown that glutathione inhibits hemin-induced hemolysis by mediating hemin degradation. Erythrocytes depleted of glutathione became very sensitive to oxidative stress induced by hemin and ascorbic acid. H2O2 was involved in heminmediated hemolysis in the presence of ascorbic acid. However, a combination of glutathione and ascorbic acid was more effective in inhibiting hemolysis induced by hemin than glutathione alone. Extracellular and intracellular ascorbic acid exhibited a similar effect on hemin-induced hemolysis or inhibition of hemininduced hemolysis by glutathione. The current study indicates that ascorbic acid might function as an antioxidant or prooxidant in hemin-mediated hemolysis, depending on whether glutathione is available.

  1. Incretin effect after oral amino Acid ingestion in humans

    Lindgren, Ola; Pacini, Giovanni; Tura, Andrea;

    2015-01-01

    also present after amino acid ingestion is not known. OBJECTIVE: The objective of the study was to explore insulin secretion and incretin hormones after oral and iv amino acid administration at matched total amino acid concentrations in healthy subjects. DESIGN: An amino acid mixture (Vaminolac) was...... administered orally or iv at a rate resulting in matching total amino acid concentrations to 12 male volunteers with age 22.5 ± 1.4 years and a body mass index 22.4 ± 1.4 kg/m(2), who had no history of diabetes. MAIN OUTCOME MEASURES: Main outcome measures were area under the 120-minute curve for insulin, C...... after oral than after iv amino acid challenges (P = .006), whereas there was no significant difference in the glucagon response. Intact and total GIP rose after oral but not after iv amino acid administration, whereas intact and total GLP-1 levels did not change significantly in either test. CONCLUSION...

  2. Effects of Fatty Acid Inclusion in a DMPC Bilayer Membrane

    Peters, Günther H.J.; Hansen, Flemming Yssing; Møller, Martin S.;

    2009-01-01

    packing and structure of oleic acid (HOA) and stearic acid (HSA) in fluid bilayers of dimyristoylphosphatidylcholine (DMPC). The experimental data show a small but consistent positive excess volume for fatty acid concentrations below 10 mol %. At higher concentrations the fatty acids mix ideally with......Free fatty acids in biomembranes have been proposed to be a central component in several cellular control and regulatory mechanisms. To elucidate some fundamental elements underlying this, we have applied molecular dynamics simulations and experimental density measurements to study the molecular...... fluid DMPC. The simulations, which were benchmarked against the densitometric data, revealed interesting differences in the structure and location of the fatty acids depending on their protonation status. Thus, the protonated (uncharged) acid is located rather deeply in the membrane with an average...

  3. The effect of lactic acid bacteria on cocoa bean fermentation.

    Ho, Van Thi Thuy; Zhao, Jian; Fleet, Graham

    2015-07-16

    Cocoa beans (Theobroma cacao L.) are the raw material for chocolate production. Fermentation of cocoa pulp by microorganisms is crucial for developing chocolate flavor precursors. Yeasts conduct an alcoholic fermentation within the bean pulp that is essential for the production of good quality beans, giving typical chocolate characters. However, the roles of bacteria such as lactic acid bacteria and acetic acid bacteria in contributing to the quality of cocoa bean and chocolate are not fully understood. Using controlled laboratory fermentations, this study investigated the contribution of lactic acid bacteria to cocoa bean fermentation. Cocoa beans were fermented under conditions where the growth of lactic acid bacteria was restricted by the use of nisin and lysozyme. The resultant microbial ecology, chemistry and chocolate quality of beans from these fermentations were compared with those of indigenous (control) fermentations. The yeasts Hanseniaspora guilliermondii, Pichia kudriavzevii, Kluyveromyces marxianus and Saccharomyces cerevisiae, the lactic acid bacteria Lactobacillus plantarum, Lactobacillus pentosus and Lactobacillus fermentum and the acetic acid bacteria Acetobacter pasteurianus and Gluconobacter frateurii were the major species found in control fermentations. In fermentations with the presence of nisin and lysozyme, the same species of yeasts and acetic acid bacteria grew but the growth of lactic acid bacteria was prevented or restricted. These beans underwent characteristic alcoholic fermentation where the utilization of sugars and the production of ethanol, organic acids and volatile compounds in the bean pulp and nibs were similar for beans fermented in the presence of lactic acid bacteria. Lactic acid was produced during both fermentations but more so when lactic acid bacteria grew. Beans fermented in the presence or absence of lactic acid bacteria were fully fermented, had similar shell weights and gave acceptable chocolates with no differences

  4. Drought and flooding have distinct effects on herbivore-induced responses and resistance in Solanum dulcamara.

    Nguyen, Duy; D'Agostino, Nunzio; Tytgat, Tom O G; Sun, Pulu; Lortzing, Tobias; Visser, Eric J W; Cristescu, Simona M; Steppuhn, Anke; Mariani, Celestina; van Dam, Nicole M; Rieu, Ivo

    2016-07-01

    In the field, biotic and abiotic stresses frequently co-occur. As a consequence, common molecular signalling pathways governing adaptive responses to individual stresses can interact, resulting in compromised phenotypes. How plant signalling pathways interact under combined stresses is poorly understood. To assess this, we studied the consequence of drought and soil flooding on resistance of Solanum dulcamara to Spodoptera exigua and their effects on hormonal and transcriptomic profiles. The results showed that S. exigua larvae performed less well on drought-stressed plants than on well-watered and flooded plants. Both drought and insect feeding increased abscisic acid and jasmonic acid (JA) levels, whereas flooding did not induce JA accumulation. RNA sequencing analyses corroborated this pattern: drought and herbivory induced many biological processes that were repressed by flooding. When applied in combination, drought and herbivory had an additive effect on specific processes involved in secondary metabolism and defence responses, including protease inhibitor activity. In conclusion, drought and flooding have distinct effects on herbivore-induced responses and resistance. Especially, the interaction between abscisic acid and JA signalling may be important to optimize plant responses to combined drought and insect herbivory, making drought-stressed plants more resistant to insects than well-watered and flooded plants. PMID:26759219

  5. Effect of retinoic acid on cell proliferation kinetics and retinoic acid receptor expression of colorectal mucosa

    Hong-Bo Wei; Xiao-Yan Han; Wei Fan; Gui-Hua Chen; Ji-Fu Wang

    2003-01-01

    AIM: To investigate the effect of retinoic acid (RA) on cell proliferation kinetics and retinoic acid receptor (RAR)expression of colorectal mucosa.METHODS:One hundred sixty healthy male Wistar rats were randomly divided into 4 groups. Rats in groups Ⅰ and Ⅱ were subcutaneously injected with dimethylhydrazine (DMH) (20 mg/kg, once a week,) for 7 to 13 weeks, while groups Ⅲ and Ⅳ were injected with normal saline. Rats in groups Ⅱ and Ⅲ were also treated with RA (50 mg/kg,every day, orally) from 7th to 15th week, thus group Ⅳ was used as a control. The rats were killed in different batches.The expressions of proliferating cell nuclear antigen (PCNA),nucleolar organizer region-associated protein (AgNOR) and RAR were detected.RESULTS: The incidence of colorectal carcinoma was different between groupsⅠ(100 %) and Ⅱ (15 %) (P<0.01).The PCNA indices and mean AgNOR count in group Ⅱ were significantly lower than those in group Ⅰ(F=5.418 and 4.243,P<0.01). The PCNA indices and mean AgNOR count in groups Ⅰ and Ⅱ were significantly higher than those in the groups Ⅲ and Ⅳ (in which carcinogen was not used) (F=5.927and 4.348, P<0.01). There was a tendency in group Ⅰ that the longer the induction with DMH the higher PCNA index and AgNOR count expressed (F=7.634 and 6.826, P<0.05).However, there was no such tendency in groups Ⅱ, Ⅲ and Ⅳ(F=1.662 and 1.984, P>0.05). The levels of RAR in normal and cancerous tissues in groups treated with RA were significantly higher than those in groups not treated with RA (F=6.343 and 6.024, P<0.05).CONCLUSION: RA decreases the incidence of colorectal carcinoma induced by DMH. Coiorectal cancer tissue is associated with abnormal expression of PCNA, AgNOR and RAR. RA inhibits the expression of PCNA and AgNOR, and increases RAR concentration in colorectal tissues.

  6. Investigating animal health effects of sour gas acid forming emissions

    The effects of sour gas well blowout emissions on livestock are reviewed. Guidelines for safe drilling operations in hydrogen sulfide environments, general hazards and characteristics of hydrogen sulfide, and guidelines for field investigation into the effects of sour gas and acid emissions on livestock are discussed. A case history involving the Ross No. 2 gas well blowout of July 1985 in Rankin County, Mississippi is presented. The blowout lasted for 72 days, and at peak discharge the 500 ppM radius was ca 3.5 miles. A cattle embryo transplant operation located one half mile from the well was affected by the blowout. Examination by a local veterinarian of the cattle demonstrated eye irritation, epiphora, nasal discharge and coughing. After one and a half months of exposure, most animals showed clinical signs of a severe dry hacking cough, epiphora, dry rales over the thoracic inlet, and a bronchial popping sound over the lateral thorax. All animals had eye irritation. Of 55 animals showing signs of respiratory distress and eye irritations, 15 were still clinically ill in May of 1986. 7 refs., 1 tab

  7. Effect of Lactic Acid Bacterial Inoculants on Rice Straw Silage

    HUA Jinling; ZHANG Yonggen; MEN Yuxin

    2008-01-01

    The trail was designed to study on technique aspects of ensiling rice straw (RS) appended amounts of lactobacillus.There were two groups according to silage ways, baled silage (BS) and chopped silage (CS), in which lactobacillus was added at levels of 10,15 and 20 mg·kg-1,respectively and the mixtures were placed into a packed polyethylene bags and stored at room temperature for 45 days.The results showed that lactobacillus had remarkable effect on fermentation characteristics of RS. The quality of the silage was improved with the lactobacillus addition.In the experiment the optimal quality of rice straw silage (RSS) can be obtained when lactobacillus was added with 15 or 20 mg·kg-1 level.The effect of different silage methods was very remarkable to the silage quality of same material.The quality of CS was better than that of long silage, at the same time,BS was feasible on condition of eligible level of lactic acid bacteria.

  8. Antitumor effect of sonodynamically activated pyrrolidine tris-acid fullerene

    Iwase, Yumiko; Nishi, Koji; Fujimori, Junya; Fukai, Toshio; Yumita, Nagahiko; Ikeda, Toshihiko; Chen, Fu-shin; Momose, Yasunori; Umemura, Shin-ichiro

    2016-07-01

    In this study, the sonodynamically induced antitumor effect of pyrrolidine tris-acid fullerene (PTF) was investigated. Sonodynamically induced antitumor effects of PTF by focused ultrasound were investigated using isolated sarcoma-180 cells and mice bearing ectopically-implanted colon 26 carcinoma. Cell damage induced by ultrasonic exposure was enhanced by 5-fold in the presence of 80 µM PTF. The combined treatment of ultrasound and PTF suppressed the growth of the implanted colon 26 carcinoma. Ultrasonically induced 2,2,6,6-tetramethyl-4-piperidone-1-oxyl (4oxoTEMPO) production in the presence and absence of PTF was assessed, and it was shown that 80 µM PTF enhanced 4oxoTEMPO production as measured by ESR spectroscopy. Histidine, a reactive oxygen scavenger, significantly reduced cell damage and 4oxoTEMPO generation caused by ultrasonic exposure in the presence of PTF. These results suggest that singlet oxygen is likely to be involved in the ultrasonically induced cell damage enhanced by PTF.

  9. PHYTOCHEMICAL, PHARMACOLOGICAL AND PHARMACOKINETICS EFFECTS OF ROSMARINIC ACID

    Rahul Bhatt

    2013-04-01

    Full Text Available Rosmarinic acid is natural polyphenol antioxidant isolated from Rosmarinus officinalis L. and commonly found in species of the Boraginaceae and the subfamily Nepetoideae of the Lamiaceae. RA species of Labiatae named Salvia officinalis, Rosmarinus officinali. RA exhibits important biological activities include its anti-carcinogenic, antiviral, antibacterial antimicrobial, antidepressant qualities. Plants of Labiatae family have been used in traditional medicine for exhaustion, phytotherapy, weakness, depression, and memory enhancement, circulation improvement, strengthening of fragile blood vessels, inflammation, and infection CNS disorder. RA showed the highest concentrations of antioxidant all the polyphenols. It is a red-orange powder that is slightly soluble in water, but well soluble in most organic solvents. RA polyphenolic compounds have been associated with antioxidative action in biological systems, acting as scavengers of singlet oxygen and free radicals. RA protects neurons from oxidative stress significantly attenuated H2O2-induced reactive oxygen species (ROS generation and apoptotic cell death and could contribute at least in part to neuroprotective effects because this natural compound exerts neuroprotective and anti-oxidative effects against neurotoxin insult in dopaminergic cells. This review focused on pharmacokinetics and use different uses of RA as antioxidant agent, anti-inflammatory, antiviral, photo protective, anticancer, antidepressant, and possible neuroprotective agent mechanism of actions.

  10. Effects of Exogenous Cinnamic Acids on the Growth and Physiological Characteristics of Cucumber Seedlings

    2005-01-01

    In order to study the effects of exogenous cinnamic acids on plant growth, contents of photosynthetic pigment, root activities and ATPase activities of root membrane at cucumber seedling stage, the seedlings of Shandong Mici cucumber were tested. The results showed that seedlings growth, contents of photosynthetic pigment, root activities and ATPase activities of root membrane were inhibited by cinnamic acids. The growth and root activities of seedlings were significantly cinnamic acids, whereas ATPase activities exhibited a higher sensitivity and greatly decreased in the soil amended with 50 mg kg-1 cinnamic acids. These results suggested that cinnamic acids could induce a stress condition, and the stress intensities increased with enhanced cinnamic acid concentration.

  11. Effects of organic acid pickling on the corrosion resistance of magnesium alloy AZ31 sheet

    Nwaogu, Ugochukwu Chibuzoh; Blawert, C.; Scharnagl, N.; Dietzel, W.; Kainer, K. U.

    2010-01-01

    mu m of the contaminated surface was required to reach corrosion rates less than 1 mm/year in salt spray condition. Among the three organic acids examined, acetic acid is the best choice. Oxalic acid can be an alternative while citric acid is not suitable for cleaning AZ31 sheet, because of......Organic acids were used to clean AZ31 magnesium alloy sheet and the effect of the cleaning processes on the surface condition and corrosion performance of the alloy was investigated. Organic acid cleanings reduced the surface impurities and enhanced the corrosion resistance. Removal of at least 4...

  12. Effects of Inorganic acid catalysts on liquefaction of wood In phenol

    Zhang Qiuhui; Zhao Guangjie; Chen Jinpeng

    2006-01-01

    In order to obtain the effects of acid catalysts on wood liquefaction in phenol, we investigated the liquefaction of wood powder from Chinese fir (Cunninghamia lanceolata) and poplar (Triploid Populus tomentosa Carr) in the presence of phenol with the following weak inorganic acids as catalysts: phosphoric acid (85%),sulfuric acid (36%),hydrochloric acid (37%)and oxalic acid (99.5%).Results show that phosphoric acid (85%) and sulfuric acid (36%) are better than the other catalysts.It was found that lower residue ratios can be obtained under defined reaction conditions: phenol/wood ratio is 4,a 10% catalyst based on the weight of phenol,a temperature of 150℃ for 2 h and phosphoric or sulfuric acid.The residue ratios are 3.2% and 4.0%,respectively.

  13. The Adsorption Effect of Quaternized Chitosan Derivatives on Bile Acid

    Shu Xian MENG; Ya Qing FENG; Wen Jin LI; Cai Xia YIN; Jin Ping DENG

    2006-01-01

    Three quaternized chitosan derivatives were synthesized and their adsorption performance of bile acid from aqueous solution was studied. The adsorption capacities and rates of bile acid onto quaternized chitosan derivatives were evaluated. The kinetic experimental data properly correlated with the second-order kinetic model, which indicated that the chemical sorption is the rate-limiting step. The results showed that the quaternized chitosan derivatives are favorable adsorbents for bile acid.

  14. PHARMACOLOGICAL EFFECTS OF SNAKE VENOM L- AMINO ACID OXIDASES

    Joseph Baby; Rajan Sheeja S; M.V Jeevitha; S.U Ajisha

    2011-01-01

    L-Amino acid oxidases are flavoenzymes which catalyze the stereospecific oxidative deamination of an L-amino acid substrate to a corresponding a-ketoacid with hydrogen peroxide and ammonia production. These enzymes, which are widely distributed in many different organisms, exhibit a marked affinity for hydrophobic amino acids, including phenylalanine, tryptophan, tyrosine, and leucine. Snake venom LAAO induces platelet aggregation and cytotoxicity in various cancer cell lines. The enzyme has ...

  15. Effect of Salt Stress on Purslane and Potential Health Benefits: Oxalic Acid and Fatty Acids Profile

    Carvalho, Isabel S.; Teixeira, Mónica; Brodelius, Maria

    2009-01-01

    Polyunsaturated fatty acids (PUFAs) are crucial for human health and nutrition since they cannot be synthesized in the body and hence must be provided by the diet. Portulaca oleracea L. (purslane) is the eighth most commonly distributed plant in the world. It is a heat- and drought-tolerant plant and our previous study demonstrates that their leaf provide high amounts of antioxidants, minerals, vitamins and proteins. In the present study, we set out to characterize the oxalic acid and the fat...

  16. Inhibitory effect of lipoic acid on firefly luciferase bioluminescence

    Lipoic acid was found to inhibit the firefly luciferin-luciferase reaction. The inhibition is competitive and is the strongest known (Ki 0.026 ± 0.013 μM) compared with other reported inhibitors. Considering the structure-activity correlations, the mechanism of inhibition may originate from the sulfur atom and carboxyl moiety of lipoic acid giving it structural specificity. Subsequent addition of lipoic acid and nitric oxide accelerated the inhibition in vitro, suggesting that lipoic acid may have a functional role in regulating firefly bioluminescence

  17. Hormonal and Hydroxycinnamic Acids Profiles in Banana Leaves in Response to Various Periods of Water Stress

    Jalel Mahouachi

    2014-01-01

    Full Text Available The pattern of change in the endogenous levels of several plant hormones and hydroxycinnamic acids in addition to growth and photosynthetic performance was investigated in banana plants (Musa acuminata cv. “Grand Nain” subjected to various cycles of drought. Water stress was imposed by withholding irrigation for six periods with subsequent rehydration. Data showed an increase in abscisic acid (ABA and indole-3-acetic acid (IAA levels, a transient increase in salicylic acid (SA concentration, and no changes in jasmonic acid (JA after each period of drought. Moreover, the levels of ferulic (FA and cinnamic acids (CA were increased, and plant growth and leaf gas exchange parameters were decreased by drought conditions. Overall, data suggest an involvement of hormones and hydroxycinnamic acids in plant avoidance of tissue dehydration. The increase in IAA concentration might alleviate the senescence of survival leaves and maintained cell elongation, and the accumulation of FA and CA could play a key role as a mechanism of photoprotection through leaf folding, contributing to the effect of ABA on inducing stomatal closure. Data also suggest that the role of SA similarly to JA might be limited to a transient and rapid increase at the onset of the first period of stress.

  18. Effects of Phenolic Acids on Growth and Activities of Membrane Protective Enzymes of Cucumber Seedlings

    WU Feng-zhi; HUANG Cai-hong; ZHAO Feng-yan

    2002-01-01

    Two phenolic acids P-hydroxy benzoic acid and cinnamic acid were designated as four concentrations (0, 50μmol/L, 100μmol/L, 150μmol/L) to investigate the effects of phenoic acids on the growth and the activities of membrane protective enzymes of cucumber seedlings. The results showed that both phenolic acids inhibited the seedlings growth. The inhibitory effects were increased with the concentration of phenolic acids increasing and the time of treatment prolonging. Seedlings treated with A150 (P-hydroxy benzoic acid, 150μmol/L), B50 (cinnamic acid, 50 μmol/L), B100 (cinnamic acid,100μmol/L), B150 (cinnamic acid, 150μmol/L) showed significantly shorter in plant height , smaller in leaf area. and lighter in fresh weight. The inhibitory effect of cinnamic acid was comparatively stronger than that of P-hydroxy benzoic acid. For protective enzymes system, compared to control, the POD activity increased at all concentrations of P-hydroxy benzoic acid during the treatment but increased at first then decreased before increased again at last at all concentrations of cinnamic acid . In the case of CAT, its activity increased at first, then decreased, and increased again at lower concentrations of phenolic acids. However, at higher concentrations the activities decreased at first, then increased a little, decreased continuously at last. In addition, the treatments of phenolic acids led to an increase then a decreaseof SOD activity and an increase of MDA content in the seedlings. All above indicated the accumulating of free radicalsand destruction of protective enzymes at higher concentrations of phenolic acids.

  19. Comparison of the effects of hyaluronidase and hyaluronic acid on probiotics growth

    Di Cerbo, Alessandro; Aponte, Maria; Esposito, Rita; Bondi, Moreno; Palmieri, Beniamino

    2013-01-01

    Background Hyaluronic acid has several clinical applications. Recent evidences suggested antimicrobial properties against several pathogens. The aim of the present survey was to evaluate the effect of hyaluronic acid, alone or in combination with hyaluronidase, on protechnological or probiotic strains. Results The role of hyaluronic acid and hyaluronidase on in vitro growth rate of different lactic acid bacteria was investigated. Standard methods revealed that low concentrations of hyaluronic...

  20. Effects of fatty acids on carbohydrates and lipids of canola seeds during germination

    M.L.L. Ferrarese; C. R. S. Baleroni; O. Ferrarese-Filho

    1998-01-01

    The present work was carried out to investigate the effects of caprylic acid (C8) and oleic acid (C18) on carbohydrates and lipids during canola seed germination. The results showed that oleic acid influence carbohydrate concentration but did not influence lipid concentration. Significant results were found with caprylic acid that affected carbohydrates and lipids in cotyledons after three-day germination.O presente trabalho foi realizado com o objetivo de investigar os efeitos dos ácidos cap...

  1. Allelopathic effects of ferulic, gallic, and vanillic acids on corn (Zea mays L.)

    Abdaoui, Fatima El

    1991-01-01

    Studies on the activity of femlic, gallic, and vanillic acids on germination and growth of corn (Zea mays L.), radish (Raphanus sativus L.), and peanut (Arachis hypogaea L.) showed that the inhibitory effects of these acids were concentration and growth variable dependent. Ten days after treatment, significant reduction in percent germination of the three species occurred with higher phenolic acid treatments, except that gallic acid did not significantly inhibit peanut germi...

  2. [EFFECT OF MYCOPLASMA INFECTION TO FATTY ACID COMPOSITION OF CALLUS CULTURE SUGAR BEET].

    Panchenko, L P; Korobkova, K S; Ostapchuk, A N

    2015-01-01

    It was studied the effect of Acholeplasma laidlawii var. granulum str. 118 to fatty acid composition of sugar beet calluses. It was established that acting of acholeplasma results to changes in the quantitative content of the individual fatty acids and in the qualitative composition of fatty acids in the lipids of calluses. The changing of the fatty acid composition of calluses lipids of sugar beet infected by A. laidlawii vargranulum str. 118 is observed as nonspecific response to biotic stress. PMID:26829840

  3. Effect of 6 dietary fatty acids on the postprandial lipid profile, plasma fatty acids, lipoprotein lipase, and cholesterol ester transfer activities in healthy young men

    Tholstrup, T.; Sandstrøm, B.; Bysted, Anette;

    2001-01-01

    , plasma fatty acids, and preheparin lipoprotein lipase and cholesterol ester transfer protein (CETP) activities. Design: Six test fats high (approximate to 43% by wt) in stearic acid, palmitic acid, palmitic + myristic acid, oleic acid, elaidic acid (trans 18:1), and linoleic acid were produced by......Background: There is increasing evidence that postprandial triacylglycerol-rich lipoproteins may be related to atherogenic risk. Objective: The objective was to investigate the effect of individual fatty acid intakes on postprandial plasma lipoprotein triacylglycerol and cholesterol concentrations...... to the test-fat meals were observed for plasma lipoprotein triacylglycerol and cholesterol concentrations, plasma fatty acid concentrations, and lipoprotein lipase and CETP activities (diet x time interaction: 0.001

    acids stearic and palmitic acids...

  4. Analysis of embryo, cytoplasm and maternal effects on fatty acid components in soybean (Glycine max Merill.)

    NING Hailong; LI Wenxia; LI Wenbin

    2007-01-01

    The quality of oil determined by the constituents and proportion of fatty acid components,and the understanding of heredity of fatty acid components are of importance to breeding good quality soybean varieties.Embryo,cytoplasmic and maternal effects and genotype×environment interaction effects for quality traits of soybean [Glycine max (L.) Merrill.] seeds were analyzed using a general genetic model for quantitative traits of seeds with parents,F1 and F2,of 20 crosses from a diallel mating design of five parents planted in the field in 2003 and 2004 in Harbin,China.The interaction effects of palmitic,stearic,and linoleic acid contents were larger than the genetic main effects,while the genetic main effects were equal to interaction effects for linolenic and oleic acid content.Among all kinds of genetic main effects,the embryo effects were the largest for palmitic,stearic,and linoleic acids,while the cytoplasm effects were the largest for oleic and linolenic acids.Among all kinds of interaction effects,the embryo interaction effects were the largest for fatty acids.The sum of additive and additive× environment effects were larger than that of dominance and dominance×environment effects for the linolenic acid content,but not for other quality traits.The general heritabilities were the main parts of heritabilities for palmitic and oleic acid contents,but the interaction was more important for stearic,linoleic,and linolenic acid contents.For the general heritability,maternal and cytoplasm heritabilities were the main components for palmitic,oleic,and linolenic acid contents.It was shown for the interaction heritabilities that the embryo interaction heritabilities were more important for oleic and linolenic acid contents,while the maternal interaction heritabilities were more important for linoleic acid content.Among selection response components,the maternal and cytoplasm general responses and/or interaction responses were more important for palmitic

  5. The Effect Acid Addition on Characteristic Effervescent Tablet of Tamarillo

    Fidela Violalita

    2015-01-01

    Full Text Available The aim of study was to determine the percentage of acid and its influence on characteristic effervescent tablet of tamarillo. The percentages of  acid addition that consist with citric acid and tartaric acid (1:1 were 15%, 20%, 25%, 30% and 35%. Water content, pH solution, vitamin C content, soluble duration, friability of tablet and organoleptic test on colour, aroma and flavour of tamarillo effervescent tablet were determined after addition of acid. The results showed that the difference in percentage of acid addition significantly affected to the water content, pH solution, soluble duration and friability of tablets. Based on organoleptic test, the tablet consist of 25% addition of acid was the best percentage of acid addition. The quality parameters in this percentage were the water content 6.09%, pH solution 4.80,  vitamin C 498.0800 mg/tablet, soluble duration 3.96 minute, friability of tablet 0.11%, while the averages of organoleptic test for colour were 3.40 (ordinary, aroma 3.36 (ordinary, and flavour 3.76 (like.

  6. Effect of a Previous Acid Adaptation of Zygosaccharomyces bailii on its Growth Kinetic in Acidic Media

    Alex Tchuenchieu

    2014-11-01

    Full Text Available The growth response of Zygosaccharomyces bailii acid adapted cells was assessed in acidified media. Yeast cells were first pre-cultured in nutrient broth adjusted with hydrochloric, citric and malic acid to pH 4; 4.5; 5; 5.5; 6 and 6.5. Moreover, they were also grown in two controls consisting of nutrient broth and nutrient broth supplemented with 1% of glucose both adjusted at pH 7. The variation of pH before and after the growth along with yeast concentration was measured. The cells pre-cultured in controls conditions and in the three conditions at pH 5 were then each inoculated in six BHI medium consisting of BHI adjusted with hydrochloric, citric and malic acid at pH 5.5 and 3.5. The growth was monitored by spectrophotometry and the yeast concentration after incubation was obtained by microscopy using a Thoma cell chamber. DMFit 2.1 was used to plot the growth curves and to estimate the growth parameters. All the pre-cultures and cultures were made at 37°C during 24 hours. During the pre-cultures, an important decrease of pH was noted in nutrient broth supplemented with glucose, moving from 7 to 3.81. In all the other pre-cultures, just a little variation was observed ranging from -0.57 to 0.50. Growth was observed in all the conditions, except at pH4. By growing the cells coming from the selected pre-cultures conditions in the different acidic BHI media, it appears that acid adaptation enhance the growth at pH 5.5 no matter the acid contains in the medium and the acid to which the cells were adapted. However, this acid adaptation was not sufficient to initiate growth at pH 3.5 after 24 hours of incubation at 37°C. Growth rate was significantly affected by the pH of the pre-culture medium and the acid present in the culture medium. Pre-culture with glucose supplementation was the only parameter studied affecting the latency.

  7. Acidic deposition and its effects in southwestern China

    The emissions of SO2 in China correspond at present to 8-10 TgSy-1. The rapid industrialization has caused a dramatic increase in the emissions in recent years and this increase is likely to continue. This paper describes studies of concentrations and effects of acidifying substances in parts of the Guizhou and the Sichuan provinces where the S-emissions are large, mainly coming from coal combustion. A small catchment about 10 km from Guiyang centre was equipped with instruments for studies of soils, soil water and streamwater chemistry. The molar ratio Al/(Ca + Mg) is > 0.8 in soil water in some places. Two small streams have median pH-values about 4.6 and 5.1. Laboratory studies with selected Chinese soils showed that the anion adsorption was low. These studies gave also important information on soil sensitivity. The studies confirm that acid deposition may affect soils in parts of south-western China, but the sensitivity varies dramatically and there is a strong need for more information. 11 refs., 3 tabs., 3 figs

  8. Effectiveness of a constructed wetland for acid mine drainage reclamation

    Acid mine drainage (AMD) from an abandoned coal mine in southcentral Kentucky had pH levels as low as 2.5 and iron concentrations as high as 630 mg/L. In the summer of 1992, the SCS constructed a wetland system to treat the AMD that involved use of both physical and biological treatment. The AMD was fed into three anoxic limestone beds, followed by an aeration pond, before entering a series of four cattail cells and a polishing pond. Flow of AMD was initiated in the fall of 1992, and chemical and biological monitoring were conducted throughout the winter months. Chemical analysis of the water along the flow path of the AMD during the first six months of operation indicated that the limestone beds improved the pH substantially, and that most of the metals were removed prior to the water entering the cattail cells. The effectiveness of the wetland system to improve water quality also was monitored using the cladoceran (Ceriodaphnia dubia) survival and reproduction test. Determination of toxic levels indicated a substantial improvement in water quality below the limestone beds, and a slight decrease in toxicity throughout the cattail cells. However, toxic levels stayed the same or increased in the polishing pond. Water quality monitoring will continue through the growing season of 1993 to assess the impact of plant growth on the reclamation of the AMD

  9. Effects of humic acid-metal complexes on hepatic carnitine palmitoyltransferase, carnitine acetyltransferase and catalase activities

    Fungjou Lu; Youngshin Chen (National Taiwan Univ., Taipei (Taiwan, Province of China). Dept. of Biochemistry); Tienshang Huang (National Taiwan Univ., Taipei (Taiwan, Province of China). Dept. of Medicine)

    1994-03-01

    A significant increase in activities of hepatic carnitine palmitoyltransferase and carnitine acetyltransferase was observed in male Balb/c mice intraperitoneally injected for 40 d with 0.125 mg/0.1 ml/d humic acid-metal complexes. Among these complexes, the humic acid-As complex was relatively effective, whereas humic acid-25 metal complex was more effective, and humic acid-26 metal complex was most effective. However, humic acid or metal mixtures, or metal such as As alone, was not effective. Humic acid-metal complexes also significantly decreased hepatic catalase activity. A marked decrease of 60-kDa polypeptide in liver cytoplasm was also observed on SDS-polyacrylamide gel electrophoresis after the mice had been injected with the complexes. Morphological analysis of a histopathological biopsy of such treated mice revealed several changes in hepatocytes, including focal necrosis and cell infiltration, mild fatty changes, reactive nuclei, and hypertrophy. Humic acid-metal complexes affect activities of metabolic enzymes of fatty acids, and this results in accumulation of hydrogen peroxide and increase of the lipid peroxidation. The products of lipid peroxidation may be responsible for liver damage and possible carcinogenesis. Previous studies in this laboratory had shown that humic acid-metal complex altered the coagulation system and that humic acid, per se, caused vasculopathy. Therefore, humic acid-metal complexes may be main causal factors of not only so-called blackfoot disease, but also the liver cancer prevailing on the southwestern coast of Taiwan.

  10. Effects of fatty acid activation on photosynthetic production of fatty acid-based biofuels in Synechocystis sp. PCC6803

    Gao Qianqian

    2012-03-01

    Full Text Available Abstract Background Direct conversion of solar energy and carbon dioxide to drop in fuel molecules in a single biological system can be achieved from fatty acid-based biofuels such as fatty alcohols and alkanes. These molecules have similar properties to fossil fuels but can be produced by photosynthetic cyanobacteria. Results Synechocystis sp. PCC6803 mutant strains containing either overexpression or deletion of the slr1609 gene, which encodes an acyl-ACP synthetase (AAS, have been constructed. The complete segregation and deletion in all mutant strains was confirmed by PCR analysis. Blocking fatty acid activation by deleting slr1609 gene in wild-type Synechocystis sp. PCC6803 led to a doubling of the amount of free fatty acids and a decrease of alkane production by up to 90 percent. Overexpression of slr1609 gene in the wild-type Synechocystis sp. PCC6803 had no effect on the production of either free fatty acids or alkanes. Overexpression or deletion of slr1609 gene in the Synechocystis sp. PCC6803 mutant strain with the capability of making fatty alcohols by genetically introducing fatty acyl-CoA reductase respectively enhanced or reduced fatty alcohol production by 60 percent. Conclusions Fatty acid activation functionalized by the slr1609 gene is metabolically crucial for biosynthesis of fatty acid derivatives in Synechocystis sp. PCC6803. It is necessary but not sufficient for efficient production of alkanes. Fatty alcohol production can be significantly improved by the overexpression of slr1609 gene.

  11. Hypolipidemic effects of lactic acid bacteria fermented cereal in rats

    Banjoko Immaculata

    2012-12-01

    Full Text Available Abstract Background The objectives of the present study were to investigate the efficacy of the mixed culture of Lactobacillus acidophilus (DSM 20242, Bifidobacterium bifidum (DSM 20082 and Lactobacillus helveticus (CK60 in the fermentation of maize and the evaluation of the effect of the fermented meal on the lipid profile of rats. Methods Rats were randomly assigned to 3 groups and each group placed on a Diet A (high fat diet into which a maize meal fermented with a mixed culture of Lb acidophilus (DSM 20242, B bifidum (DSM 20082 and Lb helveticus (CK 60 was incorporated, B (unfermented high fat diet or C (commercial rat chow respectively after the first group of 7 rats randomly selected were sacrificed to obtain the baseline data. Thereafter 7 rats each from the experimental and control groups were sacrificed weekly for 4 weeks and the plasma, erythrocytes, lipoproteins and organs of the rats were assessed for cholesterol, triglyceride and phospholipids. Results Our results revealed that the mixed culture of Lb acidophilus (DSM 20242, B bifidum (DSM 20082 and Lb helveticus (CK 60 were able to grow and ferment maize meal into ‘ogi’ of acceptable flavour. In addition to plasma and hepatic hypercholesterolemia and hypertriglyceridemia, phospholipidosis in plasma, as well as cholesterogenesis, triglyceride constipation and phospholipidosis in extra-hepatic tissues characterized the consumption of unfermented hyperlipidemic diets. However, feeding the animals with the fermented maize diet reversed the dyslipidemia. Conclusion The findings of this study indicate that consumption of mixed culture lactic acid bacteria (Lb acidophilus (DSM 20242, Bifidobacterium bifidum (DSM 20082 and Lb helveticus (CK 60 fermented food results in the inhibition of fat absorption. It also inhibits the activity of HMG CoA reductase. This inhibition may be by feedback inhibition or repression of the transcription of the gene encoding the enzyme via activation of the

  12. Effect of transdermic acetylsalicylic acid on hemostasis in healthy volunteers.

    Martínez, Adriana B; Funosas, Esteban; Maestri, Lorella; Lucena, Perla Hermida

    2007-01-01

    Acetylsalicylic acid (ASA) exerts an antiaggregatory effect on platelets by irreversible inhibition of the enzyme thrombocyte cyclooxigenase when it is administered orally at doses above 80 mg/day. For several years ASA has been available as a solution that can be topically applied on the skin. It is widely used by athletes and individuals with chronic rheumatic disorders. However, it has not been established to date whether the plasma levels that result from these doses of ASA affect hemostasis during odontological procedures that involve bleeding, causing platelet dysfunction. The aim of the present study was to evaluate whether topical application is capable of affecting hemostasis. Three studies were conducted: A, B y C. Each of the 3 groups included 12 healthy volunteers of both sexes. The aim of study A was to evaluate if the formulation for topical application resulted in plasma levels of ASA that resembled those observed for the oral formulation and affect hemostasis. In experiment A, plasma levels of salicylic acid (SA) were assessed for each volunteer at 30 minutes, 60 minutes, 6 hours, 12 hours and 24 hours after oral administration of a dose of 500 mg ASA. Experiment B was identical to experiment A except for the fact that ASA was topically applied employing a commercial preparation Aspirub in a predetermined area at a rate of 2 ml/day over a period of 15 days. Experiment C was designed in the same way as experiment B, for a higher dose and a longer period of time (4 ml/day over a period of 30 days). One of the volunteers exhibited detectable salicylemia that could affect hemostasis as occurs with the oral formulation. The following two studies (C1 and C2) employed doses of Aspirub of 8 and 16 ml/day respectively, over a period of 30 days. We measured biochemical parameters associated to platelet function. The dose of 8 ml/day induced moderate alterations in all the parameters related to platelet function and the daily dose of 16 ml inhibited platelet

  13. Effect of Linoleic Acid Concentration on Conjugated Linoleic Acid Production by Butyrivibrio fibrisolvens A38

    Kim, Young Jun; Liu, Rui Hai; Bond, Daniel R.; Russell, James B.

    2000-01-01

    Butyrivibrio fibrisolvens A38 inocula were inhibited by as little as 15 μM linoleic acid (LA), but growing cultures tolerated 10-fold more LA before growth was inhibited. Growing cultures did not produce significant amounts of cis-9, trans-11 conjugated linoleic acid (CLA) until the LA concentration was high enough to inhibit biohydrogenation, growth was inhibited, and lysis was enhanced. Washed-cell suspensions that were incubated anaerobically with 350 μM LA converted most of the LA to hydr...

  14. Opposite Regulation of CD36 Ubiquitination by Fatty Acids and Insulin: EFFECTS ON FATTY ACID UPTAKE*

    Smith, Jill; Su, Xiong; El-Maghrabi, Raafat; Stahl, Philip D.; Abumrad, Nada A.

    2008-01-01

    FAT/CD36 is a membrane scavenger receptor that facilitates long chain fatty acid uptake by muscle. Acute increases in membrane CD36 and fatty acid uptake have been reported in response to insulin and contraction. In this study we have explored protein ubiquitination as one potential mechanism for the regulation of CD36 level. CD36 expressed in Chinese hamster ovary (CHO) or HEK 293 cells was found to be polyubiquitinated via a process involving both lysines 48 and 63 of ubiquitin. Using CHO c...

  15. Combinatorial Effects of Fatty Acid Elongase Enzymes on Nervonic Acid Production in Camelina sativa

    Huai, Dongxin; Zhang, Yuanyuan; Zhang, Chunyu; Edgar B. Cahoon; Zhou, Yongming

    2015-01-01

    Very long chain fatty acids (VLCFAs) with chain lengths of 20 carbons and longer provide feedstocks for various applications; therefore, improvement of VLCFA contents in seeds has become an important goal for oilseed enhancement. VLCFA biosynthesis is controlled by a multi-enzyme protein complex referred to as fatty acid elongase, which is composed of β-ketoacyl-CoA synthase (KCS), β-ketoacyl-CoA reductase (KCR), β-hydroxyacyl-CoA dehydratase (HCD) and enoyl reductase (ECR). KCS has been iden...

  16. Effects of acid on vagal nociceptive afferent subtypes in guinea pig esophagus.

    Yu, Xiaoyun; Hu, Youtian; Yu, Shaoyong

    2014-08-15

    Acid reflux-induced heartburn and noncardiac chest pain are processed peripherally by sensory nerve endings in the wall of the esophagus, but the underlying mechanism is still unclear. This study aims to determine the effects of acid on esophageal vagal nociceptive afferent subtypes. Extracellular single-unit recordings were performed in guinea pig vagal nodose or jugular C fiber neurons by using ex vivo esophageal-vagal preparations with intact nerve endings in the esophagus. We recorded action potentials (AP) of esophageal nodose or jugular C fibers evoked by acid perfusion and compared esophageal distension-evoked AP before and after acid perfusion. Acid perfusion for 30 min (pH range 7.4 to 5.8) did not evoke AP in nodose C fibers but significantly decreased their responses to esophageal distension, which could be recovered after washing out acid for 90 min. In jugular C fibers, acid perfusion not only evoked AP but also inhibited their responses to esophageal distension, which were not recovered after washing out acid for 120 min. Lower concentration of capsaicin perfusion mimicked acid-induced effects in nodose and jugular C fibers. Pretreatment with TRPV1 antagonist AMG9810, but not acid-sensing ion channel (ASIC) inhibitor amiloride, significantly inhibited acid-induced effects in nodose and jugular C fiber. These results demonstrate that esophageal vagal nociceptive afferent nerve subtypes display distinctive responses to acid. Acid activates jugular, but not nodose, C fibers and inhibits both of their responses to esophageal distension. These effects are mediated mainly through TRPV1. This inhibitory effect is a novel finding and may contribute to esophageal sensory/motor dysfunction in acid reflux diseases. PMID:24994852

  17. Effects of ascorbic acid and oxalic acid on uptake and translocation of zinc in maize (Zea Mays L.) using 65Zn radiotracer

    This study was done to evaluate the effect of oxalic and ascorbic acids on 65Zn uptake and translocation in Maize plants through solution culture experiment so that the desired acid remains available in the roots zone

  18. Effect of Low-Molecular-Weight Organic Acids on Cl- Adsorption by Variable Charge Soils

    XU Ren-Kou; ANG Ma-Li; WANG Qiang-Sheng; JI Guo-Liang1

    2004-01-01

    Low-molecular-weight (LMW) organic acids exist widely in soils and have been implicated in many soil processes.The objective of the present paper was to evaluate effect of two LMW organic acids, citric acid and oxalic acid, on Cl- adsorption by three variable charge soils, a latosol, a lateritic red soil and a red soil, using a batch method. The results showed that the presence of citric acid and oxalic acid led to a decrease in Cl- adsorption with larger decreases for citric acid. Among the different soils Gl- adsorption in the lateritic red soil and the red soil was more affected by both the LMW organic acids than that in the latosol.

  19. Influencing of resorption and side-effects of salicylic acid by complexing with β-cyclodextrin

    After oral administration of 14C-labelled salicylic acid and its β-cyclodextrin complex to rats, the radioactivity level of the blood reached its maximum during the first 2 h. The blood level obtained with the complex is somewhat but not significantly lower than with free acid. Since the resorption of cyclodextrin is a considerably slower process, it is very likely that the resorption of salicylic acid takes place in the form of free acid after dissociation of the complex. The urinary excretion cumulative curves showed that the free salicylic acid was completely excreted, while about 10% of the salicylic acid administered in the form of complex is lost. The cyclodextrin complex formation increased the pK values of all hydroxybenzoic acids. Direct observations revealed that complex formation decreased the stomach-irritating effect of salicylic acid. The ratio of radioactivity was nearly the same in the organs of animals treated by both free salicylic and cyclodextrin complex. (author)

  20. The effect of fatty acid surfactants on the uptake of nitric acid to deliquesced NaCl aerosol

    M. Ammann

    2008-09-01

    Full Text Available Surface active organic compounds have been observed in marine boundary layer aerosol. Here, we investigate the effect such surfactants have on the uptake of nitric acid (HNO3, an important removal reaction of nitrogen oxides in the marine boundary layer. The uptake of gaseous HNO3 on deliquesced NaCl aerosol was measured in a flow reactor using HNO3 labelled with the short-lived radioactive isotope 13N. The uptake coefficient γ on pure deliquesced NaCl aerosol was γ=0.5±0.2 at 60% relative humidity and 30 ppb HNO3(g. The uptake coefficient was reduced by a factor of 5–50 when the aerosol was coated with saturated linear fatty acids with carbon chain lengths of 18 and 15 atoms in monolayer quantities. In contrast, neither shorter saturated linear fatty acids with 12 and 9 carbon atoms, nor coatings with the unsaturated oleic acid (C18, cis-double bond had a detectable effect on the rate of HNO3 uptake. It is concluded that it is the structure of the monolayers formed, which determines their resistance towards HNO3 uptake. Fatty acids (C18 and C15, which form a highly ordered film in the so-called liquid condensed state, represent a significant barrier towards HNO3 uptake, while monolayers of shorter-chain fatty acids (C9, C12 and of the unsaturated oleic acid form a less ordered film in the liquid expanded state and do not hinder the uptake. Similarly, high contents of humic acids in the aerosol, a structurally inhomogeneous, quite water soluble mixture of oxidised high molecular weight organic compounds did not affect HNO3 uptake. As surfactant films on naturally occurring aerosol are expected to be less structured due to their chemical inhomogeneity, it is likely that their inhibitory effect on HNO3 uptake is smaller than that observed here for the C15 and C18 fatty acid monolayers.