WorldWideScience

Sample records for abortus live vaccine

  1. DeltaznuADeltapurE Brucella abortus 2308 mutant as a live vaccine candidate.

    Yang, Xinghong; Thornburg, Theresa; Walters, Nancy; Pascual, David W

    2010-01-22

    To create a new, safe brucellosis live vaccine, a double mutant strain was constructed from Brucella abortus 2308. Using the DeltaznuA B. abortus 2308 mutant, a second mutation was introduced by deleting purE gene. The DeltaznuA DeltapurE B. abortus 2308 strain was less capable of surviving in macrophages. When evaluated in vivo, it was cleared within 8 weeks (wks) from mice, causing significantly less inflammation than spleens obtained from wild-type B. abortus 2308-infected mice. Furthermore, two doses of DeltaznuA DeltapurE B. abortus 2308 conferred 0.79 log protection, similar to S19 as did a single dose of DeltaznuA B. abortus 2308. Thus, this study shows the DeltaznuA DeltapurE B. abortus 2308 strain to be a potential livestock vaccine candidate. PMID:19914192

  2. A potent Brucella abortus 2308 Δery live vaccine allows for the differentiation between natural and vaccinated infection.

    Zhang, Junbo; Yin, Shuanghong; Guo, Fei; Meng, Ren; Chen, Chuangfu; Zhang, Hui; Li, Zhiqiang; Fu, Qiang; Shi, Huijun; Hu, Shengwei; Ni, Wei; Li, Tiansen; Zhang, Ke

    2014-08-01

    Brucellosis is a globally distributed zoonotic disease that causes animal and human diseases. However, the current Brucella abortus vaccines (S19 and RB51) are deficient; they can cause abortion in pregnant animals. Moreover, when the vaccine S19 is used, tests cannot differentiate natural from vaccinated infection. Therefore, a safer and more potent vaccine is needed. A Brucella abortus 2308 ery promoter mutant (Δery) was constructed to overcome these drawbacks. The growth of the Δery mutant was significantly attenuated in macrophages and mice and induced high protective immunity in mice. Moreover, Δery induced an anti-Brucella-specific IgG (immunoglobulin G) response and stimulated the expression of interferon-gamma (INF-γ) and interleukin-4 (IL-4). Furthermore, the expression of EryA antigen allowed for the serological differentiation between natural and vaccinated infection in mice. These results indicate that the Δery mutant is a potential attenuated live vaccine candidate against virulent Brucella abortus 2308 (S2308) infection. PMID:24994009

  3. Evaluation of Brucella abortus Phosphoglucomutase (pgm) Mutant as a New Live Rough-Phenotype Vaccine

    Ugalde, Juan Esteban; Comerci, Diego José; Leguizamón, M. Susana; Ugalde, Rodolfo Augusto

    2003-01-01

    Brucella abortus S19 is the vaccine most frequently used against bovine brucellosis. Although it induces good protection levels, it cannot be administered to pregnant cattle, revaccination is not advised due to interference in the discrimination between infected and vaccinated animals during immune-screening procedures, and the vaccine is virulent for humans. Due to these reasons, there is a continuous search for new bovine vaccine candidates that may confer protection levels comparable to th...

  4. A combined vaccine against Brucella abortus and infectious bovine rhinotracheitis

    Kamaraj, Govindasamy; Chinchkar, Shankar R.; Rajendra, Lingala; Srinivasan, Villuppanoor Alwar

    2009-01-01

    The present study was undertaken to study the immune response in calves vaccinated with Brucella abortus strain 19, infectious bovine rhinotracheitis (IBR) vaccines in monovalent form and combined vaccine containing both antigen. The seroconversion of monovalent and combined vaccines was tested in seronegative cattle calves. IBR vaccine alone and combination with live Brucella abortus S19 vaccine elicited an anamnestic response on day 60 post booster but started declining from day 90 onwards ...

  5. A combined vaccine against Brucella abortus and infectious bovine rhinotracheitis.

    Kamaraj, Govindasamy; Chinchkar, Shankar R; Rajendra, Lingala; Srinivasan, Villuppanoor Alwar

    2009-06-01

    The present study was undertaken to study the immune response in calves vaccinated with Brucella abortus strain 19, infectious bovine rhinotracheitis (IBR) vaccines in monovalent form and combined vaccine containing both antigen. The seroconversion of monovalent and combined vaccines was tested in seronegative cattle calves. IBR vaccine alone and combination with live Brucella abortus S19 vaccine elicited an anamnestic response on day 60 post booster but started declining from day 90 onwards against IBR. B. abortus S19 alone and in combination with IBR vaccine gave more than 2 log protection in mice two weeks post challenge. Fluorescence polarization assay analysis with sera samples of calves vaccinated with B. abortus S19 monovalent vaccine alone and in combination with IBR vaccine revealed the presence of B. abortus antibodies. The components of the combined vaccine did not show any evidence of interference in the development of immunity. This combined vaccine may provide economical and affordable biological for the control of brucellosis and IBR. PMID:23100765

  6. Brucella suis S2, brucella melitensis Rev. 1 and Brucella abortus S19 living vaccines: residual virulence and immunity induced against three Brucella species challenge strains in mice.

    Bosseray, N; Plommet, M

    1990-10-01

    Live attenuated Brucella suis S2 vaccine was compared to living vaccines B. abortus S19 and B. melitensis Rev. 1 in mice. Residual virulence was estimated by ability to multiply and persist in spleen and lymph nodes. Immunogenicity was estimated by spleen counts of control and vaccinated mice challenged either with the reference B. abortus 544 strain or with virulent B. melitensis H38 and B. suis 1330 strains. S2 vaccine had lower residual virulence; expressed as 50% recovery time, persistence was 4.3 weeks, compared to 7.1 and 9.0 weeks for S19 and Rev. 1 vaccines. Immunity induced by the three vaccines was similar 45 days after vaccination. At 150 days, immunity by S19 and Rev.1 was still similar against the three challenge strains. In contrast, immunity induced by S2 had declined against the B. melitensis strain. Thus, a recall vaccination may be required for vaccination of sheep to confer a long-lasting immunity. PMID:2123586

  7. 9 CFR 113.65 - Brucella Abortus Vaccine.

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Brucella Abortus Vaccine. 113.65 Section 113.65 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE VIRUSES, SERUMS, TOXINS, AND ANALOGOUS PRODUCTS; ORGANISMS AND VECTORS STANDARD REQUIREMENTS Live Bacterial Vaccines § 113.65 Brucella...

  8. Efficacy of Brucella abortus vaccine strain RB51 compared to the reference vaccine Brucella abortus strain 19 in water buffalo

    Vincenzo Caporale; Barbara Bonfini; Elisabetta Di Giannatale; Andrea Di Provvido; Simona Forcella; Armando Giovannini; Manuela Tittarelli; Massimo Scacchia

    2010-01-01

    Approximately 250 000 water buffalo (Bubalus bubalis) live in the Campania region of southern Italy where the breeding of this species is very popular. Of these animals, almost 150 000 are concentrated in the Caserta province where the prevalence of Brucella abortus in this species represents approximately 20% at herd level. The Italian brucellosis eradication programme provides a slaughter and vaccination strategy for this province. B. abortus strain RB51 (RB51) has become the official vacci...

  9. Recent advances in Brucella abortus vaccines.

    Dorneles, Elaine M S; Sriranganathan, Nammalwar; Lage, Andrey P

    2015-01-01

    Brucella abortus vaccines play a central role in bovine brucellosis control/eradication programs and have been successfully used worldwide for decades. Strain 19 and RB51 are the approved B. abortus vaccines strains most commonly used to protect cattle against infection and abortion. However, due to some drawbacks shown by these vaccines much effort has been undertaken for the development of new vaccines, safer and more effective, that could also be used in other susceptible species of animals. In this paper, we present a review of the main aspects of the vaccines that have been used in the brucellosis control over the years and the current research advances in the development of new B. abortus vaccines. PMID:26155935

  10. Efficacy of Brucella abortus vaccine strain RB51 compared to the reference vaccine Brucella abortus strain 19 in water buffalo

    Vincenzo Caporale

    2010-03-01

    Full Text Available Approximately 250 000 water buffalo (Bubalus bubalis live in the Campania region of southern Italy where the breeding of this species is very popular. Of these animals, almost 150 000 are concentrated in the Caserta province where the prevalence of Brucella abortus in this species represents approximately 20% at herd level. The Italian brucellosis eradication programme provides a slaughter and vaccination strategy for this province. B. abortus strain RB51 (RB51 has become the official vaccine for the prevention of brucellosis in cattle in several countries. The aim of this study was to evaluate the efficacy of RB51 in water buffalo compared to the B. abortus S19 vaccine (S19. The study was performed in accordance with a protocol described in mice. Female buffalo aged five months were inoculated. Five received a RB51 dosage on two occasions that was three times greater than that approved for use in cattle and a booster after one month, five received B. abortus S19 vaccine at the standard dosage and three controls received a phosphate buffer solution. Buffalo were then challenged with a virulent B. abortus strain 544 thirty days post vaccination. Antibodies that developed in the five animals vaccinated with RB51 were not detected by the Rose Bengal test or complement fixation test (CFT and were also tested by CFT prepared with RB51 antigen. After culling, B. abortus was cultured from the spleen, retropharyngeal and supra-mammary lymph nodes. A statistical evaluation was performed to assess the immunogenicity values obtained in buffalo vaccinated with S19, compared to those obtained in buffalo vaccinated with the RB51 vaccine and in the unvaccinated control group.

  11. Efficacy of Brucella abortus vaccine strain RB51 compared to the reference vaccine Brucella abortus strain 19 in water buffalo.

    Caporale, Vincenzo; Bonfini, Barbara; Di Giannatale, Elisabetta; Di Provvido, Andrea; Forcella, Simona; Giovannini, Armando; Tittarelli, Manuela; Scacchia, Massimo

    2010-01-01

    Approximately 250,000 water buffalo (Bubalus bubalis) live in the Campania region of southern Italy where the breeding of this species is very popular. Of these animals, almost 150,000 are concentrated in the Caserta province where the prevalence of Brucella abortus in this species represents approximately 20% at herd level. The Italian brucellosis eradication programme provides a slaughter and vaccination strategy for this province. B. abortus strain RB51 (RB51) has become the official vaccine for the prevention of brucellosis in cattle in several countries. The aim of this study was to evaluate the efficacy of RB51 in water buffalo compared to the B. abortus S19 vaccine (S19). The study was performed in accordance with a protocol described in mice. Female buffalo aged five months were inoculated. Five received a RB51 dosage on two occasions that was three times greater than that approved for use in cattle and a booster after one month, five received B. abortus S19 vaccine at the standard dosage and three controls received a phosphate buffer solution. Buffalo were then challenged with a virulent B. abortus strain 544 thirty days post vaccination. Antibodies that developed in the five animals vaccinated with RB51 were not detected by the Rose Bengal test or complement fixation test (CFT) and were also tested by CFT prepared with RB51 antigen. After culling, B. abortus was cultured from the spleen, retropharyngeal and supra-mammary lymph nodes. A statistical evaluation was performed to assess the immunogenicity values obtained in buffalo vaccinated with S19, compared to those obtained in buffalo vaccinated with the RB51 vaccine and in the unvaccinated control group. PMID:20391363

  12. Cytokine responses in camels (Camelus bactrianus) vaccinated with Brucella abortus strain 19 vaccine.

    Odbileg, Raadan; Purevtseren, Byambaa; Gantsetseg, Dorj; Boldbaatar, Bazartseren; Buyannemekh, Tumurjav; Galmandakh, Zagd; Erdenebaatar, Janchivdorj; Konnai, Satoru; Onuma, Misao; Ohashi, Kazuhiko

    2008-02-01

    In the present study, we determined the levels of cytokines produced by camel (Camelus bactrianus) peripheral blood mononuclear cells (PBMCs) in response to live attenuated Brucella abortus (B. abortus) S19 vaccine. Seven camels were vaccinated with commercial B. abortus S19 vaccine, and their cytokine responses were determined using a real-time PCR assay. Cytokine responses to B. abortus S19 were examined at 6 hr, 48 hr and 1, 2 and 3 weeks post-vaccination. Serological tests were performed to further confirm these immune responses. The results revealed that IFN-gamma and IL-6 were upregulated during the first week post-vaccination. Low level expressions of IL-1alpha, IL-1beta, TNFalpha and IL-10 and no expression of IL-2 and IL-4 were observed compared with the control camels. The findings showed that B. abortus stimulates cell-mediated immunity by directly activating camel Th1 cells to secrete IFN-gamma. This quantification of cytokine expression in camels is essential for understanding of Camelidae disease development and protective immune responses. This is the first report of in vivo camel cytokine quantification after vaccination. PMID:18319583

  13. A Live Vaccine from Brucella abortus Strain 82 for Control of Cattle Brucellosis in the Russian Federation

    During the first half of the 20th century, widespread regulatory efforts to control cattle brucellosis (Brucella abortus) in the Union of Soviet Socialist Republics were essentially nonexistent, and control was limited to selective test and slaughter of serologic agglutination reactors. By the 1950...

  14. Brucella abortus RB51 in milk of vaccinated adult cattle.

    Miranda, Karina Leite; Poester, Fernando Padilla; Dorneles, Elaine Maria Seles; Resende, Thiago Magalhães; Vaz, Adil Knackfuss; Ferraz, Sandra Maria; Lage, Andrey Pereira

    2016-08-01

    The aim of this study was to evaluate the shedding of Brucella abortus in the milk of cows vaccinated with a full dose of RB51 during lactation. Eighteen cows, nine previously vaccinated with S19 as calves and nine non-vaccinated, were immunized subcutaneously with 1.3×10(10)CFU of B. abortus RB51, 30-60days after parturition. Milk samples from all animals were collected daily until day 7, and at weekly interval for the next 9 weeks after vaccination. To evaluate the shedding of B. abortus, milk samples were submitted for culture and PCR. No B. abortus was isolated from any sample tested. Only one sample, collected on first day after vaccination from a cow previously vaccinated, was faintly positive in the PCR. In conclusion, the public health hazard associated with milk consumption from cows vaccinated with RB51 in post-partum is very low, despite vaccination with the full dose and regardless of previous S19 vaccination. PMID:27143220

  15. Comparison of immune responses and resistance to brucellosis in mice vaccinated with Brucella abortus 19 or RB51.

    Stevens, M G; S. C. Olsen; Pugh, G W; Brees, D

    1995-01-01

    Immune responses and resistance to infection with Brucella abortus 2308 (S2308) were measured in mice following vaccination with B. abortus 19 (S19) or the lipopolysaccharide (LPS) O-antigen-deficient mutant, strain RB51 (SRB51). Live bacteria persisted for 8 weeks in spleens of mice vaccinated with 5 x 10(6) or 5 x 10(8) CFU of SRB51, whereas bacteria persisted for 12 weeks in mice vaccinated with 5 x 10(6) CFU of S19. Mice vaccinated with 5 x 10(6) or 5 x 10(8) CFU of SRB51 had increased re...

  16. Live Virus Smallpox Vaccine

    ... A - Z Index SMALLPOX FACT SHEET The Live Virus Smallpox Vaccine The vaccinia virus is the "live ... it cannot cause smallpox. What is a "live virus" vaccine? A "live virus" vaccine is a vaccine ...

  17. Coombs Antiglobulin Test Using Brucella abortus 99 as Antigen To Detect Incomplete Antibodies Induced by B. abortus RB51 Vaccine in Cattle

    Ciuchini, Franco; Adone, Rosanna; Pasquali, Paolo

    2002-01-01

    This study showed that vaccination of cattle with Brucella abortus rough strain RB51 induces incomplete antibodies that can be detectable by a Coombs antiglobulin test using the B. abortus 99 smooth strain.

  18. Proteomic analysis of Brucella abortus cell envelope and identification of immunogenic candidate proteins for vaccine development.

    Connolly, Joseph P; Comerci, Diego; Alefantis, Timothy G; Walz, Alexander; Quan, Marian; Chafin, Ryan; Grewal, Paul; Mujer, Cesar V; Ugalde, Rodolfo A; DelVecchio, Vito G

    2006-07-01

    Brucella abortus is the etiologic agent of bovine brucellosis and causes a chronic disease in humans known as undulant fever. In livestock the disease is characterized by abortion and sterility. Live, attenuated vaccines such as S19 and RB51 have been used to control the spread of the disease in animals; however, they are considered unsafe for human use and they induce abortion in pregnant cattle. For the development of a safer and equally efficacious vaccine, immunoproteomics was utilized to identify novel candidate proteins from B. abortus cell envelope (CE). A total of 163 proteins were identified using 2-DE with MALDI-TOF MS and LC-MS/MS. Some of the major protein components include outer-membrane protein (OMP) 25, OMP31, Omp2b porin, and 60 kDa chaperonin GroEL. 2-DE Western blot analyses probed with antiserum from bovine and a human patient infected with Brucella identified several new immunogenic proteins such as fumarate reductase flavoprotein subunit, F0F1-type ATP synthase alpha subunit, and cysteine synthase A. The elucidation of the immunome of B. abortus CE identified a number of candidate proteins for developing vaccines against Brucella infection in bovine and humans. PMID:16739129

  19. DNA vaccine encoding L7/L12-P39 of Brucella abortus induces protective immunity in BALB/c mice

    LUO De-yan; LI Peng; XING Li; ZHAO Guang-yu; SHI Wei; ZHANG Song-le; WANG Xi-liang

    2006-01-01

    @@ Brucella abortus is a gram-negative, facultative, intracellular bacterium that infects both cattle and humans, causing abortion and infertility in the former and undulant fever, endocarditis, arthritis, and osteomyelitis. Resistance to Brucella depends on acquired cell-mediated immunity (CMI).1 Live attenuated vaccines can stimulate strong CMI response, which are usually very effective against brucellosis and are used to control brucellosis in domestic animals. However, there is no safe and effective vaccine available for human because the vaccine strains used for animals are considered too virulent for humans. A vaccine that will be noninfectious to humans but effective in stimulating a broad protective immune response is needed.2

  20. Increases of efficacy as vaccine against Brucella abortus infection in mice by simultaneous inoculation with avirulent smooth bvrS/bvrR and rough wbkA mutants.

    Grilló, María Jesús; Manterola, Lorea; de Miguel, María Jesús; Muñoz, Pilar María; Blasco, José María; Moriyón, Ignacio; López-Goñi, Ignacio

    2006-04-01

    The Brucella abortus S19 and RB51 strains are the most widely used live vaccines against bovine brucellosis. However, both can induce abortion and milk excretion, S19 vaccination interferes in serological tests, and RB51 is less effective. We have shown previously that a rough wbkAB. abortus mutant is attenuated and a better vaccine than RB51 in BALB/c mice, and that mutants in the two-component regulatory system bvrS/bvrR are markedly attenuated while keeping a smooth lipopolysaccharide (S-LPS). In this work, we tested whether simultaneous inoculation with live bvrS increases wbkA vaccine efficacy in mice. Even at high doses, the bvrS mutant was cleared much faster from spleens than the wbkA mutant. The splenic persistence of the wbkA mutant increased when inoculated along with the bvrS mutant, but also with inactivated bvrS cells or with purified B. abortus S-LPS, strongly suggesting that S-LPS in the bvrS mutant played a determinant role in the wbkA persistence. When inoculated alone, both mutants protected against virulent B. abortus but less than when inoculated simultaneously, and the protection afforded by the combination was better than that obtained with B. abortus S19. Increased protection was also obtained after simultaneous inoculation of the wbkA mutant and inactivated bvrS cells or purified S-LPS, showing again the role played by the S-LPS in the bvrS cells. In mice, the bvrS-wbkA combination induced an antibody response reduced with respect to B. abortus S19 vaccination. Thus, the simultaneous use of live bvrS and wbkA B. abortus mutants seems a promising approach to overcome the problems of the S19 andRB51 vaccines. PMID:16439039

  1. Occupational infection due to Brucella abortus S19 among workers involved in vaccine production in Argentina.

    Wallach, J C; Ferrero, M C; Victoria Delpino, M; Fossati, C A; Baldi, P C

    2008-08-01

    The pathological consequences of exposure to the vaccine strain Brucella abortus S19 were evaluated in 30 employees from vaccine-manufacturing plants. Active brucellosis was diagnosed in 21 subjects, of whom only five recalled an accidental exposure. Clinical manifestations were mild, and only one patient presented a complication. After antimicrobial therapy, initially symptomatic patients either experienced clinical remission or had mild persistent symptoms. This is the first study reporting infection by B. abortus S19 among workers from vaccine-manufacturing plants, which in many cases was acquired from unnoticed exposures. Measures to improve the safety of B. abortus S19 handling should be implemented. PMID:18727806

  2. Studies on recombinant glucokinase (r-glk) protein of Brucella abortus as a candidate vaccine molecule for brucellosis.

    Vrushabhendrappa; Singh, Amit Kumar; Balakrishna, Konduru; Sripathy, Murali Harishchandra; Batra, Harsh Vardhan

    2014-09-29

    Brucellosis is one of the most prevalent zoonotic diseases of worldwide distribution caused by the infection of genus Brucella. Live attenuated vaccines such as B. abortus S19, B. abortus RB51 and B. melitensis Rev1 are found most effective against brucellosis infection in animals, contriving a number of serious side effects and having chances to revert back into their active pathogenic form. In order to engineer a safe and effective vaccine candidate to be used in both animals and human, a recombinant subunit vaccine molecule comprising the truncated region of glucokinase (r-glk) gene from B. abortus S19 was cloned and expressed in Escherichia coli BL21DE3 host. Female BALB/c mice immunized with purified recombinant protein developed specific antibody titer of 1:64,000. The predominant IgG2a and IgG2b isotypes signified development of Th1 directed immune responses. In vitro cell cytotoxicity assay using anti-r-glk antibodies incubated with HeLa cells showed 81.20% and 78.5% cell viability against lethal challenge of B. abortus 544 and B. melitensis 16M, respectively. The lymphocyte proliferative assay indicated a higher splenic lymphocyte responses at 25μg/ml concentration of protein which implies the elevated development of memory immune responses. In contrast to control, the immunized group of mice intra-peritoneal (I.P.) challenged with B. abortus 544 were significantly protected with no signs of necrosis and vacuolization in their liver and spleen tissue. The elevated B-cell response associated with Th1 adopted immunity, significant in vitro cell viability as well as protection afforded in experimental animals after challenge, supplemented with histopathological analysis are suggestive of r-glk protein as a prospective candidate vaccine molecule against brucellosis. PMID:25131740

  3. Brucella abortus 1119-3 O-chain polysaccharide to differentiate sera from B. abortus S-19-vaccinated and field-strain-infected cattle by agar gel immunodiffusion.

    Cherwonogrodzky, J W; Nielsen, K H

    1988-01-01

    Purified Brucella abortus 1119-3 and Brucella melitensis 16M lipopolysaccharide O-chain polysaccharides were not precipitated in agar gel immunodiffusion by any of 24 sera from vaccinated cattle but were precipitated by 18 of 24 sera from infected cattle. This difference can be used to differentiate sera of cattle vaccinated with B. abortus S-19 from sera of some field-strain-infected cattle.

  4. Humoral immune response against lipopolysaccharide and cytoplasmic proteins of Brucella abortus in cattle vaccinated with B. abortus S19 or experimentally infected with Yersinia enterocolitica serotype 0:9.

    Baldi, P C; Giambartolomei, G H; Goldbaum, F A; Abdón, L F; C.A. Velikovsky; Kittelberger, R; Fossati, C A

    1996-01-01

    The humoral immune responses against three different antigens of Brucella abortus were monitored by enzyme-linked immunosorbent assay in cattle vaccinated with B. abortus S19 or experimentally infected with Yersinia enterocolitica serotype 0:9. Immunoglobulin G (IgG) and IgM responses against (i) B. abortus lipopolysaccharide (LPS), (ii) total cytoplasmic proteins depleted of LPS (LPS-free CYT), and (iii) B. abortus 18-kDa cytoplasmic protein were measured. Vaccinated animals and Yersinia-inf...

  5. The Brucella abortus S19 ΔvjbR Live Vaccine Candidate Is Safer than S19 and Confers Protection against Wild-Type Challenge in BALB/c Mice When Delivered in a Sustained-Release Vehicle▿

    Arenas-Gamboa, A. M.; Ficht, T A; Kahl-McDonagh, M. M.; Gomez, G.; Rice-Ficht, A C

    2008-01-01

    Brucellosis is an important zoonotic disease of nearly worldwide distribution. Despite the availability of live vaccine strains for bovine (S19, RB51) and small ruminants (Rev-1), these vaccines have several drawbacks, including residual virulence for animals and humans. Safe and efficacious immunization systems are therefore needed to overcome these disadvantages. A vjbR knockout was generated in the S19 vaccine and investigated for its potential use as an improved vaccine candidate. Vaccina...

  6. Protection against infection in mice vaccinated with a Brucella abortus mutant.

    Boschiroli, M L; Cravero, S L; Arese, A I; Campos, E.; Rossetti, O L

    1997-01-01

    This study determines whether a genetically engineered mutant of Brucella abortus, strain M-1, possesses differences in protective properties compared to the parental strain, vaccine S19. M-1 is a mutant unable to express BP26, a periplasmic protein with potential use in diagnosis. Mice vaccinated with S19 developed antibodies against BP26, while those vaccinated with M-1 did not. However, mice vaccinated with S19 or M-1 were similarly protected against challenge with pathogenic strain 2308, ...

  7. A combined DNA vaccine provides protective immunity against Mycobacterium bovis and Brucella abortus in cattle.

    Hu, Xi-Dan; Yu, Da-Hai; Chen, Su-Ting; Li, Shu-Xia; Cai, Hong

    2009-04-01

    We evaluated the immunogenicity and protective efficacy of a combined DNA vaccine containing six genes encoding immunodominant antigens from Mycobacterium bovis and Brucella abortus. The number of lymph node and spleen cultures positive for M. bovis and B. abortus from calves immunized with the combined DNA vaccine was significantly reduced (p abortus 544. The combined DNA vaccine group displayed stronger antigen-specific interferon-gamma (IFN-gamma) responses and antigen-specific IFN-gamma ELISPOT activities 2 months after final immunization and after challenge. Antigen-specific CD4(+) and CD8(+) T cell responses in the combined DNA vaccine group were higher than either the Bacillus Calmette-Guerin (BCG)-positive or S19-positive control group. Likewise, more calves in the DNA vaccine group exhibited antigen-specific IgG titers and had higher IgG titers than those in the BCG- or S19-immunized groups 2 months after the final immunization. Moreover, two antigens in the combined DNA vaccine induced significant antigen-specific IFN-gamma responses 6 months after challenge (p S19 against B. abortus. This is the first report to demonstrate that a single combined DNA vaccine protects cattle against two infectious diseases. PMID:19364278

  8. Vaccination of elk (Cervus canadensis with Brucella abortus strain RB51 overexpressing superoxide dismutase and glycosyltransferase genes does not induce adequate protection against experimental Brucella abortus challenge

    Pauline eNol

    2016-02-01

    Full Text Available In recent years, elk (Cervus canadensis have been implicated as the source of Brucella abortus infection for numerous cattle herds in the Greater Yellowstone Area. In the face of environmental and ecological changes on the landscape, the range of infected elk is expanding. Consequently, the development of effective disease management strategies for wild elk herds is of utmost importance, not only for the prevention of reintroduction of brucellosis to cattle, but also for the overall health of the Greater Yellowstone Area elk populations. In two studies, we evaluated the efficacy of B. abortus strain RB51 over-expressing superoxide dismutase and glycosytransferase for protecting elk from infection and disease caused by B. abortus after experimental infection with a virulent B. abortus strain. Our data indicate that the recombinant vaccine does not protect elk against brucellosis. Further work is needed for development of an effective brucellosis vaccine for use in elk

  9. Safety of the novel influenza viral vector Brucella abortus vaccine in pregnant heifers

    Kaissar Tabynov

    2016-01-01

    Full Text Available ABSTRACT: The present study provides the first information about the safety of a new influenza viral vector vaccine expressing the Brucella ribosomal protein L7/L12 or Omp16 containing the adjuvant Montanide Gel01 in pregnant heifers. Immunization of pregnant heifers was conducted via the conjunctival (n=10 or subcutaneous (n=10 route using cross prime and booster vaccination schedules at an interval of 28 days. The vector vaccine was evaluated in comparison with positive control groups vaccinated with B. abortus S19 (n=10 or B. abortus RB51 (n=10 and a negative (PBS+Montanide Gel01; n=10 control group. Clinical studies, thermometry, assessment of local reactogenicity and observation of abortion showed that the vector vaccine via the conjunctival or subcutaneous route was completely safe for pregnant heifers compared to the commercial vaccines B. abortus S19 or B. abortus RB51. The only single adverse event was the formation of infiltration at the site of subcutaneous injection; this reaction was not observed for the conjunctival route.

  10. The Brucella abortus S19 DeltavjbR live vaccine candidate is safer than S19 and confers protection against wild-type challenge in BALB/c mice when delivered in a sustained-release vehicle.

    Arenas-Gamboa, A M; Ficht, T A; Kahl-McDonagh, M M; Gomez, G; Rice-Ficht, A C

    2009-02-01

    Brucellosis is an important zoonotic disease of nearly worldwide distribution. Despite the availability of live vaccine strains for bovine (S19, RB51) and small ruminants (Rev-1), these vaccines have several drawbacks, including residual virulence for animals and humans. Safe and efficacious immunization systems are therefore needed to overcome these disadvantages. A vjbR knockout was generated in the S19 vaccine and investigated for its potential use as an improved vaccine candidate. Vaccination with a sustained-release vehicle to enhance vaccination efficacy was evaluated utilizing the live S19 DeltavjbR::Kan in encapsulated alginate microspheres containing a nonimmunogenic eggshell precursor protein of the parasite Fasciola hepatica (vitelline protein B). BALB/c mice were immunized intraperitoneally with either encapsulated or nonencapsulated S19 DeltavjbR::Kan at a dose of 1 x 10(5) CFU per animal to evaluate immunogenicity, safety, and protective efficacy. Humoral responses postvaccination indicate that the vaccine candidate was able to elicit an anti-Brucella-specific immunoglobulin G response even when the vaccine was administered in an encapsulated format. The safety was revealed by the absence of splenomegaly in mice that were inoculated with the mutant. Finally, a single dose with the encapsulated mutant conferred higher levels of protection compared to the nonencapsulated vaccine. These results suggest that S19 DeltavjbR::Kan is safer than S19, induces protection in mice, and should be considered as a vaccine candidate when administered in a sustained-release manner. PMID:19047401

  11. Serological response to an indirect and a competitive elisa in heifers vaccinated with Brucella abortus strain 19

    The different serologic techniques for bovine brucellosis diagnosis have different abilities to detect antibodies after vaccination with Brucella abortus strain 19. The humoral response in heifers vaccinated with Brucella abortus strain 19 was evaluated by using several serologic techniques. In the experimental field of INTA, Pilcaniyeu, Rio Negro province, sixteen 5 months old heifers were vaccinated subcutaneously with a standard dose (2ml, containing 20x109 to 10x109 living organisms) of Brucella abortus strain 19. Sera from all the heifers were obtained on 18 occasions (one 87 days before vaccination, one immediately before vaccination and on 16 occasions after vaccination, during 488 days) and analyzed by buffered plate antigen test, rose bengal test, standard tube agglutination test, 2-mercaptoetanol test, complement fixation test, indirect ELISA, and competitive ELISA. Prior vaccination, 100% of the heifers gave negative results in all the techniques used, while 100% of them gave positive reaction in the first sampling after vaccination to all the techniques, with the exception of standard tube agglutination test that showed agglutinating titters of 1/100 or higher (positive threshold) in only 71.4% of the heifers. The indirect ELISA technique showed a reducing percentage of positive animals up until 316 days after vaccination, after which positive results were obtained. The competitive ELISA gave positive results in a variable number of heifers up to 253 days after vaccination when 100% of the sera were negative to this technique. Buffered plate antigen test was the technique that gave positive results for a longest period, being 100% of the animals negative to this technique at 450 days after vaccination. The other serological techniques assayed gave positive results during variable periods of time, intermediate between standard tube agglutination test and buffered plate antigen test. Although the present results were obtained from a limited number of

  12. Genome sequence of Brucella abortus vaccine strain S19 compared to virulent strains yields candidate virulence genes

    Crasta, Oswald R.; Folkerts, Otto; Fei, Zhangjun; Mane, Shrinivasrao P.; Evans, Clive; Martino-Catt, Susan; Bricker, Betsy; Yu, GongXin; Du, Lei; Sobral, Bruno W.

    2008-01-01

    The Brucella abortus strain S19, a spontaneously attenuated strain, has been used as a vaccine strain in vaccination of cattle against brucellosis for six decades. Despite many studies, the physiological and molecular mechanisms causing the attenuation are not known. We have applied pyrosequencing technology together with conventional sequencing to rapidly and comprehensively determine the complete genome sequence of the attenuated Brucella abortus vaccine strain S19. The main goal of this st...

  13. Genome Sequence of Brucella abortus Vaccine Strain S19 Compared to Virulent Strains Yields Candidate Virulence Genes

    Crasta, Oswald R.; Otto Folkerts; Zhangjun Fei; Mane, Shrinivasrao P.; Clive Evans; Susan Martino-Catt; Betsy Bricker; GongXin Yu; Lei Du; Sobral, Bruno W.

    2008-01-01

    The Brucella abortus strain S19, a spontaneously attenuated strain, has been used as a vaccine strain in vaccination of cattle against brucellosis for six decades. Despite many studies, the physiological and molecular mechanisms causing the attenuation are not known. We have applied pyrosequencing technology together with conventional sequencing to rapidly and comprehensively determine the complete genome sequence of the attenuated Brucella abortus vaccine strain S19. The main goal of this st...

  14. Protection levels in vaccinated heifers with experimental vaccines Brucella abortus M1-luc and INTA 2.

    Fiorentino, M A; Campos, E; Cravero, S; Arese, A; Paolicchi, F; Campero, C; Rossetti, O

    2008-12-10

    Brucella abortus M1-luc is a mutant strain derived from S19 vaccine strain in which most of bp26 sequence has been replaced by the luciferase coding gene. Strain I2 is a double mutant derived from M1-luc in which most of omp19 has been deleted without introduction of any genetic markers. In BALB/c mice, M1-luc presented equivalent performance to S19 regarding persistence, splenomegaly and protection against challenge. Interestingly, I2 was more attenuated than S19, with no reduction of protection against challenge. In order to evaluate the potential for vaccine use of these strains in the natural host, four groups of 15 heifers, 6-month old, were either non-vaccinated or vaccinated with S19, M1-luc or I2. To at reached 17-month old, heifers were synchronized with two doses of PGF2alpha and received natural service during 60 days with two bulls. Pregnant heifers were challenged at approximately six gestation months with virulent B. abortus S2308. Blood samples post-challenge of heifers were collected for serologic test as well as specimens of aborted fetuses and premature calves for bacterial isolation and histopathological analyses. Protection levels against abortion were 78.6% for S19, 81.8% for M1-luc and 45.5% for I2, compared to the 25% that did not abort from the non-vaccinated group. These results indicate that in bovines BP26 had no influence in protective capacity of S19, correlating with the results obtained in mice. However, contrarily to what was previously observed in mice, lack of expression of Omp19 rendered in less protection capacity of S19 in the natural host. PMID:18565697

  15. Intratracheal infection as an efficient route for testing vaccines against Chlamydia abortus in sheep.

    Álvarez, D; Salinas, J; Buendía, A J; Ortega, N; del Río, L; Sánchez, J; Navarro, J A; Gallego, M C; Murcia-Belmonte, A; Cuello, F; Caro, M R

    2015-09-01

    Pregnant ewes have been widely used to test vaccines against Chlamydia abortus. However, this model entails many disadvantages such as high economic costs and long periods of pregnancy. The murine model is very useful for specific studies but cannot replace the natural host for the later stages of vaccine evaluation. Therefore, a non-pregnant model of the natural host might be useful for a vaccine trial to select the best vaccine candidates prior to use of the pregnant model. With this aim, two routes of infection were assessed in young non-pregnant sheep, namely, intranasal (IN) and intratracheal (IT). In addition, groups of non-vaccinated sheep and sheep immunised with an inactivated vaccine were established to investigate the suitability of the model for testing vaccines. After the experimental infection, isolation of the microorganism in several organs, with pathological and immunohistochemical analyses, antibody production assessment and investigation by PCR of the presence of chlamydia in the vagina or rectum were carried out. Experimental IT inoculation of C. abortus induced pneumonia in sheep during the first few days post-infection, confirming the suitability of the IT route for testing vaccines in the natural host. The course of infection and the resulting pathological signs were less severe in vaccinated sheep compared with non-vaccinated animals, demonstrating the success of vaccination. IN infection did not produce evident lesions or demonstrate the presence of chlamydial antigen in the lungs and cannot be considered an appropriate model for testing vaccines. PMID:26095034

  16. Evaluation of Brucella abortus S19 vaccines commercialized in Brazil: immunogenicity, residual virulence and MLVA15 genotyping.

    Miranda, Karina Leite; Poester, Fernando Padilla; Minharro, Silvia; Dorneles, Elaine Maria Seles; Stynen, Ana Paula Reinato; Lage, Andrey Pereira

    2013-06-24

    Live attenuated Brucella abortus S19 is the most effective vaccine against brucellosis in cattle. The assessment of the immunological parameters is essential to guarantee the biological quality of live anti-bacteria vaccines. The evaluation of genetic stability of live bacterial vaccines is also important in quality control. The aims of the present study were to compare (i) the immunogenicity and residual virulence, and (ii) the genotypic profile (MLVA15) of the eight S19 vaccines commercialized in Brazil to the USDA S19 reference strain. Two batches of each of the eight S19 commercial vaccines used in Brazil (A-H) were tested. They were submitted to the potency and residual virulence in vivo tests recommended by OIE and typed by the multiple-locus variable-number tandem repeat (VNTR) analysis (MLVA) described for Brucella spp. Our results demonstrated that all S19 vaccines commercialized in Brazil would be approved by Brazilian and OIE recommendations for potency and residual virulence. Furthermore, the S19 vaccine is genetically very homogeneous, as all but two batches (from the same manufacturer) tested showed identical MLVA15 profile. The two batches with different profiles presented six repeat units in locus Bruce07, instead of the five found in all other strains, including the USDA S19 reference strain. Although presenting a slightly different profile, this vaccine was also protective, as demonstrated by the immunogenicity and residual virulence assays performed. Therefore, the commercial Brazilian S19 vaccines were in accordance to Brazilian and international standards for immunogenicity and residual virulence tests. Moreover, our results also show that MLVA could be a useful inclusion to the list of in vitro tests required by the official control authorities to be applied to the commercial S19 vaccines, as an efficient assay to guarantee the quality and stability of the vaccine strains. PMID:23664986

  17. Immunoproteomics of Brucella abortus reveals differential antibody profiles between S19-vaccinated and naturally infected cattle.

    Pajuaba, Ana C A M; Silva, Deise A O; Almeida, Karine C; Cunha-Junior, Jair P; Pirovani, Carlos P; Camillo, Luciana R; Mineo, José R

    2012-03-01

    Brucella abortus is a Gram-negative intracellular bacterium that causes infectious abortion in food-producing animals and chronic infection in humans. This study aimed to characterize a B. abortus S19 antigen preparation obtained by Triton X-114 (TX-114) extraction through immunoproteomics to differentiate infected from vaccinated cattle. Three groups of bovine sera were studied: GI, 30 naturally infected cows; GII, 30 S19-vaccinated heifers; and GIII, 30 nonvaccinated seronegative cows. One-dimensional (1D) and two-dimensional electrophoretic profiles of TX-114 hydrophilic phase antigen revealed a broad spectrum of polypeptides (10-79 kDa). 1D immunoblot showed widespread seroreactivity profile in GI compared with restricted profile in GII. Three antigenic components (10, 12, 17 kDa) were recognized exclusively by GI sera, representing potential markers of infection and excluding vaccinal response. The proteomic characterization revealed 56 protein spots, 27 of which were antigenic spots showing differential seroreactivity profile between GI and GII, especially polypeptides abortus S19 proteins (Invasion protein B, Sod, Dps, Ndk, and Bfr), which were related with antigenicity in naturally infected cattle. In conclusion, immunoproteomics of this new antigen preparation enabled the characterization of proteins that could be used as tools to develop sensitive and specific immunoassays for serodiagnosis of bovine brucellosis, with emphasis on differentiation between S19 vaccinated and infected cattle. PMID:22539433

  18. Recombinant bovine interleukin 2 enhances immunity and protection induced by Brucella abortus vaccines in cattle.

    Wyckoff, John H; Howland, Jeri L; Scott, Catherine M O'Connell; Smith, Robert A; Confer, Anthony W

    2005-11-30

    Augmentation of immunization of cattle Brucella abortus S19 or a B. abortus soluble protein extract (SPEBA) vaccine through administration of recombinant bovine IL 2 (rBoIL 2) was evaluated. Seventy-five heifers were divided among 6 groups that were treated with the following: Group 1, no treatment; Group 2, rBoIL 2 (1microg/kg) on day 0; Group 3, SPEBA (2 mg) on day 0 and week 9; Group 4, SPEBA + rBoIL 2 on day 0, SPEBA on week 9; Group 5, S19 (10(7) CFU) on day 0 and week 9; Group 6, S19 + rBoIL 2 on day 0, S19 only on week 9. Approximately, 6 months after vaccination, cattle were bred by natural service, and at mid-gestation pregnant cattle were challenged intraconjunctivally with 9.1 x 10(5) CFU of virulent B. abortus S2308. Pre- and post-challenge antibody responses were measured by an enzyme-linked immunosorbent assay, a particle concentration fluorescence assay, and the card test. Lymphoproliferation (LP) responses to gamma-irradiated B. abortus and SPEBA antigens were measured in peripheral blood mononuclear cells. After vaccination, antibody responses to B. abortus elevated rapidly in SPEBA- and S19-vaccinates with and without rBoIL 2, however, these responses were significantly (P S19 resulted in significant (P abortus antigens following challenge. Characterization of the cytokine response of bovine monocyte-derived macrophages by real-time polymerase chain reaction indicated that in vitro stimulation of these cells with rBoIL 2 resulted in a profound up-regulation of genes encoding tumor necrosis factor-alpha, IL 12p40, and interferon-gamma reflecting activation of the cells. Overall, rBoIL 2-treatment was associated with fewer infections, sero-conversions and a significant (P = 0.02) level of protection against abortion as compared to vaccination alone or no treatment. PMID:16242273

  19. Immune Responses of Elk to Initial and Booster Vaccinations with Brucella abortus Strain RB51 or 19

    S. C. Olsen; Fach, S. J.; Palmer, M. V.; Sacco, R. E.; Stoffregen, W. C.; Waters, W.R.

    2006-01-01

    Previous studies have suggested that currently available brucellosis vaccines induce poor or no protection in elk (Cervus elaphus nelsoni). In this study, we characterized the immunologic responses of elk after initial or booster vaccination with Brucella abortus strains RB51 (SRB51) and 19 (S19). Elk were vaccinated with saline or 1010 CFU of SRB51 or S19 (n = seven animals/treatment) and booster vaccinated with a similar dosage of the autologous vaccine at 65 weeks. Compared to nonvaccinate...

  20. Characterisation of Brucella abortus strain 19 cultures isolated from vaccinated cattle.

    Thomas, E L; Bracewell, C D; Corbel, M J

    1981-01-31

    Thirty-four cultures recovered from material of bovine origin in England, Scotland and Wales were identified unequivocally as Brucella abortus strain 19 (S19). All had the properties of carbon dioxide-independent B abortus biotype 1 strains, were inhibited by penicillin G and thionin blue at standard concentrations and behaved in oxidative metabolism and guinea pig virulence tests as typical S19. Their sensitivity to i-erythritol varied somewhat between cultures as did reference subcultures of S19. Of the total number of isolates, 11 were recovered from abortion material or cyetic products, 10 were from calves which died from a hypersensitivity reaction within 24 hours of S19 vaccination and the remainder were from milk or internal organs. From the evidence available, there is little to suggest that calfhood vaccination with S19 has resulted in persistent systemic infection in other than a very small proportion of the animals inoculated. PMID:6789543

  1. EXPRESSION OF BACILLUS ANTHRACIS PROTECTIVE ANTIGEN IN VACCINE STRAIN BRUCELLA ABORTUS RB51

    Poff, Sherry Ann

    1997-01-01

    Bacillus anthracis is a facultative intracellular bacterial pathogen that can cause cutaneous, gastrointestinal or respiratory disease in many vertebrates, including humans. Commercially available anthrax vaccines for immunization of humans are of limited duration and do not protect against the respiratory form of the disease. Brucella abortus is a facultative intracellular bacterium that causes chronic infection in animals and humans. As with other intracellular pathogens, cell mediated im...

  2. Oral vaccination with microencapsuled strain 19 vaccine confers enhanced protection against Brucella abortus strain 2308 challenge in red deer (Cervus elaphus elaphus).

    Arenas-Gamboa, Angela M; Ficht, Thomas A; Davis, Donald S; Elzer, Philip H; Kahl-McDonagh, Melissa; Wong-Gonzalez, Alfredo; Rice-Ficht, Allison C

    2009-10-01

    Bison (Bison bison) and elk (Cervus elaphus nelsoni) in the Greater Yellowstone Area (GYA), USA, are infected with Brucella abortus, the causative agent of bovine brucellosis, and they serve as a wildlife reservoir for the disease. Bovine brucellosis recently has been transmitted from infected elk to cattle in Montana, Wyoming, and Idaho and has resulted in their loss of brucellosis-free status. An efficacious Brucella vaccine with a delivery system suitable for wildlife would be a valuable tool in a disease prevention and control program. We evaluated Strain 19 (S19) in a sustained release vehicle consisting of alginate microspheres containing live vaccine. In a challenge study using red deer (Cervus elaphus elaphus) as a model for elk, alginate, a naturally occurring polymer combined with a protein of Fasciola hepatica vitelline protein B was used to microencapsulate S19. Red deer were orally or subcutaneously immunized with 1.5 x 10(10) colony-forming units (CFUs) using microencapsulated S19. Humoral and cellular profiles were analyzed bimonthly throughout the study. The vaccinated red deer and nonvaccinated controls were challenged 1 yr postimmunization conjunctivally with 1 x 10(9) CFUs of B. abortus strain 2308. Red deer vaccinated with oral microencapsulated S19 had a statistically significant lower bacterial tissue load compared with controls. These data indicate for the first time that protection against Brucella-challenge can be achieved by combining a commonly used vaccine with a novel oral delivery system such as alginate-vitelline protein B microencapsulation. This system is a potential improvement for efficacious Brucella-vaccine delivery to wildlife in the GYA. PMID:19901378

  3. Genetic stability of Brucella abortus S19 and RB51 vaccine strains by multiple locus variable number tandem repeat analysis (MLVA16).

    Dorneles, Elaine Maria Seles; de Faria, Ana Paula Paiva; Pauletti, Rebeca Barbosa; Santana, Jordana Almeida; Caldeira, George Afonso Vítor; Heinemann, Marcos Bryan; Titze-de-Almeida, Ricardo; Lage, Andrey Pereira

    2013-10-01

    The aims of the present study were (i) to assess the in vitro genetic stability of S19 and RB51 Brucella abortus vaccines strains and (ii) to evaluate the ability of multiple-locus variable-number tandem repeat (VNTR) analysis (MLVA) as a tool to be used in the quality control of live vaccines against brucellosis. Sixty-three batches of commercial S19 (n=53) and RB51 (n=10) vaccines, produced between 2006 and 2009, were used in this study. S19 and RB51 vaccines were obtained from, respectively, seven and two different manufacturers. Ten in vitro serial passages were performed on reference strains and on selected batches of commercial vaccines. All batches, reference strains and strains of serial passages were typed by the MLVA16. The results demonstrated that B. abortus S19 and RB51 vaccine strains are genetically stable and very homogeneous in their respective groups. Anyway, batches of S19 from one manufacturer and batches of RB51 from another presented genotypes distincts from the reference vaccine strains. In both cases, differences were found on locus Bruce07, which had addition of one repeat unit in the case of S19 batches and the deletion of one repeat unit in the case of RB51 batches. In summary, MLVA16 proved to be a molecular tool capable of discriminating small genomic variations and should be included in in vitro official tests. PMID:23933375

  4. Development of a new live rough vaccine against bovine brucellosis

    Brucella abortus S19 is the most commonly used attenuated live vaccine to prevent bovine brucellosis. In spite of its advantages, S19 has several drawbacks: it is abortive for pregnant cattle, is virulent for humans, and re-vaccination is not advised due to the persistence of anti-lipopolysaccharide (LPS) antibodies that hamper the immunoscreening procedures. For these reasons, there is a continuous search for new bovine vaccine candidates. We have previously characterized the phenotype of the phosphoglucomutase (pgm) gene disruption in Brucella abortus S2308, as well as the possible role for the smooth LPS in virulence and intracellular multiplication. Here we evaluate the vaccine properties of an unmarked deletion mutant of pgm. Western blot analysis of purified lipopolysaccharide and whole-cell extract from Δpgm indicate that it synthesizes O-antigen but is incapable of assembling a complete LPS. In consequence Δpgm has a rough phenotype. Experimental infections of mice indicate that Δpgm is avirulent. Vaccination with Δpgm induces protection levels comparable to those induced by S19, and generates a splenocyte proliferative response and cytokines profile typical of a Th-1 response. The ability of the mutant to generate a strong cellular Th-1 response without eliciting specific O-antigen antibodies highlights the potential use of this mutant as a new live vaccine for cattle. (author)

  5. Outer Membrane Proteins of Brucella abortus Vaccinal and Field Strains and their Immune Response in Buffaloes

    Rukhshanda Munir*, M. Afzal1, M. Hussain2, S. M. S. Naqvi3 and A. Khanum3

    2010-04-01

    Full Text Available Outer membrane proteins (OMPs of three strains of B. abortus i.e. S19, RB51 and a local field isolate of biotype 1 were isolated through disrupting cells to generate membranes by centrifugation and sodium lauryl sarcosinate solubilisation of inner membrane proteins. Distinct OMP profiles of each strain were seen on SDS-PAGE. SDS-PAGE analysis of S19 and field isolate revealed eight protein bands in each strain. The OMPs of S19 had molecular masses 89.0, 73.0, 53.7, 49.0, 38.0, 27.0, 22.3, and 17.7 kDa, while field isolate had OMPs of 151.3, 89.0, 75.8, 67.6, 37.0, 27.0, 24.0 and 19.0 kDa. B. abortus RB51 yielded 11 OMP bands ranging from 12.5 to 107.1 kDa, with 34.2, 15.8 and 12.5 kDa as additional OMPs. Western immunoblot analysis using antisera raised against all three strains in buffaloes indicated an almost similar pattern of immuno-reactive OMPs in S19 and field strain. Two OMPs of molecular weight 37-38 and 19 kDa were immuno-reactive in all strains in buffaloes. There is possibility of use of these OMPs in a recombinant vaccine for B. abortus. A distinct protein of molecular weight of 151.3 kDa was identified in field strain but not in both vaccine strains of B. abortus. Use of this OMP in a diagnostic assay may differentiate between vaccinated and infected animals.

  6. Immune Response of Calves Vaccinated with Brucella abortus S19 or RB51 and Revaccinated with RB51

    Elaine M S Dorneles; Lima, Graciela K.; Andréa Teixeira-Carvalho; Araújo, Márcio S S; Martins-Filho, Olindo A; Nammalwar Sriranganathan; Hamzeh Al Qublan; Heinemann, Marcos B; Andrey P. Lage

    2015-01-01

    Brucella abortus S19 and RB51 strains have been successfully used to control bovine brucellosis worldwide; however, currently, most of our understanding of the protective immune response induced by vaccination comes from studies in mice. The aim of this study was to characterize and compare the immune responses induced in cattle prime-immunized with B. abortus S19 or RB51 and revaccinated with RB51. Female calves, aged 4 to 8 months, were vaccinated with either vaccine S19 (0.6-1.2 x 1011 CFU...

  7. Brucella abortus S19 and RB51 vaccine immunogenicity test: Evaluation of three mice (BALB/c, Swiss and CD-1) and two challenge strains (544 and 2308).

    Miranda, Karina Leite; Dorneles, Elaine Maria Seles; Pauletti, Rebeca Barbosa; Poester, Fernando Padilla; Lage, Andrey Pereira

    2015-01-15

    The aim of the present study was to evaluate the use of different mouse strains (BALB/c, Swiss and CD-1) and different challenge strains (Brucella abortus 544 and 2308) in the study of B. abortus vaccine (S19 and RB51) immunogenicity test in the murine model. No significant difference in B. abortus vaccine potency assay was found with the use of B. abortus 544 or B. abortus 2308 as challenge strain. Results of variance analysis showed an interaction between treatment and mouse strain; therefore these parameters could not be compared separately. When CD-1 groups were compared, those vaccinated showed significantly lower counts than non-vaccinated ones (PS19 or RB51). Similar results were observed on BALB/c groups. However, in Swiss mouse groups, S19 was more protective than RB51 (Pabortus strains 544 and 2308, can be used in immunogenicity tests of S19 and RB51 vaccines. PMID:25498211

  8. A rapid cycleave PCR method for distinguishing the vaccine strain Brucella abortus A19 in China.

    Nan, Wenlong; Zhang, Yueyong; Tan, Pengfei; Xu, Zouliang; Chen, Yuqi; Mao, Kairong; Chen, Yiping

    2016-05-01

    Brucellosis is a widespread zoonotic disease caused by Brucella spp. Immunization with attenuated vaccines has proved to be an effective method of prevention; however, it may also interfere with diagnosis. Brucella abortus strain A19, which is homologous to B. abortus strain S19, is widely used for the prevention of bovine brucellosis in China. For effective monitoring of the control of brucellosis, it is essential to distinguish A19 from field strains. Single-nucleotide polymorphism-based assays offer a new approach to such discrimination studies. In the current study, we developed a cycleave PCR assay that successfully distinguished attenuated vaccine strains A19 and S19 from 22 strains of B. abortus and 57 strains of 5 other Brucella species. The assay gave a negative reaction with 4 non-Brucella species. The minimum sensitivity of the assay, evaluated using 10-fold dilutions of chromosomal DNA, was 7.6 fg for the A19 strain and 220 fg for the single non-A19/non-S19 Brucella strain tested (B. abortus 104M). The assay was also reproducible (intra- and interassay coefficients of variation: 0.003-0.01 and 0.004-0.025, respectively). The cycleave assay gave an A19/S19-specific reaction in 3 out of 125 field serum samples, with the same 3 samples being positive in an alternative A19/S19-specific molecular assay. The cycleave assay gave a total of 102 Brucella-specific reactions (3 being the A19/S19-specific reactions), whereas an alternative Brucella-specific assay gave 92 positive reactions (all also positive in the cycleave assay). Therefore, this assay represents a simple, rapid, sensitive, and specific tool for use in brucellosis control. PMID:27075847

  9. Genome sequences of three live attenuated vaccine strains of Brucella species and implications for pathogenesis and differential diagnosis.

    Wang, Yufei; Ke, Yuehua; Wang, Zhoujia; Yuan, Xitong; Qiu, Yefeng; Zhen, Qing; Xu, Jie; Li, Tiefeng; Wang, Dali; Huang, Liuyu; Chen, Zeliang

    2012-11-01

    Live attenuated vaccines play essential roles in the prevention of brucellosis. Here, we report the draft genome sequences of three vaccine strains, Brucella melitensis M5-10, B. suis S2-30, and B. abortus 104M. Primary genome sequence analysis identified mutations, deletions, and insertions which have implications for attenuation and signatures for differential diagnosis. PMID:23045513

  10. Genome Sequences of Three Live Attenuated Vaccine Strains of Brucella Species and Implications for Pathogenesis and Differential Diagnosis

    Wang, Yufei; Ke, Yuehua; Wang, Zhoujia; Yuan, Xitong; Qiu, Yefeng; Zhen, Qing; Xu, Jie; Li, Tiefeng; Wang, Dali; Huang, Liuyu; Chen, Zeliang

    2012-01-01

    Live attenuated vaccines play essential roles in the prevention of brucellosis. Here, we report the draft genome sequences of three vaccine strains, Brucella melitensis M5-10, B. suis S2-30, and B. abortus 104M. Primary genome sequence analysis identified mutations, deletions, and insertions which have implications for attenuation and signatures for differential diagnosis.

  11. Enhancement of the Brucella AMOS PCR assay for differentiation of Brucella abortus vaccine strains S19 and RB51.

    Bricker, B J; Halling, S. M.

    1995-01-01

    Because the brucellosis eradication program uses slaughter and quarantine as control measures, it would benefit from faster methods of bacterial identification. Distinguishing vaccine strains from strains that cause infections among vaccinated herds in the field is essential. To accomplish this, our PCR-based, species-specific assay (B. J. Bricker and S. M. Halling, J. Clin. Microbiol. 32:2660-2666, 1994) was updated to identify Brucella abortus vaccine strains S19 and RB51. Three new oligonu...

  12. Vector Development for the Expression of Foreign Proteins in the Vaccine Strain Brucella abortus S19

    Diego J Comerci; Pollevick, Guido D.; Vigliocco, Ana M.; Frasch, Alberto C. C.; Ugalde, Rodolfo A.

    1998-01-01

    A vector for the expression of foreign antigens in the vaccine strain Brucella abortus S19 was developed by using a DNA fragment containing the regulatory sequences and the signal peptide of the Brucella bcsp31 gene. This fragment was cloned in broad-host-range plasmid pBBR4MCS, resulting in plasmid pBEV. As a reporter protein, a repetitive antigen of Trypanosoma cruzi was used. The recombinant fusion protein is stably expressed and secreted into the Brucella periplasmic space, inducing a goo...

  13. Brucella abortus Strain RB51 Vaccine: Immune Response after Calfhood Vaccination and Field Investigation in Italian Cattle Population

    Manuela Tittarelli

    2008-01-01

    Full Text Available Immune response to Brucella abortus strain RB51 vaccine was measured in cattle vaccinated at calfhood. After an increase at day 6 post-vaccination (pv, the antibody level recorded in the 10 vaccinated animals remained constant for two months, and then progressively decreased. All vaccinated animals remained negative from day 162 pv to the end of the study (day 300 pv. Only at days 13 and 14 pv the RB51-CFT showed 100% sensitivity (credibility interval (CI 76.2%–100%. The results indicate that the possibility to use RB51-CFT for the identification of cattle vaccinated at calfhood with RB51 is limited in time. A field investigation was carried out on 26,975 sera collected on regional basis from the Italian cattle population. The study outcomes indicate that in case of RB51-CFT positive results observed in officially Brucellosis-free (OBF areas and, in any case, when an illegal use of RB51 vaccine is suspected, the use of the RB51-CFT alone is not sufficient to identify all the vaccinated animals. The design of a more sophisticated diagnostic protocol including an epidemiological investigation, the use of RB51-CFT, and the use of the skin test with RB51 as antigen is deemed more appropriate for the identification of RB51 vaccinated animals.

  14. Brucella abortus: inmunidad, vacunas y estrategias de prevención basadas en ácidos nucleicos Brucella abortus: immunity, vaccines and prevention strategies based on nucleic acids

    R Rivers

    2006-01-01

    +, subset Th1, secreting gamma-interferon (γ-INF, a cytokine stimulatings macrophage bactericidal activity and cytotoxic activity of lymphocytes TCD8+, which are able to lyse Brucella infected cells. The main antigenic components of Brucella are lipopolysaccharide (LPS and proteins, especially superoxide dismutase (SOD with demonstrated immune potential. Brucellosis spreading is prevented with vaccines using attenuated or inactivated strains of B. abortus, such as strains 19, 45/20 and RB51. On the other hand, several investigators are making efforts to obtain immunity using antigenic structures of Brucella as subcellular vaccines and recently, genetic vaccines based on DNA and RNA molecules. The aim of this review is to give a current overview about brucellosis, its pathogenicity and the clinical syndrome. Firstly, an analysis of the genetic, antigenic and immune characteristics of Brucella is presented. Secondly, the vaccines presently used for prevention and the research on subcellular vaccines are discussed. Finally, the new approach in the vaccine investigation, genetic DNA and RNA vaccines, for Brucella is presented.

  15. An influenza viral vector Brucella abortus vaccine induces good cross-protection against Brucella melitensis infection in pregnant heifers.

    Tabynov, Kaissar; Ryskeldinova, Sholpan; Sansyzbay, Abylai

    2015-07-17

    Brucella melitensis can be transmitted and cause disease in cattle herds as a result of inadequate management of mixed livestock farms. Ideally, vaccines against Brucella abortus for cattle should also provide cross-protection against B. melitensis. Previously we created a novel influenza viral vector B. abortus (Flu-BA) vaccine expressing the Brucella ribosomal proteins L7/L12 or Omp16. This study demonstrated Flu-BA vaccine with adjuvant Montanide Gel01 provided 100% protection against abortion in vaccinated pregnant heifers and good cross-protection of the heifers and their calves or fetuses (90-100%) after challenge with B. melitensis 16M; the level of protection provided by Flu-BA was comparable to the commercial vaccine B. abortus S19. In terms of the index of infection and colonization of Brucella in tissues, both vaccines demonstrated significant (P=0.02 to P<0.0001) protection against B. melitensis 16M infection compared to the negative control group (PBS+Montanide Gel01). Thus, we conclude the Flu-BA vaccine provides cross-protection against B. melitensis infection in pregnant heifers. PMID:26093199

  16. Vaccination of adult animals with a reduced dose of Brucella abortus S19 vaccine to control brucellosis on dairy farms in endemic areas of India.

    Chand, Puran; Chhabra, Rajesh; Nagra, Juhi

    2015-01-01

    Bovine brucellosis is an economically important disease which seriously affects dairy farming by causing colossal losses. It can be controlled by practicing vaccination of animals with Brucella abortus S19 vaccine (S19 vaccine). In the present study, adult bovines were vaccinated on seven dairy farms with a reduced dose of S19 vaccine to control brucellosis. Serological screening of adult animals (N = 1,082) by Rose Bengal test (RBT) and ELISA prior to vaccination revealed the presence and absence of brucellosis on five and two farms, respectively. The positive animals (N = 171) were segregated and those which tested negative (N = 911) were vaccinated by conjunctival route with a booster after 4 months. The conjunctival vaccination induced weak antibody response in animals, which vanished within a period of 9 to 12 weeks. Abortion in 12 animals at various stages of pregnancy and post-vaccination was recorded, but none was attributed to S19 vaccine. However, virulent B. abortus was incriminated in six heifers, and the cause of abortion could not be established in six animals. The six aborted heifers perhaps acquired infection through in utero transmission or from the environment which remained undetected until abortion. These findings suggested that vaccination of adult animals with a reduced dose of S19 vaccine by conjunctival route did not produce adverse effects like abortion in pregnant animals and persistent vaccinal antibody titers, which are the major disadvantages of subcutaneous vaccination of adult animals. PMID:25274621

  17. Novel vector vaccine against Brucella abortus based on influenza A viruses expressing Brucella L7/L12 or Omp16 proteins: evaluation of protection in pregnant heifers.

    Tabynov, Kaissar; Yespembetov, Bolat; Sansyzbay, Abylai

    2014-10-14

    The present study provides the first information about the protection of a novel influenza viral vector vaccine expressing the Brucella proteins ribosomal L7/L12 or Omp16 containing the adjuvant Montanide Gel01 in pregnant heifers. Immunization of pregnant heifers was conducted via the conjunctival (n=10) or subcutaneous (n=10) route using cross prime and booster vaccination schedules at an interval of 28 days. The vector vaccine was evaluated in comparison with positive control groups vaccinated with Brucella abortus S19 (n=10) or B. abortus RB51 (n=10) and a negative (PBS+Montanide Gel01; n=10) control group. Via both the conjunctival or subcutaneous route, evaluation of protectiveness against abortion, effectiveness of vaccination and index of infection (in heifers and their fetuses or calves) demonstrated the vector vaccine provided good protection against B. abortus 544 infection compared to the negative control group (PBS+Montanide Gel01) and comparable protection to commercial vaccines B. abortus S19 or B. abortus RB51. PMID:25218295

  18. Comparison of Biological and Immunological Characterization of Lipopolysaccharides From Brucella abortus RB51 and S19

    Kianmehr, Zahra; Kaboudanian Ardestani, Sussan; Soleimanjahi, Hoorieh; Fotouhi, Fatemeh; Alamian, Saeed; Ahmadian, Shahin

    2015-01-01

    Background: Brucella abortus RB51 is a rough stable mutant strain, which has been widely used as a live vaccine for prevention of brucellosis in cattle instead of B. abortus strain S19. B. abortus lipopolysaccharide (LPS) has unique properties in comparison to other bacterial LPS. Objectives: In the current study, two types of LPS, smooth (S-LPS) and rough (R-LPS) were purified from B. abortus S19 and RB51, respectively. The aim of this study was to evaluate biological and immunological prope...

  19. Isolation of Brucella abortus ssb and uvrA genes from a genomic library by use of lymphocytes as probes.

    Zhu, Y.; S.C. Oliveira; Splitter, G A

    1993-01-01

    Brucella abortus proteins from virulent S2308 expressed from a pBluescript II SK- genomic library stimulated peripheral blood mononuclear (PBM) cell proliferation from cattle vaccinated with B. abortus S19. The method described here permits a rapid and directed approach to isolate genes encoding antigens of B. abortus that interact with lymphocytes primed to the living bacterium. The supernatants from the bacterial host JM109 (DE3) were cultured with freshly isolated bovine PBM cells. A total...

  20. Comparison between Immunization Routes of Live Attenuated Salmonella Typhimurium Strains Expressing BCSP31, Omp3b, and SOD of Brucella abortus in Murine Model

    Kim, Won K.; Moon, Ja Y.; Kim, Suk; Hur, Jin

    2016-01-01

    Live, attenuated Salmonella Typhimurium vaccine candidate expressing BCSP31, Omp3b, and SOD proteins of Brucella abortus was constructed. Thirty BALB/c mice were divided equally into three groups, Group A, were intraperitoneally (IP) inoculated with 100 μl of approximately 1.2 × 106 colony-forming units (CFUs)/ml of the Salmonella containing vector only in 100 μl as a control. And groups B and C mice were orally and IP immunized with approximately 1.2 × 109 CFU/ml of the mixture of three delivery strains in 10 μl and IP immunized with approximately 1.2 × 106 CFU/ml of the mixture in 100 μl, respectively. The serum IgG, TNF-α and IFN-γ concentrations in groups B (except Omp3b) and C were significantly higher than those in group A. Following challenge with B. abortus strain 544; challenge strain was detected <103 CFU from the spleen of all mice of group C. These results suggest that IP immunization with the mixture of the vaccine candidate can induce immune responses, and can effectively protect mice against brucellosis. PMID:27148232

  1. Immune responses of elk to initial and booster vaccinations with Brucella abortus strain RB51 or 19.

    Olsen, S C; Fach, S J; Palmer, M V; Sacco, R E; Stoffregen, W C; Waters, W R

    2006-10-01

    Previous studies have suggested that currently available brucellosis vaccines induce poor or no protection in elk (Cervus elaphus nelsoni). In this study, we characterized the immunologic responses of elk after initial or booster vaccination with Brucella abortus strains RB51 (SRB51) and 19 (S19). Elk were vaccinated with saline or 10(10) CFU of SRB51 or S19 (n=seven animals/treatment) and booster vaccinated with a similar dosage of the autologous vaccine at 65 weeks. Compared to nonvaccinates, elk vaccinated with SRB51 or S19 had greater (PS19 after initial vaccination and after booster vaccination. Compared to nonvaccinated elk, greater (PS19 (22 weeks) treatment groups. In general, proliferative responses of vaccinates to nonautologous antigens did not differ (P>0.05) from the responses of nonvaccinated elk. Gamma interferon production in response to autologous or nonautologous Brucella antigens did not differ (P>0.05) between controls and vaccinates after booster vaccination. Flow cytometric techniques suggested that proliferation occurred more frequently in immunoglobulin M-positive cells, with differences between vaccination and control treatments in CD4+ and CD8+ subset proliferation detected only at 22 weeks after initial vaccination. After booster vaccination, one technique ([3H]thymidine incorporation) suggested that proliferative responses to SRB51 antigen, but not S19 antigen, were greater (PBrucella antigens in S19 or SRB51 vaccinates after booster vaccination. Although some cellular immune responses were detected after initial or booster vaccination of elk with SRB51 or S19, our data suggest that responses tend to be transient and much less robust than previously reported in SRB51-vaccinated cattle (Bos taurus) or bison (Bison bison). These data may explain why the vaccination of elk with S19 and SRB51 induces poor protection against brucellosis. PMID:17028213

  2. A stable live bacterial vaccine.

    Kunda, Nitesh K; Wafula, Denis; Tram, Meilinn; Wu, Terry H; Muttil, Pavan

    2016-06-01

    Formulating vaccines into a dry form enhances its thermal stability. This is critical to prevent administering damaged and ineffective vaccines, and to reduce its final cost. A number of vaccines in the market as well as those being evaluated in the clinical setting are in a dry solid state; yet none of these vaccines have achieved long-term stability at high temperatures. We used spray-drying to formulate a recombinant live attenuated Listeria monocytogenes (Lm; expressing Francisella tularensis immune protective antigen pathogenicity island protein IglC) bacterial vaccine into a thermostable dry powder using various sugars and an amino acid. Lm powder vaccine showed minimal loss in viability when stored for more than a year at ambient room temperature (∼23°C) or for 180days at 40°C. High temperature viability was achieved by maintaining an inert atmosphere in the storage container and removing oxygen free radicals that damage bacterial membranes. Further, in vitro antigenicity was confirmed by infecting a dendritic cell line with cultures derived from spray dried Lm and detection of an intracellularly expressed protective antigen. A combination of stabilizing excipients, a cost effective one-step drying process, and appropriate storage conditions could provide a viable option for producing, storing and transporting heat-sensitive vaccines, especially in regions of the world that require them the most. PMID:27020530

  3. Characterization of recombinant B. abortus strain RB51SOD towards understanding the uncorrelated innate and adaptive immune responses induced by RB51SOD compared to its parent vaccine strain RB51

    Jianguo eZhu

    2011-11-01

    Full Text Available Brucella abortus is a Gram-negative, facultative intracellular pathogen for several mammals, including humans. Live attenuated B. abortus strain RB51 is currently the official vaccine used against bovine brucellosis in the United States and several other countries. Overexpression of protective B. abortus antigen Cu/Zn superoxide dismutase (SOD in a recombinant strain of RB51 (strain RB51SOD significantly increases its vaccine efficacy against virulent B. abortus challenge in a mouse model. An attempt has been made to better understand the mechanism of the enhanced protective immunity of RB51SOD compared to its parent strain RB51. We previously reported that RB51SOD stimulated enhanced Th1 immune response. In this study, we further found that T effector cells derived from RB51SOD-immunized mice exhibited significantly higher cytotoxic T lymphocyte (CTL activity than T effector cells derived from RB51-immunized mice against virulent B. abortus-infected target cells. Meanwhile, the macrophage responses to these two strains were also studied. Compared to RB51, RB51SOD cells had a lower survival rate in macrophages and induced lower levels of macrophage apoptosis and necrosis. The decreased survival of RB51SOD cells correlates with the higher sensitivity of RB51SOD, compared to RB51, to the bactericidal action of either Polymyxin B or sodium dodecyl sulfate (SDS. Furthermore, a physical damage to the outer membrane of RB51SOD was observed by electron microscopy. Possibly due to the physical damage, overexpressed Cu/Zn SOD in RB51SOD was found to be released into the bacterial cell culture medium. Therefore, the stronger adaptive immunity induced by RB51SOD did not correlate with the low level of innate immunity induced by RB51SOD compared to RB51. This unique and apparently contradictory profile is likely associated with the differences in outer membrane integrity and Cu/Zn SOD release.

  4. Comparison of spleen cell proliferation in response to Brucella abortus 2308 lipopolysaccharide or proteins in mice vaccinated with strain 19 or RB51.

    Stevens, M G; S. C. Olsen; Pugh, G W

    1995-01-01

    Mice vaccinated with Brucella abortus 19 (S19) or RB51 (SRB51) had spleen cells which proliferated in response to proteins of 32, 27, 18, and < 18 kDa but not in response to proteins of 106, 80, and 49 kDa from B. abortus 2308 (S2308) following vaccination and challenge infection with S2308. Spleen cells from mice vaccinated with S19 but not with SRB51 had increased proliferation in response to S2308 lipopolysaccharide (LPS) following challenge infection with S2308. We previously reported tha...

  5. Immune responses and protection against experimental challenge after vaccination of bison with Brucella abortus strains RB51 or RB51 overexpressing superoxide dismutase and Glycosyltransferase genes

    Vaccination is a tool that could be beneficial in managing the high prevalence of brucellosis in free-ranging bison in Yellowstone National Park. In this study, we characterized immunologic responses and protection against experimental challenge after vaccination of bison with Brucella abortus stra...

  6. Influence of Brucella abortus lipopolysaccharide as an adjuvant on the immunogenicity of HPV-16 L1VLP vaccine in mice.

    Kianmehr, Zahra; Soleimanjahi, Hoorieh; Ardestani, Susan Kaboudanian; Fotouhi, Fatemeh; Abdoli, Asghar

    2015-04-01

    Brucella abortus lipopolysaccharide (LPS) has less toxicity and no pyrogenic properties in comparison with other bacterial LPS. It is a toll-like receptor 4 agonist and has been shown to have the potential use as a vaccine adjuvant. In this study, the immunostimulatory properties of LPS from smooth and rough strains of B. abortus (S19 and RB51) as adjuvants were investigated for the human papillomavirus type 16 (HPV16) L1 virus-like particles (L1VLPs) vaccines. C57BL/6 mice were immunized subcutaneously three times either with HPV-16 L1VLPs alone, or in combination with smooth LPS (S-LPS), rough LPS (R-LPS), aluminum hydroxide or a mixture of them as adjuvant. The humoral immunity was evaluated by measuring the specific and total IgG levels, and also the T-cell immune response of mice was evaluated by measuring different cytokines such as IFN-γ, TNF-α, IL-4, IL-10 and IL-17. Results showed that serum anti-HPV16 L1VLP IgG antibody titers was significantly higher in mice immunized with a combination of VLPs and R-LPS or S-LPS compared with other immunized groups. Co-administration of HPV-16 L1VLPs with R-LPS elicited the highest levels of splenocytes cytokines (IFN-γ, IL-4, IL-17 and TNF-α) and also effectively induced improvement of a Th1-type cytokine response characterized with a high ratio of IFN-γ/IL-10. The data indicate that B. abortus LPS particularly RB51-LPS enhances the immune responses to HPV-16 L1VLPs and suggests its potential as an adjuvant for the development of a potent prophylactic HPV vaccine and other candidate vaccines. PMID:25187406

  7. Genome sequence of Brucella abortus vaccine strain S19 compared to virulent strains yields candidate virulence genes.

    Crasta, Oswald R; Folkerts, Otto; Fei, Zhangjun; Mane, Shrinivasrao P; Evans, Clive; Martino-Catt, Susan; Bricker, Betsy; Yu, GongXin; Du, Lei; Sobral, Bruno W

    2008-01-01

    The Brucella abortus strain S19, a spontaneously attenuated strain, has been used as a vaccine strain in vaccination of cattle against brucellosis for six decades. Despite many studies, the physiological and molecular mechanisms causing the attenuation are not known. We have applied pyrosequencing technology together with conventional sequencing to rapidly and comprehensively determine the complete genome sequence of the attenuated Brucella abortus vaccine strain S19. The main goal of this study is to identify candidate virulence genes by systematic comparative analysis of the attenuated strain with the published genome sequences of two virulent and closely related strains of B. abortus, 9-941 and 2308. The two S19 chromosomes are 2,122,487 and 1,161,449 bp in length. A total of 3062 genes were identified and annotated. Pairwise and reciprocal genome comparisons resulted in a total of 263 genes that were non-identical between the S19 genome and any of the two virulent strains. Amongst these, 45 genes were consistently different between the attenuated strain and the two virulent strains but were identical amongst the virulent strains, which included only two of the 236 genes that have been implicated as virulence factors in literature. The functional analyses of the differences have revealed a total of 24 genes that may be associated with the loss of virulence in S19. Of particular relevance are four genes with more than 60 bp consistent difference in S19 compared to both the virulent strains, which, in the virulent strains, encode an outer membrane protein and three proteins involved in erythritol uptake or metabolism. PMID:18478107

  8. Genome sequence of Brucella abortus vaccine strain S19 compared to virulent strains yields candidate virulence genes.

    Oswald R Crasta

    Full Text Available The Brucella abortus strain S19, a spontaneously attenuated strain, has been used as a vaccine strain in vaccination of cattle against brucellosis for six decades. Despite many studies, the physiological and molecular mechanisms causing the attenuation are not known. We have applied pyrosequencing technology together with conventional sequencing to rapidly and comprehensively determine the complete genome sequence of the attenuated Brucella abortus vaccine strain S19. The main goal of this study is to identify candidate virulence genes by systematic comparative analysis of the attenuated strain with the published genome sequences of two virulent and closely related strains of B. abortus, 9-941 and 2308. The two S19 chromosomes are 2,122,487 and 1,161,449 bp in length. A total of 3062 genes were identified and annotated. Pairwise and reciprocal genome comparisons resulted in a total of 263 genes that were non-identical between the S19 genome and any of the two virulent strains. Amongst these, 45 genes were consistently different between the attenuated strain and the two virulent strains but were identical amongst the virulent strains, which included only two of the 236 genes that have been implicated as virulence factors in literature. The functional analyses of the differences have revealed a total of 24 genes that may be associated with the loss of virulence in S19. Of particular relevance are four genes with more than 60 bp consistent difference in S19 compared to both the virulent strains, which, in the virulent strains, encode an outer membrane protein and three proteins involved in erythritol uptake or metabolism.

  9. Vaccination with Brucella abortus recombinant in vivo-induced antigens reduces bacterial load and promotes clearance in a mouse model for infection.

    Jake E Lowry

    Full Text Available Current vaccines used for the prevention of brucellosis are ineffective in inducing protective immunity in animals that are chronically infected with Brucella abortus, such as elk. Using a gene discovery approach, in vivo-induced antigen technology (IVIAT on B. abortus, we previously identified ten loci that encode products up-regulated during infection in elk and consequently may play a role in virulence. In our present study, five of the loci (D15, 0187, VirJ, Mdh, AfuA were selected for further characterization and compared with three additional antigens with virulence potential (Hia, PrpA, MltA. All eight genes were PCR-amplified from B. abortus and cloned into E. coli. The recombinant products were then expressed, purified, adjuvanted, and delivered subcutaneously to BALB/c mice. After primary immunization and two boosts, mice were challenged i.p. with 5 x 10⁴ CFU of B. abortus strain 19. Spleens from challenged animals were harvested and bacterial loads determined by colony count at various time points. While vaccination with four of the eight individual proteins appeared to have some effect on clearance kinetics, mice vaccinated with recombinant Mdh displayed the most significant reduction in bacterial colonization. Furthermore, mice immunized with Mdh maintained higher levels of IFN-γ in spleens compared to other treatment groups. Collectively, our in vivo data gathered from the S19 murine colonization model suggest that vaccination with at least three of the IVIAT antigens conferred an enhanced ability of the host to respond to infection, reinforcing the utility of this methodology for the identification of potential vaccine candidates against brucellosis. Mechanisms for immunity to one protein, Mdh, require further in vitro exploration and evaluation against wild-type B. abortus challenge in mice, as well as other hosts. Additional studies are being undertaken to clarify the role of Mdh and other IVI antigens in B. abortus virulence

  10. Vaccination with Brucella abortus recombinant in vivo-induced antigens reduces bacterial load and promotes clearance in a mouse model for infection.

    Lowry, Jake E; Isaak, Dale D; Leonhardt, Jack A; Vernati, Giulia; Pate, Jessie C; Andrews, Gerard P

    2011-01-01

    Current vaccines used for the prevention of brucellosis are ineffective in inducing protective immunity in animals that are chronically infected with Brucella abortus, such as elk. Using a gene discovery approach, in vivo-induced antigen technology (IVIAT) on B. abortus, we previously identified ten loci that encode products up-regulated during infection in elk and consequently may play a role in virulence. In our present study, five of the loci (D15, 0187, VirJ, Mdh, AfuA) were selected for further characterization and compared with three additional antigens with virulence potential (Hia, PrpA, MltA). All eight genes were PCR-amplified from B. abortus and cloned into E. coli. The recombinant products were then expressed, purified, adjuvanted, and delivered subcutaneously to BALB/c mice. After primary immunization and two boosts, mice were challenged i.p. with 5 x 10⁴ CFU of B. abortus strain 19. Spleens from challenged animals were harvested and bacterial loads determined by colony count at various time points. While vaccination with four of the eight individual proteins appeared to have some effect on clearance kinetics, mice vaccinated with recombinant Mdh displayed the most significant reduction in bacterial colonization. Furthermore, mice immunized with Mdh maintained higher levels of IFN-γ in spleens compared to other treatment groups. Collectively, our in vivo data gathered from the S19 murine colonization model suggest that vaccination with at least three of the IVIAT antigens conferred an enhanced ability of the host to respond to infection, reinforcing the utility of this methodology for the identification of potential vaccine candidates against brucellosis. Mechanisms for immunity to one protein, Mdh, require further in vitro exploration and evaluation against wild-type B. abortus challenge in mice, as well as other hosts. Additional studies are being undertaken to clarify the role of Mdh and other IVI antigens in B. abortus virulence and induction of

  11. A repA-based ELISA for discriminating cattle vaccinated with Brucella suis 2 from those naturally infected with Brucella abortus and Brucella melitensis.

    Wang, Jing-Yu; Wu, Ning; Liu, Wan-Hua; Ren, Juan-Juan; Tang, Pan; Qiu, Yuan-Hao; Wang, Chi-Young; Chang, Ching-Dong; Liu, Hung-Jen

    2014-01-01

    The commonest ways of diagnosing brucellosis in animals include the Rose-Bengal plate agglutination test, the buffered plate agglutination test (BPA), the slide agglutination test, the complement fixation test, and the indirect enzyme linked immunosorbent assay (I-ELISA). However, these methods cannot discriminate the Brucella vaccine strain (Brucella suis strain 2; B. suis S2) from naturally acquired virulent strains. Of the six common Brucella species, Brucella melitensis, Brucella abortus, and B. suis are the commonest species occurring in China. To develop an ELISA assay that can differentiate between cows inoculated with B. suis S2 and naturally infected with B. abortus and B. melitensis, genomic sequences from six Brucella spp. (B. melitensis, B. abortus, B. suis, Brucella canis, Brucella neotomae and Brucella ovis) were compared using Basic Local Alignment Search Tool software. One particular gene, the repA-related gene, was found to be a marker that can differentiate B. suis from B. abortus and B. melitensis. The repA-related gene of B. suis was PCR amplified and subcloned into the pET-32a vector. Expressed repA-related protein was purified and used as an antigen. The repA-based ELISA was optimized and used as specific tests. In the present study, serum from animals inoculated with the B. suis S2 vaccine strain had positive repA-based ELISA results. In contrast, the test-positive reference sera against B. abortus and B. melitensis had negative repA-based ELISA results. The concordance rate between B. abortus antibody-negative (based on the repA-based ELISA) and the Brucella gene-positive (based on the 'Bruce ladder' multiplex PCR) was 100%. Therefore, the findings suggest that the repA-based ELISA is a useful tool for differentiating cows vaccinated with the B. suis S2 and naturally infected with B. abortus and B. melitensis. PMID:24941369

  12. An ELISA for the evaluation of gamma interferon production in cattle vaccinated with Brucella abortus strain RB51

    Manuela Tittarelli

    2009-06-01

    Full Text Available The results of an enzyme-linked immunosorbent assay (ELISA implemented for the detection of gamma interferon (g-interferon production in cattle vaccinated with Brucella abortus strain RB51 are presented. A purified protein fraction derived from RB51 (RB51 brucellin has been used as antigenic stimulus for whole blood. The test was evaluated for 300 days in ten heifers vaccinated at calfhood with 10 × 109 colony-forming units of RB51 and in five control heifers. All animals came from officially brucellosis-free herds. Vaccinated animals started to give positive results from day 17 post vaccination (pv until day 239 pv. All vaccinated animals gave a positive reaction at least once (with a stimulation index exceeding 2.5. Nevertheless, if sampling on day 20 pv is excluded (90% of vaccinated animals gave positive results, the sensitivity of the test varies from 20% to 70%, with a 40% average. A stimulation index over 2.5 was also recorded in three control animals. The results suggest that the g-interferon test is not suitable for the detection of cattle vaccinated with RB51, either at the individual or at the herd level.

  13. Live RB51 vaccine lyophilized hydrogel formulations with increased shelf life for practical ballistic delivery.

    Falconer, Jonathan L; Christie, R James; Pollard, Emily J; Olsen, Steven C; Grainger, David W

    2016-02-10

    Ballistic delivery capability is essential to delivering vaccines and other therapeutics effectively to both livestock and wildlife in many global scenarios. Here, lyophilized poly(ethylene glycol) (PEG)-glycolide dimethacrylate crosslinked but degradable hydrogels were assessed as payload vehicles to protect and deliver a viable bacterial vaccine, Brucella abortus strain RB51 (RB51), ballistically using commercial thermoplastic cellulosic degradable biobullets. Degradable PEG hydrogel rods loaded with ∼10(10) live RB51 bacteria (CFUs) were fabricated using three different polymerization methods, cut into fixed-sized payload segments, and lyophilized. Resulting dense, glassy RB51 vaccine-loaded monoliths were inserted into thermoplastic biobullet 100-μL payload chambers. Viability studies of lyophilized formulations assessed as a function of time and storage temperature supported the abilities of several conditions to produce acceptable vaccine shelf-lives. Fired from specifically designed air rifles, gel-loaded biobullets exhibit down-range ballistic properties (i.e., kinetic energy, trajectory, accuracy) similar to unloaded biobullets. Delivered to bovine tissue, these hydrogels rehydrate rapidly by swelling in tissue fluids, with complete hydration observed after 5h in serum. Live RB51 vaccine exhibited excellent viability following carrier polymerization, lyophilization, and storage, at levels sufficient for vaccine dosing to wild range bison, the intended target. These data validate lyophilized degradable PEG hydrogel rods as useful drug carriers for remote delivery of both live vaccines and other therapeutics to livestock, wildlife, or other free-range targets using ballistic technologies. PMID:26705151

  14. Live recombinant BHV/BRSV vaccine

    Keil, G.M.; Rijsewijk, F.A.M.

    1998-01-01

    The present invention refers to synthetic Bovine Respiratory Syncytium virus genes. Also the invention relates to live attenuated Bovine Herpesvirus recombinants carrying such synthetic genes. Furthermore, the invention relates to vaccines based on these live attenuated recombinants, for the protect

  15. Validation of the Abbreviated Brucella AMOS PCR as a Rapid Screening Method for Differentiation of Brucella abortus Field Strain Isolates and the Vaccine Strains, 19 and RB51

    Ewalt, Darla R; Bricker, Betsy J.

    2000-01-01

    The Brucella AMOS PCR assay was previously developed to identify and differentiate specific Brucella species. In this study, an abbreviated Brucella AMOS PCR test was evaluated to determine its accuracy in differentiating Brucella abortus into three categories: field strains, vaccine strain 19 (S19), and vaccine strain RB51/parent strain 2308 (S2308). Two hundred thirty-one isolates were identified and tested by the conventional biochemical tests and Brucella AMOS PCR. This included 120 isola...

  16. Immune Response of Calves Vaccinated with Brucella abortus S19 or RB51 and Revaccinated with RB51.

    Elaine M S Dorneles

    Full Text Available Brucella abortus S19 and RB51 strains have been successfully used to control bovine brucellosis worldwide; however, currently, most of our understanding of the protective immune response induced by vaccination comes from studies in mice. The aim of this study was to characterize and compare the immune responses induced in cattle prime-immunized with B. abortus S19 or RB51 and revaccinated with RB51. Female calves, aged 4 to 8 months, were vaccinated with either vaccine S19 (0.6-1.2 x 1011 CFU or RB51 (1.3 x 1010 CFU on day 0, and revaccinated with RB51 (1.3 x 1010 CFU on day 365 of the experiment. Characterization of the immune response was performed using serum and peripheral blood mononuclear cells. Blood samples were collected on days 0, 28, 210, 365, 393 and 575 post-immunization. Results showed that S19 and RB51 vaccination induced an immune response characterized by proliferation of CD4+ and CD8+ T-cells; IFN-ɣ and IL-17A production by CD4+ T-cells; cytotoxic CD8+ T-cells; IL-6 secretion; CD4+ and CD8+ memory cells; antibodies of IgG1 class; and expression of the phenotypes of activation in T-cells. However, the immune response stimulated by S19 compared to RB51 showed higher persistency of IFN-ɣ and CD4+ memory cells, induction of CD21+ memory cells and higher secretion of IL-6. After RB51 revaccination, the immune response was chiefly characterized by increase in IFN-ɣ expression, proliferation of antigen-specific CD4+ and CD8+ T-cells, cytotoxic CD8+ T-cells and decrease of IL-6 production in both groups. Nevertheless, a different polarization of the immune response, CD4+- or CD8+-dominant, was observed after the booster with RB51 for S19 and RB51 prime-vaccinated animals, respectively. Our results indicate that after prime vaccination both vaccine strains induce a strong and complex Th1 immune response, although after RB51 revaccination the differences between immune profiles induced by prime-vaccination become accentuated.

  17. Immune Response of Calves Vaccinated with Brucella abortus S19 or RB51 and Revaccinated with RB51

    Dorneles, Elaine M. S.; Lima, Graciela K.; Teixeira-Carvalho, Andréa; Araújo, Márcio S. S.; Martins-Filho, Olindo A.; Sriranganathan, Nammalwar; Al Qublan, Hamzeh; Heinemann, Marcos B.; Lage, Andrey P.

    2015-01-01

    Brucella abortus S19 and RB51 strains have been successfully used to control bovine brucellosis worldwide; however, currently, most of our understanding of the protective immune response induced by vaccination comes from studies in mice. The aim of this study was to characterize and compare the immune responses induced in cattle prime-immunized with B. abortus S19 or RB51 and revaccinated with RB51. Female calves, aged 4 to 8 months, were vaccinated with either vaccine S19 (0.6–1.2 x 1011 CFU) or RB51 (1.3 x 1010 CFU) on day 0, and revaccinated with RB51 (1.3 x 1010 CFU) on day 365 of the experiment. Characterization of the immune response was performed using serum and peripheral blood mononuclear cells. Blood samples were collected on days 0, 28, 210, 365, 393 and 575 post-immunization. Results showed that S19 and RB51 vaccination induced an immune response characterized by proliferation of CD4+ and CD8+ T-cells; IFN-ɣ and IL-17A production by CD4+ T-cells; cytotoxic CD8+ T-cells; IL-6 secretion; CD4+ and CD8+ memory cells; antibodies of IgG1 class; and expression of the phenotypes of activation in T-cells. However, the immune response stimulated by S19 compared to RB51 showed higher persistency of IFN-ɣ and CD4+ memory cells, induction of CD21+ memory cells and higher secretion of IL-6. After RB51 revaccination, the immune response was chiefly characterized by increase in IFN-ɣ expression, proliferation of antigen-specific CD4+ and CD8+ T-cells, cytotoxic CD8+ T-cells and decrease of IL-6 production in both groups. Nevertheless, a different polarization of the immune response, CD4+- or CD8+-dominant, was observed after the booster with RB51 for S19 and RB51 prime-vaccinated animals, respectively. Our results indicate that after prime vaccination both vaccine strains induce a strong and complex Th1 immune response, although after RB51 revaccination the differences between immune profiles induced by prime-vaccination become accentuated. PMID:26352261

  18. Immune Response of Calves Vaccinated with Brucella abortus S19 or RB51 and Revaccinated with RB51.

    Dorneles, Elaine M S; Lima, Graciela K; Teixeira-Carvalho, Andréa; Araújo, Márcio S S; Martins-Filho, Olindo A; Sriranganathan, Nammalwar; Al Qublan, Hamzeh; Heinemann, Marcos B; Lage, Andrey P

    2015-01-01

    Brucella abortus S19 and RB51 strains have been successfully used to control bovine brucellosis worldwide; however, currently, most of our understanding of the protective immune response induced by vaccination comes from studies in mice. The aim of this study was to characterize and compare the immune responses induced in cattle prime-immunized with B. abortus S19 or RB51 and revaccinated with RB51. Female calves, aged 4 to 8 months, were vaccinated with either vaccine S19 (0.6-1.2 x 1011 CFU) or RB51 (1.3 x 1010 CFU) on day 0, and revaccinated with RB51 (1.3 x 1010 CFU) on day 365 of the experiment. Characterization of the immune response was performed using serum and peripheral blood mononuclear cells. Blood samples were collected on days 0, 28, 210, 365, 393 and 575 post-immunization. Results showed that S19 and RB51 vaccination induced an immune response characterized by proliferation of CD4+ and CD8+ T-cells; IFN-ɣ and IL-17A production by CD4+ T-cells; cytotoxic CD8+ T-cells; IL-6 secretion; CD4+ and CD8+ memory cells; antibodies of IgG1 class; and expression of the phenotypes of activation in T-cells. However, the immune response stimulated by S19 compared to RB51 showed higher persistency of IFN-ɣ and CD4+ memory cells, induction of CD21+ memory cells and higher secretion of IL-6. After RB51 revaccination, the immune response was chiefly characterized by increase in IFN-ɣ expression, proliferation of antigen-specific CD4+ and CD8+ T-cells, cytotoxic CD8+ T-cells and decrease of IL-6 production in both groups. Nevertheless, a different polarization of the immune response, CD4+- or CD8+-dominant, was observed after the booster with RB51 for S19 and RB51 prime-vaccinated animals, respectively. Our results indicate that after prime vaccination both vaccine strains induce a strong and complex Th1 immune response, although after RB51 revaccination the differences between immune profiles induced by prime-vaccination become accentuated. PMID:26352261

  19. Vaccination with Brucella abortus Recombinant In Vivo-Induced Antigens Reduces Bacterial Load and Promotes Clearance in a Mouse Model for Infection

    Jake E Lowry; Isaak, Dale D.; Leonhardt, Jack A.; Giulia Vernati; Jessie C Pate; Andrews, Gerard P.

    2011-01-01

    Current vaccines used for the prevention of brucellosis are ineffective in inducing protective immunity in animals that are chronically infected with Brucella abortus, such as elk. Using a gene discovery approach, in vivo-induced antigen technology (IVIAT) on B. abortus, we previously identified ten loci that encode products up-regulated during infection in elk and consequently may play a role in virulence. In our present study, five of the loci (D15, 0187, VirJ, Mdh, AfuA) were selected for ...

  20. Brucellosis: The Case for Live, Attenuated Vaccines

    Ficht, Thomas A.; Kahl-McDonagh, Melissa M.; Arenas-Gamboa, Angela M.; Rice-Ficht, Allison C.

    2009-01-01

    The successful control of animal brucellosis and associated reduction in human exposure has limited the development of human brucellosis vaccines. However, the potential use of Brucella in bioterrorism or biowarfare suggests that direct intervention strategies are warranted. Although the dominant approach has explored the use of live attenuated vaccines, side-effects associated with their use has prevented widespread use in humans. Development of live, attenuated Brucella vaccines that are sa...

  1. Development of a new live rough vaccine against bovine brucellosis

    Full text: Brucella abortus S-19 is the most commonly used attenuated live vaccine to prevent bovine brucellosis. The vaccine induces good levels of protection in cattle, preventing premature abortion. Although B. abortus S-19 is the most used vaccine in eradication campaigns worldwide, it has two major problems: (i) it produces abortion when administered to pregnant cattle and is fully virulent for humans and (ii), the presence of smooth lipopolysaccharide interferes with the discrimination between infected and vaccinated animals during immunescreening procedures. In our laboratory we have previously cloned, sequenced and disrupted the gene coding for the enzyme phosphoglucomutase (pgm), responsible for the interconversion of glucose-6P to glucose-1P. The mutant does not synthesize the sugar nucleotide UDP-glucose and/or ADP-glucose and thus is unable to form any polysaccharide containing glucose, galactose or any other sugars whose synthesis proceeds through a glucose-nucleotide intermediate. The mutant has a rough phenotype, is avirulent in mice but retains the ability to multiply inside HeLa cells, although it shows a delay of the exponential intracellular replication. These characteristics prompt us to evaluate the potential use of this strain as a new live rough vaccine. We generated an unmarked deletion mutant of pgm. Western blot analysis of purified lipopolysaccharide from Δpgm indicated that it is devoid of O-antigen, however Δpgm whole cell extracts contained detectable amounts of O-antigen with a MW of 45 kDa, indicating that mutant strain is able to synthesize O-antigen but incapable to assemble a complete LPS probably due to the presence of an altered core structure. When administered intraperitoneally in Balb/C mice, the number of viable Δpgm recovered from spleens were, at all tested times, significantly lower than those inoculated with the parental virulent strain S2308 and was completely cleared at 8 weeks p.i., thus indicating a severe

  2. A combined DNA vaccine encoding BCSP31, SOD, and L7/L12 confers high protection against Brucella abortus 2308 by inducing specific CTL responses.

    Yu, Da-Hai; Hu, Xi-Dan; Cai, Hong

    2007-06-01

    We constructed a combined DNA vaccine comprising genes encoding the antigens BCSP31, superoxide dismutase (SOD), and L7/L12 and evaluated its immunogenicity and protective efficacy. Immunization of mice with the combined DNA vaccine offered high protection against Brucella abortus (B. abortus) infection. The vaccine induced a vigorous specific immunoglobulin G (IgG) response, with higher IgG2a than IgG1 titers. Cytokine profiling performed at the same time showed a biased Th1-type immune response with significantly increased interferon-gamma and tumor necrosis factor-alpha stimulation. CD8(+), but not CD4(+), T cells accumulated at significantly higher levels after administration of the vaccine. Granzyme B-producing CD8(+) T cells were significantly higher in number in samples prepared from combined DNA-vaccinated mice compared with S19-vaccinated mice, demonstrating that the cytotoxicity lysis pathway is involved in the response to Brucella infection. The success of our combined DNA vaccine in a mouse model suggests its potential efficacy against brucellosis infection in large animals. PMID:17570767

  3. MLVA genotyping of Brucella melitensis and Brucella abortus isolates from different animal species and humans and identification of Brucella suis vaccine strain S2 from cattle in China.

    Hai Jiang

    Full Text Available In China, brucellosis is an endemic disease and the main sources of brucellosis in animals and humans are infected sheep, cattle and swine. Brucella melitensis (biovars 1 and 3 is the predominant species, associated with sporadic cases and outbreak in humans. Isolates of B. abortus, primarily biovars 1 and 3, and B. suis biovars 1 and 3 are also associated with sporadic human brucellosis. In this study, the genetic profiles of B. melitensis and B. abortus isolates from humans and animals were analyzed and compared by multi-locus variable-number tandem-repeat analysis (MLVA. Among the B. melitensis isolates, the majority (74/82 belonged to MLVA8 genotype 42, clustering in the 'East Mediterranean' group. Two B. melitensis biovar 1 genotype 47 isolates, belonging to the 'Americas' group, were recovered; both were from the Himalayan blue sheep (Pseudois nayaur, a wild animal. The majority of B. abortus isolates (51/70 were biovar 3, genotype 36. Ten B. suis biovar 1 field isolates, including seven outbreak isolates recovered from a cattle farm in Inner Mongolia, were genetically indistinguishable from the vaccine strain S2, based on MLVA cluster analysis. MLVA analysis provided important information for epidemiological trace-back. To the best of our knowledge, this is the first report to associate Brucella cross-infection with the vaccine strain S2 based on molecular comparison of recovered isolates to the vaccine strain. MLVA typing could be an essential assay to improve brucellosis surveillance and control programs.

  4. MLVA genotyping of Brucella melitensis and Brucella abortus isolates from different animal species and humans and identification of Brucella suis vaccine strain S2 from cattle in China.

    Jiang, Hai; Wang, Heng; Xu, Liqing; Hu, Guiying; Ma, Junying; Xiao, Pei; Fan, Weixing; Di, Dongdong; Tian, Guozhong; Fan, Mengguang; Mi, Jingchuan; Yu, Ruiping; Song, Litao; Zhao, Hongyan; Piao, Dongri; Cui, Buyun

    2013-01-01

    In China, brucellosis is an endemic disease and the main sources of brucellosis in animals and humans are infected sheep, cattle and swine. Brucella melitensis (biovars 1 and 3) is the predominant species, associated with sporadic cases and outbreak in humans. Isolates of B. abortus, primarily biovars 1 and 3, and B. suis biovars 1 and 3 are also associated with sporadic human brucellosis. In this study, the genetic profiles of B. melitensis and B. abortus isolates from humans and animals were analyzed and compared by multi-locus variable-number tandem-repeat analysis (MLVA). Among the B. melitensis isolates, the majority (74/82) belonged to MLVA8 genotype 42, clustering in the 'East Mediterranean' group. Two B. melitensis biovar 1 genotype 47 isolates, belonging to the 'Americas' group, were recovered; both were from the Himalayan blue sheep (Pseudois nayaur, a wild animal). The majority of B. abortus isolates (51/70) were biovar 3, genotype 36. Ten B. suis biovar 1 field isolates, including seven outbreak isolates recovered from a cattle farm in Inner Mongolia, were genetically indistinguishable from the vaccine strain S2, based on MLVA cluster analysis. MLVA analysis provided important information for epidemiological trace-back. To the best of our knowledge, this is the first report to associate Brucella cross-infection with the vaccine strain S2 based on molecular comparison of recovered isolates to the vaccine strain. MLVA typing could be an essential assay to improve brucellosis surveillance and control programs. PMID:24124546

  5. Vaccination of elk (Cervus canadensis) with Brucella abortus strain RB51 overexpressing superoxide dismutase and glycosyltransferase genes does not induce adequate protection against experimental brucella abortus challenge

    In recent years, elk (Cervus canadensis) have been implicated as the source of Brucella abortus infection for numerous cattle herds in the Greater Yellowstone Area (GYA). In the face of environmental and ecological changes on the landscape, the range of infected elk is expanding. Consequently, the d...

  6. Serological profile of buffalo (Bubalus bubalis) female calves vaccinated with standard Brucella abortus strain 19 vaccine using rose bengal, 2-mercaptoethanol and complement fixation tests.

    Nardi, G Júnior; Ribeiro, M G; Jorge, A M; Megid, J; Silva, L M P

    2012-03-01

    The serological profiles of 21 female buffaloes vaccinated between 3 and 8 months of age using Brucella abortus strain 19 (S19) were evaluated by rose bengal (RBT), 2-mercaptoethanol (2ME) and complement fixation (CFT) tests. The serum strains were collected in day zero, 15, 30, 45, 60th days and subsequently to each 30 months, until 720th day after vaccination. No animal showed reaction in day zero. In 15th day above 95% of animals revealed reaction in all tests. All the animals presented absence of reactions in CFT, RBT and 2ME tests at 270, 300 and 360 days after vaccination, respectively. Our finding highlighted early response in CFT compared than other conventional agglutination tests. None of animals presented oscillation of titers or reactions in any test after 360 day of study, which enables the use of these tests after this period without interference of antibodies from S19 vaccine origin between 3 and 8 months in buffalo heifers. PMID:22284623

  7. Outer Membrane Proteins of Brucella abortus Vaccinal and Field Strains and their Immune Response in Buffaloes

    Rukhshanda Munir*, M. Afzal1, M. Hussain2, S. M. S. Naqvi3 and A. Khanum3

    2010-01-01

    Outer membrane proteins (OMPs) of three strains of B. abortus i.e. S19, RB51 and a local field isolate of biotype 1 were isolated through disrupting cells to generate membranes by centrifugation and sodium lauryl sarcosinate solubilisation of inner membrane proteins. Distinct OMP profiles of each strain were seen on SDS-PAGE. SDS-PAGE analysis of S19 and field isolate revealed eight protein bands in each strain. The OMPs of S19 had molecular masses 89.0, 73.0, 53.7, 49.0, 38.0, 27.0, 22.3, a...

  8. Influenza virus vaccine live intranasal--MedImmune vaccines: CAIV-T, influenza vaccine live intranasal.

    2003-01-01

    MedImmune Vaccines (formerly Aviron) has developed a cold-adapted live influenza virus vaccine [FluMist] that can be administered by nasal spray. FluMist is the first live virus influenza vaccine and also the first nasally administered vaccine to be marketed in the US. The vaccine will be formulated to contain live attenuated (att) influenza virus reassortants of the strains recommended by the US Public Health Service for each 'flu season. The vaccine is termed cold-adapted (ca) because the virus has been adapted to replicate efficiently at 25 degrees C in the nasal passages, which are below normal body temperature. The strains used in the seasonal vaccine will also be made temperature sensitive (ts) so that their replication is restricted at 37 degrees C (Type B strains) and 39 degrees C (Type A strains). The combined effect of the antigenic properties and the att, ca and ts phenotypes of the influenza strains contained in the vaccine enables the viruses to replicate in the nasopharynx to produce protective immunity. The original formulation of FluMist requires freezer storage throughout distribution. Because many international markets do not have distribution channels well suited to the sale of frozen vaccines, Wyeth and MedImmune are collaborating to develop a second generation, refrigerator-stable, liquid trivalent cold-adapted influenza vaccine (CAIV-T), which is in phase III trials. Initially, the frozen formulation will only be available in the US. For the 2003-2004 season, FluMist will contain A/New Caledonia/20/99 (H1N1), A/Panama/2007/99 (H3N2) (A/Moscow/10/99-like) and B/Hong Kong/330/2001. Aviron was acquired by MedImmune on 15 January 2002. Aviron is now a wholly-owned subsidiary of MedImmune and is called MedImmune Vaccines. Aviron acquired FluMist in March 1995 through a Co-operative Research and Development Agreement (CRADA) with the US NIAID, and a licensing agreement with the University of Michigan, Ann Arbor, USA. In June 2000, the CRADA was

  9. DETECTION OF Leptospira spp. AND Brucella abortus ANTIBODIES IN FREE-LIVING JAGUARS (Panthera onca IN TWO PROTECTED AREAS OF NORTHERN PANTANAL, BRAZIL

    Selma Samiko Miyazaki ONUMA

    2015-04-01

    Full Text Available This study aimed to assess the exposure of free-living jaguars (Panthera onca to Leptospira spp. and Brucella abortus in two conservation units in the Pantanal of Mato Grosso, Brazil. The presence of antibodies in blood samples of eleven jaguars was investigated using autochthonous antigens isolated in Brazil added to reference antigen collection applied to diagnosis of leptospirosis by Microscopic Agglutination Test (MAT. The Rose Bengal test was applied for B. abortus antibodies. Two (18.2% jaguars were seroreactive for the Leptospira spp. antigen and the serovar considered as most infective in both animals was a Brazilian isolate of serovar Canicola (L01. All jaguars were seronegative for B. abortus. These data indicate that the inclusion of autochthonous antigens in serological studies can significantly increase the number of reactive animals, as well as modify the epidemiological profile of Leptospira spp. infection.

  10. 9 CFR 113.312 - Rabies Vaccine, Live Virus.

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Rabies Vaccine, Live Virus. 113.312... AGRICULTURE VIRUSES, SERUMS, TOXINS, AND ANALOGOUS PRODUCTS; ORGANISMS AND VECTORS STANDARD REQUIREMENTS Live Virus Vaccines § 113.312 Rabies Vaccine, Live Virus. Rabies Vaccine shall be prepared from...

  11. Live-Attenuated Respiratory Syncytial Virus Vaccines

    Karron, Ruth A.; Buchholz, Ursula J.; Collins, Peter L.

    2013-01-01

    Live-attenuated respiratory syncytial virus (RSV) vaccines offer several advantages for immunization of infants and young children: (1) they do not cause vaccine-associated enhanced RSV disease; (2) they broadly stimulate innate, humoral, and cellular immunity, both systemically and locally in the respiratory tract; (3) they are delivered intranasally; and (4) they replicate in the upper respiratory tract of young infants despite the presence of passively acquired maternally derived RSV neutr...

  12. Vaccination of Elk (Cervus canadensis) with Brucella abortus Strain RB51 Overexpressing Superoxide Dismutase and Glycosyltransferase Genes Does Not Induce Adequate Protection against Experimental Brucella abortus Challenge

    Nol, Pauline; Olsen, Steven C.; Rhyan, Jack C.; Sriranganathan, Nammalwar; McCollum, Matthew P.; Hennager, Steven G.; Pavuk, Alana A.; Sprino, Phillip J.; Boyle, Stephen M.; Berrier, Randall J.; Salman, Mo D.

    2016-01-01

    In recent years, elk (Cervus canadensis) have been implicated as the source of Brucella abortus infection for numerous cattle herds in the Greater Yellowstone Area. In the face of environmental and ecological changes on the landscape, the range of infected elk is expanding. Consequently, the development of effective disease management strategies for wild elk herds is of utmost importance, not only for the prevention of reintroduction of brucellosis to cattle, but also for the overall health o...

  13. Influenza (Flu) vaccine (Live, Intranasal): What you need to know

    ... entirety from the CDC Inactivated Influenza Live, Intranasal Flu Vaccine Information Statement (VIS): www.cdc.gov/vaccines/ ... 1. Why get vaccinated? Influenza ("flu") is a contagious disease ... every year, usually between October and May. Flu is caused by ...

  14. Safety of the novel influenza viral vector Brucella abortus vaccine in pregnant heifers

    Kaissar Tabynov; Sholpan Ryskeldinova; Zhailaubay Kydyrbayev; Abylai Sansyzbay

    2016-01-01

    ABSTRACT: The present study provides the first information about the safety of a new influenza viral vector vaccine expressing the Brucella ribosomal protein L7/L12 or Omp16 containing the adjuvant Montanide Gel01 in pregnant heifers. Immunization of pregnant heifers was conducted via the conjunctival (n=10) or subcutaneous (n=10) route using cross prime and booster vaccination schedules at an interval of 28 days. The vector vaccine was evaluated in comparison with positive control groups vac...

  15. Deletion of znuA virulence factor attenuates Brucella abortus and confers protection against wild-type challenge.

    Yang, Xinghong; Becker, Todd; Walters, Nancy; Pascual, David W

    2006-07-01

    znuA is known to be an important factor for survival and normal growth under low Zn(2+) concentrations for Escherichia coli, Haemophilus spp., Neisseria gonorrhoeae, and Pasteurella multocida. We hypothesized that the znuA gene present in Brucella melitensis 16 M would be similar to znuA in B. abortus and questioned whether it may also be an important factor for growth and virulence of Brucella abortus. Using the B. melitensis 16 M genome sequence, primers were designed to construct a B. abortus deletion mutant. A znuA knockout mutation in B. abortus 2308 (DeltaznuA) was constructed and found to be lethal in low-Zn(2+) medium. When used to infect macrophages, DeltaznuA B. abortus showed minimal growth. Further study with DeltaznuA B. abortus showed that its virulence in BALB/c mice was attenuated, and most of the bacteria were cleared from the spleen within 8 weeks. Protection studies confirmed the DeltaznuA mutant as a potential live vaccine, since protection against wild-type B. abortus 2308 challenge was as effective as that obtained with the RB51 or S19 vaccine strain. PMID:16790759

  16. Malaria Vaccine Protection Short-Lived in Young Children

    ... nlm.nih.gov/medlineplus/news/fullstory_159656.html Malaria Vaccine Protection Short-Lived in Young Children Kids ... 30, 2016 (HealthDay News) -- The world's most promising malaria vaccine appears to offer short-lived protection, fading ...

  17. Malaria Vaccine Protection Short-Lived in Young Children

    ... page: https://medlineplus.gov/news/fullstory_159656.html Malaria Vaccine Protection Short-Lived in Young Children Kids ... 30, 2016 (HealthDay News) -- The world's most promising malaria vaccine appears to offer short-lived protection, fading ...

  18. Evaluation of Indirect Enzyme-Linked Immunosorbent Assays and IgG Avidity Assays Using a Protein A-Peroxidase Conjugate for Serological Distinction between Brucella abortus S19-Vaccinated and -Infected Cows ▿

    Pajuaba, Ana C. A. M.; Deise A O Silva; Mineo, José R.

    2010-01-01

    This study aimed to evaluate the use of protein A-peroxidase (horseradish peroxidase [HRPO]) in indirect enzyme-linked immunosorbent assays (iELISAs) and IgG avidity assays for serological distinction between Brucella abortus S19-vaccinated and -infected cows. Four groups were analyzed: GI, 41 nonvaccinated seropositive cows; GII, 79 S19-vaccinated heifers analyzed at 3 months postvaccination; GIII, 105 S19-vaccinated cows analyzed after 24 months of age; and GIV, 278 nonvaccinated seronegati...

  19. Novel Vaccine against Venezuelan Equine Encephalitis Combines Advantages of DNA Immunization and a Live Attenuated Vaccine

    Tretyakova, Irina; Lukashevich, Igor S; Glass, Pamela; Wang, Eryu; Weaver, Scott; Pushko, Peter

    2012-01-01

    DNA vaccines combine remarkable genetic and chemical stability with proven safety and efficacy in animal models, while remaining less immunogenic in humans. In contrast, live-attenuated vaccines have the advantage of inducing rapid, robust, long-term immunity after a single-dose vaccination. Here we describe novel iDNA vaccine technology that is based on an infectious DNA platform and combines advantages of DNA and live attenuated vaccines. We applied this technology for vaccination against i...

  20. Diagnóstico sorológico da brucelose bovina em animais adultos vacinados com dose reduzida da cepa 19 de Brucella abortus Serological diagnosis of bovine brucellosis in adult herd vaccinated with Brucella abortus strain 19 reduced dose

    Gustavo Coelho Jardim

    2006-09-01

    Full Text Available Com o presente trabalho avaliou-se o uso de dose reduzida da vacina produzida com a amostra 19 de Brucella abortus, em rebanho adulto negativo para a enfermidade, por meio de técnicas de diagnóstico sorológico preconizadas pelo Programa Nacional de Controle e Erradicação da Brucelose e Tuberculose Animal e por um ensaio indireto de imunoadsorção enzimática (ELISA ID. A prova de fixação de complemento detectou 46,77% de positivos, o antígeno acidificado tamponado 67,74%, o 2-mercaptoetanol com soroaglutinação lenta 87,09% e o ELISA ID 100%. A dose reduzida interferiu no diagnóstico sorológico. Nenhuma das técnicas apresentou especificidade adequada para uso em rebanho nestas condições, até 3 meses após a vacinação.The study evaluated the use of a reduced dose of the Brucella abortus strain 19 vaccine, in an adult herd negative for the disease, by serological diagnostic techniques, advocated by the Brazilian Program for Animal Brucellosis and Tuberculosis Control and Eradication, and by an indirect ELISA. The complement fixation test detecteed 46.77% positives, the rose bengal test 67.74%, the mercaptoethanol with standard agglutination test 87.09% and the ELISA ID 100%. The reduced dose influenced the serological diagnosis. None of the techniques reached a suitable specificity for use in the herd under those conditions, up to 3 months after vaccination.

  1. Development of Streptococcus pneumoniae Vaccines Using Live Vectors

    Shifeng Wang

    2014-01-01

    Full Text Available Streptococcus pneumoniae still causes severe morbidity and mortality worldwide, especially in young children and the elderly. Much effort has been dedicated to developing protein-based universal vaccines to conquer the current shortcomings of capsular vaccines and capsular conjugate vaccines, such as serotype replacement, limited coverage and high costs. A recombinant live vector vaccine delivering protective antigens is a promising way to achieve this goal. In this review, we discuss the researches using live recombinant vaccines, mainly live attenuated Salmonella and lactic acid bacteria, to deliver pneumococcal antigens. We also discuss both the limitations and the future of these vaccines.

  2. Stabilization of live Mycoplasma gallisepticum vaccines during vaccination with second generation Spray-Vac® vaccine stabilizer

    Dilutions and application of live Mycoplasma gallisepticum vaccines without the use of vaccine stabilizing compounds may lead to significant loss of vaccine viability and loss of vaccine efficacy. Vaccine viability may decreases due to osmotic lysis of the mycoplasma as well as the presence of chlo...

  3. Mass vaccination as a complementary tool in the control of a severe outbreak of bovine brucellosis due to Brucella abortus in Extremadura, Spain.

    Sanz, Cristina; Sáez, José Luis; Alvarez, Julio; Cortés, María; Pereira, Gema; Reyes, Aurelia; Rubio, Félix; Martín, Javier; García, Nerea; Domínguez, Lucas; Hermoso-de-Mendoza, María; Hermoso-de-Mendoza, Javier

    2010-11-01

    We report the evolution of an outbreak of bovine brucellosis (Brucella abortus) in the region of Extremadura (Spain) involving more than 1000 herds and nearly 40,000 animals. S19 vaccination of young cattle combined with a test and slaughter strategy did not result in a rapid decrease in herd prevalence and animal incidence; these parameters showed a constant decreasing trend only when a combination of restriction of cattle movements, increased test frequency, S19 vaccination and mass RB51 vaccination (with yearly revaccinations) were applied to all susceptible populations. These measures were applied for 5 years; abortions following RB51 vaccination of pregnant cows were limited to the first inoculation and the involvement of the vaccine strain could only be demonstrated in 78 out of 897 abortions. Our results demonstrate the usefulness - and lack of significant side effects - of RB51 mass vaccination as a complementary tool to control bovine brucellosis outbreaks in areas where the disease cannot be contained using more conservative approaches. PMID:20833439

  4. Genetic engineering of live rabies vaccines.

    Morimoto, K; McGettigan, J P; Foley, H D; Hooper, D C; Dietzschold, B; Schnell, M J

    2001-05-14

    Rabies virus is not a single entity but consists of a wide array of variants that are each associated with different host species. These viruses differ greatly in the antigenic makeup of their G proteins, the primary determinant of pathogenicity and major inducer of protective immunity. Due to this diversity, existing rabies vaccines have largely been targeted to individual animal species. In this report, a novel approach to the development of rabies vaccines using genetically modified, reverse-engineered live attenuated rabies viruses is described. This approach entails the engineering of vaccine rabies virus containing G proteins from virulent strains and modification of the G protein to further reduce pathogenicity. Strategies employed included exchange of the arginine at position 333 for glutamine and modification of the cytoplasmic domain. The recombinant viruses obtained were non-neuroinvasive when administered via a peripheral route. The ability to confer protective immunity depended largely upon conservation of the G protein antigenic structure between the vaccine and challenge virus, as well as on the route of immunization. PMID:11348722

  5. Ovine Enzootic Abortion (OEA): a comparison of antibody responses in vaccinated and naturally-infected swiss sheep over a two year period

    Gerber, Andrea; Thoma, Ruedi; Vretou, Evangelia; Psarrou, Evgenia; Kaiser, Carmen; Doherr, Marcus G.; Zimmermann, Dieter R; Polkinghorne, Adam; Pospischil, Andreas; Borel, Nicole

    2007-01-01

    BACKGROUND: Prevention and control of ovine enzootic abortion (OEA) can be achieved by application of a live vaccine. In this study, five sheep flocks with different vaccination and infection status were serologically tested using a competitive enzyme-linked immunosorbent assay (cELISA) specific for Chlamydophila (Cp.) abortus over a two-year time period. RESULTS: Sheep in Flock A with recent OEA history had high antibody values after vaccination similar to Flock C with natural Cp. abortus in...

  6. Expression of Babesia bovis rhoptry-associated protein 1 (RAP1) in Brucella abortus S19.

    Sabio y García, Julia V; Farber, Marisa; Carrica, Mariela; Cravero, Silvio; Macedo, Gilson C; Bigi, Fabiana; Oliveira, Sergio C; Rossetti, Osvaldo; Campos, Eleonora

    2008-05-01

    Brucella abortus strain 19 (live vaccine) induces a strong humoral and cellular immune response and therefore, it is an attractive vector for the delivery of heterologous antigens. The objective of the present study was to express the rhoptry-associated protein (RAP1) of Babesia bovis in B. abortus S19, as a model for heterologous expression of immunostimulatory antigens from veterinary pathogens. A plasmid for the expression of recombinant proteins fused to the aminoterminal of the outer membrane lipoprotein OMP19 was created, pursuing the objective of increasing the immunogenicity of the recombinant antigen being expressed by its association to a lipid moiety. Recombinant strains of B. abortus S19 expressing RAP1 as a fusion protein either with the first amino acids of beta-galactosidase (S19pBB-RAP1) or B. abortus OMP19 (S19pBB19-RAP1) were generated. Plasmid stability and the immunogenicity of the heterologous proteins were analyzed. Mice immunized with S19pBB-RAP1 or S19pBB19-RAP1 developed specific humoral immune response to RAP1, IgG2a being the predominant antibody isotype. Furthermore, a specific cellular immune response to recombinant RAP1 was elicited in vitro by lymphocytes from mice immunized with both strains. Therefore, we concluded that B. abortus S19 expressing RAP1 is immunostimulatory and may provide the basis for combined heterologous vaccines for babesiosis and brucellosis. PMID:18462974

  7. Excretion of Brucella abortus vaccine B19 strain during a reproductive cycle in dairy cows

    W. A. Pacheco

    2012-06-01

    Full Text Available This paper aimed to determine the excretion period of B19 vaccine strain during a complete reproductive cycle (from estrus synchronization, artificial insemination, pregnancy and until 30 days after parturition of dairy cows from 3 to 9 years old that were previously vaccinated from 3 to 8 months. Three groups were monitored with monthly milk and urine collection during 12 months: G1 with seven cows from 3 to 4 years old; G2 with three cows from 5 to 6 years old; and G3 with four cows from 7 to 9 years old. Urine and milk samples were submitted to bacteriological culture and urine and PCR reactions for detection of Brucella spp. and PCR-multiplex for B19 strain identification. Ring test (RT was also performed in the milk samples, and serum samples were tested by buffered acidified plate antigen test (BAPA. All animals were serologically negative at BAPA and Brucella spp. was not isolated from both urine and milk samples. RT revealed 13/210 (6.2% positive milk samples. PCR reactions detected DNA of Brucella spp. in 86/420 (20.5% samples. In urine it was found a significantly higher frequency (35.2%; 74/210 than in milk (5.7%; 12/210, more frequently from the estrus to 150 days of pregnancy and after parturition (6.7%; 10/150, and from 150 days of pregnancy to parturition (3.4%; 2/60, and they were all identified as B19 strain. In three groups, intermittent excretion of B19 strain was detected mainly in urine samples, which confirmed its multiplication and persistence in cows for until 9 years.

  8. The protein moiety of Brucella abortus outer membrane protein 16 is a new bacterial pathogen-associated molecular pattern that activates dendritic cells in vivo, induces a Th1 immune response, and is a promising self-adjuvanting vaccine against systemic and oral acquired brucellosis.

    Pasquevich, Karina A; García Samartino, Clara; Coria, Lorena M; Estein, Silvia M; Zwerdling, Astrid; Ibañez, Andrés E; Barrionuevo, Paula; Oliveira, Fernanda Souza de; Carvalho, Natalia Barbosa; Borkowski, Julia; Oliveira, Sergio Costa; Warzecha, Heribert; Giambartolomei, Guillermo H; Cassataro, Juliana

    2010-05-01

    Knowing the inherent stimulatory properties of the lipid moiety of bacterial lipoproteins, we first hypothesized that Brucella abortus outer membrane protein (Omp)16 lipoprotein would be able to elicit a protective immune response without the need of external adjuvants. In this study, we demonstrate that Omp16 administered by the i.p. route confers significant protection against B. abortus infection and that the protective response evoked is independent of the protein lipidation. To date, Omp16 is the first Brucella protein that without the requirement of external adjuvants is able to induce similar protection levels to the control live vaccine S19. Moreover, the protein portion of Omp16 (unlipidated Omp16 [U-Omp16]) elicits a protective response when administered by the oral route. Either systemic or oral immunization with U-Omp16 elicits a Th1-specific response. These abilities of U-Omp16 indicate that it is endowed with self-adjuvanting properties. The adjuvanticity of U-Omp16 could be explained, at least in part, by its capacity to activate dendritic cells in vivo. U-Omp16 is also able to stimulate dendritic cells and macrophages in vitro. The latter property and its ability to induce a protective Th1 immune response against B. abortus infection have been found to be TLR4 dependent. The facts that U-Omp16 is an oral protective Ag and possesses a mucosal self-adjuvanting property led us to develop a plant-made vaccine expressing U-Omp16. Our results indicate that plant-expressed recombinant U-Omp16 is able to confer protective immunity, when given orally, indicating that a plant-based oral vaccine expressing U-Omp16 could be a valuable approach to controlling this disease. PMID:20351187

  9. DNA-launched live-attenuated vaccines for biodefense applications.

    Pushko, Peter; Lukashevich, Igor S; Weaver, Scott C; Tretyakova, Irina

    2016-09-01

    A novel vaccine platform uses DNA immunization to launch live-attenuated virus vaccines in vivo. This technology has been applied for vaccine development against positive-strand RNA viruses with global public health impact including alphaviruses and flaviviruses. The DNA-launched vaccine represents the recombinant plasmid that encodes the full-length genomic RNA of live-attenuated virus downstream from a eukaryotic promoter. When administered in vivo, the genomic RNA of live-attenuated virus is transcribed. The RNA initiates limited replication of a genetically defined, live-attenuated vaccine virus in the tissues of the vaccine recipient, thereby inducing a protective immune response. This platform combines the strengths of reverse genetics, DNA immunization and the advantages of live-attenuated vaccines, resulting in a reduced chance of genetic reversions, increased safety, and improved immunization. With this vaccine technology, the field of DNA vaccines is expanded from those that express subunit antigens to include a novel type of DNA vaccines that launch live-attenuated viruses. PMID:27055100

  10. Vaccination with recombinant flagellar proteins FlgJ and FliN induce protection against Brucella abortus 544 infection in BALB/c mice.

    Li, Xianbo; Xu, Jie; Xie, Yongfei; Qiu, Yefeng; Fu, Simei; Yuan, Xitong; Ke, Yuehua; Yu, Shuang; Du, Xinying; Cui, Mingquan; Chen, Yanfen; Wang, Tongkun; Wang, Zhoujia; Yu, Yaqing; Huang, Kehe; Huang, Liuyu; Peng, Guangneng; Chen, Zeliang; Wang, Yufei

    2012-12-28

    Brucella has been considered as a non-motile, facultative intracellular pathogenic bacterium. However, the genome sequences of different Brucella species reveal the presence of the flagellar genes needed for the construction of a functional flagellum. Due to its roles in the interaction between pathogen and host, we hypothesized that some of the flagellar proteins might induce protective immune responses and these proteins will be good subunit vaccine candidates. This study was conducted to screening of protective antigens among these flagellar proteins. Firstly, according to the putative functional roles, a total of 30 flagellar genes of Brucella abortus were selected for in vitro expression. 15 of these flagellar genes were successfully expressed as his-tagged recombinant proteins in Escherichia coli ER2566. Then, these proteins were purified and used to analyze their T cell immunity induction activity by an in vitro gamma interferon (IFN-γ) assay. Five of the flagellar proteins could stimulate significantly higher levels of IFN-γ secretion in splenocytes from S19 immunized mice, indicating their T cell induction activity. Finally, immunogenicity and protection activity of these 5 flagellar proteins were evaluated in BALB/c mice. Results showed that immunization with FlgJ (BAB1_0260) or FliN (BAB2_0122) plus adjuvant could provide protection against B. abortus 544 infection. Furthermore, mice immunized with FlgJ and FliN developed a vigorous immunoglobulin G response, and in vitro stimulation of their splenocytes with immunizing proteins induced the secretion of IFN-γ. Altogether, these data suggest that flagellar proteins FlgJ and FliN are protective antigens that could produce humoral and cell-mediated responses in mice and candidates for use in future studies of vaccination against brucellosis. PMID:22854331

  11. Recent Developments in Livestock and Wildlife Brucellosis Vaccination

    Live attenuated brucellosis vaccines have been available for protecting domestic livestock against B. melitensis or B. abortus for more than 60 years. Current vaccines are effective in preventing abortion and transmission of brucellosis, but poor at preventing infection or seroconversion. In addit...

  12. Chlamydophilose abortive ovine : études à propos d'une suspicion de résistance de Chlamydophila abortus au vaccin vivant thermosensible dans des élevages ovins laitiers du rayon de Roquefort

    Uhart, Maia

    2009-01-01

    Des cas d'avortements imputés à Chlamydophila abortus ont été décrits dans des élevages de brebis du rayon Roquefort (France, 12) alors que ces élevages pratiquaient la vaccination contre la chlamydophilose avec un vaccin vivant depuis plusieurs années. De brefs rappels bibliographiques concernant la chlamydophilose et la vaccination contre cette maladie sont présentés en première partie. Une enquête menée auprès de neuf éleveurs est ensuite exposée afin d'expliquer la persistance d'avortemen...

  13. Brucella melitensis Biovar 1 and Brucella abortus S19 Vaccine Strain Infections in Milkers Working at Cattle Farms in the Khartoum Area, Sudan.

    Amira E F Osman

    Full Text Available Human brucellosis is a preventable zoonoses that may become persistent, causing, if left untreated, severe localized disease. Occupational exposure to infected animals or animal products and consumption of fresh contaminated dairy are main risk factors.One hundred farmworkers employed at two cattle farms one in Khartoum North and one in Omdurman were screened for the presence of specific antibodies and seropositive workers were invited to donate a blood sample for blood culture. Molecular typing was used to characterize Brucella isolates.Ten percent of farmworkers tested seropositive and while Brucella melitensis biovar 1 was isolated from the blood of three individuals, an isolate identical to the B. abortus S19 vaccine strain was isolated from a fourth person. All four bacteremic individuals were employed as milkers and did not have obvious disease.The isolation of the highly infectious pathogen B. melitensis from seropositive workers is consistent with the notion that the pathogen may persist in the blood without causing overt disease. While vaccination with strain S19 is essential for the control of bovine brucellosis the vaccine strain may be transmitted to the human population and protective measures remain important to prevent exposure also in view of the presence of B. melitensis. To create awareness for this potentially severe disease more information on the prevalence of the pathogen in different risk groups and in livestock in the Sudan is needed.

  14. Brucella melitensis Biovar 1 and Brucella abortus S19 Vaccine Strain Infections in Milkers Working at Cattle Farms in the Khartoum Area, Sudan

    Osman, Amira E. F.; Hassan, Abdullahi N.; Ali, Ali E.; Abdoel, Theresia H.; Smits, Henk L.

    2015-01-01

    Background Human brucellosis is a preventable zoonoses that may become persistent, causing, if left untreated, severe localized disease. Occupational exposure to infected animals or animal products and consumption of fresh contaminated dairy are main risk factors. Methods One hundred farmworkers employed at two cattle farms one in Khartoum North and one in Omdurman were screened for the presence of specific antibodies and seropositive workers were invited to donate a blood sample for blood culture. Molecular typing was used to characterize Brucella isolates. Results Ten percent of farmworkers tested seropositive and while Brucella melitensis biovar 1 was isolated from the blood of three individuals, an isolate identical to the B. abortus S19 vaccine strain was isolated from a fourth person. All four bacteremic individuals were employed as milkers and did not have obvious disease. Conclusions The isolation of the highly infectious pathogen B. melitensis from seropositive workers is consistent with the notion that the pathogen may persist in the blood without causing overt disease. While vaccination with strain S19 is essential for the control of bovine brucellosis the vaccine strain may be transmitted to the human population and protective measures remain important to prevent exposure also in view of the presence of B. melitensis. To create awareness for this potentially severe disease more information on the prevalence of the pathogen in different risk groups and in livestock in the Sudan is needed. PMID:25938483

  15. Evaluation of Brucella abortus S19 vaccine strains by bacteriological tests, molecular analysis of ery loci and virulence in BALB/c mice.

    Mukherjee, Falguni; Jain, Jainendra; Grilló, Maria Jesús; Blasco, José María; Nair, Mrinalini

    2005-09-01

    Two Brucella abortus S19 commercial vaccine strains used for vaccination against brucellosis in India and three S19 strains available as international reference were examined by microbiological assays and molecular analysis of the ery loci involved in erythritol metabolism, and tested for residual virulence in BALB/c mice. According to the sensitivity to penicillin and i-erythritol, the five strains tested had the phenotypic characteristics of strain S19. However, on culture medium containing i-erythritol, all strains developed spontaneous i-erythritol resistant colonies at mutation rates ranging from 1.42x10(-2) to 1.33x10(-6). The S19 characteristic 702 bp deletion in the erythrulose 1-phosphate dehydrogenase gene of the ery locus was present only in the three reference strains but not in the two commercial vaccines. Both commercial strains and one of the reference strains showed reduced virulence in BALB/c mice. The presence or absence in S19 strains of the 702 bp deletion in the ery locus had no correlation with either the rates of spontaneous mutation to erythritol resistance or the residual virulence in mice. PMID:16081301

  16. The second Geneva Consensus: Recommendations for novel live TB vaccines.

    Walker, K B; Brennan, M J; Ho, M M; Eskola, J; Thiry, G; Sadoff, J; Dobbelaer, R; Grode, L; Liu, M A; Fruth, U; Lambert, P H

    2010-03-01

    Infection with Mycobacterium tuberculosis continues to be a major public health burden in most developing parts of the world and efforts to develop effective strategies for containing the disease remain a priority. It has long been evident that effective mass vaccination programmes are a cost effective and efficient approach to controlling communicable diseases in a public health setting and tuberculosis (TB) continues to be a major target. One approach with increasing acceptance is based upon on live mycobacterial vaccines, either as recombinant BCG or rationally attenuated M. tuberculosis, thus generating a new live TB vaccine. The Geneva Consensus published in March 2005 set out the opinion on priorities and requirements for developing live mycobacterial vaccines for Phase I trials. In the intervening period much progress has been made in both preclinical and clinical development of new TB vaccines and has provided the impetus for organising the second Geneva Consensus (held at WHO headquarters, April 2009) to discuss issues, including: i. Explore the regulatory requirements for live TB vaccines to enter Phase I trials, in particular those based on attenuated M. tuberculosis. Particular attention was paid to the characterisation and safety package likely to be required, including issues of attenuation, the presence of antibiotic resistance markers in live vaccines and the nature of any attenuated vaccine phenotype. ii. To identify the general criteria for further clinical development from Phase I through to Phase III. iii. Obtain a perspective of the regulatory landscape of developing countries where Phase II and III trials are to be held. iv. Review manufacturing considerations for live TB vaccines and relevance of the WHO and European Pharmacopeia guidelines and requirements for BCG vaccine. v. Consider requirements and associated issues related to the use of these new vaccines within an existing BCG vaccination programme. PMID:20074686

  17. Effect of P39 Gene Deletion in Live Brucella Vaccine Strains on Residual Virulence and Protective Activity in Mice

    Tibor, Anne; Jacques, Isabelle; Guilloteau, Laurence; Verger, Jean-Michel; Grayon, Maggy; Wansard, Valerie; Letesson, Jean-Jacques

    1998-01-01

    The 39-kilodalton protein (P39) has previously been shown to be an immunodominant protein in Brucella infections. P39 gene deletion mutants of vaccine strains Brucella abortus S19 and Brucella melitensis Rev.1 were constructed by gene replacement. This deletion did not significantly modify the residual virulence of both vaccine strains in CD-1 mice. CD-1 mice vaccinated with the parent or mutant strains were protected against a virulent challenge. Mutant vaccine strains devoid of P39 could pr...

  18. SNP Research on Brucella abortus Vaccine Strain A19%中国牛种布鲁氏菌疫苗株A19 SNP位点的研究

    谭鹏飞; 南文龙; 彭大新; 毛开荣; 陈义平

    2014-01-01

    To distinguish Brucella abortus vaccine strain A19 from field strains, the single nucleotide polymorphism (SNP) signatures for B. abortus A19 were initially analyzed using bioinformatics method and gene sequencing. Then, the specificity of several SNPs was verified, by comparing the nucleotide sequences of these SNPs with common species and biovars of Brucella and three Brucella vaccines. The results showed 29 SNPs were successfully screened from genome of B. abortus A19. Furthermore, ClpX G825-C825,LysR A605-C605and Omp2b G503-A503were confirmed to be specific to B. abortus A19 (or B. abortus S19). Our study systematically revealed the SNP distribution of B. abortus A19, which provided a molecular basis for differentiating B. abortus A19 from field strains.%为鉴别我国牛种布鲁氏菌疫苗株A19与野生菌株,运用生物信息学方法结合基因测序,对疫苗株A19基因组单核苷酸多态性( SNP )位点分析筛选,选取其中部分SNP位点,通过与布鲁氏菌常见种、生物型标准参考菌株和疫苗株基因组SNP 位置核苷酸测序比较,验证SNP 位点的A19特异性。结果表明,共筛选获得A19基因组29个SNP 位点,验证ClpX G825-C825、LysR A605-C605、Omp2b G503-A503这3个SNP位点为A19(或S19)特异,揭示了A19基因组SNP位点分布情况,为疫苗株A19与野生菌株鉴别提供了分子依据。

  19. Live measles vaccine: a 21 year follow up.

    Miller, C

    1987-01-01

    21 years after receiving Schwartz strain live measles vaccine 4500 trial participants showed a continuing high level of protection compared with those who were unvaccinated. Over the last seven years of the follow up no cases of measles were reported in vaccinated participants who had had close contact with the disease. Immunity induced by the vaccine seems to survive the challenge of close contact with measles in young children, even after 21 years.

  20. Vaccination of chickens with live fowl pox (FP) vaccine in oil.

    Peleg, B A; Samina, I; Brenner, J

    1993-09-01

    Live fowl pox (FP) vaccine was adjuvanted in oil just prior to the subcutaneous (SC) vaccination of one day old chicks and adult chickens. The birds were challenged by the wing web (WW) method and absence of "takes" were considered as protection. On 21 day post challenge, 90%-100% of the chicks or chickens were protected while on day 9 post challenge 60% were protected. Full protection of the live-in-oil adjuvanted vaccine is probably somewhat delayed as compared to protection endowed by the liquid vaccine. Incorporation of live FP vaccine in two different kinds of commercial Newcastle disease (ND) killed vaccine in oil, was shown to endow full protection following SC administration. PMID:8284967

  1. A novel live-attenuated vaccine candidate for mayaro Fever.

    William J Weise

    2014-08-01

    Full Text Available Mayaro virus (MAYV is an emerging, mosquito-borne alphavirus that causes a dengue-like illness in many regions of South America, and which has the potential to urbanize. Because no specific treatment or vaccine is available for MAYV infection, we capitalized on an IRES-based approach to develop a live-attenuated MAYV vaccine candidate. Testing in infant, immunocompetent as well as interferon receptor-deficient mice demonstrated a high degree of attenuation, strong induction of neutralizing antibodies, and efficacy against lethal challenge. This vaccine strain was also unable to infect mosquito cells, a major safety feature for a live vaccine derived from a mosquito-borne virus. Further preclinical development of this vaccine candidate is warranted to protect against this important emerging disease.

  2. Efecto de una dieta con bajo aporte de selenio sobre la respuesta inmune a la vacuna Brucella abortus Cepa RB51 en vacas lecheras Effect of a low selenium diet on the immune response to Brucella abortus strain RB51 vaccine in dairy cows

    V Leyán

    2006-01-01

    Full Text Available Se estudió el efecto de una dieta con bajo aporte de selenio (Se sobre la respuesta inmune a la vacuna Brucella abortus Cepa RB51 y la concentración de inmunoglobulinas séricas en vacas. Se utilizaron 12 vacas Friesian, estabuladas desde aproximadamente dos meses preparto y hasta el cuarto mes de lactancia mantenidas con una dieta basada en heno de pradera con bajo contenido de Se (0,02 ppm de MS y balanceada según requerimientos para el resto de nutrientes. Seis vacas conformaron el grupo de animales con bajo aporte de Se (Se-D y otras seis el grupo de animales suplementados (Se-S con selenato de bario (1 mg de Se/kg , 45 días previos al parto. Los animales fueron inmunizados con la vacuna RB51 al cuarto mes del experimento. Muestras de sangre fueron obtenidas previo a la suplementación con Se y cada 15 días hasta el término del experimento. El balance de Se fue medido mediante la actividad sanguínea de GSH-Px. Las concentraciones séricas de IgG, IgM e IgA se determinaron por inmunodifusión y los anticuerpos específicos contra Brucella abortus mediante ELISA y la respuesta inmune celular mediante pruebas de intradermorreacción a antígenos de Brucella abortus y estudio histológico de la reacción. La dieta con bajo contenido de Se provocó una disminución lenta y progresiva de la actividad de GSH-Px (The effect of a diet with a low selenium (Se content on the immune response to Brucella abortus Strain RB51 vaccine in dairy cows and in their serum inmunoglobulin concentrations was studied. Twelve pregnant Friesian cows (7 to 8 months were randomly allocated into two homogeneous groups of six animals each. Animals were maintained during 6 months in individual cubicles with water ad libitum and a diet based on grass hay with a low Se content (0.02 ppm base on dry matter and nutritionally balanced for other nutrients. One group was maintained only with the low Se diet (Se-D and the other group (Se-S was treated with barium selenate

  3. 9 CFR 113.300 - General requirements for live virus vaccines.

    2010-01-01

    ... vaccines. 113.300 Section 113.300 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE... REQUIREMENTS Live Virus Vaccines § 113.300 General requirements for live virus vaccines. When prescribed in an applicable Standard Requirement or in the filed Outline of Production, a live virus vaccine shall meet...

  4. Reactogenicity to a Live Attenuated Varicella Vaccine in Canadian Children

    Diaz-Mitoma, Francisco; Halperin, Scott A.; Scheifele, David

    2000-01-01

    OBJECTIVE: To assess the reactogenicity and safety of a thermostable, high titre, varicella vaccine in healthy infants and children.DESIGN: Open study of 505 children monitored for 42 days after vaccination.SETTING: Three urban Canadian centres (Halifax, Ottawa and Vancouver).PARTICIPANTS: 505 healthy children one to 12 years of age were enrolled and 504 completed the study. All were susceptible to varicella by history.INTERVENTIONS: All participants received one dose of live attenuated varic...

  5. Heterologous expression of Brucella abortus GroEL heat-shock protein in Lactococcus lactis

    Langella Philippe

    2006-03-01

    Full Text Available Abstract Background Brucella abortus is a facultative intracellular pathogen that mainly infects cattle and humans. Current vaccines rely on live attenuated strains of B. abortus, which can revert to their pathogenic status and thus are not totally safe for use in humans. Therefore, the development of mucosal live vaccines using the food-grade lactic acid bacterium, Lactococcus lactis, as an antigen delivery vector, is an attractive alternative and a safer vaccination strategy against B. abortus. Here, we report the construction of L. lactis strains genetically modified to produce B. abortus GroEL heat-shock protein, a candidate antigen, in two cellular locations, intracellular or secreted. Results Only the secreted form of GroEL was stably produced in L. lactis, suggesting a detrimental effect of GroEL protein when intracellularly produced in this bacterium. Only trace amounts of mature GroEL were detected in the supernatant fraction of induced lactococcal cultures, and the GroEL precursor remained stacked in the cell fraction. Attempts to raise the secretion yields were made, but even when GroEL was fused to a synthetic propeptide, secretion of this antigen was not improved. Conclusion We found that L. lactis is able to produce, and to secrete, a stable form of GroEL into the extracellular medium. Despite the low secretion efficiency of GroEL, which suggest that this antigen interacts with the cell envelope of L. lactis, secretion seems to be the best way to achieve both production and protein yields, regardless of cellular location. The L. lactis strain secreting GroEL has potential for in vivo immunization.

  6. Ovine Enzootic Abortion (OEA: a comparison of antibody responses in vaccinated and naturally-infected swiss sheep over a two year period

    Zimmermann Dieter R

    2007-09-01

    Full Text Available Abstract Background Prevention and control of ovine enzootic abortion (OEA can be achieved by application of a live vaccine. In this study, five sheep flocks with different vaccination and infection status were serologically tested using a competitive enzyme-linked immunosorbent assay (cELISA specific for Chlamydophila (Cp. abortus over a two-year time period. Results Sheep in Flock A with recent OEA history had high antibody values after vaccination similar to Flock C with natural Cp. abortus infections. In contrast, OEA serology negative sheep (Flock E showed individual animal-specific immunoreactions after vaccination. Antibody levels of vaccinated ewes in Flock B ranged from negative to positive two and three years after vaccination, respectively. Positive antibody values in the negative control Flock D (without OEA or vaccination are probably due to asymptomatic intestinal infections with Cp. abortus. Excretion of the attenuated strain of Cp. abortus used in the live vaccine through the eye was not observed in vaccinated animals of Flock E. Conclusion The findings of our study indicate that, using serology, no distinction can be made between vaccinated and naturally infected sheep. As a result, confirmation of a negative OEA status in vaccinated animals by serology cannot be determined.

  7. Use of S-[2,3-Bispalmitoyiloxy-(2R)-Propyl]-R-Cysteinyl-Amido-Monomethoxy Polyethylene Glycol as an Adjuvant Improved Protective Immunity Associated with a DNA Vaccine Encoding Cu,Zn Superoxide Dismutase of Brucella abortus in Mice

    Retamal-Díaz, Angello; Riquelme-Neira, Roberto; Sáez, Darwin; Rivera, Alejandra; Fernández, Pablo; Cabrera, Alex; Guzmán, Carlos A.; Oñate, Angel

    2014-01-01

    This study was conducted to evaluate the immunogenicity and protective efficacy of a DNA vaccine encoding Brucella abortus Cu,Zn superoxide dismutase (SOD) using the Toll-like receptor 2/6 agonist S-[2,3-bispalmitoyiloxy-(2R)-propyl]-R-cysteinyl-amido-monomethoxy polyethylene glycol (BPPcysMPEG) as an adjuvant. Intranasal coadministration of BPPcysMPEG with a plasmid carrying the SOD-encoding gene (pcDNA-SOD) into BALB/c mice elicited antigen-specific humoral and cellular immune responses. Hu...

  8. Evaluation of indirect enzyme-linked immunosorbent assays and IgG avidity assays using a protein A-peroxidase conjugate for serological distinction between Brucella abortus S19-vaccinated and -infected cows.

    Pajuaba, Ana C A M; Silva, Deise A O; Mineo, José R

    2010-04-01

    This study aimed to evaluate the use of protein A-peroxidase (horseradish peroxidase [HRPO]) in indirect enzyme-linked immunosorbent assays (iELISAs) and IgG avidity assays for serological distinction between Brucella abortus S19-vaccinated and -infected cows. Four groups were analyzed: GI, 41 nonvaccinated seropositive cows; GII, 79 S19-vaccinated heifers analyzed at 3 months postvaccination; GIII, 105 S19-vaccinated cows analyzed after 24 months of age; and GIV, 278 nonvaccinated seronegative cows. IgG levels and avidity to B. abortus smooth lipopolysaccharide (S-LPS) were determined using anti-bovine IgG-HRPO or protein A-HRPO conjugates. Similar levels of IgG anti-S-LPS were found with GI using both conjugates. Lower IgG levels were detected with GII, GIII, and GIV using protein A-HRPO. Both conjugates showed high performance in discriminating GI from GIII, with high sensitivity (Se; 97.6%) and specificity (Sp; 97.1%). Protein A-HRPO was better in distinguishing GI from GIV (Se, 97.6%; Sp, 94.6%) and GI from GII (Se, 80.5%; Sp, 94.9%). Protein A-HRPO excluded a higher number of positive samples with GII and GIV. IgG avidity showed that protein A-HRPO, but not anti-IgG-HRPO, was able to distinguish nonvaccinated from vaccinated cattle, showing a higher avidity index (AI) with GI than with GII, with 78% of serum samples in GII showing an AI of abortus S-LPS antigen and protein A-HRPO conjugate for preferential detection of the IgG2 subclass was shown to be suitable for serological distinction between S19-vaccinated and -infected cows. Also, antibodies generated after vaccination showed lower avidity, suggesting a role for the IgG2 subclass as an antibody of higher-affinity maturation after infection, constituting an additional tool for differentiating vaccinated from infected cattle. PMID:20147498

  9. MLVA Genotyping of Brucella melitensis and Brucella abortus Isolates from Different Animal Species and Humans and Identification of Brucella suis Vaccine Strain S2 from Cattle in China

    Hai Jiang; Heng Wang; Liqing Xu; Guiying Hu; Junying Ma; Pei Xiao; Weixing Fan; Dongdong Di; Guozhong Tian; Mengguang Fan; Jingchuan Mi; Ruiping Yu; Litao Song; Hongyan Zhao; Dongri Piao

    2013-01-01

    In China, brucellosis is an endemic disease and the main sources of brucellosis in animals and humans are infected sheep, cattle and swine. Brucella melitensis (biovars 1 and 3) is the predominant species, associated with sporadic cases and outbreak in humans. Isolates of B. abortus, primarily biovars 1 and 3, and B. suis biovars 1 and 3 are also associated with sporadic human brucellosis. In this study, the genetic profiles of B. melitensis and B. abortus isolates from humans and animals wer...

  10. Characterization of Brucella abortus O-polysaccharide and core lipopolysaccharide mutants and demonstration that a complete core is required for rough vaccines to be efficient against Brucella abortus and Brucella ovis in the mouse model

    Monreal, D.; Grillo, M.J. (María Jesús); Gonzalez-fernandez, D.; Marin, C.M.; de Miguel, M. J.; Lopez-Goñi, I. (Ignacio); Blasco, J.M. (José); Cloeckaert, A.; Moriyon, I. (Ignacio)

    2003-01-01

    Brucella abortus rough lipopolysaccharide (LPS) mutants were obtained by transposon insertion into two wbk genes (wbkA [putative glycosyltransferase; formerly rfbU] and per [perosamine synthetase]), into manB (pmm [phosphomannomutase; formerly rfbK]), and into an unassigned gene. Consistent with gene-predicted roles, electrophoretic analysis, 2-keto-3-manno-D-octulosonate measurements, and immunoblots with monoclonal antibodies to O-polysaccharide, outer and inner core epitopes showed no O-po...

  11. 9 CFR 113.64 - General requirements for live bacterial vaccines.

    2010-01-01

    ... bacterial vaccines. 113.64 Section 113.64 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION... STANDARD REQUIREMENTS Live Bacterial Vaccines § 113.64 General requirements for live bacterial vaccines... bacterial vaccine shall meet the requirements in this section. (a) Purity test. Final container samples...

  12. Suplementación con selenio en vaquillas: Efecto sobre la respuesta inmune a las vacunas Brucella abortus cepa RB51 y toxoide tetánico Selenium suplementation in heifers: Effect on the immune response to Brucella abortus strain RB51 and tetanus toxoid vaccines

    V Leyán

    2005-01-01

    Full Text Available El trabajo tiene por objetivo evaluar el efecto de una suplementación con selenio (Se sobre la respuesta inmune a las vacunas Toxoide tetánico y Brucella abortus cepa RB51 en vaquillas con un adecuado balance metabólico de selenio (GSH-Px >130 U/g Hb. Para ello se empelaron 32 vaquillas Friesian de 18 a 24 meses de edad, asignadas al azar a dos grupos de 16 animales; uno suplementado (Se-S el día 0 con una dosis de selenato de bario (1 mg Se/kg, s.c., permaneciendo el otro como control no suplementado (No-S. Todas las vaquillas fueron mantenidas durante 9 meses (abril a enero a pastoreo sobre una pradera naturalizada con un contenido de Se de 0,04 ppm/MS. Los animales fueron inmunizados con vacuna RB51 el día 60 y posteriormente con Toxoide tetánico los días 120 y 150. Muestras de sangre fueron obtenidas previo a la suplementación y cada 15 días hasta el término del experimento. El balance metabólico de selenio fue evaluado mediante la actividad sanguínea de Glutatión peroxidasa (GSH-Px. La respuesta inmune humoral se evaluó determinando los anticuerpos séricos específicos para ambos antígenos mediante ELISA y la respuesta inmune celular mediante pruebas de intradermorreacción a antígenos de Brucella abortus. La administración de Se aumentó (P 0,05 en ambos grupos experimentales, mientras que la respuesta celular a la vacuna RB51 fue menor (P The effect of selenium (Se supplementation on the immune response to tetanus toxoid and Brucella abortus strain RB51 vaccines was studied in heifers with a normal Se status (GSH-Px activity > 130 U/g Hb. Frisian heifers (n-32, 18 to 24 months old were randomly allocated into two groups of 16 animals each. Animals from one group were supplemented (Se-S with one dose of barium selenate (1 mg/Se/kg. s.c. on day 0; animals from the other group remained as a control without supplementation (No-S. The heifers grazed during 9 months (April to January a pasture that contained 0.04 ppm/DM of Se

  13. In-Depth Characterization of Live Vaccines Used in Europe for Oral Rabies Vaccination of Wildlife.

    Florence Cliquet

    Full Text Available Although rabies incidence has fallen sharply over the past decades in Europe, the disease is still present in Eastern Europe. Oral rabies immunization of wild animal rabies has been shown to be the most effective method for the control and elimination of rabies. All rabies vaccines used in Europe are modified live virus vaccines based on the Street Alabama Dufferin (SAD strain isolated from a naturally-infected dog in 1935. Because of the potential safety risk of a live virus which could revert to virulence, the genetic composition of three commercial attenuated live rabies vaccines was investigated in two independent laboratories using next genome sequencing. This study is the first one reporting on the diversity of variants in oral rabies vaccines as well as the presence of a mix of at least two different variants in all tested batches. The results demonstrate the need for vaccine producers to use new robust methodologies in the context of their routine vaccine quality controls prior to market release.

  14. In-Depth Characterization of Live Vaccines Used in Europe for Oral Rabies Vaccination of Wildlife.

    Cliquet, Florence; Picard-Meyer, Evelyne; Mojzis, Miroslav; Dirbakova, Zuzana; Muizniece, Zita; Jaceviciene, Ingrida; Mutinelli, Franco; Matulova, Marta; Frolichova, Jitka; Rychlik, Ivan; Celer, Vladimir

    2015-01-01

    Although rabies incidence has fallen sharply over the past decades in Europe, the disease is still present in Eastern Europe. Oral rabies immunization of wild animal rabies has been shown to be the most effective method for the control and elimination of rabies. All rabies vaccines used in Europe are modified live virus vaccines based on the Street Alabama Dufferin (SAD) strain isolated from a naturally-infected dog in 1935. Because of the potential safety risk of a live virus which could revert to virulence, the genetic composition of three commercial attenuated live rabies vaccines was investigated in two independent laboratories using next genome sequencing. This study is the first one reporting on the diversity of variants in oral rabies vaccines as well as the presence of a mix of at least two different variants in all tested batches. The results demonstrate the need for vaccine producers to use new robust methodologies in the context of their routine vaccine quality controls prior to market release. PMID:26509266

  15. Protection of Macaques against AIDS with a Live Attenuated SHIV Vaccine is of Finite Duration

    Kumar, Anil; Liu, Zhenqian; Sheffer, Darlene; Smith, Marilyn; Singh, Dinesh K.; Buch, Shilpa; Narayan, Opendra

    2007-01-01

    Using background data that live vaccines against several viral pathogens are effective in inducing life-long protection against disease, we undertook studies in macaques to determine the duration of protection that two live SHIV vaccines could induce against AIDS. Earlier studies had established that macaques immunized once with a live vaccine and challenged 6 months later were protected, and that other macaques given two sequential inoculations of live vaccines were protected for at least on...

  16. 9 CFR 113.27 - Detection of extraneous viable bacteria and fungi in live vaccines.

    2010-01-01

    ... bacteria and fungi in live vaccines. 113.27 Section 113.27 Animals and Animal Products ANIMAL AND PLANT... bacteria and fungi in live vaccines. Unless otherwise specified by the Administrator or elsewhere exempted in this part, each serial and subserial of live vaccine and each lot of Master Seed Virus and...

  17. In-Depth Characterization of Live Vaccines Used in Europe for Oral Rabies Vaccination of Wildlife

    Cliquet, Florence; Picard-Meyer, Evelyne; Mojzis, Miroslav; Dirbakova, Zuzana; Muizniece, Zita; Jaceviciene, Ingrida; Mutinelli, Franco; Matulova, Marta; Frolichova, Jitka; Rychlik, Ivan; Celer, Vladimir

    2015-01-01

    Although rabies incidence has fallen sharply over the past decades in Europe, the disease is still present in Eastern Europe. Oral rabies immunization of wild animal rabies has been shown to be the most effective method for the control and elimination of rabies. All rabies vaccines used in Europe are modified live virus vaccines based on the Street Alabama Dufferin (SAD) strain isolated from a naturally-infected dog in 1935. Because of the potential safety risk of a live virus which could rev...

  18. New approaches to the development of live attenuated rabies vaccines.

    Dietzschold, Bernhard; Schnell, Matthias J

    2002-04-01

    In the United States, extensive reservoirs of the rabies virus exist in many diverse wild animal species, which continue to pose a serious risk of lethal infection of humans and cause an economic burden exceeding $1 billion annually. Previous experience with rabies control in foxes in Europe has clearly demonstrated that oral immunization with live vaccines is the only practical approach to eradicate rabies in free-ranging animals. However, unlike Europe where vulpine rabies was the only major reservoir, the Americas harbor a variety of species including raccoons, skunks, coyotes, and bats that serve as the primary reservoirs of rabies. Each of these animal reservoirs carries an antigenically distinct virus variant. The currently available modified-live rabies virus vaccines have either safety problems or do not induce sufficient protective immunity in particular wildlife species. Therefore, there is a need for the development of new live rabies virus vaccines that are very safe and highly effective in particular wildlife species. Based on previous observations indicating that the potency of a vaccine is significantly increased if the G protein of the vaccine strain is identical to that of the target virus, we have used a reverse genetics approach to engineer viruses that contain G proteins from virus strains associated with relevant wildlife species. Furthermore, because our recent data also indicate that the pathogenicity of a particular rabies virus strain is inversely proportional to its ability to induce apoptosis and that low-level apoptosis-inducing ability is associated with low anti-viral immune responses, we inserted genes encoding pro-apoptotic proteins to stimulate immunity or otherwise interfere with viral pathogenesis into these recombinant viruses to enhance their efficacy and safety. PMID:12031103

  19. Delta-pgm, a new live-attenuated vaccine against Brucella suis.

    Czibener, Cecilia; Del Giudice, Mariela Giselda; Spera, Juan Manuel; Fulgenzi, Fabiana Rosa; Ugalde, Juan Esteban

    2016-03-18

    Brucellosis is one of the most widespread zoonosis in the world affecting many domestic and wild animals including bovines, goats, pigs and dogs. Each species of the Brucella genus has a particular tropism toward different mammals being the most relevant for human health Brucella abortus, Brucella melitensis and Brucella suis that infect bovines, goats/camelids and swine respectively. Although for B. abortus and B. melitensis there are vaccines available, there is no efficient vaccine to protect swine from B. suis infection so far. We describe here the construction of a novel vaccine strain that confers excellent protection against B. suis in a mouse model of infection. This strain is a clean deletion of the phosphoglucomutase (pgm) gene that codes for a protein that catalyzes the conversion of glucose-6-P to glucose-1-P, which is used as a precursor for the biosynthesis of many polysaccharides. The Delta-pgm strain lacks a complete lipopolysaccharide, is unable to synthesize cyclic beta glucans and is sensitive to several detergents and Polymyxin B. We show that this strain replicates in cultured cells, is completely avirulent in the mouse model of infection but protects against a challenge of the virulent strain inducing the production of pro-inflammatory cytokines. This novel strain could be an excellent candidate for the control of swine brucellosis, a disease of emerging concern in many parts of the world. PMID:26899373

  20. Live attenuated vaccines: Historical successes and current challenges

    Minor, Philip D., E-mail: Philip.Minor@nibsc.org

    2015-05-15

    Live attenuated vaccines against human viral diseases have been amongst the most successful cost effective interventions in medical history. Smallpox was declared eradicated in 1980; poliomyelitis is nearing global eradication and measles has been controlled in most parts of the world. Vaccines function well for acute diseases such as these but chronic infections such as HIV are more challenging for reasons of both likely safety and probable efficacy. The derivation of the vaccines used has in general not been purely rational except in the sense that it has involved careful clinical trials of candidates and subsequent careful follow up in clinical use; the identification of the candidates is reviewed. - Highlights: • Live vaccines against human diseases caused by viruses have been very successful. • They have been developed by empirical clinical studies and problems identified in later use. • It can be difficult to balance ability to cause disease and ability to immunise for a strain. • There is currently no reliable basis for predicting success from pure virological studies. • Vaccinia, which eradicated smallpox, is the paradigm for all successes and issues.

  1. Live attenuated vaccines: Historical successes and current challenges

    Live attenuated vaccines against human viral diseases have been amongst the most successful cost effective interventions in medical history. Smallpox was declared eradicated in 1980; poliomyelitis is nearing global eradication and measles has been controlled in most parts of the world. Vaccines function well for acute diseases such as these but chronic infections such as HIV are more challenging for reasons of both likely safety and probable efficacy. The derivation of the vaccines used has in general not been purely rational except in the sense that it has involved careful clinical trials of candidates and subsequent careful follow up in clinical use; the identification of the candidates is reviewed. - Highlights: • Live vaccines against human diseases caused by viruses have been very successful. • They have been developed by empirical clinical studies and problems identified in later use. • It can be difficult to balance ability to cause disease and ability to immunise for a strain. • There is currently no reliable basis for predicting success from pure virological studies. • Vaccinia, which eradicated smallpox, is the paradigm for all successes and issues

  2. Characterization of a multicomponent live, attenuated Shigella flexneri vaccine.

    DeLaine, BreOnna C; Wu, Tao; Grassel, Christen L; Shimanovich, Avital; Pasetti, Marcela F; Levine, Myron M; Barry, Eileen M

    2016-07-01

    Shigella flexneri is a leading cause of diarrheal disease in children under five in developing countries. There is currently no licensed vaccine and broad spectrum protection requires coverage of multiple serotypes. The live attenuated vaccines CVD 1213 and CVD 1215 were derived from two prominent S. flexneri serotypes: S. flexneri 3a and S. flexneri 6. To provide broad-spectrum immunity, they could be combined with CVD 1208S, a S. flexneri 2a strain that demonstrated promising results in phase I and II clinical trials. Each strain contains a mutation in the guaBA operon. These vaccine candidates were tested in vitro and in vivo and were found to be auxotrophic for guanine and defective in intracellular replication, but capable of inducing cytokine production from both epithelial cells and macrophages. Both strains were attenuated for virulence in the guinea pig Serény test and induced robust serotype-specific antibody responses following immunization. Each strain induced homologous serotype protection against challenge and a mixed inoculum of the three S. flexneri vaccines conferred protection against all three virulent wild-type strains. These data support the use of CVD 1213, CVD 1215 and CVD 1208S in a multivalent vaccine to confer broad protection against disease caused by Shigella flexneri. PMID:27106253

  3. Immunization with Recombinant Brucella Species Outer Membrane Protein Omp16 or Omp19 in Adjuvant Induces Specific CD4+ and CD8+ T Cells as Well as Systemic and Oral Protection against Brucella abortus Infection

    Pasquevich, Karina A.; Estein, Silvia M.; Samartino, Clara García; Zwerdling, Astrid; Coria, Lorena M.; Barrionuevo, Paula; Fossati, Carlos A.; Giambartolomei, Guillermo H.; Cassataro, Juliana

    2009-01-01

    Available vaccines against Brucella spp. are live attenuated Brucella strains. In order to engineer a better vaccine to be used in animals and humans, our laboratory aims to develop an innocuous subunit vaccine. Particularly, we are interested in the outer membrane proteins (OMPs) of B. abortus: Omp16 and Omp19. In this study, we assessed the use of these proteins as vaccines against Brucella in BALB/c mice. Immunization with lipidated Omp16 (L-Omp16) or L-Omp19 in incomplete Freund's adjuvan...

  4. Demystifying FluMist, a new intranasal, live influenza vaccine.

    Mossad, Sherif B

    2003-09-01

    FluMist--a cold-adapted, live-attenuated, trivalent, intranasal influenza virus vaccine approved by the US Food and Drug Administration on June 17, 2003--has been shown to be safe and effective, but its role in the general prevention of influenza is yet to be defined. Intranasal administration is expected to be more acceptable than parenteral, particularly in children, but the potential for the shedding of live virus may pose a risk to anyone with a compromised immune system. PMID:14518575

  5. Infection of C57BL/6 mice by Trypanosoma musculi modulates host immune responses during Brucella abortus cocolonization.

    Lowry, Jake E; Leonhardt, Jack A; Yao, Chaoqun; Belden, E Lee; Andrews, Gerard P

    2014-01-01

    Brucellosis, which results in fetal abortions in domestic and wildlife animal populations, is of major concern in the US and throughout much of the world. The disease, caused by Brucella abortus, poses an economic threat to agriculture-based communities. A moderately efficacious live attenuated vaccine (B. abortus strain RB51) exists. However, even with vaccine use, outbreaks occur. Evidence suggests that elk (Cervus canadensis), a wild host reservoir, are the source of recent outbreaks in domestic cattle herds in Wyoming, USA. Brucella abortus establishes a chronic, persistent infection in elk. The molecular mechanisms allowing the establishment of this persistent infective state are currently unknown. A potential mechanism could be that concurrent pathogen burdens contribute to persistence. In Wyoming, elk are chronically infected with Trypanosoma cervi, which may modulate host responses in a similar manner to that documented for other trypanosomes. To identify any synergistic relationship between the two pathogens, we simulated coinfection in the well-established murine brucellosis model using Trypanosoma musculi and B. abortus S19. Groups of C57BL/6 mice (Mus musculus) were infected with either B. abortus strain 19 (S19) or T. musculi or both. Sera were collected weekly; spleens from euthanized mice were tested to determine bacterial load near the end of normal brucellosis infection. Although changes in bacterial load were observed during the later stages of brucellosis in those mice coinfected with T. musculi, the most significant finding was the suppression of gamma interferon early during the infection along with an increase in interleukin-10 secretion compared with mice infected with either pathogen alone. These results suggest that immune modulatory events occur in the mouse during coinfection and that further experiments are warranted to determine if T. cervi impacts Brucella infection in elk. PMID:24171573

  6. Immunization of mice with recombinant protein CobB or AsnC confers protection against Brucella abortus infection.

    Simei Fu

    Full Text Available Due to drawbacks of live attenuated vaccines, much more attention has been focused on screening of Brucella protective antigens as subunit vaccine candidates. Brucella is a facultative intracellular bacterium and cell mediated immunity plays essential roles for protection against Brucella infection. Identification of Brucella antigens that present T-cell epitopes to the host could enable development of such vaccines. In this study, 45 proven or putative pathogenesis-associated factors of Brucella were selected according to currently available data. After expressed and purified, 35 proteins were qualified for analysis of their abilities to stimulate T-cell responses in vitro. Then, an in vitro gamma interferon (IFN-γ assay was used to identify potential T-cell antigens from B. abortus. In total, 7 individual proteins that stimulated strong IFN-γ responses in splenocytes from mice immunized with B. abortus live vaccine S19 were identified. The protective efficiencies of these 7 recombinant proteins were further evaluated. Mice given BAB1_1316 (CobB or BAB1_1688 (AsnC plus adjuvant could provide protection against virulent B. abortus infection, similarly with the known protective antigen Cu-Zn SOD and the license vaccine S19. In addition, CobB and AsnC could induce strong antibodies responses in BALB/c mice. Altogether, the present study showed that CobB or AsnC protein could be useful antigen candidates for the development of subunit vaccines against brucellosis with adequate immunogenicity and protection efficacy.

  7. Immunization of mice with recombinant protein CobB or AsnC confers protection against Brucella abortus infection.

    Fu, Simei; Xu, Jie; Li, Xianbo; Xie, Yongfei; Qiu, Yefeng; Du, Xinying; Yu, Shuang; Bai, Yaoxia; Chen, Yanfen; Wang, Tongkun; Wang, Zhoujia; Yu, Yaqing; Peng, Guangneng; Huang, Kehe; Huang, Liuyu; Wang, Yufei; Chen, Zeliang

    2012-01-01

    Due to drawbacks of live attenuated vaccines, much more attention has been focused on screening of Brucella protective antigens as subunit vaccine candidates. Brucella is a facultative intracellular bacterium and cell mediated immunity plays essential roles for protection against Brucella infection. Identification of Brucella antigens that present T-cell epitopes to the host could enable development of such vaccines. In this study, 45 proven or putative pathogenesis-associated factors of Brucella were selected according to currently available data. After expressed and purified, 35 proteins were qualified for analysis of their abilities to stimulate T-cell responses in vitro. Then, an in vitro gamma interferon (IFN-γ) assay was used to identify potential T-cell antigens from B. abortus. In total, 7 individual proteins that stimulated strong IFN-γ responses in splenocytes from mice immunized with B. abortus live vaccine S19 were identified. The protective efficiencies of these 7 recombinant proteins were further evaluated. Mice given BAB1_1316 (CobB) or BAB1_1688 (AsnC) plus adjuvant could provide protection against virulent B. abortus infection, similarly with the known protective antigen Cu-Zn SOD and the license vaccine S19. In addition, CobB and AsnC could induce strong antibodies responses in BALB/c mice. Altogether, the present study showed that CobB or AsnC protein could be useful antigen candidates for the development of subunit vaccines against brucellosis with adequate immunogenicity and protection efficacy. PMID:22383953

  8. Development of a live attenuated antigenic marker classical swine fever vaccine

    Classical Swine Fever, caused by Classical Swine Fever Virus (CSFV), is a highly contagious disease affecting swine worldwide. The two main strategies for disease control are prophylactic vaccination and non-vaccination “stamping out” policies. In a vaccination-to-live strategy, marker vaccines coul...

  9. Immunization with recombinant Brucella species outer membrane protein Omp16 or Omp19 in adjuvant induces specific CD4+ and CD8+ T cells as well as systemic and oral protection against Brucella abortus infection.

    Pasquevich, Karina A; Estein, Silvia M; García Samartino, Clara; Samartino, Clara García; Zwerdling, Astrid; Coria, Lorena M; Barrionuevo, Paula; Fossati, Carlos A; Giambartolomei, Guillermo H; Cassataro, Juliana

    2009-01-01

    Available vaccines against Brucella spp. are live attenuated Brucella strains. In order to engineer a better vaccine to be used in animals and humans, our laboratory aims to develop an innocuous subunit vaccine. Particularly, we are interested in the outer membrane proteins (OMPs) of B. abortus: Omp16 and Omp19. In this study, we assessed the use of these proteins as vaccines against Brucella in BALB/c mice. Immunization with lipidated Omp16 (L-Omp16) or L-Omp19 in incomplete Freund's adjuvant (IFA) conferred significant protection against B. abortus infection. Vaccination with unlipidated Omp16 (U-Omp16) or U-Omp19 in IFA induced a higher degree of protection than the respective lipidated versions. Moreover, the level of protection induced after U-Omp16 or U-Omp19 immunization in IFA was similar to that elicited by live B. abortus S19 immunization. Flow cytometric analysis showed that immunization with U-Omp16 or U-Omp19 induced antigen-specific CD4(+) as well as CD8(+) T cells producing gamma interferon. In vivo depletion of CD4(+) or CD8(+) T cells in mice immunized with U-Omp16 or U-Omp19 plus IFA resulted in a loss of the elicited protection, indicating that both cell types are mediating immune protection. U-Omp16 or U-Omp19 vaccination induced a T helper 1 response, systemic protection in aluminum hydroxide formulation, and oral protection with cholera toxin adjuvant against B. abortus infection. Both immunization routes exhibited a similar degree of protection to attenuated Brucella vaccines (S19 and RB51, respectively). Overall these results indicate that U-Omp16 or U-Omp19 would be a useful candidate for a subunit vaccine against human and animal brucellosis. PMID:18981242

  10. Comparison of Biological and Immunological Characterization of Lipopolysaccharides From Brucella abortus RB51 and S19

    Kianmehr, Zahra; Kaboudanian Ardestani, Sussan; Soleimanjahi, Hoorieh; Fotouhi, Fatemeh; Alamian, Saeed; Ahmadian, Shahin

    2015-01-01

    Background: Brucella abortus RB51 is a rough stable mutant strain, which has been widely used as a live vaccine for prevention of brucellosis in cattle instead of B. abortus strain S19. B. abortus lipopolysaccharide (LPS) has unique properties in comparison to other bacterial LPS. Objectives: In the current study, two types of LPS, smooth (S-LPS) and rough (R-LPS) were purified from B. abortus S19 and RB51, respectively. The aim of this study was to evaluate biological and immunological properties of purified LPS as an immunogenical determinant. Materials and Methods: Primarily, S19 and RB51 LPS were extracted and purified by two different modifications of the phenol water method. The final purity of LPS was determined by chemical analysis (2-keto-3-deoxyoctonate (KDO), glycan, phosphate and protein content) and different staining methods, following sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). C57BL/6 mice were immunized subcutaneously three times at biweekly intervals with the same amount of purified LPSs. The humoral immunity was evaluated by measuring specific IgG levels and also different cytokine levels, such as IFN-γ, TNF-α, IL-4 and IL-10, were determined for assessing T-cell immune response. Results: Biochemical analysis data and SDS-PAGE profile showed that the chemical nature of S19 LPS is different from RB51 LPS. Both S and R-LPS induce an immune response. T-cell immune response induced by both S and R-LPS had almost the same pattern whereas S19 LPS elicited humoral immunity, which was higher than RB51 LPS. Conclusions: Purified LPS can be considered as a safe adjuvant and can be used as a component in prophylactic and therapeutic vaccines targeting infectious disease, cancer and allergies. PMID:26862376

  11. A Francisella tularensis Live Vaccine Strain That Improves Stimulation of Antigen-Presenting Cells Does Not Enhance Vaccine Efficacy

    Schmitt, Deanna M; Dawn M O'Dee; Joseph Horzempa; Paul E Carlson; Russo, Brian C.; Bales, Jacqueline M.; Brown, Matthew J.; Nau, Gerard J.

    2012-01-01

    Vaccination is a proven strategy to mitigate morbidity and mortality of infectious diseases. The methodology of identifying and testing new vaccine candidates could be improved with rational design and in vitro testing prior to animal experimentation. The tularemia vaccine, Francisella tularensis live vaccine strain (LVS), does not elicit complete protection against lethal challenge with a virulent type A Francisella strain. One factor that may contribute to this poor performance is limited s...

  12. The Effect of Irradiation on the Immunogenity of Brucella Abortus

    An experiment was carried out to study the effect of irradiation on the immunogenity of B. abortus. The B. abortus were irradiated by Gamma Cells (60Co). An experiment were divided into four groups. The first group (V1) was inoculated by irradiated B. abortus with the dose of 0.25 kGy. The second group (V2) was inoculated by irradiated B. abortus with the dose of 0.50 kGy. The third group (V3) was inoculated by irradiated B. abortus with the dose of 0.75 kGy. The fourth group (V4) was inoculated by Brucella vaccine 8.19. The observation respectively were included purely test, safety test, RBT serological test, diffusion test, development the colony of B. abortus in lien, and pathology anatomic inspection. The results obtained showed that 0.25 kGy was the expectantly dose of irradiation which could not only decreasing the infectivity of B. abortus but also has the ability to become a good immunogen for stimulating the immune response in the experiment animals. (author)

  13. Protection conferred by a live avian metapneumovirus vaccine when co-administered with live La Sota Newcastle disease vaccine in chicks

    Kannan Ganapathy

    2014-06-01

    Full Text Available This paper examines the effects on specific pathogen-free (SPF chicks when avian metapneumovirus (aMPV and Newcastle disease virus (NDV La Sota strain vaccines are co-administered. Day-old SPF chicks were divided into five groups. The first group was inoculated with sterile water (SW and the rest of the groups were inoculated with live NDV vaccine VG/GA by the oculo-oral route. At 21 days-old, the unvaccinated chicks were again inoculated with SW. The four VG/GA-vaccinated groups were further inoculated with (i SW, (ii live aMPV vaccine, (iii live NDV La Sota, or (iv combined live NDV La Sota and live aMPV, respectively. Chicks were monitored for post-vaccination reactions and oropharyngeal swabs were collected for vaccines detection. Blood samples were collected to detect aMPV ELISA and NDV haemagglutination-inhibition antibodies. Twenty-one days following the second vaccination, six chicks from each group were challenged with virulent NDV or aMPV respectively. Chicks were monitored for clinical signs and mortality and oropharyngeal swabs collected for aMPV detection. Results showed that, when challenged with a virulent aMPV, both chicks previously vaccinated with VG/GA and subsequently given aMPV vaccine singly or in combination with La Sota were equally protected against clinical signs. Chicks that were vaccinated against NDV either once with VG/GA or followed by La Sota (singly or in combination with aMPV were fully protected when challenged with velogenic NDV. We concluded that simultaneous administration of live aMPV and NDV La Sota vaccines have no adverse effects on protection conferred by either live vaccine.

  14. Biopolymer encapsulated live influenza virus as a universal CD8+ T cell vaccine against influenza virus

    Boesteanu, Alina C.; Babu, Nadarajan S.; Wheatley, Margaret; Papazoglou, Elisabeth S.; Katsikis, Peter D.

    2010-01-01

    Current influenza virus vaccines primarily elicit antibodies and can be rendered ineffective by antigenic drift and shift. Vaccines that elicit CD8+ T cell responses targeting less variable proteins may function as universal vaccines that have broad reactivity against different influenza virus strains. To generate such a universal vaccine, we encapsulated live influenza virus in a biopolymer and delivered it to mice subcutaneously. This vaccine was safe, induced potent CD8+ T cell immunity an...

  15. Antibody response of cattle to vaccination with commercial modified live rabies vaccines in Guatemala.

    Gilbert, Amy; Greenberg, Lauren; Moran, David; Alvarez, Danilo; Alvarado, Marlon; Garcia, Daniel L; Peruski, Leonard

    2015-01-01

    Vampire bat rabies is a public and animal health concern throughout Latin America. As part of an ecological study of vampire bat depredation on cattle in southern Guatemala, we conducted a vaccine seroconversion study among three dairy farms. The main objectives of this cross sectional and cohort study were to understand factors associated with bat bites among cattle, to determine whether unvaccinated cattle had evidence of rabies virus exposure and evaluate whether exposure was related to bat bite prevalence, and to assess whether cattle demonstrate adequate seroconversion to two commercial vaccines used in Guatemala. In 2012, baseline blood samples were collected immediately prior to intramuscular inoculation of cattle with one of two modified live rabies vaccines. Post vaccination blood samples were collected 13 and 393 days later. Sera were tested for rabies virus neutralizing antibodies (rVNA) by the rapid fluorescent focus inhibition test (RFFIT). Across two years of study, 36% (254/702) of inspected cattle presented gross evidence of vampire bat bites. Individual cattle with a bat bite in 2012 were more likely have a bat bite in 2013. Prior to vaccination, 12% (42/350) of cattle sera demonstrated rVNA, but bite status in 2012 was not associated with presence of rVNA. Vaccine brand was the only factor associated with adequate rVNA response of cattle by day 13. However, vaccine brand and rVNA status at day 13 were associated with an adequate rVNA titer on day 393, with animals demonstrating an adequate titer at day 13 more likely to have an adequate titer at day 393. Our findings support stable levels of vampire bat depredation and evidence of rVNA in unvaccinated cattle. Brand of vaccine may be an important consideration impacting adequate rVNA response and long-term maintenance of rVNA in cattle. Further, the results demonstrate that initial response to vaccination is associated with rVNA status over one year following vaccination. PMID:25466762

  16. Efficacy of HVT-IBD vector vaccine compared to attenuated live vaccine using in-ovo vaccination against a Korean very virulent IBDV in commercial broiler chickens.

    Roh, J-H; Kang, M; Wei, B; Yoon, R-H; Seo, H-S; Bahng, J-Y; Kwon, J-T; Cha, S-Y; Jang, H-K

    2016-05-01

    The production performance, efficacy, and safety of two types of vaccines for infectious bursal disease virus (IBDV) were compared with in-ovo vaccination of Cobb 500 broiler chickens for gross and microscopic examination of the bursa of Fabricius, bursa/body weight (b/B) ratio, flow cytometry, and serologic response to Newcastle disease virus (NDV) vaccination. One vaccine was a recombinant HVT-IBD vector vaccine (HVT as for herpesvirus of turkeys) and the other was an intermediate plus live IBDV vaccine. A significant difference was detected at 21 d. Eight of 10 chickens that received the IBDV live vaccine had severe bursal lesions and a relatively low b/B ratio of 0.95, and an inhibited NDV vaccine response. On the other hand, the HVT-IBD vector vaccine resulted in mild bursal lesions and a b/B ratio of 1.89. Therefore, the live vaccine had lower safety than that of the HVT-IBD vector vaccine. To determine the protective efficacy, chickens were intraocularly challenged at 24 d. Eight of 10 chickens in the IBDV live vaccination group showed gross and histological lesions characterized by hemorrhage, cyst formation, lymphocytic depletion, and a decreased b/B ratio. In contrast, the HVT-IBD vector vaccinated chickens showed mild gross and histological lesions in three of 10 chickens with a b/B ratio of 1.36, which was similar to that of the unchallenged controls. Vaccinated chickens showed a significant increase in IBDV antibody titers, regardless of the type of vaccine used. In addition, significantly better broiler flock performance was observed with the HVT-IBD vector vaccine compared to that of the live vaccine. Our results revealed that the HVT-IBD vector vaccine could be used as an alternative vaccine to increase efficacy, and to have an improved safety profile compared with the IBDV live vaccine using in-ovo vaccination against the Korean very virulent IBDV in commercial broiler chickens. PMID:26944964

  17. Immunological response to the Brucella abortus GroEL homolog.

    Lin, J.; Adams, L G; Ficht, T A

    1996-01-01

    Western blot (immunoblot) analysis of sera from cattle vaccinated with Brucella abortus S19 exhibit an elevated serologic response to Hsp62, the GroEL homolog (BaGroEL). Serologic screening of individual cows vaccinated with B. abortus S19 revealed no correlation between the immune response to BaGroEL and protection against a challenge with virulent organisms. The humoral immune response to BaGroEL was restricted to a region of the mature protein which mapped to amino acids 317 to 355 and may...

  18. Medición de respuesta inmune humoral y celular frente a antígenos de Brucella abortus RB51 en bovinos (Evaluation of Humoral and cellular immune response evaluation against Brucella abortus strain RB51 antigens in bovine

    N.I. Montaña S.

    1998-01-01

    ninguno de los grupos experimentales. IS superiores se encontraron al emplear antígeno soluble crudo de B. abortus RB51, los cuales evidenciaron diferencias significativas (pg más altos en los grupos vacunados con cepas vivas, especialmente en el grupo cepa 19. Al analizar la relación CD4/CD8, ésta se mantuvo estable durante todo el tiempo de observación y no se detectó predominio ni disminución de ninguna subpoblación linfoide. Los resultados anteriores, unidos al nivel de protección a descarga encontrado favorable a las cepas vivas, permiten, a su vez, concluir que la cepa B. abortus RB51 induce igual nivel de protección al de la cepa de vacuna tradicional C19, superando la limitante en diagnóstico diferencial. Los antígenos purificados de membrana externa, OMP-II y OMP-II-Cadena O, aunque presentan un nivel inferior de protección, en los parámetros inmunológicos medidos en este estudio, en general, se comportan en forma semejante a las cepas vivas, indicando que son antigénicos e inducen una memoria de corta duración probablemente necesitando administración de dosis repetidas para alcanzar niveles eficientes de protección. Se plantea que la protección observada en los animales vacunados con B. abortus RB51 ante desafío patógeno es el resultado de la estimulación de linfocitos T CD4+ Th1 y linfocitos T CD8+ ante la presentación de péptidos de proteínas de membrana externa.In order to comparatively evaluate the type of immune response induced by purified structural Brucella abortus antigens as well as live vaccines, 14 criollo heifers, 19 months old, were randomly distributed in five experimental groups and immunised subcutaneously with: B. abortus purified outer membrane proteins (OMP-II, B. abortus OMP-II coupled to O-chain, viable B. abortus strain RB51, viable B. abortus strain 19 (C19. A sterile saline solution was used for the control group. Two months after vaccination the animals were challenged intramuscularly with reference virulent

  19. Efficacy of combined killed-in-oil emulsion and live Newcastle disease vaccines in chickens.

    Folitse, R; Halvorson, D A; Sivanandan, V

    1998-01-01

    Following the introduction of routine vaccination regimes with different types of Newcastle disease (ND) vaccines, the incidence of velogenic viscerotropic Newcastle disease (VVND) in commercial poultry worldwide has declined dramatically. Unfortunately, these vaccination regimes are not feasible in free-range and backyard systems of poultry production practiced in many developing countries. In this study, we sought to develop a single vaccination regime in chickens with ND vaccines to elicit a long-lasting high level of ND virus (NDV) antibodies adequate to protect chickens against ND. The level of antibody response, as measured by the hemagglutination-inhibition (HI) test, and the degree of protection against the virulent strain of NDV were studied in chickens immunized with different vaccines. The vaccines used were: killed-in-oil emulsion (subcutaneous; s.c.) plus live virus (oculanasal; o.n.), given concurrently; experimental vaccine (s.c.) plus live virus (o.n.), given concurrently; killed-in-oil (s.c.); experimental vaccine prepared by homogenizing commercial live vaccine and oil emulsion (s.c.); and live virus (o.n.). The results obtained in this study indicate that concurrent administration of oil emulsion and live NDV vaccines induced the best antibody response, but there was no significant difference in protection among the vaccinated groups. PMID:9533096

  20. Ovine Enzootic Abortion (OEA): a comparison of antibody responses in vaccinated and naturally-infected swiss sheep over a two year period

    Zimmermann Dieter R; Doherr Marcus G; Kaiser Carmen; Psarrou Evgenia; Vretou Evangelia; Thoma Ruedi; Gerber Andrea; Polkinghorne Adam; Pospischil Andreas; Borel Nicole

    2007-01-01

    Abstract Background Prevention and control of ovine enzootic abortion (OEA) can be achieved by application of a live vaccine. In this study, five sheep flocks with different vaccination and infection status were serologically tested using a competitive enzyme-linked immunosorbent assay (cELISA) specific for Chlamydophila (Cp.) abortus over a two-year time period. Results Sheep in Flock A with recent OEA history had high antibody values after vaccination similar to Flock C with natural Cp. abo...

  1. Live virus vaccines based on a yellow fever vaccine backbone: Standardized template with key considerations for a risk/benefit assessment

    Monath, Thomas P.; Seligman, Stephen J.; Robertson, James S; Guy, Bruno; Hayes, Edward B.; Condit, Richard C.; Excler, Jean Louis; Mac, Lisa Marie; Carbery, Baevin; Chen, Robert T.

    2014-01-01

    The Brighton Collaboration Viral Vector Vaccines Safety Working Group (V3SWG) was formed to evaluate the safety of live, recombinant viral vaccines incorporating genes from heterologous viruses inserted into the backbone of another virus (so-called "chimeric virus vaccines"). Many viral vector vaccines are in advanced clinical trials. The first such vaccine to be approved for mark...

  2. Comparative efficacy of Bacillus anthracis live spore vaccine and protective antigen vaccine against anthrax in the guinea pig.

    Little, S F; Knudson, G B

    1986-01-01

    Several strains of Bacillus anthracis have been reported previously to cause fatal infection in immunized guinea pigs. In this study, guinea pigs were immunized with either a protective antigen vaccine or a live Sterne strain spore vaccine, then challenged with virulent B. anthracis strains isolated from various host species from the United States and foreign sources. Confirmation of previously reported studies (which used only protective antigen vaccines) was made with the identification of ...

  3. Autorosette formation of erythrocytes on peripheral blood mononuclear cells in dogs vaccinated with canine distemper live-virus vaccine.

    Chandler, J. P.; Yang, T. J.

    1981-01-01

    A time course study of the peripheral blood leukocytes of dogs vaccinated with canine distemper live virus (a paramyxovirus) vaccines showed that autorosette-forming leukocytes appeared from day 3 to day 10 after vaccination. The number of these cells peaked at day 7 when as many as 35% of mononuclear cells formed rosettes with autologous erythrocytes. In contrast, in nonvaccinated dogs, only 0.6 +/- 0.3% (standard error of the mean) of mononuclear cells formed rosettes throughout the 2-week ...

  4. DIVA vaccine properties of the live chimeric pestivirus strain CP7_E2gif

    von Rosen, Tanya; Rangelova, Desislava Yordanova; Nielsen, Jens;

    2014-01-01

    Live modified vaccines to protect against classical swine fever virus (CSFV), based on chimeric pestiviruses, have been developed to enable serological Differentiation of Infected from Vaccinated Animals (DIVA). In this context, the chimeric virus CP7_E2gif vaccine candidate is unique as it does...

  5. Evaluation of live attenuated measles vaccines prepared in human diploid cells for reimmunization.

    Mirchamsy, H.; Shafyi, A; Nazari, P.; Ashtiani, M. P.; Sassani, A.

    1988-01-01

    Two live attenuated measles vaccines developed in baby calf kidney cells, a similar vaccine produced in chick embryo chorioallantoic cells and five vaccines prepared from human diploid cells (HDC) have been studied by subcutaneous injection in groups of susceptible and immune children in three field trials. The results indicated that the vaccine developed in chick embryo cells which caused mild clinical reactions, had induced a lower seroprotection rate in susceptible children and only a low ...

  6. The efficacy of Mycoplasma gallisepticum K-strain live vaccine in broiler and layer chickens.

    Ferguson-Noel, N M; Williams, S M

    2015-01-01

    The efficacy of a live Mycoplasma gallisepticum (MG) vaccine candidate (K-strain) was compared to commercially available vaccines in broiler-type chickens (Trial 1) and layer-type chickens (Trial 2). In Trial 1, three-week-old broiler-type chickens were vaccinated via aerosol with K-strain or an F-strain vaccine. The vaccinated chickens and 10 non-vaccinated controls were subsequently challenged with virulent R-strain via aerosol at six weeks post vaccination; both K-strain and F-strain vaccination resulted in significant protection from air sac and tracheal lesions, as well as R-strain colonization (P ≤ 0.05). In Trial 2, commercial layer-type chickens were vaccinated with ts-11 (via eye drop) or K-strain (via aerosol) at 12 weeks of age. At 25 weeks of age these birds were challenged with R-strain via aerosol. The ts-11 and K-strain vaccinated groups both had significantly lower air sac lesion scores and a lower prevalence of ovarian regression after challenge as compared to non-vaccinated chickens (P ≤ 0.05). K-strain vaccination also prevented significant tracheal lesions and R-strain colonization (P ≤ 0.05). K-strain shows great potential as a highly efficacious live MG vaccine in broiler and layer-type chickens for protection of the respiratory and reproductive systems as well as prevention of infection with field strains. PMID:25571953

  7. Immunoproteomics analysis of the murine antibody response to vaccination with an improved Francisella tularensis live vaccine strain (LVS.

    Susan M Twine

    Full Text Available BACKGROUND: Francisella tularensis subspecies tularensis is the causative agent of a spectrum of diseases collectively known as tularemia. An attenuated live vaccine strain (LVS has been shown to be efficacious in humans, but safety concerns have prevented its licensure by the FDA. Recently, F. tularensis LVS has been produced under Current Good Manufacturing Practice (CGMP guidelines. Little is known about the immunogenicity of this new vaccine preparation in comparison with extensive studies conducted with laboratory passaged strains of LVS. Thus, the aim of the current work was to evaluate the repertoire of antibodies produced in mouse strains vaccinated with the new LVS vaccine preparation. METHODOLOGY/PRINCIPAL FINDINGS: In the current study, we used an immunoproteomics approach to examine the repertoire of antibodies induced following successful immunization of BALB/c versus unsuccessful vaccination of C57BL/6 mice with the new preparation of F. tularensis LVS. Successful vaccination of BALB/c mice elicited antibodies to nine identified proteins that were not recognized by antisera from vaccinated but unprotected C57BL/6 mice. In addition, the CGMP formulation of LVS stimulated a greater repertoire of antibodies following vaccination compared to vaccination with laboratory passaged ATCC LVS strain. A total of 15 immunoreactive proteins were identified in both studies, however, 16 immunoreactive proteins were uniquely reactive with sera from the new formulation of LVS. CONCLUSIONS/SIGNIFICANCE: This is the first report characterising the antibody based immune response of the new formulation of LVS in the widely used murine model of tularemia. Using two mouse strains, we show that successfully vaccinated mice can be distinguished from unsuccessfully vaccinated mice based upon the repertoire of antibodies generated. This opens the door towards downselection of antigens for incorporation into tularemia subunit vaccines. In addition, this work

  8. Vaccination of pigs against Aujeszky's disease by the intradermal route using live attenuated and inactivated virus vaccines.

    Vannier, P; Cariolet, R

    1989-09-01

    A study was undertaken of the protection induced by inactivated and live Aujeszky's disease virus vaccines. The vaccines were administered using a special device which, without the use of a needle, delivered the preparation intradermally. The trials were performed on 88 pigs which were vaccinated at the beginning of the fattening period both in experimental conditions and in pig herds. All the pigs were challenged at the end of the fattening period in isolation units. The results obtained were compared with those obtained using the same vaccines injected intramuscularly. It was shown that vaccination via the intradermal route induced good protection in the vaccinated animals and was similar to that conferred by live virus vaccine injected intramuscularly. The results, with the inactivated virus vaccine, were not so good when it was injected via the intradermal route. Studies with intradermal vaccination showed no local lesion or very small nodules strictly localized to the dermis. The results also confirmed that the effects of challenge exposure depended on the health status of animals prior to infection and show the necessity to use a synthetic value (delta G) to interpret the data and mainly to compare the results objectively. In fattening pigs this vaccination procedure is attractive because (i) less animal constraint is needed than would be for intramuscular injections, (ii) injection can be checked by the presence of a visible papula at the site of inoculation and, (iii) pigs can be vaccinated in the ham while they are feeding. Injection without a needle also contributes to avoiding bacterial contamination under practical farm conditions of vaccination. PMID:2554623

  9. Distinction between infections with European and American/vaccine type PRRS virus after vaccination with a modified-live PRRS virus vaccine

    Bøtner, Anette; Strandbygaard, Bertel; Sørensen, K. J.; Oleksiewicz, M. B.; Storgaard, T.

    2000-01-01

    In July 1996 a modified live Porcine reproductive and respiratory syndrome (PRRS) vaccine, based on an American (US) strain of the PRRS virus (PRRSV), was licensed in Denmark. The vaccine was licensed for use in 3-18 week old pigs, exclusively. Starting during the middle of October 1996, several...... herds who had recently begun vaccination, experienced acute PRRS-like symptoms including an increasing number of abortions and stillborn piglets and an increasing mortality in the nursing period. During the period from October 1996 until May 1997, the PRRS virus (PRRSV), identified as the vaccine....../US type of PRRSV, was isolated from fetuses, dead piglets, pleural fluids and/or lung tissues from 114 of such herds. These findings indicated the spread of the vaccine virus to non-vaccinated sows followed by transplacental infection of fetuses. Also, a number of not previously PRRSV infected and non-vaccinated...

  10. Research Regarding some Live Attenuated Vaccines Used in Immunoprophylaxis of the Avian Infectious Bursitis

    Emil Tirziu

    2010-10-01

    Full Text Available In our research four live attenuated vaccines against avian infectious bursitis (two inland produced and two imported were tested: Biavac, Biaromvac-Pa, Gumboro Vaccine Nobilis 228e and Live Virus Vaccine Tablets Gumboro, M.B. Strain. The research was made in production conditions on 44,400 broiler chickens maintained in industrial system and raised on bedding and in batteries. The broilers were kept in four poultry houses, each of them representing an experimental group. We mention that vaccines were administered only one time. Vaccines efficiency was assessed by immunoenzymatic test. In that purpose, for each poultry house, 20 broilers were isolated and identified by a tibial ring, their immune response being followed between 5 and 42 days of age. Analyzing the results about individual antibodies titer during the experiment, the significant differences were observed both in poultries and phases. The best results were obtained using Live Virus Vaccine Tablets Gumboro, M.B. strain.

  11. Reversion of a live porcine reproductive and respiratory syndrome virus vaccine investigated by parallel mutations

    Nielsen, Henriette S.; Oleksiewicz, M.B.; Forsberg, R.; Stadejek, T.; Bøtner, Anette; Storgaard, Toben

    2001-01-01

    A live attenuated porcine reproductive and respiratory syndrome (PRRS) vaccine virus has been shown to revert to virulence under field conditions. In order to identify genetic virulence determinants, ORF1 from the attenuated vaccine virus and three Danish vaccine-derived field isolates was...... sequenced and compared with the parental strain of the vaccine virus (VR2332). This revealed five mutations that had occurred independently in all three vaccine-derived field isolates, indicating strong parallel selective pressure on these positions in the vaccine virus when used in swine herds. Two of...... in the vaccine virus sequence during cell-culture adaptation. Evaluation of the remaining mutations in the ORF1 sequence revealed stronger selective pressure for amino acid conservation during spread in pigs than during vaccine production. Furthermore, it was found that the selective pressure did not...

  12. Cost-effectiveness of influenza vaccination for elderly people living in the community.

    Schooling, CM; McGhee, SM; Wong, LC; Chau, J.; Cheung, A.; Ho, A.

    2009-01-01

    Key Messages 1. Influenza vaccination of elderly people living in the community was cost-effective from a societal perspective but did not cut publicly funded medical costs or total medical costs. 2. For the oldest group (≥75 years) living in the community, influenza vaccination can cut publicly funded medical costs if the total vaccination cost per head is HK$39.6 or less. 3. Influenza vaccination is costeffective if the value of increasing an elderly person’s lifespan for a year at most is ...

  13. Expression and validation of D-erythrulose 1-phosphate dehydrogenase from Brucella abortus: a diagnostic reagent for bovine brucellosis.

    Eoh, Hyungjin; Jeon, Bo-Young; Kim, Zhiyeol; Kim, Seung-Cheol; Cho, Sang-Nae

    2010-07-01

    Brucella abortus is a bacterium of brucellosis causing abortion in cattle. The diagnosis of bovine brucellosis mainly relies on serologic tests using smooth lipopolysaccharide (S-LPS) from B. abortus. However, the usefulness of this method is limited by false-positive reactions due to cross-reaction with other Gram-negative bacteria. In the present study, the eryC gene encoding B. abortus d-erythrulose 1-phosphate dehydrogenase, which is involved in the erythritol metabolism in virulent B. abortus strain but is absent from a B. abortus vaccine strain (S19), was cloned. Recombinant EryC was expressed and purified for the evaluation as a diagnostic reagent for bovine brucellosis. Other B. abortus proteins, Omp16, PP26, and CP39 were also purified and their seroreactivities were compared. Recombinant EryC, Omp16, PP26, and PP39 were all reactive to B. abortus-positive serum. The specificity of recombinant Omp16, PP26, CP39, and EryC, were shown to be approximately 98%, whereas that of B. abortus whole cell lysates was shown to be 95%. The sensitivity of Omp16, PP26, CP39, and EryC were 10%, 51%, 64%, and 43%, respectively, whereas that of B. abortus whole cell lysates was 53%. These results suggested that B. abortus EryC would be a potential reagent for diagnosis for bovine brucellosis as a single protein antigen. PMID:20622221

  14. Intranasal live attenuated seasonal influenza vaccine: does not challenge current practice.

    2013-09-01

    Influenza vaccination of children is only justified when there is a risk of serious influenza complications. In 2012, a live attenuated vaccine for intranasal administration was authorised in the European Union for influenza prevention in individuals aged from 2 to less than 18 years. This type of vaccine has been available in the United States since 2003. Clinical evaluation of this live vaccine is based on three non-inferiority trials versus an injected inactivated vaccine. There are no specific trials in children at risk of serious influenza complications. Only one of these trials was double-blinded. Two trials involved children with a history of respiratory problems. Symptomatic influenza confirmed by viral culture was less frequent in these three trials after intranasal vaccination than after injection of the conventional vaccine (about 3 to 5% and 6 to 10%, respectively). There was no difference between the vaccines in terms of clinical complications of influenza, especially asthma exacerbations. Adverse effects attributed to the intranasal vaccine mainly consisted of local reactions such as rhinorrhoea and nasal congestion, as well as flu-like syndromes. Wheezing, respiratory tract infections and hospitalisation were more frequent with the intranasal vaccine than with the injected vaccine in children aged less than 1 year and in children with a history of severe respiratory illness. The intranasal vaccine is contraindicated in these children. The intranasal vaccine contains live attenuated virus strains and is therefore contraindicated in immunocompromised patients. US pharmacovigilance data suggest that severe allergic reactions to the intranasal vaccine, Guillain-Barré syndrome, and transmission of vaccine viruses to contacts are very rare. Intranasal administration seems to be more practical, especially for children. In practice, there is no firm evidence that this live attenuated influenza vaccine has any clinical advantages over injected vaccines

  15. Postural and neurological deficits in broiler chicks after cervical vaccination with live vaccine.

    Gustafson, C R; Cooper, G L; Charlton, B R; Bickford, A A; Nordhausen, R

    2003-07-01

    A disease characterized by paresis and paralysis was seen in 7-9-day-old broiler chicks after vaccination in the neck area at day-of-age with a live virus vaccine containing viruses of Marek's disease, fowl pox, and infectious bursal disease. Affected birds presented with variable signs of ataxia, lateral recumbency, leg paralysis, and twisting or S-shaped flexure of the neck. Gross lesions noted at necropsy included swelling and edema of the subcutaneous tissues and muscles of the neck at the injection site area. A heavy mononuclear inflammatory cell infiltration was seen in the subcutaneous tissues, connective tissues, and muscles of the neck at the injection site. In some cases, the inflammatory process extended along fascial planes to involve the epidural spaces surrounding the spinal cord. Fatty changes with possible demyelination of nerve fibers were noted in some sections of the spinal cord adjacent to the inflammatory lesions. Clusters of poxviruses were found within some inflammatory lesions on transmission electron photomicrographs. PMID:12918818

  16. T- and B-Cell-Mediated Protection Induced by Novel, Live Attenuated Pertussis Vaccine in Mice. Cross Protection against Parapertussis

    Pascal Feunou Feunou; Julie Bertout; Camille Locht

    2010-01-01

    BACKGROUND: Despite the extensive use of efficacious vaccines, pertussis still ranks among the major causes of childhood mortality worldwide. Two types of pertussis vaccines are currently available, whole-cell, and the more recent acellular vaccines. Because of reduced reactogenicity and comparable efficacy acellular vaccines progressively replace whole-cell vaccines. However, both types require repeated administrations for optimal efficacy. We have recently developed a live attenuated vaccin...

  17. α1-giardin based live heterologous vaccine protects against Giardia lamblia infection in a murine model

    Jenikova, Gabriela; Hruz, Petr; Andersson, Karl M.; Tejman-Yarden, Noa; Ferreira, Patricia C. D.; Andersen, Yolanda S.; Davids, Barbara J.; Gillin, Frances D.; Svärd, Staffan G; Curtiss, Roy; Eckmann, Lars

    2011-01-01

    Giardia lamblia is a leading protozoan cause of diarrheal disease worldwide, yet preventive medical strategies are not available. A crude veterinary vaccine has been licensed for cats and dogs, but no defined human vaccine is available. We tested the vaccine potential of three conserved antigens previously identified in human and murine giardiasis, α1-giardin, α-enolase, and ornithine carbamoyl transferase, in a murine model of G. lamblia infection. Live recombinant attenuated Salmonella ente...

  18. Intermediate rough Brucella abortus S19Δper mutant is DIVA enable, safe to pregnant guinea pigs and confers protection to mice.

    Lalsiamthara, Jonathan; Gogia, Neha; Goswami, Tapas K; Singh, R K; Chaudhuri, Pallab

    2015-05-21

    Brucella abortus S19 is a smooth strain used as live vaccine against bovine brucellosis. Smooth lipopolysaccharide (LPS) is responsible for its residual virulence and serological interference. Rough mutants defective of LPS are more attenuated but confers lower level of protection. We describe a modified B. abortus S19 strain, named as S19Δper, which exhibits intermediate rough phenotype with residual O-polysaccharide (OPS). Deletion of perosamine synthetase gene resulted in substantial attenuation of S19Δper mutant without affecting immunogenic properties. It mounted strong immune response in Swiss albino mice and conferred protection similar to S19 vaccine. Immunized mice produced higher levels of IFN-γ, IgG2a and thus has immune response inclined towards Th1 cell mediated immunity. Sera from immunized animals did not show agglutination reaction with RBPT antigen and thus could serve as DIVA (Differentiating Infected from Vaccinated Animals) vaccine. S19Δper mutant displayed more susceptibility to serum complement mediated killing and sensitivity to polymyxin B. Pregnant guinea pigs injected with S19Δper mutant completed full term of pregnancy and did not cause abortion, still birth or birth of weak offspring. S19Δper mutant with intermediate rough phenotype displayed remarkable resemblance to S19 vaccine strain with improved properties of safety, immunogenicity and DIVA capability for control of bovine brucellosis. PMID:25869887

  19. Live attenuated S. Typhimurium vaccine with improved safety in immuno-compromised mice.

    Balamurugan Periaswamy

    Full Text Available Live attenuated vaccines are of great value for preventing infectious diseases. They represent a delicate compromise between sufficient colonization-mediated adaptive immunity and minimizing the risk for infection by the vaccine strain itself. Immune defects can predispose to vaccine strain infections. It has remained unclear whether vaccine safety could be improved via mutations attenuating a vaccine in immune-deficient individuals without compromising the vaccine's performance in the normal host. We have addressed this hypothesis using a mouse model for Salmonella diarrhea and a live attenuated Salmonella Typhimurium strain (ssaV. Vaccination with this strain elicited protective immunity in wild type mice, but a fatal systemic infection in immune-deficient cybb(-/-nos2(-/- animals lacking NADPH oxidase and inducible NO synthase. In cybb(-/-nos2(-/- mice, we analyzed the attenuation of 35 ssaV strains carrying one additional mutation each. One strain, Z234 (ssaV SL1344_3093, was >1000-fold attenuated in cybb(-/-nos2(-/- mice and ≈100 fold attenuated in tnfr1(-/- animals. However, in wt mice, Z234 was as efficient as ssaV with respect to host colonization and the elicitation of a protective, O-antigen specific mucosal secretory IgA (sIgA response. These data suggest that it is possible to engineer live attenuated vaccines which are specifically attenuated in immuno-compromised hosts. This might help to improve vaccine safety.

  20. Inactivated or Live-Attenuated Bivalent Vaccines That Confer Protection against Rabies and Ebola Viruses ▿

    Blaney, Joseph E.; Wirblich, Christoph; Papaneri, Amy B.; Johnson, Reed F.; Myers, Carey J.; Juelich, Terry L.; Holbrook, Michael R.; Freiberg, Alexander N.; Bernbaum, John G.; Jahrling, Peter B.; Paragas, Jason; Schnell, Matthias J.

    2011-01-01

    The search for a safe and efficacious vaccine for Ebola virus continues, as no current vaccine candidate is nearing licensure. We have developed (i) replication-competent, (ii) replication-deficient, and (iii) chemically inactivated rabies virus (RABV) vaccines expressing Zaire Ebola virus (ZEBOV) glycoprotein (GP) by a reverse genetics system based on the SAD B19 RABV wildlife vaccine. ZEBOV GP is efficiently expressed by these vaccine candidates and is incorporated into virions. The vaccine candidates were avirulent after inoculation of adult mice, and viruses with a deletion in the RABV glycoprotein had greatly reduced neurovirulence after intracerebral inoculation in suckling mice. Immunization with live or inactivated RABV vaccines expressing ZEBOV GP induced humoral immunity against each virus and conferred protection from both lethal RABV and EBOV challenge in mice. The bivalent RABV/ZEBOV vaccines described here have several distinct advantages that may speed the development of inactivated vaccines for use in humans and potentially live or inactivated vaccines for use in nonhuman primates at risk of EBOV infection in endemic areas. PMID:21849459

  1. Inactivated or live-attenuated bivalent vaccines that confer protection against rabies and Ebola viruses.

    Blaney, Joseph E; Wirblich, Christoph; Papaneri, Amy B; Johnson, Reed F; Myers, Carey J; Juelich, Terry L; Holbrook, Michael R; Freiberg, Alexander N; Bernbaum, John G; Jahrling, Peter B; Paragas, Jason; Schnell, Matthias J

    2011-10-01

    The search for a safe and efficacious vaccine for Ebola virus continues, as no current vaccine candidate is nearing licensure. We have developed (i) replication-competent, (ii) replication-deficient, and (iii) chemically inactivated rabies virus (RABV) vaccines expressing Zaire Ebola virus (ZEBOV) glycoprotein (GP) by a reverse genetics system based on the SAD B19 RABV wildlife vaccine. ZEBOV GP is efficiently expressed by these vaccine candidates and is incorporated into virions. The vaccine candidates were avirulent after inoculation of adult mice, and viruses with a deletion in the RABV glycoprotein had greatly reduced neurovirulence after intracerebral inoculation in suckling mice. Immunization with live or inactivated RABV vaccines expressing ZEBOV GP induced humoral immunity against each virus and conferred protection from both lethal RABV and EBOV challenge in mice. The bivalent RABV/ZEBOV vaccines described here have several distinct advantages that may speed the development of inactivated vaccines for use in humans and potentially live or inactivated vaccines for use in nonhuman primates at risk of EBOV infection in endemic areas. PMID:21849459

  2. "Living versus Dead":: The Pasteurian Paradigm and Imperial Vaccine Research

    Chakrabarti, Pratik

    2010-01-01

    The Semple anti-rabies vaccine was developed by David Semple in India in 1911. Semple introduced a peculiarly British approach within the Pasteurian tradition by using carbolised dead virus. The paper studies this unique phase of vaccine research between 1910 and 1935, to show that in the debates and laboratory experiments around the potency and safety of vaccines, categories like ‘living’ and ‘dead’ were often used as ideological and moral denominations. These abstract and ideological debate...

  3. IMMUNO-MODULATORY EFFECT OF INACTIVATED EIMERIA TENELLA VACCINE AND LIVE IMPPORTED COCCIDIAL VACCINE ON NEWCASTLE DISEASE VIRUS VACCINA TED BROILER CHICKS

    Muhammad Akram Muneer, Haji Ahmad Hashmi, Masood Rabbani, Zahid Munir Chaudhry and Ali M. Bahrami

    2001-01-01

    Full Text Available A total of 160 one-day-old broiler chicks were used to evaluate the immunomodulatory effects of an inactivated Eimeria tenella vaccine and a live polyvalent imported antiococcidial vaccine (Coccivac. This study indicated that both of these vaccines did not adversely affect the development of serum antibody against Newcastle disease virus (NDV and the chicks vaccinated with either of the anticoccidial vaccines resisted the virulent NDV challenge. A study of the lymphoid organs such as bursa of fabricuis: thymus and spleen from the experimental chicks indicated that those organs were comparable with those from the chicks not vaccinated with these coccidial vaccines. The overall findings of this study indicate that anticoccidial vaccines do not have any effects on the immune functions of the vaccinates. In fact these vaccines prevented the occurrence of clinical coccidiosis in the vaccinates.

  4. Spray application of live attenuated F Strain-derived Mycoplasma gallisepticum vaccines

    Live attenuated vaccines (LAVs) are commonly utilized to protect commercial table egg producers from economic losses associated with challenges by the respiratory pathogen Mycoplasma gallisepticum (MG). Currently there are four MG LAVs commercially available within the United States. Consistent am...

  5. Mutant Brucella abortus membrane fusogenic protein induces protection against challenge infection in mice.

    de Souza Filho, Job Alves; de Paulo Martins, Vicente; Campos, Priscila Carneiro; Alves-Silva, Juliana; Santos, Nathalia V; de Oliveira, Fernanda Souza; Menezes, Gustavo B; Azevedo, Vasco; Cravero, Silvio Lorenzo; Oliveira, Sergio Costa

    2015-04-01

    Brucella species can cause brucellosis, a zoonotic disease that causes serious livestock economic losses and represents a public health threat. The mechanism of virulence of Brucella spp. is not yet fully understood. Therefore, it is crucial to identify new molecules that serve as virulence factors to better understand this host-pathogen interplay. Here, we evaluated the role of the Brucella membrane fusogenic protein (Mfp) and outer membrane protein 19 (Omp19) in bacterial pathogenesis. In this study, we showed that B. abortus Δmfp::kan and Δomp19::kan deletion mutant strains have reduced persistence in vivo in C57BL/6 and interferon regulatory factor 1 (IRF-1) knockout (KO) mice. Additionally, 24 h after macrophage infection with a Δmfp::kan or Δomp19::kan strain expressing green fluorescent protein (GFP) approximately 80% or 65% of Brucella-containing vacuoles (BCVs) retained the late endosomal/lysosomal marker LAMP-1, respectively, whereas around 60% of BCVs containing wild-type S2308 were found in LAMP-1-negative compartments. B. abortus Δomp19::kan was attenuated in vivo but had a residual virulence in C57BL/6 and IRF-1 KO mice, whereas the Δmfp::kan strain had a lower virulence in these same mouse models. Furthermore, Δmfp::kan and Δomp19::kan strains were used as live vaccines. Challenge experiments revealed that in C57BL/6 and IRF-1 KO mice, the Δmfp::kan strain induced greater protection than the vaccine RB51 and protection similar that of vaccine S19. However, a Δomp19::kan strain induced protection similar to that of RB51. Thus, these results demonstrate that Brucella Mfp and Omp19 are critical for full bacterial virulence and that the Δmfp::kan mutant may serve as a potential vaccine candidate in future studies. PMID:25644010

  6. Mutant Brucella abortus Membrane Fusogenic Protein Induces Protection against Challenge Infection in Mice

    de Souza Filho, Job Alves; Martins, Vicente de Paulo; Campos, Priscila Carneiro; Alves-Silva, Juliana; Santos, Nathalia V.; de Oliveira, Fernanda Souza; Menezes, Gustavo B.; Azevedo, Vasco; Cravero, Silvio Lorenzo

    2015-01-01

    Brucella species can cause brucellosis, a zoonotic disease that causes serious livestock economic losses and represents a public health threat. The mechanism of virulence of Brucella spp. is not yet fully understood. Therefore, it is crucial to identify new molecules that serve as virulence factors to better understand this host-pathogen interplay. Here, we evaluated the role of the Brucella membrane fusogenic protein (Mfp) and outer membrane protein 19 (Omp19) in bacterial pathogenesis. In this study, we showed that B. abortus Δmfp::kan and Δomp19::kan deletion mutant strains have reduced persistence in vivo in C57BL/6 and interferon regulatory factor 1 (IRF-1) knockout (KO) mice. Additionally, 24 h after macrophage infection with a Δmfp::kan or Δomp19::kan strain expressing green fluorescent protein (GFP) approximately 80% or 65% of Brucella-containing vacuoles (BCVs) retained the late endosomal/lysosomal marker LAMP-1, respectively, whereas around 60% of BCVs containing wild-type S2308 were found in LAMP-1-negative compartments. B. abortus Δomp19::kan was attenuated in vivo but had a residual virulence in C57BL/6 and IRF-1 KO mice, whereas the Δmfp::kan strain had a lower virulence in these same mouse models. Furthermore, Δmfp::kan and Δomp19::kan strains were used as live vaccines. Challenge experiments revealed that in C57BL/6 and IRF-1 KO mice, the Δmfp::kan strain induced greater protection than the vaccine RB51 and protection similar that of vaccine S19. However, a Δomp19::kan strain induced protection similar to that of RB51. Thus, these results demonstrate that Brucella Mfp and Omp19 are critical for full bacterial virulence and that the Δmfp::kan mutant may serve as a potential vaccine candidate in future studies. PMID:25644010

  7. Poliovirus Vaccines

    Isik Yalcin

    2008-01-01

    The two types of poliovirus vaccines are inactivated vaccine, given parenterally, and live virus vaccine, given orally. Oral poliovirus is the vaccine of choice for global eradication. Either inactivated vaccine or oral vaccine may be given concurrently with other routinely recommended childhood vaccines. No serious adverse events have been associated with the vaccine. Oral poliovirus vaccine can cause vaccine associated paralytic poliomyelitis.

  8. Vaccination of turkeys in the wattles (dewlap) with turkey meningo-encephalitis live vaccine and Pasteurella multocida killed-in-oil vaccine.

    Samina, I; Khinich, Y; Peleg, B A

    1999-10-01

    Vaccination of turkeys via the wattle has been introduced as a novel route of vaccination using attenuated live viral turkey meningo-encephalitis (TME) and killed-in-oil bacterial (Pasteurella multocida) vaccines. The efficacy of the immunization was evaluated by the haemagglutination-inhibition test for TME and by challenge for TME and P. multocida. Immunization via the wattle route was comparable or better as compared with the conventional routes, intramuscular and subcutaneous, for P. multocida and TME, respectively. These results were obtained by wattle vaccination administered either by injection, punching with a needle as used for fowl pox vaccination or by topical application. The advantages of wattle vaccination are: no local untoward reactions (P. multocida), which might frequently occur in the muscles following improper subcutaneous mass vaccination, less time and labour consuming, and less stress for the turkeys. It is suggested to test the wattle route of vaccination with other viral and bacterial vaccines in turkeys and other avian species. PMID:26911605

  9. Preparation and efficacy of a live newcastle disease virus vaccine encapsulated in chitosan nanoparticles.

    Kai Zhao

    Full Text Available BACKGROUND: Newcastle disease (ND is a highly contagious viral disease of poultry caused by pathogenic strains of the Newcastle disease virus (NDV. Live NDV vaccines are administered by drinking water, eyedrops or coarse aerosol spray. To further enhance mucosal immune responses, chitosan nanoparticles were developed for the mucosal delivery of a live NDV vaccine. METHODOLOGY/PRINCIPAL FINDINGS: A lentogenic live-virus vaccine (strain LaSota against NDV encapsulated in chitosan nanoparticles were developed using an ionic crosslinking method. Chitosan nanoparticles containing the lentogenic live-virus vaccine against NDV (NDV-CS-NPs were produced with good morphology, high stability, a mean diameter of 371.1 nm, an encapsulation rate of 77% and a zeta potential of +2.84 mV. The Western blotting analysis showed that NDV structural proteins were detected in NDV-CS-NPs. The virus release assay results of NDV-CS-NPs indicated that NDV was released from NDV-CS-NPs. Chickens immunized orally or intranasally with NDV-CS-NPs were fully protected whereas one out of five chickens immunized with the LaSota live NDV vaccine and three out of five chickens immunized with the inactivated NDV vaccine were dead after challenge with the highly virulent NDV strain F48E9. CONCLUSIONS/SIGNIFICANCE: NDV-CS-NPs induced better protection of immunized specific pathogen free chickens compared to the live NDV vaccine strain LaSota and the inactivated NDV vaccine. This study lays a foundation for the further development of mucosal vaccines and drugs encapsulated in chitosan nanoparticles.

  10. Comparative genomics of the Mycobacterium signaling architecture and implications for a novel live attenuated Tuberculosis vaccine.

    Zhou, Peifu; Xie, Jianping

    2014-01-01

    Tuberculosis (TB), caused by Mycobacterium tuberculosis (M.tb), remains a major threat to global public health. A new TB vaccine affording superior immune protection to M. bovis Bacillus Calmette-Guérin (BCG) is imperative. The advantage of a live attenuated vaccine is that it can mimic the bona fide pathogen, elicit immune responses similar to natural infection, and potentially provide more protection than other vaccines. BCG, the only vaccine and a live attenuated vaccine that is the result of cumulative mutations by serial passage of M. bovis, has provided clues for the construction of novel improved vaccines. A strategy is put forward for identifying a new live attenuated TB vaccine generated by cumulative mutation based on M.tb. Given the important role of the M.tb signaling network consisting of a two-component system, eukaryotic-like Ser/Thr protein kinase system and sigma factor system based on comparisons among M.tb H37Rv, M. bovis, and BCG, we have put a premium on this signaling circuit as the starting point for the generation of an attenuated TB vaccine. PMID:24013364

  11. Influence of human recombinant interleukin-1beta on protective and immunogenic efficacy of live plague vaccine

    Pavel Deryabin

    2014-03-01

    Full Text Available Vaccination against plague is an important element of control over this exceptionally virulent infection. To be effective against virulent Yersinia pestis strains live plague vaccine produced from Yersinia pestis EV strain (EV vaccine requires annual revaccinations. Use of EV vaccine for revaccination is limited due to the initially developed immune response that suppresses the live vaccine culture. Earlier studies showed that the use of immunomodulators activates immune response to vaccination. In our study we assessed the influence of human recombinant interleukin-1beta (Betaleukin on immunogenic and protective efficacy of live plague vaccine in controlled experiments on animal models (rabbits and guinea pigs. In a long experiment (261 days on rabbits we assessed indicators of antigen specific immune response to F1 antigen of Yersinia pestis. The early antigen specific response was evaluated based on the appearance of different avidity lymphocytes with F1 receptors. Effector phase of the immune response was asses based on the activity of antigen-specific antibodies. Results showed that the use of betaleukin as an immunoadjuvant increases vaccination efficacy by strengthening the effector phase of the immune response and promotion of the early stage of antigen-specific immune response to EV vaccine. Protective efficacy of betaleukin and EV vaccine combination was assessed in an experiment with guinea pigs. This experiment showed that injections of betaleukin facilitates the production of antibodies following vaccination and significantly increases the rates of survival after the challenge with virulent plague strain. At the same time single injections of betaleukin alone did not protect guinea pigs from death after injections of virulent plague strains.

  12. Effect of Dosage and Vaccination Route on Transmission of a Live Attenuated Mycoplasma gallesepticum Vaccine: A Broiler Model

    Mycoplasma gallisepticum (MG) is an economically significant pathogen of poultry species and among the table egg sector of the poultry industry, live attenuated strains of MG are commonly utilized to limit production losses associated with MG-induced disease. The vaccine, however, may be problemati...

  13. Efficacy of Live attenuated and Inactivated Oil Emulsion Infectious Bursal Disease Virus Vaccines in Broiler chicks

    Nazir Ahmed Lone*, Shafqat Fatima Rehmani1, Taseer Ahmed Khan2 and Shahana Urooj Kazmi3

    2012-10-01

    Full Text Available This study was carried out with the aims to evaluate the efficacy of indigenous live and inactivated Infectious bursal disease virus (IBDV vaccines in broilers. Two hundred and fifty (250, a-day-old broiler chicks divided into five groups (A-E were immunized with live and inactivated vaccine at varying ages. Live vaccine was given to group A (at 8 days post hatch, B (at 8, 15 days post hatch, C (at 8, 15 and 23 days post hatch and D (at 8 days post hatch. In addition group D received a booster dose of inactivated vaccine at 21 days of age, while group E served as control. Antibody titers were measured via Agar Gel Precipitation (AGP test and ELISA, while the degree of protection against the virulent strains of IBDV was also recorded. Results showed that vaccine program adopted for group C and D produced significantly (P<0.05 higher antibody titer as compared to other groups. While a significant (P<0.05 difference in antibody titers was observed between group A and B while no considerable antibodies were detected in group E. The response to challenge dose was recorded as the difference of lesions in bursa, pectoral muscles or other visceral organs with the exception of group C and D. The study suggests that broiler chicks may be vaccinated at days 8, 15 and 23 with live attenuated vaccine or live attenuated vaccine followed by inactivated vaccine at days 8 and 21 that could provide an adequate protection against the virulent form of IBDV.

  14. Experimental Infection of Richardson's Ground Squirrels (Spermophilus richardsonii) with Attenuated and Virulent Strains of Brucella abortus

    Exposure of non-target species to wildlife vaccines is an important concern when evaluating a candidate vaccine for use in the field. A previous investigation of the safety of Brucella abortus strain RB51 (sRB51) in various non-target species suggested that Richardson’s ground squirrels (Spermophil...

  15. SAFETY OF REVACCINATION OF PREGNANT BISON WITH BRUCELLA ABORTUS STRAIN RB51 DURING PREGNANCY

    From December of 1998 through February of 1999, a study was conducted in a Brucella-infected bison herd to evaluate the safety of booster vaccination of adult bison with 6 x 10**9 CFU of Brucella abortus strain RB51 (SRB51), in bison which had previously been vaccinated as yearlings with 1 x 10**10 ...

  16. Efficacy of a live attenuated vaccine in classical swine fever virus postnatally persistently infected pigs.

    Muñoz-González, Sara; Perez-Simó, Marta; Muñoz, Marta; Bohorquez, José Alejandro; Rosell, Rosa; Summerfield, Artur; Domingo, Mariano; Ruggli, Nicolas; Ganges, Llilianne

    2015-01-01

    Classical swine fever (CSF) causes major losses in pig farming, with various degrees of disease severity. Efficient live attenuated vaccines against classical swine fever virus (CSFV) are used routinely in endemic countries. However, despite intensive vaccination programs in these areas for more than 20 years, CSF has not been eradicated. Molecular epidemiology studies in these regions suggests that the virus circulating in the field has evolved under the positive selection pressure exerted by the immune response to the vaccine, leading to new attenuated viral variants. Recent work by our group demonstrated that a high proportion of persistently infected piglets can be generated by early postnatal infection with low and moderately virulent CSFV strains. Here, we studied the immune response to a hog cholera lapinised virus vaccine (HCLV), C-strain, in six-week-old persistently infected pigs following post-natal infection. CSFV-negative pigs were vaccinated as controls. The humoral and interferon gamma responses as well as the CSFV RNA loads were monitored for 21 days post-vaccination. No vaccine viral RNA was detected in the serum samples and tonsils from CSFV postnatally persistently infected pigs for 21 days post-vaccination. Furthermore, no E2-specific antibody response or neutralising antibody titres were shown in CSFV persistently infected vaccinated animals. Likewise, no of IFN-gamma producing cell response against CSFV or PHA was observed. To our knowledge, this is the first report demonstrating the absence of a response to vaccination in CSFV persistently infected pigs. PMID:26159607

  17. Rationalizing the development of live attenuated virus vaccines

    Lauring, Adam S.; Jones, Jeremy O.; Andino, Raul

    2010-01-01

    Since the first demonstration of the protective effects of vaccinia inoculation, vaccination has been one of the medicine’s greatest successes. The design of vaccines against viral disease has evolved considerably over the last 50 years. Classically attenuated viruses, those created by passaging a virus in cultured cells, have proven to be an effective means for preventing many viral diseases, including smallpox, polio, measles, mumps, and yellow fever. However, empiric attenuation is not a r...

  18. Methods to Evaluate the Preclinical Safety and Immunogenicity of Genetically Modified Live-Attenuated Leishmania Parasite Vaccines.

    Gannavaram, Sreenivas; Bhattacharya, Parna; Dey, Ranadhir; Ismail, Nevien; Avishek, Kumar; Salotra, Poonam; Selvapandiyan, Angamuthu; Satoskar, Abhay; Nakhasi, Hira L

    2016-01-01

    Live-attenuated parasite vaccines are being explored as potential vaccine candidates since other approaches of vaccination have not produced an effective vaccine so far. In order for live-attenuated parasite vaccines to be tested in preclinical studies and possibly in clinical studies, the safety and immunogenicity of these organisms must be rigorously evaluated. Here we describe methods to test persistence in the immunized host and immunogenicity, and to identify biomarkers of vaccine safety and efficacy with particular reference to genetically attenuated Leishmania parasites. PMID:27076157

  19. Α1-giardin based live heterologous vaccine protects against Giardia lamblia infection in a murine model.

    Jenikova, Gabriela; Hruz, Petr; Andersson, Mattias K; Tejman-Yarden, Noa; Ferreira, Patricia C D; Andersen, Yolanda S; Davids, Barbara J; Gillin, Frances D; Svärd, Staffan G; Curtiss, Roy; Eckmann, Lars

    2011-11-28

    Giardia lamblia is a leading protozoan cause of diarrheal disease worldwide, yet preventive medical strategies are not available. A crude veterinary vaccine has been licensed for cats and dogs, but no defined human vaccine is available. We tested the vaccine potential of three conserved antigens previously identified in human and murine giardiasis, α1-giardin, α-enolase, and ornithine carbamoyl transferase, in a murine model of G. lamblia infection. Live recombinant attenuated Salmonella enterica Serovar Typhimurium vaccine strains were constructed that stably expressed each antigen, maintained colonization capacity, and sustained total attenuation in the host. Oral administration of the vaccine strains induced antigen-specific serum IgG, particularly IgG(2A), and mucosal IgA for α1-giardin and α-enolase, but not for ornithine carbamoyl transferase. Immunization with the α1-giardin vaccine induced significant protection against subsequent G. lamblia challenge, which was further enhanced by boosting with cholera toxin or sublingual α1-giardin administration. The α-enolase vaccine afforded no protection. Analysis of α1-giardin from divergent assemblage A and B isolates of G. lamblia revealed >97% amino acid sequence conservation and immunological cross-reactivity, further supporting the potential utility of this antigen in vaccine development. Together. These results indicate that α1-giardin is a suitable candidate antigen for a vaccine against giardiasis. PMID:22001876

  20. Vacuna fenol-insoluble contra la brucelosis humana: evaluacion del poder inmunogenico en cobayos Phenol insoluble extract vaccine for the prevention of brucellosis in humans: evaluation in guinea pigs

    J. Bolpe

    1991-02-01

    Full Text Available Se examinó una vacuna diseñada para inmunizar al hombre, preparada con extracto de fenol insoluble, para determinar si protegía a cobayos contra el desafío con la cepa virulenta B. abortus 2308. Se incluyeron en el experimento las vacunas vivas atenuadas B. abortus cepa 19 y B. melitensis Rev. 1, para comparar los resultados. Se vacunaron 93 animales en cada grupo, que fueron subdivididos en subgrupos de 31 y se los desafió con 10(4, 10³ y 10² unidades formadoras de colonias de la cepa B. abortus 2308 virulenta. El análisis global de los resultados demostró una protección del 11.9% en animales vacunados con el extracto de fenol insoluble, 65% en los vacunados con B. abortus cepa 19 y 95% en el grupo que recibió vacuna B. melitensis Rev. 1.A phenol insoluble extract vaccine proposed to immunize men against brucellosis was tested for its ability in protecting guinea pigs against challenge with virulent Brucella abortus strain 2308. Living attenuated Brucella abortus strain 19 and B. melitensis Rev. 1 were included in the experiment for comparison. Ninety three animals were vaccinated in each group and subdivided in subgroups of 31 for challenge with 10(4,10³ and 10² colony forming units of virulent B. abortus 2308. A global analysis of the results showed protection of 11.9%, 65% and 95% in animals vaccinated with phenol insoluble extract, strain 19 and Rev. 1, respectively.

  1. CANINE DISTEMPER VIRUS ANTIBODY TITERS IN DOMESTIC CATS AFTER DELIVERY OF A LIVE ATTENUATED VIRUS VACCINE.

    Ramsay, Edward; Sadler, Ryan; Rush, Robert; Seimon, Tracie; Tomaszewicz, Ania; Fleetwood, Ellen A; McAloose, Denise; Wilkes, Rebecca P

    2016-06-01

    Three methods for delivering a live attenuated canine distemper virus (CDV) vaccine to domestic cats ( Felis catus ) were investigated, as models for developing vaccination protocols for tigers (Panthera tigris). Twenty domestic cats were randomly divided into four treatment groups: saline injection (negative controls); and oral, intranasal, and subcutaneous vaccinates. Cats were injected with saline or a CDV vaccine (Nobivac DP, Merck) at wk 0 and 4. Blood and nasal swabs were collected at wk 0 (prior to the initial vaccination) and weekly thereafter for 9 wk. Urine samples were collected on wk 1 to 9 after initial vaccination. Forty-nine weeks following the initial vaccination series, three cats from the subcutaneous group and three cats from the intranasal group were revaccinated. Blood was collected immediately prior, and 7 and 21 days subsequent to revaccination. Nasal swabs and urine samples were collected from each cat prior to wk 49 revaccination and daily for 7 days thereafter. Nasal swabs and urine were analyzed by quantitative PCR for vaccine virus presence. Sera were tested for CDV antibodies by virus neutralization. All cats were sero-negative for CDV antibodies at the beginning of the study, and saline-injected cats remained sero-negative throughout the study. A dramatic anamnestic response was seen following wk 4 subcutaneous vaccinations, with titers peaking at wk 6 (geometric mean = 2,435.5). Following wk 49 revaccination, subcutaneous vaccinates again mounted impressive titers (wk 52 geometric mean = 2,048). Revaccination of the intranasal group cats at wk 49 produced a small increase in titers (wk 52 geometric mean = 203). CDV viral RNA was detected in six nasal swabs but no urine samples, demonstrating low viral shedding postvaccination. The strong antibody response to subcutaneous vaccination and the lack of adverse effects suggest this vaccine is safe and potentially protective against CDV infection in domestic cats. PMID:27468028

  2. No evidence of murine leukemia virus-related viruses in live attenuated human vaccines.

    William M Switzer

    Full Text Available BACKGROUND: The association of xenotropic murine leukemia virus (MLV-related virus (XMRV in prostate cancer and chronic fatigue syndrome reported in previous studies remains controversial as these results have been questioned by recent data. Nonetheless, concerns have been raised regarding contamination of human vaccines as a possible source of introduction of XMRV and MLV into human populations. To address this possibility, we tested eight live attenuated human vaccines using generic PCR for XMRV and MLV sequences. Viral metagenomics using deep sequencing was also done to identify the possibility of other adventitious agents. RESULTS: All eight live attenuated vaccines, including Japanese encephalitis virus (JEV (SA-14-14-2, varicella (Varivax, measles, mumps, and rubella (MMR-II, measles (Attenuvax, rubella (Meruvax-II, rotavirus (Rotateq and Rotarix, and yellow fever virus were negative for XMRV and highly related MLV sequences. However, residual hamster DNA, but not RNA, containing novel endogenous gammaretrovirus sequences was detected in the JEV vaccine using PCR. Metagenomics analysis did not detect any adventitious viral sequences of public health concern. Intracisternal A particle sequences closest to those present in Syrian hamsters and not mice were also detected in the JEV SA-14-14-2 vaccine. Combined, these results are consistent with the production of the JEV vaccine in Syrian hamster cells. CONCLUSIONS: We found no evidence of XMRV and MLV in eight live attenuated human vaccines further supporting the safety of these vaccines. Our findings suggest that vaccines are an unlikely source of XMRV and MLV exposure in humans and are consistent with the mounting evidence on the absence of these viruses in humans.

  3. Macaques vaccinated with live-attenuated SIV control replication of heterologous virus

    Reynolds, Matthew R.; Weiler, Andrea M.; Weisgrau, Kim L.; Piaskowski, Shari M.; Furlott, Jessica R.; Weinfurter, Jason T.; Kaizu, Masahiko; Soma, Taeko; León, Enrique J.; MacNair, Caitlin; Leaman, Dan P.; Zwick, Michael B.; Gostick, Emma; Musani, Solomon K.; Price, David A.

    2008-01-01

    An effective AIDS vaccine will need to protect against globally diverse isolates of HIV. To address this issue in macaques, we administered a live-attenuated simian immunodeficiency virus (SIV) vaccine and challenged with a highly pathogenic heterologous isolate. Vaccinees reduced viral replication by ∼2 logs between weeks 2–32 (P ≤ 0.049) postchallenge. Remarkably, vaccinees expressing MHC-I (MHC class I) alleles previously associated with viral control completely suppressed acute phase repl...

  4. Understanding the host-pathogen interaction saves lives: lessons from vaccines and vaccinations.

    Garon, Julie R; Orenstein, Walter A

    2015-10-01

    Vaccines are one of the most successful and cost-effective public health tools employed to date, yet these benefits are only realized when the life-saving intervention reaches each and every targeted individual. Vaccine development is prioritized based on a number of factors such as health burden, feasibility, and determination of potential target populations. But only through an arduous process of pre-clinical development and progressive clinical trials does a vaccine become licensed and recommended for use. Once used in a wider and more diverse population safety issues, long-term impact and other unintended outcomes may become apparent, influencing policy modification. This commentary explores the role host-pathogen interaction plays in vaccine development and the operational and policy considerations that may impact vaccine success post-licensure. PMID:25974089

  5. Successful comeback of the single-dose live oral cholera vaccine CVD 103-HgR.

    Herzog, Christian

    2016-01-01

    Effective and easy to administer cholera vaccines are in need more than ever, for at risk populations and travellers alike. In many parts of the world cholera is still endemic, causing outbreaks and constituting repeatedly serious public health problems. The oral live cholera vaccine CVD 103-HgR (Orochol, Mutachol), the first genetically modified organism (GMO) used as vaccine, was in its time (launched 1993, Switzerland) the ideal cholera vaccine: single-dose, protective efficacy of 80-100% against moderate to severe cholera, acting within 8 days and exhibiting excellent safety, indiscernible from placebo. However, there were strong headwinds: In the 1990s the indication for cholera vaccines was generally downplayed by experts and in 1997 the European Commission called for a moratorium of GMOs which blocked the registration in the European Union. Thus, demand for this vaccine remained low and in 2003 it was taken off the market for economic reasons. After a decade in obscurity it (Vaxchora) has resurfaced again, now produced in the U.S. and equipped with a U.S. FDA license (June 10, 2016). What had happened? This commentary gives a critical account of an almost unbelievable string of misadventures, emerging adverse circumstances and man-made failures which nearly killed this single-dose live oral cholera vaccine. The good news is that patience and persistence lead to success in the end, allowing good science to prevail for the benefit of those in need. PMID:27425792

  6. Live bacterial delivery systems for development of mucosal vaccines

    Thole, J.E.R.; Dalen, P.J. van; Havenith, C.E.G.; Pouwels, P.H.; Seegers, J.F.M.L.; Tielen, F.D.; Zee, M.D. van der; Zegers, N.D.; Shaw, M.

    2000-01-01

    By expression of foreign antigens in attenuated strains derived from bacterial pathogens and in non-pathogenic commensal bacteria, recombinant vaccines are being developed that aim to stimulate mucosal immunity. Recent advances in the pathogenesis and molecular biology of these bacteria have allowed

  7. Successful vaccination with a polyvalent live vector despite existing immunity to an expressed antigen.

    Flexner, C; Murphy, B R; Rooney, J F; Wohlenberg, C; Yuferov, V; Notkins, A L; Moss, B

    1988-09-15

    A global vaccination strategy must take into account production and delivery costs as well as efficacy and safety. A heat-stable, polyvalent vaccine that requires only one inoculation and induces a high level of humoral and cellular immunity against several diseases is therefore desirable. A new approach is to use live microorganisms such as mycobacteria, enteric bacteria, adenoviruses, herpesviruses and poxviruses as vaccine vectors. A potential limitation of live polyvalent vaccines, however, is existing immunity within the target population not only to the vector, but to any of the expressed antigens. This could restrict replication of the vector, curtail expression of antigens, and reduce the total immune response to the vaccine. Recently acquired immunity to vaccinia virus can severely limit the efficacy of a live recombinant vaccinia-based vaccine, so a strategy involving closely spaced inoculations with the same vector expressing different antigens may present difficulties. We have constructed a recombinant vaccinia virus that expresses surface proteins from two diverse pathogens, influenza A virus haemagglutinin and herpes simplex virus type 1 (HSV-1) glycoprotein D. Mice that had recently recovered from infection with either HSV-1 or influenza A virus could still be effectively immunized with the double recombinant. PMID:2842693

  8. [PERSPECTIVES OF DEVELOPMENT OF LIVE RECOMBINANT ANTHRAX VACCINES BASED ON OPPORTUNISTIC AND APATHOGENIC MICROORGANISMS].

    Popova, P Yu; Mikshis, N I

    2016-01-01

    Live genetic engineering anthrax vaccines on the platform of avirulent and probiotic micro-organisms are a safe and adequate alternative to preparations based on attenuated Bacillus anthracis strains. Mucosal application results in a direct contact of the vaccine preparations with mucous membranes in those organs arid tissues of the macro-organisms, that are exposed to the pathogen in the first place, resulting in a development of local and systemic immune response. Live recombinant anthrax vaccines could be used both separately as well as in a prime-boost immunization scheme. The review focuses on immunogenic and protective properties of experimental live genetic engineering prearations, created based on members of geni of Salmonella, Lactobacillus and adenoviruses. PMID:27029122

  9. Room temperature stabilization of oral, live attenuated Salmonella enterica serovar Typhi-vectored vaccines.

    Ohtake, Satoshi; Martin, Russell; Saxena, Atul; Pham, Binh; Chiueh, Gary; Osorio, Manuel; Kopecko, Dennis; Xu, Deqi; Lechuga-Ballesteros, David; Truong-Le, Vu

    2011-03-24

    Foam drying, a modified freeze drying process, was utilized to produce a heat-stable, live attenuated Salmonella Typhi 'Ty21a' bacterial vaccine. Ty21a vaccine was formulated with pharmaceutically approved stabilizers, including sugars, plasticizers, amino acids, and proteins. Growth media and harvesting conditions of the bacteria were also studied to enhance resistance to desiccation stress encountered during processing as well as subsequent storage at elevated temperatures. The optimized Ty21a vaccine, formulated with trehalose, methionine, and gelatin, demonstrated stability for approximately 12 weeks at 37°C (i.e., time required for the vaccine to decrease in potency by 1log(10)CFU) and no loss in titer at 4 and 25°C following storage for the same duration. Furthermore, the foam dried Ty21a elicited a similar immunogenic response in mice as well as protection in challenge studies compared to Vivotif™, the commercial Ty21a vaccine. The enhanced heat stability of the Ty21a oral vaccine, or Ty21a derivatives expressing foreign antigens (e.g. anthrax), could mitigate risks of vaccine potency loss during long-term storage, shipping, delivery to geographical areas with warmer climates or during emergency distribution following a bioterrorist attack. Because the foam drying process is conducted using conventional freeze dryers and can be readily implemented at any freeze drying manufacturing facility, this technology appears ready and appropriate for large scale processing of foam dried vaccines. PMID:21300096

  10. Conjunctival and intramuscular vaccination of pigs with a live avirulent strain of Salmonella cholerae-suis.

    Kramer, T T; Pardon, P; Marly, J; Bernard, S

    1987-07-01

    An avirulent mutant strain of Salmonella cholerae-suis was cloned for resistance to streptomycin and nalidixic acid. The mutant strain 33-13 also was used because of its avirulence and immunogenicity in mice. Weaned pigs were vaccinated with live strain 33-13; 5 pigs were vaccinated by conjunctivally administered 5.5 X 10(7) organisms (low dose), 5 were conjunctivally administered 5.5 X 10(9) organisms (high dose), and 5 pigs were administered 5.5 X 10(9) organisms (high dose) IM. Transient fever and transient fecal shedding of the vaccine strain developed in pigs vaccinated IM, but not in 2 groups of pigs vaccinated conjunctivally. After intratracheal administration of virulent strain 38-9, nonvaccinated control pigs (n = 9) developed persistent high fever, anorexia, bacteremia, diarrhea, and fecal shedding of strain 38-9, whereas vaccinated pigs remained afebrile and clinically normal. Nonvaccinated and uninfected sentinel pigs (n = 8) were kept in units of 2 pigs with each group of experimental pigs, and remained healthy throughout the experiment. Thirteen vaccinated and 7 nonvaccinated control pigs were killed 42 days after vaccination, and 2 vaccinated, 2 nonvaccinated, and 8 sentinel control pigs were killed 58 days after vaccination. Ten organs were evaluated by quantitative bacteriology on necropsy of all pigs for the presence of vaccine strain 33-13, and for virulent strain 38-9. Strain 33-13 was not found. Lung and liver, lesions were found in most of the nonvaccinated control pigs, with a high frequency of recovery of large numbers of strain 38-9 from the mesenteric lymph nodes, lungs, liver, and ileum.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:3631689

  11. Live and Inactivated Influenza Vaccines Induce Similar Humoral Responses, but Only Live Vaccines Induce Diverse T-Cell Responses in Young Children

    Hoft, Daniel F.; Babusis, Elizabeth; Worku, Shewangizaw; Spencer, Charles T.; Lottenbach, Kathleen; Truscott, Steven M.; Abate, Getahun; Sakala, Isaac G.; Edwards, Kathryn M.; CREECH, C. BUDDY; Gerber, Michael A.; Bernstein, David I.; Newman, Frances; Graham, Irene; Anderson, Edwin L.

    2011-01-01

    Background. Two doses of either trivalent live attenuated or inactivated influenza vaccines (LAIV and TIV, respectively) are approved for young children (≥24 months old for LAIV and ≥6 months old for TIV) and induce protective antibody responses. However, whether combinations of LAIV and TIV are safe and equally immunogenic is unknown. Furthermore, LAIV is more protective than TIV in children for unclear reasons.

  12. Replication and transmission of live attenuated infectious laryngotracheitis virus (ILTV) vaccines.

    Rodríguez-Avila, Andrés; Oldoni, Ivomar; Riblet, Sylva; García, Maricarmen

    2007-12-01

    The aim of this study was to evaluate the replication of live attenuated infectious laryngotracheitis virus vaccines in selected tissues and their ability to transmit to contact-exposed birds. Four-week-old specific-pathogen-free chickens were eye drop-inoculated with tissue culture origin (TCO) and chicken embryo origin (CEO) vaccines. Contact-exposed chickens were housed in direct contact with eye drop-inoculated chickens from the first day postinoculation. Virus isolation and real-time polymerase chain reaction were used to detect the presence of live virus and viral DNA, respectively, in the trachea, trigeminal ganglia, eye conjunctiva, cecal tonsils, and cloaca from eye drop-inoculated and contact-exposed birds at days 2, 4, 5 to 10, 14, 18, 21, 24, and 28 postinoculation. No differences were observed in the ability of the TCO and CEO vaccines to replicate in the examined tissues. Both vaccines presented a localized replication in the eye conjunctiva and the trachea. Both vaccines were capable of transmitting to contact-exposed birds, attaining peaks of viral DNA as elevated as those observed in inoculated birds. The CEO vaccine replicated faster and reached higher viral genome copy number than the TCO vaccine in the conjunctiva and trachea of eye drop-inoculated and contact-exposed birds. The viral DNA from both vaccines migrated to the trigeminal ganglia during early stages of infection. Although the CEO and TCO vaccines were not recovered from the cecal tonsils and the cloaca, low levels of viral DNA were detected at these sites during the peak of viral replication in the upper respiratory tract. PMID:18251401

  13. Cleavage of bovine immunoglobulin G1 in whey by an extracellular material from Brucella abortus.

    Nielsen, K.

    1985-01-01

    Culture extracts of in vitro grown Brucella abortus were demonstrated to cleave a part of the Fc portion of bovine immunoglobulin G1 in whey but not in serum or as a purified protein from serum. Supernates from Strains 19 and 2308 of B. abortus were both capable of this hydrolysis whereas living cells were not. The cleavage process was independent of antibody activity to B. abortus, appeared to require factor(s) found only in some whey samples and was ineffective with the other bovine immunog...

  14. Evaluation of a commercial modified live virus fowl pox vaccine for the control of "variant" fowl poxvirus infections.

    Fatunmbi, O O; Reed, W M

    1996-01-01

    Three-week-old specific-pathogen-free chickens were vaccinated with either a commercial modified live virus fowl pox vaccine or five "variant" poxvirus field isolates. Immunity engendered by the commercial modified vaccine or field isolates was challenged with either the variant isolates or commercial modified vaccine virus. The commercial modified vaccine did not adequately protect vaccinates against challenge with the variant isolates. The percentages of vaccinated chickens protected following challenge with each of the variant isolates were 70%, 20%, 30%, 20%, and 25%. However, when the isolates were applied as vaccines, 100% of the vaccinates were protected against challenge from the modified vaccine virus. Furthermore, the variant poxvirus isolates offered excellent protection from challenge with homologous variant isolates. The modified live virus vaccine was expected to offer significant protection against challenge from the variant pox isolates, but in this experiment it did not. The variant isolates tested may be good vaccine candidates to prevent the vaccine breaks currently encountered in previously pox-vaccinated flocks. PMID:8883788

  15. Use of Arthrobacter davidanieli as a live vaccine against Renibacterium salmoninarum and Piscirickettsia salmonis in salmonids.

    Salonius, K; Siderakis, C; MacKinnon, A M; Griffiths, S G

    2005-01-01

    Arthrobacter davidanieli (proposed species nomenclature) is a non-pathogenic Gram-variable bacterium related to, but taxonomically distinct from, Renibacterium salmoninarum, the aetiological agent of bacterial kidney disease (BKD). We have demonstrated that vaccination with live A. davidanieli is effective against BKD in Atlantic salmon (Salmo salar) showing above 80 relative percent survival in experimental challenge trials. Good protection was also demonstrated in long-term field trials where Atlantic salmon were naturally exposed to R. salmoninarum challenge until 23 months after vaccination. The same vaccine, which is licensed in Canada against BKD has also proved effective in reducing mortality from experimental challenge of coho salmon (Oncorhynchus kisutch) with Piscirickettsia salmonis, the causative agent of piscirickettsiosis. Under field conditions in Chile, use of the vaccine led to a significant reduction in piscirickettsiosis mortality in coho salmon over 10 months following sea transfer. The vaccine strain is unique in that it is the first live organism to be licensed as a vaccine for use in aquaculture. Potential mechanisms of protection against the two taxonomically disparate pathogens are discussed. PMID:15962482

  16. Development of a stable liquid formulation of live attenuated influenza vaccine.

    White, Jessica A; Estrada, Marcus; Flood, E Alexander; Mahmood, Kutub; Dhere, Rajeev; Chen, Dexiang

    2016-07-12

    Vaccination is the most effective means of preventing influenza. However, the cost of producing annual seasonal influenza vaccines puts them out of reach for most developing countries. While live attenuated influenza vaccines are among the most efficacious and can be manufactured at low cost, they may require lyophilization to be stable enough for developing-country use, which adds a significant cost burden. The development of a liquid live attenuated seasonal influenza vaccine that is stable for around a year-the duration of an annual influenza season-would significantly improve not only the production output but also the use and accessibility of influenza vaccines in low-resource settings. In this study, potential stabilizing excipients were screened and optimized using the least stable influenza vaccine strain presently known, H1N1 (A/California/07/2009), as a model. The stability-conferring properties of the lead formulations were also tested with a Type B strain of influenza virus (B/Brisbane/60/2008). Stability was also evaluated with higher titers of influenza virus and exposure to agitation and freeze-thaw stresses to further confirm the stability of the lead formulations. Through this process, we identified a liquid formulation consisting of sucrose phosphate glutamate buffer with 1% arginine and 0.5% recombinant human serum albumin that provided storage stability of one year at 2-8°C for the influenza A and B strains tested. PMID:27155495

  17. The effect of a live Neospora caninum tachyzoite vaccine in naturally infected pregnant dairy cows.

    Mazuz, M L; Fish, L; Wolkomirsky, R; Leibovich, B; Reznikov, D; Savitsky, I; Golenser, J; Shkap, V

    2015-06-15

    Neosporosis, caused by the intracellular protozoan Neospora caninum, is a major cause of abortion and reproductive failure in cattle worldwide. The principal route of transmission of neosporosis is via in utero infection of the offspring. There is no effective prophylactic treatment or vaccine available against bovine neosporosis. A N. caninum NcIs491 isolate was examined for its ability to immunize and reduce abortions in naturally infected dairy cows under field conditions. N. caninum-seropositive pregnant dams were inoculated with 10(8) live tachyzoites during mid-term pregnancy. A total of 520 N. caninum seropositive dams were included in this study, of these, 146 were immunized and 374 cows served as a non-vaccinated control group. A significantly lower incidence of abortion was observed in vaccinated compared to non-vaccinated cows, 16 and 26% respectively (P=0.01), with a vaccine efficacy of 39%. However, the number of seropositive offspring remained similar in both groups. Overall, this field trial suggests that vaccination with live N. caninum tachyzoites should be considered as an effective measure to reduce abortions caused by neosporosis in naturally infected cows. PMID:25890821

  18. A Francisella tularensis live vaccine strain that improves stimulation of antigen-presenting cells does not enhance vaccine efficacy.

    Deanna M Schmitt

    Full Text Available Vaccination is a proven strategy to mitigate morbidity and mortality of infectious diseases. The methodology of identifying and testing new vaccine candidates could be improved with rational design and in vitro testing prior to animal experimentation. The tularemia vaccine, Francisella tularensis live vaccine strain (LVS, does not elicit complete protection against lethal challenge with a virulent type A Francisella strain. One factor that may contribute to this poor performance is limited stimulation of antigen-presenting cells. In this study, we examined whether the interaction of genetically modified LVS strains with human antigen-presenting cells correlated with effectiveness as tularemia vaccine candidates. Human dendritic cells infected with wild-type LVS secrete low levels of proinflammatory cytokines, fail to upregulate costimulatory molecules, and activate human T cells poorly in vitro. One LVS mutant, strain 13B47, stimulated higher levels of proinflammatory cytokines from dendritic cells and macrophages and increased costimulatory molecule expression on dendritic cells compared to wild type. Additionally, 13B47-infected dendritic cells activated T cells more efficiently than LVS-infected cells. A deletion allele of the same gene in LVS displayed similar in vitro characteristics, but vaccination with this strain did not improve survival after challenge with a virulent Francisella strain. In vivo, this mutant was attenuated for growth and did not stimulate T cell responses in the lung comparable to wild type. Therefore, stimulation of antigen-presenting cells in vitro was improved by genetic modification of LVS, but did not correlate with efficacy against challenge in vivo within this model system.

  19. Co-administration of live measles and yellow fever vaccines and inactivated pentavalent vaccines is associated with increased mortality compared with measles and yellow fever vaccines only. An observational study from Guinea-Bissau

    Fisker, Ane Bærent; Ravn, Henrik Bylling; Rodrigues, Amabelia;

    2014-01-01

    Studies from low-income countries indicate that co-administration of inactivated diphtheria-tetanus-pertussis (DTP) vaccine and live attenuated measles vaccine (MV) is associated with increased mortality compared with receiving MV only. Pentavalent (DTP-H. Influenza type B-Hepatitis B) vaccine is...

  20. Stability of live attenuated rotavirus vaccine with selected preservatives and primary containers.

    Lal, Manjari; Jarrahian, Courtney; Zhu, Changcheng; Hosken, Nancy A; McClurkan, Chris L; Koelle, David M; Saxon, Eugene; Roehrig, Andrew; Zehrung, Darin; Chen, Dexiang

    2016-05-11

    Rotavirus infection, which can be prevented by vaccination, is responsible for a high burden of acute gastroenteritis disease in children, especially in low-income countries. An appropriate formulation, packaging, and delivery device for oral rotavirus vaccine has the potential to reduce the manufacturing cost of the vaccine and the logistical impact associated with introduction of a new vaccine, simplify the vaccination procedure, and ensure that the vaccine is safely and accurately delivered to children. Single-dose prefilled presentations can be easy to use; however, they are typically more expensive, can be a bottleneck during production, and occupy a greater volume per dose vis-à-vis supply chain storage and medical waste disposal, which is a challenge in low-resource settings. Multi-dose presentations used thus far have other issues, including increased wastage of vaccine and the need for separate delivery devices. In this study, the goals were to evaluate both the technical feasibility of using preservatives to develop a liquid multi-dose formulation and the primary packaging alternatives for orally delivered, liquid rotavirus vaccines. The feasibility evaluation included evaluation of commonly used preservatives for compatibility with rotavirus vaccines and stability testing of rotavirus vaccine in various primary containers, including Lameplast's plastic tubes, BD's oral dispenser version of Uniject™ (Uniject DP), rommelag's blow-fill-seal containers, and MEDInstill's multi-dose vial and pouch. These presentations were compared to a standard glass vial. The results showed that none of the preservatives tested were compatible with a live attenuated rotavirus vaccine because they had a detrimental effect on the viability of the virus. In the presence of preservatives, vaccine virus titers declined to undetectable levels within 1 month. The vaccine formulation without preservatives maintained a stability profile over 12 months in all primary containers

  1. Safety and immunogenicity of a live attenuated Japanese encephalitis chimeric virus vaccine (IMOJEV®) in children.

    Chokephaibulkit, K; Houillon, G; Feroldi, E; Bouckenooghe, A

    2016-02-01

    JE-CV (IMOJEV®, Sanofi Pasteur, France) is a live attenuated virus vaccine constructed by inserting coding sequences of the prM and E structural proteins of the Japanese encephalitis SA14-14-2 virus into the genome of yellow fever 17D virus. Primary immunization with JE-CV requires a single dose of the vaccine. This article reviews clinical trials of JE-CV in children aged up to 6 years conducted in countries across South-East Asia. Strong and persistent antibody responses were observed after single primary and booster doses, with 97% of children seroprotected up to five years after booster vaccination. Models of long-term antibody persistence predict a median duration of protection of approximately 30 years after a booster dose. The safety and reactogenicity profiles of JE-CV primary and booster doses are comparable to other widely used childhood vaccines. PMID:26588242

  2. Comparative study on three locally developed live orf virus vaccines for sheep in Saudi Arabia

    Fahdel M. Housawi

    2012-02-01

    Full Text Available The epidemiology of orf virus infection in Saudi Arabia (SA has been researched since 1990. The results obtained during this period indicate that the disease is widespread, has great economic impact and that no vaccine has been used against it. The present study compares the immunogenicity and protective efficacy of three locally developed live orf virus vaccines. Two of them differ in their passage history in Vero cell culture and the third was used as a virulent virus in glycerine buffer. To the best of the authors’ knowledge, no similar comparative study has been conducted in the Middle East utilising three types of vaccines prepared from the same virus strain. Selection of the candidate seed orf virus and performance of the quality control tests were as laid out by the OIE for veterinary vaccine production. The vaccine seed virus was a field orf virus isolated from a previous orf outbreak in Saudi Arabia. A simple novel formula was developed to calculate the rate of reduction in the healing time (RHT % in the challenged sheep. This allowed direct comparison of the efficacy of the three types of vaccines employed in the present study. The efficacy of each vaccine was tested on a cohort of local Noemi sheep.

  3. Immunogenicity and protective efficacy of a live attenuated H5N1 vaccine in nonhuman primates.

    Shufang Fan

    2009-05-01

    Full Text Available The continued spread of highly pathogenic H5N1 influenza viruses among poultry and wild birds, together with the emergence of drug-resistant variants and the possibility of human-to-human transmission, has spurred attempts to develop an effective vaccine. Inactivated subvirion or whole-virion H5N1 vaccines have shown promising immunogenicity in clinical trials, but their ability to elicit protective immunity in unprimed human populations remains unknown. A cold-adapted, live attenuated vaccine with the hemagglutinin (HA and neuraminidase (NA genes of an H5N1 virus A/VN/1203/2004 (clade 1 was protective against the pulmonary replication of homologous and heterologous wild-type H5N1 viruses in mice and ferrets. In this study, we used reverse genetics to produce a cold-adapted, live attenuated H5N1 vaccine (AH/AAca that contains HA and NA genes from a recent H5N1 isolate, A/Anhui/2/05 virus (AH/05 (clade 2.3, and the backbone of the cold-adapted influenza H2N2 A/AnnArbor/6/60 virus (AAca. AH/AAca was attenuated in chickens, mice, and monkeys, and it induced robust neutralizing antibody responses as well as HA-specific CD4+ T cell immune responses in rhesus macaques immunized twice intranasally. Importantly, the vaccinated macaques were fully protected from challenge with either the homologous AH/05 virus or a heterologous H5N1 virus, A/bar-headed goose/Qinghai/3/05 (BHG/05; clade 2.2. These results demonstrate for the first time that a cold-adapted H5N1 vaccine can elicit protective immunity against highly pathogenic H5N1 virus infection in a nonhuman primate model and provide a compelling argument for further testing of double immunization with live attenuated H5N1 vaccines in human trials.

  4. Immunogenicity and Protective Efficacy of a Live Attenuated H5N1 Vaccine in Nonhuman Primates

    Fan, Shufang; Gao, Yuwei; Shinya, Kyoko; Li, Chris Kafai; Li, Yanbing; Shi, Jianzhong; Jiang, Yongping; Suo, Yongbing; Tong, Tiegang; Zhong, Gongxun; Song, Jiasheng; Zhang, Ying; Tian, Guobin; Guan, Yuntao; Xu, Xiao-Ning; Bu, Zhigao; Kawaoka, Yoshihiro; Chen, Hualan

    2009-01-01

    The continued spread of highly pathogenic H5N1 influenza viruses among poultry and wild birds, together with the emergence of drug-resistant variants and the possibility of human-to-human transmission, has spurred attempts to develop an effective vaccine. Inactivated subvirion or whole-virion H5N1 vaccines have shown promising immunogenicity in clinical trials, but their ability to elicit protective immunity in unprimed human populations remains unknown. A cold-adapted, live attenuated vaccine with the hemagglutinin (HA) and neuraminidase (NA) genes of an H5N1 virus A/VN/1203/2004 (clade 1) was protective against the pulmonary replication of homologous and heterologous wild-type H5N1 viruses in mice and ferrets. In this study, we used reverse genetics to produce a cold-adapted, live attenuated H5N1 vaccine (AH/AAca) that contains HA and NA genes from a recent H5N1 isolate, A/Anhui/2/05 virus (AH/05) (clade 2.3), and the backbone of the cold-adapted influenza H2N2 A/AnnArbor/6/60 virus (AAca). AH/AAca was attenuated in chickens, mice, and monkeys, and it induced robust neutralizing antibody responses as well as HA-specific CD4+ T cell immune responses in rhesus macaques immunized twice intranasally. Importantly, the vaccinated macaques were fully protected from challenge with either the homologous AH/05 virus or a heterologous H5N1 virus, A/bar-headed goose/Qinghai/3/05 (BHG/05; clade 2.2). These results demonstrate for the first time that a cold-adapted H5N1 vaccine can elicit protective immunity against highly pathogenic H5N1 virus infection in a nonhuman primate model and provide a compelling argument for further testing of double immunization with live attenuated H5N1 vaccines in human trials. PMID:19412338

  5. Researches on efficiency of Romvac’s company live vaccines used in rabies imunoprophylaxy in canides

    Gugiu, I.,

    2008-06-01

    Full Text Available The paper present the methods for preparation and control of the live rabies vaccines, RABIROM and RABIROM-V, produced by ROMVAC Co. S.A., to be used for prevention of the rabies în dogs, cats and foxes.

  6. Researches on efficiency of Romvac’s company live vaccines used in rabies imunoprophylaxy in canides

    Gugiu, I.,; Chiriaca Ionescu,; Stiube, P.,; Toacsen, E.,; Mihai, I.,; Zavoiu, F.,; Motiu, Gh.,; Mirela Vasile; Ana Sandu,; Daniela Motiu,; Botea, D.

    2008-01-01

    The paper present the methods for preparation and control of the live rabies vaccines, RABIROM and RABIROM-V, produced by ROMVAC Co. S.A., to be used for prevention of the rabies în dogs, cats and foxes.

  7. A comparative study of live attenuated F strain-derived Mycoplasma gallisepticum vaccines

    Commercially available attenuated strains of Mycoplasma gallisepticum (MG) are commonly used within the layer industry to control MG-induced mycoplasmosis. Among these are two live MG vaccines derived from the moderately pathogenic MG “chick F” strain. In the present study, the commercially availa...

  8. Development of live attenuated Streptococcus agalactiae as potential vaccines by selecting for resistance to sparfloxacin

    To develop attenuated bacteria as potential live vaccines, sparfloxacin was used in this study to modify 40 isolates of Streptococcus agalactiae. Majority of S. agalactiae used in this study were able to develop at least 80-fold resistance to sparfloxacin. When the virulence of the sparfloxacin-resi...

  9. Development of live attenuated sparfloxacin-resistant Streptococcus agalactiae polyvalent vaccines to protect Nile tilapia

    To develop attenuated bacteria as potential live vaccines, sparfloxacin was used in this study to modify 40 isolates of Streptococcus agalactiae. Majority of S. agalactiae used in this study were able to develop at least 80-fold resistance to sparfloxacin. When the virulence of the sparfloxacin-resi...

  10. 76 FR 3075 - Availability of an Environmental Assessment for Field Testing Feline Leukemia Vaccine, Live...

    2011-01-19

    ... Animal and Plant Health Inspection Service Availability of an Environmental Assessment for Field Testing Feline Leukemia Vaccine, Live Canarypox Vector AGENCY: Animal and Plant Health Inspection Service, USDA. ACTION: Notice. SUMMARY: We are advising the public that the Animal and Plant Health Inspection...

  11. Cloning of Brucella abortus gene and characterization of expressed 26-kilodalton periplasmic protein: potential use for diagnosis.

    Rossetti, O L; Arese, A I; Boschiroli, M L; Cravero, S L

    1996-01-01

    Brucella spp. are the causative agents of brucellosis in many different hosts, including humans. Most of the serological methods of diagnosis are based on the detection of antilipopolysaccharide antibodies, which makes the differentiation of vaccinated animals from infected animals difficult. By using molecular biology techniques, a gene that encodes a 26-kDa protein (BP26) was isolated from a Brucella abortus S19 genome lambda gt11 library. This protein is in the periplasm of B. abortus and ...

  12. Vaccination of children with a live-attenuated, intranasal influenza vaccine – analysis and evaluation through a Health Technology Assessment

    Andersohn, Frank

    2014-10-01

    Full Text Available [english] Background: Influenza is a worldwide prevalent infectious disease of the respiratory tract annually causing high morbidity and mortality in Germany. Influenza is preventable by vaccination and this vaccination is so far recommended by the (STIKO as a standard vaccination for people from the age of 60 onwards. Up to date a parenterally administered trivalent inactivated vaccine (TIV has been in use almost exclusively. Since 2011 however a live-attenuated vaccine (LAIV has been approved additionally. Consecutively, since 2013 the STIKO recommends LAIV (besides TIV for children from 2 to 17 years of age, within the scope of vaccination by specified indications. LAIV should be preferred administered in children from 2 to 6 of age. The objective of this Health Technology Assessment (HTA is to address various research issues regarding the vaccination of children with LAIV. The analysis was performed from a medical, epidemiological and health economic perspective, as well as from an ethical, social and legal point of view.Method: An extensive systematic database research was performed to obtain relevant information. In addition a supplementary research by hand was done. Identified literature was screened in two passes by two independent reviewers using predefined inclusion and exclusion criteria. Included literature was evaluated in full-text using acknowledged standards. Studies were graded with the highest level of evidence (1++, if they met the criteria of Results: For the medical section, the age of the study participants ranges from 6 months to 17 years. Regarding study efficacy, in children aged 6 months to ≤7 years, LAIV is superior to placebo as well as to a vac-cination with TIV (Relative Risk Reduction – RRR – of laboratory confirmed influenza infection approx. 80% and 50%, respectively. In children aged >7 to 17 years (= 18th year of their lives, LAIV is superior to a vaccination with TIV (RRR 32%. For this age group, no

  13. EXPERIMENTAL TRIALS OF LIVE ATTENUATED AND INACTIVATED STAPHYLOCOCCUS AUREUS VACCINES IN RABBITS

    A. SHAKOOR, M. ATHAR, G. MUHAMMAD, S. U. RAHMAN1, A. A. BUTT2, I. HUSSAIN 2 AND R. AHMAD3

    2006-04-01

    Full Text Available This study was conducted as a preliminary step on the rabbits for comparative efficacy of different vaccines of Staphylococcus aureus. Typical alpha-beta Staph. aureus species from a clinically affected mastitic buffalo was isolated. After proper identification based on cultural and morphological characteristics and API-Staph Trac system, a selected Staph. aureus isolate was used to prepare four different mastitis vaccines (Bacterin, oil-adjuvanted, dextran sulphate adjuvanted and live attenuated after confirmation for pathogenicity and antigenicity, followed by its safety and sterility evaluation. Vaccines were tried in 25 rabbits divided into 5 equal groups. A separate vaccine was administered s/c @ 0.2 ml per animal and boosted at 15 days later. It was found that IHA antibody titers were higher (GMT 32-128 in live attenuated, dextran sulphate adjuvanted (GMT 32-128 and oil-adjuvanted (GMT 16-64 than the bacterin treated (GMT 16-32 group. All the vaccines showed an apparent immune response than the unvaccinated control group.

  14. Live Typhoid Vaccine for IBD-Patients—Well Tolerated and with Possible Therapeutic Effect

    Gunnar Nysæter

    2008-05-01

    Full Text Available Background: Our incidental observation of a remarkable improvement of disease activity following vaccination against typhoid in a patient with inflammatory bowel disease (IBD was the incentive of this pilot study. Methods: Ten IBD-patients (7 with ulcerative colitis and 3 with Crohn’s disease with disease activity grade 2–10 on simple colitis index were included in the study. The use of 5-ASA and prednisolone 12.5 mg/day, but no other immunosuppressive drugs, were allowed during the trial. Live typhoid vaccine containing Salmonella serovar Ty21a (Vivotif®, Berna was given in standard doses on day 1, 3 and 5. Symptoms and endoscopic findings were followed up for a 3-months-period. Results: Improvement of abdominal symptoms was recorded in 8 patients after 90 days, one patient was unchanged and one slightly worse. Endoscopic findings improved in 4 patients and were unchanged in 5 patients after 90 days. No side effects were observed. Conclusion: Our results indicate that a live typhoid vaccine is well tolerated by patients with IBD of moderate activity. The symptomatic and endoscopic improvements were not dramatic, but encouraging enough to warrant further studies on the potential therapeutic effect of live typhoid vaccine on patients with IBD.

  15. Live Typhoid Vaccine for IBD-Patients—Well Tolerated and with Possible Therapeutic Effect

    Arnold Berstad

    2008-01-01

    Full Text Available Background: Our incidental observation of a remarkable improvement of disease activity following vaccination against typhoid in a patient with inflammatory bowel disease (IBD was the incentive of this pilot study.Methods: Ten IBD-patients (7 with ulcerative colitis and 3 with Crohn’s disease with disease activity grade 2–10 on simple colitis index were included in the study. The use of 5-ASA and prednisolone 12.5 mg/day, but no other immunosuppressive drugs, were allowed during the trial. Live typhoid vaccine containing Salmonella serovar Ty21a (Vivotif®, Berna was given in standard doses on day 1, 3 and 5. Symptoms and endoscopic findings were followed up for a 3-months-period.Results: Improvement of abdominal symptoms was recorded in 8 patients after 90 days, one patient was unchanged and one slightly worse. Endoscopic findings improved in 4 patients and were unchanged in 5 patients after 90 days. No side effects were observed.Conclusion: Our results indicate that a live typhoid vaccine is well tolerated by patients with IBD of moderate activity. The symptomatic and endoscopic improvements were not dramatic, but encouraging enough to warrant further studies on the potential therapeutic effect of live typhoid vaccine on patients with IBD.

  16. [Local Immune response in rabbits following enteral immunization with live attenuated bacterial Enterobacteriaceae vaccines].

    Dentschev, W; Marinova, S; Sumerska, T; Nenkov, P; Koitschev, T; Trifonowa, A

    1980-01-01

    Streptomycin-dependent and inactivated Shigella flexneri 2a and Shigella sonnei strains were intra-intestinally applied to rabbits for immunisation. Rosette and plaque tests and well as indirect haemagglutination gave short-time secretion of low titres of specific copro-antibody, following monovaccines and bivaccines. High titres of secretory antibody were induced, depending on doses, by re-immunisation. No antigen competition was established. The localised immune response caused by Shigella live vaccines was found to be much stronger than that induced by inactivated vaccines PMID:6998404

  17. Overexpression of Brucella putative glycosyltransferase WbkA in B. abortus RB51 leads to production of exopolysaccharide

    Neha eDabral

    2015-06-01

    Full Text Available Brucella spp. are Gram-negative, facultative intracellular bacteria that cause brucellosis in mammals. Brucella strains containing the O-polysaccharide in their cell wall structure exhibit a smooth phenotype whereas the strains devoid of the polysaccharide show rough phenotype. B. abortus strain RB51 is a stable rough attenuated mutant which is used as a licensed live vaccine for bovine brucellosis. Previous studies have shown that the wboA gene, which encodes a glycosyltransferase required for the synthesis of O-polysaccharide, is disrupted in B. abortus RB51 by an IS711 element. Although complementation of strain RB51 with a functional wboA gene results in O-polysaccharide synthesis in the cytoplasm, it does not result in smooth phenotype. The aim of this study was to determine if overexpression of Brucella WbkA or WbkE, two additional putative glycosyltransferases essential for O-polysaccharide synthesis, in strain RB51 would result in the O-polysaccharide synthesis and smooth phenotype. Our results demonstrate that overexpression of wbkA or wbkE gene in RB51 does not result in O-polysaccharide expression as shown by Western blotting with specific antibodies. However, wbkA, but not wbkE, overexpression leads to the development of a clumping phenotype and the production of exopolysaccharide(s containing mannose, galactose, N-acetylglucosamine and N-acetylgalactosamine. Moreover, we found that the clumping recombinant strain displays increased adhesion to polystyrene plates. The recombinant strain was similar to strain RB51 in its attenuation characteristic and in its ability to induce protective immunity against virulent B. abortus challenge in mice.

  18. Biomarkers of safety and immune protection for genetically modified live attenuated Leishmania vaccines against visceral leishmaniasis-Discovery and implications

    Sreenivas eGannavaram

    2014-05-01

    Full Text Available Despite intense efforts there is no safe and efficacious vaccine against visceral leishmaniasis, which is fatal and endemic in many tropical countries. A major shortcoming in the vaccine development against blood borne parasitic agents such as Leishmania is the inadequate predictive power of the early immune responses mounted in the host against the experimental vaccines. Often immune correlates derived from in-bred animal models do not yield immune markers of protection that can be readily extrapolated to humans. The limited efficacy of vaccines based on DNA, sub-unit, heat killed parasites has led to the realization that acquisition of durable immunity against the protozoan parasites requires a controlled infection with a live attenuated organism. Recent success of irradiated malaria parasites as a vaccine candidate further strengthens this approach to vaccination. We developed several gene deletion mutants in L. donovani as potential live attenuated vaccines and reported extensively on the immunogenicity of LdCentrin1 deleted mutant in mice, hamsters and dogs. Additional limited studies using genetically modified live attenuated Leishmania parasites as vaccine candidates have been reported. However, for the live attenuated parasite vaccines, the primary barrier against widespread use remains the absence of clear biomarkers associated with protection and safety. Recent studies in evaluation of vaccines e.g., influenza and yellow fever vaccines, using systems biology tools demonstrated the power of such strategies in understanding the immunological mechanisms that underpin a protective phenotype. Applying similar tools in isolated human tissues such as PBMCs from healthy individuals infected with live attenuated parasites such as LdCen1-/- in vitro followed by human microarray hybridization experiments will enable us to understand how early vaccine-induced gene expression profiles and the associated immune responses are coordinately regulated

  19. AVIDITY EVALUATION OF LOCAL IgA ANTIBODIES IN PERSONS IMMUNIZED WITH LIVE INFLUENZA VACCINE

    S. A. Donina

    2008-01-01

    Full Text Available Abstract. At present, immunogenicity evaluation of influenza vaccines is performed by quantitative assessment of increased serum antibodies. It was, however, shown that the degree of human defense against influenza is mostly related to their qualitative characteristics, i.e., avidity (functional activity. Leading role of local immunity is demonstrated in protection against influenza. Such immunity is mediated by IgA antibodies from mucosal airways. Meanwhile, the avidity issues for local antibodies still remain open.In present study, an attempt was undertaken to evaluate post-vaccination local immunological memory for influenza A virus, according to IgA antibodies from upper respiratory secretions. Two techniques were used to evaluate antibody avidity, that were previously applied for studying this phenomenon with serum imunoglobulins, i.e., a dynamic test (measurement of antigen-antibody reaction rates, and a test with urea, a chaotropic agent (avidity is determined as a strength of antigen-antibody complex. A total of 202 persons (18 to 20 years old were enrolled into the study.With both tests, a broad range of individual avidity values was observed for the antibodies. A significant cohort (up to 30 per cent of persons immunized with live influenza vaccine, showed sharply increased avidity of secretory IgA antibodies by both methods, along with accumulation of these immunoglobulins after vaccination. A reverse relationship is revealed between avidity levels of these antibodies before vaccination, and increase of this parameter post-immunization. The data present convincing arguments for specific renewal of local humoral immunological memory, as induced by live influenza vaccine. The study substantiates a necessity for application of the both tests in parallel, when determining avidity of secretory IgA antibodies. (Med. Immunol., vol. 10, N 4-5, pp 423-430.

  20. Correlates of Immunity to Influenza as Determined by Challenge of Children with Live, Attenuated Influenza Vaccine

    Wright, Peter F.; Hoen, Anne G.; Ilyushina, Natalia A.; Brown, Eric P.; Ackerman, Margaret E.; Wieland-Alter, Wendy; Connor, Ruth I.; Jegaskanda, Sinthujan; Rosenberg-Hasson, Yael; Haynes, Brenda C.; Luke, Catherine J.; Subbarao, Kanta; Treanor, John J.

    2016-01-01

    Background. The efficacy of live, attenuated live attenuated influenza vaccine(LAIV) and inactivated influenza vaccine(IIV) is poorly explained by either single or composite immune responses to vaccination. Protective biomarkers were therefore studied in response to LAIV or IIV followed by LAIV challenge in children. Methods. Serum and mucosal responses to LAIV or IIV were analyzed using immunologic assays to assess both quantitative and functional responses. Cytokines and chemokines were measured in nasal washes collected before vaccination, on days 2, 4, and 7 after initial LAIV, and again after LAIV challenge using a 63-multiplex Luminex panel. Results. Patterns of immunity induced by LAIV and IIV were significantly different. Serum responses induced by IIV, including hemagglutination inhibition, did not correlate with detection or quantitation of LAIV on subsequent challenge. Modalities that induced sterilizing immunity seen after LAIV challenge could not be defined by any measurements of mucosal or serum antibodies induced by the initial LAIV immunization. No single cytokine or chemokine was predictive of protection. Conclusions. The mechanism of protective immunity observed after LAIV could not be defined, and traditional measurements of immunity to IIV did not correlate with protection against an LAIV challenge.

  1. Extended Preclinical Safety, Efficacy and Stability Testing of a Live-attenuated Chikungunya Vaccine Candidate.

    Kenneth S Plante

    Full Text Available We recently described a new, live-attenuated vaccine candidate for chikungunya (CHIK fever, CHIKV/IRES. This vaccine was shown to be well attenuated, immunogenic and efficacious in protecting against CHIK virus (CHIKV challenge of mice and nonhuman primates. To further evaluate its preclinical safety, we compared CHIKV/IRES distribution and viral loads in interferon-α/β receptor-incompetent A129 mice to another CHIK vaccine candidate, 181/clone25, which proved highly immunogenic but mildly reactive in human Phase I/II clinical trials. Compared to wild-type CHIK virus, (wt-CHIKV, both vaccines generated lower viral loads in a wide variety of tissues and organs, including the brain and leg muscle, but CHIKV/IRES exhibited marked restrictions in dissemination and viral loads compared to 181/clone25, and was never found outside the blood, spleen and muscle. Unlike wt-CHIKV, which caused disrupted splenic architecture and hepatic lesions, histopathological lesions were not observed in animals infected with either vaccine strain. To examine the stability of attenuation, both vaccines were passaged 5 times intracranially in infant A129 mice, then assessed for changes in virulence by comparing parental and passaged viruses for footpad swelling, weight stability and survival after subcutaneous infection. Whereas strain 181/clone25 p5 underwent a significant increase in virulence as measured by weight loss (from 30% and mortality (from 0 to 100%, CHIKV/IRES underwent no detectible change in any measure of virulence (no significant weight loss and no mortality. These data indicate greater nonclinical safety of the CHIKV/IRES vaccine candidate compared to 181/clone25, further supporting its eligibility for human testing.

  2. Relaxation of purifying selection on the SAD lineage of live attenuated oral vaccines for rabies virus.

    Hughes, Austin L

    2009-09-01

    Analysis of patterns of nucleotide sequence diversity in wild-type rabies virus (RABV) genomes and in the SAD live attenuated oral vaccine lineage was used to test for the relaxation of purifying selection in the latter and provide evidence regarding the genomic regions where such relaxation of selection occurs. The wild-type sequences showed evidence of strong past and ongoing purifying selection both on nonsynonymous sites in coding regions and on non-coding regions, particularly the start, end and 5' UTR regions. SAD vaccine sequences showed a relaxation of purifying selection at nonsynonymous sites in coding regions, resulting a substantial number of amino acid sequence polymorphisms at sites that were invariant in the wild-type sequences. Moreover, SAD vaccine sequences showed high levels of mutation accumulation in the non-coding regions that were most conserved in the wild-type sequences. Understanding the biological effects of the unique mutations accumulated in the vaccine lineage is important because of their potential effects on antigenicity and effectiveness of the vaccine. PMID:19409512

  3. Further characterization of the immune response in mice to inactivated and live rabies vaccines expressing Ebola virus glycoprotein

    Papaneri, Amy B.; Wirblich, Christoph; Cooper, Kurt; Jahrling, Peter B.; Schnell, Matthias J.; Blaney, Joseph E.

    2012-01-01

    We have previously developed (a) replication-competent, (b) replication-deficient, and (c) chemically inactivated rabies virus (RABV) vaccines expressing ebolavirus (EBOV) glycoprotein (GP) that induce humoral immunity against each virus and confer protection from both lethal RABV and mouse-adapted EBOV challenge in mice. Here, we expand our investigation of the immunogenic properties of these bivalent vaccines in mice. Both live and killed vaccines induced primary EBOV GP-specific T-cells an...

  4. Immunity to influenza in ferrets. XIV: Comparative immunity following infection or immunization with live or inactivated vaccine.

    Fenton, R. J.; Clark, A.; Potter, C. W.

    1981-01-01

    Immunization by live influenza virus induced a greater protective effect against subsequent challenge by the homologous virus than by the corresponding killed virus vaccine. Furthermore, tracheas excised from 11-day and 28-day influenza-virus-infected ferrets were more resistant to reinfection than tracheas excised from ferrets immunized by killed influenza vaccine, despite equivalent serum antibody titres at these times. Histological examination of trachea sections taken from vaccinated and ...

  5. Effect of different adjuvant formulations on the immunogenicity and protective effect of a live Mycoplasma hyopneumoniae vaccine after intramuscular inoculation.

    Xiong, Qiyan; Wei, Yanna; Xie, Haidong; Feng, Zhixin; Gan, Yuan; Wang, Chunlai; Liu, Maojun; Bai, Fangfang; Xie, Fang; Shao, Guoqing

    2014-06-01

    Mycoplasma hyopneumoniae (M. hyopneumoniae) vaccine strain 168 is an intrapulmonically injected attenuated live vaccine that is available in the Chinese market. The aim of this study was to develop suitable adjuvants for this live vaccine to provide effective protection after intramuscular inoculation. Several adjuvant components were screened to assess their toxicity for the live vaccine, and various adjuvant formulations were then designed and prepared. Vaccines supplemented with these adjuvants were used to immunize mice intramuscularly to assess the capacity of the adjuvants to induce a specific immune response. The screened formulations were then evaluated in pigs. Seven of the eight adjuvant components did not affect the viability of the live vaccine, and seven different adjuvant formulations were then designed. In mice, the ISCOM-matrix adjuvant and the levamisole-chitosan mixture adjuvant significantly enhanced serum IgG responses against M. hyopneumoniae, while lymphocyte proliferation was enhanced by the ISCOM-matrix adjuvant, the carbomer-astragalus polysaccharide mixture adjuvant and an oil-in-water emulsion adjuvant. These four adjuvants were evaluated in pigs. Enhancement of specific lymphocyte proliferation responses was observed in the groups vaccinated with the ISCOM-matrix adjuvant and the carbomer-astragalus polysaccharide mixture adjuvant. Significant enhancement of serum IgG antibody production was observed before challenge in pigs vaccinated with the carbomer-astragalus polysaccharide mixture adjuvant and the levamisole-chitosan mixture adjuvant, while after challenge, all of the animals that received vaccines containing adjuvants had higher antibody concentrations against M. hyopneumoniae than unvaccinated animals. Animals inoculated with a vaccine containing the ISCOM-matrix adjuvant (median score 3.57) or the carbomer-astragalus polysaccharide mixture adjuvant (median score 5.28) had reduced lesion scores compared to unvaccinated animals

  6. A laminated polymer film formulation for enteric delivery of live vaccine and probiotic bacteria

    de Barros, João M. S.; Scherer, Timothy; Charalampopoulos, Dimitris; Khutoryanskiy, Vitaliy V.; Edwards, Alexander D.

    2014-01-01

    Live bacterial cells (LBC) are administered orally as attenuated vaccines, to deliver biopharmaceutical agents, and as probiotics to improve gastrointestinal health. However, LBC present unique formulation challenges and must survive gastrointestinal antimicrobial defenses including gastric acid after administration. We present a simple new formulation concept, termed Polymer Film Laminate (PFL). LBC are ambient dried onto cast acid-resistant enteric polymer films that are then laminated toge...

  7. Relaxation of Purifying Selection on the SAD Lineage of Live Attenuated Oral Vaccines for Rabies Virus

    Hughes, Austin L.

    2009-01-01

    Analysis of patterns of nucleotide sequence diversity in wild-type rabies virus (RABV) genomes and in the SAD live attenuated oral vaccine lineage was used to test for the relaxation of purifying selection in the latter and provide evidence regarding the genomic regions where such relaxation of selection occurs. The wild-type sequences showed evidence of strong past and ongoing purifying selection both on non-synonymous sites in coding regions and on non-coding regions, particularly the start...

  8. Effects of partial deletion of the wzm and wzt genes on lipopolysaccharide synthesis and virulence of Brucella abortus S19.

    Wang, Xiuran; Wang, Lin; Lu, Tiancheng; Yang, Yanling; Chen, Si; Zhang, Rui; Lang, Xulong; Yan, Guangmou; Qian, Jing; Wang, Xiaoxu; Meng, Lingyi; Wang, Xinglong

    2014-06-01

    Brucellosis is a worldwide human and animal infectious disease, and the effective methods of its control are immunisation of animals by vaccination and elimination. Brucella abortus S19 is one of the popular vaccines with virulence in the control of cattle Brucellosis. In the present study, allelic exchange plasmids of wzm and wzt genes and partial knockout mutants of wzm and wzt were constructed to evaluate the resulting difference in virulence of B. abortus S19. PCR analysis revealed that the target genes were knocked out. The mutants were rough mutants and they could be differentiated from natural infection by the Rose Bengal plate and standard agglutination tests. The molecular weights of lipopolysaccharides of the Δwzm and Δwzt mutants were clustered between 25 and 40 kDa, and 30 and 35 kDa separately, and were markedly different from those in B. abortus S19. The virulence of B. abortus Δwzm and Δwzt was decreased compared with that of B. abortus S19 in mice. All these results identified that there were several differences between the wzm and wzt genes on lipopolysaccharide synthesis and on the virulence of B. abortus. PMID:24718931

  9. Oral vaccination with lipid-formulated BCG induces a long-lived, multifunctional CD4(+ T cell memory immune response.

    Lindsay R Ancelet

    Full Text Available Oral delivery of BCG in a lipid formulation (Liporale™-BCG targets delivery of viable bacilli to the mesenteric lymph nodes and confers protection against an aerosol Mycobacterium tuberculosis challenge. The magnitude, quality and duration of the effector and memory immune response induced by Liporale™-BCG vaccination is unknown. Therefore, we compared the effector and memory CD4(+ T cell response in the spleen and lungs of mice vaccinated with Liporale™-BCG to the response induced by subcutaneous BCG vaccination. Liporale™-BCG vaccination induced a long-lived CD4(+ T cell response, evident by the detection of effector CD4(+ T cells in the lungs and a significant increase in the number of Ag85B tetramer-specific CD4(+ T cells in the spleen up to 30 weeks post vaccination. Moreover, following polyclonal stimulation, Liporale™-BCG vaccination, but not s.c. BCG vaccination, induced a significant increase in both the percentage of CD4(+ T cells in the lungs capable of producing IFNγ and the number of multifunctional CD4(+ T cells in the lungs at 30 weeks post vaccination. These results demonstrate that orally delivered Liporale™-BCG vaccine induces a long-lived multifunctional immune response, and could therefore represent a practical and effective means of delivering novel BCG-based TB vaccines.

  10. Live virus vaccines based on a yellow fever vaccine backbone: standardized template with key considerations for a risk/benefit assessment.

    Monath, Thomas P; Seligman, Stephen J; Robertson, James S; Guy, Bruno; Hayes, Edward B; Condit, Richard C; Excler, Jean Louis; Mac, Lisa Marie; Carbery, Baevin; Chen, Robert T

    2015-01-01

    The Brighton Collaboration Viral Vector Vaccines Safety Working Group (V3SWG) was formed to evaluate the safety of live, recombinant viral vaccines incorporating genes from heterologous viruses inserted into the backbone of another virus (so-called "chimeric virus vaccines"). Many viral vector vaccines are in advanced clinical trials. The first such vaccine to be approved for marketing (to date in Australia, Thailand, Malaysia, and the Philippines) is a vaccine against the flavivirus, Japanese encephalitis (JE), which employs a licensed vaccine (yellow fever 17D) as a vector. In this vaccine, two envelope proteins (prM-E) of YF 17D virus were exchanged for the corresponding genes of JE virus, with additional attenuating mutations incorporated into the JE gene inserts. Similar vaccines have been constructed by inserting prM-E genes of dengue and West Nile into YF 17D virus and are in late stage clinical studies. The dengue vaccine is, however, more complex in that it requires a mixture of four live vectors each expressing one of the four dengue serotypes. This vaccine has been evaluated in multiple clinical trials. No significant safety concerns have been found. The Phase 3 trials met their endpoints in terms of overall reduction of confirmed dengue fever, and, most importantly a significant reduction in severe dengue and hospitalization due to dengue. However, based on results that have been published so far, efficacy in preventing serotype 2 infection is less than that for the other three serotypes. In the development of these chimeric vaccines, an important series of comparative studies of safety and efficacy were made using the parental YF 17D vaccine virus as a benchmark. In this paper, we use a standardized template describing the key characteristics of the novel flavivirus vaccine vectors, in comparison to the parental YF 17D vaccine. The template facilitates scientific discourse among key stakeholders by increasing the transparency and comparability of