WorldWideScience

Sample records for abnormal fluid homeostasis

  1. Renal renin secretion as regulator of body fluid homeostasis

    Damkjær, Mads; Isaksson, Gustaf L; Stubbe, Jane;

    2013-01-01

    The renin-angiotensin system is essential for body fluid homeostasis and blood pressure regulation. This review focuses on the homeostatic regulation of the secretion of active renin in the kidney, primarily in humans. Under physiological conditions, renin secretion is determined mainly by sodium...

  2. Fetal development of regulatory mechanisms for body fluid homeostasis

    J. Guan

    2008-06-01

    Full Text Available The balance of body fluids is critical to health and the development of diseases. Although quite a few review papers have shown that several mechanisms, including hormonal and behavioral regulation, play an important role in body fluid homeostasis in adults, there is limited information on the development of regulatory mechanisms for fetal body fluid balance. Hormonal, renal, and behavioral control of body fluids function to some extent in utero. Hormonal mechanisms including the renin-angiotensin system, aldosterone, and vasopressin are involved in modifying fetal renal excretion, reabsorption of sodium and water, and regulation of vascular volume. In utero behavioral changes, such as fetal swallowing, have been suggested to be early functional development in response to dipsogens. Since diseases, such as hypertension, can be traced to fetal origin, it is important to understand the development of fetal regulatory mechanisms for body fluid homeostasis in this early stage of life. This review focuses on fetal hormonal, behavioral, and renal development related to regulation of body fluids in utero.

  3. CCDC115 Deficiency Causes a Disorder of Golgi Homeostasis with Abnormal Protein Glycosylation.

    Jansen, Jos C; Cirak, Sebahattin; van Scherpenzeel, Monique; Timal, Sharita; Reunert, Janine; Rust, Stephan; Pérez, Belén; Vicogne, Dorothée; Krawitz, Peter; Wada, Yoshinao; Ashikov, Angel; Pérez-Cerdá, Celia; Medrano, Celia; Arnoldy, Andrea; Hoischen, Alexander; Huijben, Karin; Steenbergen, Gerry; Quelhas, Dulce; Diogo, Luisa; Rymen, Daisy; Jaeken, Jaak; Guffon, Nathalie; Cheillan, David; van den Heuvel, Lambertus P; Maeda, Yusuke; Kaiser, Olaf; Schara, Ulrike; Gerner, Patrick; van den Boogert, Marjolein A W; Holleboom, Adriaan G; Nassogne, Marie-Cécile; Sokal, Etienne; Salomon, Jody; van den Bogaart, Geert; Drenth, Joost P H; Huynen, Martijn A; Veltman, Joris A; Wevers, Ron A; Morava, Eva; Matthijs, Gert; Foulquier, François; Marquardt, Thorsten; Lefeber, Dirk J

    2016-02-01

    Disorders of Golgi homeostasis form an emerging group of genetic defects. The highly heterogeneous clinical spectrum is not explained by our current understanding of the underlying cell-biological processes in the Golgi. Therefore, uncovering genetic defects and annotating gene function are challenging. Exome sequencing in a family with three siblings affected by abnormal Golgi glycosylation revealed a homozygous missense mutation, c.92T>C (p.Leu31Ser), in coiled-coil domain containing 115 (CCDC115), the function of which is unknown. The same mutation was identified in three unrelated families, and in one family it was compound heterozygous in combination with a heterozygous deletion of CCDC115. An additional homozygous missense mutation, c.31G>T (p.Asp11Tyr), was found in a family with two affected siblings. All individuals displayed a storage-disease-like phenotype involving hepatosplenomegaly, which regressed with age, highly elevated bone-derived alkaline phosphatase, elevated aminotransferases, and elevated cholesterol, in combination with abnormal copper metabolism and neurological symptoms. Two individuals died of liver failure, and one individual was successfully treated by liver transplantation. Abnormal N- and mucin type O-glycosylation was found on serum proteins, and reduced metabolic labeling of sialic acids was found in fibroblasts, which was restored after complementation with wild-type CCDC115. PSI-BLAST homology detection revealed reciprocal homology with Vma22p, the yeast V-ATPase assembly factor located in the endoplasmic reticulum (ER). Human CCDC115 mainly localized to the ERGIC and to COPI vesicles, but not to the ER. These data, in combination with the phenotypic spectrum, which is distinct from that associated with defects in V-ATPase core subunits, suggest a more general role for CCDC115 in Golgi trafficking. Our study reveals CCDC115 deficiency as a disorder of Golgi homeostasis that can be readily identified via screening for abnormal

  4. Molecular Physiology of an Extra-renal Cl- Uptake Mechanism for Body Fluid Cl- Homeostasis

    Wang, Yi-Fang; Yan, Jia-Jiun; Tseng, Yung-Che; Chen, Ruo-Dong; Hwang, Pung-Pung

    2015-01-01

    The development of an ion regulatory mechanism for body fluid homeostasis was an important trait for vertebrates during the evolution from aquatic to terrestrial life. The homeostatic mechanism of Cl- in aquatic fish appears to be similar to that of terrestrial vertebrates; however, the mechanism in non-mammalian vertebrates is poorly understood. Unlike in mammals, in which the kidney plays a central role, in most fish species, the gill is responsible for the maintenance of Cl- homeostasis vi...

  5. Abnormal calcium homeostasis in heart failure with preserved ejection fraction is related to both reduced contractile function and incomplete relaxation: an electromechanically detailed biophysical modeling study

    Adeniran, Ismail; MacIver, David H; Hancox, Jules C.; Zhang, Henggui

    2015-01-01

    Heart failure with preserved ejection fraction (HFpEF) accounts for about 50% of heart failure cases. It has features of incomplete relaxation and increased stiffness of the left ventricle. Studies from clinical electrophysiology and animal experiments have found that HFpEF is associated with impaired calcium homeostasis, ion channel remodeling and concentric left ventricle hypertrophy (LVH). However, it is still unclear how the abnormal calcium homeostasis, ion channel and structural remodel...

  6. Copeptin in the diagnosis of vasopressin-dependent disorders of fluid homeostasis.

    Christ-Crain, Mirjam; Fenske, Wiebke

    2016-03-01

    Copeptin and arginine vasopressin (AVP) are derived from a common precursor molecule and have equimolar secretion and response to osmotic, haemodynamic and stress-related stimuli. Plasma concentrations of copeptin and AVP in relation to serum osmolality are highly correlated. The physiological functions of AVP with respect to homeostasis of fluid balance, vascular tonus and regulation of the endocrine stress response are well known, but the exact function of copeptin is undetermined. Quantification of AVP can be difficult, but copeptin is stable in plasma and can be easily measured with a sandwich immunoassay. For this reason, copeptin has emerged as a promising marker for the diagnosis of AVP-dependent fluid disorders. Copeptin measurements can enable differentiation between various conditions within the polyuria-polydipsia syndrome. In the absence of prior fluid deprivation, baseline copeptin levels >20 pmol/l identify patients with nephrogenic diabetes insipidus. Conversely, copeptin levels measured upon osmotic stimulation differentiate primary polydipsia from partial central diabetes insipidus. In patients with hyponatraemia, low levels of copeptin together with low urine osmolality identify patients with primary polydipsia, and the ratio of copeptin to urinary sodium can distinguish the syndrome of inappropriate antidiuretic hormone secretion from other AVP-dependent forms of hyponatraemia. PMID:26794439

  7. Molecular Physiology of an Extra-renal Cl- Uptake Mechanism for Body Fluid Cl- Homeostasis

    Wang, Yi-Fang; Yan, Jia-Jiun; Tseng, Yung-Che; Chen, Ruo-Dong; Hwang, Pung-Pung

    2015-01-01

    The development of an ion regulatory mechanism for body fluid homeostasis was an important trait for vertebrates during the evolution from aquatic to terrestrial life. The homeostatic mechanism of Cl- in aquatic fish appears to be similar to that of terrestrial vertebrates; however, the mechanism in non-mammalian vertebrates is poorly understood. Unlike in mammals, in which the kidney plays a central role, in most fish species, the gill is responsible for the maintenance of Cl- homeostasis via Cl- transport uptake mechanisms. Previous studies in zebrafish identified Na+-Cl- cotransporter (NCC) 2b-expressing cells in the gills and skin as the major ionocytes responsible for Cl- uptake, similar to distal convoluted tubular cells in mammalian kidney. However, the mechanism by which basolateral ions exit from NCC cells is still unclear. Of the in situ hybridization signals of twelve members of the clc Cl- channel family, only that of clc-2c exhibited an ionocyte pattern in the gill and embryonic skin. Double in situ hybridization/immunocytochemistry confirmed colocalization of apical NCC2b with basolateral CLC-2c. Acclimation to a low Cl- environment increased mRNA expression of both clc-2c and ncc2b, and also the protein expression of CLC-2c in embryos and adult gills. Loss-of-function of clc-2c resulted in a significant decrease in whole body Cl- content in zebrafish embryos, a phenotype similar to that of ncc2b mutants; this finding suggests a role for CLC-2c in Cl- uptake. Translational knockdown of clc-2c stimulated ncc2b mRNA expression and vice versa, revealing cooperation between these two transporters in the context of zebrafish Cl- homeostasis. Further comparative genomic and phylogenetic analyses revealed that zebrafish CLC-2c is a fish-specific isoform that diverged from a kidney-predominant homologue, in the same manner as NCC2b and its counterparts (NCCs). Several lines of molecular and cellular physiological evidences demonstrated the cofunctional role

  8. Molecular Physiology of an Extra-renal Cl(-) Uptake Mechanism for Body Fluid Cl(-) Homeostasis.

    Wang, Yi-Fang; Yan, Jia-Jiun; Tseng, Yung-Che; Chen, Ruo-Dong; Hwang, Pung-Pung

    2015-01-01

    The development of an ion regulatory mechanism for body fluid homeostasis was an important trait for vertebrates during the evolution from aquatic to terrestrial life. The homeostatic mechanism of Cl(-) in aquatic fish appears to be similar to that of terrestrial vertebrates; however, the mechanism in non-mammalian vertebrates is poorly understood. Unlike in mammals, in which the kidney plays a central role, in most fish species, the gill is responsible for the maintenance of Cl(-) homeostasis via Cl(-) transport uptake mechanisms. Previous studies in zebrafish identified Na(+)-Cl(-) cotransporter (NCC) 2b-expressing cells in the gills and skin as the major ionocytes responsible for Cl(-) uptake, similar to distal convoluted tubular cells in mammalian kidney. However, the mechanism by which basolateral ions exit from NCC cells is still unclear. Of the in situ hybridization signals of twelve members of the clc Cl(-) channel family, only that of clc-2c exhibited an ionocyte pattern in the gill and embryonic skin. Double in situ hybridization/immunocytochemistry confirmed colocalization of apical NCC2b with basolateral CLC-2c. Acclimation to a low Cl(-) environment increased mRNA expression of both clc-2c and ncc2b, and also the protein expression of CLC-2c in embryos and adult gills. Loss-of-function of clc-2c resulted in a significant decrease in whole body Cl(-) content in zebrafish embryos, a phenotype similar to that of ncc2b mutants; this finding suggests a role for CLC-2c in Cl(-) uptake. Translational knockdown of clc-2c stimulated ncc2b mRNA expression and vice versa, revealing cooperation between these two transporters in the context of zebrafish Cl(-) homeostasis. Further comparative genomic and phylogenetic analyses revealed that zebrafish CLC-2c is a fish-specific isoform that diverged from a kidney-predominant homologue, in the same manner as NCC2b and its counterparts (NCCs). Several lines of molecular and cellular physiological evidences demonstrated

  9. Genetic and infectious profiles influence cerebrospinal fluid IgG abnormality in Japanese multiple sclerosis patients.

    Satoshi Yoshimura

    Full Text Available BACKGROUND: Abnormal intrathecal synthesis of IgG, reflected by cerebrospinal fluid (CSF oligoclonal IgG bands (OBs and increased IgG index, is much less frequently observed in Japanese multiple sclerosis (MS cohorts compared with Western cohorts. We aimed to clarify whether genetic and common infectious backgrounds influence CSF IgG abnormality in Japanese MS patients. METHODOLOGY: We analyzed HLA-DRB1 alleles, and IgG antibodies against Chlamydia pneumoniae, Helicobacter pylori, Epstein-Barr virus nuclear antigen (EBNA, and varicella zoster virus (VZV in 94 patients with MS and 367 unrelated healthy controls (HCs. We defined CSF IgG abnormality as the presence of CSF OBs and/or increased IgG index (>0.658. PRINCIPAL FINDINGS: CSF IgG abnormality was found in 59 of 94 (62.8% MS patients. CSF IgG abnormality-positive patients had a significantly higher frequency of brain MRI lesions meeting the Barkhof criteria compared with abnormality-negative patients. Compared with HCs, CSF IgG abnormality-positive MS patients showed a significantly higher frequency of DRB1 1501, whereas CSF IgG abnormality-negative patients had a significantly higher frequency of DRB1 0405. CSF IgG abnormality-positive MS patients had a significantly higher frequency of anti-C. pneumoniae IgG antibodies compared with CSF IgG abnormality-negative MS patients, although there was no difference in the frequency of anti-C. pneumoniae IgG antibodies between HCs and total MS patients. Compared with HCs, anti-H. pylori IgG antibodies were detected significantly less frequently in the total MS patients, especially in CSF IgG abnormality-negative MS patients. The frequencies of antibodies against EBNA and VZV did not differ significantly among the groups. CONCLUSIONS: CSF IgG abnormality is associated with Western MS-like brain MRI features. DRB1 1501 and C. pneumoniae infection confer CSF IgG abnormality, while DRB1 0405 and H. pylori infection are positively and negatively

  10. Abnormal chloride homeostasis in the substancia nigra pars reticulata contributes to locomotor deficiency in a model of acute liver injury.

    Yan-Ling Yang

    Full Text Available BACKGROUND: Altered chloride homeostasis has been thought to be a risk factor for several brain disorders, while less attention has been paid to its role in liver disease. We aimed to analyze the involvement and possible mechanisms of altered chloride homeostasis of GABAergic neurons within the substantia nigra pars reticulata (SNr in the motor deficit observed in a model of encephalopathy caused by acute liver failure, by using glutamic acid decarboxylase 67 - green fluorescent protein knock-in transgenic mice. METHODS: Alterations in intracellular chloride concentration in GABAergic neurons within the SNr and changes in the expression of two dominant chloride homeostasis-regulating genes, KCC2 and NKCC1, were evaluated in mice with hypolocomotion due to hepatic encephalopathy (HE. The effects of pharmacological blockade and/or activation of KCC2 and NKCC1 functions with their specific inhibitors and/or activators on the motor activity were assessed. RESULTS: In our mouse model of acute liver injury, chloride imaging indicated an increase in local intracellular chloride concentration in SNr GABAergic neurons. In addition, the mRNA and protein levels of KCC2 were reduced, particularly on neuronal cell membranes; in contrast, NKCC1 expression remained unaffected. Furthermore, blockage of KCC2 reduced motor activity in the normal mice and led to a further deteriorated hypolocomotion in HE mice. Blockade of NKCC1 was not able to normalize motor activity in mice with liver failure. CONCLUSION: Our data suggest that altered chloride homeostasis is likely involved in the pathophysiology of hypolocomotion following HE. Drugs aimed at restoring normal chloride homeostasis would be a potential treatment for hepatic failure.

  11. Cerebrospinal fluid flow abnormalities in patients with neoplastic meningitis. An evaluation using 111In-DTPA ventriculography

    Cerebrospinal fluid flow dynamics were evaluated by 111In-diethylenetriamine pentaacetic acid (111In-DTPA) ventriculography in 27 patients with neoplastic meningitis. Nineteen patients (70 percent) had evidence of cerebrospinal fluid flow disturbances. These occurred as ventricular outlet obstructions, abnormalities of flow in the spinal canal, or flow distrubances over the cortical convexities. Tumor histology, physical examination, cerebrospinal fluid analysis, myelograms, and computerized axial tomographic scans were not sufficient to predict cerebrospinal fluid flow patterns. These data indicate that cerebrospinal fluid flow abnormalities are common in patients with neoplastic meningitis and that 111In-DTPA cerebrospinal fluid flow imaging is useful in characterizing these abnormalities. This technique provides insight into the distribution of intraventricularly administered chemotherapy and may provide explanations for treatment failure and drug-induced neurotoxicity in patients with neoplastic meningitis

  12. Effects of Beer, Non-Alcoholic Beer and Water Consumption before Exercise on Fluid and Electrolyte Homeostasis in Athletes.

    Castro-Sepulveda, Mauricio; Johannsen, Neil; Astudillo, Sebastián; Jorquera, Carlos; Álvarez, Cristian; Zbinden-Foncea, Hermann; Ramírez-Campillo, Rodrigo

    2016-01-01

    Fluid and electrolyte status have a significant impact on physical performance and health. Pre-exercise recommendations cite the possibility of consuming beverages with high amounts of sodium. In this sense, non-alcoholic beer can be considered an effective pre-exercise hydration beverage. This double-blind, randomized study aimed to compare the effect of beer, non-alcoholic beer and water consumption before exercise on fluid and electrolyte homeostasis. Seven male soccer players performed 45 min of treadmill running at 65% of the maximal heart rate, 45 min after ingesting 0.7 L of water (W), beer (AB) or non-alcoholic beer (NAB). Body mass, plasma Na⁺ and K⁺ concentrations and urine specific gravity (USG) were assessed before fluid consumption and after exercise. After exercise, body mass decreased (p < 0.05) in W (-1.1%), AB (-1.0%) and NAB (-1.0%). In the last minutes of exercise, plasma Na⁺ was reduced (p < 0.05) in W (-3.9%) and AB (-3.7%), plasma K⁺ was increased (p < 0.05) in AB (8.5%), and USG was reduced in W (-0.9%) and NAB (-1.0%). Collectively, these results suggest that non-alcoholic beer before exercise could help maintain electrolyte homeostasis during exercise. Alcoholic beer intake reduced plasma Na⁺ and increased plasma K⁺ during exercise, which may negatively affect health and physical performance, and finally, the consumption of water before exercise could induce decreases of Na⁺ in plasma during exercise. PMID:27338452

  13. Effects of Beer, Non-Alcoholic Beer and Water Consumption before Exercise on Fluid and Electrolyte Homeostasis in Athletes

    Mauricio Castro-Sepulveda

    2016-06-01

    Full Text Available Fluid and electrolyte status have a significant impact on physical performance and health. Pre-exercise recommendations cite the possibility of consuming beverages with high amounts of sodium. In this sense, non-alcoholic beer can be considered an effective pre-exercise hydration beverage. This double-blind, randomized study aimed to compare the effect of beer, non-alcoholic beer and water consumption before exercise on fluid and electrolyte homeostasis. Seven male soccer players performed 45 min of treadmill running at 65% of the maximal heart rate, 45 min after ingesting 0.7 L of water (W, beer (AB or non-alcoholic beer (NAB. Body mass, plasma Na+ and K+ concentrations and urine specific gravity (USG were assessed before fluid consumption and after exercise. After exercise, body mass decreased (p < 0.05 in W (−1.1%, AB (−1.0% and NAB (−1.0%. In the last minutes of exercise, plasma Na+ was reduced (p < 0.05 in W (−3.9% and AB (−3.7%, plasma K+ was increased (p < 0.05 in AB (8.5%, and USG was reduced in W (−0.9% and NAB (−1.0%. Collectively, these results suggest that non-alcoholic beer before exercise could help maintain electrolyte homeostasis during exercise. Alcoholic beer intake reduced plasma Na+ and increased plasma K+ during exercise, which may negatively affect health and physical performance, and finally, the consumption of water before exercise could induce decreases of Na+ in plasma during exercise.

  14. Canine cerebrospinal fluid total nucleated cell counts and cytology associations with the prevalence of magnetic resonance imaging abnormalities

    Hugo TB

    2014-08-01

    Full Text Available Timothy B Hugo, Kathryn L Heading, Robert H Labuc Melbourne Veterinary Specialist Centre, Glen Waverley, Vic, Australia Introduction: The combination of cerebrospinal fluid (CSF analysis and magnetic resonance imaging (MRI are often used to investigate intracranial disease in dogs. The aim of this retrospective study was to determine if the total nucleated cell count (TNCC or cytology findings in abnormal CSF are associated with the prevalence of MRI abnormalities. Materials and methods: For each case, the TNCC was categorized into one of three groups: A (<25×106/L; B (25–100×106/L; and C (>100×106/L. Cytology findings were categorized by the predominant cell type as lymphocytic, monocytoid, neutrophilic, or eosinopilic. MRI descriptions were classified as either normal or abnormal, and abnormal studies were further evaluated for the presence of specific characteristics (multifocal or diffuse disease versus focal disease, positive T2-weighted hyperintensity, positive FLAIR hyperintensity, contrast enhancement, mass effect, and the presence of poorly or well-defined lesion margins. Results: Forty-five dogs met the inclusion criteria and MRI abnormalities were found in 29/45 (64% dogs. TNCCs were not associated with the prevalence of MRI abnormalities or specific characteristics. Cytology categories were significantly associated with the prevalence of MRI abnormalities (P<0.001. Specifically, monocytoid cytology was 22.8 times more likely to have an abnormal MRI than lymphocytic cytology. CSF cytology was not significantly associated with specific abnormal MRI characteristics. Conclusion: There are minimal associations between CSF abnormalities and the prevalence of MRI abnormalities. These results support the continued importance of utilizing both tests when investigating intracranial disease. When CSF analysis must be performed initially, this study has demonstrated that an abnormal CSF with a monocytoid cytology supports the value of

  15. 3D Segmentation of Fluid-Associated Abnormalities in Retinal OCT: Probability Constrained Graph-Search–Graph-Cut

    Chen, Xinjian; Niemeijer, Meindert; Zhang, Li; Lee, Kyungmoo; Abràmoff, Michael D.; Sonka, Milan

    2012-01-01

    An automated method is reported for segmenting 3D fluid and fluid-associated abnormalities in the retina, so-called Symptomatic Exudate-Associated Derangements (SEAD), from 3D OCT retinal images of subjects suffering from exudative age-related macular degeneration. In the first stage of a two-stage approach, retinal layers are segmented, candidate SEAD regions identified, and the retinal OCT image is flattened using a candidate-SEAD aware approach. In the second stage, a probability constrain...

  16. Kidney injury, fluid, electrolyte and acid-base abnormalities in alcoholics

    Adebayo Adewale

    2014-01-01

    Full Text Available In the 21 st century, alcoholism and the consequences of ethyl alcohol abuse are major public health concerns in the United States, affecting approximately 14 million people. Pertinent to the global impact of alcoholism is the World Health Organisation estimate that 140 million people worldwide suffer from alcohol dependence. Alcoholism and alcohol abuse are the third leading causes of preventable death in the United States. Alcohol dependence and alcohol abuse cost the United State an estimated US$220 billion in 2005, eclipsing the expense associated with cancer (US$196 billion or obesity (US$133 billion. Orally ingested ethyl alcohol is absorbed rapidly without chemical change from the stomach and intestine, reaching maximum blood concentration in about an hour. Alcohol crosses capillary membranes by simple diffusion, affecting almost every organ system in the body by impacting a wide range of cellular functions. Alcohol causes metabolic derangements either directly, via its chemical by-product or secondarily through alcohol-induced disorders. Many of these alcohol-related metabolic disturbances are increased in severity by the malnutrition that is common in those with chronic alcoholism. This review focuses on the acute and chronic injurious consequences of alcohol ingestion on the kidney, as well as the fluid, electrolyte and acid-base abnormalities associated with acute and chronic ingestion of alcohol.

  17. Research into the Physiology of Cerebrospinal Fluid Reaches a New Horizon: Intimate Exchange between Cerebrospinal Fluid and Interstitial Fluid May Contribute to Maintenance of Homeostasis in the Central Nervous System.

    Matsumae, Mitsunori; Sato, Osamu; Hirayama, Akihiro; Hayashi, Naokazu; Takizawa, Ken; Atsumi, Hideki; Sorimachi, Takatoshi

    2016-07-15

    Cerebrospinal fluid (CSF) plays an essential role in maintaining the homeostasis of the central nervous system. The functions of CSF include: (1) buoyancy of the brain, spinal cord, and nerves; (2) volume adjustment in the cranial cavity; (3) nutrient transport; (4) protein or peptide transport; (5) brain volume regulation through osmoregulation; (6) buffering effect against external forces; (7) signal transduction; (8) drug transport; (9) immune system control; (10) elimination of metabolites and unnecessary substances; and finally (11) cooling of heat generated by neural activity. For CSF to fully mediate these functions, fluid-like movement in the ventricles and subarachnoid space is necessary. Furthermore, the relationship between the behaviors of CSF and interstitial fluid in the brain and spinal cord is important. In this review, we will present classical studies on CSF circulation from its discovery over 2,000 years ago, and will subsequently introduce functions that were recently discovered such as CSF production and absorption, water molecule movement in the interstitial space, exchange between interstitial fluid and CSF, and drainage of CSF and interstitial fluid into both the venous and the lymphatic systems. Finally, we will summarize future challenges in research. This review includes articles published up to February 2016. PMID:27245177

  18. A New Methodology of Viewing Extra-Axial Fluid and Cortical Abnormalities in Children with Autism via Transcranial Ultrasonography

    James Jeffrey Bradstreet; Stefania ePacini; Marco eRuggiero

    2014-01-01

    Background: Autism spectrum disorders (ASDs) are developmental conditions of uncertain etiology which have now affected more than 1% of the school-age population of children in many developed nations. Transcranial ultrasonography (TUS) via the temporal bone appeared to be a potential window of investigation to determine the presence of both cortical abnormalities and increased extra-axial fluid (EAF). Methods: TUS was accomplished using a linear probe (10–5 MHz). Parents volunteered ASD su...

  19. Abnormal expression of cerebrospinal fluid cation chloride cotransporters in patients with Rett syndrome.

    Sofia Temudo Duarte

    Full Text Available OBJECTIVE: Rett Syndrome is a progressive neurodevelopmental disorder caused mainly by mutations in the gene encoding methyl-CpG-binding protein 2. The relevance of MeCP2 for GABAergic function was previously documented in animal models. In these models, animals show deficits in brain-derived neurotrophic factor, which is thought to contribute to the pathogenesis of this disease. Neuronal Cation Chloride Cotransporters (CCCs play a key role in GABAergic neuronal maturation, and brain-derived neurotrophic factor is implicated in the regulation of CCCs expression during development. Our aim was to analyse the expression of two relevant CCCs, NKCC1 and KCC2, in the cerebrospinal fluid of Rett syndrome patients and compare it with a normal control group. METHODS: The presence of bumetanide sensitive NKCC1 and KCC2 was analysed in cerebrospinal fluid samples from a control pediatric population (1 day to 14 years of life and from Rett syndrome patients (2 to 19 years of life, by immunoblot analysis. RESULTS: Both proteins were detected in the cerebrospinal fluid and their levels are higher in the early postnatal period. However, Rett syndrome patients showed significantly reduced levels of KCC2 and KCC2/NKCC1 ratio when compared to the control group. CONCLUSIONS: Reduced KCC2/NKCC1 ratio in the cerebrospinal fluid of Rett Syndrome patients suggests a disturbed process of GABAergic neuronal maturation and open up a new therapeutic perspective.

  20. Abnormal Eu behavior at formation of H2O- and Cl-bearing fluids during degassing of granite magmas

    Lukanin, Oleg

    2010-05-01

    One of the important features of REE behavior in the process of decompression degassing of granite melts is the presence of europium anomalies in REE spectrum of forming fluid phase. Negative Eu anomaly in REE spectrum of fluids enriched by chlorine that were formed under high pressures at early stages of degassing relative to REE spectrum of granite melts may take place. Negative Eu anomaly in fluid is replaced by positive one with pressure decrease and decline of Cl concentration in fluid [1, 2]. Observable unique features of europium redistribution between fluid and melt find an explanation in such a fact that Eu in contrast to the other REE under oxidation-reduction conditions, being typical for magmatic process, is present in acidic silica-alumina melts in two valency forms Eu3+ and Eu2+ whereas the dominant form for the other REE in such a melts is (REE)3+ [3, 4]. From the analysis of melt-fluid exchange reactions with participation of two valency forms of europium Eu3+ and Eu2+ follows that the total distribution coefficient of Eu between fluid and melt D(Eu)f-m is equal as a first approximation to [5, 6]: D(Eu)f-m = a1α [C(Cl)f]3 + a2 (1 - α)[C(Cl)f]2, where C(Cl)f - the concentration of Cl in fluid, α = Eu3+/(Eu3+ + Eu2+), i.e. fraction of Eu3+ from the general amount of europium in the melt, and, a1anda2- constants that can be approximately estimated from empirical data upon Eu fluid/melt distribution. The equation given allows to estimate the influence of oxidizing condition of europium on sign and size of Eu anomaly, which is expressed by Eu/Eu# ratio, where Eu is real concentration of europium in fluid being in equilibrium with melt with constant Eu3+/(Eu3+ + Eu2+) ratio, and Eu# is possible "virtual" concentration of europium that could be in the same fluid provided that all europium as other REE as well were exclusively present in trivalent form. The sign and size of Eu anomaly in fluid depends upon Cl concentration in fluid and Eu3+/Eu2+ ratio in

  1. Atrial natriuretic peptide in the locus coeruleus and its possible role in the regulation of arterial blood pressure, fluid and electrolyte homeostasis

    Geiger, H.; Sterzel, R.B. (Univ. of Erlangen-Nuernberg (West Germany)); Bahner, U.; Heidland, A. (Univ. of Wuerzburg (West Germany)); Palkovits, M. (Semmelweis Univ., Budapest (Hungary))

    1991-01-01

    Atrial natriuretic factor (ANP) is present in neuronal cells of the locus coeruleus and its vicinity in the pontine tegmentum and moderate amount of ANP is detectable in this area by radioimmunoassay. The ANP is known as a neuropeptide which may influence the body salt and water homeostasis and blood pressure by targeting both central and peripheral regulatory mechanisms. Whether this pontine ANP cell group is involved in any of these regulatory mechanisms, the effect of various types of hypertension and experimental alterations in the salt and water balance on ANP levels was measured by radioimmunoassay in the locus coeruleus of rats. Adrenalectomy, as well as aldosterone and dexamethasone treatments failed to alter ANP levels in the locus coeruleus. Reduced ANP levels were measured in spontaneously hypertensive rats, and in diabetes insipidus rats with vasopressin replacement. In contrast to these situations, elevated ANP levels were found in rats with DOCA-salt or 1-Kidney-1-clip hypertension. These data suggest a link between ANP levels in the locus coeruleus and fluid volume homeostasis. Whether this link is causal and connected with the major activity of locus coeruleus neurons needs further information.

  2. The Effects of High Level Magnesium Dialysis/Substitution Fluid on Magnesium Homeostasis under Regional Citrate Anticoagulation in Critically Ill.

    Mychajlo Zakharchenko

    Full Text Available The requirements for magnesium (Mg supplementation increase under regional citrate anticoagulation (RCA because citrate acts by chelation of bivalent cations within the blood circuit. The level of magnesium in commercially available fluids for continuous renal replacement therapy (CRRT may not be sufficient to prevent hypomagnesemia.Patients (n = 45 on CRRT (2,000 ml/h, blood flow (Qb 100 ml/min with RCA modality (4% trisodium citrate using calcium free fluid with 0.75 mmol/l of Mg with additional magnesium substitution were observed after switch to the calcium-free fluid with magnesium concentration of 1.50 mmol/l (n = 42 and no extra magnesium replenishment. All patients had renal indications for CRRT, were treated with the same devices, filters and the same postfilter ionized calcium endpoint (<0.4 mmol/l of prefilter citrate dosage. Under the high level Mg fluid the Qb, dosages of citrate and CRRT were consequently escalated in 9h steps to test various settings.Median balance of Mg was -0.91 (-1.18 to -0.53 mmol/h with Mg 0.75 mmol/l and 0.2 (0.06-0.35 mmol/h when fluid with Mg 1.50 mmol/l was used. It was close to zero (0.02 (-0.12-0.18 mmol/h with higher blood flow and dosage of citrate, increased again to 0.15 (-0.11-0.25 mmol/h with 3,000 ml/h of high magnesium containing fluid (p<0.001. The arterial levels of Mg were mildly increased after the change for high level magnesium containing fluid (p<0.01.Compared to ordinary dialysis fluid the mildly hypermagnesemic fluid provided even balances and adequate levels within ordinary configurations of CRRT with RCA and without a need for extra magnesium replenishment.ClinicalTrials.gov Identifier: NCT01361581.

  3. The median preoptic nucleus: front and centre for the regulation of body fluid, sodium, temperature, sleep and cardiovascular homeostasis.

    McKinley, M J; Yao, S T; Uschakov, A; McAllen, R M; Rundgren, M; Martelli, D

    2015-05-01

    Located in the midline anterior wall of the third cerebral ventricle (i.e. the lamina terminalis), the median preoptic nucleus (MnPO) receives a unique set of afferent neural inputs from fore-, mid- and hindbrain. These afferent connections enable it to receive neural signals related to several important aspects of homeostasis. Included in these afferent projections are (i) neural inputs from two adjacent circumventricular organs, the subfornical organ and organum vasculosum laminae terminalis, that respond to hypertonicity, circulating angiotensin II or other humoural factors, (ii) signals from cutaneous warm and cold receptors that are relayed to MnPO, respectively, via different subnuclei in the lateral parabrachial nucleus and (iii) input from the medulla associated with baroreceptor and vagal afferents. These afferent signals reach appropriate neurones within the MnPO that enable relevant neural outputs, both excitatory and inhibitory, to be activated or inhibited. The efferent neural pathways that proceed from the MnPO terminate on (i) neuroendocrine cells in the hypothalamic supraoptic and paraventricular nuclei to regulate vasopressin release, while polysynaptic pathways from MnPO to cortical sites may drive thirst and water intake, (ii) thermoregulatory pathways to the dorsomedial hypothalamic nucleus and medullary raphé to regulate shivering, brown adipose tissue and skin vasoconstriction, (iii) parvocellular neurones in the hypothalamic paraventricular nucleus that drive autonomic pathways influencing cardiovascular function. As well, (iv) other efferent pathways from the MnPO to sites in the ventrolateral pre-optic nucleus, perifornical region of the lateral hypothalamic area and midbrain influence sleep mechanisms. PMID:25753944

  4. Chronic Treatment with a Clinically Relevant Dose of Methylphenidate Increases Glutamate Levels in Cerebrospinal Fluid and Impairs Glutamatergic Homeostasis in Prefrontal Cortex of Juvenile Rats.

    Schmitz, Felipe; Pierozan, Paula; Rodrigues, André F; Biasibetti, Helena; Coelho, Daniella M; Mussulini, Ben Hur; Pereira, Mery S L; Parisi, Mariana M; Barbé-Tuana, Florencia; de Oliveira, Diogo L; Vargas, Carmen R; Wyse, Angela T S

    2016-05-01

    The understanding of the consequences of chronic treatment with methylphenidate is very important since this psychostimulant is extensively prescribed to preschool age children, and little is known about the mechanisms underlying the persistent changes in behavior and neuronal function related with the use of methylphenidate. In this study, we initially investigate the effect of early chronic treatment with methylphenidate on amino acids profile in cerebrospinal fluid and prefrontal cortex of juvenile rats, as well as on glutamatergic homeostasis, Na(+),K(+)-ATPase function, and balance redox in prefrontal cortex of rats. Wistar rats at early age received intraperitoneal injections of methylphenidate (2.0 mg/kg) or an equivalent volume of 0.9 % saline solution (controls), once a day, from the 15th to the 45th day of age. Twenty-four hours after the last injection, the animals were decapitated and the cerebrospinal fluid and prefrontal cortex were obtained. Results showed that methylphenidate altered amino acid profile in cerebrospinal fluid, increasing the levels of glutamate. Glutamate uptake was decreased by methylphenidate administration, but GLAST and GLT-1 were not altered by this treatment. In addition, the astrocyte marker GFAP was not altered by MPH. The activity and immunocontent of catalytic subunits (α1, α2, and α3) of Na(+),K(+)-ATPase were decreased in prefrontal cortex of rats subjected to methylphenidate treatment, as well as changes in α1 and α2 gene expression of catalytic α subunits of Na(+),K(+)-ATPase were also observed. CAT activity was increased and SOD/CAT ratio and sulfhydryl content were decreased in rat prefrontal cortex. Taken together, our results suggest that chronic treatment with methylphenidate at early age induces excitotoxicity, at least in part, due to inhibition of glutamate uptake probably caused by disturbances in the Na(+),K(+)-ATPase function and/or in protein damage observed in the prefrontal cortex. PMID:26001762

  5. Role of α{sub 2}-adrenoceptors in the lateral parabrachial nucleus in the control of body fluid homeostasis

    Andrade, C.A.F.; Andrade-Franzé, G.M.F.; De Paula, P.M.; De Luca, L.A. Jr.; Menani, J.V. [Departamento de Fisiologia e Patologia, Faculdade de Odontologia, Universidade Estadual Paulista, Araraquara, SP (Brazil)

    2014-01-10

    Central α{sub 2}-adrenoceptors and the pontine lateral parabrachial nucleus (LPBN) are involved in the control of sodium and water intake. Bilateral injections of moxonidine (α{sub 2}-adrenergic/imidazoline receptor agonist) or noradrenaline into the LPBN strongly increases 0.3 M NaCl intake induced by a combined treatment of furosemide plus captopril. Injection of moxonidine into the LPBN also increases hypertonic NaCl and water intake and reduces oxytocin secretion, urinary sodium, and water excreted by cell-dehydrated rats, causing a positive sodium and water balance, which suggests that moxonidine injected into the LPBN deactivates mechanisms that restrain body fluid volume expansion. Pretreatment with specific α{sub 2}-adrenoceptor antagonists injected into the LPBN abolishes the behavioral and renal effects of moxonidine or noradrenaline injected into the same area, suggesting that these effects depend on activation of LPBN α{sub 2}-adrenoceptors. In fluid-depleted rats, the palatability of sodium is reduced by ingestion of hypertonic NaCl, limiting intake. However, in rats treated with moxonidine injected into the LPBN, the NaCl palatability remains high, even after ingestion of significant amounts of 0.3 M NaCl. The changes in behavioral and renal responses produced by activation of α{sub 2}-adrenoceptors in the LPBN are probably a consequence of reduction of oxytocin secretion and blockade of inhibitory signals that affect sodium palatability. In this review, a model is proposed to show how activation of α{sub 2}-adrenoceptors in the LPBN may affect palatability and, consequently, ingestion of sodium as well as renal sodium excretion.

  6. Role of α2-adrenoceptors in the lateral parabrachial nucleus in the control of body fluid homeostasis

    C.A.F. Andrade

    2014-01-01

    Full Text Available Central α2-adrenoceptors and the pontine lateral parabrachial nucleus (LPBN are involved in the control of sodium and water intake. Bilateral injections of moxonidine (α2-adrenergic/imidazoline receptor agonist or noradrenaline into the LPBN strongly increases 0.3 M NaCl intake induced by a combined treatment of furosemide plus captopril. Injection of moxonidine into the LPBN also increases hypertonic NaCl and water intake and reduces oxytocin secretion, urinary sodium, and water excreted by cell-dehydrated rats, causing a positive sodium and water balance, which suggests that moxonidine injected into the LPBN deactivates mechanisms that restrain body fluid volume expansion. Pretreatment with specific α2-adrenoceptor antagonists injected into the LPBN abolishes the behavioral and renal effects of moxonidine or noradrenaline injected into the same area, suggesting that these effects depend on activation of LPBN α2-adrenoceptors. In fluid-depleted rats, the palatability of sodium is reduced by ingestion of hypertonic NaCl, limiting intake. However, in rats treated with moxonidine injected into the LPBN, the NaCl palatability remains high, even after ingestion of significant amounts of 0.3 M NaCl. The changes in behavioral and renal responses produced by activation of α2-adrenoceptors in the LPBN are probably a consequence of reduction of oxytocin secretion and blockade of inhibitory signals that affect sodium palatability. In this review, a model is proposed to show how activation of α2-adrenoceptors in the LPBN may affect palatability and, consequently, ingestion of sodium as well as renal sodium excretion.

  7. Role of α2-adrenoceptors in the lateral parabrachial nucleus in the control of body fluid homeostasis

    Central α2-adrenoceptors and the pontine lateral parabrachial nucleus (LPBN) are involved in the control of sodium and water intake. Bilateral injections of moxonidine (α2-adrenergic/imidazoline receptor agonist) or noradrenaline into the LPBN strongly increases 0.3 M NaCl intake induced by a combined treatment of furosemide plus captopril. Injection of moxonidine into the LPBN also increases hypertonic NaCl and water intake and reduces oxytocin secretion, urinary sodium, and water excreted by cell-dehydrated rats, causing a positive sodium and water balance, which suggests that moxonidine injected into the LPBN deactivates mechanisms that restrain body fluid volume expansion. Pretreatment with specific α2-adrenoceptor antagonists injected into the LPBN abolishes the behavioral and renal effects of moxonidine or noradrenaline injected into the same area, suggesting that these effects depend on activation of LPBN α2-adrenoceptors. In fluid-depleted rats, the palatability of sodium is reduced by ingestion of hypertonic NaCl, limiting intake. However, in rats treated with moxonidine injected into the LPBN, the NaCl palatability remains high, even after ingestion of significant amounts of 0.3 M NaCl. The changes in behavioral and renal responses produced by activation of α2-adrenoceptors in the LPBN are probably a consequence of reduction of oxytocin secretion and blockade of inhibitory signals that affect sodium palatability. In this review, a model is proposed to show how activation of α2-adrenoceptors in the LPBN may affect palatability and, consequently, ingestion of sodium as well as renal sodium excretion

  8. Osmotic Homeostasis

    Danziger, John; Zeidel, Mark L.

    2014-01-01

    Alterations in water homeostasis can disturb cell size and function. Although most cells can internally regulate cell volume in response to osmolar stress, neurons are particularly at risk given a combination of complex cell function and space restriction within the calvarium. Thus, regulating water balance is fundamental to survival. Through specialized neuronal “osmoreceptors” that sense changes in plasma osmolality, vasopressin release and thirst are titrated in order to achieve water bala...

  9. Abnormal hyperintensity within the subarachnoid space evaluated by fluid-attenuated inversion-recovery MR imaging: a spectrum of central nervous system diseases

    Maeda, M.; Sakuma, H.; Takeda, K. [Dept. of Radiology, Mie Univ. School of Medicine, Mie (Japan); Yagishita, A. [Dept. of Neuroradiology, Tokyo Metropolitan Neurological Hospital, Tokyo (Japan); Yamamoto, T. [Dept. of Radiology, Obama Municipal Hospital, Fukui (Japan)

    2003-12-01

    A variety of central nervous system (CNS) diseases are associated with abnormal hyperintensity within the subarachnoid space (SAS) by fluid-attenuated inversion-recovery (FLAIR) MR imaging. Careful attention to the SAS can provide additional useful information that may not be available with conventional MR sequences. The purpose of this article is to provide a pictorial essay about CNS diseases and FLAIR images with abnormal hyperintensity within the SAS. We present several CNS diseases including subarachnoid hemorrhage, meningitis, leptomeningeal metastases, acute infarction, and severe arterial occlusive diseases such as moya-moya disease. We also review miscellaneous diseases or normal conditions that may exhibit cerebrospinal fluid hyperintensity on FLAIR images. Although the detection of abnormal hyperintensity suggests the underlying CNS diseases and narrows differential diagnoses, FLAIR imaging sometimes presents artifactual hyperintensity within the SAS that can cause the misinterpretation of normal SAS as pathologic conditions; therefore, radiologists should be familiar with such artifactual conditions as well as pathologic conditions shown as hyperintensity by FLAIR images. This knowledge is helpful in establishing the correct diagnosis. (orig.)

  10. Cerebrospinal fluid abnormalities in HIV-negative patients with secondary and early latent syphilis and serum VDRL ≥ 1:32

    Maciej Pastuszczak

    2013-01-01

    Full Text Available Background : Syphilis is caused by a spirochete Treponema pallidum. Invasion of the central nervous system (CNS by T. pallidum may appear early during the course of disease. The diagnosis of confirmed neurosyphilis is based on the reactive Venereal Disease Research Laboratory (VDRL in cerebrospinal fluid (CSF. Recent studies indicated that serum RPR ≥ 1:32 are associated with higher risk of reactivity of CSF VDRL. Aims : The main aim of the current study was to assess cerebrospinal fluid serological and biochemical abnormalities in HIV negative subjects with secondary and early latent syphilis and serum VDRL ≥ 1:32. Materials and Methods : Clinical and laboratory data of 33 HIV-negative patients with secondary and early latent syphilis, with the serum VDRL titer ≥ 1:32, who underwent a lumbar puncture and were treated in Department of Dermatology at Jagiellonian University School of Medicine in Cracow, were collected. Results : Clinical examination revealed no symptoms of CNS involvement in all patients. 18% ( n = 6 of patients met the criteria of confirmed neurosyphilis (reactive CSF-VDRL. In 14 (42% patients CSF WBC count ≥ 5/ul was found, and in 13 (39% subjects there was elevated CSF protein concentration (≥ 45 mg/dL. 10 patients had CSF WBC count ≥ 5/ul and/or elevated CSF protein concentration (≥ 45 mg/dL but CSF-VDRL was not reactive. Conclusions : Indications for CSF examination in HIV-negative patients with early syphilis are the subject of discussion. It seems that all patients with syphilis and with CSF abnormalities (reactive serological tests, elevated CSF WBC count, elevated protein concentration should be treated according to protocols for neurosyphilis. But there is a need for identification of biomarkes in order to identify a group of patients with syphilis, in whom risk of such abnormalities is high.

  11. Three-dimensional volume-rendered imaging of normal and abnormal fetal fluid-filled structures using inversion mode.

    Hata, Toshiyuki; Mori, Nobuhiro; Tenkumo, Chiaki; Hanaoka, Uiko; Kanenishi, Kenji; Tanaka, Hirokazu

    2011-11-01

    A total of six normal and eight abnormal fetuses at 16-38 weeks of gestation were studied using transabdominal three-dimensional sonography with an inversion mode. In normal fetuses, the stomach, gallbladder and bladder could be depicted. In particular, peristalsis of the stomach was noted. In the case of holoprosencephaly, fused hemispheres were evident. In the case of hydrocephalus, the enlargement of ventricular cavities was noted. In the case of bilateral pleural effusion, the spatial relationship and size of the effusions were depicted. In the case of meconium peritonitis, the spatial relationship between the dilated intestines and ascites was depicted. In two cases of hydronephrosis, the dilated renal pelvis and calyces were clearly shown. In the case of multicystic dysplastic kidney, the number and size of cysts were clearly identified. In the case of left ovarian cyst, the anatomical relationships among the ovarian cyst, kidney, stomach and bladder could be easily understood. PMID:21790889

  12. Temporal pole signal abnormality on MR imaging in temporal lobe epilepsy with hippocampal sclerosis: a fluid-attenuated inversion-recovery study

    Objective: To determine the frequency and regional involvement of temporal pole signal abnormality (TPA) in patients with hippocampal sclerosis (HS) using fluid-attenuated inversion-recovery (FLAIR) MR imaging, and to correlate this feature with history. Method: Coronal FLAIR images of the temporal pole were assessed in 120 patients with HS and in 30 normal subjects, to evaluate gray-white matter demarcation. Results: Ninety (75%) of 120 patients had associated TPA. The HS side made difference regarding the presence of TPA, with a left side prevalence (p=0.04, χ2 test). The anteromedial zone of temporal pole was affected in 27 (30%) out of 90 patients. In 63 (70%) patients the lateral zone were also affected. Patients with TPA were younger at seizure onset (p=0.018), but without association with duration of epilepsy. Conclusion: Our FLAIR study show temporal pole signal abnormality in 3/4 of patients with HS, mainly seen on the anteromedial region, with a larger prevalence when the left hippocampus was involved. (author)

  13. Cell-free DNA Fragmentation Patterns in Amniotic Fluid Identify Genetic Abnormalities and Changes due to Storage

    Peter, Inga; Tighiouart, Hocine; Lapaire, Olav; Johnson, Kirby L.; Bianchi, Diana W.; Terrin, Norma

    2015-01-01

    Circulating cell-free DNA (cfDNA) has become a promising biomarker in prenatal diagnosis. However, despite extensive studies in different body fluids, cfDNA predictive value is uncertain owing to the confounding factors that can affect its levels, such as gestational age, maternal weight, smoking status, and medications. Residual fresh and archived amniotic fluid (AF) supernatants were obtained from gravid women (mean gestational age 17 wk) carrying euploid (N = 36) and aneuploid (N = 29) fetuses, to characterize cfDNA-fragmentation patterns with regard to aneuploidy and storage time (−80°C). AF cfDNA was characterized by the real-time quantitative polymerase chain reaction amplification of glyceraldehyde-3-phosphate dehydrogenase, gel electrophoresis, and pattern recognition of the DNA fragmentation. The distributions of cfDNA fragment lengths were compared using 6 measures that defined the locations and slopes for the first and last peaks, after elimination of the confounding variables. This method allowed for the unique classification of euploid and aneuploid cfDNA samples in AF, which had been matched for storage time. In addition, we showed that archived euploid AF samples gradually lose long cfDNA fragments: this loss accurately distinguishes them from the fresh samples. We present preliminary data using cfDNA-fragmentation patterns, to uniquely distinguish between AF samples of pregnant women with regard to aneuploidy and storage time, independent of gestational age and initial DNA amount. In addition to potential applications in prenatal diagnosis, these data suggest that archived AF samples consist of large amounts of short cfDNA fragments, which are undetectable using standard real-time polymerase chain reaction amplification. PMID:18382362

  14. Ageing and water homeostasis

    Robertson, David; Jordan, Jens; Jacob, Giris; Ketch, Terry; Shannon, John R.; Biaggioni, Italo

    2002-01-01

    This review outlines current knowledge concerning fluid intake and volume homeostasis in ageing. The physiology of vasopressin is summarized. Studies have been carried out to determine orthostatic changes in plasma volume and to assess the effect of water ingestion in normal subjects, elderly subjects, and patients with dysautonomias. About 14% of plasma volume shifts out of the vasculature within 30 minutes of upright posture. Oral ingestion of water raises blood pressure in individuals with impaired autonomic reflexes and is an important source of noise in blood pressure trials in the elderly. On the average, oral ingestion of 16 ounces (473ml) of water raises blood pressure 11 mmHg in elderly normal subjects. In patients with autonomic impairment, such as multiple system atrophy, strikingly exaggerated pressor effects of water have been seen with blood pressure elevations greater than 75 mmHg not at all uncommon. Ingestion of water is a major determinant of blood pressure in the elderly population. Volume homeostasis is importantly affected by posture and large changes in plasma volume may occur within 30 minutes when upright posture is assumed.

  15. Fluid-phase immunoradiometric assay for the detection of qualitative abnormalities of factor VIII/von Willebrand factor in variants of von Willebrand's disease

    Antigenic reactivity of F.VIII/WF in variants of von Willebrand's disease (vWd) was studied with both fluid-phase and solid-phase immunoradiometric assays. Two different (rabbit and goat) 125I-labeled specific antibodies against purified F.VIII/WF were used in both their divalent (lgG) and their monovalent (Fab fragment) forms. Dose-response curves obtained by reacting a constant amount of antibody with serial dilutions of plasmas from normal or homozygous vWd demonstrated the specificity of the test. The accuracy was significantly higher with 125I-Fab fragments of goat anti-F.VIII/WF antiserum than intact goat lgG or rabbit lgG or Fab fragments. The significant decrease of the slope of the dose-response curves obtained with plasma from variants of vWd has been interpreted as due to the presence of abnormal F.VIII/WF molecules with decreased antigenic reactivity. A similar anomaly was found in cryosupernatant prepared from normal plasma, paralleling similarities demonstrated between variants of vWd and cryosupernatant. Results of experiments performed by reacting constant plasma dilutions from control or variants of vWd and varying concentrations of anti-F.VIII/WF Fab fragments (rabbit or goat) confirmed the decreased antigenic reactivity of variant F.VIII/WF

  16. The Association between N-terminal Pro-Brain Natriuretic Peptide Levels in the Umbilical Vein and Amniotic Fluid Volume Abnormalities.

    Ersoy, Ali Ozgur; Ozler, Sibel; Oztas, Efser; Ersoy, Ebru; Ergin, Merve; Erkaya, Salim; Uygur, Dilek

    2016-04-01

    Purpose The amniotic fluid volume (AFV) is known as a predictor for the wellness of a fetus. We aimed to investigate whether N-terminal pro-brain natriuretic peptide (NTproBNP) levels reflect AFV abnormalities in otherwise normal fetuses. Methods We recruited 24 women with isolated oligohydramnios, 23 women with isolated polyhydramnios, and 36 women with normal AFV at a tertiary referral center. NT-proBNP levels in umbilical venous samples and the individual characteristics of the three groups were compared. One-way ANOVA and Kruskal-Wallis analysis of variance were used for multi-group comparisons of continuous variables. When a significant difference was detected, the Scheffe test was performed as a post-hoc analysis. Proportions were compared using the Chi-square (χ2) test. Results Maternal age, body mass indices, weight gained in pregnancy and NT-proBNP levels were similar among the three groups. Apgar scores at 1 and 5 minutes significantly correlated with NT-proBNP levels in all newborns (Spearman's r = 0.23; p = 0.03 and Spearman's r = 0.24; p = 0.02, respectively). The umbilical venous NT-proBNP levels did not differ between newborns who needed mechanical ventilation and those who didn't (p = 0.595). Conclusions NT-proBNP is a biomolecule that may provide insights into the pathogenesis of fetal circulatory problems and subsequent renal failure. Further investigations are warranted. PMID:27096950

  17. CT of pleural abnormalities

    Briefly discussed were CT diagnosis of pleural thickening, CT technique for examining the pleura or pleuro-pulmonary disease, diagnosis of pleural collections, diagnosis of pleural fluid abnormalities in patients with pneumonia, pleural neoplasms, malignant (diffuse) mesothelioma, metastases, local fibrous tumor of the pleura (benign mesothelioma) (21 refs.)

  18. Homeostasis in anorexia nervosa

    Södersten, Per; Bergh, Cecilia; Zandian, Modjtaba; Ioakimidis, Ioannis

    2014-01-01

    Brainstem and hypothalamic “orexigenic/anorexigenic” networks are thought to maintain body weight homeostasis in response to hormonal and metabolic feedback from peripheral sites. This approach has not been successful in managing over- and underweight patients. It is suggested that concept of homeostasis has been misinterpreted; rather than exerting control, the brain permits eating in proportion to the amount of physical activity necessary to obtain food. In support, animal experiments have ...

  19. Homeostasis in anorexia nervosa

    Per eSodersten; Cecilia eBergh; Modjtaba eZandian; Ioannis eIoakimidis

    2014-01-01

    Brainstem and hypothalamic orexigenic/anorexigenic networks are thought to maintain body weight homeostasis in response to hormonal and metabolic feedback from peripheral sites. This approach has not been successful in managing over- and underweight patients. It is suggested that concept of homeostasis has been misinterpreted; rather than exerting control, the brain permits eating in proportion to the amount of physical activity necessary to obtain food. In support, animal experiments have sh...

  20. Neuroendocrine control of body fluid homeostasis

    McCann S.M.

    2003-01-01

    Full Text Available Angiotensin II and atrial natriuretic peptide (ANP play important and opposite roles in the control of water and salt intake, with angiotensin II promoting the intake of both and ANP inhibiting the intake of both. Following blood volume expansion, baroreceptor input to the brainstem induces the release of ANP within the hypothalamus that releases oxytocin (OT that acts on its receptors in the heart to cause the release of ANP. ANP activates guanylyl cyclase that converts guanosine triphosphate into cyclic guanosine monophosphate (cGMP. cGMP activates protein kinase G that reduces heart rate and force of contraction, decreasing cardiac output. ANP acts similarly to induce vasodilation. The intrinsic OT system in the heart and vascular system augments the effects of circulating OT to cause a rapid reduction in effective circulating blood volume. Furthermore, natriuresis is rapidly induced by the action of ANP on its tubular guanylyl cyclase receptors, resulting in the production of cGMP that closes Na+ channels. The OT released by volume expansion also acts on its tubular receptors to activate nitric oxide synthase. The nitric oxide released activates guanylyl cyclase leading to the production of cGMP that also closes Na+ channels, thereby augmenting the natriuretic effect of ANP. The natriuresis induced by cGMP finally causes blood volume to return to normal. At the same time, the ANP released acts centrally to decrease water and salt intake.

  1. Application of FISH in prenatal diagnosis of chromosome number abnormality in amniotic fluid cells%FISH在产前羊水细胞染色体数目异常诊断中的应用观察

    张艳丽; 李华锋; 高刚

    2011-01-01

    Objective To observe effect of fluorescence in situ hybridization(FISH) on prenatal diagnosis of abnormal number of chromosomes in amniotic fluid cells. Methods The amniotic fluid of 1 121 cases of pregnant women with down syndrome screening in high-risk or age higher than 35 years old, were got by amniocentesis, and udenvent rapid prenatal diagnosis by FISH. Then the G banding karyotypes from standard cytogenetic analysis after cultured amniotic fluid cells were compared to the FISH results. Results 16 cases were found abnormal result, including 7 cases of trisomy 21 , 4 cases of trisomy 21, and other 5 cases with abnormal. It was consistent with G banding karyotypes results. Conclusion Prenatal diagnosis of chromosome humber sbnormality by FISH is satisfactory.%目的 观察应用荧光原位杂交( FISH)技术产前诊断羊水细胞染色体数目异常的效果.方法 唐氏综合征筛查高危或高龄(≥35岁)孕妇1 121例,经腹部穿刺抽取羊水,应用FISH技术进行羊水细胞染色体数目检测,并将其结果与羊水细胞常规G显带核型分析结果作比较.结果 均获得诊断结果,发现16例异常胎儿,其中7例为21三体,4例为18三体,5例为其他异常.FISH检测与核型分析结果一致.结论 用FISH产前诊断羊水细胞染色体数目异常效果满意.

  2. Cerebrospinal fluid abnormalities in HIV-negative patients with secondary and early latent syphilis and serum VDRL ≥ 1:32

    Maciej Pastuszczak; Jacek Zeman; Jaworek, Andrzej K; Anna Wojas-Pelc

    2013-01-01

    Background : Syphilis is caused by a spirochete Treponema pallidum. Invasion of the central nervous system (CNS) by T. pallidum may appear early during the course of disease. The diagnosis of confirmed neurosyphilis is based on the reactive Venereal Disease Research Laboratory (VDRL) in cerebrospinal fluid (CSF). Recent studies indicated that serum RPR ≥ 1:32 are associated with higher risk of reactivity of CSF VDRL. Aims : The main aim of the current study was to assess cerebrospinal fluid s...

  3. Congenital Abnormalities

    ... blood flow to the fetus impair fetal growth. Alcohol consumption and certain drugs during pregnancy significantly increase the risk that a baby will be born with abnormalities (e.g. fetal alcohol spectrum disorders ). Eating raw or uncooked foods during pregnancy can also be dangerous to health of the ...

  4. Neurohumoral fluid regulation in chronic liver disease

    Møller, Søren; Henriksen, Jens Henrik Sahl

    1998-01-01

    Impaired homeostasis of the blood volume, with increased fluid and sodium retention, is a prevailing element in the deranged systemic and splanchnic haemodynamics in patients with liver disease. In this review, some basic elements of the circulatory changes that take place and of neurohumoral fluid...... regulation are outlined in order to provide an update of recent investigations on the neuroendocrine compensation of circulatory and volume dysfunction in chronic liver disease. The underlying pathophysiology is a systemic vasodilatation in which newly described potent vasoactive substances such as nitric...... and lungs. It is still an enigma why patients with chronic liver disease are at the same time overloaded and functional hypovolaemic with a hyperdynamic, hyporeactive circulation. Further research is needed to find the solution to this apparent haemodynamic conflict concerning the abnormal...

  5. Cellular Homeostasis and Aging.

    Hartl, F Ulrich

    2016-06-01

    Aging and longevity are controlled by a multiplicity of molecular and cellular signaling events that interface with environmental factors to maintain cellular homeostasis. Modulation of these pathways to extend life span, including insulin-like signaling and the response to dietary restriction, identified the cellular machineries and networks of protein homeostasis (proteostasis) and stress resistance pathways as critical players in the aging process. A decline of proteostasis capacity during aging leads to dysfunction of specific cell types and tissues, rendering the organism susceptible to a range of chronic diseases. This volume of the Annual Review of Biochemistry contains a set of two reviews addressing our current understanding of the molecular mechanisms underlying aging in model organisms and humans. PMID:27050288

  6. Water Homeostasis: Evolutionary Medicine

    Zeidel, Mark L.

    2012-01-01

    As a major component of homeostasis, all organisms regulate the water composition of various compartments. Through the selective use of barrier membranes and surface glycoproteins, as well as aquaporin water channels, organisms ranging from Archaebacteria to humans can vary water permeabilities across their cell membranes by 4 to 5 orders of magnitude. In barrier epithelia the outer, or exofacial, leaflet acts as the main resistor to water flow; this leaflet restricts water flow by minimizing...

  7. Homeostasis Hombre-Naturaleza

    Stephano Betancourt

    2016-06-01

    Full Text Available La tendencia al equilibrio en la naturaleza y el flujo energético entre los organismos y suambiente; resulta de vital importancia para la supervivencia de estos últimos. Cuando seda una mirada antropocéntrica a esta interacción, se genera un enfoque reduccionista de losfactores que influyen para mantener la tendencia al equilibrio. Por consiguiente, el sostenerlo inteligible de las interacciones de los elementos que conforman nuestra existencia es unpunto clave de la compleja relación, entre el ser humano y su entorno, para poder permitiruna homeostasis entre ellos.

  8. Homeostasis in anorexia nervosa

    Per eSodersten

    2014-08-01

    Full Text Available Brainstem and hypothalamic orexigenic/anorexigenic networks are thought to maintain body weight homeostasis in response to hormonal and metabolic feedback from peripheral sites. This approach has not been successful in managing over- and underweight patients. It is suggested that concept of homeostasis has been misinterpreted; rather than exerting control, the brain permits eating in proportion to the amount of physical activity necessary to obtain food. In support, animal experiments have shown that while a hypothalamic orexigen excites eating when food is abundant, it inhibits eating and stimulates foraging when food is in short supply. As the physical price of food approaches zero, eating and body weight increase without constraints. Conversely, in anorexia nervosa body weight is homeostatically regulated, the high level of physical activity in anorexia is displaced hoarding for food that keeps body weight constantly low. A treatment based on this point of view, providing patients with computerized mealtime support to re-establish normal eating behavior, has brought 75% of patients with eating disorders into remission, reduced the rate of relapse to 10%, and eliminated mortality.

  9. Autophagy and intestinal homeostasis.

    Patel, Khushbu K; Stappenbeck, Thaddeus S

    2013-01-01

    Nutrient absorption is the basic function that drives mammalian intestinal biology. To facilitate nutrient uptake, the host's epithelial barrier is composed of a single layer of cells. This constraint is problematic, as a design of this type can be easily disrupted. The solution during the course of evolution was to add numerous host defense mechanisms that can help prevent local and systemic infection. These mechanisms include specialized epithelial cells that produce a physiochemical barrier overlying the cellular barrier, robust and organized adaptive and innate immune cells, and the ability to mount an inflammatory response that is commensurate with a specific threat level. The autophagy pathway is a critical cellular process that strongly influences all these functions. Therefore, a fundamental understanding of the components of this pathway and their influence on inflammation, immunity, and barrier function will facilitate our understanding of homeostasis in the gastrointestinal tract. PMID:23216414

  10. 脐血中 Caspase7蛋白在羊水量异常产妇中的表达%Expression of Caspase7 in umbilical serum of pregnant women with abnormal amniotic fluid

    李小琴; 白彩云

    2016-01-01

    Objective To explore the difference in expression of Caspase 7 in umbilical serum between pregnant women with abnormal amniotic fluid and normal pregnant women .Methods ELISA was performed to determine the concentration of Caspase 7 protein in umbilical serum of 30 cases of oligohydramnios , 30 cases of polyhydramnios and 30 normal cases .Results Caspase7 was positively expressed in umbilical serum of three groups.The expression of Caspase7 was higher in the oligohydramnios group (160.2 ±25.8 ng/mL) than in the normal group (142.9 ±18.4 ng/mL), and there was significant difference (t=2.99,P<0.05).The expression of Caspase7 was lower in the polyhydramnios group (119.2 ±21.5 ng/mL) than in the normal group (142.9 ±18.4 ng/mL) with significant difference (t=4.59, P<0.05 ) .Conclusion The expression of Caspase 7 in umbilical serum of pregnant women of oligohydramnios and polyhydramnios is abnormal, which indicates that it might be correlated with abnormal amniotic fluid .%目的:探讨Caspase7蛋白在羊水量异常和正常的产妇血清中的表达差异。方法采用酶联免疫吸附法( ELISA)分别检测30例羊水过少、30例羊水过多和30例羊水量正常产妇脐带血中Caspase7蛋白表达水平的情况,并加以分析。结果Caspase7蛋白在3组产妇血清中均有阳性表达。羊水过少组血清中Caspase7蛋白平均浓度(160.2±25.8ng/mL)比对照组高(142.9±18.4ng/mL),差异有统计学意义(t=2.99,P<0.05)。羊水过多组血清中Caspase7蛋白平均浓度(119.2±21.5ng/mL)比对照组低(142.9±18.4ng/mL),差异也有统计学意义(t=4.59,P<0.05)。结论羊水过少或过多产妇血清中Caspase7蛋白表达异常,提示其可能与羊水量异常的发生有关。

  11. Physiology of leptin: energy homeostasis, neuroendocrine function and metabolism

    Park, Hyeong-Kyu; Ahima, Rexford S.

    2014-01-01

    Leptin is secreted by adipose tissue and regulates energy homeostasis, neuroendocrine function, metabolism, immune function and other systems through its effects on the central nervous system and peripheral tissues. Leptin administration has been shown to restore metabolic and neuroendocrine abnormalities in individuals with leptin-deficient states, including hypothalamic amenorrhea and lipoatrophy. In contrast, obese individuals are resistant to leptin. Recombinant leptin is beneficial in pa...

  12. [Pre-anesthetic fluid and food intake- current recommendations].

    Schmitz, Achim; Schmidt, Alexander R

    2014-11-12

    Preoperative fasting is essential to reduce the risk of a perioperative pulmonary aspiration in patients undergoing anaesthesia for elective surgery. Evidence and expert opinion-based guidelines suggest two, four and six hours of fasting for clear fluids, breast milk and light meals/non-clear fluids respectively to improve anaesthesia safety, patient's comfort and homeostasis. Prolonged fasting is observed in daily clinical routine but should be prevented since there are no benefits. Abnormal gastric emptying has an impact on preoperative fasting times and the choice of the anaesthesia technique. A safe anaesthesia technique is most important since gastric emptying differs in patients and there is no guarantee that the stomach is empty after fasting according to guidelines. PMID:25391744

  13. Urine - abnormal color

    ... medlineplus.gov/ency/article/003139.htm Urine - abnormal color To use the sharing features on this page, please enable JavaScript. The usual color of urine is straw-yellow. Abnormally colored urine ...

  14. Homeostasis of T Cell Diversity

    Vinay S. Mahajan; Ilya B. Leskov; Jianzhu Chen

    2005-01-01

    T cell homeostasis commonly refers to the maintenance of relatively stable T cell numbers in the peripheral lymphoid organs. Among the large numbers of T cells in the periphery, T cells exhibit structural diversity, I.e., the expression of a diverse repertoire of T cell receptors (TCRs), and functional diversity, I.e., the presence of T cells at na(I)ve, effector, and memory developmental stages. Although the homeostasis of T cell numbers has been extensively studied, investigation of the mechanisms underlying the maintenance of structural and functional diversity of T cells is still at an early stage. The fundamental feature throughout T cell development is the interaction between the TCR and either self or foreign peptides in association with MHC molecules. In this review, we present evidence showing that homeostasis of T cell number and diversity is mediated through competition for limiting resources.The number of T cells is maintained through competition for limiting cytokines, whereas the diversity of T cells is maintained by competition for self-peptide-MHC complexes. In other words, diversity of the self-peptide repertoire limits the structural (TCR) diversity of a T cell population. We speculate that cognate low affinity self-peptides,acting as weak agonists and antagonists, regulate the homeostasis of T cell diversity whereas non-cognate or null peptides which are extremely abundant for any given TCR, may contribute to the homeostasis of T cell number by providing survival signals. Moreover, self-peptides and cytokines may form specialized niches for the regulation of T cell homeostasis.

  15. Homeostasis of T Cell Diversity

    VinayS.Mahajan; IlyaB.Leskov; JianzhuChen

    2005-01-01

    T cell homeostasis commonly refers to the maintenance of relatively stable T cell numbers in the peripheral lymphoid organs. Among the large numbers of T cells in the periphery, T cells exhibit structural diversity, i.e., the expression of a diverse repertoire of T cell receptors (TCRs), and functional diversity, i.e., the presence of T cells at naive, effector, and memory developmental stages. Although the homeostasis of T cell numbers has been extensively studied, investigation of the mechanisms underlying the maintenance of structural and functional diversity of T cells is still at an early stage. The fundamental feature throughout T cell development is the interaction between the TCR and either self or foreign peptides in association with MHC molecules. In this review, we present evidence showing that homeostasis of T cell number and diversity is mediated through competition for limiting resources. The number of T cells is maintained through competition for limiting cytokines, whereas the diversity of T cells is maintained by competition for self-peptide-MHC complexes. In other words, diversity of the self-peptide repertoire limits the structural (TCR) diversity of a T cell population. We speculate that cognate low affinity self-peptides, acting as weak agonists and antagonists, regulate the homeostasis of T cell diversity whereas non-cognate or null peptides which are extremely abundant for any given TCR, may contribute to the homeostasis of T cell number by providing survival signals. Moreover, self-peptides and cytokines may form specialized niches for the regulation of T cell homeostasis. Cellular & Molecular Immunology. 2005;2(1): 1-10.

  16. Leptin and Hormones: Energy Homeostasis.

    Triantafyllou, Georgios A; Paschou, Stavroula A; Mantzoros, Christos S

    2016-09-01

    Leptin, a 167 amino acid adipokine, plays a major role in human energy homeostasis. Its actions are mediated through binding to leptin receptor and activating JAK-STAT3 signal transduction pathway. It is expressed mainly in adipocytes, and its circulating levels reflect the body's energy stores in adipose tissue. Recombinant methionyl human leptin has been FDA approved for patients with generalized non-HIV lipodystrophy and for compassionate use in subjects with congenital leptin deficiency. The purpose of this review is to outline the role of leptin in energy homeostasis, as well as its interaction with other hormones. PMID:27519135

  17. Hypertension: Salt restriction, sodium homeostasis, and other ions

    Neeru Gupta; Kishan Kumar Jani; Nivedita Gupta

    2011-01-01

    Salt is composed of Sodium Chloride (NaCl) which in body water becomes essential electrolytes, viz., Sodium (Na >+ ) and Chloride (Cl >- ) ions, including in the blood and other extracellular fluids (ECF). Na >+ ions are necessary cations in muscle contractions and their depletion will effect all the muscles in body including smooth muscle contraction of blood vessels, a fact which is utilized in lowering the blood pressure. Na+ ions also hold water with them in the ECF. Na >+ homeostasis in ...

  18. Zebrafish as an animal model to study ion homeostasis

    Hwang, Pung-Pung; Chou, Ming-Yi

    2013-01-01

    Zebrafish (Danio rerio) possesses several advantages as an experimental organism, including the applicability of molecular tools, ease of in vivo cellular observation and functional analysis, and rapid embryonic development, making it an emerging model for the study of integrative and regulatory physiology and, in particular, the epithelial transport associated with body fluid ionic homeostasis. Zebrafish inhabits a hypotonic freshwater environment, and as such, the gills (or the skin, during...

  19. Protein degradation and iron homeostasis.

    Thompson, Joel W; Bruick, Richard K

    2012-09-01

    Regulation of both systemic and cellular iron homeostasis requires the capacity to sense iron levels and appropriately modify the expression of iron metabolism genes. These responses are coordinated through the efforts of several key regulatory factors including F-box and Leucine-rich Repeat Protein 5 (FBXL5), Iron Regulatory Proteins (IRPs), Hypoxia Inducible Factor (HIF), and ferroportin. Notably, the stability of each of these proteins is regulated in response to iron. Recent discoveries have greatly advanced our understanding of the molecular mechanisms governing iron-sensing and protein degradation within these pathways. It has become clear that iron's privileged roles in both enzyme catalysis and protein structure contribute to its regulation of protein stability. Moreover, these multiple pathways intersect with one another in larger regulatory networks to maintain iron homeostasis. This article is part of a Special Issue entitled: Cell Biology of Metals. PMID:22349011

  20. Sleeping, Waking, ... and Glucose Homeostasis

    Rudic R. Daniel; McNamara Peter; Curtis Anne-Maria; Boston Raymond C; Panda Satchidananda; Hogenesch John B; FitzGerald Garret A

    2004-01-01

    Circadian timing is generated through a unique series of autoregulatory interactions termed the molecular clock. Behavioral rhythms subject to the molecular clock are well characterized. We demonstrate a role for Bmal1 and Clock in the regulation of glucose homeostasis. Inactivation of the known clock components Bmal1 (Mop3) and Clock suppress the diurnal variation in glucose and triglycerides. Gluconeogenesis is abolished by deletion of Bmal1 and is depressed in Clock mutants, but the counte...

  1. Zinc bioavailability and homeostasis1234

    Hambidge, K Michael; Miller, Leland V; Westcott, Jamie E; Sheng, Xiaoyang; Krebs, Nancy F.

    2010-01-01

    Zinc has earned recognition recently as a micronutrient of outstanding and diverse biological, clinical, and global public health importance. Regulation of absorption by zinc transporters in the enterocyte, together with saturation kinetics of the absorption process into and across the enterocyte, are the principal means by which whole-body zinc homeostasis is maintained. Several physiologic factors, most notably the quantity of zinc ingested, determine the quantity of zinc absorbed and the e...

  2. Urine - abnormal color

    The usual color of urine is straw-yellow. Abnormally colored urine may be cloudy, dark, or blood-colored. ... Abnormal urine color may be caused by infection, disease, medicines, or food you eat. Cloudy or milky urine is a sign ...

  3. Alpha Klotho and phosphate homeostasis

    Bian, Ao; Xing, Changying; Hu, Ming Chang

    2014-01-01

    The Klotho family consists of three single-pass transmembrane proteins—αKlotho, βKlotho and γKlotho. Each of them combines with fibroblast growth factor (FGF) receptors (FGFRs) to form receptor complexes for various FGF’s. αKlotho is a co-receptor for physiological FGF23 signaling and appears essential for FGF23-mediated regulation of mineral metabolism. αKlotho protein also plays a FGF23-independent role in phosphate homeostasis. Animal experimental studies and clinical observations have dem...

  4. Chromosomal Abnormalities in ADHD

    J Gordon Millichap

    2002-07-01

    Full Text Available The prevalence of fragile X syndrome, velocardiofacial syndrome (VCFS, and other cytogenetic abnormalities among 100 children (64 boys with combined type ADHD and normal intelligence was assessed at the NIMH and Georgetown University Medical Center.

  5. Chromosomal abnormalities and autism

    Farida El-Baz

    2016-01-01

    Conclusion: Chromosomal abnormalities were not detected in the studied autistic children, and so the relation between the genetics and autism still needs further work up with different study methods and techniques.

  6. Karyotype analysis of amniotic fluid cells and comparison of chromosomal abnormality rate during second trimester%孕中期羊水细胞染色体核型分析及其异常核型发生率的比较

    张月萍; 伍俊萍; 李笑天; 雷彩霞; 徐建忠; 殷民

    2011-01-01

    ,占全部异常核型的35.6%( 138/388),其次为常染色体平衡性结构重排为20.6% (80/388)、嵌合体为12.4% (48/388)、18三体为11.3% (44/388),其他较常见的异常核型包括常染色体非平衡性结构重排和45,X0,各为4.1%(16/388),47,XXY为3.9%(15/388)。(3)父母淋巴细胞核型分析:153个胎儿进行了其父母淋巴细胞的核型分析,并最终确定了胎儿异常核型来源:家族性异常58个,新发生的异常95个。78个胎儿的荧光原位杂交技术诊断结果与G显带核型全部一致,其中2个为21三体。结论不同检查指征孕妇的胎儿异常核型的构成不同;孕中期胎儿异常核型种类繁多,致畸风险与异常核型种类有关。%Objective To investigate the karyotypes of amiotic fluid cells and compare the incidence of chromosomal abnormality as well as to evaluate the clinical significance of abnormal karyotypes. Methods A total of 13 648 pregnant women came to Shanghai Jiai Genetics and IVF Institute, Obstetrics and Gynecology Hospital, Fuclan University to do amniocentesis from September 1998 to November 2010, and 13 795 amniotic fluid specimens were successfully extracted and cultured, thus 13 795 fetuses received karyotype diagnosis. These fetuses were grouped according to different indications. If maternal age was ≥ 35, the fetuses were grouped into the advanced maternal age group (4065) ; and if maternal serum screening test revealed high-risk of trisomy 18 or trisomy 21, the fetuses were grouped into the high-risk serum screening group (6462) ; and those with abnormal signs of ultrasound screening were grouped into the abnormal ultrasound signs group (1539); and if either of the parents was with chromosome abnormalities, the fetus was grouped into the paternal/maternal abnormality group ( 108 ) ; whereas the remainder were grouped in other factors group ( 1621 ). The amniotic fluid cells were in-situ cultured on coverslips, harvested by conventional G-banded methods

  7. Neurological abnormalities predict disability

    Poggesi, Anna; Gouw, Alida; van der Flier, Wiesje;

    2014-01-01

    To investigate the role of neurological abnormalities and magnetic resonance imaging (MRI) lesions in predicting global functional decline in a cohort of initially independent-living elderly subjects. The Leukoaraiosis And DISability (LADIS) Study, involving 11 European centres, was primarily aimed...... at evaluating age-related white matter changes (ARWMC) as an independent predictor of the transition to disability (according to Instrumental Activities of Daily Living scale) or death in independent elderly subjects that were followed up for 3 years. At baseline, a standardized neurological examination...... abnormality independently predicted transition to disability or death [HR (95 % CI) 1.53 (1.01-2.34)]. The hazard increased with increasing number of abnormalities. Among MRI lesions, only ARWMC of severe grade independently predicted disability or death [HR (95 % CI) 2.18 (1.37-3.48)]. In our cohort...

  8. Epigenetic Regulation of Cholesterol Homeostasis

    Steve eMeaney

    2014-09-01

    Full Text Available Although best known as a risk factor for cardiovascular disease, cholesterol is a vital component of all mammalian cells. In addition to key structural roles, cholesterol is a vital biochemical precursor for numerous biologically important compounds including oxysterols and bile acids, as well as acting as an activator of critical morphogenic systems (e.g. the Hedgehog system. A variety of sophisticated regulatory mechanisms interact to coordinate the overall level of cholesterol in cells, tissues and the entire organism. Accumulating evidence indicates that in additional to the more ‘traditional’ regulatory schemes, cholesterol homeostasis is also under the control of epigenetic mechanisms such as histone acetylation and DNA methylation. The available evidence supporting a role for these mechanisms in the control of cholesterol synthesis, elimination, transport and storage are the focus of this review.

  9. Temporal pole signal abnormality on MR imaging in temporal lobe epilepsy with hippocampal sclerosis: a fluid-attenuated inversion-recovery study Anormalidade de sinal na imagem por RM do pólo temporal na epilepsia do lobo temporal com esclerose hipocampal: um estudo pela seqüência inversão recuperação com supressão da água livre (FLAIR)

    Henrique Carrete Junior; Nitamar Abdala; Kátia Lin; Luís Otávio Caboclo; Ricardo Silva Centeno; Américo Ceiki Sakamoto; Jacob Szjenfeld; Roberto Gomes Nogueira; Elza Márcia Targas Yacubian

    2007-01-01

    OBJECTIVE: To determine the frequency and regional involvement of temporal pole signal abnormality (TPA) in patients with hippocampal sclerosis (HS) using fluid-attenuated inversion-recovery (FLAIR) MR imaging, and to correlate this feature with history. METHOD: Coronal FLAIR images of the temporal pole were assessed in 120 patients with HS and in 30 normal subjects, to evaluate gray-white matter demarcation. RESULTS: Ninety (75%) of 120 patients had associated TPA. The HS side made differenc...

  10. A prospective clinical study of feto-maternal outcome in pregnancies with abnormal liquor volume

    Rutwa J. Chavda; Hardev B. Saini

    2014-01-01

    Background: Evaluating feto-maternal outcome in pregnancies with abnormal liquor volume. Methods: 200 pregnant subjects between 20 and 42 weeks of gestation, who were clinically suspected to have an abnormal amniotic fluid volume (oligohydramnios or polyhydramnios) were subjected to ultrasonographic (USG) assessment of amniotic fluid index. The subjects were closely monitored during pregnancy, labour and puerperium. Results: Ultrasonically, abnormal liquor volume was confirmed in 90-93...

  11. Temporal pole signal abnormality on MR imaging in temporal lobe epilepsy with hippocampal sclerosis: a fluid-attenuated inversion-recovery study; Anormalidade de sinal na imagem por RM do polo temporal na epilepsia do lobo temporal com esclerose hipocampal: um estudo pela sequencia inversao recuperacao com supressao da agua livre (FLAIR)

    Carrete Junior, Henrique; Abdala, Nitamar; Szjenfeld, Jacob; Nogueira, Roberto Gomes [Universidade Federal de Sao Paulo (UNIFESP-EPM), Sao Paulo, SP (Brazil). Dept. de Diagnostico por Imagem; Lin, Katia; Caboclo, Luis Otavio; Centeno, Ricardo Silva; Sakamoto, Americo Ceiki; Yacubian, Elza Marcia Targas [Universidade Federal de Sao Paulo (UNIFESP-EPM), Sao Paulo, SP (Brazil). Dept. de Neurologia e Neurocirurgia

    2007-09-15

    Objective: To determine the frequency and regional involvement of temporal pole signal abnormality (TPA) in patients with hippocampal sclerosis (HS) using fluid-attenuated inversion-recovery (FLAIR) MR imaging, and to correlate this feature with history. Method: Coronal FLAIR images of the temporal pole were assessed in 120 patients with HS and in 30 normal subjects, to evaluate gray-white matter demarcation. Results: Ninety (75%) of 120 patients had associated TPA. The HS side made difference regarding the presence of TPA, with a left side prevalence (p=0.04, {chi}{sup 2} test). The anteromedial zone of temporal pole was affected in 27 (30%) out of 90 patients. In 63 (70%) patients the lateral zone were also affected. Patients with TPA were younger at seizure onset (p=0.018), but without association with duration of epilepsy. Conclusion: Our FLAIR study show temporal pole signal abnormality in 3/4 of patients with HS, mainly seen on the anteromedial region, with a larger prevalence when the left hippocampus was involved. (author)

  12. Pancreatic regulation of glucose homeostasis.

    Röder, Pia V; Wu, Bingbing; Liu, Yixian; Han, Weiping

    2016-01-01

    In order to ensure normal body function, the human body is dependent on a tight control of its blood glucose levels. This is accomplished by a highly sophisticated network of various hormones and neuropeptides released mainly from the brain, pancreas, liver, intestine as well as adipose and muscle tissue. Within this network, the pancreas represents a key player by secreting the blood sugar-lowering hormone insulin and its opponent glucagon. However, disturbances in the interplay of the hormones and peptides involved may lead to metabolic disorders such as type 2 diabetes mellitus (T2DM) whose prevalence, comorbidities and medical costs take on a dramatic scale. Therefore, it is of utmost importance to uncover and understand the mechanisms underlying the various interactions to improve existing anti-diabetic therapies and drugs on the one hand and to develop new therapeutic approaches on the other. This review summarizes the interplay of the pancreas with various other organs and tissues that maintain glucose homeostasis. Furthermore, anti-diabetic drugs and their impact on signaling pathways underlying the network will be discussed. PMID:26964835

  13. FGF23-mediated regulation of systemic phosphate homeostasis: is Klotho an essential player?

    RAZZAQUE, M. Shawkat

    2008-01-01

    Understanding the physiological regulation of mineral ion metabolism is essential for determining the pathomechanisms of skeletal, vascular, and renal diseases associated with an abnormal regulation of calcium and phosphate homeostasis. Normal calcium and phosphate balance is delicately maintained by endocrine factors that coordinate to influence the functions of the intestine, bone, parathyroid gland, and kidney. Under physiological conditions, the kidneys play an important role in maintaini...

  14. Abnormal ionization in sonoluminescence

    张文娟; 安宇

    2015-01-01

    Sonoluminescence is a complex phenomenon, the mechanism of which remains unclear. The present study reveals that an abnormal ionization process is likely to be present in the sonoluminescing bubble. To fit the experimental data of previous studies, we assume that the ionization energies of the molecules and atoms in the bubble decrease as the gas density increases and that the decrease of the ionization energy reaches about 60%–70%as the bubble flashes, which is difficult to explain by using previous models.

  15. Ultrasonography of splenic abnormalities

    Ming-Jen Chen; Ming-Jer Huang; Wen-Hsiung Chang; Tsang-En Wang; Horng-Yuan Wang; Cheng-Hsin Chu; Shee-Chan Lin; Shou-Chuan Shih

    2005-01-01

    AIM: This report gives a comprehensive overview of ultrasonography of splenic abnormalities. Certain ultrasonic features are also discussed with pathologic correlation.METHODS: We review the typical ultrasonic characteristics of a wide range of splenic lesions, illustrating them with images obtained in our institution from 2000 to 2003.One hundred and three patients (47 men, 56 women),with a mean age of 54 years (range 9-92 years), were found to have an abnormal ultrasonic pattern of spleen.RESULTS: We describe the ultrasonic features of various splenic lesions such as accessory spleen, splenomegaly,cysts, cavernous hemangiomas, lymphomas, abscesses,metastatic tumors, splenic infarctions, hematomas, and rupture, based on traditional gray-scale and color Doppler sonography.CONCLUSION: Ultrasound is a widely available, noninvasive,and useful means of diagnosing splenic abnormalities. A combination of ultrasonic characteristics and clinical data may provide an accurate diagnosis. If the US appearance alone is not enough, US may also be used to guide biopsy of suspicious lesions.

  16. Dopaminergic drugs in type 2 diabetes and glucose homeostasis.

    Lopez Vicchi, Felicitas; Luque, Guillermina Maria; Brie, Belen; Nogueira, Juan Patricio; Garcia Tornadu, Isabel; Becu-Villalobos, Damasia

    2016-07-01

    The importance of dopamine in central nervous system function is well known, but its effects on glucose homeostasis and pancreatic β cell function are beginning to be unraveled. Mutant mice lacking dopamine type 2 receptors (D2R) are glucose intolerant and have abnormal insulin secretion. In humans, administration of neuroleptic drugs, which block dopamine receptors, may cause hyperinsulinemia, increased weight gain and glucose intolerance. Conversely, treatment with the dopamine precursor l-DOPA in patients with Parkinson's disease reduces insulin secretion upon oral glucose tolerance test, and bromocriptine improves glycemic control and glucose tolerance in obese type 2 diabetic patients as well as in non diabetic obese animals and humans. The actions of dopamine on glucose homeostasis and food intake impact both the autonomic nervous system and the endocrine system. Different central actions of the dopamine system may mediate its metabolic effects such as: (i) regulation of hypothalamic noradrenaline output, (ii) participation in appetite control, and (iii) maintenance of the biological clock in the suprachiasmatic nucleus. On the other hand, dopamine inhibits prolactin, which has metabolic functions; and, at the pancreatic beta cell dopamine D2 receptors inhibit insulin secretion. We review the evidence obtained in animal models and clinical studies that posited dopamine receptors as key elements in glucose homeostasis and ultimately led to the FDA approval of bromocriptine in adults with type 2 diabetes to improve glycemic control. Furthermore, we discuss the metabolic consequences of treatment with neuroleptics which target the D2R, that should be monitored in psychiatric patients to prevent the development in diabetes, weight gain, and hypertriglyceridemia. PMID:26748034

  17. 山东东营车镇凹陷古近系流体异常高压及其对深层碎屑岩储集层的影响%Fluid abnormal overpressure and its influence on deep clastic reservoir of the Paleogene in Chezhen Sag of Dongying, Shandong Province

    鲜本忠; 吴采西; 佘源琦

    2011-01-01

    受流体异常高压影响而发育的异常孔隙(砂)砾岩储集层成为深层油气储集层和油气勘探研究的热点之一.测井、钻井及试油结果揭示,车镇凹陷古近系沙河街组广泛存在流体异常高压,且与(砂)砾岩储集层含油性及产能具有密切关系.在试油地层压力实测数据标定下,利用测井资料等效深度法对古近系沙河街组分层系、分地区进行了地层压力计算.计算结果表明,古近系沙河街组三段下亚段(Esx3)地层压力异常程度最大,剩余地层压力达15-30 MPa.重点钻井中(砂)砾岩储集层孔隙度与对应层段剩余地层压力统计分析表明,地层压力在5 MPa以上时开始对孔隙度产生影响,每增加5 MPa孔隙度大约增大2%,据此推测Esx3由于异常高压的存在,(砂)砾岩储集层孔隙度可增加4%~10%.结合微观储集层特征和测井资料的孔隙度解释结果,分析导致该区深层储集层储集性能得以改善的原因包括:(1)异常高压有利于原生孔隙及早期次生孔隙的保存;(2)超压环境有利于酸性地层水进入储集层形成溶蚀孔隙;(3)流体异常高压有利于微裂缝的产生,增强孔隙间连通性和渗流能力.%Sandstone and conglomerate reservoir affected by fluid abnormal overpressure in deep layer is one of the focuses in petroleum exploration and reservoir study. Drilling and oil production test data show that abnormal pressure exists widely in the Paleogene Shahejie Formation, and has closely related with oil-bearing and oil productivity of the sandstone and conglomerate reservoir. In this study, formation pressure in different strata and different zones were calculated with equivalent depth method using logging data calibrated by oil production test data. Calculating results show that formation pressure in the lower Submember of Member 3 of Shahejie Formation (Esx3) is the largest, and its residual formation pressure equals 15-30 MPa. According to the statistics

  18. Orm family proteins mediate sphingolipid homeostasis

    Breslow, David K; Collins, Sean R; Bodenmiller, Bernd;

    2010-01-01

    expression or mutations to their phosphorylation sites cause dysregulation of sphingolipid metabolism. Our work identifies the Orm proteins as critical mediators of sphingolipid homeostasis and raises the possibility that sphingolipid misregulation contributes to the development of childhood asthma....

  19. The role of malate in plant homeostasis

    Finkemeier, Iris; Sweetlove, Lee J.

    2009-01-01

    Malate is a central metabolite of the plant cell with important roles in plant physiology and metabolism. Here, we summarize the most recent advances in our understanding of malate homeostasis in central metabolism, guard cell functioning, and root exudation.

  20. The role of sirtuins in cellular homeostasis.

    Kupis, Wioleta; Pałyga, Jan; Tomal, Ewa; Niewiadomska, Ewa

    2016-09-01

    Sirtuins are evolutionarily conserved nicotinamide adenine dinucleotide (NAD(+))-dependent lysine deacylases or ADP-ribosyltransferases. These cellular enzymes are metabolic sensors sensitive to NAD(+) levels that maintain physiological homeostasis in the animal and plant cells. PMID:27154583

  1. Iron Homeostasis and the Inflammatory Response

    Wessling-Resnick, Marianne

    2010-01-01

    Iron and its homeostasis are intimately tied to the inflammatory response. The adaptation to iron deficiency, which confers resistance to infection and improves the inflammatory condition, underlies what is probably the most obvious link: the anemia of inflammation or chronic disease. A large number of stimulatory inputs must be integrated to tightly control iron homeostasis during the inflammatory response. In order to understand the pathways of iron trafficking and how they are regulated, t...

  2. Iron Homeostasis and Nutritional Iron Deficiency123

    Theil, Elizabeth C.

    2011-01-01

    Nonheme food ferritin (FTN) iron minerals, nonheme iron complexes, and heme iron contribute to the balance between food iron absorption and body iron homeostasis. Iron absorption depends on membrane transporter proteins DMT1, PCP/HCP1, ferroportin (FPN), TRF2, and matriptase 2. Mutations in DMT1 and matriptase-2 cause iron deficiency; mutations in FPN, HFE, and TRF2 cause iron excess. Intracellular iron homeostasis depends on coordinated regulation of iron trafficking and storage proteins enc...

  3. Leptin therapy, insulin sensitivity, and glucose homeostasis

    Gilberto Paz-Filho; Claudio Mastronardi; Ma-Li Wong; Julio Licinio

    2012-01-01

    Glucose homeostasis is closely regulated not only by insulin, but also by leptin. Both hormones act centrally, regulating food intake and adiposity in humans. Leptin has several effects on the glucose-insulin homeostasis, some of which are independent of body weight and adiposity. Those effects of leptin are determined centrally in the hypothalamus and peripherally in the pancreas, muscles and liver. Leptin has beneficial effects on the glucose-insulin metabolism, by decreasing glycemia, insu...

  4. The SH2B1 obesity locus and abnormal glucose homeostasis

    Prudente, S; Copetti, M; Morini, E;

    2013-01-01

    The development of type 2 diabetes (T2D) is influenced both by environmental and by genetic determinants. Obesity is an important risk factor for T2D, mostly mediated by obesity-related insulin resistance. Obesity and insulin resistance are also modulated by the genetic milieu; thus, genes affect...

  5. The Abnormal Measures of Iron Homeostasis in Pediatric Obesity Are Associated with the Inflammation of Obesity

    Visintainer PaulF

    2009-08-01

    Full Text Available Objectives. To determine if the low iron state described in obese children is associated with the chronic inflammatory state seen in obesity. Study Design. Obese children age from 2 to 19 years seen at a weight management clinic were studied prospectively. Data were collected on age, gender, BMI, BMI -score, serum iron, ferritin, transferrin saturation, free erythrocyte protoporphyrin, high sensitivity creactive protein (hs-crp, and hemoglobin concentration. Results. 107 subjects were studied. Hs-crp levels correlated positively with BMI and BMI -score and negatively with serum iron . 11.2% of subjects had low serum iron. Median serum iron was significantly lower for subjects with American Heart Association high risk hs-crp values (3 mg/L compared to those with low risk hs-crp (1 mg/L, (65 mcg/dL versus 96 mcg/dL, . After adjusting for age, gender, and BMI -score, serum iron was still negatively associated with hs-crp . Conclusions. We conclude that the chronic inflammation of obesity results in the low iron state previously reported in obese children, similar to what is seen in other inflammatory diseases.

  6. Cranial computed tomographic abnormalities in leptomeningeal metastasis

    Sixty-four (57.6%) of 111 cancer patients with cerebrospinal fluid cytology positive for malignant cells had cranial computed tomographic (CT) scans within 2 weeks before or after a lumbar puncture. Twenty-two (34.3%) of the 64 had abnormal CT findings indicative of leptomeningeal metastasis. Thirteen (59.6%) of these 22 patients had associated parenchymal metastases. Recognition of leptomeningeal disease may alter the management of patients with parenchymal metastases. Communicating hydrocephalus in cancer patients should be considered to be related to leptomeningeal metastasis until proven otherwise

  7. Genetic disorders of surfactant homeostasis.

    Whitsett, Jeffrey A; Wert, Susan E; Xu, Yan

    2005-01-01

    Adaptation to air breathing at birth requires the precise orchestration of cellular processes to initiate fluid clearance, enhance pulmonary blood flow, and to synthesize and secrete pulmonary surfactant needed to reduce surface tension at the air-liquid interface in the alveoli. Genetic programs regulating the synthesis of the surfactant proteins and lipids required for the production and function of pulmonary surfactant are highly conserved across vertebrates, and include proteins that regulate the synthesis and packaging of pulmonary surfactant proteins and lipids. Surfactant proteins B and C (SP-B and -C) are small, uniquely hydrophobic proteins that play important roles in the stability and spreading of surfactant lipids in the alveolus. Deletion or mutations in SP-B and -C cause acute and chronic lung disease in neonates and infants. SP-B and -C are synthesized and packaged with surfactant phospholipids in lamellar bodies. Normal lamellar body formation requires SP-B and a member of the ATP-binding cassette (ABC) family of ATP-dependent membrane-associated transport proteins, ABCA3. Mutations in ABCA3 cause fatal respiratory disease in newborns and severe chronic lung disease in infancy. Expression of SP-B, -C, and ABCA3 are coregulated during late gestation by transcriptional programs influenced by thyroid transcription factor-1 and forkhead box a2, transcription factors that regulate both differentiation of the respiratory epithelium and transcription of genes required for perinatal adaptation to air breathing. PMID:15985750

  8. Secondary Abnormalities of Neurotransmitters in Infants with Neurological Disorders

    Garcia-Cazorla, A.; Serrano, M.; Perez-Duenas, B.; Gonzalez, V.; Ormazabal, A.; Pineda, M.; Fernandez-Alvarez, E.; Campistol, J. M. D.; Artuch, R. M. D.

    2007-01-01

    Neurotransmitters are essential in young children for differentiation and neuronal growth of the developing nervous system. We aimed to identify possible factors related to secondary neurotransmitter abnormalities in pediatric patients with neurological disorders. We analyzed cerebrospinal fluid (CSF) and biogenic amine metabolites in 56 infants…

  9. Fast FLAIR MRI in childhood white-matter abnormalities

    We compared a fast fluid-attenuated inversion recovery (FLAIR) pulse sequence with a dual-echo short tau fast inversion-recovery (DESTTIR) sequence in 20 children with white matter abnormalities. Although the overall image quality of DESTTIR images was better, the lesion-to-background contrast was significantly higher with the fast FLAIR pulse sequence and lesion detection was more accurate. (orig.)

  10. Leptin therapy, insulin sensitivity, and glucose homeostasis

    Gilberto Paz-Filho

    2012-01-01

    Full Text Available Glucose homeostasis is closely regulated not only by insulin, but also by leptin. Both hormones act centrally, regulating food intake and adiposity in humans. Leptin has several effects on the glucose-insulin homeostasis, some of which are independent of body weight and adiposity. Those effects of leptin are determined centrally in the hypothalamus and peripherally in the pancreas, muscles and liver. Leptin has beneficial effects on the glucose-insulin metabolism, by decreasing glycemia, insulinemia and insulin resistance. The understanding of the effects of leptin on the glucose-insulin homeostasis will lead to the development of leptin-based therapies against diabetes and other insulin resistance syndromes. In these review, we summarize the interactions between leptin and insulin, and their effects on the glucose metabolism.

  11. Melanocortin-4 receptor-regulated energy homeostasis.

    Krashes, Michael J; Lowell, Bradford B; Garfield, Alastair S

    2016-02-01

    The melanocortin system provides a conceptual blueprint for the central control of energetic state. Defined by four principal molecular components--two antagonistically acting ligands and two cognate receptors--this phylogenetically conserved system serves as a prototype for hierarchical energy balance regulation. Over the last decade the application of conditional genetic techniques has facilitated the neuroanatomical dissection of the melanocortinergic network and identified the specific neural substrates and circuits that underscore the regulation of feeding behavior, energy expenditure, glucose homeostasis and autonomic outflow. In this regard, the melanocortin-4 receptor is a critical coordinator of mammalian energy homeostasis and body weight. Drawing on recent advances in neuroscience and genetic technologies, we consider the structure and function of the melanocortin-4 receptor circuitry and its role in energy homeostasis. PMID:26814590

  12. The emerging role of the fibroblast growth factor-23-klotho axis in renal regulation of phosphate homeostasis.

    Razzaque, Mohammed S; Lanske, Beate

    2007-07-01

    Normal mineral ion homeostasis is tightly controlled by numerous endocrine factors that coordinately exert effects on intestine, kidney, and bone to maintain physiological balance. The importance of the fibroblast growth factor (FGF)-23-klotho axis in regulating mineral ion homeostasis has been proposed from recent research observations. Experimental studies suggest that 1) FGF23 is an important in vivo regulator of phosphate homeostasis, 2) FGF23 acts as a counter regulatory hormone to modulate the renal 1alpha-hydroxylase and sodium-phosphate cotransporter activities, 3) there is a trend of interrelationship between FGF23 and parathyroid hormone activities, 4) most of the FGF23 functions are conducted through the activation of FGF receptors, and 5) such receptor activation needs klotho, as a cofactor to generate downstream signaling events. These observations clearly suggest the emerging roles of the FGF23-klotho axis in maintaining mineral ion homeostasis. In this brief article, we will summarize how the FGF23-klotho axis might coordinately regulate normal mineral ion homeostasis, and how their abnormal regulation could severely disrupt such homeostasis to induce disease pathology. PMID:17592015

  13. Amniotic fluid index: correlation with amniotic fluid volume.

    Hoskins, I A; McGovern, P G; Ordorica, S A; Frieden, F J; Young, B K

    1992-01-01

    We calculated the amniotic fluid indexes (AFIs) of 310 women on 459 occasions. Normative data were analyzed and compared with data in several high-risk groups. In the normal gestations there was a progressive increase in AFI with advancing gestation until 32 weeks, after which there was a decline. The mean AFIs in abnormal gestations varied with the clinical diagnoses. These values were compared to those obtained by assessing amniotic fluid volume (AFV), that is a pocket more than 2 cm. There were 51 patients with abnormal AFVs. Forty-two had decreased fluid, six also had decreased AFIs; nine had increased AFVs and five (all with diabetes) also had increased AFIs. Thus, AFIs in normal pregnancies showed an orderly pattern of change with gestational age, and there was no accurate correlation between AFI and AFV. Thus, using AFV alone may lead to false interpretations of amniotic fluid status. PMID:1418123

  14. Redox Homeostasis in Pancreatic beta Cells

    Ježek, Petr; Dlasková, Andrea; Plecitá-Hlavatá, Lydie

    2012-01-01

    Roč. 2012, č. 2012 (2012), s. 932838. ISSN 1942-0900 R&D Projects: GA ČR(CZ) GAP302/10/0346; GA ČR(CZ) GPP304/10/P204 Institutional support: RVO:67985823 Keywords : beta cells * reactive oxygen species homeostasis * mitochondria Subject RIV: FB - Endocrinology, Diabetology, Metabolism, Nutrition Impact factor: 3.393, year: 2012

  15. Disruption of brain zinc homeostasis promotes the pathophysiological progress of Alzheimer's disease.

    Li, Lin-Bo; Wang, Zhan-You

    2016-06-01

    Zinc is abundant in the brain, where it plays an important role in synaptic plasticity and in learning; however, excessive zinc is toxic to neuronal cells, and dyshomeostasis of zinc in the brain is a contributing factor for Alzheimer's disease (AD). Deposition of zinc has been detected in senile plaques in the form of zinc-Aβ (β-amyloid) complexes. Recent studies have demonstrated that zinc exposure to the brain enhances β-amyloid precursor protein (APP) expression, amyloidogenic APP cleavage and plaque burden. Furthermore, alterations in zinc transporters, which are responsible for zinc homeostasis, occur in AD human brain and transgenic mouse models. These suggest that abnormal brain zinc homeostasis is involved in the pathophysiological progress of AD. PMID:26883958

  16. Systemic abnormalities in liver disease

    Minemura, Masami; Tajiri, Kazuto; Shimizu, Yukihiro

    2009-01-01

    Systemic abnormalities often occur in patients with liver disease. In particular, cardiopulmonary or renal diseases accompanied by advanced liver disease can be serious and may determine the quality of life and prognosis of patients. Therefore, both hepatologists and non-hepatologists should pay attention to such abnormalities in the management of patients with liver diseases.

  17. Abnormal sterol metabolism in holoprosencephaly: studies in cultured lymphoblasts

    Haas, D; Morgenthaler, J; Lacbawan, F; Long, B; Runz, H; Garbade, S F; Zschocke, J; Kelley, R I; Okun, J G; Hoffmann, G F; Muenke, M

    2007-01-01

    Background Holoprosencephaly (HPE) is the most common structural malformation of the developing forebrain in humans. The aetiology is heterogeneous and remains unexplained in approximately 75% of patients. Objective To examine cholesterol biosynthesis in lymphoblastoid cell lines of 228 patients with HPE, since perturbations of cholesterol homeostasis are an important model system to study HPE pathogenesis in animals. Methods An in vitro loading test that clearly identifies abnormal increase of C27 sterols in lymphoblast‐derived cells was developed using [2‐14C] acetate as substrate. Results 22 (9.6%) HPE cell lines had abnormal sterol pattern in the in vitro loading test. In one previously reported patient, Smith–Lemli–Opitz syndrome was diagnosed, whereas others also had clearly reduced cholesterol biosynthesis of uncertain cause. The mean (SD) cholesterol levels were 57% (15.3%) and 82% (4.7%) of total sterols in these cell lines and controls, respectively. The pattern of accumulating sterols was different from known defects of cholesterol biosynthesis. In six patients with abnormal lymphoblast cholesterol metabolism, additional mutations in genes known to be associated with HPE or chromosomal abnormalities were observed. Conclusions Impaired cholesterol biosynthesis may be a contributing factor in the cause of HPE and should be considered in the evaluation of causes of HPE, even if mutations in HPE‐associated genes have already been found. PMID:17237122

  18. Frequencies of fetal chromosomal abnormalities at prenatal diagnosis: 10 years experiences in a single institution.

    Park, S. Y.; J.W. Kim; Y.M. Kim; Kim, J.M.; Lee, M. H.; Lee, B. Y.; Han, J. Y.; Kim, M. Y.; Yang, J. H.; Ryu, H. M.

    2001-01-01

    We present frequencies of fetal chromosomal abnormalities in 4,907 prenatal cytogenetic examinations at Samsung Cheil Hospital from 1988 to 1997 for 10 yr duration. Prenatal karyotypes were undertaken in 3,913 amniotic fluid samples, 800 chorionic villi samples, and 194 percutaneous umbilical blood samples. The frequency of fetal abnormal karyotypes was 3.1% (150 cases). Numerical chromosome abnormalities were 87 cases (1.8%) and structural aberrations of chromosomes were 63 cases (1.3%). In ...

  19. Abnormal Liver Function Tests in an Anorexia Nervosa Patient and an Atypical Manifestation of Refeeding Syndrome

    Vootla, Vamshidhar R.; Daniel, Myrta

    2015-01-01

    Refeeding syndrome is defined as electrolyte and fluid abnormalities that occur in significantly malnourished patients when they are refed orally, enterally, or parenterally. The principal manifestations include hypophosphatemia, hypokalemia, vitamin deficiencies, volume overload and edema. This can affect multiple organ systems, such as the cardiovascular, pulmonary, or neurological systems, secondary to the above-mentioned abnormalities. Rarely, patients may develop gastrointestinal symptom...

  20. Hypertension: salt restriction, sodium homeostasis, and other ions.

    Gupta, Neeru; Jani, Kishan Kumar; Gupta, Nivedita

    2011-03-01

    Salt is composed of Sodium Chloride (NaCl) which in body water becomes essential electrolytes, viz., Sodium (Na⁺) and Chloride (Cl⁻) ions, including in the blood and other extracellular fluids (ECF). Na⁺ ions are necessary cations in muscle contractions and their depletion will effect all the muscles in body including smooth muscle contraction of blood vessels, a fact which is utilized in lowering the blood pressure. Na⁺ ions also hold water with them in the ECF. Na⁺ homeostasis in body is maintained by thirst (water intake), kidneys (urinary excretion) and skin (sweating). In Na⁺ withdrawal, body tries to maintain homeostasis as far as possible. However, in certain conditions (e.g., during exercise, intake of drugs and in disorders causing Syndrome of Inappropriate Anti Diuretic Hormone Secretion (SIADH), diuretics, diarrhea) coupled with moderate or severe dietary salt restriction (anorexia nervosa), hyponatremia can get precipitated. Hyponatremia is one end point in the spectrum of disorders caused by severe Na⁺ depletion whereas in moderate depletion it can cause hypohydration (or less total body water) and lower urinary volume (U v ). Moreover, salt sensitivity varies in various populations leading to different responses in relation to dietary Na⁺ intake. Diabetes and Hypertension often co-exist but Na⁺ withdrawal in salt sensitive subjects worsens diabetes though hypertension gets better and reverse occurs in salt loading. Therefore, Na⁺ or salt restriction may be non-physiological. In hypertensive subjects other alternatives to Na⁺ withdrawal could be Potassium (K⁺) and Calcium (Ca⁺²) supplementation. Further studies are required to monitor safety/side effects of salt restriction. PMID:23250294

  1. Hypertension: Salt restriction, sodium homeostasis, and other ions

    Neeru Gupta

    2011-01-01

    Full Text Available Salt is composed of Sodium Chloride (NaCl which in body water becomes essential electrolytes, viz., Sodium (Na >+ and Chloride (Cl >- ions, including in the blood and other extracellular fluids (ECF. Na >+ ions are necessary cations in muscle contractions and their depletion will effect all the muscles in body including smooth muscle contraction of blood vessels, a fact which is utilized in lowering the blood pressure. Na+ ions also hold water with them in the ECF. Na >+ homeostasis in body is maintained by thirst (water intake, kidneys (urinary excretion and skin (sweating. In Na >+ withdrawal, body tries to maintain homeostasis as far as possible. However, in certain conditions (e.g., during exercise, intake of drugs and in disorders causing Syndrome of Inappropriate Anti Diuretic Hormone Secretion (SIADH, diuretics, diarrhea coupled with moderate or severe dietary salt restriction (anorexia nervosa, hyponatremia can get precipitated. Hyponatremia is one end point in the spectrum of disorders caused by severe Na >+ depletion whereas in moderate depletion it can cause hypohydration (or less total body water and lower urinary volume (U v . Moreover, salt sensitivity varies in various populations leading to different responses in relation to dietary Na >+ intake. Diabetes and Hypertension often co-exist but Na >+ withdrawal in salt sensitive subjects worsens diabetes though hypertension gets better and reverse occurs in salt loading. Therefore, Na >+ or salt restriction may be non-physiological. In hypertensive subjects other alternatives to Na >+ withdrawal could be Potassium (K >+ and Calcium (Ca >2+ supplementation. Further studies are required to monitor safety/side effects of salt restriction.

  2. Transcranial electrical stimulation accelerates human sleep homeostasis.

    Davide Reato

    Full Text Available The sleeping brain exhibits characteristic slow-wave activity which decays over the course of the night. This decay is thought to result from homeostatic synaptic downscaling. Transcranial electrical stimulation can entrain slow-wave oscillations (SWO in the human electro-encephalogram (EEG. A computational model of the underlying mechanism predicts that firing rates are predominantly increased during stimulation. Assuming that synaptic homeostasis is driven by average firing rates, we expected an acceleration of synaptic downscaling during stimulation, which is compensated by a reduced drive after stimulation. We show that 25 minutes of transcranial electrical stimulation, as predicted, reduced the decay of SWO in the remainder of the night. Anatomically accurate simulations of the field intensities on human cortex precisely matched the effect size in different EEG electrodes. Together these results suggest a mechanistic link between electrical stimulation and accelerated synaptic homeostasis in human sleep.

  3. Homeostasis as the Mechanism of Evolution

    John S. Torday

    2015-09-01

    Full Text Available Homeostasis is conventionally thought of merely as a synchronic (same time servo-mechanism that maintains the status quo for organismal physiology. However, when seen from the perspective of developmental physiology, homeostasis is a robust, dynamic, intergenerational, diachronic (across-time mechanism for the maintenance, perpetuation and modification of physiologic structure and function. The integral relationships generated by cell-cell signaling for the mechanisms of embryogenesis, physiology and repair provide the needed insight to the scale-free universality of the homeostatic principle, offering a novel opportunity for a Systems approach to Biology. Starting with the inception of life itself, with the advent of reproduction during meiosis and mitosis, moving forward both ontogenetically and phylogenetically through the evolutionary steps involved in adaptation to an ever-changing environment, Biology and Evolution Theory need no longer default to teleology.

  4. Homeostasis as the Mechanism of Evolution.

    Torday, John S

    2015-01-01

    Homeostasis is conventionally thought of merely as a synchronic (same time) servo-mechanism that maintains the status quo for organismal physiology. However, when seen from the perspective of developmental physiology, homeostasis is a robust, dynamic, intergenerational, diachronic (across-time) mechanism for the maintenance, perpetuation and modification of physiologic structure and function. The integral relationships generated by cell-cell signaling for the mechanisms of embryogenesis, physiology and repair provide the needed insight to the scale-free universality of the homeostatic principle, offering a novel opportunity for a Systems approach to Biology. Starting with the inception of life itself, with the advent of reproduction during meiosis and mitosis, moving forward both ontogenetically and phylogenetically through the evolutionary steps involved in adaptation to an ever-changing environment, Biology and Evolution Theory need no longer default to teleology. PMID:26389962

  5. The cellular mechanisms of body iron homeostasis

    MARCO T NUÑEZ; MARCO A GARATE; MIGUEL ARREDONDO; VICTORIA TAPlA; PATRICIA MUÑOZ

    2000-01-01

    Cells tightly regulate iron levels through the activity of iron regulatory proteins (IRPs) that bind to RNA motifs called iron responsive elements (IREs). When cells become iron-depleted, IRPs bind to IREs present in the mRNAs of ferritin and the transferrin receptor, resulting in diminished translation of the ferritin mRNA and increased translation of the transferrin receptor mRNA. Similarly, body iron homeostasis is maintained through the control of intestinal iron absorption. Intestinal ep...

  6. Thiol redox homeostasis in neurodegenerative disease

    Gethin J. McBean

    2015-08-01

    Full Text Available This review provides an overview of the biochemistry of thiol redox couples and the significance of thiol redox homeostasis in neurodegenerative disease. The discussion is centred on cysteine/cystine redox balance, the significance of the xc− cystine–glutamate exchanger and the association between protein thiol redox balance and neurodegeneration, with particular reference to Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis and glaucoma. The role of thiol disulphide oxidoreductases in providing neuroprotection is also discussed.

  7. Oxidative Stress and Autophagy in Cardiovascular Homeostasis

    Morales, Cyndi R.; Pedrozo, Zully; Lavandero, Sergio; Hill, Joseph A.

    2014-01-01

    Significance: Autophagy is an evolutionarily ancient process of intracellular protein and organelle recycling required to maintain cellular homeostasis in the face of a wide variety of stresses. Dysregulation of reactive oxygen species (ROS) and reactive nitrogen species (RNS) leads to oxidative damage. Both autophagy and ROS/RNS serve pathological or adaptive roles within cardiomyocytes, depending on the context. Recent Advances: ROS/RNS and autophagy communicate with each other via both tra...

  8. The Commensal Microbiota Drives Immune Homeostasis

    Arrieta, Marie-Claire; Finlay, Barton Brett

    2012-01-01

    For millions of years, microbes have coexisted with eukaryotic cells at the mucosal surfaces of vertebrates in a complex, yet usually harmonious symbiosis. An ever-expanding number of reports describe how eliminating or shifting the intestinal microbiota has profound effects on the development and functionality of the mucosal and systemic immune systems. Here, we examine some of the mechanisms by which bacterial signals affect immune homeostasis. Focusing on the strategies that microbes use t...

  9. Skin - abnormally dark or light

    ... ency/article/003242.htm Skin - abnormally dark or light To use the sharing features on this page, ... the hands. The bronze color can range from light to dark (in fair-skinned people) with the ...

  10. Regulation of energy homeostasis via GPR120

    Atsuhiko eIchimura

    2014-07-01

    Full Text Available Free fatty acids (FFAs are fundamental units of key nutrients. FFAs exert various biological functions, depending on the chain length and degree of desaturation. Recent studies have shown that several FFAs act as ligands of G-protein-coupled receptors (GPCRs, activate intracellular signaling and exert physiological functions via these GPCRs. GPR120 (also known as free fatty acid receptor 4, FFAR4 is activated by unsaturated medium- to long-chain FFAs and has a critical role in various physiological homeostasis mechanisms such as incretin hormone secretion, food preference, anti-inflammation and adipogenesis. Recent studies showed that a lipid sensor GPR120 has a key role in sensing dietary fat in white adipose tissue and regulates the whole body energy homeostasis in both humans and rodents. Genetic study in human identified the loss-of-functional mutation of GPR120 associated with obesity and insulin resistance. In addition, dysfunction of GPR120 has been linked as a novel risk factor for diet-induced obesity. This review aims to provide evidence from the recent development in physiological function of GPR120 and discusses its functional roles in regulation of energy homeostasis and its potential as drug targets.

  11. Epigenetic regulation of iron homeostasis in Arabidopsis

    Xing, Jiewen; Wang, Tianya; Ni, Zhongfu

    2015-01-01

    Iron (Fe) is one of the most important microelement required for plant growth and development because of its unique property of catalyzing oxidation/reduction reactions. Iron deficiency impairs fundamental processes which could lead to a decrease in chlorophyll production and pollen fertility, thus influencing crop productivity and quality. However, iron in excess is toxic to the cell and is harmful to the plant. To exactly control the iron content in all tissues, plants have evolved many strategies to regulate iron homeostasis, which refers to 2 successive steps: iron uptake at the root surface, and iron distribution in vivo. In the last decades, a number of transporters and regulatory factors involved in this process have been isolated and identified. To cope with the complicated flexible environmental conditions, plants apply diverse mechanisms to regulate the expression and activity of these components. One of the most important mechanisms is epigenetic regulation of iron homeostasis. This review has been presented to provide an update on the information supporting the involvement of histone modifications in iron homeostasis and possible future course of the field. PMID:26313698

  12. Epigenetic regulation of iron homeostasis in Arabidopsis.

    Xing, Jiewen; Wang, Tianya; Ni, Zhongfu

    2015-01-01

    Iron (Fe) is one of the most important microelement required for plant growth and development because of its unique property of catalyzing oxidation/reduction reactions. Iron deficiency impairs fundamental processes which could lead to a decrease in chlorophyll production and pollen fertility, thus influencing crop productivity and quality. However, iron in excess is toxic to the cell and is harmful to the plant. To exactly control the iron content in all tissues, plants have evolved many strategies to regulate iron homeostasis, which refers to 2 successive steps: iron uptake at the root surface, and iron distribution in vivo. In the last decades, a number of transporters and regulatory factors involved in this process have been isolated and identified. To cope with the complicated flexible environmental conditions, plants apply diverse mechanisms to regulate the expression and activity of these components. One of the most important mechanisms is epigenetic regulation of iron homeostasis. This review has been presented to provide an update on the information supporting the involvement of histone modifications in iron homeostasis and possible future course of the field. PMID:26313698

  13. Fetal MR Imaging of Gastrointestinal Abnormalities.

    Furey, Elizabeth A; Bailey, April A; Twickler, Diane M

    2016-01-01

    Fetal magnetic resonance (MR) imaging plays an increasing and valuable role in antenatal diagnosis and perinatal management of fetal gastrointestinal (GI) abnormalities. Advances in MR imaging data acquisition and use of motion-insensitive techniques have established MR imaging as an important adjunct to obstetric ultrasonography (US) for fetal diagnosis. In this regard, MR imaging provides high diagnostic accuracy for antenatal diagnosis of common and uncommon GI pathologic conditions. In the setting of fetal GI disease, T1-weighted images demonstrate the amount and distribution of meconium, which is crucial to the diagnostic capability of fetal MR imaging. Specifically, knowledge of the T1 signal intensity characteristics of fetal meconium, the normal pattern of meconium with advancing gestational age, and the expected caliber of small and large bowel in the fetus is key to diagnosis of abnormalities of the GI tract. Use of ultrafast T2-weighted sequences for evaluation of the expected location and morphology of fluid-containing structures, including the stomach and small bowel, in the fetal abdomen further aids in diagnostic confidence. Uncommonly encountered fetal GI pathologic conditions, especially cloacal dysmorphology, may demonstrate characteristic MR imaging patterns, which may add additional information to that from fetal US, allowing improved fetal and neonatal management. This article discusses common indications for fetal MR imaging of the GI tract, imaging protocols for fetal GI MR imaging, the normal appearance of the fetal GI tract with advancing gestational age, and the imaging appearances of common fetal GI abnormalities, as well as uncommon fetal GI conditions with characteristic appearances. (©)RSNA, 2016. PMID:27163598

  14. MRI study on urinary abnormalities of fetus

    Objective: To illustrate the important complemental function of MRI in dignosing the urinary abnormalities of the fetus by analyzing MR features. Methods: MRI findings in 34 fetal urinary abnormalities were retrospectively analyzed. Results: Upper urinary tract dilatation was found in 12 cases: one case presented obstructed right renal dysplasia and was on the follow-up, postnatal MR imaging proved the duplex anomaly in one case, one case showed left PUJO on postnatal US imaging and prepared to surgery, 7 cases were normal on postnatal US imaging, 2 cases were lost to follow up. Bilateral urinary anomalies were found in 7 cases: Muhicystic renal dysplasia (n=3), Combined horseshoe kidney in 2 fetuses and bilateral renal aplasia in one case. Bilateral renal dysplasia was diagnosed in 2 cases, one was still bom and proved by autopsy and the other was lost to follow up. The case of bilateral renal agenesis displayed the appearance of sirenomelia on general specimen. The case of right renal agenesis associated contralateral kidney dyspalsia (n=1) was lost to follow up. MR imaging showed low signal intensity of lung and oligohydramnios in the bilateral anomalies. Unilateral urinary anomalies was found in 15 cases, including 9 cases of unilateral renal dysplasia. Two fetuses were aborted and 3 fetuses were proved with postnatal US or MR. One was lost to follow up; 3 cases were on the follow-up. There were 4 cases of unilateral renal agenesis, two fetuses were aborted and 2 fetuses were proved with postnatal US or MR imaging. The case of ectopic kidney was proved with postnatal US imaging. One case of urachal cyst was aborted without autopsy. In the unilateral anomalies, the volume of amniotic fluid was normal, and the fetal lung presented homogenious high signal intensity. Conclusion: As a complemental method, MRI is of great value in displaying and dignosing the urinary abnormalities of fetus. (authors)

  15. First trimester ultrasound screening of chromosomal abnormalities

    Trninić-Pjević Aleksandra

    2007-01-01

    Full Text Available Introduction: A retrocervical subcutaneous collection of fluid at 11-14 weeks of gestation, can be visualized by ultrasound as nuchal translucency (NT. Objective. To examine the distribution of fetal nuchal translucency in low risk population, to determine the detection rate of chromosomal abnormalities in the population of interest based on maternal age and NT measurement. Method. Screening for chromosomal defects, advocated by The Fetal Medicine Foundation (FMF, was performed in 1,341 pregnancies in the period January 2000 - April 2004. Initial risk for chromosomal defects (based on maternal and gestational age and corrected risk, after the NT measurement, were calculated. Complete data were collected from 1,048 patients. Results. Out of 1,048 pregnancies followed, 8 cases of Down’s syndrome were observed, 7 were detected antenatally and 6 out of 7 were detected due to screening that combines maternal age and NT measurement. According to our results, sensitivity of the screening for aneuploidies based on maternal age alone was 12.5% and false positive rate 13.1%, showing that screening based on NT measurement is of great importance. Screening by a combination of maternal age and NT, and selecting a screening-positive group for invasive testing enabled detection of 75% of fetuses with trisomy 21. Conclusion. In screening for chromosomal abnormalities, an approach which combines maternal age and NT is effective and increases the detection rate compared to the use of any single test. .

  16. Amniotic fluid embolism.

    Kaur, Kiranpreet; Bhardwaj, Mamta; Kumar, Prashant; Singhal, Suresh; Singh, Tarandeep; Hooda, Sarla

    2016-01-01

    Amniotic fluid embolism (AFE) is one of the catastrophic complications of pregnancy in which amniotic fluid, fetal cells, hair, or other debris enters into the maternal pulmonary circulation, causing cardiovascular collapse. Etiology largely remains unknown, but may occur in healthy women during labour, during cesarean section, after abnormal vaginal delivery, or during the second trimester of pregnancy. It may also occur up to 48 hours post-delivery. It can also occur during abortion, after abdominal trauma, and during amnio-infusion. The pathophysiology of AFE is not completely understood. Possible historical cause is that any breach of the barrier between maternal blood and amniotic fluid forces the entry of amniotic fluid into the systemic circulation and results in a physical obstruction of the pulmonary circulation. The presenting signs and symptoms of AFE involve many organ systems. Clinical signs and symptoms are acute dyspnea, cough, hypotension, cyanosis, fetal bradycardia, encephalopathy, acute pulmonary hypertension, coagulopathy etc. Besides basic investigations lung scan, serum tryptase levels, serum levels of C3 and C4 complements, zinc coproporphyrin, serum sialyl Tn etc are helpful in establishing the diagnosis. Treatment is mainly supportive, but exchange transfusion, extracorporeal membrane oxygenation, and uterine artery embolization have been tried from time to time. The maternal prognosis after amniotic fluid embolism is very poor though infant survival rate is around 70%. PMID:27275041

  17. Memetics clarification of abnormal behavior

    2007-01-01

    AIM: Biological medicine is hard to fully and scientifically explain the etiological factor and pathogenesis of abnormal behaviors; while, researches on philosophy and psychology (including memetics) are beneficial to better understand and explain etiological factor and pathogenesis of abnormal behaviors. At present, the theory of philosophy and psychology is to investigate the entity of abnormal behavior based on the views of memetics.METHODS: Abnormal behavior was researched in this study based on three aspects, including instinctive behavior disorder, poorly social-adapted behavior disorder and mental or body disease associated behavior disorder. Most main viewpoints of memetics were derived from "The Meme Machine", which was written by Susan Blackmore. When questions about abnormal behaviors induced by mental and psychological diseases and conduct disorder of teenagers were discussed, some researching achievements which were summarized by authors previously were added in this study, such as aggressive behaviors, pathologically aggressive behaviors, etc.RESULTS: The abnormal behaviors mainly referred to a part of people's substandard behaviors which were not according with the realistic social environment, culture background and the pathologic behaviors resulted from people's various psychological diseases. According to the theory of "meme", it demonstrated that the relevant behavioral obstacles of various psychological diseases, for example, the unusual behavior of schizophrenia, were caused, because the old meme was destroyed thoroughly but the new meme was unable to establish; psychoneurosis and personality disorder were resulted in hard establishment of meme; the behavioral obstacles which were ill-adapted to society, for example, various additional and homosexual behaviors, were because of the selfish replications and imitations of "additional meme" and "homosexual meme"; various instinct behavioral and congenital intelligent obstacles were not significance

  18. Practical approach to prenatal posterior fossa abnormalities using MRI

    This review focuses on the optimum use of fetal MRI as an additional imaging tool to sonographic data in posterior fossa (PF) abnormalities in the second and third trimesters of gestation. We have chosen three particular situations to demonstrate the value of MRI as a complementary investigation to US: (1) the pattern of increased fluid-filled space of the PF, (2) decreased cerebellar sonographic biometry and (3) the diagnosis of focal echogenic lesions of the cerebellum. For increased fluid-filled space of the PF and decreased cerebellar sonographic biometry, a practical approach is proposed, largely based on prenatal imaging, especially MRI. (orig.)

  19. Thyroid abnormality in perimenopausal women with abnormal uterine bleeding

    Prasanna Byna

    2015-11-01

    Full Text Available Background: AUB is a common but complicated clinical presentation and occurs in 15-20% of women between menarche to menopause and significantly affects the women's health. Women with thyroid dysfunction often have menstrual irregularities, infertility and increased morbidity during pregnancy. The objective of present study is to find the correlation between thyroid disorders and AUB in perimenopausal women attending gynecology OPD. Methods: In the present study, fifty five patients with AUB were included and were evaluated for the cause including thyroid abnormality. Thyroid function tests were done in all patients. Results: Among 55 patients, 12 patients were diagnosed as hypothyroidism and 7 as hyperthyroidism, women with AUB 36 (65.4% were euthyroid. Among 19 women with thyroid abnormality, heavy menstrual bleeding was seen in 8 (42% women, 6 (31.57% had polymenorrhagia, 5 (26.31% had oligomenorrhoea. The frequent menstrual abnormality in women with hypothyroidism (12 women was heavy menstrual bleeding in 5 (41.6% women, 3 (25% had oligomennorhoea, 4 (33.3% had polymenorrhagia. Out of 7 women with hyperthyroidism, 2 (28.57% had oligomenorrhoea, 3 (42.8% had heavy menstrual bleeding, 2 (28.57% had polymenorrhagia. In a total of 55 patients with AUB, 11 (20% had structural abnormalities in uterus and ovaries. 5 (9% had adenomyosis, 3 (5.4% had ovarian cysts, 3 (5.4% had fibroids. Conclusions: It is important to screen all women for thyroid abnormality who are presenting with AUB especially with non-structural causes of AUB. Correction of thyroid abnormalities also relieves AUB. This will avoid unnecessary hormonal treatment and surgery. [Int J Res Med Sci 2015; 3(11.000: 3250-3253

  20. Fluid Mechanics.

    Drazin, Philip

    1987-01-01

    Outlines the contents of Volume II of "Principia" by Sir Isaac Newton. Reviews the contributions of subsequent scientists to the physics of fluid dynamics. Discusses the treatment of fluid mechanics in physics curricula. Highlights a few of the problems of modern research in fluid dynamics. Shows that problems still remain. (CW)

  1. Abnormal Cervical Cancer Screening Test Results

    ... AQ FREQUENTLY ASKED QUESTIONS FAQ187 GYNECOLOGIC PROBLEMS Abnormal Cervical Cancer Screening Test Results • What is cervical cancer screening? • What causes abnormal cervical cancer screening test ...

  2. Surfactant abnormalities in infants with severe viral bronchiolitis.

    Dargaville, P A; South, M; McDougall, P N

    1996-01-01

    To determine whether abnormalities of pulmonary surfactant occur in infants with acute viral bronchiolitis, surfactant indices were measured in lung lavage fluid from 12 infants with severe bronchiolitis and eight infants without lung disease. Compared with controls, the bronchiolitis group showed deficiency of surfactant protein A (1.02 v 14.4 micrograms/ml) and disaturated phosphatidylcholine (35 v 1060 micrograms/ml) which resolved as the disease improved. Surfactant functional activity wa...

  3. EVALUATING MORTALITY RATE CAUSED BY ELECTROLYTE ABNORMALITIES IN PATIENTS HOSPITALIZED

    B. Khorasani

    2008-05-01

    Full Text Available Adjustment of composition of body fluids and electrolytes is one of the most important aspects of patients care. Sodium and Potassium are the most important body cations, the improper adjustment of them will cause sever disorders in neuromuscular, gastrointestinal, respiratory and cardiovascular systems. Acute renal failure indicated by increase in creatinine and nitrogen urea, brings an accumulation of fluids, salts and metabolites of nitrogen in body. This study intends to assess the status of electrolyte abnormalities and mortality rates of the patients hospitalized in ICU wards in our country. This is a descriptive and retrospective study on the records of 378 patients hospitalized in ICU. A questionnaire was prepared and the data were entered in SPSS system. They were statistically analyzed by using chi-square and fisher's Exact test methods. Out of 378 patients hospitalized in ICU, over 2/3 of them were male and over half of them were>45 years old. Frequency distribution of electrolyte abnormalities was as follows: Hyponatremia 59% hypernatremia 23% hypokalemia 37% hyperkalemia 28%, 35% and 21% of patients had respectively BUN and creatinine more than the normal range. 26% of patients hospitalized in ICU had nonsurgical problems and 74% of the patients had surgical problems. Average time of hospitalization in ICU was 85 days and mortality rate was 35%. The most common electrolyte abnormality was related to variation in serum sodium levels in the form of hyponatremia. And the highest prevalence electrolyte abnormality in dead patients was hyponatremia. This study proves that the prevalence of electrolyte abnormalities is directly related to mortality and increase in hospitalization period and those having undergone surgical operations during hospitalization in ICU, manifested more abnormalities.

  4. Neuroimaging abnormalities in Griscelli's disease

    Griscelli's disease is a rare autosomal recessive immunodeficiency syndrome. We report a 7-1/2-month-old white girl who presented with this syndrome, but initially without neurological abnormalities. Initial CT of the brain was normal. Despite haematological remission with chemotherapy, she developed neurological symptoms, progressing to coma. At this time, CT showed areas of coarse calcification in the globi pallidi, left parietal white matter and left brachium pontis. Hypodense areas were present in the genu and posterior limb of the internal capsule on the right side, as well as posterior aspects of both thalami, together with minimal generalised atrophy. MRI revealed areas of increased T2 signal and a focal area of abnormal enhancement in the subcortical white matter. Griscelli's disease should be added to the list of acquired neuroimaging abnormalities in infants. (orig.)

  5. Epididymis cholesterol homeostasis and sperm fertilizing ability

    Fabrice Saez; Aurélia Ouvrier; Jo(e)l R Drevet

    2011-01-01

    Cholesterol, being the starting point of steroid hormone synthesis, is a long known modulator of both female and male reproductive physiology especially at the level of the gonads and the impact cholesterol has on gametogenesis. Less is known about the effects cholesterol homeostasis may have on postgonadic reproductive functions. Lately, several data have been reported showing how imbalanced cholesterol levels may particularly affect the post-testicular events of sperm maturation that lead to fully fertile male gametes. This review will focus on that aspect and essentially centers on how cholesterol is important for the physiology of the mammalian epididymis and spermatozoa.

  6. The molecular physiology of uric acid homeostasis.

    Mandal, Asim K; Mount, David B

    2015-01-01

    Uric acid, generated from the metabolism of purines, has proven and emerging roles in human disease. Serum uric acid is determined by production and the net balance of reabsorption or secretion by the kidney and intestine. A detailed understanding of epithelial absorption and secretion of uric acid has recently emerged, aided in particular by the results of genome-wide association studies of hyperuricemia. Novel genetic and regulatory networks with effects on uric acid homeostasis have also emerged. These developments promise to lead to a new understanding of the various diseases associated with hyperuricemia and to novel, targeted therapies for hyperuricemia. PMID:25422986

  7. Incidental sinus abnormalities in 256 patients referred for brain MRI

    Ghanaati H

    2007-06-01

    Full Text Available Background: Imaging abnormalities in the paranasal sinuses are regularly noted as incidental findings on MRI, however, little is known about their prevalence in the Iranian population. The purpose of this study was to classify these findings in the paranasal sinuses as seen on MRI and to investigate the prevalence, according to site and type of paranasal abnormality. Methods: In this cross-sectional study, the T2-weighted axial MRI of 256 patients with diseases unrelated to their paranasal sinuses were reviewed between May 2002 and June 2003. The findings were categorized according to the anatomic location and the imaging characteristics of the abnormality. The abnormalities recorded included total sinus opacification, mucoperiosteal thickening >5mm, air fluid levels and retention cysts or polyps. Unilateral or bilateral involvement and septal deviation were also noted. A sinus was considered normal if it was fully aerated and no soft-tissue density was apparent within the cavity. Results: Among our cases, 111 (43.5% were male and 145 (56.5% were female. Of these patients, abnormalities in one or more of the sinus groups were found in 110 subjects (42.9%, 55.5% of which were male and 44.5% were female (P=0.001. Maxillary sinus abnormalities were observed in 66.4% of the patients, while ethmoid sinus abnormalities were found in 63.6%. Of the ethmoid abnormalities, 21% were found in the anterior section, 9% in the middle ethmoid, and 8% in the posterior ethmoid. The most common abnormality found was mucosal thickening. Among our cases, 23.4% had septal deviation, which was significantly higher among those with sinusitis (29% versus 19.1%; P<0.01. Of those patients with sinus involvement, 16% were involved in the sphenoid sinus and 5% in the frontal sinus. The results obtained from the patients with sinus abnormality revealed that 85% suffered from cough, nasal obstruction, runny nose, facial pain and post nasal discharge and 24% had been diagnosed

  8. Knee loading for abnormal gait

    Hutchison, J.; Madsen, D.; Norman, T. L.; -Blaha, J. D.

    2014-01-01

    The purpose of the study was to develop a mathematical model for determining knee loads for abnormal gait. Abnormal gait was defined as a person with varus, i.e. “bowleggedness”, or a person who had an external rotation of the femur (or the inability to internally rotate the femur) which caused an indirect varus in the forward positions of gait. Conditions such as these have been observed clinically to result in increased wear on the medial condyle of total knee replacements. This problem was...

  9. Abnormalities on diffusion-weighted magnetic resonance imaging in patients with transient ischemic attack

    Nakamura, Tomomi; Shibagaki, Yasuro [Ushiku Aiwa General Hospital, Ibaraki (Japan); Uchiyama, Shinichiro; Iwata, Makoto [Tokyo Women' s Medical Coll. (Japan)

    2003-03-01

    We studied abnormalities on diffusion-weighted magnetic resonance imaging (DWI) in patients with transient ischemic attack (TIA). Out of 18 consecutive TIA patients, 9 patients had relevant focal abnormalities on DWI. Among TIA patients, six patients were associated with atrial fibrillation (Af), and all of these patients had focal abnormalities on DWI as well. TIA patients with Af had significantly more frequent focal abnormalities on DWI than those without Af (p=0.009; Fisher's exact probability test). In addition, the duration of TIA symptoms was not related to the presence of focal abnormalities on DWI. These results indicate that embolic mechanism may cause focal abnormalities on DWI. DWI was more sensitive to detect responsible ischemic lesions in these patients than T2-weighted image or fluid-attenuated inversion recovery image. (author)

  10. Regulation of neuronal chloride homeostasis by neuromodulators.

    Mahadevan, Vivek; Woodin, Melanie A

    2016-05-15

    KCC2 is the central regulator of neuronal Cl(-) homeostasis, and is critical for enabling strong hyperpolarizing synaptic inhibition in the mature brain. KCC2 hypofunction results in decreased inhibition and increased network hyperexcitability that underlies numerous disease states including epilepsy, neuropathic pain and neuropsychiatric disorders. The current holy grail of KCC2 biology is to identify how we can rescue KCC2 hypofunction in order to restore physiological levels of synaptic inhibition and neuronal network activity. It is becoming increasingly clear that diverse cellular signals regulate KCC2 surface expression and function including neurotransmitters and neuromodulators. In the present review we explore the existing evidence that G-protein-coupled receptor (GPCR) signalling can regulate KCC2 activity in numerous regions of the nervous system including the hypothalamus, hippocampus and spinal cord. We present key evidence from the literature suggesting that GPCR signalling is a conserved mechanism for regulating chloride homeostasis. This evidence includes: (1) the activation of group 1 metabotropic glutamate receptors and metabotropic Zn(2+) receptors strengthens GABAergic inhibition in CA3 pyramidal neurons through a regulation of KCC2; (2) activation of the 5-hydroxytryptamine type 2A serotonin receptors upregulates KCC2 cell surface expression and function, restores endogenous inhibition in motoneurons, and reduces spasticity in rats; and (3) activation of A3A-type adenosine receptors rescues KCC2 dysfunction and reverses allodynia in a model of neuropathic pain. We propose that GPCR-signals are novel endogenous Cl(-) extrusion enhancers that may regulate KCC2 function. PMID:26876607

  11. MAVS maintains mitochondrial homeostasis via autophagy.

    Sun, Xiaofeng; Sun, Liwei; Zhao, Yuanyuan; Li, Ying; Lin, Wei; Chen, Dahua; Sun, Qinmiao

    2016-01-01

    Mitochondrial antiviral signalling protein (MAVS) acts as a critical adaptor protein to transduce antiviral signalling by physically interacting with activated RIG-I and MDA5 receptors. MAVS executes its functions at the outer membrane of mitochondria to regulate downstream antiviral signalling, indicating that the mitochondria provides a functional platform for innate antiviral signalling transduction. However, little is known about whether and how MAVS-mediated antiviral signalling contributes to mitochondrial homeostasis. Here we show that the activation of MAVS is sufficient to induce autophagic signalling, which may mediate the turnover of the damaged mitochondria. Importantly, we find MAVS directly interacts with LC3 through its LC3-binding motif 'YxxI', suggesting that MAVS might act as an autophagy receptor to mediate mitochondrial turnover upon excessive activation of RLR signalling. Furthermore, we provide evidence that both MAVS self-aggregation and its interaction with TRAF2/6 proteins are important for MAVS-mediated mitochondrial turnover. Collectively, our findings suggest that MAVS acts as a potential receptor for mitochondria-associated autophagic signalling to maintain mitochondrial homeostasis. PMID:27551434

  12. Apoptosis signaling pathways and lymphocyte homeostasis

    Guangwu Xu; Yufang Shi

    2007-01-01

    It has been almost three decades since the term "apoptosis" was first coined to describe a unique form of cell death that involves orderly, gene-dependent cell disintegration. It is now well accepted that apoptosis is an essential life process for metazoan animals and is critical for the formation and function of tissues and organs. In the adult mammalian body, apoptosis is especially important for proper functioning of the immune system. In recent years, along with the rapid advancement of molecular and cellular biology, great progress has been made in understanding the mechanisms leading to apoptosis. It is generally accepted that there are two major pathways of apoptotic cell death induction: extrinsic signaling through death receptors that leads to the formation of the death-inducing signaling complex (DISC), and intrinsic signaling mainly through mitochondria which leads to the formation of the apoptosome. Formation of the DISC or apoptosome, respectively, activates initiator and common effector caspases that execute the apoptosis process. In the immune system, both pathways operate; however, it is not known whether they are sufficient to maintain lymphocyte homeostasis. Recently, new apoptotic mechanisms including caspase-independent pathways and granzyme-initiated pathways have been shown to exist in lymphocytes. This review will summarize our understanding of the mechanisms that control the homeostasis of various lymphocyte populations.

  13. Perturbed cholesterol homeostasis in aging spinal cord.

    Parkinson, Gemma M; Dayas, Christopher V; Smith, Doug W

    2016-09-01

    The spinal cord is vital for the processing of sensorimotor information and for its propagation to and from both the brain and the periphery. Spinal cord function is affected by aging, however, the mechanisms involved are not well-understood. To characterize molecular mechanisms of spinal cord aging, microarray analyses of gene expression were performed on cervical spinal cords of aging rats. Of the metabolic and signaling pathways affected, cholesterol-associated pathways were the most comprehensively altered, including significant downregulation of cholesterol synthesis-related genes and upregulation of cholesterol transport and metabolism genes. Paradoxically, a significant increase in total cholesterol content was observed-likely associated with cholesterol ester accumulation. To investigate potential mechanisms for the perturbed cholesterol homeostasis, we quantified the expression of myelin and neuroinflammation-associated genes and proteins. Although there was minimal change in myelin-related expression, there was an increase in phagocytic microglial and astrogliosis markers, particularly in the white matter. Together, these results suggest that perturbed cholesterol homeostasis, possibly as a result of increased inflammatory activation in spinal cord white matter, may contribute to impaired spinal cord function with aging. PMID:27459933

  14. Plant transporters involved in heavy metal homeostasis

    Dorina Podar

    2010-12-01

    Full Text Available Transition metal ions (predominately manganese, iron, cobalt, nickel, copper and zinc havean array of catalytic and regulatory roles in the growth and development of all living organisms.However, an excess of these metal ions can also be toxic to any life form and therefore every cell andwhole organism needs to maintain the concentration of these essential nutrient metals within a narrowrange: a process known as metal homeostasis. Heavy metal ions are taken up into cells by selectivetransporters and as they cannot be degraded, the “desired” levels of metal ions are achieved by anumber of strategies that involve: chelation, sequestration and export out of the cell. Cation DiffusionFacilitators (CDF is a large family of transporters involved in maintaining the cytosolic metalconcentration. They transport different heavy metal divalent ions, but exhibit main affinity for zinc, ironand manganese. Metal Tolerance Proteins (MTPs are a subfamily of the Cation Diffusion Facilitator (CDFfamily found in plants. There has been much interest in these heavy metal transporters in order toprovide an insight into plant metal homeostasis, which has significant implications in human health andphytoremediation. Although data regarding the CDFs/MTPs mechanism is gathering there is still littleinformation with respect to metal selectivity determinants.

  15. Consciousness, endogenous generation of goals and homeostasis

    Tsitolovsky, Lev E.

    2015-08-01

    Behaviour can be both unpredictable and goal directed, as animals act in correspondence with their motivation. Motivation arises when neurons in specific brain areas leave the state of homeostatic equilibrium and are injured. The basic goal of organisms and living cells is to maintain their life and their functional state is optimal if it does not lead to physiological damage. This can somehow be sensed by neurons and the occurrence of damage elicits homeostatic protection to recover excitability and the ability to produces spikes. It can be argued that the neuron's activity is guided on the scale of "damage-protection" and it behaves as an object possessing minimum awareness. The approach of death increases cellular efforts to operate. Thus, homeostasis may evidently produce both maintenance of life and will. The question is - how does homeostasis reach the optimum? We have no possibility of determining how the cell evaluates its own states, e.g. as "too little free energy" or in terms of "threat" to life. In any case, the approach of death increases cellular efforts to operate. For the outside observer, this is reminiscent of intentional action and a manifestation of will.

  16. Lipoproteins, cholesterol homeostasis and cardiac health

    Tyler F. Daniels, Karen M. Killinger, Jennifer J. Michal, Raymond W. Wright Jr., Zhihua Jiang

    2009-01-01

    Full Text Available Cholesterol is an essential substance involved in many functions, such as maintaining cell membranes, manufacturing vitamin D on surface of the skin, producing hormones, and possibly helping cell connections in the brain. When cholesterol levels rise in the blood, they can, however, have dangerous consequences. In particular, cholesterol has generated considerable notoriety for its causative role in atherosclerosis, the leading cause of death in developed countries around the world. Homeostasis of cholesterol is centered on the metabolism of lipoproteins, which mediate transport of the lipid to and from tissues. As a synopsis of the major events and proteins that manage lipoprotein homeostasis, this review contributes to the substantial attention that has recently been directed to this area. Despite intense scrutiny, the majority of phenotypic variation in total cholesterol and related traits eludes explanation by current genetic knowledge. This is somewhat disappointing considering heritability estimates have established these traits as highly genetic. Thus, the continued search for candidate genes, mutations, and mechanisms is vital to our understanding of heart disease at the molecular level. Furthermore, as marker development continues to predict risk of vascular illness, this knowledge has the potential to revolutionize treatment of this leading human disease.

  17. TGF-βand BMP signaling in osteoblast, skeletal development, and bone formation, homeostasis and disease

    Mengrui Wu; Guiqian Chen; and Yi-Ping Li

    2016-01-01

    Transforming growth factor-beta (TGF-β) and bone morphogenic protein (BMP) signaling has fundamental roles in both embryonic skeletal development and postnatal bone homeostasis. TGF-βs and BMPs, acting on a tetrameric receptor complex, transduce signals to both the canonical Smad-dependent signaling pathway (that is, TGF-β/BMP ligands, receptors, and Smads) and the non-canonical-Smad-independent signaling pathway (that is, p38 mitogen-activated protein kinase/p38 MAPK) to regulate mesenchymal stem cell differentiation during skeletal development, bone formation and bone homeostasis. Both the Smad and p38 MAPK signaling pathways converge at transcription factors, for example, Runx2 to promote osteoblast differentiation and chondrocyte differentiation from mesenchymal precursor cells. TGF-βand BMP signaling is controlled by multiple factors, including the ubiquitin–proteasome system, epigenetic factors, and microRNA. Dysregulated TGF-βand BMP signaling result in a number of bone disorders in humans. Knockout or mutation of TGF-βand BMP signaling-related genes in mice leads to bone abnormalities of varying severity, which enable a better understanding of TGF-β/BMP signaling in bone and the signaling networks underlying osteoblast differentiation and bone formation. There is also crosstalk between TGF-β/BMP signaling and several critical cytokines’ signaling pathways (for example, Wnt, Hedgehog, Notch, PTHrP, and FGF) to coordinate osteogenesis, skeletal development, and bone homeostasis. This review summarizes the recent advances in our understanding of TGF-β/BMP signaling in osteoblast differentiation, chondrocyte differentiation, skeletal development, cartilage formation, bone formation, bone homeostasis, and related human bone diseases caused by the disruption of TGF-β/BMP signaling.

  18. Fluids engineering

    Fluids engineering has played an important role in many applications, from ancient flood control to the design of high-speed compact turbomachinery. New applications of fluids engineering, such as in high-technology materials processing, biotechnology, and advanced combustion systems, have kept up unwaining interest in the subject. More accurate and sophisticated computational and measurement techniques are also constantly being developed and refined. On a more fundamental level, nonlinear dynamics and chaotic behavior of fluid flow are no longer an intellectual curiosity and fluid engineers are increasingly interested in finding practical applications for these emerging sciences. Applications of fluid technology to new areas, as well as the need to improve the design and to enhance the flexibility and reliability of flow-related machines and devices will continue to spur interest in fluids engineering. The objectives of the present seminar were: to exchange current information on arts, science, and technology of fluids engineering; to promote scientific cooperation between the fluids engineering communities of both nations, and to provide an opportunity for the participants and their colleagues to explore possible joint research programs in topics of high priority and mutual interest to both countries. The Seminar provided an excellent forum for reviewing the current state and future needs of fluids engineering for the two nations. With the Seminar ear-marking the first formal scientific exchange between Korea and the United States in the area of fluids engineering, the scope was deliberately left broad and general

  19. Sperm abnormalities in exposed humans

    Šrám, Radim; Rubeš, J.

    Cambridge : Issue in Toxicology, Royal Society of Chemistry Publ.,, 2007, s. 247-258. ISBN 978-0-85404-847-2 R&D Projects: GA MŽP SL/740/5/03 Institutional research plan: CEZ:AV0Z50390512 Keywords : air pollution exposure * sperm abnormalities * male reproductive health Subject RIV: DN - Health Impact of the Environment Quality

  20. Textured fluids

    Guenther, Gerhard K.

    1995-01-01

    The rheology and development morphology of textured fluids have been investigated. The first fluid considered in this work was a liquid crystalline polymer consisting of isotropic and anisotropic solutions of poly-p-phenyleneterephthalamide (PPT) in sulfuric acid. The second textured fluid considered in this work was an immiscible polymer blend consisting of poly(ethylene terephthalate) (PET) and nylon 6,6. The role played by liquid crystalline order (LCO) and a polydomain ...

  1. Interacting influence of diuretics and diet on BK channel-regulated K homeostasis

    Wen, Donghai; Cornelius, Ryan J.; Sansom, Steven C.

    2013-01-01

    Large conductance, Ca-activated K channels are abundantly located in cells of vasculature, glomerulus and distal nephron, where they are involved in maintaining blood volume, blood pressure and K homeostasis. In mesangial cells and smooth muscle cells of vessels, the BK-α pore associates with BK-β1 subunits and regulates contraction in a Ca-mediated feedback manner. The BK-β1 also resides in connecting tubule cells of the nephron. BK-β1 knockout mice (β1KO) exhibit fluid retention, hypertensi...

  2. Fluid mechanics

    Kundu, Pijush K; Dowling, David R

    2011-01-01

    Fluid mechanics, the study of how fluids behave and interact under various forces and in various applied situations-whether in the liquid or gaseous state or both-is introduced and comprehensively covered in this widely adopted text. Revised and updated by Dr. David Dowling, Fluid Mechanics, 5e is suitable for both a first or second course in fluid mechanics at the graduate or advanced undergraduate level. Along with more than 100 new figures, the text has been reorganized and consolidated to provide a better flow and more cohesion of topics.Changes made to the

  3. PACAP in the Defense of Energy Homeostasis.

    Rudecki, Alexander P; Gray, Sarah L

    2016-09-01

    The neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP) mediates diverse physiology from neuroprotection to thermoregulation. PACAP is well established as a master regulator of the stress response, regulating psychological and physiological equilibrium via the autonomic nervous system. Neuroanatomical and functional evidence support a role for PACAP in energy metabolism, including thermogenesis, activity, mobilization of energy stores, and appetite. Through integration of this evidence we suggest PACAP be included in the growing list of neuropeptides that mediate energy homeostasis. Future work to uncover the intricacies of PACAP expression and the molecular pathways responsible for PACAP signaling may show potential for this neuropeptide as a therapeutic target as well as further elucidate the complex neuroanatomical networks involved in defending energy balance. PMID:27166671

  4. Nitric oxide and plant iron homeostasis.

    Buet, Agustina; Simontacchi, Marcela

    2015-03-01

    Like all living organisms, plants demand iron (Fe) for important biochemical and metabolic processes. Internal imbalances, as a consequence of insufficient or excess Fe in the environment, lead to growth restriction and affect crop yield. Knowledge of signals and factors affecting each step in Fe uptake from the soil and distribution (long-distance transport, remobilization from old to young leaves, and storage in seeds) is necessary to improve our understanding of plant mineral nutrition. In this context, the role of nitric oxide (NO) is discussed as a key player in maintaining Fe homeostasis through its cross talk with hormones, ferritin, and frataxin and the ability to form nitrosyl-iron complexes. PMID:25612116

  5. Environmental stresses disrupt telomere length homeostasis.

    Gal Hagit Romano

    Full Text Available Telomeres protect the chromosome ends from degradation and play crucial roles in cellular aging and disease. Recent studies have additionally found a correlation between psychological stress, telomere length, and health outcome in humans. However, studies have not yet explored the causal relationship between stress and telomere length, or the molecular mechanisms underlying that relationship. Using yeast as a model organism, we show that stresses may have very different outcomes: alcohol and acetic acid elongate telomeres, whereas caffeine and high temperatures shorten telomeres. Additional treatments, such as oxidative stress, show no effect. By combining genome-wide expression measurements with a systematic genetic screen, we identify the Rap1/Rif1 pathway as the central mediator of the telomeric response to environmental signals. These results demonstrate that telomere length can be manipulated, and that a carefully regulated homeostasis may become markedly deregulated in opposing directions in response to different environmental cues.

  6. Iron homeostasis and nutritional iron deficiency.

    Theil, Elizabeth C

    2011-04-01

    Nonheme food ferritin (FTN) iron minerals, nonheme iron complexes, and heme iron contribute to the balance between food iron absorption and body iron homeostasis. Iron absorption depends on membrane transporter proteins DMT1, PCP/HCP1, ferroportin (FPN), TRF2, and matriptase 2. Mutations in DMT1 and matriptase-2 cause iron deficiency; mutations in FPN, HFE, and TRF2 cause iron excess. Intracellular iron homeostasis depends on coordinated regulation of iron trafficking and storage proteins encoded in iron responsive element (IRE)-mRNA. The noncoding IRE-mRNA structures bind protein repressors, IRP1 or 2, during iron deficiency. Integration of the IRE-RNA in translation regulators (near the cap) or turnover elements (after the coding region) increases iron uptake (DMT1/TRF1) or decreases iron storage/efflux (FTN/FPN) when IRP binds. An antioxidant response element in FTN DNA binds Bach1, a heme-sensitive transcription factor that coordinates expression among antioxidant response proteins like FTN, thioredoxin reductase, and quinone reductase. FTN, an antioxidant because Fe(2+) and O(2) (reactive oxygen species generators) are consumed to make iron mineral, is also a nutritional iron concentrate that is an efficiently absorbed, nonheme source of iron from whole legumes. FTN protein cages contain thousands of mineralized iron atoms and enter cells by receptor-mediated endocytosis, an absorption mechanism distinct from transport of nonheme iron salts (ferrous sulfate), iron chelators (ferric-EDTA), or heme. Recognition of 2 nutritional nonheme iron sources, small and large (FTN), will aid the solution of iron deficiency, a major public health problem, and the development of new policies on iron nutrition. PMID:21346101

  7. Fluid Dynamics

    Brorsen, Michael

    These lecture notes are intended mainly for the 7th semester course "Fluid Dynamics" offered by the Study Committee on Civil Engineering, Aalborg University.......These lecture notes are intended mainly for the 7th semester course "Fluid Dynamics" offered by the Study Committee on Civil Engineering, Aalborg University....

  8. Echocardiographic abnormalities in hypertensive patients

    A descriptive cross-sectional study was carried out in 120 hypertensive patients with a course of 5 or more years, who went to the emergency room of 'Saturnino Lora' Provincial Teaching Hospital from November 2010 to November 2011 in order to determine the presence or absence of echocardiographic abnormalities typical of hypertension. Of these, 78,3 % was affected, most of whom reported not to continue with regular previous medical treatment, and 21,7 % had not these abnormalities. Age group of 50-60 years, males and blacks prevailed in the case material. The most significant echocardiographic findings were left ventricular hypertrophy and heart failure with ejection fraction of left ventricle preserved

  9. Is Dark Energy Abnormally Weighting?

    Fuzfa, A.; Alimi, J. -M.

    2006-01-01

    We present a new interpretation of dark energy in terms of an \\textit{Abnormally Weighting Energy} (AWE). This means that dark energy does not couple to gravitation in the same way as ordinary matter, yielding a violation of the weak and strong equivalence principles on cosmological scales. The resulting cosmological mechanism accounts for the Hubble diagram of type Ia supernovae in terms of both cosmic acceleration and variation of the gravitational constant while still accounting for the pr...

  10. Cardiac abnormalities after subarachnoid hemorrhage

    Bilt, I.A.C. van der

    2016-01-01

    Aneurysmal subarachnoid hemorrhage(aSAH) is a devastating neurological disease. During the course of the aSAH several neurological and medical complications may occur. Cardiac abnormalities after aSAH are observed often and resemble stress cardiomyopathy or Tako-tsubo cardiomyopathy(Broken Heart Syndrome) that has been described after acute stress. It is a reversible cardiac dysfunction with distinct imaging features(the echocardiographic or left ventricular angiographic image resembles a Tak...

  11. Mastoid abnormalities in Down syndrome

    Hearing loss and otitis media are commonly associated with Down syndrome. Hypoplasia of the mastoids is seen in many affected children and sclerosis of mastoid bones is not uncommon in Down syndrome. Awareness and early recognition of mastoid abnormality may lead to appropriate and timely therapy, thereby preserving the child's hearing or compensating for hearing loss; factors which are important for learning and maximum development. (orig.)

  12. Computed tomography abnormalities in hanging

    The CT pattern of bilateral and symmetrical round low density areas in the globi pallidi has been observed in a young man who attempted suicide by hanging. These CT abnormalities are similar to those described in other conditions such as carbon monoxide, hydrogen sulfide, cyanide and methanol poisoning, hypoglycaemia, drowning and acute global central nervous system hypoperfusion.The findings appear to be correlated with acute cerebral hypoxia. (orig.)

  13. Computed tomography of thymic abnormalities

    Schnyder, P.; Candardjis, G.

    1987-05-01

    Computed tomographic examinations of 38 patients with surgically and histologically proven diagnosis were reviewed. Twenty subjects (52%) had an invasive thymoma and 16% an hyperplastic thymus. Myasthenia gravis was present in 6 cases (16%) of thymic abnormalities, four (10,5%) with invasive thymoma and two (5%) with thymic hyperplasia. Graves' disease was also present in one case of thymic hyperplasia. We emphasize the contribution of CT to the diagnosis and the prognosis.

  14. The Abnormal Choroidal Vessels in Aged Patients

    Shizhou Huang; Feng Wen; Dezheng Wu; Guangwei Luo; Caijiao Liu

    2002-01-01

    Background: To show the abnormal choroidal vessels in aged patients with indocyanine-green angiography (ICGA).Methods: ICGA was performed in 350 patients with TOPCON TRC-50IA fundus camera.The images were recorded and retrospectively reviewed.Results: Five aged patients out of 350 cases were found to have abnormal choroidalvessels. The incidence was 1.43%. The abnormal choroidal vessels showed round- shapet,focal enlargement, abnormal shape and entrance, satellite appearance, and vascularloops. These might be due to congenital abnormality of choroid.Conclusion: ICGA could be used to observe the abnormal choroidal vessels.

  15. Screening for fetal chromosome abnormalities during the second trimester

    Objective: To develop a pre -natal screening program for fetal chromosome abnormalities based on risk values calculated from maternal serum markers levels during the second trimester. Methods: Serum levels of AFP, β-HCG, uE3 were determined with CLIA in 1048 pregnant women during 14-21w gestation period and the results were analyzed with a specific software (screening program for Down' s syndrome developed by Beckman) for the risk rate. In those women defined as being of high risk rate, cells from amniotic fluid or umbilical cord blood were studied for karyotype analysis. Results: Of these 1048 women, 77 were designated as being of high risk rate for several chromosome abnormalities i.e. Down's syndrome, open spina bifida and trisomy -18 syndrome (overall positive rate 7.3%). Further fetal chromosome study in 31 of them revealed three proven cases of abnormality. Another cord blood study was performed in a calculated low risk rate case but with abnormal sonographic finding at 31 w gestation and proved to be abnormal (software study false negative). The remaining 46 high risk rate cases either refused future study (n=35) or were lost for follow-up (n=11). Fortunately, all the 35 women refused further study gave birth to normal babies without any chromosome abnormalities discovered on peripheral blood study. Besides, in a trial study, five high risk rate women were again evaluated a few weeks later but with tremendous difference between the results. Conclusion: The present program proves to be clinically useful but needs further study and revision. Many factors may influence the result of the analysis and the duration of gestation period in weeks should be as accurate as possible. At present, in order to avoid getting false negatives, we don't advise a second check in 'high risk' cases. (authors)

  16. A conceptual framework for homeostasis: development and validation.

    McFarland, Jenny; Wenderoth, Mary Pat; Michael, Joel; Cliff, William; Wright, Ann; Modell, Harold

    2016-06-01

    We have developed and validated a conceptual framework for understanding and teaching organismal homeostasis at the undergraduate level. The resulting homeostasis conceptual framework details critical components and constituent ideas underlying the concept of homeostasis. It has been validated by a broad range of physiology faculty members from community colleges, primarily undergraduate institutions, research universities, and medical schools. In online surveys, faculty members confirmed the relevance of each item in the framework for undergraduate physiology and rated the importance and difficulty of each. The homeostasis conceptual framework was constructed as a guide for teaching and learning of this critical core concept in physiology, and it also paves the way for the development of a concept inventory for homeostasis. PMID:27105740

  17. Presenilin 1 Maintains Lysosomal Ca2+ Homeostasis via TRPML1 by Regulating vATPase-Mediated Lysosome Acidification

    Ju-Hyun Lee

    2015-09-01

    Full Text Available Presenilin 1 (PS1 deletion or Alzheimer’s disease (AD-linked mutations disrupt lysosomal acidification and proteolysis, which inhibits autophagy. Here, we establish that this phenotype stems from impaired glycosylation and instability of vATPase V0a1 subunit, causing deficient lysosomal vATPase assembly and function. We further demonstrate that elevated lysosomal pH in Presenilin 1 knockout (PS1KO cells induces abnormal Ca2+ efflux from lysosomes mediated by TRPML1 and elevates cytosolic Ca2+. In WT cells, blocking vATPase activity or knockdown of either PS1 or the V0a1 subunit of vATPase reproduces all of these abnormalities. Normalizing lysosomal pH in PS1KO cells using acidic nanoparticles restores normal lysosomal proteolysis, autophagy, and Ca2+ homeostasis, but correcting lysosomal Ca2+ deficits alone neither re-acidifies lysosomes nor reverses proteolytic and autophagic deficits. Our results indicate that vATPase deficiency in PS1 loss-of-function states causes lysosomal/autophagy deficits and contributes to abnormal cellular Ca2+ homeostasis, thus linking two AD-related pathogenic processes through a common molecular mechanism.

  18. Fluid dynamics of dilatant fluid

    Nakanishi, Hiizu; Nagahiro, Shin-ichiro; Mitarai, Namiko

    2012-01-01

    of the state variable, we demonstrate that the model can describe basic features of the dilatant fluid such as the stress-shear rate curve that represents discontinuous severe shear thickening, hysteresis upon changing shear rate, and instantaneous hardening upon external impact. An analysis of the......A dense mixture of granules and liquid often shows a severe shear thickening and is called a dilatant fluid. We construct a fluid dynamics model for the dilatant fluid by introducing a phenomenological state variable for a local state of dispersed particles. With simple assumptions for an equation...... model reveals that the shear thickening fluid shows an instability in a shear flow for some regime and exhibits the shear thickening oscillation (i.e., the oscillatory shear flow alternating between the thickened and the relaxed states). The results of numerical simulations are presented for one- and...

  19. Fluid juggling

    Soto, Enrique

    2013-01-01

    This fluid dynamics video is an entry for the Gallery of Fluid Motion for the 66th Annual Meeting of the Fluid Dynamics Division of the American Physical Society. We show the curious behaviour of a light ball interacting with a liquid jet. For certain conditions, a ball can be suspended into a slightly inclined liquid jet. We studied this phenomenon using a high speed camera. The visualizations show that the object can be `juggled' for a variety of flow conditions. A simple calculation showed that the ball remains at a stable position due to a Bernoulli-like effect. The phenomenon is very stable and easy to reproduce.

  20. Fluid Shifts

    Stenger, M.; Hargens, A.; Dulchavsky, S.; Ebert, D.; Lee, S.; Lauriie, S.; Garcia, K.; Sargsyan, A.; Martin, D.; Ribeiro, L.; Lui, J.; Macias, B.; Arbeille, P.; Danielson, R.; Chang, D.; Johnston, S.; Ploutz-Snyder, R.; Smith, S.

    2016-01-01

    NASA is focusing on long-duration missions on the International Space Station (ISS) and future exploration-class missions beyond low-Earth orbit. Visual acuity changes observed after short-duration missions were largely transient, but more than 50% of ISS astronauts experienced more profound, chronic changes with objective structural and functional findings such as papilledema and choroidal folds. Globe flattening, optic nerve sheath dilation, and optic nerve tortuosity also are apparent. This pattern is referred to as the visual impairment and intracranial pressure (VIIP) syndrome. VIIP signs and symptoms, as well as postflight lumbar puncture data, suggest that elevated intracranial pressure (ICP) may be associated with the spaceflight-induced cephalad fluid shifts, but this hypothesis has not been tested. The purpose of this study is to characterize fluid distribution and compartmentalization associated with long-duration spaceflight, and to correlate these findings with vision changes and other elements of the VIIP syndrome. We also seek to determine whether the magnitude of fluid shifts during spaceflight, as well as the VIIP-related effects of those shifts, is predicted by the crewmember's preflight conditions and responses to acute hemodynamic manipulations (such as head-down tilt). Lastly, we will evaluate the patterns of fluid distribution in ISS astronauts during acute reversal of fluid shifts through application of lower body negative pressure (LBNP) interventions to characterize and explain general and individual responses. METHODS: We will examine a variety of physiologic variables in 10 long-duration ISS crewmembers using the test conditions and timeline presented in the Figure below. Measures include: (1) fluid compartmentalization (total body water by D2O, extracellular fluid by NaBr, intracellular fluid by calculation, plasma volume by CO rebreathe, interstitial fluid by calculation); (2) forehead/eyelids, tibia, calcaneus tissue thickness (by

  1. Abnormal activation of calpain and protein kinase Cα promotes a constitutive release of matrix metalloproteinase 9 in peripheral blood mononuclear cells from cystic fibrosis patients.

    Averna, Monica; Bavestrello, Margherita; Cresta, Federico; Pedrazzi, Marco; De Tullio, Roberta; Minicucci, Laura; Sparatore, Bianca; Salamino, Franca; Pontremoli, Sandro; Melloni, Edon

    2016-08-15

    Matrix metalloproteinase 9 (MMP9) is physiologically involved in remodeling the extracellular matrix components but its abnormal release has been observed in several human pathologies. We here report that peripheral blood mononuclear cells (PBMCs), isolated from cystic fibrosis (CF) patients homozygous for F508del-cystic fibrosis transmembrane conductance regulator (CFTR), express constitutively and release at high rate MMP9 due to the alteration in their intracellular Ca(2+) homeostasis. This spontaneous and sustained MMP9 secretion may contribute to the accumulation of this protease in fluids of CF patients. Conversely, in PBMCs isolated from healthy donors, expression and secretion of MMP9 are undetectable but can be evoked, after 12 h of culture, by paracrine stimulation which also promotes an increase in [Ca(2+)]i. We also demonstrate that in both CF and control PBMCs the Ca(2+)-dependent MMP9 secretion is mediated by the concomitant activation of calpain and protein kinase Cα (PKCα), and that MMP9 expression involves extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) phosphorylation. Our results are supported by the fact that either the inhibition of Ca(2+) entry or chelation of [Ca(2+)]i as well as the inhibition of single components of the signaling pathway or the restoration of CFTR activity all promote the reduction of MMP9 secretion. PMID:27349634

  2. Mapping and signaling of neural pathways involved in the regulation of hydromineral homeostasis

    J. Antunes-Rodrigues

    2013-12-01

    Full Text Available Several forebrain and brainstem neurochemical circuitries interact with peripheral neural and humoral signals to collaboratively maintain both the volume and osmolality of extracellular fluids. Although much progress has been made over the past decades in the understanding of complex mechanisms underlying neuroendocrine control of hydromineral homeostasis, several issues still remain to be clarified. The use of techniques such as molecular biology, neuronal tracing, electrophysiology, immunohistochemistry, and microinfusions has significantly improved our ability to identify neuronal phenotypes and their signals, including those related to neuron-glia interactions. Accordingly, neurons have been shown to produce and release a large number of chemical mediators (neurotransmitters, neurohormones and neuromodulators into the interstitial space, which include not only classic neurotransmitters, such as acetylcholine, amines (noradrenaline, serotonin and amino acids (glutamate, GABA, but also gaseous (nitric oxide, carbon monoxide and hydrogen sulfide and lipid-derived (endocannabinoids mediators. This efferent response, initiated within the neuronal environment, recruits several peripheral effectors, such as hormones (glucocorticoids, angiotensin II, estrogen, which in turn modulate central nervous system responsiveness to systemic challenges. Therefore, in this review, we shall evaluate in an integrated manner the physiological control of body fluid homeostasis from the molecular aspects to the systemic and integrated responses.

  3. Mapping and signaling of neural pathways involved in the regulation of hydromineral homeostasis

    J. Antunes-Rodrigues

    2013-04-01

    Full Text Available Several forebrain and brainstem neurochemical circuitries interact with peripheral neural and humoral signals to collaboratively maintain both the volume and osmolality of extracellular fluids. Although much progress has been made over the past decades in the understanding of complex mechanisms underlying neuroendocrine control of hydromineral homeostasis, several issues still remain to be clarified. The use of techniques such as molecular biology, neuronal tracing, electrophysiology, immunohistochemistry, and microinfusions has significantly improved our ability to identify neuronal phenotypes and their signals, including those related to neuron-glia interactions. Accordingly, neurons have been shown to produce and release a large number of chemical mediators (neurotransmitters, neurohormones and neuromodulators into the interstitial space, which include not only classic neurotransmitters, such as acetylcholine, amines (noradrenaline, serotonin and amino acids (glutamate, GABA, but also gaseous (nitric oxide, carbon monoxide and hydrogen sulfide and lipid-derived (endocannabinoids mediators. This efferent response, initiated within the neuronal environment, recruits several peripheral effectors, such as hormones (glucocorticoids, angiotensin II, estrogen, which in turn modulate central nervous system responsiveness to systemic challenges. Therefore, in this review, we shall evaluate in an integrated manner the physiological control of body fluid homeostasis from the molecular aspects to the systemic and integrated responses.

  4. Misregulation of iron homeostasis in amyotrophic lateral sclerosis.

    Gajowiak, Anna; Styś, Agnieszka; Starzyński, Rafał R; Staroń, Robert; Lipiński, Paweł

    2016-01-01

    Iron is essential for all mammalian cells, but it is toxic in excess. Our understanding of molecular mechanisms ensuring iron homeostasis at both cellular and systemic levels has dramatically increased over the past 15 years. However, despite major advances in this field, homeostatic regulation of iron in the central nervous system (CNS) requires elucidation. It is unclear how iron moves in the CNS and how its transfer to the CNS across the blood-brain and the blood-cerebrospinal fluid barriers, which separate the CNS from the systemic circulation, is regulated. Increasing evidence indicates the role of iron dysregulation in neuronal cell death observed in neurodegenerative diseases including amyotrophic lateral sclerosis (ALS). ALS is a progressive neurodegenerative disorder characterized by selective cortical czynand spinal motor neuron dysfunction that results from a complex interplay among various pathogenic factors including oxidative stress. The latter is known to strongly affect cellular iron balance, creating a vicious circle to exacerbate oxidative injury. The role of iron in the pathogenesis of ALS is confirmed by therapeutic effects of iron chelation in ALS mouse models. These models are of great importance for deciphering molecular mechanisms of iron accumulation in neurons. Most of them consist of transgenic rodents overexpressing the mutated human superoxide dismutase 1 (SOD1) gene. Mutations in the SOD1 gene constitute one of the most common genetic causes of the inherited form of ALS. However, it should be considered that overexpression of the SOD1 gene usually leads to increased SOD1 enzymatic activity, a condition which does not occur in human pathology and which may itself change the expression of iron metabolism genes. PMID:27356602

  5. Fluid dynamics

    Bernard, Peter S

    2015-01-01

    This book presents a focused, readable account of the principal physical and mathematical ideas at the heart of fluid dynamics. Graduate students in engineering, applied math, and physics who are taking their first graduate course in fluids will find this book invaluable in providing the background in physics and mathematics necessary to pursue advanced study. The book includes a detailed derivation of the Navier-Stokes and energy equations, followed by many examples of their use in studying the dynamics of fluid flows. Modern tensor analysis is used to simplify the mathematical derivations, thus allowing a clearer view of the physics. Peter Bernard also covers the motivation behind many fundamental concepts such as Bernoulli's equation and the stream function. Many exercises are designed with a view toward using MATLAB or its equivalent to simplify and extend the analysis of fluid motion including developing flow simulations based on techniques described in the book.

  6. Abnormal Liver Function Tests in an Anorexia Nervosa Patient and an Atypical Manifestation of Refeeding Syndrome

    Vamshidhar R. Vootla

    2015-07-01

    Full Text Available Refeeding syndrome is defined as electrolyte and fluid abnormalities that occur in significantly malnourished patients when they are refed orally, enterally, or parenterally. The principal manifestations include hypophosphatemia, hypokalemia, vitamin deficiencies, volume overload and edema. This can affect multiple organ systems, such as the cardiovascular, pulmonary, or neurological systems, secondary to the above-mentioned abnormalities. Rarely, patients may develop gastrointestinal symptoms and show abnormal liver function test results. We report the case of a 52-year-old woman with anorexia nervosa who developed refeeding syndrome and simultaneous elevations of liver function test results, which normalized upon the resolution of the refeeding syndrome.

  7. Making chromosome abnormalities treatable conditions.

    Cody, Jannine DeMars; Hale, Daniel Esten

    2015-09-01

    Individuals affected by the classic chromosome deletion syndromes which were first identified at the beginning of the genetic age, are now positioned to benefit from genomic advances. This issue highlights five of these conditions (4p-, 5p-, 11q-, 18p-, and 18q-). It focuses on the increased in understanding of the molecular underpinnings and envisions how these can be transformed into effective treatments. While it is scientifically exciting to see the phenotypic manifestations of hemizygosity being increasingly understood at the molecular and cellular level, it is even more amazing to consider that we are now on the road to making chromosome abnormalities treatable conditions. PMID:26351122

  8. CHROMOSOMAL ABNORMALITIES IN PATIENTS WITH SPERM DISORDERS

    L. Y. Pylyp; L. A. Spinenko; V. D. Zukin; N. M. Bilko

    2013-01-01

    Chromosomal abnormalities are among the most common genetic causes of spermatogenic disruptions. Carriers of chromosomal abnormalities are at increased risk of infertility, miscarriage or birth of a child with unbalanced karyotype due to the production of unbalanced gametes. The natural selection against chromosomally abnormal sperm usually prevents fertilization with sperm barring in cases of serious chromosomal abnormalities. However, assisted reproductive technologies in general and intrac...

  9. MR imaging of abnormal synovial processes

    MR imaging can directly image abnormal synovium. The authors reviewed over 50 cases with abnormal synovial processes. The abnormalities include Baker cysts, semimembranous bursitis, chronic shoulder bursitis, peroneal tendon ganglion cyst, periarticular abscesses, thickened synovium from rheumatoid and septic arthritis, and synovial hypertrophy secondary to Legg-Calve-Perthes disease. MR imaging has proved invaluable in identifying abnormal synovium, defining the extent and, to a limited degree, characterizing its makeup

  10. Breast milk, microbiota, and intestinal immune homeostasis.

    Walker, W Allan; Iyengar, Rajashri Shuba

    2015-01-01

    Newborns adjust to the extrauterine environment by developing intestinal immune homeostasis. Appropriate initial bacterial colonization is necessary for adequate intestinal immune development. An environmental determinant of adequate colonization is breast milk. Although the full-term infant is developmentally capable of mounting an immune response, the effector immune component requires bacterial stimulation. Breast milk stimulates the proliferation of a well-balanced and diverse microbiota, which initially influences a switch from an intrauterine TH2 predominant to a TH1/TH2 balanced response and with activation of T-regulatory cells by breast milk-stimulated specific organisms (Bifidobacteria, Lactobacillus, and Bacteroides). As an example of its effect, oligosaccharides in breast milk are fermented by colonic bacteria producing an acid milieu for bacterial proliferation. In addition, short-chain fatty acids in breast milk activate receptors on T-reg cells and bacterial genes, which preferentially mediate intestinal tight junction expression and anti-inflammation. Other components of breast milk (defensins, lactoferrin, etc.) inhibit pathogens and further contribute to microbiota composition. The breast milk influence on initial intestinal microbiota also prevents expression of immune-mediated diseases (asthma, inflammatory bowel disease, type 1 diabetes) later in life through a balanced initial immune response, underscoring the necessity of breastfeeding as the first source of nutrition. PMID:25310762

  11. Gravity and positional homeostasis of the cell

    Nace, G. W.

    1983-01-01

    The effect of gravity upon cytoplasmic aggregates of the size present in eggs and upon cells is investigated. An expression is developed to describe the tendency of torque to rotate the egg and reorganize its constituents. This expression provides the net torque resulting from buoyancy and gravity acting upon a dumbbell-shaped cell, with heavy and light masses at either end and floating in a medium. Torques of approximately 2.5 x 10 to the -13th to 0.85 dyne-cm are found to act upon cells ranging from 6.4 microns to 31 mm (chicken egg). It is noted that cells must expend energy to maintain positional homeostasis against gravity, as demonstrated by results from Skylab 3, where tissue cultures used 58 percent more glucose on earth than in space. The implications for developmental biology, physiology, genetics, and evolution are discussed. It is argued that at the cellular and tissue levels the concept of gravity receptors may be unnecessary.

  12. Mechanisms involved in cellular ceramide homeostasis

    Hussain M

    2012-07-01

    Full Text Available Abstract Sphingolipids are ubiquitous and critical components of biological membranes. Their biosynthesis starts with soluble precursors in the endoplasmic reticulum and culminates in the Golgi complex and plasma membrane. Ceramides are important intermediates in the biosynthesis of sphingolipids, such as sphingomyelin, and their overload in the membranes is injurious to cells. The major product of ceramide metabolism is sphingomyelin. We observed that sphingomyelin synthase (SMS 1 or SMS2 deficiencies significantly decreased plasma and liver sphingomyelin levels. However, SMS2 but not SMS1 deficiency increased plasma ceramides. Surprisingly, SMS1 deficiency significantly increased glucosylceramide and ganglioside GM3, but SMS2 deficiency did not. To explain these unexpected findings about modest to no significant changes in ceramides and increases in other sphingolipids after the ablation of SMS1, we hypothesize that cells have evolved several organelle specific mechanisms to maintain ceramide homeostasis. First, ceramides in the endoplasmic reticulum membranes are controlled by its export to Golgi by protein mediated transfer. Second, in the Golgi, ceramide levels are modulated by their enzymatic conversion to different sphingolipids such as sphingomyelin, and glucosylceramides. Additionally, these sphingolipids can become part of triglyceride-rich apolipoprotein B-containing lipoproteins and be secreted. Third, in the plasma membrane ceramide levels are maintained by ceramide/sphingomyelin cycle, delivery to lysosomes, and efflux to extracellular plasma acceptors. All these pathways might have evolved to ensure steady cellular ceramide levels.

  13. DYSREGULATION OF ION HOMEOSTASIS BY ANTIFUNGAL AGENTS

    RajiniRao

    2012-04-01

    Full Text Available Ion signaling and transduction networks are central to fungal development and virulence because they regulate gene expression, filamentation, host association and invasion, pathogen stress response and survival. Dysregulation of ion homeostasis rapidly mediates cell death, forming the mechanistic basis by which a growing number of amphipathic but structurally unrelated compounds elicit antifungal activity. Included in this group is carvacrol, a terpenoid phenol that is a prominent component of oregano and other plant essential oils. Carvacrol triggers an early dose dependent Ca2+ burst and long lasting pH changes in the model yeast S. cerevisiae. The distinct phases of ionic transients and a robust transcriptional response that overlaps with Ca2+ stress and nutrient starvation point to specific signaling events elicited by plant terpenoid phenols, rather than a non-specific lesion of the membrane as was previously considered. We discuss the potential use of plant essential oils and other agents that disrupt ion signaling pathways as chemosensitizers to augment conventional antifungal therapy, and to convert fungistatic drugs with strong safety profiles into fungicides.

  14. Cellular Auxin Homeostasis:Gatekeeping Is Housekeeping

    Michel Ruiz Rosquete; Elke Barbez; Jürgen Kleine-Vehn

    2012-01-01

    The phytohormone auxin is essential for plant development and contributes to nearly every aspect of the plant life cycle.The spatio-temporal distribution of auxin depends on a complex interplay between auxin metabolism and cell-to-cell auxin transport.Auxin metabolism and transport are both crucial for plant development;however,it largely remains to be seen how these processes are integrated to ensure defined cellular auxin levels or even gradients within tissues or organs.In this review,we provide a glance at very diverse topics of auxin biology,such as biosynthesis,conjugation,oxidation,and transport of auxin.This broad,but certainly superficial,overview highlights the mutual importance of auxin metabolism and transport.Moreover,it allows pinpointing how auxin metabolism and transport get integrated to jointly regulate cellular auxin homeostasis.Even though these processes have been so far only separately studied,we assume that the phytohormonal crosstalk integrates and coordinates auxin metabolism and transport.Besides the integrative power of the global hormone signaling,we additionally introduce the hypothetical concept considering auxin transport components as gatekeepers for auxin responses.

  15. Retinoids Suppress Cysteine-rich Protein 61 (CCN1), a Negative Regulator of Collagen Homeostasis, in Skin Equivalent Cultures and Aged Human Skin in vivo

    Quan, Taihao; Qin, Zhaoping; Shao, Yuan; Xu, Yiru; Voorhees, John J.; Fisher, Gary J.

    2011-01-01

    Alterations of connective tissue collagen are prominent features of both chronologically aged and photoaged (aging due to sun exposure) human skin. These age-related abnormalities are mediated in part by CCN family member, CCN1 (cysteine-rich protein 61). CCN1 is elevated in the dermis of both chronologically aged and photoaged human skin in vivo, and promotes aberrant collagen homeostasis by down-regulating type I collagen, the major structural protein in skin, and promoting collagen degrada...

  16. Ventilation abnormalities in pulmonary embolus

    The ventilation scans of 11 patients with angiographically-proven PE were reviewed. All patients had one or more lung perfusion defects. The chest roentgenograph was abnormal in 11 of the patients. The ventilation studies were performed in the posterior positron prior to the perfusion lung scan using Xe-133. The ventilation study consists of washin, equilibrium, and washout images. In four patients with normal washin there was retention of the Xe-133 (delayed washout) at the site of the perfusion defect. All had roentgenographic abnormalities. Another pattern was observed at the sites of some perfusion defects in six patients. In these, there was decreased washin at the perfusion defect location. Two patients had both decreased washin and delayed washout. In only one case was the typical ventilation pattern of normal washin and normal washout. The method of retention is unclear, but may be due to decreased clearance of Xe-133 secondary to decreased blood flow in the area or deposition of some fat soluble component left at the site of embolization. The etiology of the reduced washin is unclear, but may be due to reduced surfactant production. This study suggests that more attention must be paid to the ventilation study, where there may be additional clues to the diagnosis of pulmonary embolus

  17. NOS2 Is Critical to the Development of Emphysema in Sftpd Deficient Mice but Does Not Affect Surfactant Homeostasis

    Knudsen, Lars; Atochina-Vasserman, Elena N.; GUO, CHANG-JIANG; Pamela A Scott; Haenni, Beat; Beers, Michael F.; Ochs, Matthias; Gow, Andrew J.

    2014-01-01

    Rationale Surfactant protein D (SP-D) has important immuno-modulatory properties. The absence of SP-D results in an inducible NO synthase (iNOS, coded by NOS2 gene) related chronic inflammation, development of emphysema-like pathophysiology and alterations of surfactant homeostasis. Objective In order to test the hypothesis that SP-D deficiency related abnormalities in pulmonary structure and function are a consequence of iNOS induced inflammation, we generated SP-D and iNOS double knockout m...

  18. Regulation of post-Golgi LH3 trafficking is essential for collagen homeostasis

    Banushi, Blerida; Forneris, Federico; Straatman-Iwanowska, Anna; Strange, Adam; Lyne, Anne-Marie; Rogerson, Clare; Burden, Jemima J.; Heywood, Wendy E.; Hanley, Joanna; Doykov, Ivan; Straatman, Kornelis R.; Smith, Holly; Bem, Danai; Kriston-Vizi, Janos; Ariceta, Gema; Risteli, Maija; Wang, Chunguang; Ardill, Rosalyn E.; Zaniew, Marcin; Latka-Grot, Julita; Waddington, Simon N.; Howe, S. J.; Ferraro, Francesco; Gjinovci, Asllan; Lawrence, Scott; Marsh, Mark; Girolami, Mark; Bozec, Laurent; Mills, Kevin; Gissen, Paul

    2016-01-01

    Post-translational modifications are necessary for collagen precursor molecules (procollagens) to acquire final shape and function. However, the mechanism and contribution of collagen modifications that occur outside the endoplasmic reticulum and Golgi are not understood. We discovered that VIPAR, with its partner proteins, regulate sorting of lysyl hydroxylase 3 (LH3, also known as PLOD3) into newly identified post-Golgi collagen IV carriers and that VIPAR-dependent sorting is essential for modification of lysines in multiple collagen types. Identification of structural and functional collagen abnormalities in cells and tissues from patients and murine models of the autosomal recessive multisystem disorder Arthrogryposis, Renal dysfunction and Cholestasis syndrome caused by VIPAR and VPS33B deficiencies confirmed our findings. Thus, regulation of post-Golgi LH3 trafficking is essential for collagen homeostasis and for the development and function of multiple organs and tissues. PMID:27435297

  19. Phosphorus homeostasis in dairy cows with abomasal displacement or abomasal volvulus.

    Grünberg, Walter; Constable, Peter; Schröder, Ulf; Staufenbiel, Rudolf; Morin, Dawn; Rohn, Marina

    2005-01-01

    Abnormal phosphorus homeostasis occurs in dairy cows with an abomasal displacement or volvulus. The goal of this study was to identify potential mechanisms for hypophosphatemia and hyperphosphatemia in cows with a left displaced abomasum (LDA), right displaced abomasum (RDA), or abomasal volvulus (AV). Accordingly, the results of preoperative clinicopathologic analyses for 1,368 dairy cows with an LDA (n = 1,189), RDA, or AV (n = 179) (data set 1) and for 44 cows with an AV (data set 2) were retrieved. Laboratory values were compared by Student's t-tests, and correlation and regression analyses were performed. Thirty-four percent of the animals from data set 1 (463/1,368) were hypophosphatemic (serum phosphorus concentration ([Pi]) 2.3 mmol/L). Serum [Pi] was significantly lower (P cattle with an RDA or AV appears to result from dehydration and decreased renal blood flow. PMID:16355687

  20. Redox homeostasis is compromised in vivo by the metabolites accumulating in 3-hydroxy-3-methylglutaryl-CoA lyase deficiency in rat cerebral cortex and liver.

    da Rosa, M S; Seminotti, B; Amaral, A U; Fernandes, C G; Gasparotto, J; Moreira, J C F; Gelain, D P; Wajner, M; Leipnitz, G

    2013-12-01

    3-Hydroxy-3-methylglutaryl-CoA lyase (HL) deficiency is a disorder biochemically characterized by the predominant accumulation of 3-hydroxy-3-methylglutarate (HMG), 3-methylglutarate (MGA), 3-methylglutaconate and 3-hydroxyisovalerate in tissues and biological fluids of the affected patients. Neurological symptoms and hepatopathy are commonly found in HL deficiency, especially during metabolic crises. Since the mechanisms of tissue damage in this disorder are not well understood, in the present study we evaluated the ex vivo effects of acute administration of HMG and MGA on important parameters of oxidative stress in cerebral cortex and liver from young rats. In vivo administration of HMG and MGA provoked an increase of carbonyl and carboxy-methyl-lysine formation in cerebral cortex, but not in liver, indicating that these metabolites induce protein oxidative damage in the brain. We also verified that HMG and MGA significantly decreased glutathione concentrations in both cerebral cortex and liver, implying a reduction of antioxidant defenses. Furthermore, HMG and MGA increased 2',7'-dichlorofluorescin oxidation, but did not alter nitrate and nitrite content in cerebral cortex and liver, indicating that HMG and MGA effects are mainly mediated by reactive oxygen species. HMG and MGA also increased the activities of superoxide dismutase and catalase in cerebral cortex and liver, whereas MGA decreased glutathione peroxidase activity in cerebral cortex. Our present data showing a disruption of redox homeostasis in cerebral cortex and liver caused by in vivo administration of HMG and MGA suggest that this pathomechanism may possibly contribute to the brain and liver abnormalities observed in HL-deficient patients. PMID:24127998

  1. Abnormal Event Detection Using Local Sparse Representation

    Ren, Huamin; Moeslund, Thomas B.

    2014-01-01

    We propose to detect abnormal events via a sparse subspace clustering algorithm. Unlike most existing approaches, which search for optimized normal bases and detect abnormality based on least square error or reconstruction error from the learned normal patterns, we propose an abnormality...... measurement based on the difference between the normal space and local space. Specifically, we provide a reasonable normal bases through repeated K spectral clustering. Then for each testing feature we first use temporal neighbors to form a local space. An abnormal event is found if any abnormal feature is...

  2. Dietary fructose aggravates the pathobiology of traumatic brain injury by influencing energy homeostasis and plasticity.

    Agrawal, Rahul; Noble, Emily; Vergnes, Laurent; Ying, Zhe; Reue, Karen; Gomez-Pinilla, Fernando

    2016-05-01

    Fructose consumption has been on the rise for the last two decades and is starting to be recognized as being responsible for metabolic diseases. Metabolic disorders pose a particular threat for brain conditions characterized by energy dysfunction, such as traumatic brain injury. Traumatic brain injury patients experience sudden abnormalities in the control of brain metabolism and cognitive function, which may worsen the prospect of brain plasticity and function. The mechanisms involved are poorly understood. Here we report that fructose consumption disrupts hippocampal energy homeostasis as evidenced by a decline in functional mitochondria bioenergetics (oxygen consumption rate and cytochrome C oxidase activity) and an aggravation of the effects of traumatic brain injury on molecular systems engaged in cell energy homeostasis (sirtuin 1, peroxisome proliferator-activated receptor gamma coactivator-1alpha) and synaptic plasticity (brain-derived neurotrophic factor, tropomyosin receptor kinase B, cyclic adenosine monophosphate response element binding, synaptophysin signaling). Fructose also worsened the effects of traumatic brain injury on spatial memory, which disruption was associated with a decrease in hippocampal insulin receptor signaling. Additionally, fructose consumption and traumatic brain injury promoted plasma membrane lipid peroxidation, measured by elevated protein and phenotypic expression of 4-hydroxynonenal. These data imply that high fructose consumption exacerbates the pathology of brain trauma by further disrupting energy metabolism and brain plasticity, highlighting the impact of diet on the resilience to neurological disorders. PMID:26661172

  3. The Mammalian Tribbles Homolog TRIB3, Glucose Homeostasis, and Cardiovascular Diseases

    Prudente, Sabrina; Sesti, Giorgio; Pandolfi, Assunta; Andreozzi, Francesco; Consoli, Agostino

    2012-01-01

    Insulin signaling plays a physiological role in traditional insulin target tissues controlling glucose homeostasis as well as in pancreatic β-cells and in the endothelium. Insulin signaling abnormalities may, therefore, be pathogenic for insulin resistance, impaired insulin secretion, endothelial dysfunction, and eventually, type 2 diabetes mellitus (T2DM) and cardiovascular disease. Tribbles homolog 3 (TRIB3) is a 45-kDa pseudokinase binding to and inhibiting Akt, a key mediator of insulin signaling. Akt-mediated effects of TRIB3 in the liver, pancreatic β-cells, and skeletal muscle result in impaired glucose homeostasis. TRIB3 effects are also modulated by its direct interaction with other signaling molecules. In humans, TRIB3 overactivity, due to TRIB3 overexpression or to Q84R genetic polymorphism, with R84 being a gain-of-function variant, may be involved in shaping the risk of insulin resistance, T2DM, and cardiovascular disease. TRIB3 overexpression has been observed in the liver, adipose tissue, skeletal muscle, and pancreatic β-cells of individuals with insulin resistance and/or T2DM. The R84 variant has also proved to be associated with insulin resistance, T2DM, and cardiovascular disease. TRIB3 direct effects on the endothelium might also play a role in increasing the risk of atherosclerosis, as indicated by studies on human endothelial cells carrying the R84 variant that are dysfunctional in terms of Akt activation, NO production, and other proatherogenic changes. In conclusion, studies on TRIB3 have unraveled new molecular mechanisms underlying metabolic and cardiovascular abnormalities. Additional investigations are needed to verify whether such acquired knowledge will be relevant for improving care delivery to patients with metabolic and cardiovascular alterations. PMID:22577090

  4. CHROMOSOMAL ABNORMALITIES IN PATIENTS WITH RECURRENT MISCARRIAGE

    Daniela Mierla

    2012-06-01

    Full Text Available Chromosomal abnormalities are involved in the etiology of recurrent spontaneous pregnancy loss and sub-fertility. The purpose of this study was to determine the frequency and contribution of chromosomal abnormalities in recurrent miscarriages. The results obtained and literature review are helpful in understanding the importance of cytogenetics analysis of female infertility. To investigate the distribution of chromosomal abnormalities in the Romanian population with recurrent miscarriage, karyotype analysis by G-banding was performed from peripheral blood in 967 women infertility. Results: Chromosomal abnormalities were found to 79 women (8,17%. The percentage of chromosomal abnormalities in the studied population correlates with the data in the literature. Chromosomal abnormalities could play the important role in etiology of infertility and are more frequently detected in this group of patients compared to general population. In the infertile couples balanced chromosomal abnormalities are the main cause of spontaneous abortions.

  5. Calcium homeostasis modulator (CALHM) ion channels.

    Ma, Zhongming; Tanis, Jessica E; Taruno, Akiyuki; Foskett, J Kevin

    2016-03-01

    Calcium homeostasis modulator 1 (CALHM1), formerly known as FAM26C, was recently identified as a physiologically important plasma membrane ion channel. CALHM1 and its Caenorhabditis elegans homolog, CLHM-1, are regulated by membrane voltage and extracellular Ca(2+) concentration ([Ca(2+)]o). In the presence of physiological [Ca(2+)]o (∼1.5 mM), CALHM1 and CLHM-1 are closed at resting membrane potentials but can be opened by strong depolarizations. Reducing [Ca(2+)]o increases channel open probability, enabling channel activation at negative membrane potentials. Together, voltage and Ca(2+) o allosterically regulate CALHM channel gating. Through convergent evolution, CALHM has structural features that are reminiscent of connexins and pannexins/innexins/LRRC8 (volume-regulated anion channel (VRAC)) gene families, including four transmembrane helices with cytoplasmic amino and carboxyl termini. A CALHM1 channel is a hexamer of CALHM1 monomers with a functional pore diameter of ∼14 Å. CALHM channels discriminate poorly among cations and anions, with signaling molecules including Ca(2+) and ATP able to permeate through its pore. CALHM1 is expressed in the brain where it plays an important role in cortical neuron excitability induced by low [Ca(2+)]o and in type II taste bud cells in the tongue that sense sweet, bitter, and umami tastes where it functions as an essential ATP release channel to mediate nonsynaptic neurotransmitter release. CLHM-1 is expressed in C. elegans sensory neurons and body wall muscles, and its genetic deletion causes locomotion defects. Thus, CALHM is a voltage- and Ca(2+) o-gated ion channel, permeable to large cations and anions, that plays important roles in physiology. PMID:26603282

  6. Mechanical homeostasis regulating adipose tissue volume

    Svedman Paul

    2007-09-01

    Full Text Available Abstract Background The total body adipose tissue volume is regulated by hormonal, nutritional, paracrine, neuronal and genetic control signals, as well as components of cell-cell or cell-matrix interactions. There are no known locally acting homeostatic mechanisms by which growing adipose tissue might adapt its volume. Presentation of the hypothesis Mechanosensitivity has been demonstrated by mesenchymal cells in tissue culture. Adipocyte differentiation has been shown to be inhibited by stretching in vitro, and a pathway for the response has been elucidated. In humans, intermittent stretching of skin for reconstructional purposes leads to thinning of adipose tissue and thickening of epidermis – findings matching those observed in vitro in response to mechanical stimuli. Furthermore, protracted suspension of one leg increases the intermuscular adipose tissue volume of the limb. These findings may indicate a local homeostatic adipose tissue volume-regulating mechanism based on movement-induced reduction of adipocyte differentiation. This function might, during evolution, have been of importance in confined spaces, where overgrowth of adipose tissue could lead to functional disturbance, as for instance in the turtle. In humans, adipose tissue near muscle might in particular be affected, for instance intermuscularly, extraperitoneally and epicardially. Mechanical homeostasis might also contribute to protracted maintainment of soft tissue shape in the face and neck region. Testing of the hypothesis Assessment of messenger RNA-expression of human adipocytes following activity in adjacent muscle is planned, and study of biochemical and volumetric adipose tissue changes in man are proposed. Implications of the hypothesis The interpretation of metabolic disturbances by means of adipose tissue might be influenced. Possible applications in the head and neck were discussed.

  7. Abnormal Returns and Contrarian Strategies

    Ivana Dall'Agnol

    2003-12-01

    Full Text Available We test the hypothesis that strategies which are long on portfolios of looser stocks and short on portfolios of winner stocks generate abnormal returns in Brazil. This type of evidence for the US stock market was interpreted by The Bondt and Thaler (1985 as reflecting systematic evaluation mistakes caused by investors overreaction to news related to the firm performance. We found evidence of contrarian strategies profitability for horizons from 3 months to 3 years in a sample of stock returns from BOVESPA and SOMA from 1986 to 2000. The strategies are more profitable for shorter horizons. Therefore, there was no trace of the momentum effect found by Jagadeesh and Titman (1993 for the same horizons with US data. There are remaing unexplained positive returns for contrarian strategies after accounting for risk, size, and liquidity. We also found that the strategy profitability is reduced after the Real Plan, which suggests that the Brazilian stock market became more efficient after inflation stabilization.

  8. Adults with Chromosome 18 Abnormalities.

    Soileau, Bridgette; Hasi, Minire; Sebold, Courtney; Hill, Annice; O'Donnell, Louise; Hale, Daniel E; Cody, Jannine D

    2015-08-01

    The identification of an underlying chromosome abnormality frequently marks the endpoint of a diagnostic odyssey. However, families are frequently left with more questions than answers as they consider their child's future. In the case of rare chromosome conditions, a lack of longitudinal data often makes it difficult to provide anticipatory guidance to these families. The objective of this study is to describe the lifespan, educational attainment, living situation, and behavioral phenotype of adults with chromosome 18 abnormalities. The Chromosome 18 Clinical Research Center has enrolled 483 individuals with one of the following conditions: 18q-, 18p-, Tetrasomy 18p, and Ring 18. As a part of the ongoing longitudinal study, we collect data on living arrangements, educational level attained, and employment status as well as data on executive functioning and behavioral skills on an annual basis. Within our cohort, 28 of the 483 participants have died, the majority of whom have deletions encompassing the TCF4 gene or who have unbalanced rearrangement involving other chromosomes. Data regarding the cause of and age at death are presented. We also report on the living situation, educational attainment, and behavioral phenotype of the 151 participants over the age of 18. In general, educational level is higher for people with all these conditions than implied by the early literature, including some that received post-high school education. In addition, some individuals are able to live independently, though at this point they represent a minority of patients. Data on executive function and behavioral phenotype are also presented. Taken together, these data provide insight into the long-term outcome for individuals with a chromosome 18 condition. This information is critical in counseling families on the range of potential outcomes for their child. PMID:25403900

  9. R Fluids

    Caimmi, R.

    2008-06-01

    Full Text Available A theory of collisionless fluids is developed in a unified picture, where nonrotating $(widetilde{Omega_1}=widetilde{Omega_2}= widetilde{Omega_3}=0$ figures with some given random velocity component distributions, and rotating $(widetilde{Omega_1} ewidetilde{Omega_2} e widetilde{Omega_3} $ figures with a different random velocity component distributions, make adjoint configurations to the same system. R fluids are defined as ideal, self-gravitating fluids satisfying the virial theorem assumptions, in presence of systematic rotation around each of the principal axes of inertia. To this aim, mean and rms angular velocities and mean and rms tangential velocity components are expressed, by weighting on the moment of inertia and the mass, respectively. The figure rotation is defined as the mean angular velocity, weighted on the moment of inertia, with respectto a selected axis. The generalized tensor virial equations (Caimmi and Marmo 2005 are formulated for R fluidsand further attention is devoted to axisymmetric configurations where, for selected coordinateaxes, a variation in figure rotation has to be counterbalanced by a variation in anisotropy excess and viceversa. A microscopical analysis of systematic and random motions is performed under a fewgeneral hypotheses, by reversing the sign of tangential or axial velocity components of anassigned fraction of particles, leaving the distribution function and other parametersunchanged (Meza 2002. The application of the reversion process to tangential velocitycomponents is found to imply the conversion of random motion rotation kinetic energy intosystematic motion rotation kinetic energy. The application ofthe reversion process to axial velocity components is found to imply the conversionof random motion translation kinetic energy into systematic motion translation kinetic energy, and theloss related to a change of reference frame is expressed in terms of systematic motion (imaginary rotation kinetic

  10. Incidental paranasal sinuses abnormalities in pediatric patients using computed tomography of the head and orbits

    Objective: To evaluate the prevalence and appearance of incidental paranasal sinuses abnormalities in children with no clinical evidence of rhino sinusitis using CT scans. Materials and methods: CT scans of the head or orbits of children between 0 and 18 years of age performed due to problems not related to rhino sinusitis were studied. Results: Sixty-four children were included (mean age 5.7 years; standard deviation = 3.9). Incidental sinuses abnormalities were found in 46 cases (72%). In most cases the abnormalities were mild (25/46) and mucosal thickening was the most common finding. Complete opacification and fluid levels occurred in 12 children. More than one cavity was affected in 33 patients and abnormalities were most frequently seen in maxillary sinuses, followed by ethmoid sinuses. Bilateral and symmetric findings were common. The prevalence and intensity of abnormalities were higher in children below three years of age. Conclusion: Incidental abnormalities are highly prevalent and tend to be mild in children without symptoms of rhino sinusitis. The most prevalent abnormality was mucosal thickening. Moderate and severe abnormalities occur in children below three years of age. (author)

  11. Lung Stem and Progenitor Cells in Tissue Homeostasis and Disease

    Leeman, Kristen T.; Fillmore, Christine M.; Kim, Carla F.

    2014-01-01

    The mammalian lung is a complex organ containing numerous putative stem/progenitor cell populations that contribute to region-specific tissue homeostasis and repair. In this review, we discuss recent advances in identifying and studying these cell populations in the context of lung homeostasis and disease. Genetically engineered mice now allow for lineage tracing of several lung stem and progenitor cell populations in vivo during different types of lung injury repair. Using specific sets of c...

  12. Redox homeostasis: The Golden Mean of healthy living

    Fulvio Ursini

    2016-08-01

    Full Text Available The notion that electrophiles serve as messengers in cell signaling is now widely accepted. Nonetheless, major issues restrain acceptance of redox homeostasis and redox signaling as components of maintenance of a normal physiological steady state. The first is that redox signaling requires sudden switching on of oxidant production and bypassing of antioxidant mechanisms rather than a continuous process that, like other signaling mechanisms, can be smoothly turned up or down. The second is the misperception that reactions in redox signaling involve “reactive oxygen species” rather than reaction of specific electrophiles with specific protein thiolates. The third is that hormesis provides protection against oxidants by increasing cellular defense or repair mechanisms rather than by specifically addressing the offset of redox homeostasis. Instead, we propose that both oxidant and antioxidant signaling are main features of redox homeostasis. As the redox shift is rapidly reversed by feedback reactions, homeostasis is maintained by continuous signaling for production and elimination of electrophiles and nucleophiles. Redox homeostasis, which is the maintenance of nucleophilic tone, accounts for a healthy physiological steady state. Electrophiles and nucleophiles are not intrinsically harmful or protective, and redox homeostasis is an essential feature of both the response to challenges and subsequent feedback. While the balance between oxidants and nucleophiles is preserved in redox homeostasis, oxidative stress provokes the establishment of a new radically altered redox steady state. The popular belief that scavenging free radicals by antioxidants has a beneficial effect is wishful thinking. We propose, instead, that continuous feedback preserves nucleophilic tone and that this is supported by redox active nutritional phytochemicals. These nonessential compounds, by activating Nrf2, mimic the effect of endogenously produced electrophiles

  13. Redox homeostasis: The Golden Mean of healthy living.

    Ursini, Fulvio; Maiorino, Matilde; Forman, Henry Jay

    2016-08-01

    The notion that electrophiles serve as messengers in cell signaling is now widely accepted. Nonetheless, major issues restrain acceptance of redox homeostasis and redox signaling as components of maintenance of a normal physiological steady state. The first is that redox signaling requires sudden switching on of oxidant production and bypassing of antioxidant mechanisms rather than a continuous process that, like other signaling mechanisms, can be smoothly turned up or down. The second is the misperception that reactions in redox signaling involve "reactive oxygen species" rather than reaction of specific electrophiles with specific protein thiolates. The third is that hormesis provides protection against oxidants by increasing cellular defense or repair mechanisms rather than by specifically addressing the offset of redox homeostasis. Instead, we propose that both oxidant and antioxidant signaling are main features of redox homeostasis. As the redox shift is rapidly reversed by feedback reactions, homeostasis is maintained by continuous signaling for production and elimination of electrophiles and nucleophiles. Redox homeostasis, which is the maintenance of nucleophilic tone, accounts for a healthy physiological steady state. Electrophiles and nucleophiles are not intrinsically harmful or protective, and redox homeostasis is an essential feature of both the response to challenges and subsequent feedback. While the balance between oxidants and nucleophiles is preserved in redox homeostasis, oxidative stress provokes the establishment of a new radically altered redox steady state. The popular belief that scavenging free radicals by antioxidants has a beneficial effect is wishful thinking. We propose, instead, that continuous feedback preserves nucleophilic tone and that this is supported by redox active nutritional phytochemicals. These nonessential compounds, by activating Nrf2, mimic the effect of endogenously produced electrophiles (parahormesis). In summary

  14. Plasticity and Dedifferentiation within the Pancreas: Development, Homeostasis, and Disease

    Puri, Sapna; Folias, Alexandra E.; Hebrok, Matthias

    2014-01-01

    Cellular identity is established by genetic, epigenetic, and environmental factors that regulate organogenesis and tissue homeostasis. Although some flexibility in fate potential is beneficial to overall organ health, dramatic changes in cellular identity can have disastrous consequences. Emerging data within the field of pancreas biology are revising current beliefs about how cellular identity is shaped by developmental and environmental cues under homeostasis and stress conditions. Here, we...

  15. The GARP complex is required for cellular sphingolipid homeostasis

    Fröhlich, Florian; Petit, Constance; Kory, Nora;

    2015-01-01

    (GARP) complex, which functions in endosome-to-Golgi retrograde vesicular transport, as a critical player in sphingolipid homeostasis. GARP deficiency leads to accumulation of sphingolipid synthesis intermediates, changes in sterol distribution, and lysosomal dysfunction. A GARP complex mutation...... the phenotypes of GARP-deficient yeast or mammalian cells. Together, these data show that GARP is essential for cellular sphingolipid homeostasis and suggest a therapeutic strategy for the treatment of PCCA2....

  16. Using glutamate homeostasis as a target for treating addictive disorders

    Reissner, Kathryn J.; Kalivas, Peter W.

    2010-01-01

    Well-developed cellular mechanisms exist to preserve glutamate homeostasis and regulate extrasynaptic glutamate levels. Accumulating evidence indicates that disruptions in glutamate homeostasis are associated with addictive disorders. The disruptions in glutamate concentrations observed following prolonged exposure to drugs of abuse are associated with changes in the function and activity of several key components within the homeostatic control mechanism, including the cystine/glutamate excha...

  17. Neutrophil Homeostasis and Periodontal Health in Children and Adults

    Hajishengallis, E.; Hajishengallis, G

    2014-01-01

    This review summarizes the current state of knowledge on neutrophil basic biology and discusses how the breakdown of neutrophil homeostasis affects periodontal health. The homeostasis of neutrophils is tightly regulated through coordinated bone marrow production, release into the circulation, transmigration to and activation in peripheral tissues, and clearance of senescent neutrophils. Dysregulation of any of these homeostatic mechanisms at any age can cause severe periodontitis in humans an...

  18. Autophagy in Skeletal Muscle Homeostasis and in Muscular Dystrophies

    Paolo Bonaldo; Paolo Grumati

    2012-01-01

    Skeletal muscles are the agent of motion and one of the most important tissues responsible for the control of metabolism. The maintenance of muscle homeostasis is finely regulated by the balance between catabolic and anabolic process. Macroautophagy (or autophagy) is a catabolic process that provides the degradation of protein aggregation and damaged organelles through the fusion between autophagosomes and lysosomes. Proper regulation of the autophagy flux is fundamental for the homeostasis o...

  19. Sex differences in metabolic homeostasis, diabetes, and obesity

    Mauvais-Jarvis, Franck

    2015-01-01

    There are fundamental aspects of the control of metabolic homeostasis that are regulated differently in males and females. This sex asymmetry represents an evolutionary paradigm for females to resist the loss of energy stores. This perspective discusses the most fundamental sex differences in metabolic homeostasis, diabetes, and obesity. Together, the role of genetic sex, the programming effect of testosterone in the prenatal period in males, and the activational role of sex hormones at puber...

  20. Lithium treatment and thyroid abnormalities

    Bocchetta Alberto

    2006-09-01

    autoimmunity do not much differ from those observed in the general population; h hyperthyroidism and thyroid cancer are observed rarely during lithium treatment. Recommendations Thyroid function tests (TSH, free thyroid hormones, specific antibodies, and ultrasonic scanning should be performed prior to starting lithium prophylaxis. A similar panel should be repeated at one year. Thereafter, annual measurements of TSH may be sufficient to prevent overt hypothyroidism. In the presence of raised TSH or thyroid autoimmunity, shorter intervals between assessments are advisable (4–6 months. Measurement of antibodies and ultrasonic scanning may be repeated at 2-to-3-year intervals. The patient must be referred to the endocrinologist if TSH concentrations are repeatedly abnormal, and/or goitre or nodules are detected. Thyroid function abnormalities should not constitute an outright contraindication to lithium treatment, and lithium should not be stopped if a patient develops thyroid abnormalities. Decisions should be made taking into account the evidence that lithium treatment is perhaps the only efficient means of reducing the excessive mortality which is otherwise associated with affective disorders.

  1. Inhibition of Endothelial p53 Improves Metabolic Abnormalities Related to Dietary Obesity

    Masataka Yokoyama

    2014-06-01

    Full Text Available Accumulating evidence has suggested a role for p53 activation in various age-associated conditions. Here, we identified a crucial role of endothelial p53 activation in the regulation of glucose homeostasis. Endothelial expression of p53 was markedly upregulated when mice were fed a high-calorie diet. Disruption of endothelial p53 activation improved dietary inactivation of endothelial nitric oxide synthase that upregulated the expression of peroxisome proliferator-activated receptor-γ coactivator-1α in skeletal muscle, thereby increasing mitochondrial biogenesis and oxygen consumption. Mice with endothelial cell-specific p53 deficiency fed a high-calorie diet showed improvement of insulin sensitivity and less fat accumulation, compared with control littermates. Conversely, upregulation of endothelial p53 caused metabolic abnormalities. These results indicate that inhibition of endothelial p53 could be a novel therapeutic target to block the vicious cycle of cardiovascular and metabolic abnormalities associated with obesity.

  2. Energy and Redox Homeostasis in Tumor Cells

    Marcus Fernandes de Oliveira

    2012-01-01

    Full Text Available Cancer cells display abnormal morphology, chromosomes, and metabolism. This review will focus on the metabolism of tumor cells integrating the available data by way of a functional approach. The first part contains a comprehensive introduction to bioenergetics, mitochondria, and the mechanisms of production and degradation of reactive oxygen species. This will be followed by a discussion on the oxidative metabolism of tumor cells including the morphology, biogenesis, and networking of mitochondria. Tumor cells overexpress proteins that favor fission, such as GTPase dynamin-related protein 1 (Drp1. The interplay between proapoptotic members of the Bcl-2 family that promotes Drp 1-dependent mitochondrial fragmentation and fusogenic antiapoptotic proteins such as Opa-1 will be presented. It will be argued that contrary to the widespread belief that in cancer cells, aerobic glycolysis completely replaces oxidative metabolism, a misrepresentation of Warburg’s original results, mitochondria of tumor cells are fully viable and functional. Cancer cells also carry out oxidative metabolism and generally conform to the orthodox model of ATP production maintaining as well an intact electron transport system. Finally, data will be presented indicating that the key to tumor cell survival in an ROS rich environment depends on the overexpression of antioxidant enzymes and high levels of the nonenzymatic antioxidant scavengers.

  3. Mechanoregulation of Wound Healing and Skin Homeostasis

    Joanna Rosińczuk

    2016-01-01

    Full Text Available Basic and clinical studies on mechanobiology of cells and tissues point to the importance of mechanical forces in the process of skin regeneration and wound healing. These studies result in the development of new therapies that use mechanical force which supports effective healing. A better understanding of mechanobiology will make it possible to develop biomaterials with appropriate physical and chemical properties used to treat poorly healing wounds. In addition, it will make it possible to design devices precisely controlling wound mechanics and to individualize a therapy depending on the type, size, and anatomical location of the wound in specific patients, which will increase the clinical efficiency of the therapy. Linking mechanobiology with the science of biomaterials and nanotechnology will enable in the near future precise interference in abnormal cell signaling responsible for the proliferation, differentiation, cell death, and restoration of the biological balance. The objective of this study is to point to the importance of mechanobiology in regeneration of skin damage and wound healing. The study describes the influence of rigidity of extracellular matrix and special restrictions on cell physiology. The study also defines how and what mechanical changes influence tissue regeneration and wound healing. The influence of mechanical signals in the process of proliferation, differentiation, and skin regeneration is tagged in the study.

  4. Temporal pole signal abnormality on MR imaging in temporal lobe epilepsy with hippocampal sclerosis: a fluid-attenuated inversion-recovery study Anormalidade de sinal na imagem por RM do pólo temporal na epilepsia do lobo temporal com esclerose hipocampal: um estudo pela seqüência inversão recuperação com supressão da água livre (FLAIR

    Henrique Carrete Junior

    2007-09-01

    Full Text Available OBJECTIVE: To determine the frequency and regional involvement of temporal pole signal abnormality (TPA in patients with hippocampal sclerosis (HS using fluid-attenuated inversion-recovery (FLAIR MR imaging, and to correlate this feature with history. METHOD: Coronal FLAIR images of the temporal pole were assessed in 120 patients with HS and in 30 normal subjects, to evaluate gray-white matter demarcation. RESULTS: Ninety (75% of 120 patients had associated TPA. The HS side made difference regarding the presence of TPA, with a left side prevalence (p=0.04, chi2 test. The anteromedial zone of temporal pole was affected in 27 (30% out of 90 patients. In 63 (70% patients the lateral zone were also affected. Patients with TPA were younger at seizure onset (p=0.018, but without association with duration of epilepsy. CONCLUSION: Our FLAIR study show temporal pole signal abnormality in 3/4 of patients with HS, mainly seen on the anteromedial region, with a larger prevalence when the left hippocampus was involved.OBJETIVO: Determinar a freqüência e o envolvimento regional da anormalidade de sinal do pólo temporal (APT em pacientes com esclerose hipocampal (EH utilizando seqüência inversão recuperação com supressão da água (FLAIR por RM, e correlacioná-la com a história. MÉTODO: Foram analisadas as imagens coronais FLAIR dos pólos temporais de 120 pacientes com EH e de 30 indivíduos normais, para avaliar a demarcação entre substâncias branca e cinzenta. RESULTADOS: Noventa (75% dos 120 pacientes tinham APT associada. Houve prevalência do lado esquerdo (p=0.04, chi2 teste na relação entre APT e o lado da EH. A zona ântero-medial estava acometida em 27 (30% destes pacientes. Em 63 (70% pacientes também a zona lateral estava acometida. Pacientes com APT apresentaram início da epilepsia quando mais jovens (p=0.018, porém sem associação com a sua duração. CONCLUSÃO: A seqüência FLAIR mostra haver ATP em 3/4 dos pacientes com EH

  5. CHROMOSOMAL ABNORMALITIES IN PATIENTS WITH RECURRENT MISCARRIAGE

    Daniela Mierla; Viorica Radoi; Veronica Stoian

    2012-01-01

    Chromosomal abnormalities are involved in the etiology of recurrent spontaneous pregnancy loss and sub-fertility. The purpose of this study was to determine the frequency and contribution of chromosomal abnormalities in recurrent miscarriages. The results obtained and literature review are helpful in understanding the importance of cytogenetics analysis of female infertility. To investigate the distribution of chromosomal abnormalities in the Romanian population with recurrent miscarriage, ka...

  6. ABNORMAL CARDIOVASCULAR REFLEXES IN PATIENTS WITH ACHALASIA

    戈峰; 李泽坚; 柯美云

    1994-01-01

    Using 3 non-invasive tests,abnormalities of cardiovascular reflex function were found in 7 of 15 patients with achalasia.Abnormalities of heart rate responses to the Valsalva maneuver,deep breathing ,and standing were moted in patients with autonomic neuropathy defect.The findings are consistent with the hypothesis that an abnormality of vagal function may contribute to the pathogenesis of achalasia.

  7. Do Stock Dividends Generate Abnormal Returns?

    Torgal, Kishan

    2009-01-01

    In this paper I have studied and understood the concepts of stock dividends, stock splits and the announcement effects and the effective day effects by using the standard event studies methodology which measures the significance of the abnormal returns. The previous studies have significant positive abnormal returns. In my results its shown that the as there is some significant abnormal returns which are connected with the announcement and effective day of the stock splits but it changes...

  8. EGFR signaling regulates cell proliferation, differentiation and morphogenesis during planarian regeneration and homeostasis.

    Fraguas, Susanna; Barberán, Sara; Cebrià, Francesc

    2011-06-01

    Similarly to development, the process of regeneration requires that cells accurately sense and respond to their external environment. Thus, intrinsic cues must be integrated with signals from the surrounding environment to ensure appropriate temporal and spatial regulation of tissue regeneration. Identifying the signaling pathways that control these events will not only provide insights into a fascinating biological phenomenon but may also yield new molecular targets for use in regenerative medicine. Among classical models to study regeneration, freshwater planarians represent an attractive system in which to investigate the signals that regulate cell proliferation and differentiation, as well as the proper patterning of the structures being regenerated. Recent studies in planarians have begun to define the role of conserved signaling pathways during regeneration. Here, we extend these analyses to the epidermal growth factor (EGF) receptor pathway. We report the characterization of three epidermal growth factor (EGF) receptors in the planarian Schmidtea mediterranea. Silencing of these genes by RNA interference (RNAi) yielded multiple defects in intact and regenerating planarians. Smed-egfr-1(RNAi) resulted in decreased differentiation of eye pigment cells, abnormal pharynx regeneration and maintenance, and the development of dorsal outgrowths. In contrast, Smed-egfr-3(RNAi) animals produced smaller blastemas associated with abnormal differentiation of certain cell types. Our results suggest important roles for the EGFR signaling in controlling cell proliferation, differentiation and morphogenesis during planarian regeneration and homeostasis. PMID:21458439

  9. Ah Receptor Signaling Controls the Expression of Cardiac Development and Homeostasis Genes.

    Carreira, Vinicius S; Fan, Yunxia; Wang, Qing; Zhang, Xiang; Kurita, Hisaka; Ko, Chia-I; Naticchioni, Mindi; Jiang, Min; Koch, Sheryl; Medvedovic, Mario; Xia, Ying; Rubinstein, Jack; Puga, Alvaro

    2015-10-01

    Congenital heart disease (CHD) is the most common congenital abnormality and one of the leading causes of newborn death throughout the world. Despite much emerging scientific information, the precise etiology of this disease remains elusive. Here, we show that the aryl hydrocarbon receptor (AHR) regulates the expression of crucial cardiogenesis genes and that interference with endogenous AHR functions, either by gene ablation or by agonist exposure during early development, causes overlapping structural and functional cardiac abnormalities that lead to altered fetal heart physiology, including higher heart rates, right and left ventricle dilation, higher stroke volume, and reduced ejection fraction. With striking similarity between AHR knockout (Ahr(-/-)) and agonist-exposed wild type (Ahr(+/+)) embryos, in utero disruption of endogenous AHR functions converge into dysregulation of molecular mechanisms needed for attainment and maintenance of cardiac differentiation, including the pivotal signals regulated by the cardiogenic transcription factor NKH2.5, energy balance via oxidative phosphorylation and TCA cycle and global mitochondrial function and homeostasis. Our findings suggest that AHR signaling in the developing mammalian heart is central to the regulation of pathways crucial for cellular metabolism, cardiogenesis, and cardiac function, which are potential targets of environmental factors associated with CHD. PMID:26139165

  10. Hemostatic abnormalities in liver cirrhosis

    Kendal YALÇIN

    2009-06-01

    Full Text Available In this study, 44 patients with liver cirrhosis were investigated for hemostatic parameters. Patients with spontaneous bacterial peritonitis, hepatocellular carcinoma, hepatorenal syndrome and cholestatic liver diseases were excluded. Patients were classified by Child-Pugh criterion and according to this 4 patients were in Class A, 20 in Class B and 20 in C. Regarding to these results, it was aimed to investigate the haematological disturbances in liver cirrhotic patients.In the result there was a correlation between activated partial thromboplastin time, serum iron, ferritin, transferrin, haptoglobin and Child-Pugh classification. Besides there was no correlation between prothrombin time, factor 8 and 9, protein C and S, anti-thrombin 3, fibrinogen, fibrin degradation products, serum iron binding capacity, hemoglobin, leukocyte, mean corpuscular volume and Child-Pugh classification.There were significant difference, in terms of AST, ferritin, haptoglobulin, sex and presence of ascites between groups (p0.05. In the summary, we have found correlation between hemostatic abnormalities and disease activity and clinical prognosis in patients with liver cirrhosis which is important in the management of these patients. This is also important for identification of liver transplant candidiates earlier.

  11. Sensorial abnormalities: Smell and taste

    Palheta Neto, Francisco Xavier

    2011-07-01

    Full Text Available Introduction: Taste and smell abnormalities have proven to be an extremely more complex subject than previously regarded. Wide-ranging nosologic entities arise along with smell and taste alterations, and they can be congenital or acquired. Objective: Analyze the main features of smell and taste dysfunctions. Method: Automated databases were used to collect data, by searching keywords like 'alteration', 'smell', and 'taste'. A non-systematic search was also made in scientific printings and medical books. Literature Review: Smell and taste dysfunctions have a vast etiology, the most significant of which are obstructive nasal and sinusal disease, infections of the upper respiratory tract, cranioencephalic trauma, aging, exposure to toxics and some drugs, nasal or intracranial neoplasias, psychiatric and neurological pathologies, iatrogenic disease, idiopathic and congenital causes. A detailed anamnesis, a careful physical examination and supplementary evaluations are important for the diagnosis of these alterations. Conclusion: As a rule, smell and taste dysfunctions occur in a combined way. The early discovery of such dysfunctions can lead to a more efficient treatment, making the progress of diseases causing them retard and the symptoms less severe. In many cases, treating these alterations is not easy and there needs to be a multidisciplinary cooperation among the otorhinolaryngologist, endocrinologist, neurologist, psychiatrist, among others.

  12. Holoprosencephaly due to numeric chromosome abnormalities.

    Solomon, Benjamin D; Rosenbaum, Kenneth N; Meck, Jeanne M; Muenke, Maximilian

    2010-02-15

    Holoprosencephaly (HPE) is the most common malformation of the human forebrain. When a clinician identifies a patient with HPE, a routine chromosome analysis is often the first genetic test sent for laboratory analysis in order to assess for a structural or numerical chromosome anomaly. An abnormality of chromosome number is overall the most frequently identified etiology in a patient with HPE. These abnormalities include trisomy 13, trisomy 18, and triploidy, though several others have been reported. Such chromosome number abnormalities are almost universally fatal early in gestation or in infancy. Clinical features of specific chromosome number abnormalities may be recognized by phenotypic manifestations in addition to the HPE. PMID:20104610

  13. Radiologic atlas of pulmonary abnormalities in children

    This book is an atlas about thoracic abnormalities in infants and children. The authors include computed tomographic, digital subtraction angiographic, ultrasonographic, and a few magnetic resonance (MR) images. They recognize and discuss how changes in the medical treatment of premature infants and the management of infection and pediatric tumors have altered some of the appearances and considerations in these diseases. Oriented toward all aspects of pulmonary abnormalities, the book starts with radiographic techniques and then discusses the normal chest, the newborn, infections, tumors, and pulmonary vascular diseases. There is comprehensive treatment of mediastinal abnormalities and a discussion of airway abnormalities

  14. Analysis of abnormalities of snubbers in nuclear-reactor service (Report 1)

    An investigation was conducted of malfunctions of snubbers (seismic-shock arrestors) in service in nuclear power plants. The construction and use of snubbers is summarized, and the history of snubber problems in nuclear service is reviewed. Reports of many hundreds of snubber malfunctions were found in the abnormal-occurrence reports of the docket literature. The great majority of these abnormal occurrences consisted of hydraulic snubbers whose hydraulic fluid had leaked out because of deteriorated seals; snubbers that were damaged in manufacture, shipping, installation, refitting, or use; and snubbers whose performance did not match service requirements. Additional information about the failures was obtained from the reactor operators, snubber manufacturers, reactor vendors, and independent laboratories. The abnormal occurrences were classified into 12 categories. Analyses of the causes of the individual abnormalities are presented, and preliminary comments on the current state of snubber manufacture and use are made

  15. Analysis of abnormalities of snubbers in nuclear-reactor service (Report 1)

    Butler, J.H.; O' Hara, F.M. Jr.

    1976-10-14

    An investigation was conducted of malfunctions of snubbers (seismic-shock arrestors) in service in nuclear power plants. The construction and use of snubbers is summarized, and the history of snubber problems in nuclear service is reviewed. Reports of many hundreds of snubber malfunctions were found in the abnormal-occurrence reports of the docket literature. The great majority of these abnormal occurrences consisted of hydraulic snubbers whose hydraulic fluid had leaked out because of deteriorated seals; snubbers that were damaged in manufacture, shipping, installation, refitting, or use; and snubbers whose performance did not match service requirements. Additional information about the failures was obtained from the reactor operators, snubber manufacturers, reactor vendors, and independent laboratories. The abnormal occurrences were classified into 12 categories. Analyses of the causes of the individual abnormalities are presented, and preliminary comments on the current state of snubber manufacture and use are made.

  16. Fluid dynamics

    Ruban, Anatoly I

    This is the first book in a four-part series designed to give a comprehensive and coherent description of Fluid Dynamics, starting with chapters on classical theory suitable for an introductory undergraduate lecture course, and then progressing through more advanced material up to the level of modern research in the field. The present Part 1 consists of four chapters. Chapter 1 begins with a discussion of Continuum Hypothesis, which is followed by an introduction to macroscopic functions, the velocity vector, pressure, density, and enthalpy. We then analyse the forces acting inside a fluid, and deduce the Navier-Stokes equations for incompressible and compressible fluids in Cartesian and curvilinear coordinates. In Chapter 2 we study the properties of a number of flows that are presented by the so-called exact solutions of the Navier-Stokes equations, including the Couette flow between two parallel plates, Hagen-Poiseuille flow through a pipe, and Karman flow above an infinite rotating disk. Chapter 3 is d...

  17. Correlation of in vivo neuroimaging abnormalities with postmortem human immunodeficiency virus encephalitis and dendritic loss

    Archibald, Sarah L.; Masliah, Eliezer; Fennema-Notestine, Christine; Marcotte, Thomas D.; Ellis, Ronald J.; McCutchan, Allen; Heaton, Robert K.; Grant, Igor; Mallory, Margaret; Miller, Aida; Jernigan, Terry Lynne

    2004-01-01

    BACKGROUND: In the absence of significant opportunistic infection, the most common alterations on neuroimaging in the brains of patients with AIDS include enlarged cerebrospinal fluid spaces, white-matter loss, volume loss in striatal structures, and white-matter signal abnormalities. Although pr...... immunoreactivity. CONCLUSIONS: White-matter and cortical damage resulting from HIV disease are closely related. In vivo magnetic resonance imaging may be a valuable adjunct in the assessment of patients at risk for developing HIV encephalitis......BACKGROUND: In the absence of significant opportunistic infection, the most common alterations on neuroimaging in the brains of patients with AIDS include enlarged cerebrospinal fluid spaces, white-matter loss, volume loss in striatal structures, and white-matter signal abnormalities. Although...... data from autopsies. RESULTS: The HIV-seropositive subjects demonstrated cerebrospinal fluid increases relative to seronegative controls. These increases were associated with a significant decrease in the volumes of cerebral and cerebellar white matter, caudate nucleus, hippocampus, and, to a lesser...

  18. Complex radiation diagnosis of associated intracardiac abnormality

    It is shown that patients with congenital heart diseases having signs of cardiodismorphic complex in form of associated intercardiac abnormalities require special attention after surgical correction of the principal defect. It is connected with the fact that the associated abnormalities may become with time the basic factors influencing the progress and forecast of the disease

  19. An Abnormal Psychology Community Based Interview Assignment

    White, Geoffry D.

    1977-01-01

    A course option in abnormal psychology involves students in interviewing and observing the activities of individuals in the off-campus community who are concerned with some aspect of abnormal psychology. The technique generates student interest in the field when they interview people about topics such as drug abuse, transsexualism, and abuse of…

  20. An Abnormal Vibrational Mode of Torsion Pendulum

    赵亮; 涂英; 顾邦明; 胡忠坤; 罗俊

    2003-01-01

    In the experiment for the determination of the gravitational constant G, we found an abnormal vibrational mode of the torsion pendulum. The abnormal mode disappeared as a magnetic damper was introduced to the torsion pendulum system. Our experimental results also show that the magnetic damper can be used to suppress the high frequency vibrational noises to torsion pendulums effectively.

  1. [Abnormality in bone metabolism after burn].

    Gong, X; Xie, W G

    2016-08-20

    Burn causes bone metabolic abnormality in most cases, including the changes in osteoblasts and osteoclasts, bone mass loss, and bone absorption, which results in decreased bone mineral density. These changes are sustainable for many years after burn and even cause growth retardation in burned children. The mechanisms of bone metabolic abnormality after burn include the increasing glucocorticoids due to stress response, a variety of cytokines and inflammatory medium due to inflammatory response, vitamin D deficiency, hypoparathyroidism, and bone loss due to long-term lying in bed. This article reviews the pathogenesis and regularity of bone metabolic abnormality after burn, the relationship between bone metabolic abnormality and burn area/depth, and the treatment of bone metabolic abnormality, etc. and discusses the research directions in the future. PMID:27562160

  2. Autophagy in Skeletal Muscle Homeostasis and in Muscular Dystrophies

    Paolo Bonaldo

    2012-07-01

    Full Text Available Skeletal muscles are the agent of motion and one of the most important tissues responsible for the control of metabolism. The maintenance of muscle homeostasis is finely regulated by the balance between catabolic and anabolic process. Macroautophagy (or autophagy is a catabolic process that provides the degradation of protein aggregation and damaged organelles through the fusion between autophagosomes and lysosomes. Proper regulation of the autophagy flux is fundamental for the homeostasis of skeletal muscles during physiological situations and in response to stress. Defective as well as excessive autophagy is harmful for muscle health and has a pathogenic role in several forms of muscle diseases. This review will focus on the role of autophagy in muscle homeostasis and diseases.

  3. Bioelectrical homeostasis as a component of acupuncture mechanism.

    Zukauskas, G; Dapsys, K

    1991-01-01

    Low frequency electrical current and super-high frequency electromagnetic field were applied to acupuncture points of stomach meridian in dogs. The stimulation effect on Bioelectrical potentials of 5 acupuncture points of stomach, spleen, liver, kidney, small intestine meridians and non-acupuncture skin zones was studied in conditions of blocked autonomic ganglia or neuro-muscular junctions of the dog. The influence of ganglioblockading and myorelaxating drugs on Bioelectrical potentials of acupuncture points was also researched. The results are discussed from the neurohumoural and bioelectrical hypotheses points of view. The conclusion that both mechanisms of acupuncture supplement each other is drawn. The principle of bioelectrical homeostasis as a component of acupuncture mechanism is proposed. Bioelectrical homeostasis along with other kinds of homeostasis forms a system of first level homeostats which is united into second level homeostat by the autonomic nervous system. PMID:1685620

  4. Pericardial Fluid Analysis

    ... Home Visit Global Sites Search Help? Pericardial Fluid Analysis Share this page: Was this page helpful? Formal name: Pericardial Fluid Analysis Related tests: Pleural Fluid Analysis , Peritoneal Fluid Analysis , ...

  5. Peritoneal Fluid Analysis

    ... Home Visit Global Sites Search Help? Peritoneal Fluid Analysis Share this page: Was this page helpful? Formal name: Peritoneal Fluid Analysis Related tests: Pleural Fluid Analysis , Pericardial Fluid Analysis , ...

  6. Chromosomal abnormalities in patients with sperm disorders

    L. Y. Pylyp

    2013-02-01

    Full Text Available Chromosomal abnormalities are among the most common genetic causes of spermatogenic disruptions. Carriers of chromosomal abnormalities are at increased risk of infertility, miscarriage or birth of a child with unbalanced karyotype due to the production of unbalanced gametes. The natural selection against chromosomally abnormal sperm usually prevents fertilization with sperm barring in cases of serious chromosomal abnormalities. However, assisted reproductive technologies in general and intracytoplasmic sperm injection in particular, enable the transmission of chromosomal abnormalities to the progeny. Therefore, cytogenetic studies are important in patients with male factor infertility before assisted reproduction treatment. The purpose of the current study was to investigate the types and frequencies of chromosomal abnormalities in 724 patients with infertility and to estimate the risk of chromosomal abnormalities detection in subgroups of patients depending on the severity of spermatogenic disruption, aiming at identifying groups of patients in need of cytogenetic studies. Karyotype analysis was performed in 724 blood samples of men attending infertility clinic. Chromosomal preparation was performed by standard techniques. At least 20 GTG-banded metaphase plates with the resolution from 450 to 750 bands per haploid set were analysed in each case. When chromosomal mosaicism was suspected, this number was increased to 50. Abnormal karyotypes were observed in 48 (6.6% patients, including 67% of autosomal abnormalities and 33% of gonosomal abnormalities. Autosomal abnormalities were represented by structural rearrangements. Reciprocal translocations were the most common type of structural chromosomal abnormalities in the studied group, detected with the frequency of 2.6% (n = 19, followed by Robertsonian translocation, observed with the frequency of 1.2% (n = 9. The frequency of inversions was 0.6% (n = 4. Gonosomal abnormalities included 14 cases

  7. Glutathione and Transition-Metal Homeostasis in Escherichia coli▿

    Helbig, Kerstin; Bleuel, Corinna; Krauss, Gerd J.; Nies, Dietrich H.

    2008-01-01

    Glutathione (GSH) and its derivative phytochelatin are important binding factors in transition-metal homeostasis in many eukaryotes. Here, we demonstrate that GSH is also involved in chromate, Zn(II), Cd(II), and Cu(II) homeostasis and resistance in Escherichia coli. While the loss of the ability to synthesize GSH influenced metal tolerance in wild-type cells only slightly, GSH was important for residual metal resistance in cells without metal efflux systems. In mutant cells without the P-typ...

  8. Neurohypophyseal hormones: novel actors of striated muscle development and homeostasis

    Alessandra Costa

    2014-09-01

    Full Text Available Since the 1980's, novel functional roles of the neurohypophyseal hormones vasopressin and oxytocin have emerged. Several studies have investigated the effects of these two neurohormones on striated muscle tissues, both in vitro and in vivo. The effects of vasopressin on skeletal myogenic cells, developing muscle and muscle homeostasis have been documented. Oxytocin appears to have a greater influence on cardiomyocite differentiation and heart homeostasis. This review summarizes the studies on these novel roles of the two neurohypophyseal hormones, and open the possibility of new therapeutic approaches for diseases affecting striated muscle.

  9. Auxillary Fluid Flowmeter

    RezaNejad Gatabi, Javad; Forouzbakhsh, Farshid; Ebrahimi Darkhaneh, Hadi;

    2010-01-01

    The Auxiliary Fluid Flow meter is proposed to measure the fluid flow of any kind in both pipes and open channels. In this kind of flow measurement, the flow of an auxiliary fluid is measured Instead of direct measurement of the main fluid flow. The auxiliary fluid is injected into the main fluid ...

  10. Numerically abnormal chromosome constitutions in humans

    NONE

    1993-12-31

    Chapter 24, discusses numerically abnormal chromosome constitutions in humans. This involves abnormalities of human chromosome number, including polyploidy (when the number of sets of chromosomes increases) and aneuploidy (when the number of individual normal chromosomes changes). Chapter sections discuss the following chromosomal abnormalities: human triploids, imprinting and uniparental disomy, human tetraploids, hydatidiform moles, anomalies caused by chromosomal imbalance, 13 trisomy (D{sub 1} trisomy, Patau syndrome), 21 trisomy (Down syndrome), 18 trisomy syndrome (Edwards syndrome), other autosomal aneuploidy syndromes, and spontaneous abortions. The chapter concludes with remarks on the nonrandom participation of chromosomes in trisomy. 69 refs., 3 figs., 4 tabs.

  11. Sleep physiology, abnormal States, and therapeutic interventions.

    Wickboldt, Alvah T; Bowen, Alex F; Kaye, Aaron J; Kaye, Adam M; Rivera Bueno, Franklin; Kaye, Alan D

    2012-01-01

    Sleep is essential. Unfortunately, a significant portion of the population experiences altered sleep states that often result in a multitude of health-related issues. The regulation of sleep and sleep-wake cycles is an area of intense research, and many options for treatment are available. The following review summarizes the current understanding of normal and abnormal sleep-related conditions and the available treatment options. All clinicians managing patients must recommend appropriate therapeutic interventions for abnormal sleep states. Clinicians' solid understanding of sleep physiology, abnormal sleep states, and treatments will greatly benefit patients regardless of their disease process. PMID:22778676

  12. Trimetazidine protects cardiomyocytes against hypoxia-induced injury through ameliorates calcium homeostasis.

    Wei, Jinhong; Xu, Hao; Shi, Liang; Tong, Jie; Zhang, Jianbao

    2015-07-01

    Intracellular calcium (Ca(2+)i) overload induced by chronic hypoxia alters Ca(2+)i homeostasis, which plays an important role on mediating myocardial injury. We tested the hypothesis that treatment with trimetazidine (TMZ) would improve Ca(2+)i handling in hypoxic myocardial injury. Cardiomyocytes isolated from neonatal Sprague-Dawley rats were exposed to chronic hypoxia (1% O2, 5% CO2, 37 °C). Intracellular calcium concentration ([Ca(2+)]i) was measured with Fura-2/AM. Perfusion of cardiomyocytes with a high concentration of caffeine (10 mM) was carried out to verify the function of the cardiac Na(+)/Ca(2+) exchanger (NCX) and the activity of sarco(endo)-plasmic reticulum Ca(2+)-ATPase (SERCA2a). For TMZ-treated cardiomyocytes exposured in hypoxia, we observed a decrease in mRNA expression of proapoptotic Bax, caspase-3 activation and enhanced expression of anti-apoptotic Bcl-2. The cardiomyocyte hypertrophy were also alleviated in hypoxic cardiomyocyte treated with TMZ. Moreover, we found that TMZ treatment cardiomyocytes enhanced "metabolic shift" from lipid oxidation to glucose oxidation. Compared with hypoxic cardiomyocyte, the diastolic [Ca(2+)]i was decreased, the amplitude of Ca(2+)i oscillations and sarcoplasmic reticulum Ca(2+) load were recovered, the activities of ryanodine receptor 2 (RyR2), NCX and SERCA2a were increased in cardiomyocytes treated with TMZ. TMZ attenuated abnormal changes of RyR2 and SERCA2a genes in hypoxic cardiomyocytes. In addition, cholinergic signaling are involved in hypoxic stress and the cardioprotective effects of TMZ. These results suggest that TMZ ameliorates Ca(2+)i homeostasis through switch of lipid to glucose metabolism, thereby producing the cardioprotective effect and reduction in hypoxic cardiomyocytes damage. PMID:25937560

  13. Notch signaling regulates late-stage epidermal differentiation and maintains postnatal hair cycle homeostasis.

    Hsien-Yi Lin

    Full Text Available BACKGROUND: Notch signaling involves ligand-receptor interactions through direct cell-cell contact. Multiple Notch receptors and ligands are expressed in the epidermis and hair follicles during embryonic development and the adult stage. Although Notch signaling plays an important role in regulating differentiation of the epidermis and hair follicles, it remains unclear how Notch signaling participates in late-stage epidermal differentiation and postnatal hair cycle homeostasis. METHODOLOGY AND PRINCIPAL FINDINGS: We applied Cre/loxP system to generate conditional gene targeted mice that allow inactivation of critical components of Notch signaling pathway in the skin. Rbpj, the core component of all four Notch receptors, and Pofut1, an essential factor for ligand-receptor interactions, were inactivated in hair follicle lineages and suprabasal layer of the epidermis using the Tgfb3-Cre mouse line. Rbpj conditional inactivation resulted in granular parakeratosis and reactive epidermal hyperplasia. Pofut1 conditional inactivation led to ultrastructural abnormalities in the granular layer and altered filaggrin processing in the epidermis, suggesting a perturbation of the granular layer differentiation. Disruption of Pofut1 in hair follicle lineages resulted in aberrant telogen morphology, a decrease of bulge stem cell markers, and a concomitant increase of K14-positive keratinocytes in the isthmus of mutant hair follicles. Pofut1-deficent hair follicles displayed a delay in anagen re-entry and dysregulation of proliferation and apoptosis during the hair cycle transition. Moreover, increased DNA double stand breaks were detected in Pofut1-deficent hair follicles, and real time PCR analyses on bulge keratinocytes isolated by FACS revealed an induction of DNA damage response and a paucity of DNA repair machinery in mutant bulge keratinocytes. SIGNIFICANCE: our data reveal a role for Notch signaling in regulating late-stage epidermal differentiation

  14. Transcriptional regulation of rod photoreceptor homeostasis revealed by in vivo NRL targetome analysis.

    Hong Hao

    Full Text Available A stringent control of homeostasis is critical for functional maintenance and survival of neurons. In the mammalian retina, the basic motif leucine zipper transcription factor NRL determines rod versus cone photoreceptor cell fate and activates the expression of many rod-specific genes. Here, we report an integrated analysis of NRL-centered gene regulatory network by coupling chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-Seq data from Illumina and ABI platforms with global expression profiling and in vivo knockdown studies. We identified approximately 300 direct NRL target genes. Of these, 22 NRL targets are associated with human retinal dystrophies, whereas 95 mapped to regions of as yet uncloned retinal disease loci. In silico analysis of NRL ChIP-Seq peak sequences revealed an enrichment of distinct sets of transcription factor binding sites. Specifically, we discovered that genes involved in photoreceptor function include binding sites for both NRL and homeodomain protein CRX. Evaluation of 26 ChIP-Seq regions validated their enhancer functions in reporter assays. In vivo knockdown of 16 NRL target genes resulted in death or abnormal morphology of rod photoreceptors, suggesting their importance in maintaining retinal function. We also identified histone demethylase Kdm5b as a novel secondary node in NRL transcriptional hierarchy. Exon array analysis of flow-sorted photoreceptors in which Kdm5b was knocked down by shRNA indicated its role in regulating rod-expressed genes. Our studies identify candidate genes for retinal dystrophies, define cis-regulatory module(s for photoreceptor-expressed genes and provide a framework for decoding transcriptional regulatory networks that dictate rod homeostasis.

  15. Involvement of IL-1 in the Maintenance of Masseter Muscle Activity and Glucose Homeostasis.

    Ko Chiba

    Full Text Available Physical exercise reportedly stimulates IL-1 production within working skeletal muscles, but its physiological significance remains unknown due to the existence of two distinct IL-1 isoforms, IL-1α and IL-1β. The regulatory complexities of these two isoforms, in terms of which cells in muscles produce them and their distinct/redundant biological actions, have yet to be elucidated. Taking advantage of our masticatory behavior (Restrained/Gnawing model, we herein show that IL-1α/1β-double-knockout (IL-1-KO mice exhibit compromised masseter muscle (MM activity which is at least partially attributable to abnormalities of glucose handling (rapid glycogen depletion along with impaired glucose uptake and dysfunction of IL-6 upregulation in working MMs. In wild-type mice, masticatory behavior clearly increased IL-1β mRNA expression but no incremental protein abundance was detectable in whole MM homogenates, whereas immunohistochemical staining analysis revealed that both IL-1α- and IL-1β-immunopositive cells were recruited around blood vessels in the perimysium of MMs after masticatory behavior. In addition to the aforementioned phenotype of IL-1-KO mice, we found the IL-6 mRNA and protein levels in MMs after masticatory behavior to be significantly lower in IL-1-KO than in WT. Thus, our findings confirm that the locally-increased IL-1 elicited by masticatory behavior, although present small in amounts, contributes to supporting MM activity by maintaining normal glucose homeostasis in these muscles. Our data also underscore the importance of IL-1-mediated local interplay between autocrine myokines including IL-6 and paracrine cytokines in active skeletal muscles. This interplay is directly involved in MM performance and fatigability, perhaps mediated through maintaining muscular glucose homeostasis.

  16. Gyroelastic fluids

    A study is made of a scale model in three dimensions of a guiding center plasma within the purview of gyroelastic (also known as finite gyroradius-near theta pinch) magnetohydrodynamics. The (nonlinear) system sustains a particular symmetry called isorrhopy which permits the decoupling of fluid modes from drift modes. Isorrhopic equilibria are analyzed within the framework of geometrical optics resulting in (local) dispersion relations and ray constants. A general scheme is developed to evolve an arbitrary linear perturbation of a screwpinch equilibrium as an invertible integral transform (over the complete set of generalized eigenfunctions defined naturally by the equilibrium). Details of the structure of the function space and the associated spectra are elucidated. Features of the (global) dispersion relation owing to the presence of gyroelastic stabilization are revealed. An energy principle is developed to study the stability of the tubular screwpinch

  17. Gyroelastic fluids

    Kerbel, G.D.

    1981-01-20

    A study is made of a scale model in three dimensions of a guiding center plasma within the purview of gyroelastic (also known as finite gyroradius-near theta pinch) magnetohydrodynamics. The (nonlinear) system sustains a particular symmetry called isorrhopy which permits the decoupling of fluid modes from drift modes. Isorrhopic equilibria are analyzed within the framework of geometrical optics resulting in (local) dispersion relations and ray constants. A general scheme is developed to evolve an arbitrary linear perturbation of a screwpinch equilibrium as an invertible integral transform (over the complete set of generalized eigenfunctions defined naturally by the equilibrium). Details of the structure of the function space and the associated spectra are elucidated. Features of the (global) dispersion relation owing to the presence of gyroelastic stabilization are revealed. An energy principle is developed to study the stability of the tubular screwpinch.

  18. Oral Fluid Therapy in Iran

    Z Nowroozi

    1985-08-01

    Full Text Available In 1950, 520 newborn to adult patients with diarrhea and vomiting were hospitalized in Tehran and some of the southern cities of Iran. The patients were different in: States of nutrition, severity of fluid deficits and a wide range of electrolyte abnormalities. They were treated in two separate phases using 2 different solutions, which are formulated upon physiobiochemical principles being iso-osmatic with plasma. For deficit therapy solution no. 1 (Sodium 80, potassium 20 mmol/l was administrated orally at a rate of 40 ml/kg. Per hour until all signs of dehydration disappeared. (This is maintenance therapy the second solution (Potassium 30, sodium 40 mmol/l, i.e. K:Na in normal=75% was given sip by sip at a rate of 250 ml/kg/24 hours until diarrhea stopped. Intravenous fluids were not used at all even in severe dehydration and shock. The efficacy and safety of this regimen were confirmed by rapid and successful dehydration and correction of a wide range of electrolyte abnormalities present on admission.

  19. A lysosome-centered view of nutrient homeostasis.

    Mony, Vinod K; Benjamin, Shawna; O'Rourke, Eyleen J

    2016-04-01

    Lysosomes are highly acidic cellular organelles traditionally viewed as sacs of enzymes involved in digesting extracellular or intracellular macromolecules for the regeneration of basic building blocks, cellular housekeeping, or pathogen degradation. Bound by a single lipid bilayer, lysosomes receive their substrates by fusing with endosomes or autophagosomes, or through specialized translocation mechanisms such as chaperone-mediated autophagy or microautophagy. Lysosomes degrade their substrates using up to 60 different soluble hydrolases and release their products either to the cytosol through poorly defined exporting and efflux mechanisms or to the extracellular space by fusing with the plasma membrane. However, it is becoming evident that the role of the lysosome in nutrient homeostasis goes beyond the disposal of waste or the recycling of building blocks. The lysosome is emerging as a signaling hub that can integrate and relay external and internal nutritional information to promote cellular and organismal homeostasis, as well as a major contributor to the processing of energy-dense molecules like glycogen and triglycerides. Here we describe the current knowledge of the nutrient signaling pathways governing lysosomal function, the role of the lysosome in nutrient mobilization, and how lysosomes signal other organelles, distant tissues, and even themselves to ensure energy homeostasis in spite of fluctuations in energy intake. At the same time, we highlight the value of genomics approaches to the past and future discoveries of how the lysosome simultaneously executes and controls cellular homeostasis. PMID:27050453

  20. Calcium and phosphate homeostasis: concerted interplay of new regulators.

    Renkema, K.Y.R.; Alexander, R.T.; Bindels, R.J.M.; Hoenderop, J.G.J.

    2008-01-01

    Calcium (Ca(2+)) and phosphate (P(i)) are essential to many vital physiological processes. Consequently the maintenance of Ca(2+) and P(i) homeostasis is essential to a healthy existence. This occurs through the concerted action of intestinal, renal, and skeletal regulatory mechanisms. Ca(2+) and P(

  1. nfluence of antidepressants on glucose homeostasis : effects and mechanisms

    Derijks, H.J.

    2009-01-01

    Depression has shown to be a common morbidity in patients with diabetes mellitus and comorbid depression in diabetes mellitus patients is frequently treated with antidepressants. It has been postulated that antidepressants may interfere with glucose homeostasis and that the interference of antidepre

  2. Effects of Adding Chymosin to Milk on Calcium Homeostasis

    Møller, Ulla Kristine; Jensen, Lars Thorbjørn; Mosekilde, Leif;

    2014-01-01

    Calcium intake and absorption is important for bone health. In a randomized double-blind cross-over trial, we investigated effects of adding chymosin to milk on the intestinal calcium absorption as measured by renal calcium excretion and indices of calcium homeostasis. The primary outcome of the...

  3. The effect of altitude hypoxia on glucose homeostasis in men

    Larsen, J J; Hansen, J M; Olsen, Niels Vidiendal;

    1997-01-01

    1. Exposure to altitude hypoxia elicits changes in glucose homeostasis with increases in glucose and insulin concentrations within the first few days at altitude. Both increased and unchanged hepatic glucose production (HGP) have previously been reported in response to acute altitude hypoxia...

  4. The role of CDX2 in intestinal homeostasis and inflammation

    Coskun, Mehmet; Troelsen, Jesper Thorvald; Nielsen, Ole Haagen

    2011-01-01

    , including luminal bacteria. The Caudal-related homeobox transcription factor 2 (CDX2) is critical in early intestinal differentiation and has been implicated as a master regulator of the intestinal homeostasis and permeability in adults. When expressed, CDX2 modulates a diverse set of processes including...

  5. Activating transcription factor 3 regulates immune and metabolic homeostasis

    Ryneš, J.; Donohoe, C. D.; Frommolt, P.; Brodesser, S.; Jindra, Marek; Uhlířová, M.

    2012-01-01

    Roč. 32, č. 19 (2012), s. 3949-3962. ISSN 0270-7306 R&D Projects: GA ČR(CZ) GD204/09/H058 Institutional support: RVO:60077344 Keywords : metabolic homeostasis Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 5.372, year: 2012

  6. Low-set ears and pinna abnormalities

    ... because they do not affect hearing. However, sometimes cosmetic surgery is recommended. Skin tags may be tied off, ... 5 years old. More severe abnormalities may require surgery for cosmetic reasons as well as for function. Surgery to ...

  7. Abnormal Events for Emergency Trip in HANARO

    This report gathers abnormal events related to emergency trip of HANARO that happened during its operation over 10 years since the first criticality on February 1995. The collected examples will be utilized to the HANARO's operators as a useful guide

  8. The glycometabolism abnormality among schizophrenia patients

    吴小立

    2013-01-01

    Objective To explore the potential glycometabolism abnormality and the related factors of schizophrenia patients in China. Methods This cross-sectional study included 44 healthy controls(group 1) and 178 inpatient

  9. Amphibian abnormalities on National Wildlife Refuges

    US Fish and Wildlife Service, Department of the Interior — This fact sheet outlines a study done to 1 find the percentage of abnormal frogs and toads on the nations National Wildlife Refuges and 2 determine how the...

  10. Report to Congress on abnormal occurrences

    Section 208 of the Energy Reorganization Act of 1974 identifies an abnormal occurrence as an unscheduled incident or event that the Nuclear Regulatory Commission determines to be significant from the standpoint of public health or safety and requires a quarterly report of such events to be made to Congress. This report covers the period from April 1 through June 30, 1990. The report discusses six abnormal occurrences, none involving a nuclear power plant. There were five abnormal occurrences at NRC licensees: (1) deficiencies in brachytherapy program; (2) a radiation overexposure of a radiographer; (3) a medical diagnostic misadministration; (4) administration of iodine-131 to a lactating female with subsequent uptake by her infant; and (5) a medical therapy misadministration. An Agreement State (Arizona) reported an abnormal occurrence involving a medical diagnostic misadministration. The report also contains information that updates a previously reported occurrence