WorldWideScience

Sample records for abrasive dusts avaliacao

  1. Lung scintigraphy evaluation in workers exposed to abrasive dusts; Avaliacao cintilografica pulmonar em trabalhadores de industria de abrasivos

    Terra Filho, Mario

    1995-12-31

    The production process of abrasives use aluminium, or silicon carbide a synthetic material with a hardness only slightly less than that of a diamond. It is popularly known as carborundum since it was first manufactured as an abrasive in 1891, produced by the fusion of high grade silica and petroleum coke with sawdust. For many years silicon carbide was thought not to give rise to pulmonary lesions. Recently several researchers suggested the existence of a carborundum pneumoconiosis. The aim of this study was to evaluate the role of the pulmonary clearance of {sup 99m} Technetium chelated to diethylene-triamine penta-acetate ({sup 99m} Tc DTPA), and {sup 67} Gallium lung scanning in workers exposed to abrasive dusts. Thirty seven subjects, 13 smokers and 24 nonsmokers and ex smokers were studied. In 32 (86,48%) {sup 67} Gallium lung scanning was positive including 13 (40,62%) retired workers. We conclude that non smoking workers of abrasives plants have a pulmonary alveolar epithelial permeability disturbance similar as observed in smoking workers and smoking controls. Most workers, ex-workers of these industries and in patients with carborundum pneumoconiosis there is an evidence of pulmonary inflammation measured with abnormal {sup 67} Gallium lung scan. (author) 101 refs., 2 figs., 11 tabs.

  2. Lung scintigraphy evaluation in workers exposed to abrasive dusts

    The production process of abrasives use aluminium, or silicon carbide a synthetic material with a hardness only slightly less than that of a diamond. It is popularly known as carborundum since it was first manufactured as an abrasive in 1891, produced by the fusion of high grade silica and petroleum coke with sawdust. For many years silicon carbide was thought not to give rise to pulmonary lesions. Recently several researchers suggested the existence of a carborundum pneumoconiosis. The aim of this study was to evaluate the role of the pulmonary clearance of 99m Technetium chelated to diethylene-triamine penta-acetate (99m Tc DTPA), and 67 Gallium lung scanning in workers exposed to abrasive dusts. Thirty seven subjects, 13 smokers and 24 nonsmokers and ex smokers were studied. In 32 (86,48%) 67 Gallium lung scanning was positive including 13 (40,62%) retired workers. We conclude that non smoking workers of abrasives plants have a pulmonary alveolar epithelial permeability disturbance similar as observed in smoking workers and smoking controls. Most workers, ex-workers of these industries and in patients with carborundum pneumoconiosis there is an evidence of pulmonary inflammation measured with abnormal 67 Gallium lung scan. (author)

  3. Three-Body Abrasion Testing Using Lunar Dust Simulants to Evaluate Surface System Materials

    Kobrick, Ryan L.; Budinski, Kenneth G.; Street, Kenneth W., Jr.; Klaus, David M.

    2010-01-01

    Numerous unexpected operational issues relating to the abrasive nature of lunar dust, such as scratched visors and spacesuit pressure seal leaks, were encountered during the Apollo missions. To avoid reoccurrence of these unexpected detrimental equipment problems on future missions to the Moon, a series of two- and three-body abrasion tests were developed and conducted in order to begin rigorously characterizing the effect of lunar dust abrasiveness on candidate surface system materials. Two-body scratch tests were initially performed to examine fundamental interactions of a single particle on a flat surface. These simple and robust tests were used to establish standardized measurement techniques for quantifying controlled volumetric wear. Subsequent efforts described in the paper involved three-body abrasion testing designed to be more representative of actual lunar interactions. For these tests, a new tribotester was developed to expose samples to a variety of industrial abrasives and lunar simulants. The work discussed in this paper describes the three-body hardware setup consisting of a rotating rubber wheel that applies a load on a specimen as a loose abrasive is fed into the system. The test methodology is based on ASTM International (ASTM) B611, except it does not mix water with the abrasive. All tests were run under identical conditions. Abraded material specimens included poly(methyl methacrylate) (PMMA), hardened 1045 steel, 6061-T6 aluminum (Al) and 1018 steel. Abrasives included lunar mare simulant JSC- 1A-F (nominal size distribution), sieved JSC-1A-F (materials of aluminum and PMMA. The nominal JSC- 1A-F consistently showed more abrasion wear than the sieved version of the simulant. The lunar dust displayed abrasivity to all of the test materials, which are likely to be used in lunar landing equipment. Based on this test experience and pilot results obtained, recommendations are made for systematic abrasion testing of candidate materials intended for

  4. Evaluation of emery dust on the manufacture of abrasives by neutron activation analysis and atomic absorption spectroscopy

    In this work it is presented an evaluation on the degree of contamination by emery dust in a working area where abrasives are manufactured, in a factory located in the industrial area of Toluca City by neutron activation analysis and atomic absorption spectroscopy. The samples were collected on Whatman filters and attacked with hot concentrated HCl. The elements founded were: Al, Si, V, Mg, Br, Mn, Ni, Zn, Fe, Cr, Ca and Pb. They are a risk for the health of the workers. (Author)

  5. Test chamber and forensic microscopy investigation of the transfer of brominated flame retardants into indoor dust via abrasion of source materials.

    Rauert, C; Harrad, S; Suzuki, G; Takigami, H; Uchida, N; Takata, K

    2014-09-15

    Brominated flame retardants (BFRs) have been detected in indoor dust in many studies, at concentrations spanning several orders of magnitude. Limited information is available on the pathways via which BFRs migrate from treated products into dust, yet the different mechanisms hypothesized to date may provide an explanation for the range of reported concentrations. In particular, transfer of BFRs to dust via abrasion of particles or fibers from treated products may explain elevated concentrations (up to 210 mg g(-1)) of low volatility BFRs like decabromodiphenyl ether (BDE-209). In this study, an indoor dust sample containing a low concentration of hexabromocyclododecane, or HBCD, (110 ng g(-1) ΣHBCDs) was placed on the floor of an in-house test chamber. A fabric curtain treated with HBCDs was placed on a mesh shelf 3 cm above the chamber floor and abrasion induced using a stirrer bar. This induced abrasion generated fibers of the curtain, which contaminated the dust, and ΣHBCD concentrations in the dust increased to between 4020 and 52 500 ng g(-1) for four different abrasion experiment times. The highly contaminated dust (ΣHBCD at 52 500 ng g(-1)) together with three archived dust samples from various UK microenvironments, were investigated with forensic microscopy techniques. These techniques included Micro X-ray fluorescent spectroscopy, scanning emission microscopy coupled with an energy dispersive X-ray spectrometer, Fourier transform infrared spectroscopy with further BFR analysis on LC-MS/MS. Using these techniques, fibers or particles abraded from a product treated with BFRs were identified in all dust samples, thereby accounting for the elevated concentrations detected in the original dust (3500 to 88 800 ng g(-1) ΣHBCD and 24 000 to 1,438 000 ng g(-1) for BDE-209). This study shows how test chamber experiments alongside forensic microscopy techniques, can provide valuable insights into the pathways via which BFRs contaminate indoor dust. PMID:24984234

  6. Evaluation of austenitic alloys abrasive wear of FeMnAlC system; Avaliacao de desgaste abrasivo de ligas austeniticas do sistema FeMnAlC

    Souza, Allan Ribeiro de; Acselrad, Oscar [Coordenacao dos Programas de Pos-graduacao de Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Metalurgica e de Materiais. Lab. de Processamento Termomecanico e Engenharia Microestrutural]. E-mail: allariba@metalmat.ufrj.br

    2003-07-01

    Alloys of the FeMnAlC system have been studied as an alternative to stainless steels applications. Such alloys, when solubilized, are non-magnetic and present an austenitic structure that can be modified by thermal treatments. In this way, a large spectrum of mechanical and physical properties can be obtained. They are oxidation-resistant alloys, and by 15 hours aging at 550 deg C mechanical strength can be as high as conventional structural alloy steels. Information concerning the performance of these alloys under wear conditions are still limited. The possibility of application in components exposed to cavitation or abrasive loads, such as pipes, pumps and drilling systems is still a subject for fundamental research, such as the one that is now reported. Samples of a FeMnAlC alloy have been submitted to different thermal processing, leading to microstructures that have been characterized by optical, transmission and atomic force microscopy and by X-ray diffraction. They were subsequently subjected to a micro-abrasion test in which the abrasive wear resistance could be determined. The results have been used to differentiate the performance of different microstructures and allowed also a comparative analysis with the performance of an AISI M2 tool steel. (author)

  7. Multi-Use Coating for Abrasion Prevention, Wear Protection, and Lunar Dust Removal Project

    National Aeronautics and Space Administration — The deleterious effects of lunar dust, typically less than 50 5m in diameter, have to be addressed prior to establishing a human base and long duration human...

  8. Air Abrasion

    ... delivered directly to your desktop! more... What Is Air Abrasion? Article Chapters What Is Air Abrasion? What Happens? The Pros and Cons Will I Feel Anything? Is Air Abrasion for Everyone? print full article print this ...

  9. Corneal Abrasions

    ... eye under a light that is filtered cobalt blue. The fluorescein causes the abrasion to glow bright ... putting in or removing your contacts. Around the house, be extra careful when you use cleaning products, ...

  10. Evaluation of secondary crystallization effect in poly hydroxybutyrate and silanized coir dust composites; Avaliacao do efeito da cristalizacao secundaria em compositos de polihidroxibutirato e po de coco silanizado

    Mello, Carolina C. de; Costa, Marysilvia F. da; Thire, Rossana M.S.M., E-mail: ccmello@metalmat.ufrj.br [Programa de Engenharia Metalurgica e de Materiais/Universidade Federal do Rio de Janeiro - UFRJ - Centro de Tecnologia, Rio de Janeiro, RJ (Brazil)

    2011-07-01

    Polyhydroxybutyrate is a natural and biodegradable polyester, susceptible to secondary crystallization when it is stored at environment temperature. Coir dust is an agroindustrial waste which has good prospects for use as filler in composites. In this context, PHB-coir dust composites were produced. The compatibilization was made by coir dust silanization. The secondary crystallization evolution on materials was evaluated by x-ray diffraction. Its effect was verified by tension tests which presented that elastic modulus increases when crystallinity increases. (author)

  11. Sustainability of abrasive processes

    Aurich, J.C.; Linke, B.; Hauschild, Michael Zwicky;

    2013-01-01

    This paper presents an overview of research on sustainability of abrasive processes. It incorporates results from a round robin study on ‘‘energy-efficiency of abrasive processes’’ which has been carried out within the scientific technical committee ‘‘abrasive processes’’ (STC G) of CIRP, the...... content of technical presentations in STC G, and the results of a comprehensive literature study. The approach to sustainability includes environmental, social, and economic sustainability in accordance with the definition proposed in the Brundtland Report of the United Nations [156]. The main focus is on...... environmental and social sustainability. Economic sustainability will be considered as manufacturing productivity. © 2013 CIRP....

  12. Assessment of contamination for inorganic elements and phthalate esters in household dust from the metropolitan region of Sao Paulo; Avaliacao da contaminacao por elementos inorganicos e esteres ftalicos em poeira domestica da regiao metropolitana de Sao Paulo

    Scapin, Valdirene de Oliveira

    2009-07-01

    Household dust has been identified as an important vector of exposure by inorganic and organic substances potentially toxic in children and adults. The dust composition has a strong influence of contaminants provided from internal and external environments. During the natural process of wearing or weather incidents of artifacts and materials variety, the chemical substances are released into the environment in the steam form or by leaching from final products. Once released, they can be accumulated and enriched in the dust; and by continuous exposure (inhalation, ingestion and dermal contact mechanisms), these substances are harmful to human health. In this work, a study to determine the inorganic constituents and phthalate esters concentrations in residential indoor environment dust samples, correlating them with the probable anthropogenic sources was proposed. Dust samples were collected from 69 residences in neighborhoods Pirituba, Freguesia do O, Jaragua and Perus of the Sao Paulo metropolitan region, using a domestic vacuum cleaner, between 2006 and 2008. The samples were sieved in the fractions of 850, 850-300, 300-150, 150-75, 75-63 and <63 {mu}m. The analysis by X-ray fluorescence (WDXRF) showed the presence of Na, Mg, Al, Si, P, S, Cl, K, Ca, Ti, Cr, Mn, Fe, Ni, Cu, Zn, Br, Rb, Sr, Zr and Pb. The presence of phthalate esters (DEHP, DnBP, DEP, DEHA, DMP and BBP) was detected, by GCMS analyses. From the enrichment factor (EF), the elements P, S, Cr, Ni, Cu, Zn and Pb were classified as being significant and extremely enriched in the dust. The natural and anthropogenic contributions by statistical tools as factor analysis (AF) and cluster were identified. The elements Cr, Ni, Cu, Zn and Pb were present significantly elevated concentrations in relation to the total exposure values (ingestion, inhalation and skin contact) and to risk. (author)

  13. Abrasive Blasting Unit (ABU) - 16270

    NUKEM Technologies was contracted to supply a dry, automated drum belt (tumbling) Abrasive Blasting Unit (ABU) to the Joint Research Centre of the European Commission in Ispra, Italy. The ABU was installed in the centralised radioactive waste management area of the JRC-Ispra site in Italy. The unit is to be employed for the decontamination to clearance levels of slightly contaminated metal components and, where practical, concrete or heavy concrete (density ∼3200 kg/m3) blocks arising from the dismantling of nuclear facilities. The presentation is based on the successful construction and installation of the ABU at the JRC Ispra site. Among the several possibilities of adapting conventional abrasive units to nuclear applications, an automatic tumbling machine was preferred, due to the larger output and (mainly) for the ease of operation, with minimum direct handling of contaminated material by operators, thus satisfying the ALARA principle. Consideration was also given to Belgoprocess' successful experience with a predecessor, similar unit. After adequate size reduction batches of up to about 800 kg of material to be decontaminated are automatically introduced into the blasting chamber. Pieces between 100 mm and 800 mm long, between 100 mm and 500 mm wide and between 5 mm and 300 mm high can be effectively treated in the unit, the maximum weight of a single piece being limited to 100 kg. Short lengths of pipe may be included; the final dimensions of pipe to be decontaminated will be established during the nuclear commissioning tests. Other components with hard-to-reach surfaces may also be included. The content of the chamber is tumbled by two bladed drums, while sharp steel grit is sprayed onto the contaminated components, thus removing the surface layer including any contamination. From experience, 30 minutes of treatment is sufficient to remove contamination to levels below expected clearance levels for most materials. The decontaminated components are removed

  14. Control technology for crystalline silica exposures in construction: wet abrasive blasting.

    Golla, Vijay; Heitbrink, William

    2004-03-01

    This study was designed to document the effect that wet abrasive blasting has on reducing worker exposure to crystalline silica, which has been associated with silicosis and premature death. In this study, worker exposure to respirable crystalline silica was monitored during wet abrasive blasting on the exterior walls of a parking garage to remove surface concrete and expose the underlying aggregate. In this process a wet sand mix comprised of 80% dry sand and 20% water was used. Sampling and analysis revealed that the geometric mean respirable quartz concentration was 0.2 mg/m(3) for workers conducting abrasive blasting and 0.06 mg/m(3) for helpers. When abrasive blasting was conducted in areas that apparently had reduced natural ventilation, dust exposures appeared to increase. When compared with other published data, this case study suggests that wet abrasive blasting causes less exposure to crystalline silica than dry abrasive blasting. PMID:15204868

  15. Abrasion resistant tubular member

    A surface of a tubular member made of an austenite stainless steel having a molybdenum content of from 2 to 3% is subjected to a low temperature ionization nitriding treatment in a gas atmosphere of N2: from 5 to 15% by volume, H2: from 95 to 85% by volume, at a temperature of from 400 to 470degC to form a nitride layer. Since the low temperature ion nitriding treatment is thus applied, generation of ε phase which lowers corrosion resistance can be suppressed. That is, the hardened layer (nitride layer) is provided with abrasion resistance, while the inside can keep the inherent characteristic of the austenite stainless steel having high toughness. In addition, this can avoid the tendency of lowering corrosion resistance due to the formation of a ε phase caused by exposure to high temperature for a long time in order to increase the thickness of the nitrided layer. When the thickness of the tube is 1.3mm, the less than 130μm is enough for the nitride layer. Abrasion resistance can be improved by thus applying ion nitriding treatment to the austenite stainless steel containing molybdenum under controlled temperature and atmosphere. (N.H.)

  16. Testing of abrasion materials

    A method of abrasion testing according to ASTM C 704-76 a is presented for steel fibre concrete mortar, fusion-cast basalt and a surface coating material and results of practical interest are mentioned. Due to the high technical demands on these materials and their specific fields of application, the very first test already supplied interesting findings. From the user's point of view, the method is an interesting alternative to the common test methods, e.g. according to DIN 52 108 (wheel test according to Boehme). In English-speaking countries, testing according to ASTM is often mandatory in the refractory industry in order to assure constant quality of refractory materials after setting. The method is characterized by good comparability and high accuracy of measurement. Only the test piece is exchanged while the test conditions remain constant, so that accurate information on the material studied is obtained. (orig.)

  17. Comparative pulmonary toxicity of 6 abrasive blasting agents

    Hubbs, A.F.; Minhas, N.S.; Jones, W.; Greskevitch, M.; Battelli, L.A.; Porter, D.W.; Goldsmith, W.T.; Frazer, D.; Landsittel, D.P.; Ma, J.Y.C.; Barger, M.; Hill, K.; Schwegler-Berry, D.; Robinson, V.A.; Castranova, V. [Center for Disease Control and Prevention, Morgantown, WV (USA). Health Effects Laboratory Division

    2001-05-01

    Inhalation of silica dust is associated with pulmonary fibrosis, Therefore, substitute abrasive materials have been suggested for use in abrasive blasting operations. To date, toxicological evaluation of most substitute abrasives has been incomplete. Therefore, the objective of this study was to compare the pulmonary toxicity of a set of substitute abrasives (garnet, staurolite, coal slag, specular hematite, and treated sand) to that of blasting sand. Rats were exposed to blasting sand or an abrasive substitute by intratracheal instillation and pulmonary responses to exposure were monitored 4 weeks postexposure. Pulmonary damage was monitored as lactate dehydrogenase (LDH) in the acellular lavage fluid. Pulmonary inflammation was evaluated from the yield of polymorphonuclear leukocytes (PMN) obtained by bronchoalveolar lavage. The activity of alveolar macrophages was determined by measuring: zymosan-stimulated chemiluminescence. Blasting sand caused lung damage and showed histologic evidence for inflammation and fibrosis, Garnet, staurolite, and treated sand exhibited toxicity and inflammation that were similar to blasting sand. while coal slag caused greater pulmonary damage and inflammation than blasting sand, In contrast, specular hematite did not significantly elevate LDH or PMN levels and did not stimulate macrophage activity 4 weeks postexposure.

  18. Demonstration experience with an abrasive blasting technique for decontaminating concrete pads

    A demonstration was performed for decontaminating a radioactivity contaminated concrete pad with a portable abrasive blasting system. The system utilizes a rotating blast wheel that scours the concrete surface with metal abrasive. The metal abrasive, pulverized concrete dust, and contaminants rebound into a separator chamber. The reusable metal abrasive is recycled, and the pulverized media are removed to an integral dust collection system. The exhaust is HEPA filtered to minimize release of airborne contaminants. However, the technique had limited success in reducing contamination around the cracks and seams in the concrete where the higher activity levels of contamination were detected during the radiological survey before the cleanup. The technique can be successful and cost-effective in decontaminating large areas of low contamination; however, careful characterization and planning are necessary. 3 refs., 3 figs., 1 tabs

  19. Abrasion-resistant antireflective coating for polycarbonate

    Wydeven, T. J.

    1978-01-01

    Following plasma-polymerization technique, treatment in oxygen glow discharge further enhances abrasion resistance and transmission. Improvement in abrasion resistance was shown by measuring percentage of haze resulting from abrasion. Coating samples were analyzed for abrasion using standard fresh rubber eraser. Other tests included spectra measurements and elemental analysis with spectrometers and spectrophotometers.

  20. Sandstone Turning by Abrasive Waterjet

    Hlaváček, Petr; Cárach, J.; Hloch, Sergej; Vasilko, K.; Klichová, Dagmar; Klich, Jiří; Lehocká, D.

    2015-01-01

    Roč. 48, č. 6 (2015), s. 2489-2493. ISSN 0723-2632 R&D Projects: GA MŠk ED2.1.00/03.0082; GA MŠk(CZ) LO1406 Institutional support: RVO:68145535 Keywords : turning away from the jet * conventional turning towards the jet * sandstone * abrasive water jet Subject RIV: JQ - Machines ; Tools Impact factor: 2.420, year: 2014 http://www.springerprofessional.de/sandstone-turning-by-abrasive-waterjet/6038028.html

  1. Conduit Coating Abrasion Testing

    Sullivan, Mary K.

    2013-01-01

    During my summer internship at NASA I have been working alongside the team members of the RESTORE project. Engineers working on the RESTORE project are creating ·a device that can go into space and service satellites that no longer work due to gas shortage or other technical difficulties. In order to complete the task of refueling the satellite a hose needs to be used and covered with a material that can withstand effects of space. The conduit coating abrasion test will help the researchers figure out what type of thermal coating to use on the hose that will be refueling the satellites. The objective of the project is to determine whether or not the conduit coating will withstand the effects of space. For the RESTORE project I will help with various aspects of the testing that needed to be done in order to determine which type of conduit should be used for refueling the satellite. During my time on the project I will be assisting with wiring a relay board that connected to the test set up by soldering, configuring wires and testing for continuity. Prior to the testing I will work on creating the testing site and help write the procedure for the test. The testing will take place over a span of two weeks and lead to an informative conclusion. Working alongside various RESTORE team members I will assist with the project's documentation and records. All in all, throughout my internship at NASA I hope to learn a number of valuable skills and be a part of a hard working team of engineers.

  2. Abrasives and possibilities of increase in efficiency of abrasive waterjets

    Martinec, Petr; Sitek, Libor

    Ostrava: Ústav geoniky AV ČR, v.v.i, 2015 - (Sitek, L.; Klichová, D.), s. 157-163 ISBN 978-80-86407-56-2. [Vodní paprsek 2015 - výzkum, vývoj, aplikace. Velké Losiny (CZ), 06.10.2015-08.10.2015] R&D Projects: GA MŠk ED2.1.00/03.0082; GA MŠk(CZ) LO1406 Institutional support: RVO:68145535 Keywords : abrasive waterjets * abrasives * garnet * zirconia Subject RIV: JQ - Machines ; Tools

  3. Checking Out Cuts, Scratches, and Abrasions

    ... Skating Crushes What's a Booger? Checking Out Cuts, Scratches, and Abrasions KidsHealth > For Kids > Checking Out Cuts, ... weren't wearing kneepads. How Do Cuts and Scratches Heal? After getting a cut, scratch, or abrasion, ...

  4. PROGRESS IN THERMO-ABRASIVE BLASTING SYSTEMS

    I.A. Gorlach

    2012-01-01

    ENGLISH ABSTRACT: Quality of surface preparation of components and structures for further painting and/or coating is important in many fields of engineering. One of the most widely used methods of surface preparation is abrasive blasting. In the last few years, a new method for surface preparation has evolved, namely thermo-abrasive blasting. This technique utilises a high enthalpy thermal jet, generated by the thermo-abrasive blasting gun, to propel abrasive particles. Thermo-abrasi...

  5. 30 CFR 72.610 - Abrasive blasting.

    2010-07-01

    ... respirators approved for abrasive blasting by NIOSH under 42 CFR part 84, or the operation shall be performed... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Abrasive blasting. 72.610 Section 72.610... HEALTH STANDARDS FOR COAL MINES Miscellaneous § 72.610 Abrasive blasting. (a) Surface and...

  6. A light-scattering study of Al2O3 abrasives of various grit sizes

    Heinson, Yuli W.; Chakrabarti, Amitabha; Sorensen, Christopher M.

    2016-09-01

    We report light scattering phase function measurements for irregularly shaped Al2O3 abrasive powders of various grit sizes. Q-space analysis is applied to the angular scattering to reveal a forward scattering regime, Guinier regime, power law regime with quantifiable exponents, and an enhanced backscattering regime. The exponents of the power laws for Al2O3 abrasives decrease with increasing internal coupling parameter ρ ‧ , which is in agreement with previous observations for other irregular particles. Unlike other dust particles previously studied showing single power laws under Q-space analysis, the largest three abrasives, for which ρ ‧ ≳ 100 , showed a kink in the power law, which is possibly due to the higher degree of symmetry for the abrasives than for all the particles studied previously. Direct comparison of the 1200, 1000, and 800 grit abrasive scattering to scattering by corresponding spheres shows that the scatterings approximately coincide at the spherical particle qR ≃ ρ ‧ crossover point. Furthermore, the scattering at the maximum qR = 2 kR by the irregularly shaped abrasives is close to the geometric centers of the glories of the spheres.

  7. Progress in abrasive and grinding technology

    Xu, Xipeng

    2009-01-01

    The grinding and abrasive processing of materials are machining techniques which use bonded or loose abrasives to remove material from workpieces. Due to the well-known advantages of grinding and abrasive processes, advances in abrasive and grinding technology are always of great import in enhancing both productivity and component quality. In order to highlight the recent progress made in this field, the editor invited 21 world-wide contributions with the aim of gathering together all of the achievements of leading researchers into a single publication. The authors of the 21 invited papers, of

  8. Lunar Dust Mitigation Screens

    Knutson, Shawn; Holloway, Nancy

    With plans for the United States to return to the moon, and establish a sustainable human presence on the lunar surface many issues must be successfully overcome. Lunar dust is one of a number of issues with the potential to create a myriad of problems if not adequately addressed. Samples of dust brought back from Apollo missions show it to be soft, yet sharp and abrasive. The dust consists of a variety of morphologies including spherical, angular blocks, shards, and a number of irregular shapes. One of the main issues with lunar dust is its attraction to stick to anything it comes in contact with (i.e. astronauts, equipment, habitats, etc.). Ionized radiation from the sun strikes the moon's surface and creates an electrostatic charge on the dust. Further, the dust harbors van der Waals forces making it especially difficult to separate once it sticks to a surface. During the Apollo missions, it was discovered that trying to brush the lunar dust from spacesuits was not effective, and rubbing it caused degradation of the suit material. Further, when entering the lunar module after moonwalks, the astronauts noted that the dust was so prolific inside the cabin that they inhaled and ingested it, causing at least one of them, Harrison "Jack" Schmidt, to report irritation of the throat and lungs. It is speculated that the dust could also harm an astronaut's nervous and cardiovascular systems, especially during an extended stay. In addition to health issues, the dust can also cause problems by scouring reflective coatings off of thermal blankets, and roughening surfaces of windows and optics. Further, panels on solar cells and photovoltaics can also be compromised due to dust sticking on the surfaces. Lunar dust has the capacity to penetrate seals, interfere with connectors, as well as mechanisms on digging machines, all of which can lead to problems and failure. To address lunar dust issues, development of electrostatic screens to mitigate dust on sur-faces is currently

  9. Abrasion of flat rotating shapes

    Roth, A.E.; Marques, C. M.; Durian, D. J.

    2010-01-01

    We report on the erosion of flat linoleum "pebbles" under steady rotation in a slurry of abrasive grit. To quantify shape as a function of time, we develop a general method in which the pebble is photographed from multiple angles with respect to the grid of pixels in a digital camera. This reduces digitization noise, and allows the local curvature of the contour to be computed with a controllable degree of uncertainty. Several shape descriptors are then employed to follow the evolution of dif...

  10. Transition metal carbide and boride abrasive particles

    Abrasive particles and their preparation are discussed. The particles consist essentially of a matrix of titanium carbide and zirconium carbide, at least partially in solid solution form, and grains of crystalline titanium diboride dispersed throughout the carbide matrix. These abrasive particles are particularly useful as components of grinding wheels for abrading steel. 1 figure, 6 tables

  11. 30 CFR 58.610 - Abrasive blasting.

    2010-07-01

    ... miners shall use in accordance with 30 CFR 56.5005 or 57.5005 respirators approved for abrasive blasting by NIOSH under 42 CFR part 84, or the operation shall be performed in a totally enclosed device with... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Abrasive blasting. 58.610 Section...

  12. Ultrasonic Abrasive Removal Of EDM Recast

    Mandel, Johnny L.; Jacobson, Marlowe S.

    1990-01-01

    Ultrasonic abrasive process removes layer of recast material generated during electrical-discharge machining (EDM) of damper pocket on turbine blade. Form-fitted tool vibrated ultrasonically in damper pocket from which material removed. Vibrations activate abrasive in pocket. Amount of material removed controlled precisely.

  13. Corneal abrasions associated with pepper spray exposure.

    Brown, L; Takeuchi, D; Challoner, K

    2000-05-01

    Pepper spray containing oleoresin capsicum is used by law enforcement and the public as a form of nonlethal deterrent. Stimulated by the identification of a case of a corneal abrasion associated with pepper spray exposure, a descriptive retrospective review of a physician-maintained log of patients presenting to a jail ward emergency area over a 3-year period was performed. The objective was to give some quantification to the frequency with which an emergency physician could expect to see corneal abrasions associated with pepper spray exposure. Of 100 cases of pepper spray exposure identified, seven patients had sustained corneal abrasions. We conclude that corneal abrasions are not rare events when patients are exposed to pepper spray and that fluorescein staining and slit lamp or Wood's lamp examination should be performed on all exposed patients in whom corneal abrasions cannot be excluded on clinical grounds. PMID:10830682

  14. Lunar Dust Chemical, Electrical, and Mechanical Reactivity: Simulation and Characterization

    VanderWal, Randy L.

    2008-01-01

    Lunar dust is recognized to be a highly reactive material in its native state. Many, if not all Constellation systems will be affected by its adhesion, abrasion, and reactivity. A critical requirement to develop successful strategies for dealing with lunar dust and designing tolerant systems will be to produce similar material for ground-based testing.

  15. Life cycle and sustainability of abrasive tools

    Linke, Barbara

    2016-01-01

    This monograph focuses on abrasive tools for grinding, polishing, honing, and lapping operations. The book describes the life cycle of abrasive tools from raw material processing of abrasive grits and bonding, manufacturing of monolithic or multi-layered tools, tool use to tool end-of-life. Moreover, this work highlights sustainability challenges including economic, environmental, social and technological aspects. The target audience primarily comprises research and industry experts in the field of manufacturing, but the book may also be beneficial for graduate students.

  16. Performance of recycling abrasives in rock cutting by abrasive water jet

    Gokhan Aydin

    2015-01-01

    Rock cutting performance of recycling abrasives was investigated in terms of cutting depth, kerf width, kerf taper angle and surface roughness. Gravity separation technique was employed to separate the abrasives and the rock particles. The recycling abrasive particles were then dried and sieved for determination of their disintegration behaviors. Before each cutting with recycling abrasives, the abrasive particles less than 106mm were screened out. It is revealed that a considerable amount of used abrasives can be effectively reused in the rock cutting. The reusabilities of abrasives are determined as 81.77%, 57.50%, 34.37%and 17.72%after the first, second, third and fourth cuttings, respectively. Additionally, it is determined that recycling must be restricted three times due to the excessive disintegration of abrasives with further recycling. Moreover, it is concluded that cutting depth, kerf width and surface roughness decreases with recycling. No clear trend is found between the kerf taper angle and recycling. Particle size distribution is determined as an important parameter for improving the cutting performance of recycling abrasives.

  17. The measurement of abrasive particles velocities in the process of abrasive water jet generation

    Zeleňák, Michal; Foldyna, Josef; Říha, Zdeněk

    2014-08-01

    An optimization of the design of the abrasive cutting head using the numerical simulation requires gathering as much information about processes occurring in the cutting head as possible. Detailed knowledge of velocities of abrasive particles in the process of abrasive water jet generation is vital for the verification of the numerical model. A method of measurement of abrasive particles at the exit of focusing tube using the FPIV technique was proposed and preliminary tests are described in the paper. Results of analysis of measured velocity fields are presented in the paper.

  18. Impact-abrasion and abrasion of WC-Co: wear mechanisms in severe environments

    Hawk, Jeffrey A.; Wilson, Rick D.; Osara, K. (Outokumpu Research Oy)

    2003-10-01

    Hard and super-hard materials have very good abrasive wear resistance. However, in many severe wear environments that make use of these materials, impact is a significant component of that environment. Consequently, the behavior of many of these hard materials in impact-wear conditions need to be understood with respect to the mechanisms of material removal such small scale fracture and subsequent crack growth in the carbide. This study details the behavior of several ?hard? materials in abrasion and impact-abrasion focusing on the mechanisms of material removal due to impact and abrasion.

  19. Does the source migration pathway of HBCDs to household dust influence their bio-accessibility?

    García-Alcega, Sonia; Rauert, Cassie; Harrad, Stuart; Collins, Chris D

    2016-11-01

    A study was conducted to assess the human bioaccessibility of dust contaminated with hexabromocyclododecane (HBCD) via two migration pathways a) volatilisation with subsequent partitioning to dust particles, and b) abrasion of treated textile fibres directly to the dust. This was achieved using previously developed experimental chamber designs to generate dust samples contaminated with HBCDs emitted from a HBCD treated textile curtain. The generated dust samples were exposed to an in vitro colon extended physiologically based extraction test (CE-PBET). The bioaccessibility of the HBCDs which were incorporated within dust as a result of volatilisation from the curtain material with subsequent partitioning to dust was higher than in dusts contaminated with HBCDs via abrasion of the curtain (35% and 15% respectively). We propose this occurs due to a stronger binding of HBCDs to treated fabric fibres than that experienced following volatilisation and sorption of HBCDs to dust particles. PMID:27343943

  20. Abrasive water jet: a complementary tool

    Duarte, J. P.; Peças, P.; E NUNES; H. Gouveia

    1998-01-01

    The abrasive water jet is a powerful cutting tool, whose main advantages lie in the absence of thermal effects and the capability of cutting highly thick materials. Compared with Laser, the abrasive water jet allows the cutting of a larger range of thicknesses and a wider variety of materials such as: ornamental stones, metals, polymers, composites, wood, glass and ceramics. The application of this technology has suffered an extensive growth, with successful applications in varied industrial ...

  1. Third abrasive wear mode: is it possible?

    Ronaldo Câmara Cozza

    2014-04-01

    Full Text Available The objective of this paper is to propose an initial discussion on the characterization of a third abrasive wear mode. The results obtained in a previous work [1] under different test conditions revealed the occurrence of the superposition of the “rolling” and “grooving” abrasive wear modes. This phenomenon was denoted “micro-rolling abrasion” due to the observation that “rolling abrasion” was found to act on “grooving abrasion”.

  2. Determination of vibration frequency depending on abrasive mass flow rate during abrasive water jet cutting

    Hreha, P.; Radvanská, A.; Hloch, Sergej; Peržel, V.; Krolczyk, G.; Monková, K.

    2014-01-01

    Roč. 77, 1-4 (2014), s. 763-774. ISSN 0268-3768 Institutional support: RVO:68145535 Keywords : Abrasive water jet * Abrasive mass flow rate * Vibration Subject RIV: JQ - Machines ; Tools Impact factor: 1.458, year: 2014 http://link.springer.com/article/10.1007%2Fs00170-014-6497-9#page-1

  3. Characterization of abrasion-induced nanoparticle release from paints into liquids and air

    Two standard methods for the characterization of the abrasion nanoparticle release into air and liquid from coatings containing nanoparticles were developed. Details of the abrasion processes and the measurement methods are shown. Paints were formulated in an industrial facility. Standard abrasion conditions in wet environments were simulated. The size distribution of the particles abraded into liquid was analyzed by a laser granulometer: submicrometric and micrometric particles were observed, but no nanometric particles. The nanoparticles released in liquid were deposited on filters for SEM (Scanning Electron Microscopy) analysis. No free or agglomerated nanoparticles were observed by SEM: nanoparticles seem to remain embedded in the paint matrix. The same coatings were abraded in the air using another standard method. The ELPI (Electrical Low Pressure Impactor) was used to determine the number size distribution of the dust generated. Abrasion is found to produce submicrometric and micrometric particles in the air but no nanoparticles. Further characterizations by SEM confirmed that no free or agglomerated nanoparticles were emitted: nanoparticles seem to remain embedded in the paint matrix.

  4. Characterization of abrasion-induced nanoparticle release from paints into liquids and air

    Golanski, L.; Gaborieau, A.; Guiot, A.; Uzu, G.; Chatenet, J.; Tardif, F.

    2011-07-01

    Two standard methods for the characterization of the abrasion nanoparticle release into air and liquid from coatings containing nanoparticles were developed. Details of the abrasion processes and the measurement methods are shown. Paints were formulated in an industrial facility. Standard abrasion conditions in wet environments were simulated. The size distribution of the particles abraded into liquid was analyzed by a laser granulometer: submicrometric and micrometric particles were observed, but no nanometric particles. The nanoparticles released in liquid were deposited on filters for SEM (Scanning Electron Microscopy) analysis. No free or agglomerated nanoparticles were observed by SEM: nanoparticles seem to remain embedded in the paint matrix. The same coatings were abraded in the air using another standard method. The ELPI (Electrical Low Pressure Impactor) was used to determine the number size distribution of the dust generated. Abrasion is found to produce submicrometric and micrometric particles in the air but no nanoparticles. Further characterizations by SEM confirmed that no free or agglomerated nanoparticles were emitted: nanoparticles seem to remain embedded in the paint matrix.

  5. Basics of cutting and abrasive processes

    Toenshoff, Hans Kurt

    2013-01-01

    Manufacturing is the basic industrial activity generating real value. Cutting and abrasive technologies are the backbone of precision production in machine, automotive and aircraft building as well as of production of consumer goods. We present the knowledge of modern manufacturing in these technologies on the basis of scientific research. The theory of cutting and abrasive processes and the knowledge about their application in industrial practice are a prerequisite for the studies of manufacturing science and an important part of the curriculum of the master study in German mechanical engineering. The basis of this book is our lecture “Basics of cutting and abrasive processes” (4 semester hours/3 credit hours) at the Leibniz University Hannover, which we offer to the diploma and master students specializing in manufacturing science.

  6. An investigation into magnetic electrolytic abrasive turning

    The magnetic electrolytic abrasive turning (MEAT) process as a non-traditional machining is used to obtain surface finishing like mirror. MEAT provides one of the best alternatives for producing complex shapes with good finish in advanced materials used in aircraft and aerospace industries. The improvement of machining accuracy of MEAT continues to be a major challenge for modern industry. MEAT is a hybrid machining which combines two or more processes to remove material. The present research focuses on the development of precision electrochemical turning (ECT) under the effects of magnetic field and abrasives. The effect of magnetic flux density, electrochemical conditions and abrasive parameters on finishing efficiency and surface roughness are investigated. An empirical relationship is deduced

  7. An investigation into magnetic electrolytic abrasive turning

    Mahdy, M. A. M.; Ismaeial, A. L.; Aly, F. F.

    2013-07-01

    The magnetic electrolytic abrasive turning (MEAT) process as a non-traditional machining is used to obtain surface finishing like mirror. MEAT provides one of the best alternatives for producing complex shapes with good finish in advanced materials used in aircraft and aerospace industries. The improvement of machining accuracy of MEAT continues to be a major challenge for modern industry. MEAT is a hybrid machining which combines two or more processes to remove material. The present research focuses on the development of precision electrochemical turning (ECT) under the effects of magnetic field and abrasives. The effect of magnetic flux density, electrochemical conditions and abrasive parameters on finishing efficiency and surface roughness are investigated. An empirical relationship is deduced.

  8. Geometrical and physical models of abrasion

    Domokos, G

    2013-01-01

    We extend the geometrical theory presented in [5] for collisional and frictional particle abrasion to include an independent physical equation for the evolution of mass and volume. We introduce volume weight functions as multipliers of the geometric equations and use these mutipliers to enforce physical volume evolution in the unified equations. The latter predict, in accordance with Sternberg's Law, exponential decay for volume evolution. We describe both the PDE versions, which are generalisations of Bloore's equations and their heuristic ODE approximations, called the box equations. The latter are suitable for tracking the collective abrasion of large particle populations. The mutual abrasion of identical particles, called the self-dual ows, play a key role in explaining geological scenarios. We give stability criteria for the self-dual ows in terms of the parameters of the physical volume evolution models and show that under reasonable assumptions these criteria can be met by physical systems. We also stu...

  9. Abrasive water jet: a complementary tool

    The abrasive water jet is a powerful cutting tool, whose main advantages lie in the absence of thermal effects and the capability of cutting highly thick materials. Compared with Laser, the abrasive water jet allows the cutting of a larger range of thicknesses and a wider variety of materials such as: ornamental stones, metals, polymers, composites, wood, glass ceramics. The application of this technology has suffered and extensive growth, with successful applications in varied industrial sectors like the automotive, aerospace, textile, metalworking, ornamental stones, etc. The present communication aims at introducing the abrasive water jet as a complementary tool to laser cutting, presenting its advantages by showing some documented examples of pieces cut for different industries. (Author) 5 refs

  10. Abrasion test of flexible protective materials on hydraulic structures

    Xin WANG; Shao-ze LUO; Guang-sheng LIU; Lu-chen ZHANG; Yong WANG

    2014-01-01

    In this study, several kinds of flexible protective materials sprayed with polyurea elastomers (hereinafter referred to as polyurea elastomer protective material) were adopted to meet the abrasion resistance requirement of hydraulic structures, and their abrasion resistances against the water flow with suspended load or bed load were studied systematically through tests. Natural basalt stones were adopted as the abrasive for simulation of the abrasion effect of the water flow with bed load, and test results indicate that the basalt stone is suitable for use in the abrasion resistance test of the flexible protective material. The wear process of the polyurea elastomer protective material is stable, and the wear loss is linear with the time of abrasion. If the wear thickness is regarded as the abrasion resistance evaluation factor, the abrasion resistance of the 351 pure polyurea is about twice those of pure polyurea with a high level of hardness and aliphatic polyurea, and over five times that of high-performance abrasion-resistant concrete under the abrasion of the water flow with suspended load. It is also about 50 times that of high-performance abrasion-resistant concrete under the abrasion of the water flow with bed load. Overall, the abrasion resistance of pure polyurea presented a decreasing trend with increasing hardness. Pure polyurea with a Shore hardness of D30 has the best abrasion resistance, which is 60 to 70 times that of high-performance abrasion-resistant concrete under the abrasion of the water flow with bed load, and has been recommended, among the five kinds of pure polyurea materials with different hardness, in anti-abrasion protection of hydraulic structures.

  11. Abrasion test of flexible protective materials on hydraulic structures

    Xin WANG

    2014-01-01

    Full Text Available In this study, several kinds of flexible protective materials sprayed with polyurea elastomers (hereinafter referred to as polyurea elastomer protective material were adopted to meet the abrasion resistance requirement of hydraulic structures, and their abrasion resistances against the water flow with suspended load or bed load were studied systematically through tests. Natural basalt stones were adopted as the abrasive for simulation of the abrasion effect of the water flow with bed load, and test results indicate that the basalt stone is suitable for use in the abrasion resistance test of the flexible protective material. The wear process of the polyurea elastomer protective material is stable, and the wear loss is linear with the time of abrasion. If the wear thickness is regarded as the abrasion resistance evaluation factor, the abrasion resistance of the 351 pure polyurea is about twice those of pure polyurea with a high level of hardness and aliphatic polyurea, and over five times that of high-performance abrasion-resistant concrete under the abrasion of the water flow with suspended load. It is also about 50 times that of high-performance abrasion-resistant concrete under the abrasion of the water flow with bed load. Overall, the abrasion resistance of pure polyurea presented a decreasing trend with increasing hardness. Pure polyurea with a Shore hardness of D30 has the best abrasion resistance, which is 60 to 70 times that of high-performance abrasion-resistant concrete under the abrasion of the water flow with bed load, and has been recommended, among the five kinds of pure polyurea materials with different hardness, in anti-abrasion protection of hydraulic structures.

  12. Recent progress of abrasion-resistant materials: learning from nature.

    Meng, Jingxin; Zhang, Pengchao; Wang, Shutao

    2016-01-21

    Abrasion-resistant materials have attracted great attention for their broad applications in industry, biomedicine and military. However, the development of abrasion-resistant materials that have with unique features such as being lightweight and flexible remains a great challenge in order to satisfy unmet demands. The outstanding performance of natural abrasion-resistant materials motivates the development of new bio-inspired abrasion-resistant materials. This review summarizes the recent progress in the investigation of natural abrasion-resistant materials to explore their general design principles (i.e., the correlation between chemical components and structural features). Following natural design principles, several artificial abrasion-resistant materials have shown unique abrasion-resistant properties. The potential challenges in the future and possible solutions for designing bio-inspired abrasion-resistant materials are also briefly discussed. PMID:26335377

  13. 9 CFR 311.14 - Abrasions, bruises, abscesses, pus, etc.

    2010-01-01

    ... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Abrasions, bruises, abscesses, pus, etc. 311.14 Section 311.14 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT... PARTS § 311.14 Abrasions, bruises, abscesses, pus, etc. All slight, well-limited abrasions on the...

  14. 21 CFR 872.6030 - Oral cavity abrasive polishing agent.

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Oral cavity abrasive polishing agent. 872.6030... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6030 Oral cavity abrasive polishing agent. (a) Identification. An oral cavity abrasive polishing agent is a device in paste or powder...

  15. Usage of abrasion-resistant materials in agriculture

    J Votava

    2014-06-01

    Full Text Available Agricultural soil-processing machines are subject to an extensive abrasive wear. This paper analyses technical materials and their fitness to exchangeable parts of plough bottoms, such as edge-tools and whole plough cutting edges. There were tested abrasion-resistant steels with different microstructures: austenite, martensite-bainite, and carbide. Steel with the pearlite-ferrite structure was used as an etalon. Abrasion resistance tests were processed in compliance with the norm CSN 01 5084, which is a test of abrasion wear on abrasive cloth.

  16. Lunar Dust Simulant in Mechanical Component Testing - Paradigm and Practicality

    Jett, T.; Street, K.; Abel, P.; Richmond, R.

    2008-01-01

    Due to the uniquely harsh lunar surface environment, terrestrial test activities may not adequately represent abrasive wear by lunar dust likely to be experienced in mechanical systems used in lunar exploration. Testing to identify potential moving mechanism problems has recently begun within the NASA Engineering and Safety Center Mechanical Systems Lunar Dust Assessment activity in coordination with the Exploration Technology and Development Program Dust Management Project, and these complimentary efforts will be described. Specific concerns about differences between simulant and lunar dust, and procedures for mechanical component testing with lunar simulant will be considered. In preparing for long term operations within a dusty lunar environment, the three fundamental approaches to keeping mechanical equipment functioning are dust avoidance, dust removal, and dust tolerance, with some combination of the three likely to be found in most engineering designs. Methods to exclude dust from contact with mechanical components would constitute mitigation by dust avoidance, so testing seals for dust exclusion efficacy as a function of particle size provides useful information for mechanism design. Dust of particle size less than a micron is not well documented for impact on lunar mechanical components. Therefore, creating a standardized lunar dust simulant in the particulate size range of ca. 0.1 to 1.0 micrometer is useful for testing effects on mechanical components such as bearings, gears, seals, bushings, and other moving mechanical assemblies. Approaching actual wear testing of mechanical components, it is beneficial to first establish relative wear rates caused by dust on commonly used mechanical component materials. The wear mode due to dust within mechanical components, such as abrasion caused by dust in grease(s), needs to be considered, as well as the effects of vacuum, lunar thermal cycle, and electrostatics on wear rate.

  17. Properties, structure and machnining capabilities sintered corundum abrasives

    Cz.J. Niżankowski

    2010-07-01

    Full Text Available The diversity of sintered corundum abrasives used in both bonded and in the embankment of abrasive tools currently poses substantialproblems for their choice of technology to specific tasks. Therefore performed a comparative study of ownership structures and capacitiesof elected representatives machnining sintered corundum abrasives of different generations, and this is normal sintered alumina,submicrocrystalline alumina sintered and nanocrystalline alumina sintered. Were studied some properties of a set of abrasive particles,physicochemical properties and structural and mechanical and technological properties. The studies used the method of microscopicmeasurement to determine the shape of abrasive particles, the pycnometer to determine the density of abrasive, a spectrometer todetermine the chemical composition of the magnetic analyzer for determining the magnetic fraction, scanning electron microscope toanalysis of abrasive grains and a special position to designate the machining capacity abrasive grains. The results showed a significantincrease in machining capacity sintered corundum abrasives with increasing degree of fragmentation of the crystallites sintered corundum abrasives and distinctive bands in the emerging microchip. The originality of the development provides a comparative summary ofproperties of sintered corundum abrasives of different generations and functions obtained by the author making the change in value indexof machininhcapacity grit from cutting speeds for different generations of sintered corundum.

  18. Cryogenically assisted abrasive jet micromachining of polymers

    The abrasive jet micromachining (AJM) of elastomers and polymers such as polydimethylsiloxane (PDMS), acrylonitrile butadiene styrene (ABS) and polytetrafluoroethylene (PTFE) for use in micro-fluidic devices was found to be very slow or impossible at room temperature. To enhance the material removal rate in such materials, a stream of liquid nitrogen (LN2) was injected into the abrasive jet, cooling the target to cryogenic temperatures. Erosion rate measurements on the three polymeric materials (PDMS, ABS and PTFE) with and without the use of LN2 were compared along with the profiles of micromachined channels and holes. It was found that the use of LN2 cooling caused brittle erosion in PDMS, allowing it to be micromachined successfully. An erosion rate increase was also observed in PTFE and ABS at high and intermediate impact angles. The use of LN2 also was found to reduce particle embedding

  19. Liquid abrasive pressure pot scoping tests report

    The primary initiatives of the LITCO Decontamination Development group at the Idaho Chemical Process Plant (ICPP) are the development of methods to eliminate the use of sodium bearing decontamination chemicals and minimization of the amount of secondary waste generated during decontamination activities. In July of 1994, a Commerce Business Daily (CBD) announcement was issued by the INEL to determine commercial interest in the development of an in-situ liquid abrasive grit blasting system. As a result of the CBD announcement, Klieber ampersand Schulz issued an Expression of Interest letter which stated they would be interested in testing a prototype Liquid Abrasive Pressure Pot (LAPP). LITCO's Decontamination group and Kleiber ampersand Schulz entered into a Cooperative Research and Development Agreement (CRADA) in which the Decontamination Development group tested the prototype LAPP in a non-radioactive hot cell mockup. Test results are provided

  20. An easy classification for dental cervical abrasions

    Madhuri Alankar Sawai

    2014-01-01

    Introduction: Tooth wear - attrition, abrasion, or erosion - are modern day problems for dentistry. It usually leads to discomfort and sensitivity especially during eating, drinking, or tooth brushing. If left untreated for a long time, it may lead to loss of vitality of tooth. Various qualitative and quantitative methods have been used in the past to describe tooth wear. However, each method has certain shortfalls. There is no ideal index that is simple and clear in its scoring criteria. The...

  1. The surface quality of AWJ cut parts as a function of abrasive material reusing rate

    Schnakovszky, C.; Herghelegiu, E.; Radu, M. C.; Tampu, N. C.

    2015-11-01

    Abrasive water jet cutting (AWJ) has been extensively used during the last years to process a large variety of materials since it offers important advantages as a good quality of the processed surface, without heat affected zones, low environmental impact (no emission of dust or other compounds that endanger the health of the user), small induced mechanical stresses etc. The main disadvantage is the high cost of processing (cost of equipment and consumables). In view of this, the effects of reusing the abrasive material on the quality of processed surface are investigated in this paper. Two steel materials were used: OL 37 (S 235) with large applicability in machine building industry and 2P armor steel used in the arms industry. The reusing rate of the garnet abrasive material was: 0%, 20%, 40%, 60%, 80% and 100%. The quality of processed surface was quantified by the following parameters: width at the jet inlet (Li), width at the jet outlet (Lo), inclination angle (α), deviation from perpendicularity (u) and roughness (Ra).

  2. The measurement of abrasive particles velocities in the process of abrasive water jet generation

    Zeleňák, Michal; Foldyna, Josef; Říha, Zdeněk

    Melville : American Institute of Physics Inc, 2014 - (Lenhard, R.; Kaduchova, K.), s. 276-280 ISBN 978-0-7354-1244-6. ISSN 0094-243X. - (AIP Conference Proceedings. 1608). [The Application of experimental and numerical method s in fluid mechanics and energetics 2014 /19./. Liptovský Ján (SK), 09.04.2014-11.04.2014] R&D Projects: GA MŠk ED2.1.00/03.0082; GA MPO FR-TI3/733 Institutional support: RVO:68145535 Keywords : abrasive cutting head * velocities of abrasive particles * abrasive water jet generation Subject RIV: JQ - Machines ; Tools http://scitation.aip.org/content/aip/proceeding/aipcp/10.1063/1.4892749

  3. Tangental Turning of Incoloy Alloy 925 Using Abrasive Water Jet

    Cárach, J.; S. Hloch; Hlaváček, P.; K. Vasilko; Lehocká, D.

    2015-01-01

    The paper deals with tangential turning of Incoloy alloy 925 with the diameter 50mm using the abrasive water jet. Experiment was done using the abrasive water jet of pressure p=400MPa and traverse speed at levels of v=1,5;3;4,5;6;7,5;9mm min-1. the abrasive particles were feeded to the water jet in the amount of 400 g min-1. Revolution of Incoloy workpiece during turning was n=34rpm.

  4. Abrasion Resistance Comparison between Rotor and Ring Spun Yarn

    YANG Jian-ping; YU Chong-wen

    2002-01-01

    On the base of literature review and the analysis of yarn properties, yarn structure and some other facts, the abrasion resistance of both rotor spun yarn and ring spun yarns are discussed. The results show that with the same raw material and twist, the rotor spun yarn has lower abrasion resistance than that of ring spun yarn, because of the higher twist employed, the abrasion resistance of rotor spun yarn is higher than that of ring spun yarn.

  5. Machining human dentin by abrasive water jet drilling.

    Kohorst, Philipp; Tegtmeyer, Sven; Biskup, Christian; Bach, Friedrich-Wilhelm; Stiesch, Meike

    2014-01-01

    The aim of this experimental in-vitro study was to investigate the machining of human dentin using an abrasive water jet and to evaluate the influence of different abrasives and water pressures on the removal rate. Seventy-two human teeth had been collected after extraction and randomly divided into six homogeneous groups (n=12). The teeth were processed in the area of root dentin with an industrial water jet device. Different abrasives (saccharose, sorbitol, xylitol) and water pressures (15 or 25 MPa) were used in each group. Dimensions of dentin removal were analysed using a stripe projection microscope and both drilling depth as well as volume of abrasion were recorded. Morphological analyses of the dentin cavities were performed using scanning electron microscopy (SEM). Both drilling depth and volume of abrasion were significantly influenced by the abrasive and the water pressure. Depending on these parameters, the drilling depth averaged between 142 and 378 μm; the volume of abrasion averaged between 0.07 and 0.15 mm3. Microscopic images revealed that all cavities are spherical and with clearly defined margins. Slight differences between the abrasives were found with respect to the microroughness of the surface of the cavities. The results indicate that abrasive water jet machining is a promising technique for processing human dentin. PMID:24642975

  6. The Abrasion-resistance Investigation of Rubberized Concrete

    KANG Jingfu; ZHANG Bo; LI Guangyu

    2012-01-01

    The abrasion resistance properties of rubberized concrete were comparatively studied by taking silica fume and crumb tire rubber as the additives.The abrasion tests were conducted in accordance with the Chinese standard test method DL/T 5150-2001,two recommended test methods:under water method and ring method,were used.The crumb tire rubbers with the sieve size of 8-mesh and 16-mesh were incorporated into the concrete by replacing same volume of sand and as an additive.The abrasion resistance of concrete was evaluated according to the abrasion resistance strength and the mass loss.Test results show that the addition of silica fume enhanced both compressive strength and abrasion resistance of concrete,and the addition of crumb rubber reduced the compressive strength but increased notably the abrasion resistance of the concrete.Silica fume concrete performed a better abrasion resistance than control concrete,and the rubberized concrete performed a much better abrasion resistance than silica fume concrete.The abrasion resistance of rubberized concrete increased with the increase of rubber content.

  7. Abrasive water jet: a complementary tool

    Duarte, J. P.

    1998-04-01

    Full Text Available The abrasive water jet is a powerful cutting tool, whose main advantages lie in the absence of thermal effects and the capability of cutting highly thick materials. Compared with Laser, the abrasive water jet allows the cutting of a larger range of thicknesses and a wider variety of materials such as: ornamental stones, metals, polymers, composites, wood, glass and ceramics. The application of this technology has suffered an extensive growth, with successful applications in varied industrial sectors like the automotive, aerospace, textile, metalworking, ornamental stones, etc. The present communication aims at introducing the abrasive water jet as a complementary tool to laser cutting, presenting its advantages by showing some documented examples of pieces cut for different industries.

    O jacto de água abrasivo é uma poderosa ferramenta de corte, tendo como principais vantagens a ausência de processo térmico e permitir o corte de elevadas espessuras. Comparativamente com o laser o jacto de água abrasivo permite cortar uma maior gama de espessuras, e uma maior diversidade de materiais: rochas ornamentais, metais, polimeros, compósitos, madeiras, vidro e cerâmicos. A aplicação desta tecnologia tem sofrido um crescimento acentuado, existindo aplicações de sucesso nos mais variados sectores industriáis como a indústria automóvel, aeroespacial, têxtil, metalomecânica e rochas ornamentáis. Esta comunição pretende apresentar o corte por jacto de agua abrasivo como uma ferramenta de corte complementar ao corte por laser, apresentando as suas vantagens documentadas através de alguns exemplos de peças executadas para as diferentes indústrias.

  8. Research on Premixed Abrasive Jet Derusting Machine

    2001-01-01

    The structure, working principles, and main technological parameters of the premajet derusting machineare introduced. Experiments were made to test the relationship among such jet parameters as working pressure,rate of water flow, abrasive weight consistency and derusting efficiency. Reasonable parameters were decided. Re-su lts prove that the derusting machine is characterized by its high derusting efficiency (as high as 20 m2/h), goodderusting quality (as good as ISO8501-1 Sa 2.5), and low specific power consumption (about 0.3 kW · h/m2).Therefore it is a new type of high efficiency derusting machine.

  9. Testing of Mineral types of abrasives for abrasive water jet cutting

    Foldyna, Josef; Martinec, Petr; Sitek, Libor

    Vol. 1. St. Louis : WJTA, 2001 - (Hashish, M.), s. 291-303 [2001 WJTA American Water jet Conference. Minneapolis (US), 18.08.2001-21.08.2001] R&D Projects: GA AV ČR KSK3012103 Keywords : water jet * cutting * abrasive Subject RIV: DB - Geology ; Mineral ogy

  10. Impact of toothpaste slurry abrasivity and toothbrush filament stiffness on abrasion of eroded enamel - an in vitro study

    Wiegand, Annette; Schwerzmann, Martina; Sener, Beatrice; Magalhães, Ana C.; Roos, Malgorzata; Ziebolz, Dirk; Imfeld, Thomas; Attin, Thomas

    2008-01-01

    OBJECTIVE: Toothbrush abrasion is significant in the development of tooth wear, particularly when combined with erosion. This in vitro study aimed to evaluate the impact of toothpaste slurry abrasivity and toothbrush filament stiffness on abrasion of eroded enamel. MATERIAL AND METHODS: Eroded enamel samples (hydrochloric acid, pH: 2.6, 15 s) were brushed with 40 strokes in an automatic brushing machine using manual toothbrushes with different filament stiffness (filament diameter: 0.15, 0.20...

  11. Ultrasonic Abrasion: An Alternative for Cavity Preparation

    Áurea Simone Barrôso VIEIRA

    2007-05-01

    Full Text Available Introduction: Restorative dentistry aims to repair damages caused by caries disease. Along the years, researchers have developed effective and less invasive methods with the goal of preserving the teeth from caries destruction. Therefore, the improvement of scientific knowledge, auxiliary diagnostic systems, dental materials, and new instruments has changed the approaches and treatments in this field. In addition to conservative removal of carious tissue, patient’s comfort has also become a concern in modern dentistry.Purpose: Considering that ultrasonic abrasion has attracted great interest of dental professionals, this article discusses an alternative technique for cavity preparation by literature review, addressing its indications, contra-indications, advantages and limitations compared to the conventional high-speed method.Conclusion: There are not many studies on this subject. The available studies have demonstrated several qualities of the ultrasonic abrasion system, but some aspects remain unclear. Therefore, it is important to highlight that laboratorial and clinical studies in primary/permanent teeth should be conducted to elucidate questionable issues, such as time of cavity preparation, topography, presence of smear layer and microleakage, in order to offer safety to the extensive use of this new technology for both the professional and the patient. In this context, the dentist should always be attentive to innovations referring to minimally invasive techniques.

  12. Testing of Commercial Cutting Heads for Abrasive Water Jet Technology

    Klich, J. (Jiří); Hlaváček, P.; M. Zeleňák; Sitek, L. (Libor); Foldyna, J.

    2013-01-01

    Five different cutting heads designed for cutting by high-speed abrasive water jet technology were tested from cutting ability point of view. Straight kerfs were cut in several metal materials by abrasive water jet. Material removal volume was determined as a measure of performance of specific cutting head. Quality of cutting surface was observed, too. Results are compared and discussed.

  13. Abrasion of 6 dentifrices measured by vertical scanning interference microscopy

    Florence Pascaretti-Grizon

    2013-09-01

    Full Text Available OBJECTIVES: The abrasion of dentifrices is well recognized to eliminate the dental plaque. The aims of this study were to characterize the abrasive powders of 6 dentifrices (3 toothpastes and 3 toothpowders and to measure the abrasion on a test surface by Vertical Scanning Interference microscopy (VSI. MATERIAL AND METHODS: Bright field and polarization microscopy were used to identify the abrasive particles on the crude dentifrices and after prolonged washes. Scanning electron microscopy and microanalysis characterized the shape and nature of the particles. Standardized and polished blocks of poly(methylmethacrylate were brushed with a commercial electric toothbrush with the dentifrices. VSI quantified the mean roughness (Ra and illustrated in 3D the abraded areas. RESULTS: Toothpastes induced a limited abrasion. Toothpowders induced a significantly higher roughness linked to the size of the abrasive particles. One powder (Gencix® produced a high abrasion when used with a standard testing weight. However, the powder is based on pumice particles covered by a plant homogenate that readily dissolves in water. When used in the same volume, or after dispersion in water, Ra was markedly reduced. CONCLUSION: Light and electron microscopy characterize the abrasive particles and VSI is a new tool allowing the analysis of large surface of abraded materials.

  14. 29 CFR 1910.215 - Abrasive wheel machinery.

    2010-07-01

    ... 29 Labor 5 2010-07-01 2010-07-01 false Abrasive wheel machinery. 1910.215 Section 1910.215 Labor... OCCUPATIONAL SAFETY AND HEALTH STANDARDS Machinery and Machine Guarding § 1910.215 Abrasive wheel machinery. (a... wheel in motion. (5) Excluded machinery. Natural sandstone wheels and metal, wooden, cloth, or...

  15. Abrasion Resistant Refractory Materials GB/T 23294-2009

    Yu Lingyuan

    2009-01-01

    @@ 1 Scope This standard specifies the definition, classification, technical requirements, test methods, quality appraisal procedure, packing, marking, transportation, storage, and quality certificate of abrasion resistant refractory materials. This standard is applicable to abrasion resistant refractory materials for circulating fluidized bed boilers, daily waste incinerator, industrial waste incinerator, medical waste incinerator, ordinary solid waste incinerator, hazardous waste incinerator, etc.

  16. Hydro-abrasive erosion: Problems and solutions

    The number of hydro power plants with hydro-abrasive erosion is increasing worldwide. An overall approach is needed to minimize the impact of this phenomenon. Already at the start of the planning phase an evaluation should be done to quantify the erosion and the impact on the operation. For this, the influencing parameters and their impact on the erosion have to be known. The necessary information for the evaluation comprises among others the future design, the particle parameters of the water, which will pass the turbine, and the power plant owner's framework for the future operation like availability or maximum allowable efficiency loss, before an overhaul needs to be done. Based on this evaluation of the erosion, an optimised solution can then be found, by analysing all measures in relation to investments, energy production and maintenance costs as decision parameters. Often a more erosion-resistant design, instead of choosing the turbine design with the highest efficiency, will lead to higher revenue. The paper will discuss the influencing parameters on hydro-abrasive erosion and the problems to acquire this information. There are different optimisation possibilities, which will be shown in different case studies. One key aspect to reduce the erosion and prolong the operation time of the components is to coat all relevant parts. But it is very important that this decision is taken early in the design stage, as the design has to be adapted to the requirements of the coating process. The quality of coatings and their impact on the operation will be discussed in detail in the paper as due to the non-availability of standards many questions arise in projects

  17. Comparison of abrasion resistance of selected constructional materials

    M. Adamiak

    2009-12-01

    Full Text Available Purpose: The aim of this work was to define and compare abrasion resistance of selected constructional materials widely used in the industry. Chromium cast iron wear resistant plates were compared with typically used wear resistant plates made from Hardox 400 steel and two different, wear resistant, materials cladded by welding technologies.Design/methodology/approach: The tests of abrasive wear were conducted in accordance to procedure “A” of standard ASTM G 65 - Standard Test Method for Measuring Abrasion Using the Dry Sand/Rubber Wheel Apparatus.Findings: Abrasion resistance tests shows that the best properties among investigated samples has chromium cast iron plate. Abrasion wear resistance of this plate is two times higher than wear resistance of layer made by welding technologies and nine times higher than typical Hardox 400 steel plate.Practical implications: Application, of abrasion resistant materials, results in significant material and economy savings, due to wear and costs reduction (decreasing stop times needed to change worn parts for a new one.Originality/value: Wear plates are modern solution in regeneration of worn machines parts and also for producing a new parts which connect high wear and abrasion resistance with costs reduction.

  18. Some results of tangential turning with an abrasive water jet

    Cárach, J.; Hlaváček, P.; K. Vasilko; Klich, J. (Jiří); S. Hloch

    2013-01-01

    This article deals with the visual comparison of the finished surface of sandstone using the tangential abrasive water jet. The continual abrasive water jet with turning was used with the constant pressure of 400 MPa for all sections of turning and with a depth of cut of 2mm. The abrasive particles were added to the water jet in the amount of 400 g.min-1. The traverse speed (vf = 60, 30, 10 mm.min-1) was gradually changing at a constant speed of rotation of workpiece n = 30min-1. Th...

  19. An Investigation of Different Material on Abrasive Water jet Machine

    Vaibhav.j.limbachiya; Prof Dhaval.M.Patel

    2011-01-01

    Abrasive water jet machine (AWJM) is a nontraditional machining process. Abrasive water jet machining is a process of removal of material by impact erosion of high pressure (1500-4000 bar), high velocity of water and entrained high velocity of grit abrasives on a work piece. It’s a non-conventional machining process. At herefirst works on theoretical work after it make some experimental work and then analyses both results. Theoretical MRR found equal to the experimental MRR. In this paper inv...

  20. Effect of abrasive grit size on wear of manganese-zinc ferrite under three-body abrasion

    Miyoshi, Kazuhisa

    1987-01-01

    Wear experiments were conducted using replication electron microscopy and reflection electron diffraction to study abrasion and deformed layers produced in single-crystal Mn-Zn ferrites under three-body abrasion. The abrasion mechanism of Mn-Zn ferrite changes drastically with the size of abrasive grits. With 15-micron (1000-mesh) SiC grits, abrasion of Mn-Zn ferrite is due principally to brittle fracture; while with 4- and 2-micron (4000- and 6000-mesh) SiC grits, abrasion is due to plastic deformation and fracture. Both microcracking and plastic flow produce polycrystalline states on the wear surfaces of single-crystal Mn-Zn ferrites. Coefficient of wear, total thickness of the deformed layers, and surface roughness of the wear surfaces increase markedly with an increase in abrasive grit size. The total thicknesses of the deformed layers are 3 microns for the ferrite abraded by 15-micron SiC, 0.9 microns for the ferrite abraded by 4-micron SiC, and 0.8 microns for the ferrite abraded by 1-micron SiC.

  1. New Rock Abrasivity Test Method for Tool Life Assessments on Hard Rock Tunnel Boring: The Rolling Indentation Abrasion Test (RIAT)

    Macias, F. J.; Dahl, F.; Bruland, A.

    2016-05-01

    The tunnel boring machine (TBM) method has become widely used and is currently an important presence within the tunnelling industry. Large investments and high geological risk are involved using TBMs, and disc cutter consumption has a great influence on performance and cost, especially in hard rock conditions. Furthermore, reliable cutter life assessments facilitate the control of risk as well as avoiding delays and budget overruns. Since abrasive wear is the most common process affecting cutter consumption, good laboratory tests for rock abrasivity assessments are needed. A new abrasivity test method by rolling disc named Rolling Indentation Abrasion Test (RIAT) has been developed. The goal of the new test design and procedure is to reproduce wear behaviour on hard rock tunnel boring in a more realistic way than the traditionally used methods. Wear by rolling contact on intact rock samples is introduced and several rock types, covering a wide rock abrasiveness range, have been tested by RIAT. The RIAT procedure indicates a great ability of the testing method to assess abrasive wear on rolling discs. In addition and to evaluate the newly developed RIAT test method, a comprehensive laboratory testing programme including the most commonly used abrasivity test methods and the mineral composition were carried out. Relationships between the achieved results from conventional testing and RIAT results have been analysed.

  2. Abrasion Properties of Steel Fiber Reinforced Silica Fume Concrete According to Los Angeles and Water Abrasion Tests

    Tsan-Ching CHENG

    2014-12-01

    Full Text Available The current study mainly investigated the influence of different tests on the abrasion resistance of concrete mixed with steel fibers and silica fume. The abrasion resistance was assessed at 28, 56 and 91 days on concretes with water-binder ratios of 0.35 and 0.55 where in some mixes silica fume was substituted by 5 % of cement by weight. Steel fibers of 0.5 % and 1.0 % of concrete volume were also added into the test concrete by replacement of coarse and fine aggregates. The results showed that concrete with higher compressive strength in Los Angeles abrasion tests also had better abrasion resistance. The inclusion of steel fibers into test concrete with a water-binder ratio of 0.35 resulted in a significant increase in compressive strength. This concrete also displayed better abrasion resistance and splitting tensile strength than reference concrete; in the test sample with a water-binder ratio of 0.55, the added steel fibers was unable to effectively produce cementation with the concrete. The inclusion of silica fume improved the abrasion resistance of concretes. In water abrasion testing, the abrasion resistance of concrete containing steel fiber was worse than that of concrete without steel fibers. In the water abrasion testing, the surface of steel fiber reinforced concrete was eroded by water and steel balls, and the impact caused the steel fibers to separate from the concrete and led to higher wear loss. DOI: http://dx.doi.org/10.5755/j01.ms.20.4.6460

  3. Effect of the abrasive size and transformability degree on the two body abrasive wear of polycrystalline zirconia

    It was analyzed the two-body abrasive wear behavior of tetragonal zirconia polycrystals with different transformability degrees. The analyze was carried out in pin-on disk tests, by using different abrasive sizes and was complemented by monitoring the friction coefficient. The wear rate increased with the increasing of the abrasive size. The lowest transformability degree underwent the worst behavior on wear, probably associated with its low fracture toughness and the intermediate transformability presented the best behavior. The correlation between wear rate and friction coefficient characterized the presence of two distinct behaviors. (author). 14 refs., 3 figs

  4. Refractory, Abrasive, and Other Industrial Minerals Operations - Direct Download

    U.S. Geological Survey, Department of the Interior — This map layer includes refractory, abrasive, and other industrial minerals operations in the United States. The data represent commodities covered by the Minerals...

  5. An Investigation of Different Material on Abrasive Water jet Machine

    Vaibhav.j.limbachiya

    2011-07-01

    Full Text Available Abrasive water jet machine (AWJM is a nontraditional machining process. Abrasive water jet machining is a process of removal of material by impact erosion of high pressure (1500-4000 bar, high velocity of water and entrained high velocity of grit abrasives on a work piece. It’s a non-conventional machining process. At herefirst works on theoretical work after it make some experimental work and then analyses both results. Theoretical MRR found equal to the experimental MRR. In this paper investigation for three different materials like en8,acrylic and aluminum is carried out using Taguchi design of experiment method. Experiments are carried out using L25 Orthogonal array by varying Material traverse speed and abrasive mass flow rate for each material respectively. Anova carried out for identifies significant parameters.

  6. Anti-abrasive nanocoatings current and future applications

    2015-01-01

    This book provides an overview of the fabrication methods for anti-abrasive nanocoatings. The connections among fabrication parameters, the characteristics of nanocoatings and the resulting properties (i.e. nanohardness, toughness, wear rate, load-bearing ability, friction coefficient, and scratch resistance) are discussed. Size-affected mechanical properties of nanocoatings are examined, including their uses. Anti-abrasive nanocoatings, including metallic-, ceramic-, and polymeric-based layers, as well as different kinds of nanostructures, such as multi-layered nanocomposites and thin films, are reviewed. * Provides a comprehensive overview of the fabrication methods for anti-abrasive nanocoatings* Discusses the connections among fabrication parameters, the characteristics of nanocoatings and the resulting properties* Reviews advantages and drawbacks of fabrication methods for anti-abrasive nanocoatings and clarifies the place of these nanocoatings in the world of nanotechnology

  7. Hardness and elasticity of abrasive particles measured by instrumented indentation

    Hvizdoš, P.

    2015-01-01

    Basic mechanical properties of seven types (from seven different sites) of abrasive garnet particles used for water jet cutting were measured using the technique of instrumented indentation (also called depth sensing indentation or nanoindentation). Hardness and modulus of elasticity were evaluated and compared. All the abrasives had similar measured mechanical properties (hardness 20 – 24.16 GPa), the highest values were found for the Czech garnet.

  8. Dermoscopy and Onychomycosis: guided nail abrasion for mycological samples*

    Bet, Diego Leonardo; dos Reis, Ana Lucia; Chiacchio, Nilton Di; Belda Junior, Walter

    2015-01-01

    Mycological examination is still the cornerstone for the diagnosis of onychomycosis for many dermatologists, but sampling technique interferes on its sensitivity and specificity. Nail abrasion may be used to reach the most proximal part of the lesion and can be easily accomplished with an electric abrasor. We suggest nail plate dermoscopy to identify the best location for localized abrasion to obtain adequate samples for mycological examination. PMID:26734877

  9. A review of micro-scale abrasion testing

    Micro-scale abrasion (commonly referred to as 'ball cratering') is a small-scale tribological test method which can be operated on a desktop. It offers the possibility of providing a quick, cheap, localized abrasion test that can be used with small samples. In principle its operation is simple, but in practice there are issues with wear scar measurement, wear mode and its applicability to a wide variety of monolithic materials and coatings. (topical review)

  10. Computed tomography to quantify tooth abrasion

    Kofmehl, Lukas; Schulz, Georg; Deyhle, Hans; Filippi, Andreas; Hotz, Gerhard; Berndt-Dagassan, Dorothea; Kramis, Simon; Beckmann, Felix; Müller, Bert

    2010-09-01

    Cone-beam computed tomography, also termed digital volume tomography, has become a standard technique in dentistry, allowing for fast 3D jaw imaging including denture at moderate spatial resolution. More detailed X-ray images of restricted volumes for post-mortem studies in dental anthropology are obtained by means of micro computed tomography. The present study evaluates the impact of the pipe smoking wear on teeth morphology comparing the abraded tooth with its contra-lateral counterpart. A set of 60 teeth, loose or anchored in the jaw, from 12 dentitions have been analyzed. After the two contra-lateral teeth were scanned, one dataset has been mirrored before the two datasets were registered using affine and rigid registration algorithms. Rigid registration provides three translational and three rotational parameters to maximize the overlap of two rigid bodies. For the affine registration, three scaling factors are incorporated. Within the present investigation, affine and rigid registrations yield comparable values. The restriction to the six parameters of the rigid registration is not a limitation. The differences in size and shape between the tooth and its contra-lateral counterpart generally exhibit only a few percent in the non-abraded volume, validating that the contralateral tooth is a reasonable approximation to quantify, for example, the volume loss as the result of long-term clay pipe smoking. Therefore, this approach allows quantifying the impact of the pipe abrasion on the internal tooth morphology including root canal, dentin, and enamel volumes.

  11. Factors influencing dust exposure: finishing activities in drywall construction.

    Simmons, Catherine E; Jones, Rachael M; Boelter, Fred W

    2011-05-01

    Sanding drywall joint compound is a dusty construction activity. We studied potential factors influencing exposure to respirable and total dust for sanders and bystanders in the area of drywall joint compound finishing in 17 test events within a room-scale isolation chamber. We found the air change rate to be negatively correlated with dust C(twa) both in the sander's personal breathing zone and surrounding area. We could not conclude that sanding tool type systematically influences dust C(twa), but the use of 80-grit abrasive was associated with the highest dust C(twa). We found respirable dusts were uniformly dispersed 1-8.2 m from sanding activities at a fixed location. As anticipated, both respirable and total dust C(twa) in the sander's personal breathing zone are higher than in the surrounding area. The respirable fraction of the total dust mass C(twa) was greater in the surrounding area than in the sander's personal breathing zone. Respirable dust concentrations measured in real time increased over the duration of sanding, exhibiting a temporal trend that is similar to that predicted by the well-mixed box model with contaminant removal by mechanical ventilation only, and continuous emission. Dust concentrations returned to pre-activity (background) levels 2-4 hr after cessation of the sanding activity. PMID:21491324

  12. Allergies, asthma, and dust

    Allergic rhinitis - dust ... make allergies or asthma worse are called triggers. Dust is a common trigger. When your asthma or allergies become worse due to dust, you are said to have a dust allergy. ...

  13. Electrodynamic Dust Shield for Solar Panels on Mars

    Calle, C. I.; Buhler, C. R.; Mantovani, J. G.; Clements S.; Chen, A.; Mazumder, M. K.; Biris, A. S.; Nowicki, A. W.

    2004-01-01

    The Materials Adherence Experiment on the Mars Pathfinder mission measured an obscuration of the solar arrays due to dust deposition at a rate of about 0.2 8% per day. It was estimated that settling dust may cause degradation in performance of a solar panel of between 22% and 89% over the course of two years [1, 2]. These results were obtained without the presence of a global dust storm. Several types of adherence forces keep dust particles attached to surfaces. The most widely discussed adherence force is the electrostatic force. Laboratory experiments [3] as well as indirect evidence from the Wheel Abrasion Experiment on Pathfinder [4] indicate that it is very likely that the particles suspended in the Martian atmosphere are electrostatically charged.

  14. Abrasive supply for ancient Egypt revealed

    In the framework of the major research scheme 'Synchronization of Civilizations in the Eastern Mediterranean Region in the 2nd Millennium B.C' instrumental neutron activation analysis (INAA) was used to determine 30 elements in pumice from archaeological excavations to reveal their specific volcanic origin. In ancient time, the widespread pumiceous products of several eruptions in the Aegean region have been used as abrasive tools and were therefore popular trade objects. The correlation of such archaeological findings to a specific eruption of known age would therefore allow to certify a maximum age of the respective stratum ('dating by first appearance'). Pumices from the Aegean region can easily be distinguished by their trace element distribution patterns. This has been shown by previous studies of the group. The elements Al, Ba, Ca, Ce, Co, Cr, Cs, Dy, Eu, Fe, Hf, K, La, Lu, Mn, Na, Nd, Rb, Sb, Sc, Sm, Ta, Tb, Th, Ti, U, V, Yb, Zr and Zn were determined in 16 samples of pumice lumps from excavations in Tell-el-Dab'a and Tell-el-Herr (Egypt). Two irradiation cycles and five measurement runs were applied. To show the accuracy of the results obtained, typical samples of the most important pumice sources in the Aegean region, particularly from Milos, Nisyros, Kos and Thera were analyzed together with the Egyptian samples of unknown origin. A reliable identification of the samples is achieved by comparing these results to the database compiled in previous studies. The geographical positions of these islands are shown. Within the error range, most of the elements determined in typical representatives of Milos, Nisyros, Kos and Santorini were in perfect agreement with values from the literature. On the basis of the Cluster graphics presented, it is possible to relate unknown pumice to its primary source, just by comparing the relation of a few elements, like Ta-Eu and Th-Hf. One concludes that all samples except one can be related to the Minoan eruption of Thera

  15. Study of abrasive resistance of composites for dental restoration by ball-cratering

    Antunes, P. Vale; Ramalho, A

    2003-01-01

    Two-body abrasion occurs in the mouth whenever there is tooth-to-tooth contact. This is what most dentists call attrition. Abrasive wear may also occur when there is an abrasive slurry interposed between two surfaces, such that the two solid surfaces are not actually in contact, this is called three-body abrasion, with food acting as the abrasive agent, and occurs in the mouth during mastication. Abrasion is the key physiological wear mechanism that is present in dental materials during norma...

  16. SPARCLE: Electrostatic Dust Control Tool Proof of Concept

    Clark, P. E.; Curtis, S. A.; Minetto, F.; Marshall, J.; Nuth, J.; Calle, C.

    2010-01-01

    Successful exploration of most planetary surfaces, with their impact-generated dusty regoliths, will depend on the capabilities to keep surfaces free of the performance-compromising dust. Once in contact with surfaces, whether set in motion by natural or mechanical means, regolith fines, or dust, behave like abrasive Velcro, coating surfaces, clogging mechanisms, making movement progressively more difticult, and being almost impossible to remove by mechanical mcans (brushing). The successful dust removal strategy will deal with dust dynamics resulting from interaction between Van der Waals and Coulombic forces. Here, proof of concept for an electrostatically-based concept for dust control tool is described and demonstrated. A low power focused electron beam is used in the presence of a small electrical field to increase the negative charge to mass ratio of a dusty surface until dust repulsion and attraction to a lower potential surface, acting as a dust collector, occurred. Our goal is a compact device of less than 5 kg mass and using less than 5 watts of power to be operational in less than 5 years with heritage from ionic sweepers for active spacecraft potential control (e.g ., on POLAR). Rovers could be fitted with devices that could hamess the removal of dust for sampling as part of the extended exploration process on Mercury, Mars, asteroids or outer solar system satellites, as well as the Moon.

  17. Comminution of Mica by Cavitation Abrasive Water Jet

    GUO Chu-wen; LIU Lin-sheng; HAN Dong-tai; LI Ai-min; ZHANG Dong-hai

    2003-01-01

    The comminution of mica with an abrasive water jet is mainly based on three knids of effects, that is, high-speed collision, cavitating effect and shearing effect. Cavitation abrasive water jet was applied for the comminution of mica because cavitation abrasive water jet can make full use of the three effects mentioned above. Besides high speed impacting among particles,cavitation and shearing were also enhanced due to the divergent angle at the outlet of the cavitation nozzle.A JME-200CX transmission electron microscope was used for observing the size distribution of particles.Variance analysis on the experimental results indicates that the effect of cavitation is much more significant than that of collision.The effect of pressure on comminution results becomes less with the decrease of the particle size.

  18. Prepolishing on a CNC platform with bound abrasive contour tools

    Schoeffler, Adrienne E.; Gregg, Leslie L.; Schoen, John M.; Fess, Edward M.; Hakiel, Michael; Jacobs, Stephen D.

    2003-05-01

    Deterministic microgrinding (DMG) of optical glasses and ceramics is the commercial manufacturing process of choice to shape glass surfaces prior to final finishing. This process employs rigid bound matrix diamond tooling resulting in surface roughness values of 3-5μm peak to valley and 100-400nm rms, as well as mid-spatial frequency tool marks that require subsequent removal in secondary finishing steps. The ability to pre-polish optical surfaces within the grinding platform would reduce final finishing process times. Bound abrasive contour wheels containing cerium oxide, alumina or zirconia abrasives were constructed with an epoxy matrix. The effects of abrasive type, composition, and erosion promoters were examined for tool hardness (Shore D), and tested with commercial optical glasses in an Optipro CNC grinding platform. Metrology protocols were developed to examine tool wear and subsequent surface roughness. Work is directed to demonstrating effective material removal, improved surface roughness and cutter mark removal.

  19. Decontamination of Steam Generator tube using Abrasive Blasting Technology

    As a part of a technology development of volume reduction and self disposal for large metal waste project, We at KAERI and our Sunkwang Atomic Energy Safety (KAES) subcontractor colleagues are demonstrating radioactively contaminated steam generator tube by abrasive blasting technology at Kori-1 NPP. A steam generator is a crucial component in a PWR (pressurized Water Reactor). It is the crossing between the primary, contaminated, circuit and the secondary waste-steam circuit. The heat from the primary reactor coolant loop is transferred to the secondary side in thousands of small tubes. Due to several problems in the material of those tube, like SCC (Stress Corrosion Cracking), insufficient control in water chemistry, which can be cause of tube leakage, more and more steam generators are replaced today. Only in Korea, already 2 of them are replaced and will be replaced in the near future. The retired 300 ton heavy Steam generator was stored at the storage waste building of Kori NPP site. The steam generator waste has a large volume, so that it is necessary to reduce its volume by decontamination. A waste reduction effect can be obtained through decontamination of the inner surface of a steam generator. Therefore, it is necessary to develop an optimum method for decontamination of the inner surface of bundle tubes. The dry abrasive blasting is a very interesting technology for the realization of three-dimensional microstructures in brittle materials like glass or silicon. Dry abrasive blasting is applicable to most surface materials except those that might be shattered by the abrasive. It is most effective on flat surface and because the abrasive is sprayed and can also applicable on 'hard to reach' areas such as inner tube ceilings or behind equipment. Abrasive decontamination techniques have been applied in several countries, including Belgium, the CIS, France, Germany, Japan, the UK and the USA

  20. Dust pollution solutions

    NONE

    2009-09-15

    Cimbria Moduflex is a leading manufacturer of dust-free loading chutes and accessories to the bulk handling industry. The Moduflex chute of modular construction can precisely match customer needs. Dust Control Technology recently launched its DustBoss DB-45 which controls airborne particles and surface dust with low water usage. DustScan Ltd., provides a range of equipment for nuisance and PM10 dust monitoring. Donaldson Torit supplies the Torit PowerCore dust collector. 1 photo.

  1. An instrument for measuring abrasive water jet diameter

    Junkar, Mihael; Lebar, Andrej; Orbanić, Henri

    2015-01-01

    In order to improve the accuracy of abrasive water jet (AW) machining the precise value of the jet diameter has to be known. Because of an aggressive environment caused by high velocity abrasive grains, the diameter is not easily measured. That is why a measuring device consisting of a load cell and a wear resistant probe was developed. The device measures the force of the jet while it passes over the edge of the probe. If the feed rate of the jet is constant and the time needed for jet to pa...

  2. Evaluation of dentifrice abrasion on human dentin and teeth enamel

    Radiometric method is applied to the dentifrice abrasion indicators evaluation: radioactive dentin (RDA) and radioactive enamel abrasion (REA). The dentifrices analysed presented RDA values varying from 95 to 13 and REA values from 7.1 to 0.7, showing a good precision, generally with relative standard deviations lower than 15.4%. Also, the dentifrices were classified as having low and medium cleaning potential. A correlation between RDA and REA values was obtained, i.e. dentifrices with high RDA values presented high REA ones. (author). 6 refs., 3 tabs

  3. Design and manufacturing of abrasive jet machine for drilling operation

    Mittal Divyansh

    2016-01-01

    Full Text Available Wide application of Abrasive Jet Machine (AJM is found in machining hard and brittle materials. Machining of brittle materials by AJM is due to brittle fracture and removal of micro chips from the work piece. Embedment of the abrasive particles in the brittle materials results in decrease of machining efficiency. In this paper design and manufacturing of AJM has been presented. Various parts of AJM have been designed using ANSYS 16.2 software. The parts are then manufactured indigenously as per designed parameters. The machine fabricated in this work will be used further for process optimization of AJM parameters for machining of glass and ceramics.

  4. Abrasion Properties of Steel Fiber Reinforced Silica Fume Concrete According to Los Angeles and Water Abrasion Tests

    Tsan-Ching CHENG; Cheng, An; Huang, Ran; Lin, Wei-Ting

    2014-01-01

    The current study mainly investigated the influence of different tests on the abrasion resistance of concrete mixed with steel fibers and silica fume. The abrasion resistance was assessed at 28, 56 and 91 days on concretes with water-binder ratios of 0.35 and 0.55 where in some mixes silica fume was substituted by 5 % of cement by weight. Steel fibers of 0.5 % and 1.0 % of concrete volume were also added into the test concrete by replacement of coarse and fine aggregates. The results showed t...

  5. Shore plartform abrasion in a para-periglacial environment, Galicia, northwestern Spain

    Blanco Chao, Ramón; Pérez Alberti, Augusto; Trenhaile, A. S.; Costa-Casais, Manuela; Valcarcel-Díaz, Marcos

    2007-01-01

    [EN] The Schmidt Rock Test Hammer was used to study the effect of abrasion on shore platforms in Galicia, northwestern Spain. On platforms where tidally-induced weathering (salt, wetting and drying, etc.) is dominant, rock strength is significantly lower than in areas where abrasion is, or has been active in the recent past. This suggests that abrasion removes weathered surface material, exposing the stronger, less weathered rock below. Abrasion downwearing, measured with a transverse micro-e...

  6. Review of Artificial Abrasion Test Methods for PV Module Technology

    Miller, David C. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Muller, Matt T. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Simpson, Lin J. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-08-01

    This review is intended to identify the method or methods--and the basic details of those methods--that might be used to develop an artificial abrasion test. Methods used in the PV literature were compared with their closest implementation in existing standards. Also, meetings of the International PV Quality Assurance Task Force Task Group 12-3 (TG12-3, which is concerned with coated glass) were used to identify established test methods. Feedback from the group, which included many of the authors from the PV literature, included insights not explored within the literature itself. The combined experience and examples from the literature are intended to provide an assessment of the present industry practices and an informed path forward. Recommendations toward artificial abrasion test methods are then identified based on the experiences in the literature and feedback from the PV community. The review here is strictly focused on abrasion. Assessment methods, including optical performance (e.g., transmittance or reflectance), surface energy, and verification of chemical composition were not examined. Methods of artificially soiling PV modules or other specimens were not examined. The weathering of artificial or naturally soiled specimens (which may ultimately include combined temperature and humidity, thermal cycling and ultraviolet light) were also not examined. A sense of the purpose or application of an abrasion test method within the PV industry should, however, be evident from the literature.

  7. Electrical resistivity measurements to predict abrasion resistance of rock aggregates

    Sair Kahraman; Mustafa Fener

    2008-04-01

    The prediction of Los Angeles (LA) abrasion loss from some indirect tests is useful for practical applications. For this purpose, LA abrasion, electrical resistivity, density and porosity tests were carried out on 27 different rock types. LA abrasion loss values were correlated with electrical resistivity and a good correlation between the two parameters was found. To see the effect of rock class on the correlation, regression analysis was repeated for igneous rocks, metamorphic rocks and sedimentary rocks, respectively. It was seen that correlation coefficients were increased for the rock classes. In addition, the data were divided into two groups according to porosity and density, respectively. After repeating regression analysis for these porosity and density groups, stronger correlations were obtained compared to the equation derived for all rocks. The validity of the derived equations was statistically tested and it was shown that all derived equations were significant. Finally, it can be said that all derived equations can alternatively be used for the estimation of LA abrasion loss from electrical resistivity.

  8. Cutting efficiency of partners abrasives according to UGN methodology

    Vašek, Jaroslav

    Kraków : Institute of Metal Cutting , 2001 - (Wantuch, E.), s. 61-70 ISBN 83-912887-4-9. [International Conference on Water Jet Machining WJM 2001/2./. Kraków (PL), 15.11.2001-16.11.2001] Institutional research plan: CEZ:AV0Z3086906 Keywords : water jet * abrasives * cutting Subject RIV: BK - Fluid Dynamics

  9. Topographical anomaly on surfaces created by abrasive waterjet

    Hloch, S.; Valíček, Jan

    2012-01-01

    Roč. 59, 5-8 (2012), s. 593-604. ISSN 0268-3768 Institutional research plan: CEZ:AV0Z30860518 Keywords : abrasive waterjet * initial zone * surface topography Subject RIV: JQ - Machines ; Tools Impact factor: 1.205, year: 2012 http://www.springerlink.com/content/5701144k76v02372

  10. Thermal annealing and ionic abrasion in ZnTe

    Thermal annealing of the ZnTe crystal is studied first in order to obtain information on the aspect of the penetration profile. Ionic abrasion is then investigated to find out whether it produces the same effects as ionic implantation, especially for luminescence

  11. Exaggerated abrasion/erosion of human dental enamel surfaces

    Westergaard, J; Moe, D; Pallesen, Ulla;

    1993-01-01

    An atypical, rapidly proceeding abrasion/erosion of the labial enamel surfaces of the maxillary and mandibular incisors and canines in a 27-yr-old man is reported. Ultrastructural examination of a replica of the teeth showed a practically structureless enamel surface both at the initial examinati...

  12. Innovative decontamination technology by abrasion in vibratory vessels

    Available in abstract form only. Full text of publication follows: The possibility of using conventional vibratory vessel technology as a decontamination technique is the motivation for the development of this project. The objective is to explore the feasibility of applying the vibratory vessel technology for decontamination of radioactively-contaminated materials such as pipes and metal structures. The research and development of this technology was granted by the U.S. Department of Energy (DOE). Abrasion processes in vibratory vessels are widely used in the manufacture of metals, ceramics, and plastics. Samples to be treated, solid abrasive media and liquid media are set up into a vessel. Erosion results from the repeated impact of the abrasive particles on the surface of the body being treated. A liquid media, generally detergents or surfactants aid the abrasive action. The amount of material removed increases with the time of treatment. The design and construction of the machine were provided by Vibro, Argentina private company. Tests with radioactively-contaminated aluminum tubes and a stainless steel bar, were performed at laboratory level. Tests showed that it is possible to clean both the external and the internal surface of contaminated tubes. Results show a decontamination factor around 10 after the first 30 minutes of the cleaning time. (authors)

  13. Dust Interactions on Small Solar System Bodies and Technology Considerations for Exploration

    Kobrick, Ryan,; Hoffman, Jeffrey; Pavone, Marco; Street, Kenneth; Rickman, Douglas

    2014-01-01

    Small-bodies such as asteroids and Mars' moons Phobos and Deimos have relatively unknown regolith environments. It is hypothesized that dust preserved in the regolith on the surfaces will have similar mechanical properties to lunar dust because of similar formation processes from micrometeorite bombardment, low relative gravity for slow settling times, and virtually no weathering because there is no atmosphere. This combination of processes infers that small-body dust particles will be highly angular and retain abrasive properties. The focus of this paper uses the mission architecture and engineering design for an asteroid hopper known as Hedgehog, a spherical spacecraft with several symmetric spikes used to aid with tumbling mobility in a low gravity environment. Dust abrasion considerations are highlighted throughout the paper relating to the lead authors' previous work, but act as an example of one of many important dust or regolith physical properties that need to be considered for future exploration. Measurable regolith properties are summarized in order to identify technologies that may be useful for exploration in terms of scientific return and spacecraft design. Previous instruments are summarized in this paper that could be used on the Hedgehog. Opportunities for hardware payloads are highlighted that include low mass solutions or dualpurpose instruments that can measure regolith or dust properties. Finally, dust mitigation suggestions are made for vehicles of this mobility profile.

  14. Evaluation of the precision in the dentifrice abrasivity measurements obtained by a radiotracer method

    The radiotracer method was applied to evaluate the precision of the measurements of abrasivity data obtained for dentifrice samples and for abrasive agents (silica and calcium carbonate). This method consists of measuring 32P transferred to a dentifrice or abrasive slurry when an irradiated dentin is submitted to a brushing simulation. Results obtained for abrasivity indices had good precision with relative standard deviations lower than 11.8%. Comparisons made between our abrasivity index data with those obtained at the Oral Health Research Institute of Indiana University also showed a good agreement. (author)

  15. Study on abrasive mixing chamber of pre-mixed water jet

    Junqing, Meng; Baisheng, Nie; Yechao, Ma; Bi, Zhao

    2015-01-01

    In order to reveal the flow law of isothermal, incompressible, steady, liquid-solid turbulent flow in mixing chamber of premixed abrasive water jet, the FLUENT software is used. The flow law of liquid-solid two phase flow is obtained. Abrasive mixing chamber models with four different sizes are used in this simulation, key design parameters of mine abrasive mixing chamber are determined. The flow laws of liquid-solid two phase flow in abrasive mixing chamber model with 7 different abrasive vo...

  16. MECHANISM AND PREDICTION OF MATERIAL ABRASION IN HIGH-VELOCITY SEDIMENT-LADEN FLOW

    HUANG Xi-bin; YUAN Yin-zhong

    2006-01-01

    The wall surface of material is prone to silt abrasion by high-velocity sediment-laden flow. The silt abrasion is different form cavitation erosion. In this article, the characteristics of silt abrasion were discussed. The mechanism of silt abrasion was analyzed and the formation and development of ripple shape on wall surface of material were explained thereafter. Based on turbulence theory and test data, some formulas were derived for predicting the abrasion rate of concrete wall surface in high-velocity sediment-laden flow. The calculated results show good agreement with the experimental data.

  17. Optimization of Abrasive Water Jet Cutting of Ductile Materials

    Asif IQBAL; Naeem U DAR; Ghulam HUSSAIN

    2011-01-01

    Full factorial design of experiments was developed in order to investigate the effects of jet pressure, abrasive mixing rate, cutting feed, and plate thickness upon three response variables, surface finish of cutting wear zone, percentage proportion of striation free area, and maximum width of cut. The set of sixteen experiments was performed on each of the following two ductile materials: AISI 4340 (high strength low alloy steel, hardened to 49HRc) and Aluminum 2219. Analysis of Variance (ANOVA) was performed on experimental data in order to determine the significance of effects of different parameters on the performance measures. It was found that cutting feed and thickness were highly influential parameters, while abrasive mixing rate is influential upon surface roughness only. Strong interaction was found between jet pressure and workpiece material.Multi-criteria numerical optimization was performed in order to simultaneously maximize/minimize different combinations of performance measures.

  18. UV/EB cured nanocomposites with scratch and abrasion properties

    The aim of this study was compare the effect of ultraviolet (UV) and electron beam (EB) on the properties of cured nanocomposites. Surface hardness of the cured materials was increased with the increased number of exposure (radiation doses) until optimum dose was achieved. This was due to the crosslinking during free radical polymerization process. Pendulum hardness, gel content (by soxhlet extraction) and thumb twist results were used to monitor the curing process and to characterize all the coating materials. Optimum dose was derived from the experiment and then was used to cure the coating materials for scratch and abrasion resistance study. It was found that the UV cured products showed excellent abrasion property than EB cured products. For scratch resistance property, EB curing process could provide the solution. (Author)

  19. Superficial characterization of titanium league when submitted to abrasive blasting

    Commercially pure titanium and some of its alloys exhibit a good biocompatibility. These characteristics are frequently used in the manufacture of orthopedic and dental implants. It is possible to modify its surface making it the bioactive using various methods, such as deposition of hydroxyapatite by plasma spray and increasing the roughness of the surface by abrasive blasting. This work is to modify the surface of titanium alloy Ti6Al4V ELI (ASTM F136: 02a) for abrasive blasting and study the morphology, crystallographic phases and the mechanical characteristics of the surface obtained. For such purpose, SEM images, diffraction of X-rays and tests of risk produced by nanoindenter. The sandblasting was done using alumina powder and blasting time of 6s. The morphology of the surfaces of Ti6Al4V ELI changed after sandblasting with increased roughness. It is possible to conclude that after sandblasting the titanium surface do not have a ductile behavior. (author)

  20. Analysis of polymerization time on abrasive wear of dental resins

    Eduardo Carlos Bianchi

    2010-03-01

    Full Text Available An evaluation was made of the abrasive wear of six composite thermofixed dental resins subjected to different polymerization times. The method of evaluation was based on sharpness measurements to quantify the abrasive wear resistance of the resins. To this end, a test bench was built, consisting of a rotating porcelain cylinder that wears out a resin-coated cylinder placed above it, thus causing vertical displacement of the contact as the wear progresses. The values of vertical displacement, i.e., the input variables, were read and recorded by means of a computer program to obtain the sharpness values. These data indicated that the resins displayed different behaviors as a function of the polymerization times applied, reinforcing the importance of using a practical and rapid method of analysis in order to ensure that the behavior of new materials is fully understood before they are launched on the market.

  1. Abrasion Testing of Critical Components of Hydrokinetic Devices

    Worthington, Monty [ORPC Alaska; Ali, Muhammad [Ohio University; Ravens, Tom [University of Alaska Anchorage

    2013-12-06

    The objective of the Abrasion Testing of Critical Components of Hydrokinetic Devices (Project) was to test critical components of hydrokinetic devices in waters with high levels of suspended sediment – information that is widely applicable to the hydrokinetic industry. Tidal and river sites in Alaska typically have high suspended sediment concentrations. High suspended sediment also occurs in major rivers and estuaries throughout the world and throughout high latitude locations where glacial inputs introduce silt into water bodies. In assessing the vulnerability of technology components to sediment induced abrasion, one of the greatest concerns is the impact that the sediment may have on device components such as bearings and seals, failures of which could lead to both efficiency loss and catastrophic system failures.

  2. Lunar Dust Characterization Activity at GRC

    Street, Kenneth W.

    2008-01-01

    The fidelity of lunar simulants as compared to actual regolith is evaluated using Figures of Merit (FOM) which are based on four criteria: Particle Size, Particle Shape, Composition, and Density of the bulk material. In practice, equipment testing will require other information about both the physical properties (mainly of the dust fraction) and composition as a function of particle size. At Glenn Research Center (GRC) we are involved in evaluating a number of simulant properties of consequence to testing of lunar equipment in a relevant environment, in order to meet Technology Readiness Level (TRL) 6 criteria. Bulk regolith has been characterized for many decades, but surprisingly little work has been done on the dust fraction (particles less than 20 micrometers in diameter). GRC is currently addressing the information shortfall by characterizing the following physical properties: Particle Size Distribution, Adhesion, Abrasivity, Surface Energy, Magnetic Susceptibility, Tribocharging and Surface Chemistry/Reactivity. Since some of these properties are also dependent on the size of the particles we have undertaken the construction of a six stage axial cyclone particle separator to fractionate dust into discrete particle size distributions for subsequent evaluation of these properties. An introduction to this work and progress to date will be presented.

  3. Analysis of striation formation mechanism in abrasive water jet cutting

    Junkar, Mihael; Orbanić, Henri

    2015-01-01

    In this paper the macro-mechanism of abrasive water jet (AWJ) cutting is studied from the point of cutting front and striation formation analysis. The striation on the surface cut with AWJ is a characteristic phenomena which is strongly present when cutting with high traverse velocities for particular material type and thickness of workpiece. The connection between the cutting front step formation and striation formation is explained through series of experiments, which include visual observa...

  4. Simulation of abrasive water jet cutting process - Part 1

    Lebar, Andrej; Junkar, Mihael

    2015-01-01

    Abrasive water jet (AWJ) machined surfaces exhibit the texture typical of machining with high energy density beam processing technologies. It has a superior surface quality in the upper region and rough surface in the lower zone with pronounced texture marks called striations. The nature of the mechanisms involved in the domain of AWJ machining is still not well understood but is essential for AWJ control improvement. In this paper, the development of an AWJ machining simulation is reported o...

  5. Abrasive water-jet: controlled depth milling of titanium alloys

    Fowler, Gary

    2003-01-01

    Abrasive waterjet (AWJ) technology is used in a routine manner in manufacturing industry to cut materials that are difficult to cut by other methods. Whilst the technology for through cutting of materials is mature, the process is also being developed for controlled depth milling (CDM) of materials. The aerospace industry have a requirement to remove redundant material from components manufactured from difficult to machine Ti6Al4V and titanium aluminide alloys and thus reduce component w...

  6. Abrasion of abutment screw coated with TiN

    Jung, Seok-Won; Son, Mee-Kyoung; Chung, Chae-Heon; Kim, Hee-Jung

    2009-01-01

    STATEMENT OF PROBLEM Screw loosening has been a common complication and still reported frequently. PURPOSE The purpose of this study was to evaluate abrasion of the implant fixture and TiN coated abutment screw after repeated delivery and removal with universal measuring microscope. MATERIAL AND METHODS Implant systems used for this study were Osstem and 3i. Seven pairs of implant fixtures, abutments and abutment screws for each system were selected and all the fixtures were perpendicularly m...

  7. Polyurethanes from the crystalline prepolymers resistant to abrasive wear

    Domańska Agata; Boczkowska Anna; Izydorzak-Woźniak Marta; Jaegermann Zbigniew; Grądzka-Dahlke Małgorzata

    2014-01-01

    The research aimed at the selection of polyurethanes synthesized from poly(tetramethylene ether) glycol (PTMEG), as well as from two different isocyanates 4,4′-methylenebis(cyclohexyl)isocyanate (HMDI) and 4.4′-methylenebis(phenyl isocyanate) (MDI) in order to obtain polyurethane with increased resistance to abrasive wear and degradation for bio-medical application. Polyurethanes were fabricated from crystalline prepolymers extended by water. The paper presents preliminary results on polyuret...

  8. Is bovine dentine an appropriate substitute in abrasion studies

    Wegehaupt, F J; Widmer, R.; Attin, T.

    2010-01-01

    The study aimed to compare the wear behaviour of human and bovine dentine due to toothbrushing with different relative dentin abrasivity (RDA) toothpastes. Forty human and 40 bovine dentine samples were prepared from bovine lower incisors or human premolars roots, and baseline surface profiles were recorded. The samples were distributed to four groups (each group n = 10 human and 10 bovine samples) and brushed with fluoridated experimental toothpastes with different RDAs (group A: RDA 10, B: ...

  9. Wear and abrasion resistance selection maps of biological materials.

    Amini, Shahrouz; Miserez, Ali

    2013-08-01

    The mechanical design of biological materials has generated widespread interest in recent years, providing many insights into their intriguing structure-property relationships. A critical characteristic of load-bearing materials, which is central to the survival of many species, is their wear and abrasion tolerance. In order to be fully functional, protective armors, dentitious structures and dynamic appendages must be able to tolerate repetitive contact loads without significant loss of materials or internal damage. However, very little is known about this tribological performance. Using a contact mechanics framework, we have constructed materials selection charts that provide general predictions about the wear performance of biological materials as a function of their fundamental mechanical properties. One key assumption in constructing these selection charts is that abrasion tolerance is governed by the first irreversible damage at the contact point. The maps were generated using comprehensive data from the literature and encompass a wide range of materials, from heavily mineralized to fully organic materials. Our analysis shows that the tolerance of biological materials against abrasion depends on contact geometry, which is ultimately correlated to environmental and selective pressures. Comparisons with experimental data from nanoindentation experiments are also drawn in order to verify our predictions. With the increasing amount of data available for biological materials also comes the challenge of selecting relevant model systems for bioinspired materials engineering. We suggest that these maps will be able to guide this selection by providing an overview of biological materials that are predicted to exhibit the best abrasion tolerance, which is of fundamental interest for a wide range of applications, for instance in restorative implants and protective devices. PMID:23643608

  10. Tangental Turning of Incoloy Alloy 925 Using Abrasive Water Jet

    Cárach, J.; Hloch, Sergej; Hlaváček, Petr; Vasilko, K.; Lehocká, D.

    Zagreb: Croatian Association of Production Engineering, 2015 - (Abele, E.; Udiljak, T.; Ciglar, D.), s. 77-80 ISBN 978-953-7689-03-2. [CIM 2015 - International Scientific Conference on Production Engineering. Vodice (HR), 10.06.2015-13.06.2015] R&D Projects: GA MŠk(CZ) LO1406; GA MŠk ED2.1.00/03.0082 Institutional support: RVO:68145535 Keywords : incoloy alloy 925 * abrasive water jet turning * traverse speed Subject RIV: JQ - Machines ; Tools

  11. HTGR Dust Safety Issues and Needs for Research and Development

    Paul W. Humrickhouse

    2011-06-01

    This report presents a summary of high temperature gas-cooled reactor dust safety issues. It draws upon a literature review and the proceedings of the Very High Temperature Reactor Dust Assessment Meeting held in Rockville, MD in March 2011 to identify and prioritize the phenomena and issues that characterize the effect of carbonaceous dust on high temperature reactor safety. It reflects the work and input of approximately 40 participants from the U.S. Department of Energy and its National Labs, the U.S. Nuclear Regulatory Commission, industry, academia, and international nuclear research organizations on the topics of dust generation and characterization, transport, fission product interactions, and chemical reactions. The meeting was organized by the Idaho National Laboratory under the auspices of the Next Generation Nuclear Plant Project, with support from the U.S. Nuclear Regulatory Commission. Information gleaned from the report and related meetings will be used to enhance the fuel, graphite, and methods technical program plans that guide research and development under the Next Generation Nuclear Plant Project. Based on meeting discussions and presentations, major research and development needs include: generating adsorption isotherms for fission products that display an affinity for dust, investigating the formation and properties of carbonaceous crust on the inside of high temperature reactor coolant pipes, and confirming the predominant source of dust as abrasion between fuel spheres and the fuel handling system.

  12. Comparing the Air Abrasion Cutting Efficacy of Dentine Using a Fluoride-Containing Bioactive Glass versus an Alumina Abrasive: An In Vitro Study

    Melissa H. X. Tan

    2015-01-01

    Full Text Available Air abrasion as a caries removal technique is less aggressive than conventional techniques and is compatible for use with adhesive restorative materials. Alumina, while being currently the most common abrasive used for cutting, has controversial health and safety issues and no remineralisation properties. The alternative, a bioactive glass, 45S5, has the advantage of promoting hard tissue remineralisation. However, 45S5 is slow as a cutting abrasive and lacks fluoride in its formulation. The aim of this study was to compare the cutting efficacy of dentine using a customised fluoride-containing bioactive glass Na0SR (38–80 μm versus the conventional alumina abrasive (29 μm in an air abrasion set-up. Fluoride was incorporated into Na0SR to enhance its remineralisation properties while strontium was included to increase its radiopacity. Powder outflow rate was recorded prior to the cutting tests. Principal air abrasion cutting tests were carried out on pristine ivory dentine. The abrasion depths were quantified and compared using X-ray microtomography. Na0SR was found to create deeper cavities than alumina (p<0.05 despite its lower powder outflow rate and predictably reduced hardness. The sharper edges of the Na0SR glass particles might improve the cutting efficiency. In conclusion, Na0SR was more efficacious than alumina for air abrasion cutting of dentine.

  13. Toxicity of lunar dust

    Linnarsson, Dag; Carpenter, James; Fubini, Bice; Gerde, Per; Karlsson, Lars L.; Loftus, David J.; Prisk, G. Kim; Staufer, Urs; Tranfield, Erin M.; van Westrenen, Wim

    2012-01-01

    The formation, composition and physical properties of lunar dust are incompletely characterised with regard to human health. While the physical and chemical determinants of dust toxicity for materials such as asbestos, quartz, volcanic ashes and urban particulate matter have been the focus of substantial research efforts, lunar dust properties, and therefore lunar dust toxicity may differ substantially. In this contribution, past and ongoing work on dust toxicity is reviewed, and major knowle...

  14. Latest Pleistocene gusty intensified winds forced Sinai/Negev sand abrasion into finer grains: An example of active ergs as mega grinders

    Enzel, Y.; Amit, R.; Crouvi, O.; Porat, N.

    2010-12-01

    Our research results from the edge of the Sinai-Negev erg indicate that ergs are mega-grinders of sand into very fine sand and silt under gusty and windy late Quaternary climates and in ancient aeolian deserts environments. In the carbonate terrain of the northern Sinai-Negev desert, only sand abrasion in an active erg could have produced the large quantities of quartzo-feldspathic silts constituting the late Quaternary northwestern Negev loess. In the continuum of source to sink, i.e. from sand of dunes (mostly medium sand with minor amounts of fine sand) to the silts in loess, the very fine sand is, yet, unaccounted for in the record. In the current research we focus on and demonstrate that as predicted by experiments, abrasion by fast advancing dunes generated large quantities of very fine sand (60-110 μm) deposited within the dune field and in close proximity downwind. This very fine sand is usually absent from the particle size distribution of either the dunes or downwind loess and must have been generated under gusty winds 13-11 ka. These intensified frequent winds generated sand/dust storms during the Younger Dryas in the southeastern Mediterranean. These very fine sands, the products of dune sand abrasion, filled small basins that were formed by the same advancing dunes under these same winds. Elsewhere, outside these sampling basins, it is difficult to identify these sands as a distinct product that point to a very windy episode.

  15. Dust particle dynamics in atmospheric dust devils

    Izvekova, Yulia; Popel, Sergey

    2016-04-01

    Dust particle dynamics is modeled in the Dust Devils (DDs). DD is a strong, well-formed, and relatively long-lived whirlwind, ranging from small (half a meter wide and a few meters tall) to large (more than 100 meters wide and more than 1000 meters tall) in Earth's atmosphere. We develop methods for the description of dust particle charging in DDs, discuss the ionization processes in DDs, and model charged dust particle motion. Our conclusions are consistent with the fact that DD can lift a big amount of dust from the surface of a planet into its atmosphere. On the basis of the model we perform calculations and show that DDs are important mechanism for dust uplift in the atmospheres of Earth and Mars. Influence of DD electric field on dynamics of dust particles is investigated. It is shown that influence of the electric field on dust particles trajectories is significant near the ground. At some altitude (more then a quarter of the height of DD) influence of the electric field on dust particles trajectories is negligible. For the calculation of the dynamics of dust electric field can be approximated by effective dipole located at a half of the height of DD. This work was supported by the Russian Federation Presidential Program for State Support of Young Scientists (project no. MK-6935.2015.2).

  16. Mass transfer of PBDEs from plastic TV casing to indoor dust via three migration pathways — A test chamber investigation

    Rauert, C.; Harrad, S., E-mail: S.J.Harrad@bham.ac.uk

    2015-12-01

    Polybrominated diphenyl ethers (PBDEs) are widely detected in humans with substantial exposure thought to occur in indoor environments and particularly via contact with indoor dust. Despite this, knowledge of how PBDEs migrate to indoor dust from products within which they are incorporated is scarce. This study utilises an in-house designed and built test chamber to investigate the relative significance of different mechanisms via which PBDEs transfer from source materials to dust, using a plastic TV casing treated with the Deca-BDE formulation as a model source. Experiments at both room temperature and 60 °C revealed no detectable transfer of PBDEs from the TV casing to dust via volatilisation and subsequent partitioning. In contrast, substantial transfer of PBDEs to dust was detected when the TV casing was abraded using a magnetic stirrer bar. Rapid and substantial PBDE transfer to dust was also observed in experiments in which dust was placed in direct contact with the source. Based on these experiments, we suggest that for higher molecular weight PBDEs like BDE-209; direct dust:source contact is the principal pathway via which source-to-dust transfer occurs. - Highlights: • Transfer from a TV casing to dust of high molecular weight PBDEs examined. • Direct source:dust contact effected rapid and most substantial transfer. • Substantial source:dust transfer also occurred via abrasion of source.

  17. Mass transfer of PBDEs from plastic TV casing to indoor dust via three migration pathways — A test chamber investigation

    Polybrominated diphenyl ethers (PBDEs) are widely detected in humans with substantial exposure thought to occur in indoor environments and particularly via contact with indoor dust. Despite this, knowledge of how PBDEs migrate to indoor dust from products within which they are incorporated is scarce. This study utilises an in-house designed and built test chamber to investigate the relative significance of different mechanisms via which PBDEs transfer from source materials to dust, using a plastic TV casing treated with the Deca-BDE formulation as a model source. Experiments at both room temperature and 60 °C revealed no detectable transfer of PBDEs from the TV casing to dust via volatilisation and subsequent partitioning. In contrast, substantial transfer of PBDEs to dust was detected when the TV casing was abraded using a magnetic stirrer bar. Rapid and substantial PBDE transfer to dust was also observed in experiments in which dust was placed in direct contact with the source. Based on these experiments, we suggest that for higher molecular weight PBDEs like BDE-209; direct dust:source contact is the principal pathway via which source-to-dust transfer occurs. - Highlights: • Transfer from a TV casing to dust of high molecular weight PBDEs examined. • Direct source:dust contact effected rapid and most substantial transfer. • Substantial source:dust transfer also occurred via abrasion of source

  18. Risk of Adverse Health and Performance Effects of Celestial Dust Exposure

    Scully, Robert R.; Meyers, Valerie E.

    2015-01-01

    Crew members can be directly exposed to celestial dust in several ways. After crew members perform extravehicular activities (EVAs), they may introduce into the habitat dust that will have collected on spacesuits and boots. Cleaning of the suits between EVAs and changing of the Environmental Control Life Support System filters are other operations that could result in direct exposure to celestial dusts. In addition, if the spacesuits used in exploration missions abrade the skin, as current EVA suits have, then contact with these wounds would provide a source of exposure. Further, if celestial dusts gain access to a suit's interior, as was the case during the Apollo missions, the dust could serve as an additional source of abrasions or enhance suit-induced injuries. When a crew leaves the surface of a celestial body and returns to microgravity, the dust that is introduced into the return vehicle will "float," thus increasing the opportunity for ocular and respiratory injury. Because the features of the respirable fraction of lunar dusts indicate they could be toxic to humans, NASA conducted several studies utilizing lunar dust simulants and authentic lunar dust to determine the unique properties of lunar dust that affect physiology, assess the dermal and ocular irritancy of the dust, and establish a permissible exposure limit for episodic exposure to airborne lunar dust during missions that would involve no more than 6 months stay on the lunar surface. Studies, with authentic lunar soils from both highland (Apollo 16) and mare (Apollo17) regions demonstrated that the lunar soil is highly abrasive to a high fidelity model of human skin. Studies of lunar dust returned during the Apollo 14 mission from an area of the moon in which the soils were comprised of mineral constituents from both major geological regions (highlands and mares regions) demonstrated only minimal ocular irritancy, and pulmonary toxicity that was less than the highly toxic terrestrial crystalline

  19. RESEARCH ON ABRASION OF DEBRIS FLOW TO HIGH-SPEED DRAINAGE STRUCTURE

    陈洪凯; 唐红梅; 吴四飞

    2004-01-01

    As one weak topic in research of debris flow, abrasion of debris flow shortens obviously application life of control structure composed of concrete. High-speed drainage structure, one of the most effective techniques to control giant debris flow disaster, has shortened one-third application life due to abrasion by debris flow. Based on velocity calculation method founded by two-phase theory, research of abrasion mechanism of debris flow to high-speed drainage structure was made. The mechanism includes both abrasion mechanism of homogeneous sizing and shearing mechanism of particle of debris flow to high-speed drainage trough structure. Further abrasion equations of both sizing and particle were established by Newton movement theory of debris flow. And abrasion amount formula of the high-speed drainage trough structure is set up by dimensional analysis. Amount to calculating in the formula is consistent with testing data in-situ, which is valuable in design of high-speed drainage structure.

  20. The effect of hydrogen peroxide on polishing removal rate in CMP with various abrasives

    Manivannan, R.; Ramanathan, S.

    2009-01-01

    The effect of hydrogen peroxide in chemical mechanical planarization slurries for shallow trench isolation was investigated. The various abrasives used in this study were ceria, silica, alumina, zirconia, titania, silicon carbide, and silicon nitride. Hydrogen peroxide suppresses the polishing of silicon dioxide and silicon nitride surfaces by ceria abrasives. The polishing performances of other abrasives were either unaffected or enhanced slightly with the addition of hydrogen peroxide. The ceria abrasives were treated with hydrogen peroxide, and the polishing of the work surfaces with the treated abrasive shows that the inhibiting action of hydrogen peroxide is reversible. It was found that the effect of hydrogen peroxide as an additive is a strong function of the nature of the abrasive particle.

  1. Dust emissions from undisturbed and disturbed, crusted playa surfaces: Cattle trampling effects

    Baddock, Matthew C.; Zobeck, Ted M.; Van Pelt, R. Scott; Fredrickson, Ed L.

    2011-06-01

    Dry playa lake beds can be significant sources of fine dust emission. This study used a portable field wind tunnel to quantify the PM 10 emissions from a bare, fine-textured playa surface located in the far northern Chihuahua Desert. The natural, undisturbed crust and its subjection to two levels of animal disturbance (one and ten cow passes) were tested. The wind tunnel generated dust emissions under controlled conditions for firstly an initial blow-off of the surface, followed by two longer runs with sand added to the flow as an abrader material. Dust was measured using a GRIMM particle monitor. For the study playa, no significant differences in PM 10 concentration and emission flux were found between the untrampled surface and following a single animal pass. This was the case for both the initial blow-offs and tests on plots under a steady abrader rate. Significantly higher dust loading was only associated with the effect of 10 animal passes. In the blow-offs, the higher PM 10 yield after 10 passes reflected the greater availability of easily entrainable fine particles. Under abrasion, the effect of the heaviest trampling increased the emission flux by a third and abrasion efficiency by around 50% more than values on the untrampled surface. This enhanced abrasion efficiency persisted for a 30 min period under abrasion before the positive effect of the disturbance was no longer evident. The findings highlight the role of a threshold of disturbance that determines if supply-limited surfaces will exhibit enhanced wind erosion or not after undergoing perturbation.

  2. The Effect of Microstructure on the Abrasion Resistance of Low Alloyed Steels

    Xu, X.

    2016-01-01

    The thesis attempts to develop advanced high abrasion resistant steels with low hardness in combination with good toughness, processability and low alloying additions. For this purpose, a novel multi-pass dual-indenter (MPDI) scratch test approach has been developed to approach the real continuous abrasion process and unravel abrasion damage formation in construction steels, i.e. carrying out scratch tests using a large indenter with different pre-loads to generate a wide pre-scratch with sta...

  3. Development of spent-control rod cutting equipment by abrasive water jet

    Usui, Shinichi; Komiya, Toshihiro [Kawasaki Heavy Industries Ltd., Tokyo (Japan)

    2000-11-01

    Kawasaki Heavy Industries, Ltd. developed the cutting apparatus for spent-control rods and channel boxes, which utilized Abrasive Water Jet, and delivered them to Japan Atomic Power Company, Ltd. An abrasive water jet cutting is cutting method by abrasive ejecting with very high pressurized water (300 Mpa) and has merit not affecting to the objects thermally. The cutting operation carries out remotely in underwater and ejected abrasives are collected and reused in order to decrease secondary wastes. The spent-control rods and channel boxes are divided into two or three pieces and stored in the can in layers. (author)

  4. Radioactive labeling in the study of abrasion of hard tooth tissue

    Labeling the surface of hard tooth tissue samples by the nuclear recoil effect in radioactive decay was applied to study abrasion caused by abrasive components of tooth-pastes. 222Rn and its short-lived decay products were implanted into the surface in vacuum. For this purpose irradiation was applied to sample placed very close to thin 226Ra source. Measuring the activity before and after abrasion was used to evaluate abrasion in the system toothbrush - various suspensions of the tooth-pastes - hard tooth tissue (enamel or dentine) in a specially designed device, dentoabrasionmeter VUS 2. (author)

  5. Metal sealed cone bits reduce costs in abrasive drilling

    This paper reports on metal sealed rolling cone bits, which have cut drilling cost by increasing the footage drilled per bit and by increasing the penetration rate in several wells in South America. The metal seals double the bearing life compared to conventional elastomer sealed bits, thereby allowing the bit to stay on bottom longer. In Colombia, and operator required that only one bit be used to drill an entire section of hard, abrasive sandstone. In Venezuela, metal sealed bits were used to lower drilling costs in both relatively moderate and aggressive drilling conditions

  6. Monitoring and control of fine abrasive finishing processes

    Lazarev, Ruslan

    In engineering, surfaces with specified functional properties are of high demand in various applications. Desired surface finish can be obtained using several methods. Abrasive finishing is one of the most important processes in the manufacturing of mould and dies tools. It is a principal method to...... remove unwanted material, obtain desired geometry, surface quality and surface functional properties. The automation and computerization of finishing processes involves utilisation of robots, specialized machines with several degrees of freedom, sensors and data acquisition systems. The focus of this...

  7. Simulation of abrasive water jet cutting process - Part 2

    Junkar, Mihael; Orbanić, Henri

    2015-01-01

    A new two-dimensional cellular automata (CA) model for the simulation of the abrasive water jet (AWJ) cutting process is presented. The CA calculates the shape of the cutting front, which can be used as an estimation of the surface quality. The cutting front is formed based on material removal rules and AWJ propagation rules. The material removal rule calculates when a particular partof the material will be removed with regard to the energy of AWJ. The AWJ propagation rule calculates the dist...

  8. A mathematical model for electrochemical abrasive magnetic polishing operation

    In most reactions and metallurgical machining processes, it is essential on economic grounds to conserve energy requirements. The most important part of this energy is by hybrid conservation systems. Recently, for example as Magnetic- Abrasive - Electrolytic turning (MEAT) processes in the production of high surface quality by ultra precision machining. This technology combines many kinds of energy named hybrid processes, which satisfy both the metal removal efficiency and surface finishing for difficult-to-cut materials at the same time. In the present work, three stages of this process are studied and assessed. In the first stage, the metal removal by the electrochemical turning (ECT) is performed based on Faraday's laws. In this particular case, the different parameters that can affect ECT process such as the applied voltage and gap between the tool and the work-piece, the revolution speed, and the used type of electrolyte and flow rate, are studied and assessed. The author deduced a formula interpreting the relation between the electric conductivity and the process efficiency. Moreover, the relation between the above-mentioned parameter is correlated to the process efficiency. Unfortunately, an oxide membrane appears after some time which degrades the process efficiency. Therefore, in the second stage nonwoven abrasive pads can remove the oxide membrane. Two pad types are evaluated in this concern namely Aluminum oxide and Silicon carbide with different mesh cells are investigated in the abrasive-electrochemical process (AECT). In the third stage, applying a magnetic field can contribute in the oxide film destructions, leading to improving the magneto abrasive electrochemical process (MEAT) efficiency. The comparisons between ECM, AECM and MEAT processes show that average specific metal removal (Wm), are 0.5, 1.9, and 2.5 g/min.mm2.Amp, respectively. Meanwhile the process efficiencies are 1.18, 2.19, and 2.74, respectively. Therefore, the results of the present

  9. Testing of Commercial Cutting Heads for Abrasive Water Jet Technology

    Klich, Jiří; Hlaváček, Petr; Zeleňák, Michal; Sitek, Libor; Foldyna, Josef

    Zagreb : Croatian Assossiation of Production Engineering , 2013 - (Abele, E.; Udiljak, T.; Ciglar, D.), s. 149-154 ISBN 978-953-7689-02-5. [CIM 2013 Computer Integrated Manufacturing and High Speed Maching. Biograd (HR), 19.06.2013-22.06.2013] R&D Projects: GA MŠk ED2.1.00/03.0082; GA MPO FR-TI3/733 Institutional support: RVO:68145535 Keywords : high-speed abrasive water jet technology * cutting head * cutting ability Subject RIV: JQ - Machines ; Tools

  10. Some results of tangential turning with an abrasive water jet

    Cárach, J.; Hlaváček, Petr; Vasilko, K.; Klich, Jiří; Hloch, Sergej

    Prešov: Technická univerzita v Košicích se sídlem v Prešově, 2013 - (Lehocká, D.; Cárach, J.; Knapčíková, L.; Hloch, S.), s. 350-354. (TEAM). ISSN 1847-9065. [International Scientific and Expert Conference of the International TEAM Society (Technique, Education, Agriculture & Management ) /5./. Prešov (SK), 04.11.2013-06.11.2013] R&D Projects: GA MŠk ED2.1.00/03.0082 Institutional support: RVO:68145535 Keywords : turning * abrasive water jet * rotation * workpiece * sandstone Subject RIV: JQ - Machines ; Tools

  11. On Dust Charging Equation

    Tsintsadze, Nodar L.; Tsintsadze, Levan N.

    2008-01-01

    A general derivation of the charging equation of a dust grain is presented, and indicated where and when it can be used. A problem of linear fluctuations of charges on the surface of the dust grain is discussed.

  12. Dust-off

    Maycroft, Neil; Cheang, Shu Lea

    2015-01-01

    The fan of a motherboard switches on and off intermittently. It blows household dust, removed from the inside of a computer carcass, into the air. The dust then settles onto the motherboard, to be blown off again. This continual movement of dust is contained in the piece. However, it should remind us that the ceaseless creation and motion of unconfined dust accompanies all stages of the e-waste journey.

  13. Physics of interstellar dust

    Krugel, Endrik

    2002-01-01

    The dielectric permeability; How to evaluate grain cross sections; Very small and very big particles; Case studies of Mie calculus; Particle statistics; The radiative transition probability; Structure and composition of dust; Dust radiation; Dust and its environment; Polarization; Grain alignment; PAHs and spectral features of dust; Radiative transport; Diffuse matter in the Milky Way; Stars and their formation; Emission from young stars. Appendices Mathematical formulae; List of symbols.

  14. Dusts and Molds

    ... ABOUT DUSTS AND MOLDS? Tiny dust particles and mold spores can be inhaled into the lungs. Dusts that come from a living source (“organic dusts”) such as hair, bedding, hay, grain, silage, and dried urine and feces are most dangerous. ...

  15. Air abrasion experiments in U-Pb dating of zircon

    Goldich, S.S.; Fischer, L.B.

    1986-01-01

    Air abrasion of zircon grains can remove metamict material that has lost radiogenic Pb and zircon overgrowths that were added during younger events and thereby improve the precision of the age measurements and permit closer estimates of the original age. Age discordance that resulted from a single disturbance of the U-Pb isotopic decay systems, as had been demonstrated by T.E. Krogh, can be considerably reduced, and, under favorable conditions, the ages brought into concordancy. Two or more events complicate the U-Pb systematics, but a series of abrasion experiments can be helpful in deciphering the geologic history and in arriving at a useful interpretation of the probable times of origin and disturbances. In east-central Minnesota, U.S.A., Penokean tonalite gneiss is dated at 1869 ?? 5 Ma, and sheared granite gneiss is shown to have been a high-level granite intrusion at 1982 ?? 5 Ma in the McGrath Gneiss precursor. Tonalite gneiss and a mafic granodiorite in the Rainy Lake area, Ontario, Canada, are dated at 2736 ?? 16 and 2682 ?? 4 Ma, respectively. The tonalitic phase of the Morton Gneiss, southwestern Minnesota, is dated at 3662 ?? 42 Ma. ?? 1986.

  16. Study on mineral processing technology for abrasive minerals

    Hong, Seong Woong; Yang, Jung Il; Hwang, Seon Kook; Choi, Yeon Ho; Cho, Ken Joon; Shin, Hee Young [Korea Inst. of Geology Mining and Materials, Taejon (Korea, Republic of)

    1995-12-01

    Buyeo Materials in Buyeogun, Choongnam province is a company producing feldspar concentrate, but does not yet utilize the garnet as abrasive material and other useful heavy minerals wasted out from the process of feldspar ore. The purpose of this study is to develop technology and process for the recovery of garnet concentrate. As results, the garnet is defined as ferro manganese garnet. The optimum process for recovery of garnet concentrate is to primarily concentrate heavy minerals from tailings of feldspar processing. And secondly the heavy minerals concentrated is dried and separated garnet concentrate from other heavy minerals. At this time, the garnet concentrate is yield by 0.176%wt from 0.31%wt of heavy minerals in head ore. The garnet concentrate contains 33.35% SiO{sub 2}, 12.20% Al{sub 2}O{sub 3}, 28.47% Fe{sub 2}O{sub 3}, 11.96% MnO. As for utilization of abrasive materials, a fundamental data was established on technology of grinding and classification. (author). 13 refs., 47 figs., 24 tabs.

  17. Polyurethanes from the crystalline prepolymers resistant to abrasive wear

    Domańska Agata

    2014-12-01

    Full Text Available The research aimed at the selection of polyurethanes synthesized from poly(tetramethylene ether glycol (PTMEG, as well as from two different isocyanates 4,4′-methylenebis(cyclohexylisocyanate (HMDI and 4.4′-methylenebis(phenyl isocyanate (MDI in order to obtain polyurethane with increased resistance to abrasive wear and degradation for bio-medical application. Polyurethanes were fabricated from crystalline prepolymers extended by water. The paper presents preliminary results on polyurethane surface wettability, friction coefficient for different couples of the co-working materials such as polyurethane-polyurethane, polyurethane-titanium alloy, polyurethane-alumina, in comparison to commonly used polyethylene-titanium alloy. Shear strength of polyurethane-alumina joint, as well as viscosity of prepolymers were also measured. The values of friction coefficient were compared to literature data on commercially available polyurethane with the trade name Pellethane. Polyurethanes obtained are characterized by low abrasive wear and low friction coefficient in couple with the titanium alloy, what makes them attractive as possible components of ceramic-polymer endoprosthesis joints.

  18. New decontamination techniques: chemical gels, electropolishing and abrasives

    The decommissioning of nuclear installations requires decontamination techniques that are efficient, simple to apply and producing a small amount of wastes, which are easy to process. With a view to this, three decontamination methods, which appear to be particularly suited to decommissioning, have been studied. These three methods are: - spraying of gels carrying chemical decontaminating agents, - electropolishing with a swab device, - abrasives blasting. After parametric tests on non-radioactive and active samples, the industrial application of these methods in the dismantling of installations was studied. These industrial applications concern: - decontamination of pieces coming from the German BWR ISAR by immersion and gel spraying, - decontamination, mainly by gel spraying, and dismantling of the BRENNILIS bituminisation plant, - decontamination of part of the cooling circuit of the graphite gas reactor G2 by gel spraying, - decontamination of a component of the FBR SuperPhenix, using dry abrasives blasting. During the first three applications, generated secondary wastes volume and form were determined. 33 tabs., 16 figs., 12 refs

  19. Shrinkage, abrasion, erosion and sorption of clay plasters

    Minke, G.

    2011-09-01

    Full Text Available At the Buildung Research Institute (FEB, Faculty of Architecture, University of Kassel, Germany, in the last years several hundred tests were made to study the characteristics of different loam mortars in respect of their linear shrinkage, absorption of humidity and their resistance against abrasion and erosion. In order to get data about abrasion and erosion new test methods and special apparatusses were developed. The mortars tested, chosen from the market, showed extremely varying test results.

    En el Laboratorio de Construcciones Experimentales (FEB de la Facultad de Arquitectura, Universidad de Kassel, Alemania, fueron testeados cientos de diferentes pruebas de revoque de barro para estudiar su contracción durante el secado, su absorción de humedad y su resistencia contra abrasión, erosión y absorción. Para recibir datos sobre abrasión y erosión, nuevas aparatos y metodos fueron desarrollados. Los resultados de los revoques comprados en el mercado muestran gran diferencias en los valores.

  20. Abrasive waterjet machining of fiber reinforced composites: A review

    Kalla, D. K.; Dhanasekaran, P. S.; Zhang, B.; Asmatulu, R.

    2012-04-01

    Machining of fiber reinforced polymer (FRP) composites is a major secondary manufacturing activity in the aircraft and automotive industries. Traditional machining of these composites is difficult due to the high abrasiveness nature of their reinforcing constituents. Almost all the traditional machining processes involve in the dissipation of heat into the workpiece which can be resulted in damage to workpiece and rapid wear of the cutting tool. This serious issue has been overcome by water jetting technologies. Abrasive waterjet machining (AWJM) is a nontraditional method and one of the best options for machining FRPs. This paper presents a review of the ongoing research and development in AWJM of FRPs, with a critical review of the physics of the machining process, surface characterization, modeling and the newer application to the basic research. Variable cutting parameters, limitations and safety aspects of AWJM and the noise related issues due to high flow rate of water jet will be addressed. Further challenges and scope of the future development in AWJM are also presented in detail.

  1. Dust emission from different sol types and geomorphic units in the Sahara - implications for modeling dust emission and transport

    Crouvi, Onn; Schepanski, Kerstin; Amit, Rivka; Gillespie, Alan; Enzel, Yehouda

    2014-05-01

    Mineral dust plays multiple roles in mediating physical and biogeochemical exchanges among the atmosphere, land and ocean, and thus is an active component of the global climate system. To estimate the past, current, and future impacts of dust on climate, sources of dust and their erodibility should be identified. The Sahara is the major source of dust on Earth. Based on qualitative analysis of remotely sensed data with low temporal resolution, the main sources of dust that have been identified are topographic depressions comprised of dry lake and playa deposits in hyprarid regions. Yet, recent studies cast doubts on these as the major sources and call for a search for others. Moreover, the susceptibility of soils to aeolian erosion (wind land erodibility) in the Sahara is still poorly known. In this study we identify and determine the soil types and geomorphic units most important as Saharan dust sources by correlating between the number of days with dust storms (NDS), derived from remote-sensing data of high temporal resolution, with the distribution of the soil types/geomorphic units. During 2006-8 the source of over 90% of the NDS was sand dunes, leptosols, calcisols, arenosols, and rock debris. Few dust storms originated from dry lake beds and playas. Land erodibility by wind for each soil type/geomorphic unit was estimated by a regression of the NDS and the number of days with high-speed wind events; the regression is relatively high for sand dunes and gypsisols. We use these regressions to differentiate between sources of dust that are supply-limited to those that are transport-limited. We propose that the fracturing of saltating sand and the removal of clay coatings from sand grains through eolian abrasion is the dominant dust-emission mechanism for the sand-rich areas covering large portion of the Sahara. Our results also explain the increased dustiness during the last glacial period, when sand dunes activity has been more common than during the Holocene

  2. Toxicity of lunar dust

    Linnarsson, Dag; Fubini, Bice; Gerde, Per; Karlsson, Lars L; Loftus, David J; Prisk, G Kim; Staufer, Urs; Tranfield, Erin M; van Westrenen, Wim

    2012-01-01

    The formation, composition and physical properties of lunar dust are incompletely characterised with regard to human health. While the physical and chemical determinants of dust toxicity for materials such as asbestos, quartz, volcanic ashes and urban particulate matter have been the focus of substantial research efforts, lunar dust properties, and therefore lunar dust toxicity may differ substantially. In this contribution, past and ongoing work on dust toxicity is reviewed, and major knowledge gaps that prevent an accurate assessment of lunar dust toxicity are identified. Finally, a range of studies using ground-based, low-gravity, and in situ measurements is recommended to address the identified knowledge gaps. Because none of the curated lunar samples exist in a pristine state that preserves the surface reactive chemical aspects thought to be present on the lunar surface, studies using this material carry with them considerable uncertainty in terms of fidelity. As a consequence, in situ data on lunar dust...

  3. Potential Use of Abrasive Air-Propelled Agricultural Residues for Weed Control

    A new postemergence weed control tactic is proposed for organic production systems that results in plant abrasion and death upon assault from abrasive grits propelled by compressed air. Grit derived from granulated walnut shells was delivered by a sand blaster at 517 kPa at distances of 30 to 60 cm ...

  4. 16 CFR Figure 8 to Part 1512 - Reflectorized Bicycle Wheel Rim Abrasion Test Device

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Reflectorized Bicycle Wheel Rim Abrasion Test Device 8 Figure 8 to Part 1512 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FEDERAL...—Reflectorized Bicycle Wheel Rim Abrasion Test Device EC03OC91.074...

  5. Model criterion and basic principles of construction bank data abrasive materials durability

    О.А. Вишневський

    2006-01-01

    Full Text Available  The generalized model is created and the criterion of an abrasive wear of surfaces of materials is determined at not hard-mounted corpuscles. The principle of construction of a data bank of an abrasive wear resistance of materials of friction units is determined. 

  6. Modelling soil dust aerosol in the Bodélé depression during the BoDEx campaign

    R. Washington

    2006-05-01

    Full Text Available We present regional model simulations of the dust emission events during the Bodélé Dust Experiment (BoDEx that was carried out in February and March 2005 in Chad. A box model version of the dust emission model is used to test different input parameters for the emission model, and to compare the dust emissions computed with observed wind speeds to those calculated with wind speeds from the regional model simulation. While field observations indicate that dust production occurs via self-abrasion of saltating diatomite flakes in the Bodélé, the emission model based on the assumption of dust production by saltation and using observed surface wind speeds as input parameters reproduces observed dust optical thicknesses well. Although the peak wind speeds in the regional model underestimate the highest wind speeds occurring on 10–12 March 2005, the spatio-temporal evolution of the dust cloud can be reasonably well reproduced by this model. Dust aerosol interacts with solar and thermal radiation in the regional model; it is responsible for a decrease in maximum daytime temperatures by about 5 K at the beginning the dust storm on 10 March 2005. This direct radiative effect of dust aerosol accounts for about half of the measured temperature decrease compared to conditions on 8 March. Results from a global dust model suggest that the dust from the Bodélé is an important contributor to dust crossing the African Savannah region towards the Gulf of Guinea and the equatorial Atlantic, where it can contribute up to 40% to the dust optical thickness.

  7. A novel cleaner for colloidal silica abrasive removal in post-Cu CMP cleaning

    A novel cleaning solution, named FA/O alkaline cleaner, was proposed and demonstrated in the removal of colloidal silica abrasives. In order to remove both the chemical and physical absorbed colloidal silica abrasives, an FA/OII chelating agent and non-ionic surfactant were added into the cleaner. By varying the concentration of chelating agent and non-ionic surfactant, a series of experiments were performed to determine the best cleaning results. This paper discusses the mechanism of the removal of colloidal silica abrasives with a FA/O alkaline cleaner. Based on the experiment results, it is concluded that both the FA/OII chelating and non-ionic surfactant could benefit the removal of colloidal silica abrasives. When the concentration of FA/OII chelating agent and FA/O non-ionic surfactant reached the optima value, it was demonstrated that silica abrasives could be removed efficiently by this novel cleaning solution. (paper)

  8. Investigation of the abrasive lapping of oxide ceramics

    Almaz Mullayanovich Khanov

    2016-03-01

    Full Text Available In this paper the methods of ceramic materials treatments are summarized. For the treatment of a technical ceramics the grinding and finishing processes including the description of the treatment steps are reported. In the first step, up to 80% of the material is polished away and the grinding is carried out at increased velocities using a tool with larger grains. In the second step of grinding, the amount of the removed material is decreased and this step is carried out using the abrasive tool with smaller grains. The third step referred as finishing is done by diamond abrasive micro-powders and a paste with a certain grain size. Often, after this step the polishing is performed in order to achieve the precision class of 1-3 and low surface roughness. The abrasive finishing of the materials based on the oxide ceramics VSH-75 is investigated. It is found that the performance ability of the diamond micro-powder is higher by a factor of 15-30 compared to the electrocorundum and green silicon carbide micro-powders. By increasing the graininess, the amount of removed material and the roughness of a treated surface are increased. In order to achieve the Rz=0.8 µm it is recommended to use a synthetic diamond micro-powder ASM20. Additionally, the influence of the contact pressure of the part onto the lap in the range from 25 to 150 kPa is investigated. With the increase of the contact pressure from 25 to 50 kPa, the total removal is significantly increasing whereas the relative diamond micro-powder consumption and surface roughness are essentially decreasing. Further increase of the contact pressure up to 150 kPa has smaller effect on the process parameters, while the cracks appear at the tool surface deteriorating the external view of the tool. The optimal contact pressure during finishing of the ceramic using the cast iron lap SCH-28 is about 50-100 kPa

  9. Quantitative modeling of facet development in ventifacts by sand abrasion

    Várkonyi, Péter L.; Laity, Julie E.; Domokos, Gábor

    2016-03-01

    We use a quantitative model to examine rock abrasion by direct impacts of sand grains. Two distinct mechanisms are uncovered (unidirectional and isotropic), which contribute to the macro-scale morphological characters (sharp edges and flat facets) of ventifacts. It is found that facet formation under conditions of a unidirectional wind relies on certain mechanical properties of the rock material, and we confirm the dominant role of this mechanism in the formation of large ventifacts. Nevertheless small ventifacts may also be shaped to polyhedral shapes in a different way (isotropic mechanism), which is not sensitive to wind characteristics nor to rock material properties. The latter mechanism leads to several 'mature' shapes, which are surprisingly analogous to the morphologies of typical small ventifacts. Our model is also able to explain certain quantitative laboratory and field observations, including quick decay of facet angles of ventifacts followed by stabilization in the range 20-30°.

  10. Standard test method for jaw crusher gouging abrasion test

    American Society for Testing and Materials. Philadelphia

    1997-01-01

    1.1 This test method covers a laboratory procedure to determine the relative gouging abrasion resistance of materials. Materials homogeneous in structure and properties are the most appropriate test materials; however, surface-treated and composite materials can also be tested. The test involves a small laboratory jaw crusher that crushes presized hard rock materials, such as a hard morainal gravel, or some other crushable substance. This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. (See 8.1 on Safety Precautions.)

  11. Fatigue Testing of Abrasive Water Jet Cut Titanium

    Hovanski, Yuri; Dahl, Michael E.; Williford, Ralph E.

    2009-06-08

    Battelle Memorial Institute as part of its U.S. Department of Energy (USDOE) Contract No. DE-AC05-76RL01830 to operate the Pacific Northwest National Laboratory (PNNL) provides technology assistance to qualifying small businesses in association with a Technology Assistance Program (TAP). Qualifying companies are eligible to receive a set quantity of labor associated with specific technical assistance. Having applied for a TAP agreement to assist with fatigue characterization of Abrasive Water Jet (AWJ) cut titanium specimens, the OMAX Corporation was awarded TAP agreement 09-02. This program was specified to cover dynamic testing and analysis of fatigue specimens cut from titanium alloy Ti-6%Al-4%V via AWJ technologies. In association with the TAP agreement, a best effort agreement was made to characterize fatigue specimens based on test conditions supplied by OMAX.

  12. Surface quality of marble machined by abrasive water jet

    Ramy Abdullah

    2016-12-01

    Full Text Available This paper presents a study conducted to examine the effect of cutting parameters, namely standoff distance, nozzle traverse speed (TS, abrasive flow rate (AFR, and material type on cutting performance for two types of marble workpieces, Carrara white and Indian green. Statistical analysis was undertaken to assess the influence of the cutting parameters on the process performances in terms of surface roughness, surface waviness, and Kerf taper ratio. The results showed that the TS and material type were the most significant factors that affected surface roughness and Kerf taper ratio. Also, although AFR was found to have significant effect on surface waviness, it had no noticeable influence on surface roughness nor Kerf taper ratio.

  13. Graphite Intended for Green Engineering Developed by Noncontaminant Reverse Abrasion

    Roberto Baca Arroyo

    2016-01-01

    Full Text Available Graphite intended for green engineering was synthesized by noncontaminant reverse abrasion, which consists of graphite layers assembled with thickness controlled on SiC sandpaper as insulating substrate. Phase formation of the graphite layers was validated by X-ray diffraction studies and its finished profile by Atomic Force Microscopy (AFM. Transport parameters of only three layers were evaluated from current-voltage curves. Mathematical functions such as derivative and modulation of a signal have been built by graphite circuits using different performance principles, compared to those used with silicon devices. The trends related to electronic engineering should be achieved with design of the graphite-based devices to facilitate their mass production in the near future.

  14. Cover and Erosion Asymmetry in Saltation-Abrasion

    Stark, C. P.; Parker, G.

    2014-12-01

    Erosion in bedrock-floored rivers is both driven and limited by the amount of sediment transported along the bed. Some sediment boosts wear rates, whereas too much generates a protective cover. This phenomenon determines the shape of river channels in a variety of landscapes and limits how fast they evolve. Here we reevaluate data from a well-known bedrock wear experiment to throw new light on how the saltation-abrasion process. Instead of a symmetric form for erosion versus sediment flux relative to transport capacity, we find the erosion rate peak shifts towards lower sediment fluxes when blocking of oblique saltation trajectories is taken into account. The theoretical context for this reevaluation is a cover-saltation-abrasion model, based on queueing theory (QT), for bedload transport over a planar bedrock bed. The QT approach provides some clarity in the stochastic treatment of granular impacts and cover, and generates closed-form solutions for wear rate in terms of sediment flux and simplified saltation geometry. Applied to the Sklar & Dietrich (2001) experiments in a very small recirculating flume, the two-parameter QT model fits the observed relation between erosion rate and sediment load, infers sediment flux as a function of load, admits non-negligible wear rates for a mean sediment depth of one grain, i.e., for full cover on average, but also suggests that bedrock erosion is blocked at >=50% instantaneous cover. The QT model makes testable predictions for future laboratory experiments and highlights the need for specific improvements in more comprehensive treatments of bedrock erosion and cover.

  15. DUST FORMATION IN MACRONOVAE

    We examine dust formation in macronovae (as known as kilonovae), which are the bright ejecta of neutron star binary mergers and one of the leading sites of r-process nucleosynthesis. In light of information about the first macronova candidate associated with GRB 130603B, we find that dust grains of r-process elements have difficulty forming because of the low number density of the r-process atoms, while carbon or elements lighter than iron can condense into dust if they are abundant. Dust grains absorb emission from ejecta with an opacity even greater than that of the r-process elements, and re-emit photons at infrared wavelengths. Such dust emission can potentially account for macronovae without r-process nucleosynthesis as an alternative model. This dust scenario predicts a spectrum with fewer features than the r-process model and day-scale optical-to-ultraviolet emission

  16. Dust Devil Tracks

    2002-01-01

    (Released 8 May 2002) The Science This image, centered near 50.0 S and 17.7 W displays dust devil tracks on the surface. Most of the lighter portions of the image likely have a thin veneer of dust settled on the surface. As a dust devil passes over the surface, it acts as a vacuum and picks up the dust, leaving the darker substrate exposed. In this image there is a general trend of many of the tracks running from east to west or west to east, indicating the general wind direction. There is often no general trend present in dust devil tracks seen in other images. The track patterns are quite ephemeral and can completely change or even disappear over the course of a few months. Dust devils are one of the mechanisms that Mars uses to constantly pump dust into the ubiquitously dusty atmosphere. This atmospheric dust is one of the main driving forces of the present Martian climate. The Story Vrrrrooooooooom. Think of a tornado, the cartoon Tasmanian devil, or any number of vacuum commercials that powerfully suck up swirls of dust and dirt. That's pretty much what it's like on the surface of Mars a lot of the time. Whirlpools of wind called

  17. Operational Dust Prediction

    Benedetti, Angela; Baldasano, Jose M.; Basart, Sara; Benincasa, Francesco; Boucher, Olivier; Brooks, Malcolm E.; Chen, Jen-Ping; Colarco, Peter R.; Gong, Sunlin; Huneeus, Nicolas; Jones, Luke; Lu, Sarah; Menut, Laurent; Morcrette, Jean-Jacques; Mulcahy, Jane; Nickovic, Slobodan; Garcia-Pando, Carlos P.; Reid, Jeffrey S.; Sekiyama, Thomas T.; Tanaka, Taichu Y.; Terradellas, Enric; Westphal, Douglas L.; Zhang, Xiao-Ye; Zhou, Chun-Hong

    2014-01-01

    Over the last few years, numerical prediction of dust aerosol concentration has become prominent at several research and operational weather centres due to growing interest from diverse stakeholders, such as solar energy plant managers, health professionals, aviation and military authorities and policymakers. Dust prediction in numerical weather prediction-type models faces a number of challenges owing to the complexity of the system. At the centre of the problem is the vast range of scales required to fully account for all of the physical processes related to dust. Another limiting factor is the paucity of suitable dust observations available for model, evaluation and assimilation. This chapter discusses in detail numerical prediction of dust with examples from systems that are currently providing dust forecasts in near real-time or are part of international efforts to establish daily provision of dust forecasts based on multi-model ensembles. The various models are introduced and described along with an overview on the importance of dust prediction activities and a historical perspective. Assimilation and evaluation aspects in dust prediction are also discussed.

  18. The influence of boron on the abrasion wear resistance of 17%Cr white cast iron

    A study of the abrasion wear resistance of the 2.7C-17Cr-0.7Mo white cast irons with different structures alloyed with boron ranging from 0.1% to 1.3% is carried out. Eleven heat treatments were used to find the optimum treatment. Three conditions (as-cast, martensitic and austenitic) are adopted for various tests. The microstructure and three-dimensional morphology of compounds are examined by optical microscope and SEM respectively. X-ray diffractometer is employed to analyze the compound phases. A high-stress abrasive wear tests is performed with loose SiO/sub 2/ and SiC abrasives in a metal track wear tester. Another abrasive wear test is conducted with wet SiO/sub 2/ abrasives in a rubber wheel tester. The hardness and fracture toughness of these alloys was also measured. With increasing boron content fracture toughness decreases. It is noted that if the irons contained about same compound volume, the abrasion wear resistance in present wear systems are much better than the irons without boron against SiO/sub 2/ abrasives, and the toughness is equivalent to 15 Cr irons without boron. Finally, considering the wear resistance and fracture toughness, the test results would provide a basis for optimizing these properties in selecting materials for a given wear component

  19. Influence of Corrosion on the Abrasion of Cutter Steels Used in TBM Tunnelling

    Espallargas, N.; Jakobsen, P. D.; Langmaack, L.; Macias, F. J.

    2015-01-01

    Abrasion on tunnel boring machine (TBM) cutters may be critical in terms of project duration and costs. Several researchers are currently studying the degradation of TBM cutter tools used for excavating hard rock, soft ground and loose soil. So far, the primary focus of this research has been directed towards abrasive wear. Abrasive wear is a very common process in TBM excavation, but with a view to the environment in which the tools are working, corrosion may also exert an influence. This paper presents a selection of techniques that can be used to evaluate the influence of corrosion on abrasion on TBM excavation tools. It also presents the influence of corrosion on abrasive wear for some initial tests, with constant steel and geomaterial and varying properties of the excavation fluids (soil conditioners, anti-abrasion additives and water). The results indicate that the chloride content in the water media greatly influences the amount of wear, providing evidence of the influence of corrosion on the abrasion of the cutting tools. The presence of conditioning additives tailored to specific rock or soil conditions reduces wear. However, when chloride is present in the water, the additives minimise wear rates but fail to suppress corrosion of the cutting tools.

  20. Development of Abrasive Selection Model/Chart for Palm Frond Broom Peeling Machine Design

    Nwankwojike

    2014-12-01

    Full Text Available A model for predicting the friction required by a palm frond broom peeling machine for effective peeling of palm leaf to broom bristle and a chart for selecting the best abrasive material for this machine’s peeling operation were developed in this study using mechanistic modeling method. The model quantified the relationship between the coefficient of friction and other operational parameters of this machine while the abrasives selection chart constitutes a plot of this measured friction parameter against the abrasive materials used in palm frond broom peeling machine fabrication. The values of the coefficient of friction of palm leaf on different abrasive materials used in this plot were determined from experimental study of the effect of moisture content level of naturally withered palm leaves (uninfluenced by external forces on their coefficient of friction with the abrasives. Results revealed the average moisture content of palm leaf this machine can peel effectively as 6.96% and also that the roughest among the abrasives that approximate the coefficient of friction for a specific design of this peeling machine gives maximum peeling efficiency. Thus, the roughest among the abrasive materials that approximate the coefficient of friction for a specific design of this machine should be selected and used for its fabrication and operation.

  1. Quantitative characterization of agglomerate abrasion in a tumbling blender by using the Stokes number approach.

    Willemsz, Tofan A; Nguyen, Tien Thanh; Hooijmaijers, Ricardo; Frijlink, Henderik W; Vromans, Herman; van der Voort Maarschalk, Kees

    2013-03-01

    Removal of microcrystalline cellulose agglomerates in a dry-mixing system (lactose, 100 M) predominantly occurs via abrasion. The agglomerate abrasion rate potential is estimated by the Stokes abrasion (StAbr) number of the system. The StAbr number equals the ratio between the kinetic energy density of the moving powder bed and the work of fracture of the agglomerate. Basically, the StAbr number concept describes the blending condition of the dry-mixing system. The concept has been applied to investigate the relevance of process parameters on agglomerate abrasion in tumbling blenders. Here, process parameters such as blender rotational speed and relative fill volumes were investigated. In this study, the StAbr approach revealed a transition point between abrasion rate behaviors. Below this transition point, a blending condition exists where agglomerate abrasion is dominated by the kinetic energy density of the powder blend. Above this transition point, a blending condition exists where agglomerates show (undesirable) slow abrasion rates. In this situation, the blending condition is mainly determined by the high fill volume of the filler. PMID:23250711

  2. Linear abrasion of a titanium superhydrophobic surface prepared by ultrafast laser microtexturing

    A novel method of fabricating titanium superhydrophobic surfaces by ultrafast laser irradiation is reported. The ultrafast laser irradiation creates self-organized microstructure superimposed with nano-scale roughness, after which a fluoropolymer coating is applied to lower the surface energy of the textured surface and achieve superhydrophobicity. The focus of this study is to investigate abrasion effects on this mechanically durable superhydrophobic surface. The mechanical durability is analyzed with linear abrasion testing and microscopy imaging. Linear abrasion tests indicate that these surfaces can resist complete microstructure failure up to 200 abrasion cycles and avoid droplet pinning up to ten abrasion cycles at 108.4 kPa applied pressure, which roughly corresponds to moderate to heavy sanding or rubbing in the presence of abrasive particles. The wear mechanisms are also investigated and the primary mechanism for this system is shown to be abrasive wear with fatigue by repeated plowing. Although these results demonstrate an advancement in mechanical durability over the majority of existing superhydrophobic surfaces, it exemplifies the challenge in creating superhydrophobic surfaces with suitable mechanical durability for harsh applications, even when using titanium. (paper)

  3. Review of dust transport and mitigation technologies in lunar and Martian atmospheres

    Afshar-Mohajer, Nima; Wu, Chang-Yu; Curtis, Jennifer Sinclair; Gaier, James R.

    2015-09-01

    Dust resuspension and deposition is a ubiquitous phenomenon in all lunar and Martian missions. The near-term plans to return to the Moon as a stepping stone to further exploration of Mars and beyond bring scientists' attention to development and evaluation of lunar and Martian dust mitigation technologies. In this paper, different lunar and Martian dust transport mechanisms are presented, followed by a review of previously developed dust mitigation technologies including fluidal, mechanical, electrical and passive self-cleaning methods for lunar/Martian installed surfaces along with filtration for dust control inside cabins. Key factors in choosing the most effective dust mitigation technology are recognized to be the dust transport mechanism, energy consumption, environment, type of surface materials, area of the surface and surface functionality. While electrical methods operating at higher voltages are identified to be suitable for small but light sensitive surfaces, pre-treatment of the surface is effective for cleaning thermal control surfaces, and mechanical methods are appropriate for surfaces with no concerns of light blockage, surface abrasion and 100% cleaning efficiency. Findings from this paper can help choose proper surface protection/cleaning for future space explorations. Hybrid techniques combining the advantages of different methods are recommended.

  4. Influence of Impact Energy on Impact Corrosion-abrasion of High Manganese Steel

    2007-01-01

    The impact corrosion-abrasion properties and mechanism of high manganese steel were investigated under different impact energies. The result shows that the wearability of the steel decreases with the increase of the impact energy. The dominant failure mechanism at a lower impact energy is the rupture of extrusion edge along root and a slight shallow-layer spalling. It transforms to shallow-layer fatigue flaking along with serious corrosion-abrasion when the impact energy is increased, and finally changes to bulk flaking of hardened layer caused by deep work-hardening and heavy corrosion-abrasion.

  5. Hydro-abrasive machining of rotating workpieces from graphite and aluminium alloy

    J. Cárach

    2015-01-01

    The paper compares the quality of machined surface of graphite and aluminium alloy by abrasive water jet using the focusing tube with a diameter of df1 = 0.5 mm and df2 = 0.78 mm. The machining was carried out using the technology of rotating workpiece disintegration by abrasive water jet. Abrasive tangential water jet was used to carry out the experiment (water pressure p = 400 MPa). Workpieces were clamped in the rotating chucking appliance with rotation frequency n = 300 min-1. The c...

  6. Plasma-polymerized coating for polycarbonate: Single-layer, abrasion resistant, and antireflection

    Wydeven, Theodore

    1991-01-01

    Plasma-polymerized vinyl trimethoxy silane films were deposited on transparent polycarbonate substrates. The adherent, clear films protected the substrates from abrasion and also served as antireflection coatings. Post-treatment of the vinyl trimethoxy silane films in an oxygen glow discharge further improved their abrasion resistance. The coatings were characterized by elemental analysis of the bulk, ESCA analysis of the surface, transmission, thickness, abrasion resistance, haze, and adhesion. This patented process is currently used by the world's largest manufacturers of non-prescription sunglasses to protect the plastic glasses from scratching and thereby to increase their useful lifetime.

  7. Effects of abrasive size and surfactant in nano ceria slurry for shallow trench isolation

    Lee, Won-Mo; Katoh, Takeo; Kang, Hyun-Goo; Park, Jea-Gun; Paik, Un-Gyu; Jeon, Hyeong-Tag [Hanyang University, Seoul (Korea, Republic of)

    2004-04-15

    The effects of the abrasive size and the surfactant concentration in ceria slurry on the removal rates for oxide and nitride films were investigated through a systematic chemical-mechanical-polishing (CMP) experiment. We found that the smaller the abrasives were, the more quickly the removal rates for both oxide and nitride films decreased with increasing surfactant concentration. This result was qualitatively explained by using a model in which abrasive particles move through a viscous layer caused by surfactant adsorption on the film surface being polished.

  8. The Increased Production Efficiency and Optimization Terms of Stationarity by Flat Grinding with Abrasive Circle Surface

    Husseinov Hassan Ahmad

    2014-01-01

    Full Text Available This scientific work deals with the production area. The paper investigates the problems related to the uneven abrasive effect on the processed surface by flat grinding with the abrasive circle surface, and the analytical expression of pattern distribution of the working abrasive grain within the limits of various technological primitives and inaccuracy of geometric shape have been determined. The ways of stationary provision of the grinding surface have been suggested. This paper also focuses on the economic efficiency of the production.

  9. Optical-model abrasion cross sections for high-energy heavy ions

    Townsend, L. W.

    1981-01-01

    Within the context of eikonal scattering theory, a generalized optical model potential approximation to the nucleus-nucleus multiple scattering series is used in an abrasion-ablation collision model to predict abrasion cross sections for relativistic projectile heavy ions. Unlike the optical limit of Glauber theory, which cannot be used for very light nuclei, the abrasion formalism is valid for any projectile target combination at any incident kinetic energy for which eikonal scattering theory can be utilized. Results are compared with experimental results and predictions from Glauber theory.

  10. An Experimental investigation of sea sand as an Abrasive material in vibrating chamber by using Tungsten Carbide Nozzle in Abrasive Jet machining Process.

    N. S. Pawar

    2013-10-01

    Full Text Available A large number of investigation carried out in Abrasive jet machining and water jet machining process with different parameter but no detailed work have been found or carried out by using sea sand as an abrasive in AJM process by using different types of nozzles and variable parameters. The present work gives performance of sand having grain structure of 100-150 micron in the tungsten carbide nozzle. Theexperimentation in this study give characteristic of sea sand as abrasive material. The parameter like pressure, standoff distance of nozzle from work piece keeping constant and variable. It give the result of material removal rate , powder flow rate, similar to actually abrasive used like Aluminum oxide, silicon oxide etc. The R square value o.97 to 0.996 degree of polynomial equation. It is also notice that width of cut slightly increase with increase of feed rate .The taper cut slot was found to be a higher at greater stand of distance and work feed rate .Tungsten carbide is very hard. It maintain high cutting ability as abrasive strike on work piece

  11. Chemical Mechanical Polishing of Ge2Sb2Te5 Using Abrasive-Free Solutions of Iron Trichloride

    YAN Wei-Xia; WANG Liang-Yong; ZHANG Ze-Fang; HE Ao-Dong; ZHONG Min; LIU Wei-Li; WU Liang-Cai; SONG Zhi-Tang

    2012-01-01

    Chemical mechanical polishing (CMP) of amorphous Ge2Sb2Te5 (GST) is studied using aqueous solutions of iron trichloride (FeCl3 ) as possible abrasive-free slurries.The polishing performance of abrasive-free solutions is compared with abrasive-containing (3wt%o colloidal silica) slurry in terms of polishing rate and surface quality.The experimental results indicate that the abrasive-free solutions have a higher polishing rate and better surface quality.In order to further investigate the polishing mechanism,post-CMP GST films using the abrasive-free solutions and abrasive-containing slurry are characterized by x-ray photoelectron spectroscopy. Finally,it is verified that the abrasive-free solutions have no influence on the electrical property of the post-CMP GST films through the resistivity test.

  12. Surface assessment and modification of concrete using abrasive blasting

    Millman, Lauren R.

    Composite systems are applied to concrete substrates to strengthen and extend the service life. Successful restoration or rehabilitation requires surface preparation prior to the application of the overlay. Surface coatings, waterproofing systems, and other external surface applications also require surface preparation prior to application. Abrasive blast media is often used to clean and uniformly roughen the substrate. The appropriate surface roughness is necessary to facilitate a strong bond between the existing substrate and overlay. Thus, surface modification using abrasive blast media (sand and dry ice), their respective environmental effects, surface roughness characterization prior to and after blasting, and the adhesion between the substrate and overlay are the focus of this dissertation. This dissertation is comprised of an introduction, a literature review, and four chapters, the first of which addresses the environmental effects due to abrasive blasting using sand, water, and dry ice. The assessment considered four response variables: carbon dioxide (CO2) emissions, fuel and energy consumption, and project duration. The results indicated that for sand blasting and water jetting, the primary factor contributing to environmental detriment was CO22 emissions from vehicular traffic near the construction site. The second chapter is an analysis of the International Concrete Repair Institute's (ICRI) concrete surface profiles (CSPs) using 3-D optical profilometry. The primary objective was to evaluate the suitability of approximating the 3-D surface (areal) parameters with those extracted from 2-D (linear) profiles. Four profile directions were considered: two diagonals, and lines parallel and transverse to the longitudinal direction of the mold. For any CSP mold, the estimation of the 3-D surface roughness using a 2-D linear profile resulted in underestimation and overestimation errors exceeding 50%, demonstrating the inadequacy of 2-D linear profiles to

  13. INVESTIGATION ON NEW TYPE OF DOUBLY BLENDING ABRASIVE WATER JET NOZZLE SYSTEM WITH HIGHER PERFORMANCE

    ZHU Pailong; ZHOU Jinjin; TANG Dianbo

    2006-01-01

    Based on the two existing abrasive water-jet(AWJ) systems, the dia-jet (or pre-jet) and the post-jet, a new type of abrasive water-jet system is put forward, which combines the dia-jet's advantage, low operating system pressure, slender stream jet, and more concentrative abrasive in the blended stream, with merits of post-jet, the less sophisticate apparatus, successive supply of abrasives.The theoretic analysis is brought out in detail, and the nozzle system structure is concisely illustrated.Its relevant experiment results are demonstrated, proving that this new system is effective in various aspects, enlarging penetrating capability without raising system pressure, saving machining power supply, lessening energy loss, etc.

  14. Mechanical and three-body abrasive wear behaviour of PMMA/TPU blends

    The blends of poly(methyl methacrlate) (PMMA) and thermoplastic polyurethane (TPU) were prepared by a Brabender co-twin screw extruder. The mechanical and three-body abrasive wear behaviour of PMMA/TPU blends has been studied. Three-body abrasive wear tests were conducted using rubber wheel abrasion tester (RWAT) under different abrading distances at 200 rpm and 22 N load. A significant reduction in tensile strength and tensile modulus with an increase in TPU content in the blend formulation was observed. Three-body abrasive wear results indicate that the wear volume increases with increase in abrading distance for all the samples studied. However, neat PMMA showed better wear resistance as compared to PMMA/TPU blends. The worn surface features, as examined through scanning electron microscope (SEM), show matrix cracking and deep furrows in PMMA/TPU blends

  15. Standard test method for conducting wet sand/rubber wheel abrasion tests

    American Society for Testing and Materials. Philadelphia

    2002-01-01

    1.1 This test method covers laboratory procedures for determining the resistance of metallic materials to scratching abrasion by means of the wet sand/rubber wheel test. It is the intent of this procedure to provide data that will reproducibly rank materials in their resistance to scratching abrasion under a specified set of conditions. 1.2 Abrasion test results are reported as volume loss in cubic millimeters. Materials of higher abrasion resistance will have a lower volume loss. 1.3 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only. This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  16. Abrasion and deformed layer formation of manganese-zinc ferrite in sliding contact with lapping tapes

    Miyoshi, K.; Buckley, D. H.; Tanaka, K.

    1986-01-01

    Wear experiments were conducted using replication electron microscopy and reflection electron diffraction to study abrasion and the deformed layers produced in single-crystal Mn-Zn ferrite simulated heads during contact with lapping tapes. The crystaline state of the head is changed drastically during the abrasion process. Crystalline states ranging from nearly amorphous to highly textured polycrystalline can be produced on the wear surface of a single-crystal Mn-Zn ferrite head. The total thickness of the deformed layer was approximately 0.8 microns. This thickness increased as the load and abrasive grit size increased. The anisotropic wear of the ferrite was found to be inversely proportional to the hardness of the wear surface. The wear was lower in the order 211 111 10 0110. The wear of the ferrite increased markedly with an increase in sliding velocity and abrasive grit size.

  17. Surface roughness and gloss of current CAD/CAM resin composites before and after toothbrush abrasion.

    Koizumi, Hiroyasu; Saiki, Osamu; Nogawa, Hiroshi; Hiraba, Haruto; Okazaki, Tomoyo; Matsumura, Hideo

    2015-01-01

    The purpose of this study was to evaluate the gloss and surface roughness behaviors of newly developed CAD/CAM composite blocks with different filler contents and characteristics. The gloss and surface roughness were quantified before and after a toothbrush dentifrice abrasion test; the results were compared to the gloss and surface roughness of a ceramic CAD/CAM block. Knoop hardness was determined before abrasion test. The results were analyzed by ANOVA, Tukey HSD, and Dunnett t test (pVita Enamic>Gradia block>Shofu Block HC, Lava Ultimate≥Katana Avencia block≥Cerasmart. After toothbrush abrasion, a significant difference in the gloss unit was detected between the Shofu Block HC material and the ceramic block. The Ra and Rz of the Cerasmart and Shofu Block HC materials were significantly larger than those of the ceramic block after toothbrush abrasion. PMID:26632238

  18. Clarification of abrasive jet precision finishing with wheel as restraint mechanisms and experimental verification

    2007-01-01

    According to the critical size ratio for the characteristic particle size to film thickness between grinding wheel and work, the machining mechanisms in abrasive jet precision finishing with grinding wheel as restraint can be categorized into four states, namely, two-body lapping, three-body polishing, abrasive jet machining and fluid hydrodynamic shear stress machining. The critical transition condition of two-body lapping to three-body polishing was analyzed. The single abrasive material removal models of two-body lapping, three-body polishing, abrasive jet finishing and fluid hydrodynamic shear stress machining were proposed. Experiments were performed in the refited plane grinding machine for theoretical modes verification. It was found that experimental results agreed with academic modes and the modes validity was verified.

  19. RESIZING OF THE CRANIOMANDIBULAR RELATION IN THE REHABILITATION OF DENTAL ABRASION

    Delia BAHRIM

    2016-03-01

    Full Text Available Dental abrasion appears as a complex phenomenon among the multitude of clinical manifestations occurring in patients who require a complex oral rehabilitation. The therapeutical solutions for such cases are quite elaborate, involving interdisciplinary contributions from the part of various specialists.Obviously, elucidation of the complex cases of dental abrasion is possible when their standardized classification and, equally, a well-established therapeutical conduct, considering the class of dental abrasion, are available.Considering the advance of the adhesive techniques, the conservative treatment of dental abrasion is more indicated than the conventional method.Consequently, a 3-stage protocol of coronary reconstruction is recommended in cases of erosion with undersizing of the lower segment. The immediate aesthetic results are satisfacatory for the patient, as well as the functional ones, not requiring longer accomodation times. The reconstructions are resistant, due to the progress recorded by the adhesive techniques and composite resins (nano-hybrids, nano-composites.

  20. Abrasion resistance of biaxially oriented polypropylene films coated with nanocomposite hard coatings

    Wang, Jing; Zhu, Yaofeng; Fu, Yaqin

    2013-11-01

    KMnO4-treated, functionalized, biaxially oriented polypropylene (BOPP) films coated with nano-silica hybrid material were synthesized. The abrasion resistance of the films was examined using a reciprocating fabric abrasion tester. Functional groups were confirmed by Fourier-transform infrared spectroscopy. Contact angle measurements were performed on the BOPP film surface to quantify the effectiveness of the functionalization. Results indicate that the abrasion resistance and roughness of the composite film were significantly affected by the modification of the BOPP film. Water surface contact angle of the modified BOPP films decreased from 90.1° to 71.4°,when KMnO4 concentration increased from 0 M to 0.25 M. Wettability of the BOPP films clearly improved after KMnO4 treatment. Abrasion resistance of the functionalized films coated with hybrid materials improved by 27.4% compared with that of the original film.

  1. The abrasive wear behaviour of alloy cast steel in SiC-water slurry

    R. Zapała

    2009-10-01

    Full Text Available The results of abrasive wear tests carried out in an environment of SiC-water slurry on four grades of cast steel, i.e. carbon cast steel with microadditions of vanadium, low-alloy L70H2GNM cast steel, and high-alloy L120G13 cast steels, without and with microadditions of vanadium, were discussed. Tests were carried out on a Miller machine. A measure of the abrasive wear resistance was the loss of mass in specimens during 16 hour test cycle. It has been proved that the L120G13 cast steel is definitely less resistant to abrasive wear than its L70H2GNM counterpart. On the other hand, no distinct differences in the abrasive wear resistance were noticed between the L120G13 cast steel without vanadium, and the L120G13 cast steel and carbon cast steel, both with microadditions of vanadium.

  2. Dry Flowing Abrasive Decontamination Technique for Pipe Systems with Swirling Air Flow

    A dry abrasive decontamination method was developed for removing radioactive corrosion products from surfaces of coolant pipe systems in decommissioning of a nuclear power plant. Erosion behavior of inside surfaces of stainless and carbon steel pipes by a swirling air flow containing alumina or cast-iron grit abrasive was studied. Erosion depths of the test pipes were approximately proportional to an abrasive concentration in air and an exponent of flow rate of airstream. The experimental results indicated that the present method could keep satisfactory erosion ability of abrasives even for a large-size pipe. The present method was successfully applied to 60Co-contaminated specimens sampled from a pipe of the water cleanup system of the Japan Power Demonstration Reactor

  3. Abrasive blasting technology for decontamination of the inner surface of steam generator tubes

    The inner surfaces of bundled inconel tubes from steam generators in South Korean nuclear power plants are contaminated with cobalt and abrasive blasting equipment has been developed to efficiently remove the cobalt. The principal parameters related to the efficient removal using this equipment are the type of abrasive, the distance from the nozzle, and the blasting time. Preliminary tests were performed using oxidized inconel samples which enabled the simulation of cobalt removal from the radioactive inconel samples. The oxygen in the oxidized samples and the cobalt in the radioactive inconel were removed more effectively using the blasting distance, blasting time, and a silicon carbide abrasive. Using the developed abrasive blasting equipment, the optimum decontamination conditions for radioactive inconel samples were blasting for more than 6 minutes using silicon carbides under 5 atmospheric pressures

  4. From Desert to Dessert: Why Australian Dust Matters.

    Hunter, K. A.; Mackie, D. S.; Boyd, P. W.; McTainsh, G. H.

    2006-12-01

    The growth of some types of phytoplankton in several parts of the world ocean, including much of the Southern Ocean, is limited by the supply of iron. Large Australian dust storms uplift, transport and abrade soils, to produce aeolian dust that is a significant source iron to the Southern Ocean. Atmospheric processes that enhance the dissolution of iron from aeolian dusts are of interest and have been studied for material from major dust producing regions like the Sahara, Gobi and Australian deserts; the reported solubility of iron from aeolian dusts ranges from <0.01% to 80%. The characteristic red soils, sands and dusts from Australia are generally believed to consist of quartz grains with a coating of fine grains and crystals of iron oxides, primarily hematite and goethite. The precise mineralogy of soil and dust grain coatings is poorly understood and it also not well known how the coatings are altered during uplift and transport to the ocean. Current models to understand the processes operating during the transport and atmospheric processing of dust include some generalisations and simplifications that are not always warranted and our work has shown the overlooked complexity of the system. Models for aeolian-iron dissolution based on Northern Hemisphere data commonly include the pollutants SOx and NOx. The modern Southern Hemisphere is less polluted and thus resembles past environmental systems. The dissolution of iron from soils of the Saharan, Gobi and Australian deserts in the presence of protons only (i.e. without SOx and NOx) occurs in two phases. The first, faster phase, representing up to 20% of total iron is via a surface-controlled mechanism. The rate determining variable is the exposed surface area of the iron oxides and not the size of the underlying quartz grain. The second, slower, phase of dissolution occurs via the transport-controlled formation of a leached layer. During the simulated aeolian abrasion of Australian soils from dust producing

  5. Chemical Mechanical Polishing of Glass Substrate with α-Alumina-g-Polystyrene Sulfonic Acid Composite Abrasive

    LEI Hong; BU Naijing; ZHANG Zefang; CHEN Ruling

    2010-01-01

    Abrasive is the one of key influencing factors during chemical mechanical polishing(CMP) process. Currently, α-Alumina (α-Al2O3) particle, as a kind of abrasive, has been widely used in CMP slurries, but their high hardness and poor dispersion stability often lead to more surface defects. After being polished with composite particles, the surface defects of work pieces decrease obviously. So the composite particles as abrasives in slurry have been paid more attention. In order to reduce defect caused by pure α-Al2O3 abrasive, α-alumina-g-polystyrene sulfonic acid (α-Al2O3-g-PSS) composite abrasive was prepared by surface graft polymerization. The composition, structure and morphology of the product were characterized by Fourier transform infrared spectroscopy(FTIR), X-ray photoelectron spectroscopy(XPS), time-of-flight secondary ion mass spectroscopy(TOF-SIMS), and scanning electron microscopy(SEM), respectively. The results show that polystyrene sulfonic acid grafts onto α-Al2O3, and has well dispersibility. Then, the chemical mechanical polishing performances of the composite abrasive on glass substrate were investigated with a SPEEDFAM-16B-4M CMP machine. Atomic force microscopy(AFM) images indicate that the average roughness of the polished glass substrate surface can be decreased from 0.835 nm for pure α-Al2O3 abrasive to 0.583 nm for prepared α-Al2O3-g-PSS core-shell abrasive. The research provides a new and effect way to improve the surface qualities during CMP.

  6. HYDRO-ABRASIVE RESISTANCE AND MECHANICAL PROPERTIES OF CONCRETE WITH ADDED FLY ASH

    Ristić, Nenad; Grdić, Zoran; Topličić-Ćurčić, Gordana

    2015-01-01

    The durability of hydraulic engineering structures mostly depends on the resistance of their concrete surfaces to mechanical abrasion. In this paper, we study the hydro-abrasive resistance and mechanical properties of concrete in which cement is partially replaced with fly ash in various proportions. To evaluate these concretes, we measured their compressive strength, flexural strength, static modulus of elasticity, ultrasound velocity through concrete, and sclerometer rebound. The hydro-abra...

  7. Turning of wood plastic composites by water jet and abrasive water jet

    Hutyrová, Z.; Ščučka, J. (Jiří); S. Hloch; Hlaváček, P.; M. Zeleňák

    2015-01-01

    The paper deals with the verification of suitability of water jet and abrasive water jet application for the disintegration of rotating samples of wood plastic composites (WPCs) with diameter d=36 mm. The influence of selected technological factors (traverse speed of cutting head v [mm/ min] and size of abrasive particles [MESH]) on the topography of resulting surfaces has in particular been studied. Surface topography and quality have been assessed using the methods of optical and co...

  8. Measurement of Fine Grain Copper Surface Texture Created by Abrasive Water Jet Cutting

    Hlaváček, Petr; Valíček, Jan; Hloch, Sergej; Greger, Miroslav; Foldyna, Josef; IVANDIĆ, Željko; Sitek, Libor; Kušnerová, Milena; ZELEŃÁK, Michal

    2009-01-01

    The paper presents results of experiments performed on copper with commercial purity to determine the influence of material grain size on both mechanical properties and texture of surface machined by abrasive water jet. An Equal Channel Angular Extrusion technology was used for creation of fine-grain copper samples. Hardness and grain size of fine-grain copper were measured, and, subsequently, surface of prepared copper samples was machined by abrasive water jet technology. Surface irregul...

  9. An Investigation of Abrasive Water Jet Machining on Graphite/Glass/Epoxy Composite

    Deepak Doreswamy; Basavanna Shivamurthy; Devineni Anjaiah; N. Yagnesh Sharma

    2015-01-01

    In the present research work, the effect of abrasive water jet (AWJ) machining parameters such as jet operating pressure, feed rate, standoff distance (SOD), and concentration of abrasive on kerf width produced on graphite filled glass fiber reinforced epoxy composite is investigated. Experiments were conducted based on Taguchi’s L27 orthogonal arrays and the process parameters were optimized to obtain small kerf. The main as well as interaction effects of the process parameters were analyzed...

  10. Examination of Wetting by Liquid Zinc of Steel Sheets Following Various Kinds of Abrasive Blasting

    Cecotka M.

    2016-06-01

    Full Text Available Abrasive blasting is one of the methods of surface working before hot-dip zinc-coating. It allows not only to remove products of corrosion from the surface, but it also affects the quality of the zinc coating applied later, thereby affecting wettability of surface being zinc-coated. The surface working can be done with different types of abrasive material.

  11. Optimization of tribological parameters in abrasive wear mode of carbon-epoxy hybrid composites

    Highlights: • Optimization of factors affecting abrasive wear of hybrid composite. • Experimental studies integrated with Taguchi based grey analysis and ANOVA. • Abrasive wear resistance improved with the addition of filler. • Wear rate depends on filler loading, grit of abrasive paper and type of filler. - Abstract: Abrasive wear performance of fabric reinforced composites filled with functional fillers is influenced by the properties of the constituents. This work is focused on identifying the factors such as filler type, filler loading, grit size of SiC paper, normal applied load and sliding distance on two-body abrasive wear behaviour of the hybrid composites. Abrasive wear tests were carried on carbon fabric reinforced epoxy composite (C-E) filled with filler alumina (Al2O3) and molybdenum disulphide (MoS2) separately in different proportions, using pin-on-disc apparatus. The experiments were planned according to Taguchi L18 orthogonal array by considering five factors, one at two levels and the remaining at three levels, affecting the abrasion process. Grey relational analysis (GRA) was employed to optimize the tribological parameters having multiple-response. Analysis of variance (ANOVA) was employed to determine the significance of factors influencing wear. Also, the comparative specific wear rates of all the composites under dry sliding and two-body abrasive wear were discussed. The analysis showed that the filler loading, grit size and filler type are the most significant factors in controlling the specific wear rate of the C-E composite. Optimal combination of the process parameters for multi performance characteristics of the composite under study is the set with filler type as MoS2, filler loading of 10 wt.%, grit size 320, load of 15 N and sliding distance of 30 m. Further, the optimal parameter setting for minimum specific wear rate, coefficient of friction and maximum hardness were corroborated with the help of scanning electron micrographs

  12. Modeling of Tool Wear in Vibration Assisted Nano Impact-Machining by Loose Abrasives

    Sagil James; Sundaram, Murali M.

    2014-01-01

    Vibration assisted nano impact-machining by loose abrasives (VANILA) is a novel nanomachining process that combines the principles of vibration assisted abrasive machining and tip-based nanomachining, to perform target specific nanoabrasive machining of hard and brittle materials. An atomic force microscope (AFM) is used as a platform in this process wherein nanoabrasives, injected in slurry between the workpiece and the vibrating AFM probe which is the tool, impact the workpiece and cause na...

  13. Is bovine dentine an appropriate substitute for human dentine in erosion/abrasion tests?

    Wegehaupt, F; Gries, D.; A. Wiegand; Attin, T.

    2008-01-01

    The study aimed to compare the dentine wear of primary and permanent human and bovine teeth because of erosion/abrasion and evaluate if bovine dentine is an appropriate substitute for human dentine in further erosion/abrasions tests. Dentine samples from deciduous molars and human third molars as well as from calves' and cattle's lower incisors were prepared and baseline surface profiles were recorded. Each day all samples were demineralized in 1% citric acid, tooth brushed with 100 brushing ...

  14. Preparation of white alumina spherical composite magnetic abrasive by gas atomization and rapid solidification

    White alumina (WA) spherical composite magnetic abrasive can be prepared directly by a process that combines gas atomization and rapid solidification. The structure and phase composition of this material were characterized by scanning electron microscopy and X-ray diffraction analysis. The results show that the composite magnetic abrasive has good sphericity, and the WA grains are tightly embedded uniformly and densely into the surface layer of matrix which consists of Fe-Si-Al-Ni soft magnetic alloy.

  15. Plasma polymerized coating for polycarbonate - Single layer, abrasion resistant, and antireflection

    Wydeven, T.

    1977-01-01

    Plasma polymerized vinyltrimethoxy silane films were deposited on transparent polycarbonate substrates. The adherent, clear films protected the substrates from abrasion and also served as antireflection coatings. Posttreatment of the vinyltrimethoxy silane films in an oxygen glow discharge further improved the abrasion resistance. ESCA (electron spectroscopy for chemical analysis) and IR transmission spectra of some films were recorded, and an elemental analysis of the films was obtained.

  16. RESIZING OF THE CRANIOMANDIBULAR RELATION IN THE REHABILITATION OF DENTAL ABRASION

    Delia BAHRIM; Aurel APINTILIESEI; Alexandru Vasile BURLUI; Oana CUCOVEICĂ; Gîrbea, Cătălina; Carmen STADOLEANU

    2016-01-01

    Dental abrasion appears as a complex phenomenon among the multitude of clinical manifestations occurring in patients who require a complex oral rehabilitation. The therapeutical solutions for such cases are quite elaborate, involving interdisciplinary contributions from the part of various specialists.Obviously, elucidation of the complex cases of dental abrasion is possible when their standardized classification and, equally, a well-established therapeutical conduct, considering the class of...

  17. Development of Abrasive Selection Model/Chart for Palm Frond Broom Peeling Machine Design

    Nwankwojike; B. Nduka

    2014-01-01

    A model for predicting the friction required by a palm frond broom peeling machine for effective peeling of palm leaf to broom bristle and a chart for selecting the best abrasive material for this machine’s peeling operation were developed in this study using mechanistic modeling method. The model quantified the relationship between the coefficient of friction and other operational parameters of this machine while the abrasives selection chart constitutes a plot of this measured f...

  18. Applications of High-Efficiency Abrasive Process with CBN Grinding Wheel

    Yan Zhou; Changhe Li; Yali Hou

    2010-01-01

    High-efficiency abrasive process with CBN grinding wheel is one of the important techniques of advanced manufacture. Combined with raw and finishing machining, it can attain high material removal rate like turning, milling and planning. The difficult-to-grinding materials can also be ground by means of this method with high performance. In the present paper, development status and latest progresses on high-efficiency abrasive machining technologies with CBN grinding wheel relate to high speed...

  19. Tensile and hydraulic properties of geosynthetics after mechanical damage and abrasion laboratory tests

    Rosete, A.; Pinho-Lopes, M.; Lopes, M.L.

    2013-01-01

    Installation damage of geosynthetics occurs during their handling, positioning on the ground and the placing and compacting of fill material. Abrasion is a common damage mechanism where there is cyclic relative motion (friction) between a geosynthetic and contact soil. This paper presents the laboratory test results of mechanical damage and abrasion performed on six geosynthetics. The in isolation and combined effects on mechanical, hydraulic and physical properties of the geosynthetics were ...

  20. Development of gas-carrying abrasive decontamination technique for metal wastes

    When decommissioning a nuclear power plant is accomplished by dismantlement, decontamination for cooling system before dismantling and for components after dismantling is very effective in reducing both the occupational radiation exposure and the generation of radioactive waste. For the development of decontamination methods and their application, however, adequate consideration must be given to the chemical composition of the radioactive corrosion products (CRUD) and the characteristics of the components and systems because of their great influence on decontamination. JAERI had developed a wet flowing abrasive decontamination method in FY1985, and already applied it in addition to a conventional chemical decontamination methods to the reactor primary coolant system of JPDR. The wet flowing abrasive decontamination method was consequently proved to have significant advantages compared with conventional chemical methods, since the decontamination efficiency is little affected by the chemical composition of CRUD, the decontamination system is simple, and the liquid waste generated in the decontamination process can be easily treated and handled. On the other hand, the wet flowing abrasive decontamination method was pointed out to have some disadvantages, since a relatively large capacity of circulation pump is needed to obtain a sufficient flow rate for the circulation of abrasive, an active counterplan is needed against the trapping of abrasive during decontamination, particularly, when the system line to be decontaminated has a complicated structure. The JAERI, therefore, has been performing a practical tests to improve the wet flowing abrasive decontamination method since FY1993 under a contract with STA. This paper describes a developed process of the dry flowing abrasive decontamination method, namely, gas-carrying abrasive decontamination technique. (J.P.N.)

  1. Abrasive wear of two glass ionomer cements after simulated toothbrushing

    Márcia Furtado Antunes de Freitas

    2011-07-01

    Full Text Available Introduction and objective: Glass ionomer cement, which was first introduced in Dentistry in 1972, presents good qualities such as aesthetics, fluoride release and adhesion to dental tissues. Because of its preventive characteristics regarding to dental caries, glass ionomer cement has been used for Atraumatic Restorative Treatment (ART, as reported by Frencken and Holmgren [6], meeting the principles announced by the World Health Organization (WHO for application to large population groups without regular access to dental care. Material and methods: In this present study, the abrasive wear strength of two glass-ionomer cements (Vidrion R® and ChemFlex® was evaluated through toothbrushing machine. Classic® toothbrushes with soft bristles and Sorriso® dentifrice were also used for the study. Results: Student-t test showed significant difference between both groups, with tobs value = 9.4411 at p < 0.05. Conclusion: It can be concluded that the wear rate caused by toothbrush/dentifrice was higher for Vidrion R® (52.00 mg than ChemFlex® (5.57 mg.

  2. MR imaging artifacts caused by abrasion of metallic implants

    Eighteen patients with vertebral body fractures that had been stabilized by an internal spinal skeletal fixation system were prospectively examined by magnetic resonance (MR) imaging between February 1989 and November 1990 at the Department of Diagnostic Radiology of the University Hospital Freiburtg 3-7 days after removal of the metallic implants. In most cases imaging artifacts in the paraspinal extensor muscles were evident on MR studies. These were found especially in the region of the previous site of the metal clip jaw bearing. In a few cases artifacts were also present within the vertebral body and/or vertebral arch, but only if the vertebral body had been surgically reconstructed by transpedicular spongiosa implantation. None or only minor artifacts by abrasion of metal were detected if the (modified Schanz's) screws appeared to be tigth at surgical removal of the implants. Therefore, marked metal artifacts on MR imaging retrospectively indicate a chronic straining of the implants, which has been shown to be a risk factor for implant loosening. Additional in vitro studies with powdered metallic alloy showed that as little as 1 mg of metal could be detected as artifacts in routine spin-echo sequences. When the metallic pieces were large enough to be seen on conventional radiographs or computed tomograms, they caused severe, distorting artifacts on MR imaging. It is concluded that MR imaging is the method of choice for detection of small amounts of metal. (orig.)

  3. Gingival abrasion and plaque removal with manual versus electric toothbrushing.

    Niemi, M L; Ainamo, J; Etemadzadeh, H

    1986-08-01

    A clinical trial was designed to test the relative numbers of gingival lesions caused during standardized brushing of the teeth of 22 volunteer dental nurse students with a manual soft multitufted, a manual soft V-shaped, and an electric toothbrush. First, the left or the right side of the jaws of each subject was brushed by a dental hygienist using the manual V-shaped or the electric brush, and the other side using the manual multitufted brush. At the 2nd brushing 1 week later, the same hygienist used the multitufted brush for brushing the side contralateral to the one in which it was used the 1st week and the V-shaped manual brush instead of the electric and vice versa. After each brushing, the number of new gingival lesions was recorded and the cleansing effect evaluated by assessment of the amount of remaining plaque. This examiner was unaware of the type of brush used. The V-shaped manual toothbrush was found to have caused more gingival abrasion than the electric toothbrush (P less than 0.005) and a similar difference was found between the multitufted manual and the electric toothbrush (P less than 0.05). There was no clinically significant difference between the plaque removing effects of the 3 brushes tested. PMID:3463575

  4. Effect of cerium on abrasive wear behaviour of hardfacing alloy

    XING Shule; YU Shengfu; DENG Yu; DAI Minghui; YU Lu

    2012-01-01

    Hardfacing alloys with different amounts of ceria were prepared by self-shielded flux cored arc welding.The abrasion tests were carried out using the dry sand-rubber wheel machine according to JB/T 7705-1995 standard.The hardness of hardfacing deposits was measured by means of HR-150AL Rockwell hardness test and the fracture toughness was measured by the indentation method.Microstructure characterization and surface analysis were made using optical microscopy,scanning electron microscopy (SEM) and energy spectrum analysis.The results showed that the wear resistance was determined by the size and distribution of the carbides,as well as by the matrix microstructure.The main wear mechanisms observed at the surfaces included micro-cutting and micro-ploughing of the matrix.The addition of ceria improved the hardness and fracture toughness of hardfacing deposits,which would increase the resistance to plastic deformation and scratch,thus the wear resistance of hardfacing alloys was improved.

  5. Experimental investigation of the abrasive crown dynamics in orbital atherectomy.

    Zheng, Yihao; Belmont, Barry; Shih, Albert J

    2016-07-01

    Orbital atherectomy is a catheter-based minimally invasive procedure to modify the plaque within atherosclerotic arteries using a diamond abrasive crown. This study was designed to investigate the crown motion and its corresponding contact force with the vessel. To this end, a transparent arterial tissue-mimicking phantom made of polyvinyl chloride was developed, a high-speed camera and image processing technique were utilized to visualize and quantitatively analyze the crown motion in the vessel phantom, and a piezoelectric dynamometer measured the forces on the phantom during the procedure. Observed under typical orbital atherectomy rotational speeds of 60,000, 90,000, and 120,000rpm in a 4.8mm caliber vessel phantom, the crown motion was a combination of high-frequency rotation at 1000, 1500, and 1660.4-1866.1Hz and low-frequency orbiting at 18, 38, and 40Hz, respectively. The measured forces were also composed of these high and low frequencies, matching well with the rotation of the eccentric crown and the associated orbital motion. The average peak force ranged from 0.1 to 0.4N at different rotational speeds. PMID:27160429

  6. Experimental Study on Abrasive Waterjet Polishing of Hydraulic Turbine Blades

    In this paper, an experimental investigation is implemented on the abrasive waterjet polishing technique to evaluate its capability in polishing of surfaces and edges of hydraulic turbine blades. For this, the properties of this method are studied and the main parameters affecting its performance are determined. Then, an experimental test-rig is designed, manufactured and tested to be used in this study. This test-rig can be used to polish linear and planar areas on the surface of the desired workpieces. Considering the number of parameters and their levels, the Taguchi method is used to design the preliminary experiments. All experiments are then implemented according to the Taguchi L18 orthogonal array. The signal-to-noise ratios obtained from the results of these experiments are used to determine the importance of the controlled polishing parameters on the final quality of the polished surface. The evaluations on these ratios reveal that the nozzle angle and the nozzle diameter have the most important impact on the results. The outcomes of these experiments can be used as a basis to design a more precise set of experiments in which the optimal values of each parameter can be estimated

  7. Dressing of diamond grinding wheels by abrasive water jet for freeform optical surface grinding

    Wang, Wei; Yao, Peng; Li, Chengwu; Huang, Chuanzhen; Wang, Jun; Zhu, Hongtao; Liu, Zengwen

    2014-08-01

    During the ultra-precision grinding of a large aperture mirror made of RB-SiC, the grinding wheel becomes dull rapidly, which will lead to an increase of grinding force and a decrease of grinding ratio. In this paper, diamond grinding sticks were dressed with micro SiC abrasive water jet and water jet. Through single factorial experiments, the influence of jet pressure on the dressing performance was investigated. To analyze and evaluate the effect of dressing quantitatively, the 3D roughness and the wheel topography were measured and compared with laser scanning confocal microscope before and after dressing. The experimental results show that the abrasive grains are well protruded from binder and the distribution of the abrasive grains becomes uniform after dressing by abrasive water jet when the dressing parameters are properly selected. The dressing performance of abrasive water jet is much better than water jet. For dressing ultra-fine grit size wheels, the abrasive size of the jet should be smaller than the wheel grit size to achieve a better result. The jet pressure is an obvious influence factor of the surface topography.

  8. Abrasion measuring method for rod of control rod assembly of reactor

    The present invention provides a method of easily measuring abrasion caused on the outer surface of control rods of a control assembly to be used in a PWR type reactor. Namely, the control rod assembly comprise a plurality of control rods assembled in a cluster-like manner. Light is irradiated to a control rod to be measured from an optical measuring device for measuring the extent of abrasion on the surface of the control rods. The distance is measured by receiving the reflected light. The depth of abrasion is determined by comparing the thus measured distance to the abraded portion and the distance to an integral portion. Then, the depth of the abrasion is adjusted based on the control rod position and the angle to determine final depth of abrasion. The abrasion of control rods can be measured by remote control using one kind of light sensor. The device can be reduced in the size and the time for the measuring operation can also be shortened. (I.S.)

  9. Dust Storms: Why Are Dust Storms a Concern?

    ... in Environmental Health, Chemistry, and Toxicology More Resources Dust Storms en español Why are dust storms a concern? A dust storm is a moving ... on Human Health (US Geological Survey) Chemicals in Dust Storms Are these chemicals in MY community? Particulate Matter ...

  10. Search for magnetic minerals in Martian rocks: Overview of the Rock Abrasion Tool (RAT) magnet investigation on Spirit and Opportunity

    Goetz, Walter; Leer, Kristoffer; Gunnlaugsson, Haraldur P.; Bartlett, Paul; Basso, Brandon; Bell, Jim; Bertelsen, Preben; Binau, Charlotte S.; Chu, Phillip C.; Gorevan, S.; Hansen, Mikkel F.; Hviid, Stubbe F.; Kinch, Kjartan M.; Klingelhöfer, Göstar; Kusack, Alastair; Madsen, Morten B.; Ming, Douglas W.; Morris, Richard V.; Mumm, Erik; Myrick, Tom; Olsen, Malte; Squyres, Steven W.; Wilson, Jack; Yen, Albert

    2008-05-01

    The Rock Abrasion Tool (RAT) on board the Mars Exploration Rovers (MER) is a grinding tool designed to remove dust coatings and/or weathering rinds from rocks and expose fresh rock material. Four magnets of different strengths that are built into the structure of the RAT have been attracting substantial amounts of magnetic material during RAT activities from rocks throughout both rover missions. The RAT magnet experiment as performed on Spirit demonstrates the presence of a strongly ferrimagnetic phase in Gusev crater rocks, which based on Mössbauer and visible/near-infrared reflectance spectra is interpreted as magnetite. The amount of abraded rock material adhering to the magnets varied strongly during the mission and is correlated in a consistent way to the amount of magnetite inferred from Mössbauer spectra for the corresponding rock. The RAT magnet experiment as performed on Opportunity also indicates the presence of a strongly ferrimagnetic phase in outcrops, such as magnetite or an altered version of magnetite. However, the evidence is weaker than in the case of Spirit. According to data from the α particle X-ray spectrometer (APXS) and the Mössbauer spectrometer (MB), the Eagle crater outcrops should not contain magnetite and their magnetization should not exceed 0.03 A m2 kg-1. However, this assertion seems to be in contradiction with the results of the RAT magnet experiment. The evidence for a strongly ferrimagnetic phase at low abundance in the Meridiani outcrops is discussed.

  11. Radioactive dust sampling

    This technical report is the second of a five part series on the technical evaluation of a number of dust monitoring instruments and the characterization of Long-Lived Radioactive Dust (LLRD). The data reported here pertain to an experimental study conducted under laboratory controlled conditions in a Long-Lived Radioactive Dust Test Facility (LLRDTF) designed for this purpose. This study was carried out with a twofold purpose in mind, namely, for the characterization of dust and LLRD, and for the evaluation of a variety of monitoring instruments, including cascade impactors, optical particle counters, nylon cyclones, open face filter samplers, and α-particle personal dosimeters, the latter normally used for α-particle radiation exposure purposes. Several non-radioactive and radioactive dusts were characterized. The non-radioactive dusts were SiC, Al2O3, talcum powder, corn starch and flour, while uranium tailings were used as a radioactive dust. Clear differences in instrument performance were observed for the various measurements made

  12. Dust torus around Mars

    Juhasz, Antal; Horanyi, Mihaly

    1995-01-01

    We investigate the orbital dynamics of small dust particles generated via the continuous micrometeoroid bombardment of the Martian moons. In addition to Mar's oblateness, we also consider the radiation pressure perturbation that is complicated by the planet's eccentric orbit and tilted rotational axis. Considering the production rates and the lifetimes of dust grains, we show that particles from Deimos with radii of about 15 micrometers are expected to dominate the population of a permanently present and tilted dust torus. This torus has an estimated peak number density of approximately equals 5 x 10(exp -12)/cu cm and an optical depth of approximately equals 4 x 10(exp -8).

  13. The Mars Environmental Compatibility Assessment MECA Abrasion Tool

    Kuhlman, K. R.; Anderson, M. S.; Hinde, B. D.; Hecht, M. H.; Pike, W. T.; Marshall, J.; Meloy, T. P.; Cobbly, T.

    1999-09-01

    The Mars Environmental Compatibility Assessment (MECA) experiment, an instrument suite to be flown on Mars Surveyor 2001, will include a tool for doing simple mineralogical scratch and streak tests on particles from the Martian regolith. The Abrasion Tool will be applied to particles that adhere to highly polished substrates of various hardnesses. Granular soil components will be subjected to a compressive force of about 3 N using a leaf spring. The spring will be applied with a paraffin actuator capable of a 0.76 mm throw to achieve a maximum displacement of about 7.5 mm at the tip of the tool. The pressure per grain will be dependent on the grain size, the number of grains that adhere to the substrate and the number of grains in compression. The pressure per particle is expected to be on the order of 100 MPa - 1 GPa. The MECA sample wheel containing the substrates will be rotated after the particles are placed in compression to produce scratches or pits. A primary goal of the Abrasion Tool is to identify quartz (Mohs' hardness = 7) using substrates of varying hardnesses. Quartz is considered hazardous to future human explorers of Mars because it can cause silicosis of the lungs if it is of respirable size. It is also hazardous to machinery, structures, and space suits because of its ability to abrade and scratch surfaces. Since large quantities of minerals harder than quartz are not expected, any scratches produced on polished quartz substrates might be reasonably attributed to quartz particles, although there may be minerals such as impact metamorphic diamond in the soils. Careful calibration of the tool will be necessary to ensure that grains are not overloaded; for example, a steel ball pressed into glass will produce a Hertzian fracture, even though it is softer than glass. Other minerals, such as magnetite (Mohs'hardness = 6.5) have been shown to scratch glass ceramics such as Zerodur (Mohs' hardness = 6.5). Thus, minerals can be differentiated: note that

  14. Nano Dust Analyzer Project

    National Aeronautics and Space Administration — We propose to develop a new highly sensitive instrument to confirm the existence of the so-called nano-dust particles, characterize their impact parameters, and...

  15. Dust mite (image)

    This is a magnified photograph of a dust mite. Mites are carriers (vectors) of many important diseases including typhus (scrub and murine) and rickettsialpox. (Image courtesy of the Centers for Disease ...

  16. Adhesion of Lunar Dust

    Walton, Otis R.

    2007-04-01

    This paper reviews the physical characteristics of lunar dust and the effects of various fundamental forces acting on dust particles on surfaces in a lunar environment. There are transport forces and adhesion forces after contact. Mechanical forces (i.e., from rover wheels, astronaut boots and rocket engine blast) and static electric effects (from UV photo-ionization and/or tribo-electric charging) are likely to be the major contributors to the transport of dust particles. If fine regolith particles are deposited on a surface, then surface energy-related (e.g., van der Walls) adhesion forces and static-electric-image forces are likely to be the strongest contributors to adhesion. Some measurement techniques are offered to quantify the strength of adhesion forces. And finally some dust removal techniques are discussed.

  17. Composite Circumstellar Dust Grains

    Gupta, Ranjan; Dutta, Rajeshwari

    2016-01-01

    We calculate the absorption efficiencies of composite silicate grains with inclusions of graphite and silicon carbide in the spectral range 5--25$\\rm \\mu m$. We study the variation in absorption profiles with volume fractions of inclusions. In particular we study the variation in the wavelength of peak absorption at 10 and 18$\\rm \\mu m$. We also study the variation of the absorption of porous silicate grains. We use the absorption efficiencies to calculate the infrared flux at various dust temperatures and compare with the observed infrared emission flux from the circumstellar dust around some M-Type \\& AGB stars obtained from IRAS and a few stars from Spitzer satellite. We interpret the observed data in terms of the circumstellar dust grain sizes; shape; composition and dust temperature.

  18. Using frictional power to model LSST removal with conventional abrasives

    Allen, Richard G.; Hubler, William H.

    2015-08-01

    The stressed lap on the Large Polishing Machine (LPM) at the University of Arizona Richard F. Caris Mirror Lab has recently been used to polish the M1 and M3 surfaces of the 8.4-m mirror for the Large Synoptic Survey Telescope (LSST). Loadcells in the three 4-bar links that connect this lap to the spindle of the machine allow the translational forces and torque on the lap to be measured once a second. These force readings and all other available machine parameters are recorded in history files that can be used to create a 2D removal map from one or more polishing runs. While the Preston equation has been used for many years to predict removal in a conventional polishing process, we have adopted a new equation that assumes that removal is proportional to the energy that is transferred from the lap to the substrate via friction. Specifically, the instantaneous removal rate at any point is defined to be the product of four parameters - an energy conversion factor which we call the Allen coefficient, the coefficient of friction, the lap pressure, and the speed of the lap. The Allen coefficient is the ratio of volumetric removal to frictional energy for a particular combination of pad material, abrasive, and substrate. Because our calculations take into account changes in the coefficient of friction between the lap and mirror, our 2D removal maps usually correlate well with optical data. Removal maps for future polishing strokes are created in simulations that track the position and speed of individual lap pads.

  19. Migration of Interplanetary Dust

    Ipatov, S. I.; Mather, J. C.; Taylor, P.A.

    2003-01-01

    We numerically investigate the migration of dust particles with initial orbits close to those of the numbered asteroids, observed trans-Neptunian objects, and Comet Encke. The fraction of silicate asteroidal particles that collided with the Earth during their lifetime varied from 1.1% for 100 micron particles to 0.008% for 1 micron particles. Almost all asteroidal particles with diameter d>4 microns collided with the Sun. The peaks in the migrating asteroidal dust particles' semi-major axis d...

  20. Lunar Dust and Lunar Simulant Activation, Monitoring, Solution and Cellular Toxicity Properties

    Wallace, William; Jeevarajan, A. S.

    2009-01-01

    During the Apollo missions, many undesirable situations were encountered that must be mitigated prior to returning humans to the moon. Lunar dust (that part of the lunar regolith less than 20 microns in diameter) was found to produce several problems with mechanical equipment and could have conceivably produced harmful physiological effects for the astronauts. For instance, the abrasive nature of the dust was found to cause malfunctions of various joints and seals of the spacecraft and suits. Additionally, though efforts were made to exclude lunar dust from the cabin of the lunar module, a significant amount of material nonetheless found its way inside. With the loss of gravity correlated with ascent from the lunar surface, much of the finer fraction of this dust began to float and was inhaled by the astronauts. The short visits tothe Moon during Apollo lessened exposure to the dust, but the plan for future lunar stays of up to six months demands that methods be developed to minimize the risk of dust inhalation. The guidelines for what constitutes "safe" exposure will guide the development of engineering controls aimed at preventing the presence of dust in the lunar habitat. This work has shown the effects of grinding on the activation level of lunar dust, the changes in dissolution properties of lunar simulant, and the production of cytokines by cellular systems. Grinding of lunar dust leads to the production of radicals in solution and increased dissolution of lunar simulant in buffers of different pH. Additionally, ground lunar simulant has been shown to promote the production of IL-6 and IL-8, pro-inflammatory cytokines, by alveolar epithelial cells. These results provide evidence of the need for further studies on these materials prior to returning to the lunar surface.

  1. Multiphase Flow and Wear in the Cutting Head of Ultra-high Pressure Abrasive Water Jet

    YANG Minguan; WANG Yuli; KANG Can; YU Feng

    2009-01-01

    Abrasive water jet cutting technology is widely applied in the materials processing today and attracts great attention from scholars, but many phenomena concerned are not well understood, especially in the internal jet flow of the cutting head at the condition of ultra-high pressure. The multiphase flow in the cutting head is numerically simulated to study the abrasive motion mechanism and wear inside the cutting head at the pressure beyond 300 Mpa. Visible predictions of the particles trajectories and wear rate in the cutting head are presented. The influences of the abrasive physical properties, size of the jewel orifice and the operating pressure on the trajectories are discussed. Based on the simulation, a wear experiment is carried out under the corresponding pressures. The simulation and experimental results show that the flow in the mixing chamber is composed of the jet core zone and the disturbance zone, both affect the particles trajectories. The mixing efficiency drops with the increase of the abrasive granularity. The abrasive density determines the response of particles to the effects of different flow zones, the abrasive with medium density gives the best general performance. Increasing the operating pressure or using the jewel with a smaller orifice improves the coherency of particles trajectories but increases the wear rate of the jewel holder at the same time. Walls of the jewel holder, the entrance of the mixing chamber and the convergence part of the mixing tube are subject to wear out. The computational and experimental results give a qualitative consistency which proves that this numerical method can provide a reliable and visible cognition of the flow characteristics of ultra-high pressure abrasive water jet. The investigation is benefit for improving the machining properties of water jet cutting systems and the optimization design of the cutting head.

  2. Analytical method for softness abrasive flow field based on discrete phase model

    2010-01-01

    Aiming at the problem of difficult contact finishing for mini structural surface in course of mould manufacturing,a new no-tool precision machining method based on soft abrasive flow machining (SAFM) was proposed. It allocated restrained component near surface machined,constituted restrained abrasive flow passage,and made the surface become a segment of passage wall. It could control turbulence abrasive flow in restrained passage,realize micro cutting for passage wall,and utilize the irregular motion of abrasive flow to eliminate the mono-directional marks on machined surfaces,and the precision could reach the specular level. A two-phase dynamic model of abrasive flow oriented to SAFM combined with discrete phase model (DPM) was established,the law of two-phase flow motion and the related physical parameters was obtained by corresponding numerical simulation method,and the mechanism of precision machining in SAFM was discussed. Simulation results show that the abrasive flow machining process mainly appears as translation of ablating location with the influence by granular pressure,and as the variation of machining efficiency with the influence by near-wall particle velocity. Thus via control of the inlet velocity and its corresponding machining time,it is supposed to work out the machining process according to the machining requirements by using the Preston equation to seek the relationship among velocity,pressure and material removing rate. By tracking near-wall particles,it can be confirmed that the movement of near-wall abrasive particles is similar to stream-wise vortices. The cutting traces on workpiece surfaces assume disorderly arrangement,so the feasibility of the SAFM method can be reaffirmed.

  3. Newton to Einstein — dust to dust

    We investigate the relation between the standard Newtonian equations for a pressureless fluid (dust) and the Einstein equations in a double expansion in small scales and small metric perturbations. We find that parts of the Einstein equations can be rewritten as a closed system of two coupled differential equations for the scalar and transverse vector metric perturbations in Poisson gauge. It is then shown that this system is equivalent to the Newtonian system of continuity and Euler equations. Brustein and Riotto (2011) conjectured the equivalence of these systems in the special case where vector perturbations were neglected. We show that this approach does not lead to the Euler equation but to a physically different one with large deviations already in the 1-loop power spectrum. We show that it is also possible to consistently set to zero the vector perturbations which strongly constrains the allowed initial conditions, in particular excluding Gaussian ones such that inclusion of vector perturbations is inevitable in the cosmological context. In addition we derive nonlinear equations for the gravitational slip and tensor perturbations, thereby extending Newtonian gravity of a dust fluid to account for nonlinear light propagation effects and dust-induced gravitational waves

  4. Combined effect of end-rounded versus tapered bristles and a dentifrice on plaque removal and gingival abrasion.

    Caporossi, Leonardo Stephan; Dutra, Danilo Antonio Milbradt; Martins, Maritieli Righi; Prochnow, Emilia Pithan; Moreira, Carlos Heitor Cunha; Kantorski, Karla Zanini

    2016-01-01

    Two previous clinical studies evaluated the effect of end-rounded versus tapered bristles of soft manual brushes on the removal of plaque and gingival abrasion. However, the combined effect of an abrasive dentifrice on these outcomes has yet to be understood. The purpose of the present study was to compare the incidence of gingival abrasion and the degree of plaque removal obtained after the use of toothbrushes with tapered or end-rounded bristles in the presence or absence of an abrasive dentifrice. The study involved a randomized, single-blind, crossover model (n = 39) with a split-mouth design. Subjects were instructed to refrain from performing oral hygiene procedures for 72 hours. Quadrants were randomized and subjects brushed with both types of toothbrushes using a dentifrice (relative dentin abrasion = ± 160). Plaque and gingival abrasion were assessed before and after brushing. After 7 days, the experiment was repeated without the dentifrice. The average reduction in plaque scores and the average increase in the number of abrasion sites were assessed by repeated-measures ANOVA and Bonferroni's post-hoc tests. End-rounded bristles removed significantly more plaque than tapered bristles, regardless of the use of a dentifrice. The dentifrice did not improve plaque removal. In the marginal area (cervical free gingiva), no difference in the incidence of gingival abrasion was detected between toothbrush types when used with a dentifrice (p ≥ 0.05). However, the dentifrice increased the incidence of abrasion (p causing a higher incidence of gingival abrasion when compared with tapered bristles. An abrasive dentifrice can increase the incidence of abrasion, and should be used with caution by individuals who are at risk of developing gingival recession. PMID:26981758

  5. Optimization MRR Of Stainless Steel 403 In Abrasive Water Jet Machining UsingAnova And Taguchi Method

    Ramprasad,

    2015-05-01

    Full Text Available Stainlesssteel 403 is high-alloysteelwith good corrosion resistance and it’svery hard material. Abrasive water jet is an effective method for machining, cutting and drilling of stainlesssteel 403. In thispaperweoptimize the metalremoval rate of stainlesssteel 403 in abrasive water jet machining. The MRRisoptimize by usingthreeparameters water pressure, abrasive flow rate and stand-off distance and L9 orthogonal array of Taguchimethod use to analyse the result. 9 experimentalrunsbased on L9 orthogonal array of Taguchimethod.

  6. Characteristics of tyre dust in polluted air: Studies by single particle mass spectrometry (ATOFMS)

    Dall'Osto, Manuel; Beddows, David C. S.; Gietl, Johanna K.; Olatunbosun, Oluremi A.; Yang, Xiaoguang; Harrison, Roy M.

    2014-09-01

    There is a paucity of quantitative knowledge on the contributions of non-exhaust (abrasion and re-suspension) sources to traffic emissions. Abrasive emissions can be broadly categorised as tyre wear, brake wear and road dust/road surface wear. Current research often considers road dust and tyre dust as externally mixed particles, the former mainly composed of mineral matter and the latter solely composed of mainly organic matter and some trace elements. The aim of this work was to characterise tyre wear from both laboratory and field studies by using Aerosol Time-Of-Flight Mass Spectrometry (ATOFMS). Real-time single particle chemical composition was obtained from a set of rubber tyres rotating on a metal surface. Bimodal particle number size distributions peaking at 35 nm and 85 nm were obtained from SMPS/APS measurements over the range 6-20,000 nm. ATOFMS mass spectra of tyre wear in the particle size range 200-3000 nm diameter show peaks due to exo-sulphur compounds, nitrate, Zn and ions of high molecular weight (m/z > 100) attributed to organic polymers. Two large ATOFMS datasets collected from a number of outdoor studies were examined. The former was constituted of 48 road dust samples collected on the roads of London. The latter consisted of ATOFMS ambient air field studies from Europe, overall composed of more than 2,000,000 single particle mass spectra. The majority (95%) of tyre wear particles present in the road dust samples and atmospheric samples are internally mixed with metals (Li, Na, Ca, Fe, Ti), as well as phosphate. It is concluded that the interaction of tyres with the road surface creates particles internally mixed from two sources: tyre rubber and road surface materials. Measurements of the tyre rubber component alone may underestimate the contribution of tyre wear to concentrations of airborne particulate matter. The results presented are especially relevant for urban aerosol source apportionment and PM2.5 exposure assessment.

  7. Geochemical and isotopic characterization of the Bodélé Depression dust source and implications for transatlantic dust transport to the Amazon Basin

    Abouchami, Wafa; Näthe, Kerstin; Kumar, Ashwini; Galer, Stephen J. G.; Jochum, Klaus Peter; Williams, Earle; Horbe, Adriana M. C.; Rosa, João W. C.; Balsam, William; Adams, David; Mezger, Klaus; Andreae, Meinrat O.

    2013-10-01

    unexpected finding implies that the Bodélé Depression material is not "pre-mixed" at the source to provide a homogeneous source of dust. Rather, different isotope signatures can be emitted depending on subtle vagaries of dust-producing events. Our characterization of the Bodélé Depression components indicate that the Bodélé "calcium-rich" component, identified here, is most likely released via eolian processes of sand grain saltation and abrasion and may be significant in the overall global budget of dusts carried out by the Harmattan low-level jet during the winter.

  8. Fractal dust grains in plasma

    Huang, F. [College of Science, China Agricultural University, Beijing 100083 (China); Peng, R. D. [State Key Laboratory of Coal Resources and Safe Mining, China University of Mining and Technology, Beijing 100083 (China); Liu, Y. H. [Institute of Complexity Science, Qingdao University, Qingdao 266071 (China); Chen, Z. Y. [Department of Physics, Beijing University of Chemical Technology, Beijing 100029 (China); Ye, M. F.; Wang, L. [Institute of Physics, Chinese Academy of Science, Beijing 100190 (China)

    2012-09-15

    Fractal dust grains of different shapes are observed in a radially confined magnetized radio frequency plasma. The fractal dimensions of the dust structures in two-dimensional (2D) horizontal dust layers are calculated, and their evolution in the dust growth process is investigated. It is found that as the dust grains grow the fractal dimension of the dust structure decreases. In addition, the fractal dimension of the center region is larger than that of the entire region in the 2D dust layer. In the initial growth stage, the small dust particulates at a high number density in a 2D layer tend to fill space as a normal surface with fractal dimension D = 2. The mechanism of the formation of fractal dust grains is discussed.

  9. Sliding and Abrasive Wear Behavior of WC-CoCr Coatings with Different Carbide Sizes

    Thakur, Lalit; Arora, Navneet

    2013-02-01

    This study examines the sliding and abrasive wear behaviors of high-velocity oxy-fuel (HVOF)-sprayed WC-CoCr coatings with different WC grain sizes. The HVOF coating deposition was assisted by in-flight particle temperature and velocity measurement system. The powder feedstocks and their corresponding coatings were characterized by means of XRD and Field Emission Scanning Electron Microscope analysis. Hardness, porosity, and indentation fracture toughness of these coatings were calculated and compared with each other. Sliding wear resistance of these coatings was calculated using pin-on-disk tribometer (ASTM G99-90). The two-body abrasion was quantified by sliding the samples over silicon carbide (SiC) abrasive paper bonded to a rotating flat disk of auto-polisher. The mechanism of materials' removal in both the sliding and abrasive wears was studied and discussed on microstructural investigations. It was observed that fine grain WC-CoCr cermet coating exhibits higher sliding and abrasive wear resistances as compared with conventional cermet coating.

  10. Abrasive Performance of Chromium Carbide Reinforced Ni3Al Matrix Composite Cladding

    LI Shang-ping; LUO He-li; FENG Di; CAO Xu; ZHANG Xi-e

    2009-01-01

    The Microstructure and room temperature abrasive wear resistance of chromium carbide reinforced NiM3Al matrix composite cladding at different depth on nickel base alloy were investigated. The results showed that there is a great difference in microstructure and wear resistance of the Ni3 Al matrix composite at different depth. Three kinds of tests, designed for different load and abrasive size, were used to understand the wear behaviour of this material. Under all three wear conditions, the abrasion resistance of the composite cladding at the depth of 6 mm, namely NC-M2, was much higher than that of the composite cladding at the depth of 2 mm, namely NC-M1. In addition, the wear-resistant advantage of NC-M2 was more obvious when the size of the abrasive was small. The relative wear resistance of NC-M2 increased from 1.63 times to 2.05 times when the size of the abrasive decreased from 180 μm to 50μm. The mierostructure of the composite cladding showed that the size of chromium carbide particles, which was mainly influenced by cooling rate of melting pool, was a function of distance from the interface between the coating and substrate varied gradually. The chromium carbide particles near the interface were finer than that far from inter-face, which was the main reason for the different wear resistance of the composite cladding at different depth.