WorldWideScience

Sample records for abnormal gene expression

  1. Brain gene expression differences are associated with abnormal tail biting behavior in pigs.

    Brunberg, E; Jensen, P; Isaksson, A; Keeling, L J

    2013-03-01

    Knowledge about gene expression in animals involved in abnormal behaviors can contribute to the understanding of underlying biological mechanisms. This study aimed to explore the motivational background to tail biting, an abnormal injurious behavior and severe welfare problem in pig production. Affymetrix microarrays were used to investigate gene expression differences in the hypothalamus and prefrontal cortex of pigs performing tail biting, pigs receiving bites to the tail and neutral pigs who were not involved in the behavior. In the hypothalamus, 32 transcripts were differentially expressed (P tail biters were compared with neutral pigs, 130 when comparing receiver pigs with neutrals, and two when tail biters were compared with receivers. In the prefrontal cortex, seven transcripts were differently expressed in tail biters when compared with neutrals, seven in receivers vs. neutrals and none in the tail biters vs. receivers. In total, 19 genes showed a different expression pattern in neutral pigs when compared with both performers and receivers. This implies that the functions of these may provide knowledge about why the neutral pigs are not involved in tail biting behavior as performers or receivers. Among these 19 transcripts were genes associated with production traits in pigs (PDK4), sociality in humans and mice (GTF2I) and novelty seeking in humans (EGF). These are in line with hypotheses linking tail biting with reduced back fat thickness and explorative behavior. PMID:23146156

  2. Abnormal muscle and hematopoietic gene expression may be important for clinical morbidity in primary hyperparathyroidism

    Reppe, Sjur; Stilgren, Lis; Abrahamsen, Bo; Olstad, Ole K; Cero, Fadila; Brixen, Kim; Nissen-Meyer, Lise Sofie; Gautvik, Kaare M

    2007-01-01

    , kidney stones and metabolic bone disease. Our objective was to characterize changes in muscle and hematopoietic gene expression in patients with reversible mild PHPT after parathyroidectomy and possibly link molecular pathology to symptoms. Global mRNA profiling using Affymetrix gene chips was carried...

  3. Differential gene expression profile associated with the abnormality of bone marrow mesenchymal stem cells in aplastic anemia.

    Jianping Li

    Full Text Available Aplastic anemia (AA is generally considered as an immune-mediated bone marrow failure syndrome with defective hematopoietic stem cells (HSCs and marrow microenvironment. Previous studies have demonstrated the defective HSCs and aberrant T cellular-immunity in AA using a microarray approach. However, little is known about the overall specialty of bone marrow mesenchymal stem cells (BM-MSCs. In the present study, we comprehensively compared the biological features and gene expression profile of BM-MSCs between AA patients and healthy volunteers. In comparison with healthy controls, BM-MSCs from AA patients showed aberrant morphology, decreased proliferation and clonogenic potential and increased apoptosis. BM-MSCs from AA patients were susceptible to be induced to differentiate into adipocytes but more difficult to differentiate into osteoblasts. Consistent with abnormal biological features, a large number of genes implicated in cell cycle, cell division, proliferation, chemotaxis and hematopoietic cell lineage showed markedly decreased expression in BM-MSCs from AA patients. Conversely, more related genes with apoptosis, adipogenesis and immune response showed increased expression in BM-MSCs from AA patients. The gene expression profile of BM-MSCs further confirmed the abnormal biological properties and provided significant evidence for the possible mechanism of the destruction of the bone marrow microenvironment in AA.

  4. Abnormal muscle and hematopoietic gene expression may be important for clinical morbidity in primary hyperparathyroidism

    Reppe, Sjur; Stilgren, Lis; Abrahamsen, Bo;

    2007-01-01

    In primary hyperparathyroidism (PHPT), excess PTH secretion by adenomatous or hyperplastic parathyroid glands leads to elevated serum [Ca(2+)]. Patients present complex symptoms of muscular fatigue, various neuropsychiatric, neuromuscular, and cardiovascular manifestations, and, in advanced disease......, kidney stones and metabolic bone disease. Our objective was to characterize changes in muscle and hematopoietic gene expression in patients with reversible mild PHPT after parathyroidectomy and possibly link molecular pathology to symptoms. Global mRNA profiling using Affymetrix gene chips was carried......,000 expressed genes, 175 muscle, 169 hematological, and 99 bone-associated mRNAs were affected. Notably, the major part of muscle-related mRNAs was increased whereas hematological mRNAs were predominantly decreased during disease. Functional and molecular network analysis demonstrated major alterations of...

  5. Abnormal gene expression of proinflammatory cytokines and their membrane-bound receptors in the lymphocytes of depressed patients.

    Rizavi, Hooriyah S; Ren, Xinguo; Zhang, Hui; Bhaumik, Runa; Pandey, Ghanshyam N

    2016-06-30

    Abnormalities of protein levels of proinflammatory cytokines and their soluble receptors have been reported in plasma of depressed patients. In this study, we examined the role of cytokines and their membrane-bound receptors in major depressive disorder (MDD). We determined the protein and mRNA expression of proinflammatory cytokines, interleukin (IL)-1β, IL-6, tumor necrosis factor (TNF)-α, and mRNA expression of their membrane-bound receptors in the lymphocytes from 31 hospitalized MDD patients and 30 non-hospitalized normal control (NC) subjects. The subjects were diagnosed according to DSM-IV criteria. Protein levels of cytokines were determined by ELISA, and mRNA levels in lymphocytes were determined by the qPCR method. We found that the mean mRNA levels of the proinflammatory cytokines IL-1β, IL-6, TNF-α, their receptors, TNFR1, TNFR2, IL-1R1 and the antagonist IL-1RA were significantly increased in the lymphocytes of MDD patients compared with NC. No significant differences in the lymphocyte mRNA levels of IL-1R2, IL-6R, and Gp130 were observed between MDD patients and NC. These studies suggest abnormal gene expression of these cytokines and their membrane-bound receptors in the lymphocytes of MDD patients, and that their mRNA expression levels in the lymphocytes could be a useful biomarker for depression. PMID:27138824

  6. Regulatory mechanisms for abnormal expression of the human breast cancer specific gene 1 in breast cancer cells

    LU; Aiping; LI; Qing; LIU; Jingwen

    2006-01-01

    Breast cancer-specific gene 1 (BCSG1), also referred as synuclein γ, was originally isolated from a human breast cancer cDNA library and the protein is mainly localized to presynaptic terminals in the nervous system. BCSG1 is not expressed in normal or benign breast lesions, but expressed at an extremely high level in the vast majority of the advanced staged breast carcinomas and ovarian carcinomas. Overexpression of BCSG1 in cancer cells led to significant increase in cell proliferation, motility and invasiveness, and metastasis. To elucidate the molecular mechanism and regulation for abnormal transcription of BCSG1, a variety of BCSG1 promoter luciferase reporters were constructed including 3' end deleted sequences, Sp1 deleted, and activator protein-1 (AP1) domains mutated. Transient transfection assay was used to detect the transcriptional activation of BCSG1 promoters. Results showed that the Sp1 sequence in 5'-flanking region was involved in the basal transcriptional activities of BCSG1 without cell-type specificity. In comparison to pGL3-1249, the reporter activities of pGL3-1553 in BCSG1-negative MCF-7 cells and pGL3-1759 in HepG2 cells were notably decreased. Mutations at AP1 sites in BCSG1 intron 1 significantly reduced the promoter activity in all cell lines. Transcription factors, c-jun, c-fos and cyclin AMP-responsive element binding (CREB) protein, could markedly enhance the promoter activities. Thus, our results suggest that the abnormal expression of BCSG1 in breast cancer cells is likely regulated by multiple mechanisms. The 5' flanking region of BCSG1 provides the basal transcriptional activity without cell type specificity. A critical promoter element involved in abnormal expression of BCSG1 presents in the first exon. The cell type specificity of BCSG1 transcription is probably affected through intronic cis-regulatory sequences. AP1 domains in the first intron play an important role in control of BCSG1 transcription.

  7. Differential Gene Expression Profile Associated with the Abnormality of Bone Marrow Mesenchymal Stem Cells in Aplastic Anemia

    Li, Jianping; Yang, Shaoguang; Lu, Shihong; Zhao, Hui; Feng, Jianming; Li, Wenqian; Ma, Fengxia; Ren, Qian; Liu, Bin; Zhang, Lei; Zheng, Yizhou; Han, Zhong Chao

    2012-01-01

    Aplastic anemia (AA) is generally considered as an immune-mediated bone marrow failure syndrome with defective hematopoietic stem cells (HSCs) and marrow microenvironment. Previous studies have demonstrated the defective HSCs and aberrant T cellular-immunity in AA using a microarray approach. However, little is known about the overall specialty of bone marrow mesenchymal stem cells (BM-MSCs). In the present study, we comprehensively compared the biological features and gene expression profile...

  8. Comparison of gene expression profiles and responses to zinc chloride among inter- and intraspecific hybrids with growth abnormalities in wheat and its relatives.

    Takamatsu, Kiyofumi; Iehisa, Julio C M; Nishijima, Ryo; Takumi, Shigeo

    2015-07-01

    Hybrid necrosis is a well-known reproductive isolation mechanism in plant species, and an autoimmune response is generally considered to trigger hybrid necrosis through epistatic interaction between disease resistance-related genes in hybrids. In common wheat, the complementary Ne1 and Ne2 genes control hybrid necrosis, defined as type I necrosis. Two other types of hybrid necrosis (type II and type III) have been observed in interspecific hybrids between tetraploid wheat and Aegilops tauschii. Another type of hybrid necrosis, defined here as type IV necrosis, has been reported in F1 hybrids between Triticum urartu and some accessions of Triticum monococcum ssp. aegilopoides. In types I, III and IV, cell death occurs gradually starting in older tissues, whereas type II necrosis symptoms occur only under low temperature. To compare comprehensive gene expression patterns of hybrids showing growth abnormalities, transcriptome analysis of type I and type IV necrosis was performed using a wheat 38k oligo-DNA microarray. Defense-related genes including many WRKY transcription factor genes were dramatically up-regulated in plants showing type I and type IV necrosis, similarly to other known hybrid abnormalities, suggesting an association with an autoimmune response. Reactive oxygen species generation and necrotic cell death were effectively inhibited by ZnCl2 treatment in types I, III and IV necrosis, suggesting a significant association of Ca(2+) influx in upstream signaling of necrotic cell death in wheat hybrid necrosis. PMID:26081164

  9. Gene expression

    We prepared probes for isolating functional pieces of the metallothionein locus. The probes enabled a variety of experiments, eventually revealing two mechanisms for metallothionein gene expression, the order of the DNA coding units at the locus, and the location of the gene site in its chromosome. Once the switch regulating metallothionein synthesis was located, it could be joined by recombinant DNA methods to other, unrelated genes, then reintroduced into cells by gene-transfer techniques. The expression of these recombinant genes could then be induced by exposing the cells to Zn2+ or Cd2+. We would thus take advantage of the clearly defined switching properties of the metallothionein gene to manipulate the expression of other, perhaps normally constitutive, genes. Already, despite an incomplete understanding of how the regulatory switch of the metallothionein locus operates, such experiments have been performed successfully

  10. Expression of progerin in aging mouse brains reveals structural nuclear abnormalities without detectible significant alterations in gene expression, hippocampal stem cells or behavior

    Baek, Jean-Ha; Schmidt, Eva; Viceconte, Nikenza;

    2015-01-01

    , the HGPS mutation results in organ-specific defects. For example, bone and skin are strongly affected by HGPS, while the brain appears to be unaffected. There are no definite explanations as to the variable sensitivity to progeria disease among different organs. In addition, low levels of progerin...... have also been found in several tissues from normal individuals, but it is not clear if low levels of progerin contribute to the aging of the brain. In an attempt to clarify the origin of this phenomenon, we have developed an inducible transgenic mouse model with expression of the most common HGPS...... mutation in brain, skin, bone and heart to investigate how the mutation affects these organs. Ultrastructural analysis of neuronal nuclei after 70 weeks of expression of the LMNA c.1824C>T mutation showed severe distortion with multiple lobulations and irregular extensions. Despite severe distortions in...

  11. Regulation of gene expression

    In order to define in molecular terms the mechanisms controlling expression of specific genes in mammalian cells, how gene expression is activated, how tissue-specific expression is effected, how expression is modulated by hormones and other specific effectors, and how genetic control mechanisms are altered in the dysfunction of gene expression in cells transformed to malignancy were studied. Much of this work has focused on expression of the rat liver enzyme tyrosine aminotransferase

  12. Reduced Euchromatin histone methyltransferase 1 causes developmental delay, hypotonia, and cranial abnormalities associated with increased bone gene expression in Kleefstra syndrome mice.

    Balemans, Monique C M; Ansar, Muhammad; Oudakker, Astrid R; van Caam, Arjan P M; Bakker, Brenda; Vitters, Elly L; van der Kraan, Peter M; de Bruijn, Diederik R H; Janssen, Sanne M; Kuipers, Arthur J; Huibers, Manon M H; Maliepaard, Eliza M; Walboomers, X Frank; Benevento, Marco; Nadif Kasri, Nael; Kleefstra, Tjitske; Zhou, Huiqing; Van der Zee, Catharina E E M; van Bokhoven, Hans

    2014-02-15

    Haploinsufficiency of Euchromatin histone methyltransferase 1 (EHMT1), a chromatin modifying enzyme, is the cause of Kleefstra syndrome (KS). KS is an intellectual disability (ID) syndrome, with general developmental delay, hypotonia, and craniofacial dysmorphisms as additional core features. Recent studies have been focused on the role of EHMT1 in learning and memory, linked to the ID phenotype of KS patients. In this study we used the Ehmt1(+/-) mouse model, and investigated whether the core features of KS were mimicked in these mice. When comparing Ehmt1(+/-) mice to wildtype littermates we observed delayed postnatal growth, eye opening, ear opening, and upper incisor eruption, indicating a delayed postnatal development. Furthermore, tests for muscular strength and motor coordination showed features of hypotonia in young Ehmt1(+/-) mice. Lastly, we found that Ehmt1(+/-) mice showed brachycephalic crania, a shorter or bent nose, and hypertelorism, reminiscent of the craniofacial dysmorphisms seen in KS. In addition, gene expression analysis revealed a significant upregulation of the mRNA levels of Runx2 and several other bone tissue related genes in P28 Ehmt1(+/-) mice. Runx2 immunostaining also appeared to be increased. The mRNA upregulation was associated with decreased histone H3 lysine 9 dimethylation (H3K9me2) levels, the epigenetic mark deposited by Ehmt1, in the promoter region of these genes. Together, Ehmt1(+/-) mice indeed recapitulate KS core features and can be used as an animal model for Kleefstra syndrome. The increased expression of bone developmental genes in the Ehmt1(+/-) mice likely contributes to their cranial dysmorphisms and might be explained by diminished Ehmt1-induced H3K9 dimethylation. PMID:24362066

  13. The senescence-accelerated prone mouse (SAMP8): a model of age-related cognitive decline with relevance to alterations of the gene expression and protein abnormalities in Alzheimer's disease.

    Butterfield, D Allan; Poon, H Fai

    2005-10-01

    The senescence-accelerated mouse (SAM) is an accelerated aging model that was established through phenotypic selection from a common genetic pool of AKR/J strain of mice. The SAM model was established in 1981, including nine major senescence-accelerated mouse prone (SAMP) substrains and three major senescence-accelerated mouse resistant (SAMR) substrains, each of which exhibits characteristic disorders. Recently, SAMP8 have drawn attention in gerontological research due to its characteristic learning and memory deficits at old age. Many recent reports provide insight into mechanisms of the cognitive impairment and pathological changes in SAMP8. Therefore, this mini review examines the recent findings of SAMP8 mice abnormalities at the gene and protein levels. The genes and proteins described in this review are functionally categorized into neuroprotection, signal transduction, protein folding/degradation, cytoskeleton/transport, immune response and reactive oxygen species (ROS) production. All of these processes are involved in learning and memory. Although these studies provide insight into the mechanisms that contribute to the learning and memory decline in aged SAMP8 mice, higher throughput techniques of proteomics and genomics are necessary to study the alterations of gene expression and protein abnormalities in SAMP8 mice brain in order to more completely understand the central nervous system dysfunction in this mouse model. The SAMP8 is a good animal model to investigate the fundamental mechanisms of age-related learning and memory deficits at the gene and protein levels. PMID:16026957

  14. Gene Abnormality May Be Key to Down Syndrome, Scientists Say

    ... nlm.nih.gov/medlineplus/news/fullstory_157468.html Gene Abnormality May Be Key to Down Syndrome, Scientists ... release. His research team compared the activity of genes in different areas of the brain in people ...

  15. Abnormalities in structure and expression of the retinoblastoma gene in small cell lung cancer cell lines and xenografts in nude mice

    Rygaard, K; Sorenson, G D; Pettengill, O S;

    1990-01-01

    The putative retinoblastoma gene (Rb) is a tumor suppressor gene which is believed to cause retinoblastomas when both alleles are inactivated, leading to lack of the encoded Mr 110,000-116,000 phosphoprotein. Inactivation of the Rb gene has also been found in several other tumor types, including...

  16. Abnormal Expression of p73 Gene in Adult Acute Lymphoblastic Leukemia%p73基因在成人急性淋巴细胞白血病中表达的研究

    俞罡

    2014-01-01

    目的:研究p73基因在急性淋巴细胞性白血病(ALL)发病机制中的作用及临床意义。方法:收集32例ALL患者及30例正常对照组骨髓样本,DNA和RNA抽提后用RT-PCR检测p73基因的表达、甲基化特异性PCR(MSP)检测p73基因第一外显子甲基化状态,并结合临床资料进行分析。结果:11例p73基因阴性表达,阴性表达率为34.38%,其中9例第一外显子区域均发生甲基化(81.82%);21例p73基因阳性表达,32例ALL患者中,仅1例发生甲基化(4.76%);正常对照组30例,均为p73基因阳性表达,阳性表达率为100%。p73基因的阴性表达与ALL患者的高年龄(≥60岁)、高白细胞数(≥30×109/L)及对治疗时间延长(>4周取得完全缓解)有关。结论:p73基因异常表达与成人ALL的发病机制有关,具有一定的诊断及判断预后的价值;其甲基化可能是p73基因在ALL中表达沉默的主要机制。%Objective:To investigate the effect of p73 gene on pathogenesis of acute lymphoblastic leukemia(ALL)and clinical significance of abnormal expression of p73 gene. Method:Genomic DNA and total RNA were extracted from 32 ALL and 30 normal bone marrow samples. The expression of p73 was evaluated by RT-PCR. The methylation specific PCR(MSP)was performed to examine the methylation status of p73 gene exon. Result:Of 32 ALL samples,11 showed without expression of p73 mRNA,with a negative rate of 34.38%. Normal samples all had expression of p73 gene,with a positive rate of 100%. 9 patients without expression of p73 were found to have methylation of p73 gene,whereas only one of patients with expression of p73 mRNA was found to have methylation. Negative expression of p73 gene was associated with higher age(≥60 years old ),higher leucocyte count(≥30×109/L) and delayed reaction to therapy(patients attained complete remission after 4 weeks). Conclusion:Negative expression of p73 gene probably plays a role in the

  17. Gene Expression Omnibus (GEO)

    U.S. Department of Health & Human Services — Gene Expression Omnibus is a public functional genomics data repository supporting MIAME-compliant submissions of array- and sequence-based data. Tools are provided...

  18. Abnormal expression of key genes and proteins in the canonical Wnt/β-catenin pathway of articular cartilage in a rat model of exercise-induced osteoarthritis

    LIU, SHEN-SHEN; ZHOU, PU; Zhang, Yanqiu

    2016-01-01

    To investigate the molecular pathogenesis of the canonical Wnt/β-catenin pathway in exercise-induced osteoarthritis (OA), 30 male healthy Sprague Dawley rats were divided into three groups (control, normal exercise-induced OA and injured exercise-induced OA groups) in order to establish the exercise-induced OA rat model. The mRNA and protein expression levels of Runx-2, BMP-2, Ctnnb1, Sox-9, collagen II, Mmp-13, Wnt-3a and β-catenin in chon-drocytes were detected by reverse transcription-quan...

  19. Abnormalities in Alternative Splicing of Apoptotic Genes and Cardiovascular Diseases

    Zodwa Dlamini; Tshidino, Shonisani C.; Rodney Hull

    2015-01-01

    Apoptosis is required for normal heart development in the embryo, but has also been shown to be an important factor in the occurrence of heart disease. Alternative splicing of apoptotic genes is currently emerging as a diagnostic and therapeutic target for heart disease. This review addresses the involvement of abnormalities in alternative splicing of apoptotic genes in cardiac disorders including cardiomyopathy, myocardial ischemia and heart failure. Many pro-apoptotic members of the Bcl-2 f...

  20. Analysis of SRY Gene in 8 Cases of Sex Abnormality

    王慧; 腾云; 田虹; 陈燕; 杨真荣; 唐艳平

    2004-01-01

    In order to investigate the relationship between sex dysplasia and sex-determining region Y (SRY) gene, 8 patients with sexual abnormality were analyzed by cytogenetic and molecular genetic methods. Fluorescence in situ hybridization (FISH) using PY3.4, X alpha satellite, and SRY probes was performed in each case to analyze the sex chromosome translocation and gene translocation. SRY gene was amplified by polymerase chain reaction (PCR) and its mutation was detected by direct sequencing. The results showed that among 8 patients, 5 were positive for SRY and the remaining negative for SRY. In the patients positive for SRY genes, 3 presented testes and the left 2streak ovaries. In the patients negative for SRY, only one case presented testes, while 2 ovaries.Direct sequencing demonstrated that all SRY genes were normal in the patients positive for SRY genes. FISH technique demonstrated that SRY genes translocated from Ypter to Xpter in 2 46,XX phenotypic males positive for SRY genes. It was concluded that SRY gene is strongly involved in.male sex determination, while a sequence of other genes may be taken into account in sexual development.

  1. Abnormal growth factor and cytokine expression in Dupuytren's contracture.

    Baird, K S; Crossan, J F; Ralston, S H

    1993-01-01

    AIM--To analyse patterns of gene expression for peptide regulatory factors in patients with Dupuytren's contracture. METHODS--Tissue samples (palmer fascia) from 12 patients with Dupuytren's contracture and 12 controls were studied using the reverse transcription/polymerase chain reaction (RT/PCR) technique. RESULTS--Tissue from patients with Dupuytren's contracture expressed a higher percentage of peptide regulatory factors than that of controls: interleukin-1 alpha (83% v 16%; p < 0.01); in...

  2. Tumor-specific gene expression patterns with gene expression profiles

    RUAN; Xiaogang; LI; Yingxin; LI; Jiangeng; GONG; Daoxiong

    2006-01-01

    Gene expression profiles of 14 common tumors and their counterpart normal tissues were analyzed with machine learning methods to address the problem of selection of tumor-specific genes and analysis of their differential expressions in tumor tissues. First, a variation of the Relief algorithm, "RFE_Relief algorithm" was proposed to learn the relations between genes and tissue types. Then, a support vector machine was employed to find the gene subset with the best classification performance for distinguishing cancerous tissues and their counterparts. After tissue-specific genes were removed, cross validation experiments were employed to demonstrate the common deregulated expressions of the selected gene in tumor tissues. The results indicate the existence of a specific expression fingerprint of these genes that is shared in different tumor tissues, and the hallmarks of the expression patterns of these genes in cancerous tissues are summarized at the end of this paper.

  3. 3种微生物诱导的家蚕attacin基因异常表达形式的研究%Abnormal Expression of Silkworm Attacin Gene Induced by 3 Kinds of Microorganisms

    孔卫青; 杨金宏

    2008-01-01

    [Objective] The aim of this research was to study the expression of silkworm attacin gene induced by some different microorganisms. [Method] Three kinds of microorganism, BmNPV, JM109 and Agrobacterium LBA4404, were ingested to silkworm and the expression profile of attacin gene in hemocyte and fat body was detected by semi-quantitative PCR. And subsequently, the PCR products were cloned and sequenced for further analysis. [Result] A specific band, about 800 bp, appeared in fat body of all induced silkworms. As indicated by the results of cloning and sequencing (GenBank accession number: FJ373019), the band was produced because the 2 introns existing in normal expression form were not spliced. Furthermore, when the extended expression sequence was translated into amino acids, the translation stopped earlier by the stop codon TGA at the 5' end of the first intron of the original sequence, leading the loss of attacin C terminus. [Conclusion] There were two splicesomes of attacin gene, which had reference value to study the role of the attacin gene in silkworm immunity.

  4. Imaging gene expression in gene therapy

    Wiebe, Leonard I. [Alberta Univ., Edmonton (Canada). Noujaim Institute for Pharmaceutical Oncology Research

    1997-12-31

    Full text. Gene therapy can be used to introduce new genes, or to supplement the function of indigenous genes. At the present time, however, there is non-invasive test to demonstrate efficacy of the gene transfer and expression processes. It has been postulated that scintigraphic imaging can offer unique information on both the site at which the transferred gene is expressed, and the degree of expression, both of which are critical issue for safety and clinical efficacy. Many current studies are based on `suicide gene therapy` of cancer. Cells modified to express these genes commit metabolic suicide in the presence of an enzyme encoded by the transferred gene and a specifically-convertible pro drug. Pro drug metabolism can lead to selective metabolic trapping, required for scintigraphy. Herpes simplex virus type-1 thymidine kinase (H S V-1 t k{sup +}) has been use for `suicide` in vivo tumor gene therapy. It has been proposed that radiolabelled nucleosides can be used as radiopharmaceuticals to detect H S V-1 t k{sup +} gene expression where the H S V-1 t k{sup +} gene serves a reporter or therapeutic function. Animal gene therapy models have been studied using purine-([{sup 18} F]F H P G; [{sup 18} F]-A C V), and pyrimidine- ([{sup 123}/{sup 131} I]I V R F U; [{sup 124}/{sup 131I}]) antiviral nucleosides. Principles of gene therapy and gene therapy imaging will be reviewed and experimental data for [{sup 123}/{sup 131I}]I V R F U imaging with the H S V-1 t k{sup +} reporter gene will be presented

  5. Imaging gene expression in gene therapy

    Full text. Gene therapy can be used to introduce new genes, or to supplement the function of indigenous genes. At the present time, however, there is non-invasive test to demonstrate efficacy of the gene transfer and expression processes. It has been postulated that scintigraphic imaging can offer unique information on both the site at which the transferred gene is expressed, and the degree of expression, both of which are critical issue for safety and clinical efficacy. Many current studies are based on 'suicide gene therapy' of cancer. Cells modified to express these genes commit metabolic suicide in the presence of an enzyme encoded by the transferred gene and a specifically-convertible pro drug. Pro drug metabolism can lead to selective metabolic trapping, required for scintigraphy. Herpes simplex virus type-1 thymidine kinase (H S V-1 t k+) has been use for 'suicide' in vivo tumor gene therapy. It has been proposed that radiolabelled nucleosides can be used as radiopharmaceuticals to detect H S V-1 t k+ gene expression where the H S V-1 t k+ gene serves a reporter or therapeutic function. Animal gene therapy models have been studied using purine-([18 F]F H P G; [18 F]-A C V), and pyrimidine- ([123/131 I]I V R F U; [124/131I]) antiviral nucleosides. Principles of gene therapy and gene therapy imaging will be reviewed and experimental data for [123/131I]I V R F U imaging with the H S V-1 t k+ reporter gene will be presented

  6. Mucin phenotypic expression and p53 gene abnormality of gastric super-minute well-differentiated adenocarcinoma: Re-evaluation with relationship between histogenesis of well-differentiated adenocarcinoma and intestinal metaplasia in distal stomach

    Yamaguchi Toshikazu

    2005-01-01

    lesions in the distal stomach, which had both gastric and intestinal phenotypic mucin, are considered to develop from the tubular proliferative zone with the incomplete type of the intestinal metaplasia and p53 gene abnormality, while a part of them, which had only gastric phenotypic mucin, may derive from the gastric native tubules (non-metaplastic epithelium with p53 gene abnormality.

  7. Abnormalities in Alternative Splicing of Apoptotic Genes and Cardiovascular Diseases

    Zodwa Dlamini

    2015-11-01

    Full Text Available Apoptosis is required for normal heart development in the embryo, but has also been shown to be an important factor in the occurrence of heart disease. Alternative splicing of apoptotic genes is currently emerging as a diagnostic and therapeutic target for heart disease. This review addresses the involvement of abnormalities in alternative splicing of apoptotic genes in cardiac disorders including cardiomyopathy, myocardial ischemia and heart failure. Many pro-apoptotic members of the Bcl-2 family have alternatively spliced isoforms that lack important active domains. These isoforms can play a negative regulatory role by binding to and inhibiting the pro-apoptotic forms. Alternative splicing is observed to be increased in various cardiovascular diseases with the level of alternate transcripts increasing elevated in diseased hearts compared to healthy subjects. In many cases these isoforms appear to be the underlying cause of the disease, while in others they may be induced in response to cardiovascular pathologies. Regardless of this, the detection of alternate splicing events in the heart can serve as useful diagnostic or prognostic tools, while those splicing events that seem to play a causative role in cardiovascular disease make attractive future drug targets.

  8. Ascidian gene-expression profiles

    William R Jeffery

    2002-01-01

    With the advent of gene-expression profiling, a large number of genes can now be investigated simultaneously during critical stages of development. This approach will be particularly informative in studies of ascidians, basal chordates whose genomes and embryology are uniquely suited for mapping developmental gene networks.

  9. Gene expression in colorectal cancer

    Birkenkamp-Demtroder, Karin; Christensen, Lise Lotte; Olesen, Sanne Harder;

    2002-01-01

    Understanding molecular alterations in colorectal cancer (CRC) is needed to define new biomarkers and treatment targets. We used oligonucleotide microarrays to monitor gene expression of about 6,800 known genes and 35,000 expressed sequence tags (ESTs) on five pools (four to six samples in each...... high frequency of loss of heterozygosity. The genes and ESTs presented in this study encode new potential tumor markers as well as potential novel therapeutic targets for prevention or therapy of CRC....

  10. Abnormal growth factor and cytokine expression in Dupuytren's contracture.

    Baird, K S; Crossan, J F; Ralston, S H

    1993-01-01

    AIM--To analyse patterns of gene expression for peptide regulatory factors in patients with Dupuytren's contracture. METHODS--Tissue samples (palmer fascia) from 12 patients with Dupuytren's contracture and 12 controls were studied using the reverse transcription/polymerase chain reaction (RT/PCR) technique. RESULTS--Tissue from patients with Dupuytren's contracture expressed a higher percentage of peptide regulatory factors than that of controls: interleukin-1 alpha (83% v 16%; p < 0.01); interleukin-1 beta (66% v 8%; p < 0.01); transforming growth factor beta (75% v 25%; p < 0.02); and basic fibroblast growth factor (66% v 25%; p < 0.05). Platelet derived growth factors alpha and beta were also expressed more commonly (66% v 33% and 25% v 16%, respectively), but these differences were not significant. CONCLUSIONS--The increased prevalence of expression for the above mRNAs in Dupuytren's tissue is relevant as interleukin-1, basic fibroblast growth factor, and transforming growth factor beta stimulate the growth of fibroblasts and transforming growth factor beta also enhances production of collagen and other extracellular matrix proteins. Excessive local release of these peptide regulatory factors may have an important role in the pathogenesis of Dupuytren's contracture. Images PMID:8320323

  11. Shuffling Yeast Gene Expression Data

    Bilke, Sven

    2000-01-01

    A new method to sort gene expression patterns into functional groups is presented. The method is based on a sorting algorithm using a non-local similarity score, which takes all other patterns in the dataset into account. The method is therefore very robust with respect to noise. Using the expression data for yeast, we extract information about functional groups. Without prior knowledge of parameters the cell cycle regulated genes in yeast can be identified. Furthermore a second, independent ...

  12. Vascular gene expression: a hypothesis

    Martínez-Navarro, Angélica C.; Galván-Gordillo, Santiago V.; Xoconostle-Cázares, Beatriz; Ruiz-Medrano, Roberto

    2013-01-01

    The phloem is the conduit through which photoassimilates are distributed from autotrophic to heterotrophic tissues and is involved in the distribution of signaling molecules that coordinate plant growth and responses to the environment. Phloem function depends on the coordinate expression of a large array of genes. We have previously identified conserved motifs in upstream regions of the Arabidopsis genes, encoding the homologs of pumpkin phloem sap mRNAs, displaying expression in vascular ti...

  13. Zipf's Law in Gene Expression

    Furusawa, Chikara; Kaneko, Kunihiko

    2002-01-01

    Using data from gene expression databases on various organisms and tissues, including yeast, nematodes, human normal and cancer tissues, and embryonic stem cells, we found that the abundances of expressed genes exhibit a power-law distribution with an exponent close to -1, i.e., they obey Zipf's law. Furthermore, by simulations of a simple model with an intra-cellular reaction network, we found that Zipf's law of chemical abundance is a universal feature of cells where such a network optimize...

  14. Unusual interleukin-1 and -6 expression in fetal cartilage is associated with placental abnormalities.

    Robert Klepacz

    2010-06-01

    Full Text Available Unusual expression of interleukin-1alpha, -1beta and -6 was previously found in the epiphyseal cartilage of rat fetuses prenatally exposed to various non-steroidal anti-inflammatory drugs (NSAID, i.e., ibuprofen, piroxicam, tolmetin and selective cyclooxygenase-2 inhibitor (DFU. The aim of the present study was to evaluate the role of placenta in such phenomenon. Morphology of the organ, thickness of basal and labyrinth layer, immunoexpression of COX isoenzymes were examined, and confronted with maternal biochemical data and fetal developmental parameters. Higher maternal urea level, as well as lower placental weight and labyrinth thickness were found in the group of fetuses who revealed expression of genes coded the selected interleukins, when compared with the xenobiotic-exposed pups without the selected genes expression and untreated control. A significant correlation between placental weight and maternal total protein or urea level was revealed. Histological changes like inflammatory infiltration and calcification were observed sporadically. Location and intensity of COX-1 staining was similar in all cases. However, more intense COX-2 staining for majority of cells of the basal zone and in dispersed giant cells of the labyrinth was found in inflamed organs. It could be concluded that abnormal expression of the selected interleukins is associated with low placental weight and decrease of its thickness, especially labyrinth zone, as well as with high maternal urea level.

  15. Correction of gene expression data

    Darbani Shirvanehdeh, Behrooz; Stewart, C. Neal, Jr.; Noeparvar, Shahin;

    2014-01-01

    This report investigates for the first time the potential inter-treatment bias source of cell number for gene expression studies. Cell-number bias can affect gene expression analysis when comparing samples with unequal total cellular RNA content or with different RNA extraction efficiencies. For...... maximal reliability of analysis, therefore, comparisons should be performed at the cellular level. This could be accomplished using an appropriate correction method that can detect and remove the inter-treatment bias for cell-number. Based on inter-treatment variations of reference genes, we introduce an...

  16. Shuffling Yeast Gene Expression Data

    Bilke, S

    2000-01-01

    A new method to sort gene expression patterns into functional groups is presented. The method is based on a sorting algorithm using a non-local similarity score, which takes all other patterns in the dataset into account. The method is therefore very robust with respect to noise. Using the expression data for yeast, we extract information about functional groups. Without prior knowledge of parameters the cell cycle regulated genes in yeast can be identified. Furthermore a second, independent cell clock is identified. The capability of the algorithm to extract information about signal flow in the regulatory network underlying the expression patterns is demonstrated.

  17. Homeobox gene expression in Brachiopoda

    Altenburger, Andreas; Martinez, Pedro; Wanninger, Andreas

    2011-01-01

    . Not is a homeobox containing gene that regulates the formation of the notochord in chordates, while Cdx (caudal) is a ParaHox gene involved in the formation of posterior tissues of various animal phyla. The T. transversa homolog, TtrNot, is expressed in the ectoderm from the beginning of gastrulation until...... (ectoderm) specification with co-opted functions in notochord formation in chordates and left/right determination in ambulacrarians and vertebrates. The caudal ortholog, TtrCdx, is first expressed in the ectoderm of the gastrulating embryo in the posterior region of the blastopore. Its expression stays...... metazoans, where genes belonging to the Cdx/caudal family are predominantly localized in posterior domains during gastrulation. Later in development this gene will play a fundamental role in the formation of posterior tissues....

  18. Transcriptional activation by TAL1 and FUS-CHOP proteins expressed in acute malignancies as a result of chromosomal abnormalities.

    Sánchez-García, I; Rabbitts, T H

    1994-01-01

    Proteins that appear to participate in transcriptional control of gene expression are increasingly implicated in leukemias and malignant solid tumors. We report here that the N-terminal domains of the proteins TAL1 (ectopically activated in T-cell acute leukemias after chromosomal abnormalities caused by V-D-J recombinase error) (V, variable; D, diversity; J, joining) and FUS-CHOP (a liposarcoma tumor-specific fusion protein that is produced as a result of a chromosomal translocation) can fun...

  19. Transgenic Arabidopsis Gene Expression System

    Ferl, Robert; Paul, Anna-Lisa

    2009-01-01

    The Transgenic Arabidopsis Gene Expression System (TAGES) investigation is one in a pair of investigations that use the Advanced Biological Research System (ABRS) facility. TAGES uses Arabidopsis thaliana, thale cress, with sensor promoter-reporter gene constructs that render the plants as biomonitors (an organism used to determine the quality of the surrounding environment) of their environment using real-time nondestructive Green Fluorescent Protein (GFP) imagery and traditional postflight analyses.

  20. Zipf's Law in Gene Expression

    Furusawa, C; Furusawa, Chikara; Kaneko, Kunihiko

    2002-01-01

    Using data from gene expression databases on various organisms and tissues, including yeast, nematodes, human normal and cancer tissues, and embryonic stem cells, we found that the abundances of expressed genes exhibit a power-law distribution with an exponent close to -1, i.e., they obey Zipf's law. Furthermore, by simulations of a simple model with an intra-cellular reaction network, we found that Zipf's law of chemical abundance is a universal feature of cells where such a network optimizes the efficiency and faithfulness of self-reproduction. These findings provide novel insights into the nature of the organization of reaction dynamics in living cells.

  1. Identifying Gene Interaction Enrichment for Gene Expression Data

    Jigang Zhang; Jian Li; Hong-Wen Deng

    2009-01-01

    Gene set analysis allows the inclusion of knowledge from established gene sets, such as gene pathways, and potentially improves the power of detecting differentially expressed genes. However, conventional methods of gene set analysis focus on gene marginal effects in a gene set, and ignore gene interactions which may contribute to complex human diseases. In this study, we propose a method of gene interaction enrichment analysis, which incorporates knowledge of predefined gene sets (e.g. gene ...

  2. Microarray Data Analysis of Gene Expression Evolution

    Honghuang Lin

    2009-01-01

    Microarrays are becoming a widely used tool to study gene expression evolution. A recent paper by Wang and Rekaya describes a comprehensive study of gene expression evolution by microarray.1 The work provides a perspective to study gene expression evolution in terms of functional enrichment and promoter conservation. It was found that gene expression patterns are highly conserved in some biological processes, but the correlation between promoter and gene expression is insignificant. This scop...

  3. Human papillomavirus gene expression

    To determine the role of tissue differentiation on expression of each of the papillomavirus mRNA species identified by electron microscopy, the authors prepared exon-specific RNA probes that could distinguish the alternatively spliced mRNA species. Radioactively labeled single-stranded RNA probes were generated from a dual promoter vector system and individually hybridized to adjacent serial sections of formalin-fixed, paraffin-embedded biopsies of condylomata. Autoradiography showed that each of the message species had a characteristic tissue distribution and relative abundance. The authors have characterized a portion of the regulatory network of the HPVs by showing that the E2 ORF encodes a trans-acting enhancer-stimulating protein, as it does in BPV-1 (Spalholz et al. 1985). The HPV-11 enhancer was mapped to a 150-bp tract near the 3' end of the URR. Portions of this region are duplicated in some aggressive strains of HPV-6 (Boshart and zur Hausen 1986; Rando et al. 1986). To test the possible biological relevance of these duplications, they cloned tandem arrays of the enhancer and demonstrated, using a chloramphenicol acetyltransferase (CAT) assay, that they led to dramatically increased transcription proportional to copy number. Using the CAT assays, the authors found that the E2 proteins of several papillomavirus types can cross-stimulate the enhancers of most other types. This suggests that prior infection of a tissue with one papillomavirus type may provide a helper effect for superinfection and might account fo the HPV-6/HPV-16 coinfections in condylomata that they have observed

  4. Schizophrenia: susceptibility genes and oligodendroglial and myelin related abnormalities

    Panos eRoussos

    2014-01-01

    Full Text Available Given that the genetic risk for schizophrenia is highly polygenic and the effect sizes, even for rare or de novo events, are modest at best, it has been suggested that multiple biological pathways are likely to be involved in the etiopathogenesis of the disease. Most efforts in understanding the cellular basis of schizophrenia have followed a neuron-centric approach, focusing on alterations in neurotransmitter systems and synapse cytoarchitecture. However, multiple lines of evidence coming from genetics and systems biology approaches suggest that apart from neurons, oligodendrocytes and potentially other glia are affected from schizophrenia risk loci. Neurobiological abnormalities linked with genetic association signal could identify abnormalities that are more likely to be primary, versus environmentally-induced changes or downstream events. Here, we summarize genetic data that support the involvement of oligodendrocytes in schizophrenia, providing additional evidence for a causal role with the disease. Given the undeniable evidence of both neuronal and glial abnormalities in schizophrenia, we propose a neuro-glial model that invokes abnormalities at the node of Ranvier as a functional unit in the etiopathogenesis of the disease.

  5. Vascular Gene Expression: A Hypothesis

    Angélica Concepción eMartínez-Navarro

    2013-07-01

    Full Text Available The phloem is the conduit through which photoassimilates are distributed from autotrophic to heterotrophic tissues and is involved in the distribution of signaling molecules that coordinate plant growth and responses to the environment. Phloem function depends on the coordinate expression of a large array of genes. We have previously identified conserved motifs in upstream regions of the Arabidopsis genes, encoding the homologs of pumpkin phloem sap mRNAs, displaying expression in vascular tissues. This tissue-specific expression in Arabidopsis is predicted by the overrepresentation of GA/CT-rich motifs in gene promoters. In this work we have searched for common motifs in upstream regions of the homologous genes from plants considered to possess a primitive vascular tissue (a lycophyte, as well as from others that lack a true vascular tissue (a bryophyte, and finally from chlorophytes. Both lycophyte and bryophyte display motifs similar to those found in Arabidopsis with a significantly low E-value, while the chlorophytes showed either a different conserved motif or no conserved motif at all. These results suggest that these same genes are expressed coordinately in non- vascular plants; this coordinate expression may have been one of the prerequisites for the development of conducting tissues in plants. We have also analyzed the phylogeny of conserved proteins that may be involved in phloem function and development. The presence of CmPP16, APL, FT and YDA in chlorophytes suggests the recruitment of ancient regulatory networks for the development of the vascular tissue during evolution while OPS is a novel protein specific to vascular plants.

  6. Gene expression profiles of hepatic cell-type specific marker genes in progression of liver fibrosis

    Yoshiyuki Takahara; Mitsuo Takahashi; Hiroki Wagatsuma; Fumihiko Yokoya; Qing-Wei Zhang; Mutsuyo Yamaguchi; Hiroyuki Aburatani; Norifumi Kawada

    2006-01-01

    AIM: To determine the gene expression profile data for the whole liver during development of dimethylnitrosamine (DMN)-induced hepatic fibrosis.METHODS: Marker genes were identified for different types of hepatic cells, including hepatic stellate cells (HSCs), Kupffer cells (including other inflammatory cells),and hepatocytes, using independent temporal DNA microarray data obtained from isolated hepatic cells.RESULTS: The cell-type analysis of gene expression gave several key results and led to formation of three hypotheses: (1) changes in the expression of HSCspecific marker genes during fibrosis were similar to gene expression data in in vitro cultured HSCs, suggesting a major role of the self-activating characteristics of HSCs in formation of fibrosis; (2) expression of mast cell-specific marker genes reached a peak during liver fibrosis,suggesting a possible role of mast cells in formation of fibrosis; and (3) abnormal expression of hepatocytespecific marker genes was found across several metabolic pathways during fibrosis, including sulfur-containing amino acid metabolism, fatty acid metabolism, and drug metabolism, suggesting a mechanistic relationship between these abnormalities and symptoms of liver fibrosis.CONCLUSION: Analysis of marker genes for specific hepatic cell types can identify the key aspects of fibrogenesis. Sequential activation of inflammatory cells and the self-supporting properties of HSCs play an important role in development of fibrosis.

  7. Gene expression profile of pulpitis.

    Galicia, J C; Henson, B R; Parker, J S; Khan, A A

    2016-06-01

    The cost, prevalence and pain associated with endodontic disease necessitate an understanding of the fundamental molecular aspects of its pathogenesis. This study was aimed to identify the genetic contributors to pulpal pain and inflammation. Inflamed pulps were collected from patients diagnosed with irreversible pulpitis (n=20). Normal pulps from teeth extracted for various reasons served as controls (n=20). Pain level was assessed using a visual analog scale (VAS). Genome-wide microarray analysis was performed using Affymetrix GeneTitan Multichannel Instrument. The difference in gene expression levels were determined by the significance analysis of microarray program using a false discovery rate (q-value) of 5%. Genes involved in immune response, cytokine-cytokine receptor interaction and signaling, integrin cell surface interactions, and others were expressed at relatively higher levels in the pulpitis group. Moreover, several genes known to modulate pain and inflammation showed differential expression in asymptomatic and mild pain patients (⩾30 mm on VAS) compared with those with moderate to severe pain. This exploratory study provides a molecular basis for the clinical diagnosis of pulpitis. With an enhanced understanding of pulpal inflammation, future studies on treatment and management of pulpitis and on pain associated with it can have a biological reference to bridge treatment strategies with pulpal biology. PMID:27052691

  8. Gene Expression in Trypanosomatid Parasites

    Santiago Martínez-Calvillo

    2010-01-01

    Full Text Available The parasites Leishmania spp., Trypanosoma brucei, and Trypanosoma cruzi are the trypanosomatid protozoa that cause the deadly human diseases leishmaniasis, African sleeping sickness, and Chagas disease, respectively. These organisms possess unique mechanisms for gene expression such as constitutive polycistronic transcription of protein-coding genes and trans-splicing. Little is known about either the DNA sequences or the proteins that are involved in the initiation and termination of transcription in trypanosomatids. In silico analyses of the genome databases of these parasites led to the identification of a small number of proteins involved in gene expression. However, functional studies have revealed that trypanosomatids have more general transcription factors than originally estimated. Many posttranslational histone modifications, histone variants, and chromatin modifying enzymes have been identified in trypanosomatids, and recent genome-wide studies showed that epigenetic regulation might play a very important role in gene expression in this group of parasites. Here, we review and comment on the most recent findings related to transcription initiation and termination in trypanosomatid protozoa.

  9. The Gene Expression Omnibus database

    Clough, Emily; Barrett, Tanya

    2016-01-01

    The Gene Expression Omnibus (GEO) database is an international public repository that archives and freely distributes high-throughput gene expression and other functional genomics data sets. Created in 2000 as a worldwide resource for gene expression studies, GEO has evolved with rapidly changing technologies and now accepts high-throughput data for many other data applications, including those that examine genome methylation, chromatin structure, and genome–protein interactions. GEO supports community-derived reporting standards that specify provision of several critical study elements including raw data, processed data, and descriptive metadata. The database not only provides access to data for tens of thousands of studies, but also offers various Web-based tools and strategies that enable users to locate data relevant to their specific interests, as well as to visualize and analyze the data. This chapter includes detailed descriptions of methods to query and download GEO data and use the analysis and visualization tools. The GEO homepage is at http://www.ncbi.nlm.nih.gov/geo/. PMID:27008011

  10. Transcriptional stochasticity in gene expression.

    Lipniacki, Tomasz; Paszek, Pawel; Marciniak-Czochra, Anna; Brasier, Allan R; Kimmel, Marek

    2006-01-21

    Due to the small number of copies of molecular species involved, such as DNA, mRNA and regulatory proteins, gene expression is a stochastic phenomenon. In eukaryotic cells, the stochastic effects primarily originate in regulation of gene activity. Transcription can be initiated by a single transcription factor binding to a specific regulatory site in the target gene. Stochasticity of transcription factor binding and dissociation is then amplified by transcription and translation, since target gene activation results in a burst of mRNA molecules, and each mRNA copy serves as a template for translating numerous protein molecules. In the present paper, we explore a mathematical approach to stochastic modeling. In this approach, the ordinary differential equations with a stochastic component for mRNA and protein levels in a single cells yield a system of first-order partial differential equations (PDEs) for two-dimensional probability density functions (pdf). We consider the following examples: Regulation of a single auto-repressing gene, and regulation of a system of two mutual repressors and of an activator-repressor system. The resulting PDEs are approximated by a system of many ordinary equations, which are then numerically solved. PMID:16039671

  11. Chromosomal Abnormalities and Putative Susceptibility Genes in Autism Spectrum Disorders

    Nielsen, Mette Gilling

    Autism spectrum disorders (ASDs) is a heterogeneous group of neurodevelopmental disorders with a significant genetic component as shown by family and twin studies. However, only a few genes have repeatedly been shown to be involved in the development of ASDs. The aim of this study has been to...

  12. Mitochondrial RNA granules: Compartmentalizing mitochondrial gene expression.

    Jourdain, Alexis A; Boehm, Erik; Maundrell, Kinsey; Martinou, Jean-Claude

    2016-03-14

    In mitochondria, DNA replication, gene expression, and RNA degradation machineries coexist within a common nondelimited space, raising the question of how functional compartmentalization of gene expression is achieved. Here, we discuss the recently characterized "mitochondrial RNA granules," mitochondrial subdomains with an emerging role in the regulation of gene expression. PMID:26953349

  13. A constructive approach to gene expression dynamics

    Recently, experiments on mRNA abundance (gene expression) have revealed that gene expression shows a stationary organization described by a scale-free distribution. Here we propose a constructive approach to gene expression dynamics which restores the scale-free exponent and describes the intermediate state dynamics. This approach requires only one assumption: Markov property

  14. Cystic fibrosis transmembrane conductance regulator gene abnormalities in patients with asthma and recurrent neutrophilic bronchitis

    Jodi Goodwin; Naomi Spitale; Asma Yaghi; Myrna Dolovich; Parameswaran Nair

    2012-01-01

    The present case series describes four patients with asthma, airway hyper-responsiveness and neutrophilic bronchitis who harboured abnormal cystic fibrosis transmembrance conductance regulator (CFTR) gene mutations. It serves both to alert clinicians to consider CFTR-related disease in both young and elderly patients with persistent neutrophilic bronchitis, and to highlight the potential utility of future genetic testing for CFTR abnormalities in patients with asthma and recurrent bronchitis ...

  15. Gene expression analysis identifies global gene dosage sensitivity in cancer

    Fehrmann, Rudolf S. N.; Karjalainen, Juha M.; Krajewska, Malgorzata;

    2015-01-01

    expression. We reanalyzed 77,840 expression profiles and observed a limited set of 'transcriptional components' that describe well-known biology, explain the vast majority of variation in gene expression and enable us to predict the biological function of genes. On correcting expression profiles for these...

  16. Abnormal Expression of Eukaryotic Translation Factors in Malignant Transformed Human Bronchial Epithelial Cells Induced by Crystalline Nickel Sulfide

    2006-01-01

    Objective To study the oncogenic potential of mouse translation initiation factor 3 (TIF3) and elongation factor-1δ (TEF-1δ) in malignant transformed human bronchial epithelial cells induced by crystalline nickel sulfide (NiS). Methods Abnormal expressions of human TIF3 and TEF-1δ genes in two kinds of NiS-transformed cells and NiS-tumorigenic cell lines were investigated and analyzed by the reverse transcript polymerase chain reaction (RT-PCR) and fluorescent quantitative polymerase chain reaction (FQ-PCR), respectively. Results RT-PCR analysis primarily showed that both human TIF3 and TEF-1δ mRNA expressions in two kinds of NiS-transformed cells and NiS-tumorigenic cell lines were increased as compared with controls. FQ-PCR assay showed that the levels of TIF3 expressions in the transformed cells and tumorigenic cells were 3 and 4 times higher respectively, and the elevated expressions of TEF-1δ cDNA copies were 2.7- to 3.5-fold in transformed cells and 4.1- to 5.2-fold in tumorigenic cells when compared with non-transformed cells, indicating that the over-expressions of human TIF3 and TEF-1δ genes were related to malignant degree of the cells induced by nickel. Conclusions These findings demonstrate that there are markedly abnormal expressions of TIF3 and TEF-1δ genes during malignant transformation of human bronchial epithelial cell lines induced by crystalline NiS. They seem to be the molecular mechanisms potentially responsible for human carcinogensis due to nickel.

  17. Correlating Expression Data with Gene Function Using Gene Ontology

    LIU,Qi; DENG,Yong; WANG,Chuan; SHI,Tie-Liu; LI,Yi-Xue

    2006-01-01

    Clustering is perhaps one of the most widely used tools for microarray data analysis. Proposed roles for genes of unknown function are inferred from clusters of genes similarity expressed across many biological conditions.However, whether function annotation by similarity metrics is reliable or not and to what extent the similarity in gene expression patterns is useful for annotation of gene functions, has not been evaluated. This paper made a comprehensive research on the correlation between the similarity of expression data and of gene functions using Gene Ontology. It has been found that although the similarity in expression patterns and the similarity in gene functions are significantly dependent on each other, this association is rather weak. In addition, among the three categories of Gene Ontology, the similarity of expression data is more useful for cellular component annotation than for biological process and molecular function. The results presented are interesting for the gene functions prediction research area.

  18. Quality Measures for Gene Expression Biclusters

    Beatriz Pontes; Ral Girldez; Aguilar-Ruiz, Jess S.

    2015-01-01

    An noticeable number of biclustering approaches have been proposed proposed for the study of gene expression data, especially for discovering functionally related gene sets under different subsets of experimental conditions. In this context, recognizing groups of co-expressed or co-regulated genes, that is, genes which follow a similar expression pattern, is one of the main objectives. Due to the problem complexity, heuristic searches are usually used instead of exhaustive algorithms. Further...

  19. Telomere length abnormalities and telomerase RNA component expression in gastroenteropancreatic neuroendocrine tumors.

    Kim, Hee Sung; Lee, Hye Seung; Nam, Kyung Han; Choi, Jiwoon; Kim, Woo Ho

    2015-06-01

    Telomere lengths in normal human cells are tightly regulated within a narrow range. Telomere length abnormalities are prevalent genetic alterations in malignant transformation. We studied telomere length abnormalities, telomerase RNA component (TERC) expression, alpha-thalassemia X-linked mental retardation (ATRX) expression, and death domain-associated protein (DAXX) expression in gastroenteropancreatic neuroendocrine tumors (GEP-NETs). We used tissue microarrays to perform telomere fluorescent in situ hybridization (FISH) and TERC in situ hybridization in 327 formalin-fixed paraffin-embedded tissues of GEP-NETs. Telomere length abnormalities were detected in 35% of 253 informative cases by using telomere FISH. Ten cases had altered lengthening of telomeres (ALT), an ALT-positive phenotype (4%), and 79 cases had telomere shortening (31%). The ALT-positive phenotype was significantly associated with tumors of pancreatic origin (7/10) and loss of ATRX or DAXX protein (8/10). Telomere shortening was significantly associated with low TERC expression. In the survival analysis, loss of ATRX or DAXX protein was associated with a decreased overall survival. Multivariate regression analysis showed that lymph node metastasis and high TERC expression were independent prognostic factors of reduced overall survival (OS) for patients with GEP-NETs. Our results showed that telomere lengthening (the ALT-positive phenotype) and telomere shortening accompanied by low TERC levels are two types of clinically significant telomere abnormalities in GEP-NETs. PMID:26026117

  20. Gene expression as a biomarker for human radiation exposure.

    Omaruddin, Romaica A; Roland, Thomas A; Wallace, H James; Chaudhry, M Ahmad

    2013-03-01

    Accidental exposure to ionizing radiation can be unforeseen, rapid, and devastating. The detonation of a radiological device leading to such an exposure can be detrimental to the exposed population. The radiation-induced damage may manifest as acute effects that can be detected clinically or may be more subtle effects that can lead to long-term radiation-induced abnormalities. Accurate identification of the individuals exposed to radiation is challenging. The availability of a rapid and effective screening test that could be used as a biomarker of radiation exposure detection is mandatory. We tested the suitability of alterations in gene expression to serve as a biomarker of human radiation exposure. To develop a useful gene expression biomonitor, however, gene expression changes occurring in response to irradiation in vivo must be measured directly. Patients undergoing radiation therapy provide a suitable test population for this purpose. We examined the expression of CC3, MADH7, and SEC PRO in blood samples of these patients before and after radiotherapy to measure the in vivo response. The gene expression after ionizing radiation treatment varied among different patients, suggesting the complexity of the response. The expression of the SEC PRO gene was repressed in most of the patients. The MADH7 gene was found to be upregulated in most of the subjects and could serve as a molecular marker of radiation exposure. PMID:23446844

  1. Modulation of gene expression made easy

    Solem, Christian; Jensen, Peter Ruhdal

    2002-01-01

    A new approach for modulating gene expression, based on randomization of promoter (spacer) sequences, was developed. The method was applied to chromosomal genes in Lactococcus lactis and shown to generate libraries of clones with broad ranges of expression levels of target genes. In one example...... beta-glucuronidase, resulting in an operon structure in which both genes are transcribed from a common promoter. We show that there is a linear correlation between the expressions of the two genes, which facilitates screening for mutants with suitable enzyme activities. In a second example, we show...... that the method can be applied to modulating the expression of native genes on the chromosome. We constructed a series of strains in which the expression of the las operon, containing the genes pfk, pyk, and ldh, was modulated by integrating a truncated copy of the pfk gene. Importantly, the modulation...

  2. Sonic Hedgehog: A Good Gene Gone Bad? Detection and Treatment of Genetic Abnormalities.

    Yaich, Lauren E.

    2001-01-01

    Presents a case of a baby born with the genetic condition holoprosencephaly in which students explore the "Sonic hedgehog" gene, signal transduction, and the ethics of body and tissue donation. Presents a two-part assignment that features students writing an informed consent document that explains the science behind this congenital abnormality,…

  3. Human COL2A1-directed SV40 T antigen expression in transgenic and chimeric mice results in abnormal skeletal development

    1995-01-01

    The ability of SV40 T antigen to cause abnormalities in cartilage development in transgenic mice and chimeras has been tested. The cis- regulatory elements of the COL2A1 gene were used to target expression of SV40 T antigen to differentiating chondrocytes in transgenic mice and chimeras derived from embryonal stem (ES) cells bearing the same transgene. The major phenotypic consequences of transgenic (pAL21) expression are malformed skeleton, disproportionate dwarfism, and perinatal/neonatal d...

  4. Gene expression in the Parkinson's disease brain

    Lewis, Patrick A.; Cookson, Mark R.

    2012-01-01

    The study of gene expression has undergone a transformation in the past decade as the benefits of the sequencing of the human genome have made themselves felt. Increasingly, genome wide approaches are being applied to the analysis of gene expression in human disease as a route to understanding the underlying pathogenic mechanisms. In this review, we will summarise current state of gene expression studies of the brain in Parkinson's disease, and examine how these techniques can be used to gain...

  5. Bayesian biclustering of gene expression data

    Liu Jun S; Gu Jiajun

    2008-01-01

    Abstract Background Biclustering of gene expression data searches for local patterns of gene expression. A bicluster (or a two-way cluster) is defined as a set of genes whose expression profiles are mutually similar within a subset of experimental conditions/samples. Although several biclustering algorithms have been studied, few are based on rigorous statistical models. Results We developed a Bayesian biclustering model (BBC), and implemented a Gibbs sampling procedure for its statistical in...

  6. Methods for monitoring multiple gene expression

    Berka, Randy; Bachkirova, Elena; Rey, Michael

    2013-10-01

    The present invention relates to methods for monitoring differential expression of a plurality of genes in a first filamentous fungal cell relative to expression of the same genes in one or more second filamentous fungal cells using microarrays containing Trichoderma reesei ESTs or SSH clones, or a combination thereof. The present invention also relates to computer readable media and substrates containing such array features for monitoring expression of a plurality of genes in filamentous fungal cells.

  7. Methods for monitoring multiple gene expression

    Berka, Randy (Davis, CA); Bachkirova, Elena (Davis, CA); Rey, Michael (Davis, CA)

    2012-05-01

    The present invention relates to methods for monitoring differential expression of a plurality of genes in a first filamentous fungal cell relative to expression of the same genes in one or more second filamentous fungal cells using microarrays containing Trichoderma reesei ESTs or SSH clones, or a combination thereof. The present invention also relates to computer readable media and substrates containing such array features for monitoring expression of a plurality of genes in filamentous fungal cells.

  8. Targeted disruption of the LAMA3 gene in mice reveals abnormalities in survival and late stage differentiation of epithelial cells.

    Ryan, M C; Lee, K; Miyashita, Y; Carter, W G

    1999-06-14

    Laminin 5 regulates anchorage and motility of epithelial cells through integrins alpha6beta4 and alpha3beta1, respectively. We used targeted disruption of the LAMA3 gene, which encodes the alpha3 subunit of laminin 5 and other isoforms, to examine developmental functions that are regulated by adhesion to the basement membrane (BM). In homozygous null animals, profound epithelial abnormalities were detected that resulted in neonatal lethality, consistent with removal of all alpha3-laminin isoforms from epithelial BMs. Alterations in three different cellular functions were identified. First, using a novel tissue adhesion assay, we found that the mutant BM could not induce stable adhesion by integrin alpha6beta4, consistent with the presence of junctional blisters and abnormal hemidesmosomes. In the absence of laminin 5 function, we were able to detect a new ligand for integrin alpha3beta1 in the epidermal BM, suggesting that basal keratinocytes can utilize integrin alpha3beta1 to interact with an alternative ligand. Second, we identified a survival defect in mutant epithelial cells that could be rescued by exogenous laminin 5, collagen, or an antibody against integrin alpha6beta4, suggesting that signaling through beta1 or beta4 integrins is sufficient for survival. Third, we detected abnormalities in ameloblast differentiation in developing mutant incisors indicating that events downstream of adhesion are affected in mutant animals. These results indicate that laminin 5 has an important role in regulating tissue organization, gene expression, and survival of epithelium. PMID:10366601

  9. cis sequence effects on gene expression

    Jacobs Kevin

    2007-08-01

    Full Text Available Abstract Background Sequence and transcriptional variability within and between individuals are typically studied independently. The joint analysis of sequence and gene expression variation (genetical genomics provides insight into the role of linked sequence variation in the regulation of gene expression. We investigated the role of sequence variation in cis on gene expression (cis sequence effects in a group of genes commonly studied in cancer research in lymphoblastoid cell lines. We estimated the proportion of genes exhibiting cis sequence effects and the proportion of gene expression variation explained by cis sequence effects using three different analytical approaches, and compared our results to the literature. Results We generated gene expression profiling data at N = 697 candidate genes from N = 30 lymphoblastoid cell lines for this study and used available candidate gene resequencing data at N = 552 candidate genes to identify N = 30 candidate genes with sufficient variance in both datasets for the investigation of cis sequence effects. We used two additive models and the haplotype phylogeny scanning approach of Templeton (Tree Scanning to evaluate association between individual SNPs, all SNPs at a gene, and diplotypes, with log-transformed gene expression. SNPs and diplotypes at eight candidate genes exhibited statistically significant (p cis sequence effects in our study, respectively. Conclusion Based on analysis of our results and the extant literature, one in four genes exhibits significant cis sequence effects, and for these genes, about 30% of gene expression variation is accounted for by cis sequence variation. Despite diverse experimental approaches, the presence or absence of significant cis sequence effects is largely supported by previously published studies.

  10. Analysis of Gene Expression Patterns Using Biclustering.

    Roy, Swarup; Bhattacharyya, Dhruba K; Kalita, Jugal K

    2016-01-01

    Mining microarray data to unearth interesting expression profile patterns for discovery of in silico biological knowledge is an emerging area of research in computational biology. A group of functionally related genes may have similar expression patterns under a set of conditions or at some time points. Biclustering is an important data mining tool that has been successfully used to analyze gene expression data for biologically significant cluster discovery. The purpose of this chapter is to introduce interesting patterns that may be observed in expression data and discuss the role of biclustering techniques in detecting interesting functional gene groups with similar expression patterns. PMID:26350227

  11. Synthetic promoter libraries- tuning of gene expression

    Hammer, Karin; Mijakovic, Ivan; Jensen, Peter Ruhdal

    2006-01-01

    The study of gene function often requires changing the expression of a gene and evaluating the consequences. In principle, the expression of any given gene can be modulated in a quasi-continuum of discrete expression levels but the traditional approaches are usually limited to two extremes: gene...... knockout and strong overexpression. However, applications such as metabolic optimization and control analysis necessitate a continuous set of expression levels with only slight increments in strength to cover a specific window around the wildtype expression level of the studied gene; this requirement can...... be met by using promoter libraries. This approach generally consists of inserting a library of promoters in front of the gene to be studied, whereby the individual promoters might deviate either in their spacer sequences or bear slight deviations from the consensus sequence of a vegetative promoter...

  12. Deriving Trading Rules Using Gene Expression Programming

    Adrian VISOIU

    2011-01-01

    Full Text Available This paper presents how buy and sell trading rules are generated using gene expression programming with special setup. Market concepts are presented and market analysis is discussed with emphasis on technical analysis and quantitative methods. The use of genetic algorithms in deriving trading rules is presented. Gene expression programming is applied in a form where multiple types of operators and operands are used. This gives birth to multiple gene contexts and references between genes in order to keep the linear structure of the gene expression programming chromosome. The setup of multiple gene contexts is presented. The case study shows how to use the proposed gene setup to derive trading rules encoded by Boolean expressions, using a dataset with the reference exchange rates between the Euro and the Romanian leu. The conclusions highlight the positive results obtained in deriving useful trading rules.

  13. Dopaminergic neuronal loss, reduced neurite complexity and autophagic abnormalities in transgenic mice expressing G2019S mutant LRRK2.

    David Ramonet

    Full Text Available Mutations in the leucine-rich repeat kinase 2 (LRRK2 gene cause late-onset, autosomal dominant familial Parkinson's disease (PD and also contribute to idiopathic PD. LRRK2 mutations represent the most common cause of PD with clinical and neurochemical features that are largely indistinguishable from idiopathic disease. Currently, transgenic mice expressing wild-type or disease-causing mutants of LRRK2 have failed to produce overt neurodegeneration, although abnormalities in nigrostriatal dopaminergic neurotransmission have been observed. Here, we describe the development and characterization of transgenic mice expressing human LRRK2 bearing the familial PD mutations, R1441C and G2019S. Our study demonstrates that expression of G2019S mutant LRRK2 induces the degeneration of nigrostriatal pathway dopaminergic neurons in an age-dependent manner. In addition, we observe autophagic and mitochondrial abnormalities in the brains of aged G2019S LRRK2 mice and markedly reduced neurite complexity of cultured dopaminergic neurons. These new LRRK2 transgenic mice will provide important tools for understanding the mechanism(s through which familial mutations precipitate neuronal degeneration and PD.

  14. Gene expression profiling of 1p35-36 genes in neuroblastoma.

    Janoueix-Lerosey, Isabelle; Novikov, Eugene; Monteiro, Marta; Gruel, Nadège; Schleiermacher, Gudrun; Loriod, Béatrice; Nguyen, Catherine; Delattre, Olivier

    2004-08-01

    Deletion of the chromosome 1p36 region is a frequent abnormality in neuroblastoma. To gain further insights into the role of this alteration in oncogenesis, we have constructed a specific cDNA microarray representing most known genes and ESTs from the 1p35-36 region and analysed the expression profiles of 15 neuroblastoma cell lines and 28 neuroblastoma tumours. Hierarchical clustering using expression levels of 320 cDNAs from 1p35-36 separated localized or 4S cases without 1p deletion from advanced stages and cell lines. Supervised learning classification enabled to predict reliably the status of chromosome 1p according to its expression profile. Around 15% of the genes or ESTs presented a significantly decreased expression in samples with 1p deletion as compared to 1p-normal samples suggesting that 1p deletion results in a gene dosage effect on a subset of genes critical for the development of 1p-deleted neuroblastoma. Several genes presumed to have functions in neural differentiation (CDC42, VAMP3, CLSTN1), signal transduction in neural cells (GNB1) and cell cycle regulation (STMN1, RPA2, RBAF600, FBXO6, MAD2L2) exhibited a decreased expression in samples presenting 1p deletion. The identification of such genes provides baseline information for further studies to elucidate how these genes could individually or collectively play a critical role in neuroblastoma tumorigenesis. PMID:15195138

  15. Abnormal expression of Pygopus 2 correlates with a malignant phenotype in human lung cancer

    Pygopus 2 (Pygo2) is a Pygo family member and an important component of the Wnt signaling transcriptional complex. Despite this data, no clinical studies investigating Pygo2 expression in lung cancer have yet been reported. In the present study, the expression patterns of Pygo2 were evaluated by immunochemistry in 168 patients with non-small cell lung cancer (NSCLC). We used small interfering RNA (siRNA) to specifically silence Pygo2, and investigated its effect on cell growth by an 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and flow cytometry analysis in human lung cancer cell lines. Immunohistochemical analysis showed low expression of Pygo2 in normal lung tissues and increased nuclear expression in lung cancer tissues, either with or without perinuclear expression. Abnormal Pygo2 expression was associated with poor differentiation and a high Tumor (T), Node (N) and Metastases (M) stage in NSCLC patients, and correlated with poor prognosis. Using MTT assay we observed that Pygo2 downregulation inhibited cell proliferation; in addition, flow cytometry analysis showed that Pygo2 knockdown induced apoptosis and increased numbers of G1-phase cells and a reduction in S-phase cells. We therefore conclude that abnormal Pygo2 protein expression may be a marker for advanced NSCLC. Furthermore, Pygo2 knockdown suppresses cell growth

  16. Two types of abnormal genes for plasminogen in families with a predisposition for thrombosis

    The gene coding for plasminogen has been compared with several abnormal genes from Japanese patients by the polymerase chain reaction and DNA sequence analysis. Two types of abnormal genes coding for plasminogen were identified in these patients. In the type I mutation, a guanosine in GCT coding for Ala-601 near the active-site histidine was replaced by an adenosine resulting in ACT coding for threonine. This mutation was also shown by the loss of a cleavage site for Fnu4HI endonuclease, a restriction enzyme that recognizes GCTGC but not ACTGC. In the type II mutation, a guanosine in GTC coding for Val-355 was replaced by a thymidine resulting in TTC coding for phenylalanine. This change was readily shown by digestion with Ava II endonuclease, a restriction enzyme that recognized GGTCC and not GTTCC. The type I mutation has been found to be identical to a plasminogen variant identified in Japanese patients by amino acid sequence analysis and also detected by isoelectric focusing, whereas the type II mutation is a unique amino acid substitution in the connecting region between the third and fourth kringles in plasminogen. DNA sequence analysis also revealed that the abnormal genes carry several silent nucleotide substitutions located primarily within introns and 5' and 3' flanking regions

  17. Gene expression of the endolymphatic sac

    Friis, Morten; Martin-Bertelsen, Tomas; Friis-Hansen, Lennart;

    2011-01-01

    endolymphatic sac has multiple and diverse functions in the inner ear. Objectives:The objective of this study was to provide a comprehensive review of the genes expressed in the endolymphatic sac in the rat and perform a functional characterization based on measured mRNA abundance. Methods:Microarray technology...... was used to investigate the gene expression of the endolymphatic sac with the surrounding dura. Characteristic and novel endolymphatic sac genes were determined by comparing with expressions in pure dura. Results: In all, 463 genes were identified specific for the endolymphatic sac. Functional...

  18. Gene expression profiling in autoimmune diseases

    Bovin, Lone Frier; Brynskov, Jørn; Hegedüs, Laszlo;

    2007-01-01

    A central issue in autoimmune disease is whether the underlying inflammation is a repeated stereotypical process or whether disease specific gene expression is involved. To shed light on this, we analysed whether genes previously found to be differentially regulated in rheumatoid arthritis (RA...... differences in peripheral blood mononuclear cell (MNC) gene expression patterns between 15 newly diagnosed HT patients and 15 matched healthy controls. However, the MNC expression levels of five genes were significantly upregulated in 25 IBD patients, compared to 18 matched healthy controls (CD14, FACL2, FCN1......, RNASE2, VNN2). There was concordance in the directional change for all genes between IBD and RA patients, i.e. increased expression compared to controls. These data show that one third of the genes significantly upregulated in MNC from RA patients were upregulated in patients with other chronic...

  19. Quality measures for gene expression biclusters.

    Pontes, Beatriz; Girldez, Ral; Aguilar-Ruiz, Jess S

    2015-01-01

    An noticeable number of biclustering approaches have been proposed proposed for the study of gene expression data, especially for discovering functionally related gene sets under different subsets of experimental conditions. In this context, recognizing groups of co-expressed or co-regulated genes, that is, genes which follow a similar expression pattern, is one of the main objectives. Due to the problem complexity, heuristic searches are usually used instead of exhaustive algorithms. Furthermore, most of biclustering approaches use a measure or cost function that determines the quality of biclusters. Having a suitable quality metric for bicluster is a critical aspect, not only for guiding the search, but also for establishing a comparison criteria among the results obtained by different biclustering techniques. In this paper, we analyse a large number of existing approaches to quality measures for gene expression biclusters, as well as we present a comparative study of them based on their capability to recognize different expression patterns in biclusters. PMID:25763839

  20. Positron emission tomography imaging of gene expression

    The merging of molecular biology and nuclear medicine is developed into molecular nuclear medicine. Positron emission tomography (PET) of gene expression in molecular nuclear medicine has become an attractive area. Positron emission tomography imaging gene expression includes the antisense PET imaging and the reporter gene PET imaging. It is likely that the antisense PET imaging will lag behind the reporter gene PET imaging because of the numerous issues that have not yet to be resolved with this approach. The reporter gene PET imaging has wide application into animal experimental research and human applications of this approach will likely be reported soon

  1. Chromosome 12p abnormalities and IMP3 expression in prepubertal pure testicular teratomas.

    Cornejo, Kristine M; Cheng, Liang; Church, Alanna; Wang, Mingsheng; Jiang, Zhong

    2016-03-01

    Although the histologic appearance of pure testicular teratomas (PTTs) is similar in children and adults, the prognosis is dramatically different. Prepubertal PTTs are rare, with a benign clinical course, whereas the adult cases typically have malignant outcomes. Chromosome 12p abnormalities are seen in most adult testicular germ cell tumors but have not been found in prepubertal PTTs. IMP3 is an oncofetal protein that is highly expressed in many malignancies. Recently, we demonstrated IMP3 is expressed in adult mature testicular teratomas but not in mature ovarian teratomas. The aim of this study was to evaluate prepubertal PTTs for chromosome 12p abnormalities and expression of IMP3. A total of 11 cases (excision, n=1; orchiectomy, n=10) were obtained from the surgical pathology archives of 2 large medical centers (1957-2013). All 11 cases were investigated for isochromosome 12p and 12p copy number gain using interphase fluorescence in situ hybridization analysis and were examined by immunohistochemistry for IMP3 expression. Patients ranged in age from 0.9 to 7.0 (mean, 2.4) years. A positive immunohistochemical stain for IMP3 (cytoplasmic staining) was identified in 5 (46%) of 11 cases. Isochromosome 12p was detected in 2 cases (18%) that also expressed IMP3. Somatic copy number alterations of 12p were not observed (0%). We are the first to describe 12p abnormalities and IMP3 expression in prepubertal PTTs. Our data demonstrate a small subset of PTTs harbor typical molecular alterations observed in adult testicular germ cell tumors. Although prepubertal PTTs are considered to be benign neoplasms, it may be a heterogeneous group. PMID:26826410

  2. Gene expression trees in lymphoid development

    Schliep Alexander

    2007-10-01

    Full Text Available Abstract Background The regulatory processes that govern cell proliferation and differentiation are central to developmental biology. Particularly well studied in this respect is the lymphoid system due to its importance for basic biology and for clinical applications. Gene expression measured in lymphoid cells in several distinguishable developmental stages helps in the elucidation of underlying molecular processes, which change gradually over time and lock cells in either the B cell, T cell or Natural Killer cell lineages. Large-scale analysis of these gene expression trees requires computational support for tasks ranging from visualization, querying, and finding clusters of similar genes, to answering detailed questions about the functional roles of individual genes. Results We present the first statistical framework designed to analyze gene expression data as it is collected in the course of lymphoid development through clusters of co-expressed genes and additional heterogeneous data. We introduce dependence trees for continuous variates, which model the inherent dependencies during the differentiation process naturally as gene expression trees. Several trees are combined in a mixture model to allow inference of potentially overlapping clusters of co-expressed genes. Additionally, we predict microRNA targets. Conclusion Computational results for several data sets from the lymphoid system demonstrate the relevance of our framework. We recover well-known biological facts and identify promising novel regulatory elements of genes and their functional assignments. The implementation of our method (licensed under the GPL is available at http://algorithmics.molgen.mpg.de/Supplements/ExpLym/.

  3. Contribution of chromosomal abnormalities and genes of the major histocompatibility complex to early pregnancy losses

    Tkach I. R.; Sosnina K. O.; Huleyuk N. L.; Terpylyak O. I.; Zastavna D. V.; Weise A.; Kosyakova N.; Liehr T.

    2015-01-01

    Aim. The determination of chromosomal abnormalities in samples from early pregnancy losses and allelic polymorphism of HLA–DRB1 and DQA1 genes in couples with recurrent miscarriage. Methods. Banding cytogenetic and interphase mFISH analysis, DNA extraction by salting method, PCR, agarose gel electrophoresis. Results. Cytogenetic and molecular-cytogenetic investigations of SA material identified karyotype anomalies in 32.4 % of cases with prevalence of autosomal trisomy – 42.65 %, triploidy – ...

  4. The functional landscape of mouse gene expression

    Zhang Wen

    2004-12-01

    Full Text Available Abstract Background Large-scale quantitative analysis of transcriptional co-expression has been used to dissect regulatory networks and to predict the functions of new genes discovered by genome sequencing in model organisms such as yeast. Although the idea that tissue-specific expression is indicative of gene function in mammals is widely accepted, it has not been objectively tested nor compared with the related but distinct strategy of correlating gene co-expression as a means to predict gene function. Results We generated microarray expression data for nearly 40,000 known and predicted mRNAs in 55 mouse tissues, using custom-built oligonucleotide arrays. We show that quantitative transcriptional co-expression is a powerful predictor of gene function. Hundreds of functional categories, as defined by Gene Ontology 'Biological Processes', are associated with characteristic expression patterns across all tissues, including categories that bear no overt relationship to the tissue of origin. In contrast, simple tissue-specific restriction of expression is a poor predictor of which genes are in which functional categories. As an example, the highly conserved mouse gene PWP1 is widely expressed across different tissues but is co-expressed with many RNA-processing genes; we show that the uncharacterized yeast homolog of PWP1 is required for rRNA biogenesis. Conclusions We conclude that 'functional genomics' strategies based on quantitative transcriptional co-expression will be as fruitful in mammals as they have been in simpler organisms, and that transcriptional control of mammalian physiology is more modular than is generally appreciated. Our data and analyses provide a public resource for mammalian functional genomics.

  5. Bimodal gene expression patterns in breast cancer

    Nikolsky Yuri; Bugrim Andrej; Shi Weiwei; Kirillov Eugene; Bessarabova Marina; Nikolskaya Tatiana

    2010-01-01

    Abstract We identified a set of genes with an unexpected bimodal distribution among breast cancer patients in multiple studies. The property of bimodality seems to be common, as these genes were found on multiple microarray platforms and in studies with different end-points and patient cohorts. Bimodal genes tend to cluster into small groups of four to six genes with synchronised expression within the group (but not between the groups), which makes them good candidates for robust conditional ...

  6. Topological Features In Cancer Gene Expression Data

    Lockwood, Svetlana; Krishnamoorthy, Bala

    2014-01-01

    We present a new method for exploring cancer gene expression data based on tools from algebraic topology. Our method selects a small relevant subset from tens of thousands of genes while simultaneously identifying nontrivial higher order topological features, i.e., holes, in the data. We first circumvent the problem of high dimensionality by dualizing the data, i.e., by studying genes as points in the sample space. Then we select a small subset of the genes as landmarks to construct topologic...

  7. Identity Gene Expression in Proteus Mirabilis

    Gibbs, Karine Alexine; Wenren, Larissa Man-Yin; Greenberg, E. Peter

    2011-01-01

    Swarming colonies of independent Proteus mirabilis isolates recognize each other as foreign and do not merge together, whereas apposing swarms of clonal isolates merge with each other. Swarms of mutants with deletions in the ids gene cluster do not merge with their parent. Thus, ids genes are involved in the ability of P. mirabilis to distinguish self from nonself. Here we have characterized expression of the ids genes. We show that idsABCDEF genes are transcribed as an operon, and we define ...

  8. A comparative gene expression database for invertebrates

    Ormestad Mattias

    2011-08-01

    Full Text Available Abstract Background As whole genome and transcriptome sequencing gets cheaper and faster, a great number of 'exotic' animal models are emerging, rapidly adding valuable data to the ever-expanding Evo-Devo field. All these new organisms serve as a fantastic resource for the research community, but the sheer amount of data, some published, some not, makes detailed comparison of gene expression patterns very difficult to summarize - a problem sometimes even noticeable within a single lab. The need to merge existing data with new information in an organized manner that is publicly available to the research community is now more necessary than ever. Description In order to offer a homogenous way of storing and handling gene expression patterns from a variety of organisms, we have developed the first web-based comparative gene expression database for invertebrates that allows species-specific as well as cross-species gene expression comparisons. The database can be queried by gene name, developmental stage and/or expression domains. Conclusions This database provides a unique tool for the Evo-Devo research community that allows the retrieval, analysis and comparison of gene expression patterns within or among species. In addition, this database enables a quick identification of putative syn-expression groups that can be used to initiate, among other things, gene regulatory network (GRN projects.

  9. Differential gene expression during Trypanosoma cruzi metacyclogenesis

    Marco Aurelio Krieger

    1999-09-01

    Full Text Available The transformation of epimastigotes into metacyclic trypomastigotes involves changes in the pattern of expressed genes, resulting in important morphological and functional differences between these developmental forms of Trypanosoma cruzi. In order to identify and characterize genes involved in triggering the metacyclogenesis process and in conferring to metacyclic trypomastigotes their stage specific biological properties, we have developed a method allowing the isolation of genes specifically expressed when comparing two close related cell populations (representation of differential expression or RDE. The method is based on the PCR amplification of gene sequences selected by hybridizing and subtracting the populations in such a way that after some cycles of hybridization-amplification genes specific to a given population are highly enriched. The use of this method in the analysis of differential gene expression during T. cruzi metacyclogenesis (6 hr and 24 hr of differentiation and metacyclic trypomastigotes resulted in the isolation of several clones from each time point. Northern blot analysis showed that some genes are transiently expressed (6 hr and 24 hr differentiating cells, while others are present in differentiating cells and in metacyclic trypomastigotes. Nucleotide sequencing of six clones characterized so far showed that they do not display any homology to gene sequences available in the GeneBank.

  10. Global gene expression in Escherichia coli biofilms

    Schembri, Mark; Kjærgaard, K.; Klemm, Per

    2003-01-01

    antimicrobial treatments and host immune defence responses. Escherichia coli has been used as a model organism to study the mechanisms of growth within adhered communities. In this study, we use DNA microarray technology to examine the global gene expression profile of E. coli during sessile growth compared...... with planktonic growth. Genes encoding proteins involved in adhesion (type 1 fimbriae) and, in particular, autoaggregation (Antigen 43) were highly expressed in the adhered population in a manner that is consistent with current models of sessile community development. Several novel gene clusters were...... induced upon the transition to biofilm growth, and these included genes expressed under oxygen-limiting conditions, genes encoding (putative) transport proteins, putative oxidoreductases and genes associated with enhanced heavy metal resistance. Of particular interest was the observation that many of the...

  11. Deletion of the msdS/AfmsdC gene induces abnormal polarity and septation in Aspergillus fumigatus.

    Li, Yanjie; Zhang, Lei; Wang, Depeng; Zhou, Hui; Ouyang, Haomiao; Ming, Jia; Jin, Cheng

    2008-07-01

    alpha-Mannosidases play an important role in the processing of mannose-containing glycans in eukaryotes. A deficiency in alpha-mannosidase is lethal in humans and cattle. In contrast to mammals, Saccharomyces cerevisiae does not require the endoplasmic reticulum alpha-mannosidase gene for growth. However, little is known of the consequence of loss of function of class I alpha-mannosidases in filamentous fungi. In this study, the msdS/AfmsdC gene was identified to encode 1,2-alpha-mannosidase MsdS in Aspergillus fumigatus. Soluble MsdS expressed in Escherichia coli was characterized as a typical class I alpha-mannosidase. The msdS gene was deleted by replacement of the msdS gene with a pyrG gene. Although the mutant showed a defect in N-glycan processing, as well as a reduction of cell wall components and a reduced ability of conidiation, it appeared that the rate of hyphal growth was not affected. Morphology analysis revealed abnormal polarity and septation at the stages of germination, hyphal growth and conidiation. Although the mechanism by which the N-glycan processing affects polarity and septation is unclear, our results show that msdS is involved in polarity and septation in A. fumigatus. PMID:18599824

  12. Phytochrome-regulated Gene Expression

    Peter H. Quail

    2007-01-01

    Identification of all genes involved in the phytochrome (phy)-mediated responses of plants to their light environment is an important goal in providing an overall understanding of light-regulated growth and development. This article highlights and integrates the central findings of two recent comprehensive studies in Arabidopsis that have identified the genome-wide set of phy-regulated genes that respond rapidly to red-light signals upon first exposure of dark-grown seedlings, and have tested the functional relevance to normal seedling photomorphogenesis of an initial subset of these genes. The data: (a) reveal considerable complexity in the channeling of the light signals through the different phy-family members (phyA to phyE) to responsive genes; (b) identify a diversity of transcription-factor-encoding genes as major early, if not primary, targets of phy signaling, and, therefore, as potentially important regulators in the transcriptional-network hierarchy; and (c) identify auxin-related genes as the dominant class among rapidly-regulated, hormone-related genes. However, reverse-genetic functional profiling of a selected subset of these genes reveals that only a limited fraction are necessary for optimal phy-induced seedling deetiolation.

  13. Meta-analysis of differentially expressed genes in osteosarcoma based on gene expression data

    Yang, Zuozhang; Chen, Yongbin; Fu, Yu; Yang, Yihao; Zhang, Ya; Chen, Yanjin; Li, Dongqi

    2014-01-01

    Background To uncover the genes involved in the development of osteosarcoma (OS), we performed a meta-analysis of OS microarray data to identify differentially expressed genes (DEGs) and biological functions associated with gene expression changes between OS and normal control (NC) tissues. Methods We used publicly available GEO datasets of OS to perform a meta-analysis. We performed Gene Ontology (GO) enrichment analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis and Pr...

  14. Differential transferrin expression in placentae from normal and abnormal pregnancies: a pilot study

    Bukovsky Antonin

    2008-07-01

    Full Text Available Abstract Background The placenta is an important site for iron metabolism in humans. It transfers iron from the mother to the fetus. One of the major iron transport proteins is transferrin, which is a blood plasma protein crucial for iron uptake. Its localization and expression may be one of the markers to distinguish placental dysfunction. Methods In the experimental study we used antibody preparation, mass spectrometric analysis, biochemical and immunocytochemical methods for characterization of transferrin expression on the human choriocarcinoma cell line JAR (JAR cells, placental lysates, and cryostat sections. Newly designed monoclonal antibody TRO-tf-01 to human transferrin was applied on human placentae from normal (n = 3 and abnormal (n = 9 pregnancies. Results Variations of transferrin expression were detected in villous syncytiotrophoblast, which is in direct contact with maternal blood. In placentae from normal pregnancies, the expression of transferrin in the syncytium was significantly lower (p Conclusion These observations suggest that in the case of abnormal pregnancies, the fetus may require higher levels of transferrin in order to prevent iron depletion due to the stress from the placental dysfunction.

  15. Extracting expression modules from perturbational gene expression compendia

    Van Dijck Patrick; Maere Steven; Kuiper Martin

    2008-01-01

    Abstract Background Compendia of gene expression profiles under chemical and genetic perturbations constitute an invaluable resource from a systems biology perspective. However, the perturbational nature of such data imposes specific challenges on the computational methods used to analyze them. In particular, traditional clustering algorithms have difficulties in handling one of the prominent features of perturbational compendia, namely partial coexpression relationships between genes. Biclus...

  16. Gene expression in periodontal tissues following treatment

    Eisenacher Martin

    2008-07-01

    Full Text Available Abstract Background In periodontitis, treatment aimed at controlling the periodontal biofilm infection results in a resolution of the clinical and histological signs of inflammation. Although the cell types found in periodontal tissues following treatment have been well described, information on gene expression is limited to few candidate genes. Therefore, the aim of the study was to determine the expression profiles of immune and inflammatory genes in periodontal tissues from sites with severe chronic periodontitis following periodontal therapy in order to identify genes involved in tissue homeostasis. Gingival biopsies from 12 patients with severe chronic periodontitis were taken six to eight weeks following non-surgical periodontal therapy, and from 11 healthy controls. As internal standard, RNA of an immortalized human keratinocyte line (HaCaT was used. Total RNA was subjected to gene expression profiling using a commercially available microarray system focusing on inflammation-related genes. Post-hoc confirmation of selected genes was done by Realtime-PCR. Results Out of the 136 genes analyzed, the 5% most strongly expressed genes compared to healthy controls were Interleukin-12A (IL-12A, Versican (CSPG-2, Matrixmetalloproteinase-1 (MMP-1, Down syndrome critical region protein-1 (DSCR-1, Macrophage inflammatory protein-2β (Cxcl-3, Inhibitor of apoptosis protein-1 (BIRC-1, Cluster of differentiation antigen 38 (CD38, Regulator of G-protein signalling-1 (RGS-1, and Finkel-Biskis-Jinkins murine osteosarcoma virus oncogene (C-FOS; the 5% least strongly expressed genes were Receptor-interacting Serine/Threonine Kinase-2 (RIP-2, Complement component 3 (C3, Prostaglandin-endoperoxide synthase-2 (COX-2, Interleukin-8 (IL-8, Endothelin-1 (EDN-1, Plasminogen activator inhibitor type-2 (PAI-2, Matrix-metalloproteinase-14 (MMP-14, and Interferon regulating factor-7 (IRF-7. Conclusion Gene expression profiles found in periodontal tissues following

  17. Transcription factor oscillations induce differential gene expressions.

    Wee, Keng Boon; Yio, Wee Kheng; Surana, Uttam; Chiam, Keng Hwee

    2012-06-01

    Intracellular protein levels of diverse transcription factors (TFs) vary periodically with time. However, the effects of TF oscillations on gene expression, the primary role of TFs, are poorly understood. In this study, we determined these effects by comparing gene expression levels induced in the presence and in the absence of TF oscillations under same mean intracellular protein level of TF. For all the nonlinear TF transcription kinetics studied, an oscillatory TF is predicted to induce gene expression levels that are distinct from a nonoscillatory TF. The conditions dictating whether TF oscillations induce either higher or lower average gene expression levels were elucidated. Subsequently, the predicted effects from an oscillatory TF, which follows sigmoid transcription kinetics, were applied to demonstrate how oscillatory dynamics provide a mechanism for differential target gene transactivation. Generally, the mean TF concentration at which oscillations occur relative to the promoter binding affinity of a target gene determines whether the gene is up- or downregulated whereas the oscillation amplitude amplifies the magnitude of the differential regulation. Notably, the predicted trends of differential gene expressions induced by oscillatory NF-κB and glucocorticoid receptor match the reported experimental observations. Furthermore, the biological function of p53 oscillations is predicted to prime the cell for death upon DNA damage via differential upregulation of apoptotic genes. Lastly, given N target genes, an oscillatory TF can generate between (N-1) and (2N-1) distinct patterns of differential transactivation. This study provides insights into the mechanism for TF oscillations to induce differential gene expressions, and underscores the importance of TF oscillations in biological regulations. PMID:22713556

  18. Development of gene microarray in screening differently expressed genes in keloid and normal-control skin

    陈伟; 付小兵; 葛世丽; 孙晓庆; 周岗; 赵志力; 盛志勇

    2004-01-01

    Background Keloid is an intricate lesion that is probably regulated by many genes. In this study, the authors used the technique of complementary DNA (cDNA) microarray to analyse abnormal gene expression in keloids and normal control skins. Methods The polymerase chain reaction (PCR) products of 8400 genes were spotted in an array on chemical-material-coated-glass plates. The DNAs were fixed on the glass plates. The total RNAs were isolated from freshly excised human keloid and normal control skins, and the mRNAs were then purified. The mRNA from both keloid and normal control skins were reversely transcribed to cDNAs, with the incorporation of fluorescent dUTP, for preparing the hybridisation probes. The mixed probes were then hybridised to the cDNA microarray. After thorough washing, the cDNA microarray was scanned for differing fluorescent signals from two types of tissues. Gene expression of tissue growth factor-β1 (TGF-β1) and of c-myc was detected with both RT-PCR and Northern blot hybridisation to confirm the effectiveness of cDNA microarray. Results Among the 8400 human genes, 402 were detected with different expression levels between keloid and normal control skins. Two hundred and fifty genes, including TGF-β1 and c-myc, were up-regulated and 152 genes were down-regulated. Higher expressions of TGF-β1 and c-myc in keloid were also revealed using RT-PCR and Northern blot methods. Conclusion cDNA microarray analysis provides a powerful tool for investigating differential gene expression in keloid and normal control skins. Keloid is a complicated lesion with many genes involved.

  19. Gene expression profiling of craniofacial fibrous dysplasia reveals ADAMTS2 overexpression as a potential marker

    Zhou, Shang-Hui; Yang, Wen-Jun; Liu, Sheng-Wen; Li, Jiang; Zhang, Chun-Ye; Zhu, Yun; ZHANG, CHEN-PING

    2014-01-01

    Fibrous dysplasia (FD) as an abnormal bone growth is one of the common fibro-osseous leasions (FOL) in oral and maxillofacial region, however, its etiology still remains unclear. Here, we performed gene expression profiling of FD using microarray analysis to explore the key molecule events in FD development, and develop potential diagnostic markers or therapeutic targets for FD. We found that 1,881 genes exhibited differential expression with more than two-fold changes in FD compared to norma...

  20. Optogenetic Control of Gene Expression in Drosophila.

    Yick-Bun Chan

    Full Text Available To study the molecular mechanism of complex biological systems, it is important to be able to artificially manipulate gene expression in desired target sites with high precision. Based on the light dependent binding of cryptochrome 2 and a cryptochrome interacting bHLH protein, we developed a split lexA transcriptional activation system for use in Drosophila that allows regulation of gene expression in vivo using blue light or two-photon excitation. We show that this system offers high spatiotemporal resolution by inducing gene expression in tissues at various developmental stages. In combination with two-photon excitation, gene expression can be manipulated at precise sites in embryos, potentially offering an important tool with which to examine developmental processes.

  1. Dynamic modeling of gene expression data

    Holter, N. S.; Maritan, A.; Cieplak, M.; Fedoroff, N. V.; Banavar, J. R.

    2001-01-01

    We describe the time evolution of gene expression levels by using a time translational matrix to predict future expression levels of genes based on their expression levels at some initial time. We deduce the time translational matrix for previously published DNA microarray gene expression data sets by modeling them within a linear framework by using the characteristic modes obtained by singular value decomposition. The resulting time translation matrix provides a measure of the relationships among the modes and governs their time evolution. We show that a truncated matrix linking just a few modes is a good approximation of the full time translation matrix. This finding suggests that the number of essential connections among the genes is small.

  2. Determinants of human adipose tissue gene expression

    Viguerie, Nathalie; Montastier, Emilie; Maoret, Jean-José;

    2012-01-01

    Weight control diets favorably affect parameters of the metabolic syndrome and delay the onset of diabetic complications. The adaptations occurring in adipose tissue (AT) are likely to have a profound impact on the whole body response as AT is a key target of dietary intervention. Identification ...... controlled AT gene expression. These analyses help understanding the relative importance of environmental and individual factors that control the expression of human AT genes and therefore may foster strategies aimed at improving AT function in metabolic diseases....

  3. Facilitated diffusion buffers noise in gene expression

    Schoech, Armin; Zabet, Nicolae Radu

    2014-01-01

    Transcription factors perform facilitated diffusion (3D diffusion in the cytosol and 1D diffusion on the DNA) when binding to their target sites to regulate gene expression. Here, we investigated the influence of this binding mechanism on the noise in gene expression. Our results showed that, for biologically relevant parameters, the binding process can be represented by a two-state Markov model and that the accelerated target finding due to facilitated diffusion leads to a reduction in both ...

  4. Transcription Factor Oscillations Induce Differential Gene Expressions

    Wee, Keng Boon; Yio, Wee Kheng; Surana, Uttam; Chiam, Keng Hwee

    2012-01-01

    Intracellular protein levels of diverse transcription factors (TFs) vary periodically with time. However, the effects of TF oscillations on gene expression, the primary role of TFs, are poorly understood. In this study, we determined these effects by comparing gene expression levels induced in the presence and in the absence of TF oscillations under same mean intracellular protein level of TF. For all the nonlinear TF transcription kinetics studied, an oscillatory TF is predicted to induce ge...

  5. Blood gene expression signatures predict exposure levels

    P.R. Bushel; Heinloth, A. N.; Li, J.; Huang, L.; Chou, J. W.; Boorman, G A; Malarkey, D.E.; Houle, C. D.; S. M. Ward; Wilson, R. E.; Fannin, R. D.; Russo, M W; Watkins, P B; Tennant, R. W.; Paules, R S

    2007-01-01

    To respond to potential adverse exposures properly, health care providers need accurate indicators of exposure levels. The indicators are particularly important in the case of acetaminophen (APAP) intoxication, the leading cause of liver failure in the U.S. We hypothesized that gene expression patterns derived from blood cells would provide useful indicators of acute exposure levels. To test this hypothesis, we used a blood gene expression data set from rats exposed to APAP to train classifie...

  6. Energy intake and adiponectin gene expression

    Qiao, Liping; Lee, Bonggi; Kinney, Brice; Yoo, Hyung sun; Shao, Jianhua

    2011-01-01

    Hypoadiponectinemia and decreased adiponectin gene expression in white adipose tissue (WAT) have been well observed in obese subjects and animal models. However, the mechanism for obesity-associated hypoadiponectinemia is still largely unknown. To investigate the regulatory role of energy intake, dietary fat, and adiposity in adiponectin gene expression and blood adiponectin level, a series of feeding regimens was employed to manipulate energy intake and dietary fat in obese-prone C57BL/6, ge...

  7. Gene Expression Profile Differences in Gastric Cancer and Normal Gastric Mucosa by Oligonucleotide Microarrays

    Chuanding Yu; Shenhua Xu; HangZhou Mou; Zhiming Jiang; Chihong Zhu; Xianglin Liu

    2006-01-01

    OBJECTIVE To study the difference of gene expression in gastric cancer (T) and normal tissue of gastric mucosa (C), and to screen for associated novel genes in gastric cancers by oligonucleotide microarrays.METHODS U133A (Affymetrix, Santa Clara, CA) gene chip was used to detect the gene expression profile difference in T and C. Bioinformatics was used to analyze the detected results.RESULTS When gastric cancers were compared with normal gastric mucosa, a total of 270 genes were found with a difference of more than 9times in expression levels. Of the 270 genes, 157 were up-regulated (Signal Log Ratio [SLR] ≥3), and 113 were down-regulated (SLR ≤-3).Using a classification of function, the highest number of gene expression differences related to enzymes and their regulatory genes (67, 24.8%),followed by signal-transduction genes (43,15.9%). The third were nucleic acid binding genes (17, 6.3%), fourth were transporter genes (15, 5.5%)and fifth were protein binding genes (12, 4.4%). In addition there were 50genes of unknown function, accounting for 18.5%. The five above mentioned groups made up 56.9% of the total gene number.CONCLUSION The 5 gene groups (enzymes and their regulatory proteins, signal transduction proteins, nucleic acid binding proteins, transporter and protein binding) were abnormally expressed and are important genes for further study in gastric cancers.

  8. Comparative gene expression between two yeast species

    Guan Yuanfang

    2013-01-01

    Full Text Available Abstract Background Comparative genomics brings insight into sequence evolution, but even more may be learned by coupling sequence analyses with experimental tests of gene function and regulation. However, the reliability of such comparisons is often limited by biased sampling of expression conditions and incomplete knowledge of gene functions across species. To address these challenges, we previously systematically generated expression profiles in Saccharomyces bayanus to maximize functional coverage as compared to an existing Saccharomyces cerevisiae data repository. Results In this paper, we take advantage of these two data repositories to compare patterns of ortholog expression in a wide variety of conditions. First, we developed a scalable metric for expression divergence that enabled us to detect a significant correlation between sequence and expression conservation on the global level, which previous smaller-scale expression studies failed to detect. Despite this global conservation trend, between-species gene expression neighborhoods were less well-conserved than within-species comparisons across different environmental perturbations, and approximately 4% of orthologs exhibited a significant change in co-expression partners. Furthermore, our analysis of matched perturbations collected in both species (such as diauxic shift and cell cycle synchrony demonstrated that approximately a quarter of orthologs exhibit condition-specific expression pattern differences. Conclusions Taken together, these analyses provide a global view of gene expression patterns between two species, both in terms of the conditions and timing of a gene's expression as well as co-expression partners. Our results provide testable hypotheses that will direct future experiments to determine how these changes may be specified in the genome.

  9. PRAME gene expression profile in medulloblastoma

    Tânia Maria Vulcani-Freitas

    2011-02-01

    Full Text Available Medulloblastoma is the most common malignant tumors of central nervous system in the childhood. The treatment is severe, harmful and, thus, has a dismal prognosis. As PRAME is present in various cancers, including meduloblastoma, and has limited expression in normal tissues, this antigen can be an ideal vaccine target for tumor immunotherapy. In order to find a potential molecular target, we investigated PRAME expression in medulloblastoma fragments and we compare the results with the clinical features of each patient. Analysis of gene expression was performed by real-time quantitative PCR from 37 tumor samples. The Mann-Whitney test was used to analysis the relationship between gene expression and clinical characteristics. Kaplan-Meier curves were used to evaluate survival. PRAME was overexpressed in 84% samples. But no statistical association was found between clinical features and PRAME overexpression. Despite that PRAME gene could be a strong candidate for immunotherapy since it is highly expressed in medulloblastomas.

  10. Bayesian biclustering of gene expression data

    Liu Jun S

    2008-03-01

    Full Text Available Abstract Background Biclustering of gene expression data searches for local patterns of gene expression. A bicluster (or a two-way cluster is defined as a set of genes whose expression profiles are mutually similar within a subset of experimental conditions/samples. Although several biclustering algorithms have been studied, few are based on rigorous statistical models. Results We developed a Bayesian biclustering model (BBC, and implemented a Gibbs sampling procedure for its statistical inference. We showed that Bayesian biclustering model can correctly identify multiple clusters of gene expression data. Using simulated data both from the model and with realistic characters, we demonstrated the BBC algorithm outperforms other methods in both robustness and accuracy. We also showed that the model is stable for two normalization methods, the interquartile range normalization and the smallest quartile range normalization. Applying the BBC algorithm to the yeast expression data, we observed that majority of the biclusters we found are supported by significant biological evidences, such as enrichments of gene functions and transcription factor binding sites in the corresponding promoter sequences. Conclusions The BBC algorithm is shown to be a robust model-based biclustering method that can discover biologically significant gene-condition clusters in microarray data. The BBC model can easily handle missing data via Monte Carlo imputation and has the potential to be extended to integrated study of gene transcription networks.

  11. Silencing abnormal wing disc gene of the Asian citrus psyllid, Diaphorina citri disrupts adult wing development and increases nymph mortality.

    Ibrahim El-Shesheny

    Full Text Available Huanglongbing (HLB causes considerable economic losses to citrus industries worldwide. Its management depends on controlling of the Asian citrus Psyllid (ACP, the vector of the bacterium, Candidatus Liberibacter asiaticus (CLas, the causal agent of HLB. Silencing genes by RNA interference (RNAi is a promising tool to explore gene functions as well as control pests. In the current study, abnormal wing disc (awd gene associated with wing development in insects is used to interfere with the flight of psyllids. Our study showed that transcription of awd is development-dependent and the highest level was found in the last instar (5(th of the nymphal stage. Micro-application (topical application of dsRNA to 5(th instar of nymphs caused significant nymphal mortality and adult wing-malformation. These adverse effects in ACP were positively correlated with the amounts of dsRNA used. A qRT-PCR analysis confirmed the dsRNA-mediated transcriptional down-regulation of the awd gene. Significant down-regulation was required to induce a wing-malformed phenotype. No effect was found when dsRNA-gfp was used, indicating the specific effect of dsRNA-awd. Our findings suggest a role for awd in ACP wing development and metamorphosis. awd could serve as a potential target for insect management either via direct application of dsRNA or by producing transgenic plants expressing dsRNA-awd. These strategies will help to mitigate HLB by controlling ACP.

  12. Inferring gene networks from discrete expression data

    Zhang, L.

    2013-07-18

    The modeling of gene networks from transcriptional expression data is an important tool in biomedical research to reveal signaling pathways and to identify treatment targets. Current gene network modeling is primarily based on the use of Gaussian graphical models applied to continuous data, which give a closedformmarginal likelihood. In this paper,we extend network modeling to discrete data, specifically data from serial analysis of gene expression, and RNA-sequencing experiments, both of which generate counts of mRNAtranscripts in cell samples.We propose a generalized linear model to fit the discrete gene expression data and assume that the log ratios of the mean expression levels follow a Gaussian distribution.We restrict the gene network structures to decomposable graphs and derive the graphs by selecting the covariance matrix of the Gaussian distribution with the hyper-inverse Wishart priors. Furthermore, we incorporate prior network models based on gene ontology information, which avails existing biological information on the genes of interest. We conduct simulation studies to examine the performance of our discrete graphical model and apply the method to two real datasets for gene network inference. © The Author 2013. Published by Oxford University Press. All rights reserved.

  13. Translational control of gene expression and disease

    Calkhoven, Cornelis F; Müller, Christine; Leutz, Achim

    2002-01-01

    In the past decade, translational control has been shown to be crucial in the regulation of gene expression. Research in this field has progressed rapidly, revealing new control mechanisms and adding constantly to the list of translationally regulated genes. There is accumulating evidence that trans

  14. Familial aggregation analysis of gene expressions

    Rao Shao-Qi; Xu Liang-De; Zhang Guang-Mei; Li Xia; Li Lin; Shen Gong-Qing; Jiang Yang; Yang Yue-Ying; Gong Bin-Sheng; Jiang Wei; Zhang Fan; Xiao Yun; Wang Qing K

    2007-01-01

    Abstract Traditional studies of familial aggregation are aimed at defining the genetic (and non-genetic) causes of a disease from physiological or clinical traits. However, there has been little attempt to use genome-wide gene expressions, the direct phenotypic measures of genes, as the traits to investigate several extended issues regarding the distributions of familially aggregated genes on chromosomes or in functions. In this study we conducted a genome-wide familial aggregation analysis b...

  15. Diagnostic Utility of Gene Expression Profiles

    Xiong, Chengjie; Yan, Yan; Gao, Feng

    2013-01-01

    Two crucial problems arise from a microarray experiment in which the primary objective is to locate differentially expressed genes for the diagnosis of diseases such as cancer and Alzheimer’s. The first problem is the detection of a subset of genes which provides an optimum discriminatory power between diseased and normal subjects, and the second problem is the statistical estimation of discriminatory power from the optimum subset of genes between two groups of subjects. We develop a new meth...

  16. Evolutionary Approach for Relative Gene Expression Algorithms

    Marcin Czajkowski; Marek Kretowski

    2014-01-01

    A Relative Expression Analysis (RXA) uses ordering relationships in a small collection of genes and is successfully applied to classiffication using microarray data. As checking all possible subsets of genes is computationally infeasible, the RXA algorithms require feature selection and multiple restrictive assumptions. Our main contribution is a specialized evolutionary algorithm (EA) for top-scoring pairs called EvoTSP which allows finding more advanced gene relations. We managed to unify t...

  17. FARO server: Meta-analysis of gene expression by matching gene expression signatures to a compendium of public gene expression data

    Nielsen Henrik B; Manijak Mieszko P

    2011-01-01

    Abstract Background Although, systematic analysis of gene annotation is a powerful tool for interpreting gene expression data, it sometimes is blurred by incomplete gene annotation, missing expression response of key genes and secondary gene expression responses. These shortcomings may be partially circumvented by instead matching gene expression signatures to signatures of other experiments. Findings To facilitate this we present the Functional Association Response by Overlap (FARO) server, ...

  18. Downstream targets of methyl CpG binding protein 2 and their abnormal expression in the frontal cortex of the human Rett syndrome brain

    Minchenko Dimitri

    2010-04-01

    Full Text Available Abstract Background The Rett Syndrome (RTT brain displays regional histopathology and volumetric reduction, with frontal cortex showing such abnormalities, whereas the occipital cortex is relatively less affected. Results Using microarrays and quantitative PCR, the mRNA expression profiles of these two neuroanatomical regions were compared in postmortem brain tissue from RTT patients and normal controls. A subset of genes was differentially expressed in the frontal cortex of RTT brains, some of which are known to be associated with neurological disorders (clusterin and cytochrome c oxidase subunit 1 or are involved in synaptic vesicle cycling (dynamin 1. RNAi-mediated knockdown of MeCP2 in vitro, followed by further expression analysis demonstrated that the same direction of abnormal expression was recapitulated with MeCP2 knockdown, which for cytochrome c oxidase subunit 1 was associated with a functional respiratory chain defect. Chromatin immunoprecipitation (ChIP analysis showed that MeCP2 associated with the promoter regions of some of these genes suggesting that loss of MeCP2 function may be responsible for their overexpression. Conclusions This study has shed more light on the subset of aberrantly expressed genes that result from MECP2 mutations. The mitochondrion has long been implicated in the pathogenesis of RTT, however it has not been at the forefront of RTT research interest since the discovery of MECP2 mutations. The functional consequence of the underexpression of cytochrome c oxidase subunit 1 indicates that this is an area that should be revisited.

  19. Predictive modelling of gene expression from transcriptional regulatory elements.

    Budden, David M; Hurley, Daniel G; Crampin, Edmund J

    2015-07-01

    Predictive modelling of gene expression provides a powerful framework for exploring the regulatory logic underpinning transcriptional regulation. Recent studies have demonstrated the utility of such models in identifying dysregulation of gene and miRNA expression associated with abnormal patterns of transcription factor (TF) binding or nucleosomal histone modifications (HMs). Despite the growing popularity of such approaches, a comparative review of the various modelling algorithms and feature extraction methods is lacking. We define and compare three methods of quantifying pairwise gene-TF/HM interactions and discuss their suitability for integrating the heterogeneous chromatin immunoprecipitation (ChIP)-seq binding patterns exhibited by TFs and HMs. We then construct log-linear and ϵ-support vector regression models from various mouse embryonic stem cell (mESC) and human lymphoblastoid (GM12878) data sets, considering both ChIP-seq- and position weight matrix- (PWM)-derived in silico TF-binding. The two algorithms are evaluated both in terms of their modelling prediction accuracy and ability to identify the established regulatory roles of individual TFs and HMs. Our results demonstrate that TF-binding and HMs are highly predictive of gene expression as measured by mRNA transcript abundance, irrespective of algorithm or cell type selection and considering both ChIP-seq and PWM-derived TF-binding. As we encourage other researchers to explore and develop these results, our framework is implemented using open-source software and made available as a preconfigured bootable virtual environment. PMID:25231769

  20. Application of multidisciplinary analysis to gene expression.

    Wang, Xuefel (University of New Mexico, Albuquerque, NM); Kang, Huining (University of New Mexico, Albuquerque, NM); Fields, Chris (New Mexico State University, Las Cruces, NM); Cowie, Jim R. (New Mexico State University, Las Cruces, NM); Davidson, George S.; Haaland, David Michael; Sibirtsev, Valeriy (New Mexico State University, Las Cruces, NM); Mosquera-Caro, Monica P. (University of New Mexico, Albuquerque, NM); Xu, Yuexian (University of New Mexico, Albuquerque, NM); Martin, Shawn Bryan; Helman, Paul (University of New Mexico, Albuquerque, NM); Andries, Erik (University of New Mexico, Albuquerque, NM); Ar, Kerem (University of New Mexico, Albuquerque, NM); Potter, Jeffrey (University of New Mexico, Albuquerque, NM); Willman, Cheryl L. (University of New Mexico, Albuquerque, NM); Murphy, Maurice H. (University of New Mexico, Albuquerque, NM)

    2004-01-01

    Molecular analysis of cancer, at the genomic level, could lead to individualized patient diagnostics and treatments. The developments to follow will signal a significant paradigm shift in the clinical management of human cancer. Despite our initial hopes, however, it seems that simple analysis of microarray data cannot elucidate clinically significant gene functions and mechanisms. Extracting biological information from microarray data requires a complicated path involving multidisciplinary teams of biomedical researchers, computer scientists, mathematicians, statisticians, and computational linguists. The integration of the diverse outputs of each team is the limiting factor in the progress to discover candidate genes and pathways associated with the molecular biology of cancer. Specifically, one must deal with sets of significant genes identified by each method and extract whatever useful information may be found by comparing these different gene lists. Here we present our experience with such comparisons, and share methods developed in the analysis of an infant leukemia cohort studied on Affymetrix HG-U95A arrays. In particular, spatial gene clustering, hyper-dimensional projections, and computational linguistics were used to compare different gene lists. In spatial gene clustering, different gene lists are grouped together and visualized on a three-dimensional expression map, where genes with similar expressions are co-located. In another approach, projections from gene expression space onto a sphere clarify how groups of genes can jointly have more predictive power than groups of individually selected genes. Finally, online literature is automatically rearranged to present information about genes common to multiple groups, or to contrast the differences between the lists. The combination of these methods has improved our understanding of infant leukemia. While the complicated reality of the biology dashed our initial, optimistic hopes for simple answers from

  1. Clock gene expression during development

    Sumová, Alena; Bendová, Zdeňka; Sládek, Martin; Kováčiková, Zuzana; El-Hennamy, Rehab; Laurinová, Kristýna; Illnerová, Helena

    2007-01-01

    Roč. 191, Suppl.658 (2007), s. 18-18. ISSN 1748-1708. [Joint meeting of The Slovak Physiological Society, The Physiological Society and The Federation of European Physiological Societies. 11.09.2007-14.09.2007, Bratislava] Institutional research plan: CEZ:AV0Z50110509 Keywords : cpr1 * clock genes * suprachiasmatic nucleus * rat Subject RIV: FB - Endocrinology, Diabetology, Metabolism, Nutrition

  2. Gene expression profiles in skeletal muscle after gene electrotransfer

    Hojman, Pernille; Zibert, John R; Gissel, Hanne;

    2007-01-01

    BACKGROUND: Gene transfer by electroporation (DNA electrotransfer) to muscle results in high level long term transgenic expression, showing great promise for treatment of e.g. protein deficiency syndromes. However little is known about the effects of DNA electrotransfer on muscle fibres. We have...... therefore investigated transcriptional changes through gene expression profile analyses, morphological changes by histological analysis, and physiological changes by force generation measurements. DNA electrotransfer was obtained using a combination of a short high voltage pulse (HV, 1000 V/cm, 100 mus......) followed by a long low voltage pulse (LV, 100 V/cm, 400 ms); a pulse combination optimised for efficient and safe gene transfer. Muscles were transfected with green fluorescent protein (GFP) and excised at 4 hours, 48 hours or 3 weeks after treatment. RESULTS: Differentially expressed genes were...

  3. Gene expression profiling: can we identify the right target genes?

    J. E. Loyd

    2008-12-01

    Full Text Available Gene expression profiling allows the simultaneous monitoring of the transcriptional behaviour of thousands of genes, which may potentially be involved in disease development. Several studies have been performed in idiopathic pulmonary fibrosis (IPF, which aim to define genetic links to the disease in an attempt to improve the current understanding of the underlying pathogenesis of the disease and target pathways for intervention. Expression profiling has shown a clear difference in gene expression between IPF and normal lung tissue, and has identified a wide range of candidate genes, including those known to encode for proteins involved in extracellular matrix formation and degradation, growth factors and chemokines. Recently, familial pulmonary fibrosis cohorts have been examined in an attempt to detect specific genetic mutations associated with IPF. To date, these studies have identified families in which IPF is associated with mutations in the gene encoding surfactant protein C, or with mutations in genes encoding components of telomerase. Although rare and clearly not responsible for the disease in all individuals, the nature of these mutations highlight the importance of the alveolar epithelium in disease pathogenesis and demonstrate the potential for gene expression profiling in helping to advance the current understanding of idiopathic pulmonary fibrosis.

  4. Regulation of immunoglobulin gene rearrangement and expression.

    Taussig, M J; Sims, M J; Krawinkel, U

    1989-05-01

    The molecular genetic events leading to Ig expression and their control formed the topic of a recent EMBO workshop. This report by Michael Taussig, Martin Sims and Ulrich Krawinkel discusses contributions dealing with genes expressed in early pre-B cells, the mechanism of rearrangement, aberrant rearrangements seen in B cells of SCID mice, the feedback control of rearrangement as studied in transgenic mice, the control of Ig expression at the transcriptional and post-transcriptional levels, and class switching. PMID:2787158

  5. Prenatal diagnostic testing of the Noonan syndrome genes in fetuses with abnormal ultrasound findings

    Croonen, Ellen A; Nillesen, Willy M.; Stuurman, Kyra E; Oudesluijs, Gretel; van de Laar, Ingrid M B M; Martens, Liesbeth; Ockeloen, Charlotte; Mathijssen, Inge B.; Schepens, Marga; Ruiterkamp-Versteeg, Martina; Scheffer, Hans; Faas, Brigitte H. W.; Van Der Burgt, Ineke; Helger G Yntema

    2013-01-01

    In recent studies on prenatal testing for Noonan syndrome (NS) in fetuses with an increased nuchal translucency (NT) and a normal karyotype, mutations have been reported in 9–16% of cases. In this study, DNA of 75 fetuses with a normal karyotype and abnormal ultrasound findings was tested in a diagnostic setting for mutations in (a subset of) the four most commonly mutated NS genes. A de novo mutation in either PTPN11, KRAS or RAF1 was detected in 13 fetuses (17.3%). Ultrasound findings were ...

  6. Gene expressions changes in bronchial epithelial cells

    Remy, S.; Verstraelen, S.; Van Den Heuvel, R.;

    2014-01-01

    cells were exposed during 6, 10, and 24 h to 4 respiratory sensitizers and 6 non-respiratory sensitizers (3 skin sensitizers and 3 respiratory irritants) at a concentration inducing 20% cell viability loss after 24 h. Changes in gene expression were evaluated using Agilent Whole Human Genome 4 x 44 K...... differentially expressed compared to vehicle control for each chemical. The results show that the NRF2-mediated oxidative stress response is activated in the cell line after stimulation with all of the chemicals that were selected in our study, and that - at the level of gene expression - this pathway shows no...

  7. Introduction to the Gene Expression Analysis.

    Segundo-Val, Ignacio San; Sanz-Lozano, Catalina S

    2016-01-01

    In 1941, Beadle and Tatum published experiments that would explain the basis of the central dogma of molecular biology, whereby the DNA through an intermediate molecule, called RNA, results proteins that perform the functions in cells. Currently, biomedical research attempts to explain the mechanisms by which develops a particular disease, for this reason, gene expression studies have proven to be a great resource. Strictly, the term "gene expression" comprises from the gene activation until the mature protein is located in its corresponding compartment to perform its function and contribute to the expression of the phenotype of cell.The expression studies are directed to detect and quantify messenger RNA (mRNA) levels of a specific gene. The development of the RNA-based gene expression studies began with the Northern Blot by Alwine et al. in 1977. In 1969, Gall and Pardue and John et al. independently developed the in situ hybridization, but this technique was not employed to detect mRNA until 1986 by Coghlan. Today, many of the techniques for quantification of RNA are deprecated because other new techniques provide more information. Currently the most widely used techniques are qPCR, expression microarrays, and RNAseq for the transcriptome analysis. In this chapter, these techniques will be reviewed. PMID:27300529

  8. Regulation of gene expression in human tendinopathy

    Archambault Joanne M

    2011-05-01

    Full Text Available Abstract Background Chronic tendon injuries, also known as tendinopathies, are common among professional and recreational athletes. These injuries result in a significant amount of morbidity and health care expenditure, yet little is known about the molecular mechanisms leading to tendinopathy. Methods We have used histological evaluation and molecular profiling to determine gene expression changes in 23 human patients undergoing surgical procedures for the treatment of chronic tendinopathy. Results Diseased tendons exhibit altered extracellular matrix, fiber disorientation, increased cellular content and vasculature, and the absence of inflammatory cells. Global gene expression profiling identified 983 transcripts with significantly different expression patterns in the diseased tendons. Global pathway analysis further suggested altered expression of extracellular matrix proteins and the lack of an appreciable inflammatory response. Conclusions Identification of the pathways and genes that are differentially regulated in tendinopathy samples will contribute to our understanding of the disease and the development of novel therapeutics.

  9. Noise minimization in eukaryotic gene expression

    Fraser, Hunter B.; Hirsh, Aaron E.; Giaever, Guri; Kumm, Jochen; Eisen, Michael B.

    2004-01-15

    All organisms have elaborate mechanisms to control rates of protein production. However, protein production is also subject to stochastic fluctuations, or noise. Several recent studies in Saccharomyces cerevisiae and Escherichia coli have investigated the relationship between transcription and translation rates and stochastic fluctuations in protein levels, or more generally, how such randomness is a function of intrinsic and extrinsic factors. However, the fundamental question of whether stochasticity in protein expression is generally biologically relevant has not been addressed, and it remains unknown whether random noise in the protein production rate of most genes significantly affects the fitness of any organism. We propose that organisms should be particularly sensitive to variation in the protein levels of two classes of genes: genes whose deletion is lethal to the organism and genes that encode subunits of multiprotein complexes. Using an experimentally verified model of stochastic gene expression in S. cerevisiae, we estimate the noise in protein production for nearly every yeast gene, and confirm our prediction that the production of essential and complex-forming proteins involves lower levels of noise than does the production of most other genes. Our results support the hypothesis that noise in gene expression is a biologically important variable, is generally detrimental to organismal fitness, and is subject to natural selection.

  10. Gene dosage methods as diagnostic tools for the identification of chromosome abnormalities.

    Gouas, L; Goumy, C; Véronèse, L; Tchirkov, A; Vago, P

    2008-09-01

    Cytogenetics is the part of genetics that deals with chromosomes, particularly with numerical and structural chromosome abnormalities, and their implications in congenital or acquired genetic disorders. Standard karyotyping, successfully used for the last 50 years in investigating the chromosome etiology in patients with infertility, fetal abnormalities and congenital disorders, is constrained by the limits of microscopic resolution and is not suited for the detection of subtle chromosome abnormalities. The ability to detect submicroscopic chromosomal rearrangements that lead to copy-number changes has escalated progressively in recent years with the advent of molecular cytogenetic techniques. Here, we review various gene dosage methods such as FISH, PCR-based approaches (MLPA, QF-PCR, QMPSF and real time PCR), CGH and array-CGH, that can be used for the identification and delineation of copy-number changes for diagnostic purposes. Besides comparing their relative strength and weakness, we will discuss the impact that these detection methods have on our understanding of copy number variations in the human genome and their implications in genetic counseling. PMID:18513889

  11. Gene expression analysis characterizes antemortem stress and has implications for establishing cause of death

    Cornel, Leanne; Emond, Mary

    2011-01-01

    Within the field of forensic pathology, determination of the cause of death depends upon identifying physical changes in the corpse or finding diagnostic laboratory abnormalities. When such perturbations are absent, definitive assignment of a cause of death may be difficult or impossible. An example of such a problem is sudden infant death syndrome (SIDS), a common cause of neonatal mortality that does not produce physical findings or laboratory abnormalities. Although respiratory failure as a cause of SIDS represents the most widely held hypothesis, sudden cardiac death and hyperthermia have also been advanced as possible causes. We hypothesize that each of these physiological stresses would produce a different pattern of premortem gene expression and that these patterns of gene expression would remain evident in tissues collected postmortem. If these patterns were sufficiently distinctive, they could be used to identify the cause of death. Using an infant mouse model, we compared gene expression patterns in liver tissue after sudden death, lethal hyperthermia, and lethal hypoxia. Each of these conditions produced readily distinguishable differences in gene expression patterns. With the K-nearest neighbor classification algorithm, only 10 genes are necessary to correctly classify samples. If the liver tissue was not harvested immediately after death, additional alteration in gene expression patterns resulted; however, these alterations did not affect the group of genes used to classify the samples. Our findings suggest that gene expression analysis from tissues collected postmortem may provide useful clues about certain physiologic stresses that may precede death. PMID:21693618

  12. Regulatory mechanisms for floral homeotic gene expression.

    Liu, Zhongchi; Mara, Chloe

    2010-02-01

    Proper regulation of floral homeotic gene (or ABCE gene) expression ensures the development of floral organs in the correct number, type, and precise spatial arrangement. This review summarizes recent advances on the regulation of floral homeotic genes, highlighting the variety and the complexity of the regulatory mechanisms involved. As flower development is one of the most well characterized developmental processes in higher plants, it facilitates the discovery of novel regulatory mechanisms. To date, mechanisms for the regulation of floral homeotic genes range from transcription to post-transcription, from activators to repressors, and from microRNA- to ubiquitin-mediated post-transcriptional regulation. Region-specific activation of floral homeotic genes is dependent on the integration of a flower-specific activity provided by LEAFY (LFY) and a region- and stage-specific activating function provided by one of the LFY cofactors. Two types of regulatory loops, the feed-forward and the feedback loop, provide properly timed gene activation and subsequent maintenance and refinement in proper spatial and temporal domains of ABCE genes. Two different microRNA/target modules may have been independently recruited in different plant species to regulate C gene expression. Additionally, competition among different MADS box proteins for common interacting partners may represent a mechanism in whorl boundary demarcation. Future work using systems approaches and the development of non-model plants will provide integrated views on floral homeotic gene regulation and insights into the evolution of morphological diversity in flowering plants. PMID:19922812

  13. Quality measures for gene expression biclusters.

    Beatriz Pontes

    Full Text Available An noticeable number of biclustering approaches have been proposed proposed for the study of gene expression data, especially for discovering functionally related gene sets under different subsets of experimental conditions. In this context, recognizing groups of co-expressed or co-regulated genes, that is, genes which follow a similar expression pattern, is one of the main objectives. Due to the problem complexity, heuristic searches are usually used instead of exhaustive algorithms. Furthermore, most of biclustering approaches use a measure or cost function that determines the quality of biclusters. Having a suitable quality metric for bicluster is a critical aspect, not only for guiding the search, but also for establishing a comparison criteria among the results obtained by different biclustering techniques. In this paper, we analyse a large number of existing approaches to quality measures for gene expression biclusters, as well as we present a comparative study of them based on their capability to recognize different expression patterns in biclusters.

  14. Gene expression following acute morphine administration.

    Loguinov, A V; Anderson, L M; Crosby, G J; Yukhananov, R Y

    2001-08-28

    The long-term response to neurotropic drugs depends on drug-induced neuroplasticity and underlying changes in gene expression. However, alterations in neuronal gene expression can be observed even following single injection. To investigate the extent of these changes, gene expression in the medial striatum and lumbar part of the spinal cord was monitored by cDNA microarray following single injection of morphine. Using robust and resistant linear regression (MM-estimator) with simultaneous prediction confidence intervals, we detected differentially expressed genes. By combining the results with cluster analysis, we have found that a single morphine injection alters expression of two major groups of genes, for proteins involved in mitochondrial respiration and for cytoskeleton-related proteins. RNAs for these proteins were mostly downregulated both in the medial striatum and in lumbar part of the spinal cord. These transitory changes were prevented by coadministration of the opioid antagonist naloxone. Data indicate that microarray analysis by itself is useful in describing the effect of well-known substances on the nervous system and provides sufficient information to propose a potentially novel pathway mediating its activity. PMID:11526201

  15. Combined cardiological and neurological abnormalities due to filamin A gene mutation

    de Wit, Marie Claire Y.; de Coo, Irenaeus F. M.; Lequin, Maarten H.; Halley, Dicky J. J.; Roos-Hesselink, Jolien W.

    2010-01-01

    Background Cardiac defects can be the presenting symptom in patients with mutations in the X-linked gene FLNA. Dysfunction of this gene is associated with cardiac abnormalities, especially in the left ventricular outflow tract, but can also cause a congenital malformation of the cerebral cortex. We noticed that some patients diagnosed at the neurogenetics clinic had first presented to a cardiologist, suggesting that earlier recognition may be possible if the diagnosis is suspected. Methods and results From the Erasmus MC cerebral malformations database 24 patients were identified with cerebral bilateral periventricular nodular heterotopia (PNH) without other cerebral cortical malformations. In six of these patients, a pathogenic mutation in FLNA was present. In five a cardiac defect was also found in the outflow tract. Four had presented to a cardiologist before the cerebral abnormalities were diagnosed. Conclusions The cardiological phenotype typically consists of aortic or mitral regurgitation, coarctation of the aorta or other left-sided cardiac malformations. Most patients in this category will not have a FLNA mutation, but the presence of neurological complaints, hyperlaxity of the skin or joints and/or a family history with similar cardiac or neurological problems in a possibly X-linked pattern may alert the clinician to the possibility of a FLNA mutation. PMID:20730588

  16. Alternative-splicing-mediated gene expression

    Wang, Qianliang; Zhou, Tianshou

    2014-01-01

    Alternative splicing (AS) is a fundamental process during gene expression and has been found to be ubiquitous in eukaryotes. However, how AS impacts gene expression levels both quantitatively and qualitatively remains to be fully explored. Here, we analyze two common models of gene expression, each incorporating a simple splice mechanism that a pre-mRNA is spliced into two mature mRNA isoforms in a probabilistic manner. In the constitutive expression case, we show that the steady-state molecular numbers of two mature mRNA isoforms follow mutually independent Poisson distributions. In the bursting expression case, we demonstrate that the tail decay of the steady-state distribution for both mature mRNA isoforms that in general are not mutually independent can be characterized by the product of mean burst size and splicing probability. In both cases, we find that AS can efficiently modulate both the variability (measured by variance) and the noise level of the total mature mRNA, and in particular, the latter is always lower than the noise level of the pre-mRNA, implying that AS always reduces the noise. These results altogether reveal that AS is a mechanism of efficiently controlling the gene expression noise.

  17. Individuals With Normal GLA Gene Sequence May Present Abnormally Spliced Alpha-Galactosidase mRNA Transcripts

    Ferreira

    2015-12-01

    Full Text Available Background Deficient lysosomal α-galactosidase activity leads to intracellular accumulation of globotriaosylceramide (Gb3, which is the pathologic hallmark of Fabry disease (FD. There are over 750 pathogenic variants identified in the α-galactosidase gene (GLA. In rare patients, the cause of α-galactosidase deficiency is the overexpression of a GLA transcript with a cryptic exon in intron 4, which is physiologically present at trace levels. Objectives We aim to report abnormally spliced alpha-galactosidase mRNA transcripts found with a cDNA-based GLA genotyping protocol performed in 482 patients. Patients and Methods Genomic DNA and total RNA specimens were obtained from peripheral blood leukocytes of patients with premature stroke prospectively enrolled in the PORTYSTROKE study, or of patients with possible clinical manifestations of FD who have been referred for molecular diagnostic workup. Results Approximately 20% of the patients expressed alternatively spliced transcripts of GLA mRNA involving exon 3. We additionally report that such non-canonical transcripts are physiologically expressed at trace levels in healthy individuals, and that their expression in leukocytes markedly increased in blood samples kept at room-temperature for 48 hours before RNA extraction. Conclusions Production of alternatively spliced GLA transcripts might be involved in the regulation of GLA gene expression, and its deregulated overexpression, particularly if restricted to specific cells or tissues, might be the cause of organ-limited Gb3 pathology. Elucidation of the molecular mechanisms underlying the production of the non-canonical GLA transcripts warrants further investigation, as it may contribute important new data to the understanding of the molecular pathology of FD and Gb3-related disorders.

  18. Gene expression analysis of flax seed development

    Sharpe Andrew

    2011-04-01

    Full Text Available Abstract Background Flax, Linum usitatissimum L., is an important crop whose seed oil and stem fiber have multiple industrial applications. Flax seeds are also well-known for their nutritional attributes, viz., omega-3 fatty acids in the oil and lignans and mucilage from the seed coat. In spite of the importance of this crop, there are few molecular resources that can be utilized toward improving seed traits. Here, we describe flax embryo and seed development and generation of comprehensive genomic resources for the flax seed. Results We describe a large-scale generation and analysis of expressed sequences in various tissues. Collectively, the 13 libraries we have used provide a broad representation of genes active in developing embryos (globular, heart, torpedo, cotyledon and mature stages seed coats (globular and torpedo stages and endosperm (pooled globular to torpedo stages and genes expressed in flowers, etiolated seedlings, leaves, and stem tissue. A total of 261,272 expressed sequence tags (EST (GenBank accessions LIBEST_026995 to LIBEST_027011 were generated. These EST libraries included transcription factor genes that are typically expressed at low levels, indicating that the depth is adequate for in silico expression analysis. Assembly of the ESTs resulted in 30,640 unigenes and 82% of these could be identified on the basis of homology to known and hypothetical genes from other plants. When compared with fully sequenced plant genomes, the flax unigenes resembled poplar and castor bean more than grape, sorghum, rice or Arabidopsis. Nearly one-fifth of these (5,152 had no homologs in sequences reported for any organism, suggesting that this category represents genes that are likely unique to flax. Digital analyses revealed gene expression dynamics for the biosynthesis of a number of important seed constituents during seed development. Conclusions We have developed a foundational database of expressed sequences and collection of plasmid

  19. Expression cloning of a candidate gene for Mucolipidosis type IV

    Gama Sosa, M.A.; De Gasperi, R.; Battistini, S. [New York Univ. School of Medicine, NY (United States)] [and others

    1994-09-01

    Mucolipidosis IV is an autosomal recessive lysosomal storage disease characterized by progressive psychomotor retardation and opthalmological abnormalities, namely corneal opacity and retinal degeneration. Biochemically, it is characterized by the lysosomal accumulation of diverse compounds such as gangliosides, phospholipids and acidic mucopolysaccharides. To date, the basic biochemical defect causing this storage disease is still unknown and the relevant gene has also not been identified. An expression cloning strategy was used to identify human kidney cDNA clones capable of reverting in transient gene expression assays the PAS+ phenotype typical of Mucolipidosis IV cells to the normal PAS- phenotype. By this method, a candidate cDNA clone (Mu cDNA) capable of clearing Mucolipidosis IV fibroblasts of their PAS+ positive storage material was isolated. Nucleotide sequence analysis indicated the presence of 2 open reading frames. In vitro translation of T7 transcribed Mu RNA showed protein products of 7,000 and 6,000 mw. Altered expression of the Mu gene may result in the onset of Mucolipidosis type IV.

  20. Whole brain expression of bipolar disorder associated genes: structural and genetic analyses.

    Michael J McCarthy

    Full Text Available Studies of bipolar disorder (BD suggest a genetic basis of the illness that alters brain function and morphology. In recent years, a number of genetic variants associated with BD have been identified. However, little is known about the associated genes, or brain circuits that rely upon their function. Using an anatomically comprehensive survey of the human transcriptome (The Allen Brain Atlas, we mapped the expression of 58 genes with suspected involvement in BD based upon their relationship to SNPs identified in genome wide association studies (GWAS. We then conducted a meta-analysis of structural MRI studies to identify brain regions that are abnormal in BD. Of 58 BD associated genes, 22 had anatomically distinct expression patterns that could be categorized into one of three clusters (C1-C3. Brain regions with the highest and lowest expression of these genes did not overlap strongly with anatomical sites identified as abnormal by structural MRI except in the parahippocampal gyrus, the inferior/superior temporal gyrus and the cerebellar vermis, regions where overlap was significant. Using the 22 genes in C1-C3 as reference points, additional genes with correlated expression patterns were identified and organized into sets based on similarity. Further analysis revealed that five of these gene sets were significantly associated with BD, suggesting that anatomical expression profile is correlated with genetic susceptibility to BD, particularly for genes in C2. Our data suggest that expression profiles of BD-associated genes do not explain the majority of structural abnormalities observed in BD, but may be useful in identifying new candidate genes. Our results highlight the complex neuroanatomical basis of BD, and reinforce illness models that emphasize impaired brain connectivity.

  1. Parsimonious selection of useful genes in microarray gene expression data

    González Navarro, Félix Fernando; Belanche Muñoz, Luis Antonio

    2011-01-01

    Machine Learning methods have of late made significant efforts to solving multidisciplinary problems in the field of cancer classification in microarray gene expression data. These tasks are characterized by a large number of features and a few observations, making the modeling a non-trivial undertaking. In this work we apply entropic filter methods for gene selection, in combination with several off-the-shelf classifiers. The introduction of bootstrap resampling techniques permits the achiev...

  2. Gene expression profiles in irradiated cancer cells

    Knowledge of the molecular and genetic mechanisms underlying cellular response to radiation may provide new avenues to develop innovative predictive tests of radiosensitivity of tumours and normal tissues and to improve individual therapy. Nowadays very few studies describe molecular changes induced by hadrontherapy treatments, therefore this field has to be explored and clarified. High-throughput methodologies, such as DNA microarray, allow us to analyse mRNA expression of thousands of genes simultaneously in order to discover new genes and pathways as targets of response to hadrontherapy. Our aim is to elucidate the molecular networks involved in the sensitivity/resistance of cancer cell lines subjected to hadrontherapy treatments with a genomewide approach by using cDNA microarray technology to identify gene expression profiles and candidate genes responsible of differential cellular responses

  3. Sequencing and Gene Expression Analysis of Leishmania tropica LACK Gene.

    Nour Hammoudeh

    2014-12-01

    Full Text Available Leishmania Homologue of receptors for Activated C Kinase (LACK antigen is a 36-kDa protein, which provokes a very early immune response against Leishmania infection. There are several reports on the expression of LACK through different life-cycle stages of genus Leishmania, but only a few of them have focused on L.tropica.The present study provides details of the cloning, DNA sequencing and gene expression of LACK in this parasite species. First, several local isolates of Leishmania parasites were typed in our laboratory using PCR technique to verify of Leishmania parasite species. After that, LACK gene was amplified and cloned into a vector for sequencing. Finally, the expression of this molecule in logarithmic and stationary growth phase promastigotes, as well as in amastigotes, was evaluated by Reverse Transcription-PCR (RT-PCR technique.The typing result confirmed that all our local isolates belong to L.tropica. LACK gene sequence was determined and high similarity was observed with the sequences of other Leishmania species. Furthermore, the expression of LACK gene in both promastigotes and amastigotes forms was confirmed.Overall, the data set the stage for future studies of the properties and immune role of LACK gene products.

  4. Extracting expression modules from perturbational gene expression compendia

    Van Dijck Patrick

    2008-04-01

    Full Text Available Abstract Background Compendia of gene expression profiles under chemical and genetic perturbations constitute an invaluable resource from a systems biology perspective. However, the perturbational nature of such data imposes specific challenges on the computational methods used to analyze them. In particular, traditional clustering algorithms have difficulties in handling one of the prominent features of perturbational compendia, namely partial coexpression relationships between genes. Biclustering methods on the other hand are specifically designed to capture such partial coexpression patterns, but they show a variety of other drawbacks. For instance, some biclustering methods are less suited to identify overlapping biclusters, while others generate highly redundant biclusters. Also, none of the existing biclustering tools takes advantage of the staple of perturbational expression data analysis: the identification of differentially expressed genes. Results We introduce a novel method, called ENIGMA, that addresses some of these issues. ENIGMA leverages differential expression analysis results to extract expression modules from perturbational gene expression data. The core parameters of the ENIGMA clustering procedure are automatically optimized to reduce the redundancy between modules. In contrast to the biclusters produced by most other methods, ENIGMA modules may show internal substructure, i.e. subsets of genes with distinct but significantly related expression patterns. The grouping of these (often functionally related patterns in one module greatly aids in the biological interpretation of the data. We show that ENIGMA outperforms other methods on artificial datasets, using a quality criterion that, unlike other criteria, can be used for algorithms that generate overlapping clusters and that can be modified to take redundancy between clusters into account. Finally, we apply ENIGMA to the Rosetta compendium of expression profiles for

  5. Gene expression profiling in sinonasal adenocarcinoma.

    Sébille-Rivain Véronique; Malard Olivier; Guisle-Marsollier Isabelle; Ferron Christophe; Renaudin Karine; Quéméner Sylvia; Tripodi Dominique; Verger Christian; Géraut Christian; Gratas-Rabbia-Ré Catherine

    2009-01-01

    Abstract Background Sinonasal adenocarcinomas are uncommon tumors which develop in the ethmoid sinus after exposure to wood dust. Although the etiology of these tumors is well defined, very little is known about their molecular basis and no diagnostic tool exists for their early detection in high-risk workers. Methods To identify genes involved in this disease, we performed gene expression profiling using cancer-dedicated microarrays, on nine matched samples of sinonasal adenocarcinomas and n...

  6. Sp1 regulates human huntingtin gene expression.

    Wang, Ruitao; Luo, Yawen; Ly, Philip T T; Cai, Fang; Zhou, Weihui; Zou, Haiyan; Song, Weihong

    2012-06-01

    Huntington's disease (HD) is a hereditary neurodegenerative disorder resulting from the expansion of a polyglutamine tract in the huntingtin protein. The expansion of cytosine-adenine-guanine repeats results in neuronal loss in the striatum and cortex. Mutant huntingtin (HTT) may cause toxicity via a range of different mechanisms. Recent studies indicate that impairment of wild-type HTT function may also contribute to HD pathogenesis. However, the mechanisms regulating HTT expression have not been well defined. In this study, we cloned 1,795 bp of the 5' flanking region of the human huntingtin gene (htt) and identified a 106-bp fragment containing the transcription start site as the minimal region necessary for promoter activity. Sequence analysis reveals several putative regulatory elements including Sp1, NF-κB, HIF, CREB, NRSF, P53, YY1, AP1, and STAT in the huntingtin promoter. We found functional Sp1 response elements in the huntingtin promoter region. The expression of Sp1 enhanced huntingtin gene transcription and the inhibition of Sp1-mediated transcriptional activation reduced huntingtin gene expression. These results suggest that Sp1 plays an important role in the regulation of the human huntingtin gene expression at the mRNA and protein levels. Our study suggests that the dysregulation of Sp1-mediated huntingtin transcription, combining with mutant huntingtin's detrimental effect on other Sp1-mediated downstream gene function, may contribute to the pathogenesis of HD. PMID:22399227

  7. Differential expression of cell adhesion genes

    Stein, Wilfred D; Litman, Thomas; Fojo, Tito;

    2005-01-01

    It is well known that tumors arising from tissues such as kidney, pancreas, liver and stomach are particularly refractory to treatment. Searching for new anticancer drugs using cells in culture has yielded some effective therapies, but these refractory tumors remain intractable. Studies that...... survival might, therefore, act through such a matrix-to-cell suppression of apoptosis. Indeed, correlative mining of gene expression and patient survival databases suggests that poor survival in patients with metastatic cancer correlates highly with tumor expression of a common theme: the genes involved in...

  8. Epigenetic control of antioxidant gene expression

    Wild, Brigitte

    2015-01-01

    Tesis doctoral inédita leída en la Universidad Autónoma de Madrid, Facultad de Ciencias, Departamento de Biología Molecular. Fecha de lectura: 29-10-2015 To respond to exogenous and endogenous stimuli, organisms have developed a variety of mechanisms to modulate the quantity, duration and the type of response to these stimuli. Of these mechanisms, one of the most important is the regulation of gene expression. This regulation of gene expression occurs at various levels but especially by th...

  9. Argudas: arguing with gene expression information

    McLeod, Kenneth; Burger, Albert

    2010-01-01

    In situ hybridisation gene expression information helps biologists identify where a gene is expressed. However, the databases that republish the experimental information are often both incomplete and inconsistent. This paper examines a system, Argudas, designed to help tackle these issues. Argudas is an evolution of an existing system, and so that system is reviewed as a means of both explaining and justifying the behaviour of Argudas. Throughout the discussion of Argudas a number of issues will be raised including the appropriateness of argumentation in biology and the challenges faced when integrating apparently similar online biological databases.

  10. Visualizing Gene Expression In Situ

    Burlage, R.S.

    1998-11-02

    Visualizing bacterial cells and describing their responses to the environment are difficult tasks. Their small size is the chief reason for the difficulty, which means that we must often use many millions of cells in a sample in order to determine what the average response of the bacteria is. However, an average response can sometimes mask important events in bacterial physiology, which means that our understanding of these organisms will suffer. We have used a variety of instruments to visualize bacterial cells, all of which tell us something different about the sample. We use a fluorescence activated cell sorter to sort cells based on the fluorescence provided by bioreporter genes, and these can be used to select for particular genetic mutations. Cells can be visualized by epifluorescent microscopy, and sensitive photodetectors can be added that allow us to find a single bacterial cell that is fluorescent or bioluminescent. We have also used standard photomultipliers to examine cell aggregates as field bioreporter microorganisms. Examples of each of these instruments show how our understanding of bacterial physiology has changed with the technology.

  11. DHA and EPA reverse cystic fibrosis-related FA abnormalities by suppressing FA desaturase expression and activity

    Njoroge, Sarah W; Laposata, Michael; Katrangi, Waddah; Seegmiller, Adam C.

    2012-01-01

    Patients and models of cystic fibrosis (CF) exhibit consistent abnormalities of polyunsaturated fatty acid composition, including decreased linoleate (LA) and docosahexaenoate (DHA) and variably increased arachidonate (AA), related in part to increased expression and activity of fatty acid desaturases. These abnormalities and the consequent CF-related pathologic manifestations can be reversed in CF mouse models by dietary supplementation with DHA. However, the mechanism is unknown. This study...

  12. Gene expression profiling analysis of ovarian cancer

    YIN, JI-GANG; LIU, XIAN-YING; WANG, BIN; WANG, DAN-YANG; WEI, MAN; FANG, HUA; XIANG, MEI

    2016-01-01

    As a gynecological oncology, ovarian cancer has high incidence and mortality. To study the mechanisms of ovarian cancer, the present study analyzed the GSE37582 microarray. GSE37582 was downloaded from Gene Expression Omnibus and included data from 74 ovarian cancer cases and 47 healthy controls. The differentially-expressed genes (DEGs) were screened using linear models for microarray data package in R and were further screened for functional annotation. Next, Gene Ontology and pathway enrichment analysis of the DEGs was conducted. The interaction associations of the proteins encoded by the DEGs were searched using the Search Tool for the Retrieval of Interacting Genes, and the protein-protein interaction (PPI) network was visualized by Cytoscape. Moreover, module analysis of the PPI network was performed using the BioNet analysis tool in R. A total of 284 DEGs were screened, consisting of 145 upregulated genes and 139 downregulated genes. In particular, downregulated FBJ murine osteosarcoma viral oncogene homolog (FOS) was an oncogene, while downregulated cyclin-dependent kinase inhibitor 1A (CDKN1A) was a tumor suppressor gene and upregulated cluster of differentiation 44 (CD44) was classed as an ‘other’ gene. The enriched functions included collagen catabolic process, stress-activated mitogen-activated protein kinases cascade and insulin receptor signaling pathway. Meanwhile, FOS (degree, 15), CD44 (degree, 9), B-cell CLL/lymphoma 2 (BCL2; degree, 7), CDKN1A (degree, 7) and matrix metallopeptidase 3 (MMP3; degree, 6) had higher connectivity degrees in the PPI network for the DEGs. These genes may be involved in ovarian cancer by interacting with other genes in the module of the PPI network (e.g., BCL2-FOS, BCL2-CDKN1A, FOS-CDKN1A, FOS-CD44, MMP3-MMP7 and MMP7-CD44). Overall, BCL2, FOS, CDKN1A, CD44, MMP3 and MMP7 may be correlated with ovarian cancer. PMID:27347159

  13. Alteration of somatostatin receptor subtype 2 gene expression in pancreatic tumor angiogenesis

    Ren-Yi Qin; Ru-Liang Fang; Manoj Kumar Gupta; Zheng-Ren Liu; Da-Yu Wang; Qing Chang; Yi-Bei Chen

    2004-01-01

    AIM: To explore the difference of somatostatin receptorsubtype 2 (SST2R) gene expression in pancreatic canceroustissue and its adjacent tissue, and the relationship betweenthe change of SST2R gene expression and pancreatic tumorangiogenesis related genes.METHODS: The expressions of SST2R, DPC4, p53 and ras genes in cancer tissues of 40 patients with primary pancreatic cancer, and the expression of SST2R gene in its adjacent tissue were determined by immunohistochemiscal LSAB method and EnVisionTM method. Chi-square test was used to analyze the difference in expression of SST2R in pancreatic cancer tissue and its adjacent tissue, and the correlation of SST2R gene expression with the expression of p53, ras and DPC4 genes.RESULTS: Of the tissue specimens from 40 patients with primary pancreatic cancer, 35 (87.5%) cancer tissues showed a negative expression of SST2R gene, whereas 34 (85%) a positive expression of SST2R gene in its adjacent tissues.Five (12.5%) cancer tissues and its adjacent tissues simultaneously expressed SST2R. The expression of SST2R gene was markedly higher in pancreatic tissues adjacent to cancer than in pancreatic cancer tissues (P<0.05). The expression rates of p53, ras and DPC4 genes were 50%,60% and 72.5%, respectively. There was a significant negative correlation of SST2R with p53 and ras genes (X12=9.33,X22=15.43, P<0.01), but no significant correlation with DPC4 gene (X2=2.08, P >0.05).CONCLUSION: There was a significant difference of SST2R gene expression in pancreatic cancer tissues and its adjacent tissues, which might be one cause for the different therapeutic effects of somatostatin and its analogs on pancreatic cancer patients. There were abnormal expressions of SST2R, DPC4, p53 and ras genes in pancreatic carcinogenesis, and moreover, the loss or decrease of SST2R gene expression was significantly negatively correlated with the overexpression of tumor angiogenesis correlated p53 and ras genes, suggesting that SST2R gene

  14. Integrating heterogeneous gene expression data for gene regulatory network modelling.

    Sîrbu, Alina; Ruskin, Heather J; Crane, Martin

    2012-06-01

    Gene regulatory networks (GRNs) are complex biological systems that have a large impact on protein levels, so that discovering network interactions is a major objective of systems biology. Quantitative GRN models have been inferred, to date, from time series measurements of gene expression, but at small scale, and with limited application to real data. Time series experiments are typically short (number of time points of the order of ten), whereas regulatory networks can be very large (containing hundreds of genes). This creates an under-determination problem, which negatively influences the results of any inferential algorithm. Presented here is an integrative approach to model inference, which has not been previously discussed to the authors' knowledge. Multiple heterogeneous expression time series are used to infer the same model, and results are shown to be more robust to noise and parameter perturbation. Additionally, a wavelet analysis shows that these models display limited noise over-fitting within the individual datasets. PMID:21948152

  15. Aberrant Gene Expression in Acute Myeloid Leukaemia

    Bagger, Frederik Otzen

    Summary Acute Myeloid Leukaemia (AML) is an aggressive cancer of the bone marrow, affecting formation of blood cells during haematopoiesis. This thesis presents investigation of AML using mRNA gene expression profiles (GEP) of samples extracted from the bone marrow of healthy and diseased subjects...

  16. The Low Noise Limit in Gene Expression.

    Roy D Dar

    Full Text Available Protein noise measurements are increasingly used to elucidate biophysical parameters. Unfortunately noise analyses are often at odds with directly measured parameters. Here we show that these inconsistencies arise from two problematic analytical choices: (i the assumption that protein translation rate is invariant for different proteins of different abundances, which has inadvertently led to (ii the assumption that a large constitutive extrinsic noise sets the low noise limit in gene expression. While growing evidence suggests that transcriptional bursting may set the low noise limit, variability in translational bursting has been largely ignored. We show that genome-wide systematic variation in translational efficiency can-and in the case of E. coli does-control the low noise limit in gene expression. Therefore constitutive extrinsic noise is small and only plays a role in the absence of a systematic variation in translational efficiency. These results show the existence of two distinct expression noise patterns: (1 a global noise floor uniformly imposed on all genes by expression bursting; and (2 high noise distributed to only a select group of genes.

  17. Paradoxornis webbianus bulomachus Transcriptome or Gene expression [

    Full Text Available Study Type Sample Organism Sequencing Platform Transcriptome Analysis Paradoxornis web...e Length Download SRR392516 SRS259594 Transcriptome Analysis Paradoxornis webbian...t/Resources DRASearch - DDBJ/DRA ENA Browser - EBI/ENA Paradoxornis webbianus bulomachus Transcriptome or Gene expression ...

  18. Global gene expression in Escherichia coli biofilms

    Schembri, Mark; Kjærgaard, K.; Klemm, Per

    2003-01-01

    antimicrobial treatments and host immune defence responses. Escherichia coli has been used as a model organism to study the mechanisms of growth within adhered communities. In this study, we use DNA microarray technology to examine the global gene expression profile of E. coli during sessile growth compared...

  19. Population-level control of gene expression

    Nevozhay, Dmitry; Adams, Rhys; van Itallie, Elizabeth; Bennett, Matthew; Balazsi, Gabor

    2011-03-01

    Gene expression is the process that translates genetic information into proteins, that determine the way cells live, function and even die. It was demonstrated that cells with identical genomes exposed to the same environment can differ in their protein composition and therefore phenotypes. Protein levels can vary between cells due to the stochastic nature of intracellular biochemical events, indicating that the genotype-phenotype connection is not deterministic at the cellular level. We asked whether genomes could encode isogenic cell populations more reliably than single cells. To address this question, we built two gene circuits to control three cell population-level characteristics: gene expression mean, coefficient of variation and non-genetic memory of previous expression states. Indeed, we found that these population-level characteristics were more predictable than the gene expression of single cells in a well-controlled environment. This research was supported by the NIH Director's New Innovator Award 1DP2 OD006481-01 and Welch Foundation Grant C-1729.

  20. Cluster Analysis of Gene Expression Data

    Domany, E

    2002-01-01

    The expression levels of many thousands of genes can be measured simultaneously by DNA microarrays (chips). This novel experimental tool has revolutionized research in molecular biology and generated considerable excitement. A typical experiment uses a few tens of such chips, each dedicated to a single sample - such as tissue extracted from a particular tumor. The results of such an experiment contain several hundred thousand numbers, that come in the form of a table, of several thousand rows (one for each gene) and 50 - 100 columns (one for each sample). We developed a clustering methodology to mine such data. In this review I provide a very basic introduction to the subject, aimed at a physics audience with no prior knowledge of either gene expression or clustering methods. I explain what genes are, what is gene expression and how it is measured by DNA chips. Next I explain what is meant by "clustering" and how we analyze the massive amounts of data from such experiments, and present results obtained from a...

  1. Contribution of chromosomal abnormalities and genes of the major histocompatibility complex to early pregnancy losses

    Tkach I. R.

    2015-02-01

    Full Text Available Aim. The determination of chromosomal abnormalities in samples from early pregnancy losses and allelic polymorphism of HLA–DRB1 and DQA1 genes in couples with recurrent miscarriage. Methods. Banding cytogenetic and interphase mFISH analysis, DNA extraction by salting method, PCR, agarose gel electrophoresis. Results. Cytogenetic and molecular-cytogenetic investigations of SA material identified karyotype anomalies in 32.4 % of cases with prevalence of autosomal trisomy – 42.65 %, triploidy – 30.38 % and monosomy X – 19.11 %. Complex analysis of frequency and distribution of allelic variants of genes HLA-DRB1 and HLA-DQA1 allowed establishing the alleles DRB1*0301, DRB1*1101-1104 and DQA1*0501 to be aggressor alleles in women with recurrent pregnancy loss (RPL. The cumulative homology of allelic polymorphism of more than 50 % of HLA-DRB1 and HLA-DQA1 loci between partners increases the risk of RPL by almost four times. Conclusion. The detected chromosome aneuploidies in the samples from products of conception and the changes in the major histocompatibility complex genes can cause the failure of a couples reproductive function and can lead to an early fetal loss.

  2. Detection of MTAP Protein and Gene Expression in Non-small Cell Lung Cancer

    Li, Shasha; Zhang, Yijun; LI, HONGLI; Ding, Baoqing

    2011-01-01

    Background and objective The abnormal expression of MTAP, a tumor suppressor gene, is found in a variety of tumor tissues. The aim of this study is to detect the expression of MTAP mRNA protein and the clinical significance for the therapy of non-small cell lung cancer tissue (NSCLC). Methods The expression of MTAP protein was detected by immunohistochemistry in 52 cases of NSCLC patients. The relative expression MTAP mRNA was detected by real-time quantitative PCR. Results The expression of ...

  3. Gene Expression Commons: an open platform for absolute gene expression profiling.

    Jun Seita

    Full Text Available Gene expression profiling using microarrays has been limited to comparisons of gene expression between small numbers of samples within individual experiments. However, the unknown and variable sensitivities of each probeset have rendered the absolute expression of any given gene nearly impossible to estimate. We have overcome this limitation by using a very large number (>10,000 of varied microarray data as a common reference, so that statistical attributes of each probeset, such as the dynamic range and threshold between low and high expression, can be reliably discovered through meta-analysis. This strategy is implemented in a web-based platform named "Gene Expression Commons" (https://gexc.stanford.edu/ which contains data of 39 distinct highly purified mouse hematopoietic stem/progenitor/differentiated cell populations covering almost the entire hematopoietic system. Since the Gene Expression Commons is designed as an open platform, investigators can explore the expression level of any gene, search by expression patterns of interest, submit their own microarray data, and design their own working models representing biological relationship among samples.

  4. Silencing Abnormal Wing Disc Gene of the Asian Citrus Psyllid, Diaphorina citri Disrupts Adult Wing Development and Increases Nymph Mortality

    El-Shesheny, Ibrahim; Hajeri, Subhas; El-Hawary, Ibrahim; Gowda, Siddarame; Killiny, Nabil

    2013-01-01

    Huanglongbing (HLB) causes considerable economic losses to citrus industries worldwide. Its management depends on controlling of the Asian citrus Psyllid (ACP), the vector of the bacterium, Candidatus Liberibacter asiaticus (CLas), the causal agent of HLB. Silencing genes by RNA interference (RNAi) is a promising tool to explore gene functions as well as control pests. In the current study, abnormal wing disc (awd) gene associated with wing development in insects is used to interfere with the...

  5. Regulation of methane genes and genome expression

    John N. Reeve

    2009-09-09

    At the start of this project, it was known that methanogens were Archaeabacteria (now Archaea) and were therefore predicted to have gene expression and regulatory systems different from Bacteria, but few of the molecular biology details were established. The goals were then to establish the structures and organizations of genes in methanogens, and to develop the genetic technologies needed to investigate and dissect methanogen gene expression and regulation in vivo. By cloning and sequencing, we established the gene and operon structures of all of the “methane” genes that encode the enzymes that catalyze methane biosynthesis from carbon dioxide and hydrogen. This work identified unique sequences in the methane gene that we designated mcrA, that encodes the largest subunit of methyl-coenzyme M reductase, that could be used to identify methanogen DNA and establish methanogen phylogenetic relationships. McrA sequences are now the accepted standard and used extensively as hybridization probes to identify and quantify methanogens in environmental research. With the methane genes in hand, we used northern blot and then later whole-genome microarray hybridization analyses to establish how growth phase and substrate availability regulated methane gene expression in Methanobacterium thermautotrophicus ΔH (now Methanothermobacter thermautotrophicus). Isoenzymes or pairs of functionally equivalent enzymes catalyze several steps in the hydrogen-dependent reduction of carbon dioxide to methane. We established that hydrogen availability determine which of these pairs of methane genes is expressed and therefore which of the alternative enzymes is employed to catalyze methane biosynthesis under different environmental conditions. As were unable to establish a reliable genetic system for M. thermautotrophicus, we developed in vitro transcription as an alternative system to investigate methanogen gene expression and regulation. This led to the discovery that an archaeal protein

  6. Abnormal behavior associated with a point mutation in the structural gene for monoamine oxidase A

    Brunner, H.G. (Univ. Hospital, Nijmegan (Netherlands)); Nelen, M.; Ropers, H.H.; van Oost, B.A. (Univ. Hospital Nijmegen (Netherlands))

    1993-10-22

    Genetic and metabolic studies have been done on a large kindred in which several males are affected by a syndrome of borderline mental retardation and abnormal behavior. The types of behavior that occurred include impulsive aggression, arson, attempted rape, and exhibitionism. Analysis of 24-hour urine samples indicated markedly disturbed monoamine metabolism. This syndrome was associated with a complete and selective deficiency of enzymatic activity of monoamine oxidase A (MAOA). In each of five affected males, a point mutation was identified in the eighth exon of the MAOA structural gene, which changes a glutamine to a termination codon. Thus, isolated complete MAOA deficiency in this family is associated with a recognizable behavioral phenotype that includes disturbed regulation of impulsive aggression.

  7. Comparative gene expression of intestinal metabolizing enzymes.

    Shin, Ho-Chul; Kim, Hye-Ryoung; Cho, Hee-Jung; Yi, Hee; Cho, Soo-Min; Lee, Dong-Goo; Abd El-Aty, A M; Kim, Jin-Suk; Sun, Duxin; Amidon, Gordon L

    2009-11-01

    The purpose of this study was to compare the expression profiles of drug-metabolizing enzymes in the intestine of mouse, rat and human. Total RNA was isolated from the duodenum and the mRNA expression was measured using Affymetrix GeneChip oligonucleotide arrays. Detected genes from the intestine of mouse, rat and human were ca. 60% of 22690 sequences, 40% of 8739 and 47% of 12559, respectively. Total genes of metabolizing enzymes subjected in this study were 95, 33 and 68 genes in mouse, rat and human, respectively. Of phase I enzymes, the mouse exhibited abundant gene expressions for Cyp3a25, Cyp4v3, Cyp2d26, followed by Cyp2b20, Cyp2c65 and Cyp4f14, whereas, the rat showed higher expression profiles of Cyp3a9, Cyp2b19, Cyp4f1, Cyp17a1, Cyp2d18, Cyp27a1 and Cyp4f6. However, the highly expressed P450 enzymes were CYP3A4, CYP3A5, CYP4F3, CYP2C18, CYP2C9, CYP2D6, CYP3A7, CYP11B1 and CYP2B6 in the human. For phase II enzymes, glucuronosyltransferase Ugt1a6, glutathione S-transferases Gstp1, Gstm3 and Gsta2, sulfotransferase Sult1b1 and acyltransferase Dgat1 were highly expressed in the mouse. The rat revealed predominant expression of glucuronosyltransferases Ugt1a1 and Ugt1a7, sulfotransferase Sult1b1, acetyltransferase Dlat and acyltransferase Dgat1. On the other hand, in human, glucuronosyltransferases UGT2B15 and UGT2B17, glutathione S-transferases MGST3, GSTP1, GSTA2 and GSTM4, sulfotransferases ST1A3 and SULT1A2, acetyltransferases SAT1 and CRAT, and acyltransferase AGPAT2 were dominantly detected. Therefore, current data indicated substantial interspecies differences in the pattern of intestinal gene expression both for P450 enzymes and phase II drug-metabolizing enzymes. This genomic database is expected to improve our understanding of interspecies variations in estimating intestinal prehepatic clearance of oral drugs. PMID:19746353

  8. Abnormal development of glomerular endothelial and mesangial cells in mice with targeted disruption of the lama3 gene.

    Abrass, C K; Berfield, A K; Ryan, M C; Carter, W G; Hansen, K M

    2006-09-01

    Mice with targeted disruption of the lama3 gene, which encodes the alpha3 chain of laminin-5 (alpha3beta3gamma2, 332), develop a blistering skin disease similar to junctional epidermolysis bullosa in humans. These animals also develop abnormalities in glomerulogenesis. In both wild-type and mutant animals (lama3(-/-)), podocytes secrete glomerular basement membrane and develop foot processes. Endothelial cells migrate into this scaffolding and secrete a layer of basement membrane that fuses with the one formed by the podocyte. In lama3(-/-) animals, glomerular maturation arrests at this stage. Endothelial cells do not attenuate, develop fenestrae, or form typical lumens, and mesangial cells (MCs) were not identified. LN alpha3 subunit (LAMA3) protein was identified in the basement membrane adjacent to glomerular endothelial cells (GEnCs) in normal rats and mice. In developing rat glomeruli, the LAMA3 subunit was first detectable in the early capillary loop stage, which corresponds to the stage at which maturation arrest was observed in the mutant mice. Lama3 mRNA and protein were identified in isolated rat and mouse glomeruli and cultured rat GEnCs, but not MC. These data document expression of LAMA3 in glomeruli and support a critical role for it in GEnC differentiation. Furthermore, LAMA3 chain expression and/or another product of endothelial cells are required for MC migration into the developing glomerulus. PMID:16850021

  9. From gene expressions to genetic networks

    Cieplak, Marek

    2009-03-01

    A method based on the principle of entropy maximization is used to identify the gene interaction network with the highest probability of giving rise to experimentally observed transcript profiles [1]. In its simplest form, the method yields the pairwise gene interaction network, but it can also be extended to deduce higher order correlations. Analysis of microarray data from genes in Saccharomyces cerevisiae chemostat cultures exhibiting energy metabollic oscillations identifies a gene interaction network that reflects the intracellular communication pathways. These pathways adjust cellular metabolic activity and cell division to the limiting nutrient conditions that trigger metabolic oscillations. The success of the present approach in extracting meaningful genetic connections suggests that the maximum entropy principle is a useful concept for understanding living systems, as it is for other complex, nonequilibrium systems. The time-dependent behavior of the genetic network is found to involve only a few fundamental modes [2,3]. [4pt] REFERENCES:[0pt] [1] T. R. Lezon, J. R. Banavar, M. Cieplak, A. Maritan, and N. Fedoroff, Using the principle of entropy maximization to infer genetic interaction networks from gene expression patterns, Proc. Natl. Acad. Sci. (USA) 103, 19033-19038 (2006) [0pt] [2] N. S. Holter, M. Mitra, A. Maritan, M. Cieplak, J. R. Banavar, and N. V. Fedoroff, Fundamental patterns underlying gene expression profiles: simplicity from complexity, Proc. Natl. Acad. Sci. USA 97, 8409-8414 (2000) [0pt] [3] N. S. Holter, A. Maritan, M. Cieplak, N. V. Fedoroff, and J. R. Banavar, Dynamic modeling of gene expression data, Proc. Natl. Acad. Sci. USA 98, 1693-1698 (2001)

  10. Outlier Analysis for Gene Expression Data

    Chao Yan; Guo-Liang Chen; Yi-Fei Shen

    2004-01-01

    The rapid developments of technologies that generate arrays of gene data enable a global view of the transcription levels of hundreds of thousands of genes simultaneously. The outlier detection problem for gene data has its importance but together with the difficulty of high dimensionality. The sparsity of data in high dimensional space makes each point a relatively good outlier in the view of traditional distance-based definitions. Thus, finding outliers in high dimensional data is more complex. In this paper, sme basic outlier analysis algorithms are discussed and a new genetic algorithm is presented. This algorithm is to find best dimension projections based on a revised cell-based algorithm and to give explanations to solutions. It can solve the outlier detection problem for gene expression data and for other high dimensional data as well.

  11. Coevolution of gene expression among interacting proteins

    Fraser, Hunter B.; Hirsh, Aaron E.; Wall, Dennis P.; Eisen,Michael B.

    2004-03-01

    Physically interacting proteins or parts of proteins are expected to evolve in a coordinated manner that preserves proper interactions. Such coevolution at the amino acid-sequence level is well documented and has been used to predict interacting proteins, domains, and amino acids. Interacting proteins are also often precisely coexpressed with one another, presumably to maintain proper stoichiometry among interacting components. Here, we show that the expression levels of physically interacting proteins coevolve. We estimate average expression levels of genes from four closely related fungi of the genus Saccharomyces using the codon adaptation index and show that expression levels of interacting proteins exhibit coordinated changes in these different species. We find that this coevolution of expression is a more powerful predictor of physical interaction than is coevolution of amino acid sequence. These results demonstrate previously uncharacterized coevolution of gene expression, adding a different dimension to the study of the coevolution of interacting proteins and underscoring the importance of maintaining coexpression of interacting proteins over evolutionary time. Our results also suggest that expression coevolution can be used for computational prediction of protein protein interactions.

  12. Craniofacial abnormalities result from knock down of nonsyndromic clefting gene, crispld2, in zebrafish.

    Yuan, Qiuping; Chiquet, Brett T; Devault, Laura; Warman, Matthew L; Nakamura, Yukio; Swindell, Eric C; Hecht, Jacqueline T

    2012-12-01

    Nonsyndromic cleft lip and palate (NSCLP), a common birth defect, affects 4,000 newborns in the US each year. Previously, we described an association between CRISPLD2 and NSCLP and showed Crispld2 expression in the murine palate. These results suggested that a perturbation in CRISPLD2 activity affects craniofacial development. Here, we describe crispld2 expression and the phenotypic consequence of its loss of function in zebrafish. crispld2 was expressed at all stages of zebrafish morphogenesis examined and localized to the rostral end by 1-day postfertilization. Morpholino knockdown of crispld2 resulted in significant jaw and palatal abnormalities in a dose-dependent manner. Loss of crispld2 caused aberrant patterning of neural crest cells (NCC) suggesting that crispld2 is necessary for normal NCC formation. Altogether, we show that crispld2 plays a significant role in the development of the zebrafish craniofacies and alteration of normal protein levels disturbs palate and jaw formation. These data provide support for a role of CRISPLD2 in NSCLP. PMID:22887593

  13. Suppression subtractive hybridization identified differentially expressed genes in lung adenocarcinoma: ERGIC3 as a novel lung cancer-related gene

    To understand the carcinogenesis caused by accumulated genetic and epigenetic alterations and seek novel biomarkers for various cancers, studying differentially expressed genes between cancerous and normal tissues is crucial. In the study, two cDNA libraries of lung cancer were constructed and screened for identification of differentially expressed genes. Two cDNA libraries of differentially expressed genes were constructed using lung adenocarcinoma tissue and adjacent nonmalignant lung tissue by suppression subtractive hybridization. The data of the cDNA libraries were then analyzed and compared using bioinformatics analysis. Levels of mRNA and protein were measured by quantitative real-time polymerase chain reaction (q-RT-PCR) and western blot respectively, as well as expression and localization of proteins were determined by immunostaining. Gene functions were investigated using proliferation and migration assays after gene silencing and gene over-expression. Two libraries of differentially expressed genes were obtained. The forward-subtracted library (FSL) and the reverse-subtracted library (RSL) contained 177 and 59 genes, respectively. Bioinformatic analysis demonstrated that these genes were involved in a wide range of cellular functions. The vast majority of these genes were newly identified to be abnormally expressed in lung cancer. In the first stage of the screening for 16 genes, we compared lung cancer tissues with their adjacent non-malignant tissues at the mRNA level, and found six genes (ERGIC3, DDR1, HSP90B1, SDC1, RPSA, and LPCAT1) from the FSL were significantly up-regulated while two genes (GPX3 and TIMP3) from the RSL were significantly down-regulated (P < 0.05). The ERGIC3 protein was also over-expressed in lung cancer tissues and cultured cells, and expression of ERGIC3 was correlated with the differentiated degree and histological type of lung cancer. The up-regulation of ERGIC3 could promote cellular migration and proliferation in vitro. The

  14. Abnormal expression of dopamine and serotonin transporters associated with the pathophysiologic mechanism of Tourette syndrome

    Jijun Li

    2010-01-01

    Full Text Available Background : Tourette syndrome (TS is a neurobehavioral and neuropsychiatric disorder and its pathophysiology is not well understood. However, recent studies provide evidence implicating metabolic abnormalities of dopamine (DA and serotonin (5-HT of the basal ganglia both in TS patients and TS animal models. It is also well known that dopamine and serotonin transporters (DAT and SERT are monoamine neurotransmitter transporters, which participate in the metabolism of DA and 5-HT, respectively. Objective : To evaluate whether expression of DAT and SERT in the striatum could lead to pathophysiological change in TS rat model. Materials and Methods : Twenty-four Wistar male rats were randomly allocated to: TS model group (n=12 and control group (n=12. The stereotypy counts were recorded during the 2-week period of inducing TS rat models. The levels of DA and 5-HT in striatum homogenate were measured by ELISA. The protein and mRNA expression of DAT and SERT in the striatum were tested respectively by Immunofluorescence, Western blot and quantitative real-time PCR. Results : ANOVA analysis indicated that the stereotypy scores were much higher in the TS model group than in the control group at different time points (P<0.01. By ELISA analysis, the DA concentration in striatum homogenate was higher in the TS model group (130.92 ± 25.60 ng/mL than in the control group (101.00 ± 20.14 ng/mL (P<0.01, but 5-HT concentration in striatum was found to be lower in the TS model group (59.79 ± 14.73 ng/mL compared to the control group (77.01 ± 14.05 ng/mL (P<0.05. Analysis of protein and mRNA levels revealed a lower expression of DAT, concomitant with a higher expression of SERT in striatum of the TS model group than in the control group. Conclusions : Lower expression in DAT, concomitant with higher expression in SERT could participate in the pathophysiology of TS.

  15. Gene expression regulation in roots under drought.

    Janiak, Agnieszka; Kwaśniewski, Mirosław; Szarejko, Iwona

    2016-02-01

    Stress signalling and regulatory networks controlling expression of target genes are the basis of plant response to drought. Roots are the first organs exposed to water deficiency in the soil and are the place of drought sensing. Signalling cascades transfer chemical signals toward the shoot and initiate molecular responses that lead to the biochemical and morphological changes that allow plants to be protected against water loss and to tolerate stress conditions. Here, we present an overview of signalling network and gene expression regulation pathways that are actively induced in roots under drought stress. In particular, the role of several transcription factor (TF) families, including DREB, AP2/ERF, NAC, bZIP, MYC, CAMTA, Alfin-like and Q-type ZFP, in the regulation of root response to drought are highlighted. The information provided includes available data on mutual interactions between these TFs together with their regulation by plant hormones and other signalling molecules. The most significant downstream target genes and molecular processes that are controlled by the regulatory factors are given. These data are also coupled with information about the influence of the described regulatory networks on root traits and root development which may translate to enhanced drought tolerance. This is the first literature survey demonstrating the gene expression regulatory machinery that is induced by drought stress, presented from the perspective of roots. PMID:26663562

  16. Abnormal expressions of proliferating cell nuclear antigen and P27 protein in brain glioma

    2007-01-01

    positive expressions of both proliferating cell nuclear antigen and P27 protein. Automatic imaging analytic system was used to quantitatively analyze staining results of tumor.MAIN OUTCOME MEASURES: To compare the expressions of proliferating cell nuclear antigen and P27 protein in brain glioma tissues and non-tumor brain tissues and investigate the effect of various sexes, ages,survival periods and severities on the expressions of them in brain tissues.RESULTS: There was no significant difference of sexes and ages in the expressions of proliferating cell nuclear antigen and P27 protein (P > 0.05); however, the expressions of proliferating cell nuclear antigen and P27 protein were milder in non-tumor brain tissues than those in the brain glioma tissues (P < 0.05).Expression of proliferating cell nuclear antigen in brain tissue of grade Ⅲ - Ⅳ severity was stronger than that of grade Ⅰ - Ⅱ severity, and the expression in ≥ 5-year survival periods were also stronger than that in < 5-year survival periods (P < 0.05). In addition, expression of P27 protein in brain tissue of grade Ⅲ - Ⅳ severity was stronger than that of grade Ⅰ - Ⅱ severity, and the expression in ≥ 5-year survival periods were also stronger than that in < 5-year survival periods (P < 0.05).CONCLUSION: Abnormal expressions of proliferating cell nuclear antigen and P27 protein in human brain glioma are closely related to onset, development and prognosis of tumor.

  17. Differentially expressed genes in pancreatic ductal adenocarcinomas identified through serial analysis of gene expression

    Hustinx, Steven R; Cao, Dengfeng; Maitra, Anirban;

    2004-01-01

    Serial analysis of gene expression (SAGE) is a powerful tool for the discovery of novel tumor markers. The publicly available online SAGE libraries of normal and neoplastic tissues (http://www.ncbi.nlm.nih.gov/SAGE/) have recently been expanded; in addition, a more complete annotation of the human...... genome and better biocomputational techniques have substantially improved the assignment of differentially expressed SAGE "tags" to human genes. These improvements have provided us with an opportunity to re-evaluate global gene expression in pancreatic cancer using existing SAGE libraries. SAGE libraries...... generated from six pancreatic cancers were compared to SAGE libraries generated from 11 non-neoplastic tissues. Compared to normal tissue libraries, we identified 453 SAGE tags as differentially expressed in pancreatic cancer, including 395 that mapped to known genes and 58 "uncharacterized" tags. Of the...

  18. Gene expression profiles in skeletal muscle after gene electrotransfer

    Eriksen Jens

    2007-06-01

    Full Text Available Abstract Background Gene transfer by electroporation (DNA electrotransfer to muscle results in high level long term transgenic expression, showing great promise for treatment of e.g. protein deficiency syndromes. However little is known about the effects of DNA electrotransfer on muscle fibres. We have therefore investigated transcriptional changes through gene expression profile analyses, morphological changes by histological analysis, and physiological changes by force generation measurements. DNA electrotransfer was obtained using a combination of a short high voltage pulse (HV, 1000 V/cm, 100 μs followed by a long low voltage pulse (LV, 100 V/cm, 400 ms; a pulse combination optimised for efficient and safe gene transfer. Muscles were transfected with green fluorescent protein (GFP and excised at 4 hours, 48 hours or 3 weeks after treatment. Results Differentially expressed genes were investigated by microarray analysis, and descriptive statistics were performed to evaluate the effects of 1 electroporation, 2 DNA injection, and 3 time after treatment. The biological significance of the results was assessed by gene annotation and supervised cluster analysis. Generally, electroporation caused down-regulation of structural proteins e.g. sarcospan and catalytic enzymes. Injection of DNA induced down-regulation of intracellular transport proteins e.g. sentrin. The effects on muscle fibres were transient as the expression profiles 3 weeks after treatment were closely related with the control muscles. Most interestingly, no changes in the expression of proteins involved in inflammatory responses or muscle regeneration was detected, indicating limited muscle damage and regeneration. Histological analysis revealed structural changes with loss of cell integrity and striation pattern in some fibres after DNA+HV+LV treatment, while HV+LV pulses alone showed preservation of cell integrity. No difference in the force generation capacity was observed in

  19. Gene expression profiling in sinonasal adenocarcinoma

    Sébille-Rivain Véronique

    2009-11-01

    Full Text Available Abstract Background Sinonasal adenocarcinomas are uncommon tumors which develop in the ethmoid sinus after exposure to wood dust. Although the etiology of these tumors is well defined, very little is known about their molecular basis and no diagnostic tool exists for their early detection in high-risk workers. Methods To identify genes involved in this disease, we performed gene expression profiling using cancer-dedicated microarrays, on nine matched samples of sinonasal adenocarcinomas and non-tumor sinusal tissue. Microarray results were validated by quantitative RT-PCR and immunohistochemistry on two additional sets of tumors. Results Among the genes with significant differential expression we selected LGALS4, ACS5, CLU, SRI and CCT5 for further exploration. The overexpression of LGALS4, ACS5, SRI, CCT5 and the downregulation of CLU were confirmed by quantitative RT-PCR. Immunohistochemistry was performed for LGALS4 (Galectin 4, ACS5 (Acyl-CoA synthetase and CLU (Clusterin proteins: LGALS4 was highly up-regulated, particularly in the most differentiated tumors, while CLU was lost in all tumors. The expression of ACS5, was more heterogeneous and no correlation was observed with the tumor type. Conclusion Within our microarray study in sinonasal adenocarcinoma we identified two proteins, LGALS4 and CLU, that were significantly differentially expressed in tumors compared to normal tissue. A further evaluation on a new set of tissues, including precancerous stages and low grade tumors, is necessary to evaluate the possibility of using them as diagnostic markers.

  20. A systematic screen for genes expressed in definitive endoderm by Serial Analysis of Gene Expression (SAGE

    Jones Steven JM

    2007-08-01

    Full Text Available Abstract Background The embryonic definitive endoderm (DE gives rise to organs of the gastrointestinal and respiratory tract including the liver, pancreas and epithelia of the lung and colon. Understanding how DE progenitor cells generate these tissues is critical to understanding the cause of visceral organ disorders and cancers, and will ultimately lead to novel therapies including tissue and organ regeneration. However, investigation into the molecular mechanisms of DE differentiation has been hindered by the lack of early DE-specific markers. Results We describe the identification of novel as well as known genes that are expressed in DE using Serial Analysis of Gene Expression (SAGE. We generated and analyzed three longSAGE libraries from early DE of murine embryos: early whole definitive endoderm (0–6 somite stage, foregut (8–12 somite stage, and hindgut (8–12 somite stage. A list of candidate genes enriched for expression in endoderm was compiled through comparisons within these three endoderm libraries and against 133 mouse longSAGE libraries generated by the Mouse Atlas of Gene Expression Project encompassing multiple embryonic tissues and stages. Using whole mount in situ hybridization, we confirmed that 22/32 (69% genes showed previously uncharacterized expression in the DE. Importantly, two genes identified, Pyy and 5730521E12Rik, showed exclusive DE expression at early stages of endoderm patterning. Conclusion The high efficiency of this endoderm screen indicates that our approach can be successfully used to analyze and validate the vast amount of data obtained by the Mouse Atlas of Gene Expression Project. Importantly, these novel early endoderm-expressing genes will be valuable for further investigation into the molecular mechanisms that regulate endoderm development.

  1. FARO server: Meta-analysis of gene expression by matching gene expression signatures to a compendium of public gene expression data

    Manijak, Mieszko P.; Nielsen, Henrik Bjørn

    2011-01-01

    BACKGROUND: Although, systematic analysis of gene annotation is a powerful tool for interpreting gene expression data, it sometimes is blurred by incomplete gene annotation, missing expression response of key genes and secondary gene expression responses. These shortcomings may be partially...... circumvented by instead matching gene expression signatures to signatures of other experiments. FINDINGS: To facilitate this we present the Functional Association Response by Overlap (FARO) server, that match input signatures to a compendium of 242 gene expression signatures, extracted from more than 1700...... Arabidopsis microarray experiments. CONCLUSIONS: Hereby we present a publicly available tool for robust characterization of Arabidopsis gene expression experiments which can point to similar experimental factors in other experiments. The server is available at http://www.cbs.dtu.dk/services/faro/....

  2. FARO server: Meta-analysis of gene expression by matching gene expression signatures to a compendium of public gene expression data

    Nielsen Henrik B

    2011-06-01

    Full Text Available Abstract Background Although, systematic analysis of gene annotation is a powerful tool for interpreting gene expression data, it sometimes is blurred by incomplete gene annotation, missing expression response of key genes and secondary gene expression responses. These shortcomings may be partially circumvented by instead matching gene expression signatures to signatures of other experiments. Findings To facilitate this we present the Functional Association Response by Overlap (FARO server, that match input signatures to a compendium of 242 gene expression signatures, extracted from more than 1700 Arabidopsis microarray experiments. Conclusions Hereby we present a publicly available tool for robust characterization of Arabidopsis gene expression experiments which can point to similar experimental factors in other experiments. The server is available at http://www.cbs.dtu.dk/services/faro/.

  3. Effect of Acupuncture on Uncoupling Protein 1 Gene Expression for Brown Adipose Tissue of Obese Rats

    刘志诚; 孙凤岷; 赵东红; 张中成; 孙志; 吴海涛; 徐炳国; 朱苗花; 李朝军

    2003-01-01

    Objective: To explore the effects of acupuncture on the expression of uncoupling protein 1(UCP1) gene of brown adipose tissue (BAT) in obese rats. Methods: The expression of UCP1 gene of BAT was determined with RT-PCR technique. The changes of body weight, Lee′s index, body fat, and the expression of UCP1 gene of BAT in obese rats were observed before and after acupuncture. Resuits:The body weight, Lee′s index, body fat in obese rats were all markedly higher than those in normal rats,but the expression of UCP1 gene of BAT in obese rats was all lower than that in normal rats. There were negative correlation between the obesity index and the expression of UCP1 gene in BAT. After acupuncture the marked effect of weight loss was achieved while the expression of UCP1 gene of BAT obviously increased in obese rats. Conclusion: The abnormal reduction for expression of UCP1 gene of BAT might be an important cause for the obesity. To promote the expression of UCP1 in obese organism might be an important cellular and molecular mechanism in anti-obesity effect by acupuncture.

  4. Association of the ADRA1A gene and the severity of metabolic abnormalities in patients with schizophrenia.

    Cheng, Chin; Chiu, Hsien-Jane; Loh, El-Wui; Chan, Chin-Hong; Hwu, Tzong-Ming; Liu, Yun-Ru; Lan, Tsuo-Hung

    2012-01-10

    Patients with schizophrenia have a higher risk of developing metabolic abnormalities and their associated diseases. Some studies found that the accumulative number of metabolic syndrome components was associated with the severity of metabolic abnormalities. The purpose of this study was to examine the roles of the ADRA1A, ADRA2A, ADRB3, and 5HT2A genes in the risk of having more severe metabolic abnormalities among patients with schizophrenia. We studied a sample of 232 chronic inpatients with schizophrenia (120 males and 112 females) to explore the associations between the four candidate genes and the severity of metabolic syndrome by accumulative number of the components. Four single nucleotide polymorphisms in the candidate genes were genotyped, including the Arg347Cys in ADRA1A, the C1291G in ADRA2A, the Try64Arg in ADRB3, and the T102C in 5HT2A. An association between the accumulative number of metabolic syndrome components and the ADRA1A gene was found after adjusting age, sex, and other related variables (p-value=0.036). Presence of the Arg347 allele in the ADRA1A gene is a risk factor for having more severe metabolic abnormalities. These findings suggest a medical attention of closely monitoring metabolic risks for schizophrenia patients with high-risk genotypes. PMID:22037178

  5. Gene expression in Pseudomonas aeruginosa swarming motility

    Déziel Eric

    2010-10-01

    Full Text Available Abstract Background The bacterium Pseudomonas aeruginosa is capable of three types of motilities: swimming, twitching and swarming. The latter is characterized by a fast and coordinated group movement over a semi-solid surface resulting from intercellular interactions and morphological differentiation. A striking feature of swarming motility is the complex fractal-like patterns displayed by migrating bacteria while they move away from their inoculation point. This type of group behaviour is still poorly understood and its characterization provides important information on bacterial structured communities such as biofilms. Using GeneChip® Affymetrix microarrays, we obtained the transcriptomic profiles of both bacterial populations located at the tip of migrating tendrils and swarm center of swarming colonies and compared these profiles to that of a bacterial control population grown on the same media but solidified to not allow swarming motility. Results Microarray raw data were corrected for background noise with the RMA algorithm and quantile normalized. Differentially expressed genes between the three conditions were selected using a threshold of 1.5 log2-fold, which gave a total of 378 selected genes (6.3% of the predicted open reading frames of strain PA14. Major shifts in gene expression patterns are observed in each growth conditions, highlighting the presence of distinct bacterial subpopulations within a swarming colony (tendril tips vs. swarm center. Unexpectedly, microarrays expression data reveal that a minority of genes are up-regulated in tendril tip populations. Among them, we found energy metabolism, ribosomal protein and transport of small molecules related genes. On the other hand, many well-known virulence factors genes were globally repressed in tendril tip cells. Swarm center cells are distinct and appear to be under oxidative and copper stress responses. Conclusions Results reported in this study show that, as opposed to

  6. Annotation of gene function in citrus using gene expression information and co-expression networks

    Wong, Darren CJ; Sweetman, Crystal; Ford, Christopher M

    2014-01-01

    Background The genus Citrus encompasses major cultivated plants such as sweet orange, mandarin, lemon and grapefruit, among the world’s most economically important fruit crops. With increasing volumes of transcriptomics data available for these species, Gene Co-expression Network (GCN) analysis is a viable option for predicting gene function at a genome-wide scale. GCN analysis is based on a “guilt-by-association” principle whereby genes encoding proteins involved in similar and/or related bi...

  7. OryzaExpress: An Integrated Database of Gene Expression Networks and Omics Annotations in Rice

    Hamada, Kazuki; Hongo, Kohei; Suwabe, Keita; Shimizu, Akifumi; Nagayama, Taishi; Abe, Reina; Kikuchi, Shunsuke; Yamamoto, Naoki; Fujii, Takaaki; Yokoyama, Koji; Tsuchida, Hiroko; Sano, Kazumi; Mochizuki, Takako; Oki, Nobuhiko; Horiuchi, Youko

    2010-01-01

    Similarity of gene expression profiles provides important clues for understanding the biological functions of genes, biological processes and metabolic pathways related to genes. A gene expression network (GEN) is an ideal choice to grasp such expression profile similarities among genes simultaneously. For GEN construction, the Pearson correlation coefficient (PCC) has been widely used as an index to evaluate the similarities of expression profiles for gene pairs. However, calculation of PCCs...

  8. Identifying Driver Genes in Cancer by Triangulating Gene Expression, Gene Location, and Survival Data

    Rouam, Sigrid; Miller, Lance D; Karuturi, R Krishna Murthy

    2014-01-01

    Driver genes are directly responsible for oncogenesis and identifying them is essential in order to fully understand the mechanisms of cancer. However, it is difficult to delineate them from the larger pool of genes that are deregulated in cancer (ie, passenger genes). In order to address this problem, we developed an approach called TRIAngulating Gene Expression (TRIAGE through clinico-genomic intersects). Here, we present a refinement of this approach incorporating a new scoring methodology to identify putative driver genes that are deregulated in cancer. TRIAGE triangulates – or integrates – three levels of information: gene expression, gene location, and patient survival. First, TRIAGE identifies regions of deregulated expression (ie, expression footprints) by deriving a newly established measure called the Local Singular Value Decomposition (LSVD) score for each locus. Driver genes are then distinguished from passenger genes using dual survival analyses. Incorporating measurements of gene expression and weighting them according to the LSVD weight of each tumor, these analyses are performed using the genes located in significant expression footprints. Here, we first use simulated data to characterize the newly established LSVD score. We then present the results of our application of this refined version of TRIAGE to gene expression data from five cancer types. This refined version of TRIAGE not only allowed us to identify known prominent driver genes, such as MMP1, IL8, and COL1A2, but it also led us to identify several novel ones. These results illustrate that TRIAGE complements existing tools, allows for the identification of genes that drive cancer and could perhaps elucidate potential future targets of novel anticancer therapeutics. PMID:25949096

  9. DNA supercoiling and bacterial gene expression.

    Dorman, Charles J

    2006-01-01

    DNA in bacterial cells is maintained in a negatively supercoiled state. This contributes to the organization of the bacterial nucleoid and also influences the global gene expression pattern in the cell through modulatory effects on transcription. Supercoiling arises as a result of changes to the linking number of the relaxed double-stranded DNA molecule and is set and reset by the action of DNA topoisomerases. This process is subject to a multitude of influences that are usually summarized as environmental stress. Responsiveness of linking number change to stress offers the promise of a mechanism for the wholesale adjustment of the transcription programme of the cell as the bacterium experiences different environments. Recent data from DNA microarray experiments support this proposition. The emerging picture is one of DNA supercoiling acting at or near the apex of a regulatory hierarchy where it collaborates with nucleoid-associated proteins and transcription factors to determine the gene expression profile of the cell. PMID:17338437

  10. Insights into SAGA function during gene expression

    Rodríguez-Navarro, Susana

    2009-01-01

    Histone modifications are a crucial source of epigenetic control. SAGA (Spt–Ada–Gcn5 acetyltransferase) is a chromatin-modifying complex that contains two distinct enzymatic activities, Gcn5 and Ubp8, through which it acetylates and deubiquitinates histone residues, respectively, thereby enforcing a pattern of modifications that is decisive in regulating gene expression. Here, I discuss the latest contributions to understanding the roles of the SAGA complex, highlighting the characterization of the SAGA-deubiquitination module, and emphasizing the functions newly ascribed to SAGA during transcription elongation and messenger-RNA export. These findings suggest that a crosstalk exists between chromatin remodelling, transcription and messenger-RNA export, which could constitute a checkpoint for accurate gene expression. I focus particularly on the new components of human SAGA, which was recently discovered and confirms the conservation of the SAGA complex throughout evolution. PMID:19609321

  11. Aberrant epigenetic changes and gene expression in cloned cattle dying around birth

    Zhao Dingsheng

    2008-02-01

    Full Text Available Abstract Background Aberrant reprogramming of donor somatic cell nuclei may result in many severe problems in animal cloning. To assess the extent of abnormal epigenetic modifications and gene expression in clones, we simultaneously examined DNA methylation, histone H4 acetylation and expression of six genes (β-actin, VEGF, oct4, TERT, H19 and Igf2 and a repetitive sequence (art2 in five organs (heart, liver, spleen, lung and kidney from two cloned cattle groups that had died at different stages. In the ED group (early death, n = 3, the cloned cattle died in the perinatal period. The cattle in the LD group (late death, n = 3 died after the perinatal period. Normally reproduced cattle served as a control group (n = 3. Results Aberrant DNA methylation, histone H4 acetylation and gene expression were observed in both cloned groups. The ED group showed relatively fewer severe DNA methylation abnormalities (p Conclusion Deaths of clones may be ascribed to abnormal expression of a very limited number of genes.

  12. A novel approach for discovering condition-specific correlations of gene expressions within biological pathways by using cloud computing technology.

    Chang, Tzu-Hao; Wu, Shih-Lin; Wang, Wei-Jen; Horng, Jorng-Tzong; Chang, Cheng-Wei

    2014-01-01

    Microarrays are widely used to assess gene expressions. Most microarray studies focus primarily on identifying differential gene expressions between conditions (e.g., cancer versus normal cells), for discovering the major factors that cause diseases. Because previous studies have not identified the correlations of differential gene expression between conditions, crucial but abnormal regulations that cause diseases might have been disregarded. This paper proposes an approach for discovering the condition-specific correlations of gene expressions within biological pathways. Because analyzing gene expression correlations is time consuming, an Apache Hadoop cloud computing platform was implemented. Three microarray data sets of breast cancer were collected from the Gene Expression Omnibus, and pathway information from the Kyoto Encyclopedia of Genes and Genomes was applied for discovering meaningful biological correlations. The results showed that adopting the Hadoop platform considerably decreased the computation time. Several correlations of differential gene expressions were discovered between the relapse and nonrelapse breast cancer samples, and most of them were involved in cancer regulation and cancer-related pathways. The results showed that breast cancer recurrence might be highly associated with the abnormal regulations of these gene pairs, rather than with their individual expression levels. The proposed method was computationally efficient and reliable, and stable results were obtained when different data sets were used. The proposed method is effective in identifying meaningful biological regulation patterns between conditions. PMID:24579087

  13. Chromosome 17 abnormalities and mutation of the TP53 gene: correlation between cytogenetics, flow cytometry and molecular analysis in three cases of chronic myeloid leukemia

    Luize Otero

    2005-03-01

    Full Text Available chronic myeloid leukemia (CML have been described. This chromosomal region contains the tumor suppressor gene TP53 that may be an important factor in the evolution of this disease. In this study, we used flow cytometry and western blotting to assess p53 protein expression and single stranded conformational polymorphism to examine TP53 gene alterations in three patients with CML who showed alterations in 17p. Only the case with del(17(p11 had p53 expression positive by flow cytometry and an abnormal migration pattern by SSCP analysis. The importance of the correlation between the results obtained with these techniques, as well as the clinical course of the patients, are discussed.

  14. Regulation of Gene Expression in Protozoa Parasites

    Consuelo Gomez; Esther Ramirez, M.; Mercedes Calixto-Galvez; Olivia Medel; Rodríguez, Mario A

    2010-01-01

    Infections with protozoa parasites are associated with high burdens of morbidity and mortality across the developing world. Despite extensive efforts to control the transmission of these parasites, the spread of populations resistant to drugs and the lack of effective vaccines against them contribute to their persistence as major public health problems. Parasites should perform a strict control on the expression of genes involved in their pathogenicity, differentiation, immune evasion, or dru...

  15. Optimisation of region-specific reference gene selection and relative gene expression analysis methods for pre-clinical trials of Huntington's disease

    Bates Gillian P

    2008-10-01

    Full Text Available Abstract Background Transcriptional dysregulation is an early, key pathogenic mechanism in Huntington's disease (HD. Therefore, gene expression analyses have biomarker potential for measuring therapeutic efficacy in pre-clinical trials, particularly those aimed at correcting gene expression abnormalities. Housekeeping genes are commonly used as endogenous references in gene expression studies. However, a systematic study comparing the suitability of candidate reference genes for use in HD mouse models has not been performed. To remedy this situation, 12 housekeeping genes were examined to identify suitable reference genes for use in expression assays. Results We found that commonly used reference genes are dysregulated at later time points in the R6/2 mouse model of HD. Therefore, in order to reliably measure gene expression changes for use as pre-clinical trial biomarkers, we set out to identify suitable reference genes for use in R6/2 mice. The expression of potential reference genes was examined in striatum, cortex and cerebellum from 15 week old R6/2 and matched wild-type littermates. Expression levels of candidate reference genes varied according to genotype and brain region. GeNorm software was used to identify the three most stably expressed genes for each brain region. Relative quantification methods using the geometric mean of three reference genes for normalisation enables accurate determination of gene expression levels in wild-type and R6/2 mouse brain regions. Conclusion Our study has identified a reproducible, reliable method by which we able to accurately determine the relative expression level of target genes in specific brain regions, thus increasing the potential of gene expression analysis as a biomarker in HD pre-clinical trials.

  16. Analysis of gene expression in rabbit muscle

    Alena Gálová

    2014-02-01

    Full Text Available Increasing consumer knowledge of the link between diet and health has raised the demand for high quality food. Meat and meat products may be considered as irreplaceable in human nutrition. Breeding livestock to higher content of lean meat and the use of modern hybrids entails problems with the quality of meat. Analysing of livestock genomes could get us a great deal of important information, which may significantly affect the improvement process. Domestic animals are invaluable resources for study of the molecular architecture of complex traits. Although the mapping of quantitative trait loci (QTL responsible for economically important traits in domestic animals has achieved remarkable results in recent decades, not all of the genetic variation in the complex traits has been captured because of the low density of markers used in QTL mapping studies. The genome wide association study (GWAS, which utilizes high-density single-nucleotide polymorphism (SNP, provides a new way to tackle this issue. New technologies now allow producing microarrays containing thousands of hybridization probes on a single membrane or other solid support. We used microarray analysis to study gene expression in rabbit muscle during different developmental age stages. The outputs from GeneSpring GX sotware are presented in this work. After the evaluation of gene expression in rabbits, will be selected genes of interest in relation to meat quality parameters and will be further analyzed by the available methods of molecular biology and genetics.

  17. Inactivation of ca10a and ca10b Genes Leads to Abnormal Embryonic Development and Alters Movement Pattern in Zebrafish.

    Ashok Aspatwar

    Full Text Available Carbonic anhydrase related proteins (CARPs X and XI are highly conserved across species and are predominantly expressed in neural tissues. The biological role of these proteins is still an enigma. Ray-finned fish have lost the CA11 gene, but instead possess two co-orthologs of CA10. We analyzed the expression pattern of zebrafish ca10a and ca10b genes during embryonic development and in different adult tissues, and studied 61 CARP X/XI-like sequences to evaluate their phylogenetic relationship. Sequence analysis of zebrafish ca10a and ca10b reveals strongly predicted signal peptides, N-glycosylation sites, and a potential disulfide, all of which are conserved, suggesting that all of CARP X and XI are secretory proteins and potentially dimeric. RT-qPCR showed that zebrafish ca10a and ca10b genes are expressed in the brain and several other tissues throughout the development of zebrafish. Antisense morpholino mediated knockdown of ca10a and ca10b showed developmental delay with a high rate of mortality in larvae. Zebrafish morphants showed curved body, pericardial edema, and abnormalities in the head and eye, and there was increased apoptotic cell death in the brain region. Swim pattern showed abnormal movement in morphant zebrafish larvae compared to the wild type larvae. The developmental phenotypes of the ca10a and ca10b morphants were confirmed by inactivating these genes with the CRISPR/Cas9 system. In conclusion, we introduce a novel zebrafish model to investigate the mechanisms of CARP Xa and CARP Xb functions. Our data indicate that CARP Xa and CARP Xb have important roles in zebrafish development and suppression of ca10a and ca10b expression in zebrafish larvae leads to a movement disorder.

  18. Reduced expression of Autographa californica nucleopolyhedrovirus ORF34, an essential gene, enhances heterologous gene expression

    Salem, Tamer Z. [Department of Entomology, Michigan State University, East Lansing, MI 48824 (United States); Department of Microbial Molecular Biology, AGERI, Agricultural Research Center, Giza 12619 (Egypt); Division of Biomedical Sciences, Zewail University, Zewail City of Science and Technology, Giza 12588 (Egypt); Zhang, Fengrui [Department of Entomology, Michigan State University, East Lansing, MI 48824 (United States); Thiem, Suzanne M., E-mail: smthiem@msu.edu [Department of Entomology, Michigan State University, East Lansing, MI 48824 (United States); Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824 (United States)

    2013-01-20

    Autographa californica multiple nucleopolyhedrovirus ORF34 is part of a transcriptional unit that includes ORF32, encoding a viral fibroblast growth factor (FGF) and ORF33. We identified ORF34 as a candidate for deletion to improve protein expression in the baculovirus expression system based on enhanced reporter gene expression in an RNAi screen of virus genes. However, ORF34 was shown to be an essential gene. To explore ORF34 function, deletion (KO34) and rescue bacmids were constructed and characterized. Infection did not spread from primary KO34 transfected cells and supernatants from KO34 transfected cells could not infect fresh Sf21 cells whereas the supernatant from the rescue bacmids transfection could recover the infection. In addition, budded viruses were not observed in KO34 transfected cells by electron microscopy, nor were viral proteins detected from the transfection supernatants by western blots. These demonstrate that ORF34 is an essential gene with a possible role in infectious virus production.

  19. Surface antigen expression in chronic lymphocytic leukemia: clustering analysis, interrelationships and effects of chromosomal abnormalities.

    Hulkkonen, J; Vilpo, L; Hurme, M; Vilpo, J

    2002-02-01

    Chronic lymphocytic leukemia (CLL) is a phenotypically distinguishable form of B-lymphoid leukemias. The regularity of surface membrane antigen expression patterns, their interrelationships as well as the effects of the three frequent chromosomal aberrations, ie 11q deletion, 13q deletion and trisomy 12, were investigated in 35 classic CLL cases by flow cytometry. The two-way cluster analysis of 31 individual antigens revealed three expression patterns: (1) most cells in most cases positive (CD5, CD19, CD20, CD23, CD27, CD40, CD45, CD45RA); (2) most cells in most cases negative (CD10, CD14, CD34, CD122, CD154, mIgG); and (3) a mixed pattern with a variable number of positive cases and a variable percentage of positive cells in individual cases (CD11c, CD21, CD22, CD25, CD38, CD45RO, CD79b, CD80, CD95, CD124, CD126, CD130, FMC7, mIgD, mIgkappa, mIglambda, mIgM). The expressions of several antigens were strongly interdependent, even when antigens belonged to entirely different gene families. Such antigen pairs were: CD11c/CD21; CD19/CD45; CD19/CD79b; CD22/CD45RA; CD23/Igkappa; CD25/mIgM; CD27/CD45; CD45/CD79b; CD45RA/Igkappa. In contrast, the expression of some antigens was mutually exclusive, the best examples being CD45RA/CD45RO, CD38/CD80 and CD45RA/CD80. Deletion of chromosome arm 11q attenuated expression of splicing variant CD45RA, but enhanced CD45RO expression. In contrast, cases of trisomy 12 were associated with enhanced CD45RA and attenuated CD45RO expression. Similarly, trisomy 12 was associated with enhanced CD27 and mIgkappa expression. The variable levels of signaling surface membrane antigens, their interactions and interference by genetic aberrations are likely to affect the clinical progression and drug response of CLL. PMID:11840283

  20. White Matter Abnormalities and Dystonic Motor Disorder Associated with Mutations in the "SLC16A2" Gene

    Gika, Artemis D.; Siddiqui, Ata; Hulse, Anthony J.; Edward, Selvakumari; Fallon, Penny; McEntagart, Meriel E.; Jan, Wajanat; Josifova, Dragana; Lerman-Sagie, Tally; Drummond, James; Thompson, Edward; Refetoff, Samuel; Bonnemann, Carsten G.; Jungbluth, Heinz

    2010-01-01

    Aim: Mutations in the "SLC16A2" gene have been implicated in Allan-Herndon-Dudley syndrome (AHDS), an X-linked learning disability syndrome associated with thyroid function test (TFT) abnormalities. Delayed myelination is a non-specific finding in individuals with learning disability whose genetic basis is often uncertain. The aim of this study…

  1. Cholinergic regulation of VIP gene expression in human neuroblastoma cells

    Kristensen, Bo; Georg, Birgitte; Fahrenkrug, Jan

    Vasoactive intestinal polypeptide, muscarinic receptor, neuroblastoma cell, mRNA, gene expression, peptide processing......Vasoactive intestinal polypeptide, muscarinic receptor, neuroblastoma cell, mRNA, gene expression, peptide processing...

  2. The similarity of gene expression between human and mouse tissues

    Dowell, Robin D.

    2011-01-01

    Meta-analysis of human and mouse microarray data reveals conservation of patterns of gene expression that will help to better characterize the evolution of gene expression. See research article: http://genomebiology.com/2010/11/12/R124

  3. The transcriptional regulation of regucalcin gene expression.

    Yamaguchi, Masayoshi

    2011-01-01

    Regucalcin, which is discovered as a calcium-binding protein in 1978, has been shown to play a multifunctional role in many tissues and cell types; regucalcin has been proposed to play a pivotal role in keeping cell homeostasis and function for cell response. Regucalcin and its gene are identified in over 15 species consisting of regucalcin family. Comparison of the nucleotide sequences of regucalcin from vertebrate species is highly conserved in their coding region with throughout evolution. The regucalcin gene is localized on the chromosome X in rat and human. The organization of rat regucalcin gene consists of seven exons and six introns and several consensus regulatory elements exist upstream of the 5'-flanking region. AP-1, NF1-A1, RGPR-p117, β-catenin, and other factors have been found to be a transcription factor in the enhancement of regucalcin gene promoter activity. The transcription activity of regucalcin gene is enhanced through intracellular signaling factors that are mediated through the phosphorylation and dephosphorylation of nuclear protein in vitro. Regucalcin mRNA and its protein are markedly expressed in the liver and kidney cortex of rats. The expression of regucalcin mRNA in the liver and kidney cortex has been shown to stimulate by hormonal factors (including calcium, calcitonin, parathyroid hormone, insulin, estrogen, and dexamethasone) in vivo. Regucalcin mRNA expression is enhanced in the regenerating liver after partial hepatectomy of rats in vivo. The expression of regucalcin mRNA in the liver and kidney with pathophysiological state has been shown to suppress, suggesting an involvement of regucalcin in disease. Liver regucalcin expression is down-regulated in tumor cells, suggesting a suppressive role in the development of carcinogenesis. Liver regucalcin is markedly released into the serum of rats with chemically induced liver injury in vivo. Serum regucalcin has a potential sensitivity as a specific biochemical marker of chronic

  4. Gene expression regulators--MicroRNAs

    CHEN Fang; YIN Q. James

    2005-01-01

    A large class of non-coding RNAs found in small molecule RNAs are closely associated with the regulation of gene expression, which are called microRNA (miRNA). MiRNAs are coded in intergenic or intronic regions and can be formed into foldback hairpin RNAs. These transcripts are cleaved by Dicer, generating mature miRNAs that can silence their target genes in different modes of action. Now, research on small molecule RNAs has gotten breakthrough advance in biology. To discover miRNA genes and their target genes has become hot topics in RNA research. This review attempts to look back the history of miRNA discovery, to introduce the methods of screening miRNAs, to localize miRNA loci in genome, to seek miRNA target genes and the biological function, and to discuss the working mechanisms of miRNAs. Finally, we will discuss the potential important roles of miRNAs in modulating the genesis, development, growth, and differentiation of organisms. Thus, it can be predicted that a complete understanding of miRNA functions will bring us some new concepts, approaches and strategies for the study of living beings.

  5. Digital gene expression analysis of the zebra finch genome

    Burke Terry

    2010-04-01

    Full Text Available Abstract Background In order to understand patterns of adaptation and molecular evolution it is important to quantify both variation in gene expression and nucleotide sequence divergence. Gene expression profiling in non-model organisms has recently been facilitated by the advent of massively parallel sequencing technology. Here we investigate tissue specific gene expression patterns in the zebra finch (Taeniopygia guttata with special emphasis on the genes of the major histocompatibility complex (MHC. Results Almost 2 million 454-sequencing reads from cDNA of six different tissues were assembled and analysed. A total of 11,793 zebra finch transcripts were represented in this EST data, indicating a transcriptome coverage of about 65%. There was a positive correlation between the tissue specificity of gene expression and non-synonymous to synonymous nucleotide substitution ratio of genes, suggesting that genes with a specialised function are evolving at a higher rate (or with less constraint than genes with a more general function. In line with this, there was also a negative correlation between overall expression levels and expression specificity of contigs. We found evidence for expression of 10 different genes related to the MHC. MHC genes showed relatively tissue specific expression levels and were in general primarily expressed in spleen. Several MHC genes, including MHC class I also showed expression in brain. Furthermore, for all genes with highest levels of expression in spleen there was an overrepresentation of several gene ontology terms related to immune function. Conclusions Our study highlights the usefulness of next-generation sequence data for quantifying gene expression in the genome as a whole as well as in specific candidate genes. Overall, the data show predicted patterns of gene expression profiles and molecular evolution in the zebra finch genome. Expression of MHC genes in particular, corresponds well with expression

  6. Methodological Considerations For Gene Expression Profiling Of Human Brain

    Atz, Mary; Walsh, David; Cartagena, Preston; Li, Jun; Evans, Simon; Choudary, Prabhakara; Overman, Kevin; Stein, Richard; Tomita, Hiro; Potkin, Steven; Myers, Rick; Watson, Stanley J.; Jones, E G; Akil, Huda; Bunney, William E.

    2007-01-01

    Gene expression profiles of postmortem brain tissue represent important resources for understanding neuropsychiatric illnesses. The impact(s) of quality covariables on the analysis and results of gene expression studies are important questions. This paper addressed critical variables which might affect gene expression in two brain regions. Four broad groups of quality indicators in gene expression profiling studies (clinical, tissue, RNA, and microarray quality) were identified. These quality...

  7. The gene expression fingerprint of human heart failure

    Tan, Fen-Lai; Moravec, Christine S.; Li, Jianbo; Apperson-Hansen, Carolyn; McCarthy, Patrick M; Young, James B.; Bond, Meredith

    2002-01-01

    Multiple pathways are responsible for transducing mechanical and hormonal stimuli into changes in gene expression during heart failure. In this study our goals were (i) to develop a sound statistical method to establish a comprehensive cutoff point for identification of differentially expressed genes, (ii) to identify a gene expression fingerprint for heart failure, (iii) to attempt to distinguish different etiologies of heart failure by their gene expression fingerprint, and (iv) to identify...

  8. An anatomic gene expression atlas of the adult mouse brain

    Ng, Lydia; Bernard, Amy; Lau, Chris; Overly, Caroline C.; Dong, Hong-Wei; Kuan, Chihchau; Pathak, Sayan; Sunkin, Susan M.; Dang, Chinh; Bohland, Jason W.; Bokil, Hemant; Mitra, Partha P.; Puelles, Luis; Hohmann, John; Anderson, David J.

    2009-01-01

    Studying gene expression provides a powerful means of understanding structure-function relationships in the nervous system. The availability of genome-scale in situ hybridization datasets enables new possibilities for understanding brain organization based on gene expression patterns. The Anatomic Gene Expression Atlas (AGEA) is a new relational atlas revealing the genetic architecture of the adult C57Bl/6J mouse brain based on spatial correlations across expression data for thousands of gene...

  9. Gene Expression Profiling of Xeroderma Pigmentosum

    Bowden Nikola A

    2006-05-01

    Full Text Available Abstract Xeroderma pigmentosum (XP is a rare recessive disorder that is characterized by extreme sensitivity to UV light. UV light exposure results in the formation of DNA damage such as cyclobutane dimers and (6-4 photoproducts. Nucleotide excision repair (NER orchestrates the removal of cyclobutane dimers and (6-4 photoproducts as well as some forms of bulky chemical DNA adducts. The disease XP is comprised of 7 complementation groups (XP-A to XP-G, which represent functional deficiencies in seven different genes, all of which are believed to be involved in NER. The main clinical feature of XP is various forms of skin cancers; however, neurological degeneration is present in XPA, XPB, XPD and XPG complementation groups. The relationship between NER and other types of DNA repair processes is now becoming evident but the exact relationships between the different complementation groups remains to be precisely determined. Using gene expression analysis we have identified similarities and differences after UV light exposure between the complementation groups XP-A, XP-C, XP-D, XP-E, XP-F, XP-G and an unaffected control. The results reveal that there is a graded change in gene expression patterns between the mildest, most similar to the control response (XP-E and the severest form (XP-A of the disease, with the exception of XP-D. Distinct differences between the complementation groups with neurological symptoms (XP-A, XP-D and XP-G and without (XP-C, XP-E and XP-F were also identified. Therefore, this analysis has revealed distinct gene expression profiles for the XP complementation groups and the first step towards understanding the neurological symptoms of XP.

  10. Studying the Complex Expression Dependences between Sets of Coexpressed Genes

    Mario Huerta

    2014-01-01

    Full Text Available Organisms simplify the orchestration of gene expression by coregulating genes whose products function together in the cell. The use of clustering methods to obtain sets of coexpressed genes from expression arrays is very common; nevertheless there are no appropriate tools to study the expression networks among these sets of coexpressed genes. The aim of the developed tools is to allow studying the complex expression dependences that exist between sets of coexpressed genes. For this purpose, we start detecting the nonlinear expression relationships between pairs of genes, plus the coexpressed genes. Next, we form networks among sets of coexpressed genes that maintain nonlinear expression dependences between all of them. The expression relationship between the sets of coexpressed genes is defined by the expression relationship between the skeletons of these sets, where this skeleton represents the coexpressed genes with a well-defined nonlinear expression relationship with the skeleton of the other sets. As a result, we can study the nonlinear expression relationships between a target gene and other sets of coexpressed genes, or start the study from the skeleton of the sets, to study the complex relationships of activation and deactivation between the sets of coexpressed genes that carry out the different cellular processes present in the expression experiments.

  11. Molecular Characterisation of Structural Chromosomal Abnormalities Associated with Congenital Disorders

    Mansouri, Mahmoud R.

    2006-01-01

    Chromosomal abnormalities are defined as changes in the chromosome structure and fall in one of two categories. The first category is numerical alterations while the second category consists of structural abnormalities. Structural chromosomal abnormalities do not always interrupt genes in order to cause disease. They can also affect gene expression by separating a gene and its promoter element from distant regulatory elements. We have used characterisation of structural chromosomal abnormalit...

  12. Subtle rapid eye movement sleep abnormalities in presymptomatic spinocerebellar ataxia type 2 gene carriers.

    Rodríguez-Labrada, Roberto; Velázquez-Perez, Luis; Ochoa, Nalia Canales; Polo, Lourdes Galicia; Valencia, Reyes Haro; Cruz, Gilberto Sánchez; Montero, Jacqueline Medrano; Laffita-Mesa, José M; Mederos, Luis E Almaguer; Zaldívar, Yanetza González; Parra, Cira Torres; Acosta, Arnoy Peña; Mariño, Tania Cruz

    2011-02-01

    Rapid eye movement (REM) sleep disorders are commonly associated to patients with spinocerebellar ataxia type 2 (SCA2); however, these abnormalities have not been studied in presymptomatic gene carriers. To determine whether the REM sleep pathology is detectable before clinical manifestation of SCA2 and evaluate it as a preclinical biomarker, we studied 36 presymptomatic SCA2 individuals and 36 controls by video-polysomnography (VPSG) and sleep questionnaires. Presymptomatic subjects showed significant decrease of REM sleep percentage, REMs density, total sleep time, and sleep efficiency. Aging effect on REM sleep percentage was significant in both groups. There was no correlation between cytosine-adenine-guanine (CAG) repeat length and REM sleep. Our findings identified the REM sleep pathology as a prominent herald sign of SCA2, conferring a special importance to VPSG as a sensitive neurophysiological tool to detect early changes associated with SCA2, which contributes to the understanding of disease pathophysiology and the development of therapeutic trials focused on the preclinical disease stage. PMID:20960485

  13. Gene expression in developing watermelon fruit

    Hernandez Alvaro

    2008-06-01

    Full Text Available Abstract Background Cultivated watermelon form large fruits that are highly variable in size, shape, color, and content, yet have extremely narrow genetic diversity. Whereas a plethora of genes involved in cell wall metabolism, ethylene biosynthesis, fruit softening, and secondary metabolism during fruit development and ripening have been identified in other plant species, little is known of the genes involved in these processes in watermelon. A microarray and quantitative Real-Time PCR-based study was conducted in watermelon [Citrullus lanatus (Thunb. Matsum. & Nakai var. lanatus] in order to elucidate the flow of events associated with fruit development and ripening in this species. RNA from three different maturation stages of watermelon fruits, as well as leaf, were collected from field grown plants during three consecutive years, and analyzed for gene expression using high-density photolithography microarrays and quantitative PCR. Results High-density photolithography arrays, composed of probes of 832 EST-unigenes from a subtracted, fruit development, cDNA library of watermelon were utilized to examine gene expression at three distinct time-points in watermelon fruit development. Analysis was performed with field-grown fruits over three consecutive growing seasons. Microarray analysis identified three hundred and thirty-five unique ESTs that are differentially regulated by at least two-fold in watermelon fruits during the early, ripening, or mature stage when compared to leaf. Of the 335 ESTs identified, 211 share significant homology with known gene products and 96 had no significant matches with any database accession. Of the modulated watermelon ESTs related to annotated genes, a significant number were found to be associated with or involved in the vascular system, carotenoid biosynthesis, transcriptional regulation, pathogen and stress response, and ethylene biosynthesis. Ethylene bioassays, performed with a closely related watermelon

  14. Gene Expression Profile Changes in Germinating Rice

    Dongli He; Chao Han; Pingfang Yang

    2011-01-01

    Water absorption is a prerequisite for seed germination.During imbibition,water influx causes the resumption of many physiological and metabolic processes in growing seed.In order to obtain more complete knowledge about the mechanism of seed germination,two-dimensional gel electrophoresis was applied to investigate the protein profile changes of rice seed during the first 48 h of imbibition.Thirtynine differentially expressed proteins were identified,including 19 down-regulated and 20 up-regulated proteins.Storage proteins and some seed development- and desiccation-associated proteins were down regulated.The changed patterns of these proteins indicated extensive mobilization of seed reserves.By contrast,catabolism-associated proteins were up regulated upon imbibition.Semi-quantitative real time polymerase chain reaction analysis showed that most of the genes encoding the down- or upregulated proteins were also down or up regulated at mRNA level.The expression of these genes was largely consistent at mRNA and protein levels.In providing additional information concerning gene regulation in early plant life,this study will facilitate understanding of the molecular mechanisms of seed germination.

  15. Monoallelic expression of the human FOXP2 speech gene

    Adegbola, Abidemi A.; Cox, Gerald F.; Bradshaw, Elizabeth M.; Hafler, David A.; Gimelbrant, Alexander; Chess, Andrew

    2014-01-01

    The recent descriptions of widespread random monoallelic expression (RMAE) of genes distributed throughout the autosomal genome indicate that there are more genes subject to RMAE on autosomes than the number of genes on the X chromosome where X-inactivation dictates RMAE of X-linked genes. Several of the autosomal genes that undergo RMAE have independently been implicated in human Mendelian disorders. Thus, parsing the relationship between allele-specific expression of these genes and disease...

  16. Novel redox nanomedicine improves gene expression of polyion complex vector

    Kazuko Toh, Toru Yoshitomi, Yutaka Ikeda and Yukio Nagasaki

    2011-01-01

    Gene therapy has generated worldwide attention as a new medical technology. While non-viral gene vectors are promising candidates as gene carriers, they have several issues such as toxicity and low transfection efficiency. We have hypothesized that the generation of reactive oxygen species (ROS) affects gene expression in polyplex supported gene delivery systems. The effect of ROS on the gene expression of polyplex was evaluated using a nitroxide radical-containing nanoparticle (RNP) as an RO...

  17. Prognostic Significance and Gene Expression Profiles of p53 Mutations in Microsatellite-Stable Stage III Colorectal Adenocarcinomas

    Katkoori, Venkat R.; Shanmugam, Chandrakumar; Jia, Xu; Vitta, Swaroop P.; Sthanam, Meenakshi; Callens, Tom; Messiaen, Ludwine; Chen, Dongquan; Zhang, Bin; Bumpers, Harvey L.; Samuel, Temesgen; Manne, Upender

    2012-01-01

    Although the prognostic value of p53 abnormalities in Stage III microsatellite stable (MSS) colorectal cancers (CRCs) is known, the gene expression profiles specific to the p53 status in the MSS background are not known. Therefore, the current investigation has focused on identification and validation of the gene expression profiles associated with p53 mutant phenotypes in MSS Stage III CRCs. Genomic DNA extracted from 135 formalin-fixed paraffin-embedded tissues, was analyzed for microsatell...

  18. Nuclear AXIN2 represses MYC gene expression

    Rennoll, Sherri A.; Konsavage, Wesley M.; Yochum, Gregory S., E-mail: gsy3@psu.edu

    2014-01-03

    Highlights: •AXIN2 localizes to cytoplasmic and nuclear compartments in colorectal cancer cells. •Nuclear AXIN2 represses the activity of Wnt-responsive luciferase reporters. •β-Catenin bridges AXIN2 to TCF transcription factors. •AXIN2 binds the MYC promoter and represses MYC gene expression. -- Abstract: The β-catenin transcriptional coactivator is the key mediator of the canonical Wnt signaling pathway. In the absence of Wnt, β-catenin associates with a cytosolic and multi-protein destruction complex where it is phosphorylated and targeted for proteasomal degradation. In the presence of Wnt, the destruction complex is inactivated and β-catenin translocates into the nucleus. In the nucleus, β-catenin binds T-cell factor (TCF) transcription factors to activate expression of c-MYC (MYC) and Axis inhibition protein 2 (AXIN2). AXIN2 is a member of the destruction complex and, thus, serves in a negative feedback loop to control Wnt/β-catenin signaling. AXIN2 is also present in the nucleus, but its function within this compartment is unknown. Here, we demonstrate that AXIN2 localizes to the nuclei of epithelial cells within normal and colonic tumor tissues as well as colorectal cancer cell lines. In the nucleus, AXIN2 represses expression of Wnt/β-catenin-responsive luciferase reporters and forms a complex with β-catenin and TCF. We demonstrate that AXIN2 co-occupies β-catenin/TCF complexes at the MYC promoter region. When constitutively localized to the nucleus, AXIN2 alters the chromatin structure at the MYC promoter and directly represses MYC gene expression. These findings suggest that nuclear AXIN2 functions as a rheostat to control MYC expression in response to Wnt/β-catenin signaling.

  19. Nuclear AXIN2 represses MYC gene expression

    Highlights: •AXIN2 localizes to cytoplasmic and nuclear compartments in colorectal cancer cells. •Nuclear AXIN2 represses the activity of Wnt-responsive luciferase reporters. •β-Catenin bridges AXIN2 to TCF transcription factors. •AXIN2 binds the MYC promoter and represses MYC gene expression. -- Abstract: The β-catenin transcriptional coactivator is the key mediator of the canonical Wnt signaling pathway. In the absence of Wnt, β-catenin associates with a cytosolic and multi-protein destruction complex where it is phosphorylated and targeted for proteasomal degradation. In the presence of Wnt, the destruction complex is inactivated and β-catenin translocates into the nucleus. In the nucleus, β-catenin binds T-cell factor (TCF) transcription factors to activate expression of c-MYC (MYC) and Axis inhibition protein 2 (AXIN2). AXIN2 is a member of the destruction complex and, thus, serves in a negative feedback loop to control Wnt/β-catenin signaling. AXIN2 is also present in the nucleus, but its function within this compartment is unknown. Here, we demonstrate that AXIN2 localizes to the nuclei of epithelial cells within normal and colonic tumor tissues as well as colorectal cancer cell lines. In the nucleus, AXIN2 represses expression of Wnt/β-catenin-responsive luciferase reporters and forms a complex with β-catenin and TCF. We demonstrate that AXIN2 co-occupies β-catenin/TCF complexes at the MYC promoter region. When constitutively localized to the nucleus, AXIN2 alters the chromatin structure at the MYC promoter and directly represses MYC gene expression. These findings suggest that nuclear AXIN2 functions as a rheostat to control MYC expression in response to Wnt/β-catenin signaling

  20. Performance Analysis of Enhanced Clustering Algorithm for Gene Expression Data

    Chandrasekhar, T; Elayaraja, E

    2011-01-01

    Microarrays are made it possible to simultaneously monitor the expression profiles of thousands of genes under various experimental conditions. It is used to identify the co-expressed genes in specific cells or tissues that are actively used to make proteins. This method is used to analysis the gene expression, an important task in bioinformatics research. Cluster analysis of gene expression data has proved to be a useful tool for identifying co-expressed genes, biologically relevant groupings of genes and samples. In this paper we applied K-Means with Automatic Generations of Merge Factor for ISODATA- AGMFI. Though AGMFI has been applied for clustering of Gene Expression Data, this proposed Enhanced Automatic Generations of Merge Factor for ISODATA- EAGMFI Algorithms overcome the drawbacks of AGMFI in terms of specifying the optimal number of clusters and initialization of good cluster centroids. Experimental results on Gene Expression Data show that the proposed EAGMFI algorithms could identify compact clus...

  1. Epilepsy caused by an abnormal alternative splicing with dosage effect of the SV2A gene in a chicken model.

    Douaud, Marine; Feve, Katia; Pituello, Fabienne; Gourichon, David; Boitard, Simon; Leguern, Eric; Coquerelle, Gérard; Vieaud, Agathe; Batini, Cesira; Naquet, Robert; Vignal, Alain; Tixier-Boichard, Michèle; Pitel, Frédérique

    2011-01-01

    Photosensitive reflex epilepsy is caused by the combination of an individual's enhanced sensitivity with relevant light stimuli, such as stroboscopic lights or video games. This is the most common reflex epilepsy in humans; it is characterized by the photoparoxysmal response, which is an abnormal electroencephalographic reaction, and seizures triggered by intermittent light stimulation. Here, by using genetic mapping, sequencing and functional analyses, we report that a mutation in the acceptor site of the second intron of SV2A (the gene encoding synaptic vesicle glycoprotein 2A) is causing photosensitive reflex epilepsy in a unique vertebrate model, the Fepi chicken strain, a spontaneous model where the neurological disorder is inherited as an autosomal recessive mutation. This mutation causes an aberrant splicing event and significantly reduces the level of SV2A mRNA in homozygous carriers. Levetiracetam, a second generation antiepileptic drug, is known to bind SV2A, and SV2A knock-out mice develop seizures soon after birth and usually die within three weeks. The Fepi chicken survives to adulthood and responds to levetiracetam, suggesting that the low-level expression of SV2A in these animals is sufficient to allow survival, but does not protect against seizures. Thus, the Fepi chicken model shows that the role of the SV2A pathway in the brain is conserved between birds and mammals, in spite of a large phylogenetic distance. The Fepi model appears particularly useful for further studies of physiopathology of reflex epilepsy, in comparison with induced models of epilepsy in rodents. Consequently, SV2A is a very attractive candidate gene for analysis in the context of both mono- and polygenic generalized epilepsies in humans. PMID:22046416

  2. Epilepsy caused by an abnormal alternative splicing with dosage effect of the SV2A gene in a chicken model.

    Marine Douaud

    Full Text Available Photosensitive reflex epilepsy is caused by the combination of an individual's enhanced sensitivity with relevant light stimuli, such as stroboscopic lights or video games. This is the most common reflex epilepsy in humans; it is characterized by the photoparoxysmal response, which is an abnormal electroencephalographic reaction, and seizures triggered by intermittent light stimulation. Here, by using genetic mapping, sequencing and functional analyses, we report that a mutation in the acceptor site of the second intron of SV2A (the gene encoding synaptic vesicle glycoprotein 2A is causing photosensitive reflex epilepsy in a unique vertebrate model, the Fepi chicken strain, a spontaneous model where the neurological disorder is inherited as an autosomal recessive mutation. This mutation causes an aberrant splicing event and significantly reduces the level of SV2A mRNA in homozygous carriers. Levetiracetam, a second generation antiepileptic drug, is known to bind SV2A, and SV2A knock-out mice develop seizures soon after birth and usually die within three weeks. The Fepi chicken survives to adulthood and responds to levetiracetam, suggesting that the low-level expression of SV2A in these animals is sufficient to allow survival, but does not protect against seizures. Thus, the Fepi chicken model shows that the role of the SV2A pathway in the brain is conserved between birds and mammals, in spite of a large phylogenetic distance. The Fepi model appears particularly useful for further studies of physiopathology of reflex epilepsy, in comparison with induced models of epilepsy in rodents. Consequently, SV2A is a very attractive candidate gene for analysis in the context of both mono- and polygenic generalized epilepsies in humans.

  3. Molecular mechanisms of curcumin action: gene expression.

    Shishodia, Shishir

    2013-01-01

    Curcumin derived from the tropical plant Curcuma longa has a long history of use as a dietary agent, food preservative, and in traditional Asian medicine. It has been used for centuries to treat biliary disorders, anorexia, cough, diabetic wounds, hepatic disorders, rheumatism, and sinusitis. The preventive and therapeutic properties of curcumin are associated with its antioxidant, anti-inflammatory, and anticancer properties. Extensive research over several decades has attempted to identify the molecular mechanisms of curcumin action. Curcumin modulates numerous molecular targets by altering their gene expression, signaling pathways, or through direct interaction. Curcumin regulates the expression of inflammatory cytokines (e.g., TNF, IL-1), growth factors (e.g., VEGF, EGF, FGF), growth factor receptors (e.g., EGFR, HER-2, AR), enzymes (e.g., COX-2, LOX, MMP9, MAPK, mTOR, Akt), adhesion molecules (e.g., ELAM-1, ICAM-1, VCAM-1), apoptosis related proteins (e.g., Bcl-2, caspases, DR, Fas), and cell cycle proteins (e.g., cyclin D1). Curcumin modulates the activity of several transcription factors (e.g., NF-κB, AP-1, STAT) and their signaling pathways. Based on its ability to affect multiple targets, curcumin has the potential for the prevention and treatment of various diseases including cancers, arthritis, allergies, atherosclerosis, aging, neurodegenerative disease, hepatic disorders, obesity, diabetes, psoriasis, and autoimmune diseases. This review summarizes the molecular mechanisms of modulation of gene expression by curcumin. PMID:22996381

  4. Seeking gene relationships in gene expression data using support vector machine regression

    Yu Robert; DeHoff Kevin; Amos Christopher I; Shete Sanjay

    2007-01-01

    Abstract Several genetic determinants responsible for individual variation in gene expression have been located using linkage and association analyses. These analyses have revealed regulatory relationships between genes. The heritability of expression variation as a quantitative phenotype reflects its underlying genetic architecture. Using support vector machine regression (SVMR) and gene ontological information, we proposed an approach to identify gene relationships in expression data provid...

  5. Expression of RECK Gene and MMP-9 in Hilar Cholangiocarcinoma and Its Clinical Significance

    2005-01-01

    In order to study the expression of transformation suppressor gene RECK and MMP-9 in hilar cholangiocarcinomas and its clinical significance, and explore the roles of RECK gene in metastasis and invasion of hilar cholangiocarcinoma, the expression levels of RECK, and MMP-9 mRNA were detected by using reverse transcription-polymerase reaction in 42 paraffin-embedded samples of hilar cholangiocarcinomas and 10 samples of benign bile duct diseases. The results showed that in hilar cholangiocarcinoma tissues, the expression of RECK gene was 0. 235± 0. 062, significantly lower than in normal bile duct tissues (0. 533±0. 024, P<0.05). In hilar cholangiocarcinoma tissues, the expression of MMP-9 (0. 528±0. 039) was significantly higher than in the normal tissues (0. 311±0. 032, P<0.05). The expression of RECK gene was closely related to the intrahepatic and surrounding organs invasion (P<0.05). It was concluded that RECK gene could inhibit the expression of MMP-9 in hilar cholangiocarcinomas and closely correlated with the biological behaviors. The abnormal expression of RECK gene might be one of the molecular mechanisms of hilar cholangiocarcinoma metastasis.

  6. Global expression differences and tissue specific expression differences in rice evolution result in two contrasting types of differentially expressed genes

    Horiuchi, Youko

    2015-12-23

    Background Since the development of transcriptome analysis systems, many expression evolution studies characterized evolutionary forces acting on gene expression, without explicit discrimination between global expression differences and tissue specific expression differences. However, different types of gene expression alteration should have different effects on an organism, the evolutionary forces that act on them might be different, and different types of genes might show different types of differential expression between species. To confirm this, we studied differentially expressed (DE) genes among closely related groups that have extensive gene expression atlases, and clarified characteristics of different types of DE genes including the identification of regulating loci for differential expression using expression quantitative loci (eQTL) analysis data. Results We detected differentially expressed (DE) genes between rice subspecies in five homologous tissues that were verified using japonica and indica transcriptome atlases in public databases. Using the transcriptome atlases, we classified DE genes into two types, global DE genes and changed-tissues DE genes. Global type DE genes were not expressed in any tissues in the atlas of one subspecies, however changed-tissues type DE genes were expressed in both subspecies with different tissue specificity. For the five tissues in the two japonica-indica combinations, 4.6 ± 0.8 and 5.9 ± 1.5 % of highly expressed genes were global and changed-tissues DE genes, respectively. Changed-tissues DE genes varied in number between tissues, increasing linearly with the abundance of tissue specifically expressed genes in the tissue. Molecular evolution of global DE genes was rapid, unlike that of changed-tissues DE genes. Based on gene ontology, global and changed-tissues DE genes were different, having no common GO terms. Expression differences of most global DE genes were regulated by cis-eQTLs. Expression

  7. Gene expression profiling of cutaneous wound healing

    Wang Ena

    2007-02-01

    Full Text Available Abstract Background Although the sequence of events leading to wound repair has been described at the cellular and, to a limited extent, at the protein level this process has yet to be fully elucidated. Genome wide transcriptional analysis tools promise to further define the global picture of this complex progression of events. Study Design This study was part of a placebo-controlled double-blind clinical trial in which basal cell carcinomas were treated topically with an immunomodifier – toll-like receptor 7 agonist: imiquimod. The fourteen patients with basal cell carcinoma in the placebo arm of the trial received placebo treatment consisting solely of vehicle cream. A skin punch biopsy was obtained immediately before treatment and at the end of the placebo treatment (after 2, 4 or 8 days. 17.5K cDNA microarrays were utilized to profile the biopsy material. Results Four gene signatures whose expression changed relative to baseline (before wound induction by the pre-treatment biopsy were identified. The largest group was comprised predominantly of inflammatory genes whose expression was increased throughout the study. Two additional signatures were observed which included preferentially pro-inflammatory genes in the early post-treatment biopsies (2 days after pre-treatment biopsies and repair and angiogenesis genes in the later (4 to 8 days biopsies. The fourth and smallest set of genes was down-regulated throughout the study. Early in wound healing the expression of markers of both M1 and M2 macrophages were increased, but later M2 markers predominated. Conclusion The initial response to a cutaneous wound induces powerful transcriptional activation of pro-inflammatory stimuli which may alert the host defense. Subsequently and in the absence of infection, inflammation subsides and it is replaced by angiogenesis and remodeling. Understanding this transition which may be driven by a change from a mixed macrophage population to predominately M2

  8. Clustering gene expression data using graph separators.

    Kaba, Bangaly; Pinet, Nicolas; Lelandais, Gaëlle; Sigayret, Alain; Berry, Anne

    2007-01-01

    Recent work has used graphs to modelize expression data from microarray experiments, in view of partitioning the genes into clusters. In this paper, we introduce the use of a decomposition by clique separators. Our aim is to improve the classical clustering methods in two ways: first we want to allow an overlap between clusters, as this seems biologically sound, and second we want to be guided by the structure of the graph to define the number of clusters. We test this approach with a well-known yeast database (Saccharomyces cerevisiae). Our results are good, as the expression profiles of the clusters we find are very coherent. Moreover, we are able to organize into another graph the clusters we find, and order them in a fashion which turns out to respect the chronological order defined by the the sporulation process. PMID:18391236

  9. Network Completion for Static Gene Expression Data

    Natsu Nakajima

    2014-01-01

    Full Text Available We tackle the problem of completing and inferring genetic networks under stationary conditions from static data, where network completion is to make the minimum amount of modifications to an initial network so that the completed network is most consistent with the expression data in which addition of edges and deletion of edges are basic modification operations. For this problem, we present a new method for network completion using dynamic programming and least-squares fitting. This method can find an optimal solution in polynomial time if the maximum indegree of the network is bounded by a constant. We evaluate the effectiveness of our method through computational experiments using synthetic data. Furthermore, we demonstrate that our proposed method can distinguish the differences between two types of genetic networks under stationary conditions from lung cancer and normal gene expression data.

  10. Abnormal expression of cerebrospinal fluid cation chloride cotransporters in patients with Rett syndrome.

    Sofia Temudo Duarte

    Full Text Available OBJECTIVE: Rett Syndrome is a progressive neurodevelopmental disorder caused mainly by mutations in the gene encoding methyl-CpG-binding protein 2. The relevance of MeCP2 for GABAergic function was previously documented in animal models. In these models, animals show deficits in brain-derived neurotrophic factor, which is thought to contribute to the pathogenesis of this disease. Neuronal Cation Chloride Cotransporters (CCCs play a key role in GABAergic neuronal maturation, and brain-derived neurotrophic factor is implicated in the regulation of CCCs expression during development. Our aim was to analyse the expression of two relevant CCCs, NKCC1 and KCC2, in the cerebrospinal fluid of Rett syndrome patients and compare it with a normal control group. METHODS: The presence of bumetanide sensitive NKCC1 and KCC2 was analysed in cerebrospinal fluid samples from a control pediatric population (1 day to 14 years of life and from Rett syndrome patients (2 to 19 years of life, by immunoblot analysis. RESULTS: Both proteins were detected in the cerebrospinal fluid and their levels are higher in the early postnatal period. However, Rett syndrome patients showed significantly reduced levels of KCC2 and KCC2/NKCC1 ratio when compared to the control group. CONCLUSIONS: Reduced KCC2/NKCC1 ratio in the cerebrospinal fluid of Rett Syndrome patients suggests a disturbed process of GABAergic neuronal maturation and open up a new therapeutic perspective.

  11. Mining Association Rules among Gene Functions in Clusters of Similar Gene Expression Maps

    An, Li; Obradovic, Zoran; Smith, Desmond; Bodenreider, Olivier; Megalooikonomou, Vasileios

    2009-01-01

    Association rules mining methods have been recently applied to gene expression data analysis to reveal relationships between genes and different conditions and features. However, not much effort has focused on detecting the relation between gene expression maps and related gene functions. Here we describe such an approach to mine association rules among gene functions in clusters of similar gene expression maps on mouse brain. The experimental results show that the detected association rules ...

  12. Ascorbic Acid and Gene Expression: Another Example of Regulation of Gene Expression by Small Molecules?

    Belin, Sophie; Kaya, Ferdinand; Burtey, Stéphane; Fontes, Michel

    2010-01-01

    Ascorbic acid (vitamin C, AA) has long been considered a food supplement necessary for life and for preventing scurvy. However, it has been reported that other small molecules such as retinoic acid (vitamin A) and different forms of calciferol (vitamin D) are directly involved in regulating the expression of numerous genes. These molecules bind to receptors that are differentially expressed in the embryo and are therefore crucial signalling molecules in vertebrate development. The question is...

  13. Detection of gene expression pattern in the early stage after spinal cord injury by gene chip

    刘成龙; 靳安民; 童斌辉

    2003-01-01

    Objective: To study the changes of the gene expression pattern of spinal cord tissues in the early stage after injury by DNA microarray (gene chip). Methods: The contusion model of rat spinal cord was established according to Allen's falling strike method and the gene expression patterns of normal and injured spinal cord tissues were studied by gene chip. Results: The expression of 45 genes was significantly changed in the early stage after spinal cord injury, in which 22 genes up-regulated and 23 genes down-regulated. Conclusions: The expression of some genes changes significantly in the early stage after spinal cord injury, which indicates the complexity of secondary spinal cord injury.

  14. MDR1 gene expression in primary colorectal carcinomas.

    Pirker, R; Wallner, J.; Gsur, A; Götzl, M.; Zöchbauer, S; Scheithauer, W.; Depisch, D

    1993-01-01

    The expression of the MDR1 gene, a multidrug resistance gene, was prospectively determined in 113 primary colorectal carcinoma specimens and correlated with clinical data including survival durations of the patients. MDR1 RNA was detected in 65% of the carcinomas. No expression of the MDR2 gene was seen, MDR1 gene expression was independent of age and sex of the patients, size and histologic grading of the tumour, lymph node involvement and distant metastasis. Kaplan-Meier analysis revealed t...

  15. Germ-line mutations in the neurofibromatosis 2 gene: Correlations with disease severity and retinal abnormalities

    Parry, D.M. [National Cancer Inst., Bethesda, WA (United States); Kaiser-Kupfer, M. [National Eye Inst., Bethesda, MD (United States); Eldridge, R. [Public Health Service, Bethesda, MD (United States)] [and others

    1996-09-01

    Neurofibromatosis 2 (NF2) features bilateral vestibular schwannomas, other benign neural tumors, and cataracts. Patients in some families develop many tumors at an early age and have rapid clinical progression, whereas in other families, patients may not have symptoms until much later and vestibular schwannomas may be the only tumors. The NF2 gene has been cloned from chromosome 22q; most identified germ-line mutations result in a truncated protein and severe NF2. To look for additional mutations and clinical correlations, we used SSCP analysis to screen DNA from 32 unrelated patients. We identified 20 different mutations in 21 patients (66%): 10 nonsense mutations, 2 frameshifts, 7 splice-site mutations, and 1 large in-frame deletion. Clinical information on 47 patients from the 21 families included ages at onset and at diagnosis, numbers of meningiomas, spinal and skin tumors, and presence of cataracts and retinal abnormalities. We compared clinical findings in patients with nonsense or frameshift mutations to those with splice-site mutations. When each patient was considered as an independent random event, the two groups differed (P {le} .05) for nearly every variable. Patients with nonsense or frameshift mutations were younger at onset and at diagnosis and had a higher frequency and mean number of tumors, supporting the correlation between nonsense and frameshift mutations and severe NF2. When each family was considered as an independent random event, statistically significant differences between the two groups were observed only for mean ages at onset and at diagnosis. A larger data set is needed to resolve these discrepancies. We observed retinal hamartomas and/or epiretinal membranes in nine patients from five families with four different nonsense mutations. This finding, which may represent a new genotype-phenotype correlation, merits further study. 58 refs., 2 tabs.

  16. Regulation of gene expression by hypoxia.

    Millhorn, D E; Czyzyk-Krzeska, M; Bayliss, D A; Lawson, E E

    1993-12-01

    The present study was undertaken to determine if gene expression for tyrosine hydroxylase (TH), the rate limiting enzyme in the biosynthesis of catecholamines, is regulated in the carotid body, sympathetic ganglia and adrenal medulla by hypoxia. We found that a reduction in oxygen tension from 21% to 10% caused a substantial increase (200% at 1 hour and 500% at 6 hours exposure) in the concentration of TH mRNA in carotid body type I cells but not in either the sympathetic ganglia or adrenal gland. In addition, we found that hypercapnia, another natural stimulus of carotid body activity, failed to enhance TH mRNA in type I cells. Removal of the sensory and sympathetic innervation of the carotid body failed to prevent the induction of TH mRNA by hypoxia in type I cells. Our results show that TH gene expression is regulated by hypoxia in the carotid body but not in other peripheral catecholamine synthesizing tissue and that the regulatory mechanism is intrinsic to type I cells. PMID:7909954

  17. Real-time feedback control of gene expression

    Uhlendorf, Jannis

    2013-01-01

    Gene expression is fundamental for the functioning of cellular processes and is tightly regulated. Inducible promoters allow one to perturb gene expression by changing the expression level of a protein from its physiological level. This is a common tool to decipher the functioning of biological processes: the expression level of a gene is changed and one observes how the perturbed cell behaves differently from an unperturbed cell. A shortcoming of inducible promoters is the difficulty to appl...

  18. Transcript length mediates developmental timing of gene expression across Drosophila

    Artieri, Carlo G.; Fraser, Hunter B.

    2013-01-01

    The time required to transcribe genes with long primary transcripts may limit their ability to be expressed in cells with short mitotic cycles, a phenomenon termed intron delay. As such short cycles are a hallmark of the earliest stages of insect development, we used Drosophila developmental timecourse expression data to test whether intron delay affects gene expression genome-wide, and to determine its consequences for the evolution of gene structure. We find that long zygotically expressed,...

  19. Peripheral blood gene expression profiles in COPD subjects

    2011-01-01

    To identify non-invasive gene expression markers for chronic obstructive pulmonary disease (COPD), we performed genome-wide expression profiling of peripheral blood samples from 12 subjects with significant airflow obstruction and an equal number of non-obstructed controls. RNA was isolated from Peripheral Blood Mononuclear Cells (PBMCs) and gene expression was assessed using Affymetrix U133 Plus 2.0 arrays. Tests for gene expression changes that discriminate between COPD cases (FEV1< 70% pre...

  20. Gene expression profiling of craniofacial fibrous dysplasia reveals ADAMTS2 overexpression as a potential marker.

    Zhou, Shang-Hui; Yang, Wen-Jun; Liu, Sheng-Wen; Li, Jiang; Zhang, Chun-Ye; Zhu, Yun; Zhang, Chen-Ping

    2014-01-01

    Fibrous dysplasia (FD) as an abnormal bone growth is one of the common fibro-osseous leasions (FOL) in oral and maxillofacial region, however, its etiology still remains unclear. Here, we performed gene expression profiling of FD using microarray analysis to explore the key molecule events in FD development, and develop potential diagnostic markers or therapeutic targets for FD. We found that 1,881 genes exhibited differential expression with more than two-fold changes in FD compared to normal bone tissues, including 1,200 upregulated genes and 681 downregulated genes. Pathway analysis indicated that obviously activated pathways are Ribosome and ECM-receptor interaction pathways; downregulated pathways are "Hepatitis C" and "cancer" signaling pathways. We further validated the expression of ADAMTS2, one of most differentiated expressed genes, by Immunohistochemistry (IHC) in 40 of FD cases. Results showed that ADAMTS2 was significantly overexpressed in FD tissues, but rarely expressed in normal bone tissues, suggesting that ADAMTS2 could be a potential biomarker for FD. Thus, this study uncovered differentially expressed candidate genes in FD, which provides pilot data for understanding FD pathogenesis, and developing novel biomarkers for diagnosis and targeting of FD. PMID:25674217

  1. Analysis of multiplex gene expression maps obtained by voxelation

    Smith Desmond J

    2009-04-01

    Full Text Available Abstract Background Gene expression signatures in the mammalian brain hold the key to understanding neural development and neurological disease. Researchers have previously used voxelation in combination with microarrays for acquisition of genome-wide atlases of expression patterns in the mouse brain. On the other hand, some work has been performed on studying gene functions, without taking into account the location information of a gene's expression in a mouse brain. In this paper, we present an approach for identifying the relation between gene expression maps obtained by voxelation and gene functions. Results To analyze the dataset, we chose typical genes as queries and aimed at discovering similar gene groups. Gene similarity was determined by using the wavelet features extracted from the left and right hemispheres averaged gene expression maps, and by the Euclidean distance between each pair of feature vectors. We also performed a multiple clustering approach on the gene expression maps, combined with hierarchical clustering. Among each group of similar genes and clusters, the gene function similarity was measured by calculating the average gene function distances in the gene ontology structure. By applying our methodology to find similar genes to certain target genes we were able to improve our understanding of gene expression patterns and gene functions. By applying the clustering analysis method, we obtained significant clusters, which have both very similar gene expression maps and very similar gene functions respectively to their corresponding gene ontologies. The cellular component ontology resulted in prominent clusters expressed in cortex and corpus callosum. The molecular function ontology gave prominent clusters in cortex, corpus callosum and hypothalamus. The biological process ontology resulted in clusters in cortex, hypothalamus and choroid plexus. Clusters from all three ontologies combined were most prominently expressed in

  2. Seed-Based Biclustering of Gene Expression Data

    Jiyuan An; Alan Wee-Chung Liew; Colleen C Nelson

    2012-01-01

    BACKGROUND: Accumulated biological research outcomes show that biological functions do not depend on individual genes, but on complex gene networks. Microarray data are widely used to cluster genes according to their expression levels across experimental conditions. However, functionally related genes generally do not show coherent expression across all conditions since any given cellular process is active only under a subset of conditions. Biclustering finds gene clusters that have similar e...

  3. Relationship between the Abnormal Expression of FasL on Human First Trimester Trophoblast and Spontaneous Abortion

    邱红玉; 孙永玉

    2003-01-01

    In order to study the molecular immune-pathological mechanism of spontaneous abortion (SA), immunohistochemistry techniques were used to detect the FasL expression of first trimester trophoblast in the SA patients and normal controls. High precise color-image measure system for immuno-histochemistry (HPIS) was used to determine the quantity of FasL expression. The results showed that the scale and intensity of FasL expression on the trophoblasts in SA group were significantly lower than in the control group. It is indicated that abnormal expression of FasL on trophoblasts, which damages the immunological tolerance between mother and fetus, may be one of the important mechanisms of development of SA. To induce the expression of FasL or to regulate the immunological tolerance will be a new way to treat SA.

  4. Gene expression profiling of white adipose tissue reveals paternal transmission of proneness to obesity.

    Morita, Sumiyo; Nakabayashi, Kazuhiko; Kawai, Tomoko; Hayashi, Keiko; Horii, Takuro; Kimura, Mika; Kamei, Yasutomi; Ogawa, Yoshihiro; Hata, Kenichiro; Hatada, Izuho

    2016-01-01

    Previously, we found that C57BL/6J (B6) mice are more prone to develop obesity than PWK mice. In addition, we analyzed reciprocal crosses between these mice and found that (PWK × B6) F1 mice, which have B6 fathers, are more likely to develop dietary obesity than (B6 × PWK) F1 mice, which have B6 mothers. These results suggested that diet-induced obesity is paternally transmitted. In this study, we performed transcriptome analysis of adipose tissues of B6, PWK, (PWK × B6) F1, and (B6 × PWK) F1 mice using next-generation sequencing. We found that paternal transmission of diet-induced obesity was correlated with genes involved in adipose tissue inflammation, metal ion transport, and cilia. Furthermore, we analyzed the imprinted genes expressed in white adipose tissue (WAT) and obesity. Expression of paternally expressed imprinted genes (PEGs) was negatively correlated with body weight, whereas expression of maternally expressed imprinted genes (MEGs) was positively correlated. In the obesity-prone B6 mice, expression of PEGs was down-regulated by a high-fat diet, suggesting that abnormally low expression of PEGs contributes to high-fat diet-induced obesity in B6 mice. In addition, using single-nucleotide polymorphisms that differ between B6 and PWK, we identified candidate imprinted genes in WAT. PMID:26868178

  5. Gene expression profiling of white adipose tissue reveals paternal transmission of proneness to obesity

    Morita, Sumiyo; Nakabayashi, Kazuhiko; Kawai, Tomoko; Hayashi, Keiko; Horii, Takuro; Kimura, Mika; Kamei, Yasutomi; Ogawa, Yoshihiro; Hata, Kenichiro; Hatada, Izuho

    2016-01-01

    Previously, we found that C57BL/6J (B6) mice are more prone to develop obesity than PWK mice. In addition, we analyzed reciprocal crosses between these mice and found that (PWK × B6) F1 mice, which have B6 fathers, are more likely to develop dietary obesity than (B6 × PWK) F1 mice, which have B6 mothers. These results suggested that diet-induced obesity is paternally transmitted. In this study, we performed transcriptome analysis of adipose tissues of B6, PWK, (PWK × B6) F1, and (B6 × PWK) F1 mice using next-generation sequencing. We found that paternal transmission of diet-induced obesity was correlated with genes involved in adipose tissue inflammation, metal ion transport, and cilia. Furthermore, we analyzed the imprinted genes expressed in white adipose tissue (WAT) and obesity. Expression of paternally expressed imprinted genes (PEGs) was negatively correlated with body weight, whereas expression of maternally expressed imprinted genes (MEGs) was positively correlated. In the obesity-prone B6 mice, expression of PEGs was down-regulated by a high-fat diet, suggesting that abnormally low expression of PEGs contributes to high-fat diet-induced obesity in B6 mice. In addition, using single-nucleotide polymorphisms that differ between B6 and PWK, we identified candidate imprinted genes in WAT. PMID:26868178

  6. Expression of Neuropilin-1 Gene in Bone Marrow Stromal Cells from Patients with Myeloid Leukemia and Normal Individuals

    SUYing; WANGZhen; WUXiuli; HUANGMeijuan; CHENShaohua; YANGLijian; LIYangqiu

    2005-01-01

    Objective: To investigate the expression of neuropilin-1 (NP-1) gene in bone marrow stromal cells (BMSCs) from myeloid leukemia (AML and CML) and normal individuals. Methods: Mononuclear cells were isolated from bone marrow (BM) of CML (14 cases), AML (12 cases) and normal individuals (20 cases). Adherent cells (i.e. BMSCs) were collected after long-term culture in vitro. The expression of NP-1 gene in three groups was detected respectively by reverse-transcription polymerase chain reaction (RT-PCR). Results: The long-term culture of BMSCs was successfully established. The expression level of NP-1 gene was significantly lower in BMSCs from AML (47.1%) and CML (50%) than in normal individuals (85%). Conclusion: NP-1 gene is expressed in BMSCs from some AML or CML patients and most normal individuals. The low-expression of NP-1 gene in BMSCs from AML or CML patients might be related with abnormality of regulation in hematopoiesis.

  7. Positive selection on gene expression in the human brain

    Khaitovich, Philipp; Tang, Kun; Franz, Henriette;

    2006-01-01

    Recent work has shown that the expression levels of genes transcribed in the brains of humans and chimpanzees have changed less than those of genes transcribed in other tissues [1] . However, when gene expression changes are mapped onto the evolutionary lineage in which they occurred, the brain...... shows more changes than other tissues in the human lineage compared to the chimpanzee lineage [1] , [2] and [3] . There are two possible explanations for this: either positive selection drove more gene expression changes to fixation in the human brain than in the chimpanzee brain, or genes expressed in...... the brain experienced less purifying selection in humans than in chimpanzees, i.e. gene expression in the human brain is functionally less constrained. The first scenario would be supported if genes that changed their expression in the brain in the human lineage showed more selective sweeps than other...

  8. Cell cycle networks link gene expression dysregulation, mutation, and brain maldevelopment in autistic toddlers.

    Pramparo, Tiziano; Lombardo, Michael V; Campbell, Kathleen; Barnes, Cynthia Carter; Marinero, Steven; Solso, Stephanie; Young, Julia; Mayo, Maisi; Dale, Anders; Ahrens-Barbeau, Clelia; Murray, Sarah S; Lopez, Linda; Lewis, Nathan; Pierce, Karen; Courchesne, Eric

    2015-12-01

    Genetic mechanisms underlying abnormal early neural development in toddlers with Autism Spectrum Disorder (ASD) remain uncertain due to the impossibility of direct brain gene expression measurement during critical periods of early development. Recent findings from a multi-tissue study demonstrated high expression of many of the same gene networks between blood and brain tissues, in particular with cell cycle functions. We explored relationships between blood gene expression and total brain volume (TBV) in 142 ASD and control male toddlers. In control toddlers, TBV variation significantly correlated with cell cycle and protein folding gene networks, potentially impacting neuron number and synapse development. In ASD toddlers, their correlations with brain size were lost as a result of considerable changes in network organization, while cell adhesion gene networks significantly correlated with TBV variation. Cell cycle networks detected in blood are highly preserved in the human brain and are upregulated during prenatal states of development. Overall, alterations were more pronounced in bigger brains. We identified 23 candidate genes for brain maldevelopment linked to 32 genes frequently mutated in ASD. The integrated network includes genes that are dysregulated in leukocyte and/or postmortem brain tissue of ASD subjects and belong to signaling pathways regulating cell cycle G1/S and G2/M phase transition. Finally, analyses of the CHD8 subnetwork and altered transcript levels from an independent study of CHD8 suppression further confirmed the central role of genes regulating neurogenesis and cell adhesion processes in ASD brain maldevelopment. PMID:26668231

  9. Targeted Disruption of the LAMA3 Gene in Mice Reveals Abnormalities in Survival and Late Stage Differentiation of Epithelial Cells

    Ryan, Maureen C.; Lee, Keesook; Miyashita, Yuko; Carter, William G.

    1999-01-01

    Laminin 5 regulates anchorage and motility of epithelial cells through integrins α6β4 and α3β1, respectively. We used targeted disruption of the LAMA3 gene, which encodes the α3 subunit of laminin 5 and other isoforms, to examine developmental functions that are regulated by adhesion to the basement membrane (BM). In homozygous null animals, profound epithelial abnormalities were detected that resulted in neonatal lethality, consistent with removal of all α3-laminin isoforms from epithelial B...

  10. Expression profiles for six zebrafish genes during gonadal sex differentiation

    Jørgensen, Anne; Morthorst, Jane E.; Andersen, Ole;

    2008-01-01

    the precise timing of expression of six genes previously suggested to be associated with sex differentiation in zebrafish. The current study investigates the expression of all six genes in the same individual fish with extensive sampling dates during sex determination and -differentiation. RESULTS: In...... investigated on cDNA from the same fish allowing comparison of the high and low expressers of genes that are expected to be highest expressed in either males or females. There were 78% high or low expressers of all three "male" genes (ar, sox9a and dmrt1) in the investigated period and 81% were high or low...

  11. Gene expression profiling in equine polysaccharide storage myopathy revealed inflammation, glycogenesis inhibition, hypoxia and mitochondrial dysfunctions

    Benech Philippe

    2009-08-01

    Full Text Available Abstract Background Several cases of myopathies have been observed in the horse Norman Cob breed. Muscle histology examinations revealed that some families suffer from a polysaccharide storage myopathy (PSSM. It is assumed that a gene expression signature related to PSSM should be observed at the transcriptional level because the glycogen storage disease could also be linked to other dysfunctions in gene regulation. Thus, the functional genomic approach could be conducted in order to provide new knowledge about the metabolic disorders related to PSSM. We propose exploring the PSSM muscle fiber metabolic disorders by measuring gene expression in relationship with the histological phenotype. Results Genotypying analysis of GYS1 mutation revealed 2 homozygous (AA and 5 heterozygous (GA PSSM horses. In the PSSM muscles, histological data revealed PAS positive amylase resistant abnormal polysaccharides, inflammation, necrosis, and lipomatosis and active regeneration of fibers. Ultrastructural evaluation revealed a decrease of mitochondrial number and structural disorders. Extensive accumulation of an abnormal polysaccharide displaced and partially replaced mitochondria and myofibrils. The severity of the disease was higher in the two homozygous PSSM horses. Gene expression analysis revealed 129 genes significantly modulated (p Conclusion The main disorders observed in PSSM muscles could be related to mitochondrial dysfunctions, glycogenesis inhibition and the chronic hypoxia of the PSSM muscles.

  12. Identification of Drosophila mitotic genes by combining co-expression analysis and RNA interference.

    Maria Patrizia Somma

    2008-07-01

    Full Text Available RNAi screens have, to date, identified many genes required for mitotic divisions of Drosophila tissue culture cells. However, the inventory of such genes remains incomplete. We have combined the powers of bioinformatics and RNAi technology to detect novel mitotic genes. We found that Drosophila genes involved in mitosis tend to be transcriptionally co-expressed. We thus constructed a co-expression-based list of 1,000 genes that are highly enriched in mitotic functions, and we performed RNAi for each of these genes. By limiting the number of genes to be examined, we were able to perform a very detailed phenotypic analysis of RNAi cells. We examined dsRNA-treated cells for possible abnormalities in both chromosome structure and spindle organization. This analysis allowed the identification of 142 mitotic genes, which were subdivided into 18 phenoclusters. Seventy of these genes have not previously been associated with mitotic defects; 30 of them are required for spindle assembly and/or chromosome segregation, and 40 are required to prevent spontaneous chromosome breakage. We note that the latter type of genes has never been detected in previous RNAi screens in any system. Finally, we found that RNAi against genes encoding kinetochore components or highly conserved splicing factors results in identical defects in chromosome segregation, highlighting an unanticipated role of splicing factors in centromere function. These findings indicate that our co-expression-based method for the detection of mitotic functions works remarkably well. We can foresee that elaboration of co-expression lists using genes in the same phenocluster will provide many candidate genes for small-scale RNAi screens aimed at completing the inventory of mitotic proteins.

  13. Maternal obesity affects fetal neurodevelopmental and metabolic gene expression: a pilot study.

    Andrea G Edlow

    Full Text Available OBJECTIVE: One in three pregnant women in the United States is obese. Their offspring are at increased risk for neurodevelopmental and metabolic morbidity. Underlying molecular mechanisms are poorly understood. We performed a global gene expression analysis of mid-trimester amniotic fluid cell-free fetal RNA in obese versus lean pregnant women. METHODS: This prospective pilot study included eight obese (BMI≥30 and eight lean (BMI<25 women undergoing clinically indicated mid-trimester genetic amniocentesis. Subjects were matched for gestational age and fetal sex. Fetuses with abnormal karyotype or structural anomalies were excluded. Cell-free fetal RNA was extracted from amniotic fluid and hybridized to whole genome expression arrays. Genes significantly differentially regulated in 8/8 obese-lean pairs were identified using paired t-tests with the Benjamini-Hochberg correction (false discovery rate of <0.05. Biological interpretation was performed with Ingenuity Pathway Analysis and the BioGPS gene expression atlas. RESULTS: In fetuses of obese pregnant women, 205 genes were significantly differentially regulated. Apolipoprotein D, a gene highly expressed in the central nervous system and integral to lipid regulation, was the most up-regulated gene (9-fold. Apoptotic cell death was significantly down-regulated, particularly within nervous system pathways involving the cerebral cortex. Activation of the transcriptional regulators estrogen receptor, FOS, and STAT3 was predicted in fetuses of obese women, suggesting a pro-estrogenic, pro-inflammatory milieu. CONCLUSION: Maternal obesity affects fetal neurodevelopmental and metabolic gene expression as early as the second trimester. These findings may have implications for postnatal neurodevelopmental and metabolic abnormalities described in the offspring of obese women.

  14. Monoallelic expression of the human FOXP2 speech gene.

    Adegbola, Abidemi A; Cox, Gerald F; Bradshaw, Elizabeth M; Hafler, David A; Gimelbrant, Alexander; Chess, Andrew

    2015-06-01

    The recent descriptions of widespread random monoallelic expression (RMAE) of genes distributed throughout the autosomal genome indicate that there are more genes subject to RMAE on autosomes than the number of genes on the X chromosome where X-inactivation dictates RMAE of X-linked genes. Several of the autosomal genes that undergo RMAE have independently been implicated in human Mendelian disorders. Thus, parsing the relationship between allele-specific expression of these genes and disease is of interest. Mutations in the human forkhead box P2 gene, FOXP2, cause developmental verbal dyspraxia with profound speech and language deficits. Here, we show that the human FOXP2 gene undergoes RMAE. Studying an individual with developmental verbal dyspraxia, we identify a deletion 3 Mb away from the FOXP2 gene, which impacts FOXP2 gene expression in cis. Together these data suggest the intriguing possibility that RMAE impacts the haploinsufficiency phenotypes observed for FOXP2 mutations. PMID:25422445

  15. Modulation of R-gene expression across environments.

    MacQueen, Alice; Bergelson, Joy

    2016-03-01

    Some environments are more conducive to pathogen growth than others, and, as a consequence, plants might be expected to invest more in resistance when pathogen growth is favored. Resistance (R-) genes in Arabidopsis thaliana have unusually extensive variation in basal expression when comparing the same R-gene among accessions collected from different environments. R-gene expression variation was characterized to explore whether R-gene expression is up-regulated in environments favoring pathogen proliferation and down-regulated when risks of infection are low; down-regulation would follow if costs of R-gene expression negatively impact plant fitness in the absence of disease. Quantitative reverse transcription-PCR was used to quantify the expression of 13 R-gene loci in plants grown in eight environmental conditions for each of 12 A. thaliana accessions, and large effects of the environment on R-gene expression were found. Surprisingly, almost every change in the environment--be it a change in biotic or abiotic conditions--led to an increase in R-gene expression, a response that was distinct from the average transcriptome response and from that of other stress response genes. These changes in expression are functional in that environmental change prior to infection affected levels of specific disease resistance to isolates of Pseudomonas syringae. In addition, there are strong latitudinal clines in basal R-gene expression and clines in R-gene expression plasticity correlated with drought and high temperatures. These results suggest that variation in R-gene expression across environments may be shaped by natural selection to reduce fitness costs of R-gene expression in permissive or predictable environments. PMID:26983577

  16. Evaluation of Differentially Expressed Genes by Shear Stress in Human Osteoarthritic Chondrocytes In Vitro

    Mel S. Lee

    2009-02-01

    Full Text Available Background: The pathogenesis of osteoarthritis is related to abnormal mechanical stressesthat alter cartilage metabolism and chondrocyte survival. Among themechanical stresses, shear stress is held responsible for the development ofarthritis.Methods: Monolayer cultures of human osteoarthritic chondrocytes were subjected tofluid-induced shear stress in vitro. A cDNA microarray technology was usedto screen the differentially regulated genes and quantitative real-time polymerasechain reaction (Q-RT-PCR was used to confirm the results. The significanceof the expression ratio for each gene was determined on the lowestassociated false discovery rate calculated from the changes of gene expressionin relation to the standard deviation of repeated measurements for thatgene.Results: Exposure of human osteoarthritic chondrocytes to shear stress (0.82 Pa for 2hours differentially regulated 373 and 227 clones in two independentmicroarray analyses with at least a 1.7-fold change. By comparing the differentiallyregulated clones, 14 upregulated and 6 downregulated genes wereidentified. Many of the differentially expressed genes were related to cellproliferation/differentiation (TGF-β, acidic FGF, cell survival/apoptosis(CYP1B1, BCL2L3, TNFRSF11B, chemokine ligands, ADM, and matrixhomeostasis (DCN, SDC2, MGP, WISP2.Conclusion: The gene expression patterns following shear stress show a high similarity tothe gene expression in the reparative process of osteoarthritis chondrocytes.Using microarray analysis, this study suggests a close interaction betweenshear stress and the pathogenesis of osteoarthritis.

  17. Selection of housekeeping genes for gene expression studies in human reticulocytes using real-time PCR

    Thein Swee; Jiang Jie; Best Steve; Silver Nicholas

    2006-01-01

    Abstract Background Control genes, which are often referred to as housekeeping genes, are frequently used to normalise mRNA levels between different samples. However, the expression level of these genes may vary among tissues or cells and may change under certain circumstances. Thus, the selection of housekeeping genes is critical for gene expression studies. To address this issue, 7 candidate housekeeping genes including several commonly used ones were investigated in isolated human reticulo...

  18. Treatment of hypertriglyceridemia and HIV: fenofibrate-induced changes in the expression of chemokine genes in circulating leukocytes

    Alegret Josep M; Camps Jordi; Rull Anna; Fernández-Sender Laura; Beltrán-Debón Raúl; Aragonès Gerard; Alonso-Villaverde Carlos; Joven Jorge

    2009-01-01

    Abstract Fenofibrate changed the expression of chemokine genes in circulating leukocytes of HIV-infected patients with hypertriglyceridemia. The data suggest that fenofibrate when effective in the treatment of lipoprotein abnormalities, may act as a modulator of systemic inflammation. This particular action, therefore, may also influence the clinical course of the disease.

  19. Preferential DNA repair in expressed genes.

    Hanawalt, P C

    1987-01-01

    Potentially deleterious alterations to DNA occur nonrandomly within the mammalian genome. These alterations include the adducts produced by many chemical carcinogens, but not the UV-induced cyclobutane pyrimidine dimer, which may be an exception. Recent studies in our laboratory have shown that the excision repair of pyrimidine dimers and certain other lesions is nonrandom in the mammalian genome, exhibiting a distinct preference for actively transcribed DNA sequences. An important consequence of this fact is that mutagenesis and carcinogenesis may be determined in part by the activities of the relevant genes. Repair may also be processive, and a model is proposed in which excision repair is coupled to transcription at the nuclear matrix. Similar but freely diffusing repair complexes may account for the lower overall repair efficiencies in the silent domains of the genome. Risk assessment in relation to chemical carcinogenesis requires assays that determine effective levels of DNA damage for producing malignancy. The existence of nonrandom repair in the genome casts into doubt the reliability of overall indicators of DNA binding and lesion repair for such determinations. Furthermore, some apparent differences between the intragenomic repair heterogeneity in rodent cells and that in human cells mandate a reevaluation of rodent test systems for human risk assessment. Tissue-specific and cell-specific differences in the coordinate regulation of gene expression and DNA repair may account for corresponding differences in the carcinogenic response. Images FIGURE 1. FIGURE 1. PMID:3447906

  20. A model for gene deregulation detection using expression data.

    Picchetti, Thomas; Chiquet, Julien; Elati, Mohamed; Neuvial, Pierre; Nicolle, Rémy; Birmelé, Etienne

    2015-01-01

    In tumoral cells, gene regulation mechanisms are severely altered. Genes that do not react normally to their regulators' activity can provide explanations for the tumoral behavior, and be characteristic of cancer subtypes. We thus propose a statistical methodology to identify the misregulated genes given a reference network and gene expression data. PMID:26679516

  1. Identification of 9 uterine genes that are regulated during mouse pregnancy and exhibit abnormal levels in the cyclooxygenase-1 knockout mouse

    Soper Jessica

    2007-07-01

    Full Text Available Abstract Background Preterm birth is the leading cause of all infant mortality. In 2004, 12.5% of all births were preterm. In order to understand preterm labor, we must first understand normal labor. Since many of the myometrial changes that occur during pregnancy are similar in mice and humans and mouse gestation is short, we have studied the uterine genes that change in the mouse during pregnancy. Here, we used microarray analysis to identify uterine genes in the gravid mouse that are differentially regulated in the cyclooxygenase-1 knockout mouse model of delayed parturition. Methods Gestational d18.0 uteri (n = 4 were collected from pregnant wild-type and cyclooxygenase-1 knockout mice. Part of the uterus was used for frozen sections and RNA was isolated from the remainder. Microarray analysis was performed at the Indiana University School of Medicine Genomic Core and analyzed using the Microarray Data Portal. Northern analysis was performed to confirm microarray data and the genes localized in the gravid uterus by in situ hybridization. Results We identified 277 genes that are abnormally expressed in the gravid d18.0 cyclooxygenase-1 knockout mouse. Nine of these genes are also regulated in the normal murine uterus during the last half of gestation. Many of these genes are involved in the immune response, consistent with an important role of the immune system in parturition. Expression of 4 of these genes; arginase I, IgJ, Tnfrsf9 and troponin; was confirmed by Northern analysis to be mis-regulated during pregnancy in the knockout mouse. In situ hybridization of these genes demonstrated a similar location in the gravid wild-type and Cox-1 knockout mouse uteri. Conclusion To our knowledge, this is the first work to demonstrate the uterine location of these 4 genes in the mouse during late pregnancy. There are several putative transcription factor binding sites that are shared by many of the 9 genes identified here including; estrogen and

  2. Expression profiling identifies genes involved in emphysema severity

    Bowman Rayleen V

    2009-09-01

    Full Text Available Abstract Chronic obstructive pulmonary disease (COPD is a major public health problem. The aim of this study was to identify genes involved in emphysema severity in COPD patients. Gene expression profiling was performed on total RNA extracted from non-tumor lung tissue from 30 smokers with emphysema. Class comparison analysis based on gas transfer measurement was performed to identify differentially expressed genes. Genes were then selected for technical validation by quantitative reverse transcriptase-PCR (qRT-PCR if also represented on microarray platforms used in previously published emphysema studies. Genes technically validated advanced to tests of biological replication by qRT-PCR using an independent test set of 62 lung samples. Class comparison identified 98 differentially expressed genes (p p Gene expression profiling of lung from emphysema patients identified seven candidate genes associated with emphysema severity including COL6A3, SERPINF1, ZNHIT6, NEDD4, CDKN2A, NRN1 and GSTM3.

  3. Comparative analysis of temporal gene expression patterns in the developing ovary of the embryonic chicken

    YU, Minli; XU, Yali; YU, Defu; YU, Debing; DU, Wenxing

    2015-01-01

    Many genes participate in the process of ovarian germ cell development, while the combined action mechanisms of these molecular regulators still need clarification. The present study was focused on determination of differentially expressed genes and gene functions at four critical time points in chicken ovarian development. Comparative transcriptional profiling of ovaries from embryonic day 5.5 (E5.5), E12.5, E15.5 and E18.5 was performed using an Affymetrix GeneChip chicken genome microarray. Differential expression patterns for genes specifically depleted and enriched in each stage were identified. The results showed that most of the up- and downregulated genes were involved in the metabolism of retinoic acid (RA) and synthesis of hormones. Among them, a higher number of up- and downregulated genes in the E15.5 ovary were identified as being involved in steroid biosynthesis and retinol metabolism, respectively. To validate gene changes, expressions of twelve candidate genes related to germ cell development were examined by real-time PCR and found to be consistent with the of GeneChip data. Moreover, the immunostaining results suggested that ovarian development during different stages was regulated by different genes. Furthermore, a Raldh2 knockdown chicken model was produced to investigate the fundamental role of Raldh2 in meiosis initiation. It was found that meiosis occurred abnormally in Raldh2 knockdown ovaries, but the inhibitory effect on meiosis was reversed by the addition of exogenous RA. This study offers insights into the profile of gene expression and mechanisms regulating ovarian development, especially the notable role of Raldh2 in meiosis initiation in the chicken. PMID:25736178

  4. Automated discovery of functional generality of human gene expression programs.

    Georg K Gerber

    2007-08-01

    Full Text Available An important research problem in computational biology is the identification of expression programs, sets of co-expressed genes orchestrating normal or pathological processes, and the characterization of the functional breadth of these programs. The use of human expression data compendia for discovery of such programs presents several challenges including cellular inhomogeneity within samples, genetic and environmental variation across samples, uncertainty in the numbers of programs and sample populations, and temporal behavior. We developed GeneProgram, a new unsupervised computational framework based on Hierarchical Dirichlet Processes that addresses each of the above challenges. GeneProgram uses expression data to simultaneously organize tissues into groups and genes into overlapping programs with consistent temporal behavior, to produce maps of expression programs, which are sorted by generality scores that exploit the automatically learned groupings. Using synthetic and real gene expression data, we showed that GeneProgram outperformed several popular expression analysis methods. We applied GeneProgram to a compendium of 62 short time-series gene expression datasets exploring the responses of human cells to infectious agents and immune-modulating molecules. GeneProgram produced a map of 104 expression programs, a substantial number of which were significantly enriched for genes involved in key signaling pathways and/or bound by NF-kappaB transcription factors in genome-wide experiments. Further, GeneProgram discovered expression programs that appear to implicate surprising signaling pathways or receptor types in the response to infection, including Wnt signaling and neurotransmitter receptors. We believe the discovered map of expression programs involved in the response to infection will be useful for guiding future biological experiments; genes from programs with low generality scores might serve as new drug targets that exhibit minimal

  5. Gene Expression Data Knowledge Discovery using Global and Local Clustering

    H, Swathi.

    2010-01-01

    To understand complex biological systems, the research community has produced huge corpus of gene expression data. A large number of clustering approaches have been proposed for the analysis of gene expression data. However, extracting important biological knowledge is still harder. To address this task, clustering techniques are used. In this paper, hybrid Hierarchical k-Means algorithm is used for clustering and biclustering gene expression data is used. To discover both local and global cl...

  6. Whole-body gene expression pattern registration in Platynereis larvae

    Asadulina Albina; Panzera Aurora; Verasztó Csaba; Liebig Christian; Jékely Gáspár

    2012-01-01

    Abstract Background Digital anatomical atlases are increasingly used in order to depict different gene expression patterns and neuronal morphologies within a standardized reference template. In evo-devo, a discipline in which the comparison of gene expression patterns is a widely used approach, such standardized anatomical atlases would allow a more rigorous assessment of the conservation of and changes in gene expression patterns during micro- and macroevolutionary time scales. Due to its sm...

  7. Selective expression of rat pancreatic genes during embryonic development.

    Han, J H; Rall, L; Rutter, W J

    1986-01-01

    We present the developmental profiles of the mRNAs of 10 selectively expressed pancreatic exocrine genes and of insulin. The mRNA profiles fall into three related classes, but each profile is in some respect unique. The data on gene expression suggest there are four developmental states of the exocrine pancreas: early morphogenesis and low-level gene expression (the protodifferentiated state), the embryonic differentiated state, a modulated state in neonatal animals, and the adult differentia...

  8. Serial Analysis of Gene Expression: Applications in Human Studies

    Renu Tuteja; Narendra Tuteja

    2004-01-01

    Serial analysis of gene expression (SAGE) is a powerful tool, which provides quantitative and comprehensive expression profile of genes in a given cell population. It works by isolating short fragments of genetic information from the expressed genes that are present in the cell being studied. These short sequences, called SAGE tags, are linked together for efficient sequencing. The frequency of each SAGE tag in the cloned multimers directly reflects the transcript abundance. Therefore, SAGE r...

  9. Regulated system for heterologous gene expression in Penicillium chrysogenum.

    Graessle, S.; de Haas, H.; Friedlin, E; Kürnsteiner, H; Stöffler, G; Redl, B

    1997-01-01

    A system for regulated heterologous gene expression in the filamentous fungus Penicillium chrysogenum was established. This is the first heterologous expression system to be developed for this organism. Expression of a recombinant fungal xylanase gene (xylp) and the cDNA for the human tear lipocalin (LCNI) was achieved by placing the encoding sequences under the control of the repressible acid phosphatase gene (phoA) promoter of P. chrysogenum. Secreted recombinant proteins were detected in t...

  10. Differential gene co-expression networks via Bayesian biclustering models

    Gao, Chuan; Zhao, Shiwen; McDowell, Ian C.; Brown, Christopher D.; Barbara E Engelhardt

    2014-01-01

    Identifying latent structure in large data matrices is essential for exploring biological processes. Here, we consider recovering gene co-expression networks from gene expression data, where each network encodes relationships between genes that are locally co-regulated by shared biological mechanisms. To do this, we develop a Bayesian statistical model for biclustering to infer subsets of co-regulated genes whose covariation may be observed in only a subset of the samples. Our biclustering me...

  11. Biclustering of Linear Patterns In Gene Expression Data

    Gao, Qinghui; Ho, Christine; Jia, Yingmin; Li, Jingyi Jessica; Huang, Haiyan

    2012-01-01

    Identifying a bicluster, or submatrix of a gene expression dataset wherein the genes express similar behavior over the columns, is useful for discovering novel functional gene interactions. In this article, we introduce a new algorithm for finding biClusters with Linear Patterns (CLiP). Instead of solely maximizing Pearson correlation, we introduce a fitness function that also considers the correlation of complementary genes and conditions. This eliminates the need for a priori determination ...

  12. Differential Expression of Salinity Resistance Gene on Cotton

    YE Wu-wei; YU Shu-xun

    2008-01-01

    @@ Salinity resistance and differential gene expression associated with salinity in cotton germplasm were studied,because of the large scale area of salinity in China,and its significant negative effects on the cotton production.The salinityresisted genes and their differential expression were studied under the stress of NaCI on cotton.There were found,under the NaCI stress,1644 genes differentially expressed from the salinity-sensitive cotton and only 817 genes differentially expressed from the salinityresisted cotton.

  13. Expression of protein-coding genes embedded in ribosomal DNA

    Johansen, Steinar D; Haugen, Peik; Nielsen, Henrik

    2007-01-01

    encode reverse transcriptase-like genes, and group I introns and archaeal introns that encode homing endonuclease genes (HEGs). Although rDNA-embedded protein genes are widespread in nuclei, organelles and bacteria, there is surprisingly little information available on how these genes are expressed....... Exceptions include a handful of HEGs from group I introns. Recent studies have revealed unusual and essential roles of group I and group I-like ribozymes in the endogenous expression of HEGs. Here we discuss general aspects of rDNA-embedded protein genes and focus on HEG expression from group I introns in...

  14. Expressed genes in regenerating rat liver after partial hepatectomy

    Cun-Shuan Xu; Salman Rahrnan; Jing-Bo Zhang; Cui-Fang Chang; Jin-Yun Yuan; Wen-Qiang Li; Hong-Peng Han; Ke-Jin Yang; Li-Feng Zhao; Yu-Chang Li; Hui-Yong Zhang

    2005-01-01

    AIM: To reveal the liver regeneration (LR) and its controlas well as the occurrence of liver disease and to study the gene expression profiles of 551 genes after partial hepatectomy (PH) in regenerating rat livers.METHODS: Five hundred and fifty-one expressed sequence tags screened by suppression subtractive hybridization were made into an in-house cDNA microarray, and the expressive genes and their expressive profiles in regenerating rat livers were analyzed by microarray and bioinformatics. RESULTS: Three hundred of the analyzed 551 genes were up- or downregulated more than twofolds at one or more time points during LR. Most of the genes were up- or downregulated 2-5 folds, but the highest reached 90 folds of the control. One hundred and thirty-nine of themshowed upregulation, 135 displayed downregulation, and up or down expression of 26 genes revealed a dependence on regenerating livers. The genes expressedin 24-h regenerating livers were much more than those in the others. Cluster analysis and generalization analysis showed that there were at least six distinct temporal patterns of gene expression in the regenerating livers, that is, genes were expressed in the immediate early phase, early phase, intermediate phase, early-late phase, late phase, terminal phase. CONCLUSION: In LR, the number of down-regulated genes was almost similar to that of the upregulated genes; the successively altered genes were more than the rapidly transient genes. The temporal patterns of gene expression were similar 2 and 4 h, 12 and 16 h, 48 and 96 h, 72 and 144 h after PH. Microarray combined with suppressive subtractive hybridization can effectively identify the genes related to LR.

  15. Noise in gene expression is coupled to growth rate

    Keren, Leeat; van Dijk, David; Weingarten-Gabbay, Shira; Davidi, Dan; Jona, Ghil; Weinberger, Adina; Milo, Ron; Segal, Eran

    2015-01-01

    Genetically identical cells exposed to the same environment display variability in gene expression (noise), with important consequences for the fidelity of cellular regulation and biological function. Although population average gene expression is tightly coupled to growth rate, the effects of changes in environmental conditions on expression variability are not known. Here, we measure the single-cell expression distributions of approximately 900 Saccharomyces cerevisiae promoters across four...

  16. Expression of UGA-Containing Mycoplasma Genes in Bacillus subtilis

    Kannan, T. R.; Baseman, Joel B.

    2000-01-01

    We used Bacillus subtilis to express UGA-containing Mycoplasma genes encoding the P30 adhesin (one UGA) of Mycoplasma pneumoniae and methionine sulfoxide reductase (two UGAs) of Mycoplasma genitalium. Due to natural UGA suppression, these Mycoplasma genes were expressed as full-length protein products, but at relatively low efficiency, in recombinant wild-type Bacillus. The B. subtilis-expressed Mycoplasma proteins appeared as single bands and not as multiple bands compared to expression in r...

  17. Multiscale Embedded Gene Co-expression Network Analysis

    Song, Won-Min; Zhang, Bin

    2015-01-01

    Gene co-expression network analysis has been shown effective in identifying functional co-expressed gene modules associated with complex human diseases. However, existing techniques to construct co-expression networks require some critical prior information such as predefined number of clusters, numerical thresholds for defining co-expression/interaction, or do not naturally reproduce the hallmarks of complex systems such as the scale-free degree distribution of small-worldness. Previously, a...

  18. Conserved co-expression for candidate disease gene prioritization

    Huynen Martijn A

    2008-04-01

    Full Text Available Abstract Background Genes that are co-expressed tend to be involved in the same biological process. However, co-expression is not a very reliable predictor of functional links between genes. The evolutionary conservation of co-expression between species can be used to predict protein function more reliably than co-expression in a single species. Here we examine whether co-expression across multiple species is also a better prioritizer of disease genes than is co-expression between human genes alone. Results We use co-expression data from yeast (S. cerevisiae, nematode worm (C. elegans, fruit fly (D. melanogaster, mouse and human and find that the use of evolutionary conservation can indeed improve the predictive value of co-expression. The effect that genes causing the same disease have higher co-expression than do other genes from their associated disease loci, is significantly enhanced when co-expression data are combined across evolutionarily distant species. We also find that performance can vary significantly depending on the co-expression datasets used, and just using more data does not necessarily lead to better prioritization. Instead, we find that dataset quality is more important than quantity, and using a consistent microarray platform per species leads to better performance than using more inclusive datasets pooled from various platforms. Conclusion We find that evolutionarily conserved gene co-expression prioritizes disease candidate genes better than human gene co-expression alone, and provide the integrated data as a new resource for disease gene prioritization tools.

  19. Structure and ovarian expression of the oxytocin gene in sheep.

    Ivell, R; Hunt, N; Abend, N; Brackman, B; Nollmeyer, D; Lamsa, J C; McCracken, J A

    1990-01-01

    In sheep, the oxytocin gene is highly up-regulated in the ovarian corpus luteum as well as in the hypothalamus. This expression is already elevated on Day 2 of the oestrous cycle, representing 1% of all transcripts in this tissue, and it declines thereafter to low levels after Day 6 of the cycle. In order to study the mechanisms involved in luteal oxytocin gene expression, we have cloned and sequenced the oxytocin gene from the sheep. This gene is closely homologous to other known mammalian oxytocin genes, especially the bovine one, and comparison of the gene promoter regions highlights several blocks of putative control elements. PMID:2095591

  20. Global gene expression analysis for evaluation and design of biomaterials

    Nobutaka Hanagata, Taro Takemura and Takashi Minowa

    2010-01-01

    Full Text Available Comprehensive gene expression analysis using DNA microarrays has become a widespread technique in molecular biological research. In the biomaterials field, it is used to evaluate the biocompatibility or cellular toxicity of metals, polymers and ceramics. Studies in this field have extracted differentially expressed genes in the context of differences in cellular responses among multiple materials. Based on these genes, the effects of materials on cells at the molecular level have been examined. Expression data ranging from several to tens of thousands of genes can be obtained from DNA microarrays. For this reason, several tens or hundreds of differentially expressed genes are often present in different materials. In this review, we outline the principles of DNA microarrays, and provide an introduction to methods of extracting information which is useful for evaluating and designing biomaterials from comprehensive gene expression data.

  1. Effects of Gold Nanorods on Imprinted Genes Expression in TM-4 Sertoli Cells

    Yuan, Beilei; Gu, Hao; Xu, Bo; Tang, Qiuqin; Wu, Wei; Ji, Xiaoli; Xia, Yankai; Hu, Lingqing; Chen, Daozhen; Wang, Xinru

    2016-01-01

    Gold nanorods (GNRs) are among the most commonly used nanomaterials. However, thus far, little is known about their harmful effects on male reproduction. Studies from our laboratory have demonstrated that GNRs could decrease glycine synthesis, membrane permeability, mitochondrial membrane potential and disrupt blood-testis barrier factors in TM-4 Sertoli cells. Imprinted genes play important roles in male reproduction and have been identified as susceptible loci to environmental insults by chemicals because they are functionally haploid. In this original study, we investigated the extent to which imprinted genes become deregulated in TM-4 Sertoli cells when treated with low dose of GNRs. The expression levels of 44 imprinted genes were analyzed by quantitative real-time PCR in TM-4 Sertoli cells after a low dose of (10 nM) GNRs treatment for 24 h. We found significantly diminished expression of Kcnq1, Ntm, Peg10, Slc22a2, Pwcr1, Gtl2, Nap1l5, Peg3 and Slc22a2, while Plagl1 was significantly overexpressed. Additionally, four (Kcnq1, Slc22a18, Pwcr1 and Peg3) of 10 abnormally expressed imprinted genes were found to be located on chromosome 7. However, no significant difference of imprinted miRNA genes was observed between the GNRs treated group and controls. Our study suggested that aberrant expression of imprinted genes might be an underlying mechanism for the GNRs-induced reproductive toxicity in TM-4 Sertoli cells. PMID:26938548

  2. Gene Expression Pattern of Signal Transduction in Chronic Myeloid Leukemia

    LI Huiyu; JIE Shenghua; GUO Tiannan; HUANG Shi'ang

    2006-01-01

    To explore the transcriptional gene expression profiles of signaling pathway in Chronic myeloid leukemia (CML), a series of cDNA microarray chips were tested. The results showed that differentially expressed genes related to singal transduction in CML were screened out and the genes involved in Phosphoinositide 3-kinases (PI3K), Ras-MAPK (mitogen-activated protein kinase) and other signaling pathway genes simultaneously. The results also showed that most of these genes were up-expression genes , which suggested that signal transduction be overactivated in CML. Further analysis of these differentially expressed signal transduction genes will be helpful to understand the molecular mechanism of CML and find new targets of treatment.

  3. Dynamic covariation between gene expression and proteome characteristics

    Lehtinen Tommi O

    2005-08-01

    Full Text Available Abstract Background Cells react to changing intra- and extracellular signals by dynamically modulating complex biochemical networks. Cellular responses to extracellular signals lead to changes in gene and protein expression. Since the majority of genes encode proteins, we investigated possible correlations between protein parameters and gene expression patterns to identify proteome-wide characteristics indicative of trends common to expressed proteins. Results Numerous bioinformatics methods were used to filter and merge information regarding gene and protein annotations. A new statistical time point-oriented analysis was developed for the study of dynamic correlations in large time series data. The method was applied to investigate microarray datasets for different cell types, organisms and processes, including human B and T cell stimulation, Drosophila melanogaster life span, and Saccharomyces cerevisiae cell cycle. Conclusion We show that the properties of proteins synthesized correlate dynamically with the gene expression profile, indicating that not only is the actual identity and function of expressed proteins important for cellular responses but that several physicochemical and other protein properties correlate with gene expression as well. Gene expression correlates strongly with amino acid composition, composition- and sequence-derived variables, functional, structural, localization and gene ontology parameters. Thus, our results suggest that a dynamic relationship exists between proteome properties and gene expression in many biological systems, and therefore this relationship is fundamental to understanding cellular mechanisms in health and disease.

  4. Transcriptome analysis of human brain tissue identifies reduced expression of complement complex C1Q Genes in Rett syndrome

    Lin, Peijie; Nicholls, Laura; Assareh, Hassan; Fang, Zhiming; Amos, Timothy G.; Edwards, Richard J; Assareh, Amelia A; Voineagu, Irina

    2016-01-01

    Background MECP2, the gene mutated in the majority of Rett syndrome cases, is a transcriptional regulator that can activate or repress transcription. Although the transcription regulatory function of MECP2 has been known for over a decade, it remains unclear how transcriptional dysregulation leads to the neurodevelopmental disorder. Notably, little convergence was previously observed between the genes abnormally expressed in the brain of Rett syndrome mouse models and those identified in huma...

  5. Benzoic Acid-Inducible Gene Expression in Mycobacteria.

    Marte S Dragset

    Full Text Available Conditional expression is a powerful tool to investigate the role of bacterial genes. Here, we adapt the Pseudomonas putida-derived positively regulated XylS/Pm expression system to control inducible gene expression in Mycobacterium smegmatis and Mycobacterium tuberculosis, the causative agent of human tuberculosis. By making simple changes to a Gram-negative broad-host-range XylS/Pm-regulated gene expression vector, we prove that it is possible to adapt this well-studied expression system to non-Gram-negative species. With the benzoic acid-derived inducer m-toluate, we achieve a robust, time- and dose-dependent reversible induction of Pm-mediated expression in mycobacteria, with low background expression levels. XylS/Pm is thus an important addition to existing mycobacterial expression tools, especially when low basal expression is of particular importance.

  6. Cumulative Epigenetic Abnormalities in Host Genes with Viral and Microbial Infection during Initiation and Progression of Malignant Lymphoma/Leukemia

    Although cancers have been thought to be predominantly driven by acquired genetic changes, it is becoming clear that microenvironment-mediated epigenetic alterations play important roles. Aberrant promoter hypermethylation is a prevalent phenomenon in human cancers as well as malignant lymphoma/leukemia. Tumor suppressor genes become frequent targets of aberrant hypermethylation in the course of gene-silencing due to the increased and deregulated DNA methyltransferases (DNMTs). The purpose of this article is to review the current status of knowledge about the contribution of cumulative epigenetic abnormalities of the host genes after microbial and virus infection to the crisis and progression of malignant lymphoma/leukemia. In addition, the relevance of this knowledge to malignant lymphoma/leukemia assessment, prevention and early detection will be discussed

  7. Cumulative Epigenetic Abnormalities in Host Genes with Viral and Microbial Infection during Initiation and Progression of Malignant Lymphoma/Leukemia

    Oka, Takashi, E-mail: oka@md.okayama-u.ac.jp [Department of Pathology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Okayama 700-8558 (Japan); Sato, Hiaki [Department of Medical Technology, Graduate School of Health Science, Okayama University Medical School, 2-5-1 Shikata-cho, Okayama 700-8558 (Japan); Ouchida, Mamoru [Department of Molecular Genetics, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Okayama 700-8558 (Japan); Utsunomiya, Atae [Department of Hematology, Imamura Bun-in Hospital, 11-23 Kamoike Shinnmachi, Kagoshima, 890-0064 (Japan); Yoshino, Tadashi [Department of Pathology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Okayama 700-8558 (Japan)

    2011-02-04

    Although cancers have been thought to be predominantly driven by acquired genetic changes, it is becoming clear that microenvironment-mediated epigenetic alterations play important roles. Aberrant promoter hypermethylation is a prevalent phenomenon in human cancers as well as malignant lymphoma/leukemia. Tumor suppressor genes become frequent targets of aberrant hypermethylation in the course of gene-silencing due to the increased and deregulated DNA methyltransferases (DNMTs). The purpose of this article is to review the current status of knowledge about the contribution of cumulative epigenetic abnormalities of the host genes after microbial and virus infection to the crisis and progression of malignant lymphoma/leukemia. In addition, the relevance of this knowledge to malignant lymphoma/leukemia assessment, prevention and early detection will be discussed.

  8. Potential role and chronology of abnormal expression of the Deleted in Colon Cancer (DCC) and the p53 proteins in the development of gastric cancer

    Loss of activity of tumor suppressor genes is considered a fundamental step in a genetic model of carcinogenesis. Altered expression of the p53 and the Deleted in Colon Cancer (DCC) proteins has been described in gastric cancer and this event may have a role in the development of the disease. According to this hypothesis, we investigated the p53 and the DCC proteins expression in different stages of gastric carcinomas. An immunohistochemical analysis for detection of p53 and DCC proteins expression was performed in tumor tissue samples of patients with UICC stage I and II gastric cancer. For the purpose of the analysis, the staining results were related to the pathologic data and compared between stage categories. Ninety-four cases of gastric cancer were analyzed. Disease stage categories were pT1N0 in 23 cases, pT2N0 in 20 cases, pT3N0 in 20 cases and pT1-3 with nodal involvment in 31 cases. Stage pT1-2N0 tumors maintained a positive DCC expression while it was abolished in pT3N0 tumors (p <.001). A significant higher proportion of patients with N2 nodal involvement showed DCC negative tumors. In muscular-invading tumors (pT2-3N0) the majority of cases showed p53 overexpression, whereas a significantly higher proportion of cases confined into the mucosa (pT1N0) showed p53 negative tumors. Also, a higher frequency of p53 overexpression was detected in cases with N1 and N2 metastatic lymphnodal involvement. Altered expression of both DCC and p53 proteins is detectable in gastric carcinomas. It seems that loss of wild-type p53 gene function and consequent p53 overexpression may be involved in early stages of tumor progression while DCC abnormalities are a late event

  9. Natural history of chronic myelomonocytic leukemia: gene sequencing identifies multiple clonal molecular abnormalities associated with rapid progression to acute myeloid leukemia

    Xiang, Zhifu; Kaur, Varinder; Aburiziq, Ibrahim K; Mehta, Paulette; Emanuel, Peter; Schichman, Steven A.

    2014-01-01

    Key Clinical Message Gene panel sequencing in a CMML patient without any detectable genetic abnormality by conventional genetic studies identified four concurrent somatic mutations in three genes. Gene panel mutation analysis is a rapidly emerging clinical tool to demonstrate the clonality in hematologic malignancies, and to identify the potential targets for therapy.

  10. The clinical significances of the abnormal expressions of Piwil1 and Piwil2 in colonic adenoma and adenocarcinoma

    Wang HL

    2015-05-01

    Full Text Available Hai-Ling Wang,1 Bei-Bei Chen,1 Xin-Guang Cao,1 Jin Wang,2 Xiu-Feng Hu,1 Xiao-Qian Mu,1 Xiao-Bing Chen1 1The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, People’s Republic of China; 2The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People’s Republic of China Objective: The objective of the present investigation was to study the clinical significances of the abnormal expressions of Piwil1 and Piwil2 protein in colonic adenoma and adenocarcinoma.Methods: This study had applied immunohistochemical method to detect 45 cases of tissues adjacent to carcinoma (distance to cancerous tissue was above 5 cm, 41 cases of colonic adenoma and 92 cases of colon cancer tissues, and their Piwil1 and Piwil2 protein expression levels.Analysis: The correlation of both expression and its relationship with clinicopathological features of colon cancer was analyzed.Results: Positive expression rates of Piwil1 in tissues adjacent to carcinoma, colonic adenoma, and colon cancer were 11.1% (5/45, 53.7% (22/41, and 80.4% (74/92, respectively; the expression rates increased, and the comparisons between each two groups were statistically significant (P<0.05. In each group, the positive expression rates of Piwil2 were 24.4% (11/45 cases, 75.6% (31/41 cases, and 92.4% (85/92 cases; expression rates increased, and the comparisons between each two groups were statistically significant (P<0.05. Piwil1 expression and the correlation of the degree of differentiation, TNM stage, and lymph node metastasis were statistically significant (P<0.05. Piwil2 expression and the correlation of the degree of differentiation, tumor node metastasis (TNM stage, and lymph node metastasis had no statistical significance (P>0.05. In colon cancer tissue, Piwil1 and Piwil2 expressions were positively correlated (r=0.262, P<0.05.Conclusion: The results showed that the abnormal expression of Piwil1 and Piwil2 might play an important role in

  11. Microarray gene expression profiling and analysis in renal cell carcinoma

    Sadhukhan Provash

    2004-06-01

    Full Text Available Abstract Background Renal cell carcinoma (RCC is the most common cancer in adult kidney. The accuracy of current diagnosis and prognosis of the disease and the effectiveness of the treatment for the disease are limited by the poor understanding of the disease at the molecular level. To better understand the genetics and biology of RCC, we profiled the expression of 7,129 genes in both clear cell RCC tissue and cell lines using oligonucleotide arrays. Methods Total RNAs isolated from renal cell tumors, adjacent normal tissue and metastatic RCC cell lines were hybridized to affymatrix HuFL oligonucleotide arrays. Genes were categorized into different functional groups based on the description of the Gene Ontology Consortium and analyzed based on the gene expression levels. Gene expression profiles of the tissue and cell line samples were visualized and classified by singular value decomposition. Reverse transcription polymerase chain reaction was performed to confirm the expression alterations of selected genes in RCC. Results Selected genes were annotated based on biological processes and clustered into functional groups. The expression levels of genes in each group were also analyzed. Seventy-four commonly differentially expressed genes with more than five-fold changes in RCC tissues were identified. The expression alterations of selected genes from these seventy-four genes were further verified using reverse transcription polymerase chain reaction (RT-PCR. Detailed comparison of gene expression patterns in RCC tissue and RCC cell lines shows significant differences between the two types of samples, but many important expression patterns were preserved. Conclusions This is one of the initial studies that examine the functional ontology of a large number of genes in RCC. Extensive annotation, clustering and analysis of a large number of genes based on the gene functional ontology revealed many interesting gene expression patterns in RCC. Most

  12. Impact of elevated plasma serotonin on global gene expression of murine megakaryocytes.

    Charles P Mercado

    Full Text Available BACKGROUND: Serotonin (5-HT is a biogenic amine that also acts as a mitogen and a developmental signal early in rodent embryogenesis. Genetic and pharmacological disruption of 5-HT signaling causes various diseases and disorders via mediating central nervous system, cardiovascular system, and serious abnormalities on a growing embryo. Today, neither the effective modulators on 5-HT signaling pathways nor the genes affected by 5-HT signal are well known yet. METHODOLOGY/PRINCIPAL FINDINGS: In an attempt to identify the genes altered by 5-HT signaling pathways, we analyzed the global gene expression via the Illumina array platform using the mouse WG-6 v2.0 Expression BeadChip containing 45,281 probe sets representing 30,854 genes in megakaryocytes isolated from mice infused with 5-HT or saline. We identified 723 differentially expressed genes of which 706 were induced and 17 were repressed by elevated plasma 5-HT. CONCLUSIONS/SIGNIFICANCE: Hierarchical gene clustering analysis was utilized to represent relations between groups and clusters. Using gene ontology mining tools and canonical pathway analyses, we identified multiple biological pathways that are regulated by 5-HT: (i cytoskeletal remodeling, (ii G-protein signaling, (iii vesicular transport, and (iv apoptosis and survival. Our data encompass the first extensive genome-wide based profiling in the progenitors of platelets in response to 5-HT elevation in vivo.

  13. Gene length and expression level shape genomic novelties

    Grishkevich, Vladislav; YANAI, Itai

    2014-01-01

    Gene duplication and alternative splicing are important mechanisms in the production of genomic novelties. Previous work has shown that a gene’s family size and the number of splice variants it produces are inversely related, although the underlying reason is not well understood. Here, we report that gene length and expression level together explain this relationship. We found that gene lengths correlate with both gene duplication and alternative splicing: Longer genes are less likely to prod...

  14. A stochastic approach to multi-gene expression dynamics

    In the last years, tens of thousands gene expression profiles for cells of several organisms have been monitored. Gene expression is a complex transcriptional process where mRNA molecules are translated into proteins, which control most of the cell functions. In this process, the correlation among genes is crucial to determine the specific functions of genes. Here, we propose a novel multi-dimensional stochastic approach to deal with the gene correlation phenomena. Interestingly, our stochastic framework suggests that the study of the gene correlation requires only one theoretical assumption-Markov property-and the experimental transition probability, which characterizes the gene correlation system. Finally, a gene expression experiment is proposed for future applications of the model

  15. Clinicopathologic and gene expression parameters predict liver cancer prognosis

    The prognosis of hepatocellular carcinoma (HCC) varies following surgical resection and the large variation remains largely unexplained. Studies have revealed the ability of clinicopathologic parameters and gene expression to predict HCC prognosis. However, there has been little systematic effort to compare the performance of these two types of predictors or combine them in a comprehensive model. Tumor and adjacent non-tumor liver tissues were collected from 272 ethnic Chinese HCC patients who received curative surgery. We combined clinicopathologic parameters and gene expression data (from both tissue types) in predicting HCC prognosis. Cross-validation and independent studies were employed to assess prediction. HCC prognosis was significantly associated with six clinicopathologic parameters, which can partition the patients into good- and poor-prognosis groups. Within each group, gene expression data further divide patients into distinct prognostic subgroups. Our predictive genes significantly overlap with previously published gene sets predictive of prognosis. Moreover, the predictive genes were enriched for genes that underwent normal-to-tumor gene network transformation. Previously documented liver eSNPs underlying the HCC predictive gene signatures were enriched for SNPs that associated with HCC prognosis, providing support that these genes are involved in key processes of tumorigenesis. When applied individually, clinicopathologic parameters and gene expression offered similar predictive power for HCC prognosis. In contrast, a combination of the two types of data dramatically improved the power to predict HCC prognosis. Our results also provided a framework for understanding the impact of gene expression on the processes of tumorigenesis and clinical outcome

  16. Gene expression profiling of differentially expressed genes in bull testicle between different scrotal circumference using DDRT

    To identify tissue-specific expression gene in testicle of differential scrotal circumference bulls and analyze the function of the specific gene on the development of the bull's scrotum in this study. The DDRT-PCR and Reverse Northern Blot Analysis were used to identify tissue-specific expression genes in bulls with differential scrotal circumference. The experiment was designed sixty 6-month-old crossbreeds (Charolais with indigenous Fuzhou female). These were raised under the same age, cross generation, raising condition and management. When the feeding was over after 6 months, the scrotal circumferences of bulls were measured. Four bulls were selected and classified into two groups, and the difference of scrotal circumference is significant between the two groups (P < 0.01). A group was consisted of two bulls with larger scrotal circumference 26±2.5cm. The control group was two crossbreed bulls with smaller scrotal circumference 17±2.2 cm. When the scrotal circumferences were measured, the bulls were castrated by surgical operations. A piece of tissue (2 by 2 by 2 cm) was removed from the deeper area of the testis and stored in liquid nitrogen. A small section (0.5 by 0.5 by 0.5 cm) was used for total RNA extraction by using the TRIZOL reagent kit (GIBCO/BRL, Bethesda, MA, USA). The RNA was prepared for DDRT-PCR experiments and quantitative real-time PCR. The results were shown that six genes corresponded to genes of known or inferred function; either the bovine gene or the likely human orthologue and three genes or ESTs were unknown. Bos taurus similar to galactosidase, beta 1-like; Bos taurus similar to Kinesin heavy chain isoform 5C; Bos taurus similar to ankyrin repeat domain protein 15 isoform and Bos taurus ebd-P2 pseudogene were founded both highly expressed in bulls which had bigger scrotal circumference by qRT-PCR. Their functions may be involved with sperm maturation in the epididymis, sperm protection and preventing the ascent of microorganisms

  17. Identification and validation of suitable endogenous reference genes for gene expression studies in human peripheral blood

    Turner Renee J

    2009-08-01

    Full Text Available Abstract Background Gene expression studies require appropriate normalization methods. One such method uses stably expressed reference genes. Since suitable reference genes appear to be unique for each tissue, we have identified an optimal set of the most stably expressed genes in human blood that can be used for normalization. Methods Whole-genome Affymetrix Human 2.0 Plus arrays were examined from 526 samples of males and females ages 2 to 78, including control subjects and patients with Tourette syndrome, stroke, migraine, muscular dystrophy, and autism. The top 100 most stably expressed genes with a broad range of expression levels were identified. To validate the best candidate genes, we performed quantitative RT-PCR on a subset of 10 genes (TRAP1, DECR1, FPGS, FARP1, MAPRE2, PEX16, GINS2, CRY2, CSNK1G2 and A4GALT, 4 commonly employed reference genes (GAPDH, ACTB, B2M and HMBS and PPIB, previously reported to be stably expressed in blood. Expression stability and ranking analysis were performed using GeNorm and NormFinder algorithms. Results Reference genes were ranked based on their expression stability and the minimum number of genes needed for nomalization as calculated using GeNorm showed that the fewest, most stably expressed genes needed for acurate normalization in RNA expression studies of human whole blood is a combination of TRAP1, FPGS, DECR1 and PPIB. We confirmed the ranking of the best candidate control genes by using an alternative algorithm (NormFinder. Conclusion The reference genes identified in this study are stably expressed in whole blood of humans of both genders with multiple disease conditions and ages 2 to 78. Importantly, they also have different functions within cells and thus should be expressed independently of each other. These genes should be useful as normalization genes for microarray and RT-PCR whole blood studies of human physiology, metabolism and disease.

  18. Expression of chromatin modification genes in organs of cloned cattle that died within hours after birth

    LI Shijie; LIAN Zhengxing; LI Dongjie; YU Shuyang; ZHANG Lei; DAI Yunping; LI Rong; FEI Jing; LI Ning

    2006-01-01

    Cloning by somatic nuclear transfer is an inefficient process in which many of the cloned animals died shortly after birth and displayed organ abnormalities. In an effort to determine the possible genetic causes of neonatal death and organ abnormalities, we have examined expression patterns of four genes that modified chromatin (DNMT1, PCAF,MeCP2 and EED) in six organs (heart, liver, spleen, lung, kidney and brain) of both neonatal death cloned bovines (n=9) and normal control calves produced by artificial insemination (AI) using real-time quantitative RT-PCR. The effect of the age of the fibroblast donor cell on the gene expression profiles was also investigated. Aberrant expressions of DNMT1 and PCAF were found in some studied tissues, but the expression of MeCP2 and EED had similar levels to those of the normal controls. The expression of DNMT1 showed a higher level in heart, liver and brain of both cloned bovines. A higher expression level of PCAF was seen in heart and liver of both cloned bovines, but a lower level was seen only in spleen of adult fibroblast (AF) cell-derived clones. Our results suggest that aberrant expression in gene that modified chromatins were found in cloned bovine tissues of neonatal death. Because DNMT1 and PCAF play an important role in DNA methylation and histone acetylation on nuclear chromatin respectively, and normal expression of DNMT1 and PCAF is needed for precious reprogramming of donor nuclear, the aberrant transcription patterns of DNMT1 and PCAF in these clones 5 contribute to the defects of organs reported in neonatal death of clones.

  19. Mutant huntingtin downregulates myelin regulatory factor-mediated myelin gene expression and affects mature oligodendrocytes.

    Huang, Brenda; Wei, WenJie; Wang, Guohao; Gaertig, Marta A; Feng, Yue; Wang, Wei; Li, Xiao-Jiang; Li, Shihua

    2015-03-18

    Growing evidence indicates that non-neuronal mutant huntingtin toxicity plays an important role in Huntington's disease (HD); however, whether and how mutant huntingtin affects oligodendrocytes, which are vitally important for neural function and axonal integrity, remains unclear. We first verified the presence of mutant huntingtin in oligodendrocytes in HD140Q knockin mice. We then established transgenic mice (PLP-150Q) that selectively express mutant huntingtin in oligodendrocytes. PLP-150Q mice show progressive neurological symptoms and early death, as well as age-dependent demyelination and reduced expression of myelin genes that are downstream of myelin regulatory factor (MYRF or MRF), a transcriptional regulator that specifically activates and maintains the expression of myelin genes in mature oligodendrocytes. Consistently, mutant huntingtin binds abnormally to MYRF and affects its transcription activity. Our findings suggest that dysfunction of mature oligodendrocytes is involved in HD pathogenesis and may also make a good therapeutic target. PMID:25789755

  20. Gene expression changes induced by the tumorigenic pyrrolizidine alkaloid riddelliine in liver of Big Blue rats

    Mei, Nan; Guo, Lei; Liu, Ruqing; Fuscoe, James C; Chen, Tao

    2007-01-01

    Background Pyrrolizidine alkaloids (PAs) are probably the most common plant constituents that poison livestock, wildlife, and humans worldwide. Riddelliine is isolated from plants grown in the western United States and is a prototype of genotoxic PAs. Riddelliine was used to investigate the genotoxic effects of PAs via analysis of gene expression in the target tissue of rats in this study. Previously we observed that the mutant frequency in the liver of rats gavaged with riddelliine was 3-fold higher than that in the control group. Molecular analysis of the mutants indicated that there was a statistically significant difference between the mutational spectra from riddelliine-treated and control rats. Results Riddelliine-induced gene expression profiles in livers of Big Blue transgenic rats were determined. The female rats were gavaged with riddelliine at a dose of 1 mg/kg body weight 5 days a week for 12 weeks. Rat whole genome microarray was used to perform genome-wide gene expression studies. When a cutoff value of a two-fold change and a P-value less than 0.01 were used as gene selection criteria, 919 genes were identified as differentially expressed in riddelliine-treated rats compared to the control animals. By analysis with the Ingenuity Pathway Analysis Network, we found that these significantly changed genes were mainly involved in cancer, cell death, tissue development, cellular movement, tissue morphology, cell-to-cell signaling and interaction, and cellular growth and proliferation. We further analyzed the genes involved in metabolism, injury of endothelial cells, liver abnormalities, and cancer development in detail. Conclusion The alterations in gene expression were directly related to the pathological outcomes reported previously. These results provided further insight into the mechanisms involved in toxicity and carcinogenesis after exposure to riddelliine, and permitted us to investigate the interaction of gene products inside the signaling networks

  1. Gene ordering in partitive clustering using microarray expressions

    Shubhra Sankar Ray; Sanghamitra Bandyopadhyay; Sankar K Pal

    2007-08-01

    A central step in the analysis of gene expression data is the identification of groups of genes that exhibit similar expression patterns. Clustering and ordering the genes using gene expression data into homogeneous groups was shown to be useful in functional annotation, tissue classification, regulatory motif identification, and other applications. Although there is a rich literature on gene ordering in hierarchical clustering framework for gene expression analysis, there is no work addressing and evaluating the importance of gene ordering in partitive clustering framework, to the best knowledge of the authors. Outside the framework of hierarchical clustering, different gene ordering algorithms are applied on the whole data set, and the domain of partitive clustering is still unexplored with gene ordering approaches. A new hybrid method is proposed for ordering genes in each of the clusters obtained from partitive clustering solution, using microarray gene expressions. Two existing algorithms for optimally ordering cities in travelling salesman problem (TSP), namely, FRAG_GALK and Concorde, are hybridized individually with self organizing MAP to show the importance of gene ordering in partitive clustering framework. We validated our hybrid approach using yeast and fibroblast data and showed that our approach improves the result quality of partitive clustering solution, by identifying subclusters within big clusters, grouping functionally correlated genes within clusters, minimization of summation of gene expression distances, and the maximization of biological gene ordering using MIPS categorization. Moreover, the new hybrid approach, finds comparable or sometimes superior biological gene order in less computation time than those obtained by optimal leaf ordering in hierarchical clustering solution.

  2. Contrasuppression in autoimmunity. Abnormal contrasuppression facilitates expression of nephritogenic effector T cells and interstitial nephritis in kdkd mice

    1987-01-01

    We have used the murine model of spontaneous autoimmune interstitial nephritis in kdkd mice to examine the importance of abnormal immunoregulation in the expression of disease. T cells from naive congenic CBA/Ca mice suppress both histologic renal injury in the kdkd strain as well as the DTH reactivity to CBA/Ca renal tubular antigens mediated by lymphocytes from nephritic kdkd mice. These antigen- specific suppressor T cells are Lyt-2+, L3T4+, I-Jk+, genetically dominant and I-Jk restricted....

  3. Assembly and Expression of Shark Ig Genes.

    Hsu, Ellen

    2016-05-01

    Sharks are modern descendants of the earliest vertebrates possessing Ig superfamily receptor-based adaptive immunity. They respond to immunogen with Abs that, upon boosting, appear more rapidly and show affinity maturation. Specific Abs and immunological memory imply that Ab diversification and clonal selection exist in cartilaginous fish. Shark Ag receptors are generated through V(D)J recombination, and because it is a mechanism known to generate autoreactive receptors, this implies that shark lymphocytes undergo selection. In the mouse, the ∼2.8-Mb IgH and IgL loci require long-range, differential activation of component parts for V(D)J recombination, allelic exclusion, and receptor editing. These processes, including class switching, evolved with and appear inseparable from the complex locus organization. In contrast, shark Igs are encoded by 100-200 autonomously rearranging miniloci. This review describes how the shark primary Ab repertoire is generated in the absence of structural features considered essential in mammalian Ig gene assembly and expression. PMID:27183649

  4. Local gene expression in nerve endings.

    Crispino, Marianna; Chun, Jong Tai; Cefaliello, Carolina; Perrone Capano, Carla; Giuditta, Antonio

    2014-03-01

    At the Nobel lecture for physiology in 1906, Ramón y Cajal famously stated that "the nerve elements possess reciprocal relationships in contiguity but not in continuity," summing up the neuron doctrine. Sixty years later, by the time the central dogma of molecular biology formulated the axis of genetic information flow from DNA to mRNA, and then to protein, it became obvious that neurons with extensive ramifications and long axons inevitably incur an innate problem: how can the effect of gene expression be extended from the nucleus to the remote and specific sites of the cell periphery? The most straightforward solution would be to deliver soma-produced proteins to the target sites. The influential discovery of axoplasmic flow has supported this scheme of protein supply. Alternatively, mRNAs can be dispatched instead of protein, and translated locally at the strategic target sites. Over the past decades, such a local system of protein synthesis has been demonstrated in dendrites, axons, and presynaptic terminals. Moreover, the local protein synthesis in neurons might even involve intercellular trafficking of molecules. The innovative concept of glia-neuron unit suggests that the local protein synthesis in the axonal and presynaptic domain of mature neurons is sustained by a local supply of RNAs synthesized in the surrounding glial cells and transferred to these domains. Here, we have reviewed some of the evidence indicating the presence of a local system of protein synthesis in axon terminals, and have examined its regulation in various model systems. PMID:23853157

  5. Ranking differentially expressed genes from Affymetrix gene expression data: methods with reproducibility, sensitivity, and specificity

    Shimizu Kentaro

    2009-04-01

    Full Text Available Abstract Background To identify differentially expressed genes (DEGs from microarray data, users of the Affymetrix GeneChip system need to select both a preprocessing algorithm to obtain expression-level measurements and a way of ranking genes to obtain the most plausible candidates. We recently recommended suitable combinations of a preprocessing algorithm and gene ranking method that can be used to identify DEGs with a higher level of sensitivity and specificity. However, in addition to these recommendations, researchers also want to know which combinations enhance reproducibility. Results We compared eight conventional methods for ranking genes: weighted average difference (WAD, average difference (AD, fold change (FC, rank products (RP, moderated t statistic (modT, significance analysis of microarrays (samT, shrinkage t statistic (shrinkT, and intensity-based moderated t statistic (ibmT with six preprocessing algorithms (PLIER, VSN, FARMS, multi-mgMOS (mmgMOS, MBEI, and GCRMA. A total of 36 real experimental datasets was evaluated on the basis of the area under the receiver operating characteristic curve (AUC as a measure for both sensitivity and specificity. We found that the RP method performed well for VSN-, FARMS-, MBEI-, and GCRMA-preprocessed data, and the WAD method performed well for mmgMOS-preprocessed data. Our analysis of the MicroArray Quality Control (MAQC project's datasets showed that the FC-based gene ranking methods (WAD, AD, FC, and RP had a higher level of reproducibility: The percentages of overlapping genes (POGs across different sites for the FC-based methods were higher overall than those for the t-statistic-based methods (modT, samT, shrinkT, and ibmT. In particular, POG values for WAD were the highest overall among the FC-based methods irrespective of the choice of preprocessing algorithm. Conclusion Our results demonstrate that to increase sensitivity, specificity, and reproducibility in microarray analyses, we need

  6. The Role of Multiple Transcription Factors In Archaeal Gene Expression

    Charles J. Daniels

    2008-09-23

    Since the inception of this research program, the project has focused on two central questions: What is the relationship between the 'eukaryal-like' transcription machinery of archaeal cells and its counterparts in eukaryal cells? And, how does the archaeal cell control gene expression using its mosaic of eukaryal core transcription machinery and its bacterial-like transcription regulatory proteins? During the grant period we have addressed these questions using a variety of in vivo approaches and have sought to specifically define the roles of the multiple TATA binding protein (TBP) and TFIIB-like (TFB) proteins in controlling gene expression in Haloferax volcanii. H. volcanii was initially chosen as a model for the Archaea based on the availability of suitable genetic tools; however, later studies showed that all haloarchaea possessed multiple tbp and tfb genes, which led to the proposal that multiple TBP and TFB proteins may function in a manner similar to alternative sigma factors in bacterial cells. In vivo transcription and promoter analysis established a clear relationship between the promoter requirements of haloarchaeal genes and those of the eukaryal RNA polymerase II promoter. Studies on heat shock gene promoters, and the demonstration that specific tfb genes were induced by heat shock, provided the first indication that TFB proteins may direct expression of specific gene families. The construction of strains lacking tbp or tfb genes, coupled with the finding that many of these genes are differentially expressed under varying growth conditions, provided further support for this model. Genetic tools were also developed that led to the construction of insertion and deletion mutants, and a novel gene expression scheme was designed that allowed the controlled expression of these genes in vivo. More recent studies have used a whole genome array to examine the expression of these genes and we have established a linkage between the expression of

  7. Microdissection of the gene expression codes driving nephrogenesis.

    Potter, S Steven; Brunskill, Eric W; Patterson, Larry T

    2010-01-01

    The kidney represents an excellent model system for learning the principles of organogenesis. It is intermediate in complexity, and employs many commonly used developmental processes. As such, kidney development has been the subject of intensive study, using a variety of techniques, including in situ hybridization, organ culture and gene targeting, revealing many critical genes and pathways. Nevertheless, proper organogenesis requires precise patterns of cell type specific differential gene expression, involving very large numbers of genes. This review is focused on the use of global profiling technologies to create an atlas of gene expression codes driving development of different mammalian kidney compartments. Such an atlas allows one to select a gene of interest, and to determine its expression level in each element of the developing kidney, or to select a structure of interest, such as the renal vesicle, and to examine its complete gene expression state. Novel component specific molecular markers are identified, and the changing waves of gene expression that drive nephrogenesis are defined. As the tools continue to improve for the purification of specific cell types and expression profiling of even individual cells it is possible to predict an atlas of gene expression during kidney development that extends to single cell resolution. PMID:21220959

  8. Congruence of tissue expression profiles from Gene Expression Atlas, SAGEmap and TissueInfo databases

    Wolfe Kenneth H

    2003-07-01

    Full Text Available Abstract Background Extracting biological knowledge from large amounts of gene expression information deposited in public databases is a major challenge of the postgenomic era. Additional insights may be derived by data integration and cross-platform comparisons of expression profiles. However, database meta-analysis is complicated by differences in experimental technologies, data post-processing, database formats, and inconsistent gene and sample annotation. Results We have analysed expression profiles from three public databases: Gene Expression Atlas, SAGEmap and TissueInfo. These are repositories of oligonucleotide microarray, Serial Analysis of Gene Expression and Expressed Sequence Tag human gene expression data respectively. We devised a method, Preferential Expression Measure, to identify genes that are significantly over- or under-expressed in any given tissue. We examined intra- and inter-database consistency of Preferential Expression Measures. There was good correlation between replicate experiments of oligonucleotide microarray data, but there was less coherence in expression profiles as measured by Serial Analysis of Gene Expression and Expressed Sequence Tag counts. We investigated inter-database correlations for six tissue categories, for which data were present in the three databases. Significant positive correlations were found for brain, prostate and vascular endothelium but not for ovary, kidney, and pancreas. Conclusion We show that data from Gene Expression Atlas, SAGEmap and TissueInfo can be integrated using the UniGene gene index, and that expression profiles correlate relatively well when large numbers of tags are available or when tissue cellular composition is simple. Finally, in the case of brain, we demonstrate that when PEM values show good correlation, predictions of tissue-specific expression based on integrated data are very accurate.

  9. Comparative genomics of the relationship between gene structure and expression

    Ren, X.

    2006-01-01

    The relationship between the structure of genes and their expression is a relatively new aspect of genome organization and regulation. With more genome sequences and expression data becoming available, bioinformatics approaches can help the further elucidation of the relationships between gene struc

  10. Expression and mapping of anthocyanin biosynthesis genes in carrot

    Anthocyanin gene expression has been extensively studied in leaves, fruits and flowers of numerous plants. Little, however, is known about anthocyanin accumulation in roots, or in carrots or other Apiaceae. We quantified expression of six anthocyanin biosynthetic genes (phenylalanine ammonia-lyase (...

  11. Using differential gene expression to study Entamoeba histolytica pathogenesis

    Gilchrist, Carol A.; Petri, William A.

    2009-01-01

    The release of the Entamoeba histolytica genome has facilitated the development of techniques to survey rapidly and to relate gene expression with biology. The association and potential contribution of differential gene expression to the life cycle and the virulence of this protozoan parasite of humans are reviewed here.

  12. Meta-analysis of differentially expressed genes in ankylosing spondylitis.

    Lee, Y H; Song, G G

    2015-01-01

    The purpose of this study was to identify differentially expressed (DE) genes and biological processes associated with changes in gene expression in ankylosing spondylitis (AS). We performed a meta-analysis using the integrative meta-analysis of expression data program on publicly available microarray AS Gene Expression Omnibus (GEO) datasets. We performed Gene Ontology (GO) enrichment analyses and pathway analysis using the Kyoto Encyclopedia of Genes and Genomes. Four GEO datasets, including 31 patients with AS and 39 controls, were available for the meta-analysis. We identified 65 genes across the studies that were consistently DE in patients with AS vs controls (23 upregulated and 42 downregulated). The upregulated gene with the largest effect size (ES; -1.2628, P = 0.020951) was integral membrane protein 2A (ITM2A), which is expressed by CD4+ T cells and plays a role in activation of T cells. The downregulated gene with the largest ES (1.2299, P = 0.040075) was mitochondrial ribosomal protein S11 (MRPS11). The most significant GO enrichment was in the respiratory electron transport chain category (P = 1.67 x 10-9). Therefore, our meta-analysis identified genes that were consistently DE as well as biological pathways associated with gene expression changes in AS. PMID:26125709

  13. Gene Expression Profiling in the Hibernating Primate, Cheirogaleus Medius.

    Faherty, Sheena L; Villanueva-Cañas, José Luis; Klopfer, Peter H; Albà, M Mar; Yoder, Anne D

    2016-01-01

    Hibernation is a complex physiological response that some mammalian species employ to evade energetic demands. Previous work in mammalian hibernators suggests that hibernation is activated not by a set of genes unique to hibernators, but by differential expression of genes that are present in all mammals. This question of universal genetic mechanisms requires further investigation and can only be tested through additional investigations of phylogenetically dispersed species. To explore this question, we use RNA-Seq to investigate gene expression dynamics as they relate to the varying physiological states experienced throughout the year in a group of primate hibernators-Madagascar's dwarf lemurs (genus Cheirogaleus). In a novel experimental approach, we use longitudinal sampling of biological tissues as a method for capturing gene expression profiles from the same individuals throughout their annual hibernation cycle. We identify 90 candidate genes that have variable expression patterns when comparing two active states (Active 1 and Active 2) with a torpor state. These include genes that are involved in metabolic pathways, feeding behavior, and circadian rhythms, as might be expected to correlate with seasonal physiological state changes. The identified genes appear to be critical for maintaining the health of an animal that undergoes prolonged periods of metabolic depression concurrent with the hibernation phenotype. By focusing on these differentially expressed genes in dwarf lemurs, we compare gene expression patterns in previously studied mammalian hibernators. Additionally, by employing evolutionary rate analysis, we find that hibernation-related genes do not evolve under positive selection in hibernating species relative to nonhibernators. PMID:27412611

  14. ANALYSES ON DIFFERENTIALLY EXPRESSED GENES ASSOCIATED WITH HUMAN BREAST CANCER

    MENG Xu-li; DING Xiao-wen; XU Xiao-hong

    2006-01-01

    Objective: To investigate the molecular etiology of breast cancer by way of studying the differential expression and initial function of the related genes in the occurrence and development of breast cancer. Methods: Two hundred and eighty-eight human tumor related genes were chosen for preparation of the oligochips probe. mRNA was extracted from 16 breast cancer tissues and the corresponding normal breast tissues, and cDNA probe was prepared through reverse-transcription and hybridized with the gene chip. A laser focused fluorescent scanner was used to scan the chip. The different gene expressions were thereafter automatically compared and analyzed between the two sample groups. Cy3/Cy5>3.5 meant significant up-regulation. Cy3/Cy5<0.25 meant significant down-regulation. Results: The comparison between the breast cancer tissues and their corresponding normal tissues showed that 84 genes had differential expression in the Chip. Among the differently expressed genes, there were 4 genes with significant down-regulation and 6 with significant up-regulation. Compared with normal breast tissues, differentially expressed genes did partially exist in the breast cancer tissues. Conclusion: Changes in multi-gene expression regulations take place during the occurrence and development of breast cancer; and the research on related genes can help understanding the mechanism of tumor occurrence.

  15. Pericellular innervation of neurons expressing abnormally hyperphosphorylated tau in the hippocampal formation of Alzheimer's disease patients

    Lidia Blazquez-Llorca

    2010-06-01

    Full Text Available Neurofibrillary tangles (NFT represent one of the main neuropathological features in the cerebral cortex associated with Alzheimer’s disease (AD. This neurofibrillary lesion involves the accumulation of abnormally hyperphosphorylated or abnormally phosphorylated microtubule-associated protein tau into paired helical filaments (PHF-tau within neurons. We have used immunocytochemical techniques and confocal microscopy reconstructions to examine the distribution of PHF-tau-immunoreactive (ir cells, and their perisomatic GABAergic and glutamatergic innervations in the hippocampal formation and adjacent cortex of AD patients. Furthermore, correlative light and electron microscopy was employed to examine these neurons and the perisomatic synapses. We observed two patterns of staining in PHF-tau-ir neurons, pattern I (without NFT and pattern II (with NFT, the distribution of which varies according to the cortical layer and area. Furthermore, the distribution of both GABAergic and glutamatergic terminals around the soma and proximal processes of PHF-tau-ir neurons does not seem to be altered as it is indistinguishable from both control cases and from adjacent neurons that did not contain PHF-tau. At the electron microscope level, a normal looking neuropil with typical symmetric and asymmetric synapses was observed around PHF-tau-ir neurons. These observations suggest that the synaptic connectivity around the perisomatic region of these PHF-tau-ir neurons was apparently unaltered.

  16. Gene expression of the mismatch repair gene MSH2 in primary colorectal cancer

    Jensen, Lars Henrik; Kuramochi, Hidekazu; Crüger, Dorthe Gylling; Lindebjerg, Jan; Kolvraa, Steen; Danenberg, Peter; Danenberg, Kathleen; Jakobsen, Anders

    2011-01-01

    marker for the level of MMR and a potential molecular marker with clinical relevance. The aim was to investigate the gene expression of MSH2 in primary operable colorectal cancer in correlation with MSI, protein expression, and promoter hypermethylation. In a cohort of 210 patients, the primary tumor and...... promoter was only detected in 14 samples and only at a low level with no correlation to gene expression. MSH2 gene expression was not a prognostic factor for overall survival in univariate or multivariate analysis. The gene expression of MSH2 is a potential quantitative marker ready for further clinical...

  17. Gene Expression Measurement Module (GEMM) - a fully automated, miniaturized instrument for measuring gene expression in space

    Karouia, Fathi; Ricco, Antonio; Pohorille, Andrew; Peyvan, Kianoosh

    2012-07-01

    The capability to measure gene expression on board spacecrafts opens the doors to a large number of experiments on the influence of space environment on biological systems that will profoundly impact our ability to conduct safe and effective space travel, and might also shed light on terrestrial physiology or biological function and human disease and aging processes. Measurements of gene expression will help us to understand adaptation of terrestrial life to conditions beyond the planet of origin, identify deleterious effects of the space environment on a wide range of organisms from microbes to humans, develop effective countermeasures against these effects, determine metabolic basis of microbial pathogenicity and drug resistance, test our ability to sustain and grow in space organisms that can be used for life support and in situ resource utilization during long-duration space exploration, and monitor both the spacecraft environment and crew health. These and other applications hold significant potential for discoveries in space biology, biotechnology and medicine. Accordingly, supported by funding from the NASA Astrobiology Science and Technology Instrument Development Program, we are developing a fully automated, miniaturized, integrated fluidic system for small spacecraft capable of in-situ measuring microbial expression of thousands of genes from multiple samples. The instrument will be capable of (1) lysing bacterial cell walls, (2) extracting and purifying RNA released from cells, (3) hybridizing it on a microarray and (4) providing electrochemical readout, all in a microfluidics cartridge. The prototype under development is suitable for deployment on nanosatellite platforms developed by the NASA Small Spacecraft Office. The first target application is to cultivate and measure gene expression of the photosynthetic bacterium Synechococcus elongatus, i.e. a cyanobacterium known to exhibit remarkable metabolic diversity and resilience to adverse conditions

  18. Expression profile of genes associated with mastitis in dairy cattle

    Fonseca, Isabela; Silva, Priscila Vendramini; Lange, Carla Christine; Guimarães, Marta F. M.; Weller, Mayara Morena Del Cambre Amaral; Sousa, Katiene Régia Silva; Lopes, Paulo Sávio; Guimarães, José Domingos; Simone E.F. Guimarães

    2009-01-01

    In order to characterize the expression of genes associated with immune response mechanisms to mastitis, we quantified the relative expression of the IL-2, IL-4, IL-6, IL-8, IL-10, IFN-γ and TNF- α genes in milk cells of healthy cows and cows with clinical mastitis. Total RNA was extracted from milk cells of six Black and White Holstein (BW) cows and six Gyr cows, including three animals with and three without mastitis per breed. Gene expression was analyzed by real-time PCR. IL-10 gene expre...

  19. Decoupling Linear and Nonlinear Associations of Gene Expression

    Itakura, Alan

    2013-05-01

    The FANTOM consortium has generated a large gene expression dataset of different cell lines and tissue cultures using the single-molecule sequencing technology of HeliscopeCAGE. This provides a unique opportunity to investigate novel associations between gene expression over time and different cell types. Here, we create a MatLab wrapper for a powerful and computationally intensive set of statistics known as Maximal Information Coefficient, and then calculate this statistic for a large, comprehensive dataset containing gene expression of a variety of differentiating tissues. We then distinguish between linear and nonlinear associations, and then create gene association networks. Following this analysis, we are then able to identify clusters of linear gene associations that then associate nonlinearly with other clusters of linearity, providing insight to much more complex connections between gene expression patterns than previously anticipated.

  20. Gene expression profiling of placentas affected by pre-eclampsia

    Hoegh, Anne Mette; Borup, Rehannah; Nielsen, Finn Cilius;

    2010-01-01

    expression from pooled samples was analysed by microarrays. Verification of the expression of selected genes was performed using real-time PCR. A surprisingly low number of genes (21 out of 15,000) were identified as differentially expressed. Among these were genes not previously associated with pre......-eclampsia as bradykinin B1 receptor and a 14-3-3 protein, but also genes that have already been connected with pre-eclampsia, for example, inhibin beta A subunit and leptin. A low number of genes were repeatedly identified as differentially expressed, because they may represent the endpoint of a cascade of......Several studies point to the placenta as the primary cause of pre-eclampsia. Our objective was to identify placental genes that may contribute to the development of pre-eclampsia. RNA was purified from tissue biopsies from eleven pre-eclamptic placentas and eighteen normal controls. Messenger RNA...

  1. RNA interference improves myopathic phenotypes in mice over-expressing FSHD region gene 1 (FRG1).

    Wallace, Lindsay M; Garwick-Coppens, Sara E; Tupler, Rossella; Harper, Scott Q

    2011-11-01

    Muscular dystrophies, and other diseases of muscle, arise from recessive and dominant gene mutations. Gene replacement strategies may be beneficial for the former, while gene silencing approaches may provide treatment for the latter. In the last two decades, muscle-directed gene therapies were primarily focused on treating recessive disorders. This disparity at least partly arose because feasible mechanisms to silence dominant disease genes lagged behind gene replacement strategies. With the discovery of RNA interference (RNAi) and its subsequent development as a promising new gene silencing tool, the landscape has changed. In this study, our objective was to demonstrate proof-of-principle for RNAi therapy of a dominant myopathy in vivo. We tested the potential of adeno-associated viral (AAV)-delivered therapeutic microRNAs, targeting the human Facioscapulohumeral muscular dystrophy (FSHD) region gene 1 (FRG1), to correct myopathic features in mice expressing toxic levels of human FRG1 (FRG1(-high) mice). We found that FRG1 gene silencing improved muscle mass, strength, and histopathological abnormalities associated with muscular dystrophy in FRG1(-high) mice, thereby demonstrating therapeutic promise for treatment of dominantly inherited myopathies using RNAi. This approach potentially applies to as many as 29 different gene mutations responsible for myopathies inherited as dominant disorders. PMID:21730972

  2. Integration of biological networks and gene expression data using Cytoscape

    Cline, M.S.; Smoot, M.; Cerami, E.;

    2007-01-01

    interaction network obtained for genes of interest. Five major steps are described: (i) obtaining a gene or protein network, (ii) displaying the network using layout algorithms, (iii) integrating with gene expression and other functional attributes, (iv) identifying putative complexes and functional modules...

  3. Dimensionality of Data Matrices with Applications to Gene Expression Profiles

    Feng, Xingdong

    2009-01-01

    Probe-level microarray data are usually stored in matrices. Take a given probe set (gene), for example, each row of the matrix corresponds to an array, and each column corresponds to a probe. Often, people summarize each array by the gene expression level. Is one number sufficient to summarize a whole probe set for a specific gene in an array?…

  4. Gene expression profiling in adipose tissue from growing broiler chickens

    Hausman, Gary J; Barb, C Rick; Fairchild, Brian D; Gamble, John; Lee-Rutherford, Laura

    2014-01-01

    In this study, total RNA was collected from abdominal adipose tissue samples obtained from ten broiler chickens at 3, 4, 5, and 6 weeks of age and prepared for gene microarray analysis with Affymetrix GeneChip Chicken Genome Arrays (Affymetrix) and quantitative real-time PCR analysis. Studies of global gene expression in chicken adipose tissue were initiated since such studies in many animal species show that adipose tissue expresses and secretes many factors that can influence growth and physiology. Microarray results indicated 333 differentially expressed adipose tissue genes between 3 and 6 wk, 265 differentially expressed genes between 4 and 6 wk and 42 differentially expressed genes between 3 and 4 wk. Enrichment scores of Gene Ontology Biological Process categories indicated strong age upregulation of genes involved in the immune system response. In addition to microarray analysis, quantitative real-time PCR analysis was used to confirm the influence of age on the expression of adipose tissue CC chemokine ligands (CCL), toll-like receptor (TLR)-2, lipopolysaccharide-induced TNF factor (LITAF), chemokine (C-C motif) receptor 8 (CCR8), and several other genes. Between 3 and 6 wk of age CCL5, CCL1, and CCR8 expression increased (P = 0.0001) with age. Furthermore, TLR2, CCL19, and LITAF expression increased between 4 and 6 wk of age (P = 0.001). This is the first demonstration of age related changes in CCL, LITAF, and TLR2 gene expression in chicken adipose tissue. Future studies are needed to elucidate the role of these adipose tissue genes in growth and the immune system. PMID:26317054

  5. Regulated expression of foreign genes in vivo after germline transfer.

    Passman, R S; Fishman, G I

    1994-01-01

    Tight transcriptional control of foreign genes introduced into the germline of transgenic mice would be of great experimental value in studies of gene function. To develop a system in which the spatial and temporal expression of candidate genes implicated in cardiac development or function could be tightly controlled in vivo, we have generated transgenic mice expressing a tetracycline-controlled transactivator (tTA) under the control of a rat alpha myosin heavy chain promoter (MHC alpha-tTA m...

  6. Expression of intestinal transporter genes in beagle dogs

    Cho, Soo-Min; Park, Sung-Won; Kim, Na-Hyun; Park, Jin-A; YI, HEE; CHO, Hee-Jung; PARK, KI-HWAN; HWANG, INGYUN; Shin, Ho-Chul

    2012-01-01

    This study was performed to produce a transcriptional database of the intestinal transporters of beagle dogs. Total RNA was isolated from the duodenum and the expression of various mRNAs was measured using GeneChip® oligonucleotide arrays. A total of 124 transporter genes were detected. Genes for fatty acid, peptide, amino acid and glucose and multidrug resistance/multidrug resistance-associated protein (MDR/MRP) transport were expressed at relatively higher levels than the other transporter ...

  7. Inducible gene expression system by 3-hydroxypropionic acid

    Zhou, Shengfang; Ainala, Satish Kumar; Seol, Eunhee; Nguyen, Trinh Thi; Park, Sunghoon

    2015-01-01

    Background 3-Hydroxypropionic acid (3-HP) is an important platform chemical that boasts a variety of industrial applications. Gene expression systems inducible by 3-HP, if available, are of great utility for optimization of the pathways of 3-HP production and excretion. Results Here we report the presence of unique inducible gene expression systems in Pseudomonas denitrificans and other microorganisms. In P. denitrificans, transcription of three genes (hpdH, mmsA and hbdH-4) involved in 3-HP ...

  8. Pancreatic expression of human insulin gene in transgenic mice.

    Bucchini, D; Ripoche, M A; Stinnakre, M G; Desbois, P; Lorès, P; Monthioux, E; Absil, J; Lepesant, J A; Pictet, R; Jami, J

    1986-01-01

    We have investigated the possibility of obtaining integration and expression of a native human gene in transgenic mice. An 11-kilobase (kb) human chromosomal DNA fragment including the insulin gene (1430 base pairs) was microinjected into fertilized mouse eggs. This fragment was present in the genomic DNA of several developing animals. One transgenic mouse and its progeny were analyzed for expression of the foreign gene. Synthesis and release of human insulin was revealed by detection of the ...

  9. The hairless gene of the mouse: relationship of phenotypic effects with expression profile and genotype.

    Cachón-González, M B; San-José, I; Cano, A; Vega, J A; García, N; Freeman, T; Schimmang, T; Stoye, J P

    1999-10-01

    Various mutations of the hairless (hr) gene of mice result in hair loss and other integument defects. To examine the role of the hr gene in mouse development, the expression profile of hr has been determined by in situ hybridisation and correlated to the nature of genetic changes and morphological abnormalities in different mutant animals. Four variant alleles have been characterised at the molecular level. hr/hr mice produce reduced, but significant, levels of hr mRNA whereas other alleles contain mutations which would be expected to preclude the synthesis of functional product, demonstrating a correlation between allelic variation at the hr locus and phenotypic severity. hr expression was shown to be widespread and temporally regulated. It was identified in novel tissues such as cartilage, developing tooth, inner ear, retina, and colon as well as in skin and brain. Analysis of mice homozygous for the rhino allele of hairless revealed that, although no morphological defects were detectable in many tissues normally expressing hr, previously undescribed abnormalities were present in several tissues including inner ear, retina, and colon. These findings indicate that the hairless gene product plays a wider role in development than previously suspected. Dev Dyn 1999;216:113-126. PMID:10536052

  10. Progestins Upregulate FKBP51 Expression in Human Endometrial Stromal Cells to Induce Functional Progesterone and Glucocorticoid Withdrawal: Implications for Contraceptive- Associated Abnormal Uterine Bleeding.

    Ozlem Guzeloglu Kayisli

    Full Text Available Use of long-acting progestin only contraceptives (LAPCs offers a discrete and highly effective family planning method. Abnormal uterine bleeding (AUB is the major side effect of, and cause for, discontinuation of LAPCs. The endometria of LAPC-treated women display abnormally enlarged, fragile blood vessels, decreased endometrial blood flow and oxidative stress. To understanding to mechanisms underlying AUB, we propose to identify LAPC-modulated unique gene cluster(s in human endometrial stromal cells (HESCs. Protein and RNA isolated from cultured HESCs treated 7 days with estradiol (E2 or E2+ medroxyprogesterone acetate (MPA or E2+ etonogestrel (ETO or E2+ progesterone (P4 were analyzed by quantitative Real-time (q-PCR and immunoblotting. HSCORES were determined for immunostained-paired endometria of pre-and 3 months post-Depot MPA (DMPA treated women and ovariectomized guinea pigs (GPs treated with placebo or E2 or MPA or E2+MPA for 21 days. In HESCs, whole genome analysis identified a 67 gene group regulated by all three progestins, whereas a 235 gene group was regulated by E2+ETO and E2+MPA, but not E2+P4. Ingenuity pathway analysis identified glucocorticoid receptor (GR activation as one of upstream regulators of the 235 MPA and ETO-specific genes. Among these, microarray results demonstrated significant enhancement of FKBP51, a repressor of PR/GR transcriptional activity, by both MPA and ETO. q-PCR and immunoblot analysis confirmed the microarray results. In endometria of post-DMPA versus pre-DMPA administered women, FKBP51 expression was significantly increased in endometrial stromal and glandular cells. In GPs, E2+MPA or MPA significantly increased FKBP51 immunoreactivity in endometrial stromal and glandular cells versus placebo- and E2-administered groups. MPA or ETO administration activates GR signaling and increases endometrial FKBP51 expression, which could be one of the mechanisms causing AUB by inhibiting PR and GR

  11. Performance Analysis of Enhanced Clustering Algorithm for Gene Expression Data

    T. Chandrasekhar

    2011-11-01

    Full Text Available Microarrays are made it possible to simultaneously monitor the expression profiles of thousands of genes under various experimental conditions. It is used to identify the co-expressed genes in specific cells or tissues that are actively used to make proteins. This method is used to analysis the gene expression, an important task in bioinformatics research. Cluster analysis of gene expression data has proved to be a useful tool for identifying co-expressed genes, biologically relevant groupings of genes and samples. In this paper we applied K-Means with Automatic Generations of Merge Factor for ISODATA- AGMFI. Though AGMFI has been applied for clustering of Gene Expression Data, this proposed Enhanced Automatic Generations of Merge Factor for ISODATA- EAGMFI Algorithms overcome the drawbacks of AGMFI in terms of specifying the optimal number of clusters and initialization of good cluster centroids. Experimental results on Gene Expression Data show that the proposed EAGMFI algorithms could identify compact clusters with perform well in terms of the Silhouette Coefficients cluster measure.

  12. OsRRM,a Spen-like rice gene expressed specifically in the endosperm

    Shi-Yan Chen; Zong-Yang Wang; Xiu-Ling Cai

    2007-01-01

    We used the promoter trap technique to identify a rice plant, named 107, in which the β-glucuronidase (GUS) reporter gene was expressed specifically in the endosperm. A single copy of the T-DNA was inserted into the plant genome, and a candidate gene OsRRM was identified by the insertion. The OsRRM promoter directed GUS expression specifically in rice endosperm, analogous to the GUS expression pattern observed in 107#. OsRRM is a single-copy gene in rice and encodes a nuclear protein containing 1 005 amino-acid residues with two RNA recognition motifs and one Spen paralog and ortholog C-terminal domain. Western blot analysis confirmed that the OsRRM protein was specifically expressed in rice endosperm. Ectopic expression of OsRRM in transgenic plants led to abnormalities, such as short stature, retarded growth and low fructification rates. Our data, in conjunction with the reported function of Spen genes, implicated OsRRM in the regulation of cell development in rice endosperm.

  13. GEE: An Informatics Tool for Gene Expression Data Explore

    Lee, Soo Youn; Park, Chan Hee; Yoon, Jun Hee; Yun, Sunmin; Kim, Ju Han

    2016-01-01

    Objectives Major public high-throughput functional genomic data repositories, including the Gene Expression Omnibus (GEO) and ArrayExpress have rapidly expanded. As a result, a large number of diverse high-throughput functional genomic data retrieval systems have been developed. However, high-throughput functional genomic data retrieval remains challenging. Methods We developed Gene Expression data Explore (GEE), the first powerful, flexible web and mobile search application for searching who...

  14. Gene Expression Profiling in the Brains of Human Cocaine Abusers

    Bannon, Michael J.; Kapatos, Gregory; ALBERTSON, DAWN N.

    2005-01-01

    Chronic cocaine abuse induces long-term neurochemical, structural and behavioural changes thought to result from altered gene expression within the nucleus accumbens and other brain regions playing a critical role in addiction. Recent methodological advances now allow the profiling of gene expression in human postmortem brain. In this article, we review studies in which we have used Affymetrix oligonucleotide microarrays to identify transcripts that are differentially expressed in the nucleus...

  15. Assessment of Normal Variability in Peripheral Blood Gene Expression

    Catherine Campbell; Vernon, Suzanne D; Karem, Kevin L.; Rosane Nisenbaum; Unger, Elizabeth R

    2002-01-01

    Peripheral blood is representative of many systemic processes and is an ideal sample for expression profiling of diseases that have no known or accessible lesion. Peripheral blood is a complex mixture of cell types and some differences in peripheral blood gene expression may reflect the timing of sample collection rather than an underlying disease process. For this reason, it is important to assess study design factors that may cause variability in gene expression not related to what is being...

  16. Biclustering of the Gene Expression Data by Coevolution Cuckoo Search

    Lu Yin; Yongguo Liu

    2015-01-01

    Biclustering has a potential to discover the local expression patterns analyzing the gene expression data which provide clues about biological processes. However, since it is proven that the biclustering problem is NP-hard, it is necessary to seek more effective algorithm. Cuckoo Search (CS) models the brood parasitism behavior of cuckoo to solve the optimization problem and outperforms the other existing algorithms. In this paper, we introduce a new algorithm for biclustering gene expression...

  17. Laminin Mediates Tissue-specific Gene Expression in Mammary Epithelia

    Streuli, Charles H

    2011-01-01

    Tissue-specific gene expression in mammary epithelium is dependent on the extracellular matrix as well as hormones. There is good evidence that the basement membrane provides signals for regulating beta-casein expression, and that integrins are involved in this process. Here, we demonstrate that in the presence of lactogenic hormones, laminin can direct expression of the beta-casein gene. Mouse mammary epithelial cells plated on gels of native laminin or laminin-entactin undergo functional di...

  18. An atlas of gene expression and gene co-regulation in the human retina.

    Pinelli, Michele; Carissimo, Annamaria; Cutillo, Luisa; Lai, Ching-Hung; Mutarelli, Margherita; Moretti, Maria Nicoletta; Singh, Marwah Veer; Karali, Marianthi; Carrella, Diego; Pizzo, Mariateresa; Russo, Francesco; Ferrari, Stefano; Ponzin, Diego; Angelini, Claudia; Banfi, Sandro; di Bernardo, Diego

    2016-07-01

    The human retina is a specialized tissue involved in light stimulus transduction. Despite its unique biology, an accurate reference transcriptome is still missing. Here, we performed gene expression analysis (RNA-seq) of 50 retinal samples from non-visually impaired post-mortem donors. We identified novel transcripts with high confidence (Observed Transcriptome (ObsT)) and quantified the expression level of known transcripts (Reference Transcriptome (RefT)). The ObsT included 77 623 transcripts (23 960 genes) covering 137 Mb (35 Mb new transcribed genome). Most of the transcripts (92%) were multi-exonic: 81% with known isoforms, 16% with new isoforms and 3% belonging to new genes. The RefT included 13 792 genes across 94 521 known transcripts. Mitochondrial genes were among the most highly expressed, accounting for about 10% of the reads. Of all the protein-coding genes in Gencode, 65% are expressed in the retina. We exploited inter-individual variability in gene expression to infer a gene co-expression network and to identify genes specifically expressed in photoreceptor cells. We experimentally validated the photoreceptors localization of three genes in human retina that had not been previously reported. RNA-seq data and the gene co-expression network are available online (http://retina.tigem.it). PMID:27235414

  19. Prevalence of gene expression additivity in genetically stable wheat allohexaploids.

    Chelaifa, Houda; Chagué, Véronique; Chalabi, Smahane; Mestiri, Imen; Arnaud, Dominique; Deffains, Denise; Lu, Yunhai; Belcram, Harry; Huteau, Virginie; Chiquet, Julien; Coriton, Olivier; Just, Jérémy; Jahier, Joseph; Chalhoub, Boulos

    2013-02-01

    The reprogramming of gene expression appears as the major trend in synthetic and natural allopolyploids where expression of an important proportion of genes was shown to deviate from that of the parents or the average of the parents. In this study, we analyzed gene expression changes in previously reported, highly stable synthetic wheat allohexaploids that combine the D genome of Aegilops tauschii and the AB genome extracted from the natural hexaploid wheat Triticum aestivum. A comprehensive genome-wide analysis of transcriptional changes using the Affymetrix GeneChip Wheat Genome Array was conducted. Prevalence of gene expression additivity was observed where expression does not deviate from the average of the parents for 99.3% of 34,820 expressed transcripts. Moreover, nearly similar expression was observed (for 99.5% of genes) when comparing these synthetic and natural wheat allohexaploids. Such near-complete additivity has never been reported for other allopolyploids and, more interestingly, for other synthetic wheat allohexaploids that differ from the ones studied here by having the natural tetraploid Triticum turgidum as the AB genome progenitor. Our study gave insights into the dynamics of additive gene expression in the highly stable wheat allohexaploids. PMID:23278496

  20. Using PCR to Target Misconceptions about Gene Expression

    Leslie K. Wright

    2013-02-01

    Full Text Available We present a PCR-based laboratory exercise that can be used with first- or second-year biology students to help overcome common misconceptions about gene expression. Biology students typically do not have a clear understanding of the difference between genes (DNA and gene expression (mRNA/protein and often believe that genes exist in an organism or cell only when they are expressed. This laboratory exercise allows students to carry out a PCR-based experiment designed to challenge their misunderstanding of the difference between genes and gene expression. Students first transform E. coli with an inducible GFP gene containing plasmid and observe induced and un-induced colonies. The following exercise creates cognitive dissonance when actual PCR results contradict their initial (incorrect predictions of the presence of the GFP gene in transformed cells. Field testing of this laboratory exercise resulted in learning gains on both knowledge and application questions on concepts related to genes and gene expression.

  1. DNA microarray analysis of genes differentially expressed in adipocyte differentiation

    Chunyan Yin; Yanfeng Xiao; Wei Zhang; Erdi Xu; Weihua Liu; Xiaoqing Yi; Ming Chang

    2014-06-01

    In the present study, the human liposarcoma cell line SW872 was used to identify global changes in gene expression profiles occurring during adipogenesis. We further explored some of the genes expressed during the late phase of adipocyte differentiation. These genes may play a major role in promoting excessive proliferation and accumulation of lipid droplets, which contribute to the development of obesity. By using microarray-based technology, we examined differential gene expression in early differentiated adipocytes and late differentiated adipocytes. Validated genes exhibited a ≥ 10-fold increase in the late phase of adipocyte differentiation by polymerase chain reaction (RT-PCR). Compared with undifferentiated preadipocytes, we found that 763 genes were increased in early differentiated adipocytes, and 667 genes were increased in later differentiated adipocytes. Furthermore, 21 genes were found being expressed 10-fold higher in the late phase of adipocyte differentiation. The results were in accordance with the RT-PCR test, which validated 11 genes, namely, CIDEC, PID1, LYRM1, ADD1, PPAR2, ANGPTL4, ADIPOQ, ACOX1, FIP1L1, MAP3K2 and PEX14. Most of these genes were found being expressed in the later phase of adipocyte differentiation involved in obesity-related diseases. The findings may help to better understand the mechanism of obesity and related diseases.

  2. Abnormal promoter methylation of multiple genes in the malignant transformed PEP2D cells induced by alpha particles exposure

    LiP; SuiJL

    2002-01-01

    The 5' promoter regions of some genes contain CpG-rich areas,known as CpG islands,Methylation of the cytosine in these dinuleotides has important regulatory effects on gene expression.The functional significance of promoter hypermethylation would play the same roles in carcinogenesis as gene mutations.The promoter methylations p14ARF,p16INK4a,MGMT,GSTP1,BUB3 and DAPK genes were analyzed with methylation specific PCR(MSP) in the transformed human bronchial epithelial cells(BEP2D) induced by α-particles.The results indicated that p14ARF gene was not methylated in BEP2D cells,but was methylated in the malignant transformed BERP35T-1 cells,and the level of its transcription was depressed remarkable in the latter.However p16INK4a gene,which shares two exons with p14ARF gene,was not methylated.MGMT gene was methylated in both BEP2D and BERP35T-1.DAPK gene was partially methylated in BEP2D cells and methylated completely in BERP35T1.GSTP1 was not methylated in BEP2D cells and was methylated partly in BERP35T-1.BUB3 gene was not methylated in BEP2D as well as BERP35T1 cells and was further proved by sequencing analysis.

  3. p21WAF1/CIP1 gene DNA sequencing and its expression in human osteosarcoma

    廖威明; 张春林; 李佛保; 曾炳芳; 曾益新

    2004-01-01

    Background Mutation and expression change of p21WAF1/CIP1 may play a role in the growth of osteosarcoma. This study was to investigate the expression of the p21WAF1/CIP1 gene in human osteosarcoma, p21WAF1/CIP1 gene DNA sequence change and their relationships with the phenotype and clinical prognosis.Methods p21WAF1/CIP1 gene in 10 normal people and the tumours of 45 osteosarcoma patients were examined using polymerase chain reaction-single strand conformation polymorphism (PCR-SSCP) with silver staining. The PCR product with an abnormal strand was sequenced directly. The p21WAF1/CIP1 gene mRNA and P21 protein of 45 cases of osteosarcoma were investigated by using in situ hybridization and immunohistochemistry, respectively. Results The occurrence of P21 protein in osteosarcoma was 17.78% (8/45), and p21WAF1/CIP1 mRNA expression in osteosarcoma was 42.22% (19/45). The p21WAF1/CIP1 gene DNA sequencing of amplified production showed that in p21WAF1/CIP1 gene exon 3 of 36 cases of human osteosarcoma, there were 17 cases (47.22%) with C→T at position 609; 10 normal blood samples' DNA sequence analysis yielded 8 cases (80.00%) with C→T at the same position. Conclusions Along with the increase of malignancy, the expression of p21WAF1/CIP1mRNA and P21 protein in osteosarcoma tends to decrease. It is uncommon for the p21WAF1/CIP1 gene mutation to occur in human osteosarcoma. As a result, the possible existence of tumour subtypes of p21WAF1/CIP1 gene mutation should be investigated. Our research leads to the location of p21WAF1/CIP1 gene polymorphism of Chinese osteosarcoma patients, which can provide a basis for further research.

  4. Seed-based biclustering of gene expression data.

    Jiyuan An

    Full Text Available BACKGROUND: Accumulated biological research outcomes show that biological functions do not depend on individual genes, but on complex gene networks. Microarray data are widely used to cluster genes according to their expression levels across experimental conditions. However, functionally related genes generally do not show coherent expression across all conditions since any given cellular process is active only under a subset of conditions. Biclustering finds gene clusters that have similar expression levels across a subset of conditions. This paper proposes a seed-based algorithm that identifies coherent genes in an exhaustive, but efficient manner. METHODS: In order to find the biclusters in a gene expression dataset, we exhaustively select combinations of genes and conditions as seeds to create candidate bicluster tables. The tables have two columns (a a gene set, and (b the conditions on which the gene set have dissimilar expression levels to the seed. First, the genes with less than the maximum number of dissimilar conditions are identified and a table of these genes is created. Second, the rows that have the same dissimilar conditions are grouped together. Third, the table is sorted in ascending order based on the number of dissimilar conditions. Finally, beginning with the first row of the table, a test is run repeatedly to determine whether the cardinality of the gene set in the row is greater than the minimum threshold number of genes in a bicluster. If so, a bicluster is outputted and the corresponding row is removed from the table. Repeating this process, all biclusters in the table are systematically identified until the table becomes empty. CONCLUSIONS: This paper presents a novel biclustering algorithm for the identification of additive biclusters. Since it involves exhaustively testing combinations of genes and conditions, the additive biclusters can be found more readily.

  5. Web-based interrogation of gene expression signatures using EXALT

    Yu Jian

    2009-12-01

    Full Text Available Abstract Background Widespread use of high-throughput techniques such as microarrays to monitor gene expression levels has resulted in an explosive growth of data sets in public domains. Integration and exploration of these complex and heterogeneous data have become a major challenge. Results The EXALT (EXpression signature AnaLysis Tool online program enables meta-analysis of gene expression profiles derived from publically accessible sources. Searches can be executed online against two large databases currently containing more than 28,000 gene expression signatures derived from GEO (Gene Expression Omnibus and published expression profiles of human cancer. Comparisons among gene expression signatures can be performed with homology analysis and co-expression analysis. Results can be visualized instantly in a plot or a heat map. Three typical use cases are illustrated. Conclusions The EXALT online program is uniquely suited for discovering relationships among transcriptional profiles and searching gene expression patterns derived from diverse physiological and pathological settings. The EXALT online program is freely available for non-commercial users from http://seq.mc.vanderbilt.edu/exalt/.

  6. Pre-gastrula expression of zebrafish extraembryonic genes

    Lempicki Richard A

    2010-04-01

    Full Text Available Abstract Background Many species form extraembryonic tissues during embryogenesis, such as the placenta of humans and other viviparous mammals. Extraembryonic tissues have various roles in protecting, nourishing and patterning embryos. Prior to gastrulation in zebrafish, the yolk syncytial layer - an extraembryonic nuclear syncytium - produces signals that induce mesoderm and endoderm formation. Mesoderm and endoderm precursor cells are situated in the embryonic margin, an external ring of cells along the embryo-yolk interface. The yolk syncytial layer initially forms below the margin, in a domain called the external yolk syncytial layer (E-YSL. Results We hypothesize that key components of the yolk syncytial layer's mesoderm and endoderm inducing activity are expressed as mRNAs in the E-YSL. To identify genes expressed in the E-YSL, we used microarrays to compare the transcription profiles of intact pre-gastrula embryos with pre-gastrula embryonic cells that we had separated from the yolk and yolk syncytial layer. This identified a cohort of genes with enriched expression in intact embryos. Here we describe our whole mount in situ hybridization analysis of sixty-eight of them. This includes ten genes with E-YSL expression (camsap1l1, gata3, znf503, hnf1ba, slc26a1, slc40a1, gata6, gpr137bb, otop1 and cebpa, four genes with expression in the enveloping layer (EVL, a superficial epithelium that protects the embryo (zgc:136817, zgc:152778, slc14a2 and elovl6l, three EVL genes whose expression is transiently confined to the animal pole (elovl6l, zgc:136359 and clica, and six genes with transient maternal expression (mtf1, wu:fj59f04, mospd2, rftn2, arrdc1a and pho. We also assessed the requirement of Nodal signaling for the expression of selected genes in the E-YSL, EVL and margin. Margin expression was Nodal dependent for all genes we tested, including the concentrated margin expression of an EVL gene: zgc:110712. All other instances of EVL and E

  7. Gene Body Methylation can alter Gene Expression and is a Therapeutic Target in Cancer

    Yang, Xiaojing; Han, Han; De Carvalho, Daniel D.; Lay, Fides D.; Jones, Peter A.; Liang, Gangning

    2014-01-01

    SUMMARY DNA methylation in promoters is well known to silence genes and is the presumed therapeutic target of methylation inhibitors. Gene body methylation is positively correlated with expression yet its function is unknown. We show that 5-aza-2'-deoxycytidine treatment not only reactivates genes but decreases the over-expression of genes, many of which are involved in metabolic processes regulated by c-MYC. Down-regulation is caused by DNA demethylation of the gene bodies and restoration of high levels of expression requires remethylation by DNMT3B. Gene body methylation may therefore be an unexpected therapeutic target for DNA methylation inhibitors, resulting in the normalization of gene over-expression induced during carcinogenesis. Our results provide direct evidence for a causal relationship between gene body methylation and transcription. PMID:25263941

  8. Gene expression module-based chemical function similarity search

    Li, Yun; Hao, Pei; Zheng, Siyuan; Tu, Kang; Fan, Haiwei; Zhu, Ruixin; Ding, Guohui; Dong, Changzheng; Wang, Chuan; Li, Xuan; Thiesen, H.-J.; Chen, Y. Eugene; Jiang, HuaLiang; Liu, Lei; Li, Yixue

    2008-01-01

    Investigation of biological processes using selective chemical interventions is generally applied in biomedical research and drug discovery. Many studies of this kind make use of gene expression experiments to explore cellular responses to chemical interventions. Recently, some research groups constructed libraries of chemical related expression profiles, and introduced similarity comparison into chemical induced transcriptome analysis. Resembling sequence similarity alignment, expression pat...

  9. Noise in gene expression is coupled to growth rate.

    Keren, Leeat; van Dijk, David; Weingarten-Gabbay, Shira; Davidi, Dan; Jona, Ghil; Weinberger, Adina; Milo, Ron; Segal, Eran

    2015-12-01

    Genetically identical cells exposed to the same environment display variability in gene expression (noise), with important consequences for the fidelity of cellular regulation and biological function. Although population average gene expression is tightly coupled to growth rate, the effects of changes in environmental conditions on expression variability are not known. Here, we measure the single-cell expression distributions of approximately 900 Saccharomyces cerevisiae promoters across four environmental conditions using flow cytometry, and find that gene expression noise is tightly coupled to the environment and is generally higher at lower growth rates. Nutrient-poor conditions, which support lower growth rates, display elevated levels of noise for most promoters, regardless of their specific expression values. We present a simple model of noise in expression that results from having an asynchronous population, with cells at different cell-cycle stages, and with different partitioning of the cells between the stages at different growth rates. This model predicts non-monotonic global changes in noise at different growth rates as well as overall higher variability in expression for cell-cycle-regulated genes in all conditions. The consistency between this model and our data, as well as with noise measurements of cells growing in a chemostat at well-defined growth rates, suggests that cell-cycle heterogeneity is a major contributor to gene expression noise. Finally, we identify gene and promoter features that play a role in gene expression noise across conditions. Our results show the existence of growth-related global changes in gene expression noise and suggest their potential phenotypic implications. PMID:26355006

  10. Gene Expression Prediction by Soft Integration and the Elastic Net—Best Performance of the DREAM3 Gene Expression Challenge

    Mika Gustafsson; Michael Hörnquist

    2010-01-01

    Background: To predict gene expressions is an important endeavour within computational systems biology. It can both be a way to explore how drugs affect the system, as well as providing a framework for finding which genes are interrelated in a certain process. A practical problem, however, is how to assess and discriminate among the various algorithms which have been developed for this purpose. Therefore, the DREAM project invited the year 2008 to a challenge for predicting gene expression va...

  11. Selection and validation of reference genes for quantitative gene expression studies in Erythroxylum coca

    Teresa Docimo; Schmidt, Gregor W; Katrin Luck; Sven K Delaney; John C D'Auria

    2013-01-01

    Real-time quantitative PCR is a powerful technique for the investigation of comparative gene expression, but its accuracy and reliability depend on the reference genes used as internal standards. Only genes that show a high level of expression stability are suitable for use as reference genes, and these must be identified on a case-by-case basis. Erythroxylum coca produces and accumulates high amounts of the pharmacologically active tropane alkaloid cocaine (especially in the leaves), and is ...

  12. Flies selected for longevity retain a young gene expression profile

    Sarup, Pernille Merete; Sørensen, Peter; Loeschcke, Volker

    2011-01-01

      We investigated correlated responses in the transcriptomes of longevity-selected lines of Drosophila melanogaster to identify pathways that affect life span in metazoan systems. We evaluated the gene expression profile in young, middle-aged, and old male flies, finding that 530 genes were...... differentially expressed between selected and control flies when measured at the same chronological age. The longevity-selected flies consistently showed expression profiles more similar to control flies one age class younger than control flies of the same age. This finding is in accordance with a younger gene...... expression profile in longevity-selected lines. Among the genes down-regulated in longevity-selected lines, we found a clear over-representation of genes involved in immune functions, supporting the hypothesis of a life-shortening effect of an overactive immune system, known as inflammaging. We judged the...

  13. Gene expression profiles of Nitrosomonas europaea, an obligate chemolitotroph

    Daniel J. Arp

    2005-05-25

    Nitrosomonas europaea is an aerobic lithoautotrophic bacterium that uses ammonia (NH3) as its energy source. As a nitrifier, it is an important participant in the nitrogen cycle, which can also influence the carbon cycle. The focus of this work was to explore the genetic structure and mechanisms underlying the lithoautotrophic growth style of N. europaea. Whole genome gene expression: The gene expression profile of cells in exponential growth and during starvation was analyzed using microarrays. During growth, 98% of the genes increased in expression at least two fold compared to starvation conditions. In growing cells, approximately 30% of the genes were expressed eight fold higher, Approximately 10% were expressed more than 15 fold higher. Approximately 3% (91 genes) were expressed to more than 20 fold of their levels in starved cells. Carbon fixation gene expression: N. europaea fixes carbon via the Calvin-Benson-Bassham (CBB) cycle via a type I ribulose bisphosphate carboxylase/oxygenase (RubisCO). This study showed that transcription of cbb genes was up-regulated when the carbon source was limited, while amo, hao and other energy harvesting related genes were down-regulated. Iron related gene expression: Because N. europaea has a relatively high content of hemes, sufficient Fe must be available in the medium for it to grow. The genome revealed that approximately 5% of the coding genes in N. europaea are dedicated to Fe transport and assimilation. Nonetheless, with the exception of citrate biosynthesis genes, N. europaea lacks genes for siderophore production. The Fe requirements for growth and the expression of the putative membrane siderophore receptors were determined. The N. europaea genome has over 100 putative genes ({approx}5% of the coding genes) related to Fe uptake and its siderophore receptors could be grouped phylogenetically in four clusters. Fe related genes, such as a number of TonB-dependent Fe-siderophore receptors for ferrichrome and

  14. Gene expression profiles of Nitrosomonas europaea, an obligate chemolitotroph

    Daniel J Arp

    2005-06-15

    Nitrosomonas europaea is an aerobic lithoautotrophic bacterium that uses ammonia (NH3) as its energy source. As a nitrifier, it is an important participant in the nitrogen cycle, which can also influence the carbon cycle. The focus of this work was to explore the genetic structure and mechanisms underlying the lithoautotrophic growth style of N. europaea. Whole genome gene expression. The gene expression profile of cells in exponential growth and during starvation was analyzed using microarrays. During growth, 98% of the genes increased in expression at least two fold compared to starvation conditions. In growing cells, approximately 30% of the genes were expressed eight fold higher, Approximately 10% were expressed more than 15 fold higher. Approximately 3% (91 genes) were expressed to more than 20 fold of their levels in starved cells. Carbon fixation gene expression. N. europaea fixes carbon via the Calvin-Benson-Bassham (CBB) cycle via a type I ribulose bisphosphate carboxylase/oxygenase (RubisCO). This study showed that transcription of cbb genes was up-regulated when the carbon source was limited, while amo, hao and other energy harvesting related genes were down-regulated. Iron related gene expression. Because N. europaea has a relatively high content of hemes, sufficient Fe must be available in the medium for it to grow. The genome revealed that approximately 5% of the coding genes in N. europaea are dedicated to Fe transport and assimilation. Nonetheless, with the exception of citrate biosynthesis genes, N. europaea lacks genes for siderophore production. The Fe requirements for growth and the expression of the putative membrane siderophore receptors were determined. The N. europaea genome has over 100 putative genes ({approx}5% of the coding genes) related to Fe uptake and its siderophore receptors could be grouped phylogenetically in four clusters. Fe related genes, such as a number of TonB-dependent Fe-siderophore receptors for ferrichrome and

  15. Abnormal expression of calcyphosine is associated with poor prognosis and cell biology function in colorectal cancer

    Shao W

    2016-01-01

    Full Text Available Weiwei Shao,* Quhui Wang,* Feiran Wang, Yasu Jiang, Meirong Xu, Junfei XuDepartment of General Surgery, Affiliated Hospital of Nantong University, Nantong, People’s Republic of China*These authors contributed equally to this workAbstract: The aim of this study was to investigate the calcyphosine (CAPS expression in human colorectal cancer (CRC and to explore its clinical and prognostic significances. CAPS expression was measured by Western blot, real-time polymerase chain reaction analysis, and immunohistochemistry. The relationships between the CAPS expression levels and the clinicopathological factors were investigated. The Kaplan–Meier method and log-rank test were used to investigate the overall survival of the patients. Moreover, the effects of CAPS on biological roles of CRC cells were also evaluated by MTT assay, colony formation assay, and transwell assay. CAPS was significantly overexpressed in cancerous tissue and CRC cell lines compared with adjacent nontumor tissue and a normal human intestinal epithelial cell line. Overexpression of CAPS was significantly associated with histological grade (P=0.004, invasive depth (P<0.001, lymph node metastasis (P=0.003, tumor node metastasis stage (P=0.017, and distant metastasis (P=0.042. Furthermore, silencing of CAPS expression in CRC cells inhibited their proliferation, colony formation, migration, and invasion. Kaplan–Meier survival analysis showed that high CAPS expression might demonstrate poor prognosis in CRC patients. Cox regression analysis revealed that CAPS expression was an independent prognostic factor of CRC. Our data suggested that the upregulation of CAPS might play a role in the carcinogenesis and progression of CRC. CAPS could be used as a potential diagnostic factor and be an independent good prognostic indicator for CRC patients.Keywords: calcyphosine, colorectal cancer, prognosis

  16. Computational gene expression profiling under salt stress reveals patterns of co-expression.

    Sanchita; Sharma, Ashok

    2016-03-01

    Plants respond differently to environmental conditions. Among various abiotic stresses, salt stress is a condition where excess salt in soil causes inhibition of plant growth. To understand the response of plants to the stress conditions, identification of the responsible genes is required. Clustering is a data mining technique used to group the genes with similar expression. The genes of a cluster show similar expression and function. We applied clustering algorithms on gene expression data of Solanum tuberosum showing differential expression in Capsicum annuum under salt stress. The clusters, which were common in multiple algorithms were taken further for analysis. Principal component analysis (PCA) further validated the findings of other cluster algorithms by visualizing their clusters in three-dimensional space. Functional annotation results revealed that most of the genes were involved in stress related responses. Our findings suggest that these algorithms may be helpful in the prediction of the function of co-expressed genes. PMID:26981411

  17. Expression of homeobox genes in the mouse olfactory epithelium.

    Parrilla, Marta; Chang, Isabelle; Degl'Innocenti, Andrea; Omura, Masayo

    2016-10-01

    Homeobox genes constitute a large family of genes widely studied because of their role in the establishment of the body pattern. However, they are also involved in many other events during development and adulthood. The main olfactory epithelium (MOE) is an excellent model to study neurogenesis in the adult nervous system. Analyses of homeobox genes during development show that some of these genes are involved in the formation and establishment of cell diversity in the MOE. Moreover, the mechanisms of expression of odorant receptors (ORs) constitute one of the biggest enigmas in the field. Analyses of OR promoters revealed the presence of homeodomain binding sites in their sequences. Here we characterize the expression patterns of a set of 49 homeobox genes in the MOE with in situ hybridization. We found that seven of them (Dlx3, Dlx5, Dlx6, Msx1, Meis1, Isl1, and Pitx1) are zonally expressed. The homeobox gene Emx1 is expressed in three guanylate cyclase(+) populations, two located in the MOE and the third one in an olfactory subsystem known as Grüneberg ganglion located at the entrance of the nasal cavity. The homeobox gene Tshz1 is expressed in a unique patchy pattern across the MOE. Our findings provide new insights to guide functional studies that aim to understand the complexity of transcription factor expression and gene regulation in the MOE. J. Comp. Neurol. 524:2713-2739, 2016. © 2016 Wiley Periodicals, Inc. PMID:27243442

  18. Detecting microRNA activity from gene expression data.

    Madden, Stephen F

    2010-01-01

    BACKGROUND: MicroRNAs (miRNAs) are non-coding RNAs that regulate gene expression by binding to the messenger RNA (mRNA) of protein coding genes. They control gene expression by either inhibiting translation or inducing mRNA degradation. A number of computational techniques have been developed to identify the targets of miRNAs. In this study we used predicted miRNA-gene interactions to analyse mRNA gene expression microarray data to predict miRNAs associated with particular diseases or conditions. RESULTS: Here we combine correspondence analysis, between group analysis and co-inertia analysis (CIA) to determine which miRNAs are associated with differences in gene expression levels in microarray data sets. Using a database of miRNA target predictions from TargetScan, TargetScanS, PicTar4way PicTar5way, and miRanda and combining these data with gene expression levels from sets of microarrays, this method produces a ranked list of miRNAs associated with a specified split in samples. We applied this to three different microarray datasets, a papillary thyroid carcinoma dataset, an in-house dataset of lipopolysaccharide treated mouse macrophages, and a multi-tissue dataset. In each case we were able to identified miRNAs of biological importance. CONCLUSIONS: We describe a technique to integrate gene expression data and miRNA target predictions from multiple sources.

  19. Detecting microRNA activity from gene expression data

    Madden, Stephen F

    2010-05-18

    Abstract Background MicroRNAs (miRNAs) are non-coding RNAs that regulate gene expression by binding to the messenger RNA (mRNA) of protein coding genes. They control gene expression by either inhibiting translation or inducing mRNA degradation. A number of computational techniques have been developed to identify the targets of miRNAs. In this study we used predicted miRNA-gene interactions to analyse mRNA gene expression microarray data to predict miRNAs associated with particular diseases or conditions. Results Here we combine correspondence analysis, between group analysis and co-inertia analysis (CIA) to determine which miRNAs are associated with differences in gene expression levels in microarray data sets. Using a database of miRNA target predictions from TargetScan, TargetScanS, PicTar4way PicTar5way, and miRanda and combining these data with gene expression levels from sets of microarrays, this method produces a ranked list of miRNAs associated with a specified split in samples. We applied this to three different microarray datasets, a papillary thyroid carcinoma dataset, an in-house dataset of lipopolysaccharide treated mouse macrophages, and a multi-tissue dataset. In each case we were able to identified miRNAs of biological importance. Conclusions We describe a technique to integrate gene expression data and miRNA target predictions from multiple sources.

  20. An Interactive Database of Cocaine-Responsive Gene Expression

    Willard M. Freeman

    2002-01-01

    Full Text Available The postgenomic era of large-scale gene expression studies is inundating drug abuse researchers and many other scientists with findings related to gene expression. This information is distributed across many different journals, and requires laborious literature searches. Here, we present an interactive database that combines existing information related to cocaine-mediated changes in gene expression in an easy-to-use format. The database is limited to statistically significant changes in mRNA or protein expression after cocaine administration. The Flash-based program is integrated into a Web page, and organizes changes in gene expression based on neuroanatomical region, general function, and gene name. Accompanying each gene is a description of the gene, links to the original publications, and a link to the appropriate OMIM (Online Mendelian Inheritance in Man entry. The nature of this review allows for timely modifications and rapid inclusion of new publications, and should help researchers build second-generation hypotheses on the role of gene expression changes in the physiology and behavior of cocaine abuse. Furthermore, this method of organizing large volumes of scientific information can easily be adapted to assist researchers in fields outside of drug abuse.

  1. Analysis of bHLH coding genes using gene co-expression network approach.

    Srivastava, Swati; Sanchita; Singh, Garima; Singh, Noopur; Srivastava, Gaurava; Sharma, Ashok

    2016-07-01

    Network analysis provides a powerful framework for the interpretation of data. It uses novel reference network-based metrices for module evolution. These could be used to identify module of highly connected genes showing variation in co-expression network. In this study, a co-expression network-based approach was used for analyzing the genes from microarray data. Our approach consists of a simple but robust rank-based network construction. The publicly available gene expression data of Solanum tuberosum under cold and heat stresses were considered to create and analyze a gene co-expression network. The analysis provide highly co-expressed module of bHLH coding genes based on correlation values. Our approach was to analyze the variation of genes expression, according to the time period of stress through co-expression network approach. As the result, the seed genes were identified showing multiple connections with other genes in the same cluster. Seed genes were found to be vary in different time periods of stress. These analyzed seed genes may be utilized further as marker genes for developing the stress tolerant plant species. PMID:27178572

  2. Design and Implementation of Visual Dynamic Display Software of Gene Expression Based on GTK

    JIANG Wei; MENG Fanjiang; LI Yong; YU Xiao

    2009-01-01

    The paper presented an implement method for a dynamic gene expression display software based on the GTK. This method established the dynamic presentation system of gene expression which according to gene expression data from gene chip hybridize at different time, adopted a linearity combination model and Pearson correlation coefficient algorithm. The system described the gene expression changes in graphic form, the gene expression changes with time and the changes in characteristics of the gene expression, also the changes in relations of the gene expression and regulation relationships among genes. The system also provided an integrated platform for analysis on gene chips data, especially for the research on the network of gene regulation.

  3. A Marfan syndrome gene expression phenotype in cultured skin fibroblasts

    Emond Mary

    2007-09-01

    Full Text Available Abstract Background Marfan syndrome (MFS is a heritable connective tissue disorder caused by mutations in the fibrillin-1 gene. This syndrome constitutes a significant identifiable subtype of aortic aneurysmal disease, accounting for over 5% of ascending and thoracic aortic aneurysms. Results We used spotted membrane DNA macroarrays to identify genes whose altered expression levels may contribute to the phenotype of the disease. Our analysis of 4132 genes identified a subset with significant expression differences between skin fibroblast cultures from unaffected controls versus cultures from affected individuals with known fibrillin-1 mutations. Subsequently, 10 genes were chosen for validation by quantitative RT-PCR. Conclusion Differential expression of many of the validated genes was associated with MFS samples when an additional group of unaffected and MFS affected subjects were analyzed (p-value -6 under the null hypothesis that expression levels in cultured fibroblasts are unaffected by MFS status. An unexpected observation was the range of individual gene expression. In unaffected control subjects, expression ranges exceeding 10 fold were seen in many of the genes selected for qRT-PCR validation. The variation in expression in the MFS affected subjects was even greater.

  4. Integrated analysis of DNA methylation profiles and gene expression profiles to identify genes associated with pilocytic astrocytomas

    Zhou, Ruigang; MAN, YIGANG

    2016-01-01

    The present study performed an integral analysis of the gene expression and DNA methylation profile of pilocytic astrocytomas (PAs). Weighted gene co-expression network analysis (WGCNA) was also performed to examine and identify the genes correlated to PAs, to identify candidate therapeutic targets for the treatment of PAs. The DNA methylation profile and gene expression profile were downloaded from the Gene Expression Omnibus database. Following screening of the differentially expressed gene...

  5. Novel redox nanomedicine improves gene expression of polyion complex vector

    Kazuko Toh, Toru Yoshitomi, Yutaka Ikeda and Yukio Nagasaki

    2011-01-01

    Full Text Available Gene therapy has generated worldwide attention as a new medical technology. While non-viral gene vectors are promising candidates as gene carriers, they have several issues such as toxicity and low transfection efficiency. We have hypothesized that the generation of reactive oxygen species (ROS affects gene expression in polyplex supported gene delivery systems. The effect of ROS on the gene expression of polyplex was evaluated using a nitroxide radical-containing nanoparticle (RNP as an ROS scavenger. When polyethyleneimine (PEI/pGL3 or PEI alone was added to the HeLa cells, ROS levels increased significantly. In contrast, when (PEI/pGL3 or PEI was added with RNP, the ROS levels were suppressed. The luciferase expression was increased by the treatment with RNP in a dose-dependent manner and the cellular uptake of pDNA was also increased. Inflammatory cytokines play an important role in ROS generation in vivo. In particular, tumor necrosis factor (TNF-α caused intracellular ROS generation in HeLa cells and decreased gene expression. RNP treatment suppressed ROS production even in the presence of TNF-α and increased gene expression. This anti-inflammatory property of RNP suggests that it may be used as an effective adjuvant for non-viral gene delivery systems.

  6. Novel redox nanomedicine improves gene expression of polyion complex vector

    Gene therapy has generated worldwide attention as a new medical technology. While non-viral gene vectors are promising candidates as gene carriers, they have several issues such as toxicity and low transfection efficiency. We have hypothesized that the generation of reactive oxygen species (ROS) affects gene expression in polyplex supported gene delivery systems. The effect of ROS on the gene expression of polyplex was evaluated using a nitroxide radical-containing nanoparticle (RNP) as an ROS scavenger. When polyethyleneimine (PEI)/pGL3 or PEI alone was added to the HeLa cells, ROS levels increased significantly. In contrast, when (PEI)/pGL3 or PEI was added with RNP, the ROS levels were suppressed. The luciferase expression was increased by the treatment with RNP in a dose-dependent manner and the cellular uptake of pDNA was also increased. Inflammatory cytokines play an important role in ROS generation in vivo. In particular, tumor necrosis factor (TNF)-α caused intracellular ROS generation in HeLa cells and decreased gene expression. RNP treatment suppressed ROS production even in the presence of TNF-α and increased gene expression. This anti-inflammatory property of RNP suggests that it may be used as an effective adjuvant for non-viral gene delivery systems.

  7. Novel redox nanomedicine improves gene expression of polyion complex vector

    Toh, Kazuko; Yoshitomi, Toru; Ikeda, Yutaka; Nagasaki, Yukio

    2011-12-01

    Gene therapy has generated worldwide attention as a new medical technology. While non-viral gene vectors are promising candidates as gene carriers, they have several issues such as toxicity and low transfection efficiency. We have hypothesized that the generation of reactive oxygen species (ROS) affects gene expression in polyplex supported gene delivery systems. The effect of ROS on the gene expression of polyplex was evaluated using a nitroxide radical-containing nanoparticle (RNP) as an ROS scavenger. When polyethyleneimine (PEI)/pGL3 or PEI alone was added to the HeLa cells, ROS levels increased significantly. In contrast, when (PEI)/pGL3 or PEI was added with RNP, the ROS levels were suppressed. The luciferase expression was increased by the treatment with RNP in a dose-dependent manner and the cellular uptake of pDNA was also increased. Inflammatory cytokines play an important role in ROS generation in vivo. In particular, tumor necrosis factor (TNF)-α caused intracellular ROS generation in HeLa cells and decreased gene expression. RNP treatment suppressed ROS production even in the presence of TNF-α and increased gene expression. This anti-inflammatory property of RNP suggests that it may be used as an effective adjuvant for non-viral gene delivery systems.

  8. Normal and abnormal mechanisms of gene splicing and relevance to inherited skin diseases

    Wessagowit, Vesarat; Nalla, Vijay K.; Rogan, Peter K; McGrath, John A

    2005-01-01

    The process of excising introns from pre-mRNA complexes is directed by specific genomic DNA sequences at intron—exon borders known as splice sites. These regions contain well-conserved motifs which allow the splicing process to proceed in a regulated and structured manner. However, as well as conventional splicing, several genes have the inherent capacity to undergo alternative splicing, thus allowing synthesis of multiple gene transcripts, perhaps with different functional properties. Within...

  9. Gene expression profiling reveals multiple toxicity endpoints induced by hepatotoxicants

    Huang Qihong; Jin Xidong; Gaillard, Elias T.; Knight, Brian L.; Pack, Franklin D.; Stoltz, James H.; Jayadev, Supriya; Blanchard, Kerry T

    2004-05-18

    Microarray technology continues to gain increased acceptance in the drug development process, particularly at the stage of toxicology and safety assessment. In the current study, microarrays were used to investigate gene expression changes associated with hepatotoxicity, the most commonly reported clinical liability with pharmaceutical agents. Acetaminophen, methotrexate, methapyrilene, furan and phenytoin were used as benchmark compounds capable of inducing specific but different types of hepatotoxicity. The goal of the work was to define gene expression profiles capable of distinguishing the different subtypes of hepatotoxicity. Sprague-Dawley rats were orally dosed with acetaminophen (single dose, 4500 mg/kg for 6, 24 and 72 h), methotrexate (1 mg/kg per day for 1, 7 and 14 days), methapyrilene (100 mg/kg per day for 3 and 7 days), furan (40 mg/kg per day for 1, 3, 7 and 14 days) or phenytoin (300 mg/kg per day for 14 days). Hepatic gene expression was assessed using toxicology-specific gene arrays containing 684 target genes or expressed sequence tags (ESTs). Principal component analysis (PCA) of gene expression data was able to provide a clear distinction of each compound, suggesting that gene expression data can be used to discern different hepatotoxic agents and toxicity endpoints. Gene expression data were applied to the multiplicity-adjusted permutation test and significantly changed genes were categorized and correlated to hepatotoxic endpoints. Repression of enzymes involved in lipid oxidation (acyl-CoA dehydrogenase, medium chain, enoyl CoA hydratase, very long-chain acyl-CoA synthetase) were associated with microvesicular lipidosis. Likewise, subsets of genes associated with hepatotocellular necrosis, inflammation, hepatitis, bile duct hyperplasia and fibrosis have been identified. The current study illustrates that expression profiling can be used to: (1) distinguish different hepatotoxic endpoints; (2) predict the development of toxic endpoints; and

  10. Gene expression profiling reveals multiple toxicity endpoints induced by hepatotoxicants

    Microarray technology continues to gain increased acceptance in the drug development process, particularly at the stage of toxicology and safety assessment. In the current study, microarrays were used to investigate gene expression changes associated with hepatotoxicity, the most commonly reported clinical liability with pharmaceutical agents. Acetaminophen, methotrexate, methapyrilene, furan and phenytoin were used as benchmark compounds capable of inducing specific but different types of hepatotoxicity. The goal of the work was to define gene expression profiles capable of distinguishing the different subtypes of hepatotoxicity. Sprague-Dawley rats were orally dosed with acetaminophen (single dose, 4500 mg/kg for 6, 24 and 72 h), methotrexate (1 mg/kg per day for 1, 7 and 14 days), methapyrilene (100 mg/kg per day for 3 and 7 days), furan (40 mg/kg per day for 1, 3, 7 and 14 days) or phenytoin (300 mg/kg per day for 14 days). Hepatic gene expression was assessed using toxicology-specific gene arrays containing 684 target genes or expressed sequence tags (ESTs). Principal component analysis (PCA) of gene expression data was able to provide a clear distinction of each compound, suggesting that gene expression data can be used to discern different hepatotoxic agents and toxicity endpoints. Gene expression data were applied to the multiplicity-adjusted permutation test and significantly changed genes were categorized and correlated to hepatotoxic endpoints. Repression of enzymes involved in lipid oxidation (acyl-CoA dehydrogenase, medium chain, enoyl CoA hydratase, very long-chain acyl-CoA synthetase) were associated with microvesicular lipidosis. Likewise, subsets of genes associated with hepatotocellular necrosis, inflammation, hepatitis, bile duct hyperplasia and fibrosis have been identified. The current study illustrates that expression profiling can be used to: (1) distinguish different hepatotoxic endpoints; (2) predict the development of toxic endpoints; and

  11. EFFECTS OF MUTATION AND EXPRESSION OF PTEN GENE mRNA ON TUMORIGENESIS AND PROGRESSION OF EPITHELIAL OVARIAN CANCER

    陈颖; 郑华川; 杨雪飞; 孙丽梅; 辛彦

    2004-01-01

    Objective To investigate the mutation and expression of tumor suppressor gene-PTEN mRNA and explore their roles in tumorigenesis and progression of ovarian cancer. Methods Mutated exon 5 of PTEN gene was examined in normal ovary (n = 5), ovarian cyst (n =5), ovarian borderline tumor (n=9), epithelial ovarian cancer (n=60), and ovarian cancer cell line (n= 1)by polymerase chain reaction-single strand conformation polymorphism (PCR-SSCP). mRNA expression of PTEN gene was evaluated in corresponding tissues and cell line by reverse transcription polymerase chain reaction(RT-PCR). The mutation and mRNA expression of PTEN gene were compared with clinicopathological features of ovarian cancer. Results Mutated exon 5 of PTEN gene was detected only in 5 (7.1%) cases of epithelial ovarian cancer. mRNA expression level of PTEN gene in ovarian borderline tumor or ovarian cancer was lower than that in normal ovary or ovarian cyst (P < 0.05). The level of PTEN gene mRNA expression was negatively correlated with clinicopathological staging of ovarian cancer, whereas positively correlated with histological differentiation (P < 0.05). mRNA expression level of PTEN gene in ovarian endometrioid cancer was significantly lower than that in ovarian serous or mucinous cancer (P < 0.05). Conclusions Mutation of PTEN gene occurs in ovarian cancer. Down-regulated expression of PTEN is probably an important molecular event in tumorigenesis of ovarian cancer. Abnormal expression of PTEN gene is involved in progression of ovarian cancer. Reduced expression of PTEN gene is closely associated with tumorigenesis and pathobiological behaviors of ovarian endometrioid cancer.

  12. Dopamine receptor-mediated regulation of neuronal "clock" gene expression.

    Imbesi, M; Yildiz, S; Dirim Arslan, A; Sharma, R; Manev, H; Uz, T

    2009-01-23

    Using a transgenic mice model (i.e. "clock" knockouts), clock transcription factors have been suggested as critical regulators of dopaminergic behaviors induced by drugs of abuse. Moreover, it has been shown that systemic administration of psychostimulants, such as cocaine and methamphetamine regulates the striatal expression of clock genes. However, it is not known whether dopamine receptors mediate these regulatory effects of psychostimulants at the cellular level. Primary striatal neurons in culture express dopamine receptors as well as clock genes and have been successfully used in studying dopamine receptor functioning. Therefore, we investigated the role of dopamine receptors on neuronal clock gene expression in this model using specific receptor agonists. We found an inhibitory effect on the expression of mClock and mPer1 genes with the D2-class (i.e. D2/D3) receptor agonist quinpirole. We also found a generalized stimulatory effect on the expression of clock genes mPer1, mClock, mNPAS2 (neuronal PAS domain protein 2), and mBmal1 with the D1-class (i.e. D1) receptor agonist SKF38393. Further, we tested whether systemic administration of dopamine receptor agonists causes similar changes in striatal clock gene expression in vivo. We found quinpirole-induced alterations in mPER1 protein levels in the mouse striatum (i.e. rhythm shift). Collectively, our results indicate that the dopamine receptor system may mediate psychostimulant-induced changes in clock gene expression. Using striatal neurons in culture as a model, further research is needed to better understand how dopamine signaling modulates the expression dynamics of clock genes (i.e. intracellular signaling pathways) and thereby influences neuronal gene expression, neuronal transmission, and brain functioning. PMID:19017537

  13. Gene Expression Profiling Predicts Survival in Conventional Renal Cell Carcinoma.

    2005-12-01

    Full Text Available BACKGROUND: Conventional renal cell carcinoma (cRCC accounts for most of the deaths due to kidney cancer. Tumor stage, grade, and patient performance status are used currently to predict survival after surgery. Our goal was to identify gene expression features, using comprehensive gene expression profiling, that correlate with survival. METHODS AND FINDINGS: Gene expression profiles were determined in 177 primary cRCCs using DNA microarrays. Unsupervised hierarchical clustering analysis segregated cRCC into five gene expression subgroups. Expression subgroup was correlated with survival in long-term follow-up and was independent of grade, stage, and performance status. The tumors were then divided evenly into training and test sets that were balanced for grade, stage, performance status, and length of follow-up. A semisupervised learning algorithm (supervised principal components analysis was applied to identify transcripts whose expression was associated with survival in the training set, and the performance of this gene expression-based survival predictor was assessed using the test set. With this method, we identified 259 genes that accurately predicted disease-specific survival among patients in the independent validation group (p < 0.001. In multivariate analysis, the gene expression predictor was a strong predictor of survival independent of tumor stage, grade, and performance status (p < 0.001. CONCLUSIONS: cRCC displays molecular heterogeneity and can be separated into gene expression subgroups that correlate with survival after surgery. We have identified a set of 259 genes that predict survival after surgery independent of clinical prognostic factors.

  14. Abnormal Amygdala and Prefrontal Cortex Activation to Facial Expressions in Pediatric Bipolar Disorder

    Garrett, Amy S.; Reiss, Allan L.; Howe, Meghan E.; Kelley, Ryan G.; Singh, Manpreet K.; Adleman, Nancy E.; Karchemskiy, Asya; Chang, Kiki D.

    2012-01-01

    Objective: Previous functional magnetic resonance imaging (fMRI) studies in pediatric bipolar disorder (BD) have reported greater amygdala and less dorsolateral prefrontal cortex (DLPFC) activation to facial expressions compared to healthy controls. The current study investigates whether these differences are associated with the early or late…

  15. Relationship between promoter methylation & tissue expression of MGMT gene in ovarian cancer

    V Shilpa

    2014-01-01

    Full Text Available Background & objectives: Epigenetic alterations, in addition to multiple gene abnormalities, are involved in the genesis and progression of human cancers. Aberrant methylation of CpG islands within promoter regions is associated with transcriptional inactivation of various tumour suppressor genes. O 6 -methyguanine-DNA methyltransferase (MGMT is a DNA repair gene that removes mutagenic and cytotoxic adducts from the O 6 -position of guanine induced by alkylating agents. MGMT promoter hypermethylation and reduced expression has been found in some primary human carcinomas. We studied DNA methylation of CpG islands of the MGMT gene and its relation with MGMT protein expression in human epithelial ovarian carcinoma. Methods: A total of 88 epithelial ovarian cancer (EOC tissue samples, 14 low malignant potential (LMP tumours and 20 benign ovarian tissue samples were analysed for MGMT promoter methylation by nested methylation-specific polymerase chain reaction (MSP after bisulphite modification of DNA. A subset of 64 EOC samples, 10 LMP and benign tumours and five normal ovarian tissue samples were analysed for protein expression by immunohistochemistry. Results: The methylation frequencies of the MGMT gene promoter were found to be 29.5, 28.6 and 20 per cent for EOC samples, LMP tumours and benign cases, respectively. Positive protein expression was observed in 93.8 per cent of EOC and 100 per cent in LMP, benign tumours and normal ovarian tissue samples. Promoter hypermethylation with loss of protein expression was seen only in one case of EOC. Interpretation & conclusions: Our results suggest that MGMT promoter hypermethylation does not always reflect gene expression.

  16. Relationship between promoter methylation & tissue expression of MGMT gene in ovarian cancer

    Shilpa, V.; Bhagat, Rahul; Premalata, C.S.; Pallavi, V.R.; Ramesh, G.; Krishnamoorthy, Lakshmi

    2014-01-01

    Background & objectives: Epigenetic alterations, in addition to multiple gene abnormalities, are involved in the genesis and progression of human cancers. Aberrant methylation of CpG islands within promoter regions is associated with transcriptional inactivation of various tumour suppressor genes. O6-methyguanine-DNA methyltransferase (MGMT) is a DNA repair gene that removes mutagenic and cytotoxic adducts from the O6-position of guanine induced by alkylating agents. MGMT promoter hypermethylation and reduced expression has been found in some primary human carcinomas. We studied DNA methylation of CpG islands of the MGMT gene and its relation with MGMT protein expression in human epithelial ovarian carcinoma. Methods: A total of 88 epithelial ovarian cancer (EOC) tissue samples, 14 low malignant potential (LMP) tumours and 20 benign ovarian tissue samples were analysed for MGMT promoter methylation by nested methylation-specific polymerase chain reaction (MSP) after bisulphite modification of DNA. A subset of 64 EOC samples, 10 LMP and benign tumours and five normal ovarian tissue samples were analysed for protein expression by immunohistochemistry. Results: The methylation frequencies of the MGMT gene promoter were found to be 29.5, 28.6 and 20 per cent for EOC samples, LMP tumours and benign cases, respectively. Positive protein expression was observed in 93.8 per cent of EOC and 100 per cent in LMP, benign tumours and normal ovarian tissue samples. Promoter hypermethylation with loss of protein expression was seen only in one case of EOC. Interpretation & conclusions: Our results suggest that MGMT promoter hypermethylation does not always reflect gene expression. PMID:25579142

  17. Abnormal Expression of Cerebrospinal Fluid Cation Chloride Cotransporters in Patients with Rett Syndrome

    Sofia Temudo Duarte; Judith Armstrong; Ana Roche; Carlos Ortez; Ana Pérez; Maria del Mar O'Callaghan; Antonina Pereira; Francesc Sanmartí; Aida Ormazábal; Rafael Artuch; Mercedes Pineda; Angels García-Cazorla

    2013-01-01

    OBJECTIVE: Rett Syndrome is a progressive neurodevelopmental disorder caused mainly by mutations in the gene encoding methyl-CpG-binding protein 2. The relevance of MeCP2 for GABAergic function was previously documented in animal models. In these models, animals show deficits in brain-derived neurotrophic factor, which is thought to contribute to the pathogenesis of this disease. Neuronal Cation Chloride Cotransporters (CCCs) play a key role in GABAergic neuronal maturation, and brain-derived...

  18. In plants, expression breadth and expression level distinctly and non-linearly correlate with gene structure

    Yang Hangxing

    2009-11-01

    Full Text Available Abstract Background Compactness of highly/broadly expressed genes in human has been explained as selection for efficiency, regional mutation biases or genomic design. However, highly expressed genes in flowering plants were shown to be less compact than lowly expressed ones. On the other hand, opposite facts have also been documented that pollen-expressed Arabidopsis genes tend to contain shorter introns and highly expressed moss genes are compact. This issue is important because it provides a chance to compare the selectionism and the neutralism views about genome evolution. Furthermore, this issue also helps to understand the fates of introns, from the angle of gene expression. Results In this study, I used expression data covering more tissues and employ new analytical methods to reexamine the correlations between gene expression and gene structure for two flowering plants, Arabidopsis thaliana and Oryza sativa. It is shown that, different aspects of expression pattern correlate with different parts of gene sequences in distinct ways. In detail, expression level is significantly negatively correlated with gene size, especially the size of non-coding regions, whereas expression breadth correlates with non-coding structural parameters positively and with coding region parameters negatively. Furthermore, the relationships between expression level and structural parameters seem to be non-linear, with the extremes of structural parameters possibly scale as power-laws or logrithmic functions of expression levels. Conclusion In plants, highly expressed genes are compact, especially in the non-coding regions. Broadly expressed genes tend to contain longer non-coding sequences, which may be necessary for complex regulations. In combination with previous studies about other plants and about animals, some common scenarios about the correlation between gene expression and gene structure begin to emerge. Based on the functional relationships between

  19. Spatial gene expression quantification in changing morphologies

    D. Botman

    2016-01-01

    In systems biology, an organisms’ behavior is explained from the interactions among individual components such as genes and proteins. With few exceptions, interactions among genes and proteins are not measured directly and are therefore inferred from the observed output of a biological system. A net

  20. Expression profile of genes associated with mastitis in dairy cattle

    Isabela Fonseca; Priscila Vendramini Silva; Carla Christine Lange; Guimarães, Marta F. M.; Mayara Morena Del Cambre Amaral Weller; Katiene Régia Silva Sousa; Paulo de Sávio Lopes; José Domingos Guimarães; Simone E.F. Guimarães

    2009-01-01

    In order to characterize the expression of genes associated with immune response mechanisms to mastitis, we quantified the relative expression of the IL-2, IL-4, IL-6, IL-8, IL-10, IFN-γ and TNF-α genes in milk cells of healthy cows and cows with clinical mastitis. Total RNA was extracted from milk cells of six Black and White Holstein (BW) cows and six Gyr cows, including three animals with and three without mastitis per breed. Gene expression was analyzed by real-time PCR. IL-10 g...

  1. Genetic architecture of gene expression in ovine skeletal muscle

    Kogelman, Lisette Johanna Antonia; Byrne, Keren; Vuocolo, Tony;

    2011-01-01

    -based gene expression data we directly tested the hypothesis that there is genetic structure in the gene expression program in ovine skeletal muscle.Results: The genetic performance of six sires for a well defined muscling trait, longissimus lumborum muscle depth, was measured using extensive progeny testing...... architecture to the gene expression data, which also discriminated the sire-based Estimated Breeding Value for the trait. An integrated systems biology approach was then used to identify the major functional pathways contributing to the genetics of enhanced muscling by using both Estimated Breeding Value...

  2. A longitudinal study of gene expression in healthy individuals

    Tessier Michel

    2009-06-01

    Full Text Available Abstract Background The use of gene expression in venous blood either as a pharmacodynamic marker in clinical trials of drugs or as a diagnostic test requires knowledge of the variability in expression over time in healthy volunteers. Here we defined a normal range of gene expression over 6 months in the blood of four cohorts of healthy men and women who were stratified by age (22–55 years and > 55 years and gender. Methods Eleven immunomodulatory genes likely to play important roles in inflammatory conditions such as rheumatoid arthritis and infection in addition to four genes typically used as reference genes were examined by quantitative reverse transcription-polymerase chain reaction (qRT-PCR, as well as the full genome as represented by Affymetrix HG U133 Plus 2.0 microarrays. Results Gene expression levels as assessed by qRT-PCR and microarray were relatively stable over time with ~2% of genes as measured by microarray showing intra-subject differences over time periods longer than one month. Fifteen genes varied by gender. The eleven genes examined by qRT-PCR remained within a limited dynamic range for all individuals. Specifically, for the seven most stably expressed genes (CXCL1, HMOX1, IL1RN, IL1B, IL6R, PTGS2, and TNF, 95% of all samples profiled fell within 1.5–2.5 Ct, the equivalent of a 4- to 6-fold dynamic range. Two subjects who experienced severe adverse events of cancer and anemia, had microarray gene expression profiles that were distinct from normal while subjects who experienced an infection had only slightly elevated levels of inflammatory markers. Conclusion This study defines the range and variability of gene expression in healthy men and women over a six-month period. These parameters can be used to estimate the number of subjects needed to observe significant differences from normal gene expression in clinical studies. A set of genes that varied by gender was also identified as were a set of genes with elevated

  3. Atypical antipsychotics induce both proinflammatory and adipogenic gene expression in human adipocytes in vitro

    Highlights: • Antipsychotics modulate the expression of adipogenic genes in human adipocytes. • Secretion of proinflammatory cytokine IL8 and MCP-1 is induced by antipsychotics. • Adipocyte-dependent inflammatory abnormality could develop during chronic treatment. • Infiltrated macrophages would further enhance proinflammatory cytokine production. - Abstract: Schizophrenia requires lifelong treatment, potentially causing systemic changes in metabolic homeostasis. In the clinical setting, antipsychotic treatment may differentially lead to weight gain among individual patients, although the molecular determinants of such adverse effects are currently unknown. In this study, we investigated changes in the expression levels of critical regulatory genes of adipogenesis, lipid metabolism and proinflammatory genes during the differentiation of primary human adipose-derived stem cells (ADSCs). These cells were isolated from patients with body mass indices <25 and treated with the second-generation antipsychotics olanzapine, ziprasidone, clozapine, quetiapine, aripiprazole and risperidone and the first-generation antipsychotic haloperidol. We found that antipsychotics exhibited a marked effect on key genes involved in the regulation of cell cycle, signal transduction, transcription factors, nuclear receptors, differentiation markers and metabolic enzymes. In particular, we observed an induction of the transcription factor NF-KB1 and NF-KB1 target genes in adipocytes in response to these drugs, including the proinflammatory cytokines TNF-α, IL-1β, IL-8 and MCP-1. In addition, enhanced secretion of both IL8 and MCP-1 was observed in the supernatant of these cell cultures. In addition to their remarkable stimulatory effects on proinflammatory gene transcription, three of the most frequently prescribed antipsychotic drugs, clozapine, quetiapine and aripiprazole, also induced the expression of essential adipocyte differentiation genes and the adipocyte hormones leptin

  4. Atypical antipsychotics induce both proinflammatory and adipogenic gene expression in human adipocytes in vitro

    Sárvári, Anitta K., E-mail: anittasarvari@med.unideb.hu [Department of Biochemistry and Molecular Biology, Medical and Health Science Center, University of Debrecen, Debrecen (Hungary); Veréb, Zoltán, E-mail: jzvereb@gmail.com [Department of Biochemistry and Molecular Biology, Medical and Health Science Center, University of Debrecen, Debrecen (Hungary); Uray, Iván P., E-mail: ipuray@mdanderson.org [Clinical Cancer Prevention Department, The University of Texas, MD Anderson Cancer Center, Houston, TX (United States); Fésüs, László, E-mail: fesus@med.unideb.hu [Department of Biochemistry and Molecular Biology, Medical and Health Science Center, University of Debrecen, Debrecen (Hungary); MTA DE Apoptosis, Genomics and Stem Cell Research Group of the Hungarian Academy of Sciences (Hungary); Balajthy, Zoltán, E-mail: balajthy@med.unideb.hu [Department of Biochemistry and Molecular Biology, Medical and Health Science Center, University of Debrecen, Debrecen (Hungary)

    2014-08-08

    Highlights: • Antipsychotics modulate the expression of adipogenic genes in human adipocytes. • Secretion of proinflammatory cytokine IL8 and MCP-1 is induced by antipsychotics. • Adipocyte-dependent inflammatory abnormality could develop during chronic treatment. • Infiltrated macrophages would further enhance proinflammatory cytokine production. - Abstract: Schizophrenia requires lifelong treatment, potentially causing systemic changes in metabolic homeostasis. In the clinical setting, antipsychotic treatment may differentially lead to weight gain among individual patients, although the molecular determinants of such adverse effects are currently unknown. In this study, we investigated changes in the expression levels of critical regulatory genes of adipogenesis, lipid metabolism and proinflammatory genes during the differentiation of primary human adipose-derived stem cells (ADSCs). These cells were isolated from patients with body mass indices <25 and treated with the second-generation antipsychotics olanzapine, ziprasidone, clozapine, quetiapine, aripiprazole and risperidone and the first-generation antipsychotic haloperidol. We found that antipsychotics exhibited a marked effect on key genes involved in the regulation of cell cycle, signal transduction, transcription factors, nuclear receptors, differentiation markers and metabolic enzymes. In particular, we observed an induction of the transcription factor NF-KB1 and NF-KB1 target genes in adipocytes in response to these drugs, including the proinflammatory cytokines TNF-α, IL-1β, IL-8 and MCP-1. In addition, enhanced secretion of both IL8 and MCP-1 was observed in the supernatant of these cell cultures. In addition to their remarkable stimulatory effects on proinflammatory gene transcription, three of the most frequently prescribed antipsychotic drugs, clozapine, quetiapine and aripiprazole, also induced the expression of essential adipocyte differentiation genes and the adipocyte hormones leptin

  5. Reference genes for gene expression studies in wheat flag leaves grown under different farming conditions

    Cordeiro Raposo Fernando

    2011-09-01

    Full Text Available Abstract Background Internal control genes with highly uniform expression throughout the experimental conditions are required for accurate gene expression analysis as no universal reference genes exists. In this study, the expression stability of 24 candidate genes from Triticum aestivum cv. Cubus flag leaves grown under organic and conventional farming systems was evaluated in two locations in order to select suitable genes that can be used for normalization of real-time quantitative reverse-transcription PCR (RT-qPCR reactions. The genes were selected among the most common used reference genes as well as genes encoding proteins involved in several metabolic pathways. Findings Individual genes displayed different expression rates across all samples assayed. Applying geNorm, a set of three potential reference genes were suitable for normalization of RT-qPCR reactions in winter wheat flag leaves cv. Cubus: TaFNRII (ferredoxin-NADP(H oxidoreductase; AJ457980.1, ACT2 (actin 2; TC234027, and rrn26 (a putative homologue to RNA 26S gene; AL827977.1. In addition of these three genes that were also top-ranked by NormFinder, two extra genes: CYP18-2 (Cyclophilin A, AY456122.1 and TaWIN1 (14-3-3 like protein, AB042193 were most consistently stably expressed. Furthermore, we showed that TaFNRII, ACT2, and CYP18-2 are suitable for gene expression normalization in other two winter wheat varieties (Tommi and Centenaire grown under three treatments (organic, conventional and no nitrogen and a different environment than the one tested with cv. Cubus. Conclusions This study provides a new set of reference genes which should improve the accuracy of gene expression analyses when using wheat flag leaves as those related to the improvement of nitrogen use efficiency for cereal production.

  6. Prediction of Tumor Outcome Based on Gene Expression Data

    Liu Juan; Hitoshi Iba

    2004-01-01

    Gene expression microarray data can be used to classify tumor types. We proposed a new procedure to classify human tumor samples based on microarray gene expressions by using a hybrid supervised learning method called MOEA+WV (Multi-Objective Evolutionary Algorithm+Weighted Voting). MOEA is used to search for a relatively few subsets of informative genes from the high-dimensional gene space, and WV is used as a classification tool. This new method has been applied to predicate the subtypes of lymphoma and outcomes of medulloblastoma. The results are relatively accurate and meaningful compared to those from other methods.

  7. A co-expression network analysis reveals lncRNA abnormalities in peripheral blood in early-onset schizophrenia.

    Ren, Yan; Cui, Yuehua; Li, Xinrong; Wang, Binhong; Na, Long; Shi, Junyan; Wang, Liang; Qiu, Lixia; Zhang, Kerang; Liu, Guifen; Xu, Yong

    2015-12-01

    Long non-coding RNAs (lncRNAs) are emerging as important regulators of gene expression and disease processes especially in neuropsychiatric disorders. To explore the potential regulatory roles of lncRNAs in schizophrenia, we performed an integrated co-expression network analysis on lncRNA and mRNA microarray profiles generated from the peripheral blood samples in 19 drug-naïve first-episode early-onset schizophrenia (EOS) patients and 18 demographically matched typically developing controls (TDCs). Using weighted gene co-expression network analysis (WGCNA), we showed that the lncRNAs were organized into co-expressed modules, and two lncRNA modules were associated with EOS. The mRNA networks were constructed and three disease-associated modules were identified. Gene Ontology (GO) analysis indicated that the mRNAs were highly enriched for mitochondrion and related biological processes. Moreover, our results revealed a significant correlation between lncRNAs and mRNAs using the canonical correlation analysis (CCA). Our results suggest that the convergent lncRNA alteration may be involved in the etiologies of EOS, and mitochondrial dysfunction participates in the pathological process of the disease. Our findings may shed light on the pathogenesis of schizophrenia and facilitate future diagnosis and therapeutic strategies. PMID:25967042

  8. Expression and function on embryonic development of lissencephaly-1 genes in zebrafish

    Chengfu Sun; Mafei Xu; Zhen Xing; Zhili Wu; Yiping Li; Tsaiping Li; Mujun Zhao

    2009-01-01

    Lissencephaly is a severe disease characterized by brain malformation. The main causative gene of lissencephaly is LIS1. Mutation or deletion of LIS1 leads to prolifer-ation and migration deficiency of neurons in brain devel-opment. However, little is known about its biological function in embryonic development. In this article, we identified the expression patterns of zebrafish LIS1 gene and investigated its function in embryonic development. We demonstrated that zebrafish consisted of two LIS1 genes, LIS1a and LIS1b. Bioinformatics analysis revealed that LIS1 genes were conserved in evolution both in protein sequences and genomic structures. The expression patterns of zebrafish LIS1a and LIS1b showed that both transcripts were ubiquitously expressed at all embryonic developmental stages and in adult tissues examined. At the protein level, the LIS1 products mainly exist in brain tissue and in embryos at early stages as shown by western blotting analysis. The whole-mount immunostaining data showed that LIS1 proteins were distributed all over the embryos from 1-cell stage to 5 day post-fertilization. Knockdown of LIS1 protein expression through morpholino antisense oligonucleotides resulted in many developmental deficiencies in zebrafish, including brain malformation, circulation abnormality, and body curl. Taken together, our study suggested that zebrafish LIS1 plays a very important role in embryonic development.

  9. Detection of MTAP Protein and Gene Expression in Non-small Cell Lung Cancer

    Shasha LI

    2011-02-01

    Full Text Available Background and objective The abnormal expression of MTAP, a tumor suppressor gene, is found in a variety of tumor tissues. The aim of this study is to detect the expression of MTAP mRNA protein and the clinical significance for the therapy of non-small cell lung cancer tissue (NSCLC. Methods The expression of MTAP protein was detected by immunohistochemistry in 52 cases of NSCLC patients. The relative expression MTAP mRNA was detected by real-time quantitative PCR. Results The expression of MTAP protein in NSCLC tissue was significantly lower than that in paracarcinomous tissue and borderline lung tissue respectively (t=10.283, 10.940, P < 0.001. There was no significant difference among gender, age, smoking history, histology except differentiation (t=2.310, P=0.025. The MTAP mRNA relative expression in NSCLC tissue was significantly lower than that in paracarcinomous tissue (t=9.902, P < 0.001. Conclusion Downregulation of MTAP protein and gene expression is correlated to the oncogenesis and progression of NSCLC.

  10. A mechanism for abnormal angiogenesis in human radiation proctitis. Analysis of expression profile for angiogenic factors

    Radiation proctitis is an increasingly prevalent problem, with many patients being treated with radiotherapy for pelvic cancers. However, the mechanisms by which radiation proctitis develops in humans are not well understood. In this study, the expression profiles of angiogenic factors were analyzed to clarify their role in the etiology of radiation proctitis. Rectal biopsies were taken from 8 patients with radiation proctitis and 8 normal subjects. Protein lysates of the tissues were applied to an antibody array for angiogenesis-related factors. The mRNA level of each factor was evaluated by Taqman real-time polymerase chain reaction (PCR). Immunohistochemistry was performed using the labeled streptavidin biotin method. Antibody array analysis revealed 2.12- to 7.31-fold higher expression levels of angiogenin, fibroblast growth factor 1 (FGF1), endoglin, matrix metalloproteinase (MMP)-8, urokinase-type plasminogen activator (uPA) and maspin in radiation proctitis tissues compared with normal rectal mucosa. The mRNA level of each factor in radiation proctitis tissue was significantly higher than in normal rectal mucosa, suggesting their transcriptional activation. Immunohistochemical staining showed strong expression of angiogenin and maspin in rectal epithelia, MMP-8 and uPA in infiltrating lymphocytes, FGF1 in fibroblasts and endoglin in endothelial cells. The expression of vascular endothelial growth factor (VEGF) was not evident. Our results suggest that in radiation proctitis, MMP-8 and uPA cooperatively degrade the extracellular matrix and basement membrane to provide space for angiogenesis. Simultaneously, angiogenin and FGF1 promote endothelial cell proliferation, and endoglin induces vessel formation, culminating in angiogenesis. Inhibitors of angiogenic factors such as angiogenin and FGF1 may be effective for treating radiation proctitis. (author)

  11. Differential gene expression between visceral and subcutaneous fat depots.

    Atzmon, G; Yang, X M; Muzumdar, R; Ma, X H; Gabriely, I; Barzilai, N

    2002-01-01

    Abdominal obesity has been linked to the development of insulin resistance and Type 2 diabetes mellitus (DM2). By surgical removal of visceral fat (VF) in a variety of rodent models, we prevented insulin resistance and glucose intolerance, establishing a cause-effect relationship between VF and the metabolic syndrome. To characterize the biological differences between visceral and peripheral fat depots, we obtained perirenal visceral (VF) and subcutaneous (SC) fat from 5 young rats. We extracted mRNA from the fat tissue and performed gene array hybridization using Affymetrix technology with a platform containing 9 000 genes. Out of the 1 660 genes that were expressed in fat tissue, 297 (17.9 %) genes show a two-fold or higher difference in their expression between the two tissues. We present the 20 genes whose expression is higher in VF fat (by 3 - 7 fold) and the 20 genes whose expression is higher in SC fat (by 3 - 150 fold), many of which are predominantly involved in glucose homeostasis, insulin action, and lipid metabolism. We confirmed the findings of gene array expression and quantified the changes in expression in VF of genes involved in insulin resistance (PPARgamma leptin) and its syndrome (angiotensinogen and plasminogen activating inhibitor-1, PAI-1) by real-time PCR (qRT-PCR) technology. Finally, we demonstrated increased expression of resistin in VF by around 12-fold and adiponectin by around 4-fold, peptides that were not part of the gene expression platform. These results indicate that visceral fat and subcutaneous fat are biologically distinct. PMID:12660871

  12. Profiling of chicken adipose tissue gene expression by genome array

    Wang Shou-Zhi

    2007-06-01

    Full Text Available Abstract Background Excessive accumulation of lipids in the adipose tissue is a major problem in the present-day broiler industry. However, few studies have analyzed the expression of adipose tissue genes that are involved in pathways and mechanisms leading to adiposity in chickens. Gene expression profiling of chicken adipose tissue could provide key information about the ontogenesis of fatness and clarify the molecular mechanisms underlying obesity. In this study, Chicken Genome Arrays were used to construct an adipose tissue gene expression profile of 7-week-old broilers, and to screen adipose tissue genes that are differentially expressed in lean and fat lines divergently selected over eight generations for high and low abdominal fat weight. Results The gene expression profiles detected 13,234–16,858 probe sets in chicken adipose tissue at 7 weeks, and genes involved in lipid metabolism and immunity such as fatty acid binding protein (FABP, thyroid hormone-responsive protein (Spot14, lipoprotein lipase(LPL, insulin-like growth factor binding protein 7(IGFBP7 and major histocompatibility complex (MHC, were highly expressed. In contrast, some genes related to lipogenesis, such as leptin receptor, sterol regulatory element binding proteins1 (SREBP1, apolipoprotein B(ApoB and insulin-like growth factor 2(IGF2, were not detected. Moreover, 230 genes that were differentially expressed between the two lines were screened out; these were mainly involved in lipid metabolism, signal transduction, energy metabolism, tumorigenesis and immunity. Subsequently, real-time RT-PCR was performed to validate fifteen differentially expressed genes screened out by the microarray approach and high consistency was observed between the two methods. Conclusion Our results establish the groundwork for further studies of the basic genetic control of growth and development of chicken adipose tissue, and will be beneficial in clarifying the molecular mechanism of

  13. Pathway level analysis of gene expression using singular value decomposition

    Kepler Thomas B

    2005-09-01

    Full Text Available Abstract Background A promising direction in the analysis of gene expression focuses on the changes in expression of specific predefined sets of genes that are known in advance to be related (e.g., genes coding for proteins involved in cellular pathways or complexes. Such an analysis can reveal features that are not easily visible from the variations in the individual genes and can lead to a picture of expression that is more biologically transparent and accessible to interpretation. In this article, we present a new method of this kind that operates by quantifying the level of 'activity' of each pathway in different samples. The activity levels, which are derived from singular value decompositions, form the basis for statistical comparisons and other applications. Results We demonstrate our approach using expression data from a study of type 2 diabetes and another of the influence of cigarette smoke on gene expression in airway epithelia. A number of interesting pathways are identified in comparisons between smokers and non-smokers including ones related to nicotine metabolism, mucus production, and glutathione metabolism. A comparison with results from the related approach, 'gene-set enrichment analysis', is also provided. Conclusion Our method offers a flexible basis for identifying differentially expressed pathways from gene expression data. The results of a pathway-based analysis can be complementary to those obtained from one more focused on individual genes. A web program PLAGE (Pathway Level Analysis of Gene Expression for performing the kinds of analyses described here is accessible at http://dulci.biostat.duke.edu/pathways.

  14. Influence of mitochondria on gene expression in a citrus cybrid.

    Bassene, Jean-Baptiste; Froelicher, Yann; Navarro, Luis; Ollitrault, Patrick; Ancillo, Gema

    2011-06-01

    The production of cybrids, combining nucleus of a species with alien cytoplasmic organelles, is a valuable method used for improvement of various crops. Several citrus cybrids have been created by somatic hybridization. These genotypes are interesting models to analyze the impact of cytoplasmic genome change on nuclear genome expression. Herein, we report genome-wide gene expression analysis in leaves of a citrus cybrid between C. reticulata cv 'Willowleaf mandarin' and C. limon cv 'Eureka lemon' compared with its lemon parent, using a Citrus 20K cDNA microarray. Molecular analysis showed that this cybrid possesses nuclear and chloroplast genomes of Eureka lemon plus mitochondria from Willowleaf mandarin and, therefore, can be considered as a lemon bearing foreign mitochondria. Mandarin mitochondria influenced the expression of a large set of lemon nuclear genes causing an over-expression of 480 of them and repression of 39 genes. Quantitative real-time RT-PCR further confirmed the credibility of microarray data. Genes over-expressed in cybrid leaves are predominantly attributed to the functional category "cellular protein metabolism" whereas in the down-regulated none functional category was enriched. Overall, mitochondria replacement affected different nuclear genes including particularly genes predicted to be involved in mitochondrial retrograde signaling. Mitochondria regulate all cell structures even chloroplast status. These results suggest that nuclear gene expression is modulated with respect to new information received from the foreign organelle, with the final objective to suit specific needs to ensure better cell physiological balance. PMID:21308470

  15. SIGNATURE: A workbench for gene expression signature analysis

    Chang Jeffrey T

    2011-11-01

    Full Text Available Abstract Background The biological phenotype of a cell, such as a characteristic visual image or behavior, reflects activities derived from the expression of collections of genes. As such, an ability to measure the expression of these genes provides an opportunity to develop more precise and varied sets of phenotypes. However, to use this approach requires computational methods that are difficult to implement and apply, and thus there is a critical need for intelligent software tools that can reduce the technical burden of the analysis. Tools for gene expression analyses are unusually difficult to implement in a user-friendly way because their application requires a combination of biological data curation, statistical computational methods, and database expertise. Results We have developed SIGNATURE, a web-based resource that simplifies gene expression signature analysis by providing software, data, and protocols to perform the analysis successfully. This resource uses Bayesian methods for processing gene expression data coupled with a curated database of gene expression signatures, all carried out within a GenePattern web interface for easy use and access. Conclusions SIGNATURE is available for public use at http://genepattern.genome.duke.edu/signature/.

  16. Global Gene Expression Analysis for the Assessment of Nanobiomaterials.

    Hanagata, Nobutaka

    2015-01-01

    Using global gene expression analysis, the effects of biomaterials and nanomaterials can be analyzed at the genetic level. Even though information obtained from global gene expression analysis can be useful for the evaluation and design of biomaterials and nanomaterials, its use for these purposes is not widespread. This is due to the difficulties involved in data analysis. Because the expression data of about 20,000 genes can be obtained at once with global gene expression analysis, the data must be analyzed using bioinformatics. A method of bioinformatic analysis called gene ontology can estimate the kinds of changes on cell functions caused by genes whose expression level is changed by biomaterials and nanomaterials. Also, by applying a statistical analysis technique called hierarchical clustering to global gene expression data between a variety of biomaterials, the effects of the properties of materials on cell functions can be estimated. In this chapter, these theories of analysis and examples of applications to nanomaterials and biomaterials are described. Furthermore, global microRNA analysis, a method that has gained attention in recent years, and its application to nanomaterials are introduced. PMID:26201278

  17. [Expression of bioinformatically identified genes in skin of psoriasis patients].

    2013-10-01

    Gene expression analysis for EPHA2 (EPH receptor A2), EPHB2 (EPH receptor B2), S100A9 (S100 calcium binding protein A9), PBEF(nicotinamide phosphoribosyltransferase), LILRB2 (leukocyte immunoglobulin-like receptor, subfamily B (with TM and ITIM domains), member 2), PLAUR (plasminogen activator, urokinase receptor), LTB (lymphotoxin beta (TNF superfamily, member 3)), WNT5A (wingless-type MMTV integration site family, member 5A) has been conducted using real-time polymerase chain reaction in specimens affected by psoriasis versus visually intact skin in 18 patients. It was revealed that the expression of the nine examined genes was upregulated in the affected by psoriasis compared to visually intact skin specimens. The highest expression was observed for S100A9, S100AS, PBEF, WNT5A2, and EPHB2 genes. S100A9 and S100A8 gene expression in the affected by psoriasis skin was 100-fold higher versus visually intact skin while PBEF, WNT5A, and EPHB2 gene expression was upregulated more than five-fold. We suggested that the high expression of these genes might be associated with the state of the pathological process in psoriasis. Moreover, the transcriptional activity of these genes might serve a molecular indicator of the efficacy of treatment in psoriasis. PMID:25508677

  18. A biphasic pattern of gene expression during mouse retina development

    Soares Marcelo

    2006-10-01

    Full Text Available Abstract Background Between embryonic day 12 and postnatal day 21, six major neuronal and one glia cell type are generated from multipotential progenitors in a characteristic sequence during mouse retina development. We investigated expression patterns of retina transcripts during the major embryonic and postnatal developmental stages to provide a systematic view of normal mouse retina development, Results A tissue-specific cDNA microarray was generated using a set of sequence non-redundant EST clones collected from mouse retina. Eleven stages of mouse retina, from embryonic day 12.5 (El2.5 to postnatal day 21 (PN21, were collected for RNA isolation. Non-amplified RNAs were labeled for microarray experiments and three sets of data were analyzed for significance, hierarchical relationships, and functional clustering. Six individual gene expression clusters were identified based on expression patterns of transcripts through retina development. Two developmental phases were clearly divided with postnatal day 5 (PN5 as a separate cluster. Among 4,180 transcripts that changed significantly during development, approximately 2/3 of the genes were expressed at high levels up until PN5 and then declined whereas the other 1/3 of the genes increased expression from PN5 and remained at the higher levels until at least PN21. Less than 1% of the genes observed showed a peak of expression between the two phases. Among the later increased population, only about 40% genes are correlated with rod photoreceptors, indicating that multiple cell types contributed to gene expression in this phase. Within the same functional classes, however, different gene populations were expressed in distinct developmental phases. A correlation coefficient analysis of gene expression during retina development between previous SAGE studies and this study was also carried out. Conclusion This study provides a complementary genome-wide view of common gene dynamics and a broad molecular

  19. Monoallelic expression of multiple genes in the CNS.

    Wang, Jinhui; Valo, Zuzana; Smith, David; Singer-Sam, Judith

    2007-01-01

    The inheritance pattern of a number of major genetic disorders suggests the possible involvement of genes that are expressed from one allele and silent on the other, but such genes are difficult to detect. Since DNA methylation in regulatory regions is often a mark of gene silencing, we modified existing microarray-based assays to detect both methylated and unmethylated DNA sequences in the same sample, a variation we term the MAUD assay. We probed a 65 Mb region of mouse Chr 7 for gene-associated sequences that show two distinct DNA methylation patterns in the mouse CNS. Selected genes were then tested for allele-specific expression in clonal neural stem cell lines derived from reciprocal F(1) (C57BL/6xJF1) hybrid mice. In addition, using a separate approach, we directly analyzed allele-specific expression of a group of genes interspersed within clusters of OlfR genes, since the latter are subject to allelic exclusion. Altogether, of the 500 known genes in the chromosomal region surveyed, five show monoallelic expression, four identified by the MAUD assay (Agc1, p (pink-eyed dilution), P4ha3 and Thrsp), and one by its proximity to OlfR genes (Trim12). Thrsp (thyroid hormone responsive SPOT14 homolog) is expressed in hippocampus, but the human protein homolog, S14, has also been implicated in aggressive breast cancer. Monoallelic expression of the five genes is not coordinated at a chromosome-wide level, but rather regulated at individual loci. Taken together, our results suggest that at least 1% of previously untested genes are subject to allelic exclusion, and demonstrate a dual approach to expedite their identification. PMID:18074017

  20. GeneSigDB—A Curated Database of Gene Expression Signatures

    Culhane, Aedín C.; Schwarzl, Thomas; Sultana, Razvan; Picard, Shaita C.; Lu, Tim H.; Franklin, Katherine R.; French, Simon J.; Papenhausen, Gerald; Correll, Mick; Picard, Kermshlise; Quackenbush, John

    2009-01-01

    The primary objective of most gene expression studies is the identification of one or more gene signatures; lists of genes whose transcriptional levels are uniquely associated with a specific biological phenotype. Whilst thousands of experimentally derived gene signatures are published, their potential value to the community is limited by their computational inaccessibility. Gene signatures are embedded in published article figures, tables or in supplementary materials, and are frequently pre...

  1. Gene expression profiles of mouse spermatogenesis during recovery from irradiation

    Shah, Fozia J; Tanaka, Masami; Nielsen, John E;

    2009-01-01

    cellular changes that happen during recovery from irradiation by means of histology. We have earlier generated gene expression profiles during induction of spermatogenesis in mouse postnatal developing testes and found a correlation between profiles and the expressing cell types. The aim of the present...... work was to utilize the link between expression profile and cell types to follow the cellular changes that occur during post-irradiation recovery of spermatogenesis in order to describe recovery by means of gene expression. METHODS: Adult mouse testes were subjected to irradiation with 1 Gy or a...

  2. Expression of a Carrot Antifreeze Protein Gene in Escherichia coli

    Ma Xinyu; Shen Xin; Lu Cunfu

    2003-01-01

    The recombinant expression vectorpET43. lb-AFP, which contains full encoding region of a carrot 36 kD antifreeze protein (AFP) gene was constructed. The recombinant was transformed into expression host carrying T7 RNA polymerase gene (DE3 lysogen) and induced by 1 mmol. L-1 IPTG (isopropyl-β-D-thiogalactoside) to express 110 kD polypeptide of AFP fusion protein.The analysis of product solubility revealed that pET43. 1b-AFP was predominately soluble, and the expressed amount reached the maximum after the IPTG treatment for 3 h.

  3. THE GENE EXPRESSION PROFILE OF HIGHLY METASTATIC HUMAN OVARIAN CANCER CELL LINE BY GENE CHIP

    吕桂泉; 许沈华; 牟瀚舟; 朱赤红; 羊正炎; 高永良; 楼洪坤; 刘祥麟; 杨文; 程勇

    2001-01-01

    To study the gene expression of high metastatic human ovarian carcinoma cell line (HO-8910PM) and to screen for novel metastasis- associated genes by cDNA microarray. Methods: The cDNA was retro-transcribed from equal quantity mRNA derived from tissues of highly metastatic ovarian carcinoma cell line and normal ovarian, and was labeled with Cy5 and Cy3 fluorescence as probes. The mixed probes were hybridized with BioDoor 4096 double dot human whole gene chip. The chip was scanned by scanArray 3000 laser scanner. The acquired image was analyzed by ImaGene 3.0 software. Results: By applying the cDNA microarray we found: A total of 323 genes whose expression level were 3 times higher or lower in HO-8910PM cell than normal ovarian epithelium cell were screened out, with 71 higher and 252 lower respectively. Among these 10 were new genes. 67 genes showed expression difference bigger than 6 times between HO-8910PM cell and normal ovarian epithelium cell, among these genes 12 were higher, 55 lower, and two new genes were found. Conclusion: cDNA microarray technique is effective in screening the differentially expressed genes between human ovarian cancer cell line (HO-8910PM) and normal ovarian epithelium cell. Using the cDNA microarray to analyze of human ovarian cancer cell line gene expression profile difference will help the gene diagnosis, treatment and protection.

  4. Gene expression profile differences in gastric cancer, pericancerous epithelium and normal gastric mucosa by gene chip

    Chuan-Ding Yu; Shen-Hua Xu; Hang-Zhou Mou; Zhi-Ming Jiang; Chi-Hong Zhu; Xiang-Lin Liu

    2005-01-01

    AIM: To study the difference of gene expression in gastric cancer (T), pericancerous epithelium (P) and normal tissue of gastric mucosa (C), and to screen an associated novel gene in early gastric carcinogenesis by oligonudeotide microarray.METHODS: U133A (Affymetrix, Santa Clara, CA) gene chip was used to detect the gene expression profile difference in T, P and C, respectively. Bioinformatics was used to analyze the detected results.RESULTS: When gastric cancer was compared with normal gastric mucosa, 766 genes were found, with a difference of more than four times in expression levels. Of the 766 genes,530 were up-regulated (Signal Log Ratio [SLR]>2), and 236 were down-regulated (SLR<-2). When pericancerous epithelium was compared with normal gastric mucosa, 64genes were found, with a difference of more than four times in expression levels. Of the 64 genes, 50 were up-regulated (SLR>2), and 14 were down-regulated (SLR<-2). Compared with normal gastric mucosa, a total of 143 genes with a difference in expression levels (more than four times, either in cancer or in pericancerous epithelium) were found in gastric cancer (T) and pericancerous epithelium (P). Of the 143 genes, 108 were up-regulated (SLR>2), and 35were down-regulated (SLR<-2).CONCLUSION: To apply a gene chip could find 143 genes associated with the genes of gastric cancer in pericancerous epithelium, although there were no pathological changes in the tissue slices. More interesting, six genes of pericancerous epithelium were up-regulated in comparison with genes of gastric cancer and three genes were down-regulated in comparison with genes of gastric cancer. It is suggested that these genes may be related to the carcinogenesis and development of early gastric cancer.

  5. Transcriptomic changes in human breast cancer progression as determined by serial analysis of gene expression

    Genomic and transcriptomic alterations affecting key cellular processes such us cell proliferation, differentiation and genomic stability are considered crucial for the development and progression of cancer. Most invasive breast carcinomas are known to derive from precursor in situ lesions. It is proposed that major global expression abnormalities occur in the transition from normal to premalignant stages and further progression to invasive stages. Serial analysis of gene expression (SAGE) was employed to generate a comprehensive global gene expression profile of the major changes occurring during breast cancer malignant evolution. In the present study we combined various normal and tumor SAGE libraries available in the public domain with sets of breast cancer SAGE libraries recently generated and sequenced in our laboratory. A recently developed modified t test was used to detect the genes differentially expressed. We accumulated a total of approximately 1.7 million breast tissue-specific SAGE tags and monitored the behavior of more than 25,157 genes during early breast carcinogenesis. We detected 52 transcripts commonly deregulated across the board when comparing normal tissue with ductal carcinoma in situ, and 149 transcripts when comparing ductal carcinoma in situ with invasive ductal carcinoma (P < 0.01). A major novelty of our study was the use of a statistical method that correctly accounts for the intra-SAGE and inter-SAGE library sources of variation. The most useful result of applying this modified t statistics beta binomial test is the identification of genes and gene families commonly deregulated across samples within each specific stage in the transition from normal to preinvasive and invasive stages of breast cancer development. Most of the gene expression abnormalities detected at the in situ stage were related to specific genes in charge of regulating the proper homeostasis between cell death and cell proliferation. The comparison of in situ lesions

  6. Clinicopathologic and gene expression parameters predict liver cancer prognosis

    Hao Ke

    2011-11-01

    Full Text Available Abstract Background The prognosis of hepatocellular carcinoma (HCC varies following surgical resection and the large variation remains largely unexplained. Studies have revealed the ability of clinicopathologic parameters and gene expression to predict HCC prognosis. However, there has been little systematic effort to compare the performance of these two types of predictors or combine them in a comprehensive model. Methods Tumor and adjacent non-tumor liver tissues were collected from 272 ethnic Chinese HCC patients who received curative surgery. We combined clinicopathologic parameters and gene expression data (from both tissue types in predicting HCC prognosis. Cross-validation and independent studies were employed to assess prediction. Results HCC prognosis was significantly associated with six clinicopathologic parameters, which can partition the patients into good- and poor-prognosis groups. Within each group, gene expression data further divide patients into distinct prognostic subgroups. Our predictive genes significantly overlap with previously published gene sets predictive of prognosis. Moreover, the predictive genes were enriched for genes that underwent normal-to-tumor gene network transformation. Previously documented liver eSNPs underlying the HCC predictive gene signatures were enriched for SNPs that associated with HCC prognosis, providing support that these genes are involved in key processes of tumorigenesis. Conclusion When applied individually, clinicopathologic parameters and gene expression offered similar predictive power for HCC prognosis. In contrast, a combination of the two types of data dramatically improved the power to predict HCC prognosis. Our results also provided a framework for understanding the impact of gene expression on the processes of tumorigenesis and clinical outcome.

  7. Development of soybean gene expression database (SGED)

    Large volumes of microarray expression data is a challenge for analysis. To address this problem a web-based database, Soybean Expression Database (SGED) was built, using PERL/CGI, C and an ORACLE database management system. SGED contains three components. The Data Mining component serves as a repos...

  8. Gene Expression Measurement Module (GEMM) - A Fully Automated, Miniaturized Instrument for Measuring Gene Expression in Space

    Pohorille, Andrew; Peyvan, Kia; Karouia, Fathi; Ricco, Antonio

    2012-01-01

    The capability to measure gene expression on board spacecraft opens the door to a large number of high-value experiments on the influence of the space environment on biological systems. For example, measurements of gene expression will help us to understand adaptation of terrestrial life to conditions beyond the planet of origin, identify deleterious effects of the space environment on a wide range of organisms from microbes to humans, develop effective countermeasures against these effects, and determine the metabolic bases of microbial pathogenicity and drug resistance. These and other applications hold significant potential for discoveries in space biology, biotechnology, and medicine. Supported by funding from the NASA Astrobiology Science and Technology Instrument Development Program, we are developing a fully automated, miniaturized, integrated fluidic system for small spacecraft capable of in-situ measurement of expression of several hundreds of microbial genes from multiple samples. The instrument will be capable of (1) lysing cell walls of bacteria sampled from cultures grown in space, (2) extracting and purifying RNA released from cells, (3) hybridizing the RNA on a microarray and (4) providing readout of the microarray signal, all in a single microfluidics cartridge. The device is suitable for deployment on nanosatellite platforms developed by NASA Ames' Small Spacecraft Division. To meet space and other technical constraints imposed by these platforms, a number of technical innovations are being implemented. The integration and end-to-end technological and biological validation of the instrument are carried out using as a model the photosynthetic bacterium Synechococcus elongatus, known for its remarkable metabolic diversity and resilience to adverse conditions. Each step in the measurement process-lysis, nucleic acid extraction, purification, and hybridization to an array-is assessed through comparison of the results obtained using the instrument with

  9. A role for gene duplication and natural variation of gene expression in the evolution of metabolism.

    Daniel J Kliebenstein

    Full Text Available BACKGROUND: Most eukaryotic genomes have undergone whole genome duplications during their evolutionary history. Recent studies have shown that the function of these duplicated genes can diverge from the ancestral gene via neo- or sub-functionalization within single genotypes. An additional possibility is that gene duplicates may also undergo partitioning of function among different genotypes of a species leading to genetic differentiation. Finally, the ability of gene duplicates to diverge may be limited by their biological function. METHODOLOGY/PRINCIPAL FINDINGS: To test these hypotheses, I estimated the impact of gene duplication and metabolic function upon intraspecific gene expression variation of segmental and tandem duplicated genes within Arabidopsis thaliana. In all instances, the younger tandem duplicated genes showed higher intraspecific gene expression variation than the average Arabidopsis gene. Surprisingly, the older segmental duplicates also showed evidence of elevated intraspecific gene expression variation albeit typically lower than for the tandem duplicates. The specific biological function of the gene as defined by metabolic pathway also modulated the level of intraspecific gene expression variation. The major energy metabolism and biosynthetic pathways showed decreased variation, suggesting that they are constrained in their ability to accumulate gene expression variation. In contrast, a major herbivory defense pathway showed significantly elevated intraspecific variation suggesting that it may be under pressure to maintain and/or generate diversity in response to fluctuating insect herbivory pressures. CONCLUSION: These data show that intraspecific variation in gene expression is facilitated by an interaction of gene duplication and biological activity. Further, this plays a role in controlling diversity of plant metabolism.

  10. Expression changes of hippocampal energy metabolism enzymes contribute to behavioural abnormalities during chronic morphine treatment

    Xiao-Lan Chen; Jing-Gen Liu; Gang Lu; Ying-Xia Gong; Liang-Cai Zhao; Jie Chen; Zhi-Qiang Chi; Yi-Ming Yang; Zhong Chen; Qing-lin Li

    2007-01-01

    Dependence and impairment of learning and memory are two well-established features caused by abused drugs such as opioids. The hippocampus is an important region associated with both drug dependence and learning and memory. However, the molecular events in hippocampus following exposure to abused drugs such as opioids are not well understood. Here we examined the effect of chronic morphine treatment on hippocampal protein expression by proteomic analyses. We found that chronic exposure of mice to morphine for 10 days produced robust morphine withdrawal jumping and memory impairment, and also resulted in a significant downregulation of hippocampal protein levels of three metabolic enzymes, including Fe-S protein 1 of NADH dehydrogenase, dihydrolipoamide acetyltransferase or E2 component of the pyruvate dehydrogenase complex and lactate dehydrogenase 2. Further real-time quantitative PCR analyses confirmed that the levels of the corresponding mRNAs were also remarkably reduced. Consistent with these findings, lower ATP levels and an impaired ability to convert glucose into ATP were also observed in the hippocampus of chronically treated mice. Opioid antagonist naltrexone administrated concomitantly with morphine significantly suppressed morphine withdrawal jumping and reversed the downregulation of these proteins. Acute exposure to morphine also produced robust morphine withdrawal jumping and significant memory impairment, but failed to decrease the expression of these three proteins. Intrahippocampal injection of D-glucose before morphine administration significantly enhanced ATP levels and suppressed morphine withdrawal jumping and memory impairment in acute morphine-treated but not in chronic morphine-treated mice. Intraperitoneal injection of high dose of D-glucose shows a similar effect on morphine-induced withdrawal jumping as the central treatment. Taken together, our results suggest that reduced expression of the three metabolic enzymes in the hippocampus as

  11. Microarray Expression Profiling Identifies Genes with Altered Expression in HDL-Deficient Mice

    Callow, Matthew J.; Dudoit, Sandrine; Gong, Elaine L.; Speed, Terence P.; Rubin, Edward M.

    2000-01-01

    Based on the assumption that severe alterations in the expression of genes known to be involved in high-density lipoprotein (HDL) metabolism may affect the expression of other genes, we screened an array of >5000 mouse expressed sequence tags for altered gene expression in the livers of two lines of mice with dramatic decreases in HDL plasma concentrations. Labeled cDNA from livers of apolipoprotein AI (apoAI)-knockout mice, scavenger receptor BI (SR-BI) transgenic mice, and control mice were...

  12. Bi-clustering of Gene Expression Data Using Conditional Entropy

    Olomola, Afolabi; Dua, Sumeet

    The inherent sparseness of gene expression data and the rare exhibition of similar expression patterns across a wide range of conditions make traditional clustering techniques unsuitable for gene expression analysis. Biclustering methods currently used to identify correlated gene patterns based on a subset of conditions do not effectively mine constant, coherent, or overlapping biclusters, partially because they perform poorly in the presence of noise. In this paper, we present a new methodology (BiEntropy) that combines information entropy and graph theory techniques to identify co-expressed gene patterns that are relevant to a subset of the sample. Our goal is to discover different types of biclusters in the presence of noise and to demonstrate the superiority of our method over existing methods in terms of discovering functionally enriched biclusters. We demonstrate the effectiveness of our method using both synthetic and real data.

  13. Visually Relating Gene Expression and in vivo DNA Binding Data

    Huang, Min-Yu; Mackey, Lester; Ker?,; nen, Soile V. E.; Weber, Gunther H.; Jordan, Michael I.; Knowles, David W.; Biggin, Mark D.; Hamann, Bernd

    2011-09-20

    Gene expression and in vivo DNA binding data provide important information for understanding gene regulatory networks: in vivo DNA binding data indicate genomic regions where transcription factors are bound, and expression data show the output resulting from this binding. Thus, there must be functional relationships between these two types of data. While visualization and data analysis tools exist for each data type alone, there is a lack of tools that can easily explore the relationship between them. We propose an approach that uses the average expression driven by multiple of ciscontrol regions to visually relate gene expression and in vivo DNA binding data. We demonstrate the utility of this tool with examples from the network controlling early Drosophila development. The results obtained support the idea that the level of occupancy of a transcription factor on DNA strongly determines the degree to which the factor regulates a target gene, and in some cases also controls whether the regulation is positive or negative.

  14. The evolution of gene expression levels in mammalian organs

    Brawand, David; Soumillon, Magali; Necsulea, Anamaria;

    2011-01-01

    Changes in gene expression are thought to underlie many of the phenotypic differences between species. However, large-scale analyses of gene expression evolution were until recently prevented by technological limitations. Here we report the sequencing of polyadenylated RNA from six organs across...... ten species that represent all major mammalian lineages (placentals, marsupials and monotremes) and birds (the evolutionary outgroup), with the goal of understanding the dynamics of mammalian transcriptome evolution. We show that the rate of gene expression evolution varies among organs, lineages and...... chromosomes, owing to differences in selective pressures: transcriptome change was slow in nervous tissues and rapid in testes, slower in rodents than in apes and monotremes, and rapid for the X chromosome right after its formation. Although gene expression evolution in mammals was strongly shaped by...

  15. State-related alterations of gene expression in bipolar disorder

    Munkholm, Klaus; Vinberg, Maj; Berk, Michael;

    2012-01-01

    Munkholm K, Vinberg M, Berk M, Kessing LV. State-related alterations of gene expression in bipolar disorder: a systematic review. Bipolar Disord 2012: 14: 684-696. © 2012 The Authors. Journal compilation © 2012 John Wiley & Sons A/S. Objective:  Alterations in gene expression in bipolar disorder...... vulnerability pathways. This review therefore evaluated the evidence for whether gene expression in bipolar disorder is state or trait related. Methods:  A systematic review, using the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guideline for reporting systematic reviews, based...... on comprehensive database searches for studies on gene expression in patients with bipolar disorder in specific mood states, was conducted. We searched Medline, Embase, PsycINFO, and The Cochrane Library, supplemented by manually searching reference lists from retrieved publications. Results:  A...

  16. Differential Expression of Salinity Resistance Gene on Cotton

    2008-01-01

    Salinity resistance and differential gene expression associated with salinity in cotton germplasm were studied,because of the large scale area of salinity in China,and its significant negative effects on

  17. 28.2 Expression of genes in soil

    Pietramellara, G.; Ascher, J.; Jirout, Jiří; Ceccherini, M.T.

    Boca Raton : CRC Press, 2011, 28-12-28-31. ISBN 978-1-4398-0305-9 Institutional research plan: CEZ:AV0Z60660521 Keywords : gene expression * soil * detection * monitoring Subject RIV: EH - Ecology, Behaviour

  18. Biasogram: visualization of confounding technical bias in gene expression data

    Krzystanek, Marcin; Szallasi, Zoltan Imre; Eklund, Aron Charles

    2013-01-01

    Gene expression profiles of clinical cohorts can be used to identify genes that are correlated with a clinical variable of interest such as patient outcome or response to a particular drug. However, expression measurements are susceptible to technical bias caused by variation in extraneous factors...... such as RNA quality and array hybridization conditions. If such technical bias is correlated with the clinical variable of interest, the likelihood of identifying false positive genes is increased. Here we describe a method to visualize an expression matrix as a projection of all genes onto a plane...... defined by a clinical variable and a technical nuisance variable. The resulting plot indicates the extent to which each gene is correlated with the clinical variable or the technical variable. We demonstrate this method by applying it to three clinical trial microarray data sets, one of which identified...

  19. Super-paramagnetic clustering of yeast gene expression profiles

    Getz, G; Domany, E; Zhang, M Q

    2000-01-01

    High-density DNA arrays, used to monitor gene expression at a genomic scale, have produced vast amounts of information which require the development of efficient computational methods to analyze them. The important first step is to extract the fundamental patterns of gene expression inherent in the data. This paper describes the application of a novel clustering algorithm, Super-Paramagnetic Clustering (SPC) to analysis of gene expression profiles that were generated recently during a study of the yeast cell cycle. SPC was used to organize genes into biologically relevant clusters that are suggestive for their co-regulation. Some of the advantages of SPC are its robustness against noise and initialization, a clear signature of cluster formation and splitting, and an unsupervised self-organized determination of the number of clusters at each resolution. Our analysis revealed interesting correlated behavior of several groups of genes which has not been previously identified.

  20. Biclustering of linear patterns in gene expression data.

    Gao, Qinghui; Ho, Christine; Jia, Yingmin; Li, Jingyi Jessica; Huang, Haiyan

    2012-06-01

    Identifying a bicluster, or submatrix of a gene expression dataset wherein the genes express similar behavior over the columns, is useful for discovering novel functional gene interactions. In this article, we introduce a new algorithm for finding biClusters with Linear Patterns (CLiP). Instead of solely maximizing Pearson correlation, we introduce a fitness function that also considers the correlation of complementary genes and conditions. This eliminates the need for a priori determination of the bicluster size. We employ both greedy search and the genetic algorithm in optimization, incorporating resampling for more robust discovery. When applied to both real and simulation datasets, our results show that CLiP is superior to existing methods. In analyzing RNA-seq fly and worm time-course data from modENCODE, we uncover a set of similarly expressed genes suggesting maternal dependence. Supplementary Material is available online (at www.liebertonline.com/cmb). PMID:22697238

  1. Expression of streptavidin gene in bacteria and plants

    Six biotin-containing proteins are present in plants, representing at least four different biotin enzymes. The physiological function of these biotin enzymes is not understood. Streptavidin, a protein from Streptomyces avidinii, binds tightly and specifically to biotin causing inactivation of biotin enzymes. One approach to elucidating the physiological function of biotin enzymes in plant metabolism is to create transgenic plants expressing the streptavidin gene. A plasmid containing a fused streptavidin-beta-galactosidase gene has been expressed in E. coli. We also have constructed various fusion genes that include an altered CaMV 35S promoter, signal peptides to target the streptavidin protein to specific organelles, and the streptavidin coding gene. We are examining the expression of these genes in cells of carrot

  2. Gene expression profiles identify inflammatory signatures in dendritic cells.

    Anna Torri

    Full Text Available Dendritic cells (DCs constitute a heterogeneous group of antigen-presenting leukocytes important in activation of both innate and adaptive immunity. We studied the gene expression patterns of DCs incubated with reagents inducing their activation or inhibition. Total RNA was isolated from DCs and gene expression profiling was performed with oligonucleotide microarrays. Using a supervised learning algorithm based on Random Forest, we generated a molecular signature of inflammation from a training set of 77 samples. We then validated this molecular signature in a testing set of 38 samples. Supervised analysis identified a set of 44 genes that distinguished very accurately between inflammatory and non inflammatory samples. The diagnostic performance of the signature genes was assessed against an independent set of samples, by qRT-PCR. Our findings suggest that the gene expression signature of DCs can provide a molecular classification for use in the selection of anti-inflammatory or adjuvant molecules with specific effects on DC activity.

  3. Image of HSV1-TK gene expression with 123IVDU

    The liver is an important target organ for gene transfer due to its capacity for synthesizing serum protein and its involvement in numerous genetic diseases. So livertargeted gene transfer is significant tool for expanding the treatment options and gene function studies. Gene transfer methods commonly use recombinant viral vector. However, viral vectors also have various disadvantages for example immune recognition after adenoviral vector delivery and potential viralassociated toxicity including helper virus replication and insertional mutagenesis. In contrast, nonviral vectors such as naked plasmid DNA(pDNA) and cationic liposomal systems exhibit low immunogenicity and repeated administration is possible(Ledley et al.,1992; Nabel et al.,1993). These are attractive vectors for in vivo gene transfer because of their suitable characteristics such as biodegradability, minimal toxicity, nonimmunogenicity, and simplicity of use. But non-viral gene delivery, has problems associated with limited efficiency at gene expression. hydrodynamic-based produce has very high level efficiency of gene extraction in liver or soild tumor. In mice, hydrodynamic-based produce was reported that a high level of transgene expression could be obtained in the liver by intravenous injection of large volume( 8∼10% of body weight) and high-speed ( Kobayashi N et al., 2004 ). HSV1-TK is one of the most widely use effect gene systems sued for imaging gene expression, in association with its use as a suicide gene, or as a reporter gene In non-invasive imaging of the HSV1-TK system, many nucleoside derivatives have developed as prodrug for tumor proliferation imaging or as anti-viral drugs. Several 5-substituted uracil nucleoside derivatives have been identified to have high sensitivity and selective accumulation in HSV1-TK expression cell. This producer has been used hydrodynamic-based produce, we investigated to image of herpes simplex virus type 1 thymidine kinase (HSV1-tk) gene with (E)- 5

  4. Abnormal expression of c-Myc in human bronchial epithelial cells malignantly transformed by anti-BPDE

    Juan FU; Yiguo JIANG; Xuemin CHEN

    2008-01-01

    Anti-benzo[a]pyrene-7,8-diol-9,10-epoxide (anti-BPDE) is a metabolite of benzo[a]pyrene (B[a] P) and acts as a potent mutagen in mammalian systems. However, molecular mechanisms related to anti-BPDE-induced carcinogenesis are poorly understood. Here, we investigated the expression of proto-oncogene c-myc in human bronchial epithelial cells (16H BE-T) transformed by exposure to anti-BPDE. The levels ofmRNA and pro-tein of c-M yc were examined in the 16HBE-T and vehicle-treated control cells (16HBE-N) by using different meth-ods respectively, including reverse transcriptase-polymer-ase chain reaction (RT-PCR), quantitative real-time PCR (Q-PCR), western blot and immunocytochemical meth-ods. The level of c-myc mRNA appeared to be signifi-cantly increased in 16HBE-T, as compared with those of the 16H BE-N. Likewise, the expression of c-Myc protein was significantly enhanced as compared with those of the control cells. Moreover, the localization of c-Myc protein shows mainly nuclear staining in 16HBE-T. In conclu-sion, the abnormal expression of c-Myc was present in anti-BPDE malignantly transformed 16HBE cells, which may be involved in the carcinogenesis molecular mech-anism of anti-BPDE.

  5. Expression of a human placental alkaline phosphatase gene in transfected cells: Use as a reporter for studies of gene expression

    The human placental alkaline phosphatase gene has been cloned and reintroduced into mammalian cells. When a plasmid carrying the gene under control of the simian virus 40 early promoter (pSV2Apap) is transfected into a variety of different cell types, placental alkaline phosphatase activity can readily be detected by using whole cell suspensions or cell lysates. Alkaline phosphatase activity can also be visualized directly in individual transfected cells by histochemical staining. The gene is appropriate for use as a reporter in studies of gene regulation since its expression is dependent on the presence of exogenous transcription control elements. The overall assay to detect the expression of the gene is quantitative, very rapid, and inexpensive. Cotransfections of cells with pSV2Apap and a related plasmid carrying the bacterial chloramphenicol acetyltransferase gene (pSV2Acat) indicate that transcription of these two genes is detected with roughly the same sensitivity

  6. Deletion of growth hormone receptor gene but not visceral fat removal decreases expression of apoptosis-related genes in the kidney-potential mechanism of lifespan extension.

    Gesing, Adam; Masternak, Michal M; Wang, Feiya; Karbownik-Lewinska, Malgorzata; Bartke, Andrzej

    2012-04-01

    Mice homozygous for the targeted disruption of the growth hormone (GH) receptor (Ghr) gene (GH receptor knockout; GHRKO; KO) are hypoinsulinemic, highly insulin sensitive, normoglycemic, and long-lived. Visceral fat removal (VFR) is a surgical intervention which improves insulin signaling in normal (N) mice and rats and extends longevity in rats. We have previously demonstrated decreased expression level of certain pro-apoptotic genes in skeletal muscles and suggested that this may contribute to the regulation of longevity in GHRKO mice. Alterations in apoptosis-related genes expression in the kidneys also may potentially lead to lifespan extension. In this context, we decided to examine the renal expression of the following genes: caspase-3, caspase-9, caspase-8, bax, bad, bcl-2, Smac/DIABLO, Apaf-1, p53, and cytochrome c1 (cyc1) in male GHRKO and N mice subjected to VFR or sham surgery, at approximately 6 months of age. The kidneys were collected 2 months after VFR. As a result, caspase-3, caspase-9, and bax expressions were decreased in KO mice as compared to N animals. Expressions of Smac/DIABLO, caspase-8, bcl-2, bad, and p53 did not differ between KOs and N mice. VFR did not change the expression of the examined genes in KO or N mice. In conclusion, endocrine abnormalities in GHRKO mice result in decreased expression of pro-apoptotic genes and VFR did not alter the examined genes expression in N and KO mice. These data are consistent with a model in which alterations of GH signaling and/or insulin sensitivity lead to increased lifespan mediated by decreased renal expression of pro-apoptotic genes. PMID:21431351

  7. Abnormal spatiotemporal processing of emotional facial expressions in childhood autism: dipole source analysis of event-related potentials.

    Wong, Teresa K W; Fung, Peter C W; Chua, Siew E; McAlonan, Grainne M

    2008-07-01

    Previous studies of face processing in autism suggest abnormalities in anatomical development, functioning and connectivity/coordination of distributed brain systems involved in social cognition, but the spatial sequence and time course of rapid (sub-second) neural responses to emotional facial expressions have not been examined in detail. Source analysis of high-density event-related potentials (ERPs) is an optimal means to examine both the precise temporal profile and spatial location of early electrical brain activity in response to emotionally salient stimuli. Therefore, we recorded 128-channel ERPs from high-functioning males with autism (aged 6-10 years), and age-, sex- and IQ-matched typically developing controls during explicit and implicit processing of emotion from pictures showing happy, angry, fearful, sad and neutral facial expressions. Children with autism showed normal patterns of behavioural and ERP (P1, N170 and P2) responses. However, dipole source analysis revealed that ERP responses relating to face detection (visual cortex) and configural processing of faces (fusiform gyrus), as well as mental state decoding (medial prefrontal lobe), were significantly weaker and/or slower in autism compared with controls during both explicit and implicit emotion-processing tasks. Slower- and larger-amplitude ERP source activity in the parietal somatosensory cortices possibly reflected more effortful compensatory analytical strategies used by the autism group to process facial gender and emotion. Such aberrant neurophysiological processing of facial emotion observed in children with autism within the first 300 ms of stimulus presentation suggests abnormal cortical specialization within social brain networks, which would likely disrupt the development of normal social-cognitive skills. PMID:18702712

  8. Visual sensitivities tuned by heterochronic shifts in opsin gene expression

    McFarland William N

    2008-05-01

    Full Text Available Abstract Background Cichlid fishes have radiated into hundreds of species in the Great Lakes of Africa. Brightly colored males display on leks and vie to be chosen by females as mates. Strong discrimination by females causes differential male mating success, rapid evolution of male color patterns and, possibly, speciation. In addition to differences in color pattern, Lake Malawi cichlids also show some of the largest known shifts in visual sensitivity among closely related species. These shifts result from modulated expression of seven cone opsin genes. However, the mechanisms for this modulated expression are unknown. Results In this work, we ask whether these differences might result from changes in developmental patterning of cone opsin genes. To test this, we compared the developmental pattern of cone opsin gene expression of the Nile tilapia, Oreochromis niloticus, with that of several cichlid species from Lake Malawi. In tilapia, quantitative polymerase chain reaction showed that opsin gene expression changes dynamically from a larval gene set through a juvenile set to a final adult set. In contrast, Lake Malawi species showed one of two developmental patterns. In some species, the expressed gene set changes slowly, either retaining the larval pattern or progressing only from larval to juvenile gene sets (neoteny. In the other species, the same genes are expressed in both larvae and adults but correspond to the tilapia adult genes (direct development. Conclusion Differences in visual sensitivities among species of Lake Malawi cichlids arise through heterochronic shifts relative to the ontogenetic pattern of the tilapia outgroup. Heterochrony has previously been shown to be a powerful mechanism for change in morphological evolution. We found that altering developmental expression patterns is also an important mechanism for altering sensory systems. These resulting sensory shifts will have major impacts on visual communication and could help

  9. Gene Expression Profiling Predicts the Development of Oral Cancer

    Saintigny, Pierre; Zhang, Li; Fan, You-Hong; El-Naggar, Adel K.; Papadimitrakopoulou, Vali; Feng, Lei; Lee, J. Jack; Kim, Edward S.; Hong, Waun Ki; Mao, Li

    2011-01-01

    Patients with oral preneoplastic lesion (OPL) have high risk of developing oral cancer. Although certain risk factors such as smoking status and histology are known, our ability to predict oral cancer risk remains poor. The study objective was to determine the value of gene expression profiling in predicting oral cancer development. Gene expression profile was measured in 86 of 162 OPL patients who were enrolled in a clinical chemoprevention trial that used the incidence of oral cancer develo...

  10. RNA Binding Proteins that Control Human Papillomavirus Gene Expression.

    Naoko Kajitani; Stefan Schwartz

    2015-01-01

    The human papillomavirus (HPV) life cycle is strictly linked to the differentiation program of the infected mucosal epithelial cell. In the basal and lower levels of the epithelium, early genes coding for pro-mitotic proteins and viral replication factors are expressed, while terminal cell differentiation is required for activation of late gene expression and production of viral particles at the very top of the epithelium. Such productive infections are normally cleared within 18–24 months. I...

  11. Markers for Host-Induced Gene Expression in Trichophyton Dermatophytosis

    Kaufman, Gil; Berdicevsky, Israela; Woodfolk, Judith A.; Horwitz, Benjamin A.

    2005-01-01

    Dermatophytes are adapted to infect keratinized tissues by their ability to utilize keratin as a nutrient source. Although there have been numerous reports that dermatophytes like Trichophyton sp. secrete proteolytic enzymes, virtually nothing is known about the patterns of gene expression in the host or even when the organisms are cultured on protein substrates in the absence of a host. We characterized the expression of an aminopeptidase gene, the Trichophyton mentagrophytes homolog of the ...

  12. A comparative analysis of biclustering algorithms for gene expression data

    Eren, Kemal; Deveci, Mehmet; Küçüktunç, Onur; Çatalyürek, Ümit V.

    2012-01-01

    The need to analyze high-dimension biological data is driving the development of new data mining methods. Biclustering algorithms have been successfully applied to gene expression data to discover local patterns, in which a subset of genes exhibit similar expression levels over a subset of conditions. However, it is not clear which algorithms are best suited for this task. Many algorithms have been published in the past decade, most of which have been compared only to a small number of algori...

  13. Evaluation of Plaid Models in Biclustering of Gene Expression Data

    Hamid Alavi Majd; Soodeh Shahsavari; Ahmad Reza Baghestani; Seyyed Mohammad Tabatabaei; Naghme Khadem Bashi; Mostafa Rezaei Tavirani; Mohsen Hamidpour

    2016-01-01

    Background. Biclustering algorithms for the analysis of high-dimensional gene expression data were proposed. Among them, the plaid model is arguably one of the most flexible biclustering models up to now. Objective. The main goal of this study is to provide an evaluation of plaid models. To that end, we will investigate this model on both simulation data and real gene expression datasets. Methods. Two simulated matrices with different degrees of overlap and noise are generated and then the in...

  14. Randomized Algorithmic Approach for Biclustering of Gene Expression Data

    Sradhanjali Nayak; Debahuti Mishra; Satyabrata Das; Amiya Kumar Rath

    2011-01-01

    Microarray data processing revolves around the pivotal issue of locating genes altering their expression in response to pathogens, other organisms or other multiple environmental conditions resulted out of a comparison between infected and uninfected cells or tissues. To have a comprehensive analysis of the corollaries of certain treatments, deseases and developmental stages embodied as a data matrix on gene expression data is possible through simultaneous observation and monitoring of the ex...

  15. Semi-supervised consensus clustering for gene expression data analysis

    Wang, Yunli; Pan, Youlian

    2014-01-01

    Background Simple clustering methods such as hierarchical clustering and k-means are widely used for gene expression data analysis; but they are unable to deal with noise and high dimensionality associated with the microarray gene expression data. Consensus clustering appears to improve the robustness and quality of clustering results. Incorporating prior knowledge in clustering process (semi-supervised clustering) has been shown to improve the consistency between the data partitioning and do...

  16. G9a, a multipotent regulator of gene expression

    Shankar, Shilpa Rani; Bahirvani, Avinash G.; Rao, Vinay Kumar; Bharathy, Narendra; Ow, Jin Rong; Taneja, Reshma

    2013-01-01

    Lysine methylation of histone and non-histone substrates by the methyltransferase G9a is mostly associated with transcriptional repression. Recent studies, however, have highlighted its role as an activator of gene expression through mechanisms that are independent of its methyltransferase activity. Here we review the growing repertoire of molecular mechanisms and substrates through which G9a regulates gene expression. We also discuss emerging evidence for its wide-ranging functions in develo...

  17. Organization and expression of canine olfactory receptor genes.

    Issel-Tarver, L; Rine, J

    1996-01-01

    Four members of the canine olfactory receptor gene family were characterized. The predicted proteins shared 40-64% identity with previously identified olfactory receptors. The four subfamilies identified in Southern hybridization experiments had as few as 2 and as many as 20 members. All four genes were expressed exclusively in olfactory epithelium. Expression of multiple members of the larger subfamilies was detected, suggesting that most if not all of the cross-hybridizing bands in genomic ...

  18. Time course of gene expression during mouse skeletal muscle hypertrophy

    Chaillou, Thomas; Lee, Jonah D.; England, Jonathan H.; Esser, Karyn A.; McCarthy, John J.

    2013-01-01

    The purpose of this study was to perform a comprehensive transcriptome analysis during skeletal muscle hypertrophy to identify signaling pathways that are operative throughout the hypertrophic response. Global gene expression patterns were determined from microarray results on days 1, 3, 5, 7, 10, and 14 during plantaris muscle hypertrophy induced by synergist ablation in adult mice. Principal component analysis and the number of differentially expressed genes (cutoffs ≥2-fold increase or ≥50...

  19. Probing Pineal-specific Gene Expression with Transgenic Zebrafish†

    Kojima, Daisuke; Dowling, John E.; Fukada, Yoshitaka

    2008-01-01

    The pineal gland of zebrafish (Danio rerio) contains lightsensitive photoreceptor cells and plays an important role in the neuroendocrine system. The zebrafish exorhodopsin gene encodes a pineal-specific photoreceptive protein, whose promoter region harbors a cis-acting element, pineal expression-promoting element (PIPE), directing pineal-specific gene expression. For in vivo genetic studies on PIPE-binding proteins and their regulatory mechanisms, we generated a transgenic zebrafish line, Tg...

  20. Neuronal Gene Expression Correlates of Parkinson's Disease with Dementia

    Stamper, Chelsea; Siegel, Andrew; Liang, Winnie S; Pearson, John V.; Stephan, Dietrich A.; Shill, Holly; Connor, Don; Caviness, John N.; Sabbagh, Marwan; Beach, Thomas G.; Adler, Charles H.; Dunckley, Travis

    2008-01-01

    Dementia is a common disabling complication in patients with Parkinson's disease (PD). The underlying molecular causes of Parkinson's disease with dementia (PDD) are poorly understood. To identify candidate genes and molecular pathways involved in PDD, we have performed whole genome expression profiling of susceptible cortical neuronal populations. Results show significant differences in expression of 162 genes (P < 0.01) between PD patients who are cognitively normal (PD-CogNL) and controls....

  1. Expression data on liver metabolic pathway genes and proteins

    Mooli Raja Gopal Reddy; Chodisetti Pavan Kumar; Malleswarapu Mahesh; Manchiryala Sravan Kumar; Jeyakumar, Shanmugam M

    2016-01-01

    Here, we present the expression data on various metabolic pathways of liver with special emphasize on lipid and carbohydrate metabolism and long chain polyunsaturated fatty acid (PUFA) synthesis, both at gene and protein levels. The data were obtained to understand the effect of vitamin A deficiency on the expression status (both gene and protein levels) of some of the key factors involved in lipogenesis, fatty acid oxidation, triglyceride secretion, long chain PUFA, resolvin D1 synthesis, gl...

  2. [Gene expression profile of spinal ventral horn in ALS].

    Yamamoto, Masahiko; Tanaka, Fumiaki; Sobue, Gen

    2007-10-01

    The causative pathomechanism of sporadic amyotrophic lateral sclerosis (ALS) is not clearly understood. Using microarray technology combined with laser-captured microdissection, gene expression profiles of degenerating spinal motor neurons as well as spinal ventral horn from autopsied patients with sporadic ALS were examined. Spinal motor neurons showed a distinct gene expression profile from the whole spinal ventral horn. Three percent of genes examined were significantly downregulated, and 1% were upregulated in motor neurons. In contrast with motor neurons, the total spinal ventral horn homogenates demonstrated 0.7% and 0.2% significant upregulation and downregulation of gene expression, respectively. Downregulated genes in motor neurons included those associated with cytoskeleton/axonal transport, transcription and cell surface antigens/receptors, such as dynactin 1 (DCTN1) and early growth response 3 (EGR3). In particular, DCTN1 was markedly downregulated in most residual motor neurons prior to the accumulation of pNF-H and ubiquitylated protein. Promoters for cell death pathway, death receptor 5 (DR5), cyclins C (CCNC) and A1 (CCNA), and caspases were upregulated, whereas cell death inhibitors, acetyl-CoA transporter (ACATN) and NF-kappaB (NFKB) were also upregulated. In terms of spinal ventral horn, the expression of genes related to cell surface antigens/receptors, transcription and cell adhesion/ECM were increased. The gene expression resulting in neurodegenerative and neuroprotective changes were both present in spinal motor neurons and ventral horn. Moreover, Inflammation-related genes, such as belonging to the cytokine family were not, however, significantly upregulated in either motor neurons or ventral horn. The sequence of motor neuron-specific gene expression changes from early DCTN1 downregulation to late CCNC upregulation in sporadic ALS can provide direct information on the genes leading to neurodegeneration and neuronal death, and are helpful

  3. Gene Expression Profiling in the Hibernating Primate, Cheirogaleus Medius

    Faherty, Sheena L.; Villanueva-Cañas, José Luis; Klopfer, Peter H.; Albà, M. Mar; Yoder, Anne D.

    2016-01-01

    Hibernation is a complex physiological response that some mammalian species employ to evade energetic demands. Previous work in mammalian hibernators suggests that hibernation is activated not by a set of genes unique to hibernators, but by differential expression of genes that are present in all mammals. This question of universal genetic mechanisms requires further investigation and can only be tested through additional investigations of phylogenetically dispersed species. To explore this question, we use RNA-Seq to investigate gene expression dynamics as they relate to the varying physiological states experienced throughout the year in a group of primate hibernators—Madagascar’s dwarf lemurs (genus Cheirogaleus). In a novel experimental approach, we use longitudinal sampling of biological tissues as a method for capturing gene expression profiles from the same individuals throughout their annual hibernation cycle. We identify 90 candidate genes that have variable expression patterns when comparing two active states (Active 1 and Active 2) with a torpor state. These include genes that are involved in metabolic pathways, feeding behavior, and circadian rhythms, as might be expected to correlate with seasonal physiological state changes. The identified genes appear to be critical for maintaining the health of an animal that undergoes prolonged periods of metabolic depression concurrent with the hibernation phenotype. By focusing on these differentially expressed genes in dwarf lemurs, we compare gene expression patterns in previously studied mammalian hibernators. Additionally, by employing evolutionary rate analysis, we find that hibernation-related genes do not evolve under positive selection in hibernating species relative to nonhibernators. PMID:27412611

  4. Expression analysis of five zebrafish RXFP3 homologues reveals evolutionary conservation of gene expression pattern.

    Donizetti, Aldo; Fiengo, Marcella; Iazzetti, Giovanni; del Gaudio, Rosanna; Di Giaimo, Rossella; Pariante, Paolo; Minucci, Sergio; Aniello, Francesco

    2015-01-01

    Relaxin peptides exert different functions in reproduction and neuroendocrine processes via interaction with two evolutionarily unrelated groups of receptors: RXFP1 and RXFP2 on one hand, RXFP3 and RXFP4 on the other hand. Evolution of receptor genes after splitting of tetrapods and teleost lineage led to a different retention rate between mammals and fish, with the latter having more gene copies compared to the former. In order to improve our knowledge on the evolution of the relaxin ligands/receptors system and have insights on their function in early stages of life, in the present paper we analyzed the expression pattern of five zebrafish RXFP3 homologue genes during embryonic development. In our analysis, we show that only two of the five genes are expressed during embryogenesis and that their transcripts are present in all the developmental stages. Spatial localization analysis of these transcripts revealed that the gene expression is restricted in specific territories starting from early pharyngula stage. Both genes are expressed in the brain but in different cell clusters and in extra-neural territories, one gene in the interrenal gland and the other in the pancreas. These two genes share expression territories with the homologue mammalian counterpart, highlighting a general conservation of gene expression regulatory processes and their putative function during evolution that are established early in vertebrate embryogenesis. PMID:25384467

  5. Indexing TNF-α gene expression using a gene-targeted reporter cell line

    Engelhardt John F

    2009-02-01

    Full Text Available Abstract Background Current cell-based drug screening technologies utilize randomly integrated reporter genes to index transcriptional activity of an endogenous gene of interest. In this context, reporter expression is controlled by known genetic elements that may only partially capture gene regulation and by unknown features of chromatin specific to the integration site. As an alternative technology, we applied highly efficient gene-targeting with recombinant adeno-associated virus to precisely integrate a luciferase reporter gene into exon 1 of the HeLa cell tumor necrosis factor-alpha (TNF-α gene. Drugs known to induce TNF-α expression were then used to compare the authenticity of gene-targeted and randomly integrated transcriptional reporters. Results TNF-α-targeted reporter activity reflected endogenous TNF-α mRNA expression, whereas randomly integrated TNF-α reporter lines gave variable expression in response to transcriptional and epigenetic regulators. 5,6-Dimethylxanthenone-4-acetic acid (DMXAA, currently used in cancer clinical trials to induce TNF-α gene transcription, was only effective at inducing reporter expression from TNF-α gene-targeted cells. Conclusion We conclude that gene-targeted reporter cell lines provide predictive indexing of gene transcription for drug discovery.

  6. Gene expression profiling in peanut using high density oligonucleotide microarrays

    Burow Mark

    2009-06-01

    Full Text Available Abstract Background Transcriptome expression analysis in peanut to date has been limited to a relatively small set of genes and only recently has a significant number of ESTs been released into the public domain. Utilization of these ESTs for oligonucleotide microarrays provides a means to investigate large-scale transcript responses to a variety of developmental and environmental signals, ultimately improving our understanding of plant biology. Results We have developed a high-density oligonucleotide microarray for peanut using 49,205 publicly available ESTs and tested the utility of this array for expression profiling in a variety of peanut tissues. To identify putatively tissue-specific genes and demonstrate the utility of this array for expression profiling in a variety of peanut tissues, we compared transcript levels in pod, peg, leaf, stem, and root tissues. Results from this experiment showed 108 putatively pod-specific/abundant genes, as well as transcripts whose expression was low or undetected in pod compared to peg, leaf, stem, or root. The transcripts significantly over-represented in pod include genes responsible for seed storage proteins and desiccation (e.g., late-embryogenesis abundant proteins, aquaporins, legumin B, oil production, and cellular defense. Additionally, almost half of the pod-abundant genes represent unknown genes allowing for the possibility of associating putative function to these previously uncharacterized genes. Conclusion The peanut oligonucleotide array represents the majority of publicly available peanut ESTs and can be used as a tool for expression profiling studies in diverse tissues.

  7. Quantitative analysis of laminin 5 gene expression in human keratinocytes.

    Akutsu, Nobuko; Amano, Satoshi; Nishiyama, Toshio

    2005-05-01

    To examine the expression of laminin 5 genes (LAMA3, LAMB3, and LAMC2) encoding the three polypeptide chains alpha3, beta3, and gamma2, respectively, in human keratinocytes, we developed novel quantitative polymerase chain reaction (PCR) methods utilizing Thermus aquaticus DNA polymerase, specific primers, and fluorescein-labeled probes with the ABI PRISM 7700 sequence detector system. Gene expression levels of LAMA3, LAMB3, and LAMC2 and glyceraldehyde-3-phosphate dehydrogenase were quantitated reproducibly and sensitively in the range from 1 x 10(2) to 1 x 10(8) gene copies. Basal gene expression level of LAMB3 was about one-tenth of that of LAMA3 or LAMC2 in human keratinocytes, although there was no clear difference among immunoprecipitated protein levels of alpha3, beta3, and gamma2 synthesized in radio-labeled keratinocytes. Human serum augmented gene expressions of LAMA3, LAMB3, and LAMC2 in human keratinocytes to almost the same extent, and this was associated with an increase of the laminin 5 protein content measured by a specific sandwich enzyme-linked immunosorbent assay. These results demonstrate that the absolute mRNA levels generated from the laminin 5 genes do not determine the translated protein levels of the laminin 5 chains in keratinocytes, and indicate that the expression of the laminin 5 genes may be controlled by common regulation mechanisms. PMID:15854126

  8. Serial analysis of gene expression (SAGE) in rat liver regeneration

    We have applied serial analysis of gene expression for studying the molecular mechanism of the rat liver regeneration in the model of 70% partial hepatectomy. We generated three SAGE libraries from a normal control liver (NL library: 52,343 tags), from a sham control operated liver (Sham library: 51,028 tags), and from a regenerating liver (PH library: 53,061 tags). By SAGE bioinformatics analysis we identified 40 induced genes and 20 repressed genes during the liver regeneration. We verified temporal expression of such genes by real time PCR during the regeneration process and we characterized 13 induced genes and 3 repressed genes. We found connective tissue growth factor transcript and protein induced very early at 4 h after PH operation before hepatocytes proliferation is triggered. Our study suggests CTGF as a growth factor signaling mediator that could be involved directly in the mechanism of liver regeneration induction

  9. Transcriptome de novo assembly and analysis of differentially expressed genes related to cytoplasmic male sterility in cabbage.

    Wang, Shuai; Wang, Chao; Zhang, Xiao-Xuan; Chen, Xin; Liu, Jiao-Jiao; Jia, Xue-Fang; Jia, Si-Qi

    2016-08-01

    Cytoplasmic male sterility (CMS) is a maternally inherited trait producing abnormal pollen during anther development. To identify the critical genes and pathways that are involved in the sterility and to better understand the underlying mechanisms, cabbage anthers at different developmental stages were cytologically examined and the transcriptomes were analyzed in CMS line and its maintainer line using the next-generation sequencing (NGS) technology. Microscopy showed that anther development in the CMS line was abnormal in the tetrad stage and failed to produce fertile pollen. We obtained 55,663,594 and 54,801,384 raw transcriptome reads from the sterile and maintainer lines, respectively, and assembled these reads into 68,851 unigenes with an average size of 1028 bp. By using the fragments assigned per kilobase of target per million mapped reads (FPKM) method, 5592 differentially expressed genes were identified, consisting of 3403 up- and 2089 down-regulated genes. Furthermore, there were 1011 and 45 genes specifically expressed in the maintainer or sterile line, respectively. Gene Ontology (GO) functional annotation and enrichment analysis of metabolic pathways were performed to map and analyze the candidate genes that may be involved in male sterility. Expression of eighteen genes was examined using qRT-PCR and their expression patterns were found to be same as the sequencing data. A clear cytological difference exists between the sterile and maintainer lines. The differentially expressed genes are associated with carbohydrate and energy metabolisms, or encode transcription factors, heat shock proteins and other stress proteins. Identification of these candidate genes provides a comprehensive understanding of the mechanism underlying CMS in cabbage. PMID:27116370

  10. Cardiac abnormalities in diabetic patients with mutation in the mitochondrial tRNA Leu(UUR)Gene

    An A-to-G transition at position 3243 of the mitochondrial DNA is known to be a pathogenic factor for mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like episodes (MELAS), diabetes and cardiomyopathy. This mutation causes dysfunction of the central nervous system in MELAS. Because the heart, as well as the brain and nervous system, is highly dependent on the energy produced by mitochondrial oxidation, these tissues are more vulnerable to mitochondrial defects. Cardiac abnormalities were assessed in 10 diabetic patients associated with this mutation using echocardiography and 123I-metaiodobenzylguanidine (MIBG) scintigraphy, and compared with 19 diabetic patients without the mutation. Duration of diabetes, therapy, control of blood glucose and diabetic complications, such as diabetic retinopathy and nephropathy, were not different between the 2 groups. Diabetic patients with the mutation had a significantly thicker interventricular septum (16.8±3.7 vs 11.0±1.6 mm, p0.05). In conclusion, left ventricular hypertrophy with or without abnormal wall motion and severely reduced MIBG uptake may be characteristic in diabetic patients with a mutation in the mitochondrial tRNA Leu(UUR) gene. (author)

  11. Paternal irradiation perturbs the expression of circadian genes in offspring

    Gomes, Andre M.G.F.; Barber, Ruth C.; Dubrova, Yuri E., E-mail: yed2@le.ac.uk

    2015-05-15

    Highlights: • We have analysed gene expression in the offspring of irradiated male mice. • CBA/Ca and BALB/c male mice were used in our study. • The pattern of gene expression was established in four tissues. • Expression of genes in involved in rhythmic process/circadian rhythm is compromised. • Our data may explain the phenomenon of transgenerational genomic instability. - Abstract: The circadian system represents a complex network which influences the timing of many biological processes. Recent studies have established that circadian alterations play an important role in the susceptibility to many human diseases, including cancer. Here we report that paternal irradiation in mice significantly affects the expression of genes involved in rhythmic processes in their first-generation offspring. Using microarrays, the patterns of gene expression were established for brain, kidney, liver and spleen samples from the non-exposed offspring of irradiated CBA/Ca and BALB/c male mice. The most over-represented categories among the genes differentially expressed in the offspring of control and irradiated males were those involved in rhythmic process, circadian rhythm and DNA-dependent regulation of transcription. The results of our study therefore provide a plausible explanation for the transgenerational effects of paternal irradiation, including increased transgenerational carcinogenesis described in other studies.

  12. Paternal irradiation perturbs the expression of circadian genes in offspring

    Highlights: • We have analysed gene expression in the offspring of irradiated male mice. • CBA/Ca and BALB/c male mice were used in our study. • The pattern of gene expression was established in four tissues. • Expression of genes in involved in rhythmic process/circadian rhythm is compromised. • Our data may explain the phenomenon of transgenerational genomic instability. - Abstract: The circadian system represents a complex network which influences the timing of many biological processes. Recent studies have established that circadian alterations play an important role in the susceptibility to many human diseases, including cancer. Here we report that paternal irradiation in mice significantly affects the expression of genes involved in rhythmic processes in their first-generation offspring. Using microarrays, the patterns of gene expression were established for brain, kidney, liver and spleen samples from the non-exposed offspring of irradiated CBA/Ca and BALB/c male mice. The most over-represented categories among the genes differentially expressed in the offspring of control and irradiated males were those involved in rhythmic process, circadian rhythm and DNA-dependent regulation of transcription. The results of our study therefore provide a plausible explanation for the transgenerational effects of paternal irradiation, including increased transgenerational carcinogenesis described in other studies

  13. OryzaExpress: An Integrated Database of Gene Expression Networks and Omics Annotations in Rice

    Hamada, Kazuki; Hongo, Kohei; Suwabe, Keita; Shimizu, Akifumi; Nagayama, Taishi; Abe, Reina; Kikuchi, Shunsuke; Yamamoto, Naoki; Fujii, Takaaki; Yokoyama, Koji; Tsuchida, Hiroko; Sano, Kazumi; Mochizuki, Takako; Oki, Nobuhiko; Horiuchi, Youko; Fujita, Masahiro; Watanabe, Masao; Matsuoka, Makoto; Kurata, Nori; Yano, Kentaro

    2011-01-01

    Similarity of gene expression profiles provides important clues for understanding the biological functions of genes, biological processes and metabolic pathways related to genes. A gene expression network (GEN) is an ideal choice to grasp such expression profile similarities among genes simultaneously. For GEN construction, the Pearson correlation coefficient (PCC) has been widely used as an index to evaluate the similarities of expression profiles for gene pairs. However, calculation of PCCs for all gene pairs requires large amounts of both time and computer resources. Based on correspondence analysis, we developed a new method for GEN construction, which takes minimal time even for large-scale expression data with general computational circumstances. Moreover, our method requires no prior parameters to remove sample redundancies in the data set. Using the new method, we constructed rice GENs from large-scale microarray data stored in a public database. We then collected and integrated various principal rice omics annotations in public and distinct databases. The integrated information contains annotations of genome, transcriptome and metabolic pathways. We thus developed the integrated database OryzaExpress for browsing GENs with an interactive and graphical viewer and principal omics annotations (http://riceball.lab.nig.ac.jp/oryzaexpress/). With integration of Arabidopsis GEN data from ATTED-II, OryzaExpress also allows us to compare GENs between rice and Arabidopsis. Thus, OryzaExpress is a comprehensive rice database that exploits powerful omics approaches from all perspectives in plant science and leads to systems biology. PMID:21186175

  14. Adeno-Associated Virus Serotype-9 Microdystrophin Gene Therapy Ameliorates Electrocardiographic Abnormalities in mdx Mice

    Bostick, Brian; Yue, Yongping; Lai, Yi; Long, Chun; Li, Dejia; Duan, Dongsheng

    2008-01-01

    Adeno-associated virus (AAV)-mediated microdystrophin gene therapy holds great promise for treating Duchenne muscular dystrophy (DMD). Previous studies have revealed excellent skeletal muscle protection. Cardiac muscle is also compromised in DMD patients. Here we show that a single intravenous injection of AAV serotype-9 (AAV-9) microdystrophin vector efficiently transduced the entire heart in neonatal mdx mice, a dystrophin-deficient mouse DMD model. Furthermore, microdystrophin therapy norm...

  15. MUTATION AND ABNORMAL EXPRESSION OF P16INK4a IN HEPATOCELLULAR CARCINOMA

    ZHANG Sheng-liang; ZHANG Yao-zheng; YAN Ping; GAO He-li

    1999-01-01

    Objective: To investigate the relationship between p16INK4a and primary hepatocellular carcinoma (HCC),especially hepatitis B-related HCC. Methods: p16INK4a and its protein in HCC were analyzed with PCR-SSCP and the immunohistochemistry methods respectively. Results: The positive incidence of p16INK4 protein expressing in HCC was lower than that of normal liver tissue (P<0.05), and the absence of p16INK4 protein was associated with HCC metastasis (P<0.05). The low frequency of mutation of p16INK4 exonl and exon2 upstream fragment was found in HCC. Conclusion: Absence of p16INK4 protein in HCC was not associated with HBV-infection.

  16. Mutations in DDR2 gene cause SMED with short limbs and abnormal calcifications.

    Bargal, Ruth; Cormier-Daire, Valerie; Ben-Neriah, Ziva; Le Merrer, Martine; Sosna, Jacob; Melki, Judith; Zangen, David H; Smithson, Sarah F; Borochowitz, Zvi; Belostotsky, Ruth; Raas-Rothschild, Annick

    2009-01-01

    The spondylo-meta-epiphyseal dysplasia [SMED] short limb-hand type [SMED-SL] is a rare autosomal-recessive disease, first reported by Borochowitz et al. in 1993.(1) Since then, 14 affected patients have been reported.(2-5) We diagnosed 6 patients from 5 different consanguineous Arab Muslim families from the Jerusalem area with SMED-SL. Additionally, we studied two patients from Algerian and Pakistani ancestry and the parents of the first Jewish patients reported.(1) Using a homozygosity mapping strategy, we located a candidate region on chromosome 1q23 spanning 2.4 Mb. The position of the Discoidin Domain Receptor 2 (DDR2) gene within the candidate region and the similarity of the ddr2 knockout mouse to the SMED patients' phenotype prompted us to study this gene(6). We identified three missense mutations c.2254 C > T [R752C], c. 2177 T > G [I726R], c.2138C > T [T713I] and one splice site mutation [IVS17+1g > a] in the conserved sequence encoding the tyrosine kinase domain of the DDR2 gene. The results of this study will permit an accurate early prenatal diagnosis and carrier screening for families at risk. PMID:19110212

  17. GOBO: gene expression-based outcome for breast cancer online.

    Markus Ringnér

    Full Text Available Microarray-based gene expression analysis holds promise of improving prognostication and treatment decisions for breast cancer patients. However, the heterogeneity of breast cancer emphasizes the need for validation of prognostic gene signatures in larger sample sets stratified into relevant subgroups. Here, we describe a multifunctional user-friendly online tool, GOBO (http://co.bmc.lu.se/gobo, allowing a range of different analyses to be performed in an 1881-sample breast tumor data set, and a 51-sample breast cancer cell line set, both generated on Affymetrix U133A microarrays. GOBO supports a wide range of applications including: 1 rapid assessment of gene expression levels in subgroups of breast tumors and cell lines, 2 identification of co-expressed genes for creation of potential metagenes, 3 association with outcome for gene expression levels of single genes, sets of genes, or gene signatures in multiple subgroups of the 1881-sample breast cancer data set. The design and implementation of GOBO facilitate easy incorporation of additional query functions and applications, as well as additional data sets irrespective of tumor type and array platform.

  18. A Gene Expression Barcode for Microarray Data

    Zilliox, Michael J.; Irizarry, Rafael A.

    2007-01-01

    The ability to measure genome-wide expression holds great promise for characterizing cells and distinguishing diseased from normal tissues. Thus far, microarray technology has only been useful for measuring relative expression between two or more samples, which has handicapped its ability to classify tissue types. This paper presents the first method that can successfully predict tissue type based on data from a single hybridization. A preliminary web-tool is available at http://rafalab.jhsph...

  19. Screening of differentially expressed genes related to differentiation and proliferation by gene expression profiling of different grade astrocytoma cell lines

    Yi Zeng; Zhong Yang; Yangyun Han; Chao You

    2008-01-01

    BACKGROUND: The detection of differential gene expression in brain is possible by cDNA microarray technology, and the screening of differentially expressed genes might provide a biological basis for gene-targeted therapy for tumors. OBJECTIVE: To detect the differential expression of genes among astrocytoma SHG-44 (WHO grade IV), CHG-5 (WHO grade II), and ATRA-treated SHG-44 cell lines by cDNA microarray. DESIGN: Laboratory experiments in vitro.SETTING: Department of Neurobiology, the Third Military Medical University. MATERIALS: The experiment was performed at the Department of Neurobiology in the Third Military Medical University of the Chinese PLA from January to October 2007. The SHG-44 cell line (WHO grade Ⅳ) was established by Prof. Ziwei Du, and the CHG-5 cell line (WHO grade II) was set up by Prof. Xiuwu Bian from the Third Military Medical University of the Chinese PLA. The cDNA microarray containing 9182 known genes was prepared and provided by Dr. Yang Zhong at the City University of Hong Kong. MAIN OUTCOME MEASURES: The identification of genes that were similarly regulated (overlapping) during tumor progression and differentiation, by comparison of gene expression profiles between CHG-5 and SHG-44 cells, and between SHG-44 cells with or without treatment with ATRA. RESULTS: Thirty-one overlapping genes were found to have similar regulatory effects on astrocytomas; among them, twenty genes were up-regulated and eleven were down-regulated in both comparisons between CHG-5 and SHG-44 cells, and between SHG-44 cells with or without treatment with ATRA. The four reported genes, SERPINF1, MAPK11, HIF1A and SOD2, were up-regulated in this study.CONCLUSION: The differentially expressed genes in different grade astrocytoma cell lines were revealed primarily by cDNA microarray; among them, five identified overlapping genes, SERPINF1, MAPK11, DCTN2, HIF1A and SOD2, were related to the malignant progression of astrocytoma cells.

  20. Norepinephrine transport-mediated gene expression in noradrenergic neurogenesis

    Sieber-Blum Maya

    2009-04-01

    Full Text Available Abstract Background We have identified a differential gene expression profile in neural crest stem cells that is due to deletion of the norepinephrine transporter (NET gene. NET is the target of psychotropic substances, such as tricyclic antidepressants and the drug of abuse, cocaine. NET mutations have been implicated in depression, anxiety, orthostatic intolerance and attention deficit hyperactivity disorder (ADHD. NET function in adult noradrenergic neurons of the peripheral and central nervous systems is to internalize norepinephrine from the synaptic cleft. By contrast, during embryogenesis norepinephrine (NE transport promotes differentiation of neural crest stem cells and locus ceruleus progenitors into noradrenergic neurons, whereas NET inhibitors block noradrenergic differentiation. While the structure of NET und the regulation of NET function are well described, little is known about downstream target genes of norepinephrine (NE transport. Results We have prepared gene expression profiles of in vitro differentiating wild type and norepinephrine transporter-deficient (NETKO mouse neural crest cells using long serial analysis of gene expression (LongSAGE. Comparison analyses have identified a number of important differentially expressed genes, including genes relevant to neural crest formation, noradrenergic neuron differentiation and the phenotype of NETKO mice. Examples of differentially expressed genes that affect noradrenergic cell differentiation include genes in the bone morphogenetic protein (BMP signaling pathway, the Phox2b binding partner Tlx2, the ubiquitin ligase Praja2, and the inhibitor of Notch signaling, Numbl. Differentially expressed genes that are likely to contribute to the NETKO phenotype include dopamine-β-hydroxylase (Dbh, tyrosine hydroxylase (Th, the peptide transmitter 'cocaine and amphetamine regulated transcript' (Cart, and the serotonin receptor subunit Htr3a. Real-time PCR confirmed differential expression

  1. Statistical framework for phylogenomic analysis of gene family expression profiles.

    Gu, Xun

    2004-05-01

    Microarray technology has produced massive expression data that are invaluable for investigating the genome-wide evolutionary pattern of gene expression. To this end, phylogenetic expression analysis is highly desirable. On the basis of the Brownian process, we developed a statistical framework (called the E(0) model), assuming the independent expression of evolution between lineages. Several evolutionary mechanisms are integrated to characterize the pattern of expression diversity after gene duplications, including gradual drift and dramatic shift (punctuated equilibrium). When the phylogeny of a gene family is given, we show that the likelihood function follows a multivariate normal distribution; the variance-covariance matrix is determined by the phylogenetic topology and evolutionary parameters. Maximum-likelihood methods for multiple microarray experiments are developed, and likelihood-ratio tests are designed for testing the evolutionary pattern of gene expression. To reconstruct the evolutionary trace of expression diversity after gene (or genome) duplications, we developed a Bayesian-based method and use the posterior mean as predictors. Potential applications in evolutionary genomics are discussed. PMID:15166175

  2. Probabilistic estimation of microarray data reliability and underlying gene expression

    Sigvardsson Mikael

    2003-09-01

    Full Text Available Abstract Background The availability of high throughput methods for measurement of mRNA concentrations makes the reliability of conclusions drawn from the data and global quality control of samples and hybridization important issues. We address these issues by an information theoretic approach, applied to discretized expression values in replicated gene expression data. Results Our approach yields a quantitative measure of two important parameter classes: First, the probability P(σ|S that a gene is in the biological state σ in a certain variety, given its observed expression S in the samples of that variety. Second, sample specific error probabilities which serve as consistency indicators of the measured samples of each variety. The method and its limitations are tested on gene expression data for developing murine B-cells and a t-test is used as reference. On a set of known genes it performs better than the t-test despite the crude discretization into only two expression levels. The consistency indicators, i.e. the error probabilities, correlate well with variations in the biological material and thus prove efficient. Conclusions The proposed method is effective in determining differential gene expression and sample reliability in replicated microarray data. Already at two discrete expression levels in each sample, it gives a good explanation of the data and is comparable to standard techniques.

  3. The Role of Nuclear Bodies in Gene Expression and Disease

    Marie Morimoto; Boerkoel, Cornelius F.

    2013-01-01

    This review summarizes the current understanding of the role of nuclear bodies in regulating gene expression. The compartmentalization of cellular processes, such as ribosome biogenesis, RNA processing, cellular response to stress, transcription, modification and assembly of spliceosomal snRNPs, histone gene synthesis and nuclear RNA retention, has significant implications for gene regulation. These functional nuclear domains include the nucleolus, nuclear speckle, nuclear stress body, transc...

  4. The genetic basis of evolutionary change in gene expression levels

    Emerson, J. J.; Li, Wen-Hsiung

    2010-01-01

    The regulation of gene expression is an important determinant of organismal phenotype and evolution. However, the widespread recognition of this fact occurred long after the synthesis of evolution and genetics. Here, we give a brief sketch of thoughts regarding gene regulation in the history of evolution and genetics. We then review the development of genome-wide studies of gene regulatory variation in the context of the location and mode of action of the causative genetic changes. In particu...

  5. In vivo gene delivery and expression by bacteriophage lambda vectors

    Lankes, HA; Zanghi, CN; Santos, K; Capella, C.; Duke, CMP; Dewhurst, S

    2007-01-01

    Aims Bacteriophage vectors have potential as gene transfer and vaccine delivery vectors because of their low cost, safety and physical stability. However, little is known concerning phage-mediated gene transfer in mammalian hosts. We therefore performed experiments to examine phage-mediated gene transfer in vivo. Methods and Results Mice were inoculated with recombinant lambda phage containing a mammalian expression cassette encoding firefly luciferase (luc). Efficient, dose-dependent in vivo...

  6. Expression of the cystic fibrosis gene in adult human lung.

    Engelhardt, J F; Zepeda, M; Cohn, J.A.; Yankaskas, J R; Wilson, J. M.

    1994-01-01

    Critical to an understanding of the pulmonary disease in cystic fibrosis (CF) and the development of effective gene therapies is a definition of the distribution and regulation of CF gene expression in adult human lung. Previous studies have detected the product of the CF gene, the CF transmembrane conductance regulator (CFTR), in submucosal glands of human bronchi. In this report, we have characterized the distribution of CFTR RNA and protein in the distal airway and alveoli of human lungs. ...

  7. Daunomycin-TFO Conjugates for Downregulation of Gene Expression

    Capobianco, Massimo L.; Catapano, Carlo V.

    Daunomycin has shown interesting properties as a stabilizing agent for the antigene methodology. This approach consists of targeting a polypurine region of a given gene, with a triplex forming oligonucleotide (TFO), realizing a triple helix complex (triplex), with the aim of down-regulating gene expression. This chapter describes the basic principles of the triplex approach, the chemistry underlining the binding of daunomycin to oligonucleotides, and some results of gene-inhibition obtained with daunomycin-TFO conjugates with different targets.

  8. The Medicago truncatula gene expression atlas web server

    Tang Yuhong

    2009-12-01

    Full Text Available Abstract Background Legumes (Leguminosae or Fabaceae play a major role in agriculture. Transcriptomics studies in the model legume species, Medicago truncatula, are instrumental in helping to formulate hypotheses about the role of legume genes. With the rapid growth of publically available Affymetrix GeneChip Medicago Genome Array GeneChip data from a great range of tissues, cell types, growth conditions, and stress treatments, the legume research community desires an effective bioinformatics system to aid efforts to interpret the Medicago genome through functional genomics. We developed the Medicago truncatula Gene Expression Atlas (MtGEA web server for this purpose. Description The Medicago truncatula Gene Expression Atlas (MtGEA web server is a centralized platform for analyzing the Medicago transcriptome. Currently, the web server hosts gene expression data from 156 Affymetrix GeneChip® Medicago genome arrays in 64 different experiments, covering a broad range of developmental and environmental conditions. The server enables flexible, multifaceted analyses of transcript data and provides a range of additional information about genes, including different types of annotation and links to the genome sequence, which help users formulate hypotheses about gene function. Transcript data can be accessed using Affymetrix probe identification number, DNA sequence, gene name, functional description in natural language, GO and KEGG annotation terms, and InterPro domain number. Transcripts can also be discovered through co-expression or differential expression analysis. Flexible tools to select a subset of experiments and to visualize and compare expression profiles of multiple genes have been implemented. Data can be downloaded, in part or full, in a tabular form compatible with common analytical and visualization software. The web server will be updated on a regular basis to incorporate new gene expression data and genome annotation, and is accessible

  9. The rules of gene expression in plants: Organ identity and gene body methylation are key factors for regulation of gene expression in Arabidopsis thaliana

    Gutiérrez Rodrigo A

    2008-09-01

    Full Text Available Abstract Background Microarray technology is a widely used approach for monitoring genome-wide gene expression. For Arabidopsis, there are over 1,800 microarray hybridizations representing many different experimental conditions on Affymetrix™ ATH1 gene chips alone. This huge amount of data offers a unique opportunity to infer the principles that govern the regulation of gene expression in plants. Results We used bioinformatics methods to analyze publicly available data obtained using the ATH1 chip from Affymetrix. A total of 1887 ATH1 hybridizations were normalized and filtered to eliminate low-quality hybridizations. We classified and compared control and treatment hybridizations and determined differential gene expression. The largest differences in gene expression were observed when comparing samples obtained from different organs. On average, ten-fold more genes were differentially expressed between organs as compared to any other experimental variable. We defined "gene responsiveness" as the number of comparisons in which a gene changed its expression significantly. We defined genes with the highest and lowest responsiveness levels as hypervariable and housekeeping genes, respectively. Remarkably, housekeeping genes were best distinguished from hypervariable genes by differences in methylation status in their transcribed regions. Moreover, methylation in the transcribed region was inversely correlated (R2 = 0.8 with gene responsiveness on a genome-wide scale. We provide an example of this negative relationship using genes encoding TCA cycle enzymes, by contrasting their regulatory responsiveness to nitrate and methylation status in their transcribed regions. Conclusion Our results indicate that the Arabidopsis transcriptome is largely established during development and is comparatively stable when faced with external perturbations. We suggest a novel functional role for DNA methylation in the transcribed region as a key determinant

  10. Conditional gene expression in the mouse using a Sleeping Beauty gene-trap transposon

    Hackett Perry B

    2006-06-01

    Full Text Available Abstract Background Insertional mutagenesis techniques with transposable elements have been popular among geneticists studying model organisms from E. coli to Drosophila and, more recently, the mouse. One such element is the Sleeping Beauty (SB transposon that has been shown in several studies to be an effective insertional mutagen in the mouse germline. SB transposon vector studies have employed different functional elements and reporter molecules to disrupt and report the expression of endogenous mouse genes. We sought to generate a transposon system that would be capable of reporting the expression pattern of a mouse gene while allowing for conditional expression of a gene of interest in a tissue- or temporal-specific pattern. Results Here we report the systematic development and testing of a transposon-based gene-trap system incorporating the doxycycline-repressible Tet-Off (tTA system that is capable of activating the expression of genes under control of a Tet response element (TRE promoter. We demonstrate that the gene trap system is fully functional in vitro by introducing the "gene-trap tTA" vector into human cells by transposition and identifying clones that activate expression of a TRE-luciferase transgene in a doxycycline-dependent manner. In transgenic mice, we mobilize gene-trap tTA vectors, discover parameters that can affect germline mobilization rates, and identify candidate gene insertions to demonstrate the in vivo functionality of the vector system. We further demonstrate that the gene-trap can act as a reporter of endogenous gene expression and it can be coupled with bioluminescent imaging to identify genes with tissue-specific expression patterns. Conclusion Akin to the GAL4/UAS system used in the fly, we have made progress developing a tool for mutating and revealing the expression of mouse genes by generating the tTA transactivator in the presence of a secondary TRE-regulated reporter molecule. A vector like the gene

  11. Salmonella induces prominent gene expression in the rat colon

    Roosing Susanne

    2007-09-01

    Full Text Available Abstract Background Salmonella enteritidis is suggested to translocate in the small intestine. In vivo it induces gene expression changes in the ileal mucosa and Peyer's patches. Stimulation of Salmonella translocation by dietary prebiotics fermented in colon suggests involvement of the colon as well. However, effects of Salmonella on colonic gene expression in vivo are largely unknown. We aimed to characterize time dependent Salmonella-induced changes of colonic mucosal gene expression in rats using whole genome microarrays. For this, rats were orally infected with Salmonella enteritidis to mimic a foodborne infection and colonic gene expression was determined at days 1, 3 and 6 post-infection (n = 8 rats per time-point. As fructo-oligosaccharides (FOS affect colonic physiology, we analyzed colonic mucosal gene expression of FOS-fed versus cellulose-fed rats infected with Salmonella in a separate experiment. Colonic mucosal samples were isolated at day 2 post-infection. Results Salmonella affected transport (e.g. Chloride channel calcium activated 6, H+/K+ transporting Atp-ase, antimicrobial defense (e.g. Lipopolysaccharide binding protein, Defensin 5 and phospholipase A2, inflammation (e.g. calprotectin, oxidative stress related genes (e.g. Dual oxidase 2 and Glutathione peroxidase 2 and Proteolysis (e.g. Ubiquitin D and Proteosome subunit beta type 9. Furthermore, Salmonella translocation increased serum IFNγ and many interferon-related genes in colonic mucosa. The gene most strongly induced by Salmonella infection was Pancreatitis Associated Protein (Pap, showing >100-fold induction at day 6 after oral infection. Results were confirmed by Q-PCR in individual rats. Stimulation of Salmonella translocation by dietary FOS was accompanied by enhancement of the Salmonella-induced mucosal processes, not by induction of other processes. Conclusion We conclude that the colon is a target tissue for Salmonella, considering the abundant changes in

  12. Exon Expression and Alternatively Spliced Genes in Tourette Syndrome

    Tian, Yingfang; Liao, Isaac H.; Zhan, Xinhua; Gunther, Joan R.; Ander, Bradley P.; Liu, Dazhi; Lit, Lisa; Jickling, Glen C.; Corbett, Blythe A.; Bos-Veneman, Netty G. P.; Hoekstra, Pieter J.; Sharp, Frank R.

    2011-01-01

    Tourette Syndrome (TS) is diagnosed based upon clinical criteria including motor and vocal tics. We hypothesized that differences in exon expression and splicing might be useful for pathophysiology and diagnosis. To demonstrate exon expression and alternatively spliced gene differences in blood of i

  13. Statistical adjustment of signal censoring in gene expression experiments

    Wit, Ernst; McClure, John

    2003-01-01

    Motivation: Numerical output of spotted microarrays displays censoring of pixel intensities at some software dependent threshold. This reduces the quality of gene expression data, because it seriously violates the linearity of expression with respect to signal intensity. Statistical methods based on

  14. VESPUCCI: exploring patterns of gene expression in grapevine

    Marco eMoretto

    2016-05-01

    Full Text Available Large-scale transcriptional studies aim to decipher the dynamic cellular responses to a stimulus, like different environmental conditions. In the era of high-throughput omics biology, the most used technologies for these purposes are microarray and RNA-Seq, whose data are usually required to be deposited in public repositories upon publication. Such repositories have the enormous potential to provide a comprehensive view of how different experimental conditions lead to expression changes, by comparing gene expression across all possible measured conditions. Unfortunately, this task is greatly impaired by differences among experimental platforms that make direct comparisons difficult.In this paper we present the Vitis Expression Studies Platform Using COLOMBOS Compendia Instances (VESPUCCI, a gene expression compendium for grapevine which was built by adapting an approach originally developed for bacteria, and show how it can be used to investigate complex gene expression patterns. We integrated nearly all publicly available microarray and RNA-Seq expression data: 1608 gene expression samples from 10 different technological platforms. Each sample has been manually annotated using a controlled vocabulary developed ad hoc to ensure both human readability and computational tractability. Expression data in the compendium can be visually explored using several tools provided by the web interface or can be programmatically accessed using the REST interface. VESPUCCI is freely accessible at http://vespucci.colombos.fmach.it.

  15. Gene-expression Classifier in Papillary Thyroid Carcinoma

    Londero, Stefano Christian; Jespersen, Marie Louise; Krogdahl, Annelise;

    2016-01-01

    BACKGROUND: No reliable biomarker for metastatic potential in the risk stratification of papillary thyroid carcinoma exists. We aimed to develop a gene-expression classifier for metastatic potential. MATERIALS AND METHODS: Genome-wide expression analyses were used. Development cohort: freshly...

  16. VESPUCCI: Exploring Patterns of Gene Expression in Grapevine

    Moretto, Marco; Sonego, Paolo; Pilati, Stefania; Malacarne, Giulia; Costantini, Laura; Grzeskowiak, Lukasz; Bagagli, Giorgia; Grando, Maria Stella; Moser, Claudio; Engelen, Kristof

    2016-01-01

    Large-scale transcriptional studies aim to decipher the dynamic cellular responses to a stimulus, like different environmental conditions. In the era of high-throughput omics biology, the most used technologies for these purposes are microarray and RNA-Seq, whose data are usually required to be deposited in public repositories upon publication. Such repositories have the enormous potential to provide a comprehensive view of how different experimental conditions lead to expression changes, by comparing gene expression across all possible measured conditions. Unfortunately, this task is greatly impaired by differences among experimental platforms that make direct comparisons difficult. In this paper, we present the Vitis Expression Studies Platform Using COLOMBOS Compendia Instances (VESPUCCI), a gene expression compendium for grapevine which was built by adapting an approach originally developed for bacteria, and show how it can be used to investigate complex gene expression patterns. We integrated nearly all publicly available microarray and RNA-Seq expression data: 1608 gene expression samples from 10 different technological platforms. Each sample has been manually annotated using a controlled vocabulary developed ad hoc to ensure both human readability and computational tractability. Expression data in the compendium can be visually explored using several tools provided by the web interface or can be programmatically accessed using the REST interface. VESPUCCI is freely accessible at http://vespucci.colombos.fmach.it.

  17. Geometry of the Gene Expression Space of Individual Cells.

    Yael Korem

    2015-07-01

    Full Text Available There is a revolution in the ability to analyze gene expression of single cells in a tissue. To understand this data we must comprehend how cells are distributed in a high-dimensional gene expression space. One open question is whether cell types form discrete clusters or whether gene expression forms a continuum of states. If such a continuum exists, what is its geometry? Recent theory on evolutionary trade-offs suggests that cells that need to perform multiple tasks are arranged in a polygon or polyhedron (line, triangle, tetrahedron and so on, generally called polytopes in gene expression space, whose vertices are the expression profiles optimal for each task. Here, we analyze single-cell data from human and mouse tissues profiled using a variety of single-cell technologies. We fit the data to shapes with different numbers of vertices, compute their statistical significance, and infer their tasks. We find cases in which single cells fill out a continuum of expression states within a polyhedron. This occurs in intestinal progenitor cells, which fill out a tetrahedron in gene expression space. The four vertices of this tetrahedron are each enriched with genes for a specific task related to stemness and early differentiation. A polyhedral continuum of states is also found in spleen dendritic cells, known to perform multiple immune tasks: cells fill out a tetrahedron whose vertices correspond to key tasks related to maturation, pathogen sensing and communication with lymphocytes. A mixture of continuum-like distributions and discrete clusters is found in other cell types, including bone marrow and differentiated intestinal crypt cells. This approach can be used to understand the geometry and biological tasks of a wide range of single-cell datasets. The present results suggest that the concept of cell type may be expanded. In addition to discreet clusters in gene-expression space, we suggest a new possibility: a continuum of states within a

  18. Altered cell cycle gene expression and apoptosis in post-implantation dog parthenotes.

    Park, Jung Eun; Kim, Min Jung; Ha, Seung Kwon; Hong, So Gun; Oh, Hyun Ju; Kim, Geon A; Park, Eun Jung; Kang, Jung Taek; Saadeldin, Islam M; Jang, Goo; Lee, Byeong Chun

    2012-01-01

    Mature oocytes can be parthenogenetically activated by a variety of methods and the resulting embryos are valuable for studies of the respective roles of paternal and maternal genomes in early mammalian development. In the present study, we report the first successful development of parthenogenetic canine embryos to the post-implantation stage. Nine out of ten embryo transfer recipients became pregnant and successful in utero development of canine parthenotes was confirmed. For further evaluation of these parthenotes, their fetal development was compared with artificially inseminated controls and differentially expressed genes (DEGs) were compared using ACP RT-PCR, histological analysis and immunohistochemistry. We found formation of the limb-bud and no obvious differences in histological appearance of the canine parthenote recovered before degeneration occurred; however canine parthenotes were developmentally delayed with different cell cycle regulating-, mitochondria-related and apoptosis-related gene expression patterns compared with controls. In conclusion, our protocols were suitable for activating canine oocytes artificially and supported early fetal development. We demonstrated that the developmental abnormalities in canine parthenotes may result from defective regulation of apoptosis and aberrant gene expression patterns, and provided evidence that canine parthenotes can be a useful tool for screening and for comparative studies of imprinted genes. PMID:22905100

  19. Effects of postnatal alcohol exposure on hippocampal gene expression and learning in adult mice.

    Lee, Dong Hoon; Moon, Jihye; Ryu, Jinhyun; Jeong, Joo Yeon; Roh, Gu Seob; Kim, Hyun Joon; Cho, Gyeong Jae; Choi, Wan Sung; Kang, Sang Soo

    2016-04-28

    Fetal alcohol syndrome (FAS) is a condition resulting from excessive drinking by pregnant women. Symptoms of FAS include abnormal facial features, stunted growth, intellectual deficits and attentional dysfunction. Many studies have investigated FAS, but its underlying mechanisms remain unknown. This study evaluated the relationship between alcohol exposure during the synaptogenesis period in postnatal mice and subsequent cognitive function in adult mice. We delivered two injections, separated by 2 h, of ethanol (3 g/kg, ethanol/saline, 20% v/v) to ICR mice on postnatal day 7. After 10 weeks, we conducted a behavioral test, sacrificed the animals, harvested brain tissue and analyzed hippocampal gene expression using a microarray. In ethanol-treated mice, there was a reduction in brain size and decreased neuronal cell number in the cortex, and also cognitive impairment. cDNA microarray results indicated that 1,548 genes showed a > 2-fold decrease in expression relative to control, whereas 974 genes showed a > 2-fold increase in expression relative to control. Many of these genes were related to signal transduction, synaptogenesis and cell membrane formation, which are highlighted in our findings. PMID:26960969

  20. Altered cell cycle gene expression and apoptosis in post-implantation dog parthenotes.

    Jung Eun Park

    Full Text Available Mature oocytes can be parthenogenetically activated by a variety of methods and the resulting embryos are valuable for studies of the respective roles of paternal and maternal genomes in early mammalian development. In the present study, we report the first successful development of parthenogenetic canine embryos to the post-implantation stage. Nine out of ten embryo transfer recipients became pregnant and successful in utero development of canine parthenotes was confirmed. For further evaluation of these parthenotes, their fetal development was compared with artificially inseminated controls and differentially expressed genes (DEGs were compared using ACP RT-PCR, histological analysis and immunohistochemistry. We found formation of the limb-bud and no obvious differences in histological appearance of the canine parthenote recovered before degeneration occurred; however canine parthenotes were developmentally delayed with different cell cycle regulating-, mitochondria-related and apoptosis-related gene expression patterns compared with controls. In conclusion, our protocols were suitable for activating canine oocytes artificially and supported early fetal development. We demonstrated that the developmental abnormalities in canine parthenotes may result from defective regulation of apoptosis and aberrant gene expression patterns, and provided evidence that canine parthenotes can be a useful tool for screening and for comparative studies of imprinted genes.

  1. Patterns of expression of cell wall related genes in sugarcane

    Lima D.U.

    2001-01-01

    Full Text Available Our search for genes related to cell wall metabolism in the sugarcane expressed sequence tag (SUCEST database (http://sucest.lbi.dcc.unicamp.br resulted in 3,283 reads (1% of the total reads which were grouped into 459 clusters (potential genes with an average of 7.1 reads per cluster. To more clearly display our correlation coefficients, we constructed surface maps which we used to investigate the relationship between cell wall genes and the sugarcane tissues libraries from which they came. The only significant correlations that we found between cell wall genes and/or their expression within particular libraries were neutral or synergetic. Genes related to cellulose biosynthesis were from the CesA family, and were found to be the most abundant cell wall related genes in the SUCEST database. We found that the highest number of CesA reads came from the root and stem libraries. The genes with the greatest number of reads were those involved in cell wall hydrolases (e.g. beta-1,3-glucanases, xyloglucan endo-beta-transglycosylase, beta-glucosidase and endo-beta-mannanase. Correlation analyses by surface mapping revealed that the expression of genes related to biosynthesis seems to be associated with the hydrolysis of hemicelluloses, pectin hydrolases being mainly associated with xyloglucan hydrolases. The patterns of cell wall related gene expression in sugarcane based on the number of reads per cluster reflected quite well the expected physiological characteristics of the tissues. This is the first work to provide a general view on plant cell wall metabolism through the expression of related genes in almost all the tissues of a plant at the same time. For example, developing flowers behaved similarly to both meristematic tissues and leaf-root transition zone tissues. Besides providing a basis for future research on the mechanisms of plant development which involve the cell wall, our findings will provide valuable tools for plant engineering in the

  2. The effect of Vdr gene ablation on global gene expression in the mouse placenta

    Sam Buckberry; Fleur Spronk; Wilson, Rebecca L.; Laurence, Jessica A.; Tina Bianco-Miotto; Shalem Leemaqz; Sean O'Leary; Anderson, Paul H; Roberts, Claire T.

    2015-01-01

    The effects of vitamin D are mediated through the vitamin D receptor (VDR), a predominantly nuclear receptor, expressed in numerous tissues including the placenta. VDR and the retinoid X receptor (RXR) form a dimer complex which binds to genomic vitamin D responsive elements located primarily in promoter regions and recruit cell-specific transcription factor complexes which regulate the expression of numerous genes. To investigate the role of VDR on regulating placental gene expression, mice ...

  3. Neutrophil gene expression in rheumatoid arthritis.

    Cross, Andrew; Bakstad, Denise; Allen, John C; Thomas, Luke; Moots, Robert J; Edwards, Steven W

    2005-10-01

    There is now a growing awareness that infiltrating neutrophils play an important role in the molecular pathology of rheumatoid arthritis. In part, this arises from the fact that neutrophils have potent cytotoxic activity, but additionally from the fact that inflammatory neutrophils can generate a number of cytokines and chemokines that can have a direct influence on the progress of an inflammatory episode. Furthermore, the molecular properties of inflammatory neutrophils are quite different from those normally found in the circulation. For example, inflammatory neutrophils, but not blood neutrophils, can express cell surface receptors (such as MHC Class II molecules and FcgammaRI) that dramatically alter the way in which these cells can interact with ligands to modulate immune function. Cytokine/chemokine expression and surface expression of these novel cell surface receptors is dependent upon the neutrophil responding to local environmental factors to selectively up-regulate the expression of key cellular components via signalling pathways coupled to transcriptional activation. However, major changes in the expression levels of some proteins are also regulated by post-translational modifications that alter rates of proteolysis, and hence changes in the steady-state levels of these molecules. PMID:16112850

  4. High immune activation and abnormal expression of cytokines contribute to death of SHIV89.6-infected Chinese rhesus macaques.

    Tian, Ren-Rong; Zhang, Ming-Xu; Zhang, Lin-Tao; Zhang, Xiao-Liang; Zheng, Hong-Yi; Zhu, Lin; Pang, Wei; Zhang, Gao-Hong; Zheng, Yong-Tang

    2015-08-01

    Chinese rhesus macaques (CRMs) are ideal experimental animals for studying the pathogenesis of human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) and for vaccine research. SHIV89.6 has been reported to be an attenuated virus because, in most cases, SHIV89.6 infection only causes limited alteration of immune cells and tissues, and it has been used commonly for vaccine research. After two serial passages in vivo, SHIV (SHIV-89.6P) induces CD4 lymphopenia and an AIDS-like disease with wasting and opportunistic infections. However, the pathogenic ability of SHIV89.6 is not well understood. In this study, we found that 6 of 14 SHIV89.6-infected CRMs died within 127 weeks after infection. We found especially high immune activation, low IFN-α expression, and distinctive cytokine expression profiles in the infected and dead (ID) group of monkeys, while there was only few change in the CD4(+) T counts and distribution of T cell subsets in the ID group monkeys. Also, there was a similar dynamic of viral load between infected and surviving (IS) and ID group monkeys. Furthermore, we found various correlations among immune activation, IFN-α expression, and frequencies of cytokine-secreting cells. These results suggest that SHIV89.6 infections have pathogenic potential in CRMs and that high immune activation and abnormal expression of cytokines contribute to death of SHIV89.6-infected CRMs. This also implies that high immune activation may be relevant to dysfunction of immune cells. It is proposed that high immune activation and dysfunction of immune cells may be good predictors for disease progression and markers for therapy. PMID:26036562

  5. γA gene repeats polymorphism for the analysis of haplotypes of abnormal hemoglobins

    Nejat Akar

    2014-09-01

    Full Text Available Aim of this study was to analyze γ A gene repeat polymorphism for the analysis of haplotypes of hemoglobin (Hb variants such as Hb S, Hb D-Punjab, Hb O-Arab. Sickle cell cases had mainly Benin and Arab/Indian haplotype. We found three different haplotypes among Hb S, Hb O Arab and Hb D-Punjab cases. We named these three variants as Anatolian-1 and Anatolian-2 and Asian. Our data revealed that Hb O Arab may arise twice one from Asia and the other from Europe.

  6. Repressor-mediated tissue-specific gene expression in plants

    Meagher, Richard B.; Balish, Rebecca S.; Tehryung, Kim; McKinney, Elizabeth C.

    2009-02-17

    Plant tissue specific gene expression by way of repressor-operator complexes, has enabled outcomes including, without limitation, male sterility and engineered plants having root-specific gene expression of relevant proteins to clean environmental pollutants from soil and water. A mercury hyperaccumulation strategy requires that mercuric ion reductase coding sequence is strongly expressed. The actin promoter vector, A2pot, engineered to contain bacterial lac operator sequences, directed strong expression in all plant vegetative organs and tissues. In contrast, the expression from the A2pot construct was restricted primarily to root tissues when a modified bacterial repressor (LacIn) was coexpressed from the light-regulated rubisco small subunit promoter in above-ground tissues. Also provided are analogous repressor operator complexes for selective expression in other plant tissues, for example, to produce male sterile plants.

  7. Reliable reference genes for normalization of gene expression in cucumber grown under different nitrogen nutrition.

    Anna Warzybok

    Full Text Available In plants, nitrogen is the most important nutritional factor limiting the yield of cultivated crops. Since nitrogen is essential for synthesis of nucleotides, amino acids and proteins, studies on gene expression in plants cultivated under different nitrogen availability require particularly careful selection of suitable reference genes which are not affected by nitrogen limitation. Therefore, the objective of this study was to select the most reliable reference genes for qPCR analysis of target cucumber genes under varying nitrogen source and availability. Among twelve candidate cucumber genes used in this study, five are highly homologous to the commonly used internal controls, whereas seven novel candidates were previously identified through the query of the cucumber genome. The expression of putative reference genes and the target CsNRT1.1 gene was analyzed in roots, stems and leaves of cucumbers grown under nitrogen deprivation, varying nitrate availability or different sources of nitrogen (glutamate, glutamine or NH3. The stability of candidate genes expression significantly varied depending on the tissue type and nitrogen supply. However, in most of the outputs genes encoding CACS, TIP41, F-box protein and EFα proved to be the most suitable for normalization of CsNRT1.1 expression. In addition, our results suggest the inclusion of 3 or 4 references to obtain highly reliable results of target genes expression in all cucumber organs under nitrogen-related stress.

  8. Difference of Gene Expression Profiles between Barrett's Esophagus and Cardia Intestinal Metaplasia by Gene Chip

    CHANG Ying; LIU Bin

    2006-01-01

    The difference of gene expression profile changes in Barrettes esophagus (BE) and cardia intestinal metaplasia (CIM) epithelium was studied and the novel associated genes were screened in the early stage by cDNA microarray. The cDNA retro-transcribed from equal quantity mRNA from BE and CIM epithelial tissues were labeled with Cy3 and Cy5 fluorescence as probes. The mixed probe was hybridized with three pieces BiostarH-40s double dot human whole gene chip. The chips were scanned with a ScanArray 4000. The acquired images were analyzed using GenePix Pro 3.0 software. It was found a total of 141 genes were screened out that exhibited differentially expression more than 2 times in all three chips. It was identified that in gene expression profiles of BE, 74 genes were up-regulated and 67 down-regulated as compared with CIM. The comparison between the difference of gene expression profile changes in BE and CIM epithelia revealed that there existed the difference between BE and CIM at gene level. 141 genes with the expression more than two time were probably related to the occurrence and development of BE and the promotion or progress in adenocarcinoma.

  9. Complexity, Post-genomic Biology and Gene Expression Programs

    Williams, Rohan B. H.; Luo, Oscar Junhong

    Gene expression represents the fundamental phenomenon by which information encoded in a genome is utilised for the overall biological objectives of the organism. Understanding this level of information transfer is therefore essential for dissecting the mechanistic basis of form and function of organisms. We survey recent developments in the methodology of the life sciences that is relevant for understanding the organisation and function of the genome and review our current understanding of the regulation of gene expression, and finally, outline some new approaches that may be useful in understanding the organisation of gene regulatory systems.

  10. Modification of the association of bisphenol A with abnormal liver function by polymorphisms of oxidative stress-related genes.

    Kim, Jin Hee; Lee, Mee-Ri; Hong, Yun-Chul

    2016-05-01

    Some studies suggested oxidative stress as a possible mechanism for the relation between exposure to bisphenol A (BPA) and liver damage. Therefore, we evaluated modification of genetic polymorphisms of cyclooxygenase 2 (COX2 or PTGS2), epoxide hydrolase 1 (EPHX1), catalase (CAT), and superoxide dismutase 2 (SOD2 or MnSOD), which are oxidative stress-related genes, on the relation between exposure to BPA and liver function in the elderly. We assessed the association of visit-to-visit variations in BPA exposure with abnormal liver function by each genotype or haplotype after controlling for age, sex, BMI, alcohol consumption, exercise, urinary cotinine levels, and low density lipoprotein cholesterol using a GLIMMIX model. A significant association of BPA with abnormal liver function was observed only in participants with COX2 GG genotype at rs5277 (odds ratio (OR)=3.04 and p=0.0231), CAT genotype at rs769218 (OR=4.16 and p=0.0356), CAT CT genotype at rs769217 (OR=4.19 and p=0.0348), SOD2 TT genotype at rs4880 (OR=2.59 and p=0.0438), or SOD2 GG genotype at rs2758331 (OR=2.57 and p=0.0457). Moreover, we also found higher OR values in participants with a pair of G-G haplotypes for COX2 (OR=2.81 and p=0.0384), G-C-A haplotype for EPHX1 (OR=4.63 and p=0.0654), A-T haplotype for CAT (OR=4.48 and p=0.0245), or T-G-A haplotype for SOD2 (OR=2.91 and p=0.0491) compared with those with the other pair of haplotypes for each gene. Furthermore, the risk score composed of 4 risky pair of haplotypes showed interactive effect with BPA on abnormal liver function (p=0.0057). Our study results suggest that genetic polymorphisms of COX2, EPHX1, CAT, and SOD2 modify the association of BPA with liver function. PMID:26922413

  11. Differential neutrophil gene expression in early bovine pregnancy

    Kizaki Keiichiro

    2013-02-01

    Full Text Available Abstract Background In food production animals, especially cattle, the diagnosis of gestation is important because the timing of gestation directly affects the running of farms. Various methods have been used to detect gestation, but none of them are ideal because of problems with the timing of detection or the accuracy, simplicity, or cost of the method. A new method for detecting gestation, which involves assessing interferon-tau (IFNT-stimulated gene expression in peripheral blood leukocytes (PBL, was recently proposed. PBL fractionation methods were used to examine whether the expression profiles of various PBL populations could be used as reliable diagnostic markers of bovine gestation. Methods PBL were collected on days 0 (just before artificial insemination, 7, 14, 17, 21, and 28 of gestation. The gene expression levels of the PBL were assessed with microarray analysis and/or quantitative real-time reverse transcription (q PCR. PBL fractions were collected by flow cytometry or density gradient cell separation using Histopaque 1083 or Ficoll-Conray solutions. The expression levels of four IFNT-stimulated genes, interferon-stimulated protein 15 kDa (ISG15, myxovirus-resistance (MX 1 and 2, and 2′-5′-oligoadenylate synthetase (OAS1, were then analyzed in each fraction through day 28 of gestation using qPCR. Results Microarray analysis detected 72 and 28 genes in whole PBL that were significantly higher on days 14 and 21 of gestation, respectively, than on day 0. The upregulated genes included IFNT-stimulated genes. The expression levels of these genes increased with the progression of gestation until day 21. In flow cytometry experiments, on day 14 the expression levels of all of the genes were significantly higher in the granulocyte fraction than in the other fractions. Their expression gradually decreased through day 28 of gestation. Strong correlations were observed between the expression levels of the four genes in the granulocyte

  12. Whole-body gene expression pattern registration in Platynereis larvae

    Asadulina Albina

    2012-12-01

    Full Text Available Abstract Background Digital anatomical atlases are increasingly used in order to depict different gene expression patterns and neuronal morphologies within a standardized reference template. In evo-devo, a discipline in which the comparison of gene expression patterns is a widely used approach, such standardized anatomical atlases would allow a more rigorous assessment of the conservation of and changes in gene expression patterns during micro- and macroevolutionary time scales. Due to its small size and invariant early development, the annelid Platynereis dumerilii is particularly well suited for such studies. Recently a reference template with registered gene expression patterns has been generated for the anterior part (episphere of the Platynereis trochophore larva and used for the detailed study of neuronal development. Results Here we introduce and evaluate a method for whole-body gene expression pattern registration for Platynereis trochophore and nectochaete larvae based on whole-mount in situ hybridization, confocal microscopy, and image registration. We achieved high-resolution whole-body scanning using the mounting medium 2,2’-thiodiethanol (TDE, which allows the matching of the refractive index of the sample to that of glass and immersion oil thereby reducing spherical aberration and improving depth penetration. This approach allowed us to scan entire whole-mount larvae stained with nitroblue tetrazolium/5-bromo-4-chloro-3-indolyl phosphate (NBT/BCIP in situ hybridization and counterstained fluorescently with an acetylated-tubulin antibody and the nuclear stain 4’6-diamidino-2-phenylindole (DAPI. Due to the submicron isotropic voxel size whole-mount larvae could be scanned in any orientation. Based on the whole-body scans, we generated four different reference templates by the iterative registration and averaging of 40 individual image stacks using either the acetylated-tubulin or the nuclear-stain signal for each developmental

  13. Gene Cloning of Murine α-Fetoprotein Gene and Construction of Its Eukaryotic Expression Vector and Expression in CHO Cells

    易继林; 田耕

    2003-01-01

    To clone the murine α-fetoprotein (AFP) gene, construct the eukaryotic expression vector of AFP and express in CHO cells, total RNA were extracted from Hepa 1-6 cells, and then the murine α-fetoprotein gene was amplified by RT-PCR and cloned into the eukaryotic expression vector pcDNA3.1. The recombinant of vector was identified by restriction enzyme analysis and sequencing. A fter transient transfection of CHO cells with the vector, Western blotting was used to detect the expression of AFP. It is concluded that the 1.8kb murine α-fetoprotein gene was successfully cloned and its eukaryotic expression vector was successfully constructed.

  14. Arsenic-induced alteration in the expression of genes related to type 2 diabetes mellitus

    Chronic exposure to high concentrations of arsenic in drinking water is associated with an increased risk for developing type 2 diabetes. The present revision focuses on the effect of arsenic on tissues that participate directly in glucose homeostasis, integrating the most important published information about the impairment of the expression of genes related to type 2 diabetes by arsenic as one of the possible mechanisms by which it leads to the disease. Many factors are involved in the manner in which arsenic contributes to the occurrence of diabetes. The reviewed studies suggest that arsenic might increase the risk for type 2 diabetes via multiple mechanisms, affecting a cluster of regulated events, which in conjunction trigger the disease. Arsenic affects insulin sensitivity in peripheral tissue by modifying the expression of genes involved in insulin resistance and shifting away cells from differentiation to the proliferation pathway. In the liver arsenic disturbs glucose production, whereas in pancreatic beta-cells arsenic decreases insulin synthesis and secretion and reduces the expression of antioxidant enzymes. The consequences of these changes in gene expression include the reduction of insulin secretion, induction of oxidative stress in the pancreas, alteration of gluconeogenesis, abnormal proliferation and differentiation pattern of muscle and adipocytes as well as peripheral insulin resistance

  15. Gene expression profiles in Finnish twins with multiple sclerosis

    Kaprio Jaakko

    2006-02-01

    Full Text Available Abstract Background Since genetic alterations influencing susceptibility to multiple sclerosis (MS, the most common autoimmune demyelinating disease of the central nervous system (CNS, are as yet poorly understood, the purpose of this study was to identify genes responsible for MS by studying monozygotic (MZ twin pairs discordant for MS. Methods In order to identify genes involved in MS development, the gene expression profiles in blood mononuclear cells obtained from eight MZ twin pairs discordant for MS were analyzed by cDNA microarray technology detecting the expression of 8 300 genes. The twins were collected from the Finnish Twin Cohort Study and both affected subjects and their healthy siblings underwent neurological evaluation and cerebral and spinal magnetic resonance imaging. Gene expressions were confirmed by relative quantitative reverse transcription PCR. Results It appeared that 25 genes were at least two-fold up-regulated and 15 genes down-regulated in 25% (2/8 of twins with MS when compared to their healthy siblings. Moreover, 6/25 genes were up-regulated in 40% of MS twins and one gene, interferon alpha-inducible protein (clone IFI-6-16 (G1P3, in 50% of them. The six most constantly expressed genes are (1 G1P3, (2 POU domain, class 3, transcription factor 1, (3 myxovirus resistance 2, (4 lysosomal-associated multispanning membrane protein-5, (5 hemoglobin alpha 2 and (6 hemoglobin beta. Conclusion Over two-fold up-regulation of these six genes in almost half of MZ twins with MS suggests their role in MS pathogenesis. Studies using MZ MS twins obtained from genetically homogeneous population offer a unique opportunity to explore the genetic nature of MS.

  16. Expressing PHB synthetic genes through chloroplast genetic engineering

    2002-01-01

    Chloroplast integration and expression vector containing expression cassettes for phbB, phbA, phbC and aadA genes was constructed and bombarded into the tobacco chloroplast genome. Transplastomic plants were analyzed with PCR and Southern blot. Their homoplastomy was also judged. Northern dot and RT-PCR analysis were employed to investigate transgene expression at transcriptional level. The results indicate that the chloroplast transformation system is compatible for poly-3-hydroxybutyrate (PHB) production.

  17. Sensory neuron-specific sodium channel SNS is abnormally expressed in the brains of mice with experimental allergic encephalomyelitis and humans with multiple sclerosis

    Black, Joel A.; Dib-Hajj, Sulayman; Baker, David; Newcombe, Jia; Cuzner, M. Louise; Waxman, Stephen G.

    2000-10-01

    Clinical abnormalities in multiple sclerosis (MS) have classically been considered to be caused by demyelination and/or axonal degeneration; the possibility of molecular changes in neurons, such as the deployment of abnormal repertoires of ion channels that would alter neuronal electrogenic properties, has not been considered. Sensory Neuron-Specific sodium channel SNS displays a depolarized voltage dependence, slower activation and inactivation kinetics, and more rapid recovery from inactivation than classical "fast" sodium channels. SNS is selectively expressed in spinal sensory and trigeminal ganglion neurons within the peripheral nervous system and is not expressed within the normal brain. Here we show that sodium channel SNS mRNA and protein, which are not present within the cerebellum of control mice, are expressed within cerebellar Purkinje cells in a mouse model of MS, chronic relapsing experimental allergic encephalomyelitis. We also demonstrate SNS mRNA and protein expression within Purkinje cells from tissue obtained postmortem from patients with MS, but not in control subjects with no neurological disease. These results demonstrate a change in sodium channel expression in neurons within the brain in an animal model of MS and in humans with MS and suggest that abnormal patterns of neuronal ion channel expression may contribute to clinical abnormalities such as ataxia in these disorders.

  18. Expression analysis of dihydroflavonol 4-reductase genes in Petunia hybrida.

    Chu, Y X; Chen, H R; Wu, A Z; Cai, R; Pan, J S

    2015-01-01

    Dihydroflavonol 4-reductase (DFR) genes from Rosa chinensis (Asn type) and Calibrachoa hybrida (Asp type), driven by a CaMV 35S promoter, were integrated into the petunia (Petunia hybrida) cultivar 9702. Exogenous DFR gene expression characteristics were similar to flower-color changes, and effects on anthocyanin concentration were observed in both types of DFR gene transformants. Expression analysis showed that exogenous DFR genes were expressed in all of the tissues, but the expression levels were significantly different. However, both of them exhibited a high expression level in petals that were starting to open. The introgression of DFR genes may significantly change DFR enzyme activity. Anthocyanin ultra-performance liquid chromatography results showed that anthocyanin concentrations changed according to DFR enzyme activity. Therefore, the change in flower color was probably the result of a DFR enzyme change. Pelargonidin 3-O-glucoside was found in two different transgenic petunias, indicating that both CaDFR and RoDFR could catalyze dihydrokaempferol. Our results also suggest that transgenic petunias with DFR gene of Asp type could biosynthesize pelargonidin 3-O-glucoside. PMID:25966276

  19. Tiam1 gene expression and its significance in colorectal carcinoma

    Li Liu; De-Hua Wu; Yan-Qing Ding

    2005-01-01

    AIM: To explore the expression of Tiam1 gene in colorectal carcinoma and its correlation with tumor metastasis.METHODS: Expressions of Tiam1 gene in 8 colorectal carcinoma cell lines were detected by reverse transcriptasepolymerase chain reaction. In vitro invasiveness was determined by means of Matrigel invasion assay. The correlation of Tiam1 expression with the invasive ability was also analyzed.RESULTS: Tiam1 gene was highly expressed in LoVo and SW620, which were established from metastatic colorectal carcinomas in comparison with LS174T, SW480, HCT116,LST, HRT-18 and Hee8693, which were established from primary colorectal carcinomas. In vitro cell invasivion demonstrated that LoVo and SW620 had a higher invasive ability than LS174T, SW480, HCT116, LST, HRT-18 and Hee8693. The expression of Tiam1 gene was highly related to the metastatic potential of colorectal carcinoma cells.CONCLUSION: Tiam1 gene may play an important role in invasion and metastasis of colorectal carcinoma and is a metastasis-related gene.

  20. Tool for Quantification of Staphylococcal Enterotoxin Gene Expression in Cheese▿

    Duquenne, Manon; Fleurot, Isabelle; Aigle, Marina; Darrigo, Claire; Borezée-Durant, Elise; Derzelle, Sylviane; Bouix, Marielle; Deperrois-Lafarge, Véronique; Delacroix-Buchet, Agnès

    2010-01-01

    Cheese is a complex and dynamic microbial ecosystem characterized by the presence of a large variety of bacteria, yeasts, and molds. Some microorganisms, including species of lactobacilli or lactococci, are known to contribute to the organoleptic quality of cheeses, whereas the presence of other microorganisms may lead to spoilage or constitute a health risk. Staphylococcus aureus is recognized worldwide as an important food-borne pathogen, owing to the production of enterotoxins in food matrices. In order to study enterotoxin gene expression during cheese manufacture, we developed an efficient procedure to recover total RNA from cheese and applied a robust strategy to study gene expression by reverse transcription-quantitative PCR (RT-qPCR). This method yielded pure preparations of undegraded RNA suitable for RT-qPCR. To normalize RT-qPCR data, expression of 10 potential reference genes was investigated during S. aureus growth in milk and in cheese. The three most stably expressed reference genes during cheese manufacture were ftsZ, pta, and gyrB, and these were used as internal controls for RT-qPCR of the genes sea and sed, encoding staphylococcal enterotoxins A and D, respectively. Expression of these staphylococcal enterotoxin genes was monitored during the first 72 h of the cheese-making process, and mRNA data were correlated with enterotoxin production. PMID:20061456