WorldWideScience

Sample records for above-ground nuclear tests

  1. Nuclear Reactor Monitoring With an Above Ground Antineutrino Detector

    Classen, Timothy

    2011-04-01

    Technology to detect νe 's emitted from nuclear reactors has existed for more than 50 years. This technology has been used in a range of experiments probing the neutrino parameter space. A continuing effort has been made at LLNL to test whether this technology may be used for a more practical purpose, the monitoring of nuclear reactors with a focus on safeguarding dangerous nuclear materials. As part of this role a new detector is being developed for deployment above ground at the Point Lepreau Nuclear Generating Station in New Brunswick Canada. The detector will observe a reactor core through a full start-up phase, to determine how well it can measure changes in nuclear fuel composition. This talk will focus on the challenges of the experiment, and how the techniques of fundamental neutrino research may be used to overcome them. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  2. Above-ground antineutrino detection for nuclear reactor monitoring

    Antineutrino monitoring of nuclear reactors has been demonstrated many times (Klimov et al., 1994 [1]; Bowden et al., 2009 [2]; Oguri et al., 2014 [3]), however the technique has not as of yet been developed into a useful capability for treaty verification purposes. The most notable drawback is the current requirement that detectors be deployed underground, with at least several meters-water-equivalent of shielding from cosmic radiation. In addition, the deployment of liquid-based detection media presents a challenge in reactor facilities. We are currently developing a detector system that has the potential to operate above ground and circumvent deployment problems associated with a liquid detection media: the system is composed of segments of plastic scintillator surrounded by 6LiF/ZnS:Ag. ZnS:Ag is a radio-luminescent phosphor used to detect the neutron capture products of 6Li. Because of its long decay time compared to standard plastic scintillators, pulse-shape discrimination can be used to distinguish positron and neutron interactions resulting from the inverse beta decay (IBD) of antineutrinos within the detector volume, reducing both accidental and correlated backgrounds. Segmentation further reduces backgrounds by identifying the positron's annihilation gammas, a signature that is absent for most correlated and uncorrelated backgrounds. This work explores different configurations in order to maximize the size of the detector segments without reducing the intrinsic neutron detection efficiency. We believe that this technology will ultimately be applicable to potential safeguards scenarios such as those recently described by Huber et al. (2014) [4,5

  3. Above-ground antineutrino detection for nuclear reactor monitoring

    Sweany, M.; Brennan, J.; Cabrera-Palmer, B.; Kiff, S.; Reyna, D.; Throckmorton, D.

    2015-01-01

    Antineutrino monitoring of nuclear reactors has been demonstrated many times (Klimov et al., 1994 [1]; Bowden et al., 2009 [2]; Oguri et al., 2014 [3]), however the technique has not as of yet been developed into a useful capability for treaty verification purposes. The most notable drawback is the current requirement that detectors be deployed underground, with at least several meters-water-equivalent of shielding from cosmic radiation. In addition, the deployment of liquid-based detection media presents a challenge in reactor facilities. We are currently developing a detector system that has the potential to operate above ground and circumvent deployment problems associated with a liquid detection media: the system is composed of segments of plastic scintillator surrounded by {sup 6}LiF/ZnS:Ag. ZnS:Ag is a radio-luminescent phosphor used to detect the neutron capture products of {sup 6}Li. Because of its long decay time compared to standard plastic scintillators, pulse-shape discrimination can be used to distinguish positron and neutron interactions resulting from the inverse beta decay (IBD) of antineutrinos within the detector volume, reducing both accidental and correlated backgrounds. Segmentation further reduces backgrounds by identifying the positron's annihilation gammas, a signature that is absent for most correlated and uncorrelated backgrounds. This work explores different configurations in order to maximize the size of the detector segments without reducing the intrinsic neutron detection efficiency. We believe that this technology will ultimately be applicable to potential safeguards scenarios such as those recently described by Huber et al. (2014) [4,5].

  4. Standard practice for guided wave testing of above ground steel pipework using piezoelectric effect transduction

    American Society for Testing and Materials. Philadelphia

    2011-01-01

    1.1 This practice provides a procedure for the use of guided wave testing (GWT), also previously known as long range ultrasonic testing (LRUT) or guided wave ultrasonic testing (GWUT). 1.2 GWT utilizes ultrasonic guided waves, sent in the axial direction of the pipe, to non-destructively test pipes for defects or other features by detecting changes in the cross-section and/or stiffness of the pipe. 1.3 GWT is a screening tool. The method does not provide a direct measurement of wall thickness or the exact dimensions of defects/defected area; an estimate of the defect severity however can be provided. 1.4 This practice is intended for use with tubular carbon steel or low-alloy steel products having Nominal Pipe size (NPS) 2 to 48 corresponding to 60.3 to 1219.2 mm (2.375 to 48 in.) outer diameter, and wall thickness between 3.81 and 25.4 mm (0.15 and 1 in.). 1.5 This practice covers GWT using piezoelectric transduction technology. 1.6 This practice only applies to GWT of basic pipe configuration. This inc...

  5. Testing the generality of above-ground biomass allometry across plant functional types at the continent scale.

    Paul, Keryn I; Roxburgh, Stephen H; Chave, Jerome; England, Jacqueline R; Zerihun, Ayalsew; Specht, Alison; Lewis, Tom; Bennett, Lauren T; Baker, Thomas G; Adams, Mark A; Huxtable, Dan; Montagu, Kelvin D; Falster, Daniel S; Feller, Mike; Sochacki, Stan; Ritson, Peter; Bastin, Gary; Bartle, John; Wildy, Dan; Hobbs, Trevor; Larmour, John; Waterworth, Rob; Stewart, Hugh T L; Jonson, Justin; Forrester, David I; Applegate, Grahame; Mendham, Daniel; Bradford, Matt; O'Grady, Anthony; Green, Daryl; Sudmeyer, Rob; Rance, Stan J; Turner, John; Barton, Craig; Wenk, Elizabeth H; Grove, Tim; Attiwill, Peter M; Pinkard, Elizabeth; Butler, Don; Brooksbank, Kim; Spencer, Beren; Snowdon, Peter; O'Brien, Nick; Battaglia, Michael; Cameron, David M; Hamilton, Steve; McAuthur, Geoff; Sinclair, Jenny

    2016-06-01

    Accurate ground-based estimation of the carbon stored in terrestrial ecosystems is critical to quantifying the global carbon budget. Allometric models provide cost-effective methods for biomass prediction. But do such models vary with ecoregion or plant functional type? We compiled 15 054 measurements of individual tree or shrub biomass from across Australia to examine the generality of allometric models for above-ground biomass prediction. This provided a robust case study because Australia includes ecoregions ranging from arid shrublands to tropical rainforests, and has a rich history of biomass research, particularly in planted forests. Regardless of ecoregion, for five broad categories of plant functional type (shrubs; multistemmed trees; trees of the genus Eucalyptus and closely related genera; other trees of high wood density; and other trees of low wood density), relationships between biomass and stem diameter were generic. Simple power-law models explained 84-95% of the variation in biomass, with little improvement in model performance when other plant variables (height, bole wood density), or site characteristics (climate, age, management) were included. Predictions of stand-based biomass from allometric models of varying levels of generalization (species-specific, plant functional type) were validated using whole-plot harvest data from 17 contrasting stands (range: 9-356 Mg ha(-1) ). Losses in efficiency of prediction were plant functional types. Development of new species-specific models is only warranted when gains in accuracy of stand-based predictions are relatively high (e.g. high-value monocultures). PMID:26683241

  6. LINE-ABOVE-GROUND ATTENUATOR

    Wilds, R.B.; Ames, J.R.

    1957-09-24

    The line-above-ground attenuator provides a continuously variable microwave attenuator for a coaxial line that is capable of high attenuation and low insertion loss. The device consists of a short section of the line-above- ground plane type transmission lime, a pair of identical rectangular slabs of lossy material like polytron, whose longitudinal axes are parallel to and indentically spaced away from either side of the line, and a geared mechanism to adjust amd maintain this spaced relationship. This device permits optimum fineness and accuracy of attenuator control which heretofore has been difficult to achieve.

  7. Water Activities in Laxemar Simpevarp. The final disposal facility for spent nuclear fuel - removal of groundwater and water activities above ground; Vattenverksamhet i Laxemar-Simpevarp. Slutfoervarsanlaeggning foer anvaent kaernbraensle - bortledande av grundvatten samt vattenverksamheter ovan mark

    Werner, Kent (EmpTec (Sweden)); Hamren, Ulrika; Collinder, Per (Ekologigruppen AB (Sweden))

    2010-12-15

    This report concerns water operations (Chapter 11 in the Environmental Code) below and above ground associated with construction, operation, and decommissioning of a repository for spent nuclear fuel in Laxemar in the municipality of Oskarshamn. SKB has chosen Forsmark in the municipality of Oesthammar as site for the repository, and the report hence describes a non-chosen alternative. The report provides a comprehensive description of how the water operations would be executed, their hydrogeological and hydrological effects and the resulting consequences. The description is a background material for comparisons between the two sites in terms of water operations. The underground part of a repository in Laxemar would, among other things, consist of an access ramp and a repository area at a depth of approximately 500 metres. The construction, operation, and decommissioning phases would in total comprise a time period of 60-70 years. Inflowing groundwater would be diverted during construction and operation. The modelling tool MIKE SHE has been used to assess the effects of the groundwater diversion, for instance in terms of groundwater levels and stream discharges. According to MIKE SHE calculations for a hypothetical case with a fully open repository, the total groundwater inflow would be in the order of 55-90 litres per second depending on the permeability of the grouted zone around ramp, shafts and tunnels. In reality, the whole repository would not be open simultaneously, and the inflow would therefore be less. The groundwater diversion would cause groundwater- level drawdown in the rock, which in turn would lead to drawdown of the groundwater table in relatively large areas above and around the repository. According to model calculations, there would be an insignificant drawdown of the water level in Lake Frisksjoen, the largest lake in the area. The discharge in the most important stream of the area (Laxemaraan) would be reduced by less than ten percent

  8. Forest Above Ground Biomass Estimation in China

    Zhao, D.; Zeng, Y.; Wu, B.; Li, X.

    2013-12-01

    In order to study the carbon cycling in China deeply, a forest above ground biomass (AGB) estimation research is carried out under the support of 'Strategic Priority Research Program - Climate Change: Carbone Budget and Related Issues' of the Chinese Academy of Sciences (Carbon Project). The research aims to estimate the forest AGB in 2000, 2005 and 2010 in China, and analyzes its dynamic changes. The overall thinking of the research is using field works and airborne LiDAR data as basis to estimate the AGB in GLAS footprints, and then extrapolating discrete AGB to continuous results with optical and auxiliary data. Due to the large area of China, totally 8 sub-areas are marked out based on the different forest ecosystems and some other factors (Table 1 and Fig. 1). Here, a latest China's land cover product (the background of Fig 1), named 'ChinaCover', and also supported by the 'Carbon Project', is imported to classify the forest types. There are around 5000 sample plots (Table 1) surveyed by the 'Carbon Project'. It can provide a large number of training and validation data. At the same time, the research sets 6 other typical sample areas, which have areas of 60 to 200 km2, and airborne LiDAR flights are carried out to obtain high accuracy AGB in these areas. With the sample plots and 6 typical sample areas, the AGB in GLAS footprint is estimated. Since the sample plots and LiDAR flights were carried out in 2012, the height and area parameters extracted from GLAS footprint are corrected by tree growth model of different forest types. In a further step, extrapolation models are built together with time-series MODIS and auxiliary data. These models fully consider the time-series features and propose several long time-series indices to minimize the influence of spectral saturation. Results are validated by samples and compared to the result of some other researches. At last, the models are applied to the data of 2000, 2005 and 2010 to get the corresponding AGB maps

  9. ERC hazard classification matrices for above ground structures and groundwater and soil remediation activities

    This document provides the status of the preliminary hazard classification (PHC) process for the Environmental Restoration Contractor (ERC) above ground structures and groundwater and soil remediation activities currently underway for planned for fiscal year (FY) 1997. This classification process is based on current US Department of Energy (DOE), Richland Operations Office (RL) guidance for the classification of facilities and activities containing radionuclide and nonradiological hazardous material inventories. The above ground structures presented in the matrices were drawn from the Bechtel Hanford, Inc. (BHI) Decontamination and Decommissioning (D and D) Project Facility List (DOE 1996), which identifies the facilities in the RL-Environmental Restoration baseline contract in 1997. This document contains the following two appendices: (1) Appendix A, which consists of a matrix identifying PHC documents that have been issued for BHI's above ground structures and groundwater and soil remediation activities underway or planned for FY 1997, and (2) Appendix B, which consists of a matrix showing anticipated PHCs for above ground structures, and groundwater and soil remediation activities underway or planned for FY 1997. Appendix B also shows the schedule for finalization of PHCs for above ground structures with an anticipated classification of Nuclear

  10. Xenon monitoring and the Comprehensive Nuclear-Test-Ban Treaty

    Bowyer, Theodore W. [Nuclear Explosion Monitoring Program, Pacific Northwest National Laboratory, Richland, Washington 99352 (United States)

    2014-05-09

    How do you monitor (verify) a CTBT? It is a difficult challenge to monitor the entire world for nuclear tests, regardless of size. Nuclear tests 'normally' occur underground, above ground or underwater. Setting aside very small tests (let's limit our thinking to 1 kiloton or more), nuclear tests shake the ground, emit large amounts of radioactivity, and make loud noises if in the atmosphere (or hydroacoustic waves if underwater)

  11. Regional analysis of ground and above-ground climate

    1981-12-01

    The regional suitability of underground construction as a climate control technique is discussed with reference to (1) a bioclimatic analysis of long-term weather data for 29 locations in the United States to determine appropriate above ground climate control techniques, (2) a data base of synthesized ground temperatures for the coterminous United States, and (3) monthly dew point ground temperature comparisons for identifying the relative likelihood of condensation from one region to another. It is concluded that the suitability of earth tempering as a practice and of specific earth-sheltered design stereotypes varies geographically; while the subsurface almost always provides a thermal advantage on its own terms when compared to above ground climatic data, it can, nonetheless, compromise the effectiveness of other, regionally more important climate control techniques. Also contained in the report are reviews of above and below ground climate mapping schemes related to human comfort and architectural design, and detailed description of a theoretical model of ground temperature, heat flow, and heat storage in the ground. Strategies of passive climate control are presented in a discussion of the building bioclimatic analysis procedure which has been applied in a computer analysis of 30 years of weather data for each of 29 locations in the United States.

  12. Regional analysis of ground and above-ground climate

    1981-12-01

    The regional suitability of underground construction as a climate control technique is discussed with reference to (1) a bioclimatic analysis of long term weather data for 29 locations in the United States to determine appropriate above ground climate control techniques, (2) a data base of synthesized ground temperatures for the coterminous United States, and (3) monthly dew point ground temperature comparisons for identifying the relative likelihood of condensation from one region to another. It is concluded that the suitability of Earth tempering as a practice and of specific Earth sheltered design stereotypes varies geographically; while the subsurface almost always provides a thermal advantage on its own terms when compared to above ground climatic data, it can, nonetheless, compromise the effectiveness of other, regionally more important climate control techniques. Reviews of above and below ground climate mapping schemes related to human comfort and architectural design, and detailed description of a theoretical model of ground temperature, heat flow, and heat storage in the ground are included. Strategies of passive climate control are presented in a discussion of the building bioclimatic analysis procedure which has been applied in a computer analysis of 30 years of weather data for each of 20 locations in the United States.

  13. Nuclear stress test

    ... Persantine stress test; Thallium stress test; Stress test - nuclear; Adenosine stress test; Regadenoson stress test; CAD - nuclear stress; Coronary artery disease - nuclear stress; Angina - nuclear ...

  14. Above-ground biomass functions for Scots pine in Lithuania

    Miksys, Virgilijus; Varnagiryte-Kabasinskiene, Iveta; Armolaitis, Kestutis [Lithuanian Forest Research Institute, Liepu 1, Girionys, LT-53101 Kaunas District (Lithuania); Stupak, Inge [Forest and Landscape Denmark, Hoersholm Kongevej 11, DK-2970 Hoersholm (Denmark); Kukkola, Mikko [The Finnish Forest Research Institute, Vantaa Research Centre, Vantaa Unit, PL 18, 01301 Vantaa (Finland); Wojcik, Josef [Forest Research Institute, Sekocin-Las, 05-090 Raszyn (Poland)

    2007-10-15

    This study presents biomass functions applicable to Scots pine (Pinus sylvestris L.) on Arenosols in Lithuania, and exemplifies the potential biomass removal from Scots pine stands during thinnings. Scots pine is the most common tree species on Arenosols in Lithuania. Stands of ages 10, 20, 40, 50 and 65 years were chosen for the biomass study. We sampled 5 Scots pine trees per plot (in total 25 trees) that were stratified according to the basal area. The sampling was performed in April 2003, before the vegetative period. The following components of each tree were sampled for the above-ground biomass measurements: (1) 5 stem discs, (2) 1 branch with needles from each whorl and (3) 1 dead branch per tree. Observed biomasses of above-ground components were examined using a non-linear regression model, using stem diameter (D), tree height (H) and D{sup 2}H as independent variables. For stemwood biomass, the best approximation was D{sup 2}H. However, D{sup 2}H was not the best parameter for crown biomass because it does not allow evaluation of the opposite effects of diameter and height on crown biomass. The calculations at stand level showed that crown biomass changed insignificantly with the increase in stand age. However, the total stand biomass increased with age due to the growth of the stem. The removal of all logging residues from the Scots pine stand over a 100-year rotation could increase extraction of forest fuel by 15-20% compared with conventional harvesting. (author)

  15. Diversity, Population Structure, and Above Ground Biomass in Woody Species on Ngomakurira Mountain, Domboshawa, Zimbabwe

    Clemence Zimudzi

    2016-01-01

    Full Text Available The diversity, structure, species composition, and above ground biomass of woody plants on Ngomakurira mountain in Zimbabwe were studied. A systematic random sampling approach was adopted to establish 52 sampling plots measuring 10 × 10 m across 3 study strata in the 1266 ha study area. Woody species occurring in each plot were identified and the circumferences of trees with diameters >8.0 cm at 1.3 m height were measured. A total of 91 species belonging to 74 genera and 39 families were identified in the sample plots. A Shannon-Wiener index mean value of 3.12 was obtained indicating high species diversity on the mountain. The DBH size class distribution showed inverse J distribution patterns across the three study strata, but with only 3 individual plants with DBH > 30 cm. Mean basal area was 15.21 m2 ha−1 with U. kirkiana and J. globiflora contributing approximately 30% of the basal area. The estimated above ground biomass ranged from 34.5 to 65.1 t ha−1. Kruskal-Wallis-H test showed no significant differences in species richness, stem density, basal area, above ground biomass, and evenness, across the study strata (p<0.05. Ngomakurira woodland has potential to regenerate due to the presence of many stems in the small diameter size classes.

  16. Cathodic protection for the bottoms of above ground storage tanks

    Mohr, John P. [Tyco Adhesives, Norwood, MA (United States)

    2004-07-01

    Impressed Current Cathodic Protection has been used for many years to protect the external bottoms of above ground storage tanks. The use of a vertical deep ground bed often treated several bare steel tank bottoms by broadcasting current over a wide area. Environmental concerns and, in some countries, government regulations, have introduced the use of dielectric secondary containment liners. The dielectric liner does not allow the protective cathodic protection current to pass and causes corrosion to continue on the newly placed tank bottom. In existing tank bottoms where inadequate protection has been provided, leaks can develop. In one method of remediation, an old bottom is covered with sand and a double bottom is welded above the leaking bottom. The new bottom is welded very close to the old bottom, thus shielding the traditional cathodic protection from protecting the new bottom. These double bottoms often employ the use of dielectric liner as well. Both the liner and the double bottom often minimize the distance from the external tank bottom. The minimized space between the liner, or double bottom, and the bottom to be protected places a challenge in providing current distribution in cathodic protection systems. This study examines the practical concerns for application of impressed current cathodic protection and the types of anode materials used in these specific applications. One unique approach for an economical treatment using a conductive polymer cathodic protection method is presented. (author)

  17. Can above-ground ecosystem services compensate for reduced fertilizer input and soil organic matter in annual crops?

    van Gils, Stijn; van der Putten, Wim H; Kleijn, David

    2016-01-01

    1.Above-ground and below-ground environmental conditions influence crop yield by pollination, pest pressure, and resource supply. However, little is known about how interactions between these factors contribute to yield. Here, we used oilseed rape Brassica napus to test their effects on crop yield.2

  18. Deep Neural Networks for Above-Ground Detection in Very High Spatial Resolution Digital Elevation Models

    Marmanis, D.; Adam, F.; Datcu, M.; Esch, T.; Stilla, U.

    2015-03-01

    Deep Learning techniques have lately received increased attention for achieving state-of-the-art results in many classification problems, including various vision tasks. In this work, we implement a Deep Learning technique for classifying above-ground objects within urban environments by using a Multilayer Perceptron model and VHSR DEM data. In this context, we propose a novel method called M-ramp which significantly improves the classifier's estimations by neglecting artefacts, minimizing convergence time and improving overall accuracy. We support the importance of using the M-ramp model in DEM classification by conducting a set of experiments with both quantitative and qualitative results. Precisely, we initially train our algorithm with random DEM tiles and their respective point-labels, considering less than 0.1% over the test area, depicting the city center of Munich (25 km2). Furthermore with no additional training, we classify two much larger unseen extents of the greater Munich area (424 km2) and Dongying city, China (257 km2) and evaluate their respective results for proving knowledge-transferability. Through the use of M-ramp, we were able to accelerate the convergence by a magnitude of 8 and achieve a decrease in above-ground relative error by 24.8% and 5.5% over the different datasets.

  19. Estimating Stand Volume and Above-Ground Biomass of Urban Forests Using LiDAR

    Vincenzo Giannico

    2016-04-01

    Full Text Available Assessing forest stand conditions in urban and peri-urban areas is essential to support ecosystem service planning and management, as most of the ecosystem services provided are a consequence of forest stand characteristics. However, collecting data for assessing forest stand conditions is time consuming and labor intensive. A plausible approach for addressing this issue is to establish a relationship between in situ measurements of stand characteristics and data from airborne laser scanning (LiDAR. In this study we assessed forest stand volume and above-ground biomass (AGB in a broadleaved urban forest, using a combination of LiDAR-derived metrics, which takes the form of a forest allometric model. We tested various methods for extracting proxies of basal area (BA and mean stand height (H from the LiDAR point-cloud distribution and evaluated the performance of different models in estimating forest stand volume and AGB. The best predictors for both models were the scale parameters of the Weibull distribution of all returns (except the first (proxy of BA and the 95th percentile of the distribution of all first returns (proxy of H. The R2 were 0.81 (p < 0.01 for the stand volume model and 0.77 (p < 0.01 for the AGB model with a RMSE of 23.66 m3·ha−1 (23.3% and 19.59 Mg·ha−1 (23.9%, respectively. We found that a combination of two LiDAR-derived variables (i.e., proxy of BA and proxy of H, which take the form of a forest allometric model, can be used to estimate stand volume and above-ground biomass in broadleaved urban forest areas. Our results can be compared to other studies conducted using LiDAR in broadleaved forests with similar methods.

  20. Estimating Above-Ground Carbon Biomass in a Newly Restored Coastal Plain Wetland Using Remote Sensing

    Riegel, Joseph B.; Emily Bernhardt; Jennifer Swenson

    2013-01-01

    Developing accurate but inexpensive methods for estimating above-ground carbon biomass is an important technical challenge that must be overcome before a carbon offset market can be successfully implemented in the United States. Previous studies have shown that LiDAR (light detection and ranging) is well-suited for modeling above-ground biomass in mature forests; however, there has been little previous research on the ability of LiDAR to model above-ground biomass in areas with young, aggradi...

  1. EnviroAtlas - Above Ground Live Biomass Carbon Storage for the Conterminous United States- Forested

    U.S. Environmental Protection Agency — This EnviroAtlas dataset includes the average above ground live dry biomass estimate for the Watershed Boundary Dataset (WBD) 12-digit Hydrologic Unit (HUC) in kg/m...

  2. Below-ground herbivory limits induction of extrafloral nectar by above-ground herbivores

    Huang, Wei; Siemann, Evan; Carrillo, Juli; Ding, Jianqing

    2015-01-01

    Background and Aims Many plants produce extrafloral nectar (EFN), and increase production following above-ground herbivory, presumably to attract natural enemies of the herbivores. Below-ground herbivores, alone or in combination with those above ground, may also alter EFN production depending on the specificity of this defence response and the interactions among herbivores mediated through plant defences. To date, however, a lack of manipulative experiments investigating EFN production induc...

  3. Interactions of ectomycorrhizas and above-ground insect herbivores on silver birch

    Nerg, Anne-Marja; Kasurinen, Anne; Holopainen, Toini; Julkunen-Tiitto, Riitta; Neuvonen, Seppo; Holopainen, Jarmo K.

    2009-01-01

    Mycorrhizas are mostly beneficial to host plant growth and survival, e.g., due to improved water and nutrient uptake and enhanced pathogen protection, but also a significant amount of host plant carbon is allocated below-ground to support the mycorrhizal growth. These facts and on the other hand the possibility of mycorrhizas to mediate changes in above-ground defensive chemistry may affect performance of above-ground insect herbivores with different feeding guilds. To see the functionality o...

  4. Root absorption of 222Rn and its transfer into above-ground plant organs

    Experimental data are given on the content of genetically related pairs of radionuclides (226Ra and 222Rn; 224Ra and 220Rn) in soils and the above-ground phytomass of plants growing on plots with differing genesis of the higher concentrations of natural radionuclides in soils. Methods for determining gaseous radionuclides in the above-ground phytomass are described. Different transport routes of 222Rn and 220Rn into above-ground plant organs are considered. The noted absence of balance between 222Rn and 226Ra in plants as well as higher 222Rn/226Ra ratios in the above-ground phytomass as compared to that of the root-containing soil layer (25- to 185-fold) appears to be accounted for by the root pathway of 222Rn uptake and transport of this radionuclide to above-ground plants organs. The existence of the root pathway for 222Rn uptake is proved by direct observations of daily radionuclide movement with bleeding sap in experiments on pumpkins. For the short-lived Rn isotopes, 220Rn and 218Rn, the root pathway of uptake and transport to the above-ground phytomass is less probable, and this causes a notable redistribution of gaseous radionuclides during their movement along the soil-plant route

  5. Final Harvest of Above-Ground Biomass and Allometric Analysis of the Aspen FACE Experiment

    Mark E. Kubiske

    2013-04-15

    The Aspen FACE experiment, located at the US Forest Service Harshaw Research Facility in Oneida County, Wisconsin, exposes the intact canopies of model trembling aspen forests to increased concentrations of atmospheric CO2 and O3. The first full year of treatments was 1998 and final year of elevated CO2 and O3 treatments is scheduled for 2009. This proposal is to conduct an intensive, analytical harvest of the above-ground parts of 24 trees from each of the 12, 30 m diameter treatment plots (total of 288 trees) during June, July & August 2009. This above-ground harvest will be carefully coordinated with the below-ground harvest proposed by D.F. Karnosky et al. (2008 proposal to DOE). We propose to dissect harvested trees according to annual height growth increment and organ (main stem, branch orders, and leaves) for calculation of above-ground biomass production and allometric comparisons among aspen clones, species, and treatments. Additionally, we will collect fine root samples for DNA fingerprinting to quantify biomass production of individual aspen clones. This work will produce a thorough characterization of above-ground tree and stand growth and allocation above ground, and, in conjunction with the below ground harvest, total tree and stand biomass production, allocation, and allometry.

  6. Nondestructive estimates of above-ground biomass using terrestrial laser scanning

    Calders, K.; Newnham, G.; Burt, A.; Murphy, S.; Raumonen, P.; Herold, M.; Culvenor, D.; Avitabile, V.; Disney, M.; Armston, J.; Kaasalainen, M.

    2015-01-01

    Allometric equations are currently used to estimate above-ground biomass (AGB) based on the indirect relationship with tree parameters. Terrestrial laser scanning (TLS) can measure the canopy structure in 3D with high detail. In this study, we develop an approach to estimate AGB from TLS data, which

  7. Grass allometry and estimation of above-ground biomass in tropical alpine tussock grasslands

    Oliveras Menor, I.; Eynden, van der M.; Malhi, Y.; Cahuana, N.; Menor, C.; Zamora, F.; Haugaasen, T.

    2014-01-01

    The puna/páramo grasslands span across the highest altitudes of the tropical Andes, and their ecosystem dynamics are still poorly understood. In this study we examined the above-ground biomass and developed species specific and multispecies power-law allometric equations for four tussock grass speci

  8. Estimating above-ground carbon biomass in a newly restored coastal plain wetland using remote sensing.

    Joseph B Riegel

    Full Text Available Developing accurate but inexpensive methods for estimating above-ground carbon biomass is an important technical challenge that must be overcome before a carbon offset market can be successfully implemented in the United States. Previous studies have shown that LiDAR (light detection and ranging is well-suited for modeling above-ground biomass in mature forests; however, there has been little previous research on the ability of LiDAR to model above-ground biomass in areas with young, aggrading vegetation. This study compared the abilities of discrete-return LiDAR and high resolution optical imagery to model above-ground carbon biomass at a young restored forested wetland site in eastern North Carolina. We found that the optical imagery model explained more of the observed variation in carbon biomass than the LiDAR model (adj-R(2 values of 0.34 and 0.18 respectively; root mean squared errors of 0.14 Mg C/ha and 0.17 Mg C/ha respectively. Optical imagery was also better able to predict high and low biomass extremes than the LiDAR model. Combining both the optical and LiDAR improved upon the optical model but only marginally (adj-R(2 of 0.37. These results suggest that the ability of discrete-return LiDAR to model above-ground biomass may be rather limited in areas with young, small trees and that high spatial resolution optical imagery may be the better tool in such areas.

  9. Impact of Ground-Applied Termiticides on the Above-Ground Foraging Behavior of the Formosan Subterranean Termite.

    Henderson, Gregg; Gautam, Bal K; Wang, Cai

    2016-01-01

    We conducted a laboratory study to determine the impact of ground-applied termiticides on the above-ground foraging behavior of Coptotermes formosanus. Two concentrations (1 and 10 ppm) each of three termiticides, viz. fipronil, imidacloprid and chlorantraniliprole, were tested. After one month post-treatment (fipronil 10 ppm was run for 12 days only and all other treatments were run for one month), fipronil had the lowest percentage of survival (3%-4%) at both concentrations. Termite survival ranged from 31% to 40% in the case of imidacloprid treatments and 10 ppm chlorantraniliprole. However, 1 ppm chlorantraniliprole did not cause significant mortality compared to the controls. Foraging on the bottom substrate was evident in all replicates for all chemicals initially. However, a portion of the foraging population avoided the ground treatment toxicants after several days of bottom foraging. Only the slower-acting non-repellents created this repellent barrier, causing avoidance behavior that was most likely due to dead termites and fungus buildup on the treated bottom substrate. Fipronil appeared more toxic and faster acting at the concentrations tested, thus limiting this repellent effect. Suggestions by the pest control industry in Louisiana that some non-repellents can create a repellent barrier stranding live termites above ground are supported by this laboratory study. PMID:27571108

  10. Pendugaan Cadangan Karbon Above Ground Biomass pada Ruang Terbuka Hijau di Kota Medan

    Sitorus, Novita Ariani

    2015-01-01

    NOVITA ARIANI SITORUS : The Estimate of Carbon Stocks Above Ground Biomass at Green Open Space in Medan City. Under the supervision of RAHMAWATY and ABDUL RAUF. Global warming is the main environmental problems of this millennium. Carbon dioxide (CO2) is the main cause for global warming. Green open space such as urban forest and urban park play a role in mitigating global warming in urban areas because the vegetation that is capable to absorb CO2 from the atmosphere through photosynthes...

  11. Landsat Imagery-Based Above Ground Biomass Estimation and Change Investigation Related to Human Activities

    Chaofan Wu; Huanhuan Shen; Ke Wang; Aihua Shen; Jinsong Deng; Muye Gan

    2016-01-01

    Forest biomass is a significant indicator for substance accumulation and forest succession, and a spatiotemporal biomass map would provide valuable information for forest management and scientific planning. In this study, Landsat imagery and field data cooperated with a random forest regression approach were used to estimate spatiotemporal Above Ground Biomass (AGB) in Fuyang County, Zhejiang Province of East China. As a result, the AGB retrieval showed an increasing trend for the past decade...

  12. Disposal facility in olkiluoto, description of above ground facilities in lift transport alternative

    The above ground facilities of the disposal plant on the Olkiluoto site are described in this report as they will be when the operation of the disposal facility starts in the year 2020. The disposal plant is visualised on the Olkiluoto site. Parallel construction of the deposition tunnels and disposal of the spent fuel canisters constitute the principal design basis of the disposal plant. The annual production of disposal canisters for spent fuel amounts to about 40. Production of 100 disposal canisters has been used as the capacity basis. Fuel from the Olkiluoto plant and from the Loviisa plant will be encapsulated in the same production line. The disposal plant will require an area of about 15 to 20 hectares above ground level. The total building volume of the above ground facilities is about 75000 m3. The purpose of the report is to provide the base for detailed design of the encapsulation plant and the repository spaces, as well as for coordination between the disposal plant and ONKALO. The dimensioning bases for the disposal plant are shown in the Tables at the end of the report. The report can also be used as a basis for comparison in deciding whether the fuel canisters are transported to the repository by a lift or by a vehicle along the access tunnel. (orig.)

  13. Above Ground Biomass-carbon Partitioning, Storage and Sequestration in a Rehabilitated Forest, Bintulu, Sarawak, Malaysia

    Forest degradation and deforestation are some of the major global concerns as it can reduce forest carbon storage and sequestration capacity. Forest rehabilitation on degraded forest areas has the potential to improve carbon stock, hence mitigate greenhouse gases emission. However, the carbon storage and sequestration potential in a rehabilitated tropical forest remains unclear due to the lack of information. This paper reports an initiative to estimate biomass-carbon partitioning, storage and sequestration in a rehabilitated forest. The study site was at the UPM-Mitsubishi Corporation Forest Rehabilitation Project, UPM Bintulu Sarawak Campus, Bintulu, Sarawak. A plot of 20 x 20 m2 was established each in site 1991 (Plot 1991), 1999 (Plot 1999) and 2008 (Plot 2008). An adjacent natural regenerating secondary forest plot (Plot NF) was also established for comparison purposes. The results showed that the contribution of tree component biomass/ carbon to total biomass/ carbon was in the order of main stem > branch > leaf. As most of the trees were concentrated in diameter size class = 10 cm for younger rehabilitated forests, the total above ground biomass/ carbon was from this class. These observations suggest that the forests are in the early successional stage. The total above ground biomass obtained for the rehabilitated forest ranged from 4.3 to 4,192.3 kg compared to natural regenerating secondary forest of 3,942.3 kg while total above ground carbon ranged from 1.9 to 1,927.9 kg and 1,820.4 kg, respectively. The mean total above ground biomass accumulated ranged from 1.3 x 10-2 to 20.5 kg/ 0.04 ha and mean total carbon storage ranged from 5.9 x 10-3 to 9.4 kg/ 0.04 ha. The total CO2 sequestrated in rehabilitated forest ranged from 6.9 to 7,069.1 kg CO2/ 0.04 ha. After 19 years, the rehabilitated forest had total above ground biomass and carbon storage comparable to the natural regeneration secondary forest. The forest rehabilitated activities have the potential

  14. Above-ground biomass investments and light interception of tropical forest trees and lianas early in succession

    Selaya, N.G.; Anten, N.P.R.; Oomen, R.J.; Matthies, M.; Werger, M.J.A.

    2007-01-01

    Background and Aims Crown structure and above-ground biomass investment was studied in relation to light interception of trees and lianas growing in a 6-month-old regenerating forest. Methods The vertical distribution of total above-ground biomass, height, diameter, stem density, leaf angles and cro

  15. Forest soil respiration rate and delta13C is regulated by recent above ground weather conditions.

    Ekblad, Alf; Boström, Björn; Holm, Anders; Comstedt, Daniel

    2005-03-01

    Soil respiration, a key component of the global carbon cycle, is a major source of uncertainty when estimating terrestrial carbon budgets at ecosystem and higher levels. Rates of soil and root respiration are assumed to be dependent on soil temperature and soil moisture yet these factors often barely explain half the seasonal variation in soil respiration. We here found that soil moisture (range 16.5-27.6% of dry weight) and soil temperature (range 8-17.5 degrees C) together explained 55% of the variance (cross-validated explained variance; Q2) in soil respiration rate (range 1.0-3.4 micromol C m(-2) s(-1)) in a Norway spruce (Picea abies) forest. We hypothesised that this was due to that the two components of soil respiration, root respiration and decomposition, are governed by different factors. We therefore applied PLS (partial least squares regression) multivariate modelling in which we, together with below ground temperature and soil moisture, used the recent above ground air temperature and air humidity (vapour pressure deficit, VPD) conditions as x-variables. We found that air temperature and VPD data collected 1-4 days before respiration measurements explained 86% of the seasonal variation in the rate of soil respiration. The addition of soil moisture and soil temperature to the PLS-models increased the Q2 to 93%. delta13C analysis of soil respiration supported the hypotheses that there was a fast flux of photosynthates to root respiration and a dependence on recent above ground weather conditions. Taken together, our results suggest that shoot activities the preceding 1-6 days influence, to a large degree, the rate of root and soil respiration. We propose this above ground influence on soil respiration to be proportionally largest in the middle of the growing season and in situations when there is large day-to-day shifts in the above ground weather conditions. During such conditions soil temperature may not exert the major control on root respiration. PMID

  16. Applications of above-ground gas stores. Demand-oriented supply; Einsatzmoeglichkeiten von Obertagespeichern. Kundenorientierte Bedarfsdeckung

    Deschkan, Peter [Wien Energie Speicher GmbH, Wien (Austria)

    2010-07-01

    From the view of municipal utilities in Austria, the applications and uses of above-ground gas stores have changed considerably during the past few years as a result of the deregulation of the natural gas markets. While it used to be normal to consider spherical or tubular natural gas reservoirs as part of the gas grid, new legal and commercial aspects have since then come to the fore and must be taken into account if these niche products of the natural gas store market are to be used successfully. (orig.)

  17. Variation in stem mortality rates determines patterns of above-ground biomass in Amazonian forests: implications for dynamic global vegetation models

    Johnson, Michelle; Galbraith, David; Gloor, Manuel; De Deaurwaerder, Hannes; Guimberteau, Mattieu; Rammig, Anja; Thonicke, Kristin; Verbeeck, Hans; von Randow, Celso; Monteagudo Mendoza, Abel; Phillips, Oliver L; Brienen, Roel; Feldpausch, Ted R.; Lopez Gonzales, Gabriela; Fauset, Sophie

    2016-01-01

    Understanding the processes that determine above-ground biomass (AGB) in Amazonian forests is important for predicting the sensitivity of these ecosystems to environmental change and for designing and evaluating dynamic global vegetation models (DGVMs). AGB is determined by inputs from woody productivity [woody net primary productivity (NPP)] and the rate at which carbon is lost through tree mortality. Here, we test whether two direct metrics of tree mortality (the absolute rate of woody biom...

  18. Frequencies of Dicentric Chromosome and Translocation in Lymphocytes from Residents in Radio-contaminated Villages near Semipalatinsk Nuclear Explosion Test Site

    Tanaka, Kimio; Iida, Shozho; Takeichi, Nobuo; Hoshi, Masaharu

    2012-01-01

    More than 400 above-ground and underground nuclear explosion tests were conducted at Semipalatinsk nuclear explosion test site (SNETS). The significant radioactive substances was released and radioactive plumes moved on villages at the time of explosion test, then residents in villages near SNETS are considered to be exposed internally and externally. In order to assess the biological effects on residents, frequencies of chromosome aberrations in peripheral blood lymphocytes were observed in ...

  19. Decades of nuclear testing

    The United States carried out the world's first nuclear test in 1945. The test marked the beginning of an arms race between the great powers that lasted for decades. Innumerable nuclear test explosions were detonated to test and refine the weapons. The arms race picked up speed in the 1950s and culminated in 1958, when the United States detonated 77 and the Soviet Union 35 nuclear explosions. This was followed by the first pause in nuclear testing, brought about through the efforts of the Pugwash organisation consisting of the world's foremost scientists. Finland, too, received its share of the radioactive fallout coming from atmospheric nuclear explosions. Rain water samples have been studied for radioactivity in Finland since the mid-1950s. The first studies to determine the internal radiation doses caused by radioactive substances in man were conducted in the late 1950s by measuring cesium and strontium contents in grass and in milk. The efficiency of research and radiation monitoring improved in the 1960s, which was also a time when training in the sector developed rapidly. In consequence, when the accident in Chernobyl took place Finland had already gained valuable experience needed for rapid determination of unexpected fallout. (orig.) (3 figs.)

  20. A first map of tropical Africa's above-ground biomass derived from satellite imagery

    Observations from the moderate resolution imaging spectroradiometer (MODIS) were used in combination with a large data set of field measurements to map woody above-ground biomass (AGB) across tropical Africa. We generated a best-quality cloud-free mosaic of MODIS satellite reflectance observations for the period 2000-2003 and used a regression tree model to predict AGB at 1 km resolution. Results based on a cross-validation approach show that the model explained 82% of the variance in AGB, with a root mean square error of 50.5 Mg ha-1 for a range of biomass between 0 and 454 Mg ha-1. Analysis of lidar metrics from the Geoscience Laser Altimetry System (GLAS), which are sensitive to vegetation structure, indicate that the model successfully captured the regional distribution of AGB. The results showed a strong positive correlation (R2 = 0.90) between the GLAS height metrics and predicted AGB.

  1. Nuclear test ban verification

    This report describes verification and its rationale, the basic tasks of seismic verification, the physical basis for earthquake/explosion source discrimination and explosion yield determination, the technical problems pertaining to seismic monitoring of underground nuclear tests, the basic problem-solving strategy deployed by the forensic seismology resarch team at the University of Toronto, and the scientific significance of the team's research. The research carried out at the Univeristy of Toronto has two components: teleseismic verification using P wave recordings from the Yellowknife Seismic Array (YKA), and regional (close-in) verification using high-frequency Lg and Pn recordings from the Eastern Canada Telemetered Network. Major differences have been found in P was attenuation among the propagation paths connecting the YKA listening post with seven active nuclear explosion testing areas in the world. Significant revisions have been made to previously published P wave attenuation results, leading to more interpretable nuclear explosion source functions. (11 refs., 12 figs.)

  2. Radioactive contamination of Semipalatinsk test site territory due to atmospheric nuclear test

    It was found that the local fallout of radioactive plumes after above-ground and air tests was the major factor constructing to the radiation situation at the STS territory. Study results confirm the presence of local contaminated areas within STS territory, so called radioactive spots, which alternate with relatively clean area. The radionuclide contamination of areas surrounding epicenters of above-ground explosions have been studied in detail. (author)

  3. Above ground standing biomass and carbon storage in village bamboos in North East India

    Jyoti Nath, Arun; Das, Ashesh Kumar [Department of Ecology and Environmental Science, Assam University, Silchar 788011, Assam (India); Das, Gitasree [Department of Statistics, North Eastern Hill University, Shillong 793022, Meghalaya (India)

    2009-09-15

    Bamboo forms an important component in the traditional landscape of North East India. For biomass estimation of village bamboos of Barak Valley, North East India, allometric relationships were developed by harvest method describing leaf, branch and culm biomass with DBH as an independent variable using a log linear model. The culm density of the stand was 8950 culms ha{sup -1} during 2005 of which 67% of growing stock was represented by Bambusa cacharensis, 17.88% by Bambusa vulgaris and 15.12% by Bambusa balcooa. Above ground stand biomass was 121.51 t ha{sup -1} of which 86% was contributed by culm component followed by branch (10%) and leaf (4%). With respect to species, B. cacharensis made up to 46% of total stand biomass followed by B. vulgaris (28%) and B. balcooa (26%). Carbon storage in the above ground biomass was 61.05 t ha{sup -1}. Allocation of C was more in culm components (53.05 t ha{sup -1}) than in branch (5.81 t ha{sup -1}) and leaf (2.19 t ha{sup -1}). Carbon storage in the litter floor mass was 2.40 t ha{sup -1}, of which leaf litter made up the highest amount (1.37 t ha{sup -1}) followed by sheath (0.86 t ha{sup -1}) and branch (0.17 t ha{sup -1}). Carbon stock in the soil up to 30 cm depth was 57.3 t ha{sup -1}. Gross C stock in the plantation was estimated to be 120.75 t ha{sup -1}. Carbon storage estimated in the bamboo stand of present study offers insights into the opportunity of village bamboos in the rural landscape for carbon storage through carbon sequestration. Management and utilization of village bamboos as a potential source of carbon sink by smallholder farmers are discussed in the context of their livelihood security and the Millennium Development Goals of the United Nations. (author)

  4. A terrestrial biosphere model optimized to atmospheric CO2 concentration and above ground woody biomass

    Saito, M.; Ito, A.; Maksyutov, S. S.

    2013-12-01

    This study documents an optimization of a prognostic biosphere model (VISIT; Vegetation Integrative Similator for Trace gases) to observations of atmospheric CO2 concentration and above ground woody biomass by using a Bayesian inversion method combined with an atmospheric tracer transport model (NIES-TM; National Institute for Environmental Studies / Frontier Research Center for Global Change (NIES/FRCGC) off-line global atmospheric tracer transport model). The assimilated observations include 74 station records of surface atmospheric CO2 concentration and aggregated grid data sets of above ground woody biomass (AGB) and net primary productivity (NPP) over the globe. Both the biosphere model and the atmospheric transport model are used at a horizontal resolution of 2.5 deg x 2.5 deg grid with temporal resolutions of a day and an hour, respectively. The atmospheric transport model simulates atmospheric CO2 concentration with nine vertical levels using daily net ecosystem CO2 exchange rate (NEE) from the biosphere model, oceanic CO2 flux, and fossil fuel emission inventory. The models are driven by meteorological data from JRA-25 (Japanese 25-year ReAnalysis) and JCDAS (JMA Climate Data Assimilation System). Statistically optimum physiological parameters in the biosphere model are found by iterative minimization of the corresponding Bayesian cost function. We select thirteen physiological parameter with high sensitivity to NEE, NPP, and AGB for the minimization. Given the optimized physiological parameters, the model shows error reductions in seasonal variation of the CO2 concentrations especially in the northern hemisphere due to abundant observation stations, while errors remain at a few stations that are located in coastal coastal area and stations in the southern hemisphere. The model also produces moderate estimates of the mean magnitudes and probability distributions in AGB and NPP for each biome. However, the model fails in the simulation of the terrestrial

  5. Landsat Imagery-Based Above Ground Biomass Estimation and Change Investigation Related to Human Activities

    Chaofan Wu

    2016-02-01

    Full Text Available Forest biomass is a significant indicator for substance accumulation and forest succession, and a spatiotemporal biomass map would provide valuable information for forest management and scientific planning. In this study, Landsat imagery and field data cooperated with a random forest regression approach were used to estimate spatiotemporal Above Ground Biomass (AGB in Fuyang County, Zhejiang Province of East China. As a result, the AGB retrieval showed an increasing trend for the past decade, from 74.24 ton/ha in 2004 to 99.63 ton/ha in 2013. Topography and forest management were investigated to find their relationships with the spatial distribution change of biomass. In general, the simulated AGB increases with higher elevation, especially in the range of 80–200 m, wherein AGB acquires the highest increase rate. Moreover, the forest policy of ecological forest has a positive effect on the AGB increase, particularly within the national level ecological forest. The result in this study demonstrates that human activities have a great impact on biomass distribution and change tendency. Furthermore, Landsat image-based biomass estimates would provide illuminating information for forest policy-making and sustainable development.

  6. Water activities in Forsmark (Part II). The final disposal facility for spent fuel: water activities above ground; Vattenverksamhet i Forsmark (del II). Slutfoervarsanlaeggningen foer anvaent kaernbraensle: Vattenverksamheter ovan mark

    Werner, Kent (EmpTec (Sweden)); Hamren, Ulrika; Collinder, Per (Ekologigruppen AB (Sweden)); Ridderstolpe, Peter (WRS Uppsala AB (Sweden))

    2010-09-15

    The construction of the repository for spent nuclear fuel in Forsmark is associated with a number of measures above ground that constitute water operations according to Chapter 11 in the Swedish Environmental Code. This report, which is an appendix to the Environmental Impact Assessment, describes these water operations, their effects and consequences, and planned measures

  7. Above-ground biomass models for Seabuckthorn (Hippophae salicifolia) in Mustang District, Nepal

    Rajchal, Rajesh; Meilby, Henrik

    2013-01-01

    fresh weight of fruit and oven-dry weight of wood (stem and branches) and leaves were measured and used as a basis for developing biomass models. Diameters of the trees were measured at 30 cm above ground whereas the heights were measured in terms of the total tree height (m). Among several models...... tested, the models suggested for local use were: ln(woody biomass, oven-dry, kg) = -3.083 + 2.436 ln(diameter, cm), ln (fruit biomass, fresh, kg) = -3.237 + 1.346 ln(diameter, cm) and ln(leaf biomass, oven-dry, kg) = -4.013 + 1.403 ln(Diameter, cm) with adjusted coefficients of determination of 0.99, 0.......73 and 0.91 for wood, fruit, and leaves, respectively. The models suggested for a slightly broader range of environmental conditions were: ln (woody biomass, oven-dry, kg) = -3.277 + 0.924 ln(diameter2 × height), ln(Fruit biomass, fresh, kg) = -3.146 + 0.485 ln(diameter2 × height) and ln(leaf biomass...

  8. Facilitation and inhibition: changes in plant nitrogen and secondary metabolites mediate interactions between above-ground and below-ground herbivores

    Huang, Wei; Siemann, Evan; Yang, Xuefang; Wheeler, Gregory S.; Ding, Jianqing

    2013-01-01

    To date, it remains unclear how herbivore-induced changes in plant primary and secondary metabolites impact above-ground and below-ground herbivore interactions. Here, we report effects of above-ground (adult) and below-ground (larval) feeding by Bikasha collaris on nitrogen and secondary chemicals in shoots and roots of Triadica sebifera to explain reciprocal above-ground and below-ground insect interactions. Plants increased root tannins with below-ground herbivory, but above-ground herbivo...

  9. Modelling Growth and Partitioning of Annual Above-Ground Vegetative and Reproductive Biomass of Grapevine

    Meggio, Franco; Vendrame, Nadia; Maniero, Giovanni; Pitacco, Andrea

    2014-05-01

    In the current climate change scenarios, both agriculture and forestry inherently may act as carbon sinks and consequently can play a key role in limiting global warming. An urgent need exists to understand which land uses and land resource types have the greatest potential to mitigate greenhouse gas (GHG) emissions contributing to global change. A common believe is that agricultural fields cannot be net carbon sinks due to many technical inputs and repeated disturbances of upper soil layers that all contribute to a substantial loss both of the old and newly-synthesized organic matter. Perennial tree crops (vineyards and orchards), however, can behave differently: they grow a permanent woody structure, stand undisturbed in the same field for decades, originate a woody pruning debris, and are often grass-covered. In this context, reliable methods for quantifying and modelling emissions and carbon sequestration are required. Carbon stock changes are calculated by multiplying the difference in oven dry weight of biomass increments and losses with the appropriate carbon fraction. These data are relatively scant, and more information is needed on vineyard management practices and how they impact vineyard C sequestration and GHG emissions in order to generate an accurate vineyard GHG footprint. During the last decades, research efforts have been made for estimating the vineyard carbon budget and its allocation pattern since it is crucial to better understand how grapevines control the distribution of acquired resources in response to variation in environmental growth conditions and agronomic practices. The objective of the present study was to model and compare the dynamics of current year's above-ground biomass among four grapevine varieties. Trials were carried out over three growing seasons in field conditions. The non-linear extra-sums-of-squares method demonstrated to be a feasible way of growth models comparison to statistically assess significant differences among

  10. Detection of large above ground biomass variability in lowland forest ecosystems by airborne LiDAR

    J. Jubanski

    2012-08-01

    Full Text Available Quantification of tropical forest Above Ground Biomass (AGB over large areas as input for Reduced Emissions from Deforestation and forest Degradation (REDD+ projects and climate change models is challenging. This is the first study which attempts to estimate AGB and its variability across large areas of tropical lowland forests in Central Kalimantan (Indonesia through correlating airborne Light Detection and Ranging (LiDAR to forest inventory data. Two LiDAR height metrics were analysed and regression models could be improved through the use of LiDAR point densities as input (R2 = 0.88; n = 52. Surveying with a LiDAR point density per square meter of 2–4 resulted in the best cost-benefit ratio. We estimated AGB for 600 km of LiDAR tracks and showed that there exists a considerable variability of up to 140% within the same forest type due to varying environmental conditions. Impact from logging operations and the associated AGB losses dating back more than 10 yr could be assessed by LiDAR but not by multispectral satellite imagery. Comparison with a Landsat classification for a 1 million ha study area where AGB values were based on site specific field inventory data, regional literature estimates, and default values by the Intergovernmental Panel on Climate Change (IPCC showed an overestimation of 46%, 102%, and 137%, respectively. The results show that AGB overestimation may lead to wrong GHG emission estimates due to deforestation in climate models. For REDD+ projects this leads to inaccurate carbon stock estimates and consequently to significantly wrong REDD+ based compensation payments.

  11. Investigating Appropriate Sampling Design for Estimating Above-Ground Biomass in Bruneian Lowland Mixed Dipterocarp Forest

    Lee, S.; Lee, D.; Abu Salim, K.; Yun, H. M.; Han, S.; Lee, W. K.; Davies, S. J.; Son, Y.

    2014-12-01

    Mixed tropical forest structure is highly heterogeneous unlike plantation or mixed temperate forest structure, and therefore, different sampling approaches are required. However, the appropriate sampling design for estimating the above-ground biomass (AGB) in Bruneian lowland mixed dipterocarp forest (MDF) has not yet been fully clarified. The aim of this study was to provide supportive information in sampling design for Bruneian forest carbon inventory. The study site was located at Kuala Belalong lowland MDF, which is part of the Ulu Tembulong National Park, Brunei Darussalam. Six 60 m × 60 m quadrats were established, separated by a distance of approximately 100 m and each was subdivided into quadrats of 10 m × 10 m, at an elevation between 200 and 300 m above sea level. At each plot all free-standing trees with diameter at breast height (dbh) ≥ 1 cm were measured. The AGB for all trees with dbh ≥ 10 cm was estimated by allometric models. In order to analyze changes in the diameter-dependent parameters used for estimating the AGB, different quadrat areas, ranging from 10 m × 10 m to 60 m × 60 m, were used across the study area, starting at the South-West end and moving towards the North-East end. The derived result was as follows: (a) Big trees (dbh ≥ 70 cm) with sparse distribution have remarkable contribution to the total AGB in Bruneian lowland MDF, and therefore, special consideration is required when estimating the AGB of big trees. Stem number of trees with dbh ≥ 70 cm comprised only 2.7% of all trees with dbh ≥ 10 cm, but 38.5% of the total AGB. (b) For estimating the AGB of big trees at the given acceptable limit of precision (p), it is more efficient to use large quadrats than to use small quadrats, because the total sampling area decreases with the former. Our result showed that 239 20 m × 20 m quadrats (9.6 ha in total) were required, while 15 60 m × 60 m quadrats (5.4 ha in total) were required when estimating the AGB of the trees

  12. Effect of nitrogen addition and drought on above-ground biomass of expanding tall grasses Calamagrostis epigejos and Arrhenatherum elatius

    Fiala, Karel; Tůma, Ivan; Holub, Petr

    2011-01-01

    Roč. 66, č. 2 (2011), s. 275-281. ISSN 0006-3088 R&D Projects: GA ČR(CZ) GA526/06/0556 Institutional research plan: CEZ:AV0Z60050516 Keywords : nitrogen * drought * above-ground biomass Subject RIV: EF - Botanics Impact factor: 0.557, year: 2011

  13. Examining the potential of Sentinel-2 MSI spectral resolution in quantifying above ground biomass across different fertilizer treatments

    Sibanda, Mbulisi; Mutanga, Onisimo; Rouget, Mathieu

    2015-12-01

    The major constraint in understanding grass above ground biomass variations using remotely sensed data are the expenses associated with the data, as well as the limited number of techniques that can be applied to different management practices with minimal errors. New generation multispectral sensors such as Sentinel 2 Multispectral Imager (MSI) are promising for effective rangeland management due to their unique spectral bands and higher signal to noise ratio. This study resampled hyperspectral data to spectral resolutions of the newly launched Sentinel 2 MSI and the recently launched Landsat 8 OLI for comparison purposes. Using Sparse partial least squares regression, the resampled data was applied in estimating above ground biomass of grasses treated with different fertilizer combinations of ammonium sulfate, ammonium nitrate, phosphorus and lime as well as unfertilized experimental plots. Sentinel 2 MSI derived models satisfactorily performed (R2 = 0.81, RMSEP = 1.07 kg/m2, RMSEP_rel = 14.97) in estimating grass above ground biomass across different fertilizer treatments relative to Landsat 8 OLI (Landsat 8 OLI: R2 = 0.76, RMSEP = 1.15 kg/m2, RMSEP_rel = 16.04). In comparison, hyperspectral data derived models exhibited better grass above ground biomass estimation across complex fertilizer combinations (R2 = 0.92, RMSEP = 0.69 kg/m2, RMSEP_rel = 9.61). Although Sentinel 2 MSI bands and indices better predicted above ground biomass compared with Landsat 8 OLI bands and indices, there were no significant differences (α = 0.05) in the errors of prediction between the two new generational sensors across all fertilizer treatments. The findings of this study portrays Sentinel 2 MSI and Landsat 8 OLI as promising remotely sensed datasets for regional scale biomass estimation, particularly in resource scarce areas.

  14. The effect of cassava-based bioethanol production on above-ground carbon stocks: A case study from Southern Mali

    Increasing energy use and the need to mitigate climate change make production of liquid biofuels a high priority. Farmers respond worldwide to this increasing demand by converting forests and grassland into biofuel crops, but whether biofuels offer carbon savings depends on the carbon emissions that occur when land use is changed to biofuel crops. This paper reports the results of a study on cassava-based bioethanol production undertaken in the Sikasso region in Southern Mali. The paper outlines the estimated impacts on above-ground carbon stocks when land use is changed to increase cassava production. The results show that expansion of cassava production for bioethanol will most likely lead to the conversion of fallow areas to cassava. A land use change from fallow to cassava creates a reduction in the above-ground carbon stocks in the order of 4–13 Mg C ha−1, depending on (a) the age of the fallow, (b) the allometric equation used and (c) whether all trees are removed or the larger, useful trees are preserved. This ‘carbon debt’ associated with the above-ground biomass loss would take 8–25 years to repay if fossil fuels are replaced with cassava-based bioethanol. - Highlights: ► Demands for biofuels make production of cassava-based bioethanol a priority. ► Farmers in Southern Mali are likely to convert fallow areas to cassava production. ► Converting fallow to cassava creates reductions in above-ground carbon stocks. ► Estimates of carbon stock reductions include that farmers preserve useful trees. ► The carbon debt associated with above-ground biomass loss takes 8–25 years to repay.

  15. Sensitivity of Above-Ground Biomass Estimates to Height-Diameter Modelling in Mixed-Species West African Woodlands.

    Valbuena, Rubén; Heiskanen, Janne; Aynekulu, Ermias; Pitkänen, Sari; Packalen, Petteri

    2016-01-01

    It has been suggested that above-ground biomass (AGB) inventories should include tree height (H), in addition to diameter (D). As H is a difficult variable to measure, H-D models are commonly used to predict H. We tested a number of approaches for H-D modelling, including additive terms which increased the complexity of the model, and observed how differences in tree-level predictions of H propagated to plot-level AGB estimations. We were especially interested in detecting whether the choice of method can lead to bias. The compared approaches listed in the order of increasing complexity were: (B0) AGB estimations from D-only; (B1) involving also H obtained from a fixed-effects H-D model; (B2) involving also species; (B3) including also between-plot variability as random effects; and (B4) involving multilevel nested random effects for grouping plots in clusters. In light of the results, the modelling approach affected the AGB estimation significantly in some cases, although differences were negligible for some of the alternatives. The most important differences were found between including H or not in the AGB estimation. We observed that AGB predictions without H information were very sensitive to the environmental stress parameter (E), which can induce a critical bias. Regarding the H-D modelling, the most relevant effect was found when species was included as an additive term. We presented a two-step methodology, which succeeded in identifying the species for which the general H-D relation was relevant to modify. Based on the results, our final choice was the single-level mixed-effects model (B3), which accounts for the species but also for the plot random effects reflecting site-specific factors such as soil properties and degree of disturbance. PMID:27367857

  16. Structure and distribution of glandular and non-glandular trichomes on above-ground organs in Inula helenium L. (Asteraceae

    Aneta Sulborska

    2014-01-01

    Full Text Available Micromorphology and distribution of glandular and non-glandular trichomes on the above-ground organs of Inula helenium L. were investigated using light and scanning electron microscopy (SEM. Two types of biseriate glandular trichomes, i.e. sessile and stalk hairs, and non-glandular trichomes were recorded. Sessile glandular trichomes were found on all examined I. helenium organs (with their highest density on the abaxial surface of leaves and disk florets, and on stems, whereas stalk glandular trichomes were found on leaves and stems. Sessile trichomes were characterised by a slightly lower height (58–103 μm and width (32–35 μm than the stalk trichomes (62–111 μm x 31–36 μm. Glandular hairs were composed of 5–7 (sessile trichomes or 6–9 (stalk trichomes cell tiers. Apical trichome cell tiers exhibited features of secretory cells. Secretion was accumulated in subcuticular space, which expanded and ruptured at the top, and released its content. Histochemical assays showed the presence of lipids and polyphenols, whereas no starch was detected. Non-glandular trichomes were seen on involucral bracts, leaves and stems (more frequently on involucral bracts. Their structure comprised 2–9 cells; basal cells (1–6 were smaller and linearly arranged, while apical cells had a prozenchymatous shape. The apical cell was the longest and sharply pointed. Applied histochemical tests revealed orange-red (presence of lipids and brow colour (presence of polyphenols in the apical cells of the trichomes. This may suggest that beside their protective role, the trichomes may participate in secretion of secondary metabolites.

  17. Influence of landscape heterogeneity on spatial patterns of wood productivity, wood specific density and above ground biomass in Amazonia

    Anderson, L. O.; Malhi, Y.; Ladle, R. J.; Aragão, L. E. O. C.; Shimabukuro, Y.; Phillips, O. L.; Baker, T.; Costa, A. C. L.; Espejo, J. S.; Higuchi, N.; Laurance, W. F.; López-González, G.; Monteagudo, A.; Núñez-Vargas, P.; Peacock, J.; Quesada, C. A.; Almeida, S.

    2009-09-01

    Long-term studies using the RAINFOR network of forest plots have generated significant insights into the spatial and temporal dynamics of forest carbon cycling in Amazonia. In this work, we map and explore the landscape context of several major RAINFOR plot clusters using Landsat ETM+ satellite data. In particular, we explore how representative the plots are of their landscape context, and test whether bias in plot location within landscapes may be influencing the regional mean values obtained for important forest biophysical parameters. Specifically, we evaluate whether the regional variations in wood productivity, wood specific density and above ground biomass derived from the RAINFOR network could be driven by systematic and unintentional biases in plot location. Remote sensing data covering 45 field plots were aggregated to generate landscape maps to identify the specific physiognomy of the plots. In the Landsat ETM+ data, it was possible to spectrally differentiate three types of terra firme forest, three types of forests over Paleovarzea geomorphologycal formation, two types of bamboo-dominated forest, palm forest, Heliconia monodominant vegetation, swamp forest, disturbed forests and land use areas. Overall, the plots were generally representative of the forest physiognomies in the landscape in which they are located. Furthermore, the analysis supports the observed regional trends in those important forest parameters. This study demonstrates the utility of landscape scale analysis of forest physiognomies for validating and supporting the finds of plot based studies. Moreover, the more precise geolocation of many key RAINFOR plot clusters achieved during this research provides important contextual information for studies employing the RAINFOR database.

  18. Influence of landscape heterogeneity on spatial patterns of wood productivity, wood specific density and above ground biomass in Amazonia

    L. O. Anderson

    2009-09-01

    Full Text Available Long-term studies using the RAINFOR network of forest plots have generated significant insights into the spatial and temporal dynamics of forest carbon cycling in Amazonia. In this work, we map and explore the landscape context of several major RAINFOR plot clusters using Landsat ETM+ satellite data. In particular, we explore how representative the plots are of their landscape context, and test whether bias in plot location within landscapes may be influencing the regional mean values obtained for important forest biophysical parameters. Specifically, we evaluate whether the regional variations in wood productivity, wood specific density and above ground biomass derived from the RAINFOR network could be driven by systematic and unintentional biases in plot location. Remote sensing data covering 45 field plots were aggregated to generate landscape maps to identify the specific physiognomy of the plots. In the Landsat ETM+ data, it was possible to spectrally differentiate three types of terra firme forest, three types of forests over Paleovarzea geomorphologycal formation, two types of bamboo-dominated forest, palm forest, Heliconia monodominant vegetation, swamp forest, disturbed forests and land use areas. Overall, the plots were generally representative of the forest physiognomies in the landscape in which they are located. Furthermore, the analysis supports the observed regional trends in those important forest parameters. This study demonstrates the utility of landscape scale analysis of forest physiognomies for validating and supporting the finds of plot based studies. Moreover, the more precise geolocation of many key RAINFOR plot clusters achieved during this research provides important contextual information for studies employing the RAINFOR database.

  19. Influence of landscape heterogeneity on spatial patterns of wood productivity, wood specific density and above ground biomass in Amazonia

    L. O. Anderson

    2009-02-01

    Full Text Available Long-term studies using the RAINFOR network of forest plots have generated significant insights into the spatial and temporal dynamics of forest carbon cycling in Amazonia. In this work, we map and explore the landscape context of several major RAINFOR plot clusters using Landsat ETM+ satellite data. In particular, we explore how representative the plots are of their landscape context, and test whether bias in plot location within landscapes may be influencing the regional mean values obtained for important forest biophysical parameters. Specifically, we evaluate whether the regional variations in wood productivity, wood specific density and above ground biomass derived from the RAINFOR network could be driven by systematic and unintentional biases in plot location. Remote sensing data covering 45 field plots were aggregated to generate landscape maps to identify the specific physiognomy of the plots. In the Landsat ETM+ data, it was possible to spectrally differentiate three types of terra firme forest, three types of alluvial terrain forest, two types of bamboo-dominated forest, palm forest, Heliconia monodominant vegetation, swamp forest, disturbed forests and land use areas. Overall, the plots were generally representative of the forest physiognomies in the landscape in which they are located. Furthermore, the analysis supports the observed regional trends in those important forest parameters. This study demonstrates the utility of landscape scale analysis of forest physiognomies for validating and supporting the finds of plot based studies. Moreover, the more precise geolocation of many key RAINFOR plot clusters achieved during this research provides important contextual information for studies employing the RAINFOR database.

  20. A comparison of two above-ground biomass estimation techniques integrating satellite-based remotely sensed data and ground data for tropical and semiarid forests in Puerto Rico

    Iiames, J. S.; Riegel, J.; Lunetta, R.

    2013-12-01

    Two above-ground forest biomass estimation techniques were evaluated for the United States Territory of Puerto Rico using predictor variables acquired from satellite based remotely sensed data and ground data from the U.S. Department of Agriculture Forest Inventory Analysis (FIA) program. The U.S. Environmental Protection Agency (EPA) estimated above-ground forest biomass implementing methodology first posited by the Woods Hole Research Center developed for conterminous United States (National Biomass and Carbon Dataset [NBCD2000]). For EPA's effort, spatial predictor layers for above-ground biomass estimation included derived products from the U.S. Geologic Survey (USGS) National Land Cover Dataset 2001 (NLCD) (landcover and canopy density), the USGS Gap Analysis Program (forest type classification), the USGS National Elevation Dataset, and the NASA Shuttle Radar Topography Mission (tree heights). In contrast, the U.S. Forest Service (USFS) biomass product integrated FIA ground-based data with a suite of geospatial predictor variables including: (1) the Moderate Resolution Imaging Spectrometer (MODIS)-derived image composites and percent tree cover; (2) NLCD land cover proportions; (3) topographic variables; (4) monthly and annual climate parameters; and (5) other ancillary variables. Correlations between both data sets were made at variable watershed scales to test level of agreement. Notice: This work is done in support of EPA's Sustainable Healthy Communities Research Program. The U.S EPA funded and conducted the research described in this paper. Although this work was reviewed by the EPA and has been approved for publication, it may not necessarily reflect official Agency policy. Mention of any trade names or commercial products does not constitute endorsement or recommendation for use.

  1. Above ground biomass estimation from lidar and hyperspectral airbone data in West African moist forests.

    Vaglio Laurin, Gaia; Chen, Qi; Lindsell, Jeremy; Coomes, David; Cazzolla-Gatti, Roberto; Grieco, Elisa; Valentini, Riccardo

    2013-04-01

    The development of sound methods for the estimation of forest parameters such as Above Ground Biomass (AGB) and the need of data for different world regions and ecosystems, are widely recognized issues due to their relevance for both carbon cycle modeling and conservation and policy initiatives, such as the UN REDD+ program (Gibbs et al., 2007). The moist forests of the Upper Guinean Belt are poorly studied ecosystems (Vaglio Laurin et al. 2013) but their role is important due to the drier condition expected along the West African coasts according to future climate change scenarios (Gonzales, 2001). Remote sensing has proven to be an effective tool for AGB retrieval when coupled with field data. Lidar, with its ability to penetrate the canopy provides 3D information and best results. Nevertheless very limited research has been conducted in Africa tropical forests with lidar and none to our knowledge in West Africa. Hyperspectral sensors also offer promising data, being able to evidence very fine radiometric differences in vegetation reflectance. Their usefulness in estimating forest parameters is still under evaluation with contrasting findings (Andersen et al. 2008, Latifi et al. 2012), and additional studies are especially relevant in view of forthcoming satellite hyperspectral missions. In the framework of the EU ERC Africa GHG grant #247349, an airborne campaign collecting lidar and hyperspectral data has been conducted in March 2012 over forests reserves in Sierra Leone and Ghana, characterized by different logging histories and rainfall patterns, and including Gola Rainforest National Park, Ankasa National Park, Bia and Boin Forest Reserves. An Optech Gemini sensor collected the lidar dataset, while an AISA Eagle sensor collected hyperspectral data over 244 VIS-NIR bands. The lidar dataset, with a point density >10 ppm was processed using the TIFFS software (Toolbox for LiDAR Data Filtering and Forest Studies)(Chen 2007). The hyperspectral dataset, geo

  2. Estimation of above ground biomass by using multispectral data for Evergreen Forest in Phu Hin Rong Kla National Park, Thailand

    Tropical forest is the most important and largest source for stocking CO2 from the atmosphere which might be one of the main sources of carbon emission, global warming and climate change in recent decades. There are two main objectives of this study. The first one is to establish a relationship between above ground biomass and vegetation indices and the other is to evaluate above ground biomass and carbon sequestration for evergreen forest areas in Phu Hin Rong Kla National park, Thailand. Random sampling design based was applied for calculating the above ground biomass at stand level in the selected area by using Brown and Tsutsumi allometric equations. Landsat 7 ETM+ data in February 2009 was used. Support Vector Machine (SVM) was applied for identifying evergreen forest area. Forty-three of vegetation indices and image transformations were used for finding the best correlation with forest stand biomass. Regression analysis was used to investigate the relationship between the biomass volume at stand level and digital data from the satellite image. TM51 which derived from Tsutsumi allometric equation was the highest correlation with stand biomass. Normalized Difference Vegetation Index (NDVI) was not the best correlation in this study. The best biomass estimation model was from TM51 and ND71 (R2 =0.658). The totals of above ground biomass and carbon sequestration were 112,062,010 ton and 56,031,005 ton respectively. The application of this study would be quite useful for understanding the terrestrial carbon dynamics and global climate change. (author)

  3. Forest Structure, Composition and Above Ground Biomass of Tree Community in Tropical Dry Forests of Eastern Ghats, India

    Sudam Charan SAHU

    2016-03-01

    Full Text Available The study of biomass, structure and composition of tropical forests implies also the investigation of forest productivity, protection of biodiversity and removal of CO2 from the atmosphere via C-stocks. The hereby study aimed at understanding the forest structure, composition and above ground biomass (AGB of tropical dry deciduous forests of Eastern Ghats, India, where as a total of 128 sample plots (20 x 20 meters were laid. The study showed the presence of 71 tree species belonging to 57 genera and 30 families. Dominant tree species was Shorea robusta with an importance value index (IVI of 40.72, while Combretaceae had the highest family importance value (FIV of 39.01. Mean stand density was 479 trees ha-1 and a basal area of 15.20 m2 ha-1. Shannon’s diversity index was 2.01 ± 0.22 and Simpson’s index was 0.85 ± 0.03. About 54% individuals were in the size between 10 and 20 cm DBH, indicating growing forests. Mean above ground biomass value was 98.87 ± 68.8 Mg ha-1. Some of the dominant species that contributed to above ground biomass were Shorea robusta (17.2%, Madhuca indica (7.9%, Mangifera indica (6.9%, Terminalia alata (6.9% and Diospyros melanoxylon (4.4%, warranting extra efforts for their conservation. The results suggested that C-stocks of tropical dry forests can be enhanced by in-situ conserving the high C-density species and also by selecting these species for afforestation and stand improvement programs. Correlations were computed to understand the relationship between above ground biomass, diversity indices, density and basal area, which may be helpful for implementation of REDD+ (reduce emissions from deforestation and forest degradation, and foster conservation, sustainable management of forests and enhancement of forest carbon stocks scheme.

  4. Forest Structure, Composition and Above Ground Biomass of Tree Community in Tropical Dry Forests of Eastern Ghats, India

    Sudam Charan SAHU; Ravindranath, N.H.; Suresh, H. S.

    2016-01-01

    The study of biomass, structure and composition of tropical forests implies also the investigation of forest productivity, protection of biodiversity and removal of CO2 from the atmosphere via C-stocks. The hereby study aimed at understanding the forest structure, composition and above ground biomass (AGB) of tropical dry deciduous forests of Eastern Ghats, India, where as a total of 128 sample plots (20 x 20 meters) were laid. The study showed the presence of 71 tree species belonging to 57 ...

  5. The nuclear dissuasion without tests

    Since the signature of the french treaty against the nuclear tests (Tice) in 1995, the french engineers must used the simulation to warrant the performance and the safety of weapons. This paper recalls the historical aspects of the french nuclear tests and presents the technological and scientific resources to simulate a nuclear weapon operating. a special interest is given to the computer TERA. (A.L.B.)

  6. A comprehensive nuclear test ban

    The conclusion of a comprehensive nuclear test ban is of critical importance for the future of arms limitation and disarmament. As the 1980 report of the Secretary-General concluded, a comprehensive nuclear test ban is regarded as the first and most urgent step towards the cessation of the nuclear arms race and, in particular, of its qualitative aspects. It could serve as an important measure for the non-proliferation of nuclear weapons, both vertical and horizontal. It would have a major arms limitation impact in that it would make it difficult, if not impossible, to develop new designs of nuclear weapons and would also place constraints on the modification of existing weapon designs. The permanent cessation of all nuclear-weapon tests has long been sought by the world community and its achievement would be an event of great international significance

  7. Modeling the spatial distribution of above-ground carbon in Mexican coniferous forests using remote sensing and a geostatistical approach

    Galeana-Pizaña, J. Mauricio; López-Caloca, Alejandra; López-Quiroz, Penélope; Silván-Cárdenas, José Luis; Couturier, Stéphane

    2014-08-01

    Forest conservation is considered an option for mitigating the effect of greenhouse gases on global climate, hence monitoring forest carbon pools at global and local levels is important. The present study explores the capability of remote-sensing variables (vegetation indices and textures derived from SPOT-5; backscattering coefficient and interferometric coherence of ALOS PALSAR images) for modeling the spatial distribution of above-ground biomass in the Environmental Conservation Zone of Mexico City. Correlation and spatial autocorrelation coefficients were used to select significant explanatory variables in fir and pine forests. The correlation for interferometric coherence in HV polarization was negative, with correlations coefficients r = -0.83 for the fir and r = -0.75 for the pine forests. Regression-kriging showed the least root mean square error among the spatial interpolation methods used, with 37.75 tC/ha for fir forests and 29.15 tC/ha for pine forests. The results showed that a hybrid geospatial method, based on interferometric coherence data and a regression-kriging interpolator, has good potential for estimating above-ground biomass carbon.

  8. Statistical analysis of indoor radon concentrations in a reinforced concrete building with three stories above ground and one basement

    It is important to understand 222Rn concentrations in dwellings precisely for dose assessment. 222Rn concentrations were continuously measured in a reinforced-concrete house in Tokyo with three stories above ground and one basement for seven years, from October 1988 to September 1995. In the basement, temperature and humidity were also measured, which were used for analyzing the seasonal variation of the 222Rn concentration and its relationship with environmental factors. 222Rn concentrations on the 2nd and 3rd floors showed a statistically significant seasonal variation, i.e., higher in winter and lower in summer, but those on the 1st floor did not show any significant seasonal variation. The 222Rn concentration in the basement showed a reverse seasonal variation, i.e., higher in summer and lower in winter. The 222Rn concentrations on each floor showed a drastic decrease after the renewal of the dehumidifier in the basement, which suggests that the 222Rn concentration in the basement has an influence on that in the rooms above ground. A multiple regression analysis suggested that the 222Rn concentration in the basement and its seasonal variation can be expressed with statistical significance by the linear combination of temperature, humidity and atmospheric pressure. It was also revealed that the 222Rn concentration on the 1st floor can be expressed by the linear combination of the concentrations in the basement, 2nd and 3rd floors. (author)

  9. Above-ground Woody Biomass Production of Short-rotation Populus Plantations on Agricultural Land in Sweden

    Karacic, Almir; Verwijst, Theo; Weih, Martin [Swedish Univ. of Agricultural Sciences, Uppsala (Sweden). Dept. of Short Rotation Forestry

    2003-09-01

    Although poplars are widely grown in short-rotation forestry in many countries, little is known about poplar growth performance in Sweden. In this study, above-ground biomass production was estimated for several hybrid aspen and poplar clones planted at different initial density at five locations across Sweden. Biomass assessments were based on allometric relationships between total above-ground woody dry weight and the diameter at breast height. According to a common harvest practice, tree biomass was partitioned into pulpwood and biomass for energy purposes. The percentage of pulpwood was strongly determined by clone for DBH >10 cm. The mean annual increment ranged from 3.3 /ha/yr for balsam poplar in the north to 9.2 Mg/ha/yr for 9-yr-old 'Boelare' in southern Sweden. At the same age, hybrid aspen reached 7.9 Mg/ha/yr. The results suggest that poplars and hybrid aspen are superior as biomass producers compared with tree species commonly grown on agricultural land at these latitudes. The results are discussed in the light of future wood supply for pulpwood and energy purposes in Sweden.

  10. Development of Allometric Equations for Estimating Above-Ground Liana Biomass in Tropical Primary and Secondary Forests, Malaysia

    Patrick Addo-Fordjour

    2013-01-01

    Full Text Available The study developed allometric equations for estimating liana stem and total above-ground biomass in primary and secondary forests in the Penang National Park, Penang, Malaysia. Using biomass-diameter-length data of 60 liana individuals representing 15 species, allometric equations were developed for liana stem biomass and total above-ground biomass (TAGB. Three types of allometric equations were developed: models fitted to untransformed, weighted, and log-transformed (log10 data. There was a significant linear relationship between biomass and the predictors (diameter, length, and/or their combinations. The same set of models was developed for primary and secondary forests due to absence of differences in regression line slopes of the forests (ANCOVA: . The coefficients of determination values of the models were high (stem: 0.861 to 0.990; TAGB: 0.900 to 0.992. Generally, log-transformed models showed better fit (Furnival's index, FI 0.5. A comparison of the best TAGB model in this study (based on FI with previously published equations indicated that most of the equations significantly ( overestimated TAGB of lianas. However, a previous equation from Southeast Asia estimated TAGB similar to that of the current equation (. Therefore, regional or intracontinental equations should be preferred to intercontinental equations when estimating liana biomass.

  11. The Interpolation Method for Estimating the Above-Ground Biomass Using Terrestrial-Based Inventory

    I Nengah Surati Jaya

    2014-08-01

    Full Text Available This paper examined several methods for interpolating biomass on logged-over dry land forest using terrestrial-based forest inventory in Labanan, East Kalimantan and Lamandau, Kota Wringing Barat, Central Kalimantan. The plot-distances examined was 1,000−1,050 m for Labanan and 1,000−899m for Lawanda. The main objective of this study was to obtain the best interpolation method having the most accurate prediction on spatial distribution of forest biomass for dry land forest. Two main interpolation methods were examined: (1 deterministic approach using the IDW method and (2 geo-statistics approach using Kriging with spherical, circular, linear, exponential, and Gaussian models. The study results at both sites consistently showed that the IDW method was better than the Kriging method for estimating the spatial distribution of biomass. The validation results using chi-square test showed that the IDW interpolation provided accurate biomass estimation. Using the percentage of mean deviation value (MD(%, it was also recognized that the IDWs with power parameter (p of 2 provided relatively low value , i.e., only 15% for Labanan, East Kalimantan Province and 17% for Lamandau, Kota Wringing Barat Central Kalimantan Province. In general, IDW interpolation method provided better results than the Kriging, where the Kriging method provided MD(% of about 27% and 21% for Lamandau and Labanan sites, respectively.

  12. The Interpolation Method for Estimating the Above-Ground Biomass Using Terrestrial-Based Inventory

    I Nengah Surati Jaya

    2014-09-01

    Full Text Available This paper examined several methods for interpolating biomass on logged-over dry land forest using terrestrial-based forest inventory in Labanan, East Kalimantan and Lamandau, Kota Wringing Barat, Central Kalimantan.  The plot-distances examined was 1,000−1,050 m for Labanan and 1,000−899m for Lawanda.  The main objective of this study was to obtain the best interpolation method having the most accurate prediction on spatial distribution of forest biomass for dry land forest. Two main interpolation methods were examined: (1 deterministic approach using the IDW method and (2 geo-statistics approach  using Kriging with spherical, circular, linear, exponential, and Gaussian models.   The study results at both sites consistently showed that the IDW method was better than the Kriging method for estimating the spatial distribution of biomass.  The validation results using chi-square test showed that the IDW interpolation provided accurate biomass estimation.   Using the percentage of mean deviation value (MD(%, it was also recognized that the IDWs with power parameter (p of 2 provided relatively low value , i.e., only 15% for Labanan, East Kalimantan Province and 17% for Lamandau, Kota Wringing Barat Central Kalimantan Province. In general, IDW interpolation method provided better results than the Kriging, where the Kriging method provided MD(% of about 27% and 21% for Lamandau and Labanan sites, respectively.Keywords:  deterministic, geostatistics, IDW, Kriging, above-groung biomass

  13. Nuclear Test-Experimental Science

    Fiscal year 1988 has been a significant, rewarding, and exciting period for Lawrence Livermore National Laboratory's nuclear testing program. It was significant in that the Laboratory's new director chose to focus strongly on the program's activities and to commit to a revitalized emphasis on testing and the experimental science that underlies it. It was rewarding in that revolutionary new measurement techniques were fielded on recent important and highly complicated underground nuclear tests with truly incredible results. And it was exciting in that the sophisticated and fundamental problems of weapons science that are now being addressed experimentally are yielding new challenges and understanding in ways that stimulate and reward the brightest and best of scientists. During FY88 the program was reorganized to emphasize our commitment to experimental science. The name of the program was changed to reflect this commitment, becoming the Nuclear Test-Experimental Science (NTES) Program

  14. Long-term changes in above ground biomass after disturbance in a neotropical dry forest, Hellshire Hills, Jamaica

    Niño, Milena; McLaren, Kurt P.; Meilby, Henrik;

    2014-01-01

    We used data from experimental plots (control, partially cut and clear-cut) established in 1998, in a tropical dry forest (TDF) in Jamaica, to assess changes in above ground biomass (AGB) 10 years after disturbance. The treatments reduced AGB significantly in 1999 (partially cut: 37.6 %, clear-cu.......4 years for the clear-cut plots to recover pre-treatment AGB; this is significantly longer than AGB recovery time for some successional rainforests on abandoned pastures/farmland. Consequently, this TDF may not be as resilient as tropical rainforests.......-cut: 94.4 %) and after 10 years, AGB did not recover overall, nor did it recover in the clear-cut plots. Partially cut plots, however, recovered the lost AGB in 10 years via growth of uncut trees, which contributed significantly to biomass recovery, with only minor contributions from recruited trees and...

  15. A first map of tropical Africa's above-ground biomass derived from satellite imagery

    Baccini, A; Laporte, N; Goetz, S J; Sun, M [Woods Hole Research Center, 149 Woods Hole Road, Falmouth, MA 02540 (United States); Dong, H [Atmospheric Sciences Division, Brookhaven National Laboratory, Upton, NY 11973 (United States)], E-mail: abaccini@whrc.org

    2008-10-15

    Observations from the moderate resolution imaging spectroradiometer (MODIS) were used in combination with a large data set of field measurements to map woody above-ground biomass (AGB) across tropical Africa. We generated a best-quality cloud-free mosaic of MODIS satellite reflectance observations for the period 2000-2003 and used a regression tree model to predict AGB at 1 km resolution. Results based on a cross-validation approach show that the model explained 82% of the variance in AGB, with a root mean square error of 50.5 Mg ha{sup -1} for a range of biomass between 0 and 454 Mg ha{sup -1}. Analysis of lidar metrics from the Geoscience Laser Altimetry System (GLAS), which are sensitive to vegetation structure, indicate that the model successfully captured the regional distribution of AGB. The results showed a strong positive correlation (R{sup 2} = 0.90) between the GLAS height metrics and predicted AGB.

  16. Tree Species Composition, Diversity and Above Ground Biomass of Two Forest Types at Redang Island, Peninsula Malaysia

    Mahmud KHAIRIL

    2013-02-01

    Full Text Available A study was conducted to determine the tree species composition, diversity and above ground biomass at Redang Island, Terengganu. Two plots of 0.1 ha were established at the inland forest and coastal forest of the island. As the result, a total of 387 trees ≥ 5 diameters at breast height (DBH were recorded. The coastal forest recorded 167 individuals representing 48 species from 37 genera and 26 families while the inland forest had 220 individuals representing 50 species from 43 genera and 25 families. Shorea glauca (Dipterocarpaceae was the most important species at the coastal forest with a Species Importance Value Index (SIVi of 10.5 % while Dipterocarpus costulatus (Dipterocarpaceae was the most important species at the inland forest with 13.8 %. Dipterocarpaceae was the most important family in both forest plots with FIVi at 20.4 % in the coastal and 21.5 % in the inland forest. The Shannon-Weiner Diversity Index (H’ was considered high in both forest plots with 3.4 (H’max = 3.9 at the coastal forest and 3.5 (H’max = 4.0 at the inland forest. Sorenson’s Community Similarity Coefficient (CCs showed that tree species communities between the two forest plots had moderate similarity with CC = 0.5. The Shannon Evenness Index (J’ in the two forest plots was 0.89. The total above ground biomass at the coastal forest was 491 t/ha and at the inland forest it was 408 t/ha. From all the species recorded in this study, 11 species were listed as threatened species by IUCN Red Data Book, of which four were listed as endangered and critically endangered, six were listed as lower risk and one species was listed as vulnerable.

  17. Predictive modeling of hazardous waste landfill total above-ground biomass using passive optical and LIDAR remotely sensed data

    Hadley, Brian Christopher

    This dissertation assessed remotely sensed data and geospatial modeling technique(s) to map the spatial distribution of total above-ground biomass present on the surface of the Savannah River National Laboratory's (SRNL) Mixed Waste Management Facility (MWMF) hazardous waste landfill. Ordinary least squares (OLS) regression, regression kriging, and tree-structured regression were employed to model the empirical relationship between in-situ measured Bahia (Paspalum notatum Flugge) and Centipede [Eremochloa ophiuroides (Munro) Hack.] grass biomass against an assortment of explanatory variables extracted from fine spatial resolution passive optical and LIDAR remotely sensed data. Explanatory variables included: (1) discrete channels of visible, near-infrared (NIR), and short-wave infrared (SWIR) reflectance, (2) spectral vegetation indices (SVI), (3) spectral mixture analysis (SMA) modeled fractions, (4) narrow-band derivative-based vegetation indices, and (5) LIDAR derived topographic variables (i.e. elevation, slope, and aspect). Results showed that a linear combination of the first- (1DZ_DGVI), second- (2DZ_DGVI), and third-derivative of green vegetation indices (3DZ_DGVI) calculated from hyperspectral data recorded over the 400--960 nm wavelengths of the electromagnetic spectrum explained the largest percentage of statistical variation (R2 = 0.5184) in the total above-ground biomass measurements. In general, the topographic variables did not correlate well with the MWMF biomass data, accounting for less than five percent of the statistical variation. It was concluded that tree-structured regression represented the optimum geospatial modeling technique due to a combination of model performance and efficiency/flexibility factors.

  18. Introduction to nuclear test engineering

    The basic information in this report is from a vu-graph presentation prepared to acquaint new or prospective employees with the Nuclear Test Engineering Division (NTED). Additional information has been added here to enhance a reader's understanding when reviewing the material after hearing the presentation, or in lieu of attending a presentation

  19. The effects of nuclear tests

    The United States, the Sovjet Union, Britain, France and China have so far completed slightly over 2,000 nuclear tests. At first, the tests were mainly conducted in the atmosphere. The number of atmospheric tests done is slightly over 500. Explosions detonated in the atmosphere were dangerous to all those participating the tests -researchers, workers and military personnel - as well as to the inhabitants living near the test sites. The first hydrogen bomb test carried out by the United States on Bikini Atoll in 1954 caused radioactive fallout that contaminated the nearby atolls and made the crew of a Japanese fishing vessel fall ill. Soldiers participating in military drills conducted in connection with the tests were also exposed to the risks of the atmospheric explosions. Only a few atmospheric tests had direct health effects, but it is still being debated whether the resulting radiation doses affected the diseases that have surfaced later. The veil of secrecy kept up by all countries with nuclear weapons has hampered any investigations into the matter for decades. Nevertheless, in the last few years, some victims of the tests have been paid damages. (orig.) (1 fig.)

  20. Tree density on a vegetated uranium mill tailings site and associated estimates of Ra-226 in above ground biomass

    The transfer of Ra-226 to the terrestrial pathway will depend on the uptake by indigenous species which colonize dry areas of inactive or abandoned uranium mill tailings sites. The density of trembling aspen and white birch, their heights and biomass values, have been determined 10 to 15 years after revegetation. In addition the percentage composition of the ground cover for herbs, shrubs and grasses is evaluated. For aspens of less than 1 m in height, the density of 0.0536 trees/m2 was considerably higher than for birches of the same height with 0.0097 trees/m2. As tree heights increase the number of trees/m2 decrease to 0.0049 and 0.0010 respectively for 3 to 4 m tall trees. Trees taller than 4 m were rarely found. The ground cover biomass (approximately 125 g/m2) consisted generally of two types; either shrubs were dominant or herbs and grasses prevailed. From Ra-226 concentrations in different above-ground biomass components and the average composition of the vegetation on one square metre, transfer values were estimated. Annual transfer by herbal biomass (leaves, herbs and grasses) ranged from 330 to 760 pCi/m2. The standing crop of woody biomass was estimated to range from 450 to 1700 pCi/m2

  1. Above-ground biomass estimation of tuberous bulrush ( Bolboschoenus planiculmis) in mudflats using remotely sensed multispectral image

    Kim, Ji Yoon; Im, Ran-Young; Do, Yuno; Kim, Gu-Yeon; Joo, Gea-Jae

    2016-03-01

    We present a multivariate regression approach for mapping the spatial distribution of above-ground biomass (AGB) of B. planiculmis using field data and coincident moderate spatial resolution satellite imagery. A total of 232 ground sample plots were used to estimate the biomass distribution in the Nakdong River estuary. Field data were overlain and correlated with digital values from an atmospherically corrected multispectral image (Landsat 8). The AGB distribution was derived using empirical models trained with field-measured AGB data. The final regression model for AGB estimation was composed using the OLI3, OLI4, and OLI7 spectral bands. The Pearson correlation between the observed and predicted biomass was significant (R = 0.84, p coefficient value: 53.4%) and revealed a negative relationship with the AGB biomass. The total distribution area of B. planiculmis was 1,922,979 m2. Based on the model estimation, the total AGB had a dry weight (DW) of approximately 298.2 tons. The distribution of high biomass stands (> 200 kg DW/900 m2) constituted approximately 23.91% of the total vegetated area. Our findings suggest the expandability of remotely sensed products to understand the distribution pattern of estuarine plant productivity at the landscape level.

  2. Mapping Above-Ground Biomass in a Tropical Forest in Cambodia Using Canopy Textures Derived from Google Earth

    Minerva Singh

    2015-04-01

    Full Text Available This study develops a modelling framework for utilizing very high-resolution (VHR aerial imagery for monitoring stocks of above-ground biomass (AGB in a tropical forest in Southeast Asia. Three different texture-based methods (grey level co-occurrence metric (GLCM, Gabor wavelets and Fourier-based textural ordination (FOTO were used in conjunction with two different machine learning (ML-based regression techniques (support vector regression (SVR and random forest (RF regression. These methods were implemented on both 50-cm resolution Digital Globe data extracted from Google Earth™ (GE and 8-cm commercially obtained VHR imagery. This study further examines the role of forest biophysical parameters, such as ground-measured canopy cover and vertical canopy height, in explaining AGB distribution. Three models were developed using: (i horizontal canopy variables (i.e., canopy cover and texture variables plus vertical canopy height; (ii horizontal variables only; and (iii texture variables only. AGB was variable across the site, ranging from 51.02 Mg/ha to 356.34 Mg/ha. GE-based AGB estimates were comparable to those derived from commercial aerial imagery. The findings demonstrate that novel use of this array of texture-based techniques with GE imagery can help promote the wider use of freely available imagery for low-cost, fine-resolution monitoring of forests parameters at the landscape scale.

  3. Nitrogen mediates above-ground effects of ozone but not below-ground effects in a rhizomatous sedge

    Jones, M.L.M., E-mail: lj@ceh.ac.u [Centre for Ecology and Hydrology (CEH), Environment Centre Wales, Deiniol Road, Bangor, LL57 2UW Wales (United Kingdom); Hodges, G. [AMEC, Earth and Environmental UK Ltd, Unit 1, Trinity Place, Thames St, Weybridge, Surrey KT13 8JB (United Kingdom); Mills, G. [Centre for Ecology and Hydrology (CEH), Environment Centre Wales, Deiniol Road, Bangor, LL57 2UW Wales (United Kingdom)

    2010-02-15

    Ozone and atmospheric nitrogen are co-occurring pollutants with adverse effects on natural grassland vegetation. Plants of the rhizomatous sedge Carex arenaria were exposed to four ozone regimes representing increasing background concentrations (background-peak): 10-30, 35-55, 60-80 and 85-105 ppb ozone at two nitrogen levels: 12 and 100 kg N ha{sup -1} yr{sup -1}. Ozone increased the number and proportion of senesced leaves, but not overall leaf number. There was a clear nitrogen x ozone interaction with high nitrogen reducing proportional senescence in each treatment and increasing the ozone dose (AOT40) at which enhanced senescence occurred. Ozone reduced total biomass due to significant effects on root biomass. There were no interactive effects on shoot:root ratio. Rhizome tissue N content was increased by both nitrogen and ozone. Results suggest that nitrogen mediates above-ground impacts of ozone but not impacts on below-ground resource translocation. This may lead to complex interactive effects between the two pollutants on natural vegetation. - Nitrogen alters threshold of ozone-induced senescence, but not below-ground resource allocation.

  4. Above Ground Leafless Woody Biomass and Nutrient Content within Different Compartments of a P. maximowicii × P. trichocarpa Poplar Clone

    Heinrich Spiecker

    2013-06-01

    Full Text Available In this study the quantification of biomass within all relevant compartments of a three-year-old poplar clone (P. maximowicii × P. trichocarpa planted on abandoned agricultural land at a density of 5000 trees ha−1 is presented. A total of 30 trees within a diameter range of 1.8 cm to 8.9 cm, at breast height (dbh at 1.3 m, were destructively sampled. In order to analyze the biomass, the complete tree, stem, as well as all branches, were divided into 1 cm diameter classes and all buds from the trees were completely removed. Total yield was calculated as 11.7 odt ha−1 year−1 (oven dry tonnes per hectare and year. Branches constituted 22.2% of total dry leafless biomass and buds 2.0%. The analyses revealed a strong correlation of the dry weight for all the three compartments with diameter at breast height. Debarked sample discs were used to obtain a ratio between wood and bark. Derived from these results, a model was developed to calculate the biomass of bark with dbh as the predictor variable. Mean bark percentage was found to be 16.8% of above ground leafless biomass. The results concur that bark percentage decreases with increasing tree diameter, providing the conclusion that larger trees contain a lower bark proportion, and thus positively influence the quality of the end product while consequently reducing the export of nutrients from site.

  5. Reflectance of blue, green, red and near infrared radiation from wetland vegetation used in a model discriminating live and dead above ground biomass

    Field measurements of canopy reflectance of wetland vegetation in the blue (450 ran), green (548 nm), red (655 nm) and NIR (805 nm) wavebands were correlated with plant biomass variables. Negative relationships, asymptotic in nature, were observed between visible wavebands, canopy reflectance and total live biomass as well as green biomass, with correlation coefficients r between −0·52 and −0·93. Curvilinear relations were observed between NIR canopy reflectance and total live biomass as well as green biomass, with r between 0·39 and 0·88. Different normalization indices (NIR blue−1, NIR red−1, VI, PI and NIRlbio) were tested and positive relations between these indices and total live biomass and green biomass were observed, with r between 0·69 and 0·96. Inverse relations of an asymptotic nature were observed between dead biomass as a percentage of total biomass and of green biomass, with r between 0·90 and 0·91. A model discriminating live and dead above-ground biomass was developed to improve correlations between canopy reflectance and biomass variables. The model nearly doubled the correlation coefficient between reflectance and green biomass for a canopy containing large amounts of interfering dead biomass, but did not change this correlation for a canopy containing small amounts of dead biomass. (author)

  6. Above-Ground Dimensions and Acclimation Explain Variation in Drought Mortality of Scots Pine Seedlings from Various Provenances

    Seidel, Hannes; Menzel, Annette

    2016-01-01

    Seedling establishment is a critical part of the life cycle, thus seedling survival might be even more important for forest persistence under recent and future climate change. Scots pine forests have been disproportionally more affected by climate change triggered forest-dieback. Nevertheless, some Scots pine provenances might prove resilient to future drought events because of the species’ large distributional range, genetic diversity, and adaptation potential. However, there is a lack of knowledge on provenance-specific survival under severe drought events and on how acclimation alters survival rates in Scots pine seedlings. We therefore conducted two drought-induced mortality experiments with potted Scots pine seedlings in a greenhouse. In the first experiment, 760 three-year-old seedlings from 12 different provenances of the south-western distribution range were subjected to the same treatment followed by the mortality experiment in 2014. In the second experiment, we addressed the question of whether acclimation to re-occurring drought stress events and to elevated temperature might decrease mortality rates. Thus, 139 four-year-old seedlings from France, Germany, and Poland were subjected to different temperature regimes (2012–2014) and drought treatments (2013–2014) before the mortality experiment in 2015. Provenances clearly differed in their hazard of drought-induced mortality, which was only partly related to the climate of their origin. Drought acclimation decreased the hazard of drought-induced mortality. Above-ground dry weight and height were the main determinants for the hazard of mortality, i.e., heavier and taller seedlings were more prone to mortality. Consequently, Scots pine seedlings exhibit a considerable provenance-specific acclimation potential against drought mortality and the selection of suitable provenances might thus facilitate seedling establishment and the persistence of Scots pine forest. PMID:27458477

  7. Risk Assessment of Genetically Engineered Maize Resistant to Diabrotica spp.: Influence on Above-Ground Arthropods in the Czech Republic.

    Svobodová, Zdeňka; Skoková Habuštová, Oxana; Hutchison, William D; Hussein, Hany M; Sehnal, František

    2015-01-01

    Transgenic maize MON88017, expressing the Cry3Bb1 toxin from Bacillus thuringiensis (Bt maize), confers resistance to corn rootworms (Diabrotica spp.) and provides tolerance to the herbicide glyphosate. However, prior to commercialization, substantial assessment of potential effects on non-target organisms within agroecosystems is required. The MON88017 event was therefore evaluated under field conditions in Southern Bohemia in 2009-2011, to detect possible impacts on the above-ground arthropod species. The study compared MON88017, its near-isogenic non-Bt hybrid DK315 (treated or not treated with the soil insecticide Dursban 10G) and two non-Bt reference hybrids (KIPOUS and PR38N86). Each hybrid was grown on five 0.5 ha plots distributed in a 14-ha field with a Latin square design. Semiquantitative ELISA was used to verify Cry3Bb1 toxin levels in the Bt maize. The species spectrum of non-target invertebrates changed during seasons and was affected by weather conditions. The thrips Frankliniella occidentalis was the most abundant species in all three successive years. The next most common species were aphids Rhopalosiphum padi and Metopolophium dirhodum. Frequently observed predators included Orius spp. and several species within the Coccinellidae. Throughout the three-year study, analysis of variance indicated some significant differences (Pinsects was similar in maize with the same genetic background, for both Bt (MON88017) and non-Bt (DK315) untreated or insecticide treated. KIPOUS and PR38N86 showed some differences in species abundance relative to the Bt maize and its near-isogenic hybrid. However, the effect of management regime on arthropod community was insignificant and accounted only for a negligible portion of the variability. PMID:26083254

  8. Above-Ground Dimensions and Acclimation Explain Variation in Drought Mortality of Scots Pine Seedlings from Various Provenances.

    Seidel, Hannes; Menzel, Annette

    2016-01-01

    Seedling establishment is a critical part of the life cycle, thus seedling survival might be even more important for forest persistence under recent and future climate change. Scots pine forests have been disproportionally more affected by climate change triggered forest-dieback. Nevertheless, some Scots pine provenances might prove resilient to future drought events because of the species' large distributional range, genetic diversity, and adaptation potential. However, there is a lack of knowledge on provenance-specific survival under severe drought events and on how acclimation alters survival rates in Scots pine seedlings. We therefore conducted two drought-induced mortality experiments with potted Scots pine seedlings in a greenhouse. In the first experiment, 760 three-year-old seedlings from 12 different provenances of the south-western distribution range were subjected to the same treatment followed by the mortality experiment in 2014. In the second experiment, we addressed the question of whether acclimation to re-occurring drought stress events and to elevated temperature might decrease mortality rates. Thus, 139 four-year-old seedlings from France, Germany, and Poland were subjected to different temperature regimes (2012-2014) and drought treatments (2013-2014) before the mortality experiment in 2015. Provenances clearly differed in their hazard of drought-induced mortality, which was only partly related to the climate of their origin. Drought acclimation decreased the hazard of drought-induced mortality. Above-ground dry weight and height were the main determinants for the hazard of mortality, i.e., heavier and taller seedlings were more prone to mortality. Consequently, Scots pine seedlings exhibit a considerable provenance-specific acclimation potential against drought mortality and the selection of suitable provenances might thus facilitate seedling establishment and the persistence of Scots pine forest. PMID:27458477

  9. Detection of large above-ground biomass variability in lowland forest ecosystems by airborne LiDAR

    J. Jubanski

    2013-06-01

    Full Text Available Quantification of tropical forest above-ground biomass (AGB over large areas as input for Reduced Emissions from Deforestation and forest Degradation (REDD+ projects and climate change models is challenging. This is the first study which attempts to estimate AGB and its variability across large areas of tropical lowland forests in Central Kalimantan (Indonesia through correlating airborne light detection and ranging (LiDAR to forest inventory data. Two LiDAR height metrics were analysed, and regression models could be improved through the use of LiDAR point densities as input (R2 = 0.88; n = 52. Surveying with a LiDAR point density per square metre of about 4 resulted in the best cost / benefit ratio. We estimated AGB for 600 km of LiDAR tracks and showed that there exists a considerable variability of up to 140% within the same forest type due to varying environmental conditions. Impact from logging operations and the associated AGB losses dating back more than 10 yr could be assessed by LiDAR but not by multispectral satellite imagery. Comparison with a Landsat classification for a 1 million ha study area where AGB values were based on site-specific field inventory data, regional literature estimates, and default values by the Intergovernmental Panel on Climate Change (IPCC showed an overestimation of 43%, 102%, and 137%, respectively. The results show that AGB overestimation may lead to wrong greenhouse gas (GHG emission estimates due to deforestation in climate models. For REDD+ projects this leads to inaccurate carbon stock estimates and consequently to significantly wrong REDD+ based compensation payments.

  10. Risk Assessment of Genetically Engineered Maize Resistant to Diabrotica spp.: Influence on Above-Ground Arthropods in the Czech Republic.

    Zdeňka Svobodová

    Full Text Available Transgenic maize MON88017, expressing the Cry3Bb1 toxin from Bacillus thuringiensis (Bt maize, confers resistance to corn rootworms (Diabrotica spp. and provides tolerance to the herbicide glyphosate. However, prior to commercialization, substantial assessment of potential effects on non-target organisms within agroecosystems is required. The MON88017 event was therefore evaluated under field conditions in Southern Bohemia in 2009-2011, to detect possible impacts on the above-ground arthropod species. The study compared MON88017, its near-isogenic non-Bt hybrid DK315 (treated or not treated with the soil insecticide Dursban 10G and two non-Bt reference hybrids (KIPOUS and PR38N86. Each hybrid was grown on five 0.5 ha plots distributed in a 14-ha field with a Latin square design. Semiquantitative ELISA was used to verify Cry3Bb1 toxin levels in the Bt maize. The species spectrum of non-target invertebrates changed during seasons and was affected by weather conditions. The thrips Frankliniella occidentalis was the most abundant species in all three successive years. The next most common species were aphids Rhopalosiphum padi and Metopolophium dirhodum. Frequently observed predators included Orius spp. and several species within the Coccinellidae. Throughout the three-year study, analysis of variance indicated some significant differences (P<0.05. Multivariate analysis showed that the abundance and diversity of plant dwelling insects was similar in maize with the same genetic background, for both Bt (MON88017 and non-Bt (DK315 untreated or insecticide treated. KIPOUS and PR38N86 showed some differences in species abundance relative to the Bt maize and its near-isogenic hybrid. However, the effect of management regime on arthropod community was insignificant and accounted only for a negligible portion of the variability.

  11. Lasting effects of climate disturbance on perennial grassland above-ground biomass production under two cutting frequencies.

    Zwicke, Marine; Alessio, Giorgio A; Thiery, Lionel; Falcimagne, Robert; Baumont, René; Rossignol, Nicolas; Soussana, Jean-François; Picon-Cochard, Catherine

    2013-11-01

    Climate extremes can ultimately reshape grassland services such as forage production and change plant functional type composition. This 3-year field research studied resistance to dehydration and recovery after rehydration of plant community and plant functional types in an upland perennial grassland subjected to climate and cutting frequency (Cut+, Cut-) disturbances by measuring green tissue percentage and above-ground biomass production (ANPP). In year 1, a climate disturbance gradient was applied by co-manipulating temperature and precipitation. Four treatments were considered: control and warming-drought climatic treatment, with or without extreme summer event. In year 2, control and warming-drought treatments were maintained without extreme. In year 3, all treatments received ambient climatic conditions. We found that the grassland community was very sensitive to dehydration during the summer extreme: aerial senescence reached 80% when cumulated climatic water balance fell to -156 mm and biomass declined by 78% at the end of summer. In autumn, canopy greenness and biomass totally recovered in control but not in the warming-drought treatment. However ANPP decreased under both climatic treatments, but the effect was stronger on Cut+ (-24%) than Cut- (-15%). This decline was not compensated by the presence of three functional types because they were negatively affected by the climatic treatments, suggesting an absence of buffering effect on grassland production. In the following 2 years, lasting effects of climate disturbance on ANPP were observable. The unexpected stressful conditions of year 3 induced a decline in grassland production in the Cut+ control treatment. The fact that this treatment cumulated higher (45%) N export over the 3 years suggests that N plays a key role in ANPP stability. As ANPP in this mesic perennial grassland did not show engineering resilience, long-term experimental manipulation is needed. Infrequent mowing appears more

  12. Importance of testing in nuclear facilities

    In nuclear facilities systems and materials important for safety and reliability are frequently tested. This paper analyzes testing during design, building and operation of nuclear facilities. Then different aspects of test quality are examined: requirements, test programming, test quality, interfaces. Mainly new facilities, pilots or prototypes are concerned

  13. Modelling above-ground carbon dynamics using multi-temporal airborne lidar: insights from a Mediterranean woodland

    Simonson, W.; Ruiz-Benito, P.; Valladares, F.; Coomes, D.

    2016-02-01

    Woodlands represent highly significant carbon sinks globally, though could lose this function under future climatic change. Effective large-scale monitoring of these woodlands has a critical role to play in mitigating for, and adapting to, climate change. Mediterranean woodlands have low carbon densities, but represent important global carbon stocks due to their extensiveness and are particularly vulnerable because the region is predicted to become much hotter and drier over the coming century. Airborne lidar is already recognized as an excellent approach for high-fidelity carbon mapping, but few studies have used multi-temporal lidar surveys to measure carbon fluxes in forests and none have worked with Mediterranean woodlands. We use a multi-temporal (5-year interval) airborne lidar data set for a region of central Spain to estimate above-ground biomass (AGB) and carbon dynamics in typical mixed broadleaved and/or coniferous Mediterranean woodlands. Field calibration of the lidar data enabled the generation of grid-based maps of AGB for 2006 and 2011, and the resulting AGB change was estimated. There was a close agreement between the lidar-based AGB growth estimate (1.22 Mg ha-1 yr-1) and those derived from two independent sources: the Spanish National Forest Inventory, and a tree-ring based analysis (1.19 and 1.13 Mg ha-1 yr-1, respectively). We parameterised a simple simulator of forest dynamics using the lidar carbon flux measurements, and used it to explore four scenarios of fire occurrence. Under undisturbed conditions (no fire) an accelerating accumulation of biomass and carbon is evident over the next 100 years with an average carbon sequestration rate of 1.95 Mg C ha-1 yr-1. This rate reduces by almost a third when fire probability is increased to 0.01 (fire return rate of 100 years), as has been predicted under climate change. Our work shows the power of multi-temporal lidar surveying to map woodland carbon fluxes and provide parameters for carbon

  14. Interactive effects of frequent burning and timber harvesting on above ground carbon biomass in temperate eucalypt forests

    Collins, Luke; Penman, Trent; Ximenes, Fabiano; Bradstock, Ross

    2015-04-01

    The sequestration of carbon has been identified as an important strategy to mitigate the effects of climate change. Fuel reduction burning and timber harvesting are two common co-occurring management practices within forests. Frequent burning and timber harvesting may alter forest carbon pools through the removal and redistribution of biomass and demographic and structural changes to tree communities. Synergistic and antagonistic interactions between frequent burning and harvesting are likely to occur, adding further complexity to the management of forest carbon stocks. Research aimed at understanding the interactive effects of frequent fire and timber harvesting on carbon biomass is lacking. This study utilised data from two long term (25 - 30 years) manipulative burning experiments conducted in southern Australia in temperate eucalypt forests dominated by resprouting canopy species. Specifically we examined the effect of fire frequency and harvesting on (i) total biomass of above ground carbon pools and (ii) demographic and structural characteristics of live trees. We also investigated some of the mechanisms driving these changes. Frequent burning reduced carbon biomass by up to 20% in the live tree carbon pool. Significant interactions occurred between fire and harvesting, whereby the reduction in biomass of trees >20 cm diameter breast height (DBH) was amplified by increased fire frequency. The biomass of trees DBH increased with harvesting intensity in frequently burnt areas, but was unaffected by harvesting intensity in areas experiencing low fire frequency. Biomass of standing and fallen coarse woody debris was relatively unaffected by logging and fire frequency. Fire and harvesting significantly altered stand structure over the study period. Comparison of pre-treatment conditions to current conditions revealed that logged sites had a significantly greater increase in the number of small trees (DBH) than unlogged sites. Logged sites showed a significant

  15. Modelling above-ground carbon dynamics using multi-temporal airborne lidar: insights from a Mediterranean woodland

    W. Simonson

    2015-09-01

    Full Text Available Woodlands represent highly significant carbon sinks globally, though could lose this function under future climatic change. Effective large-scale monitoring of these woodlands has a critical role to play in mitigating for, and adapting to, climate change. Mediterranean woodlands have low carbon densities, but represent important global carbon stocks due to their extensiveness and are particularly vulnerable because the region is predicted to become much hotter and drier over the coming century. Airborne lidar is already recognized as an excellent approach for high-fidelity carbon mapping, but few studies have used multi-temporal lidar surveys to measure carbon fluxes in forests and none have worked with Mediterranean woodlands. We use a multi-temporal (five year interval airborne lidar dataset for a region of central Spain to estimate above-ground biomass (AGB and carbon dynamics in typical mixed broadleaved/coniferous Mediterranean woodlands. Field calibration of the lidar data enabled the generation of grid-based maps of AGB for 2006 and 2011, and the resulting AGB change were estimated. There was a close agreement between the lidar-based AGB growth estimate (1.22 Mg ha−1 year−1 and those derived from two independent sources: the Spanish National Forest Inventory, and a~tree-ring based analysis (1.19 and 1.13 Mg ha−1 year−1, respectively. We parameterised a simple simulator of forest dynamics using the lidar carbon flux measurements, and used it to explore four scenarios of fire occurrence. Under undisturbed conditions (no fire occurrence an accelerating accumulation of biomass and carbon is evident over the next 100 years with an average carbon sequestration rate of 1.95 Mg C ha−1 year−1. This rate reduces by almost a third when fire probability is increased to 0.01, as has been predicted under climate change. Our work shows the power of multi-temporal lidar surveying to map woodland carbon fluxes and provide parameters for carbon

  16. Nuclear science of Kazakhstan and former nuclear test site

    This abstract contains short historical notes on the genesis of Kazakhstan nuclear science, on Semipalatinsk former test site, information on main directions of investigations in Kazakhstan National Nuclear Centre, on activity of the centre on non-proliferation problems

  17. EU-wide maps of growing stock and above-ground biomass in forests based on remote sensing and field measurements

    Gallaun, H.; Zanchi, G.; Nabuurs, G.J.; Hengeveld, G.M.; Schardt, M.; Verkerk, P.J.

    2010-01-01

    The overall objective of this study was to combine national forest inventory data and remotely sensed data to produce pan-European maps on growing stock and above-ground woody biomass for the two species groups " broadleaves" and " conifers" An automatic up-scaling approach making use of satellite r

  18. Above-ground biomass production and allometric relations of Eucalyptus globulus Labill. coppice plantations along a chronosequence in the central highlands of Ethiopia

    Eucalyptus plantations are extensively managed for wood production in the central highlands of Ethiopia. Nevertheless, little is known about their biomass (dry matter) production, partitioning and dynamics over time. Data from 10 different Eucalyptus globulus stands, with a plantation age ranging from 11 to 60 years and with a coppice-shoot age ranging from 1 to 9 years were collected and analyzed. Above-ground tree biomass of 7-10 sampled trees per stand was determined destructively. Dry weights of tree components (Wc; leaves, twigs, branches, stembark, and stemwood) and total above-ground biomass (Wa) were estimated as a function of diameter above stump (D), tree height (H) and a combination of these. The best fits were obtained, using combinations of D and H. When only one explanatory variable was used, D performed better than H. Total above-ground biomass was linearly related to coppice-shoot age. In contrast a negative relation was observed between the above-ground biomass production and total plantation age (number of cutting cycles). Total above-ground biomass increased from 11 t ha-1 at a stand age of 1 year to 153 t ha-1 at 9 years. The highest dry weight was allocated to stemwood and decreased in the following order: stemwood > leaves > stembark > twigs > branches. The equations developed in this study to estimate biomass components can be applied to other Eucalyptus plantations under the assumption that the populations being studied are similar with regard to density and tree size to those for which the relationships were developed

  19. Estimating the Above-Ground Biomass in Miombo Savanna Woodlands (Mozambique, East Africa Using L-Band Synthetic Aperture Radar Data

    Maria J. Vasconcelos

    2013-03-01

    Full Text Available The quantification of forest above-ground biomass (AGB is important for such broader applications as decision making, forest management, carbon (C stock change assessment and scientific applications, such as C cycle modeling. However, there is a great uncertainty related to the estimation of forest AGB, especially in the tropics. The main goal of this study was to test a combination of field data and Advanced Land Observing Satellite (ALOS Phased Array L-band Synthetic Aperture Radar (PALSAR backscatter intensity data to reduce the uncertainty in the estimation of forest AGB in the Miombo savanna woodlands of Mozambique (East Africa. A machine learning algorithm, based on bagging stochastic gradient boosting (BagSGB, was used to model forest AGB as a function of ALOS PALSAR Fine Beam Dual (FBD backscatter intensity metrics. The application of this method resulted in a coefficient of correlation (R between observed and predicted (10-fold cross-validation forest AGB values of 0.95 and a root mean square error of 5.03 Mg·ha−1. However, as a consequence of using bootstrap samples in combination with a cross validation procedure, some bias may have been introduced, and the reported cross validation statistics could be overoptimistic. Therefore and as a consequence of the BagSGB model, a measure of prediction variability (coefficient of variation on a pixel-by-pixel basis was also produced, with values ranging from 10 to 119% (mean = 25% across the study area. It provides additional and complementary information regarding the spatial distribution of the error resulting from the application of the fitted model to new observations.

  20. Ecological consequences of nuclear testing

    Many of the terrestrial disturbances on Amchitka Island resulting from nuclear testing were superimposed on scars remaining from military occupation. Construction, road improvement, and the Milrow and Cannikin nuclear detonations resulted in the loss or deterioration of about 420 ha (1040 acres) of terrestrial habitat, or less than 1.5% of the total area of Amchitka. A few streams and lakes were polluted by drilling effluents or human wastes; normal flushing action is expected to restore the quality of most of these freshwater habitats. Irreversible effects in freshwaters include the drainage of several ponds, gross channel alteration in a part of one stream, and the creation of a new lake which is deeper and which has a greater volume than any of the more than 2100 natural lakes on the southeast half of Amchitka. About 6 ha (15 acres) of intertidal bench was displaced to a level above the intertidal zone, and an undetermined amount of similar habitat was altered to some degree by lesser vertical displacement. No type of habitat on the island was destroyed, and localized habitat losses in the terrestrial, freshwater, and marine ecosystems are believed to have been too slight to have permanent effects on associated biotic populations

  1. Importance of tests in nuclear facilities

    In nuclear facilities, safety related systems and equipments are subject, along their whole service-life, to numerous tests. This paper analyses the role of tests in the successive stages of design, construction, exploitation of a nuclear facility. It examines several aspects of test quality control: definition of needs, test planning, intrinsic quality of each test, control of interfaces (test are both the end and the starting point of many actions concerned by quality) and the application

  2. Assinatura da deposição atmosférica de testes nucleares em sedimentos da costa brasileira (240+239Pu e 137Cs

    Christian J. Sanders

    2012-01-01

    Full Text Available The aim of this review is to take a look at Cold War era nuclear tests signatures found in Brazilian coastal sediments. Both137Cs and 240+239Pu signatures have been documented in mangrove, coastal mudflats and continental shelf sediments, associated with above ground nuclear tests beginning in the 1950's. The dates associated to the anthropogenic radionuclide signatures 137Cs and 240+239Pu along sediment columns are confirmed by 210Pb geochronology in many of the studies highlighted in this review. The results outlined in this review characterize the extent to which nuclear fallout products reach the Brazilian coast in quantities sufficient for detection, allowing the use of these radioisotopes as geochronometers.

  3. Diversity and above-ground biomass patterns of vascular flora induced by flooding in the drawdown area of China's Three Gorges Reservoir.

    Qiang Wang

    Full Text Available Hydrological alternation can dramatically influence riparian environments and shape riparian vegetation zonation. However, it was difficult to predict the status in the drawdown area of the Three Gorges Reservoir (TGR, because the hydrological regime created by the dam involves both short periods of summer flooding and long-term winter impoundment for half a year. In order to examine the effects of hydrological alternation on plant diversity and biomass in the drawdown area of TGR, twelve sites distributed along the length of the drawdown area of TGR were chosen to explore the lateral pattern of plant diversity and above-ground biomass at the ends of growing seasons in 2009 and 2010. We recorded 175 vascular plant species in 2009 and 127 in 2010, indicating that a significant loss of vascular flora in the drawdown area of TGR resulted from the new hydrological regimes. Cynodon dactylon and Cyperus rotundus had high tolerance to short periods of summer flooding and long-term winter flooding. Almost half of the remnant species were annuals. Species richness, Shannon-Wiener Index and above-ground biomass of vegetation exhibited an increasing pattern along the elevation gradient, being greater at higher elevations subjected to lower submergence stress. Plant diversity, above-ground biomass and species distribution were significantly influenced by the duration of submergence relative to elevation in both summer and previous winter. Several million tonnes of vegetation would be accumulated on the drawdown area of TGR in every summer and some adverse environmental problems may be introduced when it was submerged in winter. We conclude that vascular flora biodiversity in the drawdown area of TGR has dramatically declined after the impoundment to full capacity. The new hydrological condition, characterized by long-term winter flooding and short periods of summer flooding, determined vegetation biodiversity and above-ground biomass patterns along the

  4. Above-ground tree outside forest (TOF) phytomass and carbon estimation in the semiarid region of southern Haryana: A synthesis approach of remote sensing and field data

    Kuldeep Singh; Pritam Chand

    2012-12-01

    Trees outside forest (TOF) play an important role in global carbon cycling, since they are large pools of carbon as well as potential carbon sinks and sources to the atmosphere. In view of the importance of biomass estimates in the global carbon (C) cycle, the present study demonstrates the potential of the standwise tree outside forest inventory data and finer spatial resolution of IRS-P6 LISS-IV satellite data to classify TOF, to estimate above-ground TOF phytomass and the carbon content of TOF in a semiarid region of the southern Haryana, India. The study reports that above-ground TOF phytomass varied from 1.26 tons/ha in the scattered trees in the rural/urban area to 91.5 tons/ha in the dense linear TOF along the canal. The total above-ground TOF phytomass and carbon content was calculated as 367.04 and 174.34 tons/ha, respectively in the study area. The study results conclude that the classification of TOF and estimation of phytomass and carbon content in TOF can be successfully achieved through the combined approach of Remote Sensing and GIS based spatial technique with the supplement of field data. The present approach will help to find out the potential carbon sequestration zone in the semi-arid region of southern Haryana, India.

  5. Estimating above-ground biomass by fusion of LiDAR and multispectral data in subtropical woody plant communities in topographically complex terrain in North-eastern Australia

    Sisira Ediriweera; Sumith Pathirana; Tim Danaher; Doland Nichols

    2014-01-01

    We investigated a strategy to improve predicting capacity of plot-scale above-ground biomass (AGB) by fusion of LiDAR and Land-sat5 TM derived biophysical variables for subtropical rainforest and eucalypts dominated forest in topographically complex landscapes in North-eastern Australia. Investigation was carried out in two study areas separately and in combination. From each plot of both study areas, LiDAR derived structural parameters of vegetation and reflectance of all Landsat bands, vegetation indices were employed. The regression analysis was carried out separately for LiDAR and Landsat derived variables indi-vidually and in combination. Strong relationships were found with LiDAR alone for eucalypts dominated forest and combined sites compared to the accuracy of AGB estimates by Landsat data. Fusing LiDAR with Landsat5 TM derived variables increased overall performance for the eucalypt forest and combined sites data by describing extra variation (3% for eucalypt forest and 2% combined sites) of field estimated plot-scale above-ground biomass. In contrast, separate LiDAR and imagery data, and fusion of LiDAR and Landsat data performed poorly across structurally complex closed canopy subtropical rainforest. These findings reinforced that obtaining accurate estimates of above ground biomass using remotely sensed data is a function of the complexity of horizontal and vertical structural diversity of vegetation.

  6. Political aspects of nuclear test effects at Semipalatinsk nuclear test site

    The paper describes tense struggle of Kazakhstan people for closure of the Semipalatinsk Nuclear Test Site. It reveals major foreign policy aspects and nuclear test effects for both Kazakhstan and the world community. (author)

  7. Nuclear: Water-testing time?

    With Florida Power and Light Co reporting that five unnamed independent power producers specified nuclear powerplants in response to the utility's Request for Proposal for 800 MW (EW, January 1990, p 15), along with a report in McGraw-Hill's Nucleonics Week that Florida Public Service Commission (PSC) Chairman Michael Wilson told Westinghouse Electric Corp - developer of the AP-600 reactor - he did not have a knee-jerk reaction against nuclear power if it's done right, speculation increases that the state of Florida is one of the top locations in the US for the next nuclear order

  8. Ground test facility for nuclear testing of space reactor subsystems

    Two major reactor facilities at the INEL have been identified as easily adaptable for supporting the nuclear testing of the SP-100 reactor subsystem. They are the Engineering Test Reactor (ETR) and the Loss of Fluid Test Reactor (LOFT). In addition, there are machine shops, analytical laboratories, hot cells, and the supporting services (fire protection, safety, security, medical, waste management, etc.) necessary to conducting a nuclear test program. This paper presents the conceptual approach for modifying these reactor facilities for the ground engineering test facility for the SP-100 nuclear subsystem. 4 figs

  9. Estimation of the carbon pool in soil and above-ground biomass within mangrove forests in Southeast Mexico using allometric equations

    Jesús Jaime Guerra-Santos; Rosa María Cerón-Bretón; Julia Griselda Cerón-Bretón; Diana Lizett Damián-Hernández; Reyna Cristina Sánchez-Junco; Emma del Carmen Guevara Carrió

    2014-01-01

    We report the results of carbon stored in soil and aboveground biomass from the most important area of mangroves in Mexico, with dominant vegetation of Red mangrove (Rhizophora mangle L.), Black mangrove (Avicennia germinans L.), white mangrove (Laguncularia racemosa Gaertn.) and button mangrove (Conocarpus erectus L.). We sampled soils with high fertility during the dry season in 2009 and 2010 at three sites on Atasta Peninsula, Campeche. We used allometric equations to estimate above ground biomass (AGB) of trees. AGB was higher in C. erectus (253.18±32.17 t⋅ha-1), lower in A. germinans (161.93±12.63 t⋅ha-1), and intermediate in R. mangle (181.70±16.58 t⋅ha-1) and L. racemosa (206.07±19.12 t⋅ha-1). Of the three studied sites, the highest absolute value for AGB was 279.72 t⋅ha-1 in button mangrove forest at any single site. Carbon stored in soil at the three sites ranged from 36.80±10.27 to 235.77±66.11 t⋅ha-1. The Tukey test (p <0.05) made for AGB was higher for black mangrove showed significant differences in soil carbon content between black mangrove and button mangrove. C. erectus had higher AGB compared with the other species. A. germinans trees had lower AGB because they grew in hypersaline environments, which reduced their development. C. erectus grew on higher ground where soils were richer in nutrients. AGB tended to be low in areas near the sea and increased with distance from the coast. A. germinans usually grew on recently deposited sediments. We assumed that all sites have the same potential to store carbon in soil, and then we found that there were no significant differences in carbon content between the three samples sites: all sites had potential to store carbon for long periods. Carbon storage at the three sampling sites in the state of Campeche, Mexico, was higher than that reported for other locations.

  10. The Comprehensive Nuclear Test Ban Treaty

    The Comprehensive Nuclear-Test-Ban Treaty (CTBT) is a cornerstone of the international regime on the non-proliferation of nuclear weapons and an essential foundation for the pursuit of nuclear disarmament. Its total ban of any nuclear weapon test explosion will constrain the development and qualitative improvement of nuclear weapons and end the development of advanced new types of these weapons. The Comprehensive Nuclear-Test-Ban Treaty was adopted by the United Nations General Assembly, and was opened for signature in New York on 24 September 1996. The Treaty will enter into force after it has been ratified by the 44 States listed in its Annex 2. These states possess nuclear power or research reactors. The Preparatory Commission for the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO Preparatory Commission) is an international organization established by the States Signatories to the Treaty on 19 November 1996. It carries out the necessary preparations for the effective implementation of the Treaty, and prepares for the first session of the Conference of the States Parties to the Treaty. The Treaty has been signed and ratified by the Republic of Croatia and National Commission for the implementation of the Treaty has been established. Basic obligations of the Treaty, as specified in Article I, are: (1) Each State Party undertakes not to carry out any nuclear weapon test explosion or any other nuclear explosion, and to prohibit and prevent any such nuclear explosion at any place under its jurisdiction or control. (2) Each State Party undertakes, furthermore, to refrain from causing, encouraging, or in any way participating in the carrying out of any nuclear weapon test explosion or any other nuclear explosion.(author)

  11. Comprehensive Nuclear Test-ban Treaty

    The Comprehensive Nuclear Test-Ban Treaty was adopted by the General Assembly on 10 September 1996 (Res/50/245) and was open for signature by all states on 24 September 1996. It will enter into force 180 days after the date of deposit of the instruments of ratification by all states listed in Annex 2 to the Treaty. This document reproduces the text of the Treaty and the Protocol to the Comprehensive Nuclear Test-Ban Treaty Protocol to the Comprehensive Nuclear Test-Ban Treaty

  12. Soviet nuclear testing: The Republics say no

    Massive protests are taking place in Russia against nuclear weapons testing. Efforts have been mounted to stop all testing at Kazakhstan test site near the town of Semipalatinsk, site of the first nuclear detonation in 1949 and of more than 500 test conducted since. Boris Yeltsin proposed just after his election as president of the federation the elimination of testing grounds for nuclear and biological weapons on Russian territory. The central government in Moscow has announced that it is considering closing the Semipalatinsk site. Reaction has also been strong to testing at the Arctic island of Novaya Zemlya, and severe constraints, such as Arctic cold, frozen rocks, high winds, difficult access, and protests by Greenpeace activists and USSR's Nordic neighbors do not make this site attractive. The author feels that this movement in the USSR has set in motion a politically dynamic situation that makes for the best chance for a comprehensive test ban treaty yet witnessed

  13. Trustworthiness test of nuclear power station employees

    The trustworthiness test is an important part of securing nuclear facilities against internal offenders. For performing such a test the supervisory authority, which is the State's physical protection authority, contacts the security offices or authorities regarding persons who work inside the sensitive areas of nuclear power stations - areas containing nuclear material. The trustworthiness test covers the present activities of the employees and gives a prediction for the following five years; after this time the test must be repeated. The trustworthiness test is a prerequisite for a facility to obtain a licence for the use of nuclear material, to hire persons for work in the inner area of a nuclear facility or the hire persons for leading positions. In Germany the content and form of the test as well as the evaluation of the results are regulated in a guideline of the Federal Ministry for the Environment, Nature Conservation and Reactor Safety (BMU) (latest edition in June 1996). The test is performed by the licensing authority or the supervisory authority. the basis of the test is a declaration by the employee concerned, containing personal data and the agreement of the person to the use of the data files by the safety authorities. It the results of the test are positive, the person tested has the possibility to comment on differences or to explain certain facts. The paper presents details of the BMU guideline. (author)

  14. Impacts of Woody Invader Dillenia suffruticosa (Griff. Martelli on Physio-chemical Properties of Soil and, Below and Above Ground Flora

    B.A.K. Wickramathilake

    2014-01-01

    Full Text Available Dillenia suffruticosa (Griffith Martelli, that spreads fast in low-lying areas in wet zone of Sri Lanka is currently listed as a nationally important Invasive Alien Species that deserves attention in ecological studies. Thus, impact of this woody invader on physical, chemical properties of soil and below and above ground flora was investigated. Five sampling sites were identified along a distance of 46km from Avissawella to Ratnapura. At each site, two adjacent plots [1m x10m each for D. suffruticosa present (D+ and absent (D-] were outlined. Physical and chemical soil parameters, microbial biomass and number of bacterial colonies in soil were determined using standard procedures and compared between D+ and D- by ANOVA using SPSS. Rate of decomposition of D. suffruticosa leaves was also determined using the litter bag technique at 35% and 50% moisture levels. Above ground plant species richness in sample stands was compared using Jaccard and Sorenson diversity indices.  Decomposition of D. suffruticosa leaves was slow, but occurred at a more or less similar rate irrespective of moisture content of soil. Particle size distribution in D+ soil showed a much higher percentage of large soil particles.  Higher % porosity in D+ sites was a clear indication that the soil was aerated.  The pH was significantly lower for D+ than D- thus developing acidic soils whereas conductivity has been significantly high making soil further stressed. The significant drop in Cation Exchange Capacity (CEC in D+ soil was a remarkable finding to be concerned with as it correlated with fertility of soil. Significantly higher values of phosphates reported in D+ soil support the idea that plant invaders are capable to increase phosphates in soil. Higher biomass values recorded for D+ sites together with higher number of bacterial colonies could be related to the unexpectedly recorded higher Organic Carbon. Both  the  Jaccard  and  Sorenson   indices indicated  that

  15. On the hydrostatic test for nuclear vessels

    A comparison of the pressure test requirements, namely specified values of pressure and temperature, for nuclear vessels designed and constructed according to the ASME Code and Spanish Rules is presented. Also the relationship of the design criteria and the pressure test requirements is indicated with a particular emphasis on the test temperature in order to avoid brittle behaviour of the materials. (author)

  16. Effect of Polythene-covering on Above-ground tuberization and storage roots yield in Cassava (Manihot esculenta Crantz

    Abdullahi N

    2014-02-01

    Full Text Available Present study aimed to investigate the effectiveness of polythene-covering on activation of dormant auxiliary buds on the stem for lateral tuber formation and the resultant effect on total storage roots yield. Three time intervals i.e. 1 day after planting, 30 days after planting and 60 days after planting used as treatment, and uncovered stem used as control. Treatments were tested in randomized complete block design with three replications. Regardless of the variety, stem polythene-covering at day 1 after planting showed the highest effect with respect to storage roots production and yield components tested. However, the effect of stem polythene-covering at day 1 after planting in terms of dry mass partitioning to storage roots was the lowest across all the treatments (25.50 to 27.37% of the biomass compared to that of stem covering at day 60 after planting (33.10 to 37.20%. This study opens new perspectives in cassava yield improvement which hitherto has not been exploited.

  17. Nuclear Fuel Test Rod Fabrication for Data Acquisition Test

    Joung, Chang-Young; Hong, Jin-Tae; Kim, Ka-Hye; Huh, Sung-Ho [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-10-15

    A nuclear fuel test rod must be fabricated with precise welding and assembly technologies, and confirmed for their soundness. Recently, we have developed various kinds of processing systems such as an orbital TIG welding system, a fiber laser welding system, an automated drilling system and a helium leak analyzer, which are able to fabricate the nuclear fuel test rods and rigs, and keep inspection systems to confirm the soundness of the nuclear fuel test rods and rids. The orbital TIG welding system can be used with two kinds of welding methods. One can perform the round welding for end-caps of a nuclear fuel test rod by an orbital head mounted in a low-pressure chamber. The other can do spot welding for a pin-hole of a nuclear fuel test rod in a high-pressure chamber to fill up helium gas of high pressure. The fiber laser welding system can weld cylindrical and 3 axis samples such as parts of a nuclear fuel test rod and instrumentation sensors which is moved by an index chuck and a 3 axis (X, Y, Z) servo stage controlled by the CNC program. To measure the real-time temperature change at the center of the nuclear fuel during the irradiation test, a thermocouple should be instrumented at that position. Therefore, a hole needs to be made at the center of fuel pellet to instrument the thermocouple. An automated drilling system can drill a fine hole into a fuel pellet without changing tools or breaking the work-piece. The helium leak analyzer (ASM-380 model of DEIXEN Co.) can check the leak of the nuclear fuel test rod filled with helium gas. This paper describes not only the assembly and fabrication methods used by the process systems, but also the results of the data acquisition test for the nuclear fuel test rod. A nuclear fuel test rod for the data acquisition test was fabricated using the welding and assembling echnologies acquired from previous tests.

  18. Nuclear Fuel Test Rod Fabrication for Data Acquisition Test

    A nuclear fuel test rod must be fabricated with precise welding and assembly technologies, and confirmed for their soundness. Recently, we have developed various kinds of processing systems such as an orbital TIG welding system, a fiber laser welding system, an automated drilling system and a helium leak analyzer, which are able to fabricate the nuclear fuel test rods and rigs, and keep inspection systems to confirm the soundness of the nuclear fuel test rods and rids. The orbital TIG welding system can be used with two kinds of welding methods. One can perform the round welding for end-caps of a nuclear fuel test rod by an orbital head mounted in a low-pressure chamber. The other can do spot welding for a pin-hole of a nuclear fuel test rod in a high-pressure chamber to fill up helium gas of high pressure. The fiber laser welding system can weld cylindrical and 3 axis samples such as parts of a nuclear fuel test rod and instrumentation sensors which is moved by an index chuck and a 3 axis (X, Y, Z) servo stage controlled by the CNC program. To measure the real-time temperature change at the center of the nuclear fuel during the irradiation test, a thermocouple should be instrumented at that position. Therefore, a hole needs to be made at the center of fuel pellet to instrument the thermocouple. An automated drilling system can drill a fine hole into a fuel pellet without changing tools or breaking the work-piece. The helium leak analyzer (ASM-380 model of DEIXEN Co.) can check the leak of the nuclear fuel test rod filled with helium gas. This paper describes not only the assembly and fabrication methods used by the process systems, but also the results of the data acquisition test for the nuclear fuel test rod. A nuclear fuel test rod for the data acquisition test was fabricated using the welding and assembling echnologies acquired from previous tests

  19. Above-ground woody carbon sequestration measured from tree rings is coherent with net ecosystem productivity at five eddy-covariance sites.

    Babst, Flurin; Bouriaud, Olivier; Papale, Dario; Gielen, Bert; Janssens, Ivan A; Nikinmaa, Eero; Ibrom, Andreas; Wu, Jian; Bernhofer, Christian; Köstner, Barbara; Grünwald, Thomas; Seufert, Günther; Ciais, Philippe; Frank, David

    2014-03-01

    • Attempts to combine biometric and eddy-covariance (EC) quantifications of carbon allocation to different storage pools in forests have been inconsistent and variably successful in the past. • We assessed above-ground biomass changes at five long-term EC forest stations based on tree-ring width and wood density measurements, together with multiple allometric models. Measurements were validated with site-specific biomass estimates and compared with the sum of monthly CO₂ fluxes between 1997 and 2009. • Biometric measurements and seasonal net ecosystem productivity (NEP) proved largely compatible and suggested that carbon sequestered between January and July is mainly used for volume increase, whereas that taken up between August and September supports a combination of cell wall thickening and storage. The inter-annual variability in above-ground woody carbon uptake was significantly linked with wood production at the sites, ranging between 110 and 370 g C m(-2) yr(-1) , thereby accounting for 10-25% of gross primary productivity (GPP), 15-32% of terrestrial ecosystem respiration (TER) and 25-80% of NEP. • The observed seasonal partitioning of carbon used to support different wood formation processes refines our knowledge on the dynamics and magnitude of carbon allocation in forests across the major European climatic zones. It may thus contribute, for example, to improved vegetation model parameterization and provides an enhanced framework to link tree-ring parameters with EC measurements. PMID:24206564

  20. Using multi-frequency radar and discrete-return LiDAR measurements to estimate above-ground biomass and biomass components in a coastal temperate forest

    Tsui, Olivier W.; Coops, Nicholas C.; Wulder, Michael A.; Marshall, Peter L.; McCardle, Adrian

    2012-04-01

    Height measurements from small-footprint discrete-return LiDAR and backscatter coefficients from C- and L-band radar were used independently and in combination to estimate above-ground component and total biomass for a coniferous temperate forest, located on Vancouver Island, British Columbia, Canada. Reference biomass data were obtained from plot-level data and used for comparison against the LiDAR and radar-based biomass models. For the LiDAR-only model, height metrics such as mean first return height and percentiles (e.g., 10th and 90th) of first returns correlated best to total above-ground and stem biomass. While percent of first returns above 2 m and percentiles (75th and 90th) of first returns height metrics correlated best to crown biomass. A comparison between above-ground components and total biomass indicate that stem biomass displayed the highest relationship with the LiDAR measurements while crown biomass showed the lowest relationship with relative root mean squared error ranging from 16% to 22%, respectively. Alternatively, the radar-only models indicated that for C-band radar, a combination of HH and VV backscatter demonstrated the most significant correlation with forest biomass compared to coherence based models with a relative root mean squared error of 53%. For L-band radar, a combination of HH and HV backscatter showed the most significant correlation compared to coherence based models with a relative root mean squared error of 44%. Exploring a mixture of C- and L-band backscatter and coherence based models revealed that a combination of C-HV and L-HV coherence magnitudes provided the best radar relationship with forest biomass with a relative root mean squared error of 35%. Also for all radar-based models, L- and C-band backscatter and coherence magnitudes were poorly correlated with individual biomass components when compared to total above-ground biomass. The addition of C- and L-band backscatter and coherence variables to the Li

  1. Estimation of Above-Ground Tree Biomass Based on Probability Distribution of Allometric Parameters%基于异速参数概率分布的立木地上生物量估算

    黄兴召; 陈东升; 孙晓梅; 张守攻

    2014-01-01

    Allometric biomass equations are widely used to predict above-ground biomass in forest ecosystems. It found the distribution of the parameters a and b of the allometry between above-ground biomass ( M ) and diameter at breast height( D) ,lnM = a + blnD,well approximated by a bivariate normal from analysis a data of 304 functions of 80 papers. ANOVA was tested to parameters in seven genera. In contrast to the parameter a,there was significant difference in parameter b. There were negative correlation between the parameter a and b,the parameter b and latitude. From this negative correlation,simultaneous-equation was used to build general model for parameters which were changed by latitude . Three methods which include established general model,minimum-least-square regression and Bayesian approach were used to fitting the above-ground biomass of Larix kaempferi in sub-tropical alpine area. The result showed that general model was the lowest precise quantifications ( R2 =0. 892 ) ,but it could estimate the biomass where forest situated in latitude without samples. With sample size was more than 50,both Bayesian method and minimum-least-square regression was no significant difference in the mean absolute error. And it was less than 50,Bayesian method was better than minimum-least-square regression. Therefore,it was suggested that Bayesian method was used to estimate above-ground biomass when the sample size was less than 50 .%对收集的80篇文献中304个地上部分生物量( M)和胸径( D)的异速生物量模型 lnM =a+blnD数据集研究发现:模型参数a和b符合二元正态分布;参数a和b之间、参数b和纬度间呈负相关,并依此相关关系应用联立方程组建立参数a和b随纬度变化的通用模型。以实测的北亚热带高山区日本落叶松地上部分生物量数据对新建的通用模型、最小二乘法和贝叶斯方法拟合生物量的适用性进行研究,结果表明:虽然通用模型的拟合精度最低( R

  2. Net Changes in Above Ground Woody Carbon Stock in Western Juniper Woodlands using Wavelet Techniques and Multi-temporal Aerial Photography

    Strand, E. K.; Bunting, S. C.; Smith, A. M.

    2006-12-01

    Expansion of woody plant cover in semi-arid ecosystems previously occupied primarily by grasses and forbs has been identified as an important land cover change process affecting the global carbon budget. Although woody encroachment occurs worldwide, quantifying changes in carbon pools and fluxes related to this phenomenon via remote sensing is challenging because large areas are affected at a fine spatial resolution (1- 10 m) and, in many cases, at slow temporal rates. Two-dimensional spatial wavelet analysis (SWA) represents a novel image processing technique that has been successful in automatically and objectively quantifying ecologically relevant features at multiple scales. We apply SWA to current and historic 1-m resolution black and white aerial photography to quantify changes in above ground woody biomass and carbon stock of western juniper (Juniperus occidentalis subsp. occidentalis) expanding into sagebrush (Artemisia spp.) steppe on the Owyhee Plateau in southwestern Idaho. Due to the large land area (330,000 ha) and variable availability of historical photography, we sampled forty-eight 100-ha blocks situated across the area, stratified using topographic, soil, and land stewardship variables. The average juniper plant cover increased one-fold (from 5.3% to 10.4% total cover) at the site during the time period of 1939-1946 to 1998-2004. Juniper plant density has increased by 128% with a higher percentage of the plant population in the smaller size classes compared to the size distribution 60 years ago. After image-based SWA delineation of tree crown sizes, we computed the change in above ground woody plant biomass and carbon stock between the two time periods using allometry. Areas where the shrub steppe is dominated by low sagebrush (Artemisia arbuscula) has experienced little to no expansion of western juniper. However, on deeper, more well drained soils capable of supporting mountain big sagebrush (Artemisia tridentata subsp. vaseyana), the above

  3. Euthanasia: above ground, below ground.

    Magnusson, R S

    2004-10-01

    The key to the euthanasia debate lies in how best to regulate what doctors do. Opponents of euthanasia frequently warn of the possible negative consequences of legalising physician assisted suicide and active euthanasia (PAS/AE) while ignoring the covert practice of PAS/AE by doctors and other health professionals. Against the background of survey studies suggesting that anything from 4% to 10% of doctors have intentionally assisted a patient to die, and interview evidence of the unregulated, idiosyncratic nature of underground PAS/AE, this paper assesses three alternatives to the current policy of prohibition. It argues that although legalisation may never succeed in making euthanasia perfectly safe, legalising PAS/AE may nevertheless be safer, and therefore a preferable policy alternative, to prohibition. At a minimum, debate about harm minimisation and the regulation of euthanasia needs to take account of PAS/AE wherever it is practised, both above and below ground. PMID:15467073

  4. A comprehensive ban on nuclear testing.

    Neild, R; Ruina, J P

    1972-01-14

    Our foregoing analysis of the role of a comprehensive test ban leads us to the following conclusions. 1) A CTB by itself will have little direct effect on the arms race between the superpowers. It would not hinder their nuclear arms production and deployment nor would it necessarily present a significant obstacle to the development of new nuclear weapons systems, despite limiting the development of new nuclear warhead designs. It can hardly make a dent in the destructive capability of the superpowers or in their ability to step up the pace of the arms race. 2) The chief merits of a CTB reside in the political sphere. It would help promote detente and could help to escalate interest in arms control agreements of broader scope. But in neither of these effects would it be as significant as a successful SALT (strategic arms limitation talks) agreement. The CTB also lingers as a piece of unfinished business since the signing of the LTB in 1963. The question can be and has been raised, "If the superpowers are serious about arms control, why have they not accepted the CTB, which is simple in concept and in form and is also free of serious military risks?" Such doubts about the sincerity of the superpowers' willingness to limit their own arms development will persist as long as there is no CTB. Substantial agreement at SALT would lessen some of this effect too, but would not eliminate it completely. 3) Recent progress in seismic identification has been impressive, and other means of obtaining technical intelligence about nuclear testing have probably also improved greatly. In addition, research on the technical means of on-site inspection has demonstrated its limited effectiveness. Therefore, the role of on-site inspections as an added deterrent to cheating on a CTB has diminished substantially. This is not to say that detection and identification of all nuclear tests is possible now, or ever, but only that on-site inspection would add very little to the other technical

  5. Correlation testing for nuclear density functional theory

    Correlation testing provides a quick method of discriminating amongst potential terms to include in a nuclear mass formula or functional and is a necessary tool for further nuclear mass models; however a firm mathematical foundation of the method has not been previously set forth. Here, the necessary justification for correlation testing is developed and more detail of the motivation behind its use is given. Examples are provided to clarify the method analytically and for computational benchmarking. We provide a quantitative demonstration of the method's performance and short-comings, highlighting also potential issues a user may encounter. In concluding we suggest some possible future developments to improve the limitations of the method. (orig.)

  6. Non-Nuclear Testing of Space Nuclear Systems at NASA MSFC

    Houts, Michael G.; Pearson, Boise J.; Aschenbrenner, Kenneth C.; Bradley, David E.; Dickens, Ricky; Emrich, William J.; Garber, Anne; Godfroy, Thomas J.; Harper, Roger T.; Martin, Jim J.; Polzin, Kurt; Schoenfeld, Michael P.; Webster, Kenneth L.

    2010-01-01

    Highly realistic non-nuclear testing can be used to investigate and resolve potential issues with space nuclear power and propulsion systems. Non-nuclear testing is particularly useful for systems designed with fuels and materials operating within their demonstrated nuclear performance envelope. Non-nuclear testing allows thermal hydraulic, heat transfer, structural, integration, safety, operational, performance, and other potential issues to be investigated and resolved with a greater degree of flexibility and at reduced cost and schedule compared to nuclear testing. The primary limit of non-nuclear testing is that nuclear characteristics and potential nuclear issues cannot be directly investigated. However, non-nuclear testing can be used to augment the potential benefit from any nuclear testing that may be required for space nuclear system design and development. This paper describes previous and ongoing non-nuclear testing related to space nuclear systems at NASA's Marshall Space Flight Center (MSFC).

  7. Residues from nuclear testing at the test site Azgir

    The Azgir test site is situated in the western part of the Republic of Kazakhstan, about 180 km north of the Caspian Sea. The Azgir test site was used for conducting peaceful nuclear explosions from 1966 to 1979. 17 underground tests were carried out in 10 wells which created 9 special cavities in the salt with depths from 160 to 1500 m. The total volume of these cavities is about 1,000,000 cubic meter. Resulting from this activity, there is an environmental contamination that may have affected population living in the adjacent areas. The results of investigations of radiological conditions that were performed after the closing of the Azgir test site, and current activities of international and Kazakhstan's institutions for studying residues from nuclear tests are also discussed in this report. (author)

  8. Studies of Health Effects from Nuclear Testing near the Semipalatinsk Nuclear Test Site, Kazakhstan

    Bernd Grosche; Tamara Zhunussova; Kazbek Apsalikov; Ausrele Kesminiene

    2015-01-01

    The nuclear bomb testing conducted at the Semipalatinsk nuclear test site in Kazakhstan is of great importance for today’s radiation protection research, particularly in the area of low dose exposures. This type of radiation is of particular interest due to the lack of research in this field and how it impacts population health. In order to understand the possible health effects of nuclear bomb testing, it is important to determine what studies have been conducted on the effects of low dose e...

  9. Nuclear cask testing films misleading and misused

    In 1977 and 1978, Sandia National Laboratories, located in Albuquerque, New Mexico, and operated for the US Department of Energy (DOE), filmed a series of crash and fire tests performed on three casks designed to transport irradiated nuclear fuel assemblies. While the tests were performed to assess the applicability of scale and computer modeling techniques to actual accidents, films of them were quickly pressed into service by the DOE and nuclear utilities as ''proof'' to the public of the safety of the casks. In the public debate over the safety of irradiated nuclear fuel transportation, the films have served as the mainstay for the nuclear industry. Although the scripts of all the films were reviewed by USDOE officials before production, they contain numerous misleading concepts and images, and omit significant facts. The shorter versions eliminated qualifying statements contained in the longer version, and created false impressions. This paper discusses factors which cast doubt on the veracity of the films and the results of the tests

  10. Radiological criteria for underground nuclear tests

    The radiological criteria for the conduct of nuclear tests have undergone many revisions with the current criteria being 0.17 rad for uncontrolled populations and 0.5 rad for controllable populations. Their effect upon operations at the Nevada Test Site and the current off-site protective plans are reviewed for areas surrounding the Site. The few accidental releases that have occurred are used to establish estimates of probability of release and of hazard to the population. These are then put into context by comparing statistical data on other accidents and cataclysms. The guidelines established by DOE Manual Chapter MC-0524 have never been exceeded during the entire underground nuclear test program. The probability of real hazard to off-site populations appears to be sufficiently low as not to cause undue concern to the citizenry

  11. Aseismic design and testing of nuclear facilities

    Earthquake possibility is a main problem faced by certain countries concerning nuclear reactor siting and safety. To assist in finding solutions to earthquake problems, a Panel on Aseismic Design and Testing of Nuclear Facilities was held from 12 to 16 June 1967 in Tokyo. Paper presented in the Panel are condensed into recommendations that comprise this report. Topics discussed in this report are (i) basic philosophy of aseismic design (ii) site selection or evaluation (iii) aseismic design and (iv) future action including investigations and research problems. Tabs

  12. Nuclear weapon testing and the monkey business

    Reasons for India's total ban on the export of rhesus monkeys to U.S. have been explained. The major reason is that some of the animals were used in nuclear weapon related radiation experiments. This was a clear violation of a stricture in the agreement about supply of monkeys. The stricture prohibited the use of animals for research concerning military operations, including nuclear weapon testing. It is pleaded that a strict enforcement of strictures rather than a total ban on the export of monkeys would be better in the interest of advancement of knowledge in human medicine and disease control. (M.G.B.)

  13. Risk Perception of Radiation Exposure of Villagers Living Near the Semipalatinsk Nuclear Test Site

    Purvis-Roberts, K. L.

    2006-12-01

    Connecting scientific data to societal needs is particularly important with the complex environmental issues that face us in the near future, such as global warming and natural hazards. Once the scientific data is collected and analyzed, dissemination of the results needs to be communicated to the public in a way that can be easily understood without glossing over the complexity of the issue. An interesting case study derives from the primary nuclear test site for the former Soviet Union, located near the city of Semipalatinsk, Kazakhstan. Villagers living directly adjacent to the Semipalatinsk Nuclear Test Site (SNTS) were exposed continuously to radioactive clouds from atmospheric, above ground and underground nuclear tests. The people living in the region are still exposed to low levels of radiation through the environmental contamination of their food and water and have experienced a higher incidence of cancers and birth defects than people living in other regions of the country. A database of historical environmental data was collected throughout the nuclear testing period by the Soviet government, tracking radiation concentrations through food, water, and soil samples around the SNTS, but this environmental data was never shared with the villagers. In fact, only after the Soviet Union fell apart in 1989 did the people discover that they had been exposed to radiation during the past 40 years. Through preliminary interviews with villagers, physicians, and scientists who live near the SNTS, it was discovered that the three groups viewed the risk of radiation exposure very differently. By developing a risk perception survey to understand how the different groups perceived radiation risk, and then comparing the scientific data to the survey results, a better way to communicate the risk could be developed. The risk perception survey was given to over 800 people in East Kazakhstan Oblast, including villagers living near the SNTS, scientists who study the

  14. Peculiarities of vegetation restoration of low mountain massif 'Degelen' of Semipalatinsk Test Sites after nuclear tests

    Full text: Geo-botanical researches in low mountain massif 'Degelen' Semipalatinsk Test Site were conducted out in 1994-2000 in the frames of INTAS 93-1422 and INTAS 96-2072 projects. 209 underground nuclear explosions were conducted out in horizontal adits in granite low mountain massif in 1968-1989. At present PED γ-irradiation reaches 100-500 μR/h in 14 adits, 500-1000 μR/h - in 8 adits, 1000-5000 μR/h - in 5 adits. Crests of the main mountain ridges and their lateral spurs were destroyed by multiple influence of blasts of nuclear explosions. 'Zones of split' appeared at the tops of the mountain ridges. Technogene screens appeared on the slopes of the mountain ridges. Radioactive springs appeared as a result of opening of water-bearing horizons under nuclear explosions. 'Zones of split' consist of granite fragments measuring 0.1-3.0 meters. Higher plants were not revealed on ground with big rock fragments. Single individuals of Urtica wens, Setaria viridis are found on ground with small rock fragments. Rarefied aggregations constituted by Artemisia frigida, Festuca valesiaca, Agropyron cristatum develop in small depressions with accumulation of fine earth. Single individuals of petrophytes (Orostachys spinosa, Sedum hybridum, S. purpureum, Patrinia intermedia) appeared on small plots of slightly damaged areas of crests of the mountain ridges. Technogene screens are constituted by granite fragments measuring 0.03-1.0 meter. Higher plants were not found here. Only lower part of the screens sometimes is covered by shrubs - Rosa spinosissima, R. laxa, Spiraea trilobata, Lonicera microphylla, Berberis sibirica are found more rarely. Aggregations of weed plants (Artemisia scoparia, A. sieversiana, Amaranthus retroflexus) develop on orifice-side areas of the adits. We revealed development of adaptation signs of Melilotus albus and Kochia sieversiana growing in conditions of radiation pollution (PED of γ-irradiation 200-700 μR/h). Shape and dimensions of blade

  15. Structural, physiognomic and above-ground biomass variation in savanna–forest transition zones on three continents – how different are co-occurring savanna and forest formations?

    E. M. Veenendaal

    2015-05-01

    Full Text Available Through interpretations of remote-sensing data and/or theoretical propositions, the idea that forest and savanna represent "alternative stable states" is gaining increasing acceptance. Filling an observational gap, we present detailed stratified floristic and structural analyses for forest and savanna stands located mostly within zones of transition (where both vegetation types occur in close proximity in Africa, South America and Australia. Woody plant leaf area index variation was related to tree canopy cover in a similar way for both savanna and forest with substantial overlap between the two vegetation types. As total woody plant canopy cover increased, so did the relative contribution of middle and lower strata of woody vegetation. Herbaceous layer cover declined as woody cover increased. This pattern of understorey grasses and herbs progressively replaced by shrubs as the canopy closes over was found for both savanna and forests and on all continents. Thus, once subordinate woody canopy layers are taken into account, a less marked transition in woody plant cover across the savanna–forest-species discontinuum is observed compared to that inferred when trees of a basal diameter > 0.1 m are considered in isolation. This is especially the case for shrub-dominated savannas and in taller savannas approaching canopy closure. An increased contribution of forest species to the total subordinate cover is also observed as savanna stand canopy closure occurs. Despite similarities in canopy-cover characteristics, woody vegetation in Africa and Australia attained greater heights and stored a greater amount of above-ground biomass than in South America. Up to three times as much above-ground biomass is stored in forests compared to savannas under equivalent climatic conditions. Savanna–forest transition zones were also found to typically occur at higher precipitation regimes for South America than for Africa. Nevertheless, consistent across all three

  16. Traditional nuclear physics as a test of nuclear exotics

    The review considers the testing of some exotic hypotheses about the properties of the nucleon in a nuclear medium in phenomena of traditional nuclear physics. The hypothesis of nucleon swelling proposed to explain the EMC effects is considered in detail. The consequences of this hypothesis for the charge densities and cross sections for scattering of fast electrons and protons by nuclei are analyzed. Also considered are the Nolen--Schiffer anomaly, the Coulomb sum rule for inelastic electron scattering, y scaling, and some other nuclear processes. It is shown that one can estimate the possible scale of nuclear exotics by analyzing many of these phenomena. Thus, examination of high-precision data on the elastic scattering of electrons with energy 500--700 MeV using density distributions calculated on the basis of the self-consistent theory of finite Fermi systems yields a restriction on the amount of nucleon swelling: α=δrN/rN approx-lt 10%. A similar analysis for protons with energy 0.8--1.0 GeV using Glauber theory gives α approx-lt 6%. An even more stringent restriction, α approx-lt 3%, follows from data on y scaling in 56Fe

  17. Nuclear Thermal Propulsion Ground Test History

    Gerrish, Harold P.

    2014-01-01

    Nuclear Thermal Propulsion (NTP) was started in 1955 under the Atomic Energy Commission as project Rover and was assigned to Los Alamos National Laboratory. The Nevada Test Site was selected in 1956 and facility construction began in 1957. The KIWI-A was tested on July 1, 1959 for 5 minutes at 70MW. KIWI-A1 was tested on July 8, 1960 for 6 minutes at 85MW. KIWI-A3 was tested on October 10, 1960 for 5 minutes at 100MW. The National Aeronautics and Space Administration (NASA) was formed in 1958. On August 31, 1960 the AEC and NASA established the Space Nuclear Propulsion Office and named Harold Finger as Director. Immediately following the formation of SNPO, contracts were awarded for the Reactor In Flight Test (RIFT), master plan for the Nuclear Rocket Engine Development Station (NRDS), and the Nuclear Engine for Rocket Vehicle Application (NERVA). From December 7, 1961 to November 30, 1962, the KIWI-B1A, KIWI-B1B, and KIWI-B4A were tested at test cell A. The last two engines were only tested for several seconds before noticeable failure of the fuel elements. Harold Finger called a stop to any further hot fire testing until the problem was well understood. The KIWI-B4A cold flow test showed the problem to be related to fluid dynamics of hydrogen interstitial flow causing fuel element vibrations. President Kennedy visited the NTS one week after the KIWI-B4A failure and got to see the engine starting to be disassembled in the maintenance facility. The KIWI-B4D and KIWI-B4E were modified to not have the vibration problems and were tested in test cell C. The NERVA NRX program started testing in early 1964 with NRX-A1 cold flow test series (unfueled graphite core), NRX-A2 and NRX-A3 power test series up to 1122 MW for 13 minutes. In March 1966, the NRX-EST (Engine System Test) was the first breadboard using flight functional relationship and total operating time of 116 minutes. The NRX-EST demonstrated the feasibility of a hot bleed cycle. The NRX-A5 had multiple start

  18. Ultraviolet-B Radiation and Nitrogen Affect Nutrient Concentrations and the Amount of Nutrients Acquired by Above-Ground Organs of Maize

    Carlos M. Correia

    2012-01-01

    Full Text Available UV-B radiation effects on nutrient concentrations in above-ground organs of maize were investigated at silking and maturity at different levels of applied nitrogen under field conditions. The experiment simulated a 20% stratospheric ozone depletion over Portugal. At silking, UV-B increased N, K, Ca, and Zn concentrations, whereas at maturity Ca, Mg, Zn, and Cu increased and N, P and Mn decreased in some plant organs. Generally, at maturity, N, Ca, Cu, and Mn were lower, while P, K, and Zn concentrations in stems and nitrogen-use efficiency (NUE were higher in N-starved plants. UV-B and N effects on shoot dry biomass were more pronounced than on nutrient concentrations. Nutrient uptake decreased under high UV-B and increased with increasing N application, mainly at maturity harvest. Significant interactions UV-B x N were observed for NUE and for concentration and mass of some elements. For instance, under enhanced UV-B, N, Cu, Zn, and Mn concentrations decreased in leaves, except on N-stressed plants, whereas they were less affected by N nutrition. In order to minimize nutritional, economical, and environmental negative consequences, fertiliser recommendations based on element concentration or yield goals may need to be adjusted.

  19. Evaluating Generic Pantropical Allometric Models for the Estimation of Above-Ground Biomass in the Teak Plantations of Southern Western Ghats, India

    S. Sandeep

    2015-09-01

    Full Text Available The use of suitable tree biomass allometric equations is crucial for making precise and non- destructive estimation of carbon storage and biomass energy values. The aim of this research was to evaluate the accuracy of the most commonly used pantropical allometric models and site-specific models to estimate the above-ground biomass (AGB in different aged teak plantations of Southern Western Ghats of India. For this purpose, the AGB data measured for 70 trees with diameter >10 cm from different aged teak plantations in Kerala part of Southern Western Ghats following destructive procedure was used. The results show that site specific models based on a single predictor variable diameter at breast height (dbh, though simple, may grossly increase the uncertainty across sites. Hence, a generic model encompassing dbh, height and wood specific gravity with sufficient calibration taking into account different forest types is advised for the tropical forest systems. The study also suggests that the commonly used pantropical models should be evaluated for different ecosystems prior to their application at national or regional scales.

  20. The Effect of Above-Ground Medium Voltage Power Lines on Displaying Site Selection of the Great Bustard (Otis Tarda in Central Hungary

    Lóránt Miklós

    2015-02-01

    Full Text Available Our study was conducted in the Upper-Kiskunság region, Central Hungary, which hosts the largest Pannonian population of the Great Bustard (Otis tarda. The influence of the presence of aboveground medium voltage power lines on displaying site selection of Great Bustard males was investigated. The results revealed that displaying males totally reject the sites located within 350-400 m or closer to medium voltage power lines as displaying sites and show relative rejection towards potential displaying sites located at a distance between 500 and 1000 m far from power lines. Surprisingly, the overall negative effects influence much larger part of the potential displaying grounds, up to the distance to 3500 m from power lines. It can be declared that power lines reduce the extent of suitable displaying sites of the Great Bustards in the Upper-Kiskunság region. Accordingly, installation of new above-ground power lines (and other kind of wires, such as high voltage power lines, optical cables etc. would further reduce the extent of suitable displaying sites.

  1. Above-ground biomass and carbon estimates of Shorea robusta and Tectona grandis forests using QuadPOL ALOS PALSAR data

    Behera, M. D.; Tripathi, P.; Mishra, B.; Kumar, Shashi; Chitale, V. S.; Behera, Soumit K.

    2016-01-01

    Mechanisms to mitigate climate change in tropical countries such as India require information on forest structural components i.e., biomass and carbon for conservation steps to be implemented successfully. The present study focuses on investigating the potential use of a one time, QuadPOL ALOS PALSAR L-band 25 m data to estimate above-ground biomass (AGB) using a water cloud model (WCM) in a wildlife sanctuary in India. A significant correlation was obtained between the SAR-derived backscatter coefficient (σ°) and the field measured AGB, with the maximum coefficient of determination for cross-polarized (HV) σ° for Shorea robusta, and the weakest correlation was observed with co-polarized (HH) σ° for Tectona grandis forests. The biomass of S. robusta and that of T. grandis were estimated on the basis of field-measured data at 444.7 ± 170.4 Mg/ha and 451 ± 179.4 Mg/ha respectively. The mean biomass values estimated using the WCM varied between 562 and 660 Mg/ha for S. robusta; between 590 and 710 Mg/ha for T. grandis using various polarized data. Our results highlighted the efficacy of one time, fully polarized PALSAR data for biomass and carbon estimate in a dense forest.

  2. Atmospheric methods for nuclear test monitoring

    The U.S. DOE sponsored research investigating atmospheric infrasound as a means of detecting both atmospheric and underground nuclear tests. Various detection schemes were examined and were found to be effective for different situations. It has been discovered that an enhanced sensitivity is realizable for the very lowest frequency disturbances by detecting the infrasound at the top of the atmosphere using ratio sound techniques. These techniques are compared to more traditional measurement schemes

  3. North Korea’s nuclear test

    Radchenko, Sergey

    2009-01-01

    North Korea’s nuclear test serves several purposes. Its first purpose is to bolster the flagging legitimacy of the regime and, by drumming up war hysteria, achieve domestic mobilization in the face of mounting internal difficulties. Throughout North Korea’s turbulent history, the regime has periodically resorted to war hysteria, at times on even grander scale than what we have recently seen. North Korea’s Songun (army-first) policy requires periodic crises to maintain the myth of ...

  4. Biaxial dynamic testing of nuclear containment steel

    A test program has been initiated at the laboratories of the European Union Joint Research Centre of Ispra to investigate combined effects of high strain rates and biaxial stresses. The purpose is to assess the material behavior up to rupture in the special conditions which are produced during an explosion inside a nuclear metal containment. In the paper the main features of the campaign are discussed. (author). 19 refs., 4 figs

  5. Non-Nuclear Testing of Fission Technologies at NASA MSFC

    Houts, Robert G.; Pearson, J. Boise; Aschenbrenner, Kenneth C.; Bradley, David E.; Dickens, Ricky E.; Emrich, William J.; Garber, Anne E.; Godfroy, Thomas J.; Harper, Roger T.; Martin, Jim J.; Polzin, Kurt A.; Schoenfeld, Michael P.; Webster, Kenneth L.

    2011-01-01

    Highly realistic non-nuclear testing can be used to investigate and resolve potential issues with space nuclear power and propulsion systems. Non-nuclear testing is particularly useful for systems designed with fuels and materials operating within their demonstrated nuclear performance envelope. Non-nuclear testing also provides an excellent way for screening potential advanced fuels and materials prior to nuclear testing, and for investigating innovative geometries and operating regimes. Non-nuclear testing allows thermal hydraulic, heat transfer, structural, integration, safety, operational, performance, and other potential issues to be investigated and resolved with a greater degree of flexibility and at reduced cost and schedule compared to nuclear testing. The primary limit of non-nuclear testing is that nuclear characteristics and potential nuclear issues cannot be directly investigated. However, non-nuclear testing can be used to augment the potential benefit from any nuclear testing that may be required for space nuclear system design and development. This paper describes previous and ongoing non-nuclear testing related to space nuclear systems at NASA s Marshall Space Flight Center (MSFC).

  6. Environmental assessment report: Nuclear Test Technology Complex

    The US Department of Energy (USDOE) is planning to construct and operate a structure, designated the Nuclear Test Technology Complex (NTTC), on a site located west of and adjacent to the Lawrence Livermore National Laboratory. The NTTC is designed to house 350 nuclear test program personnel, and will accommodate the needs of the entire staff of the continuing Nuclear Test Program (NTP). The project has three phases: land acquisition, facility construction and facility operation. The purpose of this environmental assessment report is to describe the activities associated with the three phases of the NTTC project and to evaluate potential environmental disruptions. The project site is located in a rural area of southeastern Alameda County, California, where the primary land use is agriculture; however, the County has zoned the area for industrial development. The environmental impacts of the project include surface disturbance, high noise levels, possible increases in site erosion, and decreased air quality. These impacts will occur primarily during the construction phase of the NTTC project and can be mitigated in part by measures proposed in this report

  7. New test of the nuclear statistical model

    High resolution proton resonance measurements provide a new test of the nuclear statistical model. For a sequence of levels with the same spin and parity the width correlation rho/sub W/ and the amplitude correlation rho/sub A/ are determined separately for the inelastic decay channels. The observed correlations average about 0.5 and are ascribed to direction reactions between the inelastic channels. For a multivariate Gausian distribution rho/sup 2//sub A//rho/sub W/=1. The present data provide the first opportunity to test this prediction directly

  8. Testing Iodine Filters for Nuclear Installations

    The removal efficiency of iodine filters for nuclear installations has been tested The test method in use includes laboratory tests of the adsorber material (under MCA conditions for temperature, relative humidity, pressure, loading, stay time and bed depth) and in-place tests at the site of the installation. For removal of methyl iodide under high relative humidity Kl-impregnated charcoal is widely used. Most of the data for charcoal removal efficiency available today result from experiments with tracer amounts of CH3131I mixed with CH3127I. Considering MCA conditions, the validity of those data should be confirmed for specific activities on charcoal 103 - 106 times higher. Experimental data are given for realistic loadings with CH3131I up to 10 Ci/g charcoal under 100% relative humidity. For standard laboratory adsorber tests a method is discussed for humidification and control of gas streams up to 100% relative humidity at elevated temperatures. The apparatus used is described. Experimental data are given for the removal efficiency and the adsorption of water in charcoal samples from long-time tests under 100% relative humidity. The overall test period was up to 98 h, simulating the phase of elevated pressure and, therefore, high iodine release from the reactor containment. The reproducibility of long-time tests under extremely high relative humidity is shown and discussed. A description of the hardware for in-place tests is included and results are given. (author)

  9. Field test of wireless sensor network in the nuclear environment

    Wireless sensor networks (WSNs) are appealing options for the health monitoring of nuclear power plants due to their low cost and flexibility. Before they can be used in highly regulated nuclear environments, their reliability in the nuclear environment and compatibility with existing devices have to be assessed. In situ electromagnetic interference tests, wireless signal propagation tests, and nuclear radiation hardness tests conducted on candidate WSN systems at AECL Chalk River Labs are presented. The results are favourable to WSN in nuclear applications. (author)

  10. Field test of wireless sensor network in the nuclear environment

    Li, L., E-mail: lil@aecl.ca [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada); Wang, Q.; Bari, A. [Univ. of Western Ontario, London, Ontario (Canada); Deng, C.; Chen, D. [Univ. of Electronic Science and Technology of China, Chengdu, Sichuan (China); Jiang, J. [Univ. of Western Ontario, London, Ontario (Canada); Alexander, Q.; Sur, B. [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada)

    2014-06-15

    Wireless sensor networks (WSNs) are appealing options for the health monitoring of nuclear power plants due to their low cost and flexibility. Before they can be used in highly regulated nuclear environments, their reliability in the nuclear environment and compatibility with existing devices have to be assessed. In situ electromagnetic interference tests, wireless signal propagation tests, and nuclear radiation hardness tests conducted on candidate WSN systems at AECL Chalk River Labs are presented. The results are favourable to WSN in nuclear applications. (author)

  11. Subsurface radionuclide investigation of a nuclear test

    Mathews, M.; Hahn, K.; Thompson, J.; Gadeken, L.; Madigan, W.

    1994-08-01

    This paper reports on an environmental investigation into the vertical distribution of radionuclides from a nuclear test. Dalhart is the name of an underground nuclear test that was executed at the Nevada Test Site at a depth of 2100 ft on October 13, 1988. The test occurred below the static water level of 1667 ft and created multiple radioactive isotopes or fission products. These radioactive isotopes penetrated the surrounding formations and chimney region above the test and were retained there. A 19° 9- {7}/{8}-inch diameter slant hole was drilled to sample the geologic material in the chimney region above the Dalhart test for the purpose of assessing the distribution of radioactivity in and around the shot site. A 30-ft core recovered from a vertical depth of 1628 ft in the collapsed zone or chimney region and above the original static water level was found to be free of radionuclides. Drilling was completed to a vertical depth of 2156 ft with the present static water level at a vertical depth of 1644 ft. Gamma-ray spectroscopy log measurements, made within the drill pipe while drilling fluid was pumped through this pipe, indicate that radioactive material produced by the test was present from the vertical depth interval of 1746-2156 ft. Side-wall samples acquired from the vertical depth interval of 1721-2089 ft and analyzed in the field contained radionuclides such as 137Cs, 125Sb, 106Ru, plus the natural radioactive background of potassium, uranium, and thorium. These samples were sent to Los Alamos to determine the complete radionuclide content at each depth. These analyses were used with the gamma-ray spectroscopy logging data to determine the subsurface vertical radionuclide distribution at the Dalhart site.

  12. Subsurface radionuclide investigation of a nuclear test

    This paper reports on an environmental investigation into the vertical distribution of radionuclides from a nuclear test. Dalhart is the name of an underground nuclear test that was executed at the Nevada Test Site at a depth of 2100 ft on October 13, 1988. The test occurred below the static water level of 1667 ft and created multiple radioactive isotopes or fission products. These radioactive isotopes penetrated the surrounding formations and chimney region above the test and were retained there. A 19o 9-7/8-inch diameter slant hole was drilled to sample the geologic material in the chimney region above the Dalhart test for the purpose of assessing the distribution of radioactivity in and around the shot site. A 30-ft core recovered from a vertical depth of 1628 ft in the collapsed zone or chimney region and above the original static water level was found to be free of radionuclides. Drilling was completed to a vertical depth of 2156 ft with the present static water level at a vertical depth of 1644 ft. Gamma-ray spectroscopy log measurements, made within the drill pipe while drilling fluid was pumped through this pipe, indicate that radioactive material produced by the test was present from the vertical depth interval of 1746-2156 ft. Side-wall samples acquired from the vertical depth interval of 1721-2089 ft and analyzed in the field contained radionuclides such as 137Cs, 125Sb, 106Ru, plus the natural radioactive background of potassium, uranium, and thorium. These samples were sent to Los Alamos to determine the complete radionuclide content at each depth. These analyses were used with the gamma-ray spectroscopy logging data to determine the subsurface vertical radionuclide distribution at the Dalhart site

  13. Towards ground-truthing of spaceborne estimates of above-ground life biomass and leaf area index in tropical rain forests

    P. Köhler

    2010-08-01

    Full Text Available The canopy height h of forests is a key variable which can be obtained using air- or spaceborne remote sensing techniques such as radar interferometry or LIDAR. If new allometric relationships between canopy height and the biomass stored in the vegetation can be established this would offer the possibility for a global monitoring of the above-ground carbon content on land. In the absence of adequate field data we use simulation results of a tropical rain forest growth model to propose what degree of information might be generated from canopy height and thus to enable ground-truthing of potential future satellite observations. We here analyse the correlation between canopy height in a tropical rain forest with other structural characteristics, such as above-ground life biomass (AGB (and thus carbon content of vegetation and leaf area index (LAI and identify how correlation and uncertainty vary for two different spatial scales. The process-based forest growth model FORMIND2.0 was applied to simulate (a undisturbed forest growth and (b a wide range of possible disturbance regimes typically for local tree logging conditions for a tropical rain forest site on Borneo (Sabah, Malaysia in South-East Asia. In both undisturbed and disturbed forests AGB can be expressed as a power-law function of canopy height h (AGB = a · hb with an r2 ~ 60% if data are analysed in a spatial resolution of 20 m × 20 m (0.04 ha, also called plot size. The correlation coefficient of the regression is becoming significant better in the disturbed forest sites (r2 = 91% if data are analysed hectare wide. There seems to exist no functional dependency between LAI and canopy height, but there is also a linear correlation (r2 ~ 60% between AGB and the area fraction of gaps in which the canopy is highly disturbed. A reasonable agreement of our results with observations is obtained from a

  14. Modeling Water and Nutrient Transport through the Soil-Root-Canopy Continuum: Explicitly Linking the Below- and Above-Ground Processes

    Kumar, P.; Quijano, J. C.; Drewry, D.

    2010-12-01

    Vegetation roots provide a fundamental link between the below ground water and nutrient dynamics and above ground canopy processes such as photosynthesis, evapotranspiration and energy balance. The “hydraulic architecture” of roots, consisting of the structural organization of the root system and the flow properties of the conduits (xylem) as well as interfaces with the soil and the above ground canopy, affect stomatal conductance thereby directly linking them to the transpiration. Roots serve as preferential pathways for the movement of moisture from wet to dry soil layers during the night, both from upper soil layer to deeper layers during the wet season (‘hydraulic descent’) and vice-versa (‘hydraulic lift’) as determined by the moisture gradients. The conductivities of transport through the root system are significantly, often orders of magnitude, larger than that of the surrounding soil resulting in movement of soil-moisture at rates that are substantially larger than that through the soil. This phenomenon is called hydraulic redistribution (HR). The ability of the deep-rooted vegetation to “bank” the water through hydraulic descent during wet periods for utilization during dry periods provides them with a competitive advantage. However, during periods of hydraulic lift these deep-rooted trees may facilitate the growth of understory vegetation where the understory scavenges the hydraulically lifted soil water. In other words, understory vegetation with relatively shallow root systems have access to the banked deep-water reservoir. These inter-dependent root systems have a significant influence on water cycle and ecosystem productivity. HR induced available moisture may support rhizosphere microbial and mycorrhizal fungi activities and enable utilization of heterogeneously distributed water and nutrient resources To capture this complex inter-dependent nutrient and water transport through the soil-root-canopy continuum we present modeling

  15. Optimizing the number of training areas for modeling above-ground biomass with ALS and multispectral remote sensing in subtropical Nepal

    Rana, Parvez; Gautam, Basanta; Tokola, Timo

    2016-07-01

    Remote sensing-based inventories of above-ground forest biomass (AGB) require a set of training plots representative of the area to be studied, the collection of which is the most expensive part of the analysis. These are time-consuming and costly because the large variety in forest conditions requires more plots to adequately capture this variability. A field campaign in general is challenging and is hampered by the complex topographic conditions, limited accessibility, steep mountainous terrains which increase labor efforts and costs. In addition it is also depend on the ratio between size of study area and number of training plots. In this study, we evaluate the number of training areas (sample size) required to estimate AGB for an area in the southern part of Nepal using airborne laser scanning (ALS), RapidEye and Landsat data. Three experiments were conducted: (i) AGB model performance, based on all the field training plots; (ii) reduction of the sample size, based on the ALS metrics and the AGB distribution; and (iii) prediction of the optimal number of training plots, based on the correlation between the remote sensing and field data. The AGB model was fitted using the sparse Bayesian method. AGB model performance was validated using an independent validation dataset. The effect of the strategies for reducing the sample size was readily apparent for the ALS-based AGB prediction, but the RapidEye and Landsat sensor data failed to capture any such effect. The results indicate that adequate coverage of the variability in tree height and density was an important condition for selecting the training plots. In addition, the ALS-based AGB prediction required the smallest number of training plots and was also quite stable with a small number of field plots.

  16. Heavy metal accumulation in the above-ground vegetation and soil around an iron smelting factory in Ile-Ife, southwestern Nigeria

    Emmanuel F. Isola; Olusanya A. Olatunji; Akinjide M. Afolabi; Ademayowa A. Omodara

    2015-01-01

    This study investigated the accumulation of heavy metals in the above-ground vegetation and soil around an iron smelting factory located at the Fashina Area, Ile-Ife, Osun State, southwestern Nigeria. This was with a view to establish baseline data which can be used for assessing the impact of the steel processing industry in the area. Samples of the two most common herbaceous species (Chromolaena odorataand Aspilia africana) around the factory were randomly collected at 10 m away from the wall of the factory, and soil samples were randomly collected at 0–15 cm depths in the same area. The plant species were oven-dried, put through a mixed acid digestion procedure, and, along with soil samples, were analyzed for N, P, K, C, Zn, Pb, Cd, Ni, and Cr using an atomic absorption spectrophotometer. The data obtained were subjected to appropriate descriptive and inferential statistical analyses. The results revealed that the soils were slightly acidic, with pH values of 6.23±0.24 in the dry season and 6.10±0.16 in the rainy season. There was a significant difference (P P > N in both Aspilia africana andChromolaena odorata. In the dry season, C percentage concentration was higher inAspilia africana, while the other elements followed the trend observed in the rainy season. The concentration of Zn was higher inAspilia af-ricana in both the polluted site and the control site in the rainy season, while the concentrations of the other heavy metals were higher inChromolaena odoratain the dry season. This study revealed that the heavy metal concentration varied with the plant species and also with the prevailing seasonal conditions. Also, the accumulation and concentration of heavy metals in both plant species and in the soil indicated a potential hazard of the factory to the local environment.

  17. Above-ground sulfur cycling in adjacent coniferous and deciduous forest and watershed sulfur retention in the Georgia Piedmont, U.S.A.

    Cappellato, R.; Peters, N.E.; Meyers, T.P.

    1998-01-01

    Atmospheric deposition and above-ground cycling of sulfur (S) were evaluated in adjacent deciduous and coniferous forests at the Panola Mountain Research Watershed (PMRW), Georgia U.S.A. Total atmospheric S deposition (wet plus dry) was 12.9 and 12.7 kg ha-1 yr-1 for the deciduous and coniferous forests, respectively, from October 1987 through November 1989. Dry deposition contributes more than 40% to the total atmospheric S deposition, and SO2 is the major source (~55%) of total dry S deposition. Dry deposition to these canopies is similar to regional estimates suggesting that 60-km proximity to emission sources does not noticeably impact dry deposition at PMRW. Below-canopy S fluxes (throughfall plus stemflow) in each forest are 37% higher annually in the deciduous forest than in the coniferous forest. An excess in below-canopy S flux in the deciduous forest is attributed to leaching and higher dry deposition than in the coniferous forest. Total S deposition to the forest floor by throughfall, stemflow and litterfall was 2.4 and 2.8 times higher in the deciduous and coniferous forests, respectively, than annual S growth requirement for foliage and wood. Although A deposition exceeds growth requirement, more than 95% of the total atmospheric S deposition was retained by the watershed in 1988 and 1989. The S retention at PMRW is primarily due to SO2+4 adsorption by iron oxides and hydroxides in watershed soils. The S content in while oak and loblolly pine boles have increased more than 200% in the last 20 yr, possibly reflecting increases in emissions.

  18. Assessment of Above-Ground Biomass of Borneo Forests through a New Data-Fusion Approach Combining Two Pan-Tropical Biomass Maps

    Andreas Langner

    2015-08-01

    Full Text Available This study investigates how two existing pan-tropical above-ground biomass (AGB maps (Saatchi 2011, Baccini 2012 can be combined to derive forest ecosystem specific carbon estimates. Several data-fusion models which combine these AGB maps according to their local correlations with independent datasets such as the spectral bands of SPOT VEGETATION imagery are analyzed. Indeed these spectral bands convey information about vegetation type and structure which can be related to biomass values. Our study area is the island of Borneo. The data-fusion models are evaluated against a reference AGB map available for two forest concessions in Sabah. The highest accuracy was achieved by a model which combines the AGB maps according to the mean of the local correlation coefficients calculated over different kernel sizes. Combining the resulting AGB map with a new Borneo land cover map (whose overall accuracy has been estimated at 86.5% leads to average AGB estimates of 279.8 t/ha and 233.1 t/ha for forests and degraded forests respectively. Lowland dipterocarp and mangrove forests have the highest and lowest AGB values (305.8 t/ha and 136.5 t/ha respectively. The AGB of all natural forests amounts to 10.8 Gt mainly stemming from lowland dipterocarp (66.4%, upper dipterocarp (10.9% and peat swamp forests (10.2%. Degraded forests account for another 2.1 Gt of AGB. One main advantage of our approach is that, once the best fitting data-fusion model is selected, no further AGB reference dataset is required for implementing the data-fusion process. Furthermore, the local harmonization of AGB datasets leads to more spatially precise maps. This approach can easily be extended to other areas in Southeast Asia which are dominated by lowland dipterocarp forest, and can be repeated when newer or more accurate AGB maps become available.

  19. Modeling nuclear explosion

    Redd, Jeremy; Panin, Alexander

    2012-10-01

    As a result of the Nuclear Test Ban Treaty, no nuclear explosion tests have been performed by the US since 1992. This appreciably limits valuable experimental data needed for improvement of existing weapons and development of new ones, as well as for use of nuclear devices in non-military applications (such as making underground oil reservoirs or compressed air energy storages). This in turn increases the value of numerical modeling of nuclear explosions and of their effects on the environment. We develop numerical codes simulating fission chain reactions in a supercritical U and Pu core and the dynamics of the subsequent expansion of generated hot plasma in order to better understand the impact of such explosions on their surroundings. The results of our simulations (of both above ground and underground explosions) of various energy yields are presented.

  20. Characteristics of Radioactive Pollutant From Ground Testing of Nuclear Propulsion Reactors

    The radioactive pollutant resulting from the ground testing of nuclear propulsion reactors is initially released as a distributed vertical line source. The resultant ground-level contamination pattern is much like what would be expected from a two-point release; one at ground level and a second at about 2000 m above ground. The material in the cloud is composed of volatile fission products or the daughters of volatile fission products. The major contributors to the activity are in three mass groups, 89 to 93, 129 to 135, and 140 to 144. The strontiums and yttriums have been measured on the ground and aloft, and tin and antimony have been measured in the cloud aloft as well. In the third group, barium and lanthanum have been measured on the ground and aloft, and cerium has been measured in the aircraft samples. It appears that the reason for the discontinuity between the last two groups is due to xenon remaining in the reactor. The pollutant, at distance, behaves as two clouds, one made up of gaseous material and the second of particulate. The activities of the two remain in a nearly constant ratio out to 25 miles along the hot line. It appears that the gaseous cloud suffers more lateral diffusion than the particulate fraction. The particulate fraction appears to be composed of particles principally in the submicron range. Depletion of the cloud seems to be largely by turbulent impaction or sorption. Correlation between airborne levels and ground concentrations is poor. Deposition velocities which have been measured are statistical in nature and show a log normal distribution with a mean of 0.5 cm/sec and a geometric standard deviation of about 10. The concept of a constant deposition velocity is most probably not valid. (author)

  1. Rehabilitation of nuclear test site at Maralinga

    A program to rehabilitate contaminated areas at the Maralinga Nuclear Test Range in South Australia is being undertaken by the Australian Department of Primary Industries and Energy (DPIE). A major part of the program is directed at reducing the risk presented by the contaminated debris buried at Taranaki, Maralinga's most heavily contaminated site. The rehabilitation program is using the insitu vitrification technology developed for the US Department of Energy. The program is now in its third phase, involving the construction of the full-scale treatment plant. This will be completed later this year. The fourth and last phase will involve the treatment of the Taranaki pits. This will commence in 1998. Tests carried out so far indicated that the normalized leach rates for all oxides in the vitrified product were less than 0.1g/m2. ills

  2. Studies of Health Effects from Nuclear Testing near the Semipalatinsk Nuclear Test Site, Kazakhstan

    Bernd Grosche

    2015-05-01

    Full Text Available The nuclear bomb testing conducted at the Semipalatinsk nuclear test site in Kazakhstan is of great importance for today’s radiation protection research, particularly in the area of low dose exposures. This type of radiation is of particular interest due to the lack of research in this field and how it impacts population health. In order to understand the possible health effects of nuclear bomb testing, it is important to determine what studies have been conducted on the effects of low dose exposure and dosimetry, and evaluate new epidemiologic data and biological material collected from populations living in proximity to the test site. With time, new epidemiological data has been made available, and it is possible that these data may be linked to biological samples. Next to linking existing and newly available data to examine health effects, the existing dosimetry system needs to be expanded and further developed to include residential areas, which have not yet been taken into account. The aim of this paper is to provide an overview of previous studies evaluating the health effects of nuclear testing, including some information on dosimetry efforts, and pointing out directions for future epidemiologic studies.

  3. Sensitivity of Backscatter Intensity of ALOS/PALSAR to Above-ground Biomass and Other Biophysical Parameters of Boreal Forests in Alaska and Japan

    Suzuki, R.; Hayashi, M.; Kim, Y.; Ishii, R.; Kobayashi, H.; Shoyama, K.; Adachi, M.; Takahashi, A.; Saigusa, N.; Ito, A.

    2012-12-01

    For the better understanding of the carbon cycle in the global environment, investigations on the spatio-temporal variation of the carbon stock which is stored as vegetation biomass is important. The backscatter intensity of "Phased Array type L-band Synthetic Aperture Radar (PALSAR)" onboard the satellite "Advanced Land Observing Satellite (ALOS)" provides us the information which is applicable to estimate the forest above-ground biomass (AGB). This study examines the sensitivity of the backscatter intensity of ALOS/PALSAR to the forest AGB and other biophysical parameters (tree height, tree diameter at breast height (DBH), and tree stand density) for boreal forests in two geographical regions of Alaska and Kushiro, northern Japan, and compares the sensitivities in two regions. In Alaska, a forest survey was executed in the south-north transect (about 300 km long) along a trans-Alaska pipeline which profiles the ecotone from the boreal forest to tundra in 2007. Forest AGBs and other biophysical parameters at 29 forests along the transect were measured by Bitterlich method. In Kushiro, a forest survey was carried out at 42 forests in 2011 and those parameters were similarly obtained by Bitterlich method. 20 and 2 scenes of ALOS/PALSAR FBD Level 1.5 data that cover the regions in Alaska and Kushiro, respectively, were collected and mosaicked. Backscatter intensities of ALOS/PALSAR in HH (horizontally polarized transmitted and horizontally polarized received) and HV (horizontally polarized transmitted and vertically polarized received) modes were compared with the forest AGB and other biophysical parameters. The intensity generally increased with the increase of those biophysical parameters in both HV and HH modes, but the intensity in HV mode generally had a stronger correlation to those parameters than in HH mode in both Alaska and Kushiro. The HV intensity had strong correlation to the forest AGB and DBH, while weak correlation to the tree stand density in Alaska

  4. Experimental test of nuclear magnetization distribution and nuclear structure models

    Models exist that ascribe the nuclear magnetic fields to the presence of a single nucleon whose spin is not neutralized by pairing it up with that of another nucleon; other models assume that the generation of the magnetic field is shared among some or all nucleons throughout the nucleus. All models predict the same magnetic field external to the nucleus since this is an anchor provided by experiments. The models differ, however, in their predictions of the magnetic field arrangement within the nucleus for which no data exist. The only way to distinguish which model gives the correct description of the nucleus would be to use a probe inserted into the nucleus. The goal of our project was to develop exactly such a probe and to use it to measure fundamental nuclear quantities that have eluded experimental scrutiny. The need for accurately knowing such quantities extends far beyond nuclear physics and has ramifications in parity violation experiments on atomic traps and the testing of the standard model in elementary particle physics. Unlike scattering experiments that employ streams of free particles, our technique to probe the internal magnetic field distribution of the nucleus rests on using a single bound electron. Quantum mechanics shows that an electron in the innermost orbital surrounding the nucleus constantly dives into the nucleus and thus samples the fields that exist inside. This sampling of the nucleus usually results in only minute shifts in the electron s average orbital, which would be difficult to detect. By studying two particular energy states of the electron, we can, however, dramatically enhance the effects of the distribution of the magnetic fields in the nucleus. In fact about 2% of the energy difference between the two states, dubbed the hyperfine splitting, is determined by the effects related to the distribution of magnetic fields in the nucleus, A precise measurement of this energy difference (better than 0.01%) would then allow us to place

  5. Reload Startup Physics Tests for Tianwan Nuclear Power station

    This paper briefly describes the test purposes, test items, test schedules and test equipment's for reload startup physics test's on Unit 1 and 2 of Tianwan Nuclear Power station. Then, an overview of the previous thrice tests and evaluations on the tests results are presented. In the end, the paper shows the development and work direction of optimization project for reload startup physics tests on Unit 1 and 2 of Tianwan Nuclear Power station. (Authors)

  6. Estimating Above-Ground Biomass Within the Footprint of an Eddy-Covariance Flux Tower: Continuous LiDAR Based Estimates Compared With Discrete Inventory and Disturbance History Based Stratification Boundaries

    Ferster, C. J.; Trofymow, J. A.; Coops, N. C.; Chen, B.; Black, T. A.

    2008-12-01

    Eddy-covariance (EC) flux towers provide data about carbon (C) exchange between land and the atmosphere at an ecosystem scale. However, important research questions need to be addressed when placing EC flux towers in complex heterogeneous forest landscapes, such as the coastal forests of Western Canada. Recently available footprint analysis, which describes the contribution function and catchment area where EC flux is being measured, can be used to relate EC flux tower measurements with the biological structure and carbon stock distributions of complex forest landscapes. In this study, above ground biomass is estimated near an EC flux tower using two approaches. In the first approach, a remote sensing based surface representing above ground biomass was estimated using small footprint, discrete return, light detection and ranging (LiDAR) data. Plot level LiDAR metrics were supplemented with metrics calculated using individual tree detection. A multiple regression model was developed to estimate above ground biomass using ground plot and LiDAR data, and then the model was applied across the EC flux footprint area to estimate the spatial distribution of above ground biomass. In the second approach, line boundaries from forest inventory, disturbance history, and site series were used to delineate discrete stratification units and the measured groundplot data assigned to the various strata. Within the heterogeneous tower footprint area, footprint weighting allows us to compare and contrast above ground biomass estimates from these two approaches. Using this methodology we then plan to compare, for the same period, ground-based measurements of ecosystem C stock changes with accumulative EC measured net ecosystem C flux.

  7. Yesterday's, today's and tomorrow's nuclear tests of India and Pakistan

    This paper presents the historical aspects that led India and Pakistan to develop nuclear weapons and to perform nuclear weapon tests: weapons acquisition: today's military capacity, help from foreign countries; motivations: nuclear programs, geo-political aspects; results and potentialities; consequences for the non-proliferation systems and for the cut-off convention and test-ban treaties; and the geo-strategic consequences of todays's military nuclear capacity of India and Pakistan. (J.S.)

  8. Development of nuclear technologies and conversion of nuclear weapon testing system infrastructure in Kazakhstan

    The article gives a brief description of the work done by the National Nuclear Center of the Republic of Kazakhstan in development of nuclear technology and conversion of nuclear weapon testing infrastructure in Kazakhstan. Content and trends of works are as follows: 1. Peaceful use of all physical facilities, created earlier for nuclear tests in Kazakhstan; 2. Development of methods and technologies for safe nuclear reactors use; 3. Examination of different materials in field of great neutron flow for thermonuclear reactor's first wall development; 4. Liquidation of all wells, which were formed in the results of underground nuclear explosions in Degelen mountain massif of former Semipalatinsk test site; 5. Study of consequences of nuclear tests in West Kazakhstan (territory of Azgir test site and Karachaganak oil field); 6. Study of radiological situation on the Semipalatinsk test site and surrounding territories; 7. Search of ways for high-level radioactive wastes disposal; 8. Construction of safe nuclear power plants in Kazakhstan

  9. Some Qualitative Requirements for Testing of Nuclear Emergency Response Robots

    Korea Atomic Energy Research Institute (KAERI) is carrying out the project 'Development of Core Technology for Remote Response in Nuclear Emergency Situation', and as a part of the project, we are studying the reliability and performance requirements of nuclear emergency response robots. In this paper, we described some qualitative requirements for testing of nuclear emergency response robots which are different to general emergency response robots. We briefly introduced test requirements of general emergency response robots and described some qualitative aspects of test requirements for nuclear emergency response robots. When considering an immature field-robot technology and variety of nuclear emergency situations, it seems hard to establish quantitative test requirements of these robots at this time. However, based on studies of nuclear severe accidents and the experience of Fukushima NPP accident, we can expect some test requirements including quantitative ones for nuclear emergency response robots

  10. Some Qualitative Requirements for Testing of Nuclear Emergency Response Robots

    Eom, Heungseop; Cho, Jai Wan; Choi, Youngsoo; Jeong, Kyungmin [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    Korea Atomic Energy Research Institute (KAERI) is carrying out the project 'Development of Core Technology for Remote Response in Nuclear Emergency Situation', and as a part of the project, we are studying the reliability and performance requirements of nuclear emergency response robots. In this paper, we described some qualitative requirements for testing of nuclear emergency response robots which are different to general emergency response robots. We briefly introduced test requirements of general emergency response robots and described some qualitative aspects of test requirements for nuclear emergency response robots. When considering an immature field-robot technology and variety of nuclear emergency situations, it seems hard to establish quantitative test requirements of these robots at this time. However, based on studies of nuclear severe accidents and the experience of Fukushima NPP accident, we can expect some test requirements including quantitative ones for nuclear emergency response robots.

  11. Radioiodine prediction model for nuclear tests

    Over a 5-year period, 14 major experiments were conducted to investigate the air-forage-cow-milk system for transfer of radioiodine. The experiments included controlled releases using prepared aerosols, planned releases during Plowshare cratering tests, and releases due to accidental venting of underground nuclear tests. Two or more groups of dairy cows, three to six cows per group, were used in each experiment to study the effect on radioiodine transfer of such factors as: the mode of exposure, the type and state of forage fed, the type of aerosol, and variations in feeding practices. In each experiment, measurements were made of the total radioiodine intake and output in milk of the cows, the concentrations in forage and milk, the gaseous and particulate air concentrations, the open-field gamma exposure rate, and the deposition per unit area. The mean values of the experimental data are assembled in this report and are used to develop the parameters for a standard milk excretion pattern for dairy cows and to develop predictive equations for radioiodine. The resultant equations, for predicting the infinite dose to a 2-gram human thyroid caused by ingestion of 131I, are presented

  12. The risk of leukaemia in young children from exposure to tritium and carbon-14 in the discharges of German nuclear power stations and in the fallout from atmospheric nuclear weapons testing.

    Wakeford, Richard

    2014-05-01

    Towards the end of 2007, the results were published from a case-control study (the "KiKK Study") of cancer in young children, diagnosed tritium and carbon-14 discharges in this supposedly severe underestimation of risk. Both (3)H and (14)C are generated naturally in the upper atmosphere, and substantial increases in these radionuclides in the environment occurred as a result of their production by atmospheric testing of nuclear weapons during the late 1950s and early 1960s. If the leukaemogenic effect of these radionuclides has been seriously underestimated to the degree necessary to explain the KiKK Study findings, then a pronounced increase in the worldwide incidence of leukaemia among young children should have followed the notably elevated exposure to (3)H and (14)C from nuclear weapons testing fallout. To investigate this hypothesis, the time series of incidence rates of leukaemia among young children <5 years of age at diagnosis has been examined from ten cancer registries from three continents and both hemispheres, which include registration data from the early 1960s or before. No evidence of a markedly increased risk of leukaemia in young children following the peak of above-ground nuclear weapons testing, or that incidence rates are related to level of exposure to fallout, is apparent from these registration rates, providing strong grounds for discounting the idea that the risk of leukaemia in young children from (3)H or (14)C (or any other radionuclide present in both nuclear weapons testing fallout and discharges from nuclear installations) has been grossly underestimated and that such exposure can account for the findings of the KiKK Study. PMID:24477409

  13. Current Status of Nuclear Fuel Irradiation Test at HANARO

    Yang, Seong Woo; Park, Seung Jae; Shin, Yoon Taeg; Choo, Kee Nam; Cho, Man Soon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    The in-pile testing of HANARO demand of not only the reactor core and structure material but also the nuclear fuel is recently increased to verify its irradiation performance, some fuel irradiation tests were planned and conducted using the irradiation test capsule in OR irradiation hole at HANARO. In this paper, the current status of irradiation test for the nuclear fuels at HANARO is reported. The current status of nuclear fuel irradiation test was reported. The irradiation test for plate, particle, pellet and metallic fuel for the development of research reactor, VHTR, LWR, SFR was planned and conducted at HANARO.

  14. Calculated concentrations of any radionuclide deposited on the ground by release from underground nuclear detonations, tests of nuclear rockets, and tests of nuclear ramjet engines

    This report presents calculated gamma radiation exposure rates and ground deposition of related radionuclides resulting from three types of event that deposited detectable radioactivity outside the Nevada Test Site complex, namely, underground nuclear detonations, tests of nuclear rocket engines and tests of nuclear ramjet engines

  15. Nuclear fuel manufacturing. Testing nuclear materials and materials of nuclear interest

    Adopting CANDU system for nuclear energy production in Romania was argued by utilization of natural uranium, no isotopic enrichment being required for the fissile nuclide. Manufacturing the nuclear fuel, testing nuclear materials and materials for nuclear use, designing and realisation of the installations associated to the fabrication and testing were the main directions of activity of INR - Pitesti, from its inception. The report presents the main results in the fabrication of nuclear fuel and material testing. There are described the stages of fabrication of sintered powders of uranium dioxide starting from uranium nitrate solution. Efforts for refining uranium nitrate up to the required level of nuclear purity were eventually finalised by working out a technology of sintered uranium dioxide, a technology later on transferred to the pilot plant 'R' and then to the industrial Unit 'E'. In parallel, activities for processing of half-finished Zircaloy 4, for fabrication of sheathing components of uranium dioxide pellets and assembling of fuel clusters were developed. Over 100 experimental fuel elements were manufactured and pre-irradiation characterized in order to check the fabrication technologies as well as the computer codes for calculation of the CANDU type fuel behavior in normal and accident conditions. The irradiation testing of the fuel manufactured in INR was done in the NRU (Canada), MZFR (Germany), BR - 2 (Belgium) and TRIGA (Pitesti, Romania) reactors, while the post-irradiation examination was carried out in the hot loops of the INR reactor. In addition, other relating activities were developed as for instance: establishing technologies for re-entry in the fabrication flow of the UO2 sintered powders, of some recyclable materials and integral recovery of uranium from wastes; testing of the materials to be used in the UO2 sintering powders and identification of reagents and indigenous materials; implementation of the quality assurance systems; testing

  16. Nuclear Materials Management for the Nevada Test Site (NTS)

    The Nevada Test Site (NTS) has transitioned from its historical role of weapons testing to a broader role that is focused on being a solution to multiple National Nuclear Security Administration (NNSA) challenges and opportunities with nuclear materials for the nation. NTS is supporting other NNSA sites challenged with safe nuclear materials storage and disposition. NNSA, with site involvement, is currently transforming the nuclear stockpile and supporting infrastructure to meet the 2030 vision. Efforts are under way to make the production complex smaller, more consolidated, and more modern. With respect to the nuclear material stockpile, the NNSA sites are currently reducing the complex nuclear material inventory through dispositioning and consolidating nuclear material. This includes moving material from other sites to NTS. State-of-the-art nuclear material management and control practices at NTS are essential for NTS to ensure that these new activities are accomplished in a safe, secure, efficient, and environmentally responsible manner. NTS is aggressively addressing this challenge

  17. Analysis of North Korea's Nuclear Tests under Prospect Theory

    North Korea has chosen nuclear weapons as the means to protect its sovereignty. Despite international society's endeavors and sanctions to encourage North Korea to abandon its nuclear ambition, North Korea has repeatedly conducted nuclear testing. In this paper, the reason for North Korea's addiction to a nuclear arsenal is addressed within the framework of cognitive psychology. The prospect theory addresses an epistemological approach usually overlooked in rational choice theories. It provides useful implications why North Korea, being under a crisis situation has thrown out a stable choice but taken on a risky one such as nuclear testing. Under the viewpoint of prospect theory, nuclear tests by North Korea can be understood as follows: The first nuclear test in 2006 is seen as a trial to escape from loss areas such as financial sanctions and regime threats; the second test in 2009 was interpreted as a consequence of the strategy to recover losses by making a direct confrontation against the United States; and the third test in 2013 was understood as an attempt to strengthen internal solidarity after Kim Jong-eun inherited the dynasty, as well as to enhance bargaining power against the United States. Thus, it can be summarized that Pyongyang repeated its nuclear tests to escape from a negative domain and to settle into a positive one. In addition, in the future, North Korea may not be willing to readily give up its nuclear capabilities to ensure the survival of its own regime

  18. Nuclear test-experimental science annual report, Fiscal year 1990

    Fiscal year 1990 was another year of outstanding accomplishments for the Nuclear Test-Experimental Science (NTES) Program at Lawrence Livermore National Laboratory (LLNL). We continued to make progress to enhance the experimental science in the Weapons Program and to improve the operational efficiency and productivity of the Nuclear Test Program

  19. United States nuclear tests, July 1945 through September 1992

    1994-12-01

    This document lists chronologically and alphabetically by name all nuclear tests and simultaneous detonations conducted by the United States from July 1945 through September 1992. Several tests conducted during Operation Dominic involved missile launches from Johnston Atoll. Several of these missile launches were aborted, resulting in the destruction of the missile and nuclear device either on the pad or in the air.

  20. Cancer in People Exposed to Nuclear Weapons Testing

    ... Compensation Programs for People Exposed to Radiation as Part of Nuclear Weapons Testing Between 1945 and 1962, the United States ... involving about 200,000 people were conducted as part of many of these tests. ... several nuclear weapons plant sites were exposed to radiation and other ...

  1. Earth physicist describes US nuclear test monitoring system

    1986-01-01

    The U. S. capabilities to monitor underground nuclear weapons tests in the USSR was examined. American methods used in monitoring the underground nuclear tests are enumerated. The U. S. technical means of monitoring Solviet nuclear weapons testing, and whether it is possible to conduct tests that could not be detected by these means are examined. The worldwide seismic station network in 55 countries available to the U. S. for seismic detection and measurement of underground nuclear explosions, and also the systems of seismic research observatories in 15 countries and seismic grouping stations in 12 countries are outlined including the advanced computerized data processing capabilities of these facilities. The level of capability of the U. S. seismic system for monitoring nuclear tests, other, nonseismic means of monitoring, such as hydroacoustic and recording of effects in the atmosphere, ionosphere, and the Earth's magnetic field, are discussed.

  2. The struggle of the veterans of the French nuclear tests

    The question debated in this article concerns the demand of compensation and recognition of the impact on their health of nuclear tests. The military personnel that worked during nuclear tests in French Polynesia and the Sahara sites, but also the inhabitants of the atolls of Moruroa and Fangataufa equally in French Polynesia. An observatory of the veterans health has been created in order to improve the medical management of military personnel and former military personnel. An association 'Moruroa e tatou' contains the Polynesian former workers of the Nuclear tests of the Pacific and the association A.V.E.N. contains the veterans of nuclear tests. numerous examples are detailed. The question is tackled too for the consequences on health of the British nuclear tests, in Australia, Christmas Islands, and New Zealand. (N.C.)

  3. Testing the nuclear will of Japan

    Backer, David A.

    2007-01-01

    Increasing instability in the Northeast Asian region, decreasing faith in the U.S.-Japan security alliance, and the growing Chinese presence in the Northeast Asian region have caused Japanese politicians to revisit an issue that has been discussed three times in their history. The current issue is that, based on the above factors, Japan is once again considering whether or not the advantages of becoming a nuclear power outweigh the advantages of remaining a non-nuclear state. The purpose...

  4. Rover nuclear rocket engine program: Overview of rover engine tests

    Finseth, J. L.

    1991-01-01

    The results of nuclear rocket development activities from the inception of the ROVER program in 1955 through the termination of activities on January 5, 1973 are summarized. This report discusses the nuclear reactor test configurations (non cold flow) along with the nuclear furnace demonstrated during this time frame. Included in the report are brief descriptions of the propulsion systems, test objectives, accomplishments, technical issues, and relevant test results for the various reactor tests. Additionally, this document is specifically aimed at reporting performance data and their relationship to fuel element development with little or no emphasis on other (important) items.

  5. DPRK nuclear test. Statement by IAEA Director General

    Full text: IAEA Director General Mohamed ElBaradei deeply regrets, and expresses serious concern, about the reported carrying-out of a nuclear test earlier today by the Democratic People's Republic of Korea (DPRK). This reported nuclear test threatens the nuclear non-proliferation regime and creates serious security challenges not only for the East Asian region but also for the international community. The breaking of a de-facto global moratorium on nuclear explosive testing that has been in place for nearly a decade and the addition of a new State with nuclear weapon capacity is a clear setback to international commitments to move towards nuclear disarmament, said the Director General. Dr. ElBaradei further reiterates the urgent need - more than any time before - for establishing a legally binding universal ban on nuclear testing through the early entry-into-force of the Comprehensive Nuclear-Test Ban Treaty. Dr. ElBaradei continues to believe in the importance of finding a negotiated solution to the current situation regarding the DPRK nuclear issue. The Director General believes that resumption of dialogue between all concerned parties is indispensable and urgent. (IAEA)

  6. Recent irradiation tests for future nuclear system at HANARO

    Cho, Man Soon; Choo, Kee Nam; Yang, Seong Woo; Park, Sang Jun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-05-15

    The capsule at HANARO is a device that evaluates the irradiation effects of nuclear materials and fuels, which can reproduce the environment of nuclear power plants and accelerate to reach to the end of life condition. As the integrity assessment and the extension of lifetime of nuclear power plants are recently considered as important issues in Korea, the requirements for irradiation test are gradually being increased. The capacity and capability irradiation tests at HANARO are becoming important because Korea strives to develop SFR (Sodium-cooled Fast Reactor) and VHTR (Very High Temperature Reactor) among the future nuclear system and to export the research reactors and to develop the fusion reactor technology.

  7. Recent irradiation tests for future nuclear system at HANARO

    The capsule at HANARO is a device that evaluates the irradiation effects of nuclear materials and fuels, which can reproduce the environment of nuclear power plants and accelerate to reach to the end of life condition. As the integrity assessment and the extension of lifetime of nuclear power plants are recently considered as important issues in Korea, the requirements for irradiation test are gradually being increased. The capacity and capability irradiation tests at HANARO are becoming important because Korea strives to develop SFR (Sodium-cooled Fast Reactor) and VHTR (Very High Temperature Reactor) among the future nuclear system and to export the research reactors and to develop the fusion reactor technology.

  8. Nuclear analyses of Indian LLCB test blanket system in ITER

    Heading towards the Nuclear Fusion Reactor Program, India is developing Lead Lithium Ceramic Breeder (LLCB) tritium breeding blanket for its future fusion Reactor. A mock-up of the LLCB blanket is proposed to be tested in ITER equatorial port no. 2, to ensure the overall performance of blanket in reactor relevant nuclear fusion environment. Nuclear analyses play an important role in LLCB Test Blanket System development. It is required for tritium breeding estimation, thermal-hydraulic design, coolants process design, radio-active waste management, equipments maintenance and replacement strategies and nuclear safety. To predict the nuclear behaviour of LLCB test blanket module in ITER, nuclear responses like tritium production, nuclear heating, neutron fluxes and radiation damages are estimated. As a part of ITER machine, LLCB TBS has to follow certain nuclear shielding requirements i.e. shutdown dose rates should not exceed the defined limits in ITER premises (inside bio-shield ∼100 μSv/hr after 12 days cooling and outside bio-shield ∼10 μSv/hr after 1 day cooling). Hence nuclear analyses are performed to assess and optimize the shielding capability of LLCB TBS inside and outside bio-shield. To state the radio-activity level of LLCB TBS components which support the rad-waste and safety assessment, nuclear activation analyses are executed. Nuclear analyses of LLCB TBS are performed using ITER recommended nuclear analyses codes (i.e. MCNP, EASY), nuclear cross section data libraries (i.e. FENDL 2.1, EAF) and neutronic model (ITER C-lite v.1). The paper describes comprehensive nuclear performance of LLCB TBS in ITER. (author)

  9. Testing quantum correlations with nuclear probes

    We investigated the feasibility of quantum-correlation measurements in nuclear physics experiments. In the first approach, we measured spin correlations of singlet-spin (1S0) proton pairs, which were generated in 1H(d,2He) and 12C(d,2He) nuclear charge-exchange reactions. The experiment was optimized for a clean preparation of the 2He singlet state and offered a 2π detection geometry for both protons in the exit channel. Our results confirm the effectiveness of the setup for these studies, despite limitations of a small data sample recorded during the feasibility studies

  10. Nuclear weapons tests detectable worldwide by means of seismographic recording

    The site and intensity of nuclear weapons tests can be reliably determined by measurement and suitable interpretation of seismic waves. A seismic focus is up to 20 times larger than the destruction zone of a comparably strong explosion, so that a seismic event will last longer by one order of magnitude than an explosion. Nuclear weapons tests induce much more high-frequency vibrations than a seismic event, and a seismic event normally proceeds in a series of subsequent shocks. Diaphragms applied in the range 10 to 30 Hz considerably improve the signal-to-noise ratio of systems for the detection of nuclear weapons tests. (orig./DG)

  11. Semipalatinsk nuclear test site: History of building and function

    A vast materials on history of Semipalatinsk nuclear test site creation and it building and function are presented. Authors with big reliability report one page of Kazakhstan's history. In steppe on naked place thousands of soldiers and officers, construct and military specialists have built the nuclear site on which during 40 years were conducting nuclear tests . Prolonged chronic radiation on population living near by site results to tragedy which is confessed by General Assembly of United Nations. In the book aspects of test site conversion and rehabilitation of injured population are considered. The book consists of introduction, three chapters and conclusion. The book is intended to wide circle of readers. (author)

  12. Application of bounding spectra to seismic design of piping based on the performance of above ground piping in power plants subjected to strong motion earthquakes

    This report extends the potential application of Bounding Spectra evaluation procedures, developed as part of the A-46 Unresolved Safety Issue applicable to seismic verification of in-situ electrical and mechanical equipment, to in-situ safety related piping in nuclear power plants. The report presents a summary of earthquake experience data which define the behavior of typical U.S. power plant piping subject to strong motion earthquakes. The report defines those piping system caveats which would assure the seismic adequacy of the piping systems which meet those caveats and whose seismic demand are within the bounding spectra input. Based on the observed behavior of piping in strong motion earthquakes, the report describes the capabilities of the piping system to carry seismic loads as a function of the type of connection (i.e. threaded versus welded). This report also discusses in some detail the basic causes and mechanisms for earthquake damages and failures to power plant piping systems

  13. Fabrication Process of a Nuclear Fuel Test Rig in HANARO

    To evaluate the performance of newly developed PWR nuclear fuels, an adequate test rig installed in a pressure vessel of IPS, as a part of FTL (Fuel Test Loop) should be fabricated to meet the irradiation purposes. Generally, a nuclear fuel test rig is designed to measure the central temperature of a nuclear fuel pellet and the internal pressure of a fuel rod during an irradiation test. In special cases, it is also designed to measure the swelling or elongation of the fuel rod. The fabrication process of a nuclear fuel test rig that includes a detachable fuel rod assembly has been introduced in this study. Key techniques to fabricate a nuclear fuel test rig have been developed and used in fabricating a test rig mockup. Therefore, to fabricate a new test rig, the tooling of the components and making sub-assemblies that do not include nuclear fuels are out sourced, and the key assembly and sealing processes are carried out in the controlled area using the developed techniques

  14. Fabrication Process of a Nuclear Fuel Test Rig in HANARO

    Hong, Jintae; Joung, Chang-Young; Ahn, Sung-Ho; Heo, Sung-Ho; Kim, Jin-Joo [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    To evaluate the performance of newly developed PWR nuclear fuels, an adequate test rig installed in a pressure vessel of IPS, as a part of FTL (Fuel Test Loop) should be fabricated to meet the irradiation purposes. Generally, a nuclear fuel test rig is designed to measure the central temperature of a nuclear fuel pellet and the internal pressure of a fuel rod during an irradiation test. In special cases, it is also designed to measure the swelling or elongation of the fuel rod. The fabrication process of a nuclear fuel test rig that includes a detachable fuel rod assembly has been introduced in this study. Key techniques to fabricate a nuclear fuel test rig have been developed and used in fabricating a test rig mockup. Therefore, to fabricate a new test rig, the tooling of the components and making sub-assemblies that do not include nuclear fuels are out sourced, and the key assembly and sealing processes are carried out in the controlled area using the developed techniques.

  15. Drought and root herbivory interact to alter the response of above-ground parasitoids to aphid infested plants and associated plant volatile signals

    Muhammad Tariq; Wright, Denis J.; Bruce, Toby J. A.; Staley, Joanna T.

    2013-01-01

    Multitrophic interactions are likely to be altered by climate change but there is little empirical evidence relating the responses of herbivores and parasitoids to abiotic factors. Here we investigated the effects of drought on an above/below-ground system comprising a generalist and a specialist aphid species (foliar herbivores), their parasitoids, and a dipteran species (root herbivore).We tested the hypotheses that: (1) high levels of drought stress and below-ground herbivory interact to r...

  16. Nuclear Weapons Tests and Environmental Consequences: A Global Perspective

    Prăvălie, Remus

    2014-01-01

    The beginning of the atomic age marked the outset of nuclear weapons testing, which is responsible for the radioactive contamination of a large number of sites worldwide. The paper aims to analyze nuclear weapons tests conducted in the second half of the twentieth century, highlighting the impact of radioactive pollution on the atmospheric, aquatic, and underground environments. Special attention was given to the concentration of main radioactive isotopes which were released, such as 14C, 137...

  17. Detailed Burnup Calculations for Testing Nuclear Data

    Leszczynski, F.

    2005-05-01

    A general method (MCQ) has been developed by introducing a microscopic burnup scheme that uses the Monte Carlo calculated fluxes and microscopic reaction rates of a complex system and a depletion code for burnup calculations as a basis for solving nuclide material balance equations for each spatial region in which the system is divided. Continuous energy-dependent cross-section libraries and full 3D geometry of the system can be input for the calculations. The resulting predictions for the system at successive burnup time steps are thus based on a calculation route where both geometry and cross sections are accurately represented, without geometry simplifications and with continuous energy data, providing an independent approach for benchmarking other methods and nuclear data of actinides, fission products, and other burnable absorbers. The main advantage of this method over the classical deterministic methods currently used is that the MCQ System is a direct 3D method without the limitations and errors introduced on the homogenization of geometry and condensation of energy of deterministic methods. The Monte Carlo and burnup codes adopted until now are the widely used MCNP and ORIGEN codes, but other codes can be used also. For using this method, there is need of a well-known set of nuclear data for isotopes involved in burnup chains, including burnable poisons, fission products, and actinides. For fixing the data to be included in this set, a study of the present status of nuclear data is performed, as part of the development of the MCQ method. This study begins with a review of the available cross-section data of isotopes involved in burnup chains for power and research nuclear reactors. The main data needs for burnup calculations are neutron cross sections, decay constants, branching ratios, fission energy, and yields. The present work includes results of selected experimental benchmarks and conclusions about the sensitivity of different sets of cross

  18. On the population dose around the Semipalatinsk nuclear test site

    Since 1949 the Semipalatinsk Nuclear Test Site (NTS) was extensively used by the former Soviet government as a testing range for atomic weapons. Atmospheric and underground tests were finally stopped in 1962 and 1989, respectively. The Ministry of the Russian Federation of Atomic Energy officially counts a total of 456 tests, including 116 atmospheric tests. The total yield of the nuclear explosions carried out was 6.3 Megatons equivalent with 6.7 PetaBq of 137Cs and 3.7 PetaBq of 90Sr being released into the athmosphere. Some of the athmospheric radioactive tests shielded plumes, which extended far beyond the outer borders of the NTS. Already the first Soviet atomic bomb test on August 29, 1949 due to unfavourable meteorological conditions affected the villages of Dolon and Moistik. Since 1995 joint investigations performed by the Research Centre Julich in cooperation with the Kazakh National Nuclear Centre in the region of the former nuclear test site near Semipalatinsk besides environmental measurents also involve the assessment of the current dose of the population at and around the test site in addition to the important retrospective determination of the dose of persons affected by the atmospheric tests

  19. Los Alamos studies of the Nevada test site facilities for the testing of nuclear rockets

    Hynes, Michael V.

    1993-01-01

    The topics are presented in viewgraph form and include the following: Nevada test site geographic location; location of NRDA facilities, area 25; assessment program plan; program goal, scope, and process -- the New Nuclear Rocket Program; nuclear rocket engine test facilities; EMAD Facility; summary of final assessment results; ETS-1 Facility; and facilities cost summary.

  20. Nuclebras' installations for performance tests of nuclear power plants components

    The reasons for Nuclebras' Nuclear Technology Development Center to implement a laboratory for supporting Brazilian manufactures, giving to them the means for performing functional tests of industrial products, are presented. A brief description of facilities under construction: the components Test Loop and Facility for Testing N.P.P. components under Accident conditions, and other already in operation, as well as its objectives and main technical characteristics. Some test results had already obtained are also presented. (Author)

  1. NUCLEBRAS' installations for tests of nuclear power plants components

    The reasons for NUCLEBRAS' Nuclear Technology Development Center to implement a laboratory for supporting Brazilian manufacturers, giving to them the means for performing functional tests of industrial products, are presented. A brief description of the facilities under construction: the Components Test Loop and the Facility for Testing N.P.P. Components under Accident Conditions, and of other already in operation, is given, as well as its objectives and main technical characteristics. Some test results already obtained are also presented. (Author)

  2. The startup physics tests of Qinshan nuclear power plant

    The first startup physics tests of Qinshan Nuclear Power Company's 300 MW PWR are presented. These include the first initial criticality and low power physics tests. Testing items include critical boron concentration, control rod worth, boron worth, power distribution, temperature coefficient of moderator, minimum shutdown boron concentration, rod cluster shoot-out worth, etc. The results of tests verified that the basic requirements for the design and safety of the core have been satisfied

  3. Performance tests for integral reactor nuclear fuel

    Sohn, Dong-Seong; Yim, Jeong-Sik; Lee, Chong-Tak; Kim, Han-Soo; Koo, Yang-Hyun; Lee, Byung-Ho; Cheon, Jin-Sik; Oh, Je-Yong

    2006-02-15

    An integral type reactor SMART plans to utilize metallic Zr-U fuel which is Zr-based alloy with 34{approx}38 wt% U. In order to verify the technologies for the design and manufacturing of the fuel and get a license, performance tests were carried out. Experimental Fuel Assembly (EFA) manufactured in KAERI is being successfully irradiated in the MIR reactor of RIAR from September 4 2004, and it has achieved burnup of 0.21 g/cc as of January 25 2006. Thermal properties of irradiated Zr-U fuel were measured. Up to the phase transformation temperature, thermal diffusivity increased linearly in proportion to temperature. However its dependence on the burnup was not significant. RIA tests with 4 unirradiated Zr-U fuel rods were performed in Kurchatov Institute to establish a safety criterion. In the case of the un-irradiated Zr-U fuel, the energy deposition during the control rod ejection accident should be less than 172 cal/g to prevent the failure accompanying fuel fragmentation and dispersal. Finally the irradiation tests of fuel rods have been performed at HANARO. The HITE-2 test was successfully completed up to a burnup of 0.31 g/cc. The HITE-3 test began in February 2004 and will be continued up to a target burnup of 0.6 g/cc.

  4. Performance tests for integral reactor nuclear fuel

    An integral type reactor SMART plans to utilize metallic Zr-U fuel which is Zr-based alloy with 34∼38 wt% U. In order to verify the technologies for the design and manufacturing of the fuel and get a license, performance tests were carried out. Experimental Fuel Assembly (EFA) manufactured in KAERI is being successfully irradiated in the MIR reactor of RIAR from September 4 2004, and it has achieved burnup of 0.21 g/cc as of January 25 2006. Thermal properties of irradiated Zr-U fuel were measured. Up to the phase transformation temperature, thermal diffusivity increased linearly in proportion to temperature. However its dependence on the burnup was not significant. RIA tests with 4 unirradiated Zr-U fuel rods were performed in Kurchatov Institute to establish a safety criterion. In the case of the un-irradiated Zr-U fuel, the energy deposition during the control rod ejection accident should be less than 172 cal/g to prevent the failure accompanying fuel fragmentation and dispersal. Finally the irradiation tests of fuel rods have been performed at HANARO. The HITE-2 test was successfully completed up to a burnup of 0.31 g/cc. The HITE-3 test began in February 2004 and will be continued up to a target burnup of 0.6 g/cc

  5. Seismic qualification tests of nuclear service pressure relief valves

    This paper reports on the pressure relief valves which provide an overpressure protection of vessels and piping in the nuclear power plant. A seismic qualification of these valves is essential to ensure their structural integrity and operability under earthquake and other dynamic conditions. Four spring loaded pressure relief valves were qualified by dynamic testing in response to a need for an overseas nuclear power plant construction. The test valves were actual production valves in 3/4 to 3 inch sizes and weighed approximately 11 to 110 lb. Each valve was subjected to triaxial random multifrequency testing (RMF), resonance search testing, sine beat testing and impact resonance search testing. Very briefly, the dynamic test conditions enveloped the specified required response spectra (RRS) and required input motion (RIM) vibratory conditions. Each valve input motion (RIM) vibratory conditions. Each valve was also tested to determine valve action, opening pressure and lift characteristics prior to, during, and after various dynamic tests. The valve leakage was also checked except during the dynamic testing. The test results showed very satisfactory operability of all four valves before, during and after the dynamic tests. These and other geometrically/functionally similar valves have also met the seismic qualification requirements of several other domestic and overseas nuclear power plants

  6. Proving test on the reliability for nuclear valves

    Since valves are the most common components, they could be the most frequent causes of troubles in nuclear power plants. This proving test, therefore, has an important meaning to examine and verify the reliability of various valves under simulating conditions of abnormal and transient operations of the nuclear power plant. The test was performed mainly for the various types and pressure ratings of valves which were used in the primary and secondary systems in BWR and PWR nuclear power plants and which had major operating or safety related functions in those nuclear power plants. The results of the proving test, confirmed for more than four years, showed relatively favourable performance of the tested valves. It is concluded that performances of valves including operability, seat sealing and structural integrity were proved under the thermal cycling, vibration and pipe reaction load conditions. Operating functions during and after accident such as loss of coolant accident were satisfactory. From these results, it was considered that the purpose of this proving test was satisfactorily fulfilled. Several data accumulated by the test would be useful to get better reliability if it was evaluated with the actually experienced data of valves in the nuclear power plants. (Nogami, K.)

  7. Verifying seismic design of nuclear reactors by testing. Volume 1: test plan

    This document sets forth recommendations for a verification program to test the ability of operational nuclear power plants to achieve safe shutdown immediately following a safe-shutdown earthquake. The purpose of the study is to develop a program plan to provide assurance by physical demonstration that nuclear power plants are earthquake resistant and to allow nuclear power plant operators to (1) decide whether tests should be conducted on their facilities, (2) specify the tests that should be performed, and (3) estimate the cost of the effort to complete the recommended test program

  8. OFF-SITE MONITORING FOR THE MIGHTY OAK NUCLEAR TEST

    After a nuclear explosives test, code name Mighty Oak, the tunnel leading to the test point became contaminated with radioactive debris. To re-enter and recover valuable equipment and data, the DOE purged the tunnel air using particulate and charcoal filters to minimize discharge...

  9. Task force for integral test of High Energy nuclear data

    Oyama, Yukio [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-11-01

    According to completion of the JENDL-High Energy file for neutron nuclear cross sections up to 50 MeV, a task force for integral test of high energy nuclear data was organized to discuss a guide line for integral test activities. A status of existing differential and integral experiments and how to perform such a test were discussed in the task force. Here the purpose and outline of the task force is explained with some future problems raised in discussion among the task member. (author)

  10. Nuclear Test-Experimental Science: Annual report, fiscal year 1988

    Struble, G.L.; Donohue, M.L.; Bucciarelli, G.; Hymer, J.D.; Kirvel, R.D.; Middleton, C.; Prono, J.; Reid, S.; Strack, B. (eds.)

    1988-01-01

    Fiscal year 1988 has been a significant, rewarding, and exciting period for Lawrence Livermore National Laboratory's nuclear testing program. It was significant in that the Laboratory's new director chose to focus strongly on the program's activities and to commit to a revitalized emphasis on testing and the experimental science that underlies it. It was rewarding in that revolutionary new measurement techniques were fielded on recent important and highly complicated underground nuclear tests with truly incredible results. And it was exciting in that the sophisticated and fundamental problems of weapons science that are now being addressed experimentally are yielding new challenges and understanding in ways that stimulate and reward the brightest and best of scientists. During FY88 the program was reorganized to emphasize our commitment to experimental science. The name of the program was changed to reflect this commitment, becoming the Nuclear Test-Experimental Science (NTES) Program.

  11. The Nuclear Non-Proliferation Treaty and the Comprehensive Nuclear-Test-Ban Treaty, the relationship

    Graham, Thomas Jr. [7609 Glenbrook Rd., Bethesda, MD 20814 (United States)

    2014-05-09

    The Nuclear Non-Proliferation Treaty (NPT) is the most important international security arrangement that we have that is protecting the world community and this has been true for many years. But it did not happen by accident, it is a strategic bargain in which 184 states gave up the right forever to acquire the most powerful weapon ever created in exchange for a commitment from the five states allowed to keep nuclear weapons under the NPT (U.S., U.K., Russia, France and China), to share peaceful nuclear technology and to engage in disarmament negotiations aimed at the ultimate elimination of their nuclear stockpiles. The most important part of this is the comprehensive nuclear test ban (CTBT); the thinking by the 184 NPT non-nuclear weapon states was and is that they understand that the elimination of nuclear weapon stockpiles is a long way off, but at least the NPT nuclear weapon states could stop testing the weapons. The CTBT has been ratified by 161 states but by its terms it can only come into force if 44 nuclear potential states ratify; 36 have of the 44 have ratified it, the remaining eight include the United States and seven others, most of whom are in effect waiting for the United States. No state has tested a nuclear weapon-except for complete outlier North Korea-in 15 years. There appears to be no chance that the U.S. Senate will approve the CTBT for ratification in the foreseeable future, but the NPT may not survive without it. Perhaps it is time to consider an interim measure, for the UN Security Council to declare that any future nuclear weapon test any time, anywhere is a 'threat to peace and security', in effect a violation of international law, which in today's world it clearly would be.

  12. Space Nuclear Thermal Propulsion Nuclear Element Tests at Sandia National Laboratories

    Nuclear Element Tests (NET) are being performed as part of the U.S. Air Force Space Nuclear Thermal Propulsion (SNTP) Program to evaluate high performance fuel elements intended for use in future nuclear propulsion systems. The NET experiments are to be performed at the Sandia National Laboratories (SNL's) Annular Core Research Reactor (ACRR). Objectives of these experiments are to provide engineering validation and demonstration of critical-fuel-element-related technologies and an experimental data base to support analytical design methods for the SNTP Program. Currently, hardware for the first two fueled NET experiments has been fabricated, and cold flow tests have been accomplished with a representative set of hardware to assure the experimental capability to achieve test objectives in-reactor. Assembly of the first NET experiment to test a representative nuclear fuel element is in progress, and planned operational sequences have been defined

  13. Importance of the quality control tests in nuclear medicine

    Full text: The acceptance of nuclear energy and its application by some part of the population are associated with the benefits brought by those activities and the guarantee that the incorporation of this technology will be strictly done according to the currently security norms. This project aims at presenting the Nuclear Medicine tests of control of quality models to assist the National Commission of Nuclear Energy Program of Regulatory Inspection (CNEN). The main aspects related with the radiological protection are discussed along the project and it is presented models that assist the Nuclear Medicine Service, in the matter of Radioprotection paying attention to the requirements of the Regulatory Inspection of CNEN. The fulfilment of such models shows, clearly, that they are fundamental for the radioprotection safety in the Nuclear Medicine Services. (author)

  14. Survey of hazardous materials used in nuclear testing

    Bryant, E.A.; Fabryka-Martin, J.

    1991-02-01

    The use of hazardous'' materials in routine underground nuclear tests at the Nevada Test Site has been reviewed. In addition the inventory of test yields, originally reported in 1976 has been updated. A trail down-hole inventory'' has been conducted for a selected test. The inorganic hazardous materials introduced during testing (with the exception of lead and the fissionable materials) produce an incremental change in the quantity of such materials already present in the geologic media surrounding the test points. 1 ref., 3 tabs.

  15. Devices (manipulators) particularly for ultrasonic tests in nuclear power stations

    The manipulator devices for internal and external tests described in this article, were used successfully in the basic and repeat tests for nearly all West German, Swiss and Austrian nuclear power stations. For older reactors or for reactors originating from abroad one did not take sufficient account of the required accessibility to the test location in the configuration of the reactor pressure vessel, which led to complicated special manipulation devices. The handling of which at site requires a great deal of time. The more modern types of reactors are laid out so as to be easier to test and make a better manipulation test system and better test results possible. (orig./RW)

  16. Nuclear Test Ban: Converting Political Visions to Reality

    Suárez, Gerardo

    2010-05-01

    Negotiations to ban or at least restrict nuclear explosions began not long after the first test was conducted, in the Alamogordo desert of New Mexico on 16 July 1945. In August of that same year, the world witnessed the devastation of the Japanese cities of Hiroshima and Nagasaki and the horrifically destructive power that these weapons are capable of unleashing. Almost 50 years later, the long and tortuous road to negotiating a treaty that comprehensively bans nuclear explosions, whether for alleged peaceful purposes or for weapons development, culminated on 24 September 1996 when the Comprehensive Nuclear-Test-Ban Treaty (CTBT) was opened for signature. In a surge of enthusiasm, that first day the treaty was signed by more than 70 nations, including the five acknowledged nuclear powers. Addressing the United Nations General Assembly, U.S. President Bill Clinton described the CTBT as “the longest-sought, hardest-fought prize in the history of arms control.”

  17. Radioactive fallout in the southern hemisphere from nuclear weapons tests

    Fallout in the southern hemisphere, and its origins in the national programs of atmospheric nuclear weapons testing in both hemispheres, are reviewed. Of the 390 nuclear tests conducted in the atmosphere to date, 53 were carried out in the southern hemisphere and it is the second phase of these, between 1966 and 1974, that is seen to have been responsible for the main fallout of short-lived fission products in the southern hemisphere. In contrast to this, the programs of atmospheric nuclear testing in the northern hemisphere up to 1962 are shown to have been the main source of long-lived fission products in fallout in the southern hemisphere. The course followed by this contamination through the environment of the southern hemisphere is traced for the national programs of nuclear testing after 1962 taken separately (France, China) and for the earlier national programs taken together (U.S.S.R., U.S.A. and U.K.). The impact on populations in the southern hemisphere of fallout from atmospheric nuclear weapons tests to date is assessed

  18. A new role of proficiency testing in nuclear analytical work

    Heydorn, Kaj

    2008-01-01

    The most recent definition of measurement result requires a statement of uncertainty whenever results obtained by nuclear or other quantitative methods of analysis are reported. Proficiency testing (PT) therefore must include the ability of laboratories to present not only unbiased quantity values...... laboratory intercomparison of uranium isotopic ratios with very low reported uncertainties. In the paper this example is used to present the situation in the nuclear field....

  19. Nuclear commissioning of the NRU blowdown test facility

    The Blowdown Test Facility in the NRU reactor will be used to conduct all-effects experiments under postulated Loss-of-Coolant Accident and Severe Fuel Damage conditions. Experiments conducted in the BTF will provide information on the release, transport and deposition of fission products, and the thermal and mechanical behaviour of nuclear fuel under these conditions. This paper describes results from the nuclear commissioning experiment for the BTF. (2 refs., 4 figs.)

  20. On site inspection for nuclear test ban verirication

    P. D. Marschall

    1994-01-01

    The problem of verifying compliance with a nuclear test ban treaty is mainly a technical one. However the problem of detecting, locating and identifying nuclear explosions has, since the late 1950s, been intimately involved with the political problems associated with negotiating a treaty. In fact there are few other areas in which policy, diplomacy and science have been so interwoven. This paper attempts to illustrate how technology can. be applied to solve some of the political problems whic...

  1. Special tests of building structures of Dukovany nuclear power plant

    Two demanding safety tests for leaks are described applied to building structures of the Dukovany nuclear power plant. A hydrostatic leak test was conducted of tanks permanently or temporarily flooded, and an integral leak test was performed of the power plant sealed space. The objective was to show that the structures are leakproof in case of a hypothetical accident of the production unit. The hydrostatic leak test was performed by flooding the central part with 500 m3 of demineralized water. For the integral leak test the sealed space was pressurized with air to a value of 144 kPa. Defects inside the sealed space were continuously detected and removed. The lose of air in 24 hours was calculated. It is recommended that the experience gained should be used to work out standard requirements on leak tests of building structures of nuclear power plants. (Pu)

  2. Crash testing of nuclear fuel shipping containers

    In an attempt to understand the dynamics of extra severe transportation accidents and to evaluate state-of-the-art computational techniques for predicting the dynamic response of shipping casks involved in vehicular system crashes, the Environmental Control Technology Division of ERDA undertook a program with Sandia to investigate these areas. The program encompasses the following distinct major efforts. The first of these utilizes computational methods for predicting the effects of the accident environment and, subsequently, to calculate the damage incurred by a container as the result of such an accident. The second phase involves the testing of 1/8-scale models of transportation systems. Through the use of instrumentation and high-speed motion photography the accident environments and physical damage mechanisms are studied in detail. After correlating the results of these first two phases, a full scale event involving representative hardware is conducted. To date two of the three selected test scenarios have been completed. Results of the program to this point indicate that both computational techniques and scale modeling are viable engineering approaches to studying accident environments and physical damage to shipping casks

  3. Periodic testing of safety valves of nuclear facilities

    The report is concerned with the periodic performance testing of the pressure relief devices, i.e. safety and relief valves, used in nuclear power plants. The factors affecting the operation of safety and relief valves are described and the requirements and instructions presented in the literature for testing of safety and relief valves are reviewed. Moreover, some testing procedures and related equipment based on pertinent literature are presented. (30 refs., 11 figs., 4 tabs.)

  4. Recognition structure of semipalatinsk residents caused by nuclear explosion tests

    Authors' team of Hiroshima University and Scientific Research Institute of Radiation Medicine and Ecology (Kazakhstan) has been investigating the health state, exposure route, contents and mental effect of nuclear explosion tests of Semipalatinsk residents through their witness and questionnaire since 2002, to elucidate the humanistic damage of nuclear tests. Reported here is the recognition structure in the title statistically analyzed with use of frequently spoken words in the witness. The audit was performed in 2002-2007 to 994 residents who had experienced ground explosion tests during the period from 1949 to 1962 and were living in 26 villages near the old test site. Asked questions concerning nuclear tests involved such items as still unforgettable matters, dreadful events, regretting things, thought about the test, requests; and matters about themselves, their family, close friends and anything. The frequency of the test site-related words heard in the interview were analyzed with hierarchical clustering and multi-dimensional scaling with a statistic software R for computation and MeCab for morphological analysis. Residents' recognition was found to be of two structures of memory at explosion tests and anger/dissatisfaction/anxiety to the present state. The former contained the frequent words of mushroom cloud, flash, blast, ground tremble and outdoor evacuation, and the latter, mostly anxiety about health of themselves and family. Thus residents have had to be confronted with uneasiness of their health even 20 years after the closure of the test site. (T.T.)

  5. On-site tests on the nuclear power plants

    On-site tests and experiments are performed by EDF Research and Development Division on the nuclear power plants to assess the behaviour of major components submitted to thermal and vibratory solicitations. On-going studies deal with the qualification of new nuclear power plant standard and with the feedback of plants under operation. The tests, particularly the investigation tests, correspond to large investments and entail an important data volume which must ensure the continuity over a long period of the order of magnitude of the in-service plant life (around 40 years). This paper addresses the on-site experimental activities, describes the means to be used, and gives an example: the qualification of SG of new 1450 MW nuclear power plants. (author)

  6. Penetration Testing Model for Web sites Hosted in Nuclear Malaysia

    Nuclear Malaysia web sites has been very crucial in providing important and useful information and services to the clients as well as the users worldwide. Furthermore, a web site is important as it reflects the organisation image. To ensure the integrity of the content of web site, a study has been made and a penetration testing model has been implemented to test the security of several web sites hosted at Nuclear Malaysia for malicious attempts. This study will explain how the security was tested in the detailed condition and measured. The result determined the security level and the vulnerability of several web sites. This result is important for improving and hardening the security of web sites in Nuclear Malaysia. (author)

  7. Dynamic testing of pressure sensing lines in nuclear power plants

    Commercial nuclear power plants are equipped with instrumentation designed to detect unsafe conditions and, if required, to initiate protective action. The time elapsed between the realization of an unsafe condition and the initiation of protective action is known as the response time of the instrumentation involved. The US Nuclear Regulatory Commission has issued guidelines that advise periodic in situ response-time testing of safety-related instrumentation. No method is currently available for in situ response-time testing of pressure sensing lines (fluid-filled tubes connecting process to pressure transducer). A proposed method of doing just that has been investigated. While the proposed test (the burp test) was found to be impractical, a theoretical description of the sensing line led to the realization that it is probably not necessary to test the response time of sensing lines. Experimental observations backed up this conclusion

  8. Effluent treatment options for nuclear thermal propulsion system ground tests

    A variety of approaches for handling effluent from nuclear thermal propulsion system ground tests in an environmentally acceptable manner are discussed. The functional requirements of effluent treatment are defined and concept options are presented within the framework of these requirements. System concepts differ primarily in the choice of fission-product retention and waste handling concepts. The concept options considered range from closed cycle (venting the exhaust to a closed volume or recirculating the hydrogen in a closed loop) to open cycle (real time processing and venting of the effluent). This paper reviews the strengths and weaknesses of different methods to handle effluent from nuclear thermal propulsion system ground tests

  9. Handling effluent from nuclear thermal propulsion system ground tests

    A variety of approaches for handling effluent from nuclear thermal propulsion system ground tests in an environmentally acceptable manner are discussed. The functional requirements of effluent treatment are defined and concept options are presented within the framework of these requirements. System concepts differ primarily in the choice of fission-product retention and waste handling concepts. The concept options considered range from closed cycle (venting the exhaust to a closed volume or recirculating the hydrogen in a closed loop) to open cycle (real time processing and venting of the effluent). This paper reviews the different methods to handle effluent from nuclear thermal propulsion system ground tests

  10. Parity- and Time-Reversal Tests in Nuclear Physics

    Hertzog, David

    2013-01-01

    Nuclear physics tests of parity- and time-reversal invariance have both shaped the development of the Standard Model and provided key tests of its predictions. These studies now provide vital input in the search for physics beyond the Standard Model. We give a brief review of a few key experimental and theoretical developments in the history of this sub-field of nuclear physics as well as a short outlook, focusing on weak decays, parity-violation in electron scattering, and searches for permanent electric dipole moments of the neutron and neutral atoms.

  11. Parity- and Time-Reversal Tests in Nuclear Physics

    Hertzog, David; Ramsey-Musolf, Michael J.

    2012-01-01

    Nuclear physics tests of parity- and time-reversal invariance have both shaped the development of the Standard Model and provided key tests of its predictions. These studies now provide vital input in the search for physics beyond the Standard Model. We give a brief review of a few key experimental and theoretical developments in the history of this sub-field of nuclear physics as well as a short outlook, focusing on weak decays, parity-violation in electron scattering, and searches for perma...

  12. Capsule irradiation tests of nuclear materials in HANARO

    Several irradiation capsule (3 instrumented and 2 non-instrumented capsules) were designed, fabricated and successfully irradiated in HANARO CT and IR2 test holes since the first non-instrumented capsule of 96M-01K. Those capsule were designed for the irradiation of the RPV (Reactor Pressure Vessel) material used in Korean PWR nuclear reactors. Various instrumentation techniques including temperature measuring and monitoring, gas controlling, micro-heating and neutron fluence monitoring were also developed for the capsule irradiation system. Through the irradiation tests, the obtained experience and design data will be effectively applied to the capsule design of other nuclear materials. (author)

  13. The initial criticality and nuclear commissioning test program at HANARO

    The construction of the Korea Multipurpose Research Reactor - HANARO of 3MW, developed by Korea Atomic Energy Research Institute, was completed at the beginning of this year. The first fuel loading began on February 2 1995, and initial criticality was achieved on February 8, when the core had four 18-element assemblies and thirteen 36-element assemblies. The critical control rod position was 600.8 mm which represents excess reactivity of 0.71 $. Currently the nuclear commissioning test is on going under the zero power range. This paper describes the initial criticality approach of the HANARO, and its nuclear commissioning test program. (author)

  14. From Alamogordo to the Nuclear Test-Ban Treaty

    Friedlander, Michael

    2008-04-01

    After W.W.II., the U.S. continued its program for the development of nuclear weapons. Winds carried radioactive debris far beyond the Nevada test site, and these fission products were deposited by rain, to enter the human food chain. The isotopes of greatest concern were Sr90 and I131, that, after ingestion, become concentrated in bone and thyroid respectively. There was a growing public anxiety about possible heath hazards posed by radiation from this fallout. In March 1958, the Greater St. Louis Citizens' Committee for Nuclear Information (C.N.I.) was formed. Among the leaders of C.N.I. were E. U. Condon and Barry Commoner. The aim of C.N.I. was ``to collect and distribute in the widest possible manner information which the public requires to understand the present and future problems which arise from potential large-scale use of nuclear weapons in war; testing of nuclear weapons; and nonmilitary uses of nuclear energy.'' In accordance with its objectives, members of C.N.I. gave many nontechnical talks, where we described the various forms of radiation and what was then known about the biological effects of radiation. Some of our members testified at Congressional committee hearings. We published a newsletter, initially titled Nuclear Information, and later Scientist and Citizen. In this presentation, I will describe some of the activities of this idealistic organization.

  15. Nuclear tests of lepton number and CP nonconservation

    I will discuss two topics, double beta decay and time-reversal-odd nuclear moments, in which important questions of nuclear structure must be addressed. These problems are taken from a growing class of nuclear and atomic experiments in which the special properties of many-body systems are exploited to test properties of elementary particles. Nuclei can serve as filters for interactions by providing kinematic windows where only certain processes can occur and by isolating quantum numbers such as spin, isospin, and parity. In addition, the strengths of interesting interactions can be enhanced through the mixing of nearly degenerate levels in nuclei. However, the most important asset of nuclear and atomic experiments is their precision. For example, experiments searching for T-odd nuclear moments exploit techniques for measuring changes in atomic energies of 10-22 eV. Such precision techniques will play an increasingly important role in particle physics. In the discussion of double beta decay and T-odd nuclear moments it will become clear that important nuclear structure issues must be resolved in order to fully exploit the experimental results. During this talk I will highlight this aspect. 29 references

  16. Why nuclear power failed the market test in the UK

    The Conservative Party's manifesto for the general election of May 1987 contained two pledges of relevance to the UK electricity supply industry (ESI). These were to privatize the industry; and to continue to support the development of civil nuclear power in the private sector. As anticipated by some independent commentators, in the event these objectives proved incompatible. The costs of nuclear power have long been a vexed issue and UK nuclear costs have been higher than those in many other countries. While most of the UK ESI has now been privatized, nuclear generation remains in the public sector. This article seeks to explore the reasons for this fundamental and politically embarrassing policy reversal, a rarity under three successive Conservative administrations since 1979. It would be incorrect to argue that private ownership and nuclear power are inherently incompatible. Rather the specific - competitive - form of privatization proposed for the UK failed to provide sufficient guarantees for the London capital market. Thus, at least in this specific case, nuclear power failed the market test. The implications of this for the UK nuclear industry have been profound. As a result, the UK case has wider international lessons as the pressures for privatization, liberalization and greater cost transparency bear down upon electric utilities in other countries. (author)

  17. Lightning vulnerability of nuclear explosive test systems at the Nevada Test Site

    A task force chartered to evaluate the effects of lightning on nuclear explosives at the Nevada Test Site has made several recommendations intended to provide lightning-invulnerable test device systems. When these recommendations have been implemented, the systems will be tested using full-threat-level simulated lightning

  18. Nuclear waste repository transparency technology test bed demonstrations at WIPP

    Secretary of Energy, Bill Richardson, has stated that one of the nuclear waste legacy issues is ''The challenge of managing the fuel cycle's back end and assuring the safe use of nuclear power.'' Waste management (i.e., the back end) is a domestic and international issue that must be addressed. A key tool in gaining acceptance of nuclear waste repository technologies is transparency. Transparency provides information to outside parties for independent assessment of safety, security, and legitimate use of materials. Transparency is a combination of technologies and processes that apply to all elements of the development, operation, and closure of a repository system. A test bed for nuclear repository transparency technologies has been proposed to develop a broad-based set of concepts and strategies for transparency monitoring of nuclear materials at the back end of the fuel/weapons cycle. WIPP is the world's first complete geologic repository system for nuclear materials at the back end of the cycle. While it is understood that WIPP does not currently require this type of transparency, this repository has been proposed as realistic demonstration site to generate and test ideas, methods, and technologies about what transparency may entail at the back end of the nuclear materials cycle, and which could be applicable to other international repository developments. An integrated set of transparency demonstrations was developed and deployed during the summer, and fall of 1999 as a proof-of-concept of the repository transparency technology concept. These demonstrations also provided valuable experience and insight into the implementation of future transparency technology development and application. These demonstrations included: Container Monitoring Rocky Flats to WIPP; Underground Container Monitoring; Real-Time Radiation and Environmental Monitoring; Integrated level of confidence in the system and information provided. As the world's only operating deep geologic

  19. Special Nuclear Material Portal Monitoring at the Nevada Test Site

    Prior to April 2007, acceptance and performance testing of the various Special Nuclear Material (SNM) monitoring devices at the Nevada Test Site (NTS) was performed by the Radiological Health Instrumentation department. Calibration and performance testing on the PM-700 personnel portal monitor was performed, but there was no test program for the VM-250 vehicle portal monitor. The handheld SNM monitors, the TSA model 470B, were being calibrated annually, but there was no performance test program. In April of 2007, the Material Control and Accountability Manager volunteered to take over performance testing of all SNM portal monitors at NTS in order to strengthen the program and meet U.S. Department of Energy Order requirements. This paper will discuss the following activities associated with developing a performance testing program: changing the culture, learning the systems, developing and implementing procedures, troubleshooting and repair, validating the process, physical control of equipment, acquisition of new systems, and implementing the performance test program

  20. Dynamic testing of nuclear power plant structures: an evaluation

    Lawrence Livermore Laboratory (LLL) evaluated the applications of system identification techniques to the dynamic testing of nuclear power plant structures and subsystems. These experimental techniques involve exciting a structure and measuring, digitizing, and processing the time-history motions that result. The data can be compared to parameters calculated using finite element or other models of the test systems to validate the model and to verify the seismic analysis. This report summarizes work in three main areas: (1) analytical qualification of a set of computer programs developed at LLL to extract model parameters from the time histories; (2) examination of the feasibility of safely exciting nuclear power plant structures and accurately recording the resulting time-history motions; (3) study of how the model parameters that are extracted from the data be used best to evaluate structural integrity and analyze nuclear power plants

  1. Modeling and Simulation of a Nuclear Fuel Element Test Section

    Moran, Robert P.; Emrich, William

    2011-01-01

    "The Nuclear Thermal Rocket Element Environmental Simulator" test section closely simulates the internal operating conditions of a thermal nuclear rocket. The purpose of testing is to determine the ideal fuel rod characteristics for optimum thermal heat transfer to their hydrogen cooling/working fluid while still maintaining fuel rod structural integrity. Working fluid exhaust temperatures of up to 5,000 degrees Fahrenheit can be encountered. The exhaust gas is rendered inert and massively reduced in temperature for analysis using a combination of water cooling channels and cool N2 gas injectors in the H2-N2 mixer portion of the test section. An extensive thermal fluid analysis was performed in support of the engineering design of the H2-N2 mixer in order to determine the maximum "mass flow rate"-"operating temperature" curve of the fuel elements hydrogen exhaust gas based on the test facilities available cooling N2 mass flow rate as the limiting factor.

  2. Geologic surface effects of underground nuclear testing, Yucca Flat, Nevada Test Site, Nevada; TOPICAL

    This report presents a new Geographic Information System composite map of the geologic surface effects caused by underground nuclear testing in the Yucca Flat Physiographic Area of the Nevada Test Site, Nye County, Nevada. The Nevada Test Site (NTS) was established in 1951 as a continental location for testing nuclear devices (Allen and others, 1997, p.3). Originally known as the ''Nevada Proving Ground'', the NTS hosted a total of 928 nuclear detonations, of which 828 were conducted underground (U.S. Department of Energy, 1994). Three principal testing areas of the NTS were used: (1) Yucca Flat, (2) Pahute Mesa, and (3) Rainier Mesa including Aqueduct Mesa. Underground detonations at Yucca Flat and Pahute Mesa were typically emplaced in vertical drill holes, while others were tunnel emplacements. Of the three testing areas, Yucca Flat was the most extensively used, hosting 658 underground tests (747 detonations) located at 719 individual sites (Allen and others, 1997, p.3-4). Figure 1 shows the location of Yucca Flat and other testing areas of the NTS. Figure 2 shows the locations of underground nuclear detonation sites at Yucca Flat. Table 1 lists the number of underground nuclear detonations conducted, the number of borehole sites utilized, and the number of detonations mapped for surface effects at Yucca Flat by NTS Operational Area

  3. The consequences of underground nuclear testing in French Polynesia

    France began atmospheric nuclear testing at Mururoa and Fangataufa atolls in the South Pacific in July 1966. Following international protest, atmospheric testing ceased in August 1970. In late 1995, an International Geomechanical Commission (IGC) was created to assess the short- and long-term effects of underground nuclear testing on the stability and hydrology of Mururoa and Fangataufa. With the aid of its consultants, the Commission sought to develop its own understanding of the mechanics and consequences of the underground nuclear tests. It carried out extensive numerical analyses of shock wave effects, seismic wave propagation, slope stability and pre- and post-test hydrology. However, in its studies, the IGC was constrained to use the data made available to it by the French authorities. The Commission's report (International Geomechanical Commission 1998) has been submitted to the French Government. This article draws heavily on parts of that report. The Commission's observations and analyses show that there has been no apparent change, on the atoll scale, to the overall mechanical stability of either atoll as a consequence of the underground nuclear tests. The main observable consequences of the tests are underwater slope failures, open fractures on the rim surface and surface settlements. The fractures visible on the surface are generally associated with subsurface slope displacements and occur only in the carbonates. There is no evidence that slope failures or settlements have occurred in the underlying volcanics. There has been no significant change in the long-term (beyond 500 years) hydrology of either atoll. The IGC estimates that the long-term change in the natural groundwater flow will be no more than 1%. There are, however, significant short-term changes locally around the test sites, which are briefly outlined

  4. Prediction of ground motion from nuclear weapons tests at NTS

    Ground motion data from underground nuclear detonations during FY78 were added to data from earlier detonations; the data were used to formulate a tentative equation for predicting ground motion at the Nevada Test Site. Additional measurements to explore an unexplained seismic anomaly in Jackass Flats are described. Methods used in automatic processing of ground motion data are explained

  5. A nuclear power plant certification test plan and checklist

    Regulations within the nuclear industry are requiring that all reference plant simulators be certified prior to or during 1991. A certification test plan is essential to ensure that this goal is met. A description of each step in the certification process is provided in this paper, along with a checklist to help ensure completion of each item

  6. Overview of seismic reliability proof test of nuclear power facilities

    This report overviewed seismic reliability proof test of nuclear power facilities, which had been performed for 25 years until March 2004 to confirm seismic safety and safety margin of nuclear power facilities by seismic test of scale model equipment akin to full size using the Tadotsu Vibration Exciter. Test results were outlined to understand test objective, test model, earthquake input condition, test items and test results. Fifteen items were tested for verification tests of seismic reliability of reactor components or system against basic ground motion S1 and S2, and later validation of new technology (heavy components with energy absorbing support) and confirmation of functional limit of PCCV/RCCV and piping system. This report might contribute to understand safety function of important equipment against new basic earthquake ground motion Ss, and limit of strength/function or damage mode of equipment against earthquake beyond Ss, which were requested by 'new seismic design review guide' updated in September 2006 based on latest technical knowledge. (T. Tanaka)

  7. Drop testing of the Westinghouse fresh nuclear fuel package

    The Westinghouse Columbia Fuel Fabrication Facility has decided to develop and certify a new fresh fuel package design (type A, fissile) that has the capability to transport more highly enriched fuel than was previously possible. A prototype package was tested in support of the Safety Analysis Report of the Packaging (SARP). This paper provides detailed information on the tests and test results. A first prototype test was carried out at the STF, and the design did not give the safety margin that Westinghouse wanted for their containers. The data from the test were used to redesign the connection between the clamping frame and the pressure pad, and the tests were reinitiated. Three packages were then tested at the STF. All packages met the acceptance criteria and acceleration information was obtained that provided an indication of the behavior of the cradle and strongback which holds the fuel assemblies and nuclear poison in place. (J.P.N.)

  8. Nuclear performance analyses for HCPB test blanket modules in ITER

    Neutronic, shielding and activation analyses have been performed for recent design variants of the Helium Cooled Pebble Bed (HCPB) test blanket module (TBM) in ITER on the basis of 3D Monte Carlo calculations. The main objective has been to assess and optimise the nuclear performance of the HCPB test blanket modules in terms of the tritium generation, the nuclear heating and the radiation shielding and provide, among others, the data required for the engineering design of the test modules. The shielding efficiency of the TBM system was shown to be sufficient to allow access of work personnel to the port extension after a waiting time of 10 days after shut down as required by ITER. The activation analyses provided the afterheat and activation data for quality assured safety analyses assuming a representative irradiation scenario

  9. Guidelines for inservice testing at nuclear power plants

    Campbell, P.

    1995-04-01

    The staff of the U.S. Nuclear Regulatory Commission (NRC) gives licensees guidelines and recommendations for developing and implementing programs for the inservice testing of pumps and valves at commercial nuclear power plants. The staff discusses the regulations; the components to be included in an inservice testing program; and the preparation and content of cold shutdown justifications, refueling outage justifications, and requests for relief from the American Society of Mechanical Engineers Code requirements. The staff also gives specific guidance on relief acceptable to the NRC and advises licensees in the use of this information at their facilities. The staff discusses the revised standard technical specifications for the inservice testing program requirements and gives guidance on the process a licensee may follow upon finding an instance of noncompliance with the Code.

  10. Guidelines for inservice testing at nuclear power plants

    The staff of the U.S. Nuclear Regulatory Commission (NRC) gives licensees guidelines and recommendations for developing and implementing programs for the inservice testing of pumps and valves at commercial nuclear power plants. The staff discusses the regulations; the components to be included in an inservice testing program; and the preparation and content of cold shutdown justifications, refueling outage justifications, and requests for relief from the American Society of Mechanical Engineers Code requirements. The staff also gives specific guidance on relief acceptable to the NRC and advises licensees in the use of this information at their facilities. The staff discusses the revised standard technical specifications for the inservice testing program requirements and gives guidance on the process a licensee may follow upon finding an instance of noncompliance with the Code

  11. Micro-specimen testing techniques for evaluating nuclear reactor materials

    In the initial construction of nuclear power plant nuclear materials not only have to be high quality in mechanical properties and fracture resistant characteristics, but also considerations have to be given to weakness cause and continued safe operation of power reactor. Recognizing the importance of integrity evaluation test material samples are provided under monitoring program in reactor for evaluation of reactor material property. But because of limited space and necessity of a homogeneous irradiation environment a very limited quantity of micro specimen is provided. The existing test method of toughness property and fracture resistance requires pre-determined size specimen. Therefore, it is very difficult to evaluate those properties by limited micro-specimen provided under monitoring program. In this paper the test technologies of micro-specimen, which can be utilized to evaluate material integrity of reactors in operation, are reviewed. (Hong, J. S.)

  12. Testing the predictive power of nuclear mass models

    A number of tests are introduced which probe the ability of nuclear mass models to extrapolate. Three models are analyzed in detail: the liquid drop model, the liquid drop model plus empirical shell corrections and the Duflo-Zuker mass formula. If predicted nuclei are close to the fitted ones, average errors in predicted and fitted masses are similar. However, the challenge of predicting nuclear masses in a region stabilized by shell effects (e.g., the lead region) is far more difficult. The Duflo-Zuker mass formula emerges as a powerful predictive tool

  13. Testing the predictive power of nuclear mass models

    Mendoza-Temis, J.; Morales, I. [Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, Apdo. Postal 70-543, Mexico 04510 D.F. (Mexico); Barea, J. [Center for Theoretical Physics, Sloane Physics Laboratory, Yale University, PO Box 208120, New Haven, CT 06520-8120 (United States); Frank, A. [Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, Apdo. Postal 70-543, Mexico 04510 D.F. (Mexico); Hirsch, J.G. [Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, Apdo. Postal 70-543, Mexico 04510 D.F. (Mexico)], E-mail: hirsch@nucleares.unam.mx; Vieyra, J.C. Lopez [Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, Apdo. Postal 70-543, Mexico 04510 D.F. (Mexico); Van Isacker, P. [Grand Accelerateur National d' Ions Lourds, CEA/DSM-CNRS/IN2P3, BP 55027, F-14076 Caen cedex 5 (France); Velazquez, V. [Facultad de Ciencias, Universidad Nacional Autonoma de Mexico, Apdo. Postal 70-543, Mexico 04510 D.F. (Mexico)

    2008-11-01

    A number of tests are introduced which probe the ability of nuclear mass models to extrapolate. Three models are analyzed in detail: the liquid drop model, the liquid drop model plus empirical shell corrections and the Duflo-Zuker mass formula. If predicted nuclei are close to the fitted ones, average errors in predicted and fitted masses are similar. However, the challenge of predicting nuclear masses in a region stabilized by shell effects (e.g., the lead region) is far more difficult. The Duflo-Zuker mass formula emerges as a powerful predictive tool.

  14. Resettlement of Bikini Atoll U.S. Nuclear Test Site

    The US conducted a nuclear testing program at Bikini and Enewetak Atolls in the Marshall Islands from 1946 through 1958. Several atolls, including Bikini, were contaminated as a result of the nuclear detonations. Since 1974 the authors have conducted an extensive research and monitoring program to determine the radiological conditions at the atolls, identify the critical radionuclides and pathways, estimate the radiological dose to current or resettling populations, and develop remedial measures to reduce the dose to atoll populations. This paper describes exposure pathways and radionuclides; composition of atoll soils; radionuclide transport and dose estimates; remedial measures; and reduction in dose from a combined option

  15. Review of Nuclear Thermal Propulsion Ground Test Options

    Coote, David J.; Power, Kevin P.; Gerrish, Harold P.; Doughty, Glen

    2015-01-01

    High efficiency rocket propulsion systems are essential for humanity to venture beyond the moon. Nuclear Thermal Propulsion (NTP) is a promising alternative to conventional chemical rockets with relatively high thrust and twice the efficiency of highest performing chemical propellant engines. NTP utilizes the coolant of a nuclear reactor to produce propulsive thrust. An NTP engine produces thrust by flowing hydrogen through a nuclear reactor to cool the reactor, heating the hydrogen and expelling it through a rocket nozzle. The hot gaseous hydrogen is nominally expected to be free of radioactive byproducts from the nuclear reactor; however, it has the potential to be contaminated due to off-nominal engine reactor performance. NTP ground testing is more difficult than chemical engine testing since current environmental regulations do not allow/permit open air testing of NTP as was done in the 1960's and 1970's for the Rover/NERVA program. A new and innovative approach to rocket engine ground test is required to mitigate the unique health and safety risks associated with the potential entrainment of radioactive waste from the NTP engine reactor core into the engine exhaust. Several studies have been conducted since the ROVER/NERVA program in the 1970's investigating NTP engine ground test options to understand the technical feasibility, identify technical challenges and associated risks and provide rough order of magnitude cost estimates for facility development and test operations. The options can be divided into two distinct schemes; (1) real-time filtering of the engine exhaust and its release to the environment or (2) capture and storage of engine exhaust for subsequent processing.

  16. Nuclear-waste-package materials degradation modes and accelerated testing

    This report reviews the materials degradation modes that may affect the long-term behavior of waste packages for the containment of nuclear waste. It recommends an approach to accelerated testing that can lead to the qualification of waste package materials in specific repository environments in times that are short relative to the time period over which the waste package is expected to provide containment. This report is not a testing plan but rather discusses the direction for research that might be considered in developing plans for accelerated testing of waste package materials and waste forms

  17. Thermal measurements in the nuclear winter fire test

    Schneider, M.E.; Keltner, N.R.; Kent, L.A.

    1989-01-01

    In March, 1987, a large open pool fire test was performed to provide test measurements to help define the thermal characteristics of large open pool fires and estimates of the smoke source term for the nuclear winter (global effects) scenario. This report will present the results of the thermal measurements as well as comparisons with previous test results. These measurements included flame temperatures, heat fluxes to a variety of calorimeters, and gas velocities in the lower flame regions. 13 refs., 76 figs., 7 tabs.

  18. Smart built-in test for nuclear thermal propulsion

    Smart built-in test (BIT) technologies are envisioned for nuclear thermal propulsion spacecraft components which undergo constant irradiation and are therefore unsafe for manual testing. Smart BIT systems of automated/remote type allow component and system tests to be conducted; failure detections are directly followed by reconfiguration of the components affected. The 'smartness' of the BIT system in question involves the reduction of sensor counts via the use of multifunction sensors, the use of components as integral sensors, and the use of system design techniques which allow the verification of system function beyond component connectivity

  19. Rolling test of turbine generator by non-nuclear steam

    The object and procedure of rolling turbine generator test by non-nuclear steam in Qinshan NPP are presented. The steam source of rolling test is compared and chosen. The steam quantity during the rolling test is simply calculated. The limits of parameters of the test and the preparing for rolling of turbine generator are introduced. Procedures of rolling test are divided into three stage of speed: 600 r/min, 1200 r/min, 3000 r/min. Parameters measured as a result of rolling test, such as absolute vibration of axle, metal temperature of bearings, temperature of oil from the exit of bearings and vacuity of condenser etc, show that the design, manufacture, installation and speed control of turbine generator are satisfactory

  20. 78 FR 35330 - Initial Test Programs for Water-Cooled Nuclear Power Plants

    2013-06-12

    ... COMMISSION Initial Test Programs for Water-Cooled Nuclear Power Plants AGENCY: Nuclear Regulatory Commission... revision to Regulatory Guide (RG), 1.68, ``Initial Test Programs for Water-Cooled Nuclear Power Plants... Initial Test Programs (ITPs) for light water cooled nuclear power plants. ADDRESSES: Please refer...

  1. Space exploration initiative candidate nuclear propulsion test facilities

    Baldwin, Darrell; Clark, John S.

    1993-01-01

    One-page descriptions for approximately 200 existing government, university, and industry facilities which may be available in the future to support SEI nuclear propulsion technology development and test program requirements are provided. To facilitate use of the information, the candidate facilities are listed both by location (Index L) and by Facility Type (Index FT). The included one-page descriptions provide a brief narrative description of facility capability, suggest potential uses for each facility, and designate a point of contact for additional information that may be needed in the future. The Nuclear Propulsion Office at NASA Lewis presently plans to maintain, expand, and update this information periodically for use by NASA, DOE, and DOD personnel involved in planning various phases of the SEI Nuclear Propulsion Project.

  2. Plutonium, 137Cs and U in some pond and lake sediments FSurrounding areas of the semipalatinsk nuclear test site: with emphasis on anomalously high U accumulation

    Between 1949 and 1989, the former USSR conducted more than 450 nuclear explosions, including atmospheric, above ground and underground nuclear tests, at the proving ground (SNTS) near Semipalatinsk City in Eastern Kazakhstan. We have visited to these areas ten several times, and estimated current contamination levels and distribution of long-lived radionuclides 137Cs and Pu isotopes (238,239,240Pu) of the ground at various areas and radiation doses by TL using brick. Parallel to these soil and brick samplings, pond and lake sediment core samples were also taken from the water bodies (impoundments) scattered on the vicinity of the SNTS. They include from north to south, Pond Korosteli (maximum depth: 2-3 m), Lake Kanoneruka (deeper than 5 m), Pond Veramenka (ca.3 m), Lake Semanailka (deeper than 10 m) and Pond Alkat (ca. 1 m in summer season). In each pond and lake, sediment cores to 25440 cm depth were collected in September 1998 by inserting a polyvinyl chloride (PVC) pipe (5.0 cm i.d.) into the sediment by hand at the depths ranging approximately 1 to 3 m. The underlying final objective is to get information on total 137Cs and Pu deposition and their history of SNTS fallout within the regions of the study: After non-destructive gamma-ray measurements of 137Cs and natural radionuclides including 210Pb, Pu and U isotopes were determined by alpha-ray spectrometry after radiochelnical separation. We found some ponds and lakes which were accumulating an anomalously high U in the sediments. This 235U/238U activity ratios of U found are almost the same as that (0.046) of natural U. In this paper, depth profiles of 137Cs and Pu concentrations in the sediments from these impoundments are presented with emphasis on those of high U accumulation. (authors)

  3. ASEAN and the commitment to end nuclear testing

    The Association of Southeast Asian Nations (ASEAN) is a regional political and economic organization. It was established on 8 August 1967 by Indonesia, Malaysia, the Philippines, Singapore and Thailand. Brunei Darussalam joined in 1984, Viet Nam in 1995, Laos and Myanmar in 1997 and Cambodia in 1999. ASEAN aims to accelerate economic growth, social progress and cultural development in its Member States and to promote regional peace and stability. All ASEAN States are parties to the Nuclear Non-Proliferation Treaty (NPT). The NPT aims to prevent the spread of nuclear weapons and weapons technology, and to further the goal of nuclear disarmament. It also promotes international cooperation in the peaceful uses of nuclear energy. The ten ASEAN countries are all Member States of the Preparatory Commission for the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO). They all signed the CTBT early on, some on the very first day that it opened for signature on 24 September 1996. But four have yet to ratify the Treaty: Brunei Darussalam, Indonesia, Myanmar and Thailand. Indonesia's ratification is particularly important as it is one of those States whose ratification is required for the Treaty's entry into force.

  4. On site inspection for nuclear test ban verirication

    P. D. Marschall

    1994-06-01

    Full Text Available The problem of verifying compliance with a nuclear test ban treaty is mainly a technical one. However the problem of detecting, locating and identifying nuclear explosions has, since the late 1950s, been intimately involved with the political problems associated with negotiating a treaty. In fact there are few other areas in which policy, diplomacy and science have been so interwoven. This paper attempts to illustrate how technology can. be applied to solve some of the political problems which arise when considering the role of an On Site Inspection (OSI to determine whether or not a nuclear explosion, in violation of a treaty, has occurred or not. It is hoped that the reader, with a scientific background, but with little or no experience of treaty negotiations, will gain an. insight as to how technical matters can interact with political requirements. The demands made on scientists to provide technical support for negotiating and rnonitoring compliance of a treaty have increased significanfly over the last 40 years. This is a period in which a number of major treaties have contained a significant technical component e.g. the Limited Test Ban Treaty (Threshold Treaty and the Chemical Weapon Convention. This paper gives an indication of some of the political decisions which will have to be made and suggests some of the technical methods which are of value in the identification of a clandestine nuclear explosion.

  5. Testing of Small Graphite Samples for Nuclear Qualification

    Julie Chapman

    2010-11-01

    Accurately determining the mechanical properties of small irradiated samples is crucial to predicting the behavior of the overal irradiated graphite components within a Very High Temperature Reactor. The sample size allowed in a material test reactor, however, is limited, and this poses some difficulties with respect to mechanical testing. In the case of graphite with a larger grain size, a small sample may exhibit characteristics not representative of the bulk material, leading to inaccuracies in the data. A study to determine a potential size effect on the tensile strength was pursued under the Next Generation Nuclear Plant program. It focuses first on optimizing the tensile testing procedure identified in the American Society for Testing and Materials (ASTM) Standard C 781-08. Once the testing procedure was verified, a size effect was assessed by gradually reducing the diameter of the specimens. By monitoring the material response, a size effect was successfully identified.

  6. Seismological analysis of the fourth North Korean nuclear test

    Hartmann, Gernot; Gestermann, Nicolai; Ceranna, Lars

    2016-04-01

    The Democratic People's Republic of Korea has conducted its fourth underground nuclear explosions on 06.01.2016 at 01:30 (UTC). The explosion was clearly detected and located by the seismic network of the International Monitoring System (IMS) of the Comprehensive Nuclear-Test-Ban Treaty (CTBT). Additional seismic stations of international earthquake monitoring networks at regional distances, which are not part of the IMS, are used to precisely estimate the epicenter of the event in the North Hamgyong province (41.38°N / 129.05°E). It is located in the area of the North Korean Punggye-ri nuclear test site, where the verified nuclear tests from 2006, 2009, and 2013 were conducted as well. The analysis of the recorded seismic signals provides the evidence, that the event was originated by an explosive source. The amplitudes as well as the spectral characteristics of the signals were examined. Furthermore, the similarity of the signals with those from the three former nuclear tests suggests very similar source type. The seismograms at the 8,200 km distant IMS station GERES in Germany, for example, show the same P phase signal for all four explosions, differing in the amplitude only. The comparison of the measured amplitudes results in the increasing magnitude with the chronology of the explosions from 2006 (mb 4.2), 2009 (mb 4.8) until 2013 (mb 5.1), whereas the explosion in 2016 had approximately the same magnitude as that one three years before. Derived from the magnitude, a yield of 14 kt TNT equivalents was estimated for both explosions in 2013 and 2016; in 2006 and 2009 yields were 0.7 kt and 5.4 kt, respectively. However, a large inherent uncertainty for these values has to be taken into account. The estimation of the absolute yield of the explosions depends very much on the local geological situation and the degree of decoupling of the explosive from the surrounding rock. Due to the missing corresponding information, reliable magnitude-yield estimation for the

  7. Summary of Numerical Modeling for Underground Nuclear Test Monitoring Symposium

    This document contains the Proceedings of the Numerical Modeling for Underground Nuclear Test Monitoring Symposium held in Durango, Colorado on March 23-25, 1993. The symposium was sponsored by the Office of Arms Control and Nonproliferation of the United States Department of Energy and hosted by the Source Region Program of Los Alamos National Laboratory. The purpose of the meeting was to discuss state-of-the-art advances in numerical simulations of nuclear explosion phenomenology for the purpose of test ban monitoring. Another goal of the symposium was to promote discussion between seismologists and explosion source-code calculators. Presentation topics include the following: numerical model fits to data, measurement and characterization of material response models, applications of modeling to monitoring problems, explosion source phenomenology, numerical simulations and seismic sources

  8. Production and testing of tubes for nuclear boiler steam generators

    Vallourec, second pipe manufacturer in Europe, has developed a workshop for the production of nuclear heat exchanger tubes in its Montbard plant. This workshop, by its special construction, production engineering and handling procedures, has attained nuclear standards and can produce U-bended tubes from diameter 12 to 25 mm with a maximum length of 36 meters. Its annual out-put is 1.500.000 meters. The final dimensions are obtained by a cold rolling procedure, followed by an outside and inside degreasing, a solution annealing in a controlled atmosphere continuous type furnace, a surface grinding and an inside surface conditionning. The non-destructive tests: eddy currents, ultrasonic tests and thickness mesures are recorded on a single tube basis. The curving and packing procedures have been specially developed for this production

  9. Nuclear waste package materials testing report: basaltic and tuffaceous environments

    The disposal of high-level nuclear wastes in underground repositories in the continental United States requires the development of a waste package that will contain radionuclides for a time period commensurate with performance criteria, which may be up to 1000 years. This report addresses materials testing in support of a waste package for a basalt (Hanford, Washington) or a tuff (Nevada Test Site) repository. The materials investigated in this testing effort were: sodium and calcium bentonites and mixtures with sand or basalt as a backfill; iron and titanium-based alloys as structural barriers; and borosilicate waste glass PNL 76-68 as a waste form. The testing also incorporated site-specific rock media and ground waters: Reference Umtanum Entablature-1 basalt and reference basalt ground water, Bullfrog tuff and NTS J-13 well water. The results of the testing are discussed in four major categories: Backfill Materials: emphasizing water migration, radionuclide migration, physical property and long-term stability studies. Structural Barriers: emphasizing uniform corrosion, irradiation-corrosion, and environmental-mechanical testing. Waste Form Release Characteristics: emphasizing ground water, sample surface area/solution volume ratio, and gamma radiolysis effects. Component Compatibility: emphasizing solution/rock, glass/rock, glass/structural barrier, and glass/backfill interaction tests. This area also includes sensitivity testing to determine primary parameters to be studied, and the results of systems tests where more than two waste package components were combined during a single test

  10. Thyroid cancer following nuclear tests in French Polynesia

    De Vathaire, F.; Drozdovitch, V.; Brindel, P.; Rachedi, F.; Boissin, J-L; Sebbag, J.; Shan, L; Bost-Bezeaud, F.; Petitdidier, P; Paoaafaite, J.; Teuri, J; Iltis, J; Bouville, A.; Cardis, E; Hill, C.

    2010-01-01

    BACKGROUND: Between 1966 and 1974, France conducted 41 atmospheric nuclear tests in Polynesia, but their potential health effects have not previously been investigated. METHODS: In a case-control study, we compared the radiation exposure of almost all the French Polynesians diagnosed with differentiated thyroid carcinoma between 1981 and 2003 (n = 229) to the exposure of 373 French Polynesian control individuals without cancer from the general population. Radiation exposures were estimated us...

  11. Forensic Medicine: Age Written in Teeth by Nuclear Bomb Tests

    Lawrence Livermore National Laboratory

    2005-05-04

    Establishing the age of individuals is an important step in identification and a frequent challenge in forensic medicine. This can be done with high precision up to adolescence by analysis of dentition, but establishing the age of adults has remained difficult. Here we show that measuring {sup 14}C from nuclear bomb tests in tooth enamel provides a sensitive way to establish when a person was born.

  12. Standard test methods for chemical, mass spectrometric, spectrochemical, nuclear, and radiochemical analysis of nuclear-grade plutonium metal

    American Society for Testing and Materials. Philadelphia

    2004-01-01

    1.1 These test methods cover procedures for the chemical, mass spectrometric, spectrochemical, nuclear, and radiochemical analysis of nuclear-grade plutonium metal to determine compliance with specifications.

  13. Operation of the nuclear fuel cycle test facilities -Operation of the hot test loop facilities

    Chun, S. Y.; Jeong, M. K.; Park, C. K.; Yang, S. K.; Won, S. Y.; Song, C. H.; Jeon, H. K.; Jeong, H. J.; Cho, S.; Min, K. H.; Jeong, J. H.

    1997-01-01

    A performance and reliability of a advanced nuclear fuel and reactor newly designed should be verified by performing the thermal hydraulics tests. In thermal hydraulics research team, the thermal hydraulics tests associated with the development of an advanced nuclear fuel and reactor haven been carried out with the test facilities, such as the Hot Test Loop operated under high temperature and pressure conditions, Cold Test Loop, RCS Loop and B and C Loop. The objective of this project is to obtain the available experimental data and to develop the advanced measuring techniques through taking full advantage of the facilities. The facilities operated by the thermal hydraulics research team have been maintained and repaired in order to carry out the thermal hydraulics tests necessary for providing the available data. The performance tests for the double grid type bottom end piece which was improved on the debris filtering effectivity were performed using the PWR-Hot Test Loop. The CANDU-Hot Test Loop was operated to carry out the pressure drop tests and strength tests of CANFLEX fuel. The Cold Test Loop was used to obtain the local velocity data in subchannel within HANARO fuel bundle and to study a thermal mixing characteristic of PWR fuel bundle. RCS thermal hydraulic loop was constructed and the experiments have been carried out to measure the critical heat flux. In B and C Loop, the performance tests for each component were carried out. (author). 19 tabs., 78 figs., 19 refs.

  14. Operation of the nuclear fuel cycle test facilities -Operation of the hot test loop facilities

    A performance and reliability of a advanced nuclear fuel and reactor newly designed should be verified by performing the thermal hydraulics tests. In thermal hydraulics research team, the thermal hydraulics tests associated with the development of an advanced nuclear fuel and reactor haven been carried out with the test facilities, such as the Hot Test Loop operated under high temperature and pressure conditions, Cold Test Loop, RCS Loop and B and C Loop. The objective of this project is to obtain the available experimental data and to develop the advanced measuring techniques through taking full advantage of the facilities. The facilities operated by the thermal hydraulics research team have been maintained and repaired in order to carry out the thermal hydraulics tests necessary for providing the available data. The performance tests for the double grid type bottom end piece which was improved on the debris filtering effectivity were performed using the PWR-Hot Test Loop. The CANDU-Hot Test Loop was operated to carry out the pressure drop tests and strength tests of CANFLEX fuel. The Cold Test Loop was used to obtain the local velocity data in subchannel within HANARO fuel bundle and to study a thermal mixing characteristic of PWR fuel bundle. RCS thermal hydraulic loop was constructed and the experiments have been carried out to measure the critical heat flux. In B and C Loop, the performance tests for each component were carried out. (author). 19 tabs., 78 figs., 19 refs

  15. Module Testing Techniques for Nuclear Safety Critical Software Using LDRA Testing Tool

    The safety critical software in the I and C systems of nuclear power plants requires high functional integrity and reliability. To achieve those requirement goals, the safety critical software should be verified and tested according to related codes and standards through verification and validation (V and V) activities. The safety critical software testing is performed at various stages during the development of the software, and is generally classified as three major activities: module testing, system integration testing, and system validation testing. Module testing involves the evaluation of module level functions of hardware and software. System integration testing investigates the characteristics of a collection of modules and aims at establishing their correct interactions. System validation testing demonstrates that the complete system satisfies its functional requirements. In order to generate reliable software and reduce high maintenance cost, it is important that software testing is carried out at module level. Module testing for the nuclear safety critical software has rarely been performed by formal and proven testing tools because of its various constraints. LDRA testing tool is a widely used and proven tool set that provides powerful source code testing and analysis facilities for the V and V of general purpose software and safety critical software. Use of the tool set is indispensable where software is required to be reliable and as error-free as possible, and its use brings in substantial time and cost savings, and efficiency

  16. Uncertainty analysis for regional-level above-ground biomass estimates based on individual tree biomass model%单木生物量模型估计区域尺度生物量的不确定性

    傅煜; 雷渊才; 曾伟生

    2015-01-01

    采用系统抽样体系江西省固定样地杉木连续观测数据和生物量数据,通过Monte Carlo法反复模拟由单木生物量模型推算区域尺度地上生物量的过程,估计了江西省杉木地上总生物量。基于不同水平建模样本量n及不同决定系数R2的设计,分别研究了单木生物量模型参数变异性及模型残差变异性对区域尺度生物量估计不确定性的影响。研究结果表明:2009年江西省杉木地上生物量估计值为(19.84±1.27) t/hm2,不确定性占生物量估计值约6.41%。生物量估计值和不确定性值达到平稳状态所需的运算时间随建模样本量及决定系数R2的增大而减小;相对于模型参数变异性,残差变异性对不确定性的影响更小。%Above-ground forest biomass at regional-level is typically estimated by adding model predictions of biomass from individual trees in a plot, and subsequently aggregating predictions from plots to large areas. There are multiple sources of uncertainties in model predictions during this aggregated process. These uncertainties always affect the precision of large area biomass estimates, and the effects are generally overlooked; however, failure to account for these uncertainties will cause erroneously optimistic precision estimates. Monte Carlo simulation is an effective method for estimating large-scale biomass and assessing the uncertainty associated with multiple sources of errors and complex models. In this paper, we applied the Monte Carlo approach to simulate regional-level above-ground biomass and to assess uncertainties related to the variability from model residuals and parameters separately. A nonlinear model form was used. Data were obtained from permanent sample plots and biomass observation of Cunninghamia lanceolata in JiangXi Province, China. Overall, 70 individual trees were destructively sampled for biomass estimation from June to September, 2009. Based on the commonly used allometric model

  17. Water and heat flow simulation after underground nuclear test

    Based on the information about the damaged zone and local hydraulic data of CHESHIRE which is an underground nuclear test at the Nevada Test Site, a model was developed to simulate water and heat transport process using FEFLOW software. The temperature descending curve of the melt glass was acquired. The simulated temperature was consistent with the measured data. According to the simulation result, the temperature descending process obeys an exponent decay function, and the groundwater convection mainly affects the melt glass temperature descending process. (authors)

  18. Seismic test of local control panel for nuclear power plant

    The safety related equipment installed in Nuclear Power Plant are required to perform a safety function during and after a seismic event. To accomplish this safety function, they must be seismically qualified in accordance with the intent and requirements of the USNRC Regulatory Guide 1.100 and IEEE Std. 344. The local control panel is a safety related equipment which provide operators with control, display and monitoring for plant operating conditions. This paper describes test procedure for seismic qualification test of local control panel which is installed in Ulchin units 3 and 4. (author)

  19. Radionuclide distribution in a nuclear test cavity: the baseball event

    In 1994 two holes were drilled into the cavity formed in 1981 by the underground nuclear test named Baseball. An extensive set of side wall samples were collected in these holes. We have analyzed the samples for tritium and for gamma-emitting radionuclides (both fission products and neutron activation products). It appears that the distribution pattern of these radioactive materials, established at the time of the detonation, have persisted even though the cavity has been under water for 13 years. These findings are discussed in the context of radionuclide migration and groundwater contamination at the Nevada Test Site. (orig.)

  20. DIGITAL RADIOGRAPHY OF SPECIAL NUCLEAR MATERIAL TEST PACKAGES

    HOWARD, BOYD

    2006-02-02

    The purpose of this document is to provide a brief introduction to digital radiography (DR), and a description of the DR configuration that was used to radiographically image the Special Nuclear Material (SNM) Test Packages before and after function tests that have been conducted. Also included are (1) Attachment 1, a comprehensive index that describes at which phase of the certification process that digital radiographic images were acquired, (2) digital radiographic images of each of the six packages at various stages of the certification process, and (3) Attachment 2, imaging instructions, that specify the setup procedures and detailed parameters of the DR imaging methodology that were used.

  1. Nuclear test - The French nuclear strike force in the 21. century: challenges, ambitions and strategy

    This bibliographical note presents a book in which the author, after having recalled the history of the French nuclear force since the first nuclear test in 1960, and outlined the fact that France has been living under the protection of its own nuclear deterrence force since that date, presents the components of this nuclear strike force with its four nuclear submarines equipped to launch new generation missiles, its fifty fighter bomber aircraft equipped with the ASMP-A missile. He presents and discusses the mission of this nuclear force, discusses the relevancy of the deterrence strategy in the present context, and the significance of such a strategy for a European country like France. He wanders whether this strike force is still affordable for our country, which can be its benefits, whether this arsenal remains useful as it has been designed in the Cold War context. He also discusses the disarmament perspectives in an unsteady international environment where power and arms race logics prevail again

  2. RSM development for nuclear safety analysis. A test problem

    In any study of nuclear reactor safety the ultimate aim is to produce estimates of accident consequence probabilities as a function of the uncertainties in the physical and operational variables governing the accident behaviour. The present study has been performed as a test case for the routines to implement in the library and as a methodological investigation of the response surface methodology techniques. As a test case, an analytical function has been chosen, in this exercice, to play the role of a nuclear safety code. This choice enable us to perform an extensive analysis of the artificial data produced, without spending considerable computer time. The study can be divided into the following steps: choice of the test function, choice of the models, experimental design, parameter estimation, propagation of input uncertainties on output probability distribution function through the test function and the models, comparison of the models with the test function over the whole variable space. This note principally focuses the discussion on the results

  3. The environmental and sanitary effects of nuclear weapons tests made by France between 1960 and 1996 and comparison elements with the tests of others great nuclear countries

    For the most of nuclear test sites, in a condensed way, elements of information and analysis about the environmental and sanitary effects of nuclear explosions are given. This report gives a precise view about this question. (N.C.)

  4. Eddy current testing on structures of nuclear-grade PGX graphite for acceptance test in HTTR

    Acceptance test with eddy current testing is planned to be applied to the core support graphite structures made of PGX graphite, nuclear-grade near-isotropic graphite, in the HTTR. The eddy current testing widely applied to metallic components is not applicable to porous graphite materials due to different characteristics compared with metallic ones. Hence, the eddy current testing method for the fine-grained, nuclear-grade IG-110 graphite had been established. However, this method is also not applicable to the PGX graphite owing to the different flaw detectability because the PGX consists of larger grains and pores than the IG-110. Therefore the eddy current testing method and condition for the PGX graphite were established on the bases of the experimental investigation. (author)

  5. Nuclear weapon tests on the testing ground near Semipalatinsk and health of communities of Altay region

    The comparative analysis of morbidity, mortality and invalidization of the population of Altay region and other regions of West Siberia. It was found that in recent years in spite of a more favorable ecologic situation in this area the level of morbidity (hematological disorders, cardiovascular disorders, urinary diseases), mortality from infectious, parasitic, pulmonary diseases and malignant tumors and invalidisation of the population increased. The main cause of this is supposed to be the consequences of nuclear weapon tests in the atmosphere in 1949-1962 on the testing ground near Semipalatinsk at the border of Altay region. The data on repeated pollutions by the products of nuclear disintegration in Altay region are reported

  6. Dynamic analysis and qualification test of nuclear components

    This report contains the study on the dynamic characteristics of Wolsung fuel rod and on the dynamic balancing of rotating machinery to evaluate the performance of nuclear reactor components. The study on the dynamic characteristics of Wolsung fuel rod was carried out by both experimental and theoretical methods. Forced vibration testing of actual Wolsung fuel rod using sine sweep and sine dwell excitation was conducted to find the dynamic and nonlinear characteristics of the fuel rod. The data obtained by the test were used to analyze the nonlinear impact characteristics of the fuel rod which has a motion-constraint stop in the center of the rod. The parameters used in the test were the input force level of the exciter, the clearance gap between the fuel rod and the motion constraints, and the frequencies. Test results were in good agreement with the analytical results

  7. Reactor design of the SP-100 nuclear assembly test

    The Nuclear Assembly Test is currently being designed to demonstrate the performance characteristics of a 100-kWe version of the power source for the SP-100 Generic Flight System. Particular emphasis will be placed upon the operation of the prototypical ground test reactor under conditions of high-working temperatures and long life. The key features of the reactor include a small, compact core with component materials consisting of refractory metals and alloys. Because of the unique features of the SP-100 system, extensive use is made of Monte Carlo methods in the design and analysis of the reactor configuration. In addition, detailed testing of the reactor design has been carried out in the Zero Power Physics Reactor facility to provide calibration factors for the principal performance parameters. The key features of the test reactor design are described in this paper

  8. History of creation of Semipalatinsk test nuclear site. Chapter 1

    In 1949 August USSR's Government adopted decision about creation of nuclear site with conditional name Uchebnyj polygon 2. For its building was chosen territory in 140 km from Semipalatinsk city. Semipalatinsk test site consists of the land of three regions: Semipalatinsk, Pavlodar, Karaganda and it occupies 18,500 km2 of fertile land, rich with minerals. Now this territory was alienated from national using. Polygon was complex object and it incorporated three main zones: Opytnoe Pole, zone of radiation safety, site Sh. Opytnoe Pole was equipped by special constructions ensuring nuclear test conducting, its observing and registration of physical measurements and occupied 2,300 km2. Around of the Opytnoe Pole is situated zone of radiation safety with area 45 thousand ha. Site Sh was situated in 14 km from center of Opytnoe Pole and it was intended for distribution of individual protection devices, dosimeters and for conducting of dis-activation and sanitary works. History of the site creation is connected with building of Kurchatov city. In dozen and hundred of kilometers from Kurchatov city there were top secret objects: site Balapan with total area 100,000 ha intended for conducting of nuclear tests in wells with threshold capacity 100-200 kt. Here simultaneously with main problems on the site the military-applied works were conducted on mechanics, physics of combustion, simulation of Earthquakes and determination of seismic stability of buildings and constructions. Research site Degelen with total area 33,100 ha which has been used for underground testing of nuclear charges with small capacity. Site 10 one of large research technical complex on which two reactor units were installed. Main tasks of the complex were as follows: high-temperature fuel materials testing, conducting of fundamental researches in field of physics of fissile products, thermal physics and gas hydrodynamics. On site M a laboratory base for radiochemical, radiological and chemical researches

  9. Upgrade and Development of Nuclear Data Production Test Facility

    It is necessary to improve the Pohang Neutron Facility (PNF) in order to be used as a nuclear data production facility for users in both domestic and abroad. We improved following items: (1) upgrade the electron linac, (2) collimators inside the TOF beam pipe, (3) the development and installation of an automatic sample changer, (4) the extension of the TOF beam line, and (5) the data acquisition system. We would like to establish a utilization system for users to measure the nuclear data at the PNF. To do this, we made manuals for the accelerator operation and the data acquisition system. We also made an application form to apply for users to measure the nuclear data in both domestic and abroad. The main object of the Pohang Neutron Facility is to measure the nuclear data in the neutron energy region from thermal neutron to few hundreds of eV. In addition to neutron beams produced at the PNF, photon and electron beams are produced in this facility. We thus utilize this facility for other fields, such as test facility for detectors, activation experiments, polarized neutron beam source, and so on. In addition to these, we could use this facility for training students

  10. Head-end demonstration test for nuclear fuel reprocessing plant. Outline of the test results

    Japan Nuclear Fuel Ltd. (JNFL) is now constructing a nuclear fuel reprocessing plant (Rokkasho Reprocessing Plant) at Rokkasho-mura. Concerning the head-end process, which includes shearing and dissolving processes for spent fuel and rinsing processes for upper and lower end-pieces of spent fuel assemblies and chopped fuel rods, a full-scale mock-up test facility was constructed and functional and performance tests were performed using a dummy fuel assembly and chopped fuel rods. This paper summarizes results the tests conducted from 1988 to 1993 by Mitsubishi Heavy Industries, Ltd. (MHI). The head-end demonstration test (HEDT) facility includes five components: tilting crane, shearing machine, dissolver, hull rinser and end-piece rinser. The design of these components manufactured by MHI is based on SGN technology. The suitability of the design, the functional reliability, the operability, the controllability and the maintainability were evaluated through functional tests such as an operation test, a shearing test, a transfer test, a heating and cooling test and a remote maintenance test under cold (non radioactive) conditions. The test results were satisfactory. The component performance data and our manufacturing and operation experience will greatly facilitate the final design process and support the choice of operational parameters for these head-end components of the Rokkasho Reprocessing Plant. (author)

  11. 78 FR 67206 - Qualification Tests for Safety-Related Actuators in Nuclear Power Plants

    2013-11-08

    ... COMMISSION Qualification Tests for Safety-Related Actuators in Nuclear Power Plants AGENCY: Nuclear...-Related Actuators in Nuclear Power Plants.'' This RG is being revised to provide applicants and licensees with the most current information on testing safety-related actuators in nuclear power plants. This...

  12. 78 FR 25488 - Qualification Tests for Safety-Related Actuators in Nuclear Power Plants

    2013-05-01

    ... COMMISSION Qualification Tests for Safety-Related Actuators in Nuclear Power Plants AGENCY: Nuclear..., ``Qualification Tests for Safety-Related Actuators in Nuclear Power Plants.'' DG-1235 is proposed Revision 1 of RG... in Nuclear Power Plants'' is temporarily identified by its task number, DG-1235. The DG-1235...

  13. 77 FR 73056 - Initial Test Programs for Water-Cooled Nuclear Power Plants

    2012-12-07

    ... COMMISSION Initial Test Programs for Water-Cooled Nuclear Power Plants AGENCY: Nuclear Regulatory Commission...-Cooled Nuclear Power Plants.'' This guide describes the general scope and depth that the staff of the NRC considers acceptable for Initial Test Programs (ITPs) for light water cooled nuclear power plants....

  14. Radiological effluents released from nuclear rocket and ramjet engine tests at the Nevada Test Site 1959 through 1969: Fact Book

    Friesen, H.N.

    1995-06-01

    Nuclear rocket and ramjet engine tests were conducted on the Nevada Test Site (NTS) in Area 25 and Area 26, about 80 miles northwest of Las Vegas, Nevada, from July 1959 through September 1969. This document presents a brief history of the nuclear rocket engine tests, information on the off-site radiological monitoring, and descriptions of the tests.

  15. The nondestructive testing of tubes and pipes for nuclear application

    The directive of the Reactor Safety Commission demands for all materials which are provided for the pressure bearing enclosure of the refrigerant a nondestructive testing with sufficient sensibility. The specification 3201.1 for nuclear application as well as company-internal rules of important manufacturers regulate the requirements derived from the above direction for the NDT of tubes and pipes. For an objective and reproducible testing, equipments with defined characteristics are employed, based on internal specifications, testing equipments are fabricated and then checked with a special computerized test system. Moreover probes are controlled with regard to their acoustic and electric properties. The NDT of heat exchanger tubes and of pipes is given here as an example: Heat exchanger tubes: The tests include the inspection of longitudinal and transverse defects, wall thickness, dimension and tightness. In connection with the NDT, defect catalogues are set up. By this means the chosen test sensitivity is verified, and so the high quality of the tubes is assured. Specially developed eddy-current methods prove that such tested tubes are free of corrosion-causing phases. Pipes: The pipes are tested for longitudinal and transverse defects, for laminations and for wall thickness. To fulfil the demand for an objective and reproducible testing, there was developed and installed an automatic, computer-controlled ultrasonic equipment with 40 probes. Development trends: For the NDT of heat exchanger and boiler tubes an electrodynamic excited ultrasonic test system is evolved which is also able to test curved and installed tubes. The sophisticated testing technology is completed by a qualified education and training of NDT personnel. (orig.)

  16. Low Cost Nuclear Thermal Rocket Cermet Fuel Element Environment Testing

    Bradley, David E.; Mireles, Omar R.; Hickman, Robert R.

    2011-01-01

    Deep space missions with large payloads require high specific impulse (Isp) and relatively high thrust in order to achieve mission goals in reasonable time frames. Conventional, storable propellants produce average Isp. Nuclear thermal rockets (NTR) capable of high Isp thrust have been proposed. NTR employs heat produced by fission reaction to heat and therefore accelerate hydrogen which is then forced through a rocket nozzle providing thrust. Fuel element temperatures are very high (up to 3000K) and hydrogen is highly reactive with most materials at high temperatures. Data covering the effects of high temperature hydrogen exposure on fuel elements is limited. The primary concern is the mechanical failure of fuel elements which employ high-melting-point metals, ceramics or a combination (cermet) as a structural matrix into which the nuclear fuel is distributed. It is not necessary to include fissile material in test samples intended to explore high temperature hydrogen exposure of the structural support matrices. A small-scale test bed designed to heat fuel element samples via non-contact RF heating and expose samples to hydrogen is being developed to assist in optimal material and manufacturing process selection without employing fissile material. This paper details the test bed design and results of testing conducted to date.

  17. Local fallout from nuclear test detonations. Volume 2. Compilation of fallout patterns and related test data. Supplement. Foreign nuclear tests. Sanitized

    Morgenthau, M.; Showers, R.L.

    1964-10-01

    The available fallout patterns and related test data for nuclear weapon tests conducted by the United Kingdom, the Republic of France, and the Union of Soviet Socialist Republics, are included in this supplement to NDL-TR-34. The related test data for the British and French tests include: date and time of detonation, location of test site, total yield, fission yield, type of burst and placement, height of burst, cloud-top and -bottom heights, crater data, and wind information up to nuclear cloud-top height. No fallout patterns are available for any of the Soviet detonations. The list of Soviet detonations, which is as comprehensive as possible, contains the chronological order of the detonations, date, yield, type of burst and location of test site.

  18. Testing of mobile surveillance robot at a nuclear power plant

    In-plant testing of a mobile surveillance robot (SURBOT) was performed at the Browns Ferry Nuclear Plant by TVA personnel. The results verified that SURBOT can be used for remote surveillance in 54 separate controlled radiation rooms at the plant. High-quality color video, audio, and other data are collected, digitized by an on-board computer, and transmitted through a cable to the control console for real-time display and videotaping. TVA projects that the use of SURBOT for surveillance during plant operation will produce annual savings of about 100 person-rem radiation exposure and $200,000 in operating costs. Based on the successful results of this program, REMOTEC is now commercializing the SURBOT technology on both wheeled and tracked mobile robots for use in nuclear power plants and other hazardous environments

  19. Nuclear thermal rocket nozzle testing and evaluation program

    Performance characteristics of the Nuclear Thermal Rocket can be enhanced through the use of unconventional nozzles as part of the propulsion system. In this report, the Nuclear Thermal Rocket nozzle testing and evaluation program being conducted at the NASA Lewis Research Center is outlined and the advantages of a plug nozzle are described. A facility description, experimental designs and schematics are given. Results of pretest performance analyses show that high nozzle performance can be attained despite substantial nozzle length reduction through the use of plug nozzles as compared to a convergent-divergent nozzle. Pretest measurement uncertainty analyses indicate that specific impulse values are expected to be within plus or minus 1.17%

  20. Pyroprocessing of Fast Flux Test Facility Nuclear Fuel

    B.R. Westphal; G.L. Fredrickson; G.G. Galbreth; D. Vaden; M.D. Elliott; J.C. Price; E.M. Honeyfield; M.N. Patterson; L. A. Wurth

    2013-10-01

    Used nuclear fuel from the Fast Flux Test Facility (FFTF) was recently transferred to the Idaho National Laboratory and processed by pyroprocessing in the Fuel Conditioning Facility. Approximately 213 kg of uranium from sodium-bonded metallic FFTF fuel was processed over a one year period with the equipment previously used for the processing of EBR-II used fuel. The peak burnup of the FFTF fuel ranged from 10 to 15 atom% for the 900+ chopped elements processed. Fifteen low-enriched uranium ingots were cast following the electrorefining and distillation operations to recover approximately 192 kg of uranium. A material balance on the primary fuel constituents, uranium and zirconium, during the FFTF campaign will be presented along with a brief description of operating parameters. Recoverable uranium during the pyroprocessing of FFTF nuclear fuel was greater than 95% while the purity of the final electrorefined uranium products exceeded 99%.

  1. Azimuthal Anisotropies as Stringent Test for Nuclear Transport Models

    Crochet, Philippe; Donà, R

    1997-01-01

    Azimuthal distributions of charged particles and intermediate mass fragments emitted in Au+Au collisions at 600AMeV have been measured using the FOPI facility at GSI-Darmstadt. Data show a strong increase of the in-plane azimuthal anisotropy ratio with the charge of the detected fragment. Intermediate mass fragments are found to exhibit a strong momentum-space alignment with respect of the reaction plane. The experimental results are presented as a function of the polar center-of-mass angle and over a broad range of impact parameters. They are compared to the predictions of the Isospin Quantum Molecular Dynamics model using three different parametrisations of the equation of state. We show that such highly accurate data provide stringent test for microscopic transport models and can potentially constrain separately the stiffness of the nuclear equation of state and the momentum dependence of the nuclear interaction.

  2. Safety Tests of Concrete Storage Cask for Spent Nuclear Fuel

    In preparation for the timely installation of interim storage facility for spent nuclear fuel (SF), KORAD is developing domestic models of SF storage systems and the concrete storage cask is one of them. A concrete cask consists of a metallic canister which confines SF with welded closure and a concrete overpack which provides radiation shielding and physical protection to the canister. The safety requirements for a SF storage cask is well established in US and summarized in regulatory guides such as NUREG-1536. KAERI has been performing tests of the concrete cask to demonstrate its safety and compliance to the regulatory requirements with high priority stipulated in NUREG-1536. The test program includes the structural performance tests under tip-over and earthquake and decay heat removal test under normal, off-normal and accident conditions. In this paper, brief introduction to the structural tests and their results are provided. Safety tests to demonstrate the safety of KORAD21C concrete storage cask were successfully performed. The structural integrity during tip-over and earthquake were demonstrated with scale model tests and the results are analyzed in comparison with safety analysis results

  3. Special Nuclear Material Portal Monitoring at the Nevada Test Site

    In the past, acceptance and performance testing of the various Special Nuclear Material (SNM) monitoring devices at the Nevada Test Site has been performed by the Radiological Health Instrumentation Department. Calibration and performance tests on the PM-700 personnel portal monitor were performed but there was no test program for the VM-250 vehicle portal monitor because it had never been put into service. The handheld SNM monitors, the TSA model 470B, were being calibrated annually, but there was no program in place to test them quarterly. In April of 2007, the Material Control and Accountability (MC and A) Manager at the time decided that the program needed to be strengthened and MC and A took over performance testing of all SNM portal monitoring equipment. This paper will discuss the following activities associated with creating a performance testing program: changing the culture, learning the systems, writing procedures, troubleshooting/repairing, validating the process, control of equipment, acquisition of new systems, and running the program

  4. Development and testing of restraints for nuclear piping systems

    As an alternative to current practice of pipe restraint within nuclear power plants it has been proposed to adopt restraints capable of dissipating energy in the piping system. The specific mode of energy dissipation focused upon in these studies is the plastic yielding of steels utilizing relative movement between the pipe and the base of the restraint, a general mechanism which has been proven as reliable in several allied studies. This report discusses the testing of examples of two energy-absorbing devices, the results of this testing and the conclusions drawn. This study concentrated on the specific relevant performance characteristics of hysteretic behavior and degradation with use. The testing consisted of repetitive continuous loadings well into the plastic ranges of the devices in a sinusoidal or random displacement controlled mode

  5. Developing robotics for nondestructive testing in nuclear power plants

    The ability to perform remote nondestructive testing in high radiation areas is becoming increasingly attractive as a means of minimizing radiation exposure to personnel. Robots could be used in nuclear power plants where NDT technicians are currently exposed to high levels of radiation. In developing robotics technology for this purpose, several key factors must be considered: (1) End-of-arm tooling for nondestructive testing may impose unique functional requirements for maximum effectiveness. (2) Operator definition of robot movements and limits by a joystick type of control can provide a means of rapid preprogramming. (3) An all-encompassing language used for data acquisition and closed loop control can potentially offer significant advantages. In addition, consideration is being given to the use of remote miniature solid-state television cameras to guide the technician in manipulating the robotic arm, and of X-ray vision systems for remote real-time testing

  6. The effect of wildfire and clear-cutting on above-ground biomass, foliar C to N ratios and fiber content throughout succession: Implications for forage quality in woodland caribou (Rangifer tarandus caribou)

    Mallon, E. E.; Turetsky, M.; Thompson, I.; Noland, T. L.; Wiebe, P.

    2013-12-01

    Disturbance is known to play an important role in maintaining the productivity and biodiversity of boreal forest ecosystems. Moderate to low frequency disturbance is responsible for regeneration opportunities creating a mosaic of habitats and successional trajectories. However, large-scale deforestation and increasing wildfire frequencies exacerbate habitat loss and influence biogeochemical cycles. This has raised concern about the quality of the under-story vegetation post-disturbance and whether this may impact herbivores, especially those vulnerable to change. Forest-dwelling caribou (Rangifer tarandus caribou) are declining in several regions of Canada and are currently listed as a species at risk by COSEWIC. Predation and landscape alteration are viewed as the two main threats to woodland caribou. This has resulted in caribou utilizing low productivity peatlands as refuge and the impact of this habitat selection on their diet quality is not well understood. Therefore there are two themes in the study, 1) Forage quantity: above-ground biomass and productivity and 2) Forage quality: foliar N and C to N ratios and % fiber. The themes are addressed in three questions: 1) How does forage quantity and quality vary between upland forests and peatlands? 2) How does wildfire affect the availability and nutritional quality of forage items? 3) How does forage quality vary between sites recovering from wildfire versus timber harvest? Research sites were located in the Auden region north of Geraldton, ON. This landscape was chosen because it is known woodland caribou habitat and has thorough wildfire and silviculture data from the past 7 decades. Plant diversity, above-ground biomass, vascular green area and seasonal foliar fiber and C to N ratios were collected across a matrix of sites representing a chronosequence of time since disturbance in upland forests and peatlands. Preliminary findings revealed productivity peaked in early age stands (0-30 yrs) and biomass peaked

  7. Dose Prediction for surface nuclear explosions: case studies for Semipalatinsk and Lop Nur tests

    Dose prediction method RAPS after surface nuclear explosion has been developed by using the empirical dose function of USA nuclear test. This method which provides us external total dose, dose rate at any distant, at any time for any yield of nuclear explosion, is useful for radiation protection in case of nuclear events such as terrorism and nuclear war. The validity of RAPS has been confirmed by application to historical surface nuclear test explosions. The first test case study which was done for the first test explosion of the former USSR at the Semipalatinsk Nuclear Test Site on August 29th 1949, shows a good agreement with luminescence dosimetry on a brick. This dose prediction method was applied nuclear tests in Lop Nur. The results indicate dangerous nuclear radiation influences including fatal risk in the wide Uygur area. (author)

  8. Head-end demonstration test for nuclear fuel reprocessing plant 'outline of the test results'

    Japan Nuclear Fuel Ltd. (JNFL) is now constructing a nuclear fuel reprocessing plant at Rokkasho-mura (which is called Rokkasho Reprocessing plant). Concerning the head-end process, which includes shearing and dissolving processes for spent fuel and rinsing processes for end-pieces of spent fuel assemblies and chopped fuel rods, a full-scale mock-up test facility was constructed in Kobe Shipyard of Mitsubishi Heavy Industries, LTD (MHI). And then, functional and performance tests were performed using a dummy fuel assembly and chopped fuel rods, from 1988 to 1993. These tests using this full-scale mock-up test facility was called head-end demonstration test (HEDT), and this paper summarizes the results of HEDT. This HEDT facility includes five components: tilting crane, shearing machine, dissolver, hull rinser and end-piece rinser. The design of these components manufactured by MHI is based on CEA/COGEMA/SGN technology. The suitability of the design, the functional reliability, the operability, the controllability and the maintenability were evaluated through functional tests such as an operation test, for example a shearing test, under cold conditions (non radioactive). It was demonstrated that the test results were satisfactory. The component performance data and our manufacturing and operation experience will be greatly useful for the final design process and the choice of operational parameters for these head-end components of the Rokkasho Reprocessing Plant. (author)

  9. External Doses of Residents near Semipalatinsk Nuclear Test Site

    Takada, Jun; Hoshi, Masaharu; NAGATOMO, Tsuneto; Yamamoto, Masayoshi; Endo, Satoru; Takatsuji, Toshihiro; Yoshikawa, Isao; Gusev, Boris I.; Sakerbaev, Alexander K.; Tchaijunusova, Nailya J.

    1999-01-01

    Accumulated external radiation doses of residents near the Semipalatinsk nuclear test site of the former USSR are presented as a results of study by the thermoluminescence technique for bricks sampled at several settlements in 1995 and 1996. The external doses that we evaluated from exposed bricks were up to about 100 cGy for resident. The external doses at several points in the center of Semipalatinsk City ranged from a background level to 60 cGy, which was remarkably high compared with the ...

  10. Mortality of veteran participants in the crossroads nuclear test

    Operation CROSSROADS, conducted at Bikini Atoll in 1946, was the first post World War II test of nuclear weapons. Mortality experience of 40,000 military veteran participants in CROSSROADS was compared to that of a similar cohort of nonparticipating veterans. All-cause mortality of the participants was slightly increased over nonparticipants by 5% (p < .001). Smaller increases in participant mortality for all malignancies (1.4%, p = 0.26) or leukemia (2.0%, p = 0.9) were not statistically significant. These results do not support a hypothesis that radiation had increased participant cancer mortality over that of nonparticipants. 8 refs

  11. Mortality of veteran participants in the CROSSROADS nuclear test.

    Johnson, J C; Thaul, S; Page, W F; Crawford, H

    1997-07-01

    Operation CROSSROADS, conducted at Bikini Atoll in 1946, was the first post World War II test of nuclear weapons. Mortality experience of 40,000 military veteran participants in CROSSROADS was compared to that of a similar cohort of nonparticipating veterans. All-cause mortality of the participants was slightly increased over nonparticipants by 5% (p < .001). Smaller increases in participant mortality for all malignancies (1.4%, p = 0.26) or leukemia (2.0%, p = 0.9) were not statistically significant. These results do not support a hypothesis that radiation had increased participant cancer mortality over that of nonparticipants. PMID:9199228

  12. Contaminant Boundary at the Faultless Underground Nuclear Test

    The U.S. Department of Energy (DOE) and the Nevada Division of Environmental Protection (NDEP) have reached agreement on a corrective action strategy applicable to address the extent and potential impact of radionuclide contamination of groundwater at underground nuclear test locations. This strategy is described in detail in the Federal Facility Agreement and Consent Order (FFACO, 2000). As part of the corrective action strategy, the nuclear detonations that occurred underground were identified as geographically distinct corrective action units (CAUs). The strategic objective for each CAU is to estimate over a 1,000-yr time period, with uncertainty quantified, the three-dimensional extent of groundwater contamination that would be considered unsafe for domestic and municipal use. Two types of boundaries (contaminant and compliance) are discussed in the FFACO that will map the three-dimensional extent of radionuclide contamination. The contaminant boundary will identify the region wi th 95 percent certainty that contaminants do not exist above a threshold value. It will be prepared by the DOE and presented to NDEP. The compliance boundary will be produced as a result of negotiation between the DOE and NDEP, and can be coincident with, or differ from, the contaminant boundary. Two different thresholds are considered for the contaminant boundary. One is based on the enforceable National Primary Drinking Water Regulations for radionuclides, which were developed as a requirement of the Safe Drinking Water Act. The other is a risk-based threshold considering applicable lifetime excess cancer-risk-based criteria The contaminant boundary for the Faultless underground nuclear test at the Central Nevada Test Area (CNTA) is calculated using a newly developed groundwater flow and radionuclide transport model that incorporates aspects of both the original three-dimensional model (Pohlmann et al., 1999) and the two-dimensional model developed for the Faultless data decision

  13. Application of the isotopic ratio based method for discrimination between nuclear tests and nuclear reactors on various data sets

    The monitoring of atmospheric radioxenon is a crucial element in the verification of the comprehensive nuclear-test-ban treaty (CTBT). In order to discriminate between legitimate nuclear reactor emissions and nuclear explosions, the isotopic activity ratios can be used. Various data sets are used to demonstrate the discrimination capability of the isotopic radio method. These include daily and annual emission reports from nuclear power plants and atmospheric observations at various sites. Five air samples are of special interest. They were measured a few days after the North Korean nuclear test in October 2006

  14. Generation of aerosols for filter efficiency testing in nuclear installations

    The purpose of the Research Contract No. 1815 was to develop a new method of sodium chloride aerosol generation for filter efficiency testing in nuclear installations. The first phase of the study was devoted to the development of a suitable aerosol generator. The first NaCl aerosol generator enabled determination of the influence various parameters like nozzle diameter, air flow rate, NaCl concentration in solution, solution temperature, etc., on the generation capacity and aerosol characteristics. The drawbacks of this generator were removed by modifying the design. Sodium chloride aerosol concentration was measured by means of a portable sodium flame photometer, and the particle size distribution was determined by a six-stage Andersen cascade impactor. For particle shape analysis electron microscopy was used. By using the aerosols generated the efficiency of air filters was tested. The results showed that the optimum parameters for atomization of 24NaCl solution are: Nozzle diameter 0.5x10-3m; compressed air pressure 196.132kPa; air flow rate 6.1x10-5m3/s. Under these conditions test aerosols of 0.335x10-6m mass median diameter were obtained with a geometrical standard deviation, sigma=2.04. Preliminary high efficiency particulate air filter tests with the above 24NaCl aerosols showed the minimum filter penetration of the order of 5x10-5% with a relative standard deviation not exceeding 15%. This showed that the 24NaCl aerosol generated from liquid phase can be successfully used for filter testing in nuclear installations

  15. EDF experimental test facilities for main components of nuclear power stations

    Several facilities essentially designed to test nuclear power plant equipment, whose purpose is to improve the availability of nuclear power stations, are described: test loop for water reactor primary pumps, test rig for separators, wet steam test turbine, test loop for Super-Phenix pumps

  16. Y-12 defense programs. Nuclear Packaging Systems testing capabilities

    The Nuclear Packaging Systems (NPS) Department can manage/accomplish any packaging task. The NPS organization is responsible for managing the design, testing, certification, procurement, operation, refurbishment, maintenance, and disposal of packaging used to transport radioactive materials, other hazardous materials, and general cargoes on public roads and within the Oak Ridge Y-12 Plant. Additionally, the NPS Department has developed a Quality Assurance plan for all packaging, design and procurement of nonweapon shipping containers for radioactive materials, and design and procurement of performance-oriented packaging for hazardous materials. Further, the NPS Department is responsible for preparation and submittal of Safety Analysis Reports for Packaging (SARP). The NPS Department coordinates shipping container procurement and safety certification activities that have lead-times of up to two years. A Packaging Testing Capabilities Table at the Oak Ridge complex is included as a table

  17. Small Punch Tests applied to the nuclear industry

    The interest on miniaturized specimen techniques for the characterization of the mechanical behavior of materials was strongly motivated in the early eighties by the different programs associated with the development of fusion reactor technology. The importance of such developments is obvious in the case of the nuclear industry where the limited space available, the presence of fluence gradients in large specimens, the concern about gamma heating and dose to personnel in post-irradiation testing have all been motivations for reducing specimen size. Testing of miniature specimen includes a wide spectrum of techniques such as tensile, instrumented micro-hardness, small punch, bend, fracture, impact and fatigue. Small Punch Testing (SPT) techniques use a spherical penetrator which deforms to failure a miniature disc shaped flat specimen (typically, 3-10 mm in diameter and 0.25-0.50 mm in thickness) supported on its outer rim. Analysis of load-displacement data recorded along the test is performed for the determination of the property of interest. The present work focuses on the characterization of the elastoplastic response of pure Al, ADN 420 structural steel and AISI 304L using SPT and its correlation with the associated standard uniaxial testing behavior. In addition, the sensitivity of the technique to the specific material under study and to different experimental parameters, i.e. specimen diameter and thickness, clearance or clamping force and friction between disc and dies have been assessed both experimentally and by performing simulations using the finite element method (author)

  18. A Preliminary study on attitudes toward nuclear weapons and nuclear tests of the residents of Kurchatov, Kazakhstan

    Matsuo, Masatsugu; Bektorov, Yerzhan; Muldagaliyev, Talgat; Apsalikov, Kazbek; Hirabayashi, Kyoko; Kawano, Noriyuki

    2006-01-01

    The town of Kurchatov was a secret city newly built in the Semipalatinsk nuclear test site as the headquarters of the nuclear tests. The present paper is a pilot study, first, to explore how the current Kurchatov residents think and feel about nuclear weapons and nuclear tests, and secondly, to compare the results of the survey with those of the similar survey near Semipalatinsk. Though the present study is based upon a small and limited survey conducted in the city, it is hoped that it will ...

  19. Fast recovery strain measurements in a nuclear test environment

    The recovery of early-time (50 μs or less) strain gage data on structural response experiments in underground nuclear tests has been a continuing problem for experimenters at the Nevada Test Site. Strain measurement is one of the primary techniques used to obtain experimental data for model verification and correlation with predicted effects. Peak strains generally occur within 50 to 100 μs of the radiation exposure. Associated with the exposure is an intense electromagnetic impulse that produces potentials of kilovolts and currents of kiloamperes on the experimental structures. For successful operation, the transducer and associated recording system must recover from the initial noise overload and accurately track the strain response within about 50 μs of the nuclear detonation. A gaging and fielding technique and a recording system design that together accomplish these objectives are described. Areas discussed include: (1) noise source model; (2) experimental cassette design, gage application, grounding, and shielding; (3) cable design and shielding between gage and recorder; (4) recorder design including signal conditioner/amplifier, digital encoder, buffer memory, and uphole data transmission; and (5) samples of experimental data

  20. Qualification tests for shift personnel in nuclear power plants

    The selection of personnel for training as shift supervisors or reactor operators so far used to be made by a plant operator mainly on the basis of such criteria as examinations, diplomas and other documents verifying the educational background, the type of activity exercised, and professional success. In addition, there are the opininons of trainers and supervisors based on personal observation of future shift personnel on training for specific plants at a training center, at the manufacturer's, the operator's or in activities in the construction and commissioning of the respective nuclear power plant. In the course of this phase, which normally takes several years, supervisors asses not only the professional capabilities of a trainee, but also bis psychic and physical performance and aptitude, e.g., with respect to decision making, leadership qualifications or behavior unter stress. The advisability of introducing psychological aptitude tests was also studied. However, a decision was recently taken to defer such psychological tests for the time being. Yet, nuclear power plant operators are required to submit a statement to their responsible authorities about industrial medical checkups and qualification assessments by supervisors. (orig.)

  1. Ionizing radiations, underground world and nuclear tests in Algeria

    Chama, Allel

    2010-05-01

    Today, the exposure to ionizing radiations, is still a real great physical hazard in the world at various levels until the nuclear tests which led to a rich and lawful debate, and needs the installation of preventive rules through technical and medical aspects during the use of the radioactive sources, (theradioprotection). Concerning the occupational health, the pathology of the ionizing radiations is repaired under occupational disease. Our interest is to highlight this physical hazard, which represents an important chapter of the occupational pathology in its effects and prevention of the workers exposed in Algeria. The second aim of the paper is to highlight the historical aspect of the risk of ionizing radiations and consequences causes by the French nuclear tests in In Eker (underground galleries of the mountain of Hoggar in the south of Algeria in 1961), whose effects present a great damage on the health of the Algerian captive, and "workers", indigenous population and environment until now. This event deserves its place as much as that of Hiroshima and Nagasaki (1945).

  2. Bikini Atoll coral biodiversity resilience five decades after nuclear testing

    Five decades after a series of nuclear tests began, we provide evidence that 70% of the Bikini Atoll zooxanthellate coral assemblage is resilient to large-scale anthropogenic disturbance. Species composition in 2002 was assessed and compared to that seen prior to nuclear testing. A total of 183 scleractinian coral species was recorded, compared to 126 species recorded in the previous study (excluding synonomies, 148 including synonomies). We found that 42 coral species may be locally extinct at Bikini. Fourteen of these losses may be pseudo-losses due to inconsistent taxonomy between the two studies or insufficient sampling in the second study, however 28 species appear to represent genuine losses. Of these losses, 16 species are obligate lagoonal specialists and 12 have wider habitat compatibility. Twelve species are recorded from Bikini for the first time. We suggest the highly diverse Rongelap Atoll to the east of Bikini may have contributed larval propagules to facilitate the partial resilience of coral biodiversity in the absence of additional anthropogenic threats

  3. Activities related to ''nuclear model parameter testing for nuclear data evaluation'' (Reference Input Parameter Library: Phase II) at CNDC

    The objectives of the RIPL CRP Phase II are to test thoroughly all segments of the Starter File of the Reference Input Parameter Library, focusing on optical model parameters and nuclear level density parameters. The nuclear level density calculations for 303 nuclei with the two recommended parameter sets have been performed. 88 sets of optical potential parameters are prepared for RIPL-2. A nuclear model code UNF is being prepared at CNDC for the physical testing of RIPL. (author)

  4. Microquake activity associated with underground nuclear testing at the Nevada Test Site

    In the fall of 1976, the Los Alamos Close-In Seismic Network was added to the existing strong motion net deployed around each nuclear test conducted by Los Alamos. Six to ten stations, including both accelerometers and seismometers, are installed within a two-DOB (depth of burial) circle around SGZ (surface ground zero) and operated until the major portion of the microquake activity ceases, usually within 48 hours. Epicentral locations are determined and local magnitudes are calculated from event durations. Four primary conclusions have been reached on the basis of the data analyzed to date: (1) major faults bounding the immediate site of a nuclear test confine the observed microquake activity to the structural block in which the test is conducted; (2) microquake epicenters are generally distributed around the cavity created by the nuclear test with the peak occurrence generally occurring about three cavity radii away from the working point; (3) magnitudes of locatable microquakes apparently distribute randomly over the entire region of activity; and (4) the microquake activity as a function of time appears to be controlled by the collapse phenomenology

  5. An Enhancement of Visual Test Performance for Nuclear Fuel Assembly

    In the overhaul period of the nuclear power plant, integrity of the neutron-irradiated fuel assembly is evaluated. Nuclear regulations require that nuclear power plants meet the design, operation, and inspection requirements of the American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel Code (B and PV). Section XI of the ASME B and PV Code provides the specific requirements for inspecting the systems, structures, and components; Section V of the ASME Code provides requirements for inspection methods, including volumetric (e.g., ultrasonic testing), surface (e.g., eddy current testing), and visual testing (VT). Visual testing of neutron irradiated fuel assembly is conducted generally for a variety of purposes, for example to detect discontinuities and imperfections on the surface of fuel rods, to detect evidence of leakage from end-cap welds, and to determine the general mechanical and structural condition of one. VT is performed remotely using video camera. As the neutron-irradiated fuel assembly is a high dose-rate gamma-ray source, approximately a few kGy, radiation hardened underwater camera is used in the VT of the fuel assembly. Utilities today follow the EPRI guidelines for VT-1 tests on nuclear components (BWR Vessel and Internals Project-3 1995). The VT-1 guidelines specify which areas around a weld should be examined, how to measure the sizes of indications found, and how to test the resolving power of the visual equipment used for the test. The EPRI guidelines use two 12μm (0.0005-in.) wires or notches as a resolution calibration standard. According to the EPRI guidelines (BWRVIP-03 1995), the camera systems employed were marginally able to detect the 0.0005-inch (12-μm) diameter wire on a steel background. In the some future, it is required that the VT of nuclear fuel assembly follows the EPRI VT-1 guideline. In order to meet the VT-1 guideline, any system used in VT (ranging from the naked eye to a digital closed-circuit TV system

  6. An Enhancement of Visual Test Performance for Nuclear Fuel Assembly

    Cho, Jai Wan; Choi, Young Soo [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Shin, Jung Cheol [Korea Nuclear Fuel, Daejeon (Korea, Republic of)

    2009-05-15

    In the overhaul period of the nuclear power plant, integrity of the neutron-irradiated fuel assembly is evaluated. Nuclear regulations require that nuclear power plants meet the design, operation, and inspection requirements of the American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel Code (B and PV). Section XI of the ASME B and PV Code provides the specific requirements for inspecting the systems, structures, and components; Section V of the ASME Code provides requirements for inspection methods, including volumetric (e.g., ultrasonic testing), surface (e.g., eddy current testing), and visual testing (VT). Visual testing of neutron irradiated fuel assembly is conducted generally for a variety of purposes, for example to detect discontinuities and imperfections on the surface of fuel rods, to detect evidence of leakage from end-cap welds, and to determine the general mechanical and structural condition of one. VT is performed remotely using video camera. As the neutron-irradiated fuel assembly is a high dose-rate gamma-ray source, approximately a few kGy, radiation hardened underwater camera is used in the VT of the fuel assembly. Utilities today follow the EPRI guidelines for VT-1 tests on nuclear components (BWR Vessel and Internals Project-3 1995). The VT-1 guidelines specify which areas around a weld should be examined, how to measure the sizes of indications found, and how to test the resolving power of the visual equipment used for the test. The EPRI guidelines use two 12{mu}m (0.0005-in.) wires or notches as a resolution calibration standard. According to the EPRI guidelines (BWRVIP-03 1995), the camera systems employed were marginally able to detect the 0.0005-inch (12-{mu}m) diameter wire on a steel background. In the some future, it is required that the VT of nuclear fuel assembly follows the EPRI VT-1 guideline. In order to meet the VT-1 guideline, any system used in VT (ranging from the naked eye to a digital closed-circuit TV

  7. Water Holding Function of Above-ground Structure of Plant Community in Upper Reaches of Chishui River%赤水河上游植物群落地上结构持水功能评价

    肖卫平; 喻阳华; 严令斌; 喻理飞

    2015-01-01

    The upstream plant community in Chishui River was chosen as research object to build the evaluation in-dex system of plant community water-holding function by using PCA and RDA sort-based analysis for screening water holding function index of above-ground structure of plant communities.Based on the assessment of water holding a-bility of 27 samples by the index weighted product , the results showed that differences in the structure of plant com-munity was the major cause for different water holding levels.In all analyzed plant communities, only croton, with combination of cypress presented higher water-holding ability, and then were the community of shrub, climax and timber forest, while the shrub-grass, brush stage, as well as bamboo standing in tree layer were the lowest.%以赤水河上游森林群落为研究对象,采用PCA和RDA排序分析,筛选植物群落地上部分组成及结构的持水功能指标,构建了植物群落持水功能评价指标体系,并采用指标加权乘积法评价赤水河上游27块森林群落样地的持水能力。结果表明,灌草、灌木、灌丛阶段群落及乔林阶段中竹林为低持水群落,次顶极群落和多数乔林群落为中持水群落,仅乔林阶段中巴豆+柏木群落中2块样地为高持水群落。导致群落持水功能差异的主因是持水结构组成不同。

  8. An Evaluation of North Korea’s Nuclear Test by Belbasi Nuclear Tests Monitoring Center-KOERI

    Necmioglu, O.; Meral Ozel, N.; Semin, K.

    2009-12-01

    Bogazici University and Kandilli Observatory and Earthquake Research Institute (KOERI) is acting as the Turkish National Data Center (NDC) and responsible for the operation of the International Monitoring System (IMS) Primary Seismic Station (PS-43) under Belbasi Nuclear Tests Monitoring Center for the verification of compliance with the Comprehensive Nuclear-Test-Ban Treaty (CTBT) since February 2000. The NDC is responsible for operating two arrays which are part of the IMS, as well as for transmitting data from these stations to the International Data Centre (IDC) in Vienna. The Belbasi array was established in 1951, as a four-element (Benioff 1051) seismic array as part of the United States Atomic Energy Detection System (USAEDS). Turkish General Staff (TGS) and U.S. Air Force Technical Application Center (AFTAC) under the Defense and Economic Cooperation Agreement (DECA) jointly operated this short period array. The station was upgraded and several seismometers were added to array during 1951 and 1994 and the station code was changed from BSRS (Belbasi Seismic Research Station) to BRTR-PS43 later on. PS-43 is composed of two sub-arrays (Ankara and Keskin): the medium-period array with a ~40 km radius located in Ankara and the short-period array with a ~3 km radius located in Keskin. Each array has a broadband element located at the middle of the circular geometry. Short period instruments are installed at depth 30 meters from the surface while medium and broadband instruments are installed at depth 60 meters from surface. On 25 May 2009, The Democratic People’s Republic of Korea (DPRK) claimed that it had conducted a nuclear test. Corresponding seismic event was recorded by IMS and IDC released first automatic estimation of time (00:54:43 GMT), location (41.2896°N and 129.0480°E) and the magnitude (4.52 mb) of the event in less than two hours time (USGS: 00:54:43 GMT; 41.306°N, 129.029°E; 4.7 mb) During our preliminary analysis of the 25th May 2009 DPRK

  9. In situ testing of motor-operated valves in nuclear power plants

    This paper presents a perspective of the status of in situ testing of motor operated valves in nuclear power plants. The objectives of in situ testing are discussed. A short history of in situ testing of motor-operated valves in nuclear plant applications is offered. Recent developments regarding in situ testing are discussed followed by a perspective on needed research and development

  10. Nuclear Performance Analyses for HCPB Test Blanket Modules in ITER

    calculations were performed for assessing the nuclear performance of HCPB blanket test modules in terms of the Tritium generation, the nuclear heating and the radiation shielding. The shielding calculations include the evaluation of the transmitted neutron radiation and the gamma dose rate around the port after shutdown. Three-dimensional activation and afterheat calculations were performed for the PI variant of the HCPB TBM to provide the data required for quality assured safety analyses. (author)

  11. Specification and acceptance testing of nuclear medicine equipment

    The purchase of nuclear medicine equipment is of prime importance in the operation of a clinical service. Failure to properly evaluate the potential uses of the instrumentation and the various operational characteristics of the equipment can often result in the purchase of inappropriate or inferior instruments. The magnitude of the purchase in terms of time and financial investments make it imperative that the purchase be approached in a systematic manner. Consideration of both the intended clinical functions and personnel requirements is important. It is necessary also to evaluate the ability of the equipment vendor to support the instrumentation after the purchase has been completed and the equipment installed in the clinical site. The desired specifications of the instrument characteristics should be stated in terms that can be verified by acceptance testing. The complexity of modern instrumentation and the sensitivity of it to the environment require the buyer to take into account the potential problems of controlling the temperature, humidity, and electrical power of the installation site. If properly and systematically approached, the purchase of new nuclear medicine instrumentation can result in the acquisition of a powerful diagnostic tool which will have a useful lifetime of many years. If not so approached, it may result in the expenditure of a large amount of money and personnel time without the concomitant return in useful clinical service. (author)

  12. Thermal Simulator Development: Non-Nuclear Testing of Space Fission Systems

    Bragg-Sitton, Shannon M.; Dickens, Ricky E.

    2006-01-01

    Non-nuclear testing can be a valuable tool in the development of a space nuclear power system. At the NASA MSFC Early Flight Fission Test Facility (EFF-TF), highly designed electric heaters are used to simulate the heat from nuclear fuel to test space fission power and propulsion systems. To allow early utilization, nuclear system designs must be relatively simple, easy to fabricate, and easy to test using non-nuclear heaters to closely mimic heat from fission. In this test strategy, highly designed electric heaters are used to simulate the heat from nuclear fuel, allowing one to develop a significant understanding of individual components and integrated system operation without the cost, time and safety concerns associated with nuclear testing.

  13. Rehabilitation of former nuclear test sites in Australia

    A range of options with indicative cost estimates and timescale has been defined for clean-up of the former British nuclear test sites at Maralinga and Emu in South Australia. The situation at the former test sites on the Monte Bello Islands has been reported separately. The predominant contributor to potential radiation dose at the test sites is residual plutonium contamination of soil which may be incorporated into the body through inhalation of resuspended dust. Acceptable levels of radioactive soil contamination based upon organ doses from incorporated plutonium and the associated health detriment are proposed by the Technical Assessment Group for a series of land-use options ranging from fully unrestricted habitation by Aboriginals including the case of high dependence on local plants and animals for food: to casual access by Aboriginals assuming retained or, if necessary, extended fences. The area of land affected and the quantity of soil and other material with more than the proposed limit of contamination as well as a range of remedial measures for reduction of the contamination to a level acceptable for each of the land-use options has been assessed and methods proposed for safe disposal of the contaminated materials. The associated costs of these remedial measures and disposal methods have also been estimated. 28 refs., 71 tabs., 45 figs

  14. Devices and Instrumentations for Nuclear Fuel Irradiation Tests in HANARO

    HANARO(High flux Advanced Neutron Application ReactOr), one of the multipurpose research reactors in the world, has a maximum thermal power of 30MW. HANARO has been operated and the functions of its systems have been improved continuously since its first criticality in February 1995, and it is now being successfully utilized in such areas as fuel and materials irradiation tests, neutron beam research, radioisotopes production, neutron activation analysis, and neutron transmutation doping, etc. Experimental facilities, such as capsules, FTL including control system and others, have been developed and installed in field of irradiation tests since the beginning of the reactor's operation, and continued efforts to develop more equipment and to enhance an irradiation technology are in progress. The support of the government for HANARO users has promoted new researches in a wide range of neutron application, which is demonstrated by the high growth record of HANARO's utilization every year. In this paper, experimental equipment for irradiation tests of nuclear fuels and instrumentation to measure some characteristics of fuels during irradiation in HANARO are described

  15. Acceptance test of graphite components in nuclear reactor

    The HTTR is the first high temperature gas-cooled reactor in Japan. It is a test reactor with thermal power of 30 MW and coolant outlet temperature of 950degC at maximum. To achieve high temperature coolant core internals were made of graphite and carbon materials due to their excellent thermal resistivity. After fabrication of graphite and carbon components at works they were installed in the HTTR, and now it is in the power up testing stage. Concerning the inspection standard of the graphite and carbon components, nondomestic standard exists as main components in the nuclear reactor. It is necessary, therefore, to prescribe the inspection standards for the HTTR graphite components. Many research and developments in relation to the inspection standard, e.g. in the research field of nondestructive examination of the graphite material, had been performed, and then the JAERI established the inspection standard. The acceptance test of the graphite and carbon components was carried out based on the inspection standard. This paper prescribes the outline of the established inspection standard. (author)

  16. Techniques of the snubber testing in a nuclear power plant

    Hong, Soon Sin; Kim, Byung Chul [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1994-05-01

    The performance of PSI/ISI is one of the important inspections which improve the safety, reliability and operability of nuclear power plant. Therefore, KAERI has performed the inspections for the safety-related piping systems, pressure vessel and support components of NPP by the NDT methods in accordance with the related technical codes and standards. ASME Sec.XI of 1989 requires to perform the visual inspection and functional test of snubbers in accordance with ASME/ANSI OM-Part 4 additionally. Especially, the inspection and functional test of heavy duty hydraulic snubbers attached to the steam generator and RC pump have also been added. The main role of snubbers protects the piping system and pressure vessel from the transient events such as water hammer and earthquake during operation. Throughout the analysis of the status of snubbers in NPP, the snubber failure cases in domestic and foreign countries, the requirements and technical standards of the inspection and test, problems of snubbers in NPP, and snubber reduction program, this report requires to follow the technical codes and standards for the inspection and functional test of snubbers now being insufficient in Korean NPP. As a following action, the safety verification analysis for the reliability of piping systems and components of NPP due to snubber failure causes will be studied, and also the snubber reduction program of NPP will simplify the control and maintenance of the expensive snubbers. The objective of this report is to provide the problems of snubber in Korean NPP and contribute to the integrity assurance of the piping systems and components by the inspection and test of snubbers. 17 figs., 9 tabs., 19 refs. (Author).

  17. Very high temperature measurements: Applications to nuclear reactor safety tests

    This PhD dissertation focuses on the improvement of very high temperature thermometry (1100 deg. C to 2480 deg. C), with special emphasis on the application to the field of nuclear reactor safety and severe accident research. Two main projects were undertaken to achieve this objective: - The development, testing and transposition of high-temperature fixed point (HTFP) metal-carbon eutectic cells, from metrology laboratory precision (±0.001 deg. C) to applied research with a reasonable degradation of uncertainties (±3-5 deg. C). - The corrosion study and metallurgical characterization of Type-C thermocouple (service temp. 2300 deg. C) prospective sheath material was undertaken to extend the survivability of TCs used for molten metallic/oxide corium thermometry (below 2000 deg. C)

  18. Worldwide fallout of plutonium from nuclear weapons tests

    Measurements of 238Pu and /sup 239,240/Pu fallout from nuclear weapons tests and the SNAP-9A navigational satellite burnup are presented for the years through 1980. Data abstracted from the literature were taken from the stratosphere, atmosphere, and from deposition and surface soil. Over 7300 data entries are included in the 23 tables. The tables are sorted by medium (stratosphere, atmosphere, and deposition near the surface and soil, nuclide, hemisphere, and longitude going from west to east, and are arranged in chronological order. Latitudes are also provided. Fallout levels in SI units (becquerels), calculated from the original readings, and the references from which the original data were taken are given in the report. The appendix is a map showing the various sites from which data were obtained

  19. Procedural development for nuclear waste canister impact testing

    Double containment requirements for transporting nuclear waste in glass form are costly and may not be necessary for some waste forms. To allow single containment, a procedure for examining particle size distribution and the amount of respirable particles generated under accident conditions was needed. A statistically designed experiment was conducted to examine the effects of glass temperature, fill rate and canister drop orientation upon the amount of sub-ten micron particles generated under simulated accident conditions. Measuring such small particles is somewhat inaccurate because of material loss in handling. By assuming a lognormal particle size distribution, the amount of sub-ten micron particles was estimated from the results for the larger measurable particles. Analyses revealed no temperature or fill rate effect but indicated that the amount of respirable particles is affected by drop orientation. This led to identification of a worst case drop orientation to be used in qualification testing. 4 refs., 2 figs

  20. Rockbursts as opportunities for the concealment of nuclear tests?

    Heuze, F.E.

    1994-01-01

    Based on a review of the engineering and scientific literature from 1979 to 1993 concerning mine rockbursts, it is concluded that the hiding of nuclear tests in rockbursts is a highly improbable scenario. This is due to the lack of ability for anyone to accurately predict the time and location of occurrence of natural rockbursts, in spite of active research on the subject. However, such an evasion scheme is not impossible. A contrived rockburst possibly could be made to happen in a somewhat ``controlled`` fashion. This rather far-fetched scenario is outlined in the discussion. Such an event most likely would involve serious damage to the underground, and would be unlikely to be repeated frequently at any given site. Moreover, it would be extremely difficult to control its seismic magnitude.

  1. Delayed consequences of nuclear tests on Semipalatinsk site

    Data of delayed radiation influence on body of the man and animals are sited. Long-term observations of residents in the vicinity to the nuclear site show two-phase character of cardiovascular and the nervous systems pathological disturbances, which on 10 years outstripping the natural age shifts, e. g. premature growing old. One of the dangerous radiation injuries is development of malignant neoplasms. In comparing with 1957 now the mortality from cancer of different localization with Semipalatinsk city inhabitants grows up in to 2.5-3 times. Observations reveal that oncological illness and mortality from cancer sharply increase on 4-t h, 15-t h and 23-27-t h years after the tests realization. Average annual growth rate of mortality from malignant neoplasms of population irradiated in the result of nuclear test is higher in 40 %, than in control groups. Quantity of ills with leukemia increases in to 7 times in comparing with 1985. It is established that frequency chromosomal aberrations with indigenous inhabitants in 4-5 times higher than in the control groups. Principal reasons of the delayed radiation effects are as follows: significant lowering of immune system activity, cytogenetic disturbances, lowering of body radioresistance, metabolism disturbances and systems of adaptation regulation. Hemic examination of animals peripheral blood does not revealed changes typical to radiation pathology. Rate between increase of natural immunity and density of territory radiation contamination was established. So, rate of immunosuppression in zone of emergency risk made up 55 %, maximal - 25 %, and increased - 15 % in comparing with animals in zone of minimal radiation risk. The most distributed diseases with animal in this region is crystalline lens clouding

  2. Genetic effects of radiation and prediction of hereditary pathology of population of areas around the former Semipalatinsk test site

    Epidemiological analysis of diseases and mortality of the population living in areas around Semipalatinsk test site is not only theoretically interesting in terms of the human being genetics, but is important for the health-care in practice, since it allows correct planning the score of medical social aid to the sick people and their families, including measures. Assessment of posterior consequences of low dose radiation effect on health of the population of the areas around the former Semipalatinsk nuclear test site is of special interest. Many underground, atmospheric and above-ground tests of nuclear weapon resulted in a significant increase of the oncologic and blood diseases rate among several generations of the effected people. Moreover, consequences of the above-ground and atmospheric tests of nuclear and hydrogen weapon will show up in the next century, taking into account the fact that the 'open' tests were ceased only at the middle of 60-th. The birth rate of children with the inherent intelligence defects was determined according to the accounting records of the new-born children within 1986-1992 years. Analysis of perinatal mortality was carried out based on the records on autopsy within 1985-1992 years. The two-fold increase of the onco diseases rate was revealed among children. The rate of spontaneous aborts in the Eginbulak district was 9.99% and exceeded the average rate in the region and indexes of other regions

  3. SFC/SFBMN guidelines update for nuclear cardiology procedures: stress testing in adults and children

    The guidelines update for nuclear cardiology procedures are studied in this article. We find the minimum technique conditions for the stress testing practice, the recommendations for the different ischemia activation tests, the choice of the stress test. (N.C.)

  4. Ground Test Facility for Propulsion and Power Modes of Nuclear Engine Operation

    Existing DOE Ground Test Facilities have not been used to support nuclear propulsion testing since the Rover/NERVA programs of the 1960's. Unlike the Rover/NERVA programs, DOE Ground Test facilities for space exploration enabling nuclear technologies can no longer be vented to the open atmosphere. The optimal selection of DOE facilities and accompanying modifications for confinement and treatment of exhaust gases will permit the safe testing of NASA Nuclear Propulsion and Power devices involving variable size and source nuclear engines for NASA Jupiter Icy Moon Orbiter (JIMO) and Commercial Space Exploration Missions with minimal cost, schedule and environmental impact. NASA site selection criteria and testing requirements are presented

  5. Recurrent ultrasonic inspections in nuclear power plants. Application of optimized test procedures

    Specifications for recurrent ultrasonic inspections of nuclear facilities are contained in the KTA nuclear rules and regulations. Often, optimised test methods must be applied, e.g. because of damage occurring during operation. Such techniques are used especially in tests whose results can be applied to other, similar test objects. Simulations using CIVA software make it possible to test and simulate possible optimum ultrasonic test parameters for complex test pieces already in the planning stage.

  6. Experimental facility for the nuclear planetology instruments testing

    The experimental facility for testing and calibration of nuclear planetology instruments has been built in the frame of JINR and Space Research Institute (Moscow) cooperation. The Martian soil model from silicate glass with dimensions 3.82×3.21 m and total weight near 30 t has been assembled in the facility. The glass material was chosen for imitation of absolutely dry Martian regolith. The heterogeneous model has been proposed and developed to achieve the most possible similarity with Martian soil in part of the average elemental composition by adding layers of necessary materials, such as iron, aluminum, and chlorine. The presence of subsurface water ice is simulated by adding layers of polyethylene at different depths inside glass model assembly. The portable pulse neutron generator was used as a neutron source to test active neutron and gamma spectrometers. The facility is a radiation hazard area and that is why it is equipped with locking and radiation monitoring systems in accordance with national radiation safety regulations

  7. Nuclear aerosol test facility studies using plasma torch aerosol generator

    In order to study the behavior of aerosols released into the reactor containment following accidents, an experimental simulation facility, called Nuclear Aerosol Test Facility (NATF) has recently been built and commissioned in BARC. It mainly consists of a Test vessel for simulating the containment, plasma torch aerosol generator (PTAG) system for generating metal-based aerosols and aerosol monitoring instrumentation. The main component of the PTAG is a 40 kW dc plasma torch, powered by a constant current power supply, operating in a non-transferred arc mode. Optimal operating conditions of PTAG have been established. Experiments consist of injecting the aerosols of a given material for about 20 minutes into the vessel, simultaneously monitoring the concentrations at various points in the vessel. The measurements of the size distribution and mass concentrations in the vessel are carried out at periodic intervals. Various combination of experiments with different metals such as zinc, tin and manganese, under varying turbulence conditions (with and without keeping the fan continuously on) have been performed. The aerosols were generally found to be fractal aggregates with low fractal dimension (∼1.6). The mass depletion data have been subjected to theoretical analysis and validation exercises with available aerosol behavior codes. The results are further discussed. (author)

  8. Environmental tests of electric cables for nuclear power plants

    The evaluation of the materials for flame retardation of cables for nuclear power plants and the tests of their environmental resistivity are reported. Several cables to meet the severe requirements for these cables have been produced for trial, which have been subjected to the simulated environment test including Loss of Coolant Accident. The results are summarized as follows: (a) the ethylene-proylene rubber-insulated, chloroprene-sheathed cable has the sufficient properties to use in BWR containment vessels, such as radiation resistance and flame resistance. (b) It is the same in the chloroprene-sheathed cable, that has glass braids on the outermost layer and around each core, and the insulation layer of the silicone rubber electrically stable but mechanically low in radiation resistivity. (c) The flame-resistant cross-linking polyethylene-insulated, low hydrochloric acid vinyl-sheathed cable is usable near but outside BWR containment vessels. (d) The flame-resistant cross-linking polyethylene-insulated, chloroprene-sheathed cable having the insulating layer of polyethylene for each core can be used in PWR containment vessels. (e) Chloroprene and polyvinyl chloride, the flame-resistant sheath materials, deteriorate owing to heat aging alone. Only the insulating layers mainly contribute to the environmental resistivity of cables. (f) The environmental conditions are severer when heat aging is carried out prior to irradiation. The influence of dose rate is rather little. (Wakatsuki, Y.)

  9. Qualification process for ultrasonic testing in nuclear inservice inspection applications

    This report documents a project whose objective was to develop recommended requirements and processes for qualifying ultrasonic testing/inservice inspection (UT/ISI) systems for ISI of nuclear power plant components. An overall qualification process intended to achieve statistically designed performance validations including prerequisite training and other qualification recommendations is described. This report also contains recommendations for the test specimens, environment, and other conditions under which the qualification processes should be conducted. Active involvement in the ASME Section 11 Subgroup on Nondestructive Examination (SGNDE) and an Ad Hoc Task Group authorized by the SGNDE became an integral part of this task after a PNL draft document was presented in November 1984. The major areas where specific enhancements to Section 11 were recommended in this document included more stringent criteria for Level 3 qualifications, explicit recommendations for requalification, inauguration of periodic (annual) training, and recommendations for coordinating and administering the entirely new qualification process on a national (rather than local employer) basis. 23 refs., 14 figs., 2 tabs

  10. Airflow Patterns In Nuclear Workplace - Computer Simulation And Qualitative Tests

    Concentration of airborne radioactive materials inside a room can vary widely from one location to another, sometimes by orders of magnitude even for locations that are relatively close. Inappropriately placed samplers can give misleading results and. therefore, the location of air samplers is important. Proper placement of samplers cannot be determined simply by observing the position of room air supply and exhaust vents. Airflow studies, such as the release of smoke aerosols, should be used. The significance of airflow pattern studies depends on the purpose of sampling - for estimating worker intakes, warning of high concentrations. defacing airborne radioactive areas, testing for confinement of sealed radioactive materials. etc. When sampling air in rooms with complex airflow patterns, it may be useful to use qualitative airflow studies with smoke tubes, smoke candles or isostatic bubbles. The U.S. Nuclear Regulatory Commission - Regulatory Guide 8.25 [1]. suggests that an airflow study should be conducted after any changes at work area including changes in the setup of work areas, ventilation system changes, etc. The present work presents an airflow patterns study conducted in a typical room using two methods: a computer simulation and a qualitative test using a smoke tube

  11. Characterization of nuclear transmutations in materials irradiated test facilities

    This study presents a comparison of nuclear transmutation rates for candidate fusion first wall/blanket structural materials in available, fission test reactors with those produced in a typical fusion spectrum. The materials analyzed in this study include a vanadium alloy (V-4Cr-4Ti), a reduced activation martensitic steel (Fe-9Cr-2WVTa), a high conductivity copper alloy (Cu-Cr-Zr), and the SiC compound. The fission irradiation facilities considered include the EBR-II fast reactor, and two high flux mixed spectrum reactors, HFIR (High Flux Irradiation Reactor) and SM-3 (Russian reactor). The transmutation and dpa rates that occur in these test reactors are compared with the calculated transmutation and dpa rates characteristic of a D-T fusion first wall spectrum. In general, past work has shown that the displacement damage produced in these fission reactors can be correlated to displacement damage in a fusion spectrum; however, the generation of helium and hydrogen through threshold reactions [(n,x,α) and (n,xp)] are much higher in a fusion spectrum. As shown in this study, the compositional changes for several candidate structural materials exposed to a fast fission reactor spectrum are very low, similar to those for a characteristic fusion spectrum. However, the relatively high thermalized spectrum of a mixed spectrum reactor produces transmutation rates quite different from the ones predicted for a fusion reactor, resulting in substantial differences in the final composition of several candidate alloys after relatively short irradiation time

  12. Nuclear Power: The Market Test. Worldwatch Paper 57.

    Flavin, Christopher

    Nuclear power was considered vital to humanity's future until just a short time ago. Since the late seventies, economic viability has joined a list of such issues as waste disposal and radiation hazards which call into question the future of nuclear power. This document discusses (in separate sections): (1) the selling of nuclear power, including…

  13. Sustainable land use planning at the Semipalatinsk Nuclear Test Site

    Full text: The UK Department for International Development (DFID) has recently agreed to support a project to develop a participatory sustainable land use plan for areas affected by nuclear weapons testing at Semipalatinsk. This three year project is expected to be initiated in April 2001 and will form one component of the United Nations Development Programme (UNDP) Semipalatinsk Rehabilitation Programme. The project will be undertaken by a combination of Kazakh organizations working with UK consultants and will meet its overall aim through the following main activities: Development of institutional capacity in data management and analysis; Provision of information and education on environmental contamination, hazards and risks; Development of a participatory land use planning process and piloting of the process in specific areas and communities around the test site; Integration of mineral resource extraction in the land planning process with a focus- on water resource and environmental protection and participatory approaches to resolving land use conflicts; Development of legislative tools to permit the implementation of environmental management of resource exploitation. The project will make use of both modern satellite-based imagery and more traditional methods to determine the potential for different land uses within the test site. The results obtained will be incorporated with additional information on land use. radiological and hydrological conditions at the test site through a geographical information system (GIS) provided by the project. The GIS will form the core component for collation and distribution of information on options available for use of different areas of the test site and its vicinity. A participatory rural appraisal, using tried and tested techniques, will identify local interest groups in land use planning and identify the details of their stake in the process. The groups will include owners-herders, employee-herders, and subsistence

  14. Mine seismicity and the Comprehensive Nuclear Test Ban Treaty

    Chiappetta, F. [Blasting Analysis International, Allentown, PA (United States); Heuze, F.; Walter, W. [Lawrence Livermore National Lab., CA (United States); Hopler, R. [Powderman Consulting Inc., Oxford, MD (United States); Hsu, V. [Air Force Technical Applications Center, Patrick AFB, FL (United States); Martin, B. [Thunder Basin Coal Co., Wright, WY (United States); Pearson, C. [Los Alamos National Lab., NM (United States); Stump, B. [Southern Methodist Univ., Dallas, TX (United States); Zipf, K. [Univ. of New South Wales (Australia)

    1998-12-09

    Surface and underground mining operations generate seismic ground motions which are created by chemical explosions and ground failures. It may come as a surprise to some that the ground failures (coal bumps, first caves, pillar collapses, rockbursts, etc.) can send signals whose magnitudes are as strong or stronger than those from any mining blast. A verification system that includes seismic, infrasound, hydroacoustic and radionuclide sensors is being completed as part of the CTBT. The largest mine blasts and ground failures will be detected by this system and must be identified as distinct from signals generated by small nuclear explosions. Seismologists will analyze the seismic records and presumably should be able to separate them into earthquake-like and non earthquake-like categories, using a variety of so-called seismic discriminants. Non-earthquake essentially means explosion- or implosion-like. Such signals can be generated not only by mine blasts but also by a variety of ground failures. Because it is known that single-fired chemical explosions and nuclear explosion signals of the same yield give very similar seismic records, the non-earthquake signals will be of concern to the Treaty verification community. The magnitude of the mine-related events is in the range of seismicity created by smaller nuclear explosions or decoupled tests, which are of particular concern under the Treaty. It is conceivable that legitimate mining blasts or some mine-induced ground failures could occasionally be questioned. Information such as shot time, location and design parameters may be all that is necessary to resolve the event identity. In rare instances where the legitimate origin of the event could not be resolved by a consultation and clarification procedure, it might trigger on On-Site Inspection (OSI). Because there is uncertainty in the precise location of seismic event as determined by the International Monitoring System (IMS), the OSI can cover an area of up to 1

  15. Monitoring of natural revegetation of Semipalatinsk nuclear testing ground

    It is well known, that monitoring of natural revegetation of Semipalatinsk test site (STS) was carried out during period 1994-2002 at test areas (Experimental field, Balapan, Degelen). In this paper the peculiarities of vegetation cover of these test areas are observed. Thus, vegetation cover of Experimental field ground in the epicentre is completely destroyed. At present there are different stages of zonal steppe communities rehabilitation: in zones with γ-irradiation 11000-14000 μR/h the revegetation is not found; on the plots with γ-irradiation 8200-10000 μR/h rare species of Artemisia frigida are found; aggregation of plant (managed from 6000-7000 μR/h is observed; At the γ-irradiation 80-200 μR/h rarefied groups of bunch grass communities similar to the zonal steppe are formed and zonal bunch grass communities developed with 18-25 μR/h. Vegetation cover of Degelen hill tops and near-mouth ground in the results of underground nuclear expulsions are completely destroyed. Here there are three main kinds of vegetation: very stony gallery areas don't almost overgrow; at technogen tops near galleries the single plants, rare field groups and unclosed micro-phyto-biocenoses of weed and adventive species (Amaranthus retroflexus, Artemisia dracunculus, Laxctuca serriola, Chorispora sibirica etc.). On the Balapan are the revegetation is limited by high radiation pollution rate. Here cenose rehabilitation is presented by Artemisia marshalliana, Spita sareptana, Festuca valresiaca). In their paper florostic and phyrocoenitic diversity of STS's flora transformation is studied. Pattern distribution and migration of radionuclides in soils and vegetation cover is represented

  16. Resettlement of Bikini Atoll: US nuclear test site

    Bikini Atoll was one of two sites in the Marshall Islands that were used in the 1950's by the United States for testing nuclear weapons. The testing produced widespread radioactive contamination in Bikini and much of the Northern Marshall Islands. The Bikini people, relocated in 1946 before the test program began, have long desired to return to their homeland. Coral soil on Bikini Island makes cesium-137 (137Cs) much more available for plant uptake than do soils of North America and Europe. Hence, when locally grown crops mature and become available for consumption, the resulting body burden of 137Cs and the associated doses to humans exceeds federal guidelines. The dose from the terrestrial food ingestion pathway dominates all other pathways and contributes about 90% of the total dose to returning residents. We are, therefore, involved in cost-effective efforts to reduce the dose associated with resettlement. We have evaluated several measures, in addition to soil removal, to eliminate 137Cs from the soil and to reduce its uptake into food crops. The most effective, and the easiest to implement, is the application of potassium to the atoll soils. A dramatic reduction in 137Cs occurs in tropical fruits after applications of potassium-rich fertilizer to experimental soil plots. This treatment reduces the associated ingestion dose to about 5% of the pre-treatment levels, and this option avoids removal of the organic-rich surface soils. In addition, the added potassium increases plant productivity. We are now focusing on determining the duration of the effects of potassium treatment on 137Cs uptake into plants, and the rate of environmental loss of 137Cs in the atoll ecosystem. (author)

  17. Consolidation and disposal of nuclear test debris at the Nevada Test Site

    This paper discusses how numerous operational activities conducted at the Nevada Test Site (NTS) resulted in 24 fenced-off areas containing radioactively-contaminated debris. The debris consists of structural tower components, building debris, earthen materials, and equipment contaminated during atmospheric and underground testing of nuclear devices. Contaminated materials were consolidated, covered with clean fill, and fenced to reduce the area requiring controlled access and to provide additional radiation safety barriers. In 1980, disposal of the consolidated debris in subsidence craters, formed as a result of underground nuclear testing, was initiated. The waste materials are disposed using conventional landfill techniques where each layer of debris is covered with clean fill before additional waste materials are disposed. The waste is placed to within 3 m of the land surface and backfilled with compacted earthen material to the original grade. Requirements for air sampling, anticontamination, decontamination, and area access control are determined on a site-by-site basis due to the variety of conditions that exist

  18. Accuracy analysis of the CTBTO nuclear test detection scale and Improvement

    CTBTO (Comprehensive nuclear Test Ban Treaty Organization) is charge of nuclear test monitoring for nuclear non-proliferation. CTBTO has 170 seismic stations in operation in 76 countries in order to detect the artificial earthquake that was caused by an underground nuclear test. Korea use formula that is based on the equations that are used by the IMS (International Monitoring System) of CTBTO for analysis of explosive scale, and reflect the nature of the terrain, such as rock. But the expression for calculating the exact scale explosive is still un-established state. And generally CTBTO doesn't care about artificial explosive that is being received low-yield in accordance with the criteria of nuclear detection. But, at the time that North Korea conduct a nuclear test, it should not be overlooked that the scale of the earthquake detection criteria below. Because DPRK is trying to conceal their nuclear development capability, there are possibility of low-yield nuclear test or possibility of install a buffer to hide actual explosive scale. These radionuclide observations were consistent with a DPRK low-yield nuclear test on May 2010, even though no seismic signals from such a test have been detected. But there were a few times of low-yield (magnitude 1.39-1.93) occurred around DPRK nuclear test site at that time

  19. ESR dosimetry study of population in the vicinity of the Semipalatinsk Nuclear Test Site

    Zhumadilov, Kassym; Ivannikov, Alexander; Stepanenko, Valeriy; Zharlyganova, Dinara; Toyoda, Shin; Zhumadilov, Zhaxybay; Hoshi, Masaharu

    2013-01-01

    A tooth enamel electron spin resonance (ESR) dosimetry study was carried out with the purpose of obtaining the individual absorbed radiation doses of population from settlements in the Semipalatinsk region of Kazakhstan, which was exposed to radioactive fallout traces from nuclear explosions in the Semipalatinsk Nuclear Test Site and Lop Nor test base, China. Most of the settlements are located near the central axis of radioactive fallout trace from the most contaminating surface nuclear test...

  20. Radionuclide Partitioning in an Underground Nuclear Test Cavity

    Rose, T P; Hu, Q; Zhao, P; Conrado, C L; Dickerson, R; Eaton, G F; Kersting, A B; Moran, J E; Nimz, G; Powell, B A; Ramon, E C; Ryerson, F J; Williams, R W; Wooddy, P T; Zavarin, M

    2009-01-09

    In 2004, a borehole was drilled into the 1983 Chancellor underground nuclear test cavity to investigate the distribution of radionuclides within the cavity. Sidewall core samples were collected from a range of depths within the re-entry hole and two sidetrack holes. Upon completion of drilling, casing was installed and a submersible pump was used to collect groundwater samples. Test debris and groundwater samples were analyzed for a variety of radionuclides including the fission products {sup 99}Tc, {sup 125}Sb, {sup 129}I, {sup 137}Cs, and {sup 155}Eu, the activation products {sup 60}Co, {sup 152}Eu, and {sup 154}Eu, and the actinides U, Pu, and Am. In addition, the physical and bulk chemical properties of the test debris were characterized using Scanning Electron Microscopy (SEM) and Electron Microprobe measurements. Analytical results were used to evaluate the partitioning of radionuclides between the melt glass, rubble, and groundwater phases in the Chancellor test cavity. Three comparative approaches were used to calculate partitioning values, though each method could not be applied to every nuclide. These approaches are based on: (1) the average Area 19 inventory from Bowen et al. (2001); (2) melt glass, rubble, and groundwater mass estimates from Zhao et al. (2008); and (3) fission product mass yield data from England and Rider (1994). The U and Pu analyses of the test debris are classified and partitioning estimates for these elements were calculated directly from the classified Miller et al. (2002) inventory for the Chancellor test. The partitioning results from this study were compared to partitioning data that were previously published by the IAEA (1998). Predictions of radionuclide distributions from the two studies are in agreement for a majority of the nuclides under consideration. Substantial differences were noted in the partitioning values for {sup 99}Tc, {sup 125}Sb, {sup 129}I, and uranium. These differences are attributable to two factors

  1. Development of Coolant Flow Simulation System for Nuclear Fuel Test Rigs

    Hong, Jintae; Joung, Chang-Young; Heo, Sung-Ho; Kim, Ka-Hye [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-01-15

    To remove heat generated during a burn-up test of nuclear fuels, the heat generation rate of nuclear fuels should be calculated accurately, and a coolant should be circulated in the test loop at an adequate flow rate. HANARO is an open pool-type reactor with an independent test loop for the burn-up test of nuclear fuels. A test rig is installed in the test loop, and a coolant is circulated through the test loop to maintain the temperature of the nuclear fuel rods within a desired temperature during an irradiation test. The components and sensors in the test rig can be broken or malfunction owing to the flow-induced vibration. In this study, a coolant flow simulation system was developed to verify and confirm the soundness of components and sensors assembled in the test rig with a high flow rate of the coolant.

  2. Applications of optical fibers in nuclear test diagnostics

    Two new plasma diagnostic experiments have been successfully fielded on nuclear device tests at NTS. Both systems rely on the unique advantages provided by optical fiber technology and both systems provide new diagnostic capabilities that previously were beyond the state-of-the-art in coaxial cable systems. One system addresses the need to record e wide bandwidth data on gamma-ray sources. Over the long (< 1 km) distances that characterize NTS testing, the bandwidth of coaxial cable systems is usually limited to < 200 to 400 MHz even with extensive equalization. The new system uses the Cerenkov process to generate light in a converter material. High bandwidth fibers and detectors are used to approach a 1-GHz bandwidth. In this case fibers provided the bandwidth capability. The second system provides time and space resolution of a neutron source on a fast (ns) time scale. Previous systems have utilized either an array of neutron detectors with individual coaxial cables or a fast scintillator viewed by a gated image intensifier. For a large number of channels, the coaxial system becomes very costly and is subject to potentially severe EMI concerns. The gated intensifier system requires complex electronics and accurate timing and can be affected by EMI. An alternative system is described which provides continuous time coverage with limited spatial resolution. Complete freedom from EMI is achieved through the use of optical data collection and transmission. The optical fibers offered a major (2 to 3 times) cost savings and a large weight savings relative to the coax system. Each system is discussed

  3. A Hydrogen Containment Process For Nuclear Thermal Engine Ground Testing

    Wang, Ten-See; Stewart, Eric; Canabal, Francisco

    2016-01-01

    A hydrogen containment process was proposed for ground testing of a nuclear thermal engine. The hydrogen exhaust from the engine is contained in two unit operations: an oxygen-rich burner and a tubular heat exchanger. The burner burns off the majority of the hydrogen, and the remaining hydrogen is removed in the tubular heat exchanger through the species recombination mechanism. A multi-dimensional, pressure-based multiphase computational fluid dynamics methodology was used to conceptually sizing the oxygen-rich burner, while a one-dimensional thermal analysis methodology was used to conceptually sizing the heat exchanger. Subsequently, a steady-state operation of the entire hydrogen containment process, from pressure vessel, through nozzle, diffuser, burner and heat exchanger, was simulated numerically, with the afore-mentioned computational fluid dynamics methodology. The computational results show that 99% of hydrogen reduction is achieved at the end of the burner, and the rest of the hydrogen is removed to a trivial level in the heat exchanger. The computed flammability at the exit of the heat exchanger is less than the lower flammability limit, confirming the hydrogen containment capability of the proposed process.

  4. Ionospheric disturbances locate the 2009 North Korean underground nuclear test

    Park, J.; von Frese, R. R.; G-Brzezinska, D. A.; Morton, Y.; Gaya-Pique, L. R.

    2011-12-01

    Ionospheric disturbances from the North Korean underground nuclear explosion (UNE) of 25 May 2009 were detected using the total electron content (TEC) measurements from the Global Navigation Satellite System (GNSS). The TEC measurements were derived from the ionospheric delay of the GNSS signals and identified traveling ionospheric disturbances (TID) that can be attributed to the UNE. Taking three point numerical derivatives of the TEC measurements isolated the TIDs with propagation speeds of roughly 150 - 400 m/s at stations located about 365 km to 1330 km from the UNE. TIDs were detected at eleven stations where the statistical probability for these TIDs to have occurred randomly across the GNSS array was found to be less than one chance in 1033 chances. Nearly 1300 TID samples from these GNSS stations were tested to confirm the strong statistical uniqueness of the array signature. Furthermore, the GNSS observations mapped ionospheric winds for adjusting the TID velocities to locate the UNE to within about 2.7 km of its seismically determined epicenter.

  5. Present radiological situation at the Semipalatinsk nuclear test site

    The corroboration of environmental contamination levels obtained by independent equipment and measurements of the team was generally good, the best being with recent Russian and Kazakh data using gamma dose rate measurements. Acceptable corroboration was observed for gamma emitting radionuclides in food and environmental samples. The preliminary results on plutonium levels in soil samples from contaminated sites in the polygon showed values comparable with the data reported by Russian scientists.The major sites selected for field work by the team were the settlements around the polygon of Kainar(population of about 10,000) in the south, Sharzhal (2000) and Karaul (5000) in the east, and Dolon (2000 just north of the Irtysh. Akzhar, within the polygon just south of the river, was used as a reference site. Inside the polygon the efforts were concentrated in the Lake Balapan area including the semipermanent farm around Ground Zero, and a selection of sampling sites along the plume paths of atmospheric and above ground explosions. The operations carried out in the field included: gamma dose rate measurements; in situ gamma spectrometry; and the collection of samples of grass, meat, milk, offal, vegetables and soil, as well as biological indicators such as animal bones, mushrooms and moss. The levels of contamination in the soil at the locations specified are shown. The contamination by 'Sr in milk, drinking water and the lake water was also measured, together with results for 137Cs in meat. The external gamma dose rates in settlements and in the polygon, excluding the Lake Balapan and Ground Zero areas, were around 0.1 uGy per hour, against rates of up to 40 uGy per hour around Lake Balapan and Ground Zero. The dose assessment included consideration of all relevant pathways, of which the most important were external gamma exposure from material on or in the ground, inhalation of material resuspended from the ground and consumption of contaminated foods. These pathways

  6. Standard test methods for chemical, mass spectrometric, spectrochemical, nuclear, and radiochemical analysis of nuclear-grade plutonium nitrate solutions

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 These test methods cover procedures for the chemical, mass spectrometric, spectrochemical, nuclear, and radiochemical analysis of nuclear-grade plutonium nitrate solutions to determine compliance with specifications. 1.2 The analytical procedures appear in the following order: Sections Plutonium by Controlled-Potential Coulometry Plutonium by Amperometric Titration with Iron(II) Plutonium by Diode Array Spectrophotometry Free Acid by Titration in an Oxalate Solution 8 to 15 Free Acid by Iodate Precipitation-Potentiometric Titration Test Method 16 to 22 Uranium by Arsenazo I Spectrophotometric Test Method 23 to 33 Thorium by Thorin Spectrophotometric Test Method 34 to 42 Iron by 1,10-Phenanthroline Spectrophotometric Test Method 43 to 50 Impurities by ICP-AES Chloride by Thiocyanate Spectrophotometric Test Method 51 to 58 Fluoride by Distillation-Spectrophotometric Test Method 59 to 66 Sulfate by Barium Sulfate Turbidimetric Test Method 67 to 74 Isotopic Composition by Mass Spectrom...

  7. Monju core physics test analysis with various nuclear data libraries

    JAEA has been re-analyzing Monju core physics tests to validate the JAEA's neutronics calculation system to be used in the next Monju core physics tests. Precedent results presented in PHYSOR2008 have demonstrated the validity of the system based on the basic physical parameters, such as criticality, control rod worth, isothermal temperature coefficient, and power coefficient. This paper is a continuation of the validation study focusing on the other parameters, such as fixed absorber reactivity worth, fuel sub-assembly reactivity worth, coolant reactivity worth, burnup coefficient, and reaction rate. The fixed absorber reactivity worth is a reactivity induced by the replacement of a blanket sub-assembly to a fixed absorber sub-assembly. The fuel sub-assembly reactivity worth is a reactivity induced by the replacement of a fuel sub-assembly to a non-fissile dummy sub-assembly. The coolant reactivity worth is a reactivity induced by the replacement of a non- fissile dummy sub-assembly containing sodium to that containing helium. The reaction rate data include the reaction rate ratio of 238U capture to 239Pu fission. Each of the data is useful to check the calculation system in a particular aspect. For example, the first two data are suitable to check the calculation accuracy of a blanket region and a fuel sub-assembly, respectively. The parameters are simulated using the JAEA's neutronics calculation system with various nuclear date libraries, JENDL-3.2, JENDL-3.3, JENDL/AC-2008, JEFF-3.1, and ENDF/B-VII. A continuous energy Monte Carlo calculation code, MVP, is employed to check calculation methods. Figure 1 shows an example of the C/E (Calculation over Experiment) values. The C/E values are within experimental errors for the fixed absorber reactivity worth and the fuel sub- assembly reactivity worth. Those for the burnup reactivity coefficient are around the experimental error and show a tendency of overestimation. About the comparison with the Monte Carlo

  8. Analysis of North Korea's Nuclear Tests under Prospect Theory

    Lee, Han Myung; Ryu, Jae Soo; Lee, Kwang Seok; Lee, Dong Hoon; Jun, Eunju; Kim, Mi Jin [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-10-15

    North Korea has chosen nuclear weapons as the means to protect its sovereignty. Despite international society's endeavors and sanctions to encourage North Korea to abandon its nuclear ambition, North Korea has repeatedly conducted nuclear testing. In this paper, the reason for North Korea's addiction to a nuclear arsenal is addressed within the framework of cognitive psychology. The prospect theory addresses an epistemological approach usually overlooked in rational choice theories. It provides useful implications why North Korea, being under a crisis situation has thrown out a stable choice but taken on a risky one such as nuclear testing. Under the viewpoint of prospect theory, nuclear tests by North Korea can be understood as follows: The first nuclear test in 2006 is seen as a trial to escape from loss areas such as financial sanctions and regime threats; the second test in 2009 was interpreted as a consequence of the strategy to recover losses by making a direct confrontation against the United States; and the third test in 2013 was understood as an attempt to strengthen internal solidarity after Kim Jong-eun inherited the dynasty, as well as to enhance bargaining power against the United States. Thus, it can be summarized that Pyongyang repeated its nuclear tests to escape from a negative domain and to settle into a positive one. In addition, in the future, North Korea may not be willing to readily give up its nuclear capabilities to ensure the survival of its own regime.

  9. Completion of Flow Interruption Capability Test Stand for Functional Qualification Test of Valves Used in Nuclear Power Plant

    CHENG; Dao-xi; QI; Xiao-guang; ZHAI; Wei-ming; YANG; Bing; ZHOU; Ping

    2013-01-01

    The flow interruption capability test of valve is used for researching the capability of the valves used in nuclear power plants emergently shut off the flow,when the reactor loop is in emergency situations,especially in the design basis accident conditions.This test is one of the most difficult tests in the functional

  10. Non-destructive Testing Dummy Nuclear Fuel Rods by Neutron Radiography

    WEI; Guo-hai; HAN; Song-bai; HE; Lin-feng; WANG; Yu; WANG; Hong-li; LIU; Yun-tao; CHEN; Dong-feng

    2013-01-01

    As a unique non-destructive testing technique,neutron radiography can be used to measure nuclear fuel rods with radioactivity.The images of the dummy nuclear fuel rods were obtained at the CARR.Through imaging analysis methods,the structure defections,the hydrogen accumulation in the cladding and the 235U enrichment of the pellet were studied and analyzed.Experiences for non-destructive testing real PWR nuclear fuel rods by NR

  11. Images processing in hostile nuclear environments. Experimental CCD cameras tests results for robotic operations

    This paper describes succinctly the hostile aspect of nuclear environment for visual sensors and transmissions. It approaches the new field of nuclear Robotic and its constraints about vision process. Tolerance tests of CCD cameras in gamma radiations environment are displayed: - gamma dosimetry measures, - electrical measurement process, - views during testing, - degradations and better tolerance hypothesis

  12. Non-destructive-Testing of Nuclear Fuel Element by Means of Neutron Imaging Technique

    2011-01-01

    Nuclear fuel element is the key component of nuclear reactor. People have to make strictly testing of the element to make sure the reactor operating safely. Neutron imaging is one of Non-destructive-Testing (NDT) techniques, which are very important techniques for

  13. Estimation of above-ground biomass of grassland based on multi-source remote sensing data%基于多元遥感数据的草地生物量估算方法

    王新云; 郭艺歌; 何杰

    2014-01-01

    Radar (SAR) C-band data was utilized to develop a biomass regression model and estimate the aboveground biomass (AGB) of the Caragana microphylla shrubbery in the desert steppe region in the northwest of China. The research area was located at Yangzhaizi Village in Ningxia Autonomous region. Grassland inventory was carried out in 45 randomly distributed plots (30 m × 30 m), and the data was used for either model development or validation. An allometric regression model was established to estimate its biomass for every Caragana microphylla shrub with CH (crown width multiple plant height) variable. The local allometric regression equation was applied to calculate AGB per plot. Furthermore, the correlation between the aboveground biomass of Caragana microphylla shrubbery and the radar backscatter coefficient was analyzed. The AGB regression model was developed by integrating field measurements of 25 sample plots with RADARSAT-2 backscatter remotely sensed data. The multiple stepwise regressions algorithm was applied to develop the AGB model and estimate the grassland above-ground biomass from RADARSAT-2 backscatter data. The developed model was validated by using 20 independent sample plots. Simultaneously, RADARSAT-2 images were fused with the optical HJ1B data by using a discrete wavelet transform for the land cover classification. The image classification based on the objects was performed by using the empirical-statistical machine learning techniques, such as a classification and regression trees (CART) algorithm. The overall accuracy and Kappa value of the proposed method was 90.2% and 0.88, respectively. It indicated that the proposed method performed well for the land use and land cover (LULC) classification. An AGB biomass distribution map was produced by RADARSAT-2 backscatter data in combination with the land cover classification image and AGB regression model. As a comparison, the AGB from RADARSAT-2 estimates were compared with the results from the HJ1B

  14. Under a cloud of secrecy: the French nuclear tests in the Southeastern Pacific

    The use of the Pacific as a testing ground for nuclear weapons is 1 of the darkest chapters in the history of the region. Before the Partial Test Ban Treaty went into effect in 1963, the USA had tested at least 103 nuclear bombs in the region. After 1963, the Americans, British and Soviets moved their nuclear testing programs out of the Pacific permanently. Today, only the French insist on testing their nuclear bombs in the Pacific, on 2 Polynesian islands, Moruroa and Fangataufa. Since 1966, the French have exploded at least 105 bombs. The devastation caused by this testing is a continuing source of controversy in the South Pacific. Relevant fallout data from all the tests have never been made public by the French government and the actual extent of the contamination of French Polynesia and its neighbors from radioactive fallout remains unknown

  15. Hydrogen Wave Heater for Nuclear Thermal Propulsion Component Testing Project

    National Aeronautics and Space Administration — NASA has identified Nuclear Thermal Propulsion (NTP) as a propulsion concept which could provide the fastest trip times to Mars and as the preferred concept for...

  16. Nuclear Matrix Elements for Tests of Fundamental Symmetries

    Brown, B A; Robledo, L M; Romalis, M V; Zelevinsky, V

    2016-01-01

    The nuclear matrix elements for the momentum quadrupole operator and nucleon spin operator are important for interpretation of precision atomic physics experiments that search for violations of Lorentz and CPT symmetry and for new spin-dependent forces. We use the configuration-interaction nuclear shell model and self-consistent mean field theory to calculate the relevant matrix elements in $^{21}$Ne, $^{131}$Xe, and $^{201}$Hg. We find that the spin expectation values in these nuclei are dominated by the odd neutron, while the quadrupole moment of the nucleon momentum, M, has comparable neutron and proton contributions. These are the first microscopic calculations of the nuclear matrix elements for the momentum quadrupole tensor that go beyond the single-particle estimate. We show that they are strongly suppressed by the many-body correlations, in contrast to the well known enhancement of the spatial quadrupole nuclear matrix elements.

  17. Barometric pressure transient testing applications at the Nevada Test Site. Nuclear chimney analysis. Final report

    Hanson, J.M.

    1985-12-01

    Investigations of barometric pressure testing of NTS nuclear chimneys were reviewed. This review includes the models used in the interpretation, methods of analysis, and results. Analytic and semi-analytic models were presented and applied to both historical data and new data taken for this current project. An interpretation technique based on non-linear least squares methods was used to analyze this data in terms of historic and more recent chimney models. Finally, a detailed discussion of radioactive gas transport due to surface barometric pressure fluctuations was presented. This mechanism of transport, referred to as ''barometric pumping,'' is presented in terms of conditions likely to be encountered at the NTS. The report concludes with a discussion of the current understanding of gas flow properties in the alluvial and volcanic areas of the NTS, and suggestions for future efforts directed toward increasing this understanding are presented.

  18. Barometric pressure transient testing applications at the Nevada Test Site. Nuclear chimney analysis. Final report

    Investigations of barometric pressure testing of NTS nuclear chimneys were reviewed. This review includes the models used in the interpretation, methods of analysis, and results. Analytic and semi-analytic models were presented and applied to both historical data and new data taken for this current project. An interpretation technique based on non-linear least squares methods was used to analyze this data in terms of historic and more recent chimney models. Finally, a detailed discussion of radioactive gas transport due to surface barometric pressure fluctuations was presented. This mechanism of transport, referred to as ''barometric pumping,'' is presented in terms of conditions likely to be encountered at the NTS. The report concludes with a discussion of the current understanding of gas flow properties in the alluvial and volcanic areas of the NTS, and suggestions for future efforts directed toward increasing this understanding are presented

  19. Space Nuclear Thermal Propulsion Test Facilities Subpanel. Final report

    On 20 Jul. 1989, in commemoration of the 20th anniversary of the Apollo 11 lunar landing, President George Bush proclaimed his vision for manned space exploration. He stated, 'First for the coming decade, for the 1990's, Space Station Freedom, the next critical step in our space endeavors. And next, for the new century, back to the Moon. Back to the future. And this time, back to stay. And then, a journey into tomorrow, a journey to another planet, a manned mission to Mars.' On 2 Nov. 1989, the President approved a national space policy reaffirming the long range goal of the civil space program: to 'expand human presence and activity beyond Earth orbit into the solar system.' And on 11 May 1990, he specified the goal of landing Astronauts on Mars by 2019, the 50th anniversary of man's first steps on the Moon. To safely and ever permanently venture beyond near Earth environment as charged by the President, mankind must bring to bear extensive new technologies. These include heavy lift launch capability from Earth to low-Earth orbit, automated space rendezvous and docking of large masses, zero gravity countermeasures, and closed loop life support systems. One technology enhancing, and perhaps enabling, the piloted Mars missions is nuclear propulsion, with great benefits over chemical propulsion. Asserting the potential benefits of nuclear propulsion, NASA has sponsored workshops in Nuclear Electric Propulsion and Nuclear Thermal Propulsion and has initiated a tri-agency planning process to ensure that appropriate resources are engaged to meet this exciting technical challenge. At the core of this planning process, NASA, DOE, and DOD established six Nuclear Propulsion Technical Panels in 1991 to provide groundwork for a possible tri-agency Nuclear Propulsion Program and to address the President's vision by advocating an aggressive program in nuclear propulsion. To this end the Nuclear Electric Propulsion Technology Panel has focused it energies

  20. Prohibiting and Preventing Nuclear Explosions: Background Information for Parliamentarians on the Comprehensive Nuclear-Test-Ban Treaty (CTBT)

    The object and purpose of the CTBT is to ban comprehensively nuclear weapon test explosions and any other nuclear explosion in any environment in an effectively verifiable manner. The CTBT aims at eliminating nuclear weapons by constraining the development and qualitative improvement of new or more advanced nuclear weapons. It plays a crucial role in the prevention of nuclear proliferation and in nuclear disarmament, thus contributing to a safer and more secure world. When the Treaty enters into force it will establish a treaty-implementing body (the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO)), including an on-site inspection mechanism and confidence-building measures as well as an International Monitoring System (IMS) and International Data Centre (IDC). The IMS and IDC are already being created and are being provisionally operated during the preparatory phase by the Preparatory Commission for the CTBTO and its Provisional Technical Secretariat in Vienna. Seismic, hydroacoustic, infrasound and radionuclide data are collected through the stations of the IMS and transmitted to Member States via the IDC. The IDC also processes the raw data received from the stations to derive objective products and services which will support the Treaty verification responsibilities. If the collected and analysed data indicate an ambiguous event, States may address concerns about possible noncompliance with the Treaty through a consultation and clarification process after it enters into force and may request an on-site inspection by the CTBTO.

  1. The new technologies and infrastructure conversion of nuclear testing in Kazakhstan

    It is known, that in August, 1991, in accordance with Decree by the Kazakhstan President, the Semipalatinsk test site (STS) was shut down, and practical works on its conversion were initiated. In 1991 the decision on creation of the Kazakhstan National Nuclear Center (KNNC) on a base of the test site scientific and industrial enterprises and Inst. of Nuclear Physics was taken. In 1993 within frame KNNC three new institutes (Inst. of Atomic Energy, Inst. of Geophysical Research, Inst. of Radiation Safety and Ecology) were created. Owing to this, at the condition of USSR disintegration and liquidation of military division in test site territory, high-qualified personnel was saved, the facilities that represent nuclear danger were left under operation and surveillance, and the full-scale program of STS conversion was developed and put into life. At present guidelines for the major research activities at KNNC on conversion program are as follows: liquidation of consequences of nuclear tests; liquidation of technological structure used before for preparation and implementation of nuclear weapons tests; creation of technology, equipment and locations for receipt and storage of radioactive wastes; working out the concept of nuclear power development in Kazakhstan; investigation of the behaviour of melted reactor core in view of potential heavy accidents at nuclear power plants; development of technique and means for detection of nuclear test in the world, continuous control for nuclear explosions; experimental works on investigation of behaviour of the materials-candidates for role of constructional materials for the thermonuclear reactor ITER; creation of high-technology industries. These and other activities undertaken in this respect allow to attract considerable foreign investments, to create in Kurchatov city hundreds of additional working places.The Government support rendered to KNNC in future will allow to expand substantially this area of activities as well as to

  2. Concept for testing fusion first wall/blanket systems in existing nuclear facilities

    A novel concept to produce a reasonable simulation of a fusion first wall/blanket test environment (except the 14 MeV neutron component) employing an existing nuclear facility is presented. Preliminary results show that an asymmetric, nuclear test environment with surface and volumetric heating rates similar to those expected in a fusion first wall/blanket or divertor chamber surface appears feasible. The proposed concept takes advantage of nuclear reactions within the annulus of a test space (15 cm in diameter and approximately 100 cm high) to provide an energy flux to the surface of a test module

  3. Hanford spent nuclear fuel hot conditioning system test procedure

    This document provides the test procedures for cold testing of the prototype Hot Conditioning System (HCS) at the 306E Facility. The primary objective of this testing is to confirm design choices and provide data for the detailed design package prior to procurement of the process equipment. The current scope of testing in this document includes a fabricability study of the HCS, equipment performance testing of the HCS components, heat-up and cool-down cycle simulation, and robotic arm testing

  4. Possibilities of Kazakhstan experimental base for space nuclear reactors elements testing

    To the mid of 70-th in Kazakhstan the surface developing base for space nuclear reactors elements testing was created. The base consists of three test complexes. Two of them - the complexes of test reactors 'Baikal-1' and IGR - are situating on the Semipalatinsk test site, and the third one - complex of WWR-K research reactor - is situating in Alatau village nearby to Almaty city. On 'Baikal-1' and IGR complexes the testings for fuel elements, fuel assemblies, modules and prototypes of nuclear rocket engine reactor and nuclear energetic engine units with turbine-engine energy transmission on the base solid-phase reactor were carrying out. On the WWR-K reactor complex the testing of power generating channels of thermal-emission transmission reactors were conducted. In the paper the assessment of up-to-date experimental base status and it possibilities for further using in space nuclear energy field are given

  5. The nuclear test-ban verification regime: An untapped source for climate change monitoring

    The benefits of a global ban on nuclear testing for international security and for protecting human health and the environment from radioactive fallout are obvious. The relevance of the Comprehensive Nuclear-Test-Ban Treaty (CTBT) for climate change research may not, however, be evident at first glance. The CTBT bans all nuclear explosions on Earth. To monitor compliance with the Treaty, the CTBTO Preparatory Commission for the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), is establishing a verification regime capable of detecting clandestine nuclear tests. As the only international body operating its own system of monitoring stations that literally spans the globe, the CTBTO is in a unique position to contribute to the UN's efforts in the area of climate knowledge.

  6. 78 FR 71676 - NUREG-1482, Revision 2, “Guidelines for Inservice Testing at Nuclear Power Plants, Final Report”

    2013-11-29

    ... COMMISSION NUREG-1482, Revision 2, ``Guidelines for Inservice Testing at Nuclear Power Plants, Final Report..., ``Guidelines for Inservice Testing at Nuclear Power Plants,'' and subtitled ``Inservice Testing of Pumps and Valves, and Inservice Examination and Testing of Dynamic Restraints (Snubbers) at Nuclear Power...

  7. Research on the improvement of nuclear safety -Thermal hydraulic tests for reactor safety system-

    The present research aims at the development of the thermal hydraulic verification test technology for the safety system of the conventional and advanced nuclear power plant and the development of the advanced thermal hydraulic measuring techniques. In this research, test facilities simulating the primary coolant system and safety system are being constructed for the design verification tests of the existing and advanced nuclear power plant. 97 figs, 14 tabs, 65 refs. (Author)

  8. Research on the improvement of nuclear safety -Thermal hydraulic tests for reactor safety system-

    Jung, Moon Kee; Park, Choon Kyung; Yang, Sun Kyoo; Chun, Se Yung; Song, Chul Hwa; Jun, Hyung Kil; Jung, Heung Joon; Won, Soon Yun; Cho, Yung Roh; Min, Kyung Hoh; Jung, Jang Hwan; Jang, Suk Kyoo; Kim, Bok Deuk; Kim, Wooi Kyung; Huh, Jin; Kim, Sook Kwan; Moon, Sang Kee; Lee, Sang Il [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-06-01

    The present research aims at the development of the thermal hydraulic verification test technology for the safety system of the conventional and advanced nuclear power plant and the development of the advanced thermal hydraulic measuring techniques. In this research, test facilities simulating the primary coolant system and safety system are being constructed for the design verification tests of the existing and advanced nuclear power plant. 97 figs, 14 tabs, 65 refs. (Author).

  9. 3D - Acquisition systems - test in Chooz B nuclear plant

    EDF needs 3D-acquisition systems to get the precise geometry of critical nuclear spaces in order to prepare computer simulations of operations in these areas. The simulations must lead to an increase of the efficiency of the operation. The acquisition of the 3-D geometry can be done using 3D-acquisition systems. To answer the needs of the Construction Division, four different systems are compared by the Research Division in Chooz B nuclear plant in order to determine the right solution for each 3D-acquisition problem

  10. High Fidelity, Fuel-Like Thermal Simulators for Non-Nuclear Testing: Analysis and Initial Test Results

    Bragg-Sitton, Shannon M.; Dickens, Ricky; Dixon, David; Kapernick, Richard

    2007-01-01

    Non-nuclear testing can be a valuable tool in the development of a space nuclear power system, providing system characterization data and allowing one to work through various fabrication, assembly and integration issues without the cost and time associated with a full ground nuclear test. In a non-nuclear test bed, electric heaters are used to simulate the heat from nuclear fuel. Testing with non-optimized heater elements allows one to assess thermal, heat transfer. and stress related attributes of a given system, but fails to demonstrate the dynamic response that would be present in an integrated, fueled reactor system. High fidelity thermal simulators that match both the static and the dynamic fuel pin performance that would be observed in an operating, fueled nuclear reactor can vastly increase the value of non-nuclear test results. With optimized simulators, the integration of thermal hydraulic hardware tests with simulated neutronic response provides a bridge between electrically heated testing and fueled nuclear testing. By implementing a neutronic response model to simulate the dynamic response that would be expected in a fueled reactor system, one can better understand system integration issues, characterize integrated system response times and response characteristics and assess potential design improvements at relatively small fiscal investment. Initial conceptual thermal simulator designs are determined by simple one-dimensional analysis at a single axial location and at steady state conditions; feasible concepts are then input into a detailed three-dimensional model for comparison to expected fuel pin performance. Static and dynamic fuel pin performance for a proposed reactor design is determined using SINDA/FLUINT thermal analysis software, and comparison is made between the expected nuclear performance and the performance of conceptual thermal simulator designs. Through a series of iterative analyses, a conceptual high fidelity design is developed

  11. Development of Induction Brazing System for Sealing Instrumentation Feed through Part of Nuclear Fuel Test Rig

    To test the performance of nuclear fuels, coolant needs to be circulated through the test rig installed in the test loop. Because the pressure and temperature of the coolant is 15.5 MPa and 300 .deg. C respectively, coolant sealing is one of the most important processes in fabricating a nuclear fuel test rig. In particular, 15 instrumentation cables installed in a test rig pass through the pressure boundary, and brazing is generally applied as a sealing method. In this study, an induction brazing system has been developed using a high frequency induction heater including a vacuum chamber. For application in the nuclear field, BNi2 should be used as a paste, and optimal process variables for Ni brazing have been found by several case studies. The performance and soundness of the brazed components has been verified by a tensile test, cross section test, and sealing performance test

  12. General discrimination technique to determine between earthquake and nuclear test with seismic data

    The Comprehensive Nuclear-Test-Ban Treaty (CTBT) was developed to ban of any nuclear weapon test explosion moreover will restrict the development and qualitative improvement of nuclear weapons and end the development of advanced new types of these weapons. The Treaty provides for a comprehensive global verification regime, which includes an International Monitoring System (IMS). The IMS comprises a network of 321 monitoring stations and 16 radionuclide laboratories that monitor the Earth for evidence of nuclear explosions, which cover underground, underwater and atmosphere environments. Presently, Malaysia receives seismic, infrasound, hydroacoustic and radionuclide data from the International Data Centre (IDC) of the CTBT. In order to maximise the use of the data for the purposes of the CTBT, the Malaysian Nuclear Agency is developing capability to analyse the data in order to detect nuclear weapon test, with an initial focus on the seismic data. Through the CTBT IMS, seismic data is constantly being obtained to monitor and detect nuclear explosions. However, in the process, other natural and man-made activities that generate seismic waves, especially earthquakes and large man-made explosions, are also detectable through the IMS, and need to be differentiated and discriminated before any nuclear explosions can be identified. The detection capability by using seismological methods was proven through simulated explosion tests at selected nuclear weapon test sites. This is supported by data previously collected from a total of 2089 nuclear weapon tests that have been carried out globally, out of which 1567 were underground, 514 in the atmosphere, including outer space, and 8 underwater. The discrimination of seismic data to detect nuclear explosions from natural earthquake and explosions can be undertaken through the identification of the epicentre location, hypocentre depth, magnitude and short-period discrimination of the seismic events. (Author)

  13. Subcritical tests - nuclear weapon testing under the Comprehensive Test Ban Treaty; Subkritiske tester - kjernevaapentesting under avtalen om fullstendig proevestans

    Hoeibraaten, S

    1998-10-01

    The report discusses possible nuclear weapons related experiments and whether these are permitted under the 1996 Comprehensive Test Ban Treaty (CTBT). The term ''subcritical experiments'' as used in the United States includes experiments in which one studies fissile materials (so far only plutonium) under extreme conditions generated by conventional high explosives, and in which a self-sustained chain reaction never develops in the fissile material. The known facts about the American subcritical experiments are presented. There is very little reason to doubt that these experiments were indeed subcritical and therefore permitted under the CTBT. Little is known about the Russian efforts that are being made on subcritical experiments.

  14. High Fidelity Thermal Simulators for Non-Nuclear Testing: Analysis and Initial Results

    Bragg-Sitton, Shannon M.; Dickens, Ricky; Dixon, David

    2007-01-01

    Non-nuclear testing can be a valuable tool in the development of a space nuclear power system, providing system characterization data and allowing one to work through various fabrication, assembly and integration issues without the cost and time associated with a full ground nuclear test. In a non-nuclear test bed, electric heaters are used to simulate the heat from nuclear fuel. Testing with non-optimized heater elements allows one to assess thermal, heat transfer, and stress related attributes of a given system, but fails to demonstrate the dynamic response that would be present in an integrated, fueled reactor system. High fidelity thermal simulators that match both the static and the dynamic fuel pin performance that would be observed in an operating, fueled nuclear reactor can vastly increase the value of non-nuclear test results. With optimized simulators, the integration of thermal hydraulic hardware tests with simulated neutronie response provides a bridge between electrically heated testing and fueled nuclear testing, providing a better assessment of system integration issues, characterization of integrated system response times and response characteristics, and assessment of potential design improvements' at a relatively small fiscal investment. Initial conceptual thermal simulator designs are determined by simple one-dimensional analysis at a single axial location and at steady state conditions; feasible concepts are then input into a detailed three-dimensional model for comparison to expected fuel pin performance. Static and dynamic fuel pin performance for a proposed reactor design is determined using SINDA/FLUINT thermal analysis software, and comparison is made between the expected nuclear performance and the performance of conceptual thermal simulator designs. Through a series of iterative analyses, a conceptual high fidelity design can developed. Test results presented in this paper correspond to a "first cut" simulator design for a potential

  15. Sample and injection manifolds used to in-place test of nuclear air-cleaning system

    Objective: According to the regulations of nuclear safety rules and related standards, in-place test of the nuclear air-cleaning systems should be carried out before and during operation of the nuclear facilities, which ensure them to be in good condition. In some special conditions, the use of sample and injection manifolds is required to make the test tracer and ventilating duct air fully mixed, so as to get the on-spot typical sample. Methods: This paper introduces the technology and application of the sample and injection manifolds in nuclear air-cleaning system. Results: Multi point injection and multi point sampling technology as an effective experimental method, has been used in a of domestic and international nuclear facilities. Conclusion: The technology solved the problem of uniformly of on-spot injection and sampling,which plays an important role in objectively evaluating the function of nuclear air-cleaning system. (authors)

  16. Low-level nuclear waste tested for fertilizer value

    The nuclear power industry keeps coming up with proposals for getting rid of radioactive waste - burying it deep in the ground, sinking it at sea and even sending it into space reports Common Cause magazine under a headline, The Latest in Recycling. At its Sequoyah Fuels facility in Oklahoma, Kerr-McGee manufactures fuel for nuclear power plants, generating a low-level radioactive liquid waste product called raphinate. After processing to remove radioactive substances, Kerr-McGee has gotten approval from the Nuclear Regulatory Commission to use the nitrogen-rich residue as a fertilizer - but not to market it. As a result, Kerr-McGee is reported to be buying up thousands of acres of land on which to spread raphinate. The acreage is used to grow hay, which the company has gotten an okay to sell. The recycling effort hasn't exactly won neighborhood friends for the company, noted Common Cause. According to Kerr-McGee's corporate communications direct, When you say to somebody, Sequoyah Fuels is putting nuclear waste (on farmland), people jump up a wall

  17. Visualization test facility of nuclear fuel rod emergency cooling system

    The nuclear reactors safety is determined according to their protection against the consequences that may result from postulated accidents. The Loss of Coolant Accident (LOCA) is one the most important design basis accidents (DBA). The failure may be due to rupture of the primary loop piping. Another accident postulated is due to lack of power in the pump motors in the primary circuit. In both cases the reactor shut down automatically due to the decrease of reactivity to maintain the fissions, and to the drop of control rods. In the event of an accident it is necessary to maintain the coolant flow to remove the fuel elements residual heat, which remains after shut down. This heat is a significant amount of the maximum thermal power generated in normal operation (about 7%). Recently this event has been quite prominent in the press due to the reactor accident in Fukushima nuclear power station. This paper presents the experimental facility under rebuilding at the Thermal Hydraulic Laboratory of the Nuclear Technology Development Center (CDTN) that has the objective of monitoring and visualization of the process of emergency cooling of a nuclear fuel rod simulator, heated by Joule effect. The system will help the comprehension of the heat transfer process during reflooding after a loss of coolant accident in the fuel of light water reactor core. (author)

  18. Ground Test Facility for Propulsion and Power Modes of Nuclear Engine Operation

    Michael, WILLIAMS

    2004-11-22

    Existing DOE Ground Test Facilities have not been used to support nuclear propulsion testing since the Rover/NERVA programs of the 1960's. Unlike the Rover/NERVA programs, DOE Ground Test facilities for space exploration enabling nuclear technologies can no longer be vented to the open atmosphere. The optimal selection of DOE facilities and accompanying modifications for confinement and treatment of exhaust gases will permit the safe testing of NASA Nuclear Propulsion and Power devices involving variable size and source nuclear engines for NASA Jupiter Icy Moon Orbiter (JIMO) and Commercial Space Exploration Missions with minimal cost, schedule and environmental impact. NASA site selection criteria and testing requirements are presented.

  19. No conceivable injury. [Nuclear weapons tests in Australia, 1952-1957

    Milliken, R.

    1986-01-01

    Between 1952 and 1957 Britain conducted 12 nuclear tests in Australia in order to develop a nuclear weapon capability. At that time a special relationship existed between the two countries with Australians keen to help. However, an Australian Royal Commission investigating British nuclear tests in the mid-eighties gave attention to some aspects of the tests which had been kept secret, especially by Britain. In particular the contamination of the sites, especially at Maralinga, a sacred place of the Aborigines, is highlighted. The Royal Commission indeed recommended that Britain should decontaminate the site and Australia should compensate the Aborigines. Doing this, however, would acknowledge the responsibility of the tests for health problems of British and Australian servicemen due to radiation exposure. This was postponed while another report was commissioned from another body. The history of the nuclear tests and their consequences in both human and political terms is chronicled.

  20. Development of High Fidelity, Fuel-Like Thermal Simulators for Non-Nuclear Testing

    Bragg-Sitton, Shannon; Dickens, Ricky; Dixon, David

    2007-01-01

    This viewgraph presentation reviews the development of a simulator for non-nuclear tests for the development of a space nuclear power system. The development of the Instrumented Thermal Simulator is to assist in developing an understanding of individual components and integrated system operation without the cost, time, safety concerns associated with nuclear testing. The presentation shows the design, the electrical integration, the hardware, and the assembly of the simulators. There are slides that show the test plan, the analysis, and the initial results.

  1. Space nuclear power system concepts and the test facility needs/programmatic requirements

    This paper gives an overview of the planning needs for the SP-100 and Megawatt Class Nuclear Space Power Systems programs. Factors of concern include: establishment of mission performance test goals; determination of current Federal Order requirements; compliance with applicable institutional and regulatory requirements, especially those related to site environmental qualification; analysis of lessons learned from the commercial nuclear power, NERVA and SNAP programs; determination of needed technical program support services; analysis of regulatory requirements for similar nuclear programs; establishment of test program safeguards and security; analysis of public health and safety; determination of site program readiness; and determination of public acceptance of the space program and the proposed test site

  2. Test validation of nuclear and fossil fuel control operators

    To establish job relatedness, one must go through a procedure of concurrent and predictive validation. For concurrent validity a group of employees is tested and the test scores are related to performance concurrently or during the same time period. For predictive validity, individuals are tested but the results of these tests are not used at the time of employment. The tests are sealed and scored at a later date, and then related to job performance. Job performance data include ratings by supervisors, actual job performance indices, turnover, absenteeism, progress in training, etc. The testing guidelines also stipulate that content and construct validity can be used

  3. Static and dynamic performance tests of nuclear powered ship Mutsu reactor (report on nuclear ship Mutsu power-up tests)

    The power-up tests of the Mutsu reactor were performed from March 29th 1990 to December 14th. The tests were divided into six phases: The tests Phase 0 and Phase 1 were done in the state that the ship was moored at the quay of Sekinehama port in March and April; The tests Phase 2, Phase 3, Phase 4, and Phase 5 were done on the Pacific Ocean from July to December. Present report describes the test results on the static and dynamic plant performance. On static plant performance tests, there are 13 test items including measurements of primary system heat balance at low and high power levels, a virgin run of feed water pump with SG steam, a change-over test of steam supply of auxiliary boiler to SG. On the dynamic plant performance, there are 11 test items including a test of reactor power auto-control system, a test of main feed water auto-control system, a test of small load variation, a load increasing test, a turbine trip test, tests of ahead and astern maneuvering, a test of single loop operation, and a reactor scram test. The reactor power for each item's test was increased step by step from zero power to the goal of rated power of 100 %, 36 MWt. In order to confirm proper reactor system performance, criteria were laid down for the static and dynamic tests: for example, (1) reactor scram shall not occur, (2) pressurizer relief valve and steam generator safety valve shall not work, and (3) after the transients reactor systems shall become the steady state without manual adjustment of the reactor control system. The test results satisfied these criteria and some of test data showed that reactor had much more margin in any performance for design. It is verified, therefore, that the Mutsu reactor systems have adequate performances as a marine reactor and that one is capable to respond smoothly and safely to the load of ship's demand. (author)

  4. Development and application of nuclear power plant DCS closed-loop test platform

    A simulation platform with high flexibility and extensibility for nuclear power plant DCS closed loop test has been developed. The system modeling for Ling'ao Phase Ⅱ nuclear power plant has been built. Through an example of pressurizer pressure and water level control system testing under the condition of a 10% FP turbine power step-down, the way of using the platform for closed-loop DCS test and how to locate DCS problems were demonstrated. This test platform has been applied to DCS closed-loop test in Ling'ao Phase Ⅱ successfully. (authors)

  5. Time reversal tests in nuclear and neutron beta decay

    Motivation for time reversal violation studies in nuclear and neutron weak decay is discussed with an emphasis on searches for the exotic tensor and scalar weak interaction. The results of the experiment with polarized 8Li are updated. A new experiment with the aim to determine the transverse polarization of electrons emitted by free, polarized neutrons, is proposed. A facility for neutron decay studies with polarized cold neutrons is under construction at the spallation source SINQ-PSI

  6. Public decision and opinion - Nuclear energy and nuclear waste put to the test of democracy

    Some of the results of the opinion polls related to nuclear energy and nuclear waste, which were gathered in Western Europe as well as in the United States, are discussed here: can these converging results be of any help to decision-makers? Which lessons are to be learnt to consider new decision process which better meets the political realty at both the national and local levels? (authors)

  7. The rejection of the comprehensive nuclear test ban treaty by the US Senate: a reverse for the nuclear arms control?

    On October 13, 1999, after a hasty debate, the US Senate rejected the comprehensive nuclear test ban treaty (CTBT) signed 3 years ago. This article analyses this event with respect to the US domestic context (discussions at the Senate, reaction of the Presidency) and with respect to the international context (international reactions, future of the treaty, consequences on arms control policy). (J.S.)

  8. The Analysis of North Korea's Nuclear Tests by Turkish National Data Center

    Semin, K.; Meral Ozel, N.; Destici, T. C.; Necmioglu, O.; Kocak, S.

    2013-12-01

    The Democratic People's Republic of Korea (DPRK) announced the conduct of a third underground nuclear test on 12 February 2013 in the northeastern part of the country as the previous tests that were conducted in 2009 and 2006. The latest nuclear test is the best detected nuclear event by the global seismic networks. The magnitude estimates show that each new test increased in size when compared with the previous one. As Turkish NDC (National Data Center), we have analyzed the 2013 and 2009 nuclear tests using seismic data from International Monitoring System (IMS) stations through the International Data Center (IDC) located in Vienna. Discrimination analysis was performed based on mb:Ms magnitude ratio and spectral analysis. We have also applied array based waveform cross-correlation to show the similarity of the nuclear tests and precise arrival time measurements for relative location estimates and basic infrasound analysis using two IMS infrasound stations for the 2013 event. Seismic analysis were performed using softwares such as Geotool, EP (Event processor from Norsar) and Seismic Analysis Code (SAC) and the infrasound data were analyzed by using PMCC from CEA-France. The IMS network is operating under the Comprehensive Nuclear Test Ban Treaty Organization (CTBTO). The CTBTO verification system is under continuous development, also making use of the state of the art technologies and methodologies.

  9. OFFSITE ENVIRONMENTAL MONITORING REPORT: RADIATION MONITORING AROUND UNITED STATES NUCLEAR TEST AREAS, CALENDAR YEAR 1980

    The U.S. Environmental Protection Agency's Environmental Monitoring Systems Laboratory in Las Vegas continued its Offsite Radiological Safety Program for the Nevada Test Site (NTS) and other sites of past underground nuclear tests. For each test, the Laboratory provided airborne ...

  10. PRELIMINARY GRAZING STUDIES WITH RUMEN-FISTULATED STEERS AT SELECTED NUCLEAR-TEST SITES

    Rumen-fistulated steers (steers with a capped tube inserted into a permanent surgical opening into the stomach) were allowed to graze the fallout zones of six selected nuclear-test sites on the Nevada Test Site and Tonopah Test Range. Ingesta samples were analyzed for radionuclid...

  11. Welding of sule elements for nuclear reactors with solid state YAG laser using instrumentated testing equipments

    The instrumentation of the equipment for carrying out safety tests on fuel elements for nuclear reactors requires special thermocouples adapted to the prevailing agressive medium. The investigations described deal essentially with the operational and metallurgical weldability tests out on the safety test zircaloy piping in the pressurized water circuit (PHEBUS-programme)

  12. Testing for Nuclear Thermal Propulsion Systems: Identification of Technologies for Effluent Treatment in Test Facilities Project

    National Aeronautics and Space Administration — Develop a comprehensive understanding of requirements for a facility that could safely conduct effluent treatment for a Nuclear Thermal Propulsion (NTP) rocket...

  13. Thermal hydraulic tests for reactor safety system -Research on the improvement of nuclear safety-

    The present research aims at the development of the thermal hydraulic verification test technology for the reactor safety system of the conventional and advanced nuclear power plant and the development of the advanced thermal hydraulic measuring techniques. (Author)

  14. United States Nuclear Tests, July 1945 through September 1992, December 2000

    U.S. Department of Energy, Nevada Operations Office

    2000-12-01

    This document list chronologically and alphabetically by name all nuclear tests and simultaneous detonations conducted by the United States from July 1945 through September 1992. Revision 15, dated December 2000.

  15. Discrimination between earthquakes and underground nuclear explosions at Lopnor test site

    This paper evaluates, using different criteria, the effectiveness of discrimination between earthquakes and underground nuclear explosions at Lopnor test site. The records obtained from Talgar and Zerenda seismic arrays have been used for the present study. (author)

  16. 76 FR 52355 - NUREG-1482, Revision 2, “Guidelines for Inservice Testing at Nuclear Power Plants, Draft Report...

    2011-08-22

    ...The U.S. Nuclear Regulatory Commission (NRC) has issued for public comment a document entitled: NUREG-1482, Revision 2, ``Guidelines for Inservice Testing at Nuclear Power Plants, Draft Report for Comment,'' and subtitled ``Inservice Testing of Pumps and Valves, and Inservice Examination and Testing of Dynamic Restraints (Snubbers) at Nuclear Power Plants''. (Note that this document was......

  17. Preliminary nuclear design for test MOX Fuel rods

    Joo, Hyung Kook; Kim, Taek Kyum; Jeong, Hyung Guk; Noh, Jae Man; Cho, Jin Young; Kim, Young Il; Kim, Young Jin; Sohn, Dong Seong

    1997-10-01

    As a part of activity for future fuel development project, test MOX fuel rods are going to be loaded and irradiated in Halden reactor core as a KAERI`s joint international program with Paul Scherrer Institute (PSI). PSI will fabricate test MOX rods with attrition mill device which was developed by KAERI. The test fuel assembly rig contains three MOX rods and three inert matrix rods. One of three MOX rods will be fabricated by BNFL, the other two MOX fuel rods will be manufacturing jointly by KAERI and PSI. Three inert matrix fuel rods will be fabricated with Zr-Y-Er-Pu oxide. Neutronic evaluation was preliminarily performed for test fuel assembly suggested by PSI. The power distribution of test fuel rod in test fuel assembly was analyzed for various fuel rods position in assembly and the depletion characteristic curve for test fuel was also determined. The fuel rods position in test fuel assembly does not effect the rod power distribution, and the proposal for test fuel rods suggested by PSI is proved to be feasible. (author). 2 refs., 13 tabs., 16 figs.

  18. Benchmark Experiments at VNIITF Test Facilities for Verification of Nuclear Data Libraries

    The paper describes test facilities used by the Russian Federal Nuclear Center, All-Russian Institute of Technical Physics (VNIITF) to perform benchmark experiments essential for the verification of nuclear data libraries. The key experiments discussed in the paper include critical mass measurements; the investigation of reaction rate distribution in critical and subcritical systems, in particular those with a 14-MeV neutron source; and studies on the spectra of neutrons and gamma quanta emitted from spheres and reflected by hemispheres with a central pulse source of 14-MeV neutrons. New experiments are proposed with a view to revising nuclear data essential for new nuclear developments

  19. Data of ESR dosimetry study of population in the vicinity of Semipalatinsk Nuclear Test Site

    Zhumadilov, Kassym; Ivannikov, Alexander; Stepanenko, Valeriy; Zharlyganova, Dinara; Zhumadilov, Zhaxybay; Apsalikov, Kazbek; Toyoda, Shin; Zhumadilova, Anara; Endo, Satoru; Tanaka, Kenichi; Miyazawa, Chuzou; Yamamoto, Masayoshi; Okamoto, Tetsuji; Hoshi, Masaharu

    2012-01-01

    The method of electron spin resonance (ESR) dosimetry was used to human tooth enamel to obtain individual absorbed doses of population of settlements in the vicinity of the Semipalatinsk Nuclear Test Site (SNTS), Kazakhstan. The distances between investigated settlements and Ground Zero (SNTS) are in the range 70 - 200 km from SNTS. Most of settlements (Dolon, Mostik, Bodene) are located near the central axis of radioactive fallout trace from the most contaminating surface nuclear test, which...

  20. Verification and Uncertainty Reduction of Amchitka Underground Nuclear Testing Models

    Ahmed Hassan; Jenny Chapman

    2006-02-01

    The modeling of Amchitka underground nuclear tests conducted in 2002 is verified and uncertainty in model input parameters, as well as predictions, has been reduced using newly collected data obtained by the summer 2004 field expedition of CRESP. Newly collected data that pertain to the groundwater model include magnetotelluric (MT) surveys conducted on the island to determine the subsurface salinity and porosity structure of the subsurface, and bathymetric surveys to determine the bathymetric maps of the areas offshore from the Long Shot and Cannikin Sites. Analysis and interpretation of the MT data yielded information on the location of the transition zone, and porosity profiles showing porosity values decaying with depth. These new data sets are used to verify the original model in terms of model parameters, model structure, and model output verification. In addition, by using the new data along with the existing data (chemistry and head data), the uncertainty in model input and output is decreased by conditioning on all the available data. A Markov Chain Monte Carlo (MCMC) approach is adapted for developing new input parameter distributions conditioned on prior knowledge and new data. The MCMC approach is a form of Bayesian conditioning that is constructed in such a way that it produces samples of the model parameters that eventually converge to a stationary posterior distribution. The Bayesian MCMC approach enhances probabilistic assessment. Instead of simply propagating uncertainty forward from input parameters into model predictions (i.e., traditional Monte Carlo approach), MCMC propagates uncertainty backward from data onto parameters, and then forward from parameters into predictions. Comparisons between new data and the original model, and conditioning on all available data using MCMC method, yield the following results and conclusions: (1) Model structure is verified at Long Shot and Cannikin where the high-resolution bathymetric data collected by CRESP

  1. Static and dynamic performance tests of nuclear powered ship Mutsu reactor (report on nuclear ship Mutsu power-up tests)

    Ishida, Toshihisa; Kusunoki, Tsuyoshi; Ochiai, Masa-aki [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Tanaka, Yoshimi; Inoue, Kimio; Yao, Toshiaki; Kamai, Satoshi; Kitamura, Toshikatsu

    1992-08-01

    The power-up tests of the Mutsu reactor were performed from March 29th 1990 to December 14th. The tests were divided into six phases: The tests Phase 0 and Phase 1 were done in the state that the ship was moored at the quay of Sekinehama port in March and April; The tests Phase 2, Phase 3, Phase 4, and Phase 5 were done on the Pacific Ocean from July to December. Present report describes the test results on the static and dynamic plant performance. On static plant performance tests, there are 13 test items including measurements of primary system heat balance at low and high power levels, a virgin run of feed water pump with SG steam, a change-over test of steam supply of auxiliary boiler to SG. On the dynamic plant performance, there are 11 test items including a test of reactor power auto-control system, a test of main feed water auto-control system, a test of small load variation, a load increasing test, a turbine trip test, tests of ahead and astern maneuvering, a test of single loop operation, and a reactor scram test. The reactor power for each item`s test was increased step by step from zero power to the goal of rated power of 100 %, 36 MWt. In order to confirm proper reactor system performance, criteria were laid down for the static and dynamic tests: for example, (1) reactor scram shall not occur, (2) pressurizer relief valve and steam generator safety valve shall not work, and (3) after the transients reactor systems shall become the steady state without manual adjustment of the reactor control system. The test results satisfied these criteria and some of test data showed that reactor had much more margin in any performance for design. It is verified, therefore, that the Mutsu reactor systems have adequate performances as a marine reactor and that one is capable to respond smoothly and safely to the load of ship`s demand. (author).

  2. Static and dynamic performance tests of nuclear powered ship Mutsu reactor (report on nuclear ship Mutsu power-up tests)

    Ishida, Toshihisa; Kusunoki, Tsuyoshi; Ochiai, Masa-aki (Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment); Tanaka, Yoshimi; Inoue, Kimio; Yao, Toshiaki; Kamai, Satoshi; Kitamura, Toshikatsu.

    1992-08-01

    The power-up tests of the Mutsu reactor were performed from March 29th 1990 to December 14th. The tests were divided into six phases: The tests Phase 0 and Phase 1 were done in the state that the ship was moored at the quay of Sekinehama port in March and April; The tests Phase 2, Phase 3, Phase 4, and Phase 5 were done on the Pacific Ocean from July to December. Present report describes the test results on the static and dynamic plant performance. On static plant performance tests, there are 13 test items including measurements of primary system heat balance at low and high power levels, a virgin run of feed water pump with SG steam, a change-over test of steam supply of auxiliary boiler to SG. On the dynamic plant performance, there are 11 test items including a test of reactor power auto-control system, a test of main feed water auto-control system, a test of small load variation, a load increasing test, a turbine trip test, tests of ahead and astern maneuvering, a test of single loop operation, and a reactor scram test. The reactor power for each item's test was increased step by step from zero power to the goal of rated power of 100 %, 36 MWt. In order to confirm proper reactor system performance, criteria were laid down for the static and dynamic tests: for example, (1) reactor scram shall not occur, (2) pressurizer relief valve and steam generator safety valve shall not work, and (3) after the transients reactor systems shall become the steady state without manual adjustment of the reactor control system. The test results satisfied these criteria and some of test data showed that reactor had much more margin in any performance for design. It is verified, therefore, that the Mutsu reactor systems have adequate performances as a marine reactor and that one is capable to respond smoothly and safely to the load of ship's demand. (author).

  3. The international nuclear liability and compensation regime put to the test of a nuclear accident

    Full text: It appears that nuclear emergency plans place generally more emphasis on the nuclear safety and radiation protection aspects of the management of an accident, both inside the installation concerned and off-site, than on the particular requirements of local residents who would find themselves suddenly in such an emergency situation and of possible victims of nuclear damage. In a similar vein, studies focusing on the international nuclear third party liability regime usually take a global perspective and leave little room for the treatment of individual cases. The albeit welcome dearth of practical experience in Western countries in providing compensation for accidents of nuclear origin has, however, meant that public and local authorities are not always fully conscious of the importance of this question which should be dealt with in as practical a manner as possible. In order to cover all the legal and practical questions that could arise during the management of the consequences of a nuclear accident with regard to third party liability, insurance and compensation, the OECD/NEA held in co-operation with French authorities a workshop in November 2001. It was decided to organize this workshop according to three main stages: the alert phase, the accident phase and the post-accident phase; and to examine during these three stages the various roles played by local and national authorities, the nuclear operator and his insurer, as well as the nature and form of their respective actions. These questions were addressed both from the angle of applicable domestic legislation and of the relevant international conventions. From the analysis of different national experiences and of the information exchanged during the workshop, a striking diversity may be noted of solutions adopted or envisaged to address various aspects of civil liability, insurance and indemnification of damage in a nuclear emergency situation. This lack of uniformity should not necessarily be

  4. Significance of calibration explosions conducted at Semipalatinsk nuclear test site for the tasks of monitoring of nuclear explosions

    Signing of Comprehensive Nuclear Test Ban Treaty made the necessity of creating of monitoring systems over nuclear explosions most actual. This work is conducted in two directions. 1) Creation or modernization of existing seismic stations, included in the international monitoring system (IMS), according to specifications established in the documents of Preparatory Commission for the Comprehensive Nuclear Test Ban Treaty Organization. 2) Calibration of seismic stations. It's evident that calibration explosions are the most difficult stage in creation of monitoring network. For IMS stations to record rightly all corrections, information about explosions (coordinates, exact time of explosion, power, geological structure etc.) should be completely open. It imposes on the states declaring about calibration explosions increased obligations to reliability of the information. Calibration explosions, which are carried out at Semipalatinsk Nuclear Test Site, are the most interesting and most happy combination of work on liquidation of nuclear infrastructure of the site and development of IMS. These explosions have been conducted thanks to cooperation of two states: USA that finance realization of these operations and participate in scientific surveys and Kazakstan that manifest its good will in liquidation of a nuclear structure of the site and in consent to conduct calibration explosions, and ensuring an industrial part of works and geologic-geophysical measurements. By this time three explosions of 25 tons have been conducted in boreholes at the Balapan site and one explosion of 100 tons has been also conducted in the tunnel at the Degelen site. The results of their processing should contribute greatly both to calibration of seismic stations, and to development of identification methods of seismic events

  5. Seismic analysis and testing of nuclear power plants

    The following subjects are discussed in this guide: General Recommendations for seismic classification, loading combinations and allowable limits; seismic analysis methods; implications for seismic design; seismic testing and qualification; seismic instrumentation; modelling techniques; material property characterization; seismic response of soil deposits and earth structures; liquefaction and ground failure; slope stability; sloshing effects in water pools; qualification testing by means of the transport vehicle

  6. Introduction of Physical Protection Training and Test Facility of International Nuclear Nonproliferation and Security Academy

    International Nuclear Nonproliferation and Security Academy (INSA) aims to provide practical education and training programs, raise internationally-recognized experts, and improve awareness about nuclear nonproliferation and security. INSA will not only carry out wide variety of training courses but conduct various tests and develop technology in the field of nuclear nonproliferation and security by utilizing its SETT (Nuclear Security Training and Test facility). SETT will enable relevant industries and academia to come to the facility and conduct their own tests such as performance tests of newly developed products and equipment. Throughout this paper, the details of SETT such as configuration, each sector's purpose and deployed equipment will be described and explained particularly on the external physical protection training and test facility, which is called SETT/TB-I. The final approval by the national assembly is the only procedure left for the ROK government to pass the bill on the revised nuclear security and safety law. The revised law reflects most of the strengthened contents of INFCIRC/225/Revision5. When the new law comes into force, many extra efforts should be put into nuclear security area, specifically in the field of physical protection both on education/test and systematic performance-based evaluation. As stated above, SETT/TB-I has four sectors and each sector has specified purpose which differs from each others. For now, SETT/TB-I is considered having enough features to characterize the INSA and make it unique from other CoEs

  7. Fuel subassembly leak test chamber for a nuclear reactor

    A container with a valve at one end is inserted into a nuclear reactor coolant pool. Once in the pool, the valve is opened by a mechanical linkage. An individual fuel subassembly is lifted into the container by a gripper; the valve is then closed providing an isolated chamber for the subassembly. A vacuum is drawn on the chamber to encourage gaseous fission product leakage through any defects in the cladding of the fuel rods comprising the subassembly; this leakage may be detected by instrumentation, and the need for replacement of the assembly ascertained

  8. Non-Destructive Testing in Nuclear Technology Vol. I. Proceedings of a Symposium on Non-Destructive Testing in Nuclear Technology

    The Symposium on Non-Destructive Testing in Nuclear Technology was convened by the International Atomic Energy Agency and held, at the invitation of the Romanian People's Republic, in Bucharest from 17 to 21 May 1965. This was the first large IAEA symposium on this topic and was arranged with the help of the Romanian Institute of Atomic Physics. Over 100 participants from 20 countries and two international organizations presented 46 papers. The development of non-destructive testing techniques has increased considerably in recent years, particularly in the nuclear field. Nondestructive testing methods such as ultrasonic and radiographic testing are proving increasingly useful for ensuring that reactor materials and components will stand up to prolonged and rigorous use. Such methods are used to test for flaws, to check dimensions such as tube-wall thickness, and to determine the location and distribution of uranium fuel in a fuel element. Speakers stressed that these methods were invaluable for providing extensive and detailed data on the physical structure and condition of materials and the effects of fabrication processes. Among aspects of non-destructive testing that were discussed were the use of automation; assistance at the design stage for attaining higher strength-to-weight ratios; the testing of welds in reactor containment vessels; and the testing of sintered materials. The important information presented at the Symposium and the extensive discussions among scientists demonstrated the desire to accelerate solutions to various problems connected with non-destructive testing techniques

  9. Non-Destructive Testing in Nuclear Technology Vol. II. Proceedings of a Symposium on Non-Destructive Testing in Nuclear Technology

    The Symposium on Non-Destructive Testing in Nuclear Technology was convened by the International Atomic Energy Agency and held, at the invitation of the Romanian People's Republic, in Bucharest from 17 to 21 May 1965. This was the first large IAEA symposium on this topic and was arranged with the help of the Romanian Institute of Atomic Physics. Over 100 participants from 20 countries and two international organizations presented 46 papers. The development of non-destructive testing techniques has increased considerably in recent years, particularly in the nuclear field. Nondestructive testing methods such as ultrasonic and radiographic testing are proving increasingly useful for ensuring that reactor materials and components will stand up to prolonged and rigorous use. Such methods are used to test for flaws, to check dimensions such as tube-wall thickness, and to determine the location and distribution of uranium fuel in a fuel element. Speakers stressed that these methods were invaluable for providing extensive and detailed data on the physical structure and condition of materials and the effects of fabrication processes. Among aspects of non-destructive testing that were discussed were the use of automation; assistance at the design stage for attaining higher strength-to-weight ratios; the testing of welds in reactor containment vessels; and the testing of sintered materials. The important information presented at the Symposium and the extensive discussions among scientists demonstrated the desire to accelerate solutions to various problems connected with non-destructive testing techniques

  10. Verifying the nuclear-test ban. CTBTO: For a safer and more secure world [videorecording

    The Comprehensive Nuclear-Test-Ban Treaty (CTBT) was opened for signature in September 1996. In March 1997, the Preparatory Commission for the Comprehensive Nuclear-Test-Ban Treaty Organization started work in Vienna, Austria. This film depicts the Commission's activities in establishing the Treaty's verification regime to monitor adherence to the global ban on nuclear explosions. It presents the challenging work at some of the global monitoring facilities, and at the International Data Centre in Vienna, where the data generated by the facilities are received, processed and analysed

  11. Some problems on the detection and the discrimination of the underground nuclear explosion test

    Most of people might think that the seismic observation network and its data would be useful for the detection and the discrimination of the underground nuclear explosion test. The difficulty on both the detection and the estimation of the event location would decrease when the seismic observation network would become denser, however, the difficulty on the discrimination of the event could not solve easily. Because the difficulty on the discrimination of the event is based on the difference between the characteristics of natural earthquake and underground nuclear explosion. In this paper, some problems on the detection and the discrimination of the underground nuclear explosion test are mentioned briefly. (author)

  12. Direct J-R curve analysis: application to testing of nuclear structural materials

    This paper deals with the application of the direct J-R curve methodology for the development of J-R curves for unirradiated and irradiated nuclear reactor structural materials. The load versus crosshead displacement data obtained during multi-specimen J testing of unirradiated carbon steels used for nuclear reactor piping applications and SS304 used in fast reactor applications, and unirradiated as well as irradiated nuclear pressure vessel steels (A533B) have been analysed and results reported. It was found that results from application of the direct J-R curve methodology resulted in less than 15% error as compared with the multi-specimen testing and analysis. (author)

  13. Prototype bellows sealed nuclear valve development -reliability through testing

    To assist in appraising bellows sealed valve performance, 10 tests were done on a ''1 in.'' prototype bellows sealed valve design. The tests simulated primary heat transport (PHT) system conditions for a 600 MWe CANDU-PHW. The design approach was to have all valve components outlast the bellows in endurance tests; this was achieved. The valve design meets the Atomic Energy of Canada Limited specification. For comparison, bellows fatigue failure data were fitted to both log-normal and Weibull distributions. A numerical example shows how to select valve stroke amplitude on the basis of valve flow requirement and the minimum acceptable fatigue life. (author)

  14. Spent nuclear fuel storage -- Performance tests and demonstrations

    This report summarizes the results of heat transfer and shielding performance tests and demonstrations conducted from 1983 through 1992 by or in cooperation with the US Department of Energy (DOE), Office of Commercial Radioactive Waste Management (OCRWM). The performance tests consisted of 6 to 14 runs involving one or two loadings, usually three backfill environments (helium, nitrogen, and vacuum backfills), and one or two storage system orientations. A description of the test plan, spent fuel load patterns, results from temperature and dose rate measurements, and fuel integrity evaluations are contained within the report

  15. Development of Welding and Instrumentation Technology for Nuclear Fuel Test Rod

    Joung, Chang Young; Ahn, Sung Ho; Heo, Sung Ho; Hong, Jin Tae; Kim, Ka Hye [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-10-15

    It is necessary to develop various types of welding, instrumentation and helium gas filling techniques that can conduct TIG spot welding exactly at a pin-hole of the end-cap on the nuclear fuel rod to fill up helium gas. The welding process is one of the most important among the instrumentation processes of the nuclear fuel test rod. To manufacture the nuclear fuel test rod, a precision welding system needs to be fabricated to develop various welding technologies of the fuel test rod jointing the various sensors and end-caps on a fuel cladding tube, which is charged with fuel pellets and component parts. We therefore designed and fabricated an orbital TIG welding system and a laser welding system. This paper describes not only some experiment results from weld tests for the parts of a nuclear fuel test rod, but also the contents for the instrumentation process of the dummy fuel test rod installed with the C-type T. C. A dummy nuclear fuel test rod was successfully fabricated with the welding and instrumentation technologies acquired with various tests. In the test results, the round welding has shown a good weldability at both the orbital TIG welding system and the fiber laser welding system. The spot welding to fill up helium gas has shown a good welding performance at a welding current of 30A, welding time of 0.4 sec and gap of 1 mm in a helium gas atmosphere. The soundness of the nuclear fuel test rod sealed by a mechanical sealing method was confirmed by helium leak tests and microstructural analyses.

  16. Development of Welding and Instrumentation Technology for Nuclear Fuel Test Rod

    It is necessary to develop various types of welding, instrumentation and helium gas filling techniques that can conduct TIG spot welding exactly at a pin-hole of the end-cap on the nuclear fuel rod to fill up helium gas. The welding process is one of the most important among the instrumentation processes of the nuclear fuel test rod. To manufacture the nuclear fuel test rod, a precision welding system needs to be fabricated to develop various welding technologies of the fuel test rod jointing the various sensors and end-caps on a fuel cladding tube, which is charged with fuel pellets and component parts. We therefore designed and fabricated an orbital TIG welding system and a laser welding system. This paper describes not only some experiment results from weld tests for the parts of a nuclear fuel test rod, but also the contents for the instrumentation process of the dummy fuel test rod installed with the C-type T. C. A dummy nuclear fuel test rod was successfully fabricated with the welding and instrumentation technologies acquired with various tests. In the test results, the round welding has shown a good weldability at both the orbital TIG welding system and the fiber laser welding system. The spot welding to fill up helium gas has shown a good welding performance at a welding current of 30A, welding time of 0.4 sec and gap of 1 mm in a helium gas atmosphere. The soundness of the nuclear fuel test rod sealed by a mechanical sealing method was confirmed by helium leak tests and microstructural analyses

  17. Nuclear technology in materials testing and radiation protection

    A report of the 1974 activities of the laboratories for physical and measuring technical fundamentals, radiation effects and radiation protection, application of radionuclides and testing of radioactive materials of the Bundesanstalt fuer Materialpruefung (BAM) is given. (RW/LH)

  18. Nuclear EMP: stripline test method for measuring transfer impedance

    A method for measuring the transfer impedance of flat metal joints for frequencies to 100 MHz has been developed which makes use of striplines. The stripline method, which has similarities to the quadraxial method used for cylindrical components, is described and sets of test results are given. The transfer impedance of a simple joint is modeled as a spurious hyperbolic curve, and a close curve fit to transfer impedance test data from various samples is demonstrated for both the stripline and the quadraxial methods. Validity checks of the test data are discussed using the curve model and other criteria. The method was developed for testing riveted joints which form the avionics bays on B-1s. The joints must provide shielding from EMP currents

  19. Response time testing of temperature and pressure sensors in nuclear power plants

    Response time measurement tests are performed on most safety-related temperature and pressure sensors in a majority of the nuclear power plants in the United States. These tests, performed once every fuel cycle, insure that safety-related instrument channels will respond in a timely manner during design basis accidents. This paper provides a review of modern methods that are used for response time measurement, and example results from testing of temperature and pressure sensors in nuclear on-line testing at process operating conditions and thereby provide information about the actual in-situ performance of the sensors. These methods are referred to as the Loop Current Step Response (LCSR) test, which is used for response time testing of temperature sensors, and noise analysis test, which is used for response time testing of pressure, level and flow transmitters. (Author)

  20. Research on COC tests risk analysis method in CPR1000 nuclear power plant

    Power loss tests of I and C and meters power supply (COC) are the proper test for nuclear power plant commissioning. The purpose of this test is to demonstrate that, in the event of loss of the power, the plant can be maintained in hot shutdown conditions. Since the tests have high risks and are performed difficultly, any thoughtless risks might damage the equipment or unit. The article provides a new way as LBA example, which identifies risks from unit control and identifies system risks by loads breakdown structure, to solve risk analysis of COC test and insure the tests success. The tests performed successfully in LA Ⅱ nuclear power plant shows the analysis way can identify all-around the risk of COC tests, and it has high application value for CPR1000 commissioning. (authors)

  1. 'CANDU-fueling machine head tests' at the Institute for Nuclear Research - Pitesti

    The Fueling Machine (F/M) Head is the most complex equipment of the Fuel Handling System in the CANDU reactor and performs the change of the nuclear fuel during the reactor operation. Before the installation of the F/M Head at the Nuclear Power Plant, it was required to test its technical performances, to ensure that the equipment is ready for operation. Testing of the F/M Head at the Institute for Nuclear Research - Pitesti is a part of the overall program to assimilate in Romania the CANDU technology. There was an economic contract between GEC Canada and Nuclear Power Plant Cernavoda - Unit 2 to provide the Fueling Machines no. 4 and no. 5 untested. To perform testing of these machines at the Institute for Nuclear Research - Pitesti, a special testing rig was built and is available for this goal. Both the testing rig and staff have been successfully assessed by the AECL representatives during two visits, dated on December 2001 and March 2002. In 2003 the testing of the F/M Head no. 4 (RAM 5) was successfully completed. Today, in 2004, the functional test of the F/M Head no. 5 (RAM 6) is already performing. (authors)

  2. Results of a First Generation Propellant Energy Source Module Testing: Non-Nuclear Testing of Fission System

    VanDyke, Melissa; Godfroy, Tom; Houts, Mike; Dickens, Ricky; Dobson, Chris; Pederson, Kevin; Reid, Bob

    1999-01-01

    The use of resistance heaters to simulate heat from fission allows extensive development of fission systems to be performed in non-nuclear test facilities, saving time and money. Resistance heated tests on the Module Unfueled Thermal- hydraulic Test (MUTT) article has been performed at the Marshall Space Flight Center. This paper discusses the results of these experiments to date, and describes the additional testing that will be performed. Recommendations related to the design of testable space fission power and propulsion systems are made.

  3. Equipment and piping for nuclear power plants, test and research reactors, and nuclear installations

    The standard concerns the primary and secondary circuits as well as the safety and protection equipment in nuclear power plants with PWR or LWGR type reactors. Rules for design, manufacturing, erection, operation, and maintenance of the reactors, steam generators, vessels, pumps and housings, and pressure pipes are provided

  4. Human errors in test and maintenance of nuclear power plants. Nordic project work

    The present report is a summary of the NKA/LIT-1 project performed for the period 1981-1985. The report summarizes work on human error influence in test and calibration activities in nuclear power plants, reviews problems regarding optimization of the test intervals, organization of test and maintenance activities, and the analysis of human error contribution to the overall risk in test and mainenace tasks. (author)

  5. Fallout Deposition in the Marshall Islands from Bikini and Enewetak Nuclear Weapons Tests

    Beck, Harold L.; Bouville, André; Moroz, Brian E.; Simon, Steven L.

    2010-01-01

    Deposition densities (Bq m-2) of all important dose-contributing radionuclides occurring in nuclear weapons testing fallout from tests conducted at Bikini and Enewetak Atolls (1946-1958) have been estimated on a test-specific basis for all the 31 atolls and separate reef islands of the Marshall Islands. A complete review of various historical and contemporary data, as well as meteorological analysis, was used to make judgments regarding which tests deposited fallout in the Marshall Islands an...

  6. Yields of underground nuclear explosions at Azgir and Shagan River, USSR and implications for identifying decoupled nuclear testing in salt

    Sykes, L.R.

    1991-12-05

    Bodywave magnitudes, mb, are recomputed using station corrections for all known Soviet underground nuclear explosions at Shagan River and Azgir. The mb values for explosions of announced yield, Y, in various parts of the world in either hard rock or below the water table were normalized to the SW part of the Shagan River testing area using previously published values of t* and mb bias. The resulting relationship, mb = 4.48 + 0.79 logY, which includes yields published by Bocharov et al. (1989) for Shagan River, differs very little from a regression that does not include those data. Using magnitudes determined from Lg at NORSAR as a standard, the Shagan River site is divided into three subareas. Yields calculated from these revised mb values and from m(Lg) are much more consistent for the same explosion; each agrees closely with the yields published by Bocharov et al. for large explosions in 1971 and 1972 in the NE and SW parts of the testing area. Yields calculated by averaging determinations from Lg and body waves for 66 explosions have a high precision at 95% confidence (mean value 1. 14) for Y > 10 kt. The explosion of 23 July 1973 of Y = 193 kt is clearly the largest underground explosion at Shagan River. The newly calculated values provide strong evidence of clustering in the distribution of yields of Soviet tests. In a special study yields of Soviet nuclear explosions, nuclear tests in salt, decoupling, evasion

  7. Development of TIG Welding System for a Nuclear Fuel Test Rig

    Joung, Changyoung; Ahn, Sungho; Hong, Jintae; Kim, Kahye [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-05-15

    The welding process is one of the most important among the instrumentation processes of the nuclear fuel test rig and rods. To manufacture the nuclear fuel test rig, a precision welding system needs to be fabricated to develop various welding technologies of the fuel test rig and rods jointing the various sensors and end caps on a fuel cladding tube, which is charged with fuel pellets and component parts. Thus, we designed and fabricated the precision welding system consisting of an orbital TIG welder, a low-pressure chamber, and a high-pressure chamber. Using this system, the performance tests were performed with the round and seal spot welds for each welding condition. This paper describes not only the contents for the fabrication of precision TIG welding system but also some results from weld tests using the low-pressure and high-pressure chambers to verify the performance of this system. The TIG welding system was developed to manufacture the nuclear fuel test rig and rods. It has been configured to be able to weld the nuclear fuel test rigs and rods by applying the TIG welder using a low-pressure chamber and a high-pressure chamber. The performance tests using this system were performed with the round and seal spot welds for the welding conditions. The soundness of the orbital TIG welding system was confirmed through performance tests in the low-pressure and high-pressure chambers.

  8. Development of TIG Welding System for a Nuclear Fuel Test Rig

    The welding process is one of the most important among the instrumentation processes of the nuclear fuel test rig and rods. To manufacture the nuclear fuel test rig, a precision welding system needs to be fabricated to develop various welding technologies of the fuel test rig and rods jointing the various sensors and end caps on a fuel cladding tube, which is charged with fuel pellets and component parts. Thus, we designed and fabricated the precision welding system consisting of an orbital TIG welder, a low-pressure chamber, and a high-pressure chamber. Using this system, the performance tests were performed with the round and seal spot welds for each welding condition. This paper describes not only the contents for the fabrication of precision TIG welding system but also some results from weld tests using the low-pressure and high-pressure chambers to verify the performance of this system. The TIG welding system was developed to manufacture the nuclear fuel test rig and rods. It has been configured to be able to weld the nuclear fuel test rigs and rods by applying the TIG welder using a low-pressure chamber and a high-pressure chamber. The performance tests using this system were performed with the round and seal spot welds for the welding conditions. The soundness of the orbital TIG welding system was confirmed through performance tests in the low-pressure and high-pressure chambers

  9. Fabrication and Testing of Nuclear-Thermal Propulsion Ground Test Hardware Project

    National Aeronautics and Space Administration — Efficient nuclear-thermal propulsion requires heating a low molecular weight gas, typically hydrogen, to high temperature and expelling it through a nozzle. The...

  10. Method of testing fuel assemblies for nuclear reactors

    The stresses occurring in the fuel assemblies are simulated by power excursions. For this purpose the fuel assembly is placed in the neutron field of a test reactor and for a short time can be exposed to the much higher neutron field of a pulsed reactor. One possibility of design provides for the test and the pulsed reactor lying one above the other, separated by a neutron absorber and penetrated by a common irradiation channel. The fuel assembly then is to be moved from the position in the test reactor to the position in the pulsed reactor. The other possibility is to make the irradiation duct pass along the gap between both reactors and, by means of a tube-shaped absorber, open one or the other irradiation field. (DG)

  11. Rehabilitation of the former nuclear test sites at Maralinga

    The Department of Primary Industries and Energy, Canberra, has commenced tendering procedures for appointment of a Project Management Organisation for the Rehabilitation of the former British atomic weapon test sites at Maralinga and Emu in South Australia. This paper gives a historical background to the atomic tests, and reports scientific and engineering studies conducted by the Technical Assessment Group (TAG) to define practical and economic options for rehabilitation of the former test sites. The rehabilitation option preferred by the Australian Government will focus on removal and burial of soil and fragments highly contaminated with plutonium oxide, and erection of warning fences around areas where permanent residence will not be permitted. The application of in-situ vitrification is under investigation for stabilisation of twenty one disposal pits containing up to twenty kilograms of plutonium at Taranaki. 3 refs., 2 tabs., 3 figs

  12. Automatic testing technologies for I and C systems for nuclear power plants

    With the aim of enhancing the global competitiveness of instrumentation and control (I and C) systems for nuclear power plants, Toshiba has been making efforts to reduce the worker hours required for the testing of such systems and improve the quality of the tests. Display screen tests, which include many routine, repetitive tests and manual tests requiring a large number of operators to monitor multiple screen displays of the I and C system, are an essential element of the testing process. The introduction of automatic testing technologies is expected to substantially improve the efficiency of such display screen tests. We have now developed automatic testing technologies for display screen tests that can be applied without the need to change the I and C system. These technologies contribute to both the reduction of worker hours for testing and improvement of the quality of the tests. (author)

  13. Discussion on seismic test method for electrical equipment in nuclear power plant

    This paper describes the seismic test methods and requirements for electrical equipment in nuclear power plant. Advices and suggestions are provided based on the detail comparison and analysis of the international and national standards. It can be a reference for seismic testing engineers. (authors)

  14. Guideline to good practices for postmaintenance testing at DOE nuclear facilities

    1994-06-01

    Purpose of this guide is to provide contractor maintenance organizations with information that may be used for development and implementation of a postmaintenance testing process for structures, systems, and components at DOE nuclear facilities. It is intended to be an example guideline for the implementation of DOE Order 4330.4A, Maintenance Management Program, Chapter 2, Element 9, Postmaintenance Testing.

  15. Site Earthquake Characteristics and Dynamic Parameter Test of Phase Ⅲ Qinshan Nuclear Power Engineering

    ZHOV Nian-qing; ZHAO Zai-li; QIN Min

    2009-01-01

    The earthquake characteristics and geological structure of the site to sitting the Qinshan Nuclear Power Station are closely related. According to site investigation drilling, sampling, seismic sound logging wave test in single-hole and cross-hole, laboratory wave velocity test of intact rock, together with analysis of the site geological conditions, the seismic wave test results of the site between strata lithology and the geologic structure were studied. The relationships of seismic waves with the site lithology and the geologic structure were set up.The dynamic parameters of different grades of weathering profile were deduced. The results assist the seismic design of Phase Ⅲ Qinshan Nuclear Power Plant, China.

  16. Project of law relative to the sanitary consequences of French nuclear weapons tests

    In order to make easy the indemnifications and to include the persons having participate to nuclear weapons tests (Sahara and French Polynesia) and populations leaving in the concerned areas, the project of law relative to the repair of sanitary consequences of nuclear weapons tests proposes to create a right to integral repair of prejudices for the persons suffering of a radioinduced disease coming from these tests. The American example and the British example are given for comparison. The modalities of financing are detailed as well as the social economic and administrative impacts. (N.C.)

  17. Ionospheric response to the 25 May 2009 North Korean nuclear test

    Chien, K.; Liu, J. G.

    2013-12-01

    An underground nuclear test may act a large artificial quake source on the Earth. Similar to earthquake perturbations, traveling ionosphere disturbances (TIDs) can be activated by nuclear tests. In this paper, we employed ground-based GPS receivers and an HF-CW (high frequency-continue wave) Doppler sounding system in Taiwan to detect the North Korean underground nuclear test on May 25, 2009. Remarkable TIDs in the GPS TEC (total electric content) and Doppler frequency shifts are observed 30-90 minutes after the test. The beam forming method is further applied to compute the TID speeds in the GPS TEC and Doppler shifts as well as find the location of the TID source.

  18. Radiation impact of nuclear weapons tests at the Semipalatinks test site on the population of the Altai region

    The population of the Altai region was exposed repeatedly to radiation during atmospheric tests of nuclear weapons from 1949 to 1962 and during cratering explosions in 1965. It has now been established that 22 nuclear explosions resulted in transport of radionuclides towards the Altai region. The nuclear explosions of 29 August 1949 alone produced an effective dose exceeding 250 mSv in 44 settlements. In the case of the nuclear explosion of 7 August 1962, the thyroid dose to persons living in a number of settlements was more than a few gray. The impact of the tests on the population of the Altai region has been under study since 1990 (as of 1992 under the ''Semipalatinsk test site/Altai'' State research programme). This study covers: reconstruction of doses from the tests, risk assessment, epidemiological studies, health and demosgraphic studies, and ecological research (radioactive and chemical contamination). The goals of the research are development and realization of the programme of additional measures for health protection and compensation, and environmental and social protection. The nuclear test of 1949 produced the greatest radiation impact. The total collective dose from this test to the population of the region is estimated at approximately 32,000 man·Sv, with about 250,000 individuals receiving a dose of above 5 cSv. The radiation impact from this test on the cohort and population levels was estimated using up-to-date scientific theories about stochastic health effects of ionizing radiation. The goal of the research is to obtain data on the consequences of the tests in order to plan social protection measures as well as future research. An analysis of the medico-ecological situation in the affected and control regions and an epidemiological study are being carried out. Some results of the study are presented in the paper. A concept of social protection for the population affected by the tests has been prepared and serves as the basis for taking

  19. 78 FR 58574 - Maintenance, Testing, and Replacement of Vented Lead-Acid Storage Batteries for Nuclear Power Plants

    2013-09-24

    ... COMMISSION Maintenance, Testing, and Replacement of Vented Lead-Acid Storage Batteries for Nuclear Power..., Testing, and Replacement of Vented Lead-Acid Storage Batteries for Nuclear Power Plants.'' The guide... nuclear power plants. ADDRESSES: Please refer to Docket ID NRC-2013-0048 when contacting the NRC about...

  20. Polycythemia vera among participants of a nuclear weapons test

    Sobell, J.L.; Codd, M.B.; Silverstein, M.N.; Kurland, L.T.

    1987-03-06

    Three letters-to-the-editors discuss the finding of a statistically significant excess of polycythemia vera cases among participants in the Smoky detonation. Had population-based incidence rates from Rochester been used to derive an expected incidence, and had only bona fide polycythemia vera cases been considered, as is the rule in most epidemiologic studies, the observed frequency of polycythemia vera among participants in the Smoky test would have been found to be well within chance expectations.

  1. A Hydrogen Containment Process for Nuclear Thermal Engine Ground testing

    Wang, Ten-See; Stewart, Eric; Canabal, Francisco

    2016-01-01

    The objective of this study is to propose a new total hydrogen containment process to enable the testing required for NTP engine development. This H2 removal process comprises of two unit operations: an oxygen-rich burner and a shell-and-tube type of heat exchanger. This new process is demonstrated by simulation of the steady state operation of the engine firing at nominal conditions.

  2. Polycythemia vera among participants of a nuclear weapons test

    Three letters-to-the-editors discuss the finding of a statistically significant excess of polycythemia vera cases among participants in the Smoky detonation. Had population-based incidence rates from Rochester been used to derive an expected incidence, and had only bona fide polycythemia vera cases been considered, as is the rule in most epidemiologic studies, the observed frequency of polycythemia vera among participants in the Smoky test would have been found to be well within chance expectations

  3. Nuclear weapons testing fallout: proving causation for exposure injury

    A recent Federal District Court opinion dealing with exposure of civilians to fallout from atomic bomb testing more than two decades ago provides guidance on how court action may in the future, address this problem. Close to 1200 negligence liability claims have been brought against the US government in the names of individuals who had resided near the Nevada Test Site and who subsequently developed cancer or leukemia. Because of the importance and complexity of the cases, the parties involved mutually agreed to the selection of 24 bellwether cases which then provided a legal and factural pattern against which other cases may be subsequently matched. The trial court's decision announced in Allen vs. United States, concluded that the government had a duty to adequately monitor, warn, and educate the population put at risk by the tests and that it had failed to fulfill its duty. However, it is only through case-by-case decision making, by courts reviewing all of the evidence in specific cases and tailoring results to best fit the specific facts, that equitable solutions can be applied in our optimal number of cases

  4. Atmospheric nuclear tests of the 1950's and 1960's: A possible test of ozone depletion theories

    It will be shown that the model chemistries used to calculate the effects of supersonic transports for Climatic Impact Assessment Program and National Research Council studies and of large-scale nuclear exchanges for National Research Council studies cause our one-dimensional model to predict ozone depletions in 1963--1964 resulting from NO/sub x/ injected into the stratosphere by the atmosphere nuclear tests of 1956--1962 larger (4--14% ozone reduction in 1963) than is easily consistent with observation. However, calculations carried out with more recent model chemistries result in ozone reductions that are more easily consistent with observation

  5. Development of the instrumented capsule for nuclear fuel irradiation test at HANARO

    The instrumented capsule for the nuclear fuel irradiation test (hereinafter referred to as 'instrumented fuel capsule'), which is crucial for the verification of a nuclear fuel performance and safety, has been developed at HANARO (High-flux Advanced Neutron Application Reactor). The irradiation test of the first instrumented fuel capsule was carried out in March 2003 and the irradiation test of the second instrumented fuel capsule was carried out in April 2004 at HANARO. Through the irradiation tests of the two capsules, the design specifications and safety of the instrumented fuel capsule were successfully verified. In the first instrumented fuel capsule, only the technologies for measuring the center temperature of the nuclear fuel and neutron flux were implemented. In the second instrumented fuel capsule, the technologies for measuring the center temperature of the nuclear fuel, the internal pressure of the fuel rod, the elongation of the nuclear fuel and the neutron flux were implemented. Currently the dual instrumented technologies that alloy for two characteristics to be measured simultaneously in one fuel rod, is being developed. The duel instrumented fuel rods have been successfully designed as a part of the technology enhancement program for the instrumented fuel capsule. The instrumented fuel capsule will be utilized for the development of nuclear fuel. The instrumentation technologies for measuring the nuclear fuel characteristics will be applied to the 3-pin FTL (Fuel Test Loop) facility which is currently being developed. And, the duel instrumented technologies will contribute to enhancing the efficiency of the irradiation test using an instrumented fuel capsule at HANARO. (author)

  6. Research and project practice in AP1000 nuclear plant MCR assemblies seismic test

    Background: The seismic test is one of Plant Equipment Seismic Qualification Methodologies. Purpose: To satisfy the special requirements of AP1000 seismic qualification, this test is not same to traditional seismic test. Methods: AP1000 nuclear plant equipment qualification has new methods and requirements. The special requirements as response spectrum, accelerometer installation and functional test are described for AP1000 MCR seismic test. Results: The test results are demonstrated that MCR assemblies are satisfied as AP1000 seismic qualification requirements. Conclusions: These requirements are beneficial to the qualification for structural integrity and functional safety. They are also used to find design margin. (authors)

  7. Certification testing of safety relief valves for the nuclear power industry

    This paper presents a summary of current test methodology used to perform recertification testing of Code Safety Relief Valves (SRVs). This paper discusses current issues in SRV testing including the following: Alternate media testing including a discussion of EPRI Report NP-4235. In situ testing of SRVs using lift devices. Effects of handling and transportation on set point. SRV testing over the years at Wyle in close cooperation with the nuclear industry, NRC, and valve manufacturers provides the experience necessary to discuss lessons learned. These lessons may be helpful to those setting up inservice Inspection (ISI) Programs to effectively monitor SRV performance and meet the requirements of OM-1

  8. Measurement of anthropogenic radionuclides in the atmosphere with a radionuclide monitoring network for nuclear tests

    A worldwide radionuclide monitoring network for nuclear tests has detected the anthropogenic radioactive materials released in the atmosphere due to the accident of the Fukushima Daiichi Nuclear Power Plant impacted by the Great East Japan Earthquake on March 11, 2011. After four months have passed since the accident occurred, most overseas stations do not detect the radionuclides of Fukushima origin any more. The Takasaki station in Japan, however, is still detecting them every day. This paper describes radionuclide monitoring stations and the network of them as part of the International Monitoring System (IMS) in the Comprehensive Nuclear Test Ban Treaty (CTBT), as well as the measurement results of radionuclide particulates and radioactive isotopes of xenon released from the Fukushima Daiichi Nuclear Power Plant with the monitoring network. (J.P.N.)

  9. Nuclear Power Safety Reporting System implementation plan, concept evaluation and operability test

    During the 1984 fiscal year, the Aerospace Corporation continued to assist the US Nuclear Regulatory Commission (NRC) in evaluating the concept of a Nuclear Power Safety Reporting System (NPSRS). The NPSRS concept embodies a voluntary, nonpunitive, third party managed human factors data gathering system that (with the NRC as its parent agency) could be used for identifying and quantifying factors that contribute to the occurrence of safety problems involving personnel in nuclear power plants. NPSRS data could be used to: (1) support efforts to quantify the human reliability elements of probabilistic risk assessments (PRA's); (2) to evaluate the influence of various nuclear power plant systems on human error-proneness within the system; and (3) to aid in the development of design criteria for human-machine safety systems. The draft implementation plan and a description of the operability demonstration test have been published. Progress toward initiating the actual test is reported as are issues yet to be resolved

  10. Tests of time reversal invariance in nuclear physics

    The fundamental origin of CP violation has remained unclear for twenty-five years. A significant change in this situation occurred last year, however, with the announcement by a group (NA31) working at CERN of the first evidence of direct CP violation through a measurement of a non-zero value of ε '/ε reported to be (3.1 ± 1.1) x 10-3. This result is consistent with the range of values expected within the minimal standard model, described by the Kobayashi-Maskawa mass matrix for three generations. The result from a second experiment (E731) measuring this parameter at Fermilab appears from an analysis of part of the data set to be consistent with the CERN value but also consistent with zero, so that at this time, the non-zero nature of ε '/ε is not yet confirmed by a second experiment. If the minimal standard model is the correct picture, then it is unlikely that a violation of CP invariance due to weak interactions will be observed in anything but heavy quark systems. The electric dipole moment of the neutron, for example, is expected to be of the order of 10-31 e-cm in the standard model, owing to the fact that the violation arises as a second order weak effect. Current experiments are at the level of 10125 e-cm, or six orders of magnitude short of the prediction of the standard model. The neutron EDM and other T-violation signals in nuclear systems all acquire time reversal violation, within the standard model, as a second order weak effect. They are therefore more interesting as a search for physics beyond the standard model, where in some models effects appear in first order. One should bear in mind, however, that even within the standard model, there is the possibility of CP violation associated with the strong interaction θ parameter

  11. Action plan for the comprehensive nuclear-test-ban treaty (CTBT) Malaysian National Data Centre

    The Comprehensive Nuclear-Test-Ban Treaty (CTBT) is a keystone of the international regime on the non-proliferation of nuclear weapons and an essential basis for the pursuit of nuclear disarmament. Its total ban of any nuclear weapon test explosion moreover will restrict the development and qualitative improvement of nuclear weapons and end the development of advanced new types of these weapons. One of the key features of this treaty is the development of an International Monitoring System (IMS) to detect any nuclear weapon test. The IMS comprises a network of 321 monitoring stations and 16 radionuclide laboratories that monitor the Earth for evidence of nuclear explosions. It uses four verification methods, including seismic, hydroacoustic and infrasound, in addition to radionuclide monitoring of the underground, underwater and atmosphere environments, respectively, whereas, radionuclide monitoring can detect radioactive debris vented from atmospheric, underground or underwater nuclear explosions. Malaysia signed the CTBT on 23 July 1998, and is currently in the process of drafting a national CTBT Act to facilitate ratification. As provided for under the Treaty, one of the radionuclide-monitoring stations (Rain) under the IMS will be located in Malaysia. The station is under the responsibility of the Malaysian Nuclear Agency, as the National Authority for the CTBT. The operation of the IMS is supported by an International Data Centre (IDC) CTBT, which is based at the headquarters of the Preparatory Commission for the CTBT Organization (CTBTO) in Vienna. To facilitate the acquisition of data from the IMS for the purposes of verifying compliance with the Treaty in general, and to enable Malaysia to benefit from the scientific applications of the data obtainable from the IDC, a CTBT National Data Centre (NDC) is the process of being established in Malaysia , which is targeted to be fully operational by the third quarter of 2007. (Author)

  12. Non-destructive testing dummy nuclear fuel rods by neutron radiography

    Background: The nuclear fuel rod is a key component of nuclear plants and reactors. It works in the extreme conditions, so it is easy to be broken. In order to be safe in operation, lots of testings have to be carried out from fabricating to operating of the fuel rod. Purpose: As a unique non-destructive testing technique, neutron radiography can be used to measure the nuclear fuel rods with radioactivity by an indirect neutron radiography method. Study the indirect neutron radiography method is the primary step of testing. Methods: Non-destructive testing experiments were carried out at China Advanced Research Reactor (CARR) by indirect neutron radiography method with dummy nuclear fuel rods as the samples. The 0.1 mm-thick Dy foil was used as the neutron converter. Results: The neutron images of dummy nuclear fuel rods were obtained. The resolution of testing was analyzed with the images. Through imaging analysis methods, the structure defections, the hydrogen accumulation in the cladding and the U-235 enrichment of pellet were studied and analyzed. Conclusions: The indirect neutron radiography method and the neutron image analysis method were studied. The work described in this paper provides a primary guideline for investigating actual irradiated fuel rods by the neutron radiography at CARR in the future. (authors)

  13. Seismic qualification tests of safety-related valves and air dampers for nuclear power plants (active components test program)

    In nuclear power plants there are many safety-related valves and air dampers required to operate under earthquakes. They have moving parts or actuators such as driving motors and disks. Selecting typical eighteen valves and two air dampers used in BWR and PWR plants in Japan, a series of vibration tests, which was one of the 'Active Components Test Program' study, were carried out to prove seismic quality. This paper summarizes these test results. Typical eighteen valves and two air dampers were selected for vibration tests. Maximum response acceleration achieved in vibration tests were three to eight G at the valve actuators. Any safety matter problems were not found in vibration tests. An analytical model of valves for piping analysis was also verified in this study. (orig.)

  14. Geology of the Chinese nuclear test site near Lop Nor, Xinjiang Uygur Autonomous Region, China

    Matzko, J.R.

    1994-01-01

    The Chinese underground nuclear test site in the Kuruktag and Kyzyltag mountains of the Xinjiang Uygur Autonomous Region of northwest China, is the location of sixteen underground tests that occurred between 1969 and 1992. The largest test to date, conducted on 21 May 1992, had a reported yield of about one megaton. Geophysical properties of the rocks and a large-scale geologic map of part of the test area were published by the Chinese in 1986 and 1987 and are the first site-specific data available for this test site. In areas of low relief, underground nuclear testing has occurred below the water table, in shafts drilled vertically into dense, low porosity Paleozoic granitic and metasedimentary rocks. Additional testing in areas of more rugged terrain has occurred in horizontal tunnels, probably above the water table. At least one of these tunnels was driven into granite. The upper 50 m of the rock in the area of the vertical tests is weathered and fractured; these conditions have been shown to influence the magnitude of the disturbance of the land surface after a nuclear explosion. These descriptions suggest hard rock coupling at depth and a closer resemblance to the former Soviet test site in eastern Kazakhstan than to the U.S. test site in Nevada. ?? 1994.

  15. Evaluation of groundwater flow and transport at the Shoal underground nuclear test: An interim report

    Pohll, G.; Chapman, J.; Hassan, A.; Papelis, C.; Andricevic, R.; Shirley, C.

    1998-07-01

    Since 1962, all United States nuclear tests have been conducted underground. A consequence of this testing has been the deposition of large amounts of radioactive materials in the subsurface, sometimes in direct contact with groundwater. The majority of this testing occurred on the Nevada Test Site, but a limited number of experiments were conducted in other locations. One of these is the subject of this report, the Project Shoal Area (PSA), located about 50 km southeast of Fallon, Nevada. The Shoal test consisted of a 12-kiloton-yield nuclear detonation which occurred on October 26, 1963. Project Shoal was part of studies to enhance seismic detection of underground nuclear tests, in particular, in active earthquake areas. Characterization of groundwater contamination at the Project Shoal Area is being conducted by the US Department of Energy (DOE) under the Federal Facility Agreement and Consent Order (FFACO) with the State of Nevada Department of Environmental Protection and the US Department of Defense (DOD). This order prescribes a Corrective Action Strategy (Appendix VI), which, as applied to underground nuclear tests, involves preparing a Corrective Action Investigation Plan (CAIP), Corrective Action Decision Document (CADD), Corrective Action Plan, and Closure Report. The scope of the CAIP is flow and transport modeling to establish contaminant boundaries that are protective of human health and the environment. This interim report describes the current status of the flow and transport modeling for the PSA.

  16. Evaluation of groundwater flow and transport at the Shoal underground nuclear test: An interim report

    Since 1962, all United States nuclear tests have been conducted underground. A consequence of this testing has been the deposition of large amounts of radioactive materials in the subsurface, sometimes in direct contact with groundwater. The majority of this testing occurred on the Nevada Test Site, but a limited number of experiments were conducted in other locations. One of these is the subject of this report, the Project Shoal Area (PSA), located about 50 km southeast of Fallon, Nevada. The Shoal test consisted of a 12-kiloton-yield nuclear detonation which occurred on October 26, 1963. Project Shoal was part of studies to enhance seismic detection of underground nuclear tests, in particular, in active earthquake areas. Characterization of groundwater contamination at the Project Shoal Area is being conducted by the US Department of Energy (DOE) under the Federal Facility Agreement and Consent Order (FFACO) with the State of Nevada Department of Environmental Protection and the US Department of Defense (DOD). This order prescribes a Corrective Action Strategy (Appendix VI), which, as applied to underground nuclear tests, involves preparing a Corrective Action Investigation Plan (CAIP), Corrective Action Decision Document (CADD), Corrective Action Plan, and Closure Report. The scope of the CAIP is flow and transport modeling to establish contaminant boundaries that are protective of human health and the environment. This interim report describes the current status of the flow and transport modeling for the PSA

  17. Integral Benchmark Data for Nuclear Data Testing Through the ICSBEP & IRPhEP

    J. Blair Briggs; John D. Bess; Jim Gulliford; Ian Hill

    2013-10-01

    The status of the International Criticality Safety Benchmark Evaluation Project (ICSBEP) and International Reactor Physics Experiment Evaluation Project (IRPhEP) was last discussed directly with the nuclear data community at ND2007. Since ND2007, integral benchmark data that are available for nuclear data testing have increased significantly. The status of the ICSBEP and the IRPhEP is discussed and selected benchmark configurations that have been added to the ICSBEP and IRPhEP Handbooks since ND2007 are highlighted.

  18. Effect of Induced Refractive Error and Nuclear Sclerotic Cataracts on Ishihara Colour Plate Testing

    Eneh AA; Rogalska T; Urton T; Schweitzer KD

    2014-01-01

    Objective: To determine the effect of induced refractive blur and nuclear sclerotic (NS) cataracts on Ishihara colour plate (ICP) scores. Design: Prospective evaluation of a diagnostic test Participants: Patients who presented to Hotel Dieu Hospital Eye clinic between January and March 2010 with either a lone diagnosis of nuclear sclerotic cataracts, or with no identified ocular disease with complete examination. Methods: Patients were divided into two groups: those having no id...

  19. Nuclear Propulsion and Power Non-Nuclear Test Facility (NP2NTF): Preliminary Analysis and Feasibility Assessment Project

    National Aeronautics and Space Administration — Nuclear reactors, which power nuclear propulsion and power systems, and the nuclear radiation and residual radioactivity associated with these systems, impose...

  20. Experiences with the test facility MILLI for reprocessing nuclear fuel

    The facility MILLI is designed for experiments on dissolution and extraction of highly irradiated fuels with any enrichment. MILLI was designed and constructed from 1965 to 1970. After cold tests in 1971 the facility has been in hot operation since that time. Experiences with the reprocessing of high-burned UO2- and (U, Pu)O2-LWR and (U, Pu)O2-FBR fuel have been gained and have found application in the Karlsruhe reprocessing plant (WAK) as well as in the conceptual design of the large reprocessing plant in Gorleben. (orig.)

  1. Testing of reactor fuel materials using nuclear techniques

    The tests presented here apply to: the quantitative determination of uranium in the core of fuel element plates by the detection of the number of neutrons produced in photo induced reactions in uranium; the determination of 235U proportion in uranium dioxide samples, in the form of uranyl nitrate, by the technique of the detection of tracks produced by fission fragments and in pellet samples by passive gamma spectrometry and the checking of uranium homogenization distribution in fuel plates and uranium dioxide pellets. (Author)

  2. Shaking table test study on seismic performance of dehydrogenation fan for nuclear power plants

    Seismic performance of the dehydrogenation fan for nuclear power plants was evaluated based on the shaking table test of earthquake simulation. Dynamic characteristics including the orthogonal tri-axial fundamental frequencies and equivalent damping ratios were measured by the white noise scanning method. Artificial seismic waves were generated corresponding to the floor acceleration response spectra for nuclear power plants. Furthermore, five OBE and one SSE shaking table tests for dehydrogenation fan were performed by using the artificial seismic waves as the seismic inputs along the orthogonal axis simultaneity. Operating function of dehydrogenation fan was monitored and observed during all seismic tests, and performance indexes of dehydrogenation fan were compared before and after seismic tests. The results show that the structural integrity and operating function of the dehydrogenation fan are perfect during all seismic tests; and the performance indexes of the dehydrogenation fan can remain consistent before and after seismic tests; the seismic performance of the dehydrogenation fan can satisfy relevant technical requirements. (authors)

  3. The advanced test reactor national scientific user facility: advancing nuclear technology education

    To help ensure the long-term viability of nuclear energy through a robust and sustained research and development effort, the U.S. Department of Energy designated the Idaho National Laboratory (INL) Advanced Test Reactor and associated post-irradiation examination facilities a National Scientific User Facility (ATR NSUF), allowing broader access to nuclear energy researchers. The ATR NSUF provides education programs including a Users Week, internships, faculty student team projects and faculty/staff exchanges. In addition, the ATR NSUF seeks to form strategic partnerships with university facilities that add significant nuclear research capability to the ATR NSUF and are accessible to all ATR NSUF users. (author)

  4. Status of the flora and fauna on the Nevada Test Site, 1993. Results of continuing basic environmental monitoring, January through December 1993

    This report provides the results of monitoring of plants and animals on the Nevada Test Site during calendar year 1993. Monitoring was accomplished under the Department of Energy's Basic Environmental Compliance and Monitoring Program, initiated in 1987. The program looks at both baseline study areas, chosen to represent undisturbed conditions as much as possible, and areas disturbed by Department of energy (DOE) activities or natural phenomena. DOE disturbances studied include areas blasted by above-ground nuclear tests before 1962, subsidence craters created by underground nuclear tests, road maintenance activities, areas cleared for drilling, and influences of man-made water sources. Natural phenomena studied include recovery from range fires, effects of introduced species, damage to plants by insect outbreaks, and effects of weather fluctuations. In 1993 disturbances examined included several burned areas and roadsides, a drill pad on Pahute Mesa, introduced grasses and shrub removal effects on ephemeral plants, and effects on pine trees of an infestation of pinyon needle scale insects

  5. IAEA Preliminary Assessment of the Former French Nuclear Test Sites in Algeria

    In 1999, the International Atomic Energy Agency received a request from the Government of Algeria to perform an assessment of the radiological conditions of the former sites used by the French Government in the early 1960s for the testing of nuclear weapons. This paper describes the history and the nature of the test site and the tests that were performed, the methodology of the IAEA assessment and the results and conclusions drawn from the mission of international experts. (author)

  6. Evaluation of the natural circulation capability test results for Ulchin nuclear power plant unit 3

    Sung, Kang Sik; Jeong, Weon Sang; Lee, Ju Han; Seo, Jong Tae; Lee, Sang Keun [Korea Power Engineering Company, Inc., Taejon (Korea, Republic of); Mo, Yong Won; Ryuk, Keun Su; Shin, Bong Chul; Kim, Byung Ho; Oh, Chul Sung [KEPCO, Ulchin (Korea, Republic of)

    1998-10-01

    During the Power Ascension Test (PAT) period, the transient tests related to the natural circulation capability were successfully completed for Ulchin Nuclear Power Plant Unit 3 (UCN 3). The tests were successfully completed by meeting all acceptance criteria. The post-trip PCS shows good performance as designed and the measured natural circulation capacity was demonstrated to be adequate for the core decay heat removal for UCN 3.

  7. Testing of advance design types of instrument current transformers for Temelin nuclear power plant

    Current transformers designed and produced in IVEP Brno for the measurement of electric energy, for control and protection of the generator-transformer unit of the Temelin nuclear power plant are described. Presented are tests performed according to the standard test CSN 35 1360 and CSN 35 1361 as well as tests respecting a revision of these standards according to IEC 185. (author) 1 tab., 2 figs., 7 refs

  8. Evaluation of the natural circulation capability test results for Ulchin nuclear power plant unit 3

    During the Power Ascension Test (PAT) period, the transient tests related to the natural circulation capability were successfully completed for Ulchin Nuclear Power Plant Unit 3 (UCN 3). The tests were successfully completed by meeting all acceptance criteria. The post-trip PCS shows good performance as designed and the measured natural circulation capacity was demonstrated to be adequate for the core decay heat removal for UCN 3

  9. Radioactive cesium isotope ratios as a tool for determining dispersal and re-dispersal mechanisms downwind from the Nevada Nuclear Security Site

    Fractionation of the two longer-lived radioactive cesium isotopes (135Cs and 137Cs) produced by above ground nuclear tests have been measured and used to clarify the dispersal mechanisms of cesium deposited in the area between the Nevada Nuclear Security Site and Lake Mead in the southwestern United States. Fractionation of these isotopes is due to the 135-decay chain requiring several days to completely decay to 135Cs, and the 137-decay chain less than one hour decay to 137Cs. Since the Cs precursors are gases, iodine and xenon, the 135Cs plume was deposited farther downwind than the 137Cs plume. Sediment core samples were obtained from the Las Vegas arm of Lake Mead, sub-sampled and analyzed for 135Cs/137Cs ratios by thermal ionization mass spectrometry. The layers proved to have nearly identical highly fractionated isotope ratios. This information is consistent with a model where the cesium was initially deposited onto the land area draining into Lake Mead and the composite from all of the above ground shots subsequently washed onto Lake Mead by high intensity rain and wind storms producing a layering of Cs activity, where each layer is a portion of the composite. - Highlights: ► We measure 135Cs/137Cs isotope ratios by mass spectrometry in environmental samples. ► Isotopic fraction between Cs isotopes is documented. ► Cs isotopic data are consistent with re-distribution of sediment around Lake Mead.

  10. Chemical Explosion Experiments to Improve Nuclear Test Monitoring - Developing a New Paradigm for Nuclear Test Monitoring with the Source Physics Experiments (SPE)

    A series of chemical explosions, called the Source Physics Experiments (SPE), is being conducted under the auspices of the U.S. Department of Energy's National Nuclear Security Administration (NNSA) to develop a new more physics-based paradigm for nuclear test monitoring. Currently, monitoring relies on semi-empirical models to discriminate explosions from earthquakes and to estimate key parameters such as yield. While these models have been highly successful monitoring established test sites, there is concern that future tests could occur in media and at scale depths of burial outside of our empirical experience. This is highlighted by North Korean tests, which exhibit poor performance of a reliable discriminant, mb:Ms (Selby et al., 2012), possibly due to source emplacement and differences in seismic responses for nascent and established test sites. The goal of SPE is to replace these semi-empirical relationships with numerical techniques grounded in a physical basis and thus applicable to any geologic setting or depth

  11. Offsite environmental monitoring report. Radiation monitoring around United States nuclear test areas, calendar year 1981

    Black, S.C.; Grossman, R.F.; Mullen, A.A.; Potter, G.D.; Smith, D.D.; Hopper, J.L. (comps.)

    1982-08-01

    This report, prepared in accordance with the guidelines in DOE/E-0023 (DOE 1981), covers the program activities conducted around Nevada Test Site (NTS) for calendar year 1981. It contains descriptions of pertinent features of the NTS and its environs, summaries of the dosimetry and sampling methods, analytical procedures, and the analytical results from environmental measurements. Where applicable, dosimetry and sampling data are compared to appropriate guides for external and internal exposures of humans to ionizing radiation. The monitoring networks detected no radioactivity in the various media which could be attributed to US nuclear testing. Small amounts of fission products were detected in air samples as a result of the People's Republic of China nuclear test and atmospheric krypton-85 increased, following the trend beginning in 1960, due to increased use of nuclear technology. Strontium-90 in milk and cesium-137 in meat samples continued the slow decline as observed for the last several years.

  12. Summary of inspection findings of licensee inservice testing programs at United States commercial nuclear power plants

    Dunlop, A.; Colaccino, J.

    1996-12-01

    Periodic inspections of pump and valve inservice testing (IST) programs in United States commercial nuclear power plants are performed by Nuclear Regulatory Commission (NRC) Regional Inspectors to verify licensee regulatory compliance and licensee commitments. IST inspections are conducted using NRC Inspection Procedure 73756, {open_quotes}Inservice Testing of Pumps and Valves{close_quotes} (IP 73756), which was updated on July 27, 1995. A large number of IST inspections have also been conducted using Temporary Instruction 2515/114, {open_quotes}Inspection Requirements for Generic Letter 89-04, Acceptable Inservice Testing Programs{close_quotes} (TI-2515/114), which was issued January 15, 1992. A majority of U.S. commercial nuclear power plants have had an IST inspection to either IP 73756 or TI 2515/114. This paper is intended to summarize the significant and recurring findings from a number of these inspections since January of 1990.

  13. Offsite environmental monitoring report. Radiation monitoring around United States nuclear test areas, calendar year 1981

    This report, prepared in accordance with the guidelines in DOE/E-0023 (DOE 1981), covers the program activities conducted around Nevada Test Site (NTS) for calendar year 1981. It contains descriptions of pertinent features of the NTS and its environs, summaries of the dosimetry and sampling methods, analytical procedures, and the analytical results from environmental measurements. Where applicable, dosimetry and sampling data are compared to appropriate guides for external and internal exposures of humans to ionizing radiation. The monitoring networks detected no radioactivity in the various media which could be attributed to US nuclear testing. Small amounts of fission products were detected in air samples as a result of the People's Republic of China nuclear test and atmospheric krypton-85 increased, following the trend beginning in 1960, due to increased use of nuclear technology. Strontium-90 in milk and cesium-137 in meat samples continued the slow decline as observed for the last several years

  14. Characteristics of acoustic wave from atmospheric nuclear explosions conducted at the USSR Test Sites

    Sokolova, Inna

    2015-04-01

    Availability of the acoustic wave on the record of microbarograph is one of discriminate signs of atmospheric (surface layer of atmosphere) and contact explosions. Nowadays there is large number of air wave records from chemical explosions recorded by the IMS infrasound stations installed during recent decade. But there is small number of air wave records from nuclear explosions as air and contact nuclear explosions had been conducted since 1945 to 1962, before the Limited Test Ban Treaty was signed in 1963 (the treaty banning nuclear weapon tests in the atmosphere, in outer space and under water) by the Great Britain, USSR and USA. That time there was small number of installed microbarographs. First infrasound stations in the USSR appeared in 1954, and by the moment of the USSR collapse the network consisted of 25 infrasound stations, 3 of which were located on Kazakhstan territory - in Kurchatov (East Kazakhstan), in Borovoye Observatory (North Kazakhstan) and Talgar Observatory (Northern Tien Shan). The microbarograph of Talgar Observatory was installed in 1962 and recorded large number of air nuclear explosions conducted at Semipalatinsk Test Site and Novaya Zemlya Test Site. The epicentral distance to the STS was ~700 km, and to Novaya Zemlya Test Site ~3500 km. The historical analog records of the microbarograph were analyzed on the availability of the acoustic wave. The selected records were digitized, the database of acoustic signals from nuclear explosions was created. In addition, acoustic signals from atmospheric nuclear explosions conducted at the USSR Test Sites were recorded by analogue broadband seismic stations at wide range of epicentral distances, 300-3600 km. These signals coincide well by its form and spectral content with records of microbarographs and can be used for monitoring tasks and discrimination in places where infrasound observations are absent. Nuclear explosions which records contained acoustic wave were from 0.03 to 30 kt yield for

  15. Minisatellite mutations and retrospective biodosimetry of population living close to the Semipalatinsk nuclear test site

    During the period between 1949 and 1989 nuclear weapon testing carried out at the Semipalatinsk Nuclear Test Site (STS) resulted in local fallout affecting the residents of Semipalatinsk, East Kazakhstan and Pavlodar districts of Kazakhstan and Altai region of Russia. The Semipalatinsk nuclear polygon in Kazakhstan has been the site for 470 nuclear tests, including 26 tests performed on the ground and 87 in the atmosphere. More than 1.5 million people living in the vicinity of the test site were repeatedly exposed to ionizing radiation. The paper reviews the study where the main objectives are: (1) to establish a biosample database of blood samples of families in three generations living close to the STS and control families in three generations from clean areas, (2) to determine the minisatellite mutation rates in the three generations of exposed people and the control families of the same ethinic origin living in non-contaminated areas, and (3) to determine the chromosomal translocation frequencies by FISH chromosome painting in the lymphocytes of the exposed and the control people in order to determine the radiation exposure. The aim of the study was to select the population living near to the STS and subjected to the greatest radiation exposure. Of particular interest was the first test of 29th of August 1949, as this was reported to have caused heavy fallout along a narrow trajectory extending north-east from Polygon, also covering parts of the Altai region of Russia and parts of Pavlodar and Karaganda regions in Kazakhstan

  16. New approaches to forest above-ground biomass assessment

    Brovkina, Olga; Novotný, Jan; Zemek, František

    Volume 1. 1. Brno: Global Change Research Centre, Academy of Sciences of the Czech Republic, v. v. i, 2015 - (Urban, O.; Klem, K.), s. 186-196 ISBN 978-80-87902-14-1 R&D Projects: GA MŠk(CZ) LO1415 Institutional support: RVO:67179843 Keywords : CO2 * soil * stem * branches * leaves * respiration Subject RIV: EH - Ecology, Behaviour

  17. Measurement protocol for radon measurements in workplaces above ground

    The Swedish Radiation Protection Authority, SSI, has established a measurement protocol for measurements of radon in workplaces. The result from a measurement according to the protocol can be compared to the limit for indoor radon at workplaces, 400 Bq/m3 issued by the Swedish Work Environment Authority and also to the action level for schools, preschools and public buildings, 400 Bq/m3, issued by the National Board of Health and Welfare. The protocol recommends measurements to be done in two steps. The first measurement, called the preliminary measurement, will be done with an integrating measurement method over a period of at least two months. Track etch detectors or electret devices can be used. Since the preliminary measurements often overestimates the radon levels the workers are actually exposed to during working hours, a follow-up measurement has to be done if the preliminary measurement gives a result that exceeds 400 Bq/m3. In case there is need for an annual mean for comparison to the action level for schools a long-term measurement has to be done. Otherwise a method for follow-up measurements can be used at once. The follow-up measurement has to show the radon level during working hours. Two measurement strategies can be used depending on the function of the ventilation system. With the ventilation system running constantly, measurements can be done with track etch detectors for ten days or electret devices for five days. If the ventilation system is closed down at night electrets can be used for five days if the devise is open only during working hours or a continuous measurement device can be used for two days. Measurements have to be performed during the heating season, i.e. when the 24-hour average temperature is below +10 deg C, usually between October 1 and April 31. Most importantly the difference between interior and exterior temperatures must be big enough to allow natural draught ventilation system to activate. The result from a measurement made during the warmer part of the year is likely to show radon levels that are not representative for the whole year. Measurements have to cover at least 20 % of the rooms used for work places situated on the ground floor, in upper floors one measurement per floor has to be made and at least one per 500 m2. More measurements are recommended for buildings constructed from material with enhanced uranium and radium levels, such as blue lightweight concrete. Rooms in upper floors with vertical piping or other vertical openings through the building or rooms adjacent to rooms with piping should be measured. The detectors should not be moved during the measurement period and they should be placed so that the result is representative for the work place. Measurement devises must be calibrated every 12 months. This can be done at SSI or another laboratory recommended by SSI. Laboratories, consulting firms etc responsible for radon measurements have to guarantee that the results are correct. A quality system is required in order to perform measurements. The measurement protocol describes every method that can be used for radon measurements in detail as far as calibration and control systems are concerned. (author)

  18. Tests of qualification of national components of nuclear power plants under design basis accident

    With the purpose of qualifying national components of nuclear power plants, whose working must be maintained during and after an accident, the Thermohydraulic Division of CDTN have done tests to check the equipment stability, under Design Basis Accident conditions. Until this moment, the following components were tested: electrical junction boxes (connectors); coating systems for wall, inside cover and steel containment; hydraulics components of personnel and equipment airlock. This work describes the test instalation, the tests performed and its results. The components tested, in a general way, fulfil the specified requirements. (author)

  19. Historical sketches of Sandia National Laboratories nuclear field testing. Volume 1: Full discussion except for sensitive references

    This report contains historical sketches that cover the major activities of Sandia nuclear field testing, from early atmospheric shots until 1990. It includes a chronological overview followed by more complete discussions of atmospheric, high-altitude, underwater, cratering, and underground nuclear testing. Other activities related to nuclear testing and high-explosive tests are also described. A large number of references are cited for readers who wish to learn more about technical details. Appendices, written by several authors, provide more insight for a variety of special aspects of nuclear testing and related work. Two versions of this history were published: volume 1 has an unlimited distribution, and volume 2 has a limited distribution

  20. Reinforced evidence of a low-yield nuclear test in North Korea on 11 May 2010

    In May 2010 unique aerosol-bound and noble gas (xenon) radionuclide signatures were observed at four East Asian surveillance stations designed to detect evidence of nuclear testing. An article published in early 2012 provided an analysis that suggested the findings were due to a low-yield underground nuclear test in North Korea on 11 May 2010. As the aerosol and noble gas datings, however, only agreed on the fringes of their uncertainties an official North Korean telegram that on 12 May 2010 reported about a nuclear fusion experiment 1 month earlier inspired a solution. Assuming that included a low-yield nuclear explosion and that it had left xenon isotopes in the same cavity, the xenon dating could be 'moved' to overlap with the aerosol dating. The article stirred a serious controversy where representatives of the U.S. government and the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO) refused to comment on it. In this paper the xenon dating agrees with the aerosol one without resorting to a previous explosion. It shows instead that fractionation during lava cooling is the explanation and how that plays a paramount role in how xenon signatures from underground nuclear explosions should be interpreted. It also presents new observations that effectively imply that no nuclear reactor or any other nuclear installation could have caused the May 2010 signals. All in all these are the most interesting and rich ones ever encountered by the Organization and they truly demonstrate that the verification system can deliver much better sensitivity than it was originally designed for. (author)