WorldWideScience

Sample records for abnormal skeletal development

  1. Constitutively activated NLRP3 inflammasome causes inflammation and abnormal skeletal development in mice.

    Sheri L Bonar

    Full Text Available The NLRP3 inflammasome complex is responsible for maturation of the pro-inflammatory cytokine, IL-1β. Mutations in NLRP3 are responsible for the cryopyrinopathies, a spectrum of conditions including neonatal-onset multisystem inflammatory disease (NOMID. While excessive production of IL-1β and systemic inflammation are common to all cryopyrinopathy disorders, skeletal abnormalities, prominently in the knees, and low bone mass are unique features of patients with NOMID. To gain insights into the mechanisms underlying skeletal abnormalities in NOMID, we generated knock-in mice globally expressing the D301N NLRP3 mutation (ortholog of D303N in human NLRP3. NOMID mice exhibit neutrophilia in blood and many tissues, including knee joints, and high levels of serum inflammatory mediators. They also exhibit growth retardation and severe postnatal osteopenia stemming at least in part from abnormally accelerated bone resorption, attended by increased osteoclastogenesis. Histologic analysis of knee joints revealed abnormal growth plates, with loss of chondrocytes and growth arrest in the central region of the epiphyses. Most strikingly, a tissue "spike" was observed in the mid-region of the growth plate in the long bones of all NOMID mice that may be the precursor to more severe deformations analogous to those observed in NOMID patients. These findings provide direct evidence linking a NOMID-associated NLRP3-activating mutation to abnormalities of postnatal skeletal growth and bone remodeling.

  2. A Lack of Thyroid Hormones Rather than Excess Thyrotropin Causes Abnormal Skeletal Development in Hypothyroidism

    Bassett, J. H. Duncan; Williams, Allan J.; Murphy, Elaine; Boyde, Alan; Howell, Peter G. T.; Swinhoe, Rowan; Archanco, Marta; Flamant, Frédéric; Samarut, Jacques; Costagliola, Sabine; Vassart, Gilbert; Weiss, Roy E.; Refetoff, Samuel; Williams, Graham R.

    2007-01-01

    By proposing TSH as a key negative regulator of bone turnover, recent studies in TSH receptor (TSHR) null mice challenged the established view that skeletal responses to disruption of the hypothalamic-pituitary-thyroid axis result from altered thyroid hormone (T3) action in bone. Importantly, this hypothesis does not explain the increased risk of osteoporosis in Graves’ disease patients, in which circulating TSHR-stimulating antibodies are pathognomonic. To determine the relative importance o...

  3. Unusual association between cardiac, skeletal, urogenital and renal abnormalities.

    Goryaeva, Maria; Sykes, Mark Christopher; Lau, Benjamin; West, Simon

    2016-01-01

    We present a 33-year-old woman with an array of congenital abnormalities. She has been diagnosed with polycystic kidney disease (PCKD) with no detectable mutations in PKD1 or PKD2, spina bifida occulta, thoracic skeletal abnormalities, a uterus didelphys and a patent foramen ovale (PFO). There are several associations reported in the literature that include abnormalities similar to the patient's, but none describe her presentation in its entirety. The MURCS association is characterised by (MU)llerian duct aplasia, (R)enal dysplasia and (C)ervical (S)omite anomalies and goes some way in explaining these condition. Patients with both MURCS and PCKD have not been described in current literature. Through this report, we hope to bring a potential diagnosis to light and provide the patient with an improved understanding of her health. PMID:27402585

  4. Approach to Investigating Congenital Skeletal Abnormalities in Livestock.

    Dittmer, K E; Thompson, K G

    2015-09-01

    Congenital skeletal abnormalities may be genetic, teratogenic, or nutritional in origin; distinguishing among these different causes is essential in the management of the disease but may be challenging. In some cases, teratogenic or nutritional causes of skeletal abnormalities may appear very similar to genetic causes. For example, chondrodysplasia associated with intrauterine zinc or manganese deficiency and mild forms of hereditary chondrodysplasia have very similar clinical features and histologic lesions. Therefore, historical data are essential in any attempt to distinguish genetic and acquired causes of skeletal lesions; as many animals as possible should be examined; and samples should be collected for future analysis, such as genetic testing. Acquired causes of defects often show substantial variation in presentation and may improve with time, while genetic causes frequently have a consistent presentation. If a disease is determined to be of genetic origin, a number of approaches may be used to detect mutations, each with advantages and disadvantages. These approaches include sequencing candidate genes, single-nucleotide polymorphism array with genomewide association studies, and exome or whole genome sequencing. Despite advances in technology and increased cost-effectiveness of these techniques, a good clinical history and description of the pathology and a reliable diagnosis are still key components of any investigation. PMID:25910781

  5. Human COL2A1-directed SV40 T antigen expression in transgenic and chimeric mice results in abnormal skeletal development

    1995-01-01

    The ability of SV40 T antigen to cause abnormalities in cartilage development in transgenic mice and chimeras has been tested. The cis- regulatory elements of the COL2A1 gene were used to target expression of SV40 T antigen to differentiating chondrocytes in transgenic mice and chimeras derived from embryonal stem (ES) cells bearing the same transgene. The major phenotypic consequences of transgenic (pAL21) expression are malformed skeleton, disproportionate dwarfism, and perinatal/neonatal d...

  6. Skeletal muscle reflex-mediated changes in sympathetic nerve activity are abnormal in spontaneously hypertensive rats

    Mizuno, Masaki; Murphy, Megan N.; Mitchell, Jere H.; Smith, Scott A.

    2011-01-01

    In hypertension, the blood pressure response to exercise is exaggerated. We demonstrated previously that this heightened pressor response to physical activity is mediated by an overactive skeletal muscle exercise pressor reflex (EPR), with important contributions from its metaboreflex and mechanoreflex components. However, the mechanisms driving the abnormal blood pressure response to EPR activation are largely unknown. Recent evidence in humans suggests that the muscle metaboreflex partially...

  7. Expression of Gla proteins during fish skeletal development

    Gavaia, Paulo J.

    2006-01-01

    Senegal sole skeletal development; Skeletal malformations; Skeletal malformation in mediterranean species; Senegal sole skeletal deformities; Zebra fish as model system: skeletal development; Identification of bone cells / skeletal development; Spatial - temporal pattern of bgp expression; Single cell resolution: localization of bgp mRNA; Single cell resolution: Immunolocalization of Bgp; Single cell resolution: localization of mgp mRNA; Single cell resolution: Immunolocalization of Mgp; An i...

  8. A systems biology approach identifies molecular networks defining skeletal muscle abnormalities in chronic obstructive pulmonary disease.

    Nil Turan

    2011-09-01

    Full Text Available Chronic Obstructive Pulmonary Disease (COPD is an inflammatory process of the lung inducing persistent airflow limitation. Extensive systemic effects, such as skeletal muscle dysfunction, often characterize these patients and severely limit life expectancy. Despite considerable research efforts, the molecular basis of muscle degeneration in COPD is still a matter of intense debate. In this study, we have applied a network biology approach to model the relationship between muscle molecular and physiological response to training and systemic inflammatory mediators. Our model shows that failure to co-ordinately activate expression of several tissue remodelling and bioenergetics pathways is a specific landmark of COPD diseased muscles. Our findings also suggest that this phenomenon may be linked to an abnormal expression of a number of histone modifiers, which we discovered correlate with oxygen utilization. These observations raised the interesting possibility that cell hypoxia may be a key factor driving skeletal muscle degeneration in COPD patients.

  9. Proteomics analysis of human skeletal muscle reveals novel abnormalities in obesity and type 2 diabetes

    Hwang, Hyonson; Bowen, Benjamin P; Lefort, Natalie; Flynn, Charles R; De Filippis, Elena A; Roberts, Christine; Smoke, Christopher C; Meyer, Christian; Højlund, Kurt; Yi, Zhengping; Mandarino, Lawrence J

    2010-01-01

    changes involving the use of proteomics was used here. RESEARCH DESIGN AND METHODS: Muscle biopsies were obtained basally from lean, obese, and type 2 diabetic volunteers (n = 8 each); glucose clamps were used to assess insulin sensitivity. Muscle protein was subjected to mass spectrometry......OBJECTIVE : Insulin resistance in skeletal muscle is an early phenomenon in the pathogenesis of type 2 diabetes. Studies of insulin resistance usually are highly focused. However, approaches that give a more global picture of abnormalities in insulin resistance are useful in pointing out new...

  10. Reversible skeletal abnormalities in gamma-glutamyl transpeptidase-deficient mice

    Levasseur, Regis; Barrios, Roberto; Elefteriou, Florent; Glass, Donald A 2nd; Lieberman, Michael W.; Karsenty, Gerard

    2003-01-01

    Gamma-glutamyl transpeptidase (GGT) is a widely distributed ectopeptidase responsible for the degradation of glutathione in the gamma-glutamyl cycle. This cycle is implicated in the metabolism of cysteine, and absence of GGT causes a severe intracellular decrease in this amino acid. GGT-deficient (GGT-/-) mice have multiple metabolic abnormalities and are dwarf. We show here that this latter phenotype is due to a decreased of the growth plate cartilage total height resulting from a proliferative defect of chondrocytes. In addition, analysis of vertebrae and tibiae of GGT-/- mice revealed a severe osteopenia. Histomorphometric studies showed that this low bone mass phenotype results from an increased osteoclast number and activity as well as from a marked decrease in osteoblast activity. Interestingly, neither osteoblasts, osteoclasts, nor chondrocytes express GGT, suggesting that the observed defects are secondary to other abnormalities. N-acetylcysteine supplementation has been shown to reverse the metabolic abnormalities of the GGT-/- mice and in particular to restore the level of IGF-1 and sex steroids in these mice. Consistent with these previous observations, N-acetylcysteine treatment of GGT-/- mice ameliorates their skeletal abnormalities by normalizing chondrocytes proliferation and osteoblastic function. In contrast, resorbtion parameters are only partially normalized in GGT-/- N-acetylcysteine-treated mice, suggesting that GGT regulates osteoclast biology at least partly independently of these hormones. These results establish the importance of cysteine metabolism for the regulation of bone remodeling and longitudinal growth.

  11. Deletion of PTH rescues skeletal abnormalities and high osteopontin levels in Klotho-/- mice.

    Quan Yuan

    Full Text Available Maintenance of normal mineral ion homeostasis is crucial for many biological activities, including proper mineralization of the skeleton. Parathyroid hormone (PTH, Klotho, and FGF23 have been shown to act as key regulators of serum calcium and phosphate homeostasis through a complex feedback mechanism. The phenotypes of Fgf23(-/- and Klotho(-/- (Kl(-/- mice are very similar and include hypercalcemia, hyperphosphatemia, hypervitaminosis D, suppressed PTH levels, and severe osteomalacia/osteoidosis. We recently reported that complete ablation of PTH from Fgf23(-/- mice ameliorated the phenotype in Fgf23(-/-/PTH(-/- mice by suppressing serum vitamin D and calcium levels. The severe osteomalacia in Fgf23(-/- mice, however, persisted, suggesting that a different mechanism is responsible for this mineralization defect. In the current study, we demonstrate that deletion of PTH from Kl(-/- (Kl(-/-/PTH(-/- or DKO mice corrects the abnormal skeletal phenotype. Bone turnover markers are restored to wild-type levels; and, more importantly, the skeletal mineralization defect is completely rescued in Kl(-/-/PTH(-/- mice. Interestingly, the correction of the osteomalacia is accompanied by a reduction in the high levels of osteopontin (Opn in bone and serum. Such a reduction in Opn levels could not be observed in Fgf23(-/-/PTH(-/- mice, and these mice showed sustained osteomalacia. This significant in vivo finding is corroborated by in vitro studies using calvarial osteoblast cultures that show normalized Opn expression and rescued mineralization in Kl(-/-/PTH(-/- mice. Moreover, continuous PTH infusion of Kl(-/- mice significantly increased Opn levels and osteoid volume, and decreased trabecular bone volume. In summary, our results demonstrate for the first time that PTH directly impacts the mineralization disorders and skeletal deformities of Kl(-/-, but not of Fgf23(-/- mice, possibly by regulating Opn expression. These are significant new perceptions into

  12. Skeletal abnormalities in fetuses with Down`s syndrome: a radiographic post-mortem study

    Stempfle, N.; Brisse, H. [Department of Radiology, R. Debre Hospital, Paris (France); Huten, Y.; Fredouille, C.; Nessmann, C. [Department of Developmental Biology, R. Debre Hospital, Paris (France)

    1999-09-01

    Objective. To evaluate skeletal abnormalities on post-mortem radiographs of fetuses with Down`s syndrome. Materials and methods. Biometrical and morphological criteria, which are used for US prenatal detection of trisomy 21, were assessed. Limb long bones, biparietal diameter (BPD)/occipito-frontal diameter (OFD) ratio, ossification of nasal bones and appearance of the middle phalanx of the fifth digit (P2) in 60 fetuses with Down`s syndrome were analysed and compared with 82 normal fetuses matched for gestational age (GA) from 15 to 40 weeks` gestation (WG). Results. We observed reduced growth velocity of limb long bones during the third trimester in both groups, but the reduction was more pronounced in the trisomic group. Brachycephaly was found as early as 15 WG in Down`s syndrome and continued throughout gestation (sensitivity 0.28, specificity 1). Ossification of the nasal bones, which can be detected in normal fetuses from 14 WG, was absent in one quarter of trisomic fetuses, regardless of GA. The middle phalanx of the fifth digit was evaluated by comparison with the distal phalanx (P3) of the same digit. We found that P2 was not ossified in 11/31 trisomic fetuses before 23 WG, and was either not ossified or hypoplastic in 17/29 cases after 24 WG (sensitivity 0.56, specificity 1). Conclusions. Three key skeletal signs were present in trisomic fetuses: brachycephaly, absence of nasal bone ossification, and hypoplasia of the middle phalanx of the fifth digit. All these signs are appropriate to prenatal US screening. When present, they fully justify determination of the fetal karyotype by amniocentesis. (orig.) With 7 figs., 1 tab., 25 refs.

  13. Skeletal abnormalities in fetuses with Down's syndrome: a radiographic post-mortem study

    Objective. To evaluate skeletal abnormalities on post-mortem radiographs of fetuses with Down's syndrome. Materials and methods. Biometrical and morphological criteria, which are used for US prenatal detection of trisomy 21, were assessed. Limb long bones, biparietal diameter (BPD)/occipito-frontal diameter (OFD) ratio, ossification of nasal bones and appearance of the middle phalanx of the fifth digit (P2) in 60 fetuses with Down's syndrome were analysed and compared with 82 normal fetuses matched for gestational age (GA) from 15 to 40 weeks' gestation (WG). Results. We observed reduced growth velocity of limb long bones during the third trimester in both groups, but the reduction was more pronounced in the trisomic group. Brachycephaly was found as early as 15 WG in Down's syndrome and continued throughout gestation (sensitivity 0.28, specificity 1). Ossification of the nasal bones, which can be detected in normal fetuses from 14 WG, was absent in one quarter of trisomic fetuses, regardless of GA. The middle phalanx of the fifth digit was evaluated by comparison with the distal phalanx (P3) of the same digit. We found that P2 was not ossified in 11/31 trisomic fetuses before 23 WG, and was either not ossified or hypoplastic in 17/29 cases after 24 WG (sensitivity 0.56, specificity 1). Conclusions. Three key skeletal signs were present in trisomic fetuses: brachycephaly, absence of nasal bone ossification, and hypoplasia of the middle phalanx of the fifth digit. All these signs are appropriate to prenatal US screening. When present, they fully justify determination of the fetal karyotype by amniocentesis. (orig.)

  14. Embalse NGS: Abnormal event procedures development lifecycle

    Based on the present used philosophy in Canada and in Atucha Nuclear Generating Station (Argentina) it was decided to develop the Abnormal Event Procedures (EOP's) in a logical diagram format. The EOP's have in general two parts: the diagnosis and the operative action to mitigate the event. Some serious incidents can be resolved by the EOP's, but the philosophy is first, to satisfy the EOP's requirements. Taking into account the operating experience, the Final Safety Report and the results of simulations done by appropriate codes, it was possible to obtain the corresponding sequence for each abnormal event. With the information available in the Control Room (windows, alarms, trends, etc) for each part of the EOP's was associated the instrumentation that the operator must observe. 3 figs

  15. Pygmoid Australomelanesian Homo sapiens skeletal remains from Liang Bua, Flores: Population affinities and pathological abnormalities

    Jacob, T; Indriati, E.; Soejono, R. P.; Hsü, K.; Frayer, D. W.; Eckhardt, R. B.; Kuperavage, A. J.; Thorne, A.; Henneberg, M.

    2006-01-01

    Liang Bua 1 (LB1) exhibits marked craniofacial and postcranial asymmetries and other indicators of abnormal growth and development. Anomalies aside, 140 cranial features place LB1 within modern human ranges of variation, resembling Australomelanesian populations. Mandibular and dental features of LB1 and LB6/1 either show no substantial deviation from modern Homo sapiens or share features (receding chins and rotated premolars) with Rampasasa pygmies now living near Liang Bua Cave. We propose ...

  16. [The growing spine : Normal and abnormal development].

    Stücker, R

    2016-06-01

    Growth of the pediatric spine occurs in phases. The first 5 years of life are characterized by rapid growth. The lower extremities and trunk contribute equally to the entire growth by 50 % each. In the following years, until the onset of puberty, a steady but reduced rate of growth is observed. During these years a T1-S1 growth of only 1 cm per year can be detected and the spine contributes only one third to the entire growth. Puberty consists of an acceleration phase lasting 2 years. In the first year of this phase the growth peak of the extremities and in the following year the growth peak of the spine can be noticed. The ensuing deceleration phase of puberty lasts for 3 years. During that period the development of the Risser sign, menarche, and fusion of the trochanter epiphysis are taking place. Clinical parameters such as sitting height, standing height, and arm span may be used to evaluate growth. Important radiological parameters include the Risser sign, the determination of skeletal age according to Greulich and Pyle, and the T1-T12 height. The use of the olecranon method during the ascending phase of puberty can be recommended. Problems of the developing spine may include malformations, developmental disruptions or deformations. According to their manifestations they have a different prognosis, which can be estimated by knowledge of residual growth and the typical course of spinal growth in childhood. PMID:27250620

  17. Histone Deacetylases in Bone Development and Skeletal Disorders.

    Bradley, Elizabeth W; Carpio, Lomeli R; van Wijnen, Andre J; McGee-Lawrence, Meghan E; Westendorf, Jennifer J

    2015-10-01

    Histone deacetylases (Hdacs) are conserved enzymes that remove acetyl groups from lysine side chains in histones and other proteins. Eleven of the 18 Hdacs encoded by the human and mouse genomes depend on Zn(2+) for enzymatic activity, while the other 7, the sirtuins (Sirts), require NAD2(+). Collectively, Hdacs and Sirts regulate numerous cellular and mitochondrial processes including gene transcription, DNA repair, protein stability, cytoskeletal dynamics, and signaling pathways to affect both development and aging. Of clinical relevance, Hdacs inhibitors are United States Food and Drug Administration-approved cancer therapeutics and are candidate therapies for other common diseases including arthritis, diabetes, epilepsy, heart disease, HIV infection, neurodegeneration, and numerous aging-related disorders. Hdacs and Sirts influence skeletal development, maintenance of mineral density and bone strength by affecting intramembranous and endochondral ossification, as well as bone resorption. With few exceptions, inhibition of Hdac or Sirt activity though either loss-of-function mutations or prolonged chemical inhibition has negative and/or toxic effects on skeletal development and bone mineral density. Specifically, Hdac/Sirt suppression causes abnormalities in physiological development such as craniofacial dimorphisms, short stature, and bone fragility that are associated with several human syndromes or diseases. In contrast, activation of Sirts may protect the skeleton from aging and immobilization-related bone loss. This knowledge may prolong healthspan and prevent adverse events caused by epigenetic therapies that are entering the clinical realm at an unprecedented rate. In this review, we summarize the general properties of Hdacs/Sirts and the research that has revealed their essential functions in bone forming cells (e.g., osteoblasts and chondrocytes) and bone resorbing osteoclasts. Finally, we offer predictions on future research in this area and the

  18. Cardiac and skeletal muscle abnormality in taurine transporter-knockout mice

    Ito Takashi; Oishi Shohei; Takai Mika; Kimura Yasushi; Uozumi Yoriko; Fujio Yasushi; Schaffer Stephen W; Azuma Junichi

    2010-01-01

    Abstract Taurine, a sulfur-containing β-amino acid, is highly contained in heart and skeletal muscle. Taurine has a variety of biological actions, such as ion movement, calcium handling and cytoprotection in the cardiac and skeletal muscles. Meanwhile, taurine deficiency leads various pathologies, including dilated cardiomyopathy, in cat and fox. However, the essential role of taurine depletion on pathogenesis has not been fully clarified. To address the physiological role of taurine in mamma...

  19. The Role of Skeletal Muscle in Development of Nonalcoholic Fatty Liver Disease

    Jun Sung Moon

    2013-08-01

    Full Text Available BackgroundNonalcoholic fatty liver disease (NAFLD is closely correlated with abnormal accumulation of visceral fat, but the role of skeletal muscle remains unclear. The aim of this study was to elucidate the role of skeletal muscle in development of NAFLD.MethodsAmong 11,116 subjects (6,242 males, we examined the effects of skeletal muscle mass and visceral fat area (VFA, by bioelectric impedance analysis on NAFLD using by the fatty liver index (FLI.ResultsOf the total subjects (9,565 total, 5,293 males included, 1,848 were classified as having NALFD (FLI ≥60. Body mass index, lipid profile, fasting plasma glucose, hemoglobin A1c, prevalence of type 2 diabetes (DM, hypertension (HTN, and metabolic syndrome were higher in males than females, but FLI showed no significant difference. The low FLI group showed the lowest VFA and highest skeletal muscle mass of all the groups. Skeletal muscle to visceral fat ratio (SVR and skeletal muscle index had inverse correlations with FLI, when adjusted for age and gender. In multivariate regression analysis, SVR was negatively associated with FLI. Among SVR quartiles, the highest quartile showed very low risk of NAFLD when adjusted for age, gender, lipid profile, DM, HTN, and high sensitivity C-reactive protein from the lowest quartiles (odds ratio, 0.037; 95% confidence interval, 0.029 to 0.049.ConclusionSkeletal muscle mass was inversely associated with visceral fat area, and higher skeletal muscle mass may have a beneficial effect in preventing NAFLD. These results suggest that further studies are needed to ameliorate or slow the progression of sarcopenia.

  20. Cavin4b/Murcb Is Required for Skeletal Muscle Development and Function in Zebrafish.

    Housley, Michael P; Njaine, Brian; Ricciardi, Filomena; Stone, Oliver A; Hölper, Soraya; Krüger, Marcus; Kostin, Sawa; Stainier, Didier Y R

    2016-06-01

    Skeletal muscles provide metazoans with the ability to feed, reproduce and avoid predators. In humans, a heterogeneous group of genetic diseases, termed muscular dystrophies (MD), lead to skeletal muscle dysfunction. Mutations in the gene encoding Caveolin-3, a principal component of the membrane micro-domains known as caveolae, cause defects in muscle maintenance and function; however it remains unclear how caveolae dysfunction underlies MD pathology. The Cavin family of caveolar proteins can form membrane remodeling oligomers and thus may also impact skeletal muscle function. Changes in the distribution and function of Cavin4/Murc, which is predominantly expressed in striated muscles, have been reported to alter caveolae structure through interaction with Caveolin-3. Here, we report the generation and phenotypic analysis of murcb mutant zebrafish, which display impaired swimming capacity, skeletal muscle fibrosis and T-tubule abnormalities during development. To understand the mechanistic importance of Murc loss of function, we assessed Caveolin-1 and 3 localization and found it to be abnormal. We further identified an in vivo function for Murc in Erk signaling. These data link Murc with developmental defects in T-tubule formation and progressive muscle dysfunction, thereby providing a new candidate for the etiology of muscular dystrophy. PMID:27294373

  1. Heparan sulfate in skeletal muscle development

    Noonan, D.M.

    1985-01-01

    In this study, chick breast skeletal muscle cells developing in vitro from myoblasts to myotubes were found to synthesize heparan sulfate (HS), chrondroitin-6-sulfate, chrondroitin-4-sulfate, dermatan sulfate, unsulfated chrondroitin and hyaluronic acid in both the substratum attached material (SAM) and the cellular fraction. SAM was found to contain predominantly chrondroitin-6-sulfate and relatively little HS whereas the cellular fraction contained relatively higher levels of HS and lower levels of chrondroitin-6-sulfate. Hyaluronic acid was also a major component in both fractions with the other glycosaminoglycan isomers present as minor components. Muscle derived fibroblast cultures had higher levels of dermatan sulfate in the cell layer and higher levels of HS in the SAM fraction than did muscle cultures. The structure of the proteoglycans were partially characterized in /sup 35/SO/sub 4//sup 2 -/ radio-labeled cultures which indicated an apparent increase in the hydrodynamic size of the cell fraction heparan sulfate proteoglycan (HS PG). Myotubes incorporated /sup 35/SO/sub 4//sup 2 -/ into HS PG at a rate 3 times higher than myoblasts. The turnover rate of HS in the cellular fraction was the same for myoblasts and myotubes, with a t/sub 1/2/ of approximately 5 hours. Fibroblasts in culture synthesized the smallest HS PG, and incorporated /sup 35/SO/sub 4//sup 2 -/ into HS PG at a rate lower than that of myotubes. Studies in which fusion was reversibly inhibited with decreased medium (Ca/sup + +/) closely linked the increased synthesis of cell fraction, but not SAM fraction, HS with myotube formation. However, decreasing medium calcium appeared to cause significant alterations in the metabolism of inorganic sulfate.

  2. Heparan sulfate in skeletal muscle development

    In this study, chick breast skeletal muscle cells developing in vitro from myoblasts to myotubes were found to synthesize heparan sulfate (HS), chrondroitin-6-sulfate, chrondroitin-4-sulfate, dermatan sulfate, unsulfated chrondroitin and hyaluronic acid in both the substratum attached material (SAM) and the cellular fraction. SAM was found to contain predominantly chrondroitin-6-sulfate and relatively little HS whereas the cellular fraction contained relatively higher levels of HS and lower levels of chrondroitin-6-sulfate. Hyaluronic acid was also a major component in both fractions with the other glycosaminoglycan isomers present as minor components. Muscle derived fibroblast cultures had higher levels of dermatan sulfate in the cell layer and higher levels of HS in the SAM fraction than did muscle cultures. The structure of the proteoglycans were partially characterized in 35SO42- radio-labeled cultures which indicated an apparent increase in the hydrodynamic size of the cell fraction heparan sulfate proteoglycan (HS PG). Myotubes incorporated 35SO42- into HS PG at a rate 3 times higher than myoblasts. The turnover rate of HS in the cellular fraction was the same for myoblasts and myotubes, with a t/sub 1/2/ of approximately 5 hours. Fibroblasts in culture synthesized the smallest HS PG, and incorporated 35SO42- into HS PG at a rate lower than that of myotubes. Studies in which fusion was reversibly inhibited with decreased medium [Ca++] closely linked the increased synthesis of cell fraction, but not SAM fraction, HS with myotube formation. However, decreasing medium calcium appeared to cause significant alterations in the metabolism of inorganic sulfate

  3. Muscle-specific microRNAs in skeletal muscle development.

    Horak, Martin; Novak, Jan; Bienertova-Vasku, Julie

    2016-02-01

    Proper muscle function constitutes a precondition for good heath and an active lifestyle during an individual's lifespan and any deviations from normal skeletal muscle development and its functions may lead to numerous health conditions including e.g. myopathies and increased mortality. It is thus not surprising that there is an increasing need for understanding skeletal muscle developmental processes and the associated molecular pathways, especially as such information could find further uses in therapy. The understanding of complex skeletal muscle developmental networks was broadened with the discovery of microRNA (miRNA) molecules. MicroRNAs are evolutionary conserved small non-coding RNAs capable of negatively regulating gene expression on a post-transcriptional level by means of miRNA-mRNA interaction. Several miRNAs expressed exclusively in muscle have been labeled myomiRs. MyomiRs represent an integral part of skeletal muscle development, i.e. playing a significant role during skeletal muscle proliferation, differentiation and regeneration. The purpose of this review is to provide a summary of current knowledge regarding the involvement of myomiRs in the individual phases of myogenesis and other aspects of skeletal muscle biology, along with an up-to-date list of myomiR target genes and their functions in skeletal muscle and miRNA-related therapeutic approaches and future prospects. PMID:26708096

  4. Mechanobiology of Embryonic Skeletal Development: Insights from Animal Models

    Nowlan, Niamh C.; Sharpe, James; Karen A Roddy; Prendergast, Patrick J; Murphy, Paula

    2010-01-01

    A range of clinical conditions in which foetal movement is reduced or prevented can have a severe effect on skeletal development. Animal models have been instrumental to our understanding of the interplay between mechanical forces and skeletal development, in particular the mouse and the chick model systems. In the chick, the most commonly used means of altering the mechanical environment is by pharmaceutical agents which induce paralysis, while genetically modified mice with non-functional o...

  5. A systems biology approach identifies Molecular networks defining skeletal muscle abnormalities in chronic obstructive pulmonary disease.

    Nil Turan; Susana Kalko; Anna Stincone; Kim Clarke; Ayesha Sabah; Katherine Howlett; S John Curnow; Rodriguez, Diego A.; Marta Cascante; Laura O'Neill; Stuart Egginton; Josep Roca; Francesco Falciani

    2011-01-01

    Chronic Obstructive Pulmonary Disease (COPD) is an inflammatory process of the lung inducing persistent airflow limitation. Extensive systemic effects, such as skeletal muscle dysfunction, often characterize these patients and severely limit life expectancy. Despite considerable research efforts, the molecular basis of muscle degeneration in COPD is still a matter of intense debate. In this study, we have applied a network biology approach to model the relationship between muscle molecular an...

  6. Nutritional components affecting skeletal development in fish larvae

    Cahu, Chantal; Zambonino, Jose-luis; Takeuchi, Toshio

    2003-01-01

    Marine fish larvae undergo major functional and morphological changes during the developmental stages and several factors can interfere with the normal development of larvae and affect fry quality. Skeletal malformations, such as spinal malformation-scoliosis, lordosis, coiled vertebral column-, missing or additional fin rays, bending opercle or jaw malformations, are frequently observed in hatchery-reared larvae. This paper reviews the effects of some nutritional components on skeletal devel...

  7. Peripheral endocannabinoids regulate skeletal muscle development and maintenance

    Dongjiao Zhao

    2010-12-01

    Full Text Available As a principal tissue responsible for insulin-mediated glucose uptake, skeletal muscle is important for whole-body health. The role of peripheral endocannabinoids as regulators of skeletal muscle metabolism has recently gained a lot of interest, as endocannabinoid system disorders could cause peripheral insulin resistance. We investigated the role of the peripheral endocannabinoid system in skeletal muscle development and maintenance. Cultures of C2C12 cells, primary satellite cells and mouse skeletal muscle single fibers were used as model systems for our studies. We found an increase in cannabinoid receptor type 1 (CB1 mRNA and endocannabinoid synthetic enzyme mRNA skeletal muscle cells during differentiation. We also found that activation of CB1 inhibited myoblast differentiation, expanded the number of satellite cells, and stimulated the fast-muscle oxidative phenotype. Our findings contribute to understanding of the role of the endocannabinoid system in skeletal muscle metabolism and muscle oxygen consumption, and also help to explain the effects of the peripheral endocannabinoid system on whole-body energy balance.

  8. A novel GUSB mutation in Brazilian terriers with severe skeletal abnormalities defines the disease as mucopolysaccharidosis VII.

    Marjo K Hytönen

    Full Text Available Hundreds of different human skeletal disorders have been characterized at molecular level and a growing number of resembling dysplasias with orthologous genetic defects are being reported in dogs. This study describes a novel genetic defect in the Brazilian Terrier breed causing a congenital skeletal dysplasia. Affected puppies presented severe skeletal deformities observable within the first month of life. Clinical characterization using radiographic and histological methods identified delayed ossification and spondyloepiphyseal dysplasia. Pedigree analysis suggested an autosomal recessive disorder, and we performed a genome-wide association study to map the disease locus using Illumina's 22K SNP chip arrays in seven cases and eleven controls. A single association was observed near the centromeric end of chromosome 6 with a genome-wide significance after permutation (p(genome= 0.033. The affected dogs shared a 13-Mb homozygous region including over 200 genes. A targeted next-generation sequencing of the entire locus revealed a fully segregating missense mutation (c.866C>T causing a pathogenic p.P289L change in a conserved functional domain of β-glucuronidase (GUSB. The mutation was confirmed in a population of 202 Brazilian terriers (p = 7,71×10(-29. GUSB defects cause mucopolysaccharidosis VII (MPS VII in several species and define the skeletal syndrome in Brazilian Terriers. Our results provide new information about the correlation of the GUSB genotype to phenotype and establish a novel canine model for MPS VII. Currently, MPS VII lacks an efficient treatment and this model could be utilized for the development and validation of therapeutic methods for better treatment of MPS VII patients. Finally, since almost one third of the Brazilian terrier population carries the mutation, breeders will benefit from a genetic test to eradicate the detrimental disease from the breed.

  9. The impact of a pilot education programme on Queensland radiographer abnormality description of adult appendicular musculo-skeletal trauma

    Introduction: Interpretation of trauma images by radiographers is a task substitution that has been debated for many years in Australia and enacted in various forms internationally since the 1980s. This paper describes the standardised test portion of a pilot project (which also had a clinical component) that investigated the potential for radiographers to describe abnormalities as a change to models of healthcare delivery being adopted in Queensland. Method: Randomly selected appendicular musculo-skeletal trauma images were reported by four radiologists to confirm image content. 102 images, matched for population injury incidence and body area proportionality served as a standardised image test. Ten radiographers described images before, immediately after and 8–10 weeks following an education programme. Receiver operator characteristic curves and kappa statistics were calculated to evaluate radiographer descriptive performance relative to the radiologist reports. Results: Using the Friedman and Wilcoxon signed ranks tests there was statistically significant improvement of sensitivity and accuracy of radiographer performance by the third standardised test with values: sensitivity (p = 0.023/0.012), accuracy (p = 0.012/0.021) specificity demonstrated no or very close statistically significant change (0.118/0.058). Kappa values (Cohen p = 0.019/0.011, Gwet 0.025/0.007 and Byrt et al. 0.021/0.047) demonstrated statistically significant change across the test sequence. Positive and negative predictive values with positive likelihood ratios were also calculated. Discussion: Most (9/10) radiographers demonstrated a high level of agreement of description accuracy with the radiologists used to create the standardised test. Conclusion: With appropriate education radiographers can match radiologist descriptions of appendicular musculo-skeletal trauma.

  10. Mechanisms of abnormal brain development leading to transsexualism (review

    L. F. Kurilo

    2014-11-01

    Full Text Available Overview of national and world literature on sexual autoidentification is analyzed. Prenatal brain development abnormalities leading to transsexualism are discussed. Results of own cytogenetic analysis, ооgenesis and spermatоgenesis examination are reported.

  11. Mechanisms of abnormal brain development leading to transsexualism (review)

    L. F. Kurilo; S. Sh. Khayat; S. Yu. Kalinchenko; B. Yu. Slonimskiy; T. M. Sorokina

    2014-01-01

    Overview of national and world literature on sexual autoidentification is analyzed. Prenatal brain development abnormalities leading to transsexualism are discussed. Results of own cytogenetic analysis, ооgenesis and spermatоgenesis examination are reported.

  12. Abnormal coronary tree development in embryonic hypoxia

    Naňka, O.; Fikrle, P.; Křížová, D.; Sedmera, David; Grim, M.

    Bratislava : Slovenská anatomická společnost, 2007, s. 78-78. [Sjezd Slovenské anatomické společnosti s mezinárodní účastí /43./ a sjezd Slovenské histochemické společnosti s mezinárodní účastí /42./. Bratislava (SK), 09.09.2007-12.09.2007] Institutional research plan: CEZ:AV0Z50450515 Keywords : coronary tree development Subject RIV: FA - Cardiovascular Diseases incl. Cardiotharic Surgery

  13. TGF-βand BMP signaling in osteoblast, skeletal development, and bone formation, homeostasis and disease

    Mengrui Wu; Guiqian Chen; and Yi-Ping Li

    2016-01-01

    Transforming growth factor-beta (TGF-β) and bone morphogenic protein (BMP) signaling has fundamental roles in both embryonic skeletal development and postnatal bone homeostasis. TGF-βs and BMPs, acting on a tetrameric receptor complex, transduce signals to both the canonical Smad-dependent signaling pathway (that is, TGF-β/BMP ligands, receptors, and Smads) and the non-canonical-Smad-independent signaling pathway (that is, p38 mitogen-activated protein kinase/p38 MAPK) to regulate mesenchymal stem cell differentiation during skeletal development, bone formation and bone homeostasis. Both the Smad and p38 MAPK signaling pathways converge at transcription factors, for example, Runx2 to promote osteoblast differentiation and chondrocyte differentiation from mesenchymal precursor cells. TGF-βand BMP signaling is controlled by multiple factors, including the ubiquitin–proteasome system, epigenetic factors, and microRNA. Dysregulated TGF-βand BMP signaling result in a number of bone disorders in humans. Knockout or mutation of TGF-βand BMP signaling-related genes in mice leads to bone abnormalities of varying severity, which enable a better understanding of TGF-β/BMP signaling in bone and the signaling networks underlying osteoblast differentiation and bone formation. There is also crosstalk between TGF-β/BMP signaling and several critical cytokines’ signaling pathways (for example, Wnt, Hedgehog, Notch, PTHrP, and FGF) to coordinate osteogenesis, skeletal development, and bone homeostasis. This review summarizes the recent advances in our understanding of TGF-β/BMP signaling in osteoblast differentiation, chondrocyte differentiation, skeletal development, cartilage formation, bone formation, bone homeostasis, and related human bone diseases caused by the disruption of TGF-β/BMP signaling.

  14. Abnormalities Occurring during Female Gametophyte Development Result in the Diversity of Abnormal Embryo Sacs and Leads to Abnormal Fertilization in indicaljaponica Hybrids in Rice

    Yu-Xiang Zeng; Chao-Yue Hu; Yong-Gen Lu; Jin-Quan Li; Xiang-Dong Liu

    2009-01-01

    Embryo sac abortion is one of the major masons for sterility in indicaljaponica hybrids In rice. To clarify the causal mechanism of embryo sac abortion, we studied the female gametophyte development in two indicaljaponica hybrids via an eosin B staining procedure for embryo sac scanning using confocal laser scanning microscope. Different types of abnormalities occurred during megasporogenesis and megagamatogenesis were demonstrated. The earliest abnormality was observed in the megasporocyte. A lot of the chalazal-most megaspores were degenerated before the mono-nucleate embryo sac stage. Disordered positioning of nucleus and abnormal nucallus tissue were characteristics of the abnormal female gametes from the mono-nucleate to four-nucleate embryo sac stages. The abnormalities that occurred from the early stage of the eight-nucleate embryo sac development to the mature embryo sac stage were characterized by smaller sizes and wrinkled antipodals. Asynchronous nuclear migration, abnormal positioning of nucleus, and degeneration of egg apparatus were also found at the eight-nucleate embryo sac stage. The abnormalities that occurred during female gametophyte development resulted in five major types of abnormal embryo sacs. These abnormal embryo sacs led to abnormal fertilization. Hand pollination using normal pollens on the spikelets during anthesis showed that normal pollens could not exclude the effect of abnormal embryo sac on seed setting.

  15. Transgenic Expression of Dentin Phosphoprotein Inhibits Skeletal Development

    Zhang, H.; Liu, P.; Wang, S.; Liu, C.; Jani, P.; Lu, Y.; Qin, C.

    2016-01-01

    Dentin sialophosphoprotein (DSPP) is proteolytically processed into an NH2-terminal fragment called dentin sialoprotein (DSP) and a COOH-terminal fragment known as dentin phosphoprotein (DPP). These two fragments are believed to perform distinct roles in formation of bone and dentin. To investigate the functions of DPP in skeletal development, we generated transgenic mice to overexpress hemagglutinin (HA)-tagged DPP under the control of a 3.6 kb type I collagen (Col1a1) promoter (designated as Col1a1-HA-DPP). The Col1a1-HA-DPP transgenic mice were significantly smaller by weight, had smaller skeletons and shorter long bones than their wild type littermates, as demonstrated by X-ray radiography. They displayed reduced trabecular bone formation and narrower zones of proliferative and hypertrophic chondrocytes in the growth plates of the long bones. Histological analyses showed that the transgenic mice had reduced cell proliferation in the proliferating zone, but lacked obvious defects in the chondrocyte differentiation. In addition, the transgenic mice with a high level of transgene expression developed spontaneous long bone fractures. In conclusion, overexpressing DPP inhibited skeletal development, suggesting that the balanced actions between the NH2- and COOH-terminal fragments of DSPP may be required for normal skeletal development. PMID:26972716

  16. Distinct growth hormone receptor signaling modes regulate skeletal muscle development and insulin sensitivity in mice

    Mavalli, Mahendra D.; DiGirolamo, Douglas J.; Fan, Yong; Riddle, Ryan C.; Campbell, Kenneth S.; van Groen, Thomas; Frank, Stuart J.; Sperling, Mark A.; Esser, Karyn A; Bamman, Marcas M; Clemens, Thomas L.

    2010-01-01

    Skeletal muscle development, nutrient uptake, and nutrient utilization is largely coordinated by growth hormone (GH) and its downstream effectors, in particular, IGF-1. However, it is not clear which effects of GH on skeletal muscle are direct and which are secondary to GH-induced IGF-1 expression. Thus, we generated mice lacking either GH receptor (GHR) or IGF-1 receptor (IGF-1R) specifically in skeletal muscle. Both exhibited impaired skeletal muscle development characterized by reductions ...

  17. Dynamics of skeletal pattern formation in developing chick limb.

    Newman, S A; Frisch, H L

    1979-08-17

    During development of the embryonic chick limb the skeletal pattern is laid out as cartilaginous primordia, which emerge in a proximodistal sequence over a period of 4 days. The differentiation of cartilage is preceded by changes in cellular contacts at specific locations in the precartilage mesenchyme. Under realistic assumptions, the biosynthesis and diffusion through the extracellular matrix of a cell surface protein, such as fibronectin, will lead to spatial patterns of this molecule that could be the basis of the emergent primordia. As cellular differentiation proceeds, the size of the mesenchymal diffusion chamber is reduced in descrete steps, leading to sequential reorganizations of the morphogen pattern. The successive patterns correspond to observed rows of skeletal elements, whose emergence, in theory and in practice, depends on the maintenance of a unique boundary condition at the limb bud apex. PMID:462174

  18. Skeletal muscle expression of the adhesion-GPCR CD97: CD97 deletion induces an abnormal structure of the sarcoplasmatic reticulum but does not impair skeletal muscle function.

    Tatiana Zyryanova

    Full Text Available CD97 is a widely expressed adhesion class G-protein-coupled receptor (aGPCR. Here, we investigated the presence of CD97 in normal and malignant human skeletal muscle as well as the ultrastructural and functional consequences of CD97 deficiency in mice. In normal human skeletal muscle, CD97 was expressed at the peripheral sarcolemma of all myofibers, as revealed by immunostaining of tissue sections and surface labeling of single myocytes using flow cytometry. In muscle cross-sections, an intracellular polygonal, honeycomb-like CD97-staining pattern, typical for molecules located in the T-tubule or sarcoplasmatic reticulum (SR, was additionally found. CD97 co-localized with SR Ca2+-ATPase (SERCA, a constituent of the longitudinal SR, but not with the receptors for dihydropyridine (DHPR or ryanodine (RYR, located in the T-tubule and terminal SR, respectively. Intracellular expression of CD97 was higher in slow-twitch compared to most fast-twitch myofibers. In rhabdomyosarcomas, CD97 was strongly upregulated and in part more N-glycosylated compared to normal skeletal muscle. All tumors were strongly CD97-positive, independent of the underlying histological subtype, suggesting high sensitivity of CD97 for this tumor. Ultrastructural analysis of murine skeletal myofibers confirmed the location of CD97 in the SR. CD97 knock-out mice had a dilated SR, resulting in a partial increase in triad diameter yet not affecting the T-tubule, sarcomeric, and mitochondrial structure. Despite these obvious ultrastructural changes, intracellular Ca2+ release from single myofibers, force generation and fatigability of isolated soleus muscles, and wheel-running capacity of mice were not affected by the lack of CD97. We conclude that CD97 is located in the SR and at the peripheral sarcolemma of human and murine skeletal muscle, where its absence affects the structure of the SR without impairing skeletal muscle function.

  19. Size of lower jaw as an early indicator of skeletal class III development

    Stojanović Zdenka

    2008-01-01

    Full Text Available Background/Aim. Malocclusion of skeletal class III is a complex abnormality, with a characteristic sagital position of the lower jaw in front of the upper one. A higher level of prognatism of the lower jaw in relation to the upper one can be the consequence of its excessive length. The aim of this study was to find the differences in the length of the lower jaw in the children with skeletal class III and the children with normal sagital interjaw relation (skeletal class I in the period of mixed dentition. Methods. After clinical and x-ray diagnostics, profile tele-x-rays of the head were analyzed in 60 examinees with mixed dentition, aged from 6 to 12 years. The examinees were divided into two groups: group 1 - the children with skeletal class III and group 2 - the children with skeletal class I. The length of the lower jaw, upper jaw and cranial base were measured. The proportional relations between the lengths measured within each group were established and the level of difference in the lengths measured and their proportions between the groups were estimated. Results. No significant difference between the groups was found in the body length, ramus and the total length of the lower jaw. Proportional relation between the body length and the length of the lower jaw ramus and proportional relation between the forward cranial base and the lower jaw body were not significantly different. A significant difference was found in proportional relations of the total length of the lower jaw with the total lengths of cranial base and the upper jaw and proportional relation of the length of the lower and upper jaw body. Conclusion. Of all the analyzed parameters, the following were selected as the early indicators of the development of skeletal class III on the lower jaw: greater total length of the lower jaw, proportional to the total lengths of cranial base and the upper jaw, as well as greater length of the lower jaw body, proportional to the length of

  20. Metabolic abnormalities induced by mitochondrial dysfunction in skeletal muscle of the renal carcinoma Eker (TSC2+/-) rat model.

    Aizawa, Yumi; Shirai, Tomomi; Kobayashi, Toshiyuki; Hino, Okio; Tsujii, Yoshimasa; Inoue, Hirofumi; Kazami, Machiko; Tadokoro, Tadahiro; Suzuki, Tsukasa; Kobayashi, Ken-Ichi; Yamamoto, Yuji

    2016-08-01

    Tuberous sclerosis complex 2 (TSC2) is a mediator of insulin signal transduction, and a loss of function in TSC2 induces hyperactivation of mTORC1 pathway, which leads to tumorigenesis. We have previously demonstrated that Eker rat model, which is heterozygous for a TSC2 mutation, exhibits hyperglycemia and hyperketonemia. The present study was to investigate whether these changes also can affect metabolism in skeletal muscle of the Eker rat. Wild-type (TSC2+/+) and Eker (TSC2+/-) rats underwent an oral glucose tolerance test, and the latter showed decrease in whole-body glucose utilization. Additionally, reductions in the expression of glycolysis-, lipolysis-, and ketone body-related genes in skeletal muscle were observed in Eker rats. Furthermore, ATP content and mitochondrial DNA copy number were lower in skeletal muscle of Eker rats. These data demonstrate that heterozygous to mutation TSC2 not only affects the liver metabolism, but also skeletal muscle metabolism, via mitochondrial dysfunction. PMID:27031579

  1. The first familial case of inherited 2q37.3 interstitial deletion with isolated skeletal abnormalities including brachydactyly type E and short stature.

    Jean-Marçais, Nolwenn; Decamp, Matthieu; Gérard, Marion; Ribault, Virginie; Andrieux, Joris; Kottler, Marie-Laure; Plessis, Ghislaine

    2015-01-01

    Albright hereditary osteodystrophy (AHO)-like syndrome is also known as brachydactyly-mental retardation syndrome (BDMR; OMIM 60040). This disorder includes intellectual disability in all patients, skeletal abnormalities, including brachydactyly E (BDE) in approximately half, obesity, and facial dysmorphism. Patients with 2q37 microdeletion or HDAC4 mutation are defined as having an AHO-like phenotype with normal stimulatory G (Gs) function. HDAC4 is involved in neurological, cardiac, and skeletal function. This paper reports the first familial case of 2q37.3 interstitial deletion affecting two genes, HDAC4 and TWIST2. Patients presented with BDE and short stature without intellectual disability, showing that haploinsufficiency of the HDAC4 critical region may lead to a spectrum of phenotypes, ranging from isolated brachydactyly type E to BDMR. PMID:25402011

  2. Passive stiffness of rat skeletal muscle undernourished during fetal development

    Ana Elisa Toscano

    2010-01-01

    Full Text Available OBJECTIVES: The aim of the study was to investigate the effect of fetal undernutrition on the passive mechanical properties of skeletal muscle of weaned and young adult rats. INTRODUCTION: A poor nutrition supply during fetal development affects physiological functions of the fetus. From a mechanical point of view, skeletal muscle can be also characterized by its resistance to passive stretch. METHODS: Male Wistar rats were divided into two groups according to their mother's diet during pregnancy: a control group (mothers fed a 17% protein diet and an isocaloric low-protein group (mothers fed a 7.8% protein diet. At birth, all mothers received a standardized meal ad libitum. At the age of 25 and 90 days, the soleus muscle and extensor digitorum longus (EDL muscles were removed in order to test the passive mechanical properties. A first mechanical test consisted of an incremental stepwise extension test using fast velocity stretching (500 mm/s enabling us to measure, for each extension stepwise, the dynamic stress (σd and the steady stress (σs. A second test consisted of a slow velocity stretch in order to calculate normalized stiffness and tangent modulus from the stress-strain relationship. RESULTS: The results for the mechanical properties showed an important increase in passive stiffness in both the soleus and EDL muscles in weaned rat. In contrast, no modification was observed in young adult rats. CONCLUSIONS: The increase in passive stiffness in skeletal muscle of weaned rat submitted to intrauterine undernutrition it is most likely due to changes in muscle passive stiffness.

  3. Cell death induced by gamma irradiation of developing skeletal muscle

    Newborn Sprague-Dawley rats were exposed to a single dose of 2 Gy gamma rays and killed from 6 h to 5 d later. Increased numbers of dying cells, characterised by their extreme chromatin condensation and often nuclear fragmentation were seen in skeletal muscle 6 h after irradiation. Dying cells decreased to nearly normal values 48 h later. In situ labelling of nuclear DNA fragmentation identified individual cells bearing fragmented DNA. The effects of gamma rays were suppressed following cycloheximide i.p. at a dose of 1 μg/g body weight given at the time of irradiation. Taken together, the present morphological and pharmacological results suggest that gamma ray induced cell death in skeletal muscle is apoptotic, and that the process is associated with protein synthesis. Finally, proliferating cell nuclear antigen-immunoreactive cells, which were abundant in control rats, decreased in number 48 h after irradiation. However, a marked increase significantly above normal age values was observed at the 5th day, thus suggesting that regeneration occurs following irradiation-induced cell death in developing muscle. (author)

  4. Emotion processes in normal and abnormal development and preventive intervention.

    Izard, Carroll E; Fine, Sarah; Mostow, Allison; Trentacosta, Christopher; Campbell, Jan

    2002-01-01

    We present an analysis of the role of emotions in normal and abnormal development and preventive intervention. The conceptual framework stems from three tenets of differential emotions theory (DET). These principles concern the constructs of emotion utilization; intersystem connections among modular emotion systems, cognition, and action; and the organizational and motivational functions of discrete emotions. Particular emotions and patterns of emotions function differentially in different periods of development and in influencing the cognition and behavior associated with different forms of psychopathology. Established prevention programs have not emphasized the concept of emotion as motivation. It is even more critical that they have generally neglected the idea of modulating emotions, not simply to achieve self-regulation, but also to utilize their inherently adaptive functions as a means of facilitating the development of social competence and preventing psychopathology. The paper includes a brief description of a theory-based prevention program and suggestions for complementary targeted interventions to address specific externalizing and internalizing problems. In the final section, we describe ways in which emotion-centered preventions can provide excellent opportunities for research on the development of normal and abnormal behavior. PMID:12549703

  5. Development and progress of engineering of skeletal muscle tissue

    Zhou, GQ; Liao, H.

    2009-01-01

    Engineering skeletal muscle tissue remains still a challenge, and numerous studies have indicated that this technique may be of great importance in medicine in the near future. This article reviews some of the recent findings resulting from tissue engineering science related to the contractile behavior and the phenotypes of muscle tissue cells in different three-dimensional environment, and discusses how tissue engineering could be used to create and regenerate skeletal muscle, as well as the...

  6. Development of Bipotent Cardiac/Skeletal Myogenic Progenitors from MESP1+ Mesoderm

    Sunny Sun-Kin Chan

    2016-01-01

    Full Text Available The branchiomeric skeletal muscles co-evolved with new chambers of the heart to enable predatory feeding in chordates. These co-evolved tissues develop from a common population in anterior splanchnic mesoderm, referred to as cardiopharyngeal mesoderm (CPM. The regulation and development of CPM are poorly understood. We describe an embryonic stem cell-based system in which MESP1 drives a PDGFRA+ population with dual cardiac and skeletal muscle differentiation potential, and gene expression resembling CPM. Using this system, we investigate the regulation of these bipotent progenitors, and find that cardiac specification is governed by an antagonistic TGFβ-BMP axis, while skeletal muscle specification is enhanced by Rho kinase inhibition. We define transcriptional signatures of the first committed CPM-derived cardiac and skeletal myogenic progenitors, and discover surface markers to distinguish cardiac (PODXL+ from the skeletal muscle (CDH4+ CPM derivatives. These tools open an accessible window on this developmentally and evolutionarily important population.

  7. Abnormal skeletal patterning in embryos lacking a single Cbp allele: A partial similarity with Rubinstein–Taybi syndrome

    Tanaka, Yasunori; Naruse, Ichiro; Maekawa, Toshio; Masuya, Hiroshi; Shiroishi, Toshihiko; Ishii, Shunsuke

    1997-01-01

    CBP is a transcriptional coactivator required by many transcription factors for transactivation. Rubinstein–Taybi syndrome, which is an autosomal dominant syndrome characterized by abnormal pattern formation, has been shown to be associated with mutations in the Cbp gene. Furthermore, Drosophila CBP is required in hedgehog signaling for the expression of decapentapleigic, the Drosophila homologue of bone morphogenetic protein. However, no direct evidence exists to indicate that loss of one co...

  8. Selenoprotein N deficiency in mice is associated with abnormal lung development.

    Moghadaszadeh, Behzad; Rider, Branden E; Lawlor, Michael W; Childers, Martin K; Grange, Robert W; Gupta, Kushagra; Boukedes, Steve S; Owen, Caroline A; Beggs, Alan H

    2013-04-01

    Mutations in the human SEPN1 gene, encoding selenoprotein N (SepN), cause SEPN1-related myopathy (SEPN1-RM) characterized by muscle weakness, spinal rigidity, and respiratory insufficiency. As with other members of the selenoprotein family, selenoprotein N incorporates selenium in the form of selenocysteine (Sec). Most selenoproteins that have been functionally characterized are involved in oxidation-reduction (redox) reactions, with the Sec residue located at their catalytic site. To model SEPN1-RM, we generated a Sepn1-knockout (Sepn1(-/-)) mouse line. Homozygous Sepn1(-/-) mice are fertile, and their weight and lifespan are comparable to wild-type (WT) animals. Under baseline conditions, the muscle histology of Sepn1(-/-) mice remains normal, but subtle core lesions could be detected in skeletal muscle after inducing oxidative stress. Ryanodine receptor (RyR) calcium release channels showed lower sensitivity to caffeine in SepN deficient myofibers, suggesting a possible role of SepN in RyR regulation. SepN deficiency also leads to abnormal lung development characterized by enlarged alveoli, which is associated with decreased tissue elastance and increased quasi-static compliance of Sepn1(-/-) lungs. This finding raises the possibility that the respiratory syndrome observed in patients with SEPN1 mutations may have a primary pulmonary component in addition to the weakness of respiratory muscles. PMID:23325319

  9. Characterization of the chromosomal inversion associated with the Koa mutation in the mouse revealed the cause of skeletal abnormalities

    Suzuki Hiroetsu

    2009-09-01

    Full Text Available Abstract Background Koala (Koa is a dominant mutation in mice causing bushy muzzle and pinna, and is associated with a chromosomal inversion on the distal half of chromosome 15. To identify the gene responsible for the Koa phenotypes, we investigated phenotypes of Koa homozygous mice and determined the breakpoints of the inversion with a genetic method using recombination between two different chromosomal inversions. Results Skeletal preparation of Koa homozygotes showed marked deformity of the ribs and a wider skull with extended zygomatic arches, in addition to a general reduction in the lengths of long bones. They also had open eyelids at birth caused by a defect in the extension of eyelid anlagen during the embryonic stages. The proximal and distal breakpoints of the Koa inversion were determined to be 0.8-Mb distal to the Trsps1 gene and to 0.1-Mb distal to the Hoxc4 gene, respectively, as previously reported. The phenotypes of mice with the recombinant inverted chromosomes revealed the localization of the gene responsible the Koa phenotype in the vicinity of the proximal recombinant breakpoint. Expression of the Trsps1 gene in this region was significantly reduced in the Koa homozygous and heterozygous embryos. Conclusion While no gene was disrupted by the chromosomal inversion, an association between the Koa phenotype and the proximal recombinant breakpoint, phenotypic similarities with Trps1-deficient mice or human patients with TRSP1 mutations, and the reduced expression of the Trsps1 gene in Koa mice, indicated that the phenotypes of the Koa mice are caused by the altered expression of the Trps1 gene.

  10. Neurology of endemic skeletal fluorosis

    Reddy D

    2009-01-01

    Full Text Available Endemic skeletal fluorosis is widely prevalent in India and is a major public health problem. The first ever report of endemic skeletal fluorosis and neurological manifestation was from Prakasam district in Andhra Pradesh in the year 1937. Epidemiological and experimental studies in the endemic areas suggest the role of temperate climate, hard physical labor, nutritional status, presence of abnormal concentrations of trace elements like strontium, uranium, silica in water supplies, high fluoride levels in foods and presence of kidney disease in the development of skeletal fluorosis. Neurological complications of endemic skeletal fluorosis, namely radiculopathy, myelopathy or both are mechanical in nature and till date the evidence for direct neurotoxicity of fluoride is lacking. Prevention of the disease should be the aim, knowing the pathogenesis of fluorosis. Surgery has a limited role in alleviating the neurological disability and should be tailored to the individual based on the imaging findings.

  11. Primary skeletal muscle cells cultured on gelatin bead microcarriers develop structural and biochemical features characteristic of adult skeletal muscle.

    Kubis, Hans-Peter; Scheibe, Renate J; Decker, Brigitte; Hufendiek, Karsten; Hanke, Nina; Gros, Gerolf; Meissner, Joachim D

    2016-04-01

    A primary skeletal muscle cell culture, in which myoblasts derived from newborn rabbit hindlimb muscles grow on gelatin bead microcarriers in suspension and differentiate into myotubes, has been established previously. In the course of differentiation and beginning spontaneous contractions, these multinucleated myotubes do not detach from their support. Here, we describe the development of the primary myotubes with respect to their ultrastructural differentiation. Scanning electron microscopy reveals that myotubes not only grow around the surface of one carrier bead but also attach themselves to neighboring carriers, forming bridges between carriers. Transmission electron microscopy demonstrates highly ordered myofibrils, T-tubules, and sarcoplasmic reticulum. The functionality of the contractile apparatus is evidenced by contractile activity that occurs spontaneously or can be elicited by electrostimulation. Creatine kinase activity increases steadily until day 20 of culture. Regarding the expression of isoforms of myosin heavy chains (MHC), we could demonstrate that from day 16 on, no non-adult MHC isoform mRNAs are present. Instead, on day 28 the myotubes express predominantly adult fast MHCIId/x mRNA and protein. This MHC pattern resembles that of fast muscles of adult rabbits. In contrast, primary myotubes grown on matrigel-covered culture dishes express substantial amounts of non-adult MHC protein even on day 21. To conclude, primary myotubes grown on microcarriers in their later stages exhibit many features of adult skeletal muscle and characteristics of fast type II fibers. Thus, the culture represents an excellent model of adult fast skeletal muscle, for example, when investigating molecular mechanisms of fast-to-slow fiber-type transformation. PMID:26610066

  12. Extrasynaptic location of laminin beta 2 chain in developing and adult human skeletal muscle

    Wewer, U M; Thornell, L E; Loechel, F; Zhang, X; Durkin, M E; Amano, S; Burgeson, R E; Engvall, E; Albrechtsen, R; Virtanen, I

    1997-01-01

    to the laminin beta 2 chain. We found that laminin beta 1 chain was detected at all times during development from 10 weeks of gestation. Laminin beta 2 chain was first detected in 15 to 22-week-old fetal skeletal muscle as distinct focal immunoreactivity in the sarcolemmal basement membrane area of...... some myofibers. In the adult skeletal muscle, laminin beta 2 chain immunoreactivity was found along the entire perimeter of each of the individual myofibers in a large series of different muscles studied. Laminin beta 2 chain was similarly found in the skeletal muscle basement membranes in patients......We have investigated the distribution of the laminin beta 2 chain (previously s-laminin) in human fetal and adult skeletal muscle and compared it to the distribution of laminin beta 1. Immunoblotting and transfection assays were used to characterize a panel of monoclonal and polyclonal antibodies...

  13. Development of Abnormality Detection System for Bathers using Ultrasonic Sensors

    Ohnishi, Yosuke; Abe, Takehiko; Nambo, Hidetaka; Kimura, Haruhiko; Ogoshi, Yasuhiro

    This paper proposes an abnormality detection system for bather sitting in bathtub. Increasing number of in-bathtub drowning accidents in Japan draws attention. Behind this large number of bathing accidents, Japan's unique social and cultural background come surface. For majority of people in Japan, bathing serves purpose in deep warming up of body, relax and enjoyable time. Therefore it is the custom for the Japanese to soak in bathtub. However overexposure to hot water may cause dizziness or fainting, which is possible to cause in-bathtub drowning. For drowning prevention, the system detects bather's abnormal state using an ultrasonic sensor array. The array, which has many ultrasonic sensors, is installed on the ceiling of bathroom above bathtub. The abnormality detection system uses the following two methods: posture detection and behavior detection. The function of posture detection is to estimate the risk of drowning by monitoring bather's posture. Meanwhile, the function of behavior detection is to estimate the risk of drowning by monitoring bather's behavior. By using these methods, the system detects bathers' different state from normal. As a result of experiment with a subject in the bathtub, the system was possible to detect abnormal state using subject's posture and behavior. Therefore the system is useful for monitoring bather to prevent drowning in bathtub.

  14. Phenotypic characterization of skeletal abnormalities of osteopotentia mutant mice by micro-CT: a descriptive approach with emphasis on reconstruction techniques

    Roemer, Frank W. [Department of Radiology, Klinikum Augsburg, Augsburg (Germany); Boston University School of Medicine, Quantitative Imaging Center, Boston, MA (United States); University of California, San Francisco, Osteoporosis and Arthritis Research Group, San Francisco, CA (United States); Boston University Medical Center, Department of Radiology, Boston, MA (United States); Mohr, Andreas [University of California, San Francisco, Osteoporosis and Arthritis Research Group, San Francisco, CA (United States); Sligo General Hospital, Department of Radiology, Sligo (Ireland); Guermazi, Ali [Boston University School of Medicine, Quantitative Imaging Center, Boston, MA (United States); University of California, San Francisco, Osteoporosis and Arthritis Research Group, San Francisco, CA (United States); Jiang, Yebin [University of California, San Francisco, Osteoporosis and Arthritis Research Group, San Francisco, CA (United States); University of Michigan Medical School, Osteoporosis and Arthritis Laboratory, Musculoskeletal Division, Department of Radiology, Ann Arbor, MI (United States); Schlechtweg, Philipp [University of Erlangen, Department of Radiology, Erlangen (Germany); Genant, Harry K. [University of California, San Francisco, Osteoporosis and Arthritis Research Group, San Francisco, CA (United States); CCBR-SYNARC, Inc., San Francisco, CA (United States); Sohaskey, Michael L. [University of California, Berkeley, Department of Molecular and Cell Biology and Center for Integrative Genomics, Berkeley, CA (United States)

    2011-08-15

    The novel protein osteopotentia (Opt) has recently been described as an essential regulator of postnatal osteoblast maturation and might possibly be responsible for some of the rarer types of osteogenesis imperfecta. Our aim was the evaluation of micro CT for the qualitative morphological assessment of skeletal abnormalities of Osteopotentia-mutant mice in comparison to radiography and histology. Four homozygous mice with insertional mutations in the Opt gene and three wild-type controls were examined ex vivo using radiography and micro-CT. Two of the homozygous animals were evaluated histologically (trichrome reagent). For the micro-CT evaluation three-dimensional (3D) surface reconstructions and two-dimensional (2D) multiplanar reformations (MPRs) were applied. The Opt-homozygous mice exhibited severe growth. The radiographic examinations showed osteopenia and fractures with hypertrophic callus formation and pseudarthroses of the forelimbs and ribs. Micro-CT confirmed these findings and was able to demonstrate additional fractures especially at smaller bones such as the metacarpals and phalanges. Additional characterization and superior delineation of cortices and fracture fragments was achieved by 2D MPRs. Histological correlation verified several of these imaging findings. Micro-CT is able to screen Opt-mutant mice for osseous pathologies and furthermore characterize these anomalies. The modality seems superior to conventional radiography, but is not able to demonstrate cellular pathology. However, histology is destructive and more time- and material-consuming than micro-CT. Additional information may be gathered by 2D MPRs. (orig.)

  15. Phenotypic characterization of skeletal abnormalities of osteopotentia mutant mice by micro-CT: a descriptive approach with emphasis on reconstruction techniques

    The novel protein osteopotentia (Opt) has recently been described as an essential regulator of postnatal osteoblast maturation and might possibly be responsible for some of the rarer types of osteogenesis imperfecta. Our aim was the evaluation of micro CT for the qualitative morphological assessment of skeletal abnormalities of Osteopotentia-mutant mice in comparison to radiography and histology. Four homozygous mice with insertional mutations in the Opt gene and three wild-type controls were examined ex vivo using radiography and micro-CT. Two of the homozygous animals were evaluated histologically (trichrome reagent). For the micro-CT evaluation three-dimensional (3D) surface reconstructions and two-dimensional (2D) multiplanar reformations (MPRs) were applied. The Opt-homozygous mice exhibited severe growth. The radiographic examinations showed osteopenia and fractures with hypertrophic callus formation and pseudarthroses of the forelimbs and ribs. Micro-CT confirmed these findings and was able to demonstrate additional fractures especially at smaller bones such as the metacarpals and phalanges. Additional characterization and superior delineation of cortices and fracture fragments was achieved by 2D MPRs. Histological correlation verified several of these imaging findings. Micro-CT is able to screen Opt-mutant mice for osseous pathologies and furthermore characterize these anomalies. The modality seems superior to conventional radiography, but is not able to demonstrate cellular pathology. However, histology is destructive and more time- and material-consuming than micro-CT. Additional information may be gathered by 2D MPRs. (orig.)

  16. Exome sequencing identifies a nonsense mutation in Fam46a associated with bone abnormalities in a new mouse model for skeletal dysplasia.

    Diener, Susanne; Bayer, Sieglinde; Sabrautzki, Sibylle; Wieland, Thomas; Mentrup, Birgit; Przemeck, Gerhard K H; Rathkolb, Birgit; Graf, Elisabeth; Hans, Wolfgang; Fuchs, Helmut; Horsch, Marion; Schwarzmayr, Thomas; Wolf, Eckhard; Klopocki, Eva; Jakob, Franz; Strom, Tim M; Hrabě de Angelis, Martin; Lorenz-Depiereux, Bettina

    2016-04-01

    We performed exome sequencing for mutation discovery of an ENU (N-ethyl-N-nitrosourea)-derived mouse model characterized by significant elevated plasma alkaline phosphatase (ALP) activities in female and male mutant mice, originally named BAP014 (bone screen alkaline phosphatase #14). We identified a novel loss-of-function mutation within the Fam46a (family with sequence similarity 46, member A) gene (NM_001160378.1:c.469G>T, NP_001153850.1:p.Glu157*). Heterozygous mice of this mouse line (renamed Fam46a (E157*Mhda)) had significantly high ALP activities and apparently no other differences in morphology compared to wild-type mice. In contrast, homozygous Fam46a (E157*Mhda) mice showed severe morphological and skeletal abnormalities including short stature along with limb, rib, pelvis, and skull deformities with minimal trabecular bone and reduced cortical bone thickness in long bones. ALP activities of homozygous mutants were almost two-fold higher than in heterozygous mice. Fam46a is weakly expressed in most adult and embryonic tissues with a strong expression in mineralized tissues as calvaria and femur. The FAM46A protein is computationally predicted as a new member of the superfamily of nucleotidyltransferase fold proteins, but little is known about its function. Fam46a (E157*Mhda) mice are the first mouse model for a mutation within the Fam46a gene. PMID:26803617

  17. Radiographically visualized skeletal changes associated with mucopolysaccharidosis VI in cats

    The radiographic skeletal form and structure of all cats with mucopolysaccharidosis VI is described. Common manifestations included epiphyseal dysplasia, generalized osteoporosis, abnormal nasal turbinate development, his subluxation, impaired development of skeletal growth, pectus excavatum, hyoid hypoplasia, aplasia, hypoplasia and fragmentation or abnormal ossification of the dens, and aplasia or hypoplasia of frontal and sphenoid sinuses. The skeletal measurements of two affected cats were compared with those of normal, sex-matched littermates, and the measurements of two affected female cats were compared with those of a normal male littermate

  18. 胎儿骨骼系统异常与染色体异常的相关性分析%The correlation analysis of fetal skeletal anomalies with chromosome abnormality by prenatal systematic ultrasonography examination

    熊雯; 罗红; 安绍宇; 吴莹; 刘芸

    2015-01-01

    Objective To evaluate the value of systemic ultrasound examination in prenatal diagnosis of fetus skeletal system anomaly combined with chromosomal abnormalities. Methods In 12 146 patients examined by systemic ultrasound in Sichuan Provincial People's Hospital from 2006 to 2013, 21 fetus with skeletal system abnormalities and chromosomal abnormalities were included in the study. And the correlation between skeletal system abnormalities and chromosomal abnormalities in fetus was evaluated. Results This study involves 21 cases of abnormal fetal skeletal system combined with chromosomal abnormalities. Among them, there were 5 cases of trisomy-21, 11 cases of trisomy-18, 3 cases of trisomy-13, 1 case of [46, XYt (6, 9)], and 1 case of (46, XY, 6 q-). In 19 cases, other system malformations were found, including nervous system abnormalities, facial deformity, cardiac structural abnormalities and intrauterine retardation. In the rest 2 cases, skeletal system abnormalities were the only structural malformation detected on prenatal ultrasound examination. Conclusion Systemic ultrasound can't only detect fetal skeletal system abnormalities but also provide clues for specific chromosomal abnormalities, which was useful in optimizing prenatal diagnosis.%目的评价系统超声检出胎儿骨骼系统异常与染色体异常的相关性。方法收集2006年至2013年在四川省人民医院行系统超声检查的12146人次的胎儿资料,筛选出21例既有骨骼系统异常表现又存在染色体异常的胎儿完整临床资料(包括系统超声检查图像资料,引产或产后追踪结果,羊水穿刺胎儿染色体检测结果),评价超声可检出的骨骼系统异常与染色体异常之间的相关性。结果本组资料共21例胎儿骨骼系统异常合并染色体异常,其中21-三体5例,18-三体11例,13-三体3例,余染色体异常2例[46,XYt(6,9),(46,XY,6 q-)],21-三体5例,18-三体11例,13-三体3例均

  19. Linking dietary energy and skeletal development in the horse Vinculação de energia na dieta e desenvolvimento do esqueleto do cavalo

    William Burton Staniar

    2010-07-01

    Full Text Available Athletic production is what is sought from the horse. As mammary development is important to the dairy cow, skeletal development is important to horses meeting their production goals. As any integrative physiologist will appreciate, the variables that come together to result in optimal skeletal development are complex. Nutrition is one of these, and it contains two broad variables; the supply of dietary nutrients and energy. This presentation will focus on dietary energy and its links with skeletal development. I propose that it is not simply the amount of dietary energy, but the way and from that that energy is supplied that impacts skeletal development. Through an understanding of how dietary energy impact skeletal development, more precise feeding management strategies can be developed to reduce the risk of skeletal abnormalities and even potentially improve skeletal integrity.Produção atlética é o que se exige do cavalo. Do mesmo modo que o desenvolvimento das glândulas mamárias é importante para vaca leiteira, o desenvolvimento do esqueleto é importante para os cavalos atingirem as metas de produção. Como qualquer fisiologista integrador vai apreciar, as variáveis necessárias para se atingir o desenvolvimento ideal do esqueleto são complexas. A nutrição é uma destas variáveis que contém outras duas mais amplas: fornecimento de nutrientes e energia da dieta. Esta apresentação irá focar na energia da dieta e seus vínculos com o desenvolvimento do esqueleto. Proponho que não é simplesmente a quantidade de energia da dieta, mas a maneira como essa energia será fornecida e quais serão os impactos sobre o desenvolvimento do esqueleto. O entendimento do impacto da energia da dieta sobre o desenvolvimento do esqueleto pode gerar estratégias de gestão de alimentação mais precisas para reduzir o risco de anormalidades esqueléticas e até melhorar potencialmente a integridade do esqueleto.

  20. Abnormal ventricular development in preterm neonates with visually normal MRIs

    Shi, Jie; Wang, Yalin; Lao, Yi; Ceschin, Rafael; Mi, Liang; Nelson, Marvin D.; Panigrahy, Ashok; Leporé, Natasha

    2015-12-01

    Children born preterm are at risk for a wide range of neurocognitive and neurobehavioral disorders. Some of these may stem from early brain abnormalities at the neonatal age. Hence, a precise characterization of neonatal neuroanatomy may help inform treatment strategies. In particular, the ventricles are often enlarged in neurocognitive disorders, due to atrophy of surrounding tissues. Here we present a new pipeline for the detection of morphological and relative pose differences in the ventricles of premature neonates compared to controls. To this end, we use a new hyperbolic Ricci flow based mapping of the ventricular surfaces of each subjects to the Poincaré disk. Resulting surfaces are then registered to a template, and a between group comparison is performed using multivariate tensor-based morphometry. We also statistically compare the relative pose of the ventricles within the brain between the two groups, by performing a Procrustes alignment between each subject's ventricles and an average shape. For both types of analyses, differences were found in the left ventricles between the two groups.

  1. Development and validation of an n-dodecane skeletal mechanism for spray combustion applications

    Luo, Zhaoyu; Som, Sibendu; Mani Sarathy, S.; Plomer, Max; Pitz, William J.; Longman, Douglas E.; Lu, Tianfeng

    2014-03-01

    n-Dodecane is a promising surrogate fuel for diesel engine study because its physicochemical properties are similar to those of the practical diesel fuels. In the present study, a skeletal mechanism for n-dodecane with 105 species and 420 reactions was developed for spray combustion simulations. The reduction starts from the most recent detailed mechanism for n-alkanes consisting of 2755 species and 11,173 reactions developed by the Lawrence Livermore National Laboratory. An algorithm combining direct relation graph with expert knowledge (DRGX) and sensitivity analysis was employed for the present skeletal reduction. The skeletal mechanism was first extensively validated in 0-D and 1-D combustion systems, including auto-ignition, jet stirred reactor (JSR), laminar premixed flame and counter flow diffusion flame. Then it was coupled with well-established spray models and further validated in 3-D turbulent spray combustion simulations under engine-like conditions. These simulations were compared with the recent experiments with n-dodecane as a surrogate for diesel fuels. It can be seen that combustion characteristics such as ignition delay and flame lift-off length were well captured by the skeletal mechanism, particularly under conditions with high ambient temperatures. Simulations also captured the transient flame development phenomenon fairly well. The results further show that ignition delay may not be the only factor controlling the stabilisation of the present flames since a good match in ignition delay does not necessarily result in improved flame lift-off length prediction.

  2. Skeletal scintigraphy

    Skeletal scintigraphy, using phosphates or diphosphonates labeled with technetium 99m, is a sensitive method of detecting bone abnormalities. The most important and most frequent role of bone scanning is evaluating the skeletal areas in patients who have a primary cancer, especially a malignant condition that has a tendency to spread to bone areas. The bone scan is superior to bone radiographs in diagnosing these abnormalities; 15 percent to 25 percent of patients with breast, prostate or lung cancer, who have normal roentgenograms, also have abnormal scintigrams due to metastases. The majority of bone metastases appear as hot spots on the scan and are easily recognized. The incidence of abnormal bone scans in patients with early stages (I and II) of breast cancer varies from 6 percent to 26 percent, but almost invariably those patients with scan abnormalities have a poor prognosis and should be considered for additional therapies. Progression or regression of bony lesions can be defined through scanning, and abnormal areas can be identified for biopsy. The incidence of metastases in solitary scan lesions in patients with known primary tumors varies from 20 percent to 64 percent. Bone scintigraphy shows positive uptake in 95 percent of cases with acute osteomyelitis. Stress fractures and trauma suspected in battered babies can be diagnosed by scanning before there is radiological evidence. The procedure is free from acute or long-term side effects and, except in cases of very young patients, sedation is seldom necessary. Although the test is sensitive, it is not specific and therefore it is difficult to overemphasize the importance of clinical, radiographic, biochemical and scanning correlation in each patient

  3. Phenotypic characterization of miR-92a-/- mice reveals an important function of miR-92a in skeletal development.

    Daniela Penzkofer

    Full Text Available MicroRNAs (miRNAs, miRs emerged as key regulators of gene expression. Germline hemizygous deletion of the gene that encodes the miR-17∼92 miRNA cluster was associated with microcephaly, short stature and digital abnormalities in humans. Mice deficient for the miR-17∼92 cluster phenocopy several features such as growth and skeletal development defects and exhibit impaired B cell development. However, the individual contribution of miR-17∼92 cluster members to this phenotype is unknown. Here we show that germline deletion of miR-92a in mice is not affecting heart development and does not reduce circulating or bone marrow-derived hematopoietic cells, but induces skeletal defects. MiR-92a-/- mice are born at a reduced Mendelian ratio, but surviving mice are viable and fertile. However, body weight of miR-92a-/- mice was reduced during embryonic and postnatal development and adulthood. A significantly reduced body and skull length was observed in miR-92a-/- mice compared to wild type littermates. µCT analysis revealed that the length of the 5th mesophalanx to 5th metacarpal bone of the forelimbs was significantly reduced, but bones of the hindlimbs were not altered. Bone density was not affected. These findings demonstrate that deletion of miR-92a is sufficient to induce a developmental skeletal defect.

  4. Constitutive Notch Signaling Causes Abnormal Development of the Oviducts, Abnormal Angiogenesis, and Cyst Formation in Mouse Female Reproductive Tract.

    Ferguson, Lydia; Kaftanovskaya, Elena M; Manresa, Carmen; Barbara, Agustin M; Poppiti, Robert J; Tan, Yingchun; Agoulnik, Alexander I

    2016-03-01

    The Notch signaling pathway is critical for the differentiation of many tissues and organs in the embryo. To study the consequences of Notch1 gain-of-function signaling on female reproductive tract development, we used a cre-loxP strategy andAmhr2-cretransgene to generate mice with conditionally activated Notch1 (Rosa(Notch1)). TheAmhr2-cretransgene is expressed in the mesenchyme of developing female reproductive tract and in granulosa cells in the ovary. Double transgenicAmhr2-cre, Rosa(Notch1)females were infertile, whereas controlRosa(Notch1)mice had normal fertility. All female reproductive organs in mutants showed hemorrhaging of blood vessels progressing with age. The mutant oviducts did not develop coiling, and were instead looped around the ovary. There were multiple blockages in the lumen along the oviduct length, creating a barrier for sperm or oocyte passage. Mutant females demonstrated inflamed uteri with increased vascularization and an influx of inflammatory cells. Additionally, older females developed ovarian, oviductal, and uterine cysts. The significant change in gene expression was detected in the mutant oviduct expression ofWnt4, essential for female reproductive tract development. Similar oviductal phenotypes have been detected previously in mice with activatedSmoand inbeta-catenin,Wnt4,Wnt7a, andDicerconditional knockouts, indicating a common regulatory pathway disrupted by these genetic abnormalities. PMID:26843448

  5. Autocrine and Paracrine Actions of IGF-I Signaling in Skeletal Development

    Yongmei Wang; Daniel D. Bikle; Wenhan Chang

    2013-01-01

    Insulin-like growth factor-I (IGF-I) regulates cell growth, survival, and differentiation by acting on the IGF-I receptor, (IGF-IR)-a tyrosine kinase receptor, which elicits diverse intracellular signaling responses. All skeletal cells express IGF-I and IGF-IR. Recent studies using tissue/cell-specific gene knockout mouse models and cell culture techniques have clearly demonstrated that locally produced IGF-I is more critical than the systemic IGF-I in supporting embryonic and postnatal skeletal development and bone remodeling. Local IGF-I/IGF-IR signaling promotes the growth, survival and differentiation of chondrocytes and osteo-blasts, directly and indirectly, by altering other autocrine/paracrine signaling pathways in cartilage and bone, and by enhancing interactions among these skeletal cells through hormonal and physical means. Moreover, local IGF-I/IGF-IR signaling is critical for the anabolic bone actions of growth hormone and parathyroid hormone. Herein, we review evidence supporting the actions of local IGF-I/IGF-IR in the above aspects of skeletal development and remodeling.

  6. Abnormal embryonic lymphatic vessel development in Tie1 hypomorphic mice

    Qu, Xianghu; Tompkins, Kevin; Batts, Lorene E.; Puri, Mira; Baldwin, H. Scott

    2010-01-01

    Tie1 is an endothelial receptor tyrosine kinase that is essential for development and maintenance of the vascular system; however, the role of Tie1 in development of the lymphatic vasculature is unknown. To address this question, we first documented that Tie1 is expressed at the earliest stages of lymphangiogenesis in Prox1-positive venous lymphatic endothelial cell (LEC) progenitors. LEC Tie1 expression is maintained throughout embryonic development and persists in postnatal mice. We then ge...

  7. Aberrant repair and fibrosis development in skeletal muscle

    Mann Christopher J

    2011-05-01

    Full Text Available Abstract The repair process of damaged tissue involves the coordinated activities of several cell types in response to local and systemic signals. Following acute tissue injury, infiltrating inflammatory cells and resident stem cells orchestrate their activities to restore tissue homeostasis. However, during chronic tissue damage, such as in muscular dystrophies, the inflammatory-cell infiltration and fibroblast activation persists, while the reparative capacity of stem cells (satellite cells is attenuated. Abnormal dystrophic muscle repair and its end stage, fibrosis, represent the final common pathway of virtually all chronic neurodegenerative muscular diseases. As our understanding of the pathogenesis of muscle fibrosis has progressed, it has become evident that the muscle provides a useful model for the regulation of tissue repair by the local microenvironment, showing interplay among muscle-specific stem cells, inflammatory cells, fibroblasts and extracellular matrix components of the mammalian wound-healing response. This article reviews the emerging findings of the mechanisms that underlie normal versus aberrant muscle-tissue repair.

  8. An atlas of normal skeletal scintigraphy

    This atlas was compiled to provide the neophyte as well as the experienced radiologist and the nuclear medicine physician with a reference on normal skeletal scintigraphy as an aid in distinguishing normal variations in skeletal uptake from abnormal findings. Each skeletal scintigraph is labeled, and utilizing an identical scale, a relevant skeletal photograph and radiograph are placed adjacent to the scintigraph

  9. Normal and Abnormal Embryonic Development in Virtual Reality

    L. Baken (Leonie)

    2014-01-01

    markdownabstract__Abstract__ Research of the past years indicates that the periconception period, the period including gametogenesis and embryogenesis, determines growth and development of the embryo and subsequent pregnancy outcome. Prenatal care starts to focus more on the first-trimester of preg

  10. Linear scleroderma en coup de sabre including abnormal dental development

    Hørberg, M; Lauesen, S R; Daugaard-Jensen, J; Kjær, I

    2015-01-01

    of eruption. FOLLOW-UP: The patient has been regularly controlled and treated since she was first diagnosed. A surgical and orthodontic treatment was performed to ensure optimal occlusion, space and alveolar bone development. The present age of the patient is 14 years and 10 months. CONCLUSION: This...

  11. Constitutive activation of IKK2/NF-κB impairs osteogenesis and skeletal development.

    Swarnkar, Gaurav; Zhang, Kaihua; Mbalaviele, Gabriel; Long, Fanxin; Abu-Amer, Yousef

    2014-01-01

    and alkaline phosphatase, and the early markers Aggrecan and type-II collagen were reduced in Cre+IKK2ca_w/f and Cre+IKK2ca_f/f mice. Altogether, the in-vitro, in vivo and ex-vivo evidence suggest that IKK2ca perturbs osteoblast and chondrocyte maturation and impairs skeletal development. PMID:24618907

  12. Constitutive activation of IKK2/NF-κB impairs osteogenesis and skeletal development.

    Gaurav Swarnkar

    Indian hedgehog and alkaline phosphatase, and the early markers Aggrecan and type-II collagen were reduced in Cre+IKK2ca_w/f and Cre+IKK2ca_f/f mice. Altogether, the in-vitro, in vivo and ex-vivo evidence suggest that IKK2ca perturbs osteoblast and chondrocyte maturation and impairs skeletal development.

  13. X chromosome abnormalities and cognitive development: implications for understanding normal human development.

    Walzer, S

    1985-03-01

    Recent advances in the biological sciences have offered new opportunities to identify biological contributions as they interact with social experience to help determine psychological development. The role of biological factors is more easily demonstrated in subhuman species in which extensive experimental manipulations of variables are possible. One strategy for the study of human behaviour genetics has been the systematic analysis of behaviour in individuals with naturally occurring X chromosome variations. The aim has been to demonstrate whether or not the range of expected variability in particular areas of behavioural development was narrowed by the specific genotypic abnormality. The knowledge obtained from these studies can be applied meaningfully to enhance our understanding about human behavioural development in chromosomally unaffected individuals. PMID:3884639

  14. MyoD control of SKIP expression during pig skeletal muscle development.

    Xiong, Q; Chai, J; Zhang, P P; Wu, J; Jiang, S W; Zheng, R; Deng, C Y

    2011-01-01

    Skeletal muscle and kidney enriched inositol phosphatase (SKIP) was identified as a 5'-inositol phosphatase that hydrolyzes PI(3,4,5)P3 to PI(3,4)P2 that negatively regulates insulin-induced phosphatidylinositol 3-kinase signaling in skeletal muscle. In this study, we obtained a 1575-bp mRNA sequence of porcine SKIP that included the full coding region encoding a protein of 450 amino acids. With the use of comparative mapping, we mapped this gene to SSC12 q1.3, where many QTLs affect Backfat thickness at 10th rib, carcass yield, the number of muscle fibers, and ham weight traits. As a candidate gene for growth and carcass traits, a novel single nucleotide polymorphism in exon 12 (G>A) was detected by PCR-RFLP. The results showed that the GG genotype had higher skin percentage (SP), carcass length to first spondyle (CL1), carcass length to first rib (CL2), but lower intramuscular fat (IMF) as compared with genotype AG (P<0.05), and allele G seemed to be associated with an increase in the growth trait. Porcine SKIP was expressed abundantly in skeletal muscle tissue and was transcriptionally upregulated during skeletal muscle differentiation. Analysis of the porcine SKIP promoter sequence demonstrated that MyoD was involved in regulating SKIP mRNA expression in myotubes, partly via the cis-acting elements in SKIP promoter. In summary, we suggested that SKIP might play a role in the regulation of skeletal muscle development in pigs. PMID:20336382

  15. A receptor that is highly specific for extracellular ATP in developing chick skeletal muscle in vitro.

    Thomas, S A; Zawisa, M. J.; Lin, X.; Hume, R. I.

    1991-01-01

    1. Extracellular adenosine 5'-triphosphate (ATP) activated an early excitatory conductance followed by a late potassium conductance in developing chick skeletal muscle. A series of ATP analogues were tested for their ability to activate these two conductances. All compounds tested were either agonists for both responses or for neither. Furthermore, the potency of agonists was similar for the two responses. 2. The order of potency for agonists was ATP approximately adenosine 5'-O-(3-thiotripho...

  16. Expression of somatostatin receptor genes and acetylcholine receptor development in rat skeletal muscle during postnatal development.

    Peng, M; Conforti, L; Millhorn, D E

    1998-05-01

    Our laboratory reported previously that somatostatin (SST) is transiently expressed in rat motoneurons during the first 14 days after birth. We investigated the possibility that the SST receptor (SSTR) is expressed in skeletal muscle. We found that two of the five subtypes of SSTR (SSTR3 and SSTR4) are expressed in skeletal muscle with a time course that correlates with the transient expression of SST in motoneurons. In addition, SSTR2A is expressed from birth to adulthood in skeletal muscle. Both SSTR2A and SSTR4 are also expressed in L6 cells, a skeletal muscle cell line. Somatostatin acting through its receptors has been shown to stimulate tyrosine phosphatase activity in a number of different tissues. We found that several proteins (50, 65, 90, 140, 180 and 200 kDa) exhibited a reduced degree of tyrosine phosphorylation following SST treatment. Inhibition of tyrosine phosphatase activity with sodium orthovanadate increased expression of the nicotinic acetyl-choline receptor (nAChR) epsilon subunit mRNA by three fold. Somatostatin reversed the elevated epsilon mRNA following orthovanadate treatment. These findings show that SSTR is expressed in skeletal muscle and that SST acting via the SSTR regulates tyrosine phosphorylation and expression of the epsilon subunit of the AChR in the rat skeletal muscle. PMID:9852305

  17. VEGF stimulates intramembranous bone formation during craniofacial skeletal development.

    Duan, Xuchen; Bradbury, Seth R; Olsen, Bjorn R; Berendsen, Agnes D

    2016-01-01

    Deficiency of vascular endothelial growth factor A (VEGF) has been associated with severe craniofacial anomalies in both humans and mice. Cranial neural crest cell (NCC)-derived VEGF regulates proliferation, vascularization and ossification of cartilage and membranous bone. However, the function of VEGF derived from specific subpopulations of NCCs in controlling unique aspects of craniofacial morphogenesis is not clear. In this study a conditional knockdown strategy was used to genetically delete Vegfa expression in Osterix (Osx) and collagen II (Col2)-expressing NCC descendants. No major defects in calvaria and mandibular morphogenesis were observed upon knockdown of VEGF in the Col2(+) cell population. In contrast, loss of VEGF in Osx(+) osteoblast progenitor cells led to reduced ossification of calvarial and mandibular bones without affecting the formation of cartilage templates in newborn mice. The early stages of ossification in the developing jaw revealed decreased initial mineralization levels and a reduced thickness of the collagen I (Col1)-positive bone template upon loss of VEGF in Osx(+) precursors. Increased numbers of proliferating cells were detected within the jaw mesenchyme of mutant embryos. Explant culture assays revealed that mandibular osteogenesis occurred independently of paracrine VEGF action and vascular development. Reduced VEGF expression in mandibles coincided with increased phospho-Smad1/5 (P-Smad1/5) levels and bone morphogenetic protein 2 (Bmp2) expression in the jaw mesenchyme. We conclude that VEGF derived from Osx(+) osteoblast progenitor cells is required for optimal ossification of developing mandibular bones and modulates mechanisms controlling BMP-dependent specification and expansion of the jaw mesenchyme. PMID:26899202

  18. A Brief History of the Development of Abnormal Psychology: A Training Guide. Final Report.

    Phelps, William R.

    Presented for practitioners is a history of the development of abnormal psychology. Areas covered include the following: Early medical concepts, ideas carried over from literature, early treatment of the mentally ill, development of the psychological viewpoint, Freud's psychoanalytic theory, Jung's analytic theory, the individual psychology of…

  19. Role of skeletal muscle in motor neuron development.

    Baguma-Nibasheka, Mark; Fracassi, Anna; Costain, Willard J; Moreno, Sandra; Kablar, Boris

    2016-07-01

    The current paper is a continuation of our work most recently described in Kablar, 2011. Here, we show lists of up- and down-regulated genes obtained by a cDNA microarray analysis that compared developing mouse MyoD-/- limb musculature (MyoD-dependent, innervated by Lateral Motor Column motor neurons) and Myf5-/- back (epaxial) musculature (Myf5-dependent, innervated by Medial Motor Column motor neurons) to the control and to each other, at embryonic day 13.5 which coincides with the robust programmed cell death of motor neurons and the inability of myogenesis to undergo its normal progression in the absence of Myf5 and MyoD that at this embryonic day cannot substitute for each other. We wanted to see if/how the myogenic program couples with the neurotrophic one, and also to separate Lateral from Medial column trophic requirements, potentially relevant to Motor Neuron Diseases with the predilection for the Lateral column. Several follow-up steps revealed that Kif5c, Stxbp1 and Polb, differentially expressed in the MyoD-/- limb muscle, and Ppargc1a, Glrb and Hoxd10, differentially expressed in the Myf5-/- back muscle, are actually regulators of motor neuron numbers. We propose a series of follow-up experiments and various ways to consider our current data. PMID:26892388

  20. The embryonic development of ear-tufts and associated structural head and neck abnormalities of the Araucana fowl.

    Pabilonia, M S; Somes, R G

    1983-08-01

    Developing embryonic structural abnormalities of ear-tufted embryos of the Araucana fowl are described. These abnormal structures are peduncle, cleft, ear opening, tympanic membrane, and columella auris. The structural abnormalities are believed to be due to the early incomplete fusion of the hyoid and mandibular arches from the distal part of the ear opening to the neck area. PMID:6634592

  1. Development of aerobic and anaerobic metabolism in cardiac and skeletal muscles from harp and hooded seals.

    Burns, J M; Skomp, N; Bishop, N; Lestyk, K; Hammill, M

    2010-03-01

    In diving animals, skeletal muscle adaptations to extend underwater time despite selective vasoconstriction include elevated myoglobin (Mb) concentrations, high acid buffering ability (beta) and high aerobic and anaerobic enzyme activities. However, because cardiac muscle is perfused during dives, it may rely less heavily on Mb, beta and anaerobic pathways to support contractile activity. In addition, because cardiac tissue must sustain contractile activity even before birth, it may be more physiologically mature at birth and/or develop faster than skeletal muscles. To test these hypotheses, we measured Mb levels, beta and the activities of citrate synthase (CS), beta-hydroxyacyl-CoA dehydrogenase (HOAD) and lactate dehydrogenase (LDH) in cardiac and skeletal muscle samples from 72 harp and hooded seals, ranging in age from fetuses to adults. Results indicate that in adults cardiac muscle had lower Mb levels (14.7%), beta (55.5%) and LDH activity (36.2%) but higher CS (459.6%) and HOAD (371.3%) activities (all Pseals had significantly lower [Mb] (44.7%) beta (80.7%) and LDH activity (89.5%) than adults (all Pseal hearts do not exhibit unique adaptations to the challenges of an aquatic existence. PMID:20154189

  2. Interactome Mapping Reveals Important Pathways in Skeletal Muscle Development of Pigs

    Jianhua Cao

    2014-11-01

    Full Text Available The regulatory relationship and connectivity among genes involved in myogenesis and hypertrophy of skeletal muscle in pigs still remain large challenges. Presentation of gene interactions is a potential way to understand the mechanisms of developmental events in skeletal muscle. In this study, genome-wide transcripts and miRNA profiling was determined for Landrace pigs at four time points using microarray chips. A comprehensive method integrating gene ontology annotation and interactome network mapping was conducted to analyze the biological patterns and interaction modules of muscle development events based on differentially expressed genes and miRNAs. Our results showed that in total 484 genes and 34 miRNAs were detected for the duration from embryonic stage to adult in pigs, which composed two linear expression patterns with consensus changes. Moreover, the gene ontology analysis also disclosed that there were three typical biological events i.e., microstructure assembly of sarcomere at early embryonic stage, myofibril formation at later embryonic stage and function establishments of myoblast cells at postnatal stage. The interactome mappings of different time points also found the down-regulated trend of gene expression existed across the whole duration, which brought a possibility to introduce the myogenesis related miRNAs into the interactome regulatory networks of skeletal muscle in pigs.

  3. Association of Traditional Cardiovascular Risk Factors With Development of Major and Minor Electrocardiographic Abnormalities: A Systematic Review.

    Healy, Caroline F; Lloyd-Jones, Donald M

    2016-01-01

    Electrocardiographic (ECG) abnormalities are prevalent in middle aged and are associated with risk of adverse cardiovascular events. It is unclear whether and to what extent traditional risk factors are associated with the development of ECG abnormalities. To determine whether traditional cardiovascular risk factors are associated with the presence or development of ECG abnormalities, we performed a systematic review of the English-language literature for cross-sectional and prospective studies examining associations between traditional cardiovascular risk factors and ECG abnormalities, including major and minor ECG abnormalities, isolated nonspecific ST-segment and T-wave abnormalities, other ST-segment and T-wave abnormalities, QT interval, Q waves, and QRS duration. Of the 202 papers initially identified, 19 were eligible for inclusion. We examined data analyzing risk factor associations with ECG abnormalities in individuals free of cardiovascular disease. For composite major or minor ECG abnormalities, black race, older age, higher blood pressure, use of antihypertensive medications, higher body mass index, diabetes, smoking, and evidence of left ventricular hypertrophy or higher left ventricular mass are the factors most commonly associated with prevalence and incidence. Risk factor associations differ somewhat according to types of specific ECG abnormalities. Because major and minor ECG abnormalities have important and independent prognostic significance, understanding the groups at risk for their development may inform prevention strategies focused on modifiable risk factors to reduce the burden of ECG abnormalities, which may in turn promote CVD prevention. PMID:27054606

  4. Abnormal development of the lesser wing of the sphenoid with microphthalmos and microcephaly

    We report two patients with abnormal development of the lesser wing of the sphenoid bone, globe, optic nerve and cerebral hemisphere without stigmata of neurofibromatosis type 1. The lesser wing of the sphenoid bone was abnormally formed and was not ossified ipsilateral to the dysmorphic eye and underdeveloped cerebral hemisphere. Maldevelopment of the sphenoid wing may interfere with the normal closure of the optic vesicle and normal growth of encephalic structures, possibly by disturbing developmental tissue interactions. These patients may exhibit a type of restricted primary sphenoid dysplasia, while the sphenoid dysplasia of neurofibromatosis type 1 may be secondary to orbital or ocular neurofibromas and other factors associated with that disease. (orig.)

  5. Abnormal development of the lesser wing of the sphenoid with microphthalmos and microcephaly

    Jacquemin, C. [King Khaled Eye Specialist Hospital, Riyadh (Saudi Arabia). Radiology Dept.; Mullaney, P. [Paediatric Ophthalmology Div., King Khaled Eye Specialist Hospital, Riyadh (Saudi Arabia); Bosley, T.M. [Neuro-Ophthalmology Div., King Khaled Eye Specialist Hospital, Riyadh (Saudi Arabia)

    2001-02-01

    We report two patients with abnormal development of the lesser wing of the sphenoid bone, globe, optic nerve and cerebral hemisphere without stigmata of neurofibromatosis type 1. The lesser wing of the sphenoid bone was abnormally formed and was not ossified ipsilateral to the dysmorphic eye and underdeveloped cerebral hemisphere. Maldevelopment of the sphenoid wing may interfere with the normal closure of the optic vesicle and normal growth of encephalic structures, possibly by disturbing developmental tissue interactions. These patients may exhibit a type of restricted primary sphenoid dysplasia, while the sphenoid dysplasia of neurofibromatosis type 1 may be secondary to orbital or ocular neurofibromas and other factors associated with that disease. (orig.)

  6. Umbillical venous volume inflow and liver size in normal and abnormal fetal development

    S.M. Boito

    2003-01-01

    textabstractIn this thesis the following research objectives were addressed: To calculate umbilical venous volume flow from cross-sectional area and flow velocity measurements with emphasis on: (i) the reproducibility of component measurements; (ii) normal and abnormal fetal development, the latter

  7. Role of active contraction and tropomodulins in regulating actin filament length and sarcomere structure in developing zebrafish skeletal muscle

    Mazelet, Lize; Parker, Matthew; Li, Mei; Anders, Arner; Ashworth, Rachel

    2016-01-01

    Whilst it is recognised that contraction plays an important part in maintaining the structure and function of mature skeletal muscle, its role during development remains undefined. In this study the role of movement in skeletal muscle maturation was investigated in intact zebrafish embryos using a combination of genetic and pharmacological approaches. An immotile mutant line (cacnb1ts25) which lacks functional voltage-gated calcium channels (dihydropyridine receptors) in the muscle and pharma...

  8. Understanding normal and abnormal development of the Wolffian/epididymal duct by using transgenic mice.

    Murashima, Aki; Xu, Bingfang; Hinton, Barry T

    2015-01-01

    The development of the Wolffian/epididymal duct is crucial for proper function and, therefore, male fertility. The development of the epididymis is complex; the initial stages form as a transient embryonic kidney; then the mesonephros is formed, which in turn undergoes extensive morphogenesis under the influence of androgens and growth factors. Thus, understanding of its full development requires a wide and multidisciplinary view. This review focuses on mouse models that display abnormalities of the Wolffian duct and mesonephric development, the importance of these mouse models toward understanding male reproductive tract development, and how these models contribute to our understanding of clinical abnormalities in humans such as congenital anomalies of the kidney and urinary tract (CAKUT). PMID:26112482

  9. Skeletal development of the glenoid and glenoid-coracoid interface in the pediatric population: MRI features

    Kothary, Shefali [Mount Sinai Beth Israel, Department of Radiology, New York, NY (United States); Radiology Department, NYU Langone Medical Center: Hospital for Joint Disease, New York, NY (United States); Rosenberg, Zehava Sadka; Poncinelli, Leonardo L. [NYU Hospital for Joint Disease, Radiology Department, New York, NY (United States); Radiology Department, NYU Langone Medical Center: Hospital for Joint Disease, New York, NY (United States); Kwong, Steven [School of Medicine, NYU Langone Medical Center, New York, NY (United States); Radiology Department, NYU Langone Medical Center: Hospital for Joint Disease, New York, NY (United States)

    2014-09-15

    To assess the MRI appearance of normal skeletal development of the glenoid and glenoid-coracoid interface in the pediatric population. To the best of our knowledge, this has not yet been studied in detail in the literature. An IRB-approved, HIPAA-compliant retrospective review of 105 consecutive shoulder MRI studies in children, ages 2 months to 18 years was performed. The morphology, MR signal, and development of the following were assessed: (1) scapular-coracoid bipolar growth plate, (2) glenoid and glenoid-coracoid interface secondary ossification centers, (3) glenoid advancing osseous surface. The glenoid and glenoid-coracoid interface were identified in infancy as a contiguous, cartilaginous mass. A subcoracoid secondary ossification center in the superior glenoid was identified and fused in all by age 12 and 16, respectively. In ten studies, additional secondary ossification centers were identified in the inferior two-thirds of the glenoid. The initial concavity of the glenoid osseous surface gradually transformed to convexity, matching the convex glenoid articular surface. The glenoid growth plate fused by 16 years of age. Our study, based on MRI, demonstrated a similar pattern of development of the glenoid and glenoid coracoid interface to previously reported anatomic and radiographic studies, except for an earlier development and fusion of the secondary ossification centers of the inferior glenoid. The pattern of skeletal development of the glenoid and glenoid-coracoid interface follows a chronological order, which can serve as a guideline when interpreting MRI studies in children. (orig.)

  10. Skeletal development of the glenoid and glenoid-coracoid interface in the pediatric population: MRI features

    To assess the MRI appearance of normal skeletal development of the glenoid and glenoid-coracoid interface in the pediatric population. To the best of our knowledge, this has not yet been studied in detail in the literature. An IRB-approved, HIPAA-compliant retrospective review of 105 consecutive shoulder MRI studies in children, ages 2 months to 18 years was performed. The morphology, MR signal, and development of the following were assessed: (1) scapular-coracoid bipolar growth plate, (2) glenoid and glenoid-coracoid interface secondary ossification centers, (3) glenoid advancing osseous surface. The glenoid and glenoid-coracoid interface were identified in infancy as a contiguous, cartilaginous mass. A subcoracoid secondary ossification center in the superior glenoid was identified and fused in all by age 12 and 16, respectively. In ten studies, additional secondary ossification centers were identified in the inferior two-thirds of the glenoid. The initial concavity of the glenoid osseous surface gradually transformed to convexity, matching the convex glenoid articular surface. The glenoid growth plate fused by 16 years of age. Our study, based on MRI, demonstrated a similar pattern of development of the glenoid and glenoid coracoid interface to previously reported anatomic and radiographic studies, except for an earlier development and fusion of the secondary ossification centers of the inferior glenoid. The pattern of skeletal development of the glenoid and glenoid-coracoid interface follows a chronological order, which can serve as a guideline when interpreting MRI studies in children. (orig.)

  11. Development of a methodology for strontium isotopic analysis on archaeological skeletal tissue

    Full text: Strontium isotope analysis on skeletal tissue provide information about human migration. By comparing 87Sr/86Sr values for human bone or dental tissue with the local strontium isotope signature, determined by faunal, agricultural and/or environmental samples, it could be possible to identify the migration movements of our ancestors. The present work describes the development of a methodology for bone tissue preparation prior the measurement of strontium isotope ratios by MC-ICPMS. Different extraction procedures were evaluated on old bone samples for the suitable separation of the diagenetic and non diagenetic strontium. (author)

  12. Extrasynaptic location of laminin beta 2 chain in developing and adult human skeletal muscle.

    Wewer, U M; Thornell, L. E.; Loechel, F; Zhang, X.; Durkin, M. E.; Amano, S; Burgeson, R. E.; Engvall, E; Albrechtsen, R.; Virtanen, I.

    1997-01-01

    We have investigated the distribution of the laminin beta 2 chain (previously s-laminin) in human fetal and adult skeletal muscle and compared it to the distribution of laminin beta 1. Immunoblotting and transfection assays were used to characterize a panel of monoclonal and polyclonal antibodies to the laminin beta 2 chain. We found that laminin beta 1 chain was detected at all times during development from 10 weeks of gestation. Laminin beta 2 chain was first detected in 15 to 22-week-old f...

  13. pitx2 Deficiency results in abnormal ocular and craniofacial development in zebrafish.

    Yi Liu

    Full Text Available Human PITX2 mutations are associated with Axenfeld-Rieger syndrome, an autosomal-dominant developmental disorder that involves ocular anterior segment defects, dental hypoplasia, craniofacial dysmorphism and umbilical abnormalities. Characterization of the PITX2 pathway and identification of the mechanisms underlying the anomalies associated with PITX2 deficiency is important for better understanding of normal development and disease; studies of pitx2 function in animal models can facilitate these analyses. A knockdown of pitx2 in zebrafish was generated using a morpholino that targeted all known alternative transcripts of the pitx2 gene; morphant embryos generated with the pitx2(ex4/5 splicing-blocking oligomer produced abnormal transcripts predicted to encode truncated pitx2 proteins lacking the third (recognition helix of the DNA-binding homeodomain. The morphological phenotype of pitx2(ex4/5 morphants included small head and eyes, jaw abnormalities and pericardial edema; lethality was observed at ∼6-8-dpf. Cartilage staining revealed a reduction in size and an abnormal shape/position of the elements of the mandibular and hyoid pharyngeal arches; the ceratobranchial arches were also decreased in size. Histological and marker analyses of the misshapen eyes of the pitx2(ex4/5 morphants identified anterior segment dysgenesis and disordered hyaloid vasculature. In summary, we demonstrate that pitx2 is essential for proper eye and craniofacial development in zebrafish and, therefore, that PITX2/pitx2 function is conserved in vertebrates.

  14. Development and validation of an n-dodecane skeletal mechanism for spray combustion applications

    Luo, Zhaoyu

    2014-03-04

    n-Dodecane is a promising surrogate fuel for diesel engine study because its physicochemical properties are similar to those of the practical diesel fuels. In the present study, a skeletal mechanism for n-dodecane with 105 species and 420 reactions was developed for spray combustion simulations. The reduction starts from the most recent detailed mechanism for n-alkanes consisting of 2755 species and 11,173 reactions developed by the Lawrence Livermore National Laboratory. An algorithm combining direct relation graph with expert knowledge (DRGX) and sensitivity analysis was employed for the present skeletal reduction. The skeletal mechanism was first extensively validated in 0-D and 1-D combustion systems, including auto-ignition, jet stirred reactor (JSR), laminar premixed flame and counter flow diffusion flame. Then it was coupled with well-established spray models and further validated in 3-D turbulent spray combustion simulations under engine-like conditions. These simulations were compared with the recent experiments with n-dodecane as a surrogate for diesel fuels. It can be seen that combustion characteristics such as ignition delay and flame lift-off length were well captured by the skeletal mechanism, particularly under conditions with high ambient temperatures. Simulations also captured the transient flame development phenomenon fairly well. The results further show that ignition delay may not be the only factor controlling the stabilisation of the present flames since a good match in ignition delay does not necessarily result in improved flame lift-off length prediction. The work of Zhaoyu Luo, Sibendu Som, Max Plomer, William J. Pitz, Douglas E. Longman and Tianfeng Lu was authored as part of their official duties as Employees of the United States Government and is therefore a work of the United States Government. In accordance with 17 USC. 105, no copyright protection is available for such works under US Law. S. Mani Sarathy hereby waives his right to

  15. Low-dose fetal CT for evaluation of severe congenital skeletal anomalies: preliminary experience

    Victoria, Teresa; Epelman, Monica; Johnson, Ann M.; Kramer, Sandra; Jaramillo, Diego [Children' s Hospital of Philadelphia, Diagnostic Imaging, Philadelphia, PA (United States); Bebbington, Michael [Children' s Hospital of Philadelphia, Center for Fetal Diagnosis and Treatment, Philadelphia, PA (United States); Wilson, R.D. [University of Calgary, Obstetrics and Gynecology, Calgary (Canada)

    2012-01-15

    Congenital skeletal abnormalities compose a heterogeneous and complex group of conditions that affect bone growth and development and result in various anomalies in shape and size of the skeleton. Prenatal sonographic diagnosis of these anomalies is challenging because of the relative rarity of each skeletal dysplasia, the multitude of differential diagnoses encountered when the bony abnormalities are identified, lack of precise molecular diagnosis and the fact that many of these disorders have overlapping features and marked phenotypic variability. The following review is a preliminary summary of our experience at the Children's Hospital of Philadelphia (CHOP) using low-dose fetal CT in the evaluation of severe fetal osseous abnormalities. (orig.)

  16. Normal and abnormal fetal brain development during the third trimester as demonstrated by neurosonography

    The multiplanar neurosonographic examination of the fetus enables superb visualization of brain anatomy during pregnancy. The examination may be performed using a transvaginal or a transfundal approach and it is indicated in patients at high risk for CNS anomalies or in those with a suspicious finding during a routine examination. The purpose of this paper is to present a description of the normal brain and of abnormal findings usually diagnosed late in pregnancy, including malformations of cortical development, infratentorial anomalies, and prenatal insults

  17. Micro-CT evaluation of murine fetal skeletal development yields greater morphometric precision over traditional clear-staining methods.

    Oest, Megan E; Jones, Jeryl C; Hatfield, Cindy; Prater, M Renee

    2008-12-01

    Traditional techniques for quantification of murine fetal skeletal development (gross measurements, clear-staining) are severely limited by specimen processing, soft tissue presence, diffuse staining, and unclear landmarks between which to make measurements. Nondestructive microcomputed tomography (micro-CT) imaging is a versatile, well-documented tool traditionally used to generate high-resolution 3-D images and quantify microarchitectural parameters of trabecular bone. Although previously described as a tool for phenotyping fetal murine specimens, micro-CT has not previously been used to directly measure individual fetal skeletal structures. Imaging murine fetal skeletons using micro-CT enables the researcher to nondestructively quantify fetal skeletal development parameters including limb length, total bone volume, and average bone mineral density, as well as identify skeletal malformations. Micro-CT measurement of fetal limb lengths correlates well with traditional clear-staining methods (83.98% agreement), decreases variability in measurements (average standard errors: 6.28% for micro-CT and 10.82% for clear-staining), decreases data acquisition time by eliminating the need for tissue processing, and preserves the intact fixed fetus for further analysis. Use of the rigorous micro-CT technique to generate 3-D images for digital measurement enables isolation of skeletal structures based on degree of mineralization (local radiodensity), eliminating the complications of blurred stain boundaries and soft tissue inclusion that accompany clear-staining and gross measurement techniques. Microcomputed tomography provides a facile, accurate, and nondestructive method for determining the developmental state of the fetal skeleton using not only limb lengths and identification of malformations, but total skeletal bone volume and average skeletal mineral density as well. PMID:19048632

  18. Comparison among dental, skeletal and chronological development in HIV-positive children: a radiographic study.

    Holderbaum, Rejane Maria; Veeck, Elaine Bauer; Oliveira, Helena Willhelm; Silva, Carmem Lúcia da; Fernandes, Angela

    2005-01-01

    The goal of this study was to evaluate skeletal, dental and chronological development in an HIV-positive group of children, as compared with a control group, during a four-year period. Panoramic radiographs and hand and wrist radiographs of 60 children were taken. The children, of both sexes, aged 5 years and 2 months to 15 years and 5 months, were selected as follows: 30 HIV-positive volunteers who had acquired the disease vertically, and 30 volunteers who did not present the HIV infection or any other systemic disease. All radiographs were technically standardized and analyzed according to criteria established by Nolla (dental age), Greulich and Pyle (bone age), and Eklöf and Ringertz (bone age). The results were submitted to Student's t-test at a 5% level of significance. Based on the comparison between the chronological age and the dental or the skeletal age, significant differences were observed between HIV-positive and HIV-negative children, both in 1999 and in 2003 (p dental ages compared with their chronological ages in 1999 and in 2003; and HIV-positive males, in 1999. PMID:16308610

  19. Familial liability, obstetric complications and childhood development abnormalities in early onset schizophrenia: a case control study

    Lucarelli Elisabetta

    2011-04-01

    Full Text Available Abstract Background Genetic and environmental risk factors and gene-environment interactions are linked to higher likelihood of developing schizophrenia in accordance with the neurodevelopmental model of disease; little is known about risk factors and early development in early-onset schizophrenia (EOS and very early-onset schizophrenia (VEOS. Methods We present a case-control study of a sample of 21 patients with EOS/VEOS and a control group of 21 patients with migraine, recruited from the Child Neuropsychiatry Unit, Department of Neurologic and Psychiatric Science, University of Bari, Italy. The aim was to assess the statistical association between VEOS/EOS and family history for psychiatric disorders, obstetric complications and childhood developmental abnormalities using 2 × 2 tables and a Chi Squared or Fisher test. Results The results show a statistical association between EOS/VEOS and schizophrenia and related disorders (P = 0.02 and personality disorders (P = 0.003 in relatives, and between EOS/VEOS and developmental abnormalities of early relational skills (P = 0.008 and learning (P = 0.04; there is not a statistically relevant difference between cases and controls (P > 0.05 for any obstetric complications (pre, peri and postpartum. Conclusions This study confirms the significant role of familial liability but not of obstetric complications in the pathogenesis of VEOS/EOS; the association between childhood developmental abnormalities and EOS/VEOS supports the neurodevelopmental model of disease.

  20. Development of an induction motor abnormality monitoring system(IMAMS) using power line signal analysis

    An induction motor abnormality monitoring system using power line signal analysis is developed in this work. Various studies have focused their attention on the detection of particular harmonic frequencies produced from each defect mode of motors. However, these harmonic frequencies are valuable only when the motor has a continuous slip frequency and operate in constant torque/load condition. The basic concept of the system developed in this work is to detect the characteristic harmonic frequencies occurred when the motor is in abnormal state and to compare it with a predetermined setpoint. Based on these analyses, the place and degree of defect can be easily identified. The experimental results under test bench simulation are also introduced. To find out an alternative way to obtain a threshold level independent of slip/torque, with the rotating field theory, the ratio between harmonic current and total current was calculated with the simplified circuit that is equivalent to two abnormal cases, such as the spatial rotor resistance variation and the symmetrical components changes with field. Also, the threshold level calculation was done with performed the rotating field theory. The results show that they are in good agreement with a experimental results. Further studies are undertaken to extend this work to the on-line monitoring and diagnostic system with a likelihood ratio test method for field application

  1. Cytogenetic studies of 1232 patients with different sexual development abnormalities from the Sultanate of Oman.

    Al-Alawi, Intisar; Goud, Tadakal Mallana; Al-Harasi, Salma; Rajab, Anna

    2016-02-01

    The aim of this study was to evaluate cytogenetic findings in Omani patients who had been referred for suspicion of sex chromosome abnormalities that resulted in different clinical disorders. Furthermore, it sought to examine the frequency of chromosomal anomalies in these patients and to compare the obtained results with those reported elsewhere. Cytogenetic analysis was performed on 1232 cases with variant characteristics of sexual development disorders who had been referred to the cytogenetic department, National Genetic Centre, Ministry of Health, from different hospitals in the Sultanate of Oman between 1999 and 2014. The karyotype results demonstrated chromosomal anomalies in 24.2% of the cases, where 67.5% of abnormalities were identified in referral females, whereas only 32.6% were in referral males. Of all sex chromosome anomalies detected, Turner syndrome was the most frequent (38.2%) followed by Klinefelter syndrome (24.9%) and XY phenotypic females (16%). XXX syndrome and XX phenotypic males represented 6.8% and 3.8% of all sex chromosome anomalies, respectively. Cytogenetic analysis of patients referred with various clinical suspicions of chromosomal abnormalities revealed a high rate of chromosomal anomalies. This is the first broad cytogenetic study reporting combined frequencies of sex chromosome anomalies in sex development disorders in Oman. PMID:26706459

  2. Improvement of the abnormal diagnosis technology by the development of an abnormal parts assignment system for the engineered safety features actuating system of the HTTR

    The safety protection sequence panel of HTTR is a control panel to actuate an engineering safety system for protecting the reactor core, reactor coolant pressure boundary, and containment vessel boundary at the time of an accident of the nuclear reactor facilities. The safety code stipulates that the control panel should receive safety check at a frequency of once a month during reactor operation. When abnormality has been found, it is required to eliminate its causes and restore normal operation as soon as possible. However, since this control panel is composed of a complex control circuit, the cause check during abnormality requires the confirmation by a knowledgeable person spending quite a lot of time for chart checking, which leads to a delay of restoration. To achieve a rapid restoration, the abnormal part assignment system (APAS), which can specify abnormality instantaneously even by a common operator, was developed. It has been confirmed that with this system, rapid initial response and prompt restoration can be effectively made. (A.O.)

  3. Yap1 Regulates Multiple Steps of Chondrocyte Differentiation during Skeletal Development and Bone Repair.

    Deng, Yujie; Wu, Ailing; Li, Pikshan; Li, Gang; Qin, Ling; Song, Hai; Mak, Kinglun Kingston

    2016-03-01

    Hippo signaling controls organ size and tissue regeneration in many organs, but its roles in chondrocyte differentiation and bone repair remain elusive. Here, we demonstrate that Yap1, an effector of Hippo pathway inhibits skeletal development, postnatal growth, and bone repair. We show that Yap1 regulates chondrocyte differentiation at multiple steps in which it promotes early chondrocyte proliferation but inhibits subsequent chondrocyte maturation both in vitro and in vivo. Mechanistically, we find that Yap1 requires Teads binding for direct regulation of Sox6 expression to promote chondrocyte proliferation. In contrast, Yap1 inhibits chondrocyte maturation by suppression of Col10a1 expression through interaction with Runx2. In addition, Yap1 also governs the initiation of fracture repair by inhibition of cartilaginous callus tissue formation. Taken together, our work provides insights into the mechanism by which Yap1 regulates endochondral ossification, which may help the development of therapeutic treatment for bone regeneration. PMID:26923596

  4. Yap1 Regulates Multiple Steps of Chondrocyte Differentiation during Skeletal Development and Bone Repair

    Yujie Deng

    2016-03-01

    Full Text Available Hippo signaling controls organ size and tissue regeneration in many organs, but its roles in chondrocyte differentiation and bone repair remain elusive. Here, we demonstrate that Yap1, an effector of Hippo pathway inhibits skeletal development, postnatal growth, and bone repair. We show that Yap1 regulates chondrocyte differentiation at multiple steps in which it promotes early chondrocyte proliferation but inhibits subsequent chondrocyte maturation both in vitro and in vivo. Mechanistically, we find that Yap1 requires Teads binding for direct regulation of Sox6 expression to promote chondrocyte proliferation. In contrast, Yap1 inhibits chondrocyte maturation by suppression of Col10a1 expression through interaction with Runx2. In addition, Yap1 also governs the initiation of fracture repair by inhibition of cartilaginous callus tissue formation. Taken together, our work provides insights into the mechanism by which Yap1 regulates endochondral ossification, which may help the development of therapeutic treatment for bone regeneration.

  5. Orientation of mineral crystallites and mineral density during skeletal development in mice deficient in tissue nonspecific alkaline phosphatase.

    Tesch, W; Vandenbos, T; Roschgr, P; Fratzl-Zelman, N; Klaushofer, K; Beertsen, W; Fratzl, P

    2003-01-01

    Tissue nonspecific alkaline phosphatase (TNALP) is thought to play an important role in mineralization processes, although its exact working mechanism is not known. In the present investigation we have studied mineral crystal characteristics in the developing skeleton of TNALP-deficient mice. Null mutants (n = 7) and their wild-type littermates (n = 7) were bred and killed between 8 and 22 days after birth. Skeletal tissues were processed to assess mineral characteristics (small angle X-ray scattering, quantitative backscattered electron imaging), and to analyze bone by light microscopy and immunolabeling. The results showed a reduced longitudinal growth and a strongly delayed epiphyseal ossification in the null mutants. This was accompanied by disturbances in mineralization pattern, in that crystallites were not orderly aligned with respect to the longitudinal axis of the cortical bone. Among the null mutants, a great variability in the mineralization parameters was noticed. Also, immunolabeling of osteopontin (OPN) revealed an abnormal distribution pattern of the protein within the bone matrix. Whereas in the wild-type animals OPN was predominantly observed in cement and reversal lines, in the null mutants, OPN was also randomly dispersed throughout the nonmineralized matrix, with focal densities. In contrast, the distribution pattern of osteocalcin (OC) was comparable in both types of animals. It is concluded that ablation of TNALP results not only in hypomineralization of the skeleton, but also in a severe disorder of the mineral crystal alignment pattern in the corticalis of growing long bone in association with a disordered matrix architecture, presumably as a result of impaired bone remodeling and maturation. PMID:12510812

  6. Treatment with N- and C-Terminal Peptides of Parathyroid Hormone-Related Protein Partly Compensate the Skeletal Abnormalities in IGF-I Deficient Mice

    Portal-Núñez, Sergio; Murillo-Cuesta, Silvia; Lozano, Daniel; Cediel, Rafael; Esbrit, Pedro

    2014-01-01

    Insulin-like growth factor-I (IGF-I) deficiency causes growth delay, and IGF-I has been shown to partially mediate bone anabolism by parathyroid hormone (PTH). PTH-related protein (PTHrP) is abundant in bone, and has osteogenic features by poorly defined mechanisms. We here examined the capacity of PTHrP (1–36) and PTHrP (107–111) (osteostatin) to reverse the skeletal alterations associated with IGF-I deficiency. Igf1-null mice and their wild type littermates were treated with each PTHrP peptide (80 µg/Kg/every other day/2 weeks; 2 males and 4 females for each genotype) or saline vehicle (3 males and 3 females for each genotype). We found that treatment with either PTHrP peptide ameliorated trabecular structure in the femur in both genotypes. However, these peptides were ineffective in normalizing the altered cortical structure at this bone site in Igf1-null mice. An aberrant gene expression of factors associated with osteoblast differentiation and function, namely runx2, osteoprotegerin/receptor activator of NF-κB ligand ratio, Wnt3a, cyclin D1, connexin 43, catalase and Gadd45, as well as in osteocyte sclerostin, was found in the long bones of Igf1-null mice. These mice also displayed a lower amount of trabecular osteoblasts and osteoclasts in the tibial metaphysis than those in wild type mice. These alterations in Igf1-null mice were only partially corrected by each PTHrP peptide treatment. The skeletal expression of Igf2, Igf1 receptor and Irs2 was increased in Igf1-null mice, and this compensatory profile was further improved by treatment with each PTHrP peptide related to ERK1/2 and FoxM1 activation. In vitro, PTHrP (1–36) and osteostatin were effective in promoting bone marrow stromal cell mineralization in normal mice but not in IGF-I-deficient mice. Collectively, these findings indicate that PTHrP (1–36) and osteostatin can exert several osteogenic actions even in the absence of IGF-I in the mouse bone. PMID:24503961

  7. Emerging role for regulated in development and DNA damage 1 (REDD1) in the regulation of skeletal muscle metabolism.

    Gordon, Bradley S; Steiner, Jennifer L; Williamson, David L; Lang, Charles H; Kimball, Scot R

    2016-07-01

    Since its discovery, the protein regulated in development and DNA damage 1 (REDD1) has been implicated in the cellular response to various stressors. Most notably, its role as a repressor of signaling through the central metabolic regulator, the mechanistic target of rapamycin in complex 1 (mTORC1) has gained considerable attention. Not surprisingly, changes in REDD1 mRNA and protein have been observed in skeletal muscle under various physiological conditions (e.g., nutrient consumption and resistance exercise) and pathological conditions (e.g., sepsis, alcoholism, diabetes, obesity) suggesting a role for REDD1 in regulating mTORC1-dependent skeletal muscle protein metabolism. Our understanding of the causative role of REDD1 in skeletal muscle metabolism is increasing mostly due to the availability of genetically modified mice in which the REDD1 gene is disrupted. Results from such studies provide support for an important role for REDD1 in the regulation of mTORC1 as well as reveal unexplored functions of this protein in relation to other aspects of skeletal muscle metabolism. The goal of this work is to provide a comprehensive review of the role of REDD1 (and its paralog REDD2) in skeletal muscle during both physiological and pathological conditions. PMID:27189933

  8. Myosin Heavy Chain Gene Expression in Developing Neonatal Skeletal Muscle: Involvement of the Nerve, Gravity, and Thyroid State

    Baldwin, K. M.; Adams, G.; Haddad, F.; Zeng, M.; Qin, A.; Qin, L.; McCue, S.; Bodell, P.

    1999-01-01

    The myosin heavy chain (MHC) gene family encodes at least six MHC proteins (herein designated as neonatal, embryonic, slow type I (beta), and fast IIa, IIx, and IIb) that are expressed in skeletal muscle in a muscle-specific and developmentally-regulated fashion. At birth, both antigravity (e.g. soleus) and locomotor (e.g., plantaris) skeletal muscles are undifferentiated relative to the adult MHC phenotype such that the neonatal and embryonic MHC isoforms account for 80 - 90% of the MHC pool in a fast locomotor muscle; whereas, the embryonic and slow, type I isoforms account for approx. 90% of the pool in a typical antigravity muscle. The goal of this study was to investigate the role of an intact nerve, gravity and thyroid hormone (T3), as well as certain interactions of these interventions, on MHC gene expression in developing neonatal skeletal muscles of rodents.

  9. Suspected fetal skeletal malformations or bone diseases: how to explore

    Cassart, Marie [Erasme Hospital, Medical Imaging, Brussels (Belgium)

    2010-06-15

    Skeletal dysplasias are a heterogeneous and complex group of conditions that affect bone growth and development and result in various anomalies in shape and size of the skeleton. Although US has proved reliable for the prenatal detection of skeletal abnormalities, the precise diagnosis of a dysplasia is often difficult to make before birth (especially in the absence of a familial history) due to their various phenotypic presentations, the variability in the time at which they manifest and often, the lack of precise molecular diagnosis. In addition to the accuracy of the antenatal diagnosis, it is very important to establish a prognosis. This is a clinically relevant issue as skeletal dysplasias may be associated with severe disability and may even be lethal. We will therefore describe the respective role of two-dimensional (2-D) US, three-dimensional (3-D) US and CT in the antenatal assessment of skeletal malformations. (orig.)

  10. Transcriptome Analysis for Abnormal Spike Development of the Wheat Mutant dms

    Zhu, Xin-Xin; Li, Qiao-Yun; Shen, Chun-Cai; Duan, Zong-Biao; Yu, Dong-Yan; Niu, Ji-Shan; Ni, Yong-Jing; Jiang, Yu-Mei

    2016-01-01

    Background Wheat (Triticum aestivum L.) spike development is the foundation for grain yield. We obtained a novel wheat mutant, dms, characterized as dwarf, multi-pistil and sterility. Although the genetic changes are not clear, the heredity of traits suggests that a recessive gene locus controls the two traits of multi-pistil and sterility in self-pollinating populations of the medium plants (M), such that the dwarf genotype (D) and tall genotype (T) in the progeny of the mutant are ideal lines for studies regarding wheat spike development. The objective of this study was to explore the molecular basis for spike abnormalities of dwarf genotype. Results Four unigene libraries were assembled by sequencing the mRNAs of the super-bulked differentiating spikes and stem tips of the D and T plants. Using integrative analysis, we identified 419 genes highly expressed in spikes, including nine typical homeotic genes of the MADS-box family and the genes TaAP2, TaFL and TaDL. We also identified 143 genes that were significantly different between young spikes of T and D, and 26 genes that were putatively involved in spike differentiation. The result showed that the expression levels of TaAP1-2, TaAP2, and other genes involved in the majority of biological processes such as transcription, translation, cell division, photosynthesis, carbohydrate transport and metabolism, and energy production and conversion were significantly lower in D than in T. Conclusions We identified a set of genes related to wheat floral organ differentiation, including typical homeotic genes. Our results showed that the major causal factors resulting in the spike abnormalities of dms were the lower expression homeotic genes, hormonal imbalance, repressed biological processes, and deficiency of construction materials and energy. We performed a series of studies on the homeotic genes, however the other three causal factors for spike abnormal phenotype of dms need further study. PMID:26982202

  11. Role of FGF/FGFR signaling in skeletal development and homeostasis:learning from mouse models

    Nan Su; Min Jin; Lin Chen

    2014-01-01

    Fibroblast growth factor (FGF)/fibroblast growth factor receptor (FGFR) signaling plays essential roles in bone development and diseases. Missense mutations in FGFs and FGFRs in humans can cause various congenital bone diseases, including chondrodysplasia syndromes, craniosynostosis syndromes and syndromes with dysregulated phosphate metabolism. FGF/FGFR signaling is also an important pathway involved in the maintenance of adult bone homeostasis. Multiple kinds of mouse models, mimicking human skeleton diseases caused by missense mutations in FGFs and FGFRs, have been established by knock-in/out and transgenic technologies. These genetically modified mice provide good models for studying the role of FGF/FGFR signaling in skeleton development and homeostasis. In this review, we summarize the mouse models of FGF signaling-related skeleton diseases and recent progresses regarding the molecular mechanisms, underlying the role of FGFs/FGFRs in the regulation of bone development and homeostasis. This review also provides a perspective view on future works to explore the roles of FGF signaling in skeletal development and homeostasis.

  12. Flapping before Flight: High Resolution, Three-Dimensional Skeletal Kinematics of Wings and Legs during Avian Development

    Heers, Ashley M.; Baier, David B.; Jackson, Brandon E.; Dial, Kenneth P.

    2016-01-01

    Some of the greatest transformations in vertebrate history involve developmental and evolutionary origins of avian flight. Flight is the most power-demanding mode of locomotion, and volant adult birds have many anatomical features that presumably help meet these demands. However, juvenile birds, like the first winged dinosaurs, lack many hallmarks of advanced flight capacity. Instead of large wings they have small “protowings”, and instead of robust, interlocking forelimb skeletons their limbs are more gracile and their joints less constrained. Such traits are often thought to preclude extinct theropods from powered flight, yet young birds with similarly rudimentary anatomies flap-run up slopes and even briefly fly, thereby challenging longstanding ideas on skeletal and feather function in the theropod-avian lineage. Though skeletons and feathers are the common link between extinct and extant theropods and figure prominently in discussions on flight performance (extant birds) and flight origins (extinct theropods), skeletal inter-workings are hidden from view and their functional relationship with aerodynamically active wings is not known. For the first time, we use X-ray Reconstruction of Moving Morphology to visualize skeletal movement in developing birds, and explore how development of the avian flight apparatus corresponds with ontogenetic trajectories in skeletal kinematics, aerodynamic performance, and the locomotor transition from pre-flight flapping behaviors to full flight capacity. Our findings reveal that developing chukars (Alectoris chukar) with rudimentary flight apparatuses acquire an “avian” flight stroke early in ontogeny, initially by using their wings and legs cooperatively and, as they acquire flight capacity, counteracting ontogenetic increases in aerodynamic output with greater skeletal channelization. In conjunction with previous work, juvenile birds thereby demonstrate that the initial function of developing wings is to enhance leg

  13. Flapping before Flight: High Resolution, Three-Dimensional Skeletal Kinematics of Wings and Legs during Avian Development.

    Ashley M Heers

    Full Text Available Some of the greatest transformations in vertebrate history involve developmental and evolutionary origins of avian flight. Flight is the most power-demanding mode of locomotion, and volant adult birds have many anatomical features that presumably help meet these demands. However, juvenile birds, like the first winged dinosaurs, lack many hallmarks of advanced flight capacity. Instead of large wings they have small "protowings", and instead of robust, interlocking forelimb skeletons their limbs are more gracile and their joints less constrained. Such traits are often thought to preclude extinct theropods from powered flight, yet young birds with similarly rudimentary anatomies flap-run up slopes and even briefly fly, thereby challenging longstanding ideas on skeletal and feather function in the theropod-avian lineage. Though skeletons and feathers are the common link between extinct and extant theropods and figure prominently in discussions on flight performance (extant birds and flight origins (extinct theropods, skeletal inter-workings are hidden from view and their functional relationship with aerodynamically active wings is not known. For the first time, we use X-ray Reconstruction of Moving Morphology to visualize skeletal movement in developing birds, and explore how development of the avian flight apparatus corresponds with ontogenetic trajectories in skeletal kinematics, aerodynamic performance, and the locomotor transition from pre-flight flapping behaviors to full flight capacity. Our findings reveal that developing chukars (Alectoris chukar with rudimentary flight apparatuses acquire an "avian" flight stroke early in ontogeny, initially by using their wings and legs cooperatively and, as they acquire flight capacity, counteracting ontogenetic increases in aerodynamic output with greater skeletal channelization. In conjunction with previous work, juvenile birds thereby demonstrate that the initial function of developing wings is to

  14. Flapping before Flight: High Resolution, Three-Dimensional Skeletal Kinematics of Wings and Legs during Avian Development.

    Heers, Ashley M; Baier, David B; Jackson, Brandon E; Dial, Kenneth P

    2016-01-01

    Some of the greatest transformations in vertebrate history involve developmental and evolutionary origins of avian flight. Flight is the most power-demanding mode of locomotion, and volant adult birds have many anatomical features that presumably help meet these demands. However, juvenile birds, like the first winged dinosaurs, lack many hallmarks of advanced flight capacity. Instead of large wings they have small "protowings", and instead of robust, interlocking forelimb skeletons their limbs are more gracile and their joints less constrained. Such traits are often thought to preclude extinct theropods from powered flight, yet young birds with similarly rudimentary anatomies flap-run up slopes and even briefly fly, thereby challenging longstanding ideas on skeletal and feather function in the theropod-avian lineage. Though skeletons and feathers are the common link between extinct and extant theropods and figure prominently in discussions on flight performance (extant birds) and flight origins (extinct theropods), skeletal inter-workings are hidden from view and their functional relationship with aerodynamically active wings is not known. For the first time, we use X-ray Reconstruction of Moving Morphology to visualize skeletal movement in developing birds, and explore how development of the avian flight apparatus corresponds with ontogenetic trajectories in skeletal kinematics, aerodynamic performance, and the locomotor transition from pre-flight flapping behaviors to full flight capacity. Our findings reveal that developing chukars (Alectoris chukar) with rudimentary flight apparatuses acquire an "avian" flight stroke early in ontogeny, initially by using their wings and legs cooperatively and, as they acquire flight capacity, counteracting ontogenetic increases in aerodynamic output with greater skeletal channelization. In conjunction with previous work, juvenile birds thereby demonstrate that the initial function of developing wings is to enhance leg

  15. Development of the turtle plastron, the order-defining skeletal structure.

    Rice, Ritva; Kallonen, Aki; Cebra-Thomas, Judith; Gilbert, Scott F

    2016-05-10

    The dorsal and ventral aspects of the turtle shell, the carapace and the plastron, are developmentally different entities. The carapace contains axial endochondral skeletal elements and exoskeletal dermal bones. The exoskeletal plastron is found in all extant and extinct species of crown turtles found to date and is synaptomorphic of the order Testudines. However, paleontological reconstructed transition forms lack a fully developed carapace and show a progression of bony elements ancestral to the plastron. To understand the evolutionary development of the plastron, it is essential to know how it has formed. Here we studied the molecular development and patterning of plastron bones in a cryptodire turtle Trachemys scripta We show that plastron development begins at developmental stage 15 when osteochondrogenic mesenchyme forms condensates for each plastron bone at the lateral edges of the ventral mesenchyme. These condensations commit to an osteogenic identity and suppress chondrogenesis. Their development overlaps with that of sternal cartilage development in chicks and mice. Thus, we suggest that in turtles, the sternal morphogenesis is prevented in the ventral mesenchyme by the concomitant induction of osteogenesis and the suppression of chondrogenesis. The osteogenic subroutines later direct the growth and patterning of plastron bones in an autonomous manner. The initiation of plastron bone development coincides with that of carapacial ridge formation, suggesting that the development of dorsal and ventral shells are coordinated from the start and that adopting an osteogenesis-inducing and chondrogenesis-suppressing cell fate in the ventral mesenchyme has permitted turtles to develop their order-specific ventral morphology. PMID:27114549

  16. Androgen effects on skeletal muscle: implications for the development and management of frailty

    Matthew DL O'Connell

    2014-04-01

    Full Text Available Androgens have potent anabolic effects on skeletal muscle and decline with age in parallel to losses in muscle mass and strength. This loss of muscle mass and function, known as sarcopenia, is the central event in development of frailty, the vulnerable health status that presages adverse outcomes and rapid functional decline in older adults. The potential role of falling androgen levels in the development of frailty and their utility as function promoting therapies in older men has therefore attracted considerable attention. This review summarizes current concepts and definitions in muscle ageing, sarcopenia and frailty, and evaluates recent developments in the study of androgens and frailty. Current evidence from observational and interventional studies strongly supports an effect of androgens on muscle mass in ageing men, but effects on muscle strength and particularly physical function have been less clear. Androgen treatment has been generally well-tolerated in studies of older men, but concerns remain over higher dose treatments and use in populations with high cardiovascular risk. The first trials of selective androgen receptor modulators (SARMs suggest similar effects on muscle mass and function to traditional androgen therapies in older adults. Important future directions include the use of these agents in combination with exercise training to promote functional ability across different populations of older adults, as well as more focus on the relationships between concurrent changes in hormone levels, body composition and physical function in observational studies.

  17. The character of abnormalities found in eye development of quail embruos exposed under space flight conditions

    Grigoryan, E.; Dadheva, O.; Polinskaya, V.; Guryeva, T.

    The avian embryonic eye is used as a model system for studies on the environmental effects on central nervous system development. Here we present results of qualitative investigation of the eye development in quail embryos incubated in micro-"g" environment. In this study we used eyes of Japanese quail (Coturnix coturnix Japonica) embryos "flown" onboard biosatellite Kosmos-1129 and on Mir station within the framework of Mir-NASA Program. Eyes obtained from embryos ranging in age from 3-12 days (E3-E12) were prepared histologically and compared with those of the synchronous and laboratory gound controls. Ther most careful consideration was given to finding and analysis of eye developmental abnormalities. Then they were compared with those already described by experimental teratology for birds and mammals. At the stage of the "eye cup" (E3) we found the case of invalid formation of the inner retina. The latter was represented by disorganized neuroblasts occupying whole posterior chamber of the eye. On the 7th day of quail eye development, at the period of cellular growth activation some cases of small eyes with many folds of overgrowing neural and pigmented retinal layers were detected. In retinal folds of these eyes the normal layering was disturbed as well as the formation of aqueous body and pecten oculi. At this time point the changes were also found in the anterior part of the eye. The peculiarities came out of the bigger width of the cornea and separation of its layers, but were found in synchronous control as well. Few embryos of E10 had also eyes with the abnormities described for E7 but this time they were more vivid because of the completion of eye tissue differentiation. At the stage E12 we found the case evaluated as microphthalmia attending by overgrowth of anterior pigmented tissues - iris and ciliary body attached with the cornea. Most, but not all, of abnormalities we found in eye morphogeneses belonged to the birds "flown" aboard Kosmos- 1129 and

  18. Abnormal placental development and early embryonic lethality in EpCAM-null mice.

    Keisuke Nagao

    Full Text Available BACKGROUND: EpCAM (CD326 is encoded by the tacstd1 gene and expressed by a variety of normal and malignant epithelial cells and some leukocytes. Results of previous in vitro experiments suggested that EpCAM is an intercellular adhesion molecule. EpCAM has been extensively studied as a potential tumor marker and immunotherapy target, and more recent studies suggest that EpCAM expression may be characteristic of cancer stem cells. METHODOLOGY/PRINCIPAL FINDINGS: To gain insights into EpCAM function in vivo, we generated EpCAM -/- mice utilizing an embryonic stem cell line with a tacstd1 allele that had been disrupted. Gene trapping resulted in a protein comprised of the N-terminus of EpCAM encoded by 2 exons of the tacstd1 gene fused in frame to betageo. EpCAM +/- mice were viable and fertile and exhibited no obvious abnormalities. Examination of EpCAM +/- embryos revealed that betageo was expressed in several epithelial structures including developing ears (otocysts, eyes, branchial arches, gut, apical ectodermal ridges, lungs, pancreas, hair follicles and others. All EpCAM -/- mice died in utero by E12.5, and were small, developmentally delayed, and displayed prominent placental abnormalities. In developing placentas, EpCAM was expressed throughout the labyrinthine layer and by spongiotrophoblasts as well. Placentas of EpCAM -/- embryos were compact, with thin labyrinthine layers lacking prominent vascularity. Parietal trophoblast giant cells were also dramatically reduced in EpCAM -/- placentas. CONCLUSION: EpCAM was required for differentiation or survival of parietal trophoblast giant cells, normal development of the placental labyrinth and establishment of a competent maternal-fetal circulation. The findings in EpCAM-reporter mice suggest involvement of this molecule in development of vital organs including the gut, kidneys, pancreas, lungs, eyes, and limbs.

  19. Abnormal Mammary Development in 129:STAT1-Null Mice is Stroma-Dependent.

    Jane Q Chen

    Full Text Available Female 129:Stat1-null mice (129S6/SvEvTac-Stat1(tm1Rds homozygous uniquely develop estrogen-receptor (ER-positive mammary tumors. Herein we report that the mammary glands (MG of these mice have altered growth and development with abnormal terminal end buds alongside defective branching morphogenesis and ductal elongation. We also find that the 129:Stat1-null mammary fat pad (MFP fails to sustain the growth of 129S6/SvEv wild-type and Stat1-null epithelium. These abnormalities are partially reversed by elevated serum progesterone and prolactin whereas transplantation of wild-type bone marrow into 129:Stat1-null mice does not reverse the MG developmental defects. Medium conditioned by 129:Stat1-null epithelium-cleared MFP does not stimulate epithelial proliferation, whereas it is stimulated by medium conditioned by epithelium-cleared MFP from either wild-type or 129:Stat1-null females having elevated progesterone and prolactin. Microarrays and multiplexed cytokine assays reveal that the MG of 129:Stat1-null mice has lower levels of growth factors that have been implicated in normal MG growth and development. Transplanted 129:Stat1-null tumors and their isolated cells also grow slower in 129:Stat1-null MG compared to wild-type recipient MG. These studies demonstrate that growth of normal and neoplastic 129:Stat1-null epithelium is dependent on the hormonal milieu and on factors from the mammary stroma such as cytokines. While the individual or combined effects of these factors remains to be resolved, our data supports the role of STAT1 in maintaining a tumor-suppressive MG microenvironment.

  20. Apert and Crouzon syndromes-Cognitive development, brain abnormalities, and molecular aspects.

    Fernandes, Marilyse B L; Maximino, Luciana P; Perosa, Gimol B; Abramides, Dagma V M; Passos-Bueno, Maria Rita; Yacubian-Fernandes, Adriano

    2016-06-01

    Apert and Crouzon are the most common craniosynostosis syndromes associated with mutations in the fibroblast growth factor receptor 2 (FGFR2) gene. We conducted a study to examine the molecular biology, brain abnormalities, and cognitive development of individuals with these syndromes. A retrospective longitudinal review of 14 patients with Apert and Crouzon syndromes seen at the outpatient Craniofacial Surgery Hospital for Rehabilitation of Craniofacial Anomalies in Brazil from January 1999 through August 2010 was performed. Patients between 11 and 36 years of age (mean 18.29 ± 5.80), received cognitive evaluations, cerebral magnetic resonance imaging, and molecular DNA analyses. Eight patients with Apert syndrome (AS) had full scale intelligence quotients (FSIQs) that ranged from 47 to 108 (mean 76.9 ± 20.2), and structural brain abnormalities were identified in five of eight patients. Six patients presented with a gain-of-function mutation (p.Ser252Trp) in FGFR2 and FSIQs in those patients ranged from 47 to78 (mean 67.2 ± 10.7). One patient with a gain-of-function mutation (p.Pro253Arg) had a FSIQ of 108 and another patient with an atypical splice mutation (940-2A →G) had a FSIQ of 104. Six patients with Crouzon syndrome had with mutations in exons IIIa and IIIc of FGFR2 and their FSIQs ranged from 82 to 102 (mean 93.5 ± 6.7). These reveal that molecular aspects are another factor that can be considered in studies of global and cognitive development of patients with Apert and Crouzon syndrome (CS). © 2016 Wiley Periodicals, Inc. PMID:27028366

  1. Development of antibody-siRNA conjugate targeted to cardiac and skeletal muscles.

    Sugo, Tsukasa; Terada, Michiko; Oikawa, Tatsuo; Miyata, Kenichi; Nishimura, Satoshi; Kenjo, Eriya; Ogasawara-Shimizu, Mari; Makita, Yukimasa; Imaichi, Sachiko; Murata, Shumpei; Otake, Kentaro; Kikuchi, Kuniko; Teratani, Mika; Masuda, Yasushi; Kamei, Takayuki; Takagahara, Shuichi; Ikeda, Shota; Ohtaki, Tetsuya; Matsumoto, Hirokazu

    2016-09-10

    Despite considerable efforts to develop efficient carriers, the major target organ of short-interfering RNAs (siRNAs) remains limited to the liver. Expanding the application outside the liver is required to increase the value of siRNAs. Here we report on a novel platform targeted to muscular organs by conjugation of siRNAs with anti-CD71 Fab' fragment. This conjugate showed durable gene-silencing in the heart and skeletal muscle for one month after intravenous administration in normal mice. In particular, 1μg siRNA conjugate showed significant gene-silencing in the gastrocnemius when injected intramuscularly. In a mouse model of peripheral artery disease, the treatment with myostatin-targeting siRNA conjugate by intramuscular injection resulted in significant silencing of myostatin and hypertrophy of the gastrocnemius, which was translated into the recovery of running performance. These data demonstrate the utility of antibody conjugation for siRNA delivery and the therapeutic potential for muscular diseases. PMID:27369865

  2. Molecular events underlying skeletal muscle atrophy and the development of effective countermeasures

    Booth, F. W.; Criswell, D. S.

    1997-01-01

    Skeletal muscle adapts to loading; atrophying when exposed to unloading on Earth or in spaceflight. Significant atrophy (decreases in muscle fiber cross-section of 11-24%) in humans has been noted after only 5 days in space. Since muscle strength is determined both by muscle cross-section and synchronization of motor unit recruitment, a loss in muscle size weakens astronauts, which would increase risks to their safety if an emergency required maximal muscle force. Numerous countermeasures have been tested to prevent atrophy. Resistant exercise together with growth hormone and IGF-I are effective countermeasures to unloading as most atrophy is prevented in animal models. The loss of muscle protein is due to an early decrease in protein synthesis rate and a later increase in protein degradation. The initial decrease in protein synthesis is a result of decreased protein translation, caused by a prolongation in the elongation rate. A decrease in HSP70 by a sight increase in ATP may be the factors prolonging elongation rate. Increases in the activities of proteolytic enzymes and in ubiquitin contribute to the increased protein degradation rate in unloaded muscle. Numerous mRNA concentrations have been shown to be altered in unloaded muscles. Decreases in mRNAs for contractile proteins usually occur after the initial fall in protein synthesis rates. Much additional research is needed to determine the mechanism by which muscle senses the absence of gravity with an adaptive atrophy. The development of effective countermeasures to unloading atrophy will require more research.

  3. A new take on an old story: chick limb organ culture for skeletal niche development and regenerative medicine evaluation

    EL Smith

    2013-09-01

    Full Text Available Scientific research and progress, particularly in the drug discovery and regenerative medicine fields, is typically dependent on suitable animal models to develop new and improved clinical therapies for injuries and diseases. In vivo model systems are frequently utilised, but these models are expensive, highly complex and pose a number of ethical considerations leading to the development and use of a number of alternative ex vivo model systems. The ex vivo embryonic chick long bone and limb bud models have been utilised in the scientific research field as a model to understand skeletal development for over eighty years. The rapid development of avian skeletal tissues, coupled with the ease of experimental manipulation, availability of genome sequence and the presence of multiple cell and tissue types has seen such model systems gain significant research interest in the last few years in the tissue engineering field. The models have been explored both as systems for understanding the developmental bone niche and as potential testing tools for tissue engineering strategies for bone repair and regeneration. This review details the evolution of the chick limb organ culture system and presents recent innovative developments and emerging techniques and technologies applied to these models that are aiding our understanding of skeletal developmental and regenerative medicine research and application.

  4. Effects of benzo(a)pyrene on the skeletal development of Sebastiscus marmoratus embryos and the molecular mechanism involved

    Polycyclic aromatic hydrocarbons (PAHs) are widespread environmental contaminants, which have been known to be carcinogenic and teratogenic. However, the skeletal development toxicity of PAHs and the mechanism involved remain unclear. In fishes, the neurocranial and craniofacial skeleton develop as cartilage. The signaling molecules of hedgehog (Hh) family play crucial roles in regulating skeletal development. In the present study, rockfish (Sebastiscus marmoratus) embryos were exposed to benzo(a)pyrene (BaP) for 7 days at environmental levels (0.05, 0.5 and 5 nmol/L) which resulted in craniofacial skeleton deformities. BaP exposure reduced the cell proliferation activity in the craniofacial skeleton as detected by quantitative PCR and in situ hybridization. The expression of Sonic hedgehog (Shh), rather than Indian hedgehog (Ihh), was down-regulated in the craniofacial skeleton in the 0.5 and 5 nmol/L groups. Consistent with the Shh results, the expression of Ptch1 and Gli2 was decreased by BaP exposure and BMP4 was presented on changes in the 0.5 and 5 nmol/L groups. These results suggested that BaP could impair the expression and function of Shh signaling pathway, perturbing the proliferation of chondrocytes and so disturbing craniofacial skeletal development.

  5. Effects of benzo(a)pyrene on the skeletal development of Sebastiscus marmoratus embryos and the molecular mechanism involved

    He Chengyong [Key Laboratory of Ministry of Education for Subtropical Wetland Ecosystem Research, School of Life Sciences, Xiamen University, Xiamen (China); Zuo Zhenghong [Key Laboratory of Ministry of Education for Subtropical Wetland Ecosystem Research, School of Life Sciences, Xiamen University, Xiamen (China); State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen (China); Shi Xiao; Li Ruixia; Chen Donglei; Huang Xin; Chen Yixin [Key Laboratory of Ministry of Education for Subtropical Wetland Ecosystem Research, School of Life Sciences, Xiamen University, Xiamen (China); Wang Chonggang, E-mail: cgwang@xmu.edu.cn [Key Laboratory of Ministry of Education for Subtropical Wetland Ecosystem Research, School of Life Sciences, Xiamen University, Xiamen (China); State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen (China)

    2011-01-25

    Polycyclic aromatic hydrocarbons (PAHs) are widespread environmental contaminants, which have been known to be carcinogenic and teratogenic. However, the skeletal development toxicity of PAHs and the mechanism involved remain unclear. In fishes, the neurocranial and craniofacial skeleton develop as cartilage. The signaling molecules of hedgehog (Hh) family play crucial roles in regulating skeletal development. In the present study, rockfish (Sebastiscus marmoratus) embryos were exposed to benzo(a)pyrene (BaP) for 7 days at environmental levels (0.05, 0.5 and 5 nmol/L) which resulted in craniofacial skeleton deformities. BaP exposure reduced the cell proliferation activity in the craniofacial skeleton as detected by quantitative PCR and in situ hybridization. The expression of Sonic hedgehog (Shh), rather than Indian hedgehog (Ihh), was down-regulated in the craniofacial skeleton in the 0.5 and 5 nmol/L groups. Consistent with the Shh results, the expression of Ptch1 and Gli2 was decreased by BaP exposure and BMP4 was presented on changes in the 0.5 and 5 nmol/L groups. These results suggested that BaP could impair the expression and function of Shh signaling pathway, perturbing the proliferation of chondrocytes and so disturbing craniofacial skeletal development.

  6. Linking dietary energy and skeletal development in the horse Vinculação de energia na dieta e desenvolvimento do esqueleto do cavalo

    William Burton Staniar

    2010-01-01

    Athletic production is what is sought from the horse. As mammary development is important to the dairy cow, skeletal development is important to horses meeting their production goals. As any integrative physiologist will appreciate, the variables that come together to result in optimal skeletal development are complex. Nutrition is one of these, and it contains two broad variables; the supply of dietary nutrients and energy. This presentation will focus on dietary energy and its links with sk...

  7. Development of a porcine skeletal muscle cDNA microarray: analysis of differential transcript expression in phenotypically distinct muscles

    Stear Michael

    2003-03-01

    Full Text Available Abstract Background Microarray profiling has the potential to illuminate the molecular processes that govern the phenotypic characteristics of porcine skeletal muscles, such as hypertrophy or atrophy, and the expression of specific fibre types. This information is not only important for understanding basic muscle biology but also provides underpinning knowledge for enhancing the efficiency of livestock production. Results We report on the de novo development of a composite skeletal muscle cDNA microarray, comprising 5500 clones from two developmentally distinct cDNA libraries (longissimus dorsi of a 50-day porcine foetus and the gastrocnemius of a 3-day-old pig. Clones selected for the microarray assembly were of low to moderate abundance, as indicated by colony hybridisation. We profiled the differential expression of genes between the psoas (red muscle and the longissimus dorsi (white muscle, by co-hybridisation of Cy3 and Cy5 labelled cDNA derived from these two muscles. Results from seven microarray slides (replicates correctly identified genes that were expected to be differentially expressed, as well as a number of novel candidate regulatory genes. Quantitative real-time RT-PCR on selected genes was used to confirm the results from the microarray. Conclusion We have developed a porcine skeletal muscle cDNA microarray and have identified a number of candidate genes that could be involved in muscle phenotype determination, including several members of the casein kinase 2 signalling pathway.

  8. Individual grain orientations and texture development of nanocrystalline electrodeposits showing abnormal grain growth

    Klement, Uta [Department of Materials and Manufacturing Technology, Chalmers University of Technology, SE-41296 Gothenburg (Sweden)]. E-mail: uta.klement@chalmers.se; Silva, Melina da [Department of Materials and Manufacturing Technology, Chalmers University of Technology, SE-41296 Gothenburg (Sweden)

    2007-05-31

    The electron backscatter diffraction (EBSD) technique has been used to determine grain orientations of abnormally grown grains in nanocrystalline Ni electrodeposits upon annealing. The results show that the first grown grains have a <3 1 1>//ND orientation. Upon annealing further grain growth occurs and the preferred alignment of the abnormally growing grains changes from <3 1 1>//ND to <1 1 1>//ND. The subgrain coalescence model adopted from recrystallization is used to describe the occurrence of abnormal grain growth, and energy considerations are put forward for explaining the dominance of the <1 1 1>//ND texture component after longer annealing treatments.

  9. Growth and development of skeletal muscle in µ-Calpain Knockout mice

    Protein turnover ultimately requires proteolytic enzymes to degrade skeletal muscle proteins. The calpain system has been identified as a potential candidate due to its role in a variety of cellular processes such as cytoskeletal remodeling, myogenesis and signal transduction; and involvement in mu...

  10. The potential significance of binovular follicles and binucleate giant oocytes for the development of genetic abnormalities

    Bernd Rosenbusch

    2012-12-01

    Normal development of a fertilizable female gamete emanates from a follicle containing only one oocyte that becomes haploid after first meiotic division. Binovular follicles including two oocytes and binucleate giant oocytes that are diploid after first meiosis constitute notable exceptions from this rule. Data provided by programmes of human-assisted reproduction on the occurrence of both phenomena have been reviewed to evaluate possible implications for the formation of genetic abnormalities. To exclude confusion with oocytes aspirated from two adjacent individual follicles, true binovularity has been defined as inclusion of two oocytes within a common zona pellucida or their fusion in the zonal region. A total of 18 conjoined oocytes have been reported and one of the oocyte was normally fertilized in seven cases. Simultaneous fertilization of both female gametes occurred only once. No pregnancy was achieved after transfer of an embryo from a binovular follicle. Binucleate giant oocytes have been observed sporadically but a few reports suggest an incidence of up to 0.3% of all gametes retrieved. Extensive studies performed by two independent centres demonstrated that giant oocytes are diploid at metaphase II, can undergo fertilization in vitro with formation of two or three pronuclei and develop into triploid zygotes and triploid or triploid/mosaic embryos. In summary, giant binucleate oocytes may be responsible for the development of digynic triploidy whereas the currently available data do not support a role of conjoined oocytes in producing dizygotic twins, mosaicism, chimaeras or tetraploidy. However, more information on the maturity and fertilizability of oocytes from binovular follicles is needed. Future studies should also evaluate a possible impact of pharmaceutical and environmental oestrogens on the formation of multiovular follicles.

  11. Normal and abnormal development of mentalization and development of borderline personality disorder as mentalization dysfunction in the context of development of attachment relation

    Adamczyk, Leszek

    2013-01-01

    The aim of this article is to describe the normal and abnormal development of mentallisation and development of borderline personality disorder as a mentallisation dysfunction, in the context of development of attachment relation. Borderline personality disorder is a distinct clinical syndrome with important implications for public health; patients show reduced capacities to mentalise, which inevitably leads to problems in interpersonal relationships, identity disturbance, impulsivity, emotio...

  12. Role of active contraction and tropomodulins in regulating actin filament length and sarcomere structure in developing zebrafish skeletal muscle

    Lise eMazelet

    2016-03-01

    Full Text Available Whilst it is recognised that contraction plays an important part in maintaining the structure and function of mature skeletal muscle, its role during development remains undefined. In this study the role of movement in skeletal muscle maturation was investigated in intact zebrafish embryos using a combination of genetic and pharmacological approaches. An immotile mutant line (cacnb1ts25 which lacks functional voltage-gated calcium channels (dihydropyridine receptors in the muscle and pharmacological immobilisation of embryos with a reversible anaesthetic (Tricaine, allowed the study of paralysis (in mutants and anaesthetised fish and recovery of movement (reversal of anaesthetic treatment. The effect of paralysis in early embryos (aged between 17-24 hours post fertilisation, hpf on skeletal muscle structure at both myofibrillar and myofilament level was determined using both immunostaining with confocal microscopy and small angle X-ray diffraction. The consequences of paralysis and subsequent recovery on the localisation of the actin capping proteins Tropomodulin 1 &4 (Tmod in fish aged from 17hpf until 42hpf was also assessed. The functional consequences of early paralysis were investigated by examining the mechanical properties of the larval muscle. The length-force relationship, active and passive tension, was measured in immotile, recovered and control skeletal muscle at 5 and 7 day post fertilisation (dpf. Recovery of muscle function was also assessed by examining swimming patterns in recovered and control fish. Inhibition of the initial embryonic movements (up to 24 hpf resulted in an increase in myofibril length and a decrease in width followed by almost complete recovery in both moving and paralysed fish by 42hpf. In conclusion, myofibril organisation is regulated by a dual mechanism involving movement-dependent and movement-independent processes. The initial contractile event itself drives the localisation of Tmod1 to its sarcomeric

  13. Role and Mechanisms of Actions of Thyroid Hormone on the Skeletal Development

    Kim, Ha-Young; Mohan, Subburaman

    2013-01-01

    The importance of the thyroid hormone axis in the regulation of skeletal growth and maintenance has been well established from clinical studies involving patients with mutations in proteins that regulate synthesis and/or actions of thyroid hormone. Data from genetic mouse models involving disruption and overexpression of components of the thyroid hormone axis also provide direct support for a key role for thyroid hormone in the regulation of bone metabolism. Thyroid hormone regulates prolifer...

  14. Skeletal development in the African elephant and ossification timing in placental mammals

    Hautier, Lionel; Stansfield, Fiona J.; Allen, W. R. Twink; Asher, Robert J

    2012-01-01

    We provide here unique data on elephant skeletal ontogeny. We focus on the sequence of cranial and post-cranial ossification events during growth in the African elephant (Loxodonta africana). Previous analyses on ossification sequences in mammals have focused on monotremes, marsupials, boreoeutherian and xenarthran placentals. Here, we add data on ossification sequences in an afrotherian. We use two different methods to quantify sequence heterochrony: the sequence method and event-paring/Pars...

  15. Evaluation of skeletal maturation using mandibular third molar development in Indian adolescents

    Mehta, Nishit; Patel, Dolly; Mehta, Falguni; Gupta, Bhaskar; Zaveri, Grishma; Shah, Unnati

    2016-01-01

    Objective: This study was done with the following objectives: to estimate dental maturity using the Demirjian Index (DI) for the mandibular third molar; to investigate the relationship between dental maturity and skeletal maturity among growing patients; to evaluate the use of the mandibular third molar as an adjunctive tool for adolescent growth assessment in combination with the cervical vertebrae; to evaluate the clinical value of the third molar as a growth evaluation index. Materials and Methods: Samples were derived from panoramic radiographs and lateral cephalograms of 615 subjects (300 males and 315 females) of ages ranging 9-18 years, and estimates of dental maturity (DI) and skeletal maturity [cervical vertebrae maturation indicators (CVMI)] were made. Results: A highly significant association (r = 0.81 for males and r = 0.72 for females) was found between DI and CVMI. DI Stage B corresponded to Stage 2 of CVMI (prepeak of pubertal growth spurt) in both sexes. In males, DI stages C and D represent the peak of the pubertal growth spurt. In females, stages B and C show that the peak of the pubertal growth spurt has not been passed. DI stage E in females and DI Stage F in males correlate that the peak of the pubertal growth spurt has been passed. Conclusion: A highly significant association exists between DI and CVMI. Mandibular third molar DI stages are reliable adjunctive indicators of skeletal maturity.

  16. Impaired glycogen synthase activity and mitochondrial dysfunction in skeletal muscle

    Højlund, Kurt; Beck-Nielsen, Henning

    2006-01-01

    Insulin resistance in skeletal muscle is a major hallmark of type 2 diabetes and an early detectable abnormality in the development of this disease. The cellular mechanisms of insulin resistance include impaired insulin-mediated muscle glycogen synthesis and increased intramyocellular lipid content...... expression analysis and proteomics have pointed to abnormalities in mitochondrial oxidative phosphorylation and cellular stress in muscle of type 2 diabetic subjects, and recent work suggests that impaired mitochondrial activity is another early defect in the pathogenesis of type 2 diabetes. This review will...... discuss the latest advances in the understanding of the molecular mechanisms underlying insulin resistance in human skeletal muscle in type 2 diabetes with focus on possible links between impaired glycogen synthase activity and mitochondrial dysfunction....

  17. MR imaging of the clival bone marrow. Normal development and abnormal findings

    We studied the MR appearance of the normal and abnormal clivus. The bone marrow of the normal clivus in most infants of less than 1 year of age had uniformly low signal intensity relative to the pons (pattern I-1) in T1 weighted images. The proportion of individuals with a I-1 clivus pattern decreased rapidly as a function of age, while that of subjects with marrows of low and high signal intensity (pattern II) and uniformly high signal intensity (pattern III) increased gradually. No marrow with a I-1 pattern was seen after the age of 20. We also investigated the data a available from scout images as it has been shown that this modality may provide clinically significant information. Clival enhancement was observed in only four (5%) of 75 normal subjects. The signal intensity patterns of abnormal clivi could be readily distinguished from those of normal clivi. For example, a uniformly low signal intensity relative to the pons was seen in all 10 patients with tumor invasion investigated by us. Moreover, there was also enhancement in all abnormal clivi. T2-weighted images appeared to be of no value in the characterization of bone marrow disorders. It is concluded from these observations that a clivus of an individual over the age of 20 is considered abnormal when it displays a low signal intensity relative to the pons. (author)

  18. Does I-131-MIBG underestimate skeletal disease burden in neuroblastoma?

    Barai Sukanta

    2004-10-01

    Full Text Available Background: Controversy persists as to the need for both MIBG and bone scanning in routine evaluation of neuroblastoma. Aim: To compare the efficacy of I-131- metaiodobenzylguanidine (MIBG scan against that of conventional Tc99m- methylene diphosphonate (MDP bone scan for the detection of skeletal deposition of neuroblastoma. Methods and Material: The study included 57 patients (36 boys, 21 girls: age range 1-14 years of neuroblastoma who underwent both bone scan with Tc99m-MDP and I-131-MIBG scan within 15 days of each other at presentation and during follow-up. Results: At presentation 11(19.2% patients had evidence of skeletal metastases on MDP scan against 7 patients who showed bony secondaries on MIBG scan. Of the 7 patients, with positive MIBG and MDP scans, MDP scan detected 11 sites whereas MIBG scan detected 7 sites. On follow-up study, 3 patients with initial abnormal MDP scan but normal MIBG scan, developed skeletal metastases detectable on MIBG scan, whereas 3 of the 46 patients who had normal MDP and MIBG scan at presentation; developed skeletal metastases detectable on MDP scan. MIBG scan was concordant in 2 of them but was normal in the third patient. Conclusion: I-131-MIBG underestimates skeletal disease burden in neuroblastoma. Therefore, Tc99m-MDP bone scan should remain a part of routine assessment of patients with neuroblastoma.

  19. Abnormality of Development in Strongylocentrotus intermedius (A. Agassiz) Larvae from Polluted Habitat in Amursky Bay, Peter the Great Bay

    Naidenko, Tamara

    1997-01-01

    Amursky Bay, Peter the Great Bay, Sea of Japan is very much prone to anthropogenic pollution by heavy metals, oils, phenols, pesticides, etc. To clarify the effect of pollution, tests of the embryonic and larval development of sea urchin Strongylocentrotus intermedius are conducted using material collected from polluted habitats in Amursky Bay. A population from an unpolluted site in Vityaz Bay is used as a control. Various abnormal patterns of development including failure to metamorphose ar...

  20. Development of efficient and accurate skeletal mechanisms for hydrocarbon fuels and kerosene surrogate

    Zhong, Fengquan; Ma, Sugang; Zhang, Xinyu; Sung, Chih-Jen; Niemeyer, Kyle E.

    2015-10-01

    In this paper, the methodology of the directed relation graph with error propagation and sensitivity analysis (DRGEPSA), proposed by Niemeyer et al. (Combust Flame 157:1760-1770, 2010), and its differences to the original directed relation graph method are described. Using DRGEPSA, the detailed mechanism of ethylene containing 71 species and 395 reaction steps is reduced to several skeletal mechanisms with different error thresholds. The 25-species and 131-step mechanism and the 24-species and 115-step mechanism are found to be accurate for the predictions of ignition delay time and laminar flame speed. Although further reduction leads to a smaller skeletal mechanism with 19 species and 68 steps, it is no longer able to represent the correct reaction processes. With the DRGEPSA method, a detailed mechanism for n-dodecane considering low-temperature chemistry and containing 2115 species and 8157 steps is reduced to a much smaller mechanism with 249 species and 910 steps while retaining good accuracy. If considering only high-temperature (higher than 1000 K) applications, the detailed mechanism can be simplified to even smaller mechanisms with 65 species and 340 steps or 48 species and 220 steps. Furthermore, a detailed mechanism for a kerosene surrogate having 207 species and 1592 steps is reduced with various error thresholds and the results show that the 72-species and 429-step mechanism and the 66-species and 392-step mechanism are capable of predicting correct combustion properties compared to those of the detailed mechanism. It is well recognized that kinetic mechanisms can be effectively used in computations only after they are reduced to an acceptable size level for computation capacity and at the same time retaining accuracy. Thus, the skeletal mechanisms generated from the present work are expected to be useful for the application of kinetic mechanisms of hydrocarbons to numerical simulations of turbulent or supersonic combustion.

  1. Impact of maternal metabolic abnormalities in pregnancy on human milk and subsequent infant metabolic development: methodology and design

    Hamilton Jill K

    2010-10-01

    Full Text Available Abstract Background Childhood obesity is on the rise and is a major risk factor for type 2 diabetes later in life. Recent evidence indicates that abnormalities that increase risk for diabetes may be initiated early in infancy. Since the offspring of women with diabetes have an increased long-term risk for obesity and type 2 diabetes, the impact of maternal metabolic abnormalities on early nutrition and infant metabolic trajectories is of considerable interest. Human breast milk, the preferred food during infancy, contains not only nutrients but also an array of bioactive substances including metabolic hormones. Nonetheless, only a few studies have reported concentrations of metabolic hormones in human milk specifically from women with metabolic abnormalities. We aim to investigate the impact of maternal metabolic abnormalities in pregnancy on human milk hormones and subsequently on infant development over the first year of life. The objective of this report is to present the methodology and design of this study. Methods/Design The current investigation is a prospective study conducted within ongoing cohort studies of women and their offspring. Pregnant women attending outpatient obstetrics clinics in Toronto, Canada were recruited. Between April 2009 and July 2010, a total of 216 pregnant women underwent a baseline oral glucose tolerance test and provided medical and lifestyle history. Follow-up visits and telephone interviews are conducted and expected to be completed in October 2011. Upon delivery, infant birth anthropometry measurements and human breast milk samples are collected. At 3 and 12 months postpartum, mothers and infants are invited for follow-up assessments. Interim telephone interviews are conducted during the first year of offspring life to characterize infant feeding and supplementation behaviors. Discussion An improved understanding of the link between maternal metabolic abnormalities in pregnancy and early infant nutrition may

  2. Megalin–deficiency causes high myopia, retinal pigment epithelium-macromelanosomes and abnormal development of the ciliary body in mice

    Storm, Tina; Heegaard, Steffen; Christensen, Erik I; Nielsen, Rikke

    2014-01-01

    In man, mutations of the megalin-encoding gene causes the rare Donnai-Barrow/Facio-Oculo-Acoustico-Renal Syndrome, which is partially characterized by high-grade myopia. Previous studies of renal megalin function have established that megalin is crucial for conservation of renal filtered nutrients...... megalin localizes to vesicular structures in the RPE and NPCBE cells. Histological investigations of ocular mouse tissue also identified a severe myopia phenotype as well as enlarged RPE melanosomes and abnormal ciliary body development in the megalin-deficient mice. In conclusion, the complex ocular...... phenotype observed in the megalin-deficient mice suggests that megalin-mediated developmental abnormalities may contribute to the high myopia phenotype observed in the Donnai-Barrow Syndrome patients and, thus, that megalin harbors important roles in ocular development and physiology. Finally, our data show...

  3. Disruption of Ah Receptor Signaling during Mouse Development Leads to Abnormal Cardiac Structure and Function in the Adult.

    Vinicius S Carreira

    Full Text Available The Developmental Origins of Health and Disease (DOHaD Theory proposes that the environment encountered during fetal life and infancy permanently shapes tissue physiology and homeostasis such that damage resulting from maternal stress, poor nutrition or exposure to environmental agents may be at the heart of adult onset disease. Interference with endogenous developmental functions of the aryl hydrocarbon receptor (AHR, either by gene ablation or by exposure in utero to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD, a potent AHR ligand, causes structural, molecular and functional cardiac abnormalities and altered heart physiology in mouse embryos. To test if embryonic effects progress into an adult phenotype, we investigated whether Ahr ablation or TCDD exposure in utero resulted in cardiac abnormalities in adult mice long after removal of the agent. Ten-months old adult Ahr-/- and in utero TCDD-exposed Ahr+/+ mice showed sexually dimorphic abnormal cardiovascular phenotypes characterized by echocardiographic findings of hypertrophy, ventricular dilation and increased heart weight, resting heart rate and systolic and mean blood pressure, and decreased exercise tolerance. Underlying these effects, genes in signaling networks related to cardiac hypertrophy and mitochondrial function were differentially expressed. Cardiac dysfunction in mouse embryos resulting from AHR signaling disruption seems to progress into abnormal cardiac structure and function that predispose adults to cardiac disease, but while embryonic dysfunction is equally robust in males and females, the adult abnormalities are more prevalent in females, with the highest severity in Ahr-/- females. The findings reported here underscore the conclusion that AHR signaling in the developing heart is one potential target of environmental factors associated with cardiovascular disease.

  4. Silencing Abnormal Wing Disc Gene of the Asian Citrus Psyllid, Diaphorina citri Disrupts Adult Wing Development and Increases Nymph Mortality

    El-Shesheny, Ibrahim; Hajeri, Subhas; El-Hawary, Ibrahim; Gowda, Siddarame; Killiny, Nabil

    2013-01-01

    Huanglongbing (HLB) causes considerable economic losses to citrus industries worldwide. Its management depends on controlling of the Asian citrus Psyllid (ACP), the vector of the bacterium, Candidatus Liberibacter asiaticus (CLas), the causal agent of HLB. Silencing genes by RNA interference (RNAi) is a promising tool to explore gene functions as well as control pests. In the current study, abnormal wing disc (awd) gene associated with wing development in insects is used to interfere with the...

  5. Mandibuloacral dysplasia and LMNA A529V mutation in Turkish patients with severe skeletal changes and absent breast development.

    Ozer, Leyla; Unsal, Evrim; Aktuna, Suleyman; Baltaci, Volkan; Celikkol, Pelin; Akyigit, Fatma; Sen, Askin; Ayvaz, Ozge; Balci, Sevim

    2016-07-01

    Mandibuloacral dysplasia (MAD) is an autosomal recessive disorder characterized by acroosteolysis (resorption of terminal phalanges), skin changes (hyperpigmentation), clavicular hypoplasia, craniofascial anomalies, a hook nose and prominent eyes, delayed closures of the cranial sutures, lipodystrophy, alopecia, and skeletal anomalies. MAD patients are classified according to lipodystrophy patterns: type A and type B. The vast majority of MAD cases are caused by LMNA gene mutations. MAD patients with type A lipodystrophy (MADA) have been reported to have LMNA R527H, A529V, or A529T mutations. In this report, we describe two MADA patients with progressive skeletal changes, absent breast development, and cataract in addition to the classical MAD phenotype. Both patients were found to be homozygous for the Ala529Val mutation of the LMNA gene. Our female patient is the oldest MADA patient (59 years old) who has ever been reported with the LMNA mutation and also the LMNA Ala529Val mutation. This study is the second report on MADA patients with a homozygous Ala529Val mutation. PMID:27100822

  6. Perinatal lethal skeletal dysplasia: a case report

    Sunita Dubey

    2016-01-01

    Full Text Available The word dysplasia originates from ancient Greek words dys (anomalous and plasia (formation. Skeltal dysplasia (SD is a heterogeneous group of congenital anomalies characterized by abnormalities in the development of the bone and cartilage tissue. This results in mark disproportion of the long bones, the spine and fetal head relation to the trunk. Perinatal lethal skeletal dysplasia leads to still birth or early neonatal death due to pulmonary hypoplasia. 30 yrs old G3P3L2 at 32 weeks presented with leaking per vaginum. Her serial scan was done as she had previous stillborn male child with short limbs. Her antenatal scan revealed short limbs from 24 weeks. From18 weeks to 24 weeks she did not underwent any sonography. She went into spontaneous labor and delivered still born male baby with clinical and radiological features suggestive of skeletal dysplasia. Skeletal dysplasia can be diagnosed on antenatal 2 D ultrasound from 14 - 16 weeks onwards. Prenatal genetic testing should be done to diagnose the genetic anomaly and patient should be referred to higher institute for this test. Even if genetic test not done even then termination of pregnancy should be considered based on ultrasound diagnosis especially with family history because of poor fetal prognosis and long term morbidity if survived. [Int J Reprod Contracept Obstet Gynecol 2016; 5(1.000: 224-229

  7. The pleiotropic ABNORMAL FLOWER AND DWARF1 affects plant height, floral development and grain yield in rice

    Deyong Ren; Li Zhu; Zhenyu Gao; Guojun Dong; Guangheng Zhang; Longbiao Guo; Dali Zeng; and Qian Qian; Yuchun Rao; Liwen Wu; Qiankun Xu; Zizhuang Li; Haiping Yu; Yu Zhang; Yujia Leng; Jiang Hu

    2016-01-01

    Moderate plant height and successful establish-ment of reproductive organs play pivotal roles in rice grain production. The molecular mechanism that controls the two aspects remains unclear in rice. In the present study, we characterized a rice gene, ABNORMAL FLOWER AND DWARF1 (AFD1) that determined plant height, floral development and grain yield. The afd1 mutant showed variable defects including the dwarfism, long panicle, low seed setting and reduced grain yield. In addition, abnormal floral organs were also observed in the afd1 mutant including slender and thick hulls, and hull-like lodicules. AFD1 encoded a DUF640 domain protein and was ex-pressed in all tested tissues and organs. Subcellular localization showed AFD1-green fluorescent fusion protein (GFP) was localized in the nucleus. Meantime, our results suggested that AFD1 regulated the expression of cell division and expansion related genes.

  8. Development of a sintering methodology through abnormal glow discharge for manufacturing metal matrix composites

    Pérez, S.; Pineda, Y.; Sarmiento, A.; López, A.

    2016-02-01

    In this study, a sintering methodology is presented by using abnormal glow discharge to metal matrix composites (MMC), consisting of 316 steel, reinforced with titanium carbide (TiC). The wear behaviour of these compounds was evaluated according to the standard ASTM G 99 in a tribometer pin-on-disk. The effect of the percentage of reinforcement (3, 6, and 9%), with 40 minutes of mixing in the planetary mill is analysed, using compaction pressure of 700MPa and sintering temperature of 1,100°C±5°C, gaseous atmosphere of H2 - N2, and sintering time of 30 minutes. As a result of the research, it shows that the best behaviour against wear is obtained when the MMC contains 6% TiC. Under this parameter the lowest percentage of pores and the lowest coefficient of friction are achieved, ensuring that the incorporation of ceramic particles (TiC) in 316 austenitic steel matrix significantly improves the wear resistance. Also, it is shown that it is possible to sinter such materials using the abnormal glow discharge, being a novel and effective method in which the working temperature is reached in a short time.

  9. Glucose transport and metabolism in chondrocytes: a key to understanding chondrogenesis, skeletal development and cartilage degradation in osteoarthritis

    A. Mobasheri; Vannucci, S.J.; Bondy, C A; Carter, S D; Innes, J.F.; Arteaga, M F; E. Trujillo; Ferraz, I; Shakibaei, M.; Martín Vasallo, P.

    2002-01-01

    Despite the recognition that degenerative cartilage disorders like osteoarthritis (OA) and osteochondritis dissecans (OCD) may have nutritional abnormalities at the root of their pathogenesis, balanced dietary supplementation programs have played a secondary role in their management. This review emphasizes the importance and role of nutritional factors such as glucose and glucose-derived sugars (i.e. glucosamine sulfate and vitamin C) in the development, ma...

  10. Normal and abnormal development of mentalization and development of borderline personality disorder as mentalization dysfunction in the context of development of attachment relation

    Adamczyk, Leszek

    2013-12-01

    Full Text Available The aim of this article is to describe the normal and abnormal development of mentallisation and development of borderline personality disorder as a mentallisation dysfunction, in the context of development of attachment relation. Borderline personality disorder is a distinct clinical syndrome with important implications for public health; patients show reduced capacities to mentalise, which inevitably leads to problems in interpersonal relationships, identity disturbance, impulsivity, emotional regulation and suicidal threats. In this article author present a review of a construct of mentallisation as it is developed by P. Fonagy and his collaborators. Mentalising is the process of making sense of mental states in oneself and other persons in terms of subjective states and mental processes. The concept of mentallisation is rooted in attachment theory. The author reviews the biobehavioural switch–model of the relationship between attachment, arousal or stress, mentallisation, and development of borderline personality disorder.

  11. Modeling abnormal early development with induced pluripotent stem cells from aneuploid syndromes.

    Li, Wen; Wang, Xianming; Fan, Wenxia; Zhao, Ping; Chan, Yau-Chi; Chen, Shen; Zhang, Shiqiang; Guo, Xiangpeng; Zhang, Ya; Li, Yanhua; Cai, Jinglei; Qin, Dajiang; Li, Xingyan; Yang, Jiayin; Peng, Tianran; Zychlinski, Daniela; Hoffmann, Dirk; Zhang, Ruosi; Deng, Kang; Ng, Kwong-Man; Menten, Bjorn; Zhong, Mei; Wu, Jiayan; Li, Zhiyuan; Chen, Yonglong; Schambach, Axel; Tse, Hung-Fat; Pei, Duanqing; Esteban, Miguel A

    2012-01-01

    Many human diseases share a developmental origin that manifests during childhood or maturity. Aneuploid syndromes are caused by supernumerary or reduced number of chromosomes and represent an extreme example of developmental disease, as they have devastating consequences before and after birth. Investigating how alterations in gene dosage drive these conditions is relevant because it might help treat some clinical aspects. It may also provide explanations as to how quantitative differences in gene expression determine phenotypic diversity and disease susceptibility among natural populations. Here, we aimed to produce induced pluripotent stem cell (iPSC) lines that can be used to improve our understanding of aneuploid syndromes. We have generated iPSCs from monosomy X [Turner syndrome (TS)], trisomy 8 (Warkany syndrome 2), trisomy 13 (Patau syndrome) and partial trisomy 11;22 (Emanuel syndrome), using either skin fibroblasts from affected individuals or amniocytes from antenatal diagnostic tests. These cell lines stably maintain the karyotype of the donors and behave like embryonic stem cells in all tested assays. TS iPSCs were used for further studies including global gene expression analysis and tissue-specific directed differentiation. Multiple clones displayed lower levels of the pseudoautosomal genes ASMTL and PPP2R3B than the controls. Moreover, they could be transformed into neural-like, hepatocyte-like and heart-like cells, but displayed insufficient up-regulation of the pseudoautosomal placental gene CSF2RA during embryoid body formation. These data support that abnormal organogenesis and early lethality in TS are not caused by a tissue-specific differentiation blockade, but rather involves other abnormalities including impaired placentation. PMID:21949351

  12. Teratogenic effects of Gabapentin on Neural Tube and skeletal development in mice

    M. Afshar

    2005-01-01

    Full Text Available Background and purpose : Gabapentin is a new Antiepileptic drugs that introduced for the treatment of partial and second generalized seizures. Other usages of this drug include relief of neuropathic pains such as diabetic and cancers neuropathy and also prophylaxy of migrane. There is little information about the teratogenic effects of this drug. Only few studies reported delay in ossification of bones and hydroureter and hydronephrosis. This study carried out to reveal the macroscopic malformation of this drug when used during the implantation and organogenesis periods.Materials and methods : 30 balb/c virgin females, aged 2.5 months and weighted 30±2 gr were housed in environmentally controlled room. A group of 3 females was caged with a single male of proven fertility overnight. Finding of vaginal plug on the following morning was regarded as gestational day (GD 0. Mice were divided into experimental groups; ex. І=received 1400 mg /day (20mg/kg/day and ex. II=received 1800 mg /day (26mg/kg/day doses of Gabapentin drug for 10 subsequent days and one control group which received disstilled water intraperitoneally. They were dissected in GD18 and embryos were collected and washed with normal saline. Macroscopic observation was made using a stereomicroscope and weighed using a digital scale with 0.01 accuracy. Data were analysed by ANOVA and X2 tests using of SPSS software. Results : Both experimental groups (I, II revealed similar malformations categorized as skeletal malformation and neural tube defects. Skeletal malformation was more frequent than neural tube defects and mostly included limbs defects,distortions and dislocations with significant difference compared with the control group (p<0.05. Spina bifida cystica was the most common form of neural tube defects. In the experimental group II, density and incidence of malformations and also fetuses resorption were higher than those of the other experimental group.Conclusion : This study

  13. Centronuclear myopathy--morphological relation to developing human skeletal muscle : a clinicopathological evaluation.

    Gayathri N

    2000-01-01

    Full Text Available Centronuclear myopathy (CNM, an uncommon condition, is one of the congenital myopathies. It is believed to arise as a result of maturational arrest, with persistence of myotubes postnatally. However, denervation being the basic disease process and its possible influence on central nervous system causing defect in nuclear migration has also been postulated. Keeping in view these existing controversies, we have studied 17 cases of CNM (neonatal - 1, childhood - 13, adulthood - 3 during the last twelve and a half years. Diagnosis was based on histological and enzyme histochemical findings of muscle biopsy along with clinical data. Ultrastructural characterstics of muscle have been studied in 10 cases. The affected muscle fibres showed a central nucleus (40-99% with perinuclear halo. Type I fibre predominance with hypoplasia was consistently seen. Fibre type disproportion was noticed in 7 cases. The neonatal form revealed dense oxidative enzyme reaction product in the centre. The morphological features of CNM were compared with foetal skeletal muscles obtained at gestational ages ranging from 9 weeks - 36 weeks (n = 18. In the severe neonatal form th myofibres resembled the foetal myotubes. In the less severe childhood and adult form of CNM, aberrant organization of cytoskeletal network might have played a pathogenetic role in causing the disease.

  14. A study on the development of normal mandible in children by skeletal scintigraphy

    Objective: To study the developmental characters of the normal mandible in growing children. Methods: Twenty growing children undergoing skeletal scintigraphic study for isolated bone disease other than bones of the head and neck at hospital and turned out with normal results finally were studied. The 99Tcm-MDP uptakes in the mandibular condyle, ramus, body and the fourth lumbar vertebra in these cases were quantitated and a ratio of the uptake in the three mandibular regions to that in the fourth lumbar vertebra was obtained. Results: The analysis results showed that the 99Tcm-MDP uptake ratios of the three mandibular regions decreased in linear fashion with age increasing and leveled off after age of 20. The regression equations are: the mandibular condyle, Y-circumflex = -0.052 2X + 1.792 8; the mandibular ramus, Y-circumflex = -0.015 1X + 0.766 7; the mandibular body, Y-circumflex = -0.014 2X + 0.741 0. There was no significant difference of the 99Tcm-MDP uptake ratio between the two sides of the mandible and between the male and female. Conclusion: The results suggest that the ideal time to undergo orthognathic surgery should be at the age of 20 or so if the circumstance of the deformity is not quite clear

  15. The Impact of Seawater Saturation State on Early Skeletal Development in Larval Corals: Insights into Scleractinian Biomineralization

    Cohen, A. L.; McCorkle, D. C.; de Putron, S.

    2007-12-01

    contrast to the fine, closed, densely packed spherulitic bundles accreted in the control system, larvae in the lower Omega treatments produced a disorganized conglomerate of large, highly faceted crystals, consistent with slow growth under low saturation state conditions. Our results suggest that the coral calcification response to changes in seawater saturation state is linked to a physiological limitation on the organism's ability to elevate the saturation state of seawater within the calcifying space. Further, our data indicate that ocean acidification due to fossil fuel CO2 emissions will likely have a strong negative effect on the recruitment and early skeletal development of larval corals over the next several decades.

  16. Radiological and orthopedic abnormalities in Satoyoshi syndrome

    Haymon, M.L. [Children`s Hospital, New Orleans, LA (United States). Dept. of Radiology; Willis, R.B. [Children`s Hospital, New Orleans, LA (United States). Dept. of Orthopedics; Ehlayel, M.S. [Div. of Genetics, Dept. of Pediatrics, Louisiana State Univ. Medical Center, Orleans, LA (United States)]|[Louisiana State Medical Center, New Orleans, LA (United States). Center for Molecular and Human Genetics; Lacassie, Y. [Div. of Genetics, Dept. of Pediatrics, Louisiana State Univ. Medical Center, Orleans, LA (United States)]|[Louisiana State Medical Center, New Orleans, LA (United States). Center for Molecular and Human Genetics]|[Children`s Hospital, New Orleans, LA (United States). Dept. of Pediatrics

    1997-05-01

    Satoyoshi syndrome is a are disorder on unknown etiology characterized by progressive, painful intermittent muscle spasms, serve skeletal abnormalities mimicking a skeletal dyplasia, malabsorption, alopecia, and amenorrhea. We further report on a 20{sup 1}/{sub 2}-year-old Caucasian woman whith characteristic manifestation of the syndrome. Since the establishment of the diagnostic 1 year ago, she has been treated with prednisone with good response. However, treatment of the multiple deformities and fractures has been difficult and challenging. The early recognition and treatment of this disorder is of utmost importance, as the skeletal deformities and fractures seem to be secondary to the muscular spasms, as suggested by Satoyoshi.

  17. The effects of Capn1 gene inactivation on skeletal muscle growth, development, and atrophy, and the compensatory role of other proteolytic systems

    Myofibrillar protein turnover is a key component of muscle growth and degeneration, requiring proteolytic enzymes to degrade the skeletal muscle proteins. The objective of this study was to investigate the role of the calpain proteolytic system in muscle growth development using µ-calpain knockout (...

  18. The skeletal system

    Nikkels, PGJ

    2015-01-01

    Skeletal dysplasias are a group of disorders with a disturbance in development and/or growth of cartilage and/or bone. Epiphysis, metaphysis, and diaphysis of long bones are affected in a generalized manner with or without involvement of membranous bone of the skull. A dysostosis affects one or some

  19. Role of Endolysosomes in Skeletal Muscle Pathology Observed in a Cholesterol-Fed Rabbit Model of Alzheimer’s Disease

    Chen, Xuesong; Wagener, John F.; Ghribi, Othman; Geiger, Jonathan D.

    2016-01-01

    Deficits in skeletal muscles contribute not only to the functional decline in people living with Alzheimer’s disease (AD), but also to AD pathogenesis. We have shown that endolysosome dysfunction plays an important role in the development of AD pathological features in a cholesterol-fed rabbit model of AD. Interestingly we observed in skeletal muscle from the rabbit AD model increased deposition of Aβ, phosphorylated tau, and ubiquitin. Here, we tested the hypothesis that endolysosome dysfunction commonly occurs in skeletal muscle and brain in this rabbit model of AD. In skeletal muscle of rabbits fed a 2% cholesterol-enriched diet for 12 weeks we observed the presence of abnormally enlarged endolysosomes, in which were increased accumulations of free cholesterol and multiple AD marker proteins subject to misfolding and aggregation including Aβ, phosphorylated tau, and ubiquitin. Moreover, in skeletal muscle of rabbits fed the cholesterol-enriched diet we observed decreased specific activities of three different lysosome enzymes. Our results suggest that elevated levels of plasma cholesterol can disturb endolysosome structure and function as well as promote the development of AD-like pathological features in skeletal muscle and that these organellar changes might contribute to the development of skeletal muscle deficits in AD. PMID:27375475

  20. Skeletal mastocytosis.

    Andrew, S M; Freemont, A J

    1993-01-01

    AIMS--To characterise the condition of skeletal mastocytosis, an uncommon cause of apparently "idiopathic" osteoporosis. METHODS--Transiliac crest biopsy specimens submitted over a period of five years were examined for nodular accumulation of mast cells. The cases were reviewed histologically and clinical follow up was obtained from hospital notes. RESULTS--Six cases of mastocytosis occurring in bone biopsy specimens submitted to our department were identified. Four patients presented initia...

  1. The influence of maternal attachment and postpartum depression on abnormal development of the child until the age of 18 months

    Andrea Beetz

    2013-12-01

    Full Text Available Problems in the psychological or physical development of children seem to increase in Western Societies, probably also due to suboptimal interactions with caregivers and insecure attachments, and can be observed already in early childhood. In the present study, the association of children’s abnormal development until the age of 18 months with attachment representation, prenatal attachment and postpartum depression of their 161 primiparae mothers with a relatively high educational background were investigated. A high level of maternal attachment disorganization and even medium levels of postpartum depression were significantly linked to noticeable problems with physical and behavioral development in the regular child screening exams (at 6 and 12 months and with the problem behaviour reported by the mothers. This suggests that also mothers without obvious and known risk factors, who are usually not targeted by early interventions, would profit from professional support. A simple indicator for a screening would be maternal depression at 6 months postpartum.

  2. A panel of free fatty acid ratios to predict the development of metabolic abnormalities in healthy obese individuals.

    Zhao, Linjing; Ni, Yan; Ma, Xiaojing; Zhao, Aihua; Bao, Yuqian; Liu, Jiajian; Chen, Tianlu; Xie, Guoxiang; Panee, Jun; Su, Mingming; Yu, Herbert; Wang, Congrong; Hu, Cheng; Jia, Weiping; Jia, Wei

    2016-01-01

    Increasing evidences support that metabolically healthy obese (MHO) is a transient state. However, little is known about the early markers associated with the development of metabolic abnormalities in MHO individuals. Serum free fatty acids (FFAs) profile is highlighted in its association with obesity-related insulin resistance, type 2 diabetes mellitus (T2DM) and cardiovascular diseases (CVD). To examine the association of endogenous fatty acid metabolism with future development of metabolic abnormalities in MHO individuals, we retrospectively analyzed 24 [product FFA]/[precursor FFA] ratios in fasting sera and clinical data from 481 individuals who participated in three independent studies, including 131 metabolic healthy subjects who completed the 10-year longitudinal Shanghai Diabetes Study (SHDS), 312 subjects cross-sectionally sampled from the Shanghai Obesity Study (SHOS), and 38 subjects who completed an 8-week very low carbohydrate diet (VLCD) intervention study. Results showed that higher baseline level of oleic acid/stearic acid (OA/SA), and lower levels of stearic acid/palmitic acid (SA/PA) and arachidonic acid/dihomo-γ-linolenic acid (AA/DGLA) ratios were associated with higher rate of MHO to MUO conversion in the longitudinal SHDS. Further, the finding was validated in the cross-sectional and interventional studies. This panel of FFA ratios could be used for identification and early intervention of at-risk obese individuals. PMID:27344992

  3. Skeletal muscle involvement in cardiomyopathies.

    Limongelli, Giuseppe; D'Alessandro, Raffaella; Maddaloni, Valeria; Rea, Alessandra; Sarkozy, Anna; McKenna, William J

    2013-12-01

    The link between heart and skeletal muscle disorders is based on similar molecular, anatomical and clinical features, which are shared by the 'primary' cardiomyopathies and 'primary' neuromuscular disorders. There are, however, some peculiarities that are typical of cardiac and skeletal muscle disorders. Skeletal muscle weakness presenting at any age may indicate a primary neuromuscular disorder (associated with creatine kinase elevation as in dystrophinopathies), a mitochondrial disease (particularly if encephalopathy, ocular myopathy, retinitis, neurosensorineural deafness, lactic acidosis are present), a storage disorder (progressive exercise intolerance, cognitive impairment and retinitis pigmentosa, as in Danon disease), or metabolic disorders (hypoglycaemia, metabolic acidosis, hyperammonaemia or other specific biochemical abnormalities). In such patients, skeletal muscle weakness usually precedes the cardiomyopathy and dominates the clinical picture. Nevertheless, skeletal involvement may be subtle, and the first clinical manifestation of a neuromuscular disorder may be the occurrence of heart failure, conduction disorders or ventricular arrhythmias due to cardiomyopathy. ECG and echocardiogram, and eventually, a more detailed cardiovascular evaluation may be required to identify early cardiac involvement. Paediatric and adult cardiologists should be proactive in screening for neuromuscular and related disorders to enable diagnosis in probands and evaluation of families with a focus on the identification of those at risk of cardiac arrhythmia and emboli who may require specific prophylactic treatments, for example, pacemaker, implantable cardioverter-defibrillator and anticoagulation. PMID:24149064

  4. A Unified Anatomy Ontology of the Vertebrate Skeletal System

    Dahdul, Wasila M.; Balhoff, James P.; Blackburn, David C.; Diehl, Alexander D; Haendel, Melissa A; Hall, Brian K.; Lapp, Hilmar; Lundberg, John G.; Mungall, Christopher J; Ringwald, Martin; Segerdell, Erik; Van Slyke, Ceri E.; Vickaryous, Matthew K.; Westerfield, Monte; Mabee, Paula M.

    2012-01-01

    The skeleton is of fundamental importance in research in comparative vertebrate morphology, paleontology, biomechanics, developmental biology, and systematics. Motivated by research questions that require computational access to and comparative reasoning across the diverse skeletal phenotypes of vertebrates, we developed a module of anatomical concepts for the skeletal system, the Vertebrate Skeletal Anatomy Ontology (VSAO), to accommodate and unify the existing skeletal terminologies for the...

  5. Congenital Abnormalities

    ... blood flow to the fetus impair fetal growth. Alcohol consumption and certain drugs during pregnancy significantly increase the risk that a baby will be born with abnormalities (e.g. fetal alcohol spectrum disorders ). Eating raw or uncooked foods during pregnancy can also be dangerous to health of the ...

  6. AXIAL SKELETAL AND HOX EXPRESSION DOMAIN ALTERATIONS INDUCED BY RETINOIC ACID, VALPROIC ACID AND BROMOXYNIL DURING MURINE DEVELOPMENT

    ABSTRACT Retinoic acid (RA) alters the developmental fate of the axial skeletal anlage. "Anteriorizations" or "posteriorizations", the assumption of characteristics of embryonic areas normally anterior or posterior to the affected tissues, are correlated with altered emb...

  7. Skeletal muscle adaptation in response to exercise(Ⅰ)

    Ping Li; Zhen Yan

    2004-01-01

    @@ INTRODUCTION Skeletal muscles of adult mammalian species, including humans,are the source of power for locomotion and other daily activities essential for survival. Loss of skeletal musclecontractile function is a major cause of falling,morbidity and mortality,especially in elderly populations [1]. More importantly,skeletal muscles collectively influence total body metabolism of glucose, fat and protein, abnormalities of which are associated with a variety of common diseases[2-3].

  8. The sequential development of abnormal prion protein accumulation in mice with Creutzfeldt-Jakob disease.

    Muramoto, T; Kitamoto, T.; Tateishi, J.; Goto, I.

    1992-01-01

    The distribution and sequential development of prion protein (PrP) accumulation in the central nervous system (CNS) and non-neuronal organs of mice infected with Creutzfeldt-Jakob disease (CJD) were investigated immunohistochemically using a new pretreatment method that greatly enhanced the immunoreactivity of PrP. Prion protein accumulation in the CNS was first detected at 30 days after inoculation and then developed near the inoculation site or periventricular area, and later spread to the ...

  9. Lymphosarcoma with disseminated skeletal involvement in a pup

    Lymphoblastic lymphosarcoma with disseminated skeletal involvement was diagnosed in a 15-week-old Golden Retriever. The skeletal disease was characterized by diffuse, irregular areas of radiolucency most evident in the diaphyseal portion of long bones and was associated with gait abnormalities and signs of pain. Necropsy also revealed involvement of the spleen, liver, kidneys, and mesenteric lymph nodes

  10. High sugar intake and development of skeletal muscle insulin resistance and inflammation in mice: a protective role for PPAR- δ agonism.

    Benetti, Elisa; Mastrocola, Raffaella; Rogazzo, Mara; Chiazza, Fausto; Aragno, Manuela; Fantozzi, Roberto; Collino, Massimo; Minetto, Marco A

    2013-01-01

    Peroxisome Proliferator Activated Receptor (PPAR)- δ agonists may serve for treating metabolic diseases. However, the effects of PPAR- δ agonism within the skeletal muscle, which plays a key role in whole-body glucose metabolism, remain unclear. This study aimed to investigate the signaling pathways activated in the gastrocnemius muscle by chronic administration of the selective PPAR- δ agonist, GW0742 (1 mg/kg/day for 16 weeks), in male C57Bl6/J mice treated for 30 weeks with high-fructose corn syrup (HFCS), the major sweetener in foods and soft-drinks (15% wt/vol in drinking water). Mice fed with the HFCS diet exhibited hyperlipidemia, hyperinsulinemia, hyperleptinemia, and hypoadiponectinemia. In the gastrocnemius muscle, HFCS impaired insulin and AMP-activated protein kinase signaling pathways and reduced GLUT-4 and GLUT-5 expression and membrane translocation. GW0742 administration induced PPAR- δ upregulation and improvement in glucose and lipid metabolism. Diet-induced activation of nuclear factor-κB and expression of inducible-nitric-oxide-synthase and intercellular-adhesion-molecule-1 were attenuated by drug treatment. These effects were accompanied by reduction in the serum concentration of interleukin-6 and increase in muscular expression of fibroblast growth factor-21. Overall, here we show that PPAR- δ activation protects the skeletal muscle against the metabolic abnormalities caused by chronic HFCS exposure by affecting multiple levels of the insulin and inflammatory cascades. PMID:23861559

  11. High Sugar Intake and Development of Skeletal Muscle Insulin Resistance and Inflammation in Mice: A Protective Role for PPAR-δ Agonism

    Elisa Benetti

    2013-01-01

    Full Text Available Peroxisome Proliferator Activated Receptor (PPAR-δ agonists may serve for treating metabolic diseases. However, the effects of PPAR-δ agonism within the skeletal muscle, which plays a key role in whole-body glucose metabolism, remain unclear. This study aimed to investigate the signaling pathways activated in the gastrocnemius muscle by chronic administration of the selective PPAR-δ agonist, GW0742 (1 mg/kg/day for 16 weeks, in male C57Bl6/J mice treated for 30 weeks with high-fructose corn syrup (HFCS, the major sweetener in foods and soft-drinks (15% wt/vol in drinking water. Mice fed with the HFCS diet exhibited hyperlipidemia, hyperinsulinemia, hyperleptinemia, and hypoadiponectinemia. In the gastrocnemius muscle, HFCS impaired insulin and AMP-activated protein kinase signaling pathways and reduced GLUT-4 and GLUT-5 expression and membrane translocation. GW0742 administration induced PPAR-δ upregulation and improvement in glucose and lipid metabolism. Diet-induced activation of nuclear factor-κB and expression of inducible-nitric-oxide-synthase and intercellular-adhesion-molecule-1 were attenuated by drug treatment. These effects were accompanied by reduction in the serum concentration of interleukin-6 and increase in muscular expression of fibroblast growth factor-21. Overall, here we show that PPAR-δ activation protects the skeletal muscle against the metabolic abnormalities caused by chronic HFCS exposure by affecting multiple levels of the insulin and inflammatory cascades.

  12. Abnormal coronary tree development in embryonic hypoxia leads to heart failure and embryonic lethality.

    Naňka, O.; Sedmera, David; Grim, M.

    2007-01-01

    Roč. 21, č. 6 (2007), s. 778.8. ISSN 0892-6638. [Experimental Biology 2007. 27.04.2007-03.05.2007, Washington DC] Institutional research plan: CEZ:AV0Z50450515 Keywords : coronary tree development Subject RIV: FA - Cardiovascular Diseases incl. Cardiotharic Surgery

  13. DLX4 is associated with orofacial clefting and abnormal jaw development

    Wu, D.; Mandal, S.; Choi, A.; Anderson, A.; Procházková, Michaela; Perry, H.; Gil-Da-Silva-Lopes, V.L.; Lao, R.; Wan, E.; Tang, P.L.F.; Kwok, P.Y.; Klein, O.; Zhuan, B.; Slavotinek, A.M.

    2015-01-01

    Roč. 24, č. 15 (2015), s. 4340-4352. ISSN 0964-6906 Institutional support: RVO:68378050 Keywords : Distal-less 4 gene * craniofacial development * cleft lip and/or palate Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 6.393, year: 2014

  14. Identification of genes differentially expressed during prenatal development of skeletal muscle in two pig breeds differing in muscularity

    Schellander Karl

    2007-10-01

    Full Text Available Abstract Background Postnatal muscle growth is largely depending on the number and size of muscle fibers. The number of myofibers and to a large extent their metabolic and contractile properties, which also influence their size, are determined prenatally during the process of myogenesis. Hence identification of genes and their networks governing prenatal development of skeletal muscles will provide insight into the control of muscle growth and facilitate finding the source of its variation. So far most of the genes involved in myogenesis were identified by in vitro studies using gene targeting and transgenesis. Profiling of transcriptome changes during the myogenesis in vivo promises to obtain a more complete picture. In order to address this, we performed transcriptome profiling of prenatal skeletal muscle using differential display RT-PCR as on open system with the potential to detect novel transcripts. Seven key stages of myogenesis (days 14, 21, 35, 49, 63, 77 and 91 post conception were studied in two breeds, Pietrain and Duroc, differing markedly in muscularity and muscle structure. Results Eighty prominent cDNA fragments were sequenced, 43 showing stage-associated and 37 showing breed-associated differences in the expression, respectively. Out of the resulting 85 unique expressed sequence tags, EST, 52 could be assigned to known genes. The most frequent functional categories represented genes encoding myofibrillar proteins (8, genes involved in cell adhesion, cell-cell signaling and extracellular matrix synthesis/remodeling (8, genes regulating gene expression (8, and metabolism genes (8. Some of the EST that showed no identity to any known transcripts in the databases are located in introns of known genes and most likely represent novel exons (e.g. HMGA2. Expression of thirteen transcripts along with five reference genes was further analyzed by means of real-time quantitative PCR. Nine of the target transcripts showed higher than twofold

  15. Deciphering the microRNA transcriptome of skeletal muscle during porcine development.

    Mai, Miaomiao; Jin, Long; Tian, Shilin; Liu, Rui; Huang, Wenyao; Tang, Qianzi; Ma, Jideng; Jiang, An'an; Wang, Xun; Hu, Yaodong; Wang, Dawei; Jiang, Zhi; Li, Mingzhou; Zhou, Chaowei; Li, Xuewei

    2016-01-01

    MicroRNAs (miRNAs) play critical roles in many important biological processes, such as growth and development in mammals. Various studies of porcine muscle development have mainly focused on identifying miRNAs that are important for fetal and adult muscle development; however, little is known about the role of miRNAs in middle-aged muscle development. Here, we present a comprehensive investigation of miRNA transcriptomes across five porcine muscle development stages, including one prenatal and four postnatal stages. We identified 404 known porcine miRNAs, 118 novel miRNAs, and 101 miRNAs that are conserved in other mammals. A set of universally abundant miRNAs was found across the distinct muscle development stages. This set of miRNAs may play important housekeeping roles that are involved in myogenesis. A short time-series expression miner analysis indicated significant variations in miRNA expression across distinct muscle development stages. We also found enhanced differentiation- and morphogenesis-related miRNA levels in the embryonic stage; conversely, apoptosis-related miRNA levels increased relatively later in muscle development. These results provide integral insight into miRNA function throughout pig muscle development stages. Our findings will promote further development of the pig as a model organism for human age-related muscle disease research. PMID:26793416

  16. Abnormal development of glomerular endothelial and mesangial cells in mice with targeted disruption of the lama3 gene.

    Abrass, C K; Berfield, A K; Ryan, M C; Carter, W G; Hansen, K M

    2006-09-01

    Mice with targeted disruption of the lama3 gene, which encodes the alpha3 chain of laminin-5 (alpha3beta3gamma2, 332), develop a blistering skin disease similar to junctional epidermolysis bullosa in humans. These animals also develop abnormalities in glomerulogenesis. In both wild-type and mutant animals (lama3(-/-)), podocytes secrete glomerular basement membrane and develop foot processes. Endothelial cells migrate into this scaffolding and secrete a layer of basement membrane that fuses with the one formed by the podocyte. In lama3(-/-) animals, glomerular maturation arrests at this stage. Endothelial cells do not attenuate, develop fenestrae, or form typical lumens, and mesangial cells (MCs) were not identified. LN alpha3 subunit (LAMA3) protein was identified in the basement membrane adjacent to glomerular endothelial cells (GEnCs) in normal rats and mice. In developing rat glomeruli, the LAMA3 subunit was first detectable in the early capillary loop stage, which corresponds to the stage at which maturation arrest was observed in the mutant mice. Lama3 mRNA and protein were identified in isolated rat and mouse glomeruli and cultured rat GEnCs, but not MC. These data document expression of LAMA3 in glomeruli and support a critical role for it in GEnC differentiation. Furthermore, LAMA3 chain expression and/or another product of endothelial cells are required for MC migration into the developing glomerulus. PMID:16850021

  17. ABNORMALITIES IN CHILDREN MOTOR DEVELOPMENT AS EARLY SYMPTOMS OF PSYCHOMOTOR DISORDERS

    Nowak, Agata; Romanowska-tolloczko, Anna; Bartusiak, Irena

    2009-01-01

    A child feels, thinks, acts and expresses him/her self while in movement. Movements often reflect emotions, therefore observations and analysis of a child's motor behaviour may be a source of information for an investigator on the mental state, possible behaviour or developmental problems a child might have. This is why the verification of the level of child's development should be more complex than merely based on subjective opinions of teachers or parents. One of the method of assessment of...

  18. Abnormal sympathetic nervous system development and physiologic dysautonomia in Egr3-deficient mice

    Eldredge, Laurie C.; Gao, Xiaoguang M.; Quach, David; LI, Lin; Han, Xiaoqiang; Lomasney, Jon; Tourtellotte, Warren G.

    2008-01-01

    Sympathetic nervous system development depends upon many factors that mediate neuron migration, differentiation and survival. Target tissue-derived nerve growth factor (NGF) signaling-induced gene expression is required for survival, differentiation and target tissue innervation of post-migratory sympathetic neurons. However, the transcriptional regulatory mechanisms mediated by NGF signaling are very poorly defined. Here, we identify Egr3, a member of the early growth response (Egr) family o...

  19. Hippocampal neuronal subtypes develop abnormal dendritic arbors in the presence of Fragile X astrocytes.

    Jacobs, S; Cheng, C; Doering, L C

    2016-06-01

    Astrocytes are now recognized as key players in the neurobiology of neurodevelopmental disorders such as Fragile X syndrome. However, the nature of Fragile X astrocyte-mediated control of dendrite development in subtypes of hippocampal neurons is not yet known. We used a co-culture procedure in which wildtype primary hippocampal neurons were cultured with astrocytes from either a wildtype or Fragile X mouse, for either 7, 14 or 21days. The neurons were processed for immunocytochemistry with the dendritic marker MAP2, classified by morphological criteria into one of five neuronal subtypes, and subjected to Sholl analyses. Both linear and semi-log methods of Sholl analyses were applied to the neurons in order to provide an in depth analysis of the dendritic arborizations. We found that Fragile X astrocytes affect the development of dendritic arborization of all subtypes of wildtype hippocampal neurons. Furthermore, we show that hippocampal neurons with spiny stellate neuron morphology exhibit the most pervasive developmental delays, with significant dendritic arbor alterations persisting at 21days in culture. The results further dictate the critical role astrocytes play in governing neuronal morphology including altered dendrite development in Fragile X. PMID:26968765

  20. Software development for estimating the concentration of radioactive cesium in the skeletal muscles of cattle from blood samples.

    Fukuda, Tomokazu; Hiji, Masahiro; Kino, Yasushi; Abe, Yasuyuki; Yamashiro, Hideaki; Kobayashi, Jin; Shimizu, Yoshinaka; Takahashi, Atsushi; Suzuki, Toshihiko; Chiba, Mirei; Inoue, Kazuya; Kuwahara, Yoshikazu; Morimoto, Motoko; Katayama, Masafumi; Donai, Kenichiro; Shinoda, Hisashi; Sekine, Tsutomu; Fukumoto, Manabu; Isogai, Emiko

    2016-06-01

    The 2011 earthquake severely damaged the Fukushima Daiichi Nuclear Power Plant (FNPP), resulting in the release of large quantities of radioactive material into the environment. The deposition of these radionuclides in rice straw as livestock feed led to the circulation of contaminated beef in the market. Based on the safety concern of the consumers, a reliable method for estimating concentrations of radioactive cesium in muscle tissue is needed. In this study, we analyzed the concentrations of radioactive cesium in the blood and skeletal muscle of 88 cattle, and detected a linear correlation between them. We then developed software that can be used to estimate radioactive cesium concentrations in muscle tissue from blood samples. Distribution of this software to the livestock production field would allow us to easily identify high-risk cattle, which would be beyond the safety regulation, before shipping out to the market. This software is planned to be released as freeware. This software would contribute to food safety, and aid the recovery of the livestock industry from the damage creacted by the 2011 Tohoku earthquake and tsunami. PMID:26420060

  1. Neonatal Lethality, Dwarfism, and Abnormal Brain Development in Dmbx1 Mutant Mice

    Ohtoshi, Akihira; Behringer, Richard R.

    2004-01-01

    Dmbx1 encodes a paired-like homeodomain protein that is expressed in developing neural tissues during mouse embryogenesis. To elucidate the in vivo role of Dmbx1, we generated two Dmbx1 mutant alleles. Dmbx1− lacks the homeobox and Dmbx1z is an insertion of a lacZ reporter gene. Dmbx1z appears to be a faithful reporter of Dmbx1 expression during embryogenesis and after birth. Dmbx1-lacZ expression was detected in the superior colliculus, cerebellar nuclei, and subpopulations of the medulla ob...

  2. Global pathway analysis using DNA microarrays in skeletal muscle of women with polycystic ovary syndrome

    Skov, Vibe

    2007-01-01

    Polycystic ovary syndrome (PCOS) affects 5-10 % of women during their reproductive age and the incidence of the disease is increasing worldwide. More than 50 % of women with PCOS are insulin resistant leading to an increased risk of type 2 diabetes (T2D) and cardiovascular diseases. However......, the molecular mechanisms of insulin resistance in skeletal muscle of women with PCOS are largely unknown. The aims of the Ph.D. thesis were: to identify biological pathways of importance for insulin resistance in skeletal muscle in a group of insulin resistant obese PCOS patients using global pathway analysis...... (study 1), to investigate whether pioglitazone therapy could reverse abnormalities in the transcriptional profile of muscle associated with insulin resistance in skeletal muscle of obese PCOS patients (study 2), and to develop a microarray platform for global gene expression profiling (study 3). In study...

  3. Development of a database system for shutdown and abnormal events of nuclear power plants in Korea

    To perform accident analysis (including probabilistic safety analysis) or performance analysis that are requisite for the design of nuclear power plants, events both that have taken place and that have a possibility to be realized have to be classified based on initiating frequencies of them. Up to now, event initiating frequency data obtained from operating experience of foreign countries (especially for U.S.) have been used because the amount of domestic operating experience data are very small. However it is indispensable to collect/analysis domestic operating experience data because these initiating frequencies obtained from operating experience of foreign countries may be different obtained from domestic operating experience. Therefore, not only to manage collected domestic operating experience data efficiently but also to retrieve valuable information including initiating frequencies of events, KTRIP program has been developed in cooperation with KAERI (Korea Atomic Energy Research Institute) and KOPEC (Korea Electric Power Company)

  4. Modulation of serotonin transporter function during fetal development causes dilated heart cardiomyopathy and lifelong behavioral abnormalities.

    Cornelle W Noorlander

    Full Text Available BACKGROUND: Women are at great risk for mood and anxiety disorders during their childbearing years and may become pregnant while taking antidepressant drugs. In the treatment of depression and anxiety disorders, selective serotonin reuptake inhibitors (SSRIs are the most frequently prescribed drugs, while it is largely unknown whether this medication affects the development of the central nervous system of the fetus. The possible effects are the product of placental transfer efficiency, time of administration and dose of the respective SSRI. METHODOLOGY/PRINCIPAL FINDINGS: In order to attain this information we have setup a study in which these parameters were measured and the consequences in terms of physiology and behavior are mapped. The placental transfer of fluoxetine and fluvoxamine, two commonly used SSRIs, was similar between mouse and human, indicating that the fetal exposure of these SSRIs in mice is comparable with the human situation. Fluvoxamine displayed a relatively low placental transfer, while fluoxetine showed a relatively high placental transfer. Using clinical doses of fluoxetine the mortality of the offspring increased dramatically, whereas the mortality was unaffected after fluvoxamine exposure. The majority of the fluoxetine-exposed offspring died postnatally of severe heart failure caused by dilated cardiomyopathy. Molecular analysis of fluoxetine-exposed offspring showed long-term alterations in serotonin transporter levels in the raphe nucleus. Furthermore, prenatal fluoxetine exposure resulted in depressive- and anxiety-related behavior in adult mice. In contrast, fluvoxamine-exposed mice did not show alterations in behavior and serotonin transporter levels. Decreasing the dose of fluoxetine resulted in higher survival rates and less dramatic effects on the long-term behavior in the offspring. CONCLUSIONS: These results indicate that prenatal fluoxetine exposure affects fetal development, resulting in cardiomyopathy

  5. Neuroblastoma presenting clincally as hip osteomyelitis: a ''signature'' diagnosis on skeletal scintigraphy

    At their initial emergency room presentation, four children were thought to have hip osteomyelitis. Skeletal scintigraphy, however, demonstrated multiple areas of abnormal tracer uptake in the bones in all four, and in three there was abnormal uptake in a soft tissue abdominal mass. The skeletal scintigraphic findings promptly led to the correct diagnosis of neuroblastoma. (orig.)

  6. Neuroblastoma presenting clincally as hip osteomyelitis: a ``signature`` diagnosis on skeletal scintigraphy

    Applegate, K. [Div. of Nuclear Medicine, Dept. of Radiology, Children`s Hospital, Boston, MA (United States); Connolly, L.P. [Div. of Nuclear Medicine, Dept. of Radiology, Children`s Hospital, Boston, MA (United States); Treves, S.T. [Div. of Nuclear Medicine, Dept. of Radiology, Children`s Hospital, Boston, MA (United States)

    1995-11-01

    At their initial emergency room presentation, four children were thought to have hip osteomyelitis. Skeletal scintigraphy, however, demonstrated multiple areas of abnormal tracer uptake in the bones in all four, and in three there was abnormal uptake in a soft tissue abdominal mass. The skeletal scintigraphic findings promptly led to the correct diagnosis of neuroblastoma. (orig.)

  7. Is pancreas development abnormal in the non-obese diabetic mouse, a spontaneous model of type I diabetes?

    F. Homo-Delarche

    2001-04-01

    Full Text Available Despite extensive genetic and immunological research, the complex etiology and pathogenesis of type I diabetes remains unresolved. During the last few years, our attention has been focused on factors such as abnormalities of islet function and/or microenvironment, that could interact with immune partners in the spontaneous model of the disease, the non-obese diabetic (NOD mouse. Intriguingly, the first anomalies that we noted in NOD mice, compared to control strains, are already present at birth and consist of 1 higher numbers of paradoxically hyperactive ß cells, assessed by in situ preproinsulin II expression; 2 high percentages of immature islets, representing islet neogenesis related to neonatal ß-cell hyperactivity and suggestive of in utero ß-cell stimulation; 3 elevated levels of some types of antigen-presenting cells and FasL+ cells, and 4 abnormalities of extracellular matrix (ECM protein expression. However, the colocalization in all control mouse strains studied of fibroblast-like cells (anti-TR-7 labeling, some ECM proteins (particularly, fibronectin and collagen I, antigen-presenting cells and a few FasL+ cells at the periphery of islets undergoing neogenesis suggests that remodeling phenomena that normally take place during postnatal pancreas development could be disturbed in NOD mice. These data show that from birth onwards there is an intricate relationship between endocrine and immune events in the NOD mouse. They also suggest that tissue-specific autoimmune reactions could arise from developmental phenomena taking place during fetal life in which ECM-immune cell interaction(s may play a key role.

  8. Skeletal scintigraphy manifestations of hematologic disorders

    Skeletal manifestations are common in hematologic disorders. Benign entities such as Sickle cell disease develop microvascular embolization causing skeletal crisis. Leukemia, acute myeloblastic or lymphoblastic may develop bone marrow infarcts. Compromised immunity makes them susceptible to secondary infection leading to osteomyelitis or septic arthritis. Exposure to steroids may lead to osteonecrosis in these cases. Presented here is an atlas of various scintigraphic skeletal manifestations encountered over the past 10 years, in hematologic disorders

  9. Skeletal parallel programming

    Saez, Fernando; Printista, Alicia Marcela; Piccoli, María Fabiana

    2007-01-01

    In the last time the high-performance programming community has worked to look for new templates or skeletons for several parallel programming paradigms. This new form of programming allows to programmer to reduce the time of development, since it saves time in the phase of design, testing and codification. We are concerned in some issues of skeletons that are fundamental to the definition of any skeletal parallel programming system. This paper present commentaries about these issues in the c...

  10. Pre-metatarsal skeletal development in tissue culture at unit- and microgravity

    Klement, B. J.; Spooner, B. S.

    1994-01-01

    Explant organ culture was used to demonstrate that isolated embryonic mouse pre-metatarsal mesenchyme is capable of undergoing a series of differentiative and morphogenetic developmental events. Mesenchyme differentiation into chondrocytes, and concurrent morphogenetic patterning of the cartilage tissue, and terminal chondrocyte differentiation with subsequent matrix mineralization show that cultured tissue closely parallels in vivo development. Whole mount alizarin red staining of the cultured tissue demonstrates that the extracellular matrix around the hypertrophied chondrocytes is competent to support mineralization. Intensely stained mineralized bands are similar to those formed in pre-metatarsals developing in vivo. We have adapted the culture strategy for experimentation in a reduced gravity environment on the Space Shuttle. Spaceflight culture of pre-metatarsals, which have already initiated chondrogenesis and morphogenetic patterning, results in an increase in cartilage rod size and maintenance of rod shape, compared to controls. Older pre-metatarsal tissue, already terminally differentiated to hypertrophied cartilage, maintained rod structure and cartilage phenotype during spaceflight culture.

  11. Mouse limb skeletal growth and synovial joint development are coordinately enhanced by Kartogenin

    Decker, Rebekah S.; Koyama, Eiki; Enomoto-Iwamoto, Motomi; Maye, Peter; Rowe, David; Zhu, Shoutian; Schultz, Peter G.; Pacifici, Maurizio

    2014-01-01

    Limb development requires the coordinated growth of several tissues and structures including long bones, joints and tendons, but the underlying mechanisms are not wholly clear. Recently, we identified a small drug-like molecule -we named Kartogenin (KGN)- that greatly stimulates chondrogenesis in marrow-derived mesenchymal stem cells (MSCs) and enhances cartilage repair in mouse osteoarthritis (OA) models. To determine whether limb developmental processes are regulated by KGN, we tested its a...

  12. Electron beam irradiation induces abnormal development and the stabilization of p53 protein of American serpentine leafminer, Liriomyza trifolii (Burgess)

    Koo, Hyun-Na; Yun, Seung-Hwan; Yoon, Changmann; Kim, Gil-Hah

    2012-01-01

    The American serpentine leafminer fly, Liriomyza trifolii (Burgess), is one of the most destructive polyphagous pests worldwide. In this study, we determined electron beam doses for inhibition of normal development of the leaf miner and investigated the effect of electron beam irradiation on DNA damage and p53 stability. Eggs (0-24 h old), larvae (2nd instar), puparia (0-24 h old after pupariation) and adults (24 h after emergence) were irradiated with increasing doses of electron beam irradiation (six levels between 30 and 200 Gy). At 150 Gy, the number of adults that developed from irradiated eggs, larvae and puparia was lower than in the untreated control. Fecundity and egg hatchability decreased depending on the doses applied. Reciprocal crosses between irradiated and unirradiated flies demonstrated that males were more radiotolerant than females. Adult longevity was not affected in all stages. The levels of DNA damage in L. trifolii adults were evaluated using the alkaline comet assay. Our results indicate that electron beam irradiation increased levels of DNA damage in a dose-dependent manner. Moreover, low doses of electron beam irradiation led to the rapid appearance of p53 protein within 6 h; however, it decreased after exposure to high doses (150 Gy and 200 Gy). These results suggest that electron beam irradiation induced not only abnormal development and reproduction but also p53 stability caused by DNA damage in L. trifolii. We conclude that a minimum dose of 150 Gy should be sufficient for female sterilization of L. trifolii.

  13. Silencing abnormal wing disc gene of the Asian citrus psyllid, Diaphorina citri disrupts adult wing development and increases nymph mortality.

    Ibrahim El-Shesheny

    Full Text Available Huanglongbing (HLB causes considerable economic losses to citrus industries worldwide. Its management depends on controlling of the Asian citrus Psyllid (ACP, the vector of the bacterium, Candidatus Liberibacter asiaticus (CLas, the causal agent of HLB. Silencing genes by RNA interference (RNAi is a promising tool to explore gene functions as well as control pests. In the current study, abnormal wing disc (awd gene associated with wing development in insects is used to interfere with the flight of psyllids. Our study showed that transcription of awd is development-dependent and the highest level was found in the last instar (5(th of the nymphal stage. Micro-application (topical application of dsRNA to 5(th instar of nymphs caused significant nymphal mortality and adult wing-malformation. These adverse effects in ACP were positively correlated with the amounts of dsRNA used. A qRT-PCR analysis confirmed the dsRNA-mediated transcriptional down-regulation of the awd gene. Significant down-regulation was required to induce a wing-malformed phenotype. No effect was found when dsRNA-gfp was used, indicating the specific effect of dsRNA-awd. Our findings suggest a role for awd in ACP wing development and metamorphosis. awd could serve as a potential target for insect management either via direct application of dsRNA or by producing transgenic plants expressing dsRNA-awd. These strategies will help to mitigate HLB by controlling ACP.

  14. [Key regulators of skeletal myogenesis].

    Kopantseva, E E; Belyavsky, A V

    2016-01-01

    Skeletal myogenesis has been extensively studied at both morphological and molecular levels. This review considers the main stages of embryonic skeletal myogenesis and myogenic factors that trigger their initiation, focusing on specific protein interactions involved in somitic myogenesis, head myogenesis, and limb myogenesis. The second part of the review describes the role of noncoding RNAs (microRNAs and long noncoding RNAs) in myogenesis. This information is of particular interest, because regulation of cell processes by noncoding RNAs is an actively developing field of molecular biology. Knowledge of mechanisms of skeletal myogenesis is of applied significance. Various transcription factors, noncoding RNAs, and other myogenic regulators can be employed in the induction of myogenic reprogramming in stem cells and differentiated somatic cells. Current trends and strategies in the field of skeletal myogenic reprogramming are discussed in the last part of the review. PMID:27239841

  15. Mouse limb skeletal growth and synovial joint development are coordinately enhanced by Kartogenin.

    Decker, Rebekah S; Koyama, Eiki; Enomoto-Iwamoto, Motomi; Maye, Peter; Rowe, David; Zhu, Shoutian; Schultz, Peter G; Pacifici, Maurizio

    2014-11-15

    Limb development requires the coordinated growth of several tissues and structures including long bones, joints and tendons, but the underlying mechanisms are not wholly clear. Recently, we identified a small drug-like molecule - we named Kartogenin (KGN) - that greatly stimulates chondrogenesis in marrow-derived mesenchymal stem cells (MSCs) and enhances cartilage repair in mouse osteoarthritis (OA) models. To determine whether limb developmental processes are regulated by KGN, we tested its activity on committed preskeletal mesenchymal cells from mouse embryo limb buds and whole limb explants. KGN did stimulate cartilage nodule formation and more strikingly, boosted digit cartilaginous anlaga elongation, synovial joint formation and interzone compaction, tendon maturation as monitored by ScxGFP, and interdigit invagination. To identify mechanisms, we carried out gene expression analyses and found that several genes, including those encoding key signaling proteins, were up-regulated by KGN. Amongst highly up-regulated genes were those encoding hedgehog and TGFβ superfamily members, particularly TFGβ1. The former response was verified by increases in Gli1-LacZ activity and Gli1 mRNA expression. Exogenous TGFβ1 stimulated cartilage nodule formation to levels similar to KGN, and KGN and TGFβ1 both greatly enhanced expression of lubricin/Prg4 in articular superficial zone cells. KGN also strongly increased the cellular levels of phospho-Smads that mediate canonical TGFβ and BMP signaling. Thus, limb development is potently and harmoniously stimulated by KGN. The growth effects of KGN appear to result from its ability to boost several key signaling pathways and in particular TGFβ signaling, working in addition to and/or in concert with the filamin A/CBFβ/RUNX1 pathway we identified previously to orchestrate overall limb development. KGN may thus represent a very powerful tool not only for OA therapy, but also limb regeneration and tissue repair strategies. PMID

  16. Normal skeletal development and imaging pitfalls of the calcaneal apophysis: MRI features

    Rossi, Ignacio [Musculoskeletal Research Fellow at NYU Langone Medical Center, New York, NY (United States); Centro de Diagnostico Dr. Enrique Rossi, Buenos Aires (Argentina); Rosenberg, Zehava [NYU Langone Medical Center, New York, NY (United States); Zember, Jonathan [Albert Einstein College of Medicine Jacobi Medical Center, Bronx, NY (United States)

    2016-04-15

    Heel pain in children and secondary MR imaging (MRI) of the hindfoot have been increasing in incidence. Our purpose is to illustrate the, previously unreported, MRI stages in development of the posterior calcaneal apophysis, with attention to imaging pitfalls. This should aid in distinguishing normal growth from true disease. Consecutive ankle MRIs in children <18 years, from 2008-2014, were subdivided into 0≤5, 5≤10, 10≤15 and 15≤18 age groups and retrospectively reviewed for development of the calcaneal apophysis. 204 ankle MRI studies in 188 children were identified. 40 studies were excluded with final cohort of 164 studies in 154 patients (82 boys, 72 girls). The calcaneal apophysis was cartilaginous until age 5. Foci of decreased as well as increased signal were embedded in cartilage, prior to ossification. Early, secondary ossification centers appeared in plantar third of the apophysis in 100 % of children by age 7. Increased T2 signal in the ossifications was seen in 30 % of children. Apohyseal fusion began at 12 and was complete in 78 % of 14≤15 year olds and in 88 % of 15≤18 year olds. Curvilinear low signal in the ossification centers, paralleling, but distinguished from growth plate, and not be confused with fracture line, was common. Development of the posterior calcaneus follows a unique sequence. Apophyseal fusion occurs earlier than reported in the literature. Familiarity with this maturation pattern, in particular the apophyseal increased T2 signal and the linear low signal paralleling the growth plate, will avoid misinterpreting it for pathology. (orig.)

  17. Normal skeletal development and imaging pitfalls of the calcaneal apophysis: MRI features

    Heel pain in children and secondary MR imaging (MRI) of the hindfoot have been increasing in incidence. Our purpose is to illustrate the, previously unreported, MRI stages in development of the posterior calcaneal apophysis, with attention to imaging pitfalls. This should aid in distinguishing normal growth from true disease. Consecutive ankle MRIs in children <18 years, from 2008-2014, were subdivided into 0≤5, 5≤10, 10≤15 and 15≤18 age groups and retrospectively reviewed for development of the calcaneal apophysis. 204 ankle MRI studies in 188 children were identified. 40 studies were excluded with final cohort of 164 studies in 154 patients (82 boys, 72 girls). The calcaneal apophysis was cartilaginous until age 5. Foci of decreased as well as increased signal were embedded in cartilage, prior to ossification. Early, secondary ossification centers appeared in plantar third of the apophysis in 100 % of children by age 7. Increased T2 signal in the ossifications was seen in 30 % of children. Apohyseal fusion began at 12 and was complete in 78 % of 14≤15 year olds and in 88 % of 15≤18 year olds. Curvilinear low signal in the ossification centers, paralleling, but distinguished from growth plate, and not be confused with fracture line, was common. Development of the posterior calcaneus follows a unique sequence. Apophyseal fusion occurs earlier than reported in the literature. Familiarity with this maturation pattern, in particular the apophyseal increased T2 signal and the linear low signal paralleling the growth plate, will avoid misinterpreting it for pathology. (orig.)

  18. The use of nonsteroidal anti-inflammatory drugs for exercise-induced muscle damage: implications for skeletal muscle development.

    Schoenfeld, Brad J

    2012-12-01

    Exercise-induced muscle damage (EIMD) is a common condition resulting from a bout of vigorous exercise, particularly if the individual is unaccustomed to performance of the given movement. Symptoms of EIMD include delayed-onset muscle soreness (DOMS) and a loss of physical function. Nonsteroidal anti-inflammatory drugs (NSAIDs) are routinely prescribed post-exercise to alleviate these symptoms and restore normal physical function. Of potential concern for those who use NSAIDs to treat EIMD is the possibility that they may impair the adaptive response to exercise. Specifically, there is emerging evidence that the action of cyclo-oxygenase (COX) enzymes, and COX-2 in particular, are important and even necessary to achieve maximal skeletal muscle hypertrophy in response to functional overload. Given that NSAIDs exert their actions by blocking COX and thus suppressing prostaglandin production, a theoretical rationale exists whereby these drugs may have detrimental effects on muscle regeneration and supercompensation. Therefore, the purpose of this article is to extensively review the literature and evaluate the effects of NSAIDs on muscle growth and development. Based on current evidence, there is little reason to believe that the occasional use of NSAIDs will negatively affect muscle growth, although the efficacy for their use in alleviating inflammatory symptoms remains questionable. Evidence on the hypertrophic effects of the chronic use of NSAIDs is less clear. In those who are untrained, it does not appear that regular NSAID use will impede growth in the short term, and at least one study indicates that it may in fact have a positive impact. Given their reported impairment of satellite cell activity, however, longer-term NSAID use may well be detrimental, particularly in those who possess greater growth potential. PMID:23013520

  19. Osteoarticular tissue infection and development of skeletal pathology in murine brucellosis

    Diogo M. Magnani

    2013-05-01

    Brucellosis, a frequent bacterial zoonosis, can produce debilitating chronic disease with involvement of multiple organs in human patients. Whereas acute brucellosis is well studied using the murine animal model, long-term complications of host-pathogen interaction remain largely elusive. Human brucellosis frequently results in persistent, chronic osteoarticular system involvement, with complications such as arthritis, spondylitis and sacroiliitis. Here, we focused on identifying infectious sites in the mouse that parallel Brucella melitensis foci observed in patients. In vivo imaging showed rapid bacterial dispersal to multiple sites of the murine axial skeleton. In agreement with these findings, immunohistochemistry revealed the presence of bacteria in bones and limbs, and in the lower spine vertebrae of the axial skeleton where they were preferentially located in the bone marrow. Surprisingly, some animals developed arthritis in paws and spine after infection, but without obvious bacteria in these sites. The identification of Brucella in the bones of mice corroborates the findings in humans that these osteoarticular sites are important niches for the persistence of Brucella in the host, but the mechanisms that mediate pathological manifestations in these sites remain unclear. Future studies addressing the immune responses within osteoarticular tissue foci could elucidate important tissue injury mediators and Brucella survival strategies.

  20. Autoclaved Tumor Bone for Skeletal Reconstruction in Paediatric Patients: A Low Cost Alternative in Developing Countries

    Masood Umer

    2013-01-01

    Full Text Available We reviewed in this series forty patients of pediatric age who underwent resection for malignant tumors of musculoskeletal system followed by biological reconstruction. Our surgical procedure for reconstruction included (1 wide en bloc resection of the tumor; (2 curettage of tumor from the resected bone; (3 autoclaving for 8 minutes (4 bone grafting from the fibula (both vascularized and nonvascularized fibular grafts used; (5 reimplantation of the autoclaved bone into the host bone defect and fixation with plates. Functional evaluation was done using MSTS scoring system. At final followup of at least 18 months (mean 29.2 months, 31 patients had recovered without any complications. Thirty-eight patients successfully achieved a solid bony union between the graft and recipient bone. Three patients had surgical site infection. They were managed with wound debridement and flap coverage of the defect. Local recurrence and nonunion occurred in two patients each. One patient underwent disarticulation at hip due to extensive local disease and one died of metastasis. For patients with non-union, revision procedure with bone graft and compression plates was successfully used. The use of autoclaved tumor grafts provides a limb salvage option that is inexpensive and independent of external resources and is a viable option for musculoskeletal tumor management in developing countries.

  1. Microcystin-LR induces abnormal root development by altering microtubule organization in tissue-cultured common reed (Phragmites australis) plantlets.

    Máthé, Csaba; Beyer, Dániel; Erdodi, Ferenc; Serfozo, Zoltán; Székvölgyi, Lóránt; Vasas, Gábor; M-Hamvas, Márta; Jámbrik, Katalin; Gonda, Sándor; Kiss, Andrea; Szigeti, Zsuzsa M; Surányi, Gyula

    2009-05-01

    Microcystin-LR (MC-LR) is a heptapeptide cyanotoxin, known to be a potent inhibitor of type 1 and 2A protein phosphatases in eukaryotes. Our aim was to investigate the effect of MC-LR on the organization of microtubules and mitotic chromatin in relation to its possible effects on cell and whole organ morphology in roots of common reed (Phragmites australis). P. australis is a widespread freshwater and brackish water aquatic macrophyte, frequently exposed to phytotoxins in eutrophic waters. Reed plantlets regenerated from embryogenic calli were treated with 0.001-40 microg ml(-1) (0.001-40.2 microM) MC-LR for 2-20 days. At 0.5 microg ml(-1) MC-LR and at higher cyanotoxin concentrations, the inhibition of protein phosphatase activity by MC-LR induced alterations in reed root growth and morphology, including abnormal lateral root development and the radial swelling of cells in the elongation zone of primary and lateral roots. Both short-term (2-5 days) and long-term (10-20 days) of cyanotoxin treatment induced microtubule disruption in meristems and in the elongation and differentiation zones. Microtubule disruption was accompanied by root cell shape alteration. At concentrations of 0.5-5 microg ml(-1), MC-LR increased mitotic index at long-term exposure and induced the increase of the percentage of meristematic cells in prophase as well as telophase and cytokinesis of late mitosis. High cyanotoxin concentrations (10-40 microg ml(-1)) inhibited mitosis at as short as 2 days of exposure. The alteration of microtubule organization was observed in mitotic cells at all exposure periods studied, at cyanotoxin concentrations of 0.5-40 microg ml(-1). MC-LR induced spindle anomalies at the metaphase-anaphase transition, the formation of asymmetric anaphase spindles and abnormal sister chromatid separation. This paper reports for the first time that MC-LR induces cytoskeletal changes that lead to alterations of root architecture and development in common reed and generally, in

  2. Electron beam irradiation induces abnormal development and the stabilization of p53 protein of American serpentine leafminer, Liriomyza trifolii (Burgess)

    The American serpentine leafminer fly, Liriomyza trifolii (Burgess), is one of the most destructive polyphagous pests worldwide. In this study, we determined electron beam doses for inhibition of normal development of the leaf miner and investigated the effect of electron beam irradiation on DNA damage and p53 stability. Eggs (0-24 h old), larvae (2nd instar), puparia (0-24 h old after pupariation) and adults (24 h after emergence) were irradiated with increasing doses of electron beam irradiation (six levels between 30 and 200 Gy). At 150 Gy, the number of adults that developed from irradiated eggs, larvae and puparia was lower than in the untreated control. Fecundity and egg hatchability decreased depending on the doses applied. Reciprocal crosses between irradiated and unirradiated flies demonstrated that males were more radiotolerant than females. Adult longevity was not affected in all stages. The levels of DNA damage in L. trifolii adults were evaluated using the alkaline comet assay. Our results indicate that electron beam irradiation increased levels of DNA damage in a dose-dependent manner. Moreover, low doses of electron beam irradiation led to the rapid appearance of p53 protein within 6 h; however, it decreased after exposure to high doses (150 Gy and 200 Gy). These results suggest that electron beam irradiation induced not only abnormal development and reproduction but also p53 stability caused by DNA damage in L. trifolii. We conclude that a minimum dose of 150 Gy should be sufficient for female sterilization of L. trifolii. - Highlights: → Electron beam irradiation inhibited normal development of the leaf miner. → Electron beam irradiation inhibited normal reproduction of the leaf miner. → Electron beam irradiation increased levels of DNA damage. → Electron beam irradiation induced p53 stability.

  3. Electron beam irradiation induces abnormal development and the stabilization of p53 protein of American serpentine leafminer, Liriomyza trifolii (Burgess)

    Koo, Hyun-Na; Yun, Seung-Hwan; Yoon, Changmann [Department of Plant Medicine, College of Agriculture, Life and Environment Sciences, Chungbuk National University, Cheongju 361-763 (Korea, Republic of); Kim, Gil-Hah, E-mail: khkim@chungbuk.ac.kr [Department of Plant Medicine, College of Agriculture, Life and Environment Sciences, Chungbuk National University, Cheongju 361-763 (Korea, Republic of)

    2012-01-15

    The American serpentine leafminer fly, Liriomyza trifolii (Burgess), is one of the most destructive polyphagous pests worldwide. In this study, we determined electron beam doses for inhibition of normal development of the leaf miner and investigated the effect of electron beam irradiation on DNA damage and p53 stability. Eggs (0-24 h old), larvae (2nd instar), puparia (0-24 h old after pupariation) and adults (24 h after emergence) were irradiated with increasing doses of electron beam irradiation (six levels between 30 and 200 Gy). At 150 Gy, the number of adults that developed from irradiated eggs, larvae and puparia was lower than in the untreated control. Fecundity and egg hatchability decreased depending on the doses applied. Reciprocal crosses between irradiated and unirradiated flies demonstrated that males were more radiotolerant than females. Adult longevity was not affected in all stages. The levels of DNA damage in L. trifolii adults were evaluated using the alkaline comet assay. Our results indicate that electron beam irradiation increased levels of DNA damage in a dose-dependent manner. Moreover, low doses of electron beam irradiation led to the rapid appearance of p53 protein within 6 h; however, it decreased after exposure to high doses (150 Gy and 200 Gy). These results suggest that electron beam irradiation induced not only abnormal development and reproduction but also p53 stability caused by DNA damage in L. trifolii. We conclude that a minimum dose of 150 Gy should be sufficient for female sterilization of L. trifolii. - Highlights: > Electron beam irradiation inhibited normal development of the leaf miner. > Electron beam irradiation inhibited normal reproduction of the leaf miner. > Electron beam irradiation increased levels of DNA damage. > Electron beam irradiation induced p53 stability.

  4. Nutrient and energy sensing in skeletal muscle

    Deshmukh, Atul S.

    2009-01-01

    Nutrient overload and physical inactivity often leads to the development of obesity and type 2 diabetes. Acute over-nutrition can induce insulin resistance, while physical exercise enhances skeletal muscle insulin sensitivity. Like every living cell, skeletal muscle senses nutrient and energy signals and to adjust metabolic flux. This thesis focuses on some of the key nutrient and energy sensing (exercise/contraction-induced) pathways in skeletal muscle that regulate metabol...

  5. Value of fetal skeletal radiographs in the diagnosis of fetal death

    The aim of this study was to assess the value of fetal skeletal radiographs in determining the etiology of fetal death. A total of 1193 post-mortem fetal skeletal radiographs were analysed. Fetuses were classified into one of three groups (group I: abnormality diagnosed during pregnancy; group II: maternal pathology; group III: spontaneous abortion of pregnancy, IIIa before 26 weeks of gestation (WG), IIIb after 26 weeks of gestation). Face, supine and lateral skeletal views were performed. Skeletal abnormalities were detected in 33.9% of the fetuses, including 22.7% with minor abnormalities (abnormal rib number, no nasal bone ossification, amesophalangia or P2 hypoplasia of the fifth digit) and 14.5% with major abnormalities (other skeletal abnormalities). Among the fetuses with major abnormalities, 98.8% came from group I, 2.9% came from group II, 2.3% came from group IIIa and none came from group IIIb. Fetal skeletal radiographs are not useful in fetuses arising from spontaneous abortion of pregnancy without abnormality on ultrasound screening, abnormality clinical examination or in fetuses with prenatal diagnosis of chromosomal abnormality. This practice is valuable only if there is a multidisciplinary team, with all the participants (pathologists, radiologists, geneticists) knowledgeable about fetal pathology. In the absence of this multidisciplinary approach, it is easier to X-ray all fetuses to avoid misdiagnosis and the important consequences for genetic counselling. (orig.)

  6. Value of fetal skeletal radiographs in the diagnosis of fetal death

    Bourliere-Najean, B.; Russel, A.S.; Petit, P.; Devred, P. [Department of Pediatric Radiology, CHU Timone, 264 rue St. Pierre, 13385 Marseille cedex 5 (France); Panuel, M. [Department of Radiology, Hopital Nord, chemin Bourrelys, 13915 Marseille cedex 20 (France); Piercecchi-Marti, M.D.; Fredouille, C. [Department of Pathology, CHU Timone, 264 rue St. Pierre, 13385 Marseille cedex 5 (France); Sigaudy, S.; Philip, N. [Department of Genetics, CHU Timone, 264 rue St. Pierre, 13385 Marseille cedex 5 (France)

    2003-05-01

    The aim of this study was to assess the value of fetal skeletal radiographs in determining the etiology of fetal death. A total of 1193 post-mortem fetal skeletal radiographs were analysed. Fetuses were classified into one of three groups (group I: abnormality diagnosed during pregnancy; group II: maternal pathology; group III: spontaneous abortion of pregnancy, IIIa before 26 weeks of gestation (WG), IIIb after 26 weeks of gestation). Face, supine and lateral skeletal views were performed. Skeletal abnormalities were detected in 33.9% of the fetuses, including 22.7% with minor abnormalities (abnormal rib number, no nasal bone ossification, amesophalangia or P2 hypoplasia of the fifth digit) and 14.5% with major abnormalities (other skeletal abnormalities). Among the fetuses with major abnormalities, 98.8% came from group I, 2.9% came from group II, 2.3% came from group IIIa and none came from group IIIb. Fetal skeletal radiographs are not useful in fetuses arising from spontaneous abortion of pregnancy without abnormality on ultrasound screening, abnormality clinical examination or in fetuses with prenatal diagnosis of chromosomal abnormality. This practice is valuable only if there is a multidisciplinary team, with all the participants (pathologists, radiologists, geneticists) knowledgeable about fetal pathology. In the absence of this multidisciplinary approach, it is easier to X-ray all fetuses to avoid misdiagnosis and the important consequences for genetic counselling. (orig.)

  7. Premature aging in skeletal muscle lacking serum response factor.

    Charlotte Lahoute

    Full Text Available Aging is associated with a progressive loss of muscle mass, increased adiposity and fibrosis that leads to sarcopenia. At the molecular level, muscle aging is known to alter the expression of a variety of genes but very little is known about the molecular effectors involved. SRF (Serum Response Factor is a crucial transcription factor for muscle-specific gene expression and for post-natal skeletal muscle growth. To assess its role in adult skeletal muscle physiology, we developed a post-mitotic myofiber-specific and tamoxifen-inducible SRF knockout model. Five months after SRF loss, no obvious muscle phenotype was observed suggesting that SRF is not crucial for myofiber maintenance. However, mutant mice progressively developed IIB myofiber-specific atrophy accompanied by a metabolic switch towards a more oxidative phenotype, muscular lipid accumulation, sarcomere disorganization and fibrosis. After injury, mutant muscles exhibited an altered regeneration process, showing smaller regenerated fibers and persistent fibrosis. All of these features are strongly reminiscent of abnormalities encountered in aging skeletal muscle. Interestingly, we also observed an important age associated decrease in SRF expression in mice and human muscles. Altogether, these results suggest that a naturally occurring SRF down-regulation precedes and contributes to the muscle aging process. Indeed, triggering SRF loss in the muscles of mutant mice results in an accelerated aging process.

  8. Inhibition of tyrosine kinase receptors by SU6668 promotes abnormal stromal development at the periphery of carcinomas

    Farace, P; Galiè, M; Merigo, F; Daducci, A; Calderan, L; Nicolato, E; Degrassi, A; Pesenti, E; Sbarbati, A; Marzola, P

    2009-01-01

    Dynamic contrast-enhanced (albumin-Gd-DTPA) magnetic resonance imaging, performed during 2 weeks of daily administration of an inhibitor of tyrosine kinase receptors (SU6668) in an HT-29 colon carcinoma model, revealed the onset of a hyper-enhancing rim, not observed in untreated tumours. To account for tissue heterogeneity in the quantitative analysis, we segmented tumours into three subunits automatically identified by cluster analysis of the enhancement curves using a k-means algorithm. Transendothelial permeability (Kps) and fractional plasma volume (fPV) were calculated in each subunit. An avascular and necrotic region, an intermediate zone and a well-vascularised periphery were reliably identified. During untreated tumour growth, the identified sub-regions did not substantially change their enhancement pattern. Treatment with SU6668 induced major changes at tumour periphery where a significant increase of Kps and fPV was observed with respect to control tumours. Histology revealed a sub-capsular layer composed of hyper-dense viable tumour cells in the periphery of untreated tumours. The rim of viable neoplastic cells was reduced in treated tumours, and replaced by loose connective tissue characterised by numerous vessels, which explains the observed hyper-enhancement. The present data show a peripheral abnormal development of cancer-associated stroma, indicative of an adaptive response to anti-angiogenic treatment. PMID:19384298

  9. Severe vitamin D deficiency in patients with Kawasaki disease: a potential role in the risk to develop heart vascular abnormalities?

    Stagi, Stefano; Rigante, Donato; Lepri, Gemma; Matucci Cerinic, Marco; Falcini, Fernanda

    2016-07-01

    Twenty-five-hydroxyvitamin D (25(OH)-vitamin D) is crucial in the regulation of immunologic processes, but-although its deficiency has been reported in patients with different rheumatological disorders-no data are available for Kawasaki disease (KD). The goals of this study were to assess the serum levels of 25(OH)-vitamin D in children with KD and evaluate the relationship with the eventual occurrence of KD-related vascular abnormalities. We evaluated serum 25(OH)-vitamin D levels in 79 children with KD (21 females, 58 males, median age 4.9 years, range 1.4-7.5 years) in comparison with healthy sex-/age-matched controls. A significantly higher percentage of KD patients (98.7 %) were shown to have reduced 25(OH)-vitamin D levels (vitamin D than controls (9.17 ± 4.94 vs 23.3 ± 10.6 ng/mL, p vitamin D levels correlated not only with erythrosedimentation rate (p vitamin D might have a contributive role in the development of coronary artery complications observed in children with KD. PMID:25994612

  10. Reduced expression of nuclear-encoded genes involved in mitochondrial oxidative metabolism in skeletal muscle of insulin-resistant women with polycystic ovary syndrome

    Skov, Vibe; Glintborg, Dorte; Knudsen, Steen;

    2007-01-01

    Insulin resistance in skeletal muscle is a major risk factor for the development of type 2 diabetes in women with polycystic ovary syndrome (PCOS). In patients with type 2 diabetes, insulin resistance in skeletal muscle is associated with abnormalities in insulin signaling, fatty acid metabolism......, and mitochondrial oxidative phosphorylation (OXPHOS). In PCOS patients, the molecular mechanisms of insulin resistance are, however, less well characterized. To identify biological pathways of importance for the pathogenesis of insulin resistance in PCOS, we compared gene expression in skeletal muscle...... alpha (PGC-1alpha) could play a role in the downregulation of OXPHOS genes in PCOS. In these women with PCOS, the decrease in OXPHOS gene expression in skeletal muscle cannot be ascribed to obesity and diabetes. This supports the hypothesis of an early association between insulin resistance and impaired...

  11. Increased apoptosis and abnormal visual behavior by histone modifications with exposure to para-xylene in developing Xenopus.

    Gao, Juanmei; Ruan, Hangze; Qi, Xianjie; Guo, Xia; Zheng, Jingna; Liu, Cong; Fang, Yanxiao; Huang, Minjiao; Xu, Miao; Shen, Wanhua

    2016-09-01

    Xylene and its derivatives are raw materials widely used in industry and known to be toxic to animals. However, the mechanism underlying the neurotoxicity of para-xylene (PX) to the central nervous system (CNS) in vivo is less clear. Here, we exposed Xenopus laevis tadpoles to sub-lethal concentrations of PX during the critical period of brain development to determine the effects of PX on Xenopus development and visual behavior. We found that the abnormality rate was significantly increased with exposure to increasing concentrations of PX. In particular, the number of apoptotic cells in the optic tectum was dramatically increased with exposure to PX at 2mM. Long-term PX exposure also resulted in significant deficits in visually guided avoidance behavior. Strikingly, co-incubation with PX and d-glucuronolactone (GA) decreased the number of apoptotic cells and rescued the avoidance behavior. Furthermore, we found that the acetylation of H4K12 (H4K12ac) and the dimethylation of H3K9 (H3K9me2) in the optic tectum were significantly increased in PX-treated animals, and these effects were suppressed by GA treatment. In particular, the increase in apoptotic cells in PX-treated brains was also inhibited by GA treatment. These effects indicate that epigenetic regulation plays a key role in PX-induced apoptosis and animal behavior. In an effort to characterize the neurotoxic effects of PX on brain development and behavior, these results suggest that the neurotoxicity of PX requires further evaluation regarding the safety of commercial and industrial uses. PMID:27343828

  12. Skeletal Manifestations of Scurvy: A Case Report from Dubai

    Shahryar Noordin

    2012-01-01

    Full Text Available Introduction. Nutritional deficiencies are rarely reported in developed countries. We report a child of Pakistani origin brought up in Dubai who developed skeletal manifestations of scurvy due to peculiar dietary habits. Case Presentation. A 4.5 year old boy presented with pain and swelling of multiple joints for three months and inability to walk for two months. Dietary history was significant for exclusive meat intake for the preceding two years. On examination the child’s height and weight were below the 5th percentile for his age. He was pale and tachycardic. There was significant swelling and tenderness over the wrist, knee and ankle joints, along with painful restriction of motion. Basic blood workup was unremarkable except for anemia. However, X-rays showed delayed bone age, severe osteopenia of the long bones, epiphyseal separation, cortical thinning and dense zone of provisional calcification, suggesting a radiological diagnosis of scurvy. The child was started on vitamin C replacement therapy. Over the following two months, the pain and swelling substantially reduced and the child became able to walk. Repeat X-rays showed improvement in the bony abnormalities. Conclusion. Although scurvy is not a very commonly encountered entity in the modern era, inappropriate dietary intake can lead to skeletal abnormalities which may be confused with rickets. A high index of suspicion is thus required for prompt diagnosis of scurvy in patients with bone and joint symptoms.

  13. Genetically induced abnormal cranial development in human trisomy 18 with holoprosencephaly: comparisons with the normal tempo of osteogenic-neural development.

    Reid, Shaina N; Ziermann, Janine M; Gondré-Lewis, Marjorie C

    2015-07-01

    Craniofacial malformations are common congenital defects caused by failed midline inductive signals. These midline defects are associated with exposure of the fetus to exogenous teratogens and with inborn genetic errors such as those found in Down, Patau, Edwards' and Smith-Lemli-Opitz syndromes. Yet, there are no studies that analyze contributions of synchronous neurocranial and neural development in these disorders. Here we present the first in-depth analysis of malformations of the basicranium of a holoprosencephalic (HPE) trisomy 18 (T18; Edwards' syndrome) fetus with synophthalmic cyclopia and alobar HPE. With a combination of traditional gross dissection and state-of-the-art computed tomography, we demonstrate the deleterious effects of T18 caused by a translocation at 18p11.31. Bony features included a single developmentally unseparated frontal bone, and complete dual absence of the anterior cranial fossa and ethmoid bone. From a superior view with the calvarium plates removed, there was direct visual access to the orbital foramen and hard palate. Both the eyes and the pituitary gland, normally protected by bony structures, were exposed in the cranial cavity and in direct contact with the brain. The middle cranial fossa was shifted anteriorly, and foramina were either missing or displaced to an abnormal location due to the absence or misplacement of its respective cranial nerve (CN). When CN development was conserved in its induction and placement, the respective foramen developed in its normal location albeit with abnormal gross anatomical features, as seen in the facial nerve (CNVII) and the internal acoustic meatus. More anteriorly localized CNs and their foramina were absent or heavily disrupted compared with posterior ones. The severe malformations exhibited in the cranial fossae, orbital region, pituitary gland and sella turcica highlight the crucial involvement of transcription factors such as TGIF, which is located on chromosome 18 and contributes

  14. The trajectory of gray matter development in Broca’s area is abnormal in people who stutter.

    Deryk Scott Beal

    2015-03-01

    Full Text Available The acquisition and mastery of speech-motor control requires years of practice spanning the course of development. People who stutter often perform poorly on speech-motor tasks thereby calling into question their ability to establish the stable neural motor programs required for masterful speech-motor control. There is evidence to support the assertion that these neural motor programs are represented in the posterior part of Broca’s area, specifically the left pars opercularis. Consequently, various theories of stuttering causation posit that the disorder is related to a breakdown in the formation of the neural motor programs for speech early in development and that this breakdown is maintained throughout life. To date, no study has examined the potential neurodevelopmental signatures of the disorder across pediatric and adult populations. The current study aimed to fill this gap in our knowledge. We hypothesized that the developmental trajectory of cortical thickness in people who stutter would differ across the lifespan in the left pars opercularis relative to a group of control participants. We collected structural magnetic resonance images from 116 males (55 people who stutter ranging in age from 6 to 48 years old. Differences in cortical thickness across ages and between patients and controls were investigated in 30 brain regions previously implicated in speech-motor control. An interaction between age and group was found for the left pars opercularis only. In people who stutter, the pars opercularis did not demonstrate the typical maturational pattern of gradual gray matter thinning with age across the lifespan that we observed in control participants. In contrast, the developmental trajectory of gray matter thickness in other regions of interest within the neural network for speech-motor control was similar for both groups. Our findings indicate that the developmental trajectory of gray matter in left pars opercularis is abnormal in

  15. The Relationship between Personality Dimensions and Resiliency to Environmental Stress in Orange-Winged Amazon Parrots (Amazona amazonica), as Indicated by the Development of Abnormal Behaviors.

    Cussen, Victoria A; Mench, Joy A

    2015-01-01

    Parrots are popular companion animals, but are frequently relinquished because of behavioral problems, including abnormal repetitive behaviors like feather damaging behavior and stereotypy. In addition to contributing to pet relinquishment, these behaviors are important as potential indicators of diminished psychological well-being. While abnormal behaviors are common in captive animals, their presence and/or severity varies between animals of the same species that are experiencing the same environmental conditions. Personality differences could contribute to this observed individual variation, as they are known risk factors for stress sensitivity and affective disorders in humans. The goal of this study was to assess the relationship between personality and the development and severity of abnormal behaviors in captive-bred orange-winged Amazon parrots (Amazona amazonica). We monitored between-individual behavioral differences in enrichment-reared parrots of known personality types before, during, and after enrichment deprivation. We predicted that parrots with higher scores for neurotic-like personality traits would be more susceptible to enrichment deprivation and develop more abnormal behaviors. Our results partially supported this hypothesis, but also showed that distinct personality dimensions were related to different forms of abnormal behavior. While neuroticism-like traits were linked to feather damaging behavior, extraversion-like traits were negatively related to stereotypic behavior. More extraverted birds showed resiliency to environmental stress, developing fewer stereotypies during enrichment deprivation and showing lower levels of these behaviors following re-enrichment. Our data, together with the results of the few studies conducted on other species, suggest that, as in humans, certain personality types render individual animals more susceptible or resilient to environmental stress. Further, this susceptibility/resiliency can have a long

  16. The Relationship between Personality Dimensions and Resiliency to Environmental Stress in Orange-Winged Amazon Parrots (Amazona amazonica, as Indicated by the Development of Abnormal Behaviors.

    Victoria A Cussen

    Full Text Available Parrots are popular companion animals, but are frequently relinquished because of behavioral problems, including abnormal repetitive behaviors like feather damaging behavior and stereotypy. In addition to contributing to pet relinquishment, these behaviors are important as potential indicators of diminished psychological well-being. While abnormal behaviors are common in captive animals, their presence and/or severity varies between animals of the same species that are experiencing the same environmental conditions. Personality differences could contribute to this observed individual variation, as they are known risk factors for stress sensitivity and affective disorders in humans. The goal of this study was to assess the relationship between personality and the development and severity of abnormal behaviors in captive-bred orange-winged Amazon parrots (Amazona amazonica. We monitored between-individual behavioral differences in enrichment-reared parrots of known personality types before, during, and after enrichment deprivation. We predicted that parrots with higher scores for neurotic-like personality traits would be more susceptible to enrichment deprivation and develop more abnormal behaviors. Our results partially supported this hypothesis, but also showed that distinct personality dimensions were related to different forms of abnormal behavior. While neuroticism-like traits were linked to feather damaging behavior, extraversion-like traits were negatively related to stereotypic behavior. More extraverted birds showed resiliency to environmental stress, developing fewer stereotypies during enrichment deprivation and showing lower levels of these behaviors following re-enrichment. Our data, together with the results of the few studies conducted on other species, suggest that, as in humans, certain personality types render individual animals more susceptible or resilient to environmental stress. Further, this susceptibility/resiliency can

  17. Nail abnormalities

    ... nails include systemic amyloidosis , malnutrition, vitamin deficiency, and lichen planus . Skin cancers near the nail and fingertip ... the nail bed. Chemotherapy medicines can affect nail growth. Normal aging affects the growth and development of ...

  18. Induced skeletal mutations

    This paper describes a large-scale experiment that, by means of breeding tests, confirmed that many dominant skeletal mutations are induced by large-dose radiation exposure. The author also discusses: (1) the major advantages and disadvantages of the skeletal method in improving estimates of genetic hazard to man; (2) future uses of the skeletal method; (3) direct estimation of risk beyond the first generation using the skeletal method; and (4) the possibility of using the skeletal method as a quick and easy screen for chemical mutagens

  19. AMPK Control of Fat Metabolism in Skeletal Muscle

    Thomson, David M.; Winder, William W.

    2009-01-01

    AMP-activated protein kinase (AMPK) has emerged as a key regulator of skeletal muscle fat metabolism. Because abnormalities in skeletal muscle metabolism contribute to a variety of clinical diseases and disorders, understanding AMPK’s role in the muscle is important. It was originally shown to stimulate fatty acid oxidation decades ago, and since then much research has been accomplished describing this role. In this brief review we summarize much of this data, particularly in relation to chan...

  20. Assessment of mandibular growth by skeletal scintigraphy

    Accurate assessment of facial skeletal growth remains a major problem in craniomaxillofacial surgery. Current methods include: (1) comparisons of chronologic age with growth histories of the patient and the family, (2) hand-wrist radiographs compared with a standard, and (3) serial cephalometric radiographs. Uptake of technetium-99m methylene diphosphonate into bone is a reflection of current metabolic activity and blood flow. Therefore, scintigraphy with this radiopharmaceutical might serve as a good method of assessing skeletal growth. Thirty-four patients, ranging in age from 15 months to 22 years, who were undergoing skeletal scintigrams for acute pathologic conditions of the extremities, were used to develop standards of uptake based on age and skeletal maturation. The results indicate that skeletal scintigraphy may be useful in evaluation of mandibular growth

  1. Computer-aided assessment of hepatic contour abnormalities as an imaging biomarker for the prediction of hepatocellular carcinoma development in patients with chronic hepatitis C

    Goshima, Satoshi [Department of Radiology, Gifu University Hospital, 1-1 Yanagido, 501-1194 Gifu (Japan); Kanematsu, Masayuki, E-mail: masa_gif@yahoo.co.jp [Department of Radiology, Gifu University Hospital, 1-1 Yanagido, 501-1194 Gifu (Japan); Kondo, Hiroshi; Watanabe, Haruo; Noda, Yoshifumi [Department of Radiology, Gifu University Hospital, 1-1 Yanagido, 501-1194 Gifu (Japan); Fujita, Hiroshi [Department of Intelligent Image Information Division of Regeneration and Advanced Medical Sciences, Graduate School of Medicine, Gifu University, Gifu (Japan); Bae, Kyongtae T. [Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, PA (United States)

    2015-05-15

    Highlights: • Hepatic contour was quantified and converted to hepatic fibrosis index (HFI). • HFI was a significant risk factor for HCC with an odds ratio of 26.4. • HFI may be an important imaging biomarker for managing cirrhotic patients. - Abstract: Purpose: To evaluate whether a hepatic fibrosis index (HFI), quantified on the basis of hepatic contour abnormality, is a risk factor for the development of hepatocellular carcinoma (HCC) in patients with chronic hepatitis C. Materials and methods: Our institutional review board approved this retrospective study and written informed consent was waved. During a 14-month period, consecutive 98 patients with chronic hepatitis C who had no medical history of HCC treatment (56 men and 42 women; mean age, 70.7 years; range, 48–91 years) were included in this study. Gadoxetic acid-enhanced hepatocyte specific phase was used to detect and analyze hepatic contour abnormality. Hepatic contour abnormality was quantified and converted to HFI using in-house proto-type software. We compared HFI between patients with (n = 54) and without HCC (n = 44). Serum levels of albumin, total bilirubin, aspartate transferase, alanine transferase, percent prothrombin time, platelet count, alpha-fetoprotein, protein induced by vitamin K absence-II, and HFI were tested as possible risk factors for the development of HCC by determining the odds ratio with logistic regression analysis. Results: HFIs were significantly higher in patients with HCC (0.58 ± 0.86) than those without (0.36 ± 0.11) (P < 0.001). Logistic analysis revealed that only HFI was a significant risk factor for HCC development with an odds ratio (95% confidence interval) of 26.4 (9.0–77.8) using a cutoff value of 0.395. Conclusion: The hepatic fibrosis index, generated using a computer-aided assessment of hepatic contour abnormality, may be a useful imaging biomarker for the prediction of HCC development in patients with chronic hepatitis C.

  2. Computer-aided assessment of hepatic contour abnormalities as an imaging biomarker for the prediction of hepatocellular carcinoma development in patients with chronic hepatitis C

    Highlights: • Hepatic contour was quantified and converted to hepatic fibrosis index (HFI). • HFI was a significant risk factor for HCC with an odds ratio of 26.4. • HFI may be an important imaging biomarker for managing cirrhotic patients. - Abstract: Purpose: To evaluate whether a hepatic fibrosis index (HFI), quantified on the basis of hepatic contour abnormality, is a risk factor for the development of hepatocellular carcinoma (HCC) in patients with chronic hepatitis C. Materials and methods: Our institutional review board approved this retrospective study and written informed consent was waved. During a 14-month period, consecutive 98 patients with chronic hepatitis C who had no medical history of HCC treatment (56 men and 42 women; mean age, 70.7 years; range, 48–91 years) were included in this study. Gadoxetic acid-enhanced hepatocyte specific phase was used to detect and analyze hepatic contour abnormality. Hepatic contour abnormality was quantified and converted to HFI using in-house proto-type software. We compared HFI between patients with (n = 54) and without HCC (n = 44). Serum levels of albumin, total bilirubin, aspartate transferase, alanine transferase, percent prothrombin time, platelet count, alpha-fetoprotein, protein induced by vitamin K absence-II, and HFI were tested as possible risk factors for the development of HCC by determining the odds ratio with logistic regression analysis. Results: HFIs were significantly higher in patients with HCC (0.58 ± 0.86) than those without (0.36 ± 0.11) (P < 0.001). Logistic analysis revealed that only HFI was a significant risk factor for HCC development with an odds ratio (95% confidence interval) of 26.4 (9.0–77.8) using a cutoff value of 0.395. Conclusion: The hepatic fibrosis index, generated using a computer-aided assessment of hepatic contour abnormality, may be a useful imaging biomarker for the prediction of HCC development in patients with chronic hepatitis C

  3. Robust algorithmic detection of the developed cardiac pathologies and emerging or transient abnormalities from short periods of RR data

    Gavrishchaka, Valeriy V.; Senyukova, Olga

    2011-06-01

    Numerous research efforts and clinical testing have confirmed validity of heart rate variability (HRV) analysis as one of the cardiac diagnostics modalities. The majority of HRV analysis tools currently used in practice are based on linear indicators. Methods from nonlinear dynamics (NLD) provide more natural modeling framework for adaptive biological systems with multiple feedback loops. Compared to linear indicators, many NLD-based measures are much less sensitive to data artifacts and non-stationarity. However, majority of NLD measures require long time series for stable calculation. Similar restrictions also apply for linear indicators. Such requirements could drastically limit practical usability of HRV analysis in many applications, including express diagnostics, early indication of subtle directional changes during personalization of medical treatment, and robust detection of emerging or transient abnormalities. Recently we have illustrated that these challenges could be overcome by using classification framework based on boosting-like ensemble learning techniques that are capable of discovering robust meta-indicators from existing HRV measures and other incomplete empirical knowledge. In this paper we demonstrate universality of such meta-indicators and discuss operational details of their practical usage. Using such pathology examples as congestive heart failure (CHF) and arrhythmias, we show that classifiers trained on short RR segments (down to several minutes) could achieve reasonable classification accuracy (˜80-85% and higher). These indicators calculated from longer RR segments could be applicable for accurate diagnostics with classification accuracy approaching 100%. In addition, it is feasible to discover single "normal-abnormal" meta-classifier capable of detecting multiple abnormalities.

  4. MRI of the fetal eyes: morphologic and biometric assessment for abnormal development with ultrasonographic and clinicopathologic correlation

    Currently ocular biometric measurements are defined by US and are measured from the orbital walls. These bony landmarks cannot be seen by MRI, and therefore these measurements cannot be directly applied. To define measurements of normal growth of the fetal eyes using MRI. Transorbital views were analyzed in 198 fetal MR examinations. The ocular diameter (OD) and interocular and binocular distances (IOD and BOD) were measured and were plotted against gestational age. Fetuses with abnormalities affecting the eyes were evaluated separately. Of 198 scans, 146 had suitable images, 35 of which were abnormal. Normal growth of BOD, IOD and OD were determined, and compared with the respective already established US data. Normal growth charts were derived from a cohort of 111 normal fetuses. Because the margins of the vitreous are inside the bony orbit, at the same gestational age measurements of the BOD and OD are always less than the corresponding measurements by US, and those of the IOD are always more. Normal growth charts for MRI can now be used to support suspected diagnoses of orbital and ocular pathologies and the syndromes that give rise to them, and many examples are demonstrated. (orig.)

  5. MRI of the fetal eyes: morphologic and biometric assessment for abnormal development with ultrasonographic and clinicopathologic correlation

    Robinson, Ashley J. [Children' s Hospital of British Columbia, Department of Radiology, Vancouver (Canada); The Hospital for Sick Children, Department of Diagnostic Imaging, Toronto (Canada); Blaser, Susan [The Hospital for Sick Children, Department of Diagnostic Imaging, Toronto (Canada); Toi, Ants; Pantazi, Sophie [Mount Sinai Hospital, Department of Medical Imaging, Toronto (Canada); Chitayat, David [Mount Sinai Hospital, Department of Prenatal Diagnosis and Medical Genetics, Toronto (Canada); Keating, Sarah; Viero, Sandra [Mount Sinai Hospital, Department of Pathology and Laboratory Medicine, Toronto (Canada); Ryan, Greg [Mount Sinai Hospital, Department of Obstetrics and Gynaecology, Toronto (Canada)

    2008-09-15

    Currently ocular biometric measurements are defined by US and are measured from the orbital walls. These bony landmarks cannot be seen by MRI, and therefore these measurements cannot be directly applied. To define measurements of normal growth of the fetal eyes using MRI. Transorbital views were analyzed in 198 fetal MR examinations. The ocular diameter (OD) and interocular and binocular distances (IOD and BOD) were measured and were plotted against gestational age. Fetuses with abnormalities affecting the eyes were evaluated separately. Of 198 scans, 146 had suitable images, 35 of which were abnormal. Normal growth of BOD, IOD and OD were determined, and compared with the respective already established US data. Normal growth charts were derived from a cohort of 111 normal fetuses. Because the margins of the vitreous are inside the bony orbit, at the same gestational age measurements of the BOD and OD are always less than the corresponding measurements by US, and those of the IOD are always more. Normal growth charts for MRI can now be used to support suspected diagnoses of orbital and ocular pathologies and the syndromes that give rise to them, and many examples are demonstrated. (orig.)

  6. Rickets and/or scurvy-like skeletal lesions in Cooley's anemia

    Recently, a new type of skeletal lesions has been described in Cooley's anemia as a possible complication secondary to therapy. In 12 children affected with thalassemia major, who received an intensive transfusional regiment combined with continuous iron chelation therapy (desferoxamine-B: 50-80 mg/kg/day), some radiological abnormalities of the long bones were observed similar to those described in rickets and scurvy. These rickets and/or scurvy-like lesions had never been reported before the introduction of high-dose desferoxamine therapy. The pathogenesis of these lesions is uncertain, but the toxic effect of desferoxamine probably plays an important role in their development. The association of growth retardation and rickets and/or scurvy-like skeletal lesions in Cooley's anemia patients may be used as a valuable clinical criterion in long-term chelation management

  7. Development of a decision support tool to facilitate primary care management of patients with abnormal liver function tests without clinically apparent liver disease [HTA03/38/02]. Abnormal Liver Function Investigations Evaluation (ALFIE

    Sullivan Frank M

    2007-04-01

    Full Text Available Abstract Background Liver function tests (LFTs are routinely performed in primary care, and are often the gateway to further invasive and/or expensive investigations. Little is known of the consequences in people with an initial abnormal liver function (ALF test in primary care and with no obvious liver disease. Further investigations may be dangerous for the patient and expensive for Health Services. The aims of this study are to determine the natural history of abnormalities in LFTs before overt liver disease presents in the population and identify those who require minimal further investigations with the potential for reduction in NHS costs. Methods/Design A population-based retrospective cohort study will follow up all those who have had an incident liver function test (LFT in primary care to subsequent liver disease or mortality over a period of 15 years (approx. 2.3 million tests in 99,000 people. The study is set in Primary Care in the region of Tayside, Scotland (pop approx. 429,000 between 1989 and 2003. The target population consists of patients with no recorded clinical signs or symptoms of liver disease and registered with a GP. The health technologies being assessed are LFTs, viral and auto-antibody tests, ultrasound, CT, MRI and liver biopsy. The study will utilise the Epidemiology of Liver Disease In Tayside (ELDIT database to determine the outcomes of liver disease. These are based on hospital admission data (Scottish Morbidity Record 1, dispensed medication records, death certificates, and examination of medical records from Tayside hospitals. A sample of patients (n = 150 with recent initial ALF tests or invitation to biopsy will complete questionnaires to obtain quality of life data and anxiety measures. Cost-effectiveness and cost utility Markov model analyses will be performed from health service and patient perspectives using standard NHS costs. The findings will also be used to develop a computerised clinical decision

  8. Musculo-Skeletal Abnormalities in Patients with Marfan Syndrome

    Ali Al Kaissi; Elisabeth Zwettler; Rudolf Ganger; Simone Schreiner; Klaus Klaushofer; Franz Grill

    2013-01-01

    Background A leptosomic body type is tall and thin with long hands. Marfanoid features may be familial in nature or pathological, as occurs in congenital contractual arachnodactyly (Beal’s syndrome) and Shprintzen-Goldberg syndrome mimicking some of the changes of Marfan syndrome, although not accompanied by luxation of lens and dissecting aneurysm of aorta. Methods In this article we collected eight patients who were consistent with the diagnosis of Marfan syndrome via phenotypic and genotyp...

  9. Axial skeletal CT densitometry

    Since the discovery of the Roentgen ray a precise and accurate assessment of bone mineral content has been a challenge to many investigators. A number of methods have been developed but no one satisfied. Considering its technical possibilities computed tomography is very promising in determination of bone mineral content (BMC). The new modality enables BMC estimations in the axial skeletal trabecular bone. CT densitometry can be performed on a normal commercially available third generation whole body CT scanner. No dedicated device in a special clinical set-up is necessary. In this study 106 patients, most of them clinically suspected of osteoporosis, were examined. The new method CT densitometry has been evaluated. The results have been correlated to alternative BMC determination methods. (Auth.)

  10. Exercise Promotes Healthy Aging of Skeletal Muscle.

    Cartee, Gregory D; Hepple, Russell T; Bamman, Marcas M; Zierath, Juleen R

    2016-06-14

    Primary aging is the progressive and inevitable process of bodily deterioration during adulthood. In skeletal muscle, primary aging causes defective mitochondrial energetics and reduced muscle mass. Secondary aging refers to additional deleterious structural and functional age-related changes caused by diseases and lifestyle factors. Secondary aging can exacerbate deficits in mitochondrial function and muscle mass, concomitant with the development of skeletal muscle insulin resistance. Exercise opposes deleterious effects of secondary aging by preventing the decline in mitochondrial respiration, mitigating aging-related loss of muscle mass and enhancing insulin sensitivity. This review focuses on mechanisms by which exercise promotes "healthy aging" by inducing modifications in skeletal muscle. PMID:27304505

  11. Development of endothermy and concomitant increases in cardiac and skeletal muscle mitochondrial respiration in the precocial Pekin duck (Anas platyrhynchos domestica).

    Sirsat, Sarah K G; Sirsat, Tushar S; Faber, Alan; Duquaine, Allison; Winnick, Sarah; Sotherland, Paul R; Dzialowski, Edward M

    2016-04-15

    Attaining endothermic homeothermy occurs at different times post-hatching in birds and is associated with maturation of metabolic and aerobic capacity. Simultaneous measurements at the organism, organ and cellular levels during the transition to endothermy reveal means by which this change in phenotype occurs. We examined development of endothermy in precocial Pekin ducks ( ITALIC! Anas platyrhynchos domestica) by measuring whole-animal O2consumption ( ITALIC! V̇O2 ) as animals cooled from 35 to 15°C. We measured heart ventricle mass, an indicator of O2delivery capacity, and mitochondrial respiration in permeabilized skeletal and cardiac muscle to elucidate associated changes in mitochondrial capacities at the cellular level. We examined animals on day 24 of incubation through 7 days post-hatching. ITALIC! V̇O2  of embryos decreased when cooling from 35 to 15°C; ITALIC! V̇O2  of hatchlings, beginning on day 0 post-hatching, increased during cooling with a lower critical temperature of 32°C. Yolk-free body mass did not change between internal pipping and hatching, but the heart and thigh skeletal muscle grew at faster rates than the rest of the body as the animals transitioned from an externally pipped paranate to a hatchling. Large changes in oxidative phosphorylation capacity occurred during ontogeny in both thigh muscles, the primary site of shivering, and cardiac ventricles. Thus, increased metabolic capacity necessary to attain endothermy was associated with augmented metabolic capacity of the tissue and augmented increasing O2delivery capacity, both of which were attained rapidly at hatching. PMID:26896549

  12. Brain abnormalities in male children and adolescents with hemophilia: detection with MR imaging. The Hemophilia Growth and Development Study Group.

    Wilson, D A; Nelson, M D; Fenstermacher, M J; Bohan, T P; Hopper, K D; Tilton, A; Mitchell, W G; Contant, C F; Maeder, M A; Donfield, S M

    1992-11-01

    Cranial magnetic resonance (MR) imaging was performed in 124 male patients (aged 7-19 years), from 14 institutions, in whom a diagnosis of moderate to severe hemophilia was made. Blood tests in all subjects were negative for human immunodeficiency virus. Findings in MR studies were abnormal in 25 (20.2%) subjects. Six lesions in five subjects were classified as congenital. The most commonly identified congenital lesion was a posterior fossa collection of cerebrospinal fluid (five cases). Twenty-two subjects had acquired lesions that were probably related to the hemophilia or its treatment. The most commonly acquired lesions were single- or multifocal areas of high signal intensity within the white matter on T2-weighted images noted in 14 (11.3%) subjects. Two subjects had large focal areas of brain atrophy, and six had some degree of diffuse cerebral cortical atrophy. Three subjects (2.4%) had hemorrhagic lesions. To the authors' knowledge, the unexpected finding of small, focal, nonhemorrhagic white matter lesions has not previously been reported. PMID:1410372

  13. Urine - abnormal color

    ... medlineplus.gov/ency/article/003139.htm Urine - abnormal color To use the sharing features on this page, please enable JavaScript. The usual color of urine is straw-yellow. Abnormally colored urine ...

  14. Pathogenesis of Insulin Resistance in Skeletal Muscle

    Muhammad A. Abdul-Ghani

    2010-01-01

    Full Text Available Insulin resistance in skeletal muscle is manifested by decreased insulin-stimulated glucose uptake and results from impaired insulin signaling and multiple post-receptor intracellular defects including impaired glucose transport, glucose phosphorylation, and reduced glucose oxidation and glycogen synthesis. Insulin resistance is a core defect in type 2 diabetes, it is also associated with obesity and the metabolic syndrome. Dysregulation of fatty acid metabolism plays a pivotal role in the pathogenesis of insulin resistance in skeletal muscle. Recent studies have reported a mitochondrial defect in oxidative phosphorylation in skeletal muscle in variety of insulin resistant states. In this review, we summarize the cellular and molecular defects that contribute to the development of insulin resistance in skeletal muscle.

  15. Chondroitin sulfate synthase-2 is necessary for chain extension of chondroitin sulfate but not critical for skeletal development.

    Hiroyasu Ogawa

    Full Text Available Chondroitin sulfate (CS is a linear polysaccharide consisting of repeating disaccharide units of N-acetyl-D-galactosamine and D-glucuronic acid residues, modified with sulfated residues at various positions. Based on its structural diversity in chain length and sulfation patterns, CS provides specific biological functions in cell adhesion, morphogenesis, neural network formation, and cell division. To date, six glycosyltransferases are known to be involved in the biosynthesis of chondroitin saccharide chains, and a hetero-oligomer complex of chondroitin sulfate synthase-1 (CSS1/chondroitin synthase-1 and chondroitin sulfate synthase-2 (CSS2/chondroitin polymerizing factor is known to have the strongest polymerizing activity. Here, we generated and analyzed CSS2(-/- mice. Although they were viable and fertile, exhibiting no overt morphological abnormalities or osteoarthritis, their cartilage contained CS chains with a shorter length and at a similar number to wild type. Further analysis using CSS2(-/- chondrocyte culture systems, together with siRNA of CSS1, revealed the presence of two CS chain species in length, suggesting two steps of CS chain polymerization; i.e., elongation from the linkage region up to Mr ∼10,000, and further extension. There, CSS2 mainly participated in the extension, whereas CSS1 participated in both the extension and the initiation. Our study demonstrates the distinct function of CSS1 and CSS2, providing a clue in the elucidation of the mechanism of CS biosynthesis.

  16. Skeletal fluorosis in immobilized extremities.

    Rosenquist, J B

    1975-11-01

    The effect of immobilization on skeletal fluorosis was studied in growing rabbits. One hind leg was immobilized by an external fixation device extending below the wrist joint and above the knee joint, the extremity being in a straight position after severance of the sciatic nerve. The animals, aged 7 weeks at the beginning of the experiment, were given 10 mg of fluoride per kg body weight and day during 12 weeks. In the tibiae, development of the skeletal fluorosis was more irregular than that observed in previous studies of normally active animals, being most excessive in the mobile bone. The immobilization effect was most profound in the femora as the cortical thickness and the femur score were significantly higher than those in the mobile femora. It was suggested that an altered muscular activity was the reason for the observed changes. PMID:1189918

  17. Skeletal scintigraphy in benign and malignant disease

    This paper begins with a discussion of the technical factors in skeletal scintigraphy, including collimation, the use of three-phase bone scan, and single-photon emission computed tomography. Skeletal scintigraphy for benign conditions is commonly indicated for the patient presenting with pain (trauma, sports-related injury, posttraumatic pain syndrome, painful orthopedic prosthesis) and for the patient with abnormal laboratory test results (metabolic bone disease, Paget disease). For malignant conditions, the bone scan is useful in the evaluation of metastases in patients with extraosseous malignancies and primary bone tumors. The discussion addresses the various scan patterns seen in the more common tumors, such as prostate carcinoma, breast carcinoma, and lung carcinoma. Bone scintigraphy is an exquisitely sensitive modality. With some understanding of the techniques necessary for obtaining the optimal bone scan, and of the patterns that can be seen in various clinical conditions, the radiologist will find the bone scan a very specific tool for evaluating both benign and malignant diseases

  18. Tractography of peripheral nerves and skeletal muscles.

    Khalil, C; Budzik, J F; Kermarrec, E; Balbi, V; Le Thuc, V; Cotten, A

    2010-12-01

    The assessment of human peripheral nerves and skeletal muscles by means of diffusion tensor imaging and tractograpy has been a recent area of research. These techniques have been successfully applied in both volunteers and patients, providing non-invasively, quantitative microstructural parameters (mainly mean fractional anisotropy and apparent diffusion coefficient) and offering a three-dimensional visualization tool of nerves and muscles fibers. DTI and tractography may reveal abnormalities that are beyond the resolution of conventional MR techniques and hence open the way to potential clinical applications. In this article, we will first summarize the current state of DTI and tractography in the evaluation of peripheral nerves and skeletal muscles as well as their potential future clinical applications. Then, we will address important technical considerations, which understanding is necessary to appropriately apply DTI and tractograhy, and in order to understand the current limitations of these innovative and promising techniques. PMID:20392583

  19. Tractography of peripheral nerves and skeletal muscles

    The assessment of human peripheral nerves and skeletal muscles by means of diffusion tensor imaging and tractograpy has been a recent area of research. These techniques have been successfully applied in both volunteers and patients, providing non-invasively, quantitative microstructural parameters (mainly mean fractional anisotropy and apparent diffusion coefficient) and offering a three-dimensional visualization tool of nerves and muscles fibers. DTI and tractography may reveal abnormalities that are beyond the resolution of conventional MR techniques and hence open the way to potential clinical applications. In this article, we will first summarize the current state of DTI and tractography in the evaluation of peripheral nerves and skeletal muscles as well as their potential future clinical applications. Then, we will address important technical considerations, which understanding is necessary to appropriately apply DTI and tractograhy, and in order to understand the current limitations of these innovative and promising techniques.

  20. Structure of Skeletal Muscle

    ... and in some they are oblique. Each skeletal muscle fiber is a single cylindrical muscle cell. An individual ... made up of hundreds, or even thousands, of muscle fibers bundled together and wrapped in a connective tissue ...

  1. A new Approach to the Study of Russian Language Acquisition in Preschool Children with Normal and Abnormal Development

    Lebedeva T.V

    2014-11-01

    Full Text Available We discuss the possibilities of using a standardized method of psychological evaluation of the Russian language development in preschool children. We provide a rationale for the relevance of timely differentiation of children with language and speech difficulties in modern educational practice. We present the results of comparative analysis of language and speech development in the two groups of children 5-6 years old: normally developing (N=92 and with language and speech disorders (N=59. We describe the diagnostic potential of this research tool for clinical sample of children with speech and language disorders, reveal differences in the development of Russian language between the two groups of children. The data obtained can be used in solving the problems of differentiated correctional help to pre-school children with impaired language and speech development.

  2. Inactivation of ca10a and ca10b Genes Leads to Abnormal Embryonic Development and Alters Movement Pattern in Zebrafish.

    Ashok Aspatwar

    Full Text Available Carbonic anhydrase related proteins (CARPs X and XI are highly conserved across species and are predominantly expressed in neural tissues. The biological role of these proteins is still an enigma. Ray-finned fish have lost the CA11 gene, but instead possess two co-orthologs of CA10. We analyzed the expression pattern of zebrafish ca10a and ca10b genes during embryonic development and in different adult tissues, and studied 61 CARP X/XI-like sequences to evaluate their phylogenetic relationship. Sequence analysis of zebrafish ca10a and ca10b reveals strongly predicted signal peptides, N-glycosylation sites, and a potential disulfide, all of which are conserved, suggesting that all of CARP X and XI are secretory proteins and potentially dimeric. RT-qPCR showed that zebrafish ca10a and ca10b genes are expressed in the brain and several other tissues throughout the development of zebrafish. Antisense morpholino mediated knockdown of ca10a and ca10b showed developmental delay with a high rate of mortality in larvae. Zebrafish morphants showed curved body, pericardial edema, and abnormalities in the head and eye, and there was increased apoptotic cell death in the brain region. Swim pattern showed abnormal movement in morphant zebrafish larvae compared to the wild type larvae. The developmental phenotypes of the ca10a and ca10b morphants were confirmed by inactivating these genes with the CRISPR/Cas9 system. In conclusion, we introduce a novel zebrafish model to investigate the mechanisms of CARP Xa and CARP Xb functions. Our data indicate that CARP Xa and CARP Xb have important roles in zebrafish development and suppression of ca10a and ca10b expression in zebrafish larvae leads to a movement disorder.

  3. Skeletal muscle stem cells from animals I. Basic cell biology

    Skeletal muscle stem cells from food-producing animals have been of interest to agricultural life scientists seeking to develop a better understanding of the molecular regulation of lean tissue (skeletal muscle protein hypertrophy) and intramuscular fat (marbling) development. Enhanced understanding...

  4. Regenerating skeletal muscle in the face of aging and disease.

    Jasuja, Ravi; LeBrasseur, Nathan K

    2014-11-01

    Skeletal muscle is a fundamental organ in the generation of force and movement, the regulation of whole-body metabolism, and the provision of resiliency. Indeed, physical medicine and rehabilitation is recognized for optimizing skeletal muscle health in the context of aging (sarcopenia) and disease (cachexia). Exercise is, and will remain, the cornerstone of therapies to improve skeletal muscle health. However, there are now a number of promising biologic and small molecule interventions currently under development to rejuvenate skeletal muscle, including myostatin inhibitors, selective androgen receptor modulators, and an activator of the fast skeletal muscle troponin complex. The opportunities for skeletal muscle-based regenerative therapies and a selection of emerging pharmacologic interventions are discussed in this review. PMID:24879554

  5. Abnormal Development of the Femoral Head Epiphysis in an Infant with no Developmental Dysplasia of the Hip Apparent on Ultrasonography

    Atalar, Hakan; Gunay, Cuneyd; Aytekin, Mahmut Nedim

    2014-01-01

    Introduction: In the investigation of hip development in newborns and infants, ultrasonography and radiography are widely used, but their optimal roles in this setting remain controversial. Case Report: Here we describe an 8.5-month-old infant who had undergone hip radiography at a primary care facility and was referred to our hospital to be evaluated for developmental dysplasia of the hip. Ultrasonography showed no developmental dysplasia of the hip according to standard criteria, but develo...

  6. Abnormal differentiation of dopaminergic neurons in zebrafish trpm7 mutant larvae impairs development of the motor pattern

    Decker, Amanda R.; McNeill, Matthew S.; Lambert, Aaron M.; Overton, Jeffrey D.; Chen, Yu-Chia; Lorca, Ramón A.; Johnson, Nicolas A.; Brockerhoff, Susan E.; Mohapatra, Durga P.; Macarthur, Heather; Panula, Pertti; Mark A Masino; Loren W. Runnels; Cornell, Robert A.

    2013-01-01

    Transient receptor potential, melastatin-like 7 (Trpm7) is a combined ion channel and kinase implicated in the differentiation or function of many cell types. Early lethality in mice and frogs depleted of the corresponding gene impedes investigation of the functions of this protein particularly during later stages of development. By contrast, zebrafish trpm7 mutant larvae undergo early morphogenesis normally and thus do not have this limitation. The mutant larvae are characterized by multiple...

  7. Defective Peripheral Nerve Development Is Linked to Abnormal Architecture and Metabolic Activity of Adipose Tissue in Nscl-2 Mutant Mice

    Karen Ruschke; Henning Ebelt; Nora Klöting; Thomas Boettger; Kay Raum; Matthias Blüher; Thomas Braun

    2009-01-01

    BACKGROUND: In mammals the interplay between the peripheral nervous system (PNS) and adipose tissue is widely unexplored. We have employed mice, which develop an adult onset of obesity due to the lack the neuronal specific transcription factor Nscl-2 to investigate the interplay between the nervous system and white adipose tissue (WAT). METHODOLOGY: Changes in the architecture and innervation of WAT were compared between wildtype, Nscl2-/-, ob/ob and Nscl2-/-//ob/ob mice using morphological m...

  8. Abnormal hair follicle development and altered cell fate of follicular keratinocytes in transgenic mice expressing ΔNp63α

    Romano, Rose-Anne; Smalley, Kirsten; Liu, Song; Sinha, Satrajit

    2010-01-01

    The transcription factor p63 plays an essential role in epidermal morphogenesis. Animals lacking p63 fail to form many ectodermal organs, including the skin and hair follicles. Although the indispensable role of p63 in stratified epithelial skin development is well established, relatively little is known about this transcriptional regulator in directing hair follicle morphogenesis. Here, using specific antibodies, we have established the expression pattern of ΔNp63 in hair follicle developmen...

  9. Ablation of Mrds1/Ofcc1 induces hyper-γ-glutamyl transpeptidasemia without abnormal head development and schizophrenia-relevant behaviors in mice.

    Tetsuo Ohnishi

    Full Text Available Mutations in the Opo gene result in eye malformation in medaka fish. The human ortholog of this gene, MRDS1/OFCC1, is a potentially causal gene for orofacial cleft, as well as a susceptibility gene for schizophrenia, a devastating mental illness. Based on this evidence, we hypothesized that this gene could perform crucial functions in the development of head and brain structures in vertebrates. To test this hypothesis, we created Mrds1/Ofcc1-null mice. Mice were examined thoroughly using an abnormality screening system referred to as "the Japan Mouse Clinic". No malformations of the head structure, eye or other parts of the body were apparent in these knockout mice. However, the mutant mice showed a marked increase in serum γ-glutamyl transpeptidase (GGT, a marker for liver damage, but no abnormalities in other liver-related measurements. We also performed a family-based association study on the gene in schizophrenia samples of Japanese origin. We found five single nucleotide polymorphisms (SNPs located across the gene that showed significant transmission distortion, supporting a prior report of association in a Caucasian cohort. However, the knockout mice showed no behavioral phenotypes relevant to schizophrenia. In conclusion, disruption of the Mrds1/Ofcc1 gene elicits asymptomatic hyper-γ-glutamyl-transpeptidasemia in mice. However, there were no phenotypes to support a role for the gene in the development of eye and craniofacial structures in vertebrates. These results prompt further examination of the gene, including its putative contribution to hyper-γ-glutamyl transpeptidasemia and schizophrenia.

  10. Intracellular compartmentalization of skeletal muscle glycogen metabolism and insulin signalling

    Prats Gavalda, Clara; Gomez-Cabello, Alba; Vigelsø Hansen, Andreas

    2011-01-01

    The interest in skeletal muscle metabolism and insulin signalling has increased exponentially in recent years as a consequence of their role in the development of type 2 diabetes mellitus. Despite this, the exact mechanisms involved in the regulation of skeletal muscle glycogen metabolism...... compartmentalization in the regulation of skeletal muscle glycogen metabolism and insulin signalling. As a result, a hypothetical regulatory mechanism is proposed by which cells could direct glycogen resynthesis towards different pools of glycogen particles depending on the metabolic needs. Furthermore, we discuss...... the role of skeletal muscle transverse tubules as potential modulators of tissue insulin responsiveness....

  11. Germ cell specific overactivation of WNT/βcatenin signalling has no effect on folliculogenesis but causes fertility defects due to abnormal foetal development

    Kumar, Manish; Camlin, Nicole J.; Holt, Janet E.; Teixeira, Jose M.; McLaughlin, Eileen A.; Tanwar, Pradeep S.

    2016-01-01

    All the major components of the WNT signalling pathway are expressed in female germ cells and embryos. However, their functional relevance in oocyte biology is currently unclear. We examined ovaries collected from TCFGFP mice, a well-known Wnt reporter mouse model, and found dynamic changes in the Wnt/βcatenin signalling activity during different stages of oocyte development and maturation. To understand the functional importance of Wnt signalling in oocytes, we developed a mouse model with the germ cell-specific constitutive activation of βcatenin using cre recombinase driven by the DEAD (Asp-Glu-Ala-Asp) box protein 4 (Ddx4) gene promoter. Histopathological and functional analysis of ovaries from these mutant mice (Ctnnb1ex3cko) showed no defects in ovarian functions, oocytes, ovulation and early embryonic development. However, breeding of the Ctnnb1ex3cko female mice with males of known fertility never resulted in birth of mutant pups. Examination of uteri from time pregnant mutant females revealed defects in ectoderm differentiation leading to abnormal foetal development and premature death. Collectively, our work has established the role of active WNT/βcatenin signalling in oocyte biology and foetal development, and provides novel insights into the possible mechanisms of complications in human pregnancy such as repeated spontaneous abortion, sudden intrauterine unexpected foetal death syndrome and stillbirth. PMID:27265527

  12. The development of behavioral and endocrine abnormalities in rats after repeated exposure to direct and indirect stress

    Willie Mark Uren Daniels

    2008-04-01

    Full Text Available Willie Mark Uren Daniels1, Joachim de Klerk Uys1, Petra van Vuuren1, Daniel Joseph Stein21Division of Medical Physiology, Faculty of Health Sciences, University of Stellenbosch, South Africa; 2Department of Psychiatry, Faculty of Health Sciences, University of Cape Town, South AfricaAbstract: The present study compared the effects of direct and indirect stress on the behavior and hypothalamic-pituitary-adrenal axis of rats. Animals were placed in a two compartment box. In one compartment the direct stressed rat was subjected to electric foot shocks randomly applied for 10 minutes (0.5 mA of 1 s duration. In the adjacent compartment, the indirect stressed rats witnessed the application of these electric foot shocks. Our data showed substantial behavioral changes in the open field test, but limited effects in the elevated plus maze. The findings suggested that single and repeated stress exposure may have different consequences, that the effects of stress exposure may develop over time and persist for an extended period, and that both direct and indirect stressed rats displayed a hyposensitive HPA axis following acute restraint stress. Overall our observations moderately indicate direct exposure to elicit behavioral changes, and both direct and indirect exposure to stress to result in aberrations within the neuroendocrine system. With additional development our stress models may be considered for studying the complex interrelationship between an external stressor, and the experience of the organism.Keywords: direct vs indirect stress, behavior, open field, elevated plus maze, HPA axis, stress response

  13. Enhancement of K+ conductance improves in vitro the contraction force of skeletal muscle in hypokalemic periodic paralysis

    Grafe, Peter; Quasthoff, Stefan; Strupp, Michael; LEHMANN-HORN, FRANK

    1990-01-01

    An abnormal ratio between Na+ and K+ conductances seems to be the cause for the depolarization and paralysis of skeletal muscle in primary hypokalemic periodic paralysis. Recently we have shown that the k+ channel opener cromakalim hyperpolarizes mammalian skeletal muscle fibers. Now we have studied the effects of this drug on the twitch force of muscle biopsies from normal and diseased human skeletal muscle. Cromakalim had little effect on the twitch force of normal muscle whereas it strongl...

  14. A new take on an old story: chick limb organ culture for skeletal niche development and regenerative medicine evaluation

    EL Smith; JM Kanczler; ROC Oreffo

    2013-01-01

    Scientific research and progress, particularly in the drug discovery and regenerative medicine fields, is typically dependent on suitable animal models to develop new and improved clinical therapies for injuries and diseases. In vivo model systems are frequently utilised, but these models are expensive, highly complex and pose a number of ethical considerations leading to the development and use of a number of alternative ex vivo model systems. The ex vivo embryonic chick long bone and limb b...

  15. Abnormal differentiation of dopaminergic neurons in zebrafish trpm7 mutant larvae impairs development of the motor pattern.

    Decker, Amanda R; McNeill, Matthew S; Lambert, Aaron M; Overton, Jeffrey D; Chen, Yu-Chia; Lorca, Ramón A; Johnson, Nicolas A; Brockerhoff, Susan E; Mohapatra, Durga P; MacArthur, Heather; Panula, Pertti; Masino, Mark A; Runnels, Loren W; Cornell, Robert A

    2014-02-15

    Transient receptor potential, melastatin-like 7 (Trpm7) is a combined ion channel and kinase implicated in the differentiation or function of many cell types. Early lethality in mice and frogs depleted of the corresponding gene impedes investigation of the functions of this protein particularly during later stages of development. By contrast, zebrafish trpm7 mutant larvae undergo early morphogenesis normally and thus do not have this limitation. The mutant larvae are characterized by multiple defects including melanocyte cell death, transient paralysis, and an ion imbalance that leads to the development of kidney stones. Here we report a requirement for Trpm7 in differentiation or function of dopaminergic neurons in vivo. First, trpm7 mutant larvae are hypomotile and fail to make a dopamine-dependent developmental transition in swim-bout length. Both of these deficits are partially rescued by the application of levodopa or dopamine. Second, histological analysis reveals that in trpm7 mutants a significant fraction of dopaminergic neurons lack expression of tyrosine hydroxylase, the rate-limiting enzyme in dopamine synthesis. Third, trpm7 mutants are unusually sensitive to the neurotoxin 1-methyl-4-phenylpyridinium, an oxidative stressor, and their motility is partially rescued by application of the iron chelator deferoxamine, an anti-oxidant. Finally, in SH-SY5Y cells, which model aspects of human dopaminergic neurons, forced expression of a channel-dead variant of TRPM7 causes cell death. In summary, a forward genetic screen in zebrafish has revealed that both melanocytes and dopaminergic neurons depend on the ion channel Trpm7. The mechanistic underpinning of this dependence requires further investigation. PMID:24291744

  16. Thymidine kinase 2 deficiency-induced mitochondrial DNA depletion causes abnormal development of adipose tissues and adipokine levels in mice.

    Joan Villarroya

    Full Text Available Mammal adipose tissues require mitochondrial activity for proper development and differentiation. The components of the mitochondrial respiratory chain/oxidative phosphorylation system (OXPHOS are encoded by both mitochondrial and nuclear genomes. The maintenance of mitochondrial DNA (mtDNA is a key element for a functional mitochondrial oxidative activity in mammalian cells. To ascertain the role of mtDNA levels in adipose tissue, we have analyzed the alterations in white (WAT and brown (BAT adipose tissues in thymidine kinase 2 (Tk2 H126N knockin mice, a model of TK2 deficiency-induced mtDNA depletion. We observed respectively severe and moderate mtDNA depletion in TK2-deficient BAT and WAT, showing both tissues moderate hypotrophy and reduced fat accumulation. Electron microscopy revealed altered mitochondrial morphology in brown but not in white adipocytes from TK2-deficient mice. Although significant reduction in mtDNA-encoded transcripts was observed both in WAT and BAT, protein levels from distinct OXPHOS complexes were significantly reduced only in TK2-deficient BAT. Accordingly, the activity of cytochrome c oxidase was significantly lowered only in BAT from TK2-deficient mice. The analysis of transcripts encoding up to fourteen components of specific adipose tissue functions revealed that, in both TK2-deficient WAT and BAT, there was a consistent reduction of thermogenesis related gene expression and a severe reduction in leptin mRNA. Reduced levels of resistin mRNA were found in BAT from TK2-deficient mice. Analysis of serum indicated a dramatic reduction in circulating levels of leptin and resistin. In summary, our present study establishes that mtDNA depletion leads to a moderate impairment in mitochondrial respiratory function, especially in BAT, causes substantial alterations in WAT and BAT development, and has a profound impact in the endocrine properties of adipose tissues.

  17. Knee loading for abnormal gait

    Hutchison, J.; Madsen, D.; Norman, T. L.; -Blaha, J. D.

    2014-01-01

    The purpose of the study was to develop a mathematical model for determining knee loads for abnormal gait. Abnormal gait was defined as a person with varus, i.e. “bowleggedness”, or a person who had an external rotation of the femur (or the inability to internally rotate the femur) which caused an indirect varus in the forward positions of gait. Conditions such as these have been observed clinically to result in increased wear on the medial condyle of total knee replacements. This problem was...

  18. Neuroimaging abnormalities in Griscelli's disease

    Griscelli's disease is a rare autosomal recessive immunodeficiency syndrome. We report a 7-1/2-month-old white girl who presented with this syndrome, but initially without neurological abnormalities. Initial CT of the brain was normal. Despite haematological remission with chemotherapy, she developed neurological symptoms, progressing to coma. At this time, CT showed areas of coarse calcification in the globi pallidi, left parietal white matter and left brachium pontis. Hypodense areas were present in the genu and posterior limb of the internal capsule on the right side, as well as posterior aspects of both thalami, together with minimal generalised atrophy. MRI revealed areas of increased T2 signal and a focal area of abnormal enhancement in the subcortical white matter. Griscelli's disease should be added to the list of acquired neuroimaging abnormalities in infants. (orig.)

  19. Development of operators' mental model acquisition system (2). Integration of knowledge representation about normal and abnormal plant states

    This report discusses a representation scheme of device failures anticipated in nuclear power plant, to describe related knowledge in a computer software. Coping ability covering a wide range of physical events is desired in plant operators and maintenance staffs, but it is impractical to give them a set of experience to cover the all possible events in the education/training curriculum. However, in case that their knowledge of plant design and of generally-known physical principles are enforced, their ability of cause identification and of appropriate responding actions against inexperienced events are expected to be enhanced, by combining the basic engineering and physical knowledge. Most of the anomalies anticipated in nuclear power plants are initiated as an incipient failure in some auxiliary equipment initially affecting only within the relative subsystem and hiding from the central control room, and then are propagated to deviate process parameters in the main subsystems to be observed from the control room. Incipient failures in auxiliary subsystems, such as a chemical degrading of an axis holder caused by a blockage of lubricant supply line through increased friction and subsequent extra heating, are typically local and irreversible consequences. On the other hand, deviation propagation in main systems, such as outlet temperature rise by an increased pump rotation friction though decreased coolant flow rate, are typically global and reversible consequences. This paper describes a methodology development to represent a category of knowledge to support operators' and maintenance staffs' effort in understanding local and irreversible failure consequences. (author)

  20. Assessment of electron beam-induced abnormal development and DNA damage in Spodoptera litura (F.) (Lepidoptera: Noctuidae)

    Yun, Seung-Hwan; Lee, Seon-Woo; Koo, Hyun-Na; Kim, Gil-Hah

    2014-03-01

    The armyworm, Spodoptera litura (F.) is a polyphagous and important agricultural pest worldwide. In this study, we examined the effect of electron beam irradiation on developmental stages, reproduction, and DNA damage of S. litura. Eggs (0-24 h old), larvae (3rd instar), pupae (3 days old after pupation), and adults (24 h after emergence) were irradiated with electron beam irradiation of six levels between 30 and 250 Gy. When eggs were irradiated with 100 Gy, egg hatching was completely inhibited. When the larvae were irradiated, the larval period was significantly delayed, depending on the doses applied. At 150 Gy, the fecundity of adults that developed from irradiated pupae was entirely inhibited. However, electron beam irradiation did not induce the instantaneous death of S. litura adults. Reciprocal crosses between irradiated and unirradiated moths demonstrated that females were more radiosensitive than males. We also conducted the comet assay immediately after irradiation and over the following 5 days period. Severe DNA fragmentation in S. litura cells was observed just after irradiation and the damage was repaired during the post-irradiation period in a time-dependent manner. However, at more than 100 Gy, DNA damage was not fully recovered.

  1. Defective peripheral nerve development is linked to abnormal architecture and metabolic activity of adipose tissue in Nscl-2 mutant mice.

    Karen Ruschke

    Full Text Available BACKGROUND: In mammals the interplay between the peripheral nervous system (PNS and adipose tissue is widely unexplored. We have employed mice, which develop an adult onset of obesity due to the lack the neuronal specific transcription factor Nscl-2 to investigate the interplay between the nervous system and white adipose tissue (WAT. METHODOLOGY: Changes in the architecture and innervation of WAT were compared between wildtype, Nscl2-/-, ob/ob and Nscl2-/-//ob/ob mice using morphological methods, immunohistochemistry and flow cytometry. Metabolic alterations in mutant mice and in isolated cells were investigated under basal and stimulated conditions. PRINCIPAL FINDINGS: We found that Nscl-2 mutant mice show a massive reduction of innervation of white epididymal and paired subcutaneous inguinal fat tissue including sensory and autonomic nerves as demonstrated by peripherin and neurofilament staining. Reduction of innervation went along with defects in the formation of the microvasculature, accumulation of cells of the macrophage/preadipocyte lineage, a bimodal distribution of the size of fat cells, and metabolic defects of isolated adipocytes. Despite a relative insulin resistance of white adipose tissue and isolated Nscl-2 mutant adipocytes the serum level of insulin in Nscl-2 mutant mice was only slightly increased. CONCLUSIONS: We conclude that the reduction of the innervation and vascularization of WAT in Nscl-2 mutant mice leads to the increase of preadipocyte/macrophage-like cells, a bimodal distribution of the size of adipocytes in WAT and an altered metabolic activity of adipocytes.

  2. Cloverleaf skull associated with unusual skeletal anomalies

    A male infant which cloverleaf skull and multiple other birth defects born to unrelated, healthy, young parents is presented. Radiologic findings in addition to the cloverleaf skull configuration included short, wide clavicles, winged scapulae, unusual shapes of ribs with abnormal spacing between them and with prominent costovertebral junctions, and widely separated ischia. Ulnae appeared angular with probable fusion to the midportion of the radial bones bilaterally. There was polydactyly of the hands and feet with grossly abnormal metacarpal and metatarsal bones. Skeletal maturation was normal. Computed tomography of the skull showed dilated lateral and third ventricles as well as agenesis of the corpus callosum. The mother denies any teratogenic exposure during the pregnancy. The findings in this infant do not seem to fit into any previously described syndrome. (orig.)

  3. Urine - abnormal color

    The usual color of urine is straw-yellow. Abnormally colored urine may be cloudy, dark, or blood-colored. ... Abnormal urine color may be caused by infection, disease, medicines, or food you eat. Cloudy or milky urine is a sign ...

  4. The skeletal deformity in response of dietary phosphorus and calcium level in the Caspian roach (Rutilus rutilus caspicus larvae

    Sohrab Ahmadivand

    2013-05-01

    Full Text Available Skeletal deformities are a common problem in fish hatcheries and commercial farms that affect growth, development and survival as well as the market value of the final product. Among the nutritional components, phosphorus (P and calcium (Ca are of special interest as they are directly involved in the development and maintenance of the skeletal system. Hence, the present study was carried out to investigate the effects of dietary P and Ca on the skeletal deformity, growth and carcass composition the Caspian roach (Rutilus rutilus caspicus larvae. In this study, six semi-purified diets were formulated. The diets A, B, C, D and E were supplemented with 0.0, 0.4, 0.8, 1.2 and 1.6% available P supplied as a 1:1mixture of NaH2Po4/KH2Po4. These five diets were supplemented with 1% Ca, supplied as CaCo3. Diets F was Ca-free and supplemented with 0.8% available P served as control level of P. Each diet was randomly assigned to triplicate groups of fish, and each group was stocked with 30 larvae and fed three times a day for 60 days. At the end experiment, there was no significant effect of dietary P (0 to 1.6% or Ca (0 or 1% supplementation on growth performance such as weight gain and FCR, carcass moisture, P and Ca. However, a significant difference found between treatments in carcass ash. Analysis of length, height and area of vertebrae in two regions of the vertebral column showed no significant difference between the dietary treatments. The skeletal abnormalities were highest incidence in the Caspian roach fed with a low P. Kyphosis placement of vertebrae was the most frequent abnormality.

  5. Characterization of MUSTN1 gene and its relationship with skeletal muscle development at postnatal stages in Pekin ducks.

    Xu, T S; Gu, L H; Sun, Y; Zhang, X H; Ye, B G; Liu, X L; Hou, S S

    2015-01-01

    Musculoskeletal embryonic nuclear protein 1 (MUSTN1) gene is involved in myogenic fusion and differentiation in rats. We previously showed the differential expression of MUSTN1 in week (W) 2 and W6 breast muscles of Pekin ducks. In this study, we further investigated its molecular characteristics and expression profiles in different tissues at W7 and in breast and leg muscles at W1, W3, W5, W7, and W9. The relationship between muscle development and muscle fiber areas was also investigated. A 358-bp cDNA sequence was obtained. The coding sequence of duck MUSTN1 cDNA encoded a 78-amino acid sequence, which showed high similarity with those of other species (96% similarity with zebra finch and 94% with chicken). In addition, a 6435-bp genomic DNA sequence of MUSTN1 was obtained. In total, 231 transcription factor-binding sites were found in the promoter region, and many of these transcription factors were involved in the regulation of muscle development. MUSTN1 expression in breast muscle increased from W1 to W5 and then decreased at W9. In leg muscle, the expression increased from W1 to W3 and then decreased. The relative growth rates of breast and leg muscle fibers reached their peaks at W3-W5 and W1-W3, respectively. Since the greatest relative growth rates appeared at the highest expression levels of the MUSTN1 gene, it was thought to play roles in duck muscle development. Our findings would be helpful in understanding the molecular characteristics and functions of the MUSTN1 gene in breast muscle development of ducks. PMID:25966217

  6. Analysis of Skeletal Muscle Torque Capacity and Circulating Ceramides in Patients with Advanced Heart Failure

    Brunjes, Danielle L.; Dunlop, Mark; Wu, Christina; Jones, Meaghan; Kato, Tomoko S.; Kennel, Peter J.; Armstrong, Hilary F.; Choo, Tse-Hwei; Bartels, Matthew N.; Forman, Daniel E.; Mancini, Donna M.; Schulze, P. Christian

    2016-01-01

    Background Heart failure (HF)-related exercise intolerance is thought to be perpetuated by peripheral skeletal muscle functional, structural, and metabolic abnormalities. We analyzed specific dynamics of muscle contraction in patients with HF compared with healthy, sedentary controls. Methods Isometric and isokinetic muscle parameters were measured in the dominant upper and lower limbs of 45 HF patients and 15 healthy age-matched controls. Measurements included peak torque normalized to body weight, work normalized to body weight, power, time to peak torque, and acceleration and deceleration to maximum strength times. Body morphometry (dual energy X-ray absorptiometry scan) and circulating fatty acids and ceramides (lipodomics) were analyzed in a subset of subjects (18 HF and 9 controls). Results Extension and flexion time-to-peak torque was longer in the lower limbs of HF patients. Furthermore, acceleration and deceleration times in the lower limbs were also prolonged in HF subjects. HF subjects had increased adiposity and decreased lean muscle mass compared with controls. Decreased circulating unsaturated fatty acids and increased ceramides were found in subjects with HF. Conclusions Delayed torque development suggests skeletal muscle impairments that may reflect abnormal neuromuscular functional coupling. These impairments may be further compounded by increased adiposity and inflammation associated with increased ceramides. PMID:26879888

  7. [Muscle-skeletal pain].

    Vygonskaya, M V; Filatova, E G

    2016-01-01

    The paper is devoted to the most complicated aspects of low back pain. The differences between specific and nonspecific low back pain using the "red flags" system is highlighted. The authors consider the causes of pain chronification (the "yellow flags" system) and the necessity of using a biopsychosocial model. Main pathogenetic mechanisms of chronic muscle/skeletal pain are considered and the possible involvement of several mechanism in the pathogenesis of chronic pain as well as the use of complex therapy is discussed. The high efficacy and safety of ketorolac in treatment of nonspecific muscle/skeletal pain is demonstrated. PMID:27042717

  8. Computational radiology in skeletal radiography

    Peloschek, Ph.; Nemec, S. [Computational Image Analysis and Radiology Lab (CIR), Department of Radiology, Medical University Vienna, Waehringer Guertel 18-20, A-1090 Vienna (Austria); Widhalm, P. [Computational Image Analysis and Radiology Lab (CIR), Department of Radiology, Medical University Vienna, Waehringer Guertel 18-20, A-1090 Vienna (Austria); Pattern Recognition and Image Processing Group, Department of Computer Aided Automation, Vienna University of Technology, Wiedner Hauptstrasse 8-10/020, A-1040 Vienna (Austria); Donner, R. [Computational Image Analysis and Radiology Lab (CIR), Department of Radiology, Medical University Vienna, Waehringer Guertel 18-20, A-1090 Vienna (Austria); Pattern Recognition and Image Processing Group, Department of Computer Aided Automation, Vienna University of Technology, Wiedner Hauptstrasse 8-10/020, A-1040 Vienna (Austria); Institute for Computer Graphics and Vision, Graz University of Technology, Inffeldgasse 16, A-8010 Graz (Austria); Birngruber, E. [Computational Image Analysis and Radiology Lab (CIR), Department of Radiology, Medical University Vienna, Waehringer Guertel 18-20, A-1090 Vienna (Austria); Thodberg, H.H. [Visiana Aps, Sollerodvej 57C, DK-2840 Holte (Denmark); Kainberger, F. [Computational Image Analysis and Radiology Lab (CIR), Department of Radiology, Medical University Vienna, Waehringer Guertel 18-20, A-1090 Vienna (Austria); Langs, G. [Computational Image Analysis and Radiology Lab (CIR), Department of Radiology, Medical University Vienna, Waehringer Guertel 18-20, A-1090 Vienna (Austria)], E-mail: georg.langs@meduniwien.ac.at

    2009-11-15

    Recent years have brought rapid developments in computational image analysis in musculo-skeletal radiology. Meanwhile the algorithms have reached a maturity that makes initial clinical use feasible. Applications range from joint space measurement to erosion quantification, and from fracture detection to the assessment of alignment angles. Current results of computational image analysis in radiography are very promising, but some fundamental issues remain to be clarified, among which the definition of the optimal trade off between automatization and operator-dependency, the integration of these tools into clinical work flow and last not least the proof of incremental clinical benefit of these methods.

  9. Computational radiology in skeletal radiography

    Recent years have brought rapid developments in computational image analysis in musculo-skeletal radiology. Meanwhile the algorithms have reached a maturity that makes initial clinical use feasible. Applications range from joint space measurement to erosion quantification, and from fracture detection to the assessment of alignment angles. Current results of computational image analysis in radiography are very promising, but some fundamental issues remain to be clarified, among which the definition of the optimal trade off between automatization and operator-dependency, the integration of these tools into clinical work flow and last not least the proof of incremental clinical benefit of these methods.

  10. The developing role of knee MRI in musculo-skeletal radiology: the progression to 3-D imaging

    The purpose of this paper, following a comprehensive and systematic review of the available literature, is to provide both a historical record of the development of knee MRI and outline its progression to new 'state of the art' three dimensional reconstruction techniques. while preliminary work has been done to qualitatively- explore the application of 3D knee MR in controlled research settings the true clinical value of such applications has not yet been clearly established. lt was found that in the absence of valid research findings, much of the reported work in this area relied heavily on both anecdotal evidence and hypothetical expressions of likelihood. Much work must still be done to validate the reliability and clinical usefulness of this new diagnostic tool. In following with the reports of previous authors, the likely benefits of a 3-D computer reconstructed model of the knee include improved display of complex anatomical relationships, clarification of anatomical structures, clear demonstration of anatomy/pathology for those unfamiliar with tomographic or sectional images,and reduced examination time. Work has also suggested that 3-D MR may allow accurate pre-surgical classification of lesions while facilitating operative planning and real time intra-operative navigation. Other areas of cutting edge research also include applications toward surgical robotics, simulated surgical procedures, tele surgery, bone and prosthesis modeling, and virtual endoscopy/arthroscopy One of the more practical potential benefits of 3-D image displays may lie in assisting the radiologist to communicate the appearance of normal anatomy or pathological processes to other medical staff likely to be less familiar with the interpretation of routine two dimensional images. Such a method may also prove useful in aiding clinicians to convey their diagnoses and means of treatment to patients. It is hoped that this review will provide a base point from which future work can be

  11. Development and evaluation of an affordable lift device to reduce musculo-skeletal injuries among home support workers.

    Heacock, Helen; Paris-Seeley, Nancy; Tokuno, Craig; Frederking, Sara; Keane, Brian; Mattie, Johanne; Kanigan, Ryan; Watzke, James

    2004-07-01

    Home support workers (HSWs) work in clients' homes assisting with rehabilitation and activities of daily living. Like all health-care professionals, HSWs are at an increased risk for developing back injuries. Lift devices have been shown to reduce injuries to the worker. Presently, there are few lifting devices for home use that cost under $4000 CDN. Our study involved designing a safe and affordable lift device (retail cost under $2000 CDN) to be used by HSWs in the home and evaluating it in a typical bathroom. Thirty-eight HSWs and three seniors evaluated the BCIT lift, a commercially available lift (BHM Medical Inc.) and the manual method of transfer and lift. Results indicated that the BCIT lift was an improvement over the manual method of transferring, and approximated the more expensive, automatic lift in terms of perceived exertion, ease of use and safety. Feedback provided to the researchers has been incorporated into a new, ergonomically sound and marketable lift device. PMID:15159204

  12. Magnetic resonance findings in skeletal muscle tears

    Magnetic resonance (MR) images of skeletal muscle tears can clearly delineate the severity of muscle injury. Although MR imaging is seldom necessary in patients with acute musle trauma, it can be helpful in deciding on clinical management. The two major MR findings in acute muscle tears are deformity of the muscle and the presence of abnormal signal reflecting hemorrhage and edema. In acute tears, methemoglobin within the extravascular blood causes high-signal areas on both T1- and T2-weighted images. With partial tears, the blood may dissect in a distinctive linear pattern along the muscle bundles and fibers. As healing begins, the muscle signal diminishes, first on the T1-weighted images and then on the T2-weighted images. When there is residual abnormal signal on images obtained more than several months after the injury, it is presumed to represent hemorrhage from recurrent tears. In patients with a questionable history of a remote injury, the clinical presentation may be that of persistent pain or a soft tissue mass. In these cases MR imaging may identify the cause of the pain and can exclude a neoplasm by proving that the mass is a hypertrophied or retracted musle. Thus, MR imaging has a limited, but occasionally important role in selected patients with skeletal muscle tears. (orig.)

  13. Transplacental delivery of the Wnt antagonist Frzb1 inhibits development of caudal paraxial mesoderm and skeletal myogenesis in mouse embryos.

    Borello, U; Coletta, M; Tajbakhsh, S; Leyns, L; De Robertis, E M; Buckingham, M; Cossu, G

    1999-10-01

    Axial structures (neural tube/notochord) and surface ectoderm activate myogenesis in the mouse embryo; their action can be reproduced, at least in part, by several molecules such as Sonic hedgehog and Wnts. Recently, soluble Wnt antagonists have been identified. Among those examined only Frzb1 was found to be expressed in the presomitic mesoderm and newly formed somites and thus its possible role in regulating myogenesis was investigated in detail. When presomitic mesoderm or newly formed somites were cultured with axial structures and surface ectoderm on a feeder layer of C3H10T1/2 cells expressing Frzb1, myogenesis was abolished or severely reduced in presomitic mesoderm and the three most recently formed somites. In contrast, no effect was observed on more mature somites. Inhibition of myogenesis did not appear to be associated with increased cell death since the final number of cells in the explants grown in the presence of Frzb1 was only slightly reduced in comparison with controls. In order to examine the possible function of Frzb1 in vivo, we developed a method based on the overexpression of the soluble antagonist by transient transfection of WOP cells with a Frzb1 expression vector and injection of transfected cells into the placenta of pregnant females before the onset of maternofoetal circulation. Frzb1, secreted by WOP cells, accumulated in the embryo and caused a marked reduction in size of caudal structures. Myogenesis was strongly reduced and, in the most severe cases, abolished. This was not due to a generalized toxic effect since only several genes downstream of the Wnt signaling pathway such as En1, Noggin and Myf5 were downregulated; in contrast, Pax3 and Mox1 expression levels were not affected even in embryos exhibiting the most severe phenotypes. Taken together, these results suggest that Wnt signals may act by regulating both myogenic commitment and expansion of committed cells in the mouse mesoderm. PMID:10477293

  14. Mandibular dimensional changes and skeletal maturity

    Priya Subramaniam

    2010-01-01

    Full Text Available Aim: Growth and development of the human face provides a fascinating interplay of form and function. Among the various facial bones, the mandible plays a very important role during various growth-modification therapies. These treatment modalities will yield a better result in less time if properly correlated with skeletal maturity. It is very essential to know where the site of growth occurs and also the time when it occurs or ceases to occur. This study was conducted to assess the mandibular dimensions at various stages of skeletal maturation. Materials and Methods: The subjects included 6 to 18-year-old children who were grouped according to their middle phalanx of the third finger stages of skeletal maturity. Lateral cephalographs were taken and, from their cephalometric tracings, linear and angular measurements of the mandible were made. The values obtained were subjected to statistical analysis. Results: Results showed that the mandibular height, length and symphysis thickness increased with skeletal maturity. An increase in angles SNB (Sella, Nasion, Supramentale and L1-MP (Long axis lower incisors- Mandibular plane and a decrease in the gonial angle and ANB (Subspinale, Nasion, Supramentale angle were observed. Conclusion: The study showed a significant correlation between mandibular growth and skeletal maturity.

  15. Chromosomal Abnormalities in ADHD

    J Gordon Millichap

    2002-07-01

    Full Text Available The prevalence of fragile X syndrome, velocardiofacial syndrome (VCFS, and other cytogenetic abnormalities among 100 children (64 boys with combined type ADHD and normal intelligence was assessed at the NIMH and Georgetown University Medical Center.

  16. Chromosomal abnormalities and autism

    Farida El-Baz

    2016-01-01

    Conclusion: Chromosomal abnormalities were not detected in the studied autistic children, and so the relation between the genetics and autism still needs further work up with different study methods and techniques.

  17. Kabuki Syndrome: a case report with severe ocular abnormalities

    Flavio Mac Cord Medina

    2013-10-01

    Full Text Available Kabuki syndrome is a rare congenital anomaly, characterized by five fundamental features, the "Pentad of Niikawa": dysmorphic facies, skeletal anomalies, dermatoglyphic abnormalities, mild to moderate mental retardation and postnatal growth deficiency. Patients present characteristic external ocular features, nonetheless they may also present significant ocular abnormalities. We report a case of a brazilian child diagnosed with Kabuki syndrome, addressing the clinical features observed, with emphasis on the ocular manifestations. This case highlights the existence of this syndrome and all of its complexity. The identification of preventable causes of loss of vision underlines the value of detailed ophthalmologic examination of Kabuki syndrome patients.

  18. The Relationship between Personality Dimensions and Resiliency to Environmental Stress in Orange-Winged Amazon Parrots (Amazona amazonica), as Indicated by the Development of Abnormal Behaviors

    Cussen, Victoria A.; Mench, Joy A.

    2015-01-01

    Parrots are popular companion animals, but are frequently relinquished because of behavioral problems, including abnormal repetitive behaviors like feather damaging behavior and stereotypy. In addition to contributing to pet relinquishment, these behaviors are important as potential indicators of diminished psychological well-being. While abnormal behaviors are common in captive animals, their presence and/or severity varies between animals of the same species that are experiencing the same e...

  19. A unified anatomy ontology of the vertebrate skeletal system.

    Dahdul, Wasila M; Balhoff, James P; Blackburn, David C; Diehl, Alexander D; Haendel, Melissa A; Hall, Brian K; Lapp, Hilmar; Lundberg, John G; Mungall, Christopher J; Ringwald, Martin; Segerdell, Erik; Van Slyke, Ceri E; Vickaryous, Matthew K; Westerfield, Monte; Mabee, Paula M

    2012-01-01

    The skeleton is of fundamental importance in research in comparative vertebrate morphology, paleontology, biomechanics, developmental biology, and systematics. Motivated by research questions that require computational access to and comparative reasoning across the diverse skeletal phenotypes of vertebrates, we developed a module of anatomical concepts for the skeletal system, the Vertebrate Skeletal Anatomy Ontology (VSAO), to accommodate and unify the existing skeletal terminologies for the species-specific (mouse, the frog Xenopus, zebrafish) and multispecies (teleost, amphibian) vertebrate anatomy ontologies. Previous differences between these terminologies prevented even simple queries across databases pertaining to vertebrate morphology. This module of upper-level and specific skeletal terms currently includes 223 defined terms and 179 synonyms that integrate skeletal cells, tissues, biological processes, organs (skeletal elements such as bones and cartilages), and subdivisions of the skeletal system. The VSAO is designed to integrate with other ontologies, including the Common Anatomy Reference Ontology (CARO), Gene Ontology (GO), Uberon, and Cell Ontology (CL), and it is freely available to the community to be updated with additional terms required for research. Its structure accommodates anatomical variation among vertebrate species in development, structure, and composition. Annotation of diverse vertebrate phenotypes with this ontology will enable novel inquiries across the full spectrum of phenotypic diversity. PMID:23251424

  20. Milk from dams fed an obesogenic diet combined with a high-fat/high-sugar diet induces long-term abnormal mammary gland development in the rabbit.

    Hue-Beauvais, C; Koch, E; Chavatte-Palmer, P; Galio, L; Chat, S; Letheule, M; Rousseau-Ralliard, D; Jaffrezic, F; Laloë, D; Aujean, E; Révillion, F; Lhotellier, V; Gertler, A; Devinoy, E; Charlier, M

    2015-04-01

    Alterations to the metabolic endocrine environment during early life are crucial to mammary gland development. Among these environmental parameters, the initial nutritional event after birth is the consumption of milk, which represents the first maternal support provided to mammalian newborns. Milk is a complex fluid that exerts effects far beyond its immediate nutritional value. The present study, therefore, aimed to determine the effect of the nutritional changes during the neonatal and prepubertal periods on the adult mammary phenotype. Newborn rabbits were suckled by dams fed a high-fat/high-sugar obesogenic (OD) or a control (CON) diet and then subsequently fed either the OD or CON diets from the onset of puberty and throughout early pregnancy. Mammary glands were collected during early pregnancy (Day 8 of pregnancy). Rabbits fed with OD milk and then subjected to an OD diet displayed an abnormal development of the mammary gland: the mammary ducts were markedly enlarged (P casein micelles. Leptin has been shown to be involved in modulating several developmental processes. We therefore analyzed its expression in the mammary gland. Mammary leptin mRNA was strongly expressed in rabbits fed with OD milk and subjected to an OD diet by comparison with the CON rabbits. Leptin transcripts and protein were localized in the epithelial cells, indicating that the increase in leptin synthesis occurs in this compartment. Taken together, these findings suggest that early-life nutritional history, in particular through the milking period, can determine subsequent mammary gland development. Moreover, they highlight the potentially important regulatory role that leptin may play during critical early-life nutritional windows with respect to long-term growth and mammary function. PMID:26020186

  1. Skeletal progenitors and the GNAS gene: fibrous dysplasia of bone read through stem cells

    Riminucci, Mara; Robey, Pamela Gehron; Saggio, Isabella; Bianco, Paolo

    2010-01-01

    Activating mutations of the GNAS gene, which causes fibrous dysplasia of bone (FD), lead to remarkable changes in the properties of skeletal progenitors, and it is these changes that mediate the pathological effect of this gene on bone. Mutated skeletal stem cells lose the ability to differentiate into adipocytes, and to maintain in situ, and transfer heterotopically, the hematopoietic microenvironment, leading to abnormal bone marrow histology in FD. They over-express molecular effectors of ...

  2. The role of skeletal sonography in limb lengthening procedures.

    Malde H; Hemmadi S; Chadda D; Parihar M; Bhosale P; Kedar R

    1993-01-01

    Eleven patients (8 males, 3 females) undergoing limb-lengthening procedures were subjected to weekly conventional radiography along with fortnightly skeletal sonography of the distraction site, to assess the rate of new bone production and complications. The radiographs were assessed for: (i) distance between the distracted bone ends, (ii) presence of new bone formation at the distraction site, (iii) regeneration of the cortical outline and (iv) overlaying soft tissue abnormality. The sonogra...

  3. Excessive astrocyte-derived neurotrophin-3 contributes to the abnormal neuronal dendritic development in a mouse model of fragile X syndrome.

    Qi Yang

    Full Text Available Fragile X syndrome (FXS is a form of inherited mental retardation in humans that results from expansion of a CGG repeat in the Fmr1 gene. Recent studies suggest a role of astrocytes in neuronal development. However, the mechanisms involved in the regulation process of astrocytes from FXS remain unclear. In this study, we found that astrocytes derived from a Fragile X model, the Fmr1 knockout (KO mouse which lacks FMRP expression, inhibited the proper elaboration of dendritic processes of neurons in vitro. Furthermore, astrocytic conditioned medium (ACM from KO astrocytes inhibited proper dendritic growth of both wild-type (WT and KO neurons. Inducing expression of FMRP by transfection of FMRP vectors in KO astrocytes restored dendritic morphology and levels of synaptic proteins. Further experiments revealed elevated levels of the neurotrophin-3 (NT-3 in KO ACM and the prefrontal cortex of Fmr1 KO mice. However, the levels of nerve growth factor (NGF, brain-derived neurotrophic factor (BDNF, glial cell-derived neurotrophic factor (GDNF, and ciliary neurotrophic factor (CNTF were normal. FMRP has multiple RNA-binding motifs and is involved in translational regulation. RNA-binding protein immunoprecipitation (RIP showed the NT-3 mRNA interacted with FMRP in WT astrocytes. Addition of high concentrations of exogenous NT-3 to culture medium reduced the dendrites of neurons and synaptic protein levels, whereas these measures were ameliorated by neutralizing antibody to NT-3 or knockdown of NT-3 expression in KO astrocytes through short hairpin RNAs (shRNAs. Prefrontal cortex microinjection of WT astrocytes or NT-3 shRNA infected KO astrocytes rescued the deficit of trace fear memory in KO mice, concomitantly decreased the NT-3 levels in the prefrontal cortex. This study indicates that excessive NT-3 from astrocytes contributes to the abnormal neuronal dendritic development and that astrocytes could be a potential therapeutic target for FXS.

  4. Paleopathological Study of Dwarfism-Related Skeletal Dysplasia in a Late Joseon Dynasty (South Korean Population.

    Eun Jin Woo

    Full Text Available Skeletal dysplasias related to genetic etiologies have rarely been reported for past populations. This report presents the skeletal characteristics of an individual with dwarfism-related skeletal dysplasia from South Korea. To assess abnormal deformities, morphological features, metric data, and computed tomography scans are analyzed. Differential diagnoses include achondroplasia or hypochondroplasia, chondrodysplasia, multiple epiphyseal dysplasia, thalassemia-related hemolytic anemia, and lysosomal storage disease. The diffused deformities in the upper-limb bones and several coarsened features of the craniofacial bones indicate the most likely diagnosis to have been a certain type of lysosomal storage disease. The skeletal remains of EP-III-4-No.107 from the Eunpyeong site, although incomplete and fragmented, provide important clues to the paleopathological diagnosis of skeletal dysplasias.

  5. Paleopathological Study of Dwarfism-Related Skeletal Dysplasia in a Late Joseon Dynasty (South Korean) Population

    Woo, Eun Jin; Lee, Won-Joon; Hu, Kyung-Seok; Hwang, Jae Joon

    2015-01-01

    Skeletal dysplasias related to genetic etiologies have rarely been reported for past populations. This report presents the skeletal characteristics of an individual with dwarfism-related skeletal dysplasia from South Korea. To assess abnormal deformities, morphological features, metric data, and computed tomography scans are analyzed. Differential diagnoses include achondroplasia or hypochondroplasia, chondrodysplasia, multiple epiphyseal dysplasia, thalassemia-related hemolytic anemia, and lysosomal storage disease. The diffused deformities in the upper-limb bones and several coarsened features of the craniofacial bones indicate the most likely diagnosis to have been a certain type of lysosomal storage disease. The skeletal remains of EP-III-4-No.107 from the Eunpyeong site, although incomplete and fragmented, provide important clues to the paleopathological diagnosis of skeletal dysplasias. PMID:26488291

  6. Mastoid abnormalities in Down syndrome

    Hearing loss and otitis media are commonly associated with Down syndrome. Hypoplasia of the mastoids is seen in many affected children and sclerosis of mastoid bones is not uncommon in Down syndrome. Awareness and early recognition of mastoid abnormality may lead to appropriate and timely therapy, thereby preserving the child's hearing or compensating for hearing loss; factors which are important for learning and maximum development. (orig.)

  7. Reversibility of skeletal fluorosis.

    Grandjean, P; Thomsen, G

    1983-01-01

    At two x ray examinations in 1957 and 1967, 17 cases of skeletal fluorosis were identified among long term cryolite workers in Copenhagen. In 1982 four of these patients were alive, eight to 15 years after exposure had ended. Radiographs were obtained, and the urinary fluoride excretion was measured. A similar picture emerged in all four cases: extensive fading of the sclerosis of trabecular bone in ribs, vertebral bodies, and pelvis, whereas cortical bone thickening and calcification of musc...

  8. Skeletal (stromal) stem cells

    Abdallah, Basem M; Kermani, Abbas Jafari; Zaher, Walid;

    2015-01-01

    Skeletal (marrow stromal) stem cells (BMSCs) are a group of multipotent cells that reside in the bone marrow stroma and can differentiate into osteoblasts, chondrocytes and adipocytes. Studying signaling pathways that regulate BMSC differentiation into osteoblastic cells is a strategy for....../preadipocyte factor 1 (Dlk1/Pref-1), the Wnt co-receptor Lrp5 and intracellular kinases. This article is part of a Special Issue entitled: Stem Cells and Bone....

  9. Neurological abnormalities predict disability

    Poggesi, Anna; Gouw, Alida; van der Flier, Wiesje;

    2014-01-01

    To investigate the role of neurological abnormalities and magnetic resonance imaging (MRI) lesions in predicting global functional decline in a cohort of initially independent-living elderly subjects. The Leukoaraiosis And DISability (LADIS) Study, involving 11 European centres, was primarily aimed...... at evaluating age-related white matter changes (ARWMC) as an independent predictor of the transition to disability (according to Instrumental Activities of Daily Living scale) or death in independent elderly subjects that were followed up for 3 years. At baseline, a standardized neurological examination...... abnormality independently predicted transition to disability or death [HR (95 % CI) 1.53 (1.01-2.34)]. The hazard increased with increasing number of abnormalities. Among MRI lesions, only ARWMC of severe grade independently predicted disability or death [HR (95 % CI) 2.18 (1.37-3.48)]. In our cohort...

  10. Skeletal Muscle Stem Cells from Animals I. Basic Cell Biology

    Michael V. Dodson, Gary J. Hausman, LeLuo Guan, Min Du, Theodore P. Rasmussen, Sylvia P. Poulos, Priya Mir, Werner G. Bergen, Melinda E. Fernyhough, Douglas C. McFarland, Robert P. Rhoads, Beatrice Soret, James M. Reecy, Sandra G. Velleman, Zhihua Jiang

    2010-01-01

    Skeletal muscle stem cells from food-producing animals are of interest to agricultural life scientists seeking to develop a better understanding of the molecular regulation of lean tissue (skeletal muscle protein hypertrophy) and intramuscular fat (marbling) development. Enhanced understanding of muscle stem cell biology and function is essential for developing technologies and strategies to augment the metabolic efficiency and muscle hypertrophy of growing animals potentially leading to grea...

  11. Skeletal muscle stem cells from animals I. basic cell biology

    Dodson, Michael V.; Hausman, Gary J.; Guan, Leluo; Du, Min; Rasmussen, Theodore P.; Poulos, Sylvia P; Mir, Priya; Bergen, Werner G.; Fernyhough, Melinda E.; McFarland, Douglas C.; Rhoads, Robert P.; Soret Lafraya, Beatriz; Reecy, James M.; Velleman, Sandra G; Jiang, Zhihua

    2010-01-01

    Skeletal muscle stem cells from food-producing animals are of interest to agricultural life scientists seeking to develop a better understanding of the molecular regulation of lean tissue (skeletal muscle protein hypertrophy) and intramuscular fat (marbling) development. Enhanced understanding of muscle stem cell biology and function is essential for developing technologies and strategies to augment the metabolic efficiency and muscle hypertrophy of growing animals potentially leading to grea...

  12. Development of an assessment methodology for geopressured zones of the upper Gulf Coast based on a study of abnormally pressured gas fields in south Texas

    Swanson, R K; Oetking, P; Osoba, J S; Hagens, R C

    1976-08-01

    Detailed study of the producing gas fields in south Texas has identified a total of 47 abnormally pressured fields in a six-county area including Hidalgo, Brooks, Cameron, Willacy, Kenedy, and Live Oak Counties. An assessment methodology for assessing the potential of the deep geopressured zone in south Texas as an energy resource was developed, based on investigation of the reservoir parameters of these fields. This methodology is transferrable to broad areas of the Gulf Coast. The depth of the geopressured zone in the study area ranges from 7000 ft in western Hidalgo to 12,000 ft in central Cameron County. Temperature data from within the fields, corrected to undisturbed reservoir values, yields a 300/sup 0/F isogeothermal surface at depths from 10,500 ft to 17,000 ft over the study area. The question of fluid deliverability was found to be paramount in determining the potential of the geopressure-geothermal resource as a practical source of energy. The critical parameter is the effective reservoir permeability throughout the study region. Individual fields were assessed for their potential to produce large quantities of geothermal fluid based on reservoir study and detailed geological investigation. Five locations within the study region have been selected as potential candidates for further evaluation and possible eventual testing. Based on investigation of permeability and temperature, the upper limit of fluid temperature likely to be produced in the lower south Texas study region is 300/sup 0/F. In Live Oak County, the possibility of producing fluid at higher temperatures is somewhat improved, with a reasonable possibility of producing fluid at 350/sup 0/ to 375/sup 0/F.

  13. Development and validation of an high-performance liquid chromatography-diode array detector method for the simultaneous determination of six phenolic compounds in abnormal savda munziq decoction

    Shuge Tian

    2015-01-01

    Full Text Available Aims: Given the high-effectiveness and low-toxicity of abnormal savda munziq (ASMQ, its herbal formulation has long been used in traditional Uyghur medicine to treat complex diseases, such as cancer, diabetes, and cardiovascular diseases. Settings and Design: ASMQ decoction by reversed-phase high-performance liquid chromatography coupled with a diode array detector was successfully developed for the simultaneous quality assessment of gallic acid, protocatechuic acid, caffeic acid, rutin, rosmarinic acid, and luteolin. The six phenolic compounds were separated on an Agilent TC-C18 reversed-phase analytical column (4.6 × 250 mm, 5 μm by gradient elution using 0.3% aqueous formic acid (v/v and 0.3% methanol formic acid (v/v at 1.0 mL/min. Materials and Methods: The plant material was separately ground and mixed at the following ratios (10: Cordia dichotoma (10.6, Anchusa italic (10.6, Euphorbia humifusa (4.9, Adiantum capillus-veneris (4.9, Ziziphus jujube (4.9, Glycyrrhiza uralensis (7.1, Foeniculum vulgare (4.9, Lavandula angustifolia (4.9, Dracocephalum moldavica L. (4.9, and Alhagi pseudoalhagi (42.3. Statistical Analysis Used: The precisions of all six compounds were 0.999. Results: The proposed method was successfully applied to determine the levels of six active components in ASMQ. Conclusions: Given the simplicity, precision, specificity, and sensitivity of the method, it can be utilized as a quality control approach to simultaneously determining the six phenolic compounds in AMSQ.

  14. Potential role and chronology of abnormal expression of the Deleted in Colon Cancer (DCC) and the p53 proteins in the development of gastric cancer

    Loss of activity of tumor suppressor genes is considered a fundamental step in a genetic model of carcinogenesis. Altered expression of the p53 and the Deleted in Colon Cancer (DCC) proteins has been described in gastric cancer and this event may have a role in the development of the disease. According to this hypothesis, we investigated the p53 and the DCC proteins expression in different stages of gastric carcinomas. An immunohistochemical analysis for detection of p53 and DCC proteins expression was performed in tumor tissue samples of patients with UICC stage I and II gastric cancer. For the purpose of the analysis, the staining results were related to the pathologic data and compared between stage categories. Ninety-four cases of gastric cancer were analyzed. Disease stage categories were pT1N0 in 23 cases, pT2N0 in 20 cases, pT3N0 in 20 cases and pT1-3 with nodal involvment in 31 cases. Stage pT1-2N0 tumors maintained a positive DCC expression while it was abolished in pT3N0 tumors (p <.001). A significant higher proportion of patients with N2 nodal involvement showed DCC negative tumors. In muscular-invading tumors (pT2-3N0) the majority of cases showed p53 overexpression, whereas a significantly higher proportion of cases confined into the mucosa (pT1N0) showed p53 negative tumors. Also, a higher frequency of p53 overexpression was detected in cases with N1 and N2 metastatic lymphnodal involvement. Altered expression of both DCC and p53 proteins is detectable in gastric carcinomas. It seems that loss of wild-type p53 gene function and consequent p53 overexpression may be involved in early stages of tumor progression while DCC abnormalities are a late event

  15. The Skeletally Immature and Newly Mature Throwing Athlete.

    Braithwaite, Kiery A; Marshall, Kelley W

    2016-09-01

    Injuries to the shoulder and elbow in the pediatric and adolescent throwing athlete are common. Both knowledge of throwing mechanics and understanding of normal bone development in the immature skeleton are key to the diagnosis, treatment, and potential prevention of these common injuries. Pathologic changes from chronic repetitive trauma to the developing shoulder and elbow manifest as distinctly different injuries that can be predicted by the skeletal maturation of the patient. Sites of vulnerability and resulting patterns of injury change as the child evolves from the skeletally immature little league player to the skeletally mature high school/college athlete. PMID:27545423

  16. Skeletal surveys in multiple myeloma

    Thirty-three patients with multiple myeloma were studied with serial skeletal surveys, serum immunoglobulin levels, and postabsorptive urinary hydroxyproline (Spot-HYPRO) determinations. Twenty receiving chemotherapy were also followed with skeletal surveys in order to evaluate bone response to treatment. A close association was found between skeletal findings and changes in immunoglubulin levels with positive correlation in 71% of the patients. A similar association was found between skeletal disease and Spot-HYPRO level changes in 65%. Five of 12 patients (42%) with partial or complete clinical response to chemotherapy, demonstrated improvement in the appearance of skeletal lesions. Positive correlation between the roentgenographic changes and clinical markers of myeloma as well as therapeutic response, indicates that skeletal surveys are useful and effective in monitoring patients with multiple myeloma. (orig.)

  17. CT of pleural abnormalities

    Briefly discussed were CT diagnosis of pleural thickening, CT technique for examining the pleura or pleuro-pulmonary disease, diagnosis of pleural collections, diagnosis of pleural fluid abnormalities in patients with pneumonia, pleural neoplasms, malignant (diffuse) mesothelioma, metastases, local fibrous tumor of the pleura (benign mesothelioma) (21 refs.)

  18. Are There Gender-Specific Pathways from Early Adolescence Psychological Distress Symptoms toward the Development of Substance Use and Abnormal Eating Behavior?

    Beato-Fernandez, Luis; Rodriguez-Cano, Teresa; Pelayo-Delgado, Esther; Calaf, Myralys

    2007-01-01

    The aim of the present longitudinal community study was to test whether psychological distress at 13 years of age predicted reported substance use problems in boys and abnormal eating behavior in girls 2 years later. The sample consisted of 500 male and 576 female students. The use of substances was evaluated using a semi-structured interview,…

  19. Relational development in children with cleft lip and palate: influence of the waiting period prior to the first surgical intervention and parental psychological perceptions of the abnormality

    Grollemund Bruno

    2012-06-01

    Full Text Available Abstract Background The birth of a child with a cleft lip, whether or not in association with a cleft palate, is a traumatic event for parents. This prospective, multidisciplinary and multi-centre study aims to explore the perceptions and feelings of parents in the year following the birth of their child, and to analyse parent–child relationships. Four inclusion centres have been selected, differing as to the date of the first surgical intervention, between birth and six months. The aim is to compare results, also distinguishing the subgroups of parents who were given the diagnosis in utero and those who were not. Methods/Design The main hypothesis is that the longer the time-lapse before the first surgical intervention, the more likely are the psychological perceptions of the parents to affect the harmonious development of their child. Parents and children are seen twice, when the child is 4 months (T0 and when the child is one year old (T1. At these two times, the psychological state of the child and his/her relational abilities are assessed by a specially trained professional, and self-administered questionnaires measuring factors liable to affect child–parent relationships are issued to the parents. The Alarme Détresse BéBé score for the child and the Parenting Stress Index score for the parents, measured when the child reaches one year, will be used as the main criteria to compare children with early surgery to children with late surgery, and those where the diagnosis was obtained prior to birth with those receiving it at birth. Discussion The mental and psychological dimensions relating to the abnormality and its correction will be analysed for the parents (the importance of prenatal diagnosis, relational development with the child, self-image, quality of life and also, for the first time, for the child (distress, withdrawal. In an ethical perspective, the different time lapses until surgery in the different protocols and their

  20. Abnormal secretion or extracellular matrix incorporation of fibrillin by dermal fibroblasts from patients with thoracic aortic aneurysms

    Milewicz, D.; Cao, S.; Cosselli, J. [Univ. of Texas Medical School, Houston, TX (United States)

    1994-09-01

    Abnormal synthesis, secretion, and extracellular matrix incorporation of fibrillin is observed in the majority of fibroblast cell strains obtained from individuals with the Marfan syndrome (>85%). These fibrillin protein abnormalities are due to mutations in the FBN1 gene. We have screened fibroblast cell strains from patients with thoracic aortic aneurysms (TAA) without skeletal or ocular features of the Marfan syndrome for defects in fibrillin synthesis or processing. Dermal fibroblasts obtained from biopsies were pulse labeled with [{sup 35}S]cysteine for 30 minutes and then chased for 0, 4, and 20 hours. The media, cell lysate and extracellular matrix were harvested separately, then analyzed by SDS-PAGE. We selected fibroblasts from 17 TAA patients to study based on the development of a TAA at a young age or a family history of TAAs. Cells from 3 patients synthesized and secreted fibrillin normally, but did not incorporate the fibrillin in the extracellular matrix. None of the cell strains were found to have diminished synthesis of fibrillin when compared with control cells. We were unable to detect abnormalities in the synthesis, secretion, or matrix incorporation of fibrillin by cells from 9 of the 17 patients. These results indicate that fibrillin protein defects are found in a significant number of patients with TAAs who are young or have a family history of TAAs. Analysis of the FBN1 gene for mutations in these patients with fibrillin protein defects will determine if the observed protein abnormalities are the result of FBN1 gene mutations.

  1. Engineering skeletal muscle tissue in bioreactor systems

    An Yang; Li Dong

    2014-01-01

    Objective To give a concise review of the current state of the art in tissue engineering (TE) related to skeletal muscle and kinds of bioreactor environment.Data sources The review was based on data obtained from the published articles and guidelines.Study selection A total of 106 articles were selected from several hundred original articles or reviews.The content of selected articles is in accordance with our purpose and the authors are authorized scientists in the study of engineered muscle tissue in bioreactor.Results Skeletal muscle TE is a promising interdisciplinary field which aims at the reconstruction of skeletal muscle loss.Although numerous studies have indicated that engineering skeletal muscle tissue may be of great importance in medicine in the near future,this technique still represents a limited degree of success.Since tissue-engineered muscle constructs require an adequate connection to the vascular system for efficient transport of oxygen,carbon dioxide,nutrients and waste products.Moreover,functional and clinically applicable muscle constructs depend on adequate neuromuscular junctions with neural calls.Third,in order to engineer muscle tissue successfully,it may be beneficial to mimic the in vivo environment of muscle through association with adequate stimuli from bioreactors.Conclusion Vascular system and bioreactors are necessary for development and maintenance of engineered muscle in order to provide circulation within the construct.

  2. Skeletal manifestations of juvenile hypothyroidism and the impact of treatment on skeletal system

    Manish Gutch

    2013-01-01

    Full Text Available Thyroid hormone mediates growth and development of the skeleton through its direct effects and through its permissive effects on growth hormone. The effect of hypothyroidism on bone is well described in congenital hypothyroidism, but the impact of thyroid hormone deficiency on a growing skeleton, as it happens with juvenile hypothyroidism, is less defined. In addition, the extent to which the skeletal defects of juvenile hypothyroidism revert on the replacement of thyroid hormone is not known. A study was undertaken in 29 juvenile autoimmune hypothyroid patients to study the skeletal manifestations of juvenile hypothyroidism and the impact of treatment of hypothyroidism on the skeletal system of juvenile patients. Hypothyroidism has a profound impact on the skeletal system and delayed bone age, dwarfism, and thickened bands at the metaphyseal ends being the most common findings. Post treatment, skeletal findings like delayed bone age and dwarfism improved significantly, but there were no significant changes in enlargement of sella, presence of wormian bones, epihyseal dysgenesis, vertebral changes and thickened band at the metaphyseal ends. With the treatment of hypothyroidism, there is an exuberant advancement of bone age, the catch up of bone age being approximately double of the chronological age advancement.

  3. Lower thoracic spinal cord injury without radiographic abnormality in an amateur rugby player.

    Smith, Hannah K; Durnford, Andrew J; Sherlala, Khaled; Merriam, William F

    2012-01-01

    A 37-year-old man, amateur rugby player sustained a hyperextension injury to his lower thoracic spine during a scrum collapse. The patient developed extreme hyperpathia in the T10-12 dermatome, and parasthesia from T12 to S1 in the left lower limb. Medical Research Council grade 5 power was regained rapidly within minutes of the accident, and the hyperpathia resolved within a week. MRI showed contusion of the spinal cord at T10 level but no associated osseoligamentous injury. Six months later, parasthesia and subjective weakness remained in the left lower limb. To our knowledge, this is the first description of a lower thoracic spinal cord injury without radiographic abnormality following an isolated low-energy injury in a skeletally mature patient. PMID:23104628

  4. Skeletal muscle connective tissue

    Brüggemann, Dagmar Adeline

      The connective tissue content of skeletal muscle is believed to be the major factor responsible for defining the eating quality of different meat cuts, although attempts to correlate quantifications based on traditional histological methods have not as yet been able to prove this relation...... systems of muscle have been visualized in their full complexity, including the ‘neglected' lymphatic capillaries at the level of the endomysium. These findings serve to remind us that muscle contraction is not only about force generation and transmission, but also about nutrient supply and waste removal...

  5. Abnormal Behavior in Relation to Cage Size in Rhesus Monkeys

    Paulk, H. H.; And Others

    1977-01-01

    Examines the effects of cage size on stereotyped and normal locomotion and on other abnormal behaviors in singly caged animals, whether observed abnormal behaviors tend to co-occur, and if the development of an abnormal behavior repertoire leads to reduction in the number of normal behavior categories. (Author/RK)

  6. The Spacing Principle for Unlearning Abnormal Neuronal Synchrony

    Popovych, Oleksandr V.; Markos N Xenakis; Peter A. Tass

    2015-01-01

    Desynchronizing stimulation techniques were developed to specifically counteract abnormal neuronal synchronization relevant to several neurological and psychiatric disorders. The goal of our approach is to achieve an anti-kindling, where the affected neural networks unlearn abnormal synaptic connectivity and, hence, abnormal neuronal synchrony, by means of desynchronizing stimulation, in particular, Coordinated Reset (CR) stimulation. As known from neuroscience, psychology and education, lear...

  7. Abnormal ionization in sonoluminescence

    张文娟; 安宇

    2015-01-01

    Sonoluminescence is a complex phenomenon, the mechanism of which remains unclear. The present study reveals that an abnormal ionization process is likely to be present in the sonoluminescing bubble. To fit the experimental data of previous studies, we assume that the ionization energies of the molecules and atoms in the bubble decrease as the gas density increases and that the decrease of the ionization energy reaches about 60%–70%as the bubble flashes, which is difficult to explain by using previous models.

  8. Pathobiochemical Changes in Diabetic Skeletal Muscle as Revealed by Mass-Spectrometry-Based Proteomics

    Kay Ohlendieck

    2012-01-01

    Full Text Available Insulin resistance in skeletal muscle tissues and diabetes-related muscle weakness are serious pathophysiological problems of increasing medical importance. In order to determine global changes in the protein complement of contractile tissues due to diabetes mellitus, mass-spectrometry-based proteomics has been applied to the investigation of diabetic muscle. This review summarizes the findings from recent proteomic surveys of muscle preparations from patients and established animal models of type 2 diabetes. The potential impact of novel biomarkers of diabetes, such as metabolic enzymes and molecular chaperones, is critically examined. Disease-specific signature molecules may be useful for increasing our understanding of the molecular and cellular mechanisms of insulin resistance and possibly identify new therapeutic options that counteract diabetic abnormalities in peripheral organ systems. Importantly, the biomedical establishment of biomarkers promises to accelerate the development of improved diagnostic procedures for characterizing individual stages of diabetic disease progression, including the early detection of prediabetic complications.

  9. Ultrasonography of splenic abnormalities

    Ming-Jen Chen; Ming-Jer Huang; Wen-Hsiung Chang; Tsang-En Wang; Horng-Yuan Wang; Cheng-Hsin Chu; Shee-Chan Lin; Shou-Chuan Shih

    2005-01-01

    AIM: This report gives a comprehensive overview of ultrasonography of splenic abnormalities. Certain ultrasonic features are also discussed with pathologic correlation.METHODS: We review the typical ultrasonic characteristics of a wide range of splenic lesions, illustrating them with images obtained in our institution from 2000 to 2003.One hundred and three patients (47 men, 56 women),with a mean age of 54 years (range 9-92 years), were found to have an abnormal ultrasonic pattern of spleen.RESULTS: We describe the ultrasonic features of various splenic lesions such as accessory spleen, splenomegaly,cysts, cavernous hemangiomas, lymphomas, abscesses,metastatic tumors, splenic infarctions, hematomas, and rupture, based on traditional gray-scale and color Doppler sonography.CONCLUSION: Ultrasound is a widely available, noninvasive,and useful means of diagnosing splenic abnormalities. A combination of ultrasonic characteristics and clinical data may provide an accurate diagnosis. If the US appearance alone is not enough, US may also be used to guide biopsy of suspicious lesions.

  10. Skeletal Muscle Mass Indices in Healthy Young Mexican Adults Aged 20–40 Years: Implications for Diagnoses of Sarcopenia in the Elderly Population

    2014-01-01

    Background and Objectives. Skeletal muscle and skeletal muscle indices in young adults from developing countries are sparse. Indices and the corresponding cut-off points can be a reference for diagnoses of sarcopenia. This study assessed skeletal muscle using dual-energy X-ray absorptiometry (DXA) in healthy male and female subjects aged 20–40 years and compared their appendicular skeletal muscle mass (ASM) and total-body skeletal muscle (TBSM) indices using certain cut-off points published i...

  11. The skeletal system

    The joy of diagnostic radiology is derived in great measure in its neverending variety including the unveiling of new diagnostic entities and new information concerning known disease processes. This year is no exception in the fascinating documentation of skeletal disease. In the study of disorders of the joints, CT investigation of the temporomandibular joint and arthotomography of the shoulder are gaining in popularity. New observations concerning cyst-like osseous lesions in lupus erthematosis, destructive joint lesions in renal osteodystrophy, and intra- and periarticular calcifications secondary to steroid injections have come forward. Articles discussing interesting observations concerning chondrosarcoma are included as well as one that describes the demonstration of fluid levels in aneurysmal bone cysts by CT. Ossification in soft tissues following resection of giant cell tumors as evidence of residual neoplasm is an important new sign. Marrow transplantation for treatment of mucopolysaccharidosis represents a new therapeutic breakthrough. Some of the skeletal manifestions of hypomagnesemia, 13-cis-retinoic acid, and aluminum are elucidated in this year's articles on metabolic disease. Further studies of methods of measuring bone density are also included

  12. Remote disassembly of an abnormal multiplication system

    The method of abnormal multiplying systems remote disassembling is described. This method was worked through in actual operations as response to the nuclear accident at the RFNC-VNIIEF criticality test facility FKBN-2M on 17 June 1997. The abnormal assembly was a sphere of 235U (90%), surrounded by a copper reflector. The detailed information on the multiplying system disassembly operations could be of use to the experts at other institutions when they develop emergency response plans. (author)

  13. Abnormal Head Position in Infantile Nystagmus Syndrome

    Susana Noval; Mar González-Manrique; José María Rodríguez-Del Valle; José María Rodríguez-Sánchez

    2011-01-01

    Infantile nystagmus is an involuntary, bilateral, conjugate, and rhythmic oscillation of the eyes which is present at birth or develops within the first 6 months of life. It may be pendular or jerk-like and, its intensity usually increases in lateral gaze, decreasing with convergence. Up to 64% of all patients with nystagmus also present strabismus, and even more patients have an abnormal head position. The abnormal head positions are more often horizontal, but they may also be vertical or ta...

  14. Abnormal uterine bleeding: a clinicohistopathological analysis

    Anupamasuresh Y; Suresh YV; Prachi Jain*,

    2014-01-01

    Background: Abnormal uterine bleeding (AUB) is one of the most common problem for the patients and the gynecologists. It adversely effects on the quality of life and psychology of women. It is of special concern in developing country as it adds to the causes of anemia. Management of Abnormal Uterine Bleeding (AUB) is not complete without tissue diagnosis especially in perimenopausal and post-menopausal women. Histological characteristics of endometrial biopsy material as assessed by light mic...

  15. A simple and rapid method to characterize lipid fate in skeletal muscle

    Massart, Julie; Zierath, Juleen R.; Chibalin, Alexander V.

    2014-01-01

    Background Elevated fatty acids contribute to the development of type 2 diabetes and affect skeletal muscle insulin sensitivity. Since elevated intramuscular lipids and insulin resistance is strongly correlated, aberrant lipid storage or lipid intermediates may be involved in diabetes pathogenesis. The aim of this study was to develop a method to determine the dynamic metabolic fate of lipids in primary human skeletal muscle cells and in intact mouse skeletal muscle. We report a simple and fa...

  16. Ectopic lipid deposition and the metabolic profile of skeletal muscle in ovariectomized mice

    Jackson, Kathryn C.; Wohlers, Lindsay M.; Richard M. Lovering; Schuh, Rosemary A.; Maher, Amy C.; Bonen, Arend; Koves, Timothy R.; Ilkayeva, Olga; Thomson, David M.; Muoio, Deborah M.; Spangenburg, Espen E.

    2012-01-01

    Disruptions of ovarian function in women are associated with increased risk of metabolic disease due to dysregulation of peripheral glucose homeostasis in skeletal muscle. Our previous evidence suggests that alterations in skeletal muscle lipid metabolism coupled with altered mitochondrial function may also develop. The objective of this study was to use an integrative metabolic approach to identify potential areas of dysfunction that develop in skeletal muscle from ovariectomized (OVX) femal...

  17. MeCP2 Affects Skeletal Muscle Growth and Morphology through Non Cell-Autonomous Mechanisms.

    Valentina Conti

    Full Text Available Rett syndrome (RTT is an autism spectrum disorder mainly caused by mutations in the X-linked MECP2 gene and affecting roughly 1 out of 10.000 born girls. Symptoms range in severity and include stereotypical movement, lack of spoken language, seizures, ataxia and severe intellectual disability. Notably, muscle tone is generally abnormal in RTT girls and women and the Mecp2-null mouse model constitutively reflects this disease feature. We hypothesized that MeCP2 in muscle might physiologically contribute to its development and/or homeostasis, and conversely its defects in RTT might alter the tissue integrity or function. We show here that a disorganized architecture, with hypotrophic fibres and tissue fibrosis, characterizes skeletal muscles retrieved from Mecp2-null mice. Alterations of the IGF-1/Akt/mTOR pathway accompany the muscle phenotype. A conditional mouse model selectively depleted of Mecp2 in skeletal muscles is characterized by healthy muscles that are morphologically and molecularly indistinguishable from those of wild-type mice raising the possibility that hypotonia in RTT is mainly, if not exclusively, mediated by non-cell autonomous effects. Our results suggest that defects in paracrine/endocrine signaling and, in particular, in the GH/IGF axis appear as the major cause of the observed muscular defects. Remarkably, this is the first study describing the selective deletion of Mecp2 outside the brain. Similar future studies will permit to unambiguously define the direct impact of MeCP2 on tissue dysfunctions.

  18. Ribosome biogenesis during skeletal muscle hypertrophy

    von Walden, Ferdinand

    2014-01-01

    Muscle adaptation to chronic resistance exercise (RE) is the result of a cumulative effect on gene expression and protein content. Following a bout of RE, muscle protein synthesis increases and, if followed by consecutive bouts (training), protein accretion and muscle hypertrophy develops. The protein synthetic capacity of the muscle is dictated by ribosome content. Therefore, the general aim of this thesis is to investigate the regulation of ribosome biogenesis during skeletal muscle hypertr...

  19. Collagen quantification across human skeletal muscles

    Lin, Evie Ya Hui

    2011-01-01

    Intramuscular connective tissue provides structural stability and facilitates force transmission in skeletal muscle. Additionally, it contains extracellular matrix that is crucial for muscle development and regeneration¹. Alterations of collagen content within intramuscular connective tissue have been associated with aging or diseased muscle ²,³. Data of baseline collagen content among different muscles, to provide deeper understanding of normal muscular functions, does not exist. Hence the a...

  20. Myosin heavy-chain isoform distribution, fibre-type composition and fibre size in skeletal muscle of patients on haemodialysis

    Molsted, Stig; Eidemak, Inge; Sorensen, Helle Tauby;

    2007-01-01

    Objective. Chronic uraemia is associated with abnormalities in skeletal muscles, which can affect their working capacity. It is also well known that the fibre-type composition of skeletal muscles influences endurance, muscle strength and power. In this study we therefore determined the size and d...... percentage of type 1 fibres is very rarely observed in normal untrained subjects. Chronic uraemia more severely affects the composition than the size of fibres.......Objective. Chronic uraemia is associated with abnormalities in skeletal muscles, which can affect their working capacity. It is also well known that the fibre-type composition of skeletal muscles influences endurance, muscle strength and power. In this study we therefore determined the size and...... on HD. The size and distribution of muscle fibres were evaluated using adenosine triphosphate synthase (ATPase) histochemistry, whilst MHC isoform composition was determined in muscle homogenates using sodium dodecyl culphatepolyacrylamide gel electrophoresis. Values were compared to those for a...

  1. Is skeletal anchorage changing the limit of orthodontics?

    Melsen, Birte

    2007-01-01

    and can be loaded immediately. The course will be addressed the following topics: Are the mini-implants replacing conventional anchorage? Why are orthodontic mini-implants necessary? The development of the skeletal anchorage systems The biological basis for the skeletal anchorage systems...... The characteristics of the different skeletal anchorage systems The insertion procedure The indications for the use of orthodontic mini-implants Treatment planning in relation to the use of mini-implants Case presentations......The limits for orthodontic treatment are often set by the lack of suitable anchorage. The mini-implant is used where conventional anchorage cannot be applied; not as a replacement for conventional anchorage. In patients with lack of teeth and reduced periodontium, skeletal anchorage allows...

  2. Skeletal crystals of calcite and trona from hot-spring deposits in Kenya and New Zealand

    Jones, B. [Univ. of Alberta, Edmonton, Alberta (Canada). Dept. of Earth and Atmospheric Sciences; Renaut, R.W. [Univ. of Saskatchewan, Saskatoon, Saskatchewan (Canada). Dept. of Geological Sciences

    1996-01-01

    Skeletal crystals are hollow crystals that develop because their outer walls grow before their cores. The presence of skeletal crystals of calcite (three types--trigonal prisms, hexagonal prisms, and plates) and trona in hot (> 90 C) spring deposits in New Zealand (Waikite Springs and Ohaaki Pool) and Kenya (Lorusio hot springs) shows that they can form in natural sedimentary regimes. Analysis of samples from these deposits shows that this crystal morphology develops under disequilibrium conditions that are unrelated to a specific environmental or diagenetic setting. Skeletal crystals transform into solid crystals when subsequent precipitation fills their hollow cores. In some cases, this may involve precipitation of crystalline material that has a sieve-like texture. In other examples, the skeletal crystal provides a framework upon which other materials can be precipitated. Walls in the skeletal trigonal calcite prisms from Waikite Springs are formed of subcrystals that mimic the shape of the parent crystal. Similarly, plate-like skeletal crystals from Lorusio are formed of densely packed subcrystals that are < 0.5 {micro}m long. Conversely, the walls of the skeletal hexagonal calcite crystals from Ohaaki Pool and the skeletal trona crystals from Lorusio are not formed of subcrystals. Recognition of skeletal crystals is important because they represent growth that follows the reverse pattern of normal growth. Failure to recognize that crystal growth followed the skeletal motif may lead to false interpretations concerning the growth of a crystal.

  3. In vivo Phosphoproteome of Human Skeletal Muscle Revealed by Phosphopeptide Enrichment and HPLC-ESI-MS/MS

    Højlund, Kurt; Bowen, Benjamin P.; Hwang, Hyonson; Flynn, Charles R.; Madireddy, Lohith; Thangiah, Geetha; Langlais, Paul; Meyer, Christian; Mandarino, Lawrence J.; Yi, Zhengping

    2009-01-01

    Protein phosphorylation plays an essential role in signal transduction pathways that regulate substrate and energy metabolism, contractile function, and muscle mass in human skeletal muscle. Abnormal phosphorylation of signaling enzymes has been identified in insulin resistant muscle using phosphoepitope-specific antibodies, but its role in other skeletal muscle disorders remains largely unknown. This may be in part due to insufficient knowledge of relevant targets. Here, we therefore present...

  4. Regulation of Skeletal Muscle by microRNAs.

    Diniz, Gabriela Placoná; Wang, Da-Zhi

    2016-01-01

    MicroRNAs (miRNAs) are a class of small noncoding RNAs highly conserved across species. miRNAs regulate gene expression posttranscriptionally by base pairing to complementary sequences mainly in the 3'-untranslated region of their target mRNAs to induce mRNA cleavage and translational repression. Thousands of miRNAs have been identified in human and their function has been linked to the regulation of both physiological and pathological processes. The skeletal muscle is the largest human organ responsible for locomotion, posture, and body metabolism. Several conditions such as aging, immobilization, exercise, and diet are associated with alterations in skeletal muscle structure and function. The genetic and molecular pathways that regulate muscle development, function, and regeneration as well as muscular disease have been well established in past decades. In recent years, numerous studies have underlined the importance of miRNAs in the control of skeletal muscle development and function, through its effects on several biological pathways critical for skeletal muscle homeostasis. Furthermore, it has become clear that alteration of the expression of many miRNAs or genetic mutations of miRNA genes is associated with changes on myogenesis and on progression of several skeletal muscle diseases. The present review provides an overview of the current studies and recent progress in elucidating the complex role exerted by miRNAs on skeletal muscle physiology and pathology. © 2016 American Physiological Society. Compr Physiol 6:1279-1294, 2016. PMID:27347893

  5. Skeletal measurements among infants who die during the perinatal period: new population-based reference

    Background: Reference data for roentgen skeletal measurements among infants who die during the perinatal period is not available, although it might prove helpful in the study of pre-autopsy radiographs. Objective: Our aim was to define new population-based reference data for skeletal measurements among infants who die during the perinatal period. Materials and methods: We routinely took standardised pre-autopsy radiographs of aborted and stillborn fetuses from 16 weeks gestational age to 7 days after delivery during a period of 11 years in our hospital. The data presented here represents nearly all perinatal deaths in a well-defined geographical area during the study period. We calculated detailed plots of estimated 10th-90th centiles and quartiles of different skeletal measurements by gestational age at death. Results: High correlations were seen between birth weight and the different skeletal measurements, including cranial width (r>0.9, P<0.001). We were not able to identify any asymmetrical pattern of skeletal growth. Reference plots for femoral, tibial, humeral, radial and lumbar spine lengths, and for pelvic width are presented. Conclusions: We suggest that the current population-based reference data might be beneficial, and that skeletal radiographic measurements might contribute substantially in the assessment of fetal growth stage and in detection of skeletal abnormalities in infants who die during the perinatal period. (orig.)

  6. Skeletal measurements among infants who die during the perinatal period: new population-based reference

    Olsen, Oeystein E.; Rosendahl, Karen [Department of Radiology, Haukeland University Hospital, 5021 Bergen (Norway); Lie, Rolv T. [Section for Medical Statistics and Medical Birth Registry of Norway, University of Bergen, Bergen (Norway); Maartmann-Moe, Helga [Department of Pathology, Haukeland University Hospital, Bergen (Norway); Pirhonen, Jouko [Department of Obstetrics and Gynaecology, Ullevaal Hospital, University of Oslo, Oslo (Norway); Lachman, Ralph S. [International Skeletal Dysplasia Registry, Cedars-Sinai Medical Center, Los Angeles, California (United States)

    2002-09-01

    Background: Reference data for roentgen skeletal measurements among infants who die during the perinatal period is not available, although it might prove helpful in the study of pre-autopsy radiographs. Objective: Our aim was to define new population-based reference data for skeletal measurements among infants who die during the perinatal period. Materials and methods: We routinely took standardised pre-autopsy radiographs of aborted and stillborn fetuses from 16 weeks gestational age to 7 days after delivery during a period of 11 years in our hospital. The data presented here represents nearly all perinatal deaths in a well-defined geographical area during the study period. We calculated detailed plots of estimated 10th-90th centiles and quartiles of different skeletal measurements by gestational age at death. Results: High correlations were seen between birth weight and the different skeletal measurements, including cranial width (r>0.9, P<0.001). We were not able to identify any asymmetrical pattern of skeletal growth. Reference plots for femoral, tibial, humeral, radial and lumbar spine lengths, and for pelvic width are presented. Conclusions: We suggest that the current population-based reference data might be beneficial, and that skeletal radiographic measurements might contribute substantially in the assessment of fetal growth stage and in detection of skeletal abnormalities in infants who die during the perinatal period. (orig.)

  7. Skeletal changes in tuberous sclerosis

    This paper is based on the skeletal changes which were found in six cases with confirmed tuberous sclerosis. The bone changes of this rare condition are summarised. The differential diagnosis is discussed. (orig.)

  8. PDH regulation in skeletal muscle

    Kiilerich, Kristian

    state is determined by the overall content / activity of the regulatory proteins PDH kinase (PDK), of which there are 4 isoforms, and PDH phosphatase (PDP), of which there are 2 isoforms. The overall aim of the PhD project was to elucidate 4 issues. 1: Role of muscle type in resting and exercise......-induced PDH regulation in human skeletal muscle. 2: Effect of muscle glycogen on PDH regulation in human skeletal muscle at rest and during exercise. 3: The impact of physical inactivity on PDH regulation in human skeletal muscle at rest and during exercise. 4: Elucidating the importance of PGC-1? in PDH...... regulation in mouse skeletal muscle at rest and in response to fasting and during recovery from exercise. The studies indicate that the content of PDH-E1? in human muscle follows the metabolic profile of the muscle, rather than the myosin heavy chain fiber distribution of the muscle. The larger lactate...

  9. Regulation of skeletal muscle proteolysis

    Slee, Adrian

    2005-01-01

    Proteolysis is a component of protein turnover, controlled by multiple proteolytic systems. Alterations in system components within skeletal muscle has been associated with hypertrophy, remodelling, atrophy, apoptosis and metabolic dysregulation. Key components may have novel regulatory roles, e. g. calpain-3 and cathepsin-L. Experiments described within this thesis investigated the hypothesis that the gene expression of specific proteolytic system components within skeletal muscle may be co-...

  10. Simvastatin effects on skeletal muscle

    Larsen, Steen; Stride, Nis; Hey-Mogensen, Martin;

    2013-01-01

    Glucose tolerance and skeletal muscle coenzyme Q(10) (Q(10)) content, mitochondrial density, and mitochondrial oxidative phosphorylation (OXPHOS) capacity were measured in simvastatin-treated patients (n = 10) and in well-matched control subjects (n = 9).......Glucose tolerance and skeletal muscle coenzyme Q(10) (Q(10)) content, mitochondrial density, and mitochondrial oxidative phosphorylation (OXPHOS) capacity were measured in simvastatin-treated patients (n = 10) and in well-matched control subjects (n = 9)....

  11. Relationship between abnormal blood rheology and development and recovery of hypertension and cerebral infarction%血液流变学异常与高血压和脑梗死发生、转归的相关性

    赵刚

    2002-01-01

    Background:Increased blood pressure in hypertension is related to vessels resistance,cardiac output,as well as blood viscosity.Stroke is common following hypertension.A number of studies reported that abnormal blood rheology was frequent in stroke suggesting correlation of blood rheology with onset,development,recovery of hypertension.Hypertension is the most one of independent risk factors of stroke.In the current paper,we investigated pathogenesis and development of hypertension and cerebral infarction to provide principle foundation for early prevention and treatment of cerebral infarciton.

  12. Computational Model of Cellular Metabolic Dynamics in Skeletal Muscle Fibers during Moderate Intensity Exercise

    Li, Yanjun; Lai, Nicola; Kirwan, John P; Saidel, Gerald M.

    2012-01-01

    Human skeletal muscles have different fiber types with distinct metabolic functions and physiological properties. The quantitative metabolic responses of muscle fibers to exercise provide essential information for understanding and modifying the regulatory mechanisms of skeletal muscle. Since in vivo data from skeletal muscle during exercise is limited, a computational, physiologically based model has been developed to quantify the dynamic metabolic responses of many key chemical species. Thi...

  13. Myogenin Regulates Exercise Capacity and Skeletal Muscle Metabolism in the Adult Mouse

    Flynn, Jesse M.; Eric Meadows; Marta Fiorotto; Klein, William H.

    2010-01-01

    Although skeletal muscle metabolism is a well-studied physiological process, little is known about how it is regulated at the transcriptional level. The myogenic transcription factor myogenin is required for skeletal muscle development during embryonic and fetal life, but myogenin's role in adult skeletal muscle is unclear. We sought to determine myogenin's function in adult muscle metabolism. A Myog conditional allele and Cre-ER transgene were used to delete Myog in adult mice. Mice were ana...

  14. Oxidative stress (Glutathionylation) and Na,K-ATPase activity in rat skeletal muscle

    Juel, Carsten

    2014-01-01

    Background Changes in ion distribution across skeletal muscle membranes during muscle activity affect excitability and may impair force development. These changes are counteracted by the Na,K-ATPase. Regulation of the Na,K-ATPase is therefore important for skeletal muscle function. The present study investigated the presence of oxidative stress (glutathionylation) on the Na,K-ATPase in rat skeletal muscle membranes. Results Immunoprecipitation with an anti-glutathione antibody and subsequent ...

  15. Prenatal imaging of distal limb abnormalities using OCT in mice

    Larina, Irina V.; Syed, Saba H.; Dickinson, Mary E.; Overbeek, Paul; Larin, Kirill V.

    2012-01-01

    Congenital abnormalities of the limbs are common birth defects. These include missing or extra fingers or toes, abnormal limb length, and abnormalities in patterning of bones, cartilage or muscles. Optical Coherence Tomography (OCT) is a 3-D imaging modality, which can produce high-resolution (~8 μm) images of developing embryos with an imaging depth of a few millimeters. Here we demonstrate the capability of OCT to perform 3D imaging of limb development in normal embryos and a mouse model with congenital abnormalities. Our results suggest that OCT is a promising tool to analyze embryonic limb development in mammalian models of congenital defects.

  16. Abnormal motor phenotype at adult stages in mice lacking type 2 deiodinase.

    Soledad Bárez-López

    Full Text Available BACKGROUND: Thyroid hormones have a key role in both the developing and adult central nervous system and skeletal muscle. The thyroid gland produces mainly thyroxine (T4 but the intracellular concentrations of 3,5,3'-triiodothyronine (T3; the transcriptionally active hormone in the central nervous system and skeletal muscle are modulated by the activity of type 2 deiodinase (D2. To date no neurological syndrome has been associated with mutations in the DIO2 gene and previous studies in young and juvenile D2-knockout mice (D2KO did not find gross neurological alterations, possibly due to compensatory mechanisms. AIM: This study aims to analyze the motor phenotype of 3-and-6-month-old D2KO mice to evaluate the role of D2 on the motor system at adult stages in which compensatory mechanisms could have failed. RESULTS: Motor abilities were explored by validated tests. In the footprint test, D2KO showed an altered global gait pattern (mice walked slower, with shorter strides and with a hindlimb wider base of support than wild-type mice. No differences were detected in the balance beam test. However, a reduced latency to fall was found in the rotarod, coat-hanger and four limb hanging wire tests indicating impairment on coordination and prehensile reflex and a reduction of muscle strength. In histological analyses of cerebellum and skeletal muscle, D2KO mice did not present gross structural abnormalities. Thyroid hormones levels and deiodinases activities were also determined. In D2KO mice, despite euthyroid T3 and high T4 plasma levels, T3 levels were significantly reduced in cerebral cortex (48% reduction and skeletal muscle (33% reduction, but not in the cerebellum where other deiodinase (type 1 is expressed. CONCLUSIONS: The motor alterations observed in D2KO mice indicate an important role for D2 in T3 availability to maintain motor function and muscle strength. Our results suggest a possible implication of D2 in motor disorders.

  17. Comparison of radiographic and radionuclide skeletal surveys in battered children

    A review of 13 cases of suspected child abuse in which radionuclide (RN) scans, radiographic skeletal surveys, and sufficient follow-up were available showed that the RN scans were insensitive, even though fractures were more than 48 hours old at the time of the scan. Frequently missed lesions included skull and extremity fractures. Furthermore, soft tissue and visceral abnormalities that were identified on radiographic examination went undetected on RN scan. We conclude that, although the RN scan may augment the radiographic examination, it should not be used alone to screen for the battered child

  18. 海洋酸化对海水青鳉胚胎骨骼发育的影响%Impact of ocean acidification on skeletal development in embryonic marine medaka

    王晓杰; 肖潇; 李超; 岳娜

    2015-01-01

    In this study,the impact of ocean acidification on the skeletal development in embryonic marine medaka was investigated.The seawater carbonate system in the water was maintained stable by aerating with ambient air (450×10-6 CO2 )and CO2-enriched air (1 160×10-6 or 1 783×10-6 CO2 ).Newly fertilized medaka eggs were exposed to three levels of pCO2/pH (8.14,7.85 and 7.67)until to the main hatch occurring.Skeletons of 30 new-hatched larvae from each CO2 treatment were cleared,stained and photographed.Lengths of well stained 28 skeletal elements for ecah fish was measured using digital photograph and analyzed by image analysis software.Results showed that,the effects of exposure to elevated CO2 concentrations on the length of representative skeletal elements were not significant.It suggested that the skeletal development of marine medaka would not be seriously affected by the changes in CO2 concentrations that are predicted to occur over the next 100 to 200 years.%本文在实验室模拟近期海洋酸化水平,对海洋酸化对海水青鳉鱼(Oryzia melastigma )胚胎骨骼发育的影响进行了初步研究。实验中,通过往实验水体中充入一定浓度 CO2气体酸化海水。对照组 CO2分压为450×10-6,两个处理组 CO2浓度分别为1160×10-6和1783×10-6,对应的水体 pH 值分别为8.14,7.85和7.67。将海水青鳉鱼受精卵放入实验水体中至仔鱼孵化出膜,对初孵仔鱼经骨骼染色、显微拍照,挑取了仔鱼头部、躯干及尾部骨骼染色清晰的28个骨骼参数的长度进行了显微软件测量及数据统计分析。结果发现,酸化处理对实验鱼所测量的骨骼长度影响均不显著。因此推测,未来100~200年间海洋酸化对海水青鳉鱼的胚胎及初孵仔鱼的骨骼发育没有显著影响。

  19. Significance of abnormal serum binding of insulin-like growth factor II in the development of hypoglycemia in patients with non-islet-cell tumors

    The authors reported that serum and tumor from a hypoglycemic patient with a fibrosarcoma contained insulin-like growth factor II (IGF-II), mostly in a large molecular form designated big IGF-II. They now describe two additional patients with non-islet-cell tumor with hypoglycemia (NICTH) whose sera contained big IGF-II. Removal of the tumor eliminated most of the big IGF-II from the sera of two patients. Because specific IGF-binding proteins modify the bioactivity of IGFs, the sizes of the endogenous IGF-binding protein complexes were determined after neutral gel filtration through Sephadex G-200. Normally about 75% of IGFs are carried as a ternary complex of 150 kDa consisting of IGF, a growth hormone (GH)-dependent IGF-binding protein, and an acid-labile complexing component. The three patients with NICTH completely lacked the 150-kDa complex. IGF-II was present as a 60-kDa complex with variable contributions of smaller complexes. In the immediate postoperative period, a 110-kDa complex appeared rather than the expected 150-kDa complex. Abnormal IGF-II binding may be important in NICTH because the 150-kDa complexes cross the capillary membrane poorly. The smaller complexes present in our patients' sera would be expected to enter interstitial fluid readily, and a 4- to 5-fold increase in the fraction of IGFs reaching the target cells would result

  20. Significance of abnormal serum binding of insulin-like growth factor II in the development of hypoglycemia in patients with non-islet-cell tumors

    Daughaday, W.H.; Kapadia, M. (Washington Univ. School of Medicine, St. Louis, MO (USA))

    1989-09-01

    The authors reported that serum and tumor from a hypoglycemic patient with a fibrosarcoma contained insulin-like growth factor II (IGF-II), mostly in a large molecular form designated big IGF-II. They now describe two additional patients with non-islet-cell tumor with hypoglycemia (NICTH) whose sera contained big IGF-II. Removal of the tumor eliminated most of the big IGF-II from the sera of two patients. Because specific IGF-binding proteins modify the bioactivity of IGFs, the sizes of the endogenous IGF-binding protein complexes were determined after neutral gel filtration through Sephadex G-200. Normally about 75% of IGFs are carried as a ternary complex of 150 kDa consisting of IGF, a growth hormone (GH)-dependent IGF-binding protein, and an acid-labile complexing component. The three patients with NICTH completely lacked the 150-kDa complex. IGF-II was present as a 60-kDa complex with variable contributions of smaller complexes. In the immediate postoperative period, a 110-kDa complex appeared rather than the expected 150-kDa complex. Abnormal IGF-II binding may be important in NICTH because the 150-kDa complexes cross the capillary membrane poorly. The smaller complexes present in our patients' sera would be expected to enter interstitial fluid readily, and a 4- to 5-fold increase in the fraction of IGFs reaching the target cells would result.

  1. Noncoding RNAs in the regulation of skeletal muscle biology in health and disease.

    Simionescu-Bankston, Adriana; Kumar, Ashok

    2016-08-01

    Skeletal muscle is composed of multinucleated myofibers that arise from the fusion of myoblasts during development. Skeletal muscle is essential for various body functions such as maintaining posture, locomotion, breathing, and metabolism. Skeletal muscle undergoes remarkable adaptations in response to environmental stimuli leading to atrophy or hypertrophy. Moreover, degeneration of skeletal muscle is a common feature in a number of muscular disorders including muscular dystrophy. Emerging evidence suggests that noncoding RNAs, such as microRNAs (miRNAs) and long noncoding RNAs (lncRNAs), are critical for skeletal muscle physiology. Several miRNAs and lncRNAs have now been found to control skeletal muscle development and regeneration. Noncoding RNAs also play an important role in the regulation of skeletal muscle mass in adults. Furthermore, aberrant expression of miRNAs and lncRNAs has been observed in several muscular disorders. In this article, we discuss the mechanisms of action of miRNAs and lncRNAs in skeletal muscle formation, growth, regeneration, and disease. We further highlight potential therapeutic strategies for utilizing noncoding RNAs to improve skeletal muscle function. PMID:27377406

  2. Verapamil reverses PTH- or CRF-induced abnormal fatty acid oxidation in muscle

    Chronic renal failure (CRF) is associated with impaired long chain fatty acids (LCFA) oxidation by skeletal muscle mitochondria. This is due to reduced activity of carnitine palmitoyl transferase (CPT). These derangements were attributed to the secondary hyperparathyroidism of CRF, since prior parathyroidectomy in CRF rats reversed these abnormalities and PTH administration to normal rats reproduced them. It was proposed that these effects of PTH are mediated by its ionophoric property leading to increased entry of calcium into skeletal muscle. A calcium channel blocker may, therefore, correct these derangements. The present study examined the effects of verapamil on LCFA oxidation, CPT activity by skeletal muscle mitochondria, and 45Ca uptake by skeletal muscle obtained from CRF rats and normal animals treated with PTH with and without verapamil. Both four days of PTH administration and 21 days of CRF produced significant (P less than 0.01) reduction in LCFA oxidation and CPT activity of skeletal muscle mitochondria, and significant (P less than 0.01) increment in 45Ca uptake by skeletal muscle. Simultaneous treatment with verapamil corrected all these derangements. Administration of verapamil alone to normal rats did not cause a significant change in any of these parameters. The data are consistent with the proposition that the alterations in LCFA in CRF or after PTH treatment are related to the ionophoric action of the hormone and could be reversed by a calcium channel blocker

  3. Skeletal and Dentoalveolar changes concurrent to use of Twin Block appliance in Class II division I cases with a deficient mandible: A cephalometric study

    A K Sharma

    2012-01-01

    Full Text Available Most of Class II malocclusions are due to underdeveloped mandible with increased overjet and overbite. Lack of incisal contact results in the extrusion of the upper and lower anterior dentoalveolar complex, which helps to lock the mandible and prevent its normal growth and development, and this abnormality, is exaggerated by soft tissue imbalance. The purpose of present study was to cephalometrically evaluate skeletal and dentoalveolar changes following the use of Twin-Block appliance in 10 growing children of age group 9-13 years (mean 11.1 year ± SD 1.37 of Class II division 1 malocclusion with a deficient mandible. Cephalometric pre- and post-functional treatment measurements (angular and linear were done and statistically analyzed using student′s paired t-test. The results of the present study showed that maxilla (SNA was restricted sagittally (head gear effect with marked maxillary dental retraction. Significant mandible sagittal advancement (SNB with minimum dental protraction was observed with significant increase in the mandibular length. The maxillomandibular skeletal relation (ANB and WITS appraisal reduced considerably which improved the profile and facial esthetics. Pronounced correction of overjet and overbite was seen. The present study concluded that Class II correction occurs by both skeletal and dentoalveolar changes.

  4. Advances in understanding paternally transmitted Chromosomal Abnormalities

    Marchetti, F; Sloter, E; Wyrobek, A J

    2001-03-01

    Multicolor FISH has been adapted for detecting the major types of chromosomal abnormalities in human sperm including aneuploidies for clinically-relevant chromosomes, chromosomal aberrations including breaks and rearrangements, and other numerical abnormalities. The various sperm FISH assays have been used to evaluate healthy men, men of advanced age, and men who have received mutagenic cancer therapy. The mouse has also been used as a model to investigate the mechanism of paternally transmitted genetic damage. Sperm FISH for the mouse has been used to detect chromosomally abnormal mouse sperm, while the PAINT/DAPI analysis of mouse zygotes has been used to evaluate the types of chromosomal defects that can be paternally transmitted to the embryo and their effects on embryonic development.

  5. Increased interaction with insulin receptor substrate 1, a novel abnormality in insulin resistance and type 2 diabetes

    Caruso, Michael; Ma, Danjun; Msallaty, Zaher;

    2014-01-01

    Insulin receptor substrate 1 (IRS1) is a key mediator of insulin signal transduction. Perturbations involving IRS1 complexes may lead to the development of insulin resistance and type 2 diabetes (T2D). Surprisingly little is known about the proteins that interact with IRS1 in humans under health...... and disease conditions. We used a proteomic approach to assess IRS1 interaction partners in skeletal muscle from lean healthy control subjects (LCs), obese insulin-resistant nondiabetic control subjects (OCs), and participants with T2D before and after insulin infusion. We identified 113 novel....... Interestingly, dozens of proteins in OCs and/or T2D patients exhibited increased associations with IRS1 compared with LCs under the basal and/or insulin-stimulated conditions, revealing multiple new dysfunctional IRS1 pathways in OCs and T2D patients. This novel abnormality, increased interaction of multiple...

  6. MiR-206在骨骼肌发育中的功能%Roles of miR-206 in skeletal muscle development

    马国达; 罗小暖; 韩冰; 李庆章

    2012-01-01

    MicroRNAs (miRNAs) are a class of highly conserved small non-coding RNAs of ~22-nucleotides involved in post-transcriptional gene silencing. The emerging field of miRNA biology has unraveled roles for these regulatory molecules in a range of biological functions, including cell proliferation, differentiation and apoptosis. Interestingly, many miRNAs are specifically expressed in muscles. In this review, we focus on miR-206 which is unique in that it is only expressed in skeletal muscle and has been shown to play an important role in myogenesis. Importantly, dysregulation of miR-206 has been linked to muscle-related diseases, such as Duchenne muscular dystrophy and amyotrophic lateral sclerosis. In addition, a mutation in the 3'-UTR of the myostatin gene in the Texel sheep creating target sites for the microRNAs miR-206 and miR-1 leads to down regulation of myostatin expression, which is likely to cause the muscular phenotype of this breed of sheep. Therefore, miR-206 may become a novel target in optimization of muscle quantity of domestic animals and therapy of muscle-related diseases.%微RNA (microRNA,miRNA)是一类在分子进化中十分保守的非编码RNA,长度约22个核苷酸,一般情况下它在转录后水平抑制基因表达.miRNA在细胞增殖、分化、凋亡等诸多生理过程中发挥着重要作用.有些miRNA具有组织特异性表达,其中miR-206是目前发现的唯一在骨骼肌中特异表达的miRNA,它在凋节骨骼肌发生过程中扮演重要角色.miR-206表达异常与一些肌肉相关疾病如肌肉营养不良、肌萎缩性侧索硬化症等有关.此外,在Texel羊中,myostatin基因的一个点突变就产生了一个miR-206和miR-1的靶点,抑制了myostain基因的表达,从而产生了双肌表型.因此,miR-206有可能成为治疗肌肉相关疾病和畜禽改良育种的重要候选分子.

  7. Abnormal Activation of BMP Signaling Causes Myopathy in Fbn2 Null Mice.

    Gerhard Sengle

    2015-06-01

    Full Text Available Fibrillins are large extracellular macromolecules that polymerize to form the backbone structure of connective tissue microfibrils. Mutations in the gene for fibrillin-1 cause the Marfan syndrome, while mutations in the gene for fibrillin-2 cause Congenital Contractural Arachnodactyly. Both are autosomal dominant disorders, and both disorders affect musculoskeletal tissues. Here we show that Fbn2 null mice (on a 129/Sv background are born with reduced muscle mass, abnormal muscle histology, and signs of activated BMP signaling in skeletal muscle. A delay in Myosin Heavy Chain 8, a perinatal myosin, was found in Fbn2 null forelimb muscle tissue, consistent with the notion that muscle defects underlie forelimb contractures in these mice. In addition, white fat accumulated in the forelimbs during the early postnatal period. Adult Fbn2 null mice are already known to demonstrate persistent muscle weakness. Here we measured elevated creatine kinase levels in adult Fbn2 null mice, indicating ongoing cycles of muscle injury. On a C57Bl/6 background, Fbn2 null mice showed severe defects in musculature, leading to neonatal death from respiratory failure. These new findings demonstrate that loss of fibrillin-2 results in phenotypes similar to those found in congenital muscular dystrophies and that FBN2 should be considered as a candidate gene for recessive congenital muscular dystrophy. Both in vivo and in vitro evidence associated muscle abnormalities and accumulation of white fat in Fbn2 null mice with abnormally activated BMP signaling. Genetic rescue of reduced muscle mass and accumulation of white fat in Fbn2 null mice was accomplished by deleting a single allele of Bmp7. In contrast to other reports that activated BMP signaling leads to muscle hypertrophy, our findings demonstrate the exquisite sensitivity of BMP signaling to the fibrillin-2 extracellular environment during early postnatal muscle development. New evidence presented here suggests that

  8. Systemic abnormalities in liver disease

    Minemura, Masami; Tajiri, Kazuto; Shimizu, Yukihiro

    2009-01-01

    Systemic abnormalities often occur in patients with liver disease. In particular, cardiopulmonary or renal diseases accompanied by advanced liver disease can be serious and may determine the quality of life and prognosis of patients. Therefore, both hepatologists and non-hepatologists should pay attention to such abnormalities in the management of patients with liver diseases.

  9. Skeletal complications of eating disorders.

    Donaldson, Abigail A; Gordon, Catherine M

    2015-09-01

    Anorexia nervosa (AN) is a psychiatric illness with profound medical consequences. Among the many adverse physical sequelae of AN, bone health is impacted by starvation and can be permanently impaired over the course of the illness. In this review of skeletal complications associated with eating disorders, we discuss the epidemiology, neuroendocrine changes, adolescent vs. adult skeletal considerations, orthopedic concerns, assessment of bone health, and treatment options for individuals with AN. The focus of the review is the skeletal sequelae associated with anorexia nervosa, but we also briefly consider other eating disorders that may afflict adolescents and young adults. The review presents updates to the field of bone health in AN, and also suggests knowledge gaps and areas for future investigation. PMID:26166318

  10. Increased skeletal muscle capillarization enhances insulin sensitivity

    Åkerström, Thorbjörn; Laub, Lasse; Vedel, Kenneth;

    2014-01-01

    Increased skeletal muscle capillarization is associated with improved glucose tolerance and insulin sensitivity. However, a possible causal relationship has not previously been identified. We therefore investigated whether increased skeletal muscle capillarization increases insulin sensitivity. S...

  11. Skeletal Muscle Regeneration and Oxidative Stress Are Altered in Chronic Kidney Disease.

    Avin, Keith G; Chen, Neal X; Organ, Jason M; Zarse, Chad; O'Neill, Kalisha; Conway, Richard G; Konrad, Robert J; Bacallao, Robert L; Allen, Matthew R; Moe, Sharon M

    2016-01-01

    Skeletal muscle atrophy and impaired muscle function are associated with lower health-related quality of life, and greater disability and mortality risk in those with chronic kidney disease (CKD). However, the pathogenesis of skeletal dysfunction in CKD is unknown. We used a slow progressing, naturally occurring, CKD rat model (Cy/+ rat) with hormonal abnormalities consistent with clinical presentations of CKD to study skeletal muscle signaling. The CKD rats demonstrated augmented skeletal muscle regeneration with higher activation and differentiation signals in muscle cells (i.e. lower Pax-7; higher MyoD and myogenin RNA expression). However, there was also higher expression of proteolytic markers (Atrogin-1 and MuRF-1) in CKD muscle relative to normal. CKD animals had higher indices of oxidative stress compared to normal, evident by elevated plasma levels of an oxidative stress marker, 8-hydroxy-2' -deoxyguanosine (8-OHdG), increased muscle expression of succinate dehydrogenase (SDH) and Nox4 and altered mitochondria morphology. Furthermore, we show significantly higher serum levels of myostatin and expression of myostatin in skeletal muscle of CKD animals compared to normal. Taken together, these data show aberrant regeneration and proteolytic signaling that is associated with oxidative stress and high levels of myostatin in the setting of CKD. These changes likely play a role in the compromised skeletal muscle function that exists in CKD. PMID:27486747

  12. Estimation of skeletal muscle mass from body creatine content

    Pace, N.; Rahlmann, D. F.

    1982-01-01

    Procedures have been developed for studying the effect of changes in gravitational loading on skeletal muscle mass through measurements of the body creatine content. These procedures were developed for studies of gravitational scale effects in a four-species model, comprising the hamster, rat, guinea pig, and rabbit, which provides a sufficient range of body size for assessment of allometric parameters. Since intracellular muscle creatine concentration varies among species, and with age within a given species, the concentration values for metabolically mature individuals of these four species were established. The creatine content of the carcass, skin, viscera, smooth muscle, and skeletal muscle was determined for each species. In addition, the skeletal muscle mass of the major body components was determined, as well as the total and fat-free masses of the body and carcass, and the percent skeletal muscle in each. It is concluded that these procedures are particularly useful for studying the effect of gravitational loading on the skeletal muscle content of the animal carcass, which is the principal weight-bearing organ of the body.

  13. Vitamin D and Risk of Neuroimaging Abnormalities.

    Littlejohns, Thomas J; Kos, Katarina; Henley, William E; Lang, Iain A; Annweiler, Cedric; Beauchet, Olivier; Chaves, Paulo H M; Kestenbaum, Bryan R; Kuller, Lewis H; Langa, Kenneth M; Lopez, Oscar L; Llewellyn, David J

    2016-01-01

    Vitamin D deficiency has been linked with an increased risk of incident all-cause dementia and Alzheimer's disease. The aim of the current study was to explore the potential mechanisms underlying these associations by determining whether low vitamin D concentrations are associated with the development of incident cerebrovascular and neurodegenerative neuroimaging abnormalities. The population consisted of 1,658 participants aged ≥65 years from the US-based Cardiovascular Health Study who were free from prevalent cardiovascular disease, stroke and dementia at baseline in 1992-93. Serum 25-hydroxyvitamin D (25(OH)D) concentrations were determined by liquid chromatography-tandem mass spectrometry from blood samples collected at baseline. The first MRI scan was conducted between 1991-1994 and the second MRI scan was conducted between 1997-1999. Change in white matter grade, ventricular grade and presence of infarcts between MRI scan one and two were used to define neuroimaging abnormalities. During a mean follow-up of 5.0 years, serum 25(OH)D status was not significantly associated with the development of any neuroimaging abnormalities. Using logistic regression models, the multivariate adjusted odds ratios (95% confidence interval) for worsening white matter grade in participants who were severely 25(OH)D deficient (vitamin D concentrations could not be shown to be associated with the development of cerebrovascular or neurodegenerative neuroimaging abnormalities in Cardiovascular Health Study participants. PMID:27166613

  14. Lithium treatment and thyroid abnormalities

    Bocchetta Alberto

    2006-09-01

    autoimmunity do not much differ from those observed in the general population; h hyperthyroidism and thyroid cancer are observed rarely during lithium treatment. Recommendations Thyroid function tests (TSH, free thyroid hormones, specific antibodies, and ultrasonic scanning should be performed prior to starting lithium prophylaxis. A similar panel should be repeated at one year. Thereafter, annual measurements of TSH may be sufficient to prevent overt hypothyroidism. In the presence of raised TSH or thyroid autoimmunity, shorter intervals between assessments are advisable (4–6 months. Measurement of antibodies and ultrasonic scanning may be repeated at 2-to-3-year intervals. The patient must be referred to the endocrinologist if TSH concentrations are repeatedly abnormal, and/or goitre or nodules are detected. Thyroid function abnormalities should not constitute an outright contraindication to lithium treatment, and lithium should not be stopped if a patient develops thyroid abnormalities. Decisions should be made taking into account the evidence that lithium treatment is perhaps the only efficient means of reducing the excessive mortality which is otherwise associated with affective disorders.

  15. Skeletal Muscle Hypertrophy after Aerobic Exercise Training

    Konopka, Adam R.; Harber, Matthew P.

    2014-01-01

    Current dogma suggests aerobic exercise training has minimal effect on skeletal muscle size. We and others have demonstrated that aerobic exercise acutely and chronically alters protein metabolism and induces skeletal muscle hypertrophy. These findings promote an antithesis to the status quo by providing novel perspective on skeletal muscle mass regulation and insight into exercise-countermeasures for populations prone to muscle loss.

  16. Skeletal stem cells in space and time

    Kassem, Moustapha; Bianco, Paolo

    2015-01-01

    The nature, biological characteristics, and contribution to organ physiology of skeletal stem cells are not completely determined. Chan et al. and Worthley et al. demonstrate that a stem cell for skeletal tissues, and a system of more restricted, downstream progenitors, can be identified in mice...... and demonstrate its role in skeletal tissue maintenance and regeneration....

  17. International Skeletal Society outreach 2013: Rwanda.

    Teh, James; Taljanovic, Mihra S; Monu, Johnny

    2014-05-01

    It has been almost 20 years since the horrific events of the Rwandan genocide. Since that time, the country has made a remarkable recovery owing to good government and a great deal of aid. Health-care services are well organized, but remain short of resources and expertise. Musculoskeletal imaging (and treatment) is in its infancy. Given the huge strides that have been made in social order and stability, there is great hope for the future. It is proposed that future International Skeletal Society (ISS) outreach programs plan to make a meaningful commitment to developing expertise in specific hospitals. PMID:24496585

  18. Comparative Study of Skeletal Stability between Postoperative Skeletal Intermaxillary Fixation and No Skeletal Fixation after Bilateral Sagittal Split Ramus Osteotomy

    Hartlev, Jens; Godtfredsen, Erik; Andersen, Niels Trolle; Jensen, Thomas

    2014-01-01

    OBJECTIVES: The purpose of the present study was to evaluate skeletal stability after mandibular advancement with bilateral sagittal split osteotomy. MATERIAL AND METHODS: Twenty-six patients underwent single-jaw bilateral sagittal split osteotomy (BSSO) to correct skeletal Class II malocclusion...... between the skeletal IMF group and the no skeletal group regarding advancement nor relapse at B-point or Pog. CONCLUSIONS: Bilateral sagittal split osteotomy is characterized as a stable treatment to correct Class II malocclusion. This study demonstrated no difference of relapse between the skeletal...

  19. Introduction to skeletal radiology and bone growth

    Radiographic examination is the key to the diagnosis of many skeletal abnormalities. It is essential that each bone be examined in its entirety, including the cortex, medullary canal (cancellous bone or spongiosa), and articular ends. The position and alignment of joints are determined. In children, the epiphysis and epiphyseal line or physis must be observed. The adjacent soft tissues are examined. Obliteration of normal soft-tissue lines and the presence of a joint effusion are of particular importance. When disease is present, it is important to determine whether the process is limited to a single bone or joint or whether multiple bones or joints are involved. The distribution of disease is also a consideration. The presence and type of bone destruction and bone production, the appearance of the edges or borders of the lesion, and the presence or absence of cortical expansion and periosteal reaction are also noted. The radiographic findings are then correlated with the clinical history and the age and sex of the patient to arrive at a logical diagnosis. The diagnosis may be firm in some instances; in other cases, a differential diagnosis is offered since the exact diagnosis cannot be determined

  20. Effects of normal and abnormal loading conditions on morphogenesis of the prenatal hip joint: application to hip dysplasia.

    Giorgi, Mario; Carriero, Alessandra; Shefelbine, Sandra J; Nowlan, Niamh C

    2015-09-18

    Joint morphogenesis is an important phase of prenatal joint development during which the opposing cartilaginous rudiments acquire their reciprocal and interlocking shapes. At an early stage of development, the prenatal hip joint is formed of a deep acetabular cavity that almost totally encloses the head. By the time of birth, the acetabulum has become shallower and the femoral head has lost substantial sphericity, reducing joint coverage and stability. In this study, we use a dynamic mechanobiological simulation to explore the effects of normal (symmetric), reduced and abnormal (asymmetric) prenatal movements on hip joint shape, to understand their importance for postnatal skeletal malformations such as developmental dysplasia of the hip (DDH). We successfully predict the physiological trends of decreasing sphericity and acetabular coverage of the femoral head during fetal development. We show that a full range of symmetric movements helps to maintain some of the acetabular depth and femoral head sphericity, while reduced or absent movements can lead to decreased sphericity and acetabular coverage of the femoral head. When an abnormal movement pattern was applied, a deformed joint shape was predicted, with an opened asymmetric acetabulum and the onset of a malformed femoral head. This study provides evidence for the importance of fetal movements in the prevention and manifestation of congenital musculoskeletal disorders such as DDH. PMID:26163754

  1. Choosing a skeletal muscle relaxant.

    See, Sharon; Ginzburg, Regina

    2008-08-01

    Skeletal muscle relaxants are widely used in treating musculoskeletal conditions. However, evidence of their effectiveness consists mainly of studies with poor methodologic design. In addition, these drugs have not been proven to be superior to acetaminophen or nonsteroidal anti-inflammatory drugs for low back pain. Systematic reviews and meta-analyses support using skeletal muscle relaxants for short-term relief of acute low back pain when nonsteroidal anti-inflammatory drugs or acetaminophen are not effective or tolerated. Comparison studies have not shown one skeletal muscle relaxant to be superior to another. Cyclobenzaprine is the most heavily studied and has been shown to be effective for various musculoskeletal conditions. The sedative properties of tizanidine and cyclobenzaprine may benefit patients with insomnia caused by severe muscle spasms. Methocarbamol and metaxalone are less sedating, although effectiveness evidence is limited. Adverse effects, particularly dizziness and drowsiness, are consistently reported with all skeletal muscle relaxants. The potential adverse effects should be communicated clearly to the patient. Because of limited comparable effectiveness data, choice of agent should be based on side-effect profile, patient preference, abuse potential, and possible drug interactions. PMID:18711953

  2. Models of Neurodevelopmental Abnormalities in Schizophrenia

    POWELL, Susan B

    2010-01-01

    The neurodevelopmental hypothesis of schizophrenia asserts that the underlying pathology of schizophrenia has its roots in brain development and that these brain abnormalities do not manifest themselves until adolescence or early adulthood. Animal models based on developmental manipulations have provided insight into the vulnerability of the developing fetus and the importance of the early environment for normal maturation. These models have provided a wide range of validated approaches to an...

  3. ABNORMALITIES OF ERG IN CONGENITAL ANIRIDIA

    1991-01-01

    Congenital aniridia is generally associated with nystagmus, corneal pannus, cataract, ectopia lentis, glaucoma, macular hypoplasia, optic nerve hypoplasia and compromised visual function. Many theories have been proposed, including a failure in the development of the neural ectoderm and/or an aberrant development of mesoderm. We observed the ERG from 19 patients with congenital aniridia. Fourteen patients had abnormal ERG, including the reduced a wave trough under dark adapted red stimuli with dark adap...

  4. Mutation of a novel gene results in abnormal development of spermatid flagella, loss of intermale aggression and reduced body fat in mice.

    Campbell, Patrick K; Waymire, Katrina G.; Heier, Robb L.; Sharer, Catherine; Day, Diane E.; Reimann, Heike; Jaje, J Michael; Friedrich, Glenn A; Burmeister, Margit; Bartness, Timothy J.; Russell, Lonnie D; Young, Larry J.; Zimmer, Michael; Jenne, Dieter E.; MACGREGOR, GRANT R.

    2002-01-01

    ROSA22 male mice are sterile due to a recessive gene-trap mutation that affects development of the spermatid flagellum. The defect involves the flagellar axoneme, which becomes unstable around the time of its assembly. Despite a subsequent complete failure in flagellar assembly, development of the spermatid head appears normal and the spermatid head is released at the correct stage in spermatogenesis. The mutation is pleiotropic. Although ROSA22 homozygote males have normal levels of circulat...

  5. [Walking abnormalities in children].

    Segawa, Masaya

    2010-11-01

    Walking is a spontaneous movement termed locomotion that is promoted by activation of antigravity muscles by serotonergic (5HT) neurons. Development of antigravity activity follows 3 developmental epochs of the sleep-wake (S-W) cycle and is modulated by particular 5HT neurons in each epoch. Activation of antigravity activities occurs in the first epoch (around the age of 3 to 4 months) as restriction of atonia in rapid eye movement (REM) stage and development of circadian S-W cycle. These activities strengthen in the second epoch, with modulation of day-time sleep and induction of crawling around the age of 8 months and induction of walking by 1 year. Around the age of 1 year 6 months, absence of guarded walking and interlimb cordination is observed along with modulation of day-time sleep to once in the afternoon. Bipedal walking in upright position occurs in the third epoch, with development of a biphasic S-W cycle by the age of 4-5 years. Patients with infantile autism (IA), Rett syndrome (RTT), or Tourette syndrome (TS) show failure in the development of the first, second, or third epoch, respectively. Patients with IA fail to develop interlimb coordination; those with RTT, crawling and walking; and those with TS, walking in upright posture. Basic pathophysiology underlying these condition is failure in restricting atonia in REM stage; this induces dysfunction of the pedunculopontine nucleus and consequently dys- or hypofunction of the dopamine (DA) neurons. DA hypofunction in the developing brain, associated with compensatory upward regulation of the DA receptors causes psychobehavioral disorders in infancy (IA), failure in synaptogenesis in the frontal cortex and functional development of the motor and associate cortexes in late infancy through the basal ganglia (RTT), and failure in functional development of the prefrontal cortex through the basal ganglia (TS). Further, locomotion failure in early childhood causes failure in development of functional

  6. Gestational diabetes is characterized by reduced mitochondrial protein expression and altered calcium signaling proteins in skeletal muscle.

    Kristen E Boyle

    Full Text Available The rising prevalence of gestational diabetes mellitus (GDM affects up to 18% of pregnant women with immediate and long-term metabolic consequences for both mother and infant. Abnormal glucose uptake and lipid oxidation are hallmark features of GDM prompting us to use an exploratory proteomics approach to investigate the cellular mechanisms underlying differences in skeletal muscle metabolism between obese pregnant women with GDM (OGDM and obese pregnant women with normal glucose tolerance (ONGT. Functional validation was performed in a second cohort of obese OGDM and ONGT pregnant women. Quantitative proteomic analysis in rectus abdominus skeletal muscle tissue collected at delivery revealed reduced protein content of mitochondrial complex I (C-I subunits (NDUFS3, NDUFV2 and altered content of proteins involved in calcium homeostasis/signaling (calcineurin A, α1-syntrophin, annexin A4 in OGDM (n = 6 vs. ONGT (n = 6. Follow-up analyses showed reduced enzymatic activity of mitochondrial complexes C-I, C-III, and C-IV (-60-75% in the OGDM (n = 8 compared with ONGT (n = 10 subjects, though no differences were observed for mitochondrial complex protein content. Upstream regulators of mitochondrial biogenesis and oxidative phosphorylation were not different between groups. However, AMPK phosphorylation was dramatically reduced by 75% in the OGDM women. These data suggest that GDM is associated with reduced skeletal muscle oxidative phosphorylation and disordered calcium homeostasis. These relationships deserve further attention as they may represent novel risk factors for development of GDM and may have implications on the effectiveness of physical activity interventions on both treatment strategies for GDM and for prevention of type 2 diabetes postpartum.

  7. THE EFFECTS OF AEROBIC EXERCISE ON SKELETAL MUSCLE METABOLISM, MORPHOLOGY AND IN SITU ENDURANCE IN DIABETIC RATS

    Nilay Ergen

    2005-12-01

    Full Text Available The effects of aerobic exercise training on skeletal muscle endurance capacity were examined in diabetic rats in situ. Moderate diabetes was induced by iv injection of streptozotocin and an exercise training program on a treadmill was carried out for 8 weeks. The animals randomly assigned to one of the four experimental groups: control-sedentary (CS, control-exercise (CE, diabetic-sedentary (DS or diabetic-exercise (DE. The changes in the muscle endurance capacity were evaluated through the square wave impulses (supramaximal of 0.2-ms duration at 1 Hz in the in situ gastrocnemius-soleus muscle complex. Muscle was stimulated continuously until tension development reduced to the half of this maximal value. Time interval between the beginning and the end of stimulation period is defined as contraction duration. Following the training period, blood glucose level reduced significantly in the DE group compared to DS group (p < 0.05. The soles muscle citrate synthase activity was increased significantly in both of the trained groups compared to sedentary animals (p < 0.05. Fatigued muscle lactate values were not significantly different from each other. Ultrastractural abnormality of the skeletal muscle in DS group disappeared with training. Presence of increased lipid droplets, mitochondria clusters and glycogen accumulation was observed in the skeletal muscle of DE group. The contraction duration was longer in the DE group than others (p < 0.001. Fatigue resistance of exercised diabetic animals may be explained by increased intramyocellular lipid droplets, high blood glucose level and muscle citrate synthase activity

  8. Skin - abnormally dark or light

    ... ency/article/003242.htm Skin - abnormally dark or light To use the sharing features on this page, ... the hands. The bronze color can range from light to dark (in fair-skinned people) with the ...

  9. Glucose transporter expression in human skeletal muscle fibers

    Gaster, M; Handberg, A; Beck-Nielsen, H;

    2000-01-01

    amplification (TSA) technique to detect the localization of glucose transporter expression in human skeletal muscle. We found expression of GLUT-1, GLUT-3, and GLUT-4 in developing human muscle fibers showing a distinct expression pattern. 1) GLUT-1 is expressed in human skeletal muscle cells during gestation...... muscle fibers, only GLUT-4 was expressed at significant levels. GLUT-1 immunoreactivity was below the detection limit in muscle fibers, indicating that this glucose transporter is of minor importance for muscle glucose supply. Thus we hypothesize that GLUT-4 also mediates basal glucose transport in...

  10. Toll-like receptor 4 modulates skeletal muscle substrate metabolism

    Frisard, Madlyn I.; McMillan, Ryan P.; Marchand, Julie; Wahlberg, Kristin A.; Wu, Yaru; Voelker, Kevin A.; Heilbronn, Leonie; Haynie, Kimberly; Muoio, Brendan; Li, Liwu; Hulver, Matthew W.

    2010-01-01

    Toll-like receptor 4 (TLR4), a protein integral to innate immunity, is elevated in skeletal muscle of obese and type 2 diabetic humans and has been implicated in the development of lipid-induced insulin resistance. The purpose of this study was to examine the role of TLR4 as a modulator of basal (non-insulin-stimulated) substrate metabolism in skeletal muscle with the hypothesis that its activation would result in reduced fatty acid oxidation and increased partitioning of fatty acids toward n...

  11. Quantification of skeletal fraction volume of a soil pit by means of photogrammetry

    Baruck, Jasmin; Zieher, Thomas; Bremer, Magnus; Rutzinger, Martin; Geitner, Clemens

    2015-04-01

    The grain size distribution of a soil is a key parameter determining soil water behaviour, soil fertility and land use potential. It plays an important role in soil classification and allows drawing conclusions on landscape development as well as soil formation processes. However, fine soil material (i.e. particle diameter ≤2 mm) is usually documented more thoroughly than the skeletal fraction (i.e. particle diameter >2 mm). While fine soil material is commonly analysed in the laboratory in order to determine the soil type, the skeletal fraction is typically estimated in the field at the profile. For a more precise determination of the skeletal fraction other methods can be applied and combined. These methods can be volume-related (sampling rings, percussion coring tubes) or non-volume-related (sieve of spade excavation). In this study we present a framework for the quantification of skeletal fraction volumes of a soil pit by means of photogrammetry. As a first step 3D point clouds of both soil pit and skeletal grains were generated. Therefore all skeletal grains of the pit were spread out onto a plane, clean plastic sheet in the field and numerous digital photos were taken using a reflex camera. With the help of the open source tool VisualSFM (structure from motion) two scaled 3D point clouds were derived. As a second step the skeletal fraction point cloud was segmented by radiometric attributes in order to determine volumes of single skeletal grains. The comparison of the total skeletal fraction volume with the volume of the pit (closed by spline interpolation) yields an estimate of the volumetric proportion of skeletal grains. The presented framework therefore provides an objective reference value of skeletal fraction for the support of qualitative field records.

  12. Abnormal gastrointestinal accumulation of radiotracer by gastric bleeding during 99mTc-MDP bone scintigraphy

    We present a case in which a patient with acute hemorrhagic gastritis demonstrated abnormal gastrointestinal accumulation of radiotracer during 99mTc-methylene diphosphonate (MDP) skeletal scintigraphy. A hemorrhagic gastritis was subsequently demonstrated by endoscopy. The mechanism for the intestinal localization of 99mTc-MDP in this patients is not clear, but we guess that the extravasated blood containing the radiopharmaceutical cannot recirculate and stays at the bleeding site, so we can see the intestinal activity

  13. Behavioral abnormalities in captive nonhuman primates.

    Mallapur, Avanti; Choudhury, B C

    2003-01-01

    In this study, we dealt with 11 species of nonhuman primates across 10 zoos in India. We recorded behavior as instantaneous scans between 9 a.m. and 5 p.m. In the study, we segregated behaviors for analyses into abnormal, undesirable, active, and resting. The 4 types of abnormal behavior exhibited included floating limb, self-biting, self-clasping, and stereotypic pacing. In the study, we recorded 2 types of undesirable behavior: autoerotic stimulation and begging. Langurs and group-housed macaques did not exhibit undesirable behaviors. A male lion-tailed macaque and a male gibbon exhibited begging behavior. autoerotic stimulation and self-biting occurred rarely. Males exhibited higher levels of undesirable behavior than did females. Animals confiscated from touring zoos, circuses, and animal traders exhibited higher levels of abnormal behaviors than did animals reared in larger, recognized zoos. The stump-tailed macaque was the only species to exhibit floating limb, autoerotic stimulation, self-biting, and self-clasping. Our results show that rearing experience and group composition influence the proportions of abnormal behavior exhibited by nonhuman primates in captivity. The history of early social and environmental deprivation in these species of captive nonhuman primates probably is critical in the development of behavioral pathologies. Establishing this will require further research. PMID:14965782

  14. Co-expression analysis of fetal weight-related genes in ovine skeletal muscle during mid and late fetal development stages

    Muscle development and lipid metabolism play important roles during fetal development stages. The commercial Texel sheep are more muscular than the indigenous Ujumqin sheep which are fatter. We performed serial transcriptomics assays and systems biology analyses to investigate the dynamics of gene e...

  15. Postnatal ontogeny of skeletal muscle protein synthesis in pigs

    The neonatal period is characterized by rapid growth and elevated rates of synthesis and accretion of skeletal muscle proteins. The fractional rate of muscle protein synthesis is very high at birth and declines rapidly with development. The elevated capacity for muscle protein synthesis in the neo...

  16. New roles for Smad signaling and phosphatidic acid in the regulation of skeletal muscle mass

    Craig A Goodman; Hornberger, Troy A.

    2014-01-01

    Skeletal muscle is essential for normal bodily function and the loss of skeletal muscle (i.e. muscle atrophy/wasting) can have a major impact on mobility, whole-body metabolism, disease resistance, and quality of life. Thus, there is a clear need for the development of therapies that can prevent the loss, or increase, of skeletal muscle mass. However, in order to develop such therapies, we will first have to develop a thorough understanding of the molecular mechanisms that regulate muscle mas...

  17. Deletion of skeletal muscle SOCS3 prevents insulin resistance in obesity

    Beck Jørgensen, Sebastian; O'Neill, Hayley M; Sylow, Lykke;

    2013-01-01

    Obesity is associated with chronic low-grade inflammation that contributes to defects in energy metabolism and insulin resistance. Suppressor of cytokine signaling (SOCS)-3 expression is increased in skeletal muscle of obese humans. SOCS3 inhibits leptin signaling in the hypothalamus and insulin...... of hyperinsulinemia and insulin resistance because of enhanced skeletal muscle insulin receptor substrate 1 (IRS1) and Akt phosphorylation that resulted in increased skeletal muscle glucose uptake. These data indicate that skeletal muscle SOCS3 does not play a critical role in regulating muscle development or energy...... expenditure, but it is an important contributing factor for inhibiting insulin sensitivity in obesity. Therapies aimed at inhibiting SOCS3 in skeletal muscle may be effective in reversing obesity-related glucose intolerance and insulin resistance....

  18. Expression of miR-1, miR-133a, miR-133b and miR-206 increases during development of human skeletal muscle

    Uney James B

    2011-06-01

    Full Text Available Abstract Background MicroRNAs (miRNAs are small RNA molecules that post-transcriptionally regulate gene expression and have been shown to play an important role during development. miR-1, miR-133a, miR-133b and miR-206 are expressed in muscle tissue and induced during muscle cell differentiation, a process that directs myoblasts to differentiate into mature myotubes, which are organized into myofibers. Although miR-1, miR-133a, miR-133b and miR-206 are well-studied in muscle, there is no information about their expression and function during human development. The purpose of this study was to determine the profile of these miRNAs in muscle cells isolated from different stages of human development. Results We examined the levels of miR-1, miR-133a, miR-133b and miR-206 during the development of human foetus. All four miRNA levels were found increased during late stages of human foetal muscle development. Increases in the expression levels of these miRNAs were proportional to the capacity of myoblasts to form myotubes. Changes in miRNA levels during human foetal development were accompanied by endogenous alterations in their known targets and also in their inducer, MyoD. Ectopic MyoD expression caused an induction of muscle cell differentiation in vitro, accompanied by an increase in the levels of miR-1, miR-133a, miR-133b and miR-206. Conclusions This study provides data about the profile of four miRNAs in human muscle cells isolated during different stages of foetal development. These results may shed light on the differentiation of muscle cells and regulation of muscle formation through miRNAs, during the development of human foetus.

  19. Co-Expression Analysis of Fetal Weight-Related Genes in Ovine Skeletal Muscle during Mid and Late Fetal Development Stages

    Xu, Lingyang; Zhao, Fuping; Ren, Hangxing; Li, Li; LU, Jian; Liu, Jiasen; Zhang, Shifang; Liu, George E.; Song, Jiuzhou; Zhang, Li; Wei, Caihong; Du, Lixin

    2014-01-01

    Background: Muscle development and lipid metabolism play important roles during fetal development stages. The commercial Texel sheep are more muscular than the indigenous Ujumqin sheep. Results: We performed serial transcriptomics assays and systems biology analyses to investigate the dynamics of gene expression changes associated with fetal longissimus muscles during different fetal stages in two sheep breeds. Totally, we identified 1472 differentially expressed genes during various fetal st...

  20. Memetics clarification of abnormal behavior

    2007-01-01

    AIM: Biological medicine is hard to fully and scientifically explain the etiological factor and pathogenesis of abnormal behaviors; while, researches on philosophy and psychology (including memetics) are beneficial to better understand and explain etiological factor and pathogenesis of abnormal behaviors. At present, the theory of philosophy and psychology is to investigate the entity of abnormal behavior based on the views of memetics.METHODS: Abnormal behavior was researched in this study based on three aspects, including instinctive behavior disorder, poorly social-adapted behavior disorder and mental or body disease associated behavior disorder. Most main viewpoints of memetics were derived from "The Meme Machine", which was written by Susan Blackmore. When questions about abnormal behaviors induced by mental and psychological diseases and conduct disorder of teenagers were discussed, some researching achievements which were summarized by authors previously were added in this study, such as aggressive behaviors, pathologically aggressive behaviors, etc.RESULTS: The abnormal behaviors mainly referred to a part of people's substandard behaviors which were not according with the realistic social environment, culture background and the pathologic behaviors resulted from people's various psychological diseases. According to the theory of "meme", it demonstrated that the relevant behavioral obstacles of various psychological diseases, for example, the unusual behavior of schizophrenia, were caused, because the old meme was destroyed thoroughly but the new meme was unable to establish; psychoneurosis and personality disorder were resulted in hard establishment of meme; the behavioral obstacles which were ill-adapted to society, for example, various additional and homosexual behaviors, were because of the selfish replications and imitations of "additional meme" and "homosexual meme"; various instinct behavioral and congenital intelligent obstacles were not significance

  1. Gastrointestinal 18F-FDG accumulation on PET without a corresponding CT abnormality is not an early indicator of cancer development

    Heusner, Till A.; Hahn, Steffen; Baumeister, Rilana; Forsting, Michael; Antoch, Gerald [University Hospital Essen, University at Duisburg-Essen, Department of Diagnostic and Interventional Radiology and Neuroradiology, Essen (Germany); Hamami, Monia E.; Kim, Un-Hi; Stahl, Alexander; Bockisch, Andreas [University Hospital Essen, University at Duisburg-Essen, Department of Nuclear Medicine, Essen (Germany)

    2009-09-15

    Focal gastrointestinal 2-deoxy-2-[{sup 18}F]-fluoro-D-glucose (FDG) uptake can frequently be found on FDG-PET/CT even in patients without known gastrointestinal malignancy. The aim of this study was to evaluate whether increased gastrointestinal FDG uptake without CT correlate is an early indicator of patients developing gastrointestinal malignancies. A total of 1,006 patients without esophagogastric or anorectal malignancies underwent FDG-PET/CT. The esophagogastric junction, the stomach and the anorectum were evaluated for increased FDG uptake. Patients without elevated uptake were assigned to group A, patients with elevated uptake were allocated to group B. The SUVmax values of both groups were tested for significant differences using the U test. A follow-up of longer than 1 year (mean 853 {+-} 414 days) served as gold standard. A total of 460 patients had to be excluded based on insufficient follow-up data. For the remaining 546 patients the mean SUVmax was as follows: (a) esophagogastric junction, group A 3.1 {+-} 0.66, group B 4.0 {+-} 1.11, p < 0.01; (b) stomach, group A 2.8 {+-} 0.77, group B 4.1 {+-} 1.33, p < 0.01; (c) rectal ampulla, group A 2.8 {+-} 0.83, group B 3.9 {+-} 1.49, p < 0.01; (d) anal canal, group A 2.7 {+-} 0.55, group B 3.9 {+-} 1.59, p < 0.01. Only one patient developed gastric cancer. In the case of an unremarkable CT, elevated esophagogastric or anorectal FDG uptake does not predict cancer development and does not have to be investigated further. (orig.)

  2. Gastrointestinal 18F-FDG accumulation on PET without a corresponding CT abnormality is not an early indicator of cancer development

    Focal gastrointestinal 2-deoxy-2-[18F]-fluoro-D-glucose (FDG) uptake can frequently be found on FDG-PET/CT even in patients without known gastrointestinal malignancy. The aim of this study was to evaluate whether increased gastrointestinal FDG uptake without CT correlate is an early indicator of patients developing gastrointestinal malignancies. A total of 1,006 patients without esophagogastric or anorectal malignancies underwent FDG-PET/CT. The esophagogastric junction, the stomach and the anorectum were evaluated for increased FDG uptake. Patients without elevated uptake were assigned to group A, patients with elevated uptake were allocated to group B. The SUVmax values of both groups were tested for significant differences using the U test. A follow-up of longer than 1 year (mean 853 ± 414 days) served as gold standard. A total of 460 patients had to be excluded based on insufficient follow-up data. For the remaining 546 patients the mean SUVmax was as follows: (a) esophagogastric junction, group A 3.1 ± 0.66, group B 4.0 ± 1.11, p < 0.01; (b) stomach, group A 2.8 ± 0.77, group B 4.1 ± 1.33, p < 0.01; (c) rectal ampulla, group A 2.8 ± 0.83, group B 3.9 ± 1.49, p < 0.01; (d) anal canal, group A 2.7 ± 0.55, group B 3.9 ± 1.59, p < 0.01. Only one patient developed gastric cancer. In the case of an unremarkable CT, elevated esophagogastric or anorectal FDG uptake does not predict cancer development and does not have to be investigated further. (orig.)

  3. Infectivity in skeletal muscle of cattle with atypical bovine spongiform encephalopathy.

    Suardi, Silvia; Vimercati, Chiara; Casalone, Cristina; Gelmetti, Daniela; Corona, Cristiano; Iulini, Barbara; Mazza, Maria; Lombardi, Guerino; Moda, Fabio; Ruggerone, Margherita; Campagnani, Ilaria; Piccoli, Elena; Catania, Marcella; Groschup, Martin H; Balkema-Buschmann, Anne; Caramelli, Maria; Monaco, Salvatore; Zanusso, Gianluigi; Tagliavini, Fabrizio

    2012-01-01

    The amyloidotic form of bovine spongiform encephalopathy (BSE) termed BASE is caused by a prion strain whose biological properties differ from those of typical BSE, resulting in a clinically and pathologically distinct phenotype. Whether peripheral tissues of BASE-affected cattle contain infectivity is unknown. This is a critical issue since the BASE prion is readily transmissible to a variety of hosts including primates, suggesting that humans may be susceptible. We carried out bioassays in transgenic mice overexpressing bovine PrP (Tgbov XV) and found infectivity in a variety of skeletal muscles from cattle with natural and experimental BASE. Noteworthy, all BASE muscles used for inoculation transmitted disease, although the attack rate differed between experimental and natural cases (∼70% versus ∼10%, respectively). This difference was likely related to different prion titers, possibly due to different stages of disease in the two conditions, i.e. terminal stage in experimental BASE and pre-symptomatic stage in natural BASE. The neuropathological phenotype and PrP(res) type were consistent in all affected mice and matched those of Tgbov XV mice infected with brain homogenate from natural BASE. The immunohistochemical analysis of skeletal muscles from cattle with natural and experimental BASE showed the presence of abnormal prion protein deposits within muscle fibers. Conversely, Tgbov XV mice challenged with lymphoid tissue and kidney from natural and experimental BASE did not develop disease. The novel information on the neuromuscular tropism of the BASE strain, efficiently overcoming species barriers, underlines the relevance of maintaining an active surveillance. PMID:22363650

  4. Exercise training reverses impaired skeletal muscle metabolism induced by artificial selection for low aerobic capacity

    Lessard, Sarah J.; Rivas, Donato A.; Stephenson, Erin J.; Yaspelkis, Ben B.; Koch, Lauren G.; Britton, Steven L.; Hawley, John A.

    2010-01-01

    We have used a novel model of genetically imparted endurance exercise capacity and metabolic health to study the genetic and environmental contributions to skeletal muscle glucose and lipid metabolism. We hypothesized that metabolic abnormalities associated with low intrinsic running capacity would be ameliorated by exercise training. Selective breeding for 22 generations resulted in rat models with a fivefold difference in intrinsic aerobic capacity. Low (LCR)- and high (HCR)-capacity runner...

  5. Mouse model of muscleblind-like 1 overexpression: skeletal muscle effects and therapeutic promise

    Chamberlain, Christopher M; Ranum, Laura P. W.

    2012-01-01

    Myotonic dystrophy (DM) is a multisystemic disease caused by CTG or CCTG expansion mutations. There is strong evidence that DM1 CUG and DM2 CCUG expansion transcripts sequester muscleblind-like (MBNL) proteins and that loss of MBNL function causes alternative splicing abnormalities that contribute to disease. Because MBNL1 loss is thought to play an important role in disease and localized AAV delivery of MBNL1 partially rescues skeletal muscle pathology in DM mice, there is strong interest in...

  6. A skeletal mechanism for biodiesel blend surrogates combustion

    Highlights: • A skeletal biodiesel reaction mechanism with 112 species was constructed. • The developed mechanism contains the CO, NOx and soot formation kinetics. • It was well validated against detailed reaction mechanism and experimental results. • The mechanism is suitable to simulate biodiesel, diesel and their blend fuels. - Abstract: A tri-component skeletal reaction mechanism consisting of methyl decanoate, methyl-9-decenoate, and n-heptane was developed for biodiesel combustion in diesel engine. It comprises 112 species participating in 498 reactions with the CO, NOx and soot formation mechanisms embedded. In this study, a detailed tri-component biodiesel mechanism was used as the start of mechanism reduction and the reduced mechanism was combined with a previously developed skeletal reaction mechanism for n-heptane to integrate the soot formation kinetics. A combined mechanism reduction strategy including the directed relation graph with error propagation and sensitivity analysis (DRGEPSA), peak concentration analysis, isomer lumping, unimportant reactions elimination and reaction rate adjustment methods was employed. The reduction process for biodiesel was performed over a range of initial conditions covering the pressures from 1 to 100 atm, equivalence ratios from 0.5 to 2.0 and temperatures from 700 to 1800 K, whereas for n-heptane, ignition delay predictions were compared against 17 shock tube experimental conditions. Extensive validations were performed for the developed skeletal reaction mechanism with 0-D ignition delay testing and 3-D engine simulations. The results indicated that the developed mechanism was able to accurately predict the ignition delay timings of n-heptane and biodiesel, and it could be integrated into 3-D engine simulations to predict the combustion characteristics of biodiesel. As such, the developed 112-species skeletal mechanism can accurately mimic the significant reaction pathways of the detailed reaction mechanism

  7. Thyroid abnormality in perimenopausal women with abnormal uterine bleeding

    Prasanna Byna

    2015-11-01

    Full Text Available Background: AUB is a common but complicated clinical presentation and occurs in 15-20% of women between menarche to menopause and significantly affects the women's health. Women with thyroid dysfunction often have menstrual irregularities, infertility and increased morbidity during pregnancy. The objective of present study is to find the correlation between thyroid disorders and AUB in perimenopausal women attending gynecology OPD. Methods: In the present study, fifty five patients with AUB were included and were evaluated for the cause including thyroid abnormality. Thyroid function tests were done in all patients. Results: Among 55 patients, 12 patients were diagnosed as hypothyroidism and 7 as hyperthyroidism, women with AUB 36 (65.4% were euthyroid. Among 19 women with thyroid abnormality, heavy menstrual bleeding was seen in 8 (42% women, 6 (31.57% had polymenorrhagia, 5 (26.31% had oligomenorrhoea. The frequent menstrual abnormality in women with hypothyroidism (12 women was heavy menstrual bleeding in 5 (41.6% women, 3 (25% had oligomennorhoea, 4 (33.3% had polymenorrhagia. Out of 7 women with hyperthyroidism, 2 (28.57% had oligomenorrhoea, 3 (42.8% had heavy menstrual bleeding, 2 (28.57% had polymenorrhagia. In a total of 55 patients with AUB, 11 (20% had structural abnormalities in uterus and ovaries. 5 (9% had adenomyosis, 3 (5.4% had ovarian cysts, 3 (5.4% had fibroids. Conclusions: It is important to screen all women for thyroid abnormality who are presenting with AUB especially with non-structural causes of AUB. Correction of thyroid abnormalities also relieves AUB. This will avoid unnecessary hormonal treatment and surgery. [Int J Res Med Sci 2015; 3(11.000: 3250-3253

  8. Development and Validation of Electronic Health Record-based Triggers to Detect Delays in Follow-up of Abnormal Lung Imaging Findings.

    Murphy, Daniel R; Thomas, Eric J; Meyer, Ashley N D; Singh, Hardeep

    2015-10-01

    Purpose To develop an electronic health record (EHR)-based trigger algorithm to identify delays in follow-up of patients with imaging results that are suggestive of lung cancer and to validate this trigger on retrospective data. Materials and Methods The local institutional review board approved the study. A "trigger" algorithm was developed to automate the detection of delays in diagnostic evaluation of chest computed tomographic (CT) images and conventional radiographs that were electronically flagged by reviewing radiologists as being "suspicious for malignancy." The trigger algorithm was developed through literature review and expert input. It included patients who were alive and 40-70 years old, and it excluded instances in which appropriate timely follow-up (defined as occurring within 30 days) was detected (eg, pulmonary visit) or when follow-up was unnecessary (eg, in patients with a terminal illness). The algorithm was iteratively applied to a retrospective test cohort in an EHR data warehouse at a large Veterans Affairs facility, and manual record reviews were used to validate each individual criterion. The final algorithm aimed at detecting an absence of timely follow-up was retrospectively applied to an independent validation cohort to determine the positive predictive value (PPV). Trigger performance, time to follow-up, reasons for lack of follow-up, and cancer outcomes were analyzed and reported by using descriptive statistics. Results The trigger algorithm was retrospectively applied to the records of 89 168 patients seen between January 1, 2009, and December 31, 2009. Of 538 records with an imaging report that was flagged as suspicious for malignancy, 131 were identified by the trigger as being high risk for delayed diagnostic evaluation. Manual chart reviews confirmed a true absence of follow-up in 75 cases (trigger PPV of 57.3% for detecting evaluation delays), of which four received a diagnosis of primary lung cancer within the subsequent 2 years

  9. Abnormal Cervical Cancer Screening Test Results

    ... AQ FREQUENTLY ASKED QUESTIONS FAQ187 GYNECOLOGIC PROBLEMS Abnormal Cervical Cancer Screening Test Results • What is cervical cancer screening? • What causes abnormal cervical cancer screening test ...

  10. Detection of ultrastructural changes in genetically altered and exercised skeletal muscle using PS-OCT

    Pasquesi, James J.; Schlachter, Simon C.; Boppart, Marni D.; Chaney, Eric; Kaufman, Stephen J.; Boppart, Stephen A.

    2006-02-01

    Birefringence of skeletal muscle has been associated with the ultrastructure of individual sarcomeres, specifically the arrangement of A-bands corresponding to the thick myosin filaments. Murine skeletal muscle (gastrocnemius) was imaged with a fiber-based PS-OCT imaging system to determine the level of birefringence present in the tissue under various conditions. In addition to muscle controls from wild-type mice, muscle from abnormal mice included: genetically-modified (mdx) mice which model human muscular dystrophy, transgenic mice exhibiting an overexpression of integrin (α7β1), and transgenic integrin (α7β1)knockout mice. Comparisons were also made between rested and exercised muscles to determine the effects of exercise on muscle birefringence for each of these normal and abnormal conditions. The PS-OCT images revealed that the presence of birefringence was similar in the rested muscle with dystrophy-like features (i.e., lacking the structural protein dystrophin - mdx) and in the integrin (α7β1)knockout muscle when compared to the normal (wild-type) control. However, exercising these abnormal muscle tissues drastically reduced the presence of birefringence detected by the PS-OCT system. The muscle exhibiting an overexpression of integrin (α7β1) remained heavily birefringent before and after exercise, similar to the normal (wild-type) muscle. These results suggest that there is a distinct relationship between the degree of birefringence detected using PS-OCT and the sarcomeric ultrastructure present within skeletal muscle.

  11. A Comparison of Hand Wrist Bone Analysis with Two Different Cervical Vertebral Analysis in Measuring Skeletal Maturation

    Pichai, Saravanan; M. Rajesh; Reddy, Naveen; Adusumilli, Gopinath; Reddy, Jayaprakash; Joshi, Bhavana

    2014-01-01

    Background: Skeletal maturation is an integral part of individual pattern of growth and development and is a continuous process. Peak growth velocity in standing height is the most valid representation of the rate of overall skeletal growth. Ossification changes of hand wrist and cervical vertebrae are the reliable indicators of growth status of individual. The objective of this study was to compare skeletal maturation as measured by hand wrist bone analysis and cervical vertebral analysis. M...

  12. Influence of aging and long-term unloading on the structure and function of human skeletal muscle1

    Trappe, Todd

    2009-01-01

    Understanding the quantitative and qualitative changes in skeletal muscle that control changes in function is crucial in the development of countermeasures to the loss of skeletal muscle function observed with real and simulated micro-gravity exposure (i.e., unloading) and with aging in humans. Qualitative changes that could influence the force and power producing properties of skeletal muscle are changes in the distribution of the 3 isoforms of the main motor protein myosin heavy chain (MHC)...

  13. A Novel Method to Measure Glucose Uptake and Myosin Heavy Chain Isoform Expression of Single Fibers From Rat Skeletal Muscle

    MacKrell, James G.; Gregory D. Cartee

    2012-01-01

    Skeletal muscle includes many individual fibers with diverse phenotypes. A barrier to understanding muscle glucose uptake at the cellular level has been the absence of a method to measure glucose uptake by single fibers from mammalian skeletal muscle. This study’s primary objective was to develop a procedure to measure glucose uptake by single fibers from rat skeletal muscle. Rat epitrochlearis muscles were incubated ex vivo with [3H]-2-deoxy-d-glucose, with or without insulin or AICAR, befor...

  14. Role of NADH/NAD+ transport activity and glycogen store on skeletal muscle energy metabolism during exercise: in silico studies

    Li, Yanjun; Dash, Ranjan K; Kim, Jaeyeon; Saidel, Gerald M.; Cabrera, Marco E.

    2008-01-01

    Skeletal muscle can maintain ATP concentration constant during the transition from rest to exercise, whereas metabolic reaction rates may increase substantially. Among the key regulatory factors of skeletal muscle energy metabolism during exercise, the dynamics of cytosolic and mitochondrial NADH and NAD+ have not been characterized. To quantify these regulatory factors, we have developed a physiologically based computational model of skeletal muscle energy metabolism. This model integrates t...

  15. Increased expression of Myosin binding protein H in the skeletal muscle of amyotrophic lateral sclerosis patients

    Conti, Antonio

    2014-01-01

    Amyotrophic lateral sclerosis (ALS) is a severe and fatal neurodegenerative disease of still unknown pathogenesis. Recent findings suggest that the skeletal muscle may play an active pathogenetic role. To investigate ALS\\'s pathogenesis and to seek diagnostic markers, we analyzed skeletal muscle biopsies with the differential expression proteomic approach. We studied skeletal muscle biopsies from healthy controls (CN), sporadic ALS (sALS), motor neuropathies (MN) and myopathies (M). Pre-eminently among several differentially expressed proteins, Myosin binding protein H (MyBP-H) expression in ALS samples was anomalously high. MyBP-H is a component of the thick filaments of the skeletal muscle and has strong affinity for myosin, but its function is still unclear. High MyBP-H expression level was associated with abnormal expression of Rho kinase 2 (ROCK2), LIM domain kinase 1 (LIMK1) and cofilin2, that might affect the actin-myosin interaction. We propose that MyBP-H expression level serves, as a putative biomarker in the skeletal muscle, to discriminate ALS from motor neuropathies, and that it signals the onset of dysregulation in actin-myosin interaction; this in turn might contribute to the pathogenesis of ALS. © 2013 Elsevier B.V.

  16. The exercised skeletal muscle: a review

    Marina Marini

    2010-09-01

    Full Text Available The skeletal muscle is the second more plastic tissue of the body - second to the nervous tissue only. In fact, both physical activity and inactivity contribute to modify the skeletal muscle, by continuous signaling through nerve impulses, mechanical stimuli and humoral clues. In turn, the skeletal muscle sends signals to the body, thus contributing to its homeostasis. We'll review here the contribute of physical exercise to the shaping of skeletal muscle, to the adaptation of its mass and function to the different needs imposed by different physical activities and to the attainment of the health benefits associated with active skeletal muscles. Focus will primarily be on the molecular pathways and on gene regulation that result in skeletal muscle adaptation to exercise.

  17. The role of SPECT in the evaluation of skeletal trauma.

    Murray, I P

    1993-02-01

    Single photon emission computed tomography (SPECT) has, in the last decade, established a critical role in routine diagnosis. Skeletal scintigraphy exemplifies the impact in improving detection of lesions by delineation of their site and size. The advantage of minimizing the superimposed radioactivity from overlying and underlying structures is typified by the readiness with which avascular necrosis of the femoral head can be identified by removal of the surrounding hyperaemia which masks the classical photopaenia. However, the ability to achieve an accurate image at a plane at a prescribed depth is most characteristically shown by the study of a vertebra, a bone of irregular contour and subject to a variety of pathological disorders at different sites within it. The various focal abnormalities resulting from these can be localized exactly, readily distinguishing, for example, those in the body from those in the natural arch. In particular, the alterations resulting from trauma, such as pars interarticularis stress fracture, are readily seen. Consequently SPECT has an indispensable role in the investigation and management of low back pain. However, the ability of SPECT to delineate abnormal accumulation has provided a new approach to the evaluation of knee pain, especially when acute such as that resulting from athletic injury, since the identification of the presence or absence of focal abnormalities can be critical to patient management. The frequency of these various disorders in which SPECT is so useful explains why the procedure has become such a routine high-volume examination is so many departments. PMID:8461235

  18. The role of SPECT in the evaluation of skeletal trauma

    Single photon emission computed tomography (SPECT) has, in the last decade, established a critical role in routine diagnosis. Skeletal scintigraphy exemplifies the impact in improving detection of lesions by delineation of their site and size. The advantage of minimizing the superimposed radioactivity from overlying and underlying structures is typified by the readiness with which avascular necrosis of the femoral head can be identified by removal of the surrounding hyperaemia which masks the classical photopaenia. However, the ability to achieve an accurate image at a plane at a prescribed depth is most characteristically shown by the study of a vertebra, a bone of irregular contour and subject to a variety of pathological disorders at different sites within it. The various focal abnormalities resulting from these can be localized exactly, readily distinguishing, for example, those in the body from those in the natural arch. In particular, the alterations resulting from trauma, such as pars interarticularis stress fracture, are readily seen. Consequently SPECT has an indispensable role in the investigation and management of low back pain. However, the ability of SPECT to delineate abnormal accumulation has provided a new approach to the evaluation of knee pain, especially when acute such as that resulting from athletic injury, since the identification of the presence or absence of focal abnormalities can be critical to patient management. The frequency of these various disorders in which SPECT is so useful explains why the procedure has become such a routine high-volume examination in so many departments. (author)

  19. [Development of simple tools for risk identification and prevention of WMSDs (work related muscular-skeletal disorders): application experience in small and craft industries].

    Colombini, Daniela; Occhipinti, E

    2011-01-01

    When studying WMSDs, multiple factors of different nature (mechanical, organizational, psychosocial, individual) and their interrelationship are considered relevant; consequently, the need for a "holistic" approach to MSD prevention was established. However, in recent years, considering the widespread presence of WMSDs in various work contexts there is a strong demand from OSH agencies and operators to develop "simple" tools for risk assessment and management, usable also by non-experts both in developed and developing countries, and in particular in craft industries and SME (small-medium enterprises). The World Health Organization (WHO) promoted the development of "toolkits" for different occupational risks and diseases; in outlining a toolkit (for WMSDs prevention), WHO defines this as "a set of practical risk assessment procedures and related management guidance documents, including advice on simple risk control options". The "Ergonomics of Posture and Movement" Research Unit (EPM) is very much involved in the WHO project for developing a "toolkit for MSD prevention" (as well as in similar issues promoted by ISO or UE); attention was consequently focused on craft industries, small enterprises and "difficult" work sectors (i.e. agriculture, fisheries, construction). In these sectors simple tools, procedures and software were developed and applied, that could facilitate WMSDs risk assessment and management. This issue of "La Medicina del Lavoro" is entirely devoted to selected papers regarding the above proposals and experience, especially in craft industries. The opening paper is a basic methodological contribution presenting a procedure and a tool (with relative software) that is useful for the identification of a number of occupational risks by means of special "key-enters"; the same tool, with special regard to WMSDs, defines criteria for a "quick risk assessment" which is mainly aimed at identifying 3 possible conditions: Acceptable (no remedial actions

  20. Skeletal development of mice lacking bone sialoprotein (BSP--impairment of long bone growth and progressive establishment of high trabecular bone mass.

    Wafa Bouleftour

    Full Text Available Adult Ibsp-knockout mice (BSP-/- display shorter stature, lower bone turnover and higher trabecular bone mass than wild type, the latter resulting from impaired bone resorption. Unexpectedly, BSP knockout also affects reproductive behavior, as female mice do not construct a proper "nest" for their offsprings. Multiple crossing experiments nonetheless indicated that the shorter stature and lower weight of BSP-/- mice, since birth and throughout life, as well as their shorter femur and tibia bones are independent of the genotype of the mothers, and thus reflect genetic inheritance. In BSP-/- newborns, µCT analysis revealed a delay in membranous primary ossification, with wider cranial sutures, as well as thinner femoral cortical bone and lower tissue mineral density, reflected in lower expression of bone formation markers. However, trabecular bone volume and osteoclast parameters of long bones do not differ between genotypes. Three weeks after birth, osteoclast number and surface drop in the mutants, concomitant with trabecular bone accumulation. The growth plates present a thinner hypertrophic zone in newborns with lower whole bone expression of IGF-1 and higher IHH in 6 days old BSP-/- mice. At 3 weeks the proliferating zone is thinner and the hypertrophic zone thicker in BSP-/- than in BSP+/+ mice of either sex, maybe reflecting a combination of lower chondrocyte proliferation and impaired cartilage resorption. Six days old BSP-/- mice display lower osteoblast marker expression but higher MEPE and higher osteopontin(Opn/Runx2 ratio. Serum Opn is higher in mutants at day 6 and in adults. Thus, lack of BSP alters long bone growth and membranous/cortical primary bone formation and mineralization. Endochondral development is however normal in mutant mice and the accumulation of trabecular bone observed in adults develops progressively in the weeks following birth. Compensatory high Opn may allow normal endochondral development in BSP-/- mice

  1. Monitoring of progressive collapse of skeletal structures

    The authors propose an idea of monitoring the state of skeletal structures of high importance (e.g. roof structures over large area buildings) with the aim of identification of slowly-developing plastic zones. This is formulated as an inverse problem within the framework of the Virtual Distortion Method, which was used previously to identify stiffness/mass modifications in similar manner. Permanent plastic strains developed in a truss element can be modeled by an initial strain (virtual distortion) introduced to the structure. The formation of subsequent plastic zones in the structure is assumed to be slow. Consequently, the design variable (plastic strain) is time-independent, which makes the inverse analysis efficient. This article presents problem formulation and numerical algorithm for identification of the plastic strains int russ structures. The identification relies on gradient-based optimization. A numerical example is included to demonstrate the efficiency of the algorithm.

  2. Transient brain scan abnormalities in renal dialysis patients

    Two patients on chronic renal hemodialysis developed acute neurologic symptoms and unusual brain scan findings, including very prominent cranial sinuses. Symptoms and scan abnormalities reverted to normal within a few days. The possible mechanisms are discussed

  3. Management of abnormal radioactive wastes at nuclear power plants

    As with any other industrial activity, a certain level of risk is associated with the operation of nuclear power plants and other nuclear facilities. That is, on occasions nuclear power plants or nuclear facilities may operate under conditions which were not specifically anticipated during the design and construction of the plant. These abnormal conditions and situations may cause the production of abnormal waste, which can differ in character or quantity from waste produced during normal routine operation of nuclear facilities. Abnormal waste can also occur during decontamination programmes, replacement of a reactor component, de-sludging of storage ponds, etc. The management of such kinds of waste involves the need to evaluate existing waste management systems in order to determine how abnormal wastes should best be handled and processed. There are no known publications on this subject, and the IAEA believes that the development and exchange of such information among its Member States would be useful for specialists working in the waste management area. The main objective of this report is to review existing waste management practices which can be applied to abnormal waste and provide assistance in the selection of appropriate technologies and processes that can be used when abnormal situations occur. Naturally, the subject of abnormal waste is complex and this report can only be considered as a guide for the management of abnormal waste. Refs, figs and tabs.

  4. The Effects of Lactate on Skeletal Muscle

    Willkomm, Lena

    2014-01-01

    Regular exercise and physical activity are cornerstones in the prevention and treatment of numerous chronic conditions, such as type 2 diabetes, coronary heart disease, and age-related sarcopenia. The associated health benefits arise from a number of tissues but due to its high plasticity skeletal muscle plays a pivotal role. The resident stem cells of skeletal muscle tissue, so called Satellite cells (SCs), contribute significantly to skeletal muscle adaptation and hence, maintenance of heal...

  5. Cerebellar medulloblastoma presenting with skeletal metastasis

    Barai Sukanta; Bandopadhayaya G; Julka P; Dhanapathi H; Haloi A; Seith A

    2004-01-01

    Medulloblastomas are highly malignant brain tumours, but only rarely produce skeletal metastases. No case of medulloblastoma has been documented to have produced skeletal metastases prior to craniotomy or shunt surgery. A 21-year-old male presented with pain in the hip and lower back with difficulty in walking of 3 months′ duration. Signs of cerebellar dysfunction were present hence a diagnosis of cerebellar neoplasm or skeletal tuberculosis with cerebellar abscess formation was consid...

  6. Autism and chromosome abnormalities-A review.

    Bergbaum, Anne; Ogilvie, Caroline Mackie

    2016-07-01

    The neuro-behavioral disorder of autism was first described in the 1940s and was predicted to have a biological basis. Since that time, with the growth of genetic investigations particularly in the area of pediatric development, an increasing number of children with autism and related disorders (autistic spectrum disorders, ASD) have been the subject of genetic studies both in the clinical setting and in the wider research environment. However, a full understanding of the biological basis of ASDs has yet to be achieved. Early observations of children with chromosomal abnormalities detected by G-banded chromosome analysis (karyotyping) and in situ hybridization revealed, in some cases, ASD associated with other features arising from such an abnormality. The introduction of higher resolution techniques for whole genome screening, such as array comparative genome hybridization (aCGH), allowed smaller imbalances to be detected, some of which are now considered to represent autism susceptibility loci. In this review, we describe some of the work underpinning the conclusion that ASDs have a genetic basis; a brief history of the developments in genetic analysis tools over the last 50 years; and the most common chromosome abnormalities found in association with ASDs. Introduction of next generation sequencing (NGS) into the clinical diagnostic setting is likely to provide further insights into this complex field but will not be covered in this review. Clin. Anat. 29:620-627, 2016. © 2016 Wiley Periodicals, Inc. PMID:27012322

  7. Spinal cord injury without radiographic abnormality

    Singh Anil

    2006-01-01

    Full Text Available Spinal cord injury without radiological abnormality is rare in adults. Below we present a case report of 20 yrs old male with isolated cervical cord injury, without accompanying vertebral dislocation or fracture involving the spinal canal rim. He fell down on plain and smooth ground while carrying 40 kg weight overhead and developed quadriparesis with difficulty in respiration. Plain radiographs of the neck revealed no fractures or dislocations. MRI showed bulky spinal cord and an abnormal hyper intense signal on the T2W image from C2 vertebral body level to C3/4 intervertebral disc level predominantly in the anterior aspect of the cord The patient was managed conservatively with head halter traction and invasive ventilatory support for the initial 7 days period in the ICU. In our patient recovery was good and most of the neurological deficit improved over 4 weeks with conservative management.

  8. Prenatal diagnosis of sirenomelia by two-dimensional and three-dimensional skeletal imaging ultrasound.

    Liu, Rong; Chen, Xin-lin; Yang, Xiao-hong; Ma, Hui-jing

    2015-12-01

    This study sought to evaluate the contribution of two-dimensional ultrasound (2D-US) and three-dimensional skeletal imaging ultrasound (3D-SUIS) in the prenatal diagnosis of sirenomelia. Between September 2010 and April 2014, a prospective study was conducted in a single referral center using 3D-SUIS performed after 2D-US in 10 cases of sirenomelia. Diagnostic accuracy and detailed findings were compared with postnatal three-dimensional helical computed tomography (3D-HCT), radiological findings and autopsy. Pregnancy was terminated in all 10 sirenomelia cases, including 9 singletons and 1 conjoined twin pregnancy, for a total of 5 males and 5 females. These cases of sirenomelia were determined by autopsy and/or chromosomal examination. Initial 2D-US showed that there were 10 cases of oligohydramnios, bilateral renal agenesis, bladder agenesis, single umbilical artery, fusion of the lower limbs and spinal abnormalities; 8 cases of dipus or monopus; 2 cases of apus; and 8 cases of cardiac abnormalities. Subsequent 3D-SUIS showed that there were 9 cases of scoliosis, 10 cases of sacrococcygeal vertebra dysplasia, 3 cases of hemivertebra, 1 case of vertebral fusion, 3 cases of spina bifida, and 5 cases of rib abnormalities. 3D-SUIS identified significantly more skeletal abnormalities than did 2D-US, and its accuracy was 79.5% (70/88) compared with 3D-HCT and radiography. 3D-SUIS seems to be a useful complementary method to 2D-US and may improve the accuracy of identifying prenatal skeletal abnormalities related to sirenomelia. PMID:26670448

  9. Sperm abnormalities in exposed humans

    Šrám, Radim; Rubeš, J.

    Cambridge : Issue in Toxicology, Royal Society of Chemistry Publ.,, 2007, s. 247-258. ISBN 978-0-85404-847-2 R&D Projects: GA MŽP SL/740/5/03 Institutional research plan: CEZ:AV0Z50390512 Keywords : air pollution exposure * sperm abnormalities * male reproductive health Subject RIV: DN - Health Impact of the Environment Quality

  10. Ultrastructure and development of Pleistophora ronneafiei n. sp., a microsporidium (Protista) in the skeletal muscle of an immune-compromised individual.

    Cali, Ann; Takvorian, Peter M

    2003-01-01

    This report provides a detailed ultrastructural study of the life cycle, including proliferative and sporogonic developmental stages, of the first Pleistophora species (microsporidium) obtained from an immune-incompetent patient. In 1985, the organism obtained from a muscle biopsy was initially identified as belonging to the genus Pleistophora, based on spore morphology and its location in a sporophorous vesicle. Since that initial report, at least two new microsporidial genera, Trachipleistophora and Brachiola, have been reported to infect the muscle tissue of immunologically compromised patients. Because Trachipleistophora development is similar to Pleistophora, and as Pleistophora was only known to occur in cold-blooded hosts, the question of the proper classification of this microsporidium arose. The information acquired in this study makes it possible to compare Pleistophora sp. (Ledford et al. 1985) to the known human infections and properly determine its correct taxonomic position. Our ultrastructural data have revealed the formation of multinucleate sporogonial plasmodia, a developmental characteristic of the genus Pleistophora and not Trachipleistophora. A comparison with other species of the genus supports the establishment of a new species. This parasite is given the name Pleistophora ronneafiei n. sp. PMID:12744518

  11. Growth Factors and Tension-Induced Skeletal Muscle Growth

    Vandenburgh, Herman H.

    1994-01-01

    The project investigated biochemical mechanisms to enhance skeletal muscle growth, and developed a computer based mechanical cell stimulator system. The biochemicals investigated in this study were insulin/(Insulin like Growth Factor) IGF-1 and Steroids. In order to analyze which growth factors are essential for stretch-induced muscle growth in vitro, we developed a defined, serum-free medium in which the differentiated, cultured avian muscle fibers could be maintained for extended periods of time. The defined medium (muscle maintenance medium, MM medium) maintains the nitrogen balance of the myofibers for 3 to 7 days, based on myofiber diameter measurements and myosin heavy chain content. Insulin and IGF-1, but not IGF-2, induced pronounced myofiber hypertrophy when added to this medium. In 5 to 7 days, muscle fiber diameters increase by 71 % to 98% compared to untreated controls. Mechanical stimulation of the avian muscle fibers in MM medium increased the sensitivity of the cells to insulin and IGF-1, based on a leftward shift of the insulin dose/response curve for protein synthesis rates. (54). We developed a ligand binding assay for IGF-1 binding proteins and found that the avian skeletal muscle cultures produced three major species of 31, 36 and 43 kD molecular weight (54) Stretch of the myofibers was found to have no significant effect on the efflux of IGF-1 binding proteins, but addition of exogenous collagen stimulated IGF-1 binding protein production 1.5 to 5 fold. Steroid hormones have a profound effect on muscle protein turnover rates in vivo, with the stress-related glucocorticoids inducing rapid skeletal muscle atrophy while androgenic steroids induce skeletal muscle growth. Exercise in humans and animals reduces the catabolic effects of glucocorticoids and may enhance the anabolic effects of androgenic steroids on skeletal muscle. In our continuing work on the involvement of exogenrus growth factors in stretch-induced avian skeletal muscle growth, we

  12. Structure–function relationship of skeletal muscle provides inspiration for design of new artificial muscle

    A variety of actuator technologies have been developed to mimic biological skeletal muscle that generates force in a controlled manner. Force generation process of skeletal muscle involves complicated biophysical and biochemical mechanisms; therefore, it is impossible to replace biological muscle. In biological skeletal muscle tissue, the force generation of a muscle depends not only on the force generation capacity of the muscle fiber, but also on many other important factors, including muscle fiber type, motor unit recruitment, architecture, structure and morphology of skeletal muscle, all of which have significant impact on the force generation of the whole muscle or force transmission from muscle fibers to the tendon. Such factors have often been overlooked, but can be incorporated in artificial muscle design, especially with the discovery of new smart materials and the development of innovative fabrication and manufacturing technologies. A better understanding of the physiology and structure–function relationship of skeletal muscle will therefore benefit the artificial muscle design. In this paper, factors that affect muscle force generation are reviewed. Mathematical models used to model the structure–function relationship of skeletal muscle are reviewed and discussed. We hope the review will provide inspiration for the design of a new generation of artificial muscle by incorporating the structure–function relationship of skeletal muscle into the design of artificial muscle. (topical review)

  13. Heterotopic neogenesis of skeletal muscle induced in the adult rat diaphragmatic peritoneum. Ultrastructural and transplantation studies

    Drakontides, A.B.; Danon, M J; Levine, S

    1999-01-01

    During the course of a mild chemical peritonitis, new skeletal muscle fibers develop and persist over a twelve-month interval in the diaphragmatic peritoneum. Light and electron microscopic studies revealed that the ectopic fibers developed from myoblasts and myotubes to fully differentiated muscle cells in the same manner as normally situated skeletal muscle. The ectopic fibers were separated from the intrinsic muscle by dense connective tissue and an elas...

  14. Detection of chromosomal regions showing differential gene expression in human skeletal muscle and in alveolar rhabdomyosarcoma

    Bortoluzzi Stefania; Bisognin Andrea; Danieli Gian

    2004-01-01

    Abstract Background Rhabdomyosarcoma is a relatively common tumour of the soft tissue, probably due to regulatory disruption of growth and differentiation of skeletal muscle stem cells. Identification of genes differentially expressed in normal skeletal muscle and in rhabdomyosarcoma may help in understanding mechanisms of tumour development, in discovering diagnostic and prognostic markers and in identifying novel targets for drug therapy. Results A Perl-code web client was developed to auto...

  15. In Nicotiana species, an artificial microRNA corresponding to the virulence modulating region of Potato spindle tuber viroid directs RNA silencing of a soluble inorganic pyrophosphatase gene and the development of abnormal phenotypes.

    Eamens, Andrew L; Smith, Neil A; Dennis, Elizabeth S; Wassenegger, Michael; Wang, Ming-Bo

    2014-02-01

    Potato spindle tuber viroid (PSTVd) is a small non-protein-coding RNA pathogen that can induce disease symptoms in a variety of plant species. How PSTVd induces disease symptoms is a long standing question. It has been suggested that PSTVd-derived small RNAs (sRNAs) could direct RNA silencing of a targeted host gene(s) resulting in symptom development. To test this, we expressed PSTVd sequences as artificial microRNAs (amiRNAs) in Nicotiana tabacum and Nicotiana benthamiana. One amiRNA, amiR46 that corresponds to sequences within the PSTVd virulence modulating region (VMR), induced abnormal phenotypes in both Nicotiana species that closely resemble those displayed by PSTVd infected plants. In N. tabacum amiR46 plants, phenotype severity correlated with amiR46 accumulation and expression down-regulation of the bioinformatically-identified target gene, a Nicotiana soluble inorganic pyrophosphatase (siPPase). Taken together, our phenotypic and molecular analyses suggest that disease symptom development in Nicotiana species following PSTVd infection results from sRNA-directed RNA silencing of the host gene, siPPase. PMID:24503090

  16. In utero undernutrition programs skeletal and cardiac muscle metabolism

    Brittany eBeauchamp

    2016-01-01

    Full Text Available In utero undernutrition is associated with increased risk for insulin resistance, obesity, and cardiovascular disease during adult life. A common phenotype associated with low birth weight is reduced skeletal muscle mass. Given the central role of skeletal muscle in whole body metabolism, alterations in its mass as well as its metabolic characteristics may contribute to disease risk. This review highlights the metabolic alterations in cardiac and skeletal muscle associated with in utero undernutrition and low birth weight. These tissues have high metabolic demands and are known to be sites of major metabolic dysfunction in obesity, type 2 diabetes, and cardiovascular disease. Recent research demonstrates that mitochondrial energetics are decreased in skeletal and cardiac muscles of adult offspring from undernourished mothers. These effects apparently lead to the development of a thrifty phenotype, which may represent overall a compensatory mechanism programmed in utero to handle times of limited nutrient availability. However, in an environment characterized by food abundance, the effects are maladaptive and increase adulthood risks of metabolic disease.

  17. Skeletal muscle proteomics: current approaches, technical challenges and emerging techniques

    Ohlendieck, Kay

    2011-02-01

    Abstract Background Skeletal muscle fibres represent one of the most abundant cell types in mammals. Their highly specialised contractile and metabolic functions depend on a large number of membrane-associated proteins with very high molecular masses, proteins with extensive posttranslational modifications and components that exist in highly complex supramolecular structures. This makes it extremely difficult to perform conventional biochemical studies of potential changes in protein clusters during physiological adaptations or pathological processes. Results Skeletal muscle proteomics attempts to establish the global identification and biochemical characterisation of all members of the muscle-associated protein complement. A considerable number of proteomic studies have employed large-scale separation techniques, such as high-resolution two-dimensional gel electrophoresis or liquid chromatography, and combined them with mass spectrometry as the method of choice for high-throughput protein identification. Muscle proteomics has been applied to the comprehensive biochemical profiling of developing, maturing and aging muscle, as well as the analysis of contractile tissues undergoing physiological adaptations seen in disuse atrophy, physical exercise and chronic muscle transformation. Biomedical investigations into proteome-wide alterations in skeletal muscle tissues were also used to establish novel biomarker signatures of neuromuscular disorders. Importantly, mass spectrometric studies have confirmed the enormous complexity of posttranslational modifications in skeletal muscle proteins. Conclusions This review critically examines the scientific impact of modern muscle proteomics and discusses its successful application for a better understanding of muscle biology, but also outlines its technical limitations and emerging techniques to establish new biomarker candidates.

  18. Forelimb contractures and abnormal tendon collagen fibrillogenesis in fibulin-4 null mice.

    Markova, Dessislava Z; Pan, Te-Cheng; Zhang, Rui-Zhu; Zhang, Guiyun; Sasaki, Takako; Arita, Machiko; Birk, David E; Chu, Mon-Li

    2016-06-01

    Fibulin-4 is an extracellular matrix glycoprotein essential for elastic fiber formation. Mice deficient in fibulin-4 die perinatally because of severe pulmonary and vascular defects associated with the lack of intact elastic fibers. Patients with fibulin-4 mutations demonstrate similar defects, and a significant number die shortly after birth or in early childhood from cardiopulmonary failure. The patients also demonstrate skeletal and other systemic connective tissue abnormalities, including joint laxity and flexion contractures of the wrist. A fibulin-4 null mouse strain was generated and used to analyze the roles of fibulin-4 in tendon fibrillogenesis. This mouse model displayed bilateral forelimb contractures, in addition to pulmonary and cardiovascular defects. The forelimb and hindlimb tendons exhibited disruption in collagen fibrillogenesis in the absence of fibulin-4 as analyzed by transmission electron microscopy. Fewer fibrils were assembled, and fibrils were disorganized compared with wild-type controls. The organization of developing tenocytes and compartmentalization of the extracellular space was also disrupted. Fibulin-4 was co-localized with fibrillin-1 and fibrillin-2 in limb tendons by using immunofluorescence microscopy. Thus, fibulin-4 seems to play a role in regulating tendon collagen fibrillogenesis, in addition to its essential function in elastogenesis. PMID:26711913

  19. Skeletal scintigraphy following incidental trauma

    The significance of antecedent trauma in skeletal scintigraphy was assessed in 503 patients, of whom 241 (46%) had prior fracture or tooth extraction. In patients with sufficiently accurate histories for site-by-site analysis, 33 of 131 fracture sites and 16 of 83 dental-procedure sites were positive scintigraphically. In general, the frequency of scan positivity diminished as the interval between trauma and scanning increased, but a significant number of patients showed prolonged uptake at fracture sites. Several patterns of uptake suggested trauma rather than metastatic disease. Knowledge of a history of trauma is often critical in bone scan interpretation

  20. New roles for Smad signaling and phosphatidic acid in the regulation of skeletal muscle mass.

    Goodman, Craig A; Hornberger, Troy A

    2014-01-01

    Skeletal muscle is essential for normal bodily function and the loss of skeletal muscle (i.e. muscle atrophy/wasting) can have a major impact on mobility, whole-body metabolism, disease resistance, and quality of life. Thus, there is a clear need for the development of therapies that can prevent the loss, or increase, of skeletal muscle mass. However, in order to develop such therapies, we will first have to develop a thorough understanding of the molecular mechanisms that regulate muscle mass. Fortunately, our knowledge is rapidly advancing, and in this review, we will summarize recent studies that have expanded our understanding of the roles that Smad signaling and the synthesis of phosphatidic acid play in the regulation of skeletal muscle mass. PMID:24765525

  1. DNA Methylation in Skeletal Muscle Stem Cell Specification, Proliferation, and Differentiation

    Rhianna C. Laker

    2016-01-01

    Full Text Available An unresolved and critically important question in skeletal muscle biology is how muscle stem cells initiate and regulate the genetic program during muscle development. Epigenetic dynamics are essential for cellular development and organogenesis in early life and it is becoming increasingly clear that epigenetic remodeling may also be responsible for the cellular adaptations that occur in later life. DNA methylation of cytosine bases within CpG dinucleotide pairs is an important epigenetic modification that reduces gene expression when located within a promoter or enhancer region. Recent advances in the field suggest that epigenetic regulation is essential for skeletal muscle stem cell identity and subsequent cell development. This review summarizes what is currently known about how skeletal muscle stem cells regulate the myogenic program through DNA methylation, discusses a novel role for metabolism in this process, and addresses DNA methylation dynamics in adult skeletal muscle in response to physical activity.

  2. Myofibre damage in human skeletal muscle

    Crameri, R M; Aagaard, P; Qvortrup, K;

    2007-01-01

    humans using voluntary exercise. Untrained males (n=8, range 22-27 years) performed 210 maximal eccentric contractions with each leg on an isokinetic dynamometer, voluntarily (VOL) with one leg and electrically induced (ES) with the other leg. Assessments from the skeletal muscle were obtained prior to......Disruption to proteins within the myofibre after a single bout of unaccustomed eccentric exercise is hypothesized to induce delayed onset of muscle soreness and to be associated with an activation of satellite cells. This has been shown in animal models using electrical stimulation but not in...... exercise and at 5, 24, 96 and 192 h postexercise. Muscle tenderness rose in VOL and ES after 24 h, and did not differ between groups. Maximal isometric contraction strength, rate of force development and impulse declined in the VOL leg from 4 h after exercise, but not in ES (except at 24 h). In contrast, a...

  3. Histological image data of limb skeletal tissue from larval and adult Ambystoma mexicanum.

    McCusker, Catherine D; Diaz-Castillo, Carlos; Sosnik, Julian; Phan, Anne; Gardiner, David M

    2016-09-01

    The data presented in this article are related to the article entitled "Cartilage and bone cells do not participate in skeletal regeneration in Ambystoma mexicanum limbs" [1]. Here we present image data of the post-embryonic development of the forelimb skeletal tissue of Ambystoma Mexicanum. Histological staining was performed on sections from the intact limbs of young (6.5 cm) and old (25 cm) animals, and on dissected skeletal tissues (cartilage, bone, and periosteum) from these animals. PMID:27547798

  4. Skeletal Manifestations of Scurvy: A Case Report from Dubai

    Shahryar Noordin; Naveed Baloch; Muhammad Sohail Salat; Abdul Rashid Memon; Tashfeen Ahmad

    2012-01-01

    Introduction. Nutritional deficiencies are rarely reported in developed countries. We report a child of Pakistani origin brought up in Dubai who developed skeletal manifestations of scurvy due to peculiar dietary habits. Case Presentation. A 4.5 year old boy presented with pain and swelling of multiple joints for three months and inability to walk for two months. Dietary history was significant for exclusive meat intake for the preceding two years. On examination the child’s height and weight...

  5. Angiosarcoma arising from skeletal haemangiomatosis in an atomic bomb survivor

    Yamamoto, T.; Iwasaki, Y.; Kurosaka, M; Minami, R

    2001-01-01

    The authors report a unique case in which an angiosarcoma arose from skeletal haemangiomatosis in a 72 year old man. This patient had a history of atomic bomb irradiation more than 50 years ago. Radiographically, the patient had multiple sclerotic foci of benign haemangiomas in the pelvis, the sacrum, and the left femur. The patient developed a high grade angiosarcoma in the left pubic bone. It is thought that atomic bomb irradiation played an important role in the development of the malignan...

  6. The Development and Predictive Research of the "Anti-social Abnormal Personality Scale"%反社会变态人格倾向测验的编制与预测性分析

    王伟; 张石磊; 关慕桢; 李红政; 刘旭峰

    2011-01-01

    本研究通过编制专用问卷,筛查反社会变态人格高危险人群,为我国征兵心理检测提供有效工具。结果,《反社会变态人格倾向问卷》由168个条目组成,为3维9因子结构,具有很好的信度和效度,符合应征人群的行为特点,预测研究证实是评价反社会变态人格倾向的有效工具。%The soldier is the cell of the army, and his behavior is closely related with the fighting forces. Many studies indicate that abnormal personality and soldiers are closely linked with crimes, and particularly antisocial personality has been the most obvious metamorphosis. Therefore, eliminating youth candidates with antisocial tendencies from getting into the army by psychological selection is an effective way to prevent soldiers from crime. To test abnormal personality and eliminate those with high risk of antisocial personality is a general issue in foreign armies. The present experiment aimed to develop an anti-social abnormal personality-detecting scale used in the process of enlistment and to select the high-risk youths of anti-social abnormal personality and to provide an effective tool for the recruitment psychological assessment system. In this study, 8927 normal young male candidates (aged 17.34 ± 1.08), 832 male juvenile criminals (aged 16.29± 1.31 ), who committed robbery (73.23 % ), intentional homicide (8.40 % ) and assault (18.37%), 493 normal young candidates who were refused by interviews (aged 17.36 ±1.29) and 2521 recruits (aged 17.83± 1. 47) were tested. There was no significant difference ( p 〉 . 05) in education among the four groups. All participants had no history of mental and neurological disorders, and were not taken apart in psychological experiments before and Signed consent. This study consisted of two steps, of which the results could be constituted as a military standard. In the first step, the scale for recruits was developed based on

  7. Defective Homocysteine Metabolism: Potential Implications for Skeletal Muscle Malfunction

    Suresh C. Tyagi

    2013-07-01

    Full Text Available Hyperhomocysteinemia (HHcy is a systemic medical condition and has been attributed to multi-organ pathologies. Genetic, nutritional, hormonal, age and gender differences are involved in abnormal homocysteine (Hcy metabolism that produces HHcy. Homocysteine is an intermediate for many key processes such as cellular methylation and cellular antioxidant potential and imbalances in Hcy production and/or catabolism impacts gene expression and cell signaling including GPCR signaling. Furthermore, HHcy might damage the vagus nerve and superior cervical ganglion and affects various GPCR functions; therefore it can impair both the parasympathetic and sympathetic regulation in the blood vessels of skeletal muscle and affect long-term muscle function. Understanding cellular targets of Hcy during HHcy in different contexts and its role either as a primary risk factor or as an aggravator of certain disease conditions would provide better interventions. In this review we have provided recent Hcy mediated mechanistic insights into different diseases and presented potential implications in the context of reduced muscle function and integrity. Overall, the impact of HHcy in various skeletal muscle malfunctions is underappreciated; future studies in this area will provide deeper insights and improve our understanding of the association between HHcy and diminished physical function.

  8. Plasma-cell dyscrasias and diffuse idiopathic skeletal hyperostosis (DISH)

    The radiologic staging of a series of 144 patients (88 males and 56 females) affected with plasma-cell dyscrasias and observed over a 26 month period, revealed both the well-known bone myeloma-related abnormalities and hyperostotic lesions similar to those described in diffuse idiopathic skeletal hyperostosis. The incidence of skeletal hyperostosis was 31.94% much higher than that reported in literature for the general population (5%). Typically, the axial skeleton is the most common location for abnormalities in multiple myeloma (MM) as well as in DISH: involvement of the dorsal spine was observed in 65% of cases, the cervical spine was involved in 34.8% of patients, and the lumbar spine in 28.3%. Peripheral ossifiyng enthesopathy, considered as 'whiskering' in the pelvis, was found in 12 cases (8.2%), 7 males and 5 females. DISH was indifferently present in both MM (23 cases), with severe osteolysis (Stage III) ar simple osteoporosis (stage I), and monoclonal gammopathy of undetermined significance (MGUS) (17 cases), usually without any myeloma-related bone lesions, and in Waldenstrom disease (4 cases). Many hypotheses are discussed as to the possible pathogenesis (e.g.: accidental, dysmetabolic, or degenerative) of hyperostosis in dysgammaglobulinemias, but, to date, they are no more than mere guesses. DISH is a disorder the etiology of which is still unknown: it is likely to be an ossifying diethesis, but its incidence in both illnesses- which are both plasma-cell dyscrasias -is too high for the association to be accidental. Thus, a pathogenetic factor produced by multiple myeloma can be hypothesized, capable of increasing the so-called idiopathic hyperostosis

  9. Cardiac, Skeletal, and smooth muscle mitochondrial respiration

    Park, Song-Young; Gifford, Jayson R; Andtbacka, Robert H I; Hyngstrom, John R; Garten, Ryan S; Diakos, Nikolaos A; Ives, Stephen J; Dela, Flemming; Larsen, Steen; Drakos, Stavros; Richardson, Russell S

    2014-01-01

    Unlike cardiac and skeletal muscle, little is known about vascular smooth muscle mitochondrial function. Therefore, this study examined mitochondrial respiratory rates in the smooth muscle of healthy human feed arteries and compared with that of healthy cardiac and skeletal muscle. Cardiac, skele...

  10. Mechanical modeling of skeletal muscle functioning.

    Linden, van der Bart Jochem Julius Joost

    1998-01-01

    For movement of body or body segments is combined effort needed of the central nervous system and the muscular-skeletal system. This thesis deals with the mechanical functioning of skeletal muscle. That muscles come in a large variety of geometries, suggest the existence of a relation between muscle

  11. Osteo-Promoter Database (OPD – Promoter analysis in skeletal cells

    Benayahu Dafna

    2005-03-01

    Full Text Available Abstract Background Increasing our knowledge about the complex expression of genes in skeletal tissue will provide a better understanding of the physiology of skeletal cells. The study summarizes transcriptional regulation factors interacting and cooperating at promoter regions that regulate gene expression. Specifically, we analyzed A/T rich elements along the promoter sequences. Description The Osteo-Promoter Database (OPD is a collection of genes and promoters expressed in skeletal cells. We have compiled a new viewer, OPD, as unique database developed and created as an accessible tool for skeletal promoter sequences. OPD can navigate to identify genes specific to skeletal cDNA databases and promoter analysis sites. OPD offers exclusive access to facilitate a dynamic extraction of promoters' gene-specific analyses in skeletal tissue. The data on promoters included in OPD contains cloned promoters or predicted promoters that were analyzed by bioinformatics tools. OPD offers MAR-analysis, which allocates A/T rich elements along these promoter sequences. Conclusion The analysis leads to a better insight of proteins that bind to DNA, regulate DNA, and function in chromatin remodeling. The OPD is a distinctive tool for understanding the complex function of chromatin remodeling and transcriptional regulation of specific gene expression in skeletal tissue.

  12. Proteomics of Skeletal Muscle: Focus on Insulin Resistance and Exercise Biology

    Atul S. Deshmukh

    2016-02-01

    Full Text Available Skeletal muscle is the largest tissue in the human body and plays an important role in locomotion and whole body metabolism. It accounts for ~80% of insulin stimulated glucose disposal. Skeletal muscle insulin resistance, a primary feature of Type 2 diabetes, is caused by a decreased ability of muscle to respond to circulating insulin. Physical exercise improves insulin sensitivity and whole body metabolism and remains one of the most promising interventions for the prevention of Type 2 diabetes. Insulin resistance and exercise adaptations in skeletal muscle might be a cause, or consequence, of altered protein expressions profiles and/or their posttranslational modifications (PTMs. Mass spectrometry (MS-based proteomics offer enormous promise for investigating the molecular mechanisms underlying skeletal muscle insulin resistance and exercise-induced adaptation; however, skeletal muscle proteomics are challenging. This review describes the technical limitations of skeletal muscle proteomics as well as emerging developments in proteomics workflow with respect to samples preparation, liquid chromatography (LC, MS and computational analysis. These technologies have not yet been fully exploited in the field of skeletal muscle proteomics. Future studies that involve state-of-the-art proteomics technology will broaden our understanding of exercise-induced adaptations as well as molecular pathogenesis of insulin resistance. This could lead to the identification of new therapeutic targets.

  13. Direct and indirect assessment of skeletal muscle blood flow in chronic congestive heart failure

    LeJemtel, T.H.; Scortichini, D.; Katz, S.

    1988-09-09

    In patients with chronic congestive heart failure (CHF), skeletal muscle blood flow can be measured directly by the continuous thermodilution technique and by the xenon-133 clearance method. The continuous thermodilution technique requires retrograde catheterization of the femoral vein and, thus, cannot be repeated conveniently in patients during evaluation of pharmacologic interventions. The xenon-133 clearance, which requires only an intramuscular injection, allows repeated determination of skeletal muscle blood flow. In patients with severe CHF, a fixed capacity of the skeletal muscle vasculature to dilate appears to limit maximal exercise performance. Moreover, the changes in peak skeletal muscle blood flow noted during long-term administration of captopril, an angiotensin-converting enzyme inhibitor, appears to correlate with the changes in aerobic capacity. In patients with CHF, resting supine deep femoral vein oxygen content can be used as an indirect measurement of resting skeletal muscle blood flow. The absence of a steady state complicates the determination of peak skeletal muscle blood flow reached during graded bicycle or treadmill exercise in patients with chronic CHF. Indirect assessments of skeletal muscle blood flow and metabolism during exercise performed at submaximal work loads are currently developed in patients with chronic CHF.

  14. Echocardiographic abnormalities in hypertensive patients

    A descriptive cross-sectional study was carried out in 120 hypertensive patients with a course of 5 or more years, who went to the emergency room of 'Saturnino Lora' Provincial Teaching Hospital from November 2010 to November 2011 in order to determine the presence or absence of echocardiographic abnormalities typical of hypertension. Of these, 78,3 % was affected, most of whom reported not to continue with regular previous medical treatment, and 21,7 % had not these abnormalities. Age group of 50-60 years, males and blacks prevailed in the case material. The most significant echocardiographic findings were left ventricular hypertrophy and heart failure with ejection fraction of left ventricle preserved

  15. Clinical significance of magnetic resonance imaging of skeletal muscles in idiopathic inflammatory myopathies of adults

    The purpose of this study was to evaluate the clinical significance of magnetic resonance imaging (MRI) of skeletal muscles in Japanese patients with idiopathic inflammatory myopathies (IIM). MRI was performed in 23 adult patients with IIM, including 10 with polymyositis, 12 with dermatomyositis, and 1 with focal myositis. Seven (73%) of 11 patients with active IIM and 2 (17%) of 12 patients with inactive IIM showed hyperintensity of T2-weighted images and normal intensity of T1-weighted images, indicating 'edema-like abnormalities' (MRI findings for active myositis). Muscle lipomatosis and fibrosis were demonstrated in four patients and 1 patient, respectively. Considerable selectivity of muscles in developing inflammatory disorders was found. In quadriceps muscles, for example, vastus muscles seemed to be more often affected in DM patients, whereas adductors were more often affected in PM patients. Serial examination of muscle MRIs was carried out in 4 patients and the findings paralleled the disease activities. The muscle MRI findings did not necessarily correlate with other findings, such as the presence of muscle weakness, elevated serum creatine kinase levels, myogenic electromyogram, or muscle biopsy findings. The muscle MRI was considered to be an additional useful tool for the diagnosis, evaluation of disease activity, and planning treatment of IIM. (author)

  16. Alterations in Skeletal Muscle Fatty Acid Handling Predisposes Middle-Aged Mice to Diet-Induced Insulin Resistance

    Koonen, Debby P. Y.; Sung, Miranda M. Y.; Kao, Cindy K. C.; Dolinsky, Vernon W.; Koves, Timothy R.; Ilkayeva, Olga; Jacobs, Rene L.; Vance, Dennis E.; Light, Peter E.; Muoio, Deborah M.; Febbraio, Maria; Dyck, Jason R. B.

    2010-01-01

    OBJECTIVE-Although advanced age is a risk factor for type 2 diabetes, a clear understanding of the changes that occur during middle age that contribute to the development of skeletal muscle insulin resistance is currently lacking. Therefore, we sought to investigate how middle age impacts skeletal m

  17. MT1-MMP and type II collagen specify skeletal stem cells and their bone and cartilage progeny

    Szabova, Ludmila; Yamada, Susan S; Wimer, Helen;

    2009-01-01

    Skeletal formation is dependent on timely recruitment of skeletal stem cells and their ensuing synthesis and remodeling of the major fibrillar collagens, type I collagen and type II collagen, in bone and cartilage tissues during development and postnatal growth. Loss of the major collagenolytic a...

  18. Is Dark Energy Abnormally Weighting?

    Fuzfa, A.; Alimi, J. -M.

    2006-01-01

    We present a new interpretation of dark energy in terms of an \\textit{Abnormally Weighting Energy} (AWE). This means that dark energy does not couple to gravitation in the same way as ordinary matter, yielding a violation of the weak and strong equivalence principles on cosmological scales. The resulting cosmological mechanism accounts for the Hubble diagram of type Ia supernovae in terms of both cosmic acceleration and variation of the gravitational constant while still accounting for the pr...

  19. Computed tomography of thymic abnormalities

    Schnyder, P.; Candardjis, G.

    1987-05-01

    Computed tomographic examinations of 38 patients with surgically and histologically proven diagnosis were reviewed. Twenty subjects (52%) had an invasive thymoma and 16% an hyperplastic thymus. Myasthenia gravis was present in 6 cases (16%) of thymic abnormalities, four (10,5%) with invasive thymoma and two (5%) with thymic hyperplasia. Graves' disease was also present in one case of thymic hyperplasia. We emphasize the contribution of CT to the diagnosis and the prognosis.

  20. Computed tomography abnormalities in hanging

    The CT pattern of bilateral and symmetrical round low density areas in the globi pallidi has been observed in a young man who attempted suicide by hanging. These CT abnormalities are similar to those described in other conditions such as carbon monoxide, hydrogen sulfide, cyanide and methanol poisoning, hypoglycaemia, drowning and acute global central nervous system hypoperfusion.The findings appear to be correlated with acute cerebral hypoxia. (orig.)

  1. Cardiac abnormalities after subarachnoid hemorrhage

    Bilt, I.A.C. van der

    2016-01-01

    Aneurysmal subarachnoid hemorrhage(aSAH) is a devastating neurological disease. During the course of the aSAH several neurological and medical complications may occur. Cardiac abnormalities after aSAH are observed often and resemble stress cardiomyopathy or Tako-tsubo cardiomyopathy(Broken Heart Syndrome) that has been described after acute stress. It is a reversible cardiac dysfunction with distinct imaging features(the echocardiographic or left ventricular angiographic image resembles a Tak...

  2. Human skeletal muscle releases leptin in vivo

    Wolsk, Emil; Grøndahl, Thomas Sahl; Pedersen, Bente Klarlund;

    2012-01-01

    Leptin is considered an adipokine, however, cultured myocytes have also been found to release leptin. Therefore, as proof-of-concept we investigated if human skeletal muscle synthesized leptin by measuring leptin in skeletal muscle biopsies. Following this, we quantified human skeletal muscle and...... adipose tissue leptin release in vivo. We recruited 16 healthy male human participants. Catheters were inserted into the femoral artery and vein draining skeletal muscle, as well as an epigastric vein draining the abdominal subcutaneous adipose tissue. By combining the veno-arterial differences in plasma...... leptin with measurements of blood flow, leptin release from both tissues was quantified. To induce changes in leptin, the participants were infused with either saline or adrenaline in normo-physiological concentrations. The presence of leptin in skeletal muscle was confirmed by western blotting. Leptin...

  3. Screening human populations for abnormal radiosensitivity

    A relatively rapid and inexpensive in vitro growback assay was developed that uses the irradiated versus the unirradiated re-growth responses of lymphoblastoid cell lines developed from individual donors as an estimator of donor radioresponse. The purpose of this project was to furnish an estimate of the proportion of strains derived from various study populations that may be regarded as exhibiting abnormal radioresponse. The emphasis in this study was on hypersensitivity, because of the known radiation-hypersensitivity and cancer proneness associated with the genetic disorder ataxia-telangiectasia. Using methods developed especially for survival analyses, the percentage of significantly hypersensitive responses was 5.5% in a donor population composed of ostensibly normal individuals. We also examined lines derived from an unselected cancer patient population. These were not enriched, compared to the reference normal population, for hypersensitive responses. We thus conclude that hypersensitivity in vitro is not associated with increased risk for spontaneous development of cancer. However, the failure to observe an association between hypersensitivity and spontaneous cancer does not preclude a correlation between such sensitivity and radiogenic cancer. At the present stage, we would caution against the application of this assay or related in vitro tests to the situation of an individual, as opposed to a population. While we have clear indications that hypersensitivity in vitro is associated with abnormal radioresponse in vivo, this study has identified sources of variation that must be understood before attempts are made to unambiguously attribute a particular type of radioresponse to an individual

  4. The Abnormal Choroidal Vessels in Aged Patients

    Shizhou Huang; Feng Wen; Dezheng Wu; Guangwei Luo; Caijiao Liu

    2002-01-01

    Background: To show the abnormal choroidal vessels in aged patients with indocyanine-green angiography (ICGA).Methods: ICGA was performed in 350 patients with TOPCON TRC-50IA fundus camera.The images were recorded and retrospectively reviewed.Results: Five aged patients out of 350 cases were found to have abnormal choroidalvessels. The incidence was 1.43%. The abnormal choroidal vessels showed round- shapet,focal enlargement, abnormal shape and entrance, satellite appearance, and vascularloops. These might be due to congenital abnormality of choroid.Conclusion: ICGA could be used to observe the abnormal choroidal vessels.

  5. Role of IGF/Insulin pathway in the skeletal muscle hypertrophy induced by follistatin

    Kalista, Stéphanie

    2015-01-01

    Increasing size and strength of skeletal muscle represents a promising therapeutic strategy for muscular disorders. One possible tool is the inhibition of Myostatin (Mstn), a major inhibitor of skeletal muscle development. Among Mstn inhibitors, Follistatin (FS) induces the most dramatic effect on muscle mass growth. The molecular mechanisms involved in the FS effect are however relatively unknown. An interaction between Mstn and Insulin-like growth factor (IGF) pathways has been suggested by...

  6. The Recent Understanding of the Neurotrophin's Role in Skeletal Muscle Adaptation

    Kunihiro Sakuma; Akihiko Yamaguchi

    2011-01-01

    This paper summarizes the various effects of neurotrophins in skeletal muscle and how these proteins act as potential regulators of the maintenance, function, and regeneration of skeletal muscle fibers. Increasing evidence suggests that this family of neurotrophic factors influence not only the survival and function of innervating motoneurons but also the development and differentiation of myoblasts and muscle fibers. Muscle contractions (e.g., exercise) produce BDNF mRNA and protein in skele...

  7. Correlation between Chronological Age, Dental Age and Skeletal Age among Monozygoyic and Dizygotic Twins

    Gupta, Mohit; Divyashree, R; Abhilash, PR; A Bijle, Mohammed Nadeem; Murali, KV

    2013-01-01

    Introduction: Chronological age, dental development, height and weight measurements, sexual maturation characteristics and skeletal age are some biological indicators that have been used to identify time of growth. Many researchers have agreed that skeletal maturity is closely related to the craniofacial growth, and bones of hand and wrist are reliable parameters in assessing it. The complete hand and wrist radiograph involves 30 bones and assessment of these bones is one elaborate task. The ...

  8. Diagnostic distinction between anencephaly and amnion rupture sequence based on skeletal analysis.

    Keeling, J W; Kjaer, I

    1994-01-01

    The axial skeletal development of eight second trimester aborted fetuses, clinically diagnosed as amnion rupture sequence with cranial involvement, was examined radiographically and histologically. Three of the eight fetuses showed axial skeletal malformation in the spine and the craniofacial skeleton corresponding to the malformations seen in anencephaly. These are vertebral body malformations, consisting of double corpora and of osseous malformations in the components of the cranial base, t...

  9. Formoterol treatment downregulates the myostatin system in skeletal muscle of cachectic tumour-bearing rats

    BUSQUETS, SÍLVIA; Toledo, Míriam; Marmonti, Enrica; ORPÍ, MARCEL; CAPDEVILA, EVA; Betancourt, Angelica; López-Soriano, Francisco J.; Argilés, Josep M.

    2011-01-01

    Cachexia is a common systemic manifestation. Additionally, myostatin is known to be a negative regulator of skeletal muscle development. The present study aimed to investigate whether formoterol down-regulates the myostatin system in skeletal muscle of tumour-bearing rats. Real-time PCR and Western blotting were used for the analysis. Results showed that rats bearing the Yoshida AH-130 ascites hepatoma, a cachexia-inducing tumour, exhibited marked muscle wasting that affected the mass of the ...

  10. Skeletal Malocclusion: A Developmental Disorder With a Life-Long Morbidity

    Joshi, Nishitha; Hamdan, Ahmad M.; Fakhouri, Walid D.

    2014-01-01

    The likelihood of birth defects in orofacial tissues is high due to the structural and developmental complexity of the face and the susceptibility to intrinsic and extrinsic perturbations. Skeletal malocclusion is caused by the distortion of the proper mandibular and/or maxillary growth during fetal development. Patients with skeletal malocclusion may suffer from dental deformities, bruxism, teeth crowding, trismus, mastication difficulties, breathing obstruction and digestion disturbance if ...

  11. Insights into the molecular mechanism of glucose metabolism regulation under stress in chicken skeletal muscle tissues

    Liu, Wuyi; Zhao, Jingpeng

    2014-01-01

    As substantial progress has been achieved in modern poultry production with large-scale and intensive feeding and farming in recent years, stress becomes a vital factor affecting chicken growth, development, and production yield, especially the quality and quantity of skeletal muscle mass. The review was aimed to outline and understand the stress-related genetic regulatory mechanism, which significantly affects glucose metabolism regulation in chicken skeletal muscle tissues. Progress in curr...

  12. Role of skeletal muscle in the epigenetic shaping of motor neuron fate choices

    Angka, Heather E.; Kablar, Boris

    2009-01-01

    We study the role of muscle in the epigenetic (N.B., we use this term with the broader and more integrative meaning) shaping of developing motor neuron fate choices employing an approach based on mouse mutagenesis and pathology. The developmental role of skeletal muscle is studied in the whole mouse embryo by knocking out myogenic regulatory factors Myf5 and MyoD, to obtain an embryo without any skeletal musculature (Rudnicki et al., 1993). Our goal is to find muscl...

  13. Comparison of Skeletal Effects of Ovariectomy Versus Chemically Induced Ovarian Failure in Mice

    Wright, Laura E; Christian, Patricia J.; Rivera, Zelieann; Van Alstine, William G.; L Funk, Janet; L Bouxsein, Mary; Hoyer, Patricia B.

    2008-01-01

    Bone loss associated with menopause leads to an increase in skeletal fragility and fracture risk. Relevant animal models can be useful for evaluating the impact of ovarian failure on bone loss. A chemically induced model of menopause in which mice gradually undergo ovarian failure yet retain residual ovarian tissue has been developed using the chemical 4-vinylcyclohexene diepoxide (VCD). This study was designed to compare skeletal effects of VCD-induced ovarian failure to those associated wit...

  14. Improved Cell Culture Method for Growing Contracting Skeletal Muscle Models

    Marquette, Michele L.; Sognier, Marguerite A.

    2013-01-01

    An improved method for culturing immature muscle cells (myoblasts) into a mature skeletal muscle overcomes some of the notable limitations of prior culture methods. The development of the method is a major advance in tissue engineering in that, for the first time, a cell-based model spontaneously fuses and differentiates into masses of highly aligned, contracting myotubes. This method enables (1) the construction of improved two-dimensional (monolayer) skeletal muscle test beds; (2) development of contracting three-dimensional tissue models; and (3) improved transplantable tissues for biomedical and regenerative medicine applications. With adaptation, this method also offers potential application for production of other tissue types (i.e., bone and cardiac) from corresponding precursor cells.

  15. Neural-Thyroid Interaction on Skeletal Isomyosin in Zero Gravity

    Baldwin, Kenneth M.

    2000-01-01

    The primary goal of the project was to develop a ground based model to first study the role of the nerve and of thyroid hormone (T3) in the regulation of body growth and skeletal muscle growth and differentiation in rodents. A primary objective was to test the hypothesis that normal weight bearing activity is essential for the development of antigravity, slow twitch skeletal muscle and the corresponding slow myosin heavy chain (MHC) gene; whereas, T3 was obligatory for general body and muscle growth and the establishment of fast MHC phenotype in typically fast locomoter muscles. These ground based experiments would provide both the efficacy and background for a spaceflight experiment (referred to as the Neurolab Mission) jointly sponsored by the NIH and NASA.

  16. Vitamin D and Risk of Neuroimaging Abnormalities.

    Thomas J Littlejohns

    Full Text Available Vitamin D deficiency has been linked with an increased risk of incident all-cause dementia and Alzheimer's disease. The aim of the current study was to explore the potential mechanisms underlying these associations by determining whether low vitamin D concentrations are associated with the development of incident cerebrovascular and neurodegenerative neuroimaging abnormalities. The population consisted of 1,658 participants aged ≥65 years from the US-based Cardiovascular Health Study who were free from prevalent cardiovascular disease, stroke and dementia at baseline in 1992-93. Serum 25-hydroxyvitamin D (25(OHD concentrations were determined by liquid chromatography-tandem mass spectrometry from blood samples collected at baseline. The first MRI scan was conducted between 1991-1994 and the second MRI scan was conducted between 1997-1999. Change in white matter grade, ventricular grade and presence of infarcts between MRI scan one and two were used to define neuroimaging abnormalities. During a mean follow-up of 5.0 years, serum 25(OHD status was not significantly associated with the development of any neuroimaging abnormalities. Using logistic regression models, the multivariate adjusted odds ratios (95% confidence interval for worsening white matter grade in participants who were severely 25(OHD deficient (<25 nmol/L and deficient (≥25-50 nmol/L were 0.76 (0.35-1.66 and 1.09 (0.76-1.55 compared to participants with sufficient concentrations (≥50 nmol/L. The multivariate adjusted odds ratios for ventricular grade in participants who were severely 25(OHD deficient and deficient were 0.49 (0.20-1.19 and 1.12 (0.79-1.59 compared to those sufficient. The multivariate adjusted odds ratios for incident infarcts in participants who were severely 25(OHD deficient and deficient were 1.95 (0.84-4.54 and 0.73 (0.47-1.95 compared to those sufficient. Overall, serum vitamin D concentrations could not be shown to be associated with the development of

  17. Vitamin D and Risk of Neuroimaging Abnormalities

    Littlejohns, Thomas J.; Kos, Katarina; Henley, William E.; Lang, Iain A.; Annweiler, Cedric; Beauchet, Olivier; Chaves, Paulo H. M.; Kestenbaum, Bryan R.; Kuller, Lewis H.; Langa, Kenneth M.; Lopez, Oscar L.; Llewellyn, David J.

    2016-01-01

    Vitamin D deficiency has been linked with an increased risk of incident all-cause dementia and Alzheimer’s disease. The aim of the current study was to explore the potential mechanisms underlying these associations by determining whether low vitamin D concentrations are associated with the development of incident cerebrovascular and neurodegenerative neuroimaging abnormalities. The population consisted of 1,658 participants aged ≥65 years from the US-based Cardiovascular Health Study who were free from prevalent cardiovascular disease, stroke and dementia at baseline in 1992–93. Serum 25-hydroxyvitamin D (25(OH)D) concentrations were determined by liquid chromatography-tandem mass spectrometry from blood samples collected at baseline. The first MRI scan was conducted between 1991–1994 and the second MRI scan was conducted between 1997–1999. Change in white matter grade, ventricular grade and presence of infarcts between MRI scan one and two were used to define neuroimaging abnormalities. During a mean follow-up of 5.0 years, serum 25(OH)D status was not significantly associated with the development of any neuroimaging abnormalities. Using logistic regression models, the multivariate adjusted odds ratios (95% confidence interval) for worsening white matter grade in participants who were severely 25(OH)D deficient (<25 nmol/L) and deficient (≥25–50 nmol/L) were 0.76 (0.35–1.66) and 1.09 (0.76–1.55) compared to participants with sufficient concentrations (≥50 nmol/L). The multivariate adjusted odds ratios for ventricular grade in participants who were severely 25(OH)D deficient and deficient were 0.49 (0.20–1.19) and 1.12 (0.79–1.59) compared to those sufficient. The multivariate adjusted odds ratios for incident infarcts in participants who were severely 25(OH)D deficient and deficient were 1.95 (0.84–4.54) and 0.73 (0.47–1.95) compared to those sufficient. Overall, serum vitamin D concentrations could not be shown to be associated with

  18. Red (660 nm) and infrared (830 nm) low-level laser therapy in skeletal muscle fatigue in humans: what is better?

    de Almeida, Patrícia; Lopes-Martins, Rodrigo Álvaro Brandão; De Marchi, Thiago; Tomazoni, Shaiane Silva; Bjordal, Jan Magnus

    2011-01-01

    In animal and clinical trials low-level laser therapy (LLLT) using red, infrared and mixed wavelengths has been shown to delay the development of skeletal muscle fatigue. However, the parameters employed in these studies do not allow a conclusion as to which wavelength range is better in delaying the development of skeletal muscle fatigue. With this perspective in mind, we compared the effects of red and infrared LLLT on skeletal muscle fatigue. A randomized double-blind placebo-controlled cr...

  19. A PGC-1α- and muscle fibre type-related decrease in markers of mitochondrial oxidative metabolism in skeletal muscle of humans with inherited insulin resistance

    Kristensen, Jonas M; Skov, Vibe; Petersson, Stine J;

    2014-01-01

    AIMS/HYPOTHESIS: Insulin resistance in obesity and type 2 diabetes is related to abnormalities in mitochondrial oxidative phosphorylation (OxPhos) in skeletal muscle. We tested the hypothesis that mitochondrial oxidative metabolism is impaired in muscle of patients with inherited insulin resistance...

  20. Dysspondyloenchondromatosis: Another COL2A1-Related Skeletal Dysplasia?

    Nakane, T.; Tando, T.; Aoyagi, K.; Hatakeyama, K.; Nishimura, G; Coucke, I.P.J.; Mortier, G; Sugita, K.

    2011-01-01

    Dysspondyloenchondromatosis (DSC) is a rare skeletal dysplasia that has currently been classified into the group of spondylometaphyseal dysplasias. To date, only 12 affected individuals have been reported. All cases are sporadic, and the etiology remains unknown. Distinctive features of DSC are anisospondyly and enchondroma-like lesions in the metaphyseal and diaphyseal portions of the long tubular bones. Affected individuals usually develop kyphoscoliosis and asymmetric limb shortening at an...

  1. Sagittal lip positions in different skeletal malocclusions: a cephalometric analysis

    Joshi, Merina; Wu, Li Peng; Maharjan, Surendra; Regmi, Mukunda Raj

    2015-01-01

    Background The objectives of this paper are to (1) study use of soft tissue analyses advocated by Steiner, Ricketts, Burstone, Sushner and Holdway to develop soft tissue cephalometric norms as baseline data for sagittal lip position in Northeast Chinese adult population, (2) compare the sagittal lip positions in different skeletal malocclusions and (3) compare the sagittal lip positions in Northeast Chinese adults with other reported populations. Methods Lateral cephalometric radiographs of s...

  2. Exercise and angiogenic growth factors in human skeletal muscle

    Gustafsson, Thomas

    2005-01-01

    Long-term electrical stimulation and endurance exercise increase the amount of capillaries in skeletal muscle. VEGF-A is a well-characterized stimulatory angiogenic growth factor and has shown to play an important role in angiogenesis in pathological conditions in humans and in physiological conditions in animal models. A close relationship has recently been observed between VEGF-A and another group of endothelial specific growth factors, angiopoietins, during development an...

  3. Orai1 deficiency leads to heart failure and skeletal myopathy in zebrafish.

    Völkers, Mirko; Dolatabadi, Nima; Gude, Natalie; Most, Patrick; Sussman, Mark A; Hassel, David

    2012-01-15

    Mutations in the store-operated Ca²⁺ entry pore protein ORAI1 have been reported to cause myopathies in human patients but the mechanism involved is not known. Cardiomyocytes express ORAI1 but its role in heart function is also unknown. Using reverse genetics in zebrafish, we demonstrated that inactivation of the highly conserved zebrafish orthologue of ORAI1 resulted in severe heart failure, reduced ventricular systolic function, bradycardia and skeletal muscle weakness. Electron microscopy of Orai1-deficient myocytes revealed progressive skeletal muscle instability with loss of myofiber integrity and ultrastructural abnormalities of the z-disc in both skeletal and cardiac muscle. Isolated Orai1-deficient cardiomyocytes showed loss of the calcineurin-associated protein calsarcin from the z-discs. Furthermore, we found mechanosignal transduction was affected in Orai1-depleted hearts, indicating an essential role for ORAI1 in establishing the cardiac signaling transduction machinery at the z-disc. Our findings identify ORAI1 as an important regulator of cardiac and skeletal muscle function and provide evidence linking ORAI1-mediated calcium signaling to sarcomere integrity and cardiomyocyte function. PMID:22302996

  4. Enhancement of K+ conductance improves in vitro the contraction force of skeletal muscle in hypokalemic periodic paralysis.

    Grafe, P; Quasthoff, S; Strupp, M; Lehmann-Horn, F

    1990-05-01

    An abnormal ratio between Na+ and K+ conductances seems to be the cause for the depolarization and paralysis of skeletal muscle in primary hypokalemic periodic paralysis. Recently we have shown that the "K+ channel opener" cromakalim hyperpolarizes mammalian skeletal muscle fibers. Now we have studied the effects of this drug on the twitch force of muscle biopsies from normal and diseased human skeletal muscle. Cromakalim had little effect on the twitch force of normal muscle whereas it strongly improved the contraction force of fibers from patients suffering from hypokalemic periodic paralysis. Recordings of intracellular K+ and Cl- activities in human muscle and isolated rat soleus muscle support the view that cromakalim enhances the membrane K+ conductance (gK+). These data indicate that "K+ channel openers" may have a beneficial effect in primary hypokalemic periodic paralysis. PMID:2345562

  5. Making chromosome abnormalities treatable conditions.

    Cody, Jannine DeMars; Hale, Daniel Esten

    2015-09-01

    Individuals affected by the classic chromosome deletion syndromes which were first identified at the beginning of the genetic age, are now positioned to benefit from genomic advances. This issue highlights five of these conditions (4p-, 5p-, 11q-, 18p-, and 18q-). It focuses on the increased in understanding of the molecular underpinnings and envisions how these can be transformed into effective treatments. While it is scientifically exciting to see the phenotypic manifestations of hemizygosity being increasingly understood at the molecular and cellular level, it is even more amazing to consider that we are now on the road to making chromosome abnormalities treatable conditions. PMID:26351122

  6. MR imaging of abnormal synovial processes

    MR imaging can directly image abnormal synovium. The authors reviewed over 50 cases with abnormal synovial processes. The abnormalities include Baker cysts, semimembranous bursitis, chronic shoulder bursitis, peroneal tendon ganglion cyst, periarticular abscesses, thickened synovium from rheumatoid and septic arthritis, and synovial hypertrophy secondary to Legg-Calve-Perthes disease. MR imaging has proved invaluable in identifying abnormal synovium, defining the extent and, to a limited degree, characterizing its makeup

  7. CHROMOSOMAL ABNORMALITIES IN PATIENTS WITH SPERM DISORDERS

    L. Y. Pylyp; L. A. Spinenko; V. D. Zukin; N. M. Bilko

    2013-01-01

    Chromosomal abnormalities are among the most common genetic causes of spermatogenic disruptions. Carriers of chromosomal abnormalities are at increased risk of infertility, miscarriage or birth of a child with unbalanced karyotype due to the production of unbalanced gametes. The natural selection against chromosomally abnormal sperm usually prevents fertilization with sperm barring in cases of serious chromosomal abnormalities. However, assisted reproductive technologies in general and intrac...

  8. Skeletal sequelae of radiation therapy for malignant childhood tumors

    One hundred forty-three patients who received radiation therapy for childhood tumors, and survived to the age of skeletal maturity, were studied by retrospective review of oncology records and roentgenograms. Diagnoses for the patients were the following: Hodgkin's lymphoma (44), Wilms's tumor (30), acute lymphocytic leukemia (26), non-Hodgkin's lymphoma (18), Ewing's sarcoma (nine), rhabdomyosarcoma (six), neuroblastoma (six), and others (four). Age at the follow-up examination averaged 18 years (range, 14-28 years). Average length of follow-up study was 9.9 years (range, two to 18 years). Asymmetry of the chest and ribs was seen in 51 (36%) of these children. Fifty (35%) had scoliosis; 14 had kyphosis. In two children, the scoliosis was treated with a brace, while one developed significant kyphosing scoliosis after laminectomy and had spinal fusion. Twenty-three (16%) patients complained of significant pain at the radiation sites. Twelve of the patients developed leg-length inequality; eight of those were symptomatic. Three patients developed second primary tumors. Currently, the incidence of significant skeletal sequelae is lower and the manifestations are less severe than reported in the years from 1940 to 1970. The reduction in skeletal complications may be attributed to shielding of growth centers, symmetric field selection, decreased total radiation doses, and sequence changes in chemotherapy

  9. Skeletal Dysplasias Associated with Mild Myopathy—A Clinical and Molecular Review

    Katarzyna A. Piróg

    2010-01-01

    Full Text Available Musculoskeletal system is a complex assembly of tissues which acts as scaffold for the body and enables locomotion. It is often overlooked that different components of this system may biomechanically interact and affect each other. Skeletal dysplasias are diseases predominantly affecting the development of the osseous skeleton. However, in some cases skeletal dysplasia patients are referred to neuromuscular clinics prior to the correct skeletal diagnosis. The muscular complications seen in these cases are usually mild and may stem directly from the muscle defect and/or from the altered interactions between the individual components of the musculoskeletal system. A correct early diagnosis may enable better management of the patients and a better quality of life. This paper attempts to summarise the different components of the musculoskeletal system which are affected in skeletal dysplasias and lists several interesting examples of such diseases in order to enable better understanding of the complexity of human musculoskeletal system.

  10. SPECT/CT diagnostics for skeletal infections

    Skeletal infections are often a diagnostic and clinical challenge. Nuclear imaging modalities used in the diagnostic workup of acute and chronic skeletal infections include three-phase bone scintigraphy and scintigraphy with labelled leucocytes. The introduction of hybrid technologies, such as single photon emission computed tomography/computed tomography (SPECT/CT) has dramatically changed nuclear medical imaging of infections. In general SPECT/CT leads to a considerably more accurate diagnosis than planar or SPECT imaging. Given the integrated acquisition of metabolic, functional and morphological information, SPECT/CT has increased in particular the specificity of three-phase skeletal scanning and scintigraphy with labeled leucocytes. (orig.)

  11. Multifocal skeletal tuberculosis: A case report

    ZHANG, LIANG; WANG, JINGCHENG; FENG, XINMIN; TAO, YUPING; YANG, JIANDONG; ZHANG, SHENFEI; CAI, JUN

    2016-01-01

    Tuberculosis (TB) of the musculoskeletal system is a rare clinical condition. Multifocal bone involvement is extremely rare and difficult to recognize. Thus, due to the diverse and atypical clinical manifestations of multifocal skeletal TB, the disease is easy to misdiagnose. In the present study, a rare case of atypical disseminated multifocal skeletal TB was reported, which exhibited uncommon findings in radiological images that were more suggestive of a hematological malignancy or metastatic disease. In conclusion, the diagnosis of this condition by conventional diagnostic methods is challenging. The importance of CT-guided needle biopsy and open biopsy in the diagnosis of skeletal TB was emphasized. PMID:27073438

  12. An APC:WNT counter-current-like mechanism regulates cell division along the colonic crypt axis: a mechanism that explains how APC mutations induce proliferative abnormalities that drive colon cancer development.

    Bruce M Boman

    2013-11-01

    Full Text Available APC normally down-regulates WNT signaling in human colon, and APC mutations cause proliferative abnormalities in premalignant crypts leading to colon cancer, but the mechanisms are unclear at the level of spatial and functional organization of the crypt. Accordingly, we postulated a counter-current-like mechanism based on gradients of factors (APC;WNT that regulate colonocyte proliferation along the crypt axis. During crypt renewal, stem cells (SCs at the crypt bottom generate non-SC daughter cells that proliferate and differentiate while migrating upwards. The APC concentration is low at the crypt bottom and high at the top (where differentiated cells reside. WNT signaling, in contrast, is high at the bottom (where SCs reside and low at the top. Given that WNT and APC gradients are counter to one another, we hypothesized that a counter-current-like mechanism exists. Since both APC and WNT signaling components (e.g. survivin are required for mitosis, this mechanism establishes a zone in the lower crypt where conditions are optimal for maximal cell division and mitosis orientation (symmetric versus asymmetric. APC haploinsufficiency diminishes the APC gradient, shifts the proliferative zone upwards, and increases symmetric division, which causes SC overpopulation. In homozygote mutant crypts, these changes are exacerbated. Thus, APC-mutation-induced changes in the counter-current-like mechanism cause expansion of proliferative populations (SCs, rapidly-proliferating cells during tumorigenesis. We propose this mechanism also drives crypt fission, functions in the crypt cycle, and underlies adenoma development. Novel chemoprevention approaches designed to normalize the two gradients and readjust the proliferative zone downwards, might thwart progression of these premalignant changes.

  13. Abnormal gastrointestinal accumulation of radiotracer by gastric bleeding during {sup 99m}Tc-MDP bone scintigraphy

    Chun, Kyung A.; Lee, Sang Woo; Lee, Jae Tae; Lee, Kyu Bo [College of Medicine, Kyungpook National Univ., Taegu (Korea, Republic of)

    1998-06-01

    We present a case in which a patient with acute hemorrhagic gastritis demonstrated abnormal gastrointestinal accumulation of radiotracer during {sup 99m}Tc-methylene diphosphonate (MDP) skeletal scintigraphy. A hemorrhagic gastritis was subsequently demonstrated by endoscopy. The mechanism for the intestinal localization of {sup 99m}Tc-MDP in this patients is not clear, but we guess that the extravasated blood containing the radiopharmaceutical cannot recirculate and stays at the bleeding site, so we can see the intestinal activity.

  14. Paraphyseal changes on bone-age studies predict risk of delayed radiation-associated skeletal complications following total body irradiation

    Children undergoing total body irradiation (TBI) often develop delayed skeletal complications. Bone-age studies in these children often reveal subtle paraphyseal changes including physeal widening, metaphyseal irregularity and paraphyseal exostoses. To investigate whether paraphyseal changes on a bone-age study following TBI indicate a predisposition toward developing other radiation-associated skeletal complications. We retrospectively reviewed medical records and bone-age studies of 77 children receiving TBI at our institution between 1995 and 2008 who had at least 2 years of clinical follow-up and one bone-age study after TBI. We graded bone-age studies according to the severity of paraphyseal changes. All documented skeletal complications following TBI were tabulated. Kendall's tau-b was used to examine associations between degree of paraphyseal change and development of a skeletal complication. Kendall's tau analyses showed that physeal widening and metaphyseal irregularity/sclerosis (tau = 0.87, P < 0.001) and paraphyseal exostoses (tau = 0.68, P < 0.001) seen on bone-age studies were significantly positively associated with the development of delayed skeletal complications following TBI. Thirty percent of children with no or mild paraphyseal changes developed a delayed skeletal complication, compared with 58% of children with moderate paraphyseal changes and 90% of children with severe paraphyseal changes. Paraphyseal changes identified on a bone-age study correlate positively with the development of delayed skeletal complications elsewhere in the skeleton following TBI. (orig.)

  15. Comparison among dental, skeletal and chronological development in HIV-positive children: a radiographic study Comparação entre o desenvolvimento dentário, ósseo e cronológico em crianças HIV+: estudo radiográfico

    Rejane Maria Holderbaum; Elaine Bauer Veeck; Helena Willhelm de Oliveira; Carmem Lúcia Silva; Ângela Fernandes

    2005-01-01

    The goal of this study was to evaluate skeletal, dental and chronological development in an HIV-positive group of children, as compared with a control group, during a four-year period. Panoramic radiographs and hand and wrist radiographs of 60 children were taken. The children, of both sexes, aged 5 years and 2 months to 15 years and 5 months, were selected as follows: 30 HIV-positive volunteers who had acquired the disease vertically, and 30 volunteers who did not present the HIV infection o...

  16. Ventilation abnormalities in pulmonary embolus

    The ventilation scans of 11 patients with angiographically-proven PE were reviewed. All patients had one or more lung perfusion defects. The chest roentgenograph was abnormal in 11 of the patients. The ventilation studies were performed in the posterior positron prior to the perfusion lung scan using Xe-133. The ventilation study consists of washin, equilibrium, and washout images. In four patients with normal washin there was retention of the Xe-133 (delayed washout) at the site of the perfusion defect. All had roentgenographic abnormalities. Another pattern was observed at the sites of some perfusion defects in six patients. In these, there was decreased washin at the perfusion defect location. Two patients had both decreased washin and delayed washout. In only one case was the typical ventilation pattern of normal washin and normal washout. The method of retention is unclear, but may be due to decreased clearance of Xe-133 secondary to decreased blood flow in the area or deposition of some fat soluble component left at the site of embolization. The etiology of the reduced washin is unclear, but may be due to reduced surfactant production. This study suggests that more attention must be paid to the ventilation study, where there may be additional clues to the diagnosis of pulmonary embolus

  17. Robust generation and expansion of skeletal muscle progenitors and myocytes from human pluripotent stem cells.

    Shelton, Michael; Kocharyan, Avetik; Liu, Jun; Skerjanc, Ilona S; Stanford, William L

    2016-05-15

    Human pluripotent stem cells provide a developmental model to study early embryonic and tissue development, tease apart human disease processes, perform drug screens to identify potential molecular effectors of in situ regeneration, and provide a source for cell and tissue based transplantation. Highly efficient differentiation protocols have been established for many cell types and tissues; however, until very recently robust differentiation into skeletal muscle cells had not been possible unless driven by transgenic expression of master regulators of myogenesis. Nevertheless, several breakthrough protocols have been published in the past two years that efficiently generate cells of the skeletal muscle lineage from pluripotent stem cells. Here, we present an updated version of our recently described 50-day protocol in detail, whereby chemically defined media are used to drive and support muscle lineage development from initial CHIR99021-induced mesoderm through to PAX7-expressing skeletal muscle progenitors and mature skeletal myocytes. Furthermore, we report an optional method to passage and expand differentiating skeletal muscle progenitors approximately 3-fold every 2weeks using Collagenase IV and continued FGF2 supplementation. Both protocols have been optimized using a variety of human pluripotent stem cell lines including patient-derived induced pluripotent stem cells. Taken together, our differentiation and expansion protocols provide sufficient quantities of skeletal muscle progenitors and myocytes that could be used for a variety of studies. PMID:26404920

  18. Caries prevalence in skeletal series: is it possible to compare?

    Veronica Wesolowski

    2006-12-01

    Full Text Available Because of the relationship with subsistence, dental caries is a central issue in paleopathological research. Usually, comparisons between caries prevalence exhibited in different skeletal series are made. Dietary variation is the most common explanation for cavities prevalence. The aim of this paper is to verify if it is possible to compare caries prevalence reported on papers for archaeological skeletal series. Another goal is to determine if other factors besides diet are implicated in dental cavity prevalence explanation. Twenty six papers about dental health with caries prevalences published from 1999 to 2004 were analyzed for completeness. This assessment includes carious lesion diagnosis and characteristics, age, sex and size characteristics of samples, and prevalence calculation method. The majority of the analyzed papers do not provide adequate information in the topics listed above. Only very few implicated factors other than diet as a contributor to caries lesions development.

  19. Skeletal myogenic potential of human and mouse neural stem cells.

    Galli, R; Borello, U; Gritti, A; Minasi, M G; Bjornson, C; Coletta, M; Mora, M; De Angelis, M G; Fiocco, R; Cossu, G; Vescovi, A L

    2000-10-01

    Distinct cell lineages established early in development are usually maintained throughout adulthood. Thus, adult stem cells have been thought to generate differentiated cells specific to the tissue in which they reside. This view has been challenged; for example, neural stem cells can generate cells that normally originate from a different germ layer. Here we show that acutely isolated and clonally derived neural stem cells from mice and humans could produce skeletal myotubes in vitro and in vivo, the latter following transplantation into adult animals. Myogenic conversion in vitro required direct exposure to myoblasts, and was blocked if neural cells were clustered. Thus, a community effect between neural cells may override such myogenic induction. We conclude that neural stem cells, which generate neurons, glia and blood cells, can also produce skeletal muscle cells, and can undergo various patterns of differentiation depending on exposure to appropriate epigenetic signals in mature tissues. PMID:11017170

  20. NO-DEPENDENT SIGNALING PATHWAYS IN UNLOADED SKELETAL MUSCLE

    Boris Stivovich Shenkman

    2015-10-01

    Full Text Available The main focus of the current review is the nitric oxide (NO-mediated signaling mechanism in unloaded skeletal. Review of the published data describing muscles during physical activity and inactivity demonstrates that NO is an essential trigger of signaling processes, which leads to structural and metabolic changes of the muscle fibers. The experiments with modulation of NO-synthase (NOS activity during muscle unloading demonstrate the ability of an activated enzyme to stabilize degradation processes and prevent development of muscle atrophy. Various forms of muscle mechanical activity, i.e plantar afferent stimulation, resistive exercise and passive chronic stretch increase the content of neural NOS (nNOS and thus may facilitate an increase in NO production. Recent studies demonstrate that NO-synthase participates in the regulation of protein and energy metabolism in skeletal muscle by fine-tuning and stabilizing complex signaling systems which regulate protein synthesis and degradation in the fibers of inactive muscle.

  1. Comparison of skeletal scintigraphy and radiology for showing the osseous manifestations of generalised mastocytosis

    Bieler, E.U.; Wohlenberg, H.; Utech, C.

    1985-05-01

    Bone scans and skeletal X-rays of eight patients with systemic mastocytosis were reviewed. Mast cell infiltration of bone marrow had been proven histologically in every patient. Bone scan and roentgenographic findings are not specific for the disease and do not correlate well in some patients. A generalized increase of uptake was noted in two patients, a generalized decrease of skeletal activity with poor delineation of bony structures was observed in others. A circumscribed increase of activity was observed in some patients, only one patient had a normal bone scan. Roentgenographic examination revealed diffuse sclerosis of trabecular bone in three patients, osteoporosis with collaps of multiple vertebral bodies in three patients, and no abnormalities in two patients.

  2. A comparison of skeletal scintigraphy and radiology for showing the osseous manifestations of generalised mastocytosis

    Bone scans and skeletal X-rays of eight patients with systemic mastocytosis were reviewed. Mast cell infiltration of bone marrow had been proven histologically in every patient. Bone scan and roentgenographic findings are not specific for the disease and do not correlate well in some patients. A generalized increase of uptake was noted in two patients, a generalized decrease of skeletal activity with poor delineation of bony structures was observed in others. A circumscribed increase of activity was observed in some patients, only one patient had a normal bone scan. Roentgenographic examination revealed diffuse sclerosis of trabecular bone in three patients, osteoporosis with collaps of multiple vertebral bodies in three patients, and no abnormalities in two patients. (orig.)

  3. Markers of autophagy are adapted to hyperglycaemia in skeletal muscle in type 2 diabetes

    Sørensen, Rikke Kruse; Vind, Birgitte F; Petersson, Stine J;

    2015-01-01

    AIMS/HYPOTHESIS: Autophagy is a catabolic process that maintains cellular homeostasis by degradation of protein aggregates and selective removal of damaged organelles, e.g. mitochondria (mitophagy). Insulin resistance in skeletal muscle has been linked to mitochondrial dysfunction and altered...... protein metabolism. Here, we investigated whether abnormalities in autophagy are present in human muscle in obesity and type 2 diabetes. METHODS: Using a case-control design, skeletal muscle biopsies obtained in the basal and insulin-stimulated states from patients with type 2 diabetes during both...... of forkhead box O3A (FOXO3A) were similar among the groups. Insulin reduced lipidation of microtubule-associated protein light chain 3 (LC3)B-I to LC3B-II, a marker of autophagosome formation, with no effect on p62/sequestosome 1 (SQSTM1) content in muscle of lean and obese individuals. In diabetic...

  4. Substrate kinetics in patients with disorders of skeletal muscle metabolism.

    Ørngreen, Mette Cathrine

    2016-07-01

    exercise, exercise capacity is worsened, most likely due to the sympatho-adrenergt response, that increases heart rate and blocks gluconeogenesis. Substrate turnover studies in patients with McArdle disease and phosphorylase b kinase deficiency showed that palmitate lipolysis, utilization and plasma concentration was higher and total CHO lower in the patients during exercise vs. healthy subjects. In patients with low muscle mass glucose homeostasis is impaired, and our findings showed that these patients are prone to develop hypoglycaemia during prolonged fasting. The following studies emphasize the importance of skeletal muscle in production of energy, both when skeletal muscle lack important metabolic enzymes (metabolic myopathies), and when skeletal muscle mass is low. PMID:27399985

  5. Abnormal Event Detection Using Local Sparse Representation

    Ren, Huamin; Moeslund, Thomas B.

    2014-01-01

    We propose to detect abnormal events via a sparse subspace clustering algorithm. Unlike most existing approaches, which search for optimized normal bases and detect abnormality based on least square error or reconstruction error from the learned normal patterns, we propose an abnormality...... measurement based on the difference between the normal space and local space. Specifically, we provide a reasonable normal bases through repeated K spectral clustering. Then for each testing feature we first use temporal neighbors to form a local space. An abnormal event is found if any abnormal feature is...

  6. Bone-seeking radiopharmaceuticals in skeletal malignancy: evolution, not revolution

    Many advanced malignancies are complicated by skeletal metastases, with attendant pain and disability. External beam radiotherapy is still the most effective treatment for isolated lesions. Bone-seeking radiopharmaceuticals were perceived as a means of delivering radiation to multiple lesions simultaneously. A wide variety of radioisotopes have been used in this endeavor, with myelosuppression being the most significant potential adverse effect. Benefits of treatment are modest, including a transient improvement in pain control and perhaps prolongation of the treatment-free period. This is best demonstrated in prostate cancer with lower responses by skeletal metastases from breast and lung cancers. However, the treatment is yet to produce any improvement in patient survival. Experimental approaches to improve treatment efficacy include combination with cytotoxic therapy, and administration earlier in the course of the disease. Bone seeking radiopharmaceuticals have been used in treatment of advanced osteosarcoma in humans and canines and achieved effective palliation. The myelosuppressive effects of these agents have been exploited in patients with multiple myeloma to assist in attaining myeloablation prior to stem cell transplantation. Development of more potent non-radiolabelled bisphosphonates and recognition of their antitumour effect against several tumours has sparked a recrudescence of interest in their use for bone metastases. Set against these developments, the role of bone-seeking radiopharmaceuticals in skeletal metastases may need to be redefined

  7. Proteomic profiling of skeletal muscle plasticity.

    Ohlendieck, Kay

    2011-10-01

    One of the most striking physiological features of skeletal muscle tissues are their enormous capacity to adapt to changed functional demands. Muscle plasticity has been extensively studied by histological, biochemical, physiological and genetic methods over the last few decades. With the recent emergence of high-throughput and large-scale proteomic techniques, mass spectrometry-based surveys have also been applied to the global analysis of the skeletal muscle protein complement during physiological modifications and pathophysiological alterations. This review outlines and discusses the impact of recent proteomic profiling studies of skeletal muscle transitions, including the effects of chronic electro-stimulation, physical exercise, denervation, disuse atrophy, hypoxia, myotonia, motor neuron disease and age-related fibre type shifting. This includes studies on the human skeletal muscle proteome, animal models of muscle plasticity and major neuromuscular pathologies. The biomedical importance of establishing reliable biomarker signatures for the various molecular and cellular transition phases involved in muscle transformation is critically examined. PMID:23738259

  8. Advances and challenges in skeletal muscle angiogenesis

    Olfert, I Mark; Baum, Oliver; Hellsten, Ylva;

    2016-01-01

    on metabolism, endocrine function, and locomotion, and is tightly regulated at many different levels. Skeletal muscle is also high adaptable, and thus one of the few organ systems which can be experimentally manipulated (e.g. by exercise) to study physiologic regulation of angiogenesis. This review will focus...... during health, but poorly controlled in disease - resulting in either excessive capillary growth (pathological angiogenesis) or losses in capillarity (rarefaction). Given that skeletal muscle comprises nearly 40% of body mass in humans, skeletal muscle capillary density has a significant impact...... on 1) the methodological concerns that have arisen in determining skeletal muscle capillarity, and 2) highlight the concepts that are reshaping our understanding of the angio-adaptation process. We also summarize selected new findings (physical influences, molecular changes and ultrastructural...

  9. Histological Changes in Skeletal Muscle During Death by Drowning: An Experimental Study.

    Girela-López, Eloy; Ruz-Caracuel, Ignacio; Beltrán, Cristina; Jimena, Ignacio; Leiva-Cepas, Fernando; Jiménez-Reina, Luis; Peña, José

    2016-06-01

    A diagnosis of drowning is a challenge in legal medicine as there is generally a lack of pathognomonic findings indicative of drowning. This article investigates whether the skeletal muscle undergoes structural changes during death by drowning. Eighteen Wistar rats were divided into 3 equal groups according to the cause of death: drowning, exsanguination, and cervical dislocation. Immediately after death, samples of the masseter, sternohyoid, diaphragm, anterior tibial, soleus, and extensor digitorum longus muscles were obtained and examined by light and electron microscopy.In the drowning group, all muscles except the masseter displayed scattered evidence of fiber degeneration, and modified Gomori trichrome staining revealed structural changes in the form of abnormal clumps of red material and ragged red fibers. Under the electron microscope, there was myofibrillar disruption and large masses of abnormal mitochondria. In the exsanguination group, modified Gomori trichrome staining disclosed structural changes and mitochondrial abnormalities were apparent under light microscopy; however, there was no evidence of degeneration. No alterations were observed in the cervical dislocation group.As far as we know, this is the first time that these histological findings are described in death by drowning and are consistent with rhabdomyolysis and intense anoxia of skeletal muscle. PMID:27043461

  10. CHROMOSOMAL ABNORMALITIES IN PATIENTS WITH RECURRENT MISCARRIAGE

    Daniela Mierla

    2012-06-01

    Full Text Available Chromosomal abnormalities are involved in the etiology of recurrent spontaneous pregnancy loss and sub-fertility. The purpose of this study was to determine the frequency and contribution of chromosomal abnormalities in recurrent miscarriages. The results obtained and literature review are helpful in understanding the importance of cytogenetics analysis of female infertility. To investigate the distribution of chromosomal abnormalities in the Romanian population with recurrent miscarriage, karyotype analysis by G-banding was performed from peripheral blood in 967 women infertility. Results: Chromosomal abnormalities were found to 79 women (8,17%. The percentage of chromosomal abnormalities in the studied population correlates with the data in the literature. Chromosomal abnormalities could play the important role in etiology of infertility and are more frequently detected in this group of patients compared to general population. In the infertile couples balanced chromosomal abnormalities are the main cause of spontaneous abortions.

  11. Increased skeletal muscle capillarization enhances insulin sensitivity.

    Akerstrom, Thorbjorn; Laub, Lasse; Vedel, Kenneth; Brand, Christian Lehn; Pedersen, Bente Klarlund; Lindqvist, Anna Kaufmann; Wojtaszewski, Jørgen F P; Hellsten, Ylva

    2014-12-15

    Increased skeletal muscle capillarization is associated with improved glucose tolerance and insulin sensitivity. However, a possible causal relationship has not previously been identified. Therefore, we investigated whether increased skeletal muscle capillarization increases insulin sensitivity. Skeletal muscle-specific angiogenesis was induced by adding the α1-adrenergic receptor antagonist prazosin to the drinking water of Sprague-Dawley rats (n = 33), whereas 34 rats served as controls. Insulin sensitivity was measured ≥40 h after termination of the 3-wk prazosin treatment, which ensured that prazosin was cleared from the blood stream. Whole body insulin sensitivity was measured in conscious, unrestrained rats by hyperinsulinemic euglycemic clamp. Tissue-specific insulin sensitivity was assessed by administration of 2-deoxy-[(3)H]glucose during the plateau phase of the clamp. Whole body insulin sensitivity increased by ∼24%, and insulin-stimulated skeletal muscle 2-deoxy-[(3)H]glucose disposal increased by ∼30% concomitant with an ∼20% increase in skeletal muscle capillarization. Adipose tissue insulin sensitivity was not affected by the treatment. Insulin-stimulated muscle glucose uptake was enhanced independent of improvements in skeletal muscle insulin signaling to glucose uptake and glycogen synthesis, suggesting that the improvement in insulin-stimulated muscle glucose uptake could be due to improved diffusion conditions for glucose in the muscle. The prazosin treatment did not affect the rats on any other parameters measured. We conclude that an increase in skeletal muscle capillarization is associated with increased insulin sensitivity. These data point toward the importance of increasing skeletal muscle capillarization for prevention or treatment of type 2 diabetes. PMID:25352432

  12. Proteomic profiling of skeletal muscle plasticity

    Ohlendieck, Kay

    2012-01-01

    One of the most striking physiological features of skeletal muscle tissues are their enormous capacity to adapt to changed functional demands. Muscle plasticity has been extensively studied by histological, biochemical, physiological and genetic methods over the last few decades. With the recent emergence of high-throughput and large-scale proteomic techniques, mass spectrometry-based surveys have also been applied to the global analysis of the skeletal muscle protein complement during physio...

  13. Skeletal Aging and Osteoporosis Biomechanics and Mechanobiology

    2013-01-01

    The focus of this book is on mechanical aspects of skeletal fragility related to aging and osteoporosis. Topics include: Age-related changes in trabecular structure and strength; age-related changes in cortical material properties; age-related changes in whole-bone structure; predicting bone strength and fracture risk using image-based methods and finite element analysis; animal models of osteoporosis and aging; age-related changes in skeletal mechano responsiveness; exercise and physical interventions for osteoporosis.

  14. Multifocal skeletal tuberculosis: A case report

    Zhang, Liang; Wang, Jingcheng; Feng, Xinmin; Tao, Yuping; Yang, Jiandong; ZHANG, SHENFEI; Cai, Jun

    2016-01-01

    Tuberculosis (TB) of the musculoskeletal system is a rare clinical condition. Multifocal bone involvement is extremely rare and difficult to recognize. Thus, due to the diverse and atypical clinical manifestations of multifocal skeletal TB, the disease is easy to misdiagnose. In the present study, a rare case of atypical disseminated multifocal skeletal TB was reported, which exhibited uncommon findings in radiological images that were more suggestive of a hematological malignancy or metastat...

  15. Stem cells for skeletal muscle repair

    Shadrach, Jennifer L.; Wagers, Amy J.

    2011-01-01

    Skeletal muscle is a highly specialized tissue composed of non-dividing, multi-nucleated muscle fibres that contract to generate force in a controlled and directed manner. Skeletal muscle is formed during embryogenesis from a subset of muscle precursor cells, which generate both differentiated muscle fibres and specialized muscle-forming stem cells known as satellite cells. Satellite cells remain associated with muscle fibres after birth and are responsible for muscle growth and repair throug...

  16. Redox control of skeletal muscle atrophy.

    Powers, Scott K; Morton, Aaron B; Ahn, Bumsoo; Smuder, Ashley J

    2016-09-01

    Skeletal muscles comprise the largest organ system in the body and play an essential role in body movement, breathing, and glucose homeostasis. Skeletal muscle is also an important endocrine organ that contributes to the health of numerous body organs. Therefore, maintaining healthy skeletal muscles is important to support overall health of the body. Prolonged periods of muscle inactivity (e.g., bed rest or limb immobilization) or chronic inflammatory diseases (i.e., cancer, kidney failure, etc.) result in skeletal muscle atrophy. An excessive loss of muscle mass is associated with a poor prognosis in several diseases and significant muscle weakness impairs the quality of life. The skeletal muscle atrophy that occurs in response to inflammatory diseases or prolonged inactivity is often associated with both oxidative and nitrosative stress. In this report, we critically review the experimental evidence that provides support for a causative link between oxidants and muscle atrophy. More specifically, this review will debate the sources of oxidant production in skeletal muscle undergoing atrophy as well as provide a detailed discussion on how reactive oxygen species and reactive nitrogen species modulate the signaling pathways that regulate both protein synthesis and protein breakdown. PMID:26912035

  17. Abnormal Returns and Contrarian Strategies

    Ivana Dall'Agnol

    2003-12-01

    Full Text Available We test the hypothesis that strategies which are long on portfolios of looser stocks and short on portfolios of winner stocks generate abnormal returns in Brazil. This type of evidence for the US stock market was interpreted by The Bondt and Thaler (1985 as reflecting systematic evaluation mistakes caused by investors overreaction to news related to the firm performance. We found evidence of contrarian strategies profitability for horizons from 3 months to 3 years in a sample of stock returns from BOVESPA and SOMA from 1986 to 2000. The strategies are more profitable for shorter horizons. Therefore, there was no trace of the momentum effect found by Jagadeesh and Titman (1993 for the same horizons with US data. There are remaing unexplained positive returns for contrarian strategies after accounting for risk, size, and liquidity. We also found that the strategy profitability is reduced after the Real Plan, which suggests that the Brazilian stock market became more efficient after inflation stabilization.

  18. Adults with Chromosome 18 Abnormalities.

    Soileau, Bridgette; Hasi, Minire; Sebold, Courtney; Hill, Annice; O'Donnell, Louise; Hale, Daniel E; Cody, Jannine D

    2015-08-01

    The identification of an underlying chromosome abnormality frequently marks the endpoint of a diagnostic odyssey. However, families are frequently left with more questions than answers as they consider their child's future. In the case of rare chromosome conditions, a lack of longitudinal data often makes it difficult to provide anticipatory guidance to these families. The objective of this study is to describe the lifespan, educational attainment, living situation, and behavioral phenotype of adults with chromosome 18 abnormalities. The Chromosome 18 Clinical Research Center has enrolled 483 individuals with one of the following conditions: 18q-, 18p-, Tetrasomy 18p, and Ring 18. As a part of the ongoing longitudinal study, we collect data on living arrangements, educational level attained, and employment status as well as data on executive functioning and behavioral skills on an annual basis. Within our cohort, 28 of the 483 participants have died, the majority of whom have deletions encompassing the TCF4 gene or who have unbalanced rearrangement involving other chromosomes. Data regarding the cause of and age at death are presented. We also report on the living situation, educational attainment, and behavioral phenotype of the 151 participants over the age of 18. In general, educational level is higher for people with all these conditions than implied by the early literature, including some that received post-high school education. In addition, some individuals are able to live independently, though at this point they represent a minority of patients. Data on executive function and behavioral phenotype are also presented. Taken together, these data provide insight into the long-term outcome for individuals with a chromosome 18 condition. This information is critical in counseling families on the range of potential outcomes for their child. PMID:25403900

  19. Alendronate increases skeletal mass of growing rats during unloading by inhibiting resorption of calcified cartilage

    Bikle, D. D.; Morey-Holton, E. R.; Doty, S. B.; Currier, P. A.; Tanner, S. J.; Halloran, B. P.

    1994-01-01

    Loss of bone mass during periods of skeletal unloading remains an important clinical problem. To determine the extent to which resorption contributes to the relative loss of bone during skeletal unloading of the growing rat and to explore potential means of preventing such bone loss, 0.1 mg P/kg alendronate was administered to rats before unloading of the hindquarters. Skeletal unloading markedly reduced the normal increase in tibial mass and calcium content during the 9 day period of observation, primarily by decreasing bone formation, although bone resorption was also modestly stimulated. Alendronate not only prevented the relative loss of skeletal mass during unloading but led to a dramatic increase in calcified tissue in the proximal tibia compared with the vehicle-treated unloaded or normally loaded controls. Bone formation, however, assessed both by tetracycline labeling and by [3H]proline and 45Ca incorporation, was suppressed by alendronate treatment and further decreased by skeletal unloading. Total osteoclast number increased in alendronate-treated animals, but values were similar to those in controls when corrected for the increased bone area. However, the osteoclasts had poorly developed brush borders and appeared not to engage the bone surface when examined at the ultrastructural level. We conclude that alendronate prevents the relative loss of mineralized tissue in growing rats subjected to skeletal unloading, but it does so primarily by inhibiting the resorption of the primary and secondary spongiosa, leading to altered bone modeling in the metaphysis.

  20. Genetic Dissection of the Physiological Role of Skeletal Muscle in Metabolic Syndrome

    Nobuko Hagiwara

    2014-01-01

    Full Text Available The primary deficiency underlying metabolic syndrome is insulin resistance, in which insulin-responsive peripheral tissues fail to maintain glucose homeostasis. Because skeletal muscle is the major site for insulin-induced glucose uptake, impairments in skeletal muscle’s insulin responsiveness play a major role in the development of insulin resistance and type 2 diabetes. For example, skeletal muscle of type 2 diabetes patients and their offspring exhibit reduced ratios of slow oxidative muscle. These observations suggest the possibility of applying muscle remodeling to recover insulin sensitivity in metabolic syndrome. Skeletal muscle is highly adaptive to external stimulations such as exercise; however, in practice it is often not practical or possible to enforce the necessary intensity to obtain measurable benefits to the metabolic syndrome patient population. Therefore, identifying molecular targets for inducing muscle remodeling would provide new approaches to treat metabolic syndrome. In this review, the physiological properties of skeletal muscle, genetic analysis of metabolic syndrome in human populations and model organisms, and genetically engineered mouse models will be discussed in regard to the prospect of applying skeletal muscle remodeling as possible therapy for metabolic syndrome.