WorldWideScience

Sample records for abnormal brain glucose

  1. Brain Glucose Metabolism Controls Hepatic Glucose and Lipid Production

    Lam, Tony K.T.

    2007-01-01

    Brain glucose-sensing mechanisms are implicated in the regulation of feeding behavior and hypoglycemic-induced hormonal counter-regulation. This commentary discusses recent findings indicating that the brain senses glucose to regulate both hepatic glucose and lipid production.

  2. Glucose abnormalities in hepatitis C virus infection.

    Huang, Jee-Fu; Yu, Ming-Lung; Dai, Chia-Yen; Chuang, Wan-Long

    2013-02-01

    Hepatitis C virus (HCV) infection is one of the most important causes of cirrhosis and hepatocellular carcinoma and has a tremendous impact on public health worldwide. HCV is both hepatotropic and lymphotropic. Replication of HCV in diseased extrahepatic organs and tissues may either trigger latent autoimmunity or induce autoimmune disorders. In addition to established liver injury, type 2 diabetes mellitus (T2DM) is an important feature of extrahepatic metabolic disorders which is attributed to HCV infection. It also has some impact on the disease activity, disease course, clinical outcomes, and treatment efficacy of antiviral therapy. Previous experimental and clinical findings have highly suggested that HCV per se is diabetogenic. The cause-effect interaction between a common endocrine disorder and an infectious disease is an important issue to elucidate. Although the precise mechanisms whereby HCV infection leads to insulin resistance (IR) and glucose abnormalities are not entirely clear, it differs from the usual pathogenesis of T2DM in those with non-HCV liver diseases. This review initially highlights epidemiological and pathophysiological studies addressing the mutual link between chronic HCV infection (CHC) and T2DM. The characteristics of glucose abnormalities in this special population are depicted from the current evidence. The mutual roles of IR and CHC with respect to the prediction of treatment efficacy, how treatment response affects IR, and the role of pancreatic beta cell function in the entire suite are discussed. With the rapid progression of antiviral therapy for CHC in the past decade, we have also listed some points of future perspective in this issue. PMID:23347806

  3. Abnormal brain glucose metabolism and depressive mood in patients with pre-dialytic chronic kidney disease: SPM analysis of F-18 FDG positron emission tomography

    The aim of this study was to investigate the relationship between depressive mood and pre-dialytic CKD, to localize and quantify depressive mood -related lesions in pre-dialytic CKD patients through statistical parametric mapping (SPM) analysis of brain positron emission tomography (PET), and to examine the usefulness of brain PET for early detection and proper treatment of depressive mood. Twenty one patients with stage 5 CKD and 22 healthy volunteers were analyzed by depressive mood assessment and statistical parametric mapping (SPM) analysis of 18F-FDG PET. Depressive mood assessment was done by Beck Depression Inventory (BDI) and Hamilton Depression Rating Scale (HDRS). The largest clusters were areas including precentral gyrus, prefrontal cortex, and anterior cingulated cortex of left hemisphere. Other clusters were left transverse temporal gyrus, left superior temporal gyrus, right prefrontal cortex, right dorsolateral prefrontal cortex (BA 46, 44), right inferior frontal gyrus, right inferior parietal lobule, left angular gyrus. In addition, correlation was found between hypometabolized areas and HDRS scores of CKD patients in right prefrontal cortex (BA 11) and right anterior cingulated gyrus (BA 24). In conclusion, this study demonstrated specific depressive mood-related abnormal metabolic lesion. Interestingly, in CKD patients with severe depressive mood, cerebral metabolism was similar to that of MDD

  4. Migraine and structural abnormalities in the brain

    Hougaard, Anders; Amin, Faisal Mohammad; Ashina, Messoud

    2014-01-01

    PURPOSE OF REVIEW: The aim is to provide an overview of recent studies of structural brain abnormalities in migraine and to discuss the potential clinical significance of their findings. RECENT FINDINGS: Brain structure continues to be a topic of extensive research in migraine. Despite advances in...... neuroimaging techniques, it is not yet clear if migraine is associated with grey matter changes. Recent large population-based studies sustain the notion of increased prevalence of white matter abnormalities in migraine, and possibly of silent infarct-like lesions. The clinical relevance of this association is...... not clear. Structural changes are not related to cognitive decline, but a link to an increased risk of stroke, especially in patients with aura, cannot be ruled out. SUMMARY: Migraine may be a risk factor for structural changes in the brain. It is not yet clear how factors such as migraine sub...

  5. Glucose transport in brain - effect of inflammation.

    Jurcovicova, J

    2014-01-01

    Glucose is transported across the cell membrane by specific saturable transport system, which includes two types of glucose transporters: 1) sodium dependent glucose transporters (SGLTs) which transport glucose against its concentration gradient and 2) sodium independent glucose transporters (GLUTs), which transport glucose by facilitative diffusion in its concentration gradient. In the brain, both types of transporters are present with different function, affinity, capacity, and tissue distribution. GLUT1 occurs in brain in two isoforms. The more glycosylated GLUT1 is produced in brain microvasculature and ensures glucose transport across the blood brain barrier (BBB). The less glycosylated form is localized in astrocytic end-feet and cell bodies and is not present in axons, neuronal synapses or microglia. Glucose transported to astrocytes by GLUT1 is metabolized to lactate serving to neurons as energy source. Proinflammatory cytokine interleukin (IL)-1β upregulates GLUT1 in endothelial cells and astrocytes, whereas it induces neuronal death in neuronal cell culture. GLUT2 is present in hypothalamic neurons and serves as a glucose sensor in regulation of food intake. In neurons of the hippocampus, GLUT2 is supposed to regulate synaptic activity and neurotransmitter release. GLUT3 is the most abundant glucose transporter in the brain having five times higher transport capacity than GLUT1. It is present in neuropil, mostly in axons and dendrites. Its density and distribution correlate well with the local cerebral glucose demands. GLUT5 is predominantly fructose transporter. In brain, GLUT5 is the only hexose transporter in microglia, whose regulation is not yet clear. It is not present in neurons. GLUT4 and GLUT8 are insulin-regulated glucose transporters in neuronal cell bodies in the cortex and cerebellum, but mainly in the hippocampus and amygdala, where they maintain hippocampus-dependent cognitive functions. Insulin translocates GLUT4 from cytosol to plasma

  6. Brain MRI abnormalities in neuromyelitis optica

    Objective: The purpose of this study was to explore brain MRI findings in neuromyelitis optica (NMO) and to investigate specific brain lesions with respect to the localization of aquaporin-4 (AQP-4). Materials and methods: Forty admitted patients (36 women) who satisfied the 2006 criteria of Wingerchuk et al. for NMO were included in this study. All patients received a neurological examination and MRI scanning including brain and spinal cord. MRIs were classified as normal, nonspecific, multiple sclerosis-like, typical abnormalities. MS-like lesions were too few to satisfy the Barkhof et al. criteria for MS. Confluent lesions involving high AQP-4 regions were considered typical. Non-enhancing deep white matter lesions other than MS-like lesions or typical lesions were classified as nonspecific. Results: Brain MRI lesions were delineated in 12 patients (25%). Four patients (10%) had hypothalamus, brainstem or periventricle lesions. Six (15%) patients were nonspecific, and 2 (5%) patients had multiple sclerosis-like lesions. Conclusion: Brain MRIs are negative in most NMO, and brain lesions do not exclude the diagnosis of NMO. Hypothalamus, brainstem or periventricle lesions, corresponding to high sites of AQP-4 in the brain, are indicative of lesions of NMO.

  7. Brain MRI abnormalities in neuromyelitis optica

    Wang Fei, E-mail: feiwang1973@gmail.com [Department of Radiology, Xuanwu Hospital, Capital University of Medical Sciences, 45 Chang-Chun St, Xuanwu District, Beijing 100053 (China); Liu Yaou, E-mail: asiaeurope80@gmail.com [Department of Radiology, Xuanwu Hospital, Capital University of Medical Sciences, 45 Chang-Chun St, Xuanwu District, Beijing 100053 (China); Duan Yunyun, E-mail: duanyun2003@sohu.com [Department of Radiology, Xuanwu Hospital, Capital University of Medical Sciences, 45 Chang-Chun St, Xuanwu District, Beijing 100053 (China); Li Kuncheng, E-mail: kunchengli@yahoo.com.cn [Department of Radiology, Xuanwu Hospital, Capital University of Medical Sciences, 45 Chang-Chun St, Xuanwu District, Beijing 100053 (China); Education Ministry Key Laboratory for Neurodegenerative Disease, Xuanwu Hospital, Capital University of Medical Sciences, 45 Chang-Chun St, Xuanwu District, Beijing 100053 (China)

    2011-11-15

    Objective: The purpose of this study was to explore brain MRI findings in neuromyelitis optica (NMO) and to investigate specific brain lesions with respect to the localization of aquaporin-4 (AQP-4). Materials and methods: Forty admitted patients (36 women) who satisfied the 2006 criteria of Wingerchuk et al. for NMO were included in this study. All patients received a neurological examination and MRI scanning including brain and spinal cord. MRIs were classified as normal, nonspecific, multiple sclerosis-like, typical abnormalities. MS-like lesions were too few to satisfy the Barkhof et al. criteria for MS. Confluent lesions involving high AQP-4 regions were considered typical. Non-enhancing deep white matter lesions other than MS-like lesions or typical lesions were classified as nonspecific. Results: Brain MRI lesions were delineated in 12 patients (25%). Four patients (10%) had hypothalamus, brainstem or periventricle lesions. Six (15%) patients were nonspecific, and 2 (5%) patients had multiple sclerosis-like lesions. Conclusion: Brain MRIs are negative in most NMO, and brain lesions do not exclude the diagnosis of NMO. Hypothalamus, brainstem or periventricle lesions, corresponding to high sites of AQP-4 in the brain, are indicative of lesions of NMO.

  8. Lactate, Glucose and Oxygen Uptake in Human Brain During Recovery from Maximal Exercise

    Kojiro, I.; Schmalbruch, I.K.; Quistorff, B.; Horn, A.; Secher, Niels Henry

    Skeletal muscle, brain lactate uptake, brain oxygen uptake, energy metabolism, brain glucose uptake......Skeletal muscle, brain lactate uptake, brain oxygen uptake, energy metabolism, brain glucose uptake...

  9. Neuroendocrine abnormalities in patients with traumatic brain injury

    Yuan, X. Q.; Wade, C. E.

    1991-01-01

    This article provides an overview of hypothalamic and pituitary alterations in brain trauma, including the incidence of hypothalamic-pituitary damage, injury mechanisms, features of the hypothalamic-pituitary defects, and major hypothalamic-pituitary disturbances in brain trauma. While hypothalamic-pituitary lesions have been commonly described at postmortem examination, only a limited number of clinical cases of traumatic hypothalamic-pituitary dysfunction have been reported, probably because head injury of sufficient severity to cause hypothalamic and pituitary damage usually leads to early death. With the improvement in rescue measures, an increasing number of severely head-injured patients with hypothalamic-pituitary dysfunction will survive to be seen by clinicians. Patterns of endocrine abnormalities following brain trauma vary depending on whether the injury site is in the hypothalamus, the anterior or posterior pituitary, or the upper or lower portion of the pituitary stalk. Injury predominantly to the hypothalamus can produce dissociated ACTH-cortisol levels with no response to insulin-induced hypoglycemia and a limited or failed metopirone test, hypothyroxinemia with a preserved thyroid-stimulating hormone response to thyrotropin-releasing hormone, low gonadotropin levels with a normal response to gonadotropin-releasing hormone, a variable growth hormone (GH) level with a paradoxical rise in GH after glucose loading, hyperprolactinemia, the syndrome of inappropriate ADH secretion (SIADH), temporary or permanent diabetes insipidus (DI), disturbed glucose metabolism, and loss of body temperature control. Severe damage to the lower pituitary stalk or anterior lobe can cause low basal levels of all anterior pituitary hormones and eliminate responses to their releasing factors. Only a few cases showed typical features of hypothalamic or pituitary dysfunction. Most severe injuries are sufficient to damage both structures and produce a mixed endocrine picture

  10. Analysis of oral glucose tolerance test in pregnant women with abnormal glucose metabolism

    YANG Hui-xia; GAO Xue-lian; DONG Yue; SHI Chun-yan

    2005-01-01

    Background Due to the controversy of the oral glucose tolerance test (OGTT), diagnostic criteria for gestational diabetes mellitus (GDM) in the world and researches on GDM remain undeveloped in China. American Diabetes Association recently recommended the clinicians to diagnose GDM by OGTT results without the third-hour glucose value. This new criteria has not been used in China. Research on the value and sensitivity of the criteria in detecting GDM is rare. The aim of our study is to analyze the characteristics of OGTT in Chinese women with GDM or gestational impaired glucose tolerance (GIGT) and to evaluate the effect of omission of the third-hour plasma glucose (PG) level in OGTT on the sensitivity of diagnosing GDM and GIGT, and the relationship between PG values of 50 g GCT or OGTT and insulin therapy. Methods A retrospective analysis was performed on medical records of 647 cases with GDM from January 1, 1989 to December 31, 2002, and 233 with GIGT. Among 647 cases of GDM, 535 cases were diagnosed by 75 g OGTT. All OGTT results including 535 cases of GDM and 233 patients with GIGT were evaluated. Results There were 112 cases of GDM diagnosed by elevated fasting PG (FPG) without OGTT performed. Of 535 cases of GDM diagnosed by OGTT, 49.2% (263/535) women had FPG value ≥5.8 mmol/L; 90.1% (482/535) women with 1-hour PG values ≥10.6 mmol/L; 64.7% (359/535) with 2-hour PG levels ≥9.2 mmol/L. There were only 114 cases (21.3%) with abnormal 3-hour PG levels among 535 women with OGTT. Among those with abnormal 3-hour PG level, 49.1% (56/114) had abnormal glucose values in the other three points of OGTT, and 34.2% (39/114) with two other abnormal values of OGTT. Our study showed that omission of the 3-hour PG of OGTT only missed 19 cases of GDM and they would be diagnosed as GIGT. Among the 233 women with GIGT, only 4 cases had abnormal 3-hour PG. So, omission of the third-hour glucose value of OGTT only resulted in failure to diagnose 3.6% (19/535) women with

  11. Cognition and brain abnormalities on MRI in pituitary patients

    Highlights: • Cognitive impairments are frequently observed in treated NFA patients. • NFA patients with cognitive impairments do not show brain abnormalities on MRI more frequently than patients without cognitive impairments. • The absence of brain abnormalities on brain MRI does not exclude impairments of cognition. - Abstract: Purpose: The extent to which cognitive dysfunction is related to specific brain abnormalities in patients treated for pituitary macroadenoma is unclear. Therefore, we compared brain abnormalities seen on Magnetic Resonance Imaging (MRI) in patients treated for nonfunctioning pituitary macroadenoma (NFA) with or without impairments in cognitive functioning. Methods: In this cross-sectional design, a cohort of 43 NFA patients was studied at the University Medical Center Groningen. White matter lesions (WMLs), cerebral atrophy, (silent) brain infarcts and abnormalities of the temporal lobes and hippocampi were assessed on pre-treatment and post-treatment MRI scans. Post-treatment cognitive examinations were performed using a verbal memory and executive functioning test. We compared our patient cohort with large reference populations representative of the Dutch population. Results: One or more impairments on both cognitive tests were frequently observed in treated NFA patients. No treatment effects were found with regard to the comparison between patients with and without impairments in executive functioning. Interestingly, in patients with one or more impairments on verbal memory function, treatment with radiotherapy had been given more frequently (74% in the impaired group versus 40% in the unimpaired group, P = 0.025). Patients with or without any brain abnormality on MRI did not differ in verbal memory or executive functioning. Conclusions: Brain abnormalities on MRI are not observed more frequently in treated NFA patients with impairments compared to NFA patients without impairments in verbal memory or executive functioning

  12. Cognition and brain abnormalities on MRI in pituitary patients

    Brummelman, Pauline [Department of Endocrinology, University of Groningen, University Medical Center Groningen (Netherlands); Sattler, Margriet G.A. [Department of Radiation Oncology, University of Groningen, University Medical Center Groningen (Netherlands); Department of Radiation Oncology, Netherlands Cancer Institute – Antoni van Leeuwenhoek Hospital, Amsterdam (Netherlands); Meiners, Linda C. [Department of Radiology, University of Groningen, University Medical Center Groningen (Netherlands); Berg, Gerrit van den; Klauw, Melanie M. van der [Department of Endocrinology, University of Groningen, University Medical Center Groningen (Netherlands); Elderson, Martin F. [Department of Endocrinology, University of Groningen, University Medical Center Groningen (Netherlands); LifeLines Cohort Study and Biobank, University of Groningen, University Medical Center Groningen (Netherlands); Dullaart, Robin P.F. [Department of Endocrinology, University of Groningen, University Medical Center Groningen (Netherlands); Koerts, Janneke [Department of Clinical and Developmental Neuropsychology, University of Groningen, Groningen (Netherlands); Werumeus Buning, Jorien, E-mail: j.werumeus.buning@umcg.nl [Department of Endocrinology, University of Groningen, University Medical Center Groningen (Netherlands); Tucha, Oliver [Department of Clinical and Developmental Neuropsychology, University of Groningen, Groningen (Netherlands); Wolffenbuttel, Bruce H.R. [Department of Endocrinology, University of Groningen, University Medical Center Groningen (Netherlands); LifeLines Cohort Study and Biobank, University of Groningen, University Medical Center Groningen (Netherlands); Bergh, Alfons C.M. van den [Department of Radiation Oncology, University of Groningen, University Medical Center Groningen (Netherlands); Beek, André P. van, E-mail: a.p.van.beek@umcg.nl [Department of Endocrinology, University of Groningen, University Medical Center Groningen (Netherlands)

    2015-02-15

    Highlights: • Cognitive impairments are frequently observed in treated NFA patients. • NFA patients with cognitive impairments do not show brain abnormalities on MRI more frequently than patients without cognitive impairments. • The absence of brain abnormalities on brain MRI does not exclude impairments of cognition. - Abstract: Purpose: The extent to which cognitive dysfunction is related to specific brain abnormalities in patients treated for pituitary macroadenoma is unclear. Therefore, we compared brain abnormalities seen on Magnetic Resonance Imaging (MRI) in patients treated for nonfunctioning pituitary macroadenoma (NFA) with or without impairments in cognitive functioning. Methods: In this cross-sectional design, a cohort of 43 NFA patients was studied at the University Medical Center Groningen. White matter lesions (WMLs), cerebral atrophy, (silent) brain infarcts and abnormalities of the temporal lobes and hippocampi were assessed on pre-treatment and post-treatment MRI scans. Post-treatment cognitive examinations were performed using a verbal memory and executive functioning test. We compared our patient cohort with large reference populations representative of the Dutch population. Results: One or more impairments on both cognitive tests were frequently observed in treated NFA patients. No treatment effects were found with regard to the comparison between patients with and without impairments in executive functioning. Interestingly, in patients with one or more impairments on verbal memory function, treatment with radiotherapy had been given more frequently (74% in the impaired group versus 40% in the unimpaired group, P = 0.025). Patients with or without any brain abnormality on MRI did not differ in verbal memory or executive functioning. Conclusions: Brain abnormalities on MRI are not observed more frequently in treated NFA patients with impairments compared to NFA patients without impairments in verbal memory or executive functioning

  13. A 18F-FDG uptake study of brain and abnormal brain connection in advanced Parkinson's disease

    Objective: To assess the changes in regional glucose metabolism and abnormal brain connection in advanced Parkinson's disease (PD) with 18F-fluorodeoxyglucose (FDG) PET imaging. Methods: Ten advanced PD patients and 10 age-matched healthy subjects underwent 18F-FDG PET imaging at rest-state. Statistical parametric mapping (SPM) was used to investigate regional cerebral metabolic rate of glucose. Results: Compared to age-matched healthy subjects, the regional glucose metabolism increased in bilateral hippocampus, thalamus, precentral cortex (BA6) and lentiform, whereas decreased in bilateral prefrontal motor area (BA46, BA47), parietal area (BA7, BA39) in advanced PD cases. Conclusions: Hypermetabolism in thalamus and lentiform accompany with hypometabolism in prefrontal motor and parietal cortex area was found in advanced PD patients, thereby the abnormal functional connection showed by FDG PET imaging is helpful to the diagnosis and also for the study of the pathophysiology of PD

  14. Mechanisms of abnormal brain development leading to transsexualism (review

    L. F. Kurilo

    2014-11-01

    Full Text Available Overview of national and world literature on sexual autoidentification is analyzed. Prenatal brain development abnormalities leading to transsexualism are discussed. Results of own cytogenetic analysis, ооgenesis and spermatоgenesis examination are reported.

  15. Mechanisms of abnormal brain development leading to transsexualism (review)

    L. F. Kurilo; S. Sh. Khayat; S. Yu. Kalinchenko; B. Yu. Slonimskiy; T. M. Sorokina

    2014-01-01

    Overview of national and world literature on sexual autoidentification is analyzed. Prenatal brain development abnormalities leading to transsexualism are discussed. Results of own cytogenetic analysis, ооgenesis and spermatоgenesis examination are reported.

  16. Transient brain scan abnormalities in renal dialysis patients

    Two patients on chronic renal hemodialysis developed acute neurologic symptoms and unusual brain scan findings, including very prominent cranial sinuses. Symptoms and scan abnormalities reverted to normal within a few days. The possible mechanisms are discussed

  17. Image Processing Technique for Brain Abnormality Detection

    Ashraf Anwar

    2013-02-01

    Full Text Available Medical imaging is expensive and very much sophisticated because of proprietary software and expert personalities. This paper introduces an inexpensive, user friendly general-purpose image processing tool and visualization program specifically designed in MATLAB to detect much of the brain disorders as early as possible. The application provides clinical and quantitative analysis of medical images. Minute structural difference of brain gradually results in major disorders such as schizophrenia, Epilepsy, inherited speech and language disorder, Alzheimer's dementia etc. Here the main focusing is given to diagnose the disease related to the brain and its psychic nature (Alzheimer’s disease.

  18. Abnormal glucose metabolism in acute myocardial infarction: influence on left ventricular function and prognosis

    Høfsten, Dan E; Løgstrup, Brian B; Møller, Jacob E;

    2009-01-01

    OBJECTIVES: We studied the influence of abnormal glucose metabolism on left ventricular (LV) function and prognosis in 203 patients with acute myocardial infarction. BACKGROUND: Abnormal glucose metabolism is associated with increased mortality after acute myocardial infarction. This appears to be...... particularly attributable to an increased incidence of post-infarction congestive heart failure. A relationship between glucose metabolism and LV function could potentially explain this excess mortality. METHODS: In patients without known diabetes, glucose metabolism was determined using an oral glucose...... atrial volume index) and by measuring plasma N-terminal pro-B-type natriuretic peptide levels. RESULTS: After adjustment for age and gender, a linear relationship between the degree of abnormal glucose metabolism was observed for each marker of LV dysfunction (p(trend) < 0.05) with the exception of left...

  19. Correlation of glucose metabolism in brain cells and brain morphological changes with clinical typing in children with cerebral palsy

    Qiongxiang Zhai; Huixian Qiao; Jiqing Liu

    2006-01-01

    BACKGROUND:It is widely known that fluorino-18-fluorodeoxyglucose positron emission tomography(18F-FDG PET)is commonly used to evaluate and diagnose epilepsy;however,whether it is beneficial to understand functional metabolism of bra in cells so as to reflect injured site and degree of brain cells or not should be studied further.OBJECTIVE:To evaluate the correlation between glucose metabolism and clinical typling as well as the conelation between active function of brain cells and degree of brain injury among children with cerbral palsy with 18F-FDG PET and MRI and compare the results of them.DESIGN:Case analysis.SETTING:Department of Pediatrics,People's Hospital of Guangdong Province.PARTICIPANTS:A total of 31 children with cerebral palsy were selected from Out-patient Clinic and In-patient Department of People's Hospital of Guangdong Province from July 2001 to August 2004.Based on clinical criteria of cerebral palsy,patients were classified into spasm(n=10),gradual movement(n=4),mixed type(n =13)and ataxia(n=4).There were 18 boys and 13 girls aged from 10 months to 4 years.All of them were met the diagnostic criteria of cerebral palsy and all parents of them were told the facts.Exclusion cdteria:Patients who had cerebral palsy caused by genetic metabolism disease were excluded.METHODS:①All children accepted MRI examination after hospitalization with Philips Acs NT 15T superconductling magnetic resonance scanner.②All children were fasted for 4 hours.And then,PET image of brain was collected based on T+EID type.If obvious hypermetabolism or hypometabolism region successively occurred on two layers, the image was regarded as abnormality. ③Different correlations of various abnormal greups of MRI and vadous types of cerebral palsy with PET image were compared and analyzed with Erusal-Willas rank sum test.MAIN OUTCOME MEASURES:①Results of 18F-FDG PET;②Results of MRI examination;③Correlation of variously abnormal groups of MRI and various types of cerebral

  20. Abnormal Glucose Tolerance Is Associated with a Reduced Myocardial Metabolic Flexibility in Patients with Dilated Cardiomyopathy

    Domenico Tricò; Simona Baldi; Silvia Frascerra; Elena Venturi; Paolo Marraccini; Danilo Neglia; Andrea Natali

    2015-01-01

    Dilated cardiomyopathy (DCM) is characterized by a metabolic shift from fat to carbohydrates and failure to increase myocardial glucose uptake in response to workload increments. We verified whether this pattern is influenced by an abnormal glucose tolerance (AGT). In 10 patients with DCM, 5 with normal glucose tolerance (DCM-NGT) and 5 with AGT (DCM-AGT), and 5 non-DCM subjects with AGT (N-AGT), we measured coronary blood flow and arteriovenous differences of oxygen and metabolites during Re...

  1. Value of fructosamine measurement in pregnant women with abnormal glucose tolerance

    LI Kui; YANG Hui-xia

    2006-01-01

    Background The concentration of serum fructosamine is correlated with plasma glucose level. The aim of this study was to determine whether the level of serum fructosamine can be diagnostic for abnormal glucose tolerance in pregnant women.Methods Serum samples were collected from 161 pregnant women between November 2004 and April 2005.The women were divided into three groups according to the gestational age (16-20 weeks group, 56 patients; 28-34 weeks group, 72; and 37-41 weeks group, 33). Each group was subdivided into normal and abnormal glucose tolerance subgroups. The levels of serum fructosamine were measured. Differences among the groups were assessed by ANOVA and Student-Newman-Keuls test. Correlations between the level of fructosamine and other variables including the results of glucose challenge test (GCT), oral glucose tolerance test (OGTT), and glycosylated hemoglobin (HbA1c) test, and infant's birth weight were analyzed by Pearson correlation.Results The level of serum fructosamine decreased with gestational age [(223.25 ±48.90) μmol/L, (98.44±29.57)μmol/L, and (53.99±29.94) μmol/L, respectively. P<0.05]. It was higher in women with abnormal glucose tolerance than that in women with normal glucose tolerance, however, the difference reached statistical significance only in the 28-34 weeks group (P<0.05). In this group, the level of serum fructosamine correlated positively with the GCT result (r=0.28, P<0.05). No correlation was found between fructosamine level and OGTT result, HbA1c level, or neonatal weight.Conclusions Fructosamine can be used to monitor the glucose level of pregnant women with abnormal glucose tolerance, and to identify the patients at high risk of abnormal glucose tolerance, but can not be used to predict gestational diabetes mellitus (GDM) in early stage of pregnancy.

  2. Morphometric Brain Abnormalities in Boys with Conduct Disorder

    Huebner, Thomas; Vloet, Timo D.; Marx, Ivo; Konrad, Kerstin; Fink, Gereon R.; Herpertz, Sabine C.; Herpertz-Dahlmann, Beate

    2008-01-01

    Conduct disorder (CD) is associated with antisocial personality behavior that violates the basic rights of others. Results, on examining the structural brain aberrations in boys' CD, show that boys with CD and cormobid attention-deficit/hyperactivity disorder showed abnormalities in frontolimbic areas that could contribute to antisocial…

  3. Genetic abnormality predicts benefit for a rare brain tumor

    A clinical trial has shown that addition of chemotherapy to radiation therapy leads to a near doubling of median survival time in patients with a form of brain tumor (oligodendroglioma) that carries a chromosomal abnormality called the 1p19q co-deletion.

  4. Connectivity and functional profiling of abnormal brain structures in pedophilia

    Poeppl, Timm B.; Eickhoff, Simon B.; Fox, Peter T.; Laird, Angela R.; Rupprecht, Rainer; Langguth, Berthold; Bzdok, Danilo

    2015-01-01

    Despite its 0.5–1% lifetime prevalence in men and its general societal relevance, neuroimaging investigations in pedophilia are scarce. Preliminary findings indicate abnormal brain structure and function. However, no study has yet linked structural alterations in pedophiles to both connectional and functional properties of the aberrant hotspots. The relationship between morphological alterations and brain function in pedophilia as well as their contribution to its psychopathology thus remain unclear. First, we assessed bimodal connectivity of structurally altered candidate regions using meta-analytic connectivity modeling (MACM) and resting-state correlations employing openly accessible data. We compared the ensuing connectivity maps to the activation likelihood estimation (ALE) maps of a recent quantitative meta-analysis of brain activity during processing of sexual stimuli. Second, we functionally characterized the structurally altered regions employing meta-data of a large-scale neuroimaging database. Candidate regions were functionally connected to key areas for processing of sexual stimuli. Moreover, we found that the functional role of structurally altered brain regions in pedophilia relates to nonsexual emotional as well as neurocognitive and executive functions, previously reported to be impaired in pedophiles. Our results suggest that structural brain alterations affect neural networks for sexual processing by way of disrupted functional connectivity, which may entail abnormal sexual arousal patterns. The findings moreover indicate that structural alterations account for common affective and neurocognitive impairments in pedophilia. The present multi-modal integration of brain structure and function analyses links sexual and nonsexual psychopathology in pedophilia. PMID:25733379

  5. Connectivity and functional profiling of abnormal brain structures in pedophilia.

    Poeppl, Timm B; Eickhoff, Simon B; Fox, Peter T; Laird, Angela R; Rupprecht, Rainer; Langguth, Berthold; Bzdok, Danilo

    2015-06-01

    Despite its 0.5-1% lifetime prevalence in men and its general societal relevance, neuroimaging investigations in pedophilia are scarce. Preliminary findings indicate abnormal brain structure and function. However, no study has yet linked structural alterations in pedophiles to both connectional and functional properties of the aberrant hotspots. The relationship between morphological alterations and brain function in pedophilia as well as their contribution to its psychopathology thus remain unclear. First, we assessed bimodal connectivity of structurally altered candidate regions using meta-analytic connectivity modeling (MACM) and resting-state correlations employing openly accessible data. We compared the ensuing connectivity maps to the activation likelihood estimation (ALE) maps of a recent quantitative meta-analysis of brain activity during processing of sexual stimuli. Second, we functionally characterized the structurally altered regions employing meta-data of a large-scale neuroimaging database. Candidate regions were functionally connected to key areas for processing of sexual stimuli. Moreover, we found that the functional role of structurally altered brain regions in pedophilia relates to nonsexual emotional as well as neurocognitive and executive functions, previously reported to be impaired in pedophiles. Our results suggest that structural brain alterations affect neural networks for sexual processing by way of disrupted functional connectivity, which may entail abnormal sexual arousal patterns. The findings moreover indicate that structural alterations account for common affective and neurocognitive impairments in pedophilia. The present multimodal integration of brain structure and function analyses links sexual and nonsexual psychopathology in pedophilia. PMID:25733379

  6. Structural brain abnormalities in early onset first-episode psychosis

    Pagsberg, A K; Baaré, W F C; Raabjerg Christensen, A M;

    2007-01-01

    BACKGROUND: Brain morphometry in children and adolescents with first-episode psychosis offer a unique opportunity for pathogenetic investigations. METHODS: We compared high-resolution 3D T1-weighted magnetic resonance images of the brain in 29 patients (schizophrenia, schizotypal disorder......, delusional disorder or other non-organic psychosis), aged 10-18 to those of 29 matched controls, using optimized voxel-based morphometry. RESULTS: Psychotic patients had frontal white matter abnormalities, but expected (regional) gray matter reductions were not observed. Post hoc analyses revealed that...

  7. AN ANN BASED BRAIN ABNORMALITY DETECTION USING MR IMAGES

    K.V. Kulhalli

    2013-02-01

    Full Text Available The Main purpose of this paper is to design, implement and evaluate a strong automatic diagnostic system that increases the accuracy of tumor diagnosis in brain using MR images. This presented work classifies the brain tissues as normal or abnormal automatically, using computer vision. This saves lot of radiologist time to carryout monotonous repeated job. The acquired MR images are processed using image preprocessing techniques. The preprocessed images are then segmented, and the various features are extracted. The extracted features are fed to the artificial neural network as input that trains the network using error back propagation algorithm for correct decision making.

  8. Smoking during pregnancy and risk of abnormal glucose tolerance: a prospective cohort study

    Haskins Amy E; Bertone-Johnson Elizabeth R; Pekow Penelope; Carbone Elena; Fortner Renée T; Chasan-Taber Lisa

    2010-01-01

    Abstract Background Disturbances in glucose metabolism during pregnancy are associated with negative sequalae for both mother and infant. The association between smoking and abnormal glucose tolerance (AGT) remains controversial. Therefore, the aim of this study was to examine the relationship between smoking prior to and during pregnancy and risk of AGT. Methods We utilized data from a prospective cohort of 1,006 Hispanic (predominantly Puerto Rican) prenatal care patients in Western Massach...

  9. Prenatal depressive symptoms and abnormalities of glucose tolerance during pregnancy among Hispanic women

    Ertel, Karen A.; Silveira, Marushka; Pekow, Penelope; Braun, Barry; Manson, JoAnn E.; Solomon, Caren G.; Markenson, Glenn; Chasan-Taber, Lisa

    2013-01-01

    The aim of this study is to prospectively examine the association between maternal depressive symptoms in early pregnancy and risk of abnormal glucose tolerance (AGT) and impaired glucose tolerance (IGT) in mid-pregnancy. We evaluated this association among 934 participants in Proyecto Buena Salud, a prospective cohort study of Hispanic (predominantly Puerto Rican) women in Western Massachusetts. Depressive symptoms were assessed in early pregnancy using the 10-item Edinburgh Postnatal Depres...

  10. Volumetric brain abnormalities in polysubstance use disorder patients

    Noyan, Cemal Onur; Kose, Samet; Nurmedov, Serdar; Metin, Baris; Darcin, Aslı Enez; Dilbaz, Nesrin

    2016-01-01

    Aim Polysubstance users represent the largest group of patients seeking treatment at addiction and rehabilitation clinics in Turkey. There is little knowledge about the structural brain abnormalities seen in polysubstance users. This study was conducted to examine the structural brain differences between polysubstance use disorder patients and healthy control subjects using voxel-based morphometry. Methods Forty-six male polysubstance use disorder patients in the early abstinence period and 30 healthy male controls underwent structural magnetic resonance imaging scans. Voxel-based morphometry analysis was performed to examine gray matter (GM) abnormality differences. Results Polysubstance use disorder patients displayed significantly smaller GM volume in the thalamus, temporal pole, superior frontal gyrus, cerebellum, gyrus rectus, occipital lobe, anterior cingulate cortex, superior temporal gyrus, and postcentral gyrus. Conclusion A widespread and smaller GM volume has been found at different regions of the frontal, temporal, occipital, and parietal lobes, cerebellum, and anterior cingulate cortex in polysubstance users. PMID:27358566

  11. Elevation of brain glucose and polyol-pathway intermediates with accompanying brain-copper deficiency in patients with Alzheimer’s disease: metabolic basis for dementia

    Xu, Jingshu; Begley, Paul; Church, Stephanie J.; Patassini, Stefano; McHarg, Selina; Kureishy, Nina; Hollywood, Katherine A.; Waldvogel, Henry J.; Liu, Hong; Zhang, Shaoping; Lin, Wanchang; Herholz, Karl; Turner, Clinton; Synek, Beth J.; Curtis, Maurice A.; Rivers-Auty, Jack; Lawrence, Catherine B.; Kellett, Katherine A. B.; Hooper, Nigel M.; Vardy, Emma R. L. C.; Wu, Donghai; Unwin, Richard D.; Faull, Richard L. M.; Dowsey, Andrew W.; Cooper, Garth J. S.

    2016-01-01

    Impairment of brain-glucose uptake and brain-copper regulation occurs in Alzheimer’s disease (AD). Here we sought to further elucidate the processes that cause neurodegeneration in AD by measuring levels of metabolites and metals in brain regions that undergo different degrees of damage. We employed mass spectrometry (MS) to measure metabolites and metals in seven post-mortem brain regions of nine AD patients and nine controls, and plasma-glucose and plasma-copper levels in an ante-mortem case-control study. Glucose, sorbitol and fructose were markedly elevated in all AD brain regions, whereas copper was correspondingly deficient throughout (all P < 0.0001). In the ante-mortem case-control study, by contrast, plasma-glucose and plasma-copper levels did not differ between patients and controls. There were pervasive defects in regulation of glucose and copper in AD brain but no evidence for corresponding systemic abnormalities in plasma. Elevation of brain glucose and deficient brain copper potentially contribute to the pathogenesis of neurodegeneration in AD. PMID:27276998

  12. Parameters of glucose metabolism and the aging brain

    Akintola, Abimbola A; van den Berg, Annette; Altmann-Schneider, Irmhild;

    2015-01-01

    MRI was used to detect macro-structural damage (atrophy, white matter hyper-intensities, infarcts and/or micro-bleeds) and magnetization transfer imaging (MTI) to detect loss of micro-structural homogeneity that remains otherwise invisible on conventional MRI. Macro-structurally, higher fasted glucose......Given the concurrent, escalating epidemic of diabetes mellitus and neurodegenerative diseases, two age-related disorders, we aimed to understand the relation between parameters of glucose metabolism and indices of pathology in the aging brain. From the Leiden Longevity Study, 132 participants (mean...... age 66 years) underwent a 2-h oral glucose tolerance test to assess glucose tolerance (fasted and area under the curve (AUC) glucose), insulin sensitivity (fasted and AUC insulin and homeostatic model assessment of insulin sensitivity (HOMA-IS)) and insulin secretion (insulinogenic index). 3-T brain...

  13. Electrocardiographic abnormalities and cardiac arrhythmias in structural brain lesions.

    Katsanos, Aristeidis H; Korantzopoulos, Panagiotis; Tsivgoulis, Georgios; Kyritsis, Athanassios P; Kosmidou, Maria; Giannopoulos, Sotirios

    2013-07-31

    Cardiac arrhythmias and electrocardiographic abnormalities are frequently observed after acute cerebrovascular events. The precise mechanism that leads to the development of these arrhythmias is still uncertain, though increasing evidence suggests that it is mainly due to autonomic nervous system dysregulation. In massive brain lesions sympathetic predominance and parasympathetic withdrawal during the first 72 h are associated with the occurrence of severe secondary complications in the first week. Right insular cortex lesions are also related with sympathetic overactivation and with a higher incidence of electrocardiographic abnormalities, mostly QT prolongation, in patients with ischemic stroke. Additionally, female sex and hypokalemia are independent risk factors for severe prolongation of the QT interval which subsequently results in malignant arrhythmias and poor outcome. The prognostic value of repolarization changes commonly seen after aneurysmal subarachnoid hemorrhage, such as ST segment, T wave, and U wave abnormalities, still remains controversial. In patients with traumatic brain injury both intracranial hypertension and cerebral hypoperfusion correlate with low heart rate variability and increased mortality. Given that there are no firm guidelines for the prevention or treatment of the arrhythmias that appear after cerebral incidents this review aims to highlight important issues on this topic. Selected patients with the aforementioned risk factors could benefit from electrocardiographic monitoring, reassessment of the medications that prolong QTc interval, and administration of antiadrenergic agents. Further research is required in order to validate these assumptions and to establish specific therapeutic strategies. PMID:22809542

  14. Positron Emission Tomography Reveals Abnormal Topological Organization in Functional Brain Network in Diabetic Patients.

    Qiu, Xiangzhe; Zhang, Yanjun; Feng, Hongbo; Jiang, Donglang

    2016-01-01

    Recent studies have demonstrated alterations in the topological organization of structural brain networks in diabetes mellitus (DM). However, the DM-related changes in the topological properties in functional brain networks are unexplored so far. We therefore used fluoro-D-glucose positron emission tomography (FDG-PET) data to construct functional brain networks of 73 DM patients and 91 sex- and age-matched normal controls (NCs), followed by a graph theoretical analysis. We found that both DM patients and NCs had a small-world topology in functional brain network. In comparison to the NC group, the DM group was found to have significantly lower small-world index, lower normalized clustering coefficients and higher normalized characteristic path length. Moreover, for diabetic patients, the nodal centrality was significantly reduced in the right rectus, the right cuneus, the left middle occipital gyrus, and the left postcentral gyrus, and it was significantly increased in the orbitofrontal region of the left middle frontal gyrus, the left olfactory region, and the right paracentral lobule. Our results demonstrated that the diabetic brain was associated with disrupted topological organization in the functional PET network, thus providing functional evidence for the abnormalities of brain networks in DM. PMID:27303259

  15. Positron Emission Tomography Reveals Abnormal Topological Organization in Functional Brain Network in Diabetic Patients

    Qiu eXiangzhe

    2016-05-01

    Full Text Available Recent studies have demonstrated alterations in the topological organization of structural brain networks in diabetes mellitus (DM. However, the DM-related changes in the topological properties in functional brain networks are almost unexplored so far. We therefore used fluoro-D-glucose positron emission tomography (FDG-PET data to construct functional brain networks of 73 DM patients and 91 sex- and age-matched normal controls (NCs, followed by a graph theoretical analysis. We found that both DM patients and NCs had a small-world topology in functional brain network. In comparison to the NC group, the DM group was found to have significantly lower small-world index, lower normalized clustering coefficients and higher normalized shortest path length. Moreover, for diabetic patients, the nodal centrality was significantly reduced in the right rectus, the right cuneus, the left middle occipital gyrus, and the left postcentral gyrus, and it was significantly increased in the orbitofrontal region of the left middle frontal gyrus, the left olfactory region, and the right paracentral lobule. Our results demonstrated that the diabetic brain was associated with disrupted topological organization in the functional PET network, thus providing the functional evidence for the abnormalities of brain networks in DM.

  16. Gyrification brain abnormalities as predictors of outcome in anorexia nervosa.

    Favaro, Angela; Tenconi, Elena; Degortes, Daniela; Manara, Renzo; Santonastaso, Paolo

    2015-12-01

    Gyrification brain abnormalities are considered a marker of early deviations from normal developmental trajectories and a putative predictor of poor outcome in psychiatric disorders. The aim of this study was to explore cortical folding morphology in patients with anorexia nervosa (AN). A MRI brain study was conducted on 38 patients with AN, 20 fully recovered patients, and 38 healthy women. Local gyrification was measured with procedures implemented in FreeSurfer. Vertex-wise comparisons were carried out to compare: (1) AN patients and healthy women; (2) patients with a full remission at a 3-year longitudinal follow-up assessment and patients who did not recover. AN patients exhibited significantly lower gyrification when compared with healthy controls. Patients with a poor 3-year outcome had significantly lower baseline gyrification when compared to both healthy women and patients with full recovery at follow-up, even after controlling for the effects of duration of illness and gray matter volume. No significant correlation has been found between gyrification, body mass index, amount of weight loss, onset age, and duration of illness. Brain gyrification significantly predicted outcome at follow-up even after controlling for the effects of duration of illness and other clinical prognostic factors. Although the role of starvation in determining our findings cannot be excluded, our study showed that brain gyrification might be a predictor of outcome in AN. Further studies are needed to understand if brain gyrification abnormalities are indices of early neurodevelopmental alterations, the consequence of starvation, or the interaction between both factors. PMID:26374960

  17. Improvement of Brain Reward Abnormalities by Antipsychotic Monotherapy in Schizophrenia

    Nielsen, Mette Ødegaard; Rostrup, Egill; Wulff, Sanne;

    2012-01-01

    CONTEXT Schizophrenic symptoms are linked to a dysfunction of dopamine neurotransmission and the brain reward system. However, it remains unclear whether antipsychotic treatment, which blocks dopamine transmission, improves, alters, or even worsens the reward-related abnormalities. OBJECTIVE To....... Antipsychotic treatment tends to normalize the response of the reward system; this was especially seen in the patients with the most pronounced treatment effect on the positive symptoms. TRIAL REGISTRATION clinicaltrials.gov Identifier: NCT01154829....... investigate changes in reward-related brain activations in schizophrenia before and after antipsychotic monotherapy with a dopamine D2/D3 antagonist. DESIGN Longitudinal cohort study. SETTING Psychiatric inpatients and outpatients in the Capital Region of Denmark. PARTICIPANTS Twenty-three antipsychotic...

  18. Volumetric brain abnormalities in polysubstance use disorder patients

    Noyan CO

    2016-06-01

    Full Text Available Cemal Onur Noyan,1 Samet Kose,2 Serdar Nurmedov,3 Baris Metin,1 Aslı Enez Darcin,4 Nesrin Dilbaz1 1Department of Psychology, Uskudar University, Istanbul, Turkey; 2Department of Psychiatry and Behavioral Sciences Center for Neurobehavioral Research on Addictions, University of Texas Medical School, Houston, TX, USA; 3Acibadem Healthcare Group, 4Department of Psychiatry, Kanuni Sultan Suleyman Research and Training Hospital, Istanbul, Turkey Aim: Polysubstance users represent the largest group of patients seeking treatment at addiction and rehabilitation clinics in Turkey. There is little knowledge about the structural brain abnormalities seen in polysubstance users. This study was conducted to examine the structural brain differences between polysubstance use disorder patients and healthy control subjects using voxel-based morphometry.Methods: Forty-six male polysubstance use disorder patients in the early abstinence period and 30 healthy male controls underwent structural magnetic resonance imaging scans. Voxel-based morphometry analysis was performed to examine gray matter (GM abnormality differences.Results: Polysubstance use disorder patients displayed significantly smaller GM volume in the thalamus, temporal pole, superior frontal gyrus, cerebellum, gyrus rectus, occipital lobe, anterior cingulate cortex, superior temporal gyrus, and postcentral gyrus.Conclusion: A widespread and smaller GM volume has been found at different regions of the frontal, temporal, occipital, and parietal lobes, cerebellum, and anterior cingulate cortex in polysubstance users. Keywords: early abstinence, gray matter volume, polysubstance use disorders, voxel-based morphometry

  19. Parsing Glucose Entry into the Brain: Novel Findings Obtained with Enzyme-Based Glucose Biosensors

    Kiyatkin, Eugene A.; Wakabayashi, Ken T.

    2014-01-01

    Extracellular levels of glucose in brain tissue reflect dynamic balance between its gradient-dependent entry from arterial blood and its use for cellular metabolism. In this work, we present several sets of previously published and unpublished data obtained by using enzyme-based glucose biosensors coupled with constant-potential high-speed amperometry in freely moving rats. First, we consider basic methodological issues related to the reliability of electrochemical measurements of extracellul...

  20. MRI abnormalities and related risk factors of the brain in patients with neuromyelitis optica

    Objective: To investigate the MRI features of the brain in patients with neuromyelitis optica (NMO), and to evaluate the correlation between the brain abnormalities and related risk factors. Methods: Fifty-four patients with definite NMO according to 2006 Wingerchuk diagnosis criteria were enrolled in this study. MRI scanning of the brain was performed in these patients. Distribution and signal features of all the lesions were analyzed. A Logistic regression analysis was used to evaluate the risk factors of brain abnormalities. Results: Twenty-four NMO patients (44.4%) showed unremarkable findings and thirty (55.6%) showed abnormalities on brain MRI. Multiple and non-specific small lesions in the subcortical white matter and grey-white matter junction were the most frequent abnormalities on brain MRI (13/30, 43.3%). Typical lesion locations included corpus callosum, subependyma of ventricles, hypothalamus and brain stem. The lesions showed punctate, patchy and linear abnormal signals. Post-contrast MRI showed no abnormal enhancement in 16 cases. Logistic regression analysis showed that coexisting autoimmune disease or infection. history had correlations with abnormalities of the brain on MRI (OR=3.519, P<0.05). Conclusions: There was a high incidence of brain abnormalities in NMO. Subependymal white matter, corpus callosum, hypothalamus and brain stem were often involved in NMO. NMO patients with coexisting autoimmune disease and infection history had higher risk of brain abnormalities. (authors)

  1. Assessment of prenatal and perinatal characteristics of pregnants with gestationel diabetes mellitus who have postnatal glucose abnormalities

    Bakıner, Okan; Bozkırlı, Emre; Serinsöz, Hülya; Sarıtürk, Çağla; Ertörer, Eda

    2013-01-01

    Purpose: To examine the difference in terms of prenatal and perinatal characteristics between gestational diabetic (GDM) cases diagnosed with impaired fasting glucose (IFG)and impaired glucose tolerance (IGT) during early postpartum period. Material and Methods: Cases who had no history of any glucose metabolism disorder and diagnosed as GDM due to American Diabetes Association (ADA) criteria were included. Subjects were inquired for pregestational characteristics(glucose abnormality ...

  2. Effects of MDMA on blood glucose levels and brain glucose metabolism

    Soto-Montenegro, M.L.; Vaquero, J.J.; Garcia-Barreno, P.; Desco, M. [Hospital General Universitario Gregorio Maranon, Laboratorio de Imagen, Medicina Experimental, Madrid (Spain); Arango, C. [Hospital General Gregorio Maranon, Departamento de Psiquiatria, Madrid (Spain); Ricaurte, G. [Johns Hopkins University School of Medicine, Department of Neurology, Baltimore, MD (United States)

    2007-06-15

    This study was designed to assess changes in glucose metabolism in rats administered single or repeated doses of MDMA. Two different experiments were performed: (1) A single-dose study with four groups receiving 20 mg/kg, 40 mg/kg, saline or heat, and (2) a repeated-dose study with two groups receiving three doses, at intervals of 2 h, of 5 mg/kg or saline. Rats were imaged using a dedicated small-animal PET scanner 1 h after single-dose administration or 7 days after repeated doses. Glucose metabolism was measured in 12 cerebral regions of interest. Rectal temperature and blood glucose were monitored. Peak body temperature was reached 1 h after MDMA administration. Blood glucose levels decreased significantly after MDMA administration. In the single-dose experiment, brain glucose metabolism showed hyperactivation in cerebellum and hypo-activation in the hippocampus, amygdala and auditory cortex. In the repeated-dose experiment, brain glucose metabolism did not show any significant change at day 7. These results are the first to indicate that MDMA has the potential to produce significant hypoglycaemia. In addition, they show that MDMA alters glucose metabolism in components of the motor, limbic and somatosensory systems acutely but not on a long-term basis. (orig.)

  3. Effects of MDMA on blood glucose levels and brain glucose metabolism

    This study was designed to assess changes in glucose metabolism in rats administered single or repeated doses of MDMA. Two different experiments were performed: (1) A single-dose study with four groups receiving 20 mg/kg, 40 mg/kg, saline or heat, and (2) a repeated-dose study with two groups receiving three doses, at intervals of 2 h, of 5 mg/kg or saline. Rats were imaged using a dedicated small-animal PET scanner 1 h after single-dose administration or 7 days after repeated doses. Glucose metabolism was measured in 12 cerebral regions of interest. Rectal temperature and blood glucose were monitored. Peak body temperature was reached 1 h after MDMA administration. Blood glucose levels decreased significantly after MDMA administration. In the single-dose experiment, brain glucose metabolism showed hyperactivation in cerebellum and hypo-activation in the hippocampus, amygdala and auditory cortex. In the repeated-dose experiment, brain glucose metabolism did not show any significant change at day 7. These results are the first to indicate that MDMA has the potential to produce significant hypoglycaemia. In addition, they show that MDMA alters glucose metabolism in components of the motor, limbic and somatosensory systems acutely but not on a long-term basis. (orig.)

  4. The Role of Helicobacter pylori Seropositivity in Insulin Sensitivity, Beta Cell Function, and Abnormal Glucose Tolerance

    Lou Rose Malamug

    2014-01-01

    Full Text Available Infection, for example, Helicobacter pylori (H. pylori, has been thought to play a role in the pathogenesis of type 2 diabetes mellitus (T2DM. Our aim was to determine the role of H. pylori infection in glucose metabolism in an American cohort. We examined data from 4,136 non-Hispanic white (NHW, non-Hispanic black (NHB, and Mexican Americans (MA aged 18 and over from the NHANES 1999-2000 cohort. We calculated the odds ratios for states of glucose tolerance based on the H. pylori status. We calculated and compared homeostatic model assessment insulin resistance (HOMA-IR and beta cell function (HOMA-B in subjects without diabetes based on the H. pylori status. The results were adjusted for age, body mass index (BMI, poverty index, education, alcohol consumption, tobacco use, and physical activity. The H. pylori status was not a risk factor for abnormal glucose tolerance. After adjustment for age and BMI and also adjustment for all covariates, no difference was found in either HOMA-IR or HOMA-B in all ethnic and gender groups except for a marginally significant difference in HOMA-IR in NHB females. H. pylori infection was not a risk factor for abnormal glucose tolerance, nor plays a major role in insulin resistance or beta cell dysfunction.

  5. Abnormal glycosylated hemoglobin as a predictive factor for glucose metabolism disorders in antipsychotic treatment

    XU Leping; JI Juying; DUAN Yiyang; SHI Hui; ZHANG Bin; SHAO Yaqin; SUN Jian

    2007-01-01

    The aim of this study was to observe the changes in glucose metabolism after antipsychotic(APS)therapy,to note the influencing factors,as well as to dicuss the relationship between the occurrence of glucose metabolism disorders of APS origin and abnormal glycosylated hemoglobin(HbA1c)levels.One hundred and fifty-two patients with schizophrenia,whose fasting plasma glucose(FPG)and 2-h plasma glucose (2hPG)in the oral glucose tolerance test(2HPG)were normal,were grouped according to the HbA1c levels,one normal and the other abnormal,and were randomly enrolled into risperidone,clozapine and chlorpromazine treatment for six weeks.The FPG and 2hPG were measured at the baseline and at the end of the study.In the group with abnormal HbA1c and clozapine therapy,2HPG was higher after the study[(9.5±1.8)mmol/L]than that before the study[(7.2±1.4)mmol/L]and the difierence was statistically significant(P<0.01).FPG had no statistically significant difference before and after the study in any group(P>0.05).HbA1c levels and drugs contributing to 2HPG at the end of study had statistical cross-action(P<0.01).In the abnormal HbA1c group,2HPG after the study was higher in the clozapine treatment group [(9.5±1.8)mmol/L]than in the risperidone treatment group [(7.4±1.7)mmol/L]and the chlorpromazine treatment group[(7.3±1.6)mmol/L].The differences were statistically significant(P<0.01).In the normal HbA1c group there was no statistically significant difierence before and after the study in any group(P>0.05).2HPG before[(7.1±1.6)mmol/L]and after the study[(8.1±1.9)mmol/L]was higher in the abnormal HbA1c group than in the normal HbA1c group[(6.2±1.4)mmol/L vs(6.5±1.4)mmol/L]with the difierence being statistically significant(P<0.01 vs P<0.001).As compared with normal HbA1c group,the relative risk (RR)of glucose metabolism disease occurrence was 4.7 in the abnormal HDA1C group wlth the difierence being statistically significant(P<0.001).Patients with abnormal HbA1c

  6. Ketones and brain development: Implications for correcting deteriorating brain glucose metabolism during aging

    Nugent Scott

    2016-01-01

    Full Text Available Brain energy metabolism in Alzheimer’s disease (AD is characterized mainly by temporo-parietal glucose hypometabolism. This pattern has been widely viewed as a consequence of the disease, i.e. deteriorating neuronal function leading to lower demand for glucose. This review will address deteriorating glucose metabolism as a problem specific to glucose and one that precedes AD. Hence, ketones and medium chain fatty acids (MCFA could be an alternative source of energy for the aging brain that could compensate for low brain glucose uptake. MCFA in the form of dietary medium chain triglycerides (MCT have a long history in clinical nutrition and are widely regarded as safe by government regulatory agencies. The importance of ketones in meeting the high energy and anabolic requirements of the infant brain suggest they may be able to contribute in the same way in the aging brain. Clinical studies suggest that ketogenesis from MCT may be able to bypass the increasing risk of insufficient glucose uptake or metabolism in the aging brain sufficiently to have positive effects on cognition.

  7. Plasma antioxidants and brain glucose metabolism in elderly subjects with cognitive complaints

    Picco, Agnese; Ferrara, Michela; Arnaldi, Dario; Brugnolo, Andrea; Nobili, Flavio [University of Genoa and IRCCS San Martino-IST, Clinical Neurology, Department of Neuroscience (DINOGMI), Largo P. Daneo, 3, 16132, Genoa (Italy); Polidori, M.C. [University of Cologne, Institute of Geriatrics, Cologne (Germany); Cecchetti, Roberta; Baglioni, Mauro; Bastiani, Patrizia; Mecocci, Patrizia [University of Perugia, Institute of Gerontology and Geriatrics, Department of Clinical and Experimental Medicine, Perugia (Italy); Morbelli, Silvia; Bossert, Irene [University of Genoa and IRCCS San Martino-IST, Nuclear Medicine, Department of Health Science (DISSAL), Genoa (Italy); Fiorucci, Giuliana; Dottorini, Massimo Eugenio [Nuclear Medicine, S. M. della Misericordia Hospital, Perugia (Italy)

    2014-04-15

    The role of oxidative stress is increasingly recognized in cognitive disorders of the elderly, notably Alzheimer's disease (AD). In these subjects brain{sup 18}F-FDG PET is regarded as a reliable biomarker of neurodegeneration. We hypothesized that oxidative stress could play a role in impairing brain glucose utilization in elderly subjects with increasing severity of cognitive disturbance. The study group comprised 85 subjects with cognitive disturbance of increasing degrees of severity including 23 subjects with subjective cognitive impairment (SCI), 28 patients with mild cognitive impairment and 34 patients with mild AD. In all subjects brain FDG PET was performed and plasma activities of extracellular superoxide dismutase (eSOD), catalase and glutathione peroxidase were measured. Voxel-based analysis (SPM8) was used to compare FDG PET between groups and to evaluate correlations between plasma antioxidants and glucose metabolism in the whole group of subjects, correcting for age and Mini-Mental State Examination score. Brain glucose metabolism progressively decreased in the bilateral posterior temporoparietal and cingulate cortices across the three groups, from SCI to mild AD. eSOD activity was positively correlated with glucose metabolism in a large area of the left temporal lobe including the superior, middle and inferior temporal gyri and the fusiform gyrus. These results suggest a role of oxidative stress in the impairment of glucose utilization in the left temporal lobe structures in elderly patients with cognitive abnormalities, including AD and conditions predisposing to AD. Further studies exploring the oxidative stress-energy metabolism axis are considered worthwhile in larger groups of these patients in order to identify pivotal pathophysiological mechanisms and innovative therapeutic opportunities. (orig.)

  8. Plasma antioxidants and brain glucose metabolism in elderly subjects with cognitive complaints

    The role of oxidative stress is increasingly recognized in cognitive disorders of the elderly, notably Alzheimer's disease (AD). In these subjects brain18F-FDG PET is regarded as a reliable biomarker of neurodegeneration. We hypothesized that oxidative stress could play a role in impairing brain glucose utilization in elderly subjects with increasing severity of cognitive disturbance. The study group comprised 85 subjects with cognitive disturbance of increasing degrees of severity including 23 subjects with subjective cognitive impairment (SCI), 28 patients with mild cognitive impairment and 34 patients with mild AD. In all subjects brain FDG PET was performed and plasma activities of extracellular superoxide dismutase (eSOD), catalase and glutathione peroxidase were measured. Voxel-based analysis (SPM8) was used to compare FDG PET between groups and to evaluate correlations between plasma antioxidants and glucose metabolism in the whole group of subjects, correcting for age and Mini-Mental State Examination score. Brain glucose metabolism progressively decreased in the bilateral posterior temporoparietal and cingulate cortices across the three groups, from SCI to mild AD. eSOD activity was positively correlated with glucose metabolism in a large area of the left temporal lobe including the superior, middle and inferior temporal gyri and the fusiform gyrus. These results suggest a role of oxidative stress in the impairment of glucose utilization in the left temporal lobe structures in elderly patients with cognitive abnormalities, including AD and conditions predisposing to AD. Further studies exploring the oxidative stress-energy metabolism axis are considered worthwhile in larger groups of these patients in order to identify pivotal pathophysiological mechanisms and innovative therapeutic opportunities. (orig.)

  9. Facilitated transport of glucose from blood to brain in man and the effect of moderate hypoglycaemia on cerebral glucose utilization

    The effect of steady-state moderate hypoglycaemia on human brain homeostasis has been studied with positron emission tomography using D-glucose 11C(ul) as tracer. To rule out any effects of insulin, the plasma insulin concentration was maintained at the same level under normo- and hypoglycaemic conditions. Reduction of blood glucose by 55% increased the glucose clearance through the blood-brain barrier by 50% and reduced brain glucose consumption by 40%. Blood flow was not affected. The results are consistent with facilitated transport of glucose from blood to brain in humans. The maximal transport rate of glucose from blood to brain was found to be 62±19 (mean±SEM) μmol hg-1 min-1, and the half-saturation constant was found to be 4.1±3.2 mM. (orig.)

  10. Affective psychosis, Hashimoto's thyroiditis, and brain perfusion abnormalities: case report

    Loviselli Andrea

    2007-12-01

    Full Text Available Abstract Background It has recently become evident that circulating thyroid antibodies are found in excess among patients suffering from mood disorders. Moreover, a manic episode associated with Hashimoto's thyroiditis has recently been reported as the first case of bipolar disorder due to Hashimoto's encephalopathy. We report a case in which Hashimoto's thyroiditis was suspected to be involved in the deteriorating course of mood disorder and discuss potential pathogenic mechanisms linking thyroid autoimmunity with psychopathology. Case presentation A 43-year-old woman, with a history of recurrent depression since the age of 31, developed manic, psychotic, and soft neurological symptoms across the last three years in concomitance with her first diagnosis of Hashimoto's thyroiditis. The patient underwent a thorough medical and neurological workup. Circulating thyroperoxidase antibodies were highly elevated but thyroid function was adequately maintained with L-thyroxine substitution. EEG was normal and no other signs of current CNS inflammation were evidenced. However, brain magnetic resonance imaging evidenced several non-active lesions in the white matter from both hemispheres, suggestive of a non-specific past vasculitis. Brain single-photon emission computed tomography showed cortical perfusion asymmetry particularly between frontal lobes. Conclusion We hypothesize that abnormalities in cortical perfusion might represent a pathogenic link between thyroid autoimmunity and mood disorders, and that the rare cases of severe Hashimoto's encephalopathy presenting with mood disorder might be only the tip of an iceberg.

  11. High prevalence of obesity, central obesity and abnormal glucose tolerance in the middle-aged Finnish population

    Vanhala Mauno

    2008-12-01

    Full Text Available Abstract Background There is a worldwide increase in the prevalence of obesity and disturbances in glucose metabolism. The aim of this study was to assess the current prevalence of obesity, central obesity and abnormal glucose tolerance in Finnish population, and to investigate the associations between body mass index (BMI, waist circumference and abnormal glucose tolerance. Methods A cross-sectional population-based survey was conducted in Finland during October 2004 and January 2005. A total of 4500 randomly selected individuals aged 45–74 years were invited to a health examination that included an oral glucose tolerance test. The participation rate was 62% in men and 67% in women. Results The prevalence of obesity was 23.5% (95% Confidence Interval (CI 21.1–25.9 in men, and 28.0% (95% CI 25.5–30.5 in women. The overall prevalence of abnormal glucose tolerance (including type 2 diabetes, impaired glucose tolerance, or impaired fasting glucose was 42.0% (95% CI 39.2–44.8 in men and 33.4% (95% CI 30.9–36.0 in women. The prevalence of previously unknown, screen-detected type 2 diabetes was 9.3% (95% CI 7.7–11.0 in men and 7.3% (95% CI 5.9–8.7 in women. Central obesity was associated with abnormal glucose tolerance within each of the three BMI categories normal (2, overweight (25–29 kg/m2, and obese (≥ 30 kg/m2. Conclusion In a population-based random sample of Finnish population, prevalences of obesity, central obesity and abnormal glucose tolerance were found to be high. A remarkably high number of previously undetected cases of type 2 diabetes was detected. Waist circumference is a predictor of abnormal glucose tolerance in all categories of obesity.

  12. A glucose fuel cell for implantable brain-machine interfaces.

    Benjamin I Rapoport

    Full Text Available We have developed an implantable fuel cell that generates power through glucose oxidation, producing 3.4 μW cm(-2 steady-state power and up to 180 μW cm(-2 peak power. The fuel cell is manufactured using a novel approach, employing semiconductor fabrication techniques, and is therefore well suited for manufacture together with integrated circuits on a single silicon wafer. Thus, it can help enable implantable microelectronic systems with long-lifetime power sources that harvest energy from their surrounds. The fuel reactions are mediated by robust, solid state catalysts. Glucose is oxidized at the nanostructured surface of an activated platinum anode. Oxygen is reduced to water at the surface of a self-assembled network of single-walled carbon nanotubes, embedded in a Nafion film that forms the cathode and is exposed to the biological environment. The catalytic electrodes are separated by a Nafion membrane. The availability of fuel cell reactants, oxygen and glucose, only as a mixture in the physiologic environment, has traditionally posed a design challenge: Net current production requires oxidation and reduction to occur separately and selectively at the anode and cathode, respectively, to prevent electrochemical short circuits. Our fuel cell is configured in a half-open geometry that shields the anode while exposing the cathode, resulting in an oxygen gradient that strongly favors oxygen reduction at the cathode. Glucose reaches the shielded anode by diffusing through the nanotube mesh, which does not catalyze glucose oxidation, and the Nafion layers, which are permeable to small neutral and cationic species. We demonstrate computationally that the natural recirculation of cerebrospinal fluid around the human brain theoretically permits glucose energy harvesting at a rate on the order of at least 1 mW with no adverse physiologic effects. Low-power brain-machine interfaces can thus potentially benefit from having their implanted units

  13. Evaluation of glucose metabolic abnormality in postlingually deaf patients using F-18-FDG positron emission tomography and statistical parametric mapping

    Lee, Jae Sung; Lee, Dong Soo; Oh, Seung Ha; Kim, Chong Sun; Park, Kwang Suk; Chung, June Key; Lee, Myung Chul [College of Medicine, Seoul National Univ., Seoul (Korea, Republic of)

    2000-07-01

    We have previously reported the prognostic relevance of cross-modal cortical plasticity in prelingual deaf patients revealed by F-18-FDG PET and SPM analysis. In this study, we investigated metabolic abnormality in postlingual deaf patients, whose clinical features are different from prelingual deafness. Nine postlingual deaf patients (age: 30.5 {+-}14.0) were performed on F-18-FDG brain PET. We compared their PET images with those of age-matched 20 normal controls (age: 27.1 {+-}8.6), and performed correlation analysis to investigate the relationship between glucose metabolism and deaf duration using SPM99. Glucose metabolism of deaf patients was significantly (p<0.05, corrected) decreased in both anterior cingulate, inferior frontal cortices, and superior temporal cortices, and left hippocampus. Metabolism in both superior temporal cortices and association area in inferior parietal cortices showed significant (p<0.01, uncorrected) positive correlation with deaf duration. Decreased metabolism in hippocampus accompanied with hypometabolism in auditory related areas can be explained by recent finding of anatomical connectivity between them, and may be the evidence indicating their functional connectivity. Metabolism recovery in auditory cortex after long deaf duration suggests that cortical plasticity takes place also in postlingual deafness.

  14. Evaluation of glucose metabolic abnormality in postlingually deaf patients using F-18-FDG positron emission tomography and statistical parametric mapping

    We have previously reported the prognostic relevance of cross-modal cortical plasticity in prelingual deaf patients revealed by F-18-FDG PET and SPM analysis. In this study, we investigated metabolic abnormality in postlingual deaf patients, whose clinical features are different from prelingual deafness. Nine postlingual deaf patients (age: 30.5 ±14.0) were performed on F-18-FDG brain PET. We compared their PET images with those of age-matched 20 normal controls (age: 27.1 ±8.6), and performed correlation analysis to investigate the relationship between glucose metabolism and deaf duration using SPM99. Glucose metabolism of deaf patients was significantly (p<0.05, corrected) decreased in both anterior cingulate, inferior frontal cortices, and superior temporal cortices, and left hippocampus. Metabolism in both superior temporal cortices and association area in inferior parietal cortices showed significant (p<0.01, uncorrected) positive correlation with deaf duration. Decreased metabolism in hippocampus accompanied with hypometabolism in auditory related areas can be explained by recent finding of anatomical connectivity between them, and may be the evidence indicating their functional connectivity. Metabolism recovery in auditory cortex after long deaf duration suggests that cortical plasticity takes place also in postlingual deafness

  15. Glucagon-like peptide-1 inhibits blood-brain glucose transfer in humans

    Lerche, Susanne; Brock, Birgitte; Rungby, Jørgen;

    2008-01-01

    demonstrated that a hormone involved in postprandial glucose regulation also limits glucose delivery to brain tissue and hence provides a possible regulatory mechanism for the link between plasma glucose and brain glucose. Because GLP-1 reduces glucose uptake across the intact blood-brain barrier at normal...... glycemia, GLP-1 may also protect the brain by limiting intracerebral glucose fluctuation when plasma glucose is increased.......OBJECTIVE: Glucagon-like peptide-1 (GLP-1) has many effects on glucose homeostasis, and GLP-1 receptors are broadly represented in many tissues including the brain. Recent research in rodents suggests a protective effect of GLP-1 on brain tissue. The mechanism is unknown. We therefore tested...

  16. Imaging findings of the brain abnormalities in acute lymphoblastic leukemia of children during and after treatment

    We evaluated the imaging abnormalities of the brain observed during and after treatment of acute childhood lymphoblastic leukemia. The study group consisted of 30 patients (male : female=19 : 11 ; mean age, 64 months) with acute childhood lymphoblastic leukemia during the previous ten-year period who had undergone prophylaxis of the central nervous system. Irrespective of the CNS symptoms, base-line study of the brain involving CT and follow-up CT or MRI was undertaken more than once. We retrospectively evaluated the imaging findings, methods of treatment, associated CNS symptoms, and the interval between diagnosis and the time at which brain abnormalities were revealed by imaging studies. In 15 (50% ; male : female=9 : 6 ; mean age, 77 months) of 30 patients, brain abnormalities that included brain atrophy (n=9), cerebral infarctions (n=4), intracranial hemorrhage (n=1), mineralizing microangiopathy (n=2), and periventricular leukomalacia (n=3) were seen on follow-up CT or MR images. In four of nine patients with brain atrophy, imaging abnormalities such as periventricular leukomalacia (n=2), infarction (n=1) and microangiopathy (n=1) were demonstrated. Fourteen of the 15 patients underwent similar treatment ; the one excluded had leukemic cells in the CSF. Six patients had CNS symptoms. In the 15 patients with abnormal brain imaging findings, the interval between diagnosis and the demonstration of brain abnormalities was between one month and four years. After the cessation of treatment, imaging abnormalities remained in all patients except one with brain atrophy. Various imaging abnormalities of the brain may be seen during and after the treatment of acute childhood lymphoblastic leukemia and persist for a long time. In children with this condition, the assessment of brain abnormalities requires follow-up study of the brain

  17. Imaging findings of the brain abnormalities in acute lymphoblastic leukemia of children during and after treatment

    Lee, Kyung Joo; Lee, Seung Rho; Park, Dong Woo; Joo, Kyung Bin; Kim, Jang Wook; Hahm, Chang Kok; Kim, Ki Joong; Lee, Hahng [College of Medicine, Hanyang Univ., Seoul (Korea, Republic of)

    2001-09-01

    We evaluated the imaging abnormalities of the brain observed during and after treatment of acute childhood lymphoblastic leukemia. The study group consisted of 30 patients (male : female=19 : 11 ; mean age, 64 months) with acute childhood lymphoblastic leukemia during the previous ten-year period who had undergone prophylaxis of the central nervous system. Irrespective of the CNS symptoms, base-line study of the brain involving CT and follow-up CT or MRI was undertaken more than once. We retrospectively evaluated the imaging findings, methods of treatment, associated CNS symptoms, and the interval between diagnosis and the time at which brain abnormalities were revealed by imaging studies. In 15 (50% ; male : female=9 : 6 ; mean age, 77 months) of 30 patients, brain abnormalities that included brain atrophy (n=9), cerebral infarctions (n=4), intracranial hemorrhage (n=1), mineralizing microangiopathy (n=2), and periventricular leukomalacia (n=3) were seen on follow-up CT or MR images. In four of nine patients with brain atrophy, imaging abnormalities such as periventricular leukomalacia (n=2), infarction (n=1) and microangiopathy (n=1) were demonstrated. Fourteen of the 15 patients underwent similar treatment ; the one excluded had leukemic cells in the CSF. Six patients had CNS symptoms. In the 15 patients with abnormal brain imaging findings, the interval between diagnosis and the demonstration of brain abnormalities was between one month and four years. After the cessation of treatment, imaging abnormalities remained in all patients except one with brain atrophy. Various imaging abnormalities of the brain may be seen during and after the treatment of acute childhood lymphoblastic leukemia and persist for a long time. In children with this condition, the assessment of brain abnormalities requires follow-up study of the brain.

  18. Mapping abnormal subcortical brain morphometry in an elderly HIV+ cohort

    Benjamin S.C. Wade

    2015-01-01

    Full Text Available Over 50% of HIV+ individuals exhibit neurocognitive impairment and subcortical atrophy, but the profile of brain abnormalities associated with HIV is still poorly understood. Using surface-based shape analyses, we mapped the 3D profile of subcortical morphometry in 63 elderly HIV+ participants and 31 uninfected controls. The thalamus, caudate, putamen, pallidum, hippocampus, amygdala, brainstem, accumbens, callosum and ventricles were segmented from high-resolution MRIs. To investigate shape-based morphometry, we analyzed the Jacobian determinant (JD and radial distances (RD defined on each region's surfaces. We also investigated effects of nadir CD4+ T-cell counts, viral load, time since diagnosis (TSD and cognition on subcortical morphology. Lastly, we explored whether HIV+ participants were distinguishable from unaffected controls in a machine learning context. All shape and volume features were included in a random forest (RF model. The model was validated with 2-fold cross-validation. Volumes of HIV+ participants' bilateral thalamus, left pallidum, left putamen and callosum were significantly reduced while ventricular spaces were enlarged. Significant shape variation was associated with HIV status, TSD and the Wechsler adult intelligence scale. HIV+ people had diffuse atrophy, particularly in the caudate, putamen, hippocampus and thalamus. Unexpectedly, extended TSD was associated with increased thickness of the anterior right pallidum. In the classification of HIV+ participants vs. controls, our RF model attained an area under the curve of 72%.

  19. Smoking during pregnancy and risk of abnormal glucose tolerance: a prospective cohort study

    Haskins Amy E

    2010-09-01

    Full Text Available Abstract Background Disturbances in glucose metabolism during pregnancy are associated with negative sequalae for both mother and infant. The association between smoking and abnormal glucose tolerance (AGT remains controversial. Therefore, the aim of this study was to examine the relationship between smoking prior to and during pregnancy and risk of AGT. Methods We utilized data from a prospective cohort of 1,006 Hispanic (predominantly Puerto Rican prenatal care patients in Western Massachusetts. Women reported pre- and early pregnancy smoking at recruitment (mean = 15 weeks and mid pregnancy smoking at a second interview (mean = 28 weeks. AGT was defined as > 135 mg/dL on the routine 1-hour glucose tolerance test (1-hr OGTT. We used multivariable regression to assess the effect of pre, early, and mid-pregnancy smoking on risk of AGT and screening plasma glucose value from the 1-hr OGTT. Results In age-adjusted models, women who smoked > 0-9 cigarettes/day in pre-pregnancy had an increased risk of AGT (OR = 1.90; 95% CI 1.02-3.55 compared to non-smokers; this was attenuated in multivariable models. Smoking in early (OR = 0.48; 95% CI 0.21-1.10 and mid pregnancy (OR = 0.38; 95% CI 0.13-1.11 were not associated with AGT in multivariable models. Smoking during early and mid pregnancy were independently associated with lower glucose screening values, while smoking in pre-pregnancy was not. Conclusions In this prospective cohort of Hispanic women, we did not observe an association between smoking prior to or during pregnancy and risk of AGT. Findings from this study, although based on small numbers of cases, extend prior research to the Hispanic population.

  20. D-[U-11C]glucose uptake and metabolism in the brain of insulin-dependent diabetic subjects

    We used D-[U-11C]glucose to evaluate transport and metabolism of glucose in the brain in eight nondiabetic and six insulin-dependent diabetes mellitus (IDDM) subjects. IDDM subjects were treated by continuous subcutaneous insulin infusion. Blood glucose was regulated by a Biostator-controlled glucose infusion during a constant insulin infusion. D-[U-11C]-glucose was injected for positron emission tomography studies during normoglycemia as well as during moderate hypoglycemia [arterial plasma glucose 2.74 +/- 0.14 in nondiabetic and 2.80 +/- 0.26 mmol/l (means +/- SE) in IDDM subjects]. Levels of free insulin were constant and similar in both groups. The tracer data were analyzed using a three-compartment model with a fixed correction for 11CO2 egression. During normoglycemia the influx rate constant (k1) and blood-brain glucose flux did not differ between the two groups. During hypoglycemia k1 increased significantly and similarly in both groups (from 0.061 +/- 0.007 to 0.090 +/- 0.006 in nondiabetic and from 0.061 +/- 0.006 to 0.093 +/- 0.013 ml.g-1.min-1 in IDDM subjects). During normoglycemia the tracer-calculated metabolism of glucose was higher in the whole brain in the nondiabetic than in the diabetic subjects (22.0 +/- 1.9 vs. 15.6 +/- 1.1 mumol.100 g-1.min-1, P less than 0.01). During hypoglycemia tracer-calculated metabolism was decreased by 40% in nondiabetic subjects and by 28% in diabetic subjects. The results indicate that uptake of glucose is normal, but some aspect of glucose metabolism is abnormal in a group of well-controlled IDDM subjects

  1. D-(U-11C)glucose uptake and metabolism in the brain of insulin-dependent diabetic subjects

    Gutniak, M.; Blomqvist, G.; Widen, L.; Stone-Elander, S.; Hamberger, B.; Grill, V. (Karolinska Hospital and Institute, Stockholm (Sweden))

    1990-05-01

    We used D-(U-11C)glucose to evaluate transport and metabolism of glucose in the brain in eight nondiabetic and six insulin-dependent diabetes mellitus (IDDM) subjects. IDDM subjects were treated by continuous subcutaneous insulin infusion. Blood glucose was regulated by a Biostator-controlled glucose infusion during a constant insulin infusion. D-(U-11C)-glucose was injected for positron emission tomography studies during normoglycemia as well as during moderate hypoglycemia (arterial plasma glucose 2.74 +/- 0.14 in nondiabetic and 2.80 +/- 0.26 mmol/l (means +/- SE) in IDDM subjects). Levels of free insulin were constant and similar in both groups. The tracer data were analyzed using a three-compartment model with a fixed correction for 11CO2 egression. During normoglycemia the influx rate constant (k1) and blood-brain glucose flux did not differ between the two groups. During hypoglycemia k1 increased significantly and similarly in both groups (from 0.061 +/- 0.007 to 0.090 +/- 0.006 in nondiabetic and from 0.061 +/- 0.006 to 0.093 +/- 0.013 ml.g-1.min-1 in IDDM subjects). During normoglycemia the tracer-calculated metabolism of glucose was higher in the whole brain in the nondiabetic than in the diabetic subjects (22.0 +/- 1.9 vs. 15.6 +/- 1.1 mumol.100 g-1.min-1, P less than 0.01). During hypoglycemia tracer-calculated metabolism was decreased by 40% in nondiabetic subjects and by 28% in diabetic subjects. The results indicate that uptake of glucose is normal, but some aspect of glucose metabolism is abnormal in a group of well-controlled IDDM subjects.

  2. Brain White Matter Abnormality in a Newborn Infant with Congenital Adrenal Hyperplasia

    Kaga, Akimune; Saito-hakoda, Akiko; Uematsu, Mitsugu; Kamimura, Miki; Kanno, Junko; Kure, Shigeo; Fujiwara, Ikuma

    2013-01-01

    Several studies have described brain white matter abnormalities on magnetic resonance imaging (MRI) in children and adults with congenital adrenal hyperplasia (CAH), while the brain MRI findings of newborn infants with CAH have not been clarified. We report a newborn boy with CAH who presented brain white matter abnormality on MRI. He was diagnosed as having salt-wasting CAH with a high 17-OHP level at neonatal screening and was initially treated with hydrocortisone at 8 days of age. On day 1...

  3. Impairment of brain endothelial glucose transporter by methamphetamine causes blood-brain barrier dysfunction

    Murrin L Charles

    2011-03-01

    Full Text Available Abstract Background Methamphetamine (METH, an addictive psycho-stimulant drug with euphoric effect is known to cause neurotoxicity due to oxidative stress, dopamine accumulation and glial cell activation. Here we hypothesized that METH-induced interference of glucose uptake and transport at the endothelium can disrupt the energy requirement of the blood-brain barrier (BBB function and integrity. We undertake this study because there is no report of METH effects on glucose uptake and transport across the blood-brain barrier (BBB to date. Results In this study, we demonstrate that METH-induced disruption of glucose uptake by endothelium lead to BBB dysfunction. Our data indicate that a low concentration of METH (20 μM increased the expression of glucose transporter protein-1 (GLUT1 in primary human brain endothelial cell (hBEC, main component of BBB without affecting the glucose uptake. A high concentration of 200 μM of METH decreased both the glucose uptake and GLUT1 protein levels in hBEC culture. Transcription process appeared to regulate the changes in METH-induced GLUT1 expression. METH-induced decrease in GLUT1 protein level was associated with reduction in BBB tight junction protein occludin and zonula occludens-1. Functional assessment of the trans-endothelial electrical resistance of the cell monolayers and permeability of dye tracers in animal model validated the pharmacokinetics and molecular findings that inhibition of glucose uptake by GLUT1 inhibitor cytochalasin B (CB aggravated the METH-induced disruption of the BBB integrity. Application of acetyl-L-carnitine suppressed the effects of METH on glucose uptake and BBB function. Conclusion Our findings suggest that impairment of GLUT1 at the brain endothelium by METH may contribute to energy-associated disruption of tight junction assembly and loss of BBB integrity.

  4. Glucagon-like peptide-1 (GLP-1) raises blood-brain glucose transfer capacity and hexokinase activity in human brain

    Jensen, Michael Gejl; Lerche, Susanne; Egefjord, Lærke; Brock, Birgitte; Møller, Niels; Vang, Kim; Rodell, Anders B; Bibby, Bo M; Holst, Jens Juul; Rungby, Jørgen; Gjedde, Albert

    2013-01-01

    phosphorylation velocity (V max) in the gray matter regions of cerebral cortex, thalamus, and cerebellum, as well as increased blood-brain glucose transport capacity (T max) in gray matter, white matter, cortex, thalamus, and cerebellum. In hypoglycemia, GLP-1 had no effects on net glucose metabolism, brain......In hyperglycemia, glucagon-like peptide-1 (GLP-1) lowers brain glucose concentration together with increased net blood-brain clearance and brain metabolism, but it is not known whether this effect depends on the prevailing plasma glucose (PG) concentration. In hypoglycemia, glucose depletion...... potentially impairs brain function. Here, we test the hypothesis that GLP-1 exacerbates the effect of hypoglycemia. To test the hypothesis, we determined glucose transport and consumption rates in seven healthy men in a randomized, double-blinded placebo-controlled cross-over experimental design. The acute...

  5. The Role of Glucose Transporters in Brain Disease: Diabetes and Alzheimer’s Disease

    Thomas Abbruscato

    2012-10-01

    Full Text Available The occurrence of altered brain glucose metabolism has long been suggested in both diabetes and Alzheimer’s diseases. However, the preceding mechanism to altered glucose metabolism has not been well understood. Glucose enters the brain via glucose transporters primarily present at the blood-brain barrier. Any changes in glucose transporter function and expression dramatically affects brain glucose homeostasis and function. In the brains of both diabetic and Alzheimer’s disease patients, changes in glucose transporter function and expression have been observed, but a possible link between the altered glucose transporter function and disease progress is missing. Future recognition of the role of new glucose transporter isoforms in the brain may provide a better understanding of brain glucose metabolism in normal and disease states. Elucidation of clinical pathological mechanisms related to glucose transport and metabolism may provide common links to the etiology of these two diseases. Considering these facts, in this review we provide a current understanding of the vital roles of a variety of glucose transporters in the normal, diabetic and Alzheimer’s disease brain.

  6. Metabolism of glucose in brain of patients with Parkinson's disease

    We examined 11C accumulation by positron emission computed tomography in the region of interest (ROI) in the brain of 8 patients with Parkinson's disease and 5 normal controls when administered with 11C-glucose (per os). 11C-glucose was prepared from 11CO2 by photosynthesis. 1) No significant difference was observed in the 11C accumulation in the striatum and cerebral cortex (frontal cortex, temporal cortex and occipital cortex) in 4 patients with Parkinson's disease between continuous medication and 7--10 day interruption of medication. 2) No difference was observed in the 11C accumulation in the striatum and cerebral cortex between 8 patients with Parkinson's disease and 5 normal controls. (author)

  7. Calcium transport abnormality in uremic rat brain synaptosomes.

    Fraser, C.L.; Sarnacki, P; Arieff, A I

    1985-01-01

    Brain calcium is elevated in patients and laboratory animals with uremia. The significance of this finding is unclear. We evaluated calcium transport in brain of both normal and acutely uremic rats (blood urea nitrogen = 250 mg/dl) by performing studies in synaptosomes from rat brain cerebral cortex. Synaptosomes are vesicular presynaptic nerve endings from brain that contain mitochondria and are metabolically active. Two mechanisms of calcium transport were evaluated using radioactive 45Ca++...

  8. Brain functional magnetic resonance imaging response to glucose and fructose infusions in humans

    Objective: In animals, intracerebroventricular glucose and fructose have opposing effects on appetite and weight regulation. In humans, functional brain magnetic resonance imaging (fMRI) studies during carbohydrate ingestion suggest that glucose may regulate HT signaling but are potentially confoun...

  9. Possibility to predict early postpartum glucose abnormality following gestational diabetes mellitus based on the results of routine mid-gestational screening

    Bartáková, Vendula; Malúšková, Denisa; Mužík, Jan; Bělobrádková, Jana; Kaňková, Kateřina

    2015-01-01

    Introduction: Women with previous gestational diabetes mellitus (GDM) have increased risk of developing glucose abnormality, but current diagnostic criteria are evidence-based for adverse pregnancy outcome. The aims of our study were: (i) to ascertain a frequency of early conversion of GDM into permanent glucose abnormality, (ii) to determine predictive potential of current GDM diagnostic criteria for prediction of postpartum glucose abnormality and (iii) to find optimal cut-off values of ora...

  10. Thyroid hormone’s role in regulating brain glucose metabolism and potentially modulating hippocampal cognitive processes

    Jahagirdar, V; McNay, EC

    2012-01-01

    Cognitive performance is dependent on adequate glucose supply to the brain. Insulin, which regulates systemic glucose metabolism, has been recently shown both to regulate hippocampal metabolism and to be a mandatory component of hippocampally-mediated cognitive performance. Thyroid hormones (TH) regulate systemic glucose metabolism and may also be involved in regulation of brain glucose metabolism. Here we review potential mechanisms for such regulation. Importantly, TH imbalance is often enc...

  11. Brain-derived neurotrophic factor inhibits glucose intolerance after cerebral ischemia

    Shu, Xiaoliang; Zhang, Yongsheng; Xu, Han; Kang, Kai; Cai, Donglian

    2013-01-01

    Brain-derived neurotrophic factor is associated with the insulin signaling pathway and glucose tabolism. We hypothesized that expression of brain-derived neurotrophic factor and its receptor may be involved in glucose intolerance following ischemic stress. To verify this hypothesis, this study aimed to observe the changes in brain-derived neurotrophic factor and tyrosine kinase B receptor expression in glucose metabolism-associated regions following cerebral ischemic stress in mice. At day 1 ...

  12. Incidental sinus abnormalities in 256 patients referred for brain MRI

    Ghanaati H

    2007-06-01

    Full Text Available Background: Imaging abnormalities in the paranasal sinuses are regularly noted as incidental findings on MRI, however, little is known about their prevalence in the Iranian population. The purpose of this study was to classify these findings in the paranasal sinuses as seen on MRI and to investigate the prevalence, according to site and type of paranasal abnormality. Methods: In this cross-sectional study, the T2-weighted axial MRI of 256 patients with diseases unrelated to their paranasal sinuses were reviewed between May 2002 and June 2003. The findings were categorized according to the anatomic location and the imaging characteristics of the abnormality. The abnormalities recorded included total sinus opacification, mucoperiosteal thickening >5mm, air fluid levels and retention cysts or polyps. Unilateral or bilateral involvement and septal deviation were also noted. A sinus was considered normal if it was fully aerated and no soft-tissue density was apparent within the cavity. Results: Among our cases, 111 (43.5% were male and 145 (56.5% were female. Of these patients, abnormalities in one or more of the sinus groups were found in 110 subjects (42.9%, 55.5% of which were male and 44.5% were female (P=0.001. Maxillary sinus abnormalities were observed in 66.4% of the patients, while ethmoid sinus abnormalities were found in 63.6%. Of the ethmoid abnormalities, 21% were found in the anterior section, 9% in the middle ethmoid, and 8% in the posterior ethmoid. The most common abnormality found was mucosal thickening. Among our cases, 23.4% had septal deviation, which was significantly higher among those with sinusitis (29% versus 19.1%; P<0.01. Of those patients with sinus involvement, 16% were involved in the sphenoid sinus and 5% in the frontal sinus. The results obtained from the patients with sinus abnormality revealed that 85% suffered from cough, nasal obstruction, runny nose, facial pain and post nasal discharge and 24% had been diagnosed

  13. Structural brain abnormalities in early onset first-episode psychosis

    Pagsberg, A K; Baaré, William Frans Christian; Raabjerg Christensen, A M;

    2007-01-01

    BACKGROUND: Brain morphometry in children and adolescents with first-episode psychosis offer a unique opportunity for pathogenetic investigations. METHODS: We compared high-resolution 3D T1-weighted magnetic resonance images of the brain in 29 patients (schizophrenia, schizotypal disorder...

  14. Magnetic resonance imaging of neonatal brain. Assessment of normal and abnormal findings

    To establish the normal MRI appearance of the neonatal brain, magnetic resonance imaging (MRI) was performed on 124 neonates who admitted to our neonatal intensive care unit. Degree of myelination, ventricular size, width of the extracerebral space and focal lesion in the brain were evaluated to investigate the relationship between MRI findings of neonatal brain and the neurological prognosis. 85 neonates underwent MRI both at neonatal period and at the corrected age of one year. The change of abnormal MRI findings was evaluated. 19 neonates had abnormal neurological outcome on subsequent examinations. Delayed myelination, ventriculomegaly and large extracerebral space were seen in 13, 7 and 9 neonates respectively. 4, 3 and 5 neonates out of them showed abnormal neurological prognosis respectively. Of the 19 neonates with focal lesion in MRI, 2 had parenchymal hematoma in the brain, 2 had subdural hematoma, 5 had chronic hematoma following subependymal hemorrhage, 6 had cystic formation following subependymal hemorrhage, 2 had subcortical leukomalacia, one had periventricular leukomalacia and one had cyst in the parenchyma of cerebellum. 4 neonates of 19 with focal lesion in MRI showed abnormal development. Of the neonates who had abnormal neurological prognosis, 7 neonates showed no abnormal finding in MRI at neonatal period. 3 of them had mild mental retardation. MRI shows promise in the neonatal period. It facilitates recognition of abnormalities of neonatal brain and may be used to predict abnormal neurologic outcome. However physiological change in the brain of neonates, especially of premature neonates, should be considered on interpreting these findings. Awareness of developmental features should help to minimize misinterpretation of normal changes in the neonatal brain. (author)

  15. Effect of number of abnormal oral glucose tolerance test (OGTT values on birthweight in women with gestational diabetes

    Nermin Kösüs

    2013-01-01

    Full Text Available Background & objectives: To examine the effect of abnormal oral glucose loading (OGL and number of abnormal oral glucose tolerance test (OGTT values on foetal weight in Turkish pregnant women. Methods: This retrospective study included 810 pregnant women between 24 and 28 wk of gestation who were screened for gestational diabetes mellitus (GDM. Women were grouped according to degree of glucose intolerance and compared for clinical, biochemical parameters. Women who delivered macrosomic infants were compared with those who delivered normal infants. Results: GDM was detected in 70 (8.6% women. Median age and infant birthweight of GDM cases were higher than the other groups. Infants of women with GDM weighted 200 g more than infants of non-GDM cases. No difference was found in terms of birthweight between diabetes cases with 2, 3 or 4 OGTT values abnormality. Interpretation & conclusions: The number of abnormal OGTT values in GDM cases had no effect on foetal weight. Macrosomia was observed more in GDM cases than in non-GDM cases. Birthweight was significantly higher in women with GDM despite the therapy used for regulation of blood glucose. This may be related to ethnical, dietary, nutritional differences, and treatment compliance in our study population.

  16. Brain glucose sensing, glucokinase and neural control of metabolism and islet function.

    Ogunnowo-Bada, E O; Heeley, N; Brochard, L; Evans, M L

    2014-09-01

    It is increasingly apparent that the brain plays a central role in metabolic homeostasis, including the maintenance of blood glucose. This is achieved by various efferent pathways from the brain to periphery, which help control hepatic glucose flux and perhaps insulin-stimulated insulin secretion. Also, critically important for the brain given its dependence on a constant supply of glucose as a fuel--emergency counter-regulatory responses are triggered by the brain if blood glucose starts to fall. To exert these control functions, the brain needs to detect rapidly and accurately changes in blood glucose. In this review, we summarize some of the mechanisms postulated to play a role in this and examine the potential role of the low-affinity hexokinase, glucokinase, in the brain as a key part of some of this sensing. We also discuss how these processes may become altered in diabetes and related metabolic diseases. PMID:25200293

  17. Emerging role of the brain in the homeostatic regulation of energy and glucose metabolism.

    Roh, Eun; Song, Do Kyeong; Kim, Min-Seon

    2016-01-01

    Accumulated evidence from genetic animal models suggests that the brain, particularly the hypothalamus, has a key role in the homeostatic regulation of energy and glucose metabolism. The brain integrates multiple metabolic inputs from the periphery through nutrients, gut-derived satiety signals and adiposity-related hormones. The brain modulates various aspects of metabolism, such as food intake, energy expenditure, insulin secretion, hepatic glucose production and glucose/fatty acid metabolism in adipose tissue and skeletal muscle. Highly coordinated interactions between the brain and peripheral metabolic organs are critical for the maintenance of energy and glucose homeostasis. Defective crosstalk between the brain and peripheral organs contributes to the development of obesity and type 2 diabetes. Here we comprehensively review the above topics, discussing the main findings related to the role of the brain in the homeostatic regulation of energy and glucose metabolism. PMID:26964832

  18. Brain response abnormalities during verbal learning among patients with schizophrenia

    Eyler, Lisa T; Jeste, Dilip V.; Brown, Gregory G.

    2007-01-01

    Patients with schizophrenia often show verbal learning deficits that have been linked to the pathophysiology of the disorder and result in functional impairment. This study examined the biological basis of these deficits by comparing the brain response of patients with schizophrenia (n=17) to that of healthy comparison participants (n=14) during a verbal paired-associates learning task using functional magnetic resonance imaging (fMRI). Brain response during new word learning was examined wit...

  19. Altered Brain Response to Drinking Glucose and Fructose in Obese Adolescents.

    Jastreboff, Ania M; Sinha, Rajita; Arora, Jagriti; Giannini, Cosimo; Kubat, Jessica; Malik, Saima; Van Name, Michelle A; Santoro, Nicola; Savoye, Mary; Duran, Elvira J; Pierpont, Bridget; Cline, Gary; Constable, R Todd; Sherwin, Robert S; Caprio, Sonia

    2016-07-01

    Increased sugar-sweetened beverage consumption has been linked to higher rates of obesity. Using functional MRI, we assessed brain perfusion responses to drinking two commonly consumed monosaccharides, glucose and fructose, in obese and lean adolescents. Marked differences were observed. In response to drinking glucose, obese adolescents exhibited decreased brain perfusion in brain regions involved in executive function (prefrontal cortex [PFC]) and increased perfusion in homeostatic appetite regions of the brain (hypothalamus). Conversely, in response to drinking glucose, lean adolescents demonstrated increased PFC brain perfusion and no change in perfusion in the hypothalamus. In addition, obese adolescents demonstrated attenuated suppression of serum acyl-ghrelin and increased circulating insulin level after glucose ingestion; furthermore, the change in acyl-ghrelin and insulin levels after both glucose and fructose ingestion was associated with increased hypothalamic, thalamic, and hippocampal blood flow in obese relative to lean adolescents. Additionally, in all subjects there was greater perfusion in the ventral striatum with fructose relative to glucose ingestion. Finally, reduced connectivity between executive, homeostatic, and hedonic brain regions was observed in obese adolescents. These data demonstrate that obese adolescents have impaired prefrontal executive control responses to drinking glucose and fructose, while their homeostatic and hedonic responses appear to be heightened. Thus, obesity-related brain adaptations to glucose and fructose consumption in obese adolescents may contribute to excessive consumption of glucose and fructose, thereby promoting further weight gain. PMID:27207544

  20. Abnormal transient rise in hepatic glucose production after oral glucose in non-insulin-dependent diabetic subjects.

    Thorburn, A; Litchfield, A; Fabris, S; Proietto, J

    1995-05-01

    A transient rise in hepatic glucose production (HGP) after an oral glucosa load has been reported in some insulin-resistant states such as in obese fa/fa Zucker rats. The aim of this study was to determine whether this rise in HGP also occurs in subjects with established non-insulin-dependent diabetes mellitus (NIDDM). Glucose kinetics were measured basally and during a double-label oral glucose tolerance test (OGTT) in 12 NIDDM subjects and 12 non-diabetic 'control' subjects. Twenty minutes after the glucose load, HGP had increased 73% above basal in the NIDDM subjects (7.29 +/- 0.52 to 12.58 +/- 1.86 mumol/kg/min, P < 0.02). A transient rise in glucagon (12 pg/ml above basal, P < 0.004) occurred at a similar time. In contrast, the control subjects showed no rise in HGP or plasma glucagon. HGP began to suppress 40-50 min after the OGTT in both the NIDDM and control subjects. A 27% increase in the rate of gut-derived glucose absorption was also observed in the NIDDM group, which could be the result of increased gut glucose absorption or decreased first pass extraction of glucose by the liver. Therefore, in agreement with data in animal models of NIDDM, a transient rise in HGP partly contributes to the hyperglycemia observed after an oral glucose load in NIDDM subjects. PMID:7587920

  1. Continuous and simultaneous electrochemical measurements of glucose, lactate, and ascorbate in rat brain following brain ischemia.

    Lin, Yuqing; Yu, Ping; Hao, Jie; Wang, Yuexiang; Ohsaka, Takeo; Mao, Lanqun

    2014-04-15

    Developing new tools and technologies to enable recording the dynamic changes of multiple neurochemicals is the essence of better understanding of the molecular basis of brain functions. This study demonstrates a microfluidic chip-based online electrochemical system (OECS) for in vivo continuous and simultaneous monitoring of glucose, lactate, and ascorbate in rat brain. To fabricate the microfluidic chip-based detecting system, a microfluidic chip with patterned channel is developed into an electrochemical flow cell by incorporating the chip with three surface-modified indium-tin oxide (ITO) electrodes as working electrodes, a Ag/AgCl wire as reference electrode, and a stainless steel tube as counter electrode. Selective detection of ascorbate is achieved by the use of single-walled carbon nanotubes (SWNTs) to largely facilitate the electrochemical oxidation of ascorbate, while a dehydrogenase-based biosensing mechanism with methylene green (MG) adsorbed onto SWNTs as an electrocatalyst for the oxidation of dihydronicotiamide adenine dinucleotide (NADH) is employed for biosensing of glucose and lactate. To avoid the crosstalk among three sensors, the sensor alignment is carefully designed with the SWNT-modified electrode in the upstream channel and paralleled glucose and lactate biosensors in the downstream channels. With the microfluidic chip-based electrochemical flow cell as the detector, an OECS is successfully established by directly integrating the microfluidic chip-based electrochemical flow cell with in vivo microdialysis. The OECS exhibits a good linear response toward glucose, lactate, and ascorbate with less crosstalk. This property, along with the high stability and selectivity, enables the OECS for continuously monitoring three species in rat brain following brain ischemia. PMID:24621127

  2. The Impact of Abnormal Glucose Tolerance and Obesity on Fetal Growth

    Erin Graves

    2015-01-01

    Full Text Available Objective. Factors linked with insulin resistance were examined for their association with large-for-gestational-age (LGA infant birth weight and gestational diabetes. Study Design. Data came from a longitudinal cohort study of 2,305 subjects without overt diabetes, analyzed using multinomial logistic and linear regression. Results. High maternal BMI (OR=1.53 (1.11, 2.12, height (1.98 (1.62, 2.42, antidepressant use (1.71 (1.20, 2.44, pregnancy weight-gain exceeding 40 pounds (1.79 (1.25, 2.57, and high blood sugar (2.68, (1.53, 5.27 were all positively associated with LGA birth. Strikingly, the difference in risk from diagnosed and treated gestational diabetes compared to women with a single abnormal glucose tolerance test (but no diagnosis of gestational diabetes was significant (OR=0.65, p=0.12 versus OR=2.84, p<0.01. When weight/length ratio was used instead, different factors were found to be significant. BMI and pregnancy weight-gain were found to influence the development of gestational diabetes, through an additive interaction. Conclusions. High prepregnancy BM, height, antidepressant use, pregnancy weight-gain exceeding 40 pounds, and high blood sugar were associated with LGA birth, but not necessarily infant weight/length ratio. An additive interaction between BMI and pregnancy weight-gain influenced gestational diabetes development.

  3. Brain Mitochondrial Lipid Abnormalities in Mice Susceptible to Spontaneous Gliomas

    Kiebish, M.A.; Han, X; Cheng, H; Chuang, J H; Seyfried, T N

    2008-01-01

    Alterations in mitochondrial function have long been considered a hallmark of cancer. We compared the lipidome and electron transport chain activities of non-synaptic brain mitochondria in two inbred mouse strains, the C57BL/6J (B6) and the VM/Dk (VM). The VM strain is unique in expressing a high incidence of spontaneous brain tumors (1.5%) that are mostly gliomas. The incidence of gliomas is about 210-fold greater in VM mice than in B6 mice. Using shotgun lipidomics, we found that the mitoch...

  4. Assessment of prenatal and perinatal characteristics of pregnants with gestationel diabetes mellitus who have postnatal glucose abnormalities

    Okan Bakiner

    2013-08-01

    Full Text Available Purpose: To examine the difference in terms of prenatal and perinatal characteristics between gestational diabetic (GDM cases diagnosed with impaired fasting glucose (IFGand impaired glucose tolerance (IGT during early postpartum period. Material and Methods: Cases who had no history of any glucose metabolism disorder and diagnosed as GDM due to American Diabetes Association (ADA criteria were included. Subjects were inquired for pregestational characteristics(glucose abnormality in previous pregnancies, birth of macrosomic baby and history of diabetes in a first-degree relative, prenatal characteristics (age, body mass index BMI, features at diagnosis (BMI,weight-gain ,blood pressure and HbA1C, and perinatal characteristics (birth week and baby birth weight were recorded. Oral glucose tolerance test (OGTT was reperformed in the 6th postpartum week. Effects of pregestational, prenatal and perinatal features on postpartum glucose abnormalities were analysed. Results: Out of 80 cases who completed the study 58.7%(n=47 had normal glucose metabolism, 13.7%( n=11 had IFG and 27.5%(n=22 had IGT. No difference was found between pregestational, prenatal , perinatal characteristics, features at the time of diagnosis and postpartum OGTT results. Incidence of IFG in postpartum OGTT for those who had diabetes in a first degree relative was elevated when compared with other cases(p=0,042. The difference was preserved after adjustment for other characteristic features with multivariate analysis (p=0,037. Conclusion: Presence of diabetes in a first degree relative may be a risk factor for postnatal early IFG. In our study other pregestational, prenatal, perinatal factors and features at diagnosis didn’t affect early postpartum glucose metabolism. [Cukurova Med J 2013; 38(4.000: 617-626

  5. Brain Structure Abnormalities in Adolescent Girls with Conduct Disorder

    Fairchild, Graeme; Hagan, Cindy C.; Walsh, Nicholas D.; Passamonti, Luca; Calder, Andrew J.; Goodyer, Ian M.

    2013-01-01

    Background: Conduct disorder (CD) in female adolescents is associated with a range of negative outcomes, including teenage pregnancy and antisocial personality disorder. Although recent studies have documented changes in brain structure and function in male adolescents with CD, there have been no neuroimaging studies of female adolescents with CD.…

  6. Abnormal Corticospinal Excitability in Traumatic Diffuse Axonal Brain Injury

    Bernabeu, Montse; Demirtas-Tatlidede, Asli; Opisso, Eloy; Lopez, Raquel; Tormos, Jose Mª; Pascual-Leone, Alvaro

    2009-01-01

    This study aimed to investigate the cortical motor excitability characteristics in diffuse axonal injury (DAI) due to severe traumatic brain injury (TBI). A variety of excitatory and inhibitory transcranial magnetic stimulation (TMS) paradigms were applied to primary motor cortices of 17 patients and 11 healthy controls. The parameters of testing included resting motor threshold (MT), motor evoked potential (MEP) area under the curve, input-output curves, MEP variability, and silent period (S...

  7. Brain Abnormalities in HIV and Stimulant Users: Interventions and Prevention

    Chang, Linda; Shoptaw, Steven; Normand, Jacques

    2013-01-01

    The session, “HIV and other Infectious Diseases,” was chaired by Dr. Jacques Normand, Director of the AIDS Research Program of the U.S. National Institute on Drug Abuse. The two presenters (and their presentation topics) were: Dr. Linda Chang (“Neural Correlates of Cognitive Deficits and Training Effects on Brain Function in HIV-infected Individuals”) and Dr. Steven Shoptaw (“HIV Prevention in Substance Users”).

  8. Brain structure abnormalities in adolescent girls with conduct disorder

    Fairchild, Graeme; Hagan, Cindy C.; Nicholas D Walsh; Passamonti, Luca; Calder, Andrew J.; Goodyer, Ian M.

    2012-01-01

    Background Conduct disorder (CD) in female adolescents is associated with a range of negative outcomes, including teenage pregnancy and antisocial personality disorder. Although recent studies have documented changes in brain structure and function in male adolescents with CD, there have been no neuroimaging studies of female adolescents with CD. Our primary objective was to investigate whether female adolescents with CD show changes in grey matter volume. Our secondary aim was to assess for ...

  9. Gray Matter Concentration Abnormality in Brains of Narcolepsy Patients

    To investigate gray matter concentration changes in the brains of narcoleptic patients. Twenty-nine narcoleptic patient with cataplexy and 29 age and sex-matched normal subjects (mean age, 31 years old) underwent volumetric MRIs. The MRIs were spatially normalized to a standard T1 template and subdivided into gray matter, white matter, and cerebrospinal fluid (CSF). These segmented images were then smoothed using a 12-mm full width at half maximum (FWHM) isotropic Gaussian kernel. An optimized voxel-based morphometry protocol was used to analyze brain tissue concentrations using SPM2 (statistical parametric mapping). A one-way analysis of variance was applied to the concentration analysis of gray matter images. Narcoleptics with cataplexy showed reduced gray matter concentration in bilateral thalami, left gyrus rectus, bilateral frontopolar gyri, bilateral short insular gyri, bilateral superior frontal gyri, and right superior temporal and left inferior temporal gyri compared to normal subjects (uncorrected p < 0.001). Furthermore, small volume correction revealed gray matter concentration reduction in bilateral nuclei accumbens, hypothalami, and thalami (false discovery rate corrected p < 0.05). Gray matter concentration reductions were observed in brain regions related to excessive daytime sleepiness, cognition, attention, and memory in narcoleptics with cataplexy

  10. Gray Matter Concentration Abnormality in Brains of Narcolepsy Patients

    Joo, Eun Yeon; Tae, Woo Suk; Kim, Sung Tae; Hong, Seung Bong [Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of)

    2009-12-15

    To investigate gray matter concentration changes in the brains of narcoleptic patients. Twenty-nine narcoleptic patient with cataplexy and 29 age and sex-matched normal subjects (mean age, 31 years old) underwent volumetric MRIs. The MRIs were spatially normalized to a standard T1 template and subdivided into gray matter, white matter, and cerebrospinal fluid (CSF). These segmented images were then smoothed using a 12-mm full width at half maximum (FWHM) isotropic Gaussian kernel. An optimized voxel-based morphometry protocol was used to analyze brain tissue concentrations using SPM2 (statistical parametric mapping). A one-way analysis of variance was applied to the concentration analysis of gray matter images. Narcoleptics with cataplexy showed reduced gray matter concentration in bilateral thalami, left gyrus rectus, bilateral frontopolar gyri, bilateral short insular gyri, bilateral superior frontal gyri, and right superior temporal and left inferior temporal gyri compared to normal subjects (uncorrected p < 0.001). Furthermore, small volume correction revealed gray matter concentration reduction in bilateral nuclei accumbens, hypothalami, and thalami (false discovery rate corrected p < 0.05). Gray matter concentration reductions were observed in brain regions related to excessive daytime sleepiness, cognition, attention, and memory in narcoleptics with cataplexy

  11. Weight Loss After Bariatric Surgery Reverses Insulin-Induced Increases in Brain Glucose Metabolism of the Morbidly Obese

    Tuulari, Jetro J.; Henry K Karlsson; Hirvonen, Jussi; Hannukainen, Jarna C.; Bucci, Marco; Helmiö, Mika; Ovaska, Jari; Soinio, Minna; Salminen, Paulina; Savisto, Nina; Nummenmaa, Lauri; Nuutila, Pirjo

    2013-01-01

    Obesity and insulin resistance are associated with altered brain glucose metabolism. Here, we studied brain glucose metabolism in 22 morbidly obese patients before and 6 months after bariatric surgery. Seven healthy subjects served as control subjects. Brain glucose metabolism was measured twice per imaging session: with and without insulin stimulation (hyperinsulinemic-euglycemic clamp) using [18F]fluorodeoxyglucose scanning. We found that during fasting, brain glucose metabolism was not dif...

  12. Seizure-induced brain lesions: A wide spectrum of variably reversible MRI abnormalities

    Cianfoni, A., E-mail: acianfoni@hotmail.com [Neuroradiology, Neurocenter of Italian Switzerland–Ospedale regionale Lugano, Via Tesserete 46, Lugano, 6900, CH (Switzerland); Caulo, M., E-mail: caulo@unich.it [Department of Neuroscience and Imaging, University of Chieti, Via dei Vestini 33, 6610 Chieti. Italy (Italy); Cerase, A., E-mail: alfonsocerase@gmail.com [Unit of Neuroimaging and Neurointervention NINT, Department of Neurological and Sensorineural Sciences, Azienda Ospedaliera Universitaria Senese, Policlinico “Santa Maria alle Scotte”, V.le Bracci 16, Siena (Italy); Della Marca, G., E-mail: dellamarca@rm.unicatt.it [Neurology Dept., Catholic University of Rome, L.go F Vito 1, 00100, Rome (Italy); Falcone, C., E-mail: carlo_falc@libero.it [Radiology Dept., Catholic University of Rome, L.go F Vito 1, 00100, Rome (Italy); Di Lella, G.M., E-mail: gdilella@rm.unicatt.it [Radiology Dept., Catholic University of Rome, L.go F Vito 1, 00100, Rome (Italy); Gaudino, S., E-mail: sgaudino@sirm.org [Radiology Dept., Catholic University of Rome, L.go F Vito 1, 00100, Rome (Italy); Edwards, J., E-mail: edwardjc@musc.edu [Neuroscience Dept., Medical University of South Carolina, 96J Lucas st, 29425, Charleston, SC (United States); Colosimo, C., E-mail: colosimo@rm.unicatt.it [Radiology Dept., Catholic University of Rome, L.go F Vito 1, 00100, Rome (Italy)

    2013-11-01

    Introduction MRI abnormalities in the postictal period might represent the effect of the seizure activity, rather than its structural cause. Material and Methods Retrospective review of clinical and neuroimaging charts of 26 patients diagnosed with seizure-related MR-signal changes. All patients underwent brain-MRI (1.5-Tesla, standard pre- and post-contrast brain imaging, including DWI-ADC in 19/26) within 7 days from a seizure and at least one follow-up MRI, showing partial or complete reversibility of the MR-signal changes. Extensive clinical work-up and follow-up, ranging from 3 months to 5 years, ruled out infection or other possible causes of brain damage. Seizure-induced brain-MRI abnormalities remained a diagnosis of exclusion. Site, characteristics and reversibility of MRI changes, and association with characteristics of seizures were determined. Results MRI showed unilateral (13/26) and bilateral abnormalities, with high (24/26) and low (2/26) T2-signal, leptomeningeal contrast-enhancement (2/26), restricted diffusion (9/19). Location of abnormality was cortical/subcortical, basal ganglia, white matter, corpus callosum, cerebellum. Hippocampus was involved in 10/26 patients. Reversibility of MRI changes was complete in 15, and with residual gliosis or focal atrophy in 11 patients. Reversibility was noted between 15 and 150 days (average, 62 days). Partial simple and complex seizures were associated with hippocampal involvement (p = 0.015), status epilepticus with incomplete reversibility of MRI abnormalities (p = 0.041). Conclusions Seizure or epileptic status can induce transient, variably reversible MRI brain abnormalities. Partial seizures are frequently associated with hippocampal involvement and status epilepticus with incompletely reversible lesions. These seizure-induced MRI abnormalities pose a broad differential diagnosis; increased awareness may reduce the risk of misdiagnosis and unnecessary intervention.

  13. Clinical correlates with MR abnormalities of the brain in eclampsia

    This paper determines the typical MR lesions of the brain in patients with eclampsia and to correlate neurologic findings with MR findings. Cranial MR studies have been performed in seven patients with eclampsia. Follow-up MR studies were subsequently performed in all patients. All seven patients presented with generalized tonoclonic seizures. Neurologic symptoms ranged from blurred vision and headache in five patients to focal neurologic deficits, including total blindness, dystaxia, and dysarthria, in two patients. On T2-weighted images, MR revealed high-intensity lesions that were bilateral in each case. The lesions were predominantly cortical and subcortical, with occasional deep white matter lesions

  14. Brain perfusion abnormality in patients with chronic pain

    We performed single photon emission computed tomography (SPECT) of the brain in 15 patients with chronic pain (males, 7; females, 8; average age 49.1±17.9 years) and identified the locus of cerebral blood flow reduction by a new analytical method (easy Z-score Imaging System: eZIS) to clarify the functional neuroanatomical basis of chronic pain. Of the 15 patients, 6 had backache, 2 neck pain, 2 gonalgia, and 5 pain at other sites, with an average Visual analog scale of pain (VAS) value of 6.1±1.9. In comparison with a information on a data base on physically unimpaired persons, the dorsolateral prefrontal area (both sides, right dominant), medial prefrontal area (both sides), dorsal aspect of the anterior cingulate gyrus nociceptive cortex (both sides) and the lateral part of the orbitofrontal cortex (right side) were found to have blood flow reduction in the group of patients with chronic pain. As for chronic pain and its correlation with clinical features such as a depressive state, anticipation anxiety, post-traumatic stress disorder (PTSD), and conversion hysteria, the mechanism in the brain that was suggested by this study should be followed-up by functional neuroimaging studies. (author)

  15. scMRI reveals large-scale brain network abnormalities in autism.

    Brandon A Zielinski

    Full Text Available Autism is a complex neurological condition characterized by childhood onset of dysfunction in multiple cognitive domains including socio-emotional function, speech and language, and processing of internally versus externally directed stimuli. Although gross brain anatomic differences in autism are well established, recent studies investigating regional differences in brain structure and function have yielded divergent and seemingly contradictory results. How regional abnormalities relate to the autistic phenotype remains unclear. We hypothesized that autism exhibits distinct perturbations in network-level brain architecture, and that cognitive dysfunction may be reflected by abnormal network structure. Network-level anatomic abnormalities in autism have not been previously described. We used structural covariance MRI to investigate network-level differences in gray matter structure within two large-scale networks strongly implicated in autism, the salience network and the default mode network, in autistic subjects and age-, gender-, and IQ-matched controls. We report specific perturbations in brain network architecture in the salience and default-mode networks consistent with clinical manifestations of autism. Extent and distribution of the salience network, involved in social-emotional regulation of environmental stimuli, is restricted in autism. In contrast, posterior elements of the default mode network have increased spatial distribution, suggesting a 'posteriorization' of this network. These findings are consistent with a network-based model of autism, and suggest a unifying interpretation of previous work. Moreover, we provide evidence of specific abnormalities in brain network architecture underlying autism that are quantifiable using standard clinical MRI.

  16. MRI-based methods to detect placental and fetal brain abnormalities in utero.

    Girardi, Guillermina

    2016-04-01

    There are very few methods for screening women for pregnancy complications. Identification of pregnancies at risk would be of enormous clinical significance as would influence decisions made about pregnancy management and delivery. Adverse pregnancy outcomes such as obstetric antiphospholipid syndrome (APS) and preterm birth (PTB), characterized by placental insufficiency and abnormal fetal brain development, in mice and humans have been associated with activation of inflammatory pathways, in particular the complement cascade. Recently, antibodies against C3 activation products conjugated with contrast agent ultrasmall superparamagnetic iron oxide (USPIO) nanoparticles were used to detect non-invasively sites of inflammation within the placenta and the fetal brain in mouse models of APS and PTB. In utero, magnetic resonance imaging (MRI)-based detection of C3 deposition in the placenta in the APS model was associated with signs of placental insufficiency and intrauterine growth restriction. In both models, fetal brain C3 deposition was associated with cortical axonal cytoarchitecture disruption and increased neurodegeneration. Proton magnetic resonance spectroscopy ((1)H MRS), another non invasive method, is used to identify metabolic abnormalities to predict fetal brain abnormalities. This review describes the recent development of preclinical MRI-based methods for the detection of inflammatory markers of placental insufficiency and abnormal fetal brain development and metabolism to predict pregnancy outcomes. PMID:26187242

  17. Brain-derived neurotrophic factor inhibits glucose intolerance after cerebral ischemia

    Shu, Xiaoliang; Zhang, Yongsheng; Xu, Han; Kang, Kai; Cai, Donglian

    2013-01-01

    Brain-derived neurotrophic factor is associated with the insulin signaling pathway and glucose tabolism. We hypothesized that expression of brain-derived neurotrophic factor and its receptor may be involved in glucose intolerance following ischemic stress. To verify this hypothesis, this study aimed to observe the changes in brain-derived neurotrophic factor and tyrosine kinase B receptor expression in glucose metabolism-associated regions following cerebral ischemic stress in mice. At day 1 after middle cerebral artery occlusion, the expression levels of brain-derived neurotrophic factor were significantly decreased in the ischemic cortex, hypothalamus, liver, skeletal muscle, and pancreas. The expression levels of tyrosine kinase B receptor were decreased in the hypothalamus and liver, and increased in the skeletal muscle and pancreas, but remained unchanged in the cortex. Intrahypothalamic administration of brain-derived neurotrophic factor (40 ng) suppressed the decrease in insulin receptor and tyrosine-phosphorylated insulin receptor expression in the liver and skeletal muscle, and inhibited the overexpression of gluconeogenesis-associated phosphoenolpyruvate carboxykinase and glucose-6-phosphatase in the liver of cerebral ischemic mice. However, serum insulin levels remained unchanged. Our experimental findings indicate that brain-derived neurotrophic factor can promote glucose metabolism, reduce gluconeogenesis, and decrease blood glucose levels after cerebral ischemic stress. The low expression of brain-derived neurotrophic factor following cerebral ischemia may be involved in the development of glucose intolerance. PMID:25206547

  18. Brain-derived neurotrophic factor inhibits glucose intolerance after cerebral ischemia***

    Xiaoliang Shu; Yongsheng Zhang; Han Xu; Kai Kang; Donglian Cai

    2013-01-01

    Brain-derived neurotrophic factor is associated with the insulin signaling pathway and glucose tabolism. We hypothesized that expression of brain-derived neurotrophic factor and its receptor may be involved in glucose intolerance fol owing ischemic stress. To verify this hypothesis, this study aimed to observe the changes in brain-derived neurotrophic factor and tyrosine kinase B receptor expression in glucose metabolism-associated regions fol owing cerebral ischemic stress in mice. At day 1 after middle cerebral artery occlusion, the expression levels of brain-derived neurotrophic factor were significantly decreased in the ischemic cortex, hypothalamus, liver, skeletal muscle, and pancreas. The expression levels of tyrosine kinase B receptor were decreased in the hypothalamus and liver, and increased in the skeletal muscle and pancreas, but remained unchanged in the cortex. Intrahypothalamic administration of brain-derived neurotrophic factor (40 ng) suppressed the de-crease in insulin receptor and tyrosine-phosphorylated insulin receptor expression in the liver and skeletal muscle, and inhibited the overexpression of gluconeogenesis-associated phosphoenolpy-ruvate carboxykinase and glucose-6-phosphatase in the liver of cerebral ischemic mice. However, serum insulin levels remained unchanged. Our experimental findings indicate that brain-derived neurotrophic factor can promote glucose metabolism, reduce gluconeogenesis, and decrease blood glucose levels after cerebral ischemic stress. The low expression of brain-derived neurotrophic factor fol owing cerebral ischemia may be involved in the development of glucose intolerance.

  19. Incorporation of 14C glucose into glycogen and glucose-6-phosphate dehydrogenase activity in rat brain following carbon monoxide intoxication

    Incorporation of 14C glucose into glycogen and glucose-6-phosphate dehydrogenase activity in rat brain following carbon monoxide intoxication was studied. In brains of rats tested on the 20, 30 and 60th minute of exposure to CO and immediately after removal from the chamber the enzyme activity showed no essential deviation from the control level. In the group of rats tested 1 hour after taking them out from the chamber increase of the enzyme activity was noticed, amounting to about 33% of the control value. The brains tested 24 hours after exposure showed the largest increase of the enzyme activity by about 94%. In the next time periods, 48 and 72 hours after intoxication, the enzyme activity was decreasing. The glycogen content in brains of control animals increased 3 hours after CO intoxication by about 69%. The increase of glycogen synthesis was expressed by increase of the total radioactivity, which amounted to 160% of the control value. (Z.M.)

  20. Normal and abnormal fetal brain development during the third trimester as demonstrated by neurosonography

    The multiplanar neurosonographic examination of the fetus enables superb visualization of brain anatomy during pregnancy. The examination may be performed using a transvaginal or a transfundal approach and it is indicated in patients at high risk for CNS anomalies or in those with a suspicious finding during a routine examination. The purpose of this paper is to present a description of the normal brain and of abnormal findings usually diagnosed late in pregnancy, including malformations of cortical development, infratentorial anomalies, and prenatal insults

  1. Multicenter Study of Brain Volume Abnormalities in Children and Adolescent-Onset Psychosis

    Reig, S. (Santiago); Parellada, M.; Castro-Fornieles, J.; Janssen, J.; Moreno, D.; Baeza, I.; Bargallo, N.; Gonzalez-Pinto, A.; Graell, M. (Montserrat); Ortuño-Sánchez-Pedreño, F. (Felipe); Otero, S.; C. Arango; Desco, M

    2010-01-01

    The goal of the study is to determine the extent of structural brain abnormalities in a multicenter sample of children and adolescents with a recent-onset first episode of psychosis (FEP), compared with a sample of healthy controls. Total brain and lobar volumes and those of gray matter (GM), white matter, and cerebrospinal fluid (CSF) were measured in 92 patients with a FEP and in 94 controls, matched for age, gender, and years of education. Male patients (n = 64) showed several significant ...

  2. Statistical distribution of blood serotonin as a predictor of early autistic brain abnormalities

    Janušonis Skirmantas

    2005-07-01

    Full Text Available Abstract Background A wide range of abnormalities has been reported in autistic brains, but these abnormalities may be the result of an earlier underlying developmental alteration that may no longer be evident by the time autism is diagnosed. The most consistent biological finding in autistic individuals has been their statistically elevated levels of 5-hydroxytryptamine (5-HT, serotonin in blood platelets (platelet hyperserotonemia. The early developmental alteration of the autistic brain and the autistic platelet hyperserotonemia may be caused by the same biological factor expressed in the brain and outside the brain, respectively. Unlike the brain, blood platelets are short-lived and continue to be produced throughout the life span, suggesting that this factor may continue to operate outside the brain years after the brain is formed. The statistical distributions of the platelet 5-HT levels in normal and autistic groups have characteristic features and may contain information about the nature of this yet unidentified factor. Results The identity of this factor was studied by using a novel, quantitative approach that was applied to published distributions of the platelet 5-HT levels in normal and autistic groups. It was shown that the published data are consistent with the hypothesis that a factor that interferes with brain development in autism may also regulate the release of 5-HT from gut enterochromaffin cells. Numerical analysis revealed that this factor may be non-functional in autistic individuals. Conclusion At least some biological factors, the abnormal function of which leads to the development of the autistic brain, may regulate the release of 5-HT from the gut years after birth. If the present model is correct, it will allow future efforts to be focused on a limited number of gene candidates, some of which have not been suspected to be involved in autism (such as the 5-HT4 receptor gene based on currently available clinical and

  3. No abnormalities of intrinsic brain connectivity in the interictal phase of migraine with aura

    Hougaard, Anders; Amin, F M; Magon, S;

    2015-01-01

    were investigated. Following advanced denoising, the data were analyzed both in a hypothesis-driven fashion, testing for abnormalities involving 27 different brain areas of potential relevance to migraine with aura including the cortical visual areas, the amygdala and peri-aqueductal grey matter, and...

  4. Preliminary research on abnormal brain detection by wavelet-energy and quantum- behaved PSO.

    Zhang, Yudong; Ji, Genlin; Yang, Jiquan; Wang, Shuihua; Dong, Zhengchao; Phillips, Preetha; Sun, Ping

    2016-04-29

    It is important to detect abnormal brains accurately and early. The wavelet-energy (WE) was a successful feature descriptor that achieved excellent performance in various applications; hence, we proposed a WE based new approach for automated abnormal detection, and reported its preliminary results in this study. The kernel support vector machine (KSVM) was used as the classifier, and quantum-behaved particle swarm optimization (QPSO) was introduced to optimize the weights of the SVM. The results based on a 5 × 5-fold cross validation showed the performance of the proposed WE + QPSO-KSVM was superior to ``DWT + PCA + BP-NN'', ``DWT + PCA + RBF-NN'', ``DWT + PCA + PSO-KSVM'', ``WE + BPNN'', ``WE +$ KSVM'', and ``DWT $+$ PCA $+$ GA-KSVM'' w.r.t. sensitivity, specificity, and accuracy. The work provides a novel means to detect abnormal brains with excellent performance. PMID:27163327

  5. Abnormality of cerebral cortical glucose metabolism in temporal lobe epilepsy with cognitive function impairment

    Objective: People with epilepsy commonly report having problems with their memory. Many indicate that memory difficulties significantly hinder their functioning at work, in school, and at home. Besides, some studies have reported that memory performance as a prognostic factor is of most value in patients with risk of refractory epilepsy and when used in a multidisciplinary setting. However, the cerebral cortical areas involving memory impairment in epilepsy is still unknown. The purpose of this study was to access changes of cerebral glucose metabolism of epilepsy patients using [F-18] fluorodeoxyglucose positron emission tomography (FDG PET). Method: Nine temporal lobe epilepsy patients were studied. Each patient was confirmed with lesions in right mesial temporal lobe by MRI, PET and EEG. Serial cognition function tests were performed. Regional cerebral glucose metabolism (rCMRglc) was measured by PET at 45 minutes after injection of 370 MBq of FDG. Parametric images were generated by grand mean scaling each scan to 50. The images were then transformed into standard stereotactic space. Statistical parametric mapping (SPM2) was applied to find the correlations between verbal memory, figure memory, perception intelligent quotation (PIQ) and rCMRglc in epilepsy patients. The changes of rCMRglc were significant if corrected p value was less than 0.05. Results: There was no significant relationship between figure memory score and verbal memory score. FDG-PET scan showed changes of rCMRglc positive related with verbal memory score in precentral gyms of right frontal lobe (Brodmann area 4, corrected p < 0.001, voxel size 240) and cingulated gyms of right limbic lobe (Brodmann area 32, corrected p=0.002, voxel size 143). No negative relationship was demonstrable between verbal memory and rCMRglc in this study. Besides, significanfiy positive correlation between figure memory was shown in cuneus of right occipital lobe (Brodmann area 18, corrected p < 0.001, voxel size

  6. Brain glucose utilization in systemic lupus erythematosus with neuropsychiatric symptoms: a controlled positron emission tomography study

    In contrast to morphological imaging [such as magnetic resonance imaging (MRI) or computed tomography], functional imaging may be of advantage in the detection of brain abnormalities in cases of neuropsychiatric systemic lupus erythematosus (SLE). Therefore, we studied 13 patients (aged 40±14 years, 11 female, 2 male) with neuropsychiatric SLE who met four of the American Rheumatism Association criteria for the classification of SLE. Ten clinically and neurologically healthy volunteers served as controls (aged 40±12 years, 5 female, 5 male). Both groups were investigated using fluorine-18-labelled fluorodeoxyglucose brain positron emission tomography (PET) and cranial MRI. The normal controls and 11 of the 13 patients showed normal MRI scans. However, PET scan was abnormal in all 13 SLE patients. Significant group-to-group differences in the glucose metabolic index (GMI=region of interest uptake/global uptake at the level of the basal ganglia and thalamus) were found in the parieto-occipital region on both sides: the GMI of the parieto-occipital region on the right side was 0.922±0.045 in patients and 1.066±0.081 in controls (P<0.0001, Mann Whitney U test), while on the left side it was 0.892±0.060 in patients and 1.034±0.051 in controls (P=0.0002). Parieto-occipital hypometabolism is a conspicuous finding in mainly MRI-negative neuropsychiatric SLE. As the parieto-occipital region is located at the boundary of blood supply of all three major arteries, it could be the most vulnerable zone of the cerebrum and may be affected at an early stage of the cerebrovascular disease. (orig.). With 1 fig., 1 tab

  7. Relationship of impaired brain glucose metabolism to learning deficit in the senescence-accelerated mouse.

    Ohta, H; Nishikawa, H; Hirai, K; Kato, K; Miyamoto, M

    1996-10-11

    The relationship between brain glucose metabolism and learning deficit was examined in the senescence-accelerated-prone mouse (SAMP) 8, which has been proven to be a useful murine model of age-related behavioral disorders. SAMP8, 7 months old, exhibited marked learning impairment in the passive avoidance task, as compared with the control strain, senescence-accelerated-resistant mice (SAMR) 1. SAMP8 also exhibited a reduction in brain glucose metabolism, as indicated by a reduction in [14C]2-deoxyglucose accumulation in the brain following the intravenous injection impaired glucose metabolism correlated significantly with the learning impairment in all brain regions in SAMR1 and SAMP8. In the SAMP8, a significant correlation was observed in the posterior half of the cerebral cortex. These results suggest that the SAMP8 strain is a useful model of not only age-related behavioral disorders, but also glucose hypometabolism observed in aging and dementias. PMID:8905734

  8. Large-Scale Functional Brain Network Abnormalities in Alzheimer’s Disease: Insights from Functional Neuroimaging

    Bradford C. Dickerson

    2009-01-01

    Full Text Available Functional MRI (fMRI studies of mild cognitive impairment (MCI and Alzheimer’s disease (AD have begun to reveal abnormalities in large-scale memory and cognitive brain networks. Since the medial temporal lobe (MTL memory system is a site of very early pathology in AD, a number of studies have focused on this region of the brain. Yet it is clear that other regions of the large-scale episodic memory network are affected early in the disease as well, and fMRI has begun to illuminate functional abnormalities in frontal, temporal, and parietal cortices as well in MCI and AD. Besides predictable hypoactivation of brain regions as they accrue pathology and undergo atrophy, there are also areas of hyperactivation in brain memory and cognitive circuits, possibly representing attempted compensatory activity. Recent fMRI data in MCI and AD are beginning to reveal relationships between abnormalities of functional activity in the MTL memory system and in functionally connected brain regions, such as the precuneus. Additional work with “resting state” fMRI data is illuminating functional-anatomic brain circuits and their disruption by disease. As this work continues to mature, it will likely contribute to our understanding of fundamental memory processes in the human brain and how these are perturbed in memory disorders. We hope these insights will translate into the incorporation of measures of task-related brain function into diagnostic assessment or therapeutic monitoring, which will hopefully one day be useful for demonstrating beneficial effects of treatments being tested in clinical trials.

  9. Hemoglobin A1c for Diagnosis of Postpartum Abnormal Glucose Tolerance among Women with Gestational Diabetes Mellitus: Diagnostic Meta-Analysis

    Su, Xudong; Zhang, Zhaoyan; Qu, Xinye; Tian, Yaqiang; Zhang, Guangzhen

    2014-01-01

    Objective To evaluate the accuracy of glycosylated hemoglobin A1c (HbA1c) for the diagnosis of postpartum abnormal glucose tolerance among women with gestational diabetes mellitus (GDM). Methods After a systematic review of related studies, the sensitivity, specificity, positive likelihood ratio (PLR), negative likelihood ratio (NLR), diagnostic odds ratio (DOR), and other measures about the accuracy of HbA1c in the diagnosis of postpartum abnormal glucose tolerance were pooled using random-e...

  10. Optimized Fuzzy Logic Based Segmentation for Abnormal MRI Brain Images Analysis

    Indah Soesanti

    2011-09-01

    Full Text Available In this paper an optimized fuzzy logic based segmentation for abnormal MRI brain images analysis is presented. A conventional fuzzy c-means (FCM technique does not use the spatial information in the image. In this research, we use a FCM algorithm that incorporates spatial information into the membership function for clustering. The FCM algorithm that incorporates spatial information into the membership function is used for clustering, while a conventional FCM algorithm does not fully utilize the spatial information in the image.The advantage of the technique is less sensitive to noise than the others. Originality of this research is focused in application of the technique on a normal and a glioma MRI brain images, and analysis of the area of abnormal mass from segmented images. The results show that the method effectively segmented MRI brain images, and the segmented normal and glioma MRI brain images can be analyzed for diagnosis purpose. The area of abnormal mass is identified from 7.15 to 19.41 cm2.

  11. Air Pollution Exposure and Abnormal Glucose Tolerance during Pregnancy: The Project Viva Cohort

    Fleisch, Abby F.; Gold, Diane R.; Rifas-Shiman, Sheryl L; Koutrakis, Petros; Schwartz, Joel D; Kloog, Itai; Melly, Steven; Coull, Brent A.; Zanobetti, Antonella; Gillman, Matthew W.; Oken, Emily

    2014-01-01

    Background: Exposure to fine particulate matter (PM with diameter ≤ 2.5 μm; PM2.5) has been linked to type 2 diabetes mellitus, but associations with hyperglycemia in pregnancy have not been well studied. Methods: We studied Boston, Massachusetts–area pregnant women without known diabetes. We identified impaired glucose tolerance (IGT) and gestational diabetes mellitus (GDM) during pregnancy from clinical glucose tolerance tests at median 28.1 weeks gestation. We used residential addresses to...

  12. Abnormal brain MRI in a case of acute ataxia as the only sign of abdominal neuroblastoma

    Ataxia is a movement disorder that may manifest an acute, intermittent, non progressive or chronic progressive course. Ataxia alone is rare as a para neoplastic sign, especially if it is due to neuroblastoma (abdominal or chest). We report an abdominal neuroblastoma in a two-year-old girl presenting with only acute ataxia and abnormal neuroimaging. Brain MRI showed abnormal signal finding in the medulla, pons, cortico spinal tract and the periventricular space. In the abdominal CT, a mass was detected in the right adrenal gland with calcification and the histopathologic examination re-vealed neuroblastoma. We suggest in children with acute ataxia, with or without opalescence-myoclonus, neuroblastoma should be considered.

  13. Impact of polymorphisms in WFS1 on prediabetic phenotypes in a population-based sample of middle-aged people with normal and abnormal glucose regulation

    Sparsø, T; Andersen, G; Albrechtsen, Anders; Jørgensen, T; Borch-Johnsen, K; Sandbaek, A; Lauritzen, T; Wasson, J; Permutt, M A; Glaser, B; Madsbad, S; Pedersen, Oluf; Hansen, T

    2008-01-01

    AIM/HYPOTHESIS: Recently, variants in WFS1 have been shown to be associated with type 2 diabetes. We aimed to examine metabolic risk phenotypes of WFS1 variants in glucose-tolerant people and in individuals with abnormal glucose regulation. METHODS: The type 2 diabetes-associated WFS1 variant rs7...

  14. Uniform distributions of glucose oxidation and oxygen extraction in gray matter of normal human brain

    Hyder, Fahmeed; Herman, Peter; Bailey, Christopher J; Møller, Arne; Globinsky, Ronen; Fulbright, Robert K; Rothman, Douglas L; Gjedde, Albert

    2016-01-01

    have correspondingly variable rates of ATP and lactate production. We tested the extent to which aerobic glycolysis and oxidative phosphorylation power R-fMRI networks by measuring quantitative differences between the oxygen to glucose index (OGI) and the oxygen extraction fraction (OEF) as measured by...... measurements. These results imply that the intrinsic network activity in healthy human brain powers the entire gray matter with ubiquitously high rates of glucose oxidation. Reports of departures from normal brain-wide homogeny of oxygen extraction fraction and oxygen to glucose index may be due to...

  15. Effect of mild hypothermia on glucose metabolism and glycerol of brain tissue in patients with severe traumatic brain injury

    WANG Qiong; LI Ai-lin; ZHI Da-shi; HUANG Hui-ling

    2007-01-01

    Objective:To study the effect of mild hypothermia on glucose metabolism and glycerol of brain tissue in patients with severe traumatic brain injury (STBI) using clinical microdialysis.Methods: Thirty-one patients with STBI ( GCS ≤8) were randomly divided into hypothermic group (Group A) and control group (Group B). Microdialysis catheters were inserted into the cerebral cortex of perilesional and normal brain tissue. All samples were analyzed using CMA microdialysis analyzer.Results: In comparison with the control group, lactate/glucose ratio ( L/G) , lactate/pyruvate ratio ( L/P) and glycerol (Gly) in perilensional tissue were significantly decreased; L/P in normal brain tissue was significantly decreased. In control group, L/G, L/P and Gly in perilensional tissue were higher than that in normal brain tissue. In the hypothermic group, L/P in perilensional tissue was higher than that in relative normal brain.Conclusions: Mild hypothermia protects brain tissues by decreasing L/G, L/P and Gly in perilensional tissue and L/P in "normal brain" tissues. The energy crisis and membrane phospholipid degradation in perilensional tissue are easier to happen after traumatic brain injury, and mild hypothermia protects brain better in perilensional tissue than in normal brain tissue.

  16. An abnormal resting-state functional brain network indicates progression towards Alzheimer’s disease*****

    Jie Xiang; Hao Guo; Rui Cao; Hong Liang; Junjie Chen

    2013-01-01

    Brain structure and cognitive function change in the temporal lobe, hippocampus, and prefrontal cortex of patients with mild cognitive impairment and Alzheimer’s disease, and brain network-connection strength, network efficiency, and nodal attributes are abnormal. However, existing research has only analyzed the differences between these patients and normal controls. In this study, we constructed brain networks using resting-state functional MRI data that was extracted from four populations mal controls, patients with early mild cognitive impairment, patients with late mild cognitive impairment, and patients with Alzheimer’s disease) using the Alzheimer’s Disease Neuroimaging Initiative data set. The aim was to analyze the characteristics of resting-state functional neural networks, and to observe mild cognitive impairment at different stages before the transformation to Alzheimer’s disease. Results showed that as cognitive deficits increased across the four groups, the shortest path in the rest-ing-state functional network gradual y increased, while clustering coefficients gradual y decreased. This evidence indicates that dementia is associated with a decline of brain network efficiency. In tion, the changes in functional networks revealed the progressive deterioration of network function across brain regions from healthy elderly adults to those with mild cognitive impairment and Alzhei-mer’s disease. The alterations of node attributes in brain regions may reflect the cognitive functions in brain regions, and we speculate that early impairments in memory, hearing, and language function can eventual y lead to diffuse brain injury and other cognitive impairments.

  17. Nerve conduction abnormalities in untreated maturity-onset diabetes: relation to levels of fasting plasma glucose and glycosylated hemoglobin.

    Graf, R J; Halter, J B; Halar, E; Porte, D

    1979-03-01

    The role of metabolic abnormalities in the development of diabetic neuropathy is controversial. To investigate the influence of hyperglycemia on nerve conduction, we studied 20 untreated maturity-onset diabetic patients and 23 normal control subjects of similar age. Nerve conduction velocity of motor (median, peroneal, and tibial) and sensory (median and sural) nerves in diabetic patients was significantly slowed and H-reflex latency time prolonged. Levels of fasting plasma glucose in diabetic subjects were correlated with slowed motor conduction velocity of the median, peroneal, and tibial nerves but not with sensory nerve conduction velocities. Levels of glycosylated hemoglobin, an index of long-term glycemia, were correlated with slowing of peroneal motor conduction velocity in diabetic patients. These associations could not be explained by patient age or duration of diabetes. These findings suggest that the degree of hyperglycemia of untreated maturity-onset diabetes contributes to the motor nerve conduction abnormalities in this disease. PMID:426398

  18. Myeloid-Cell-Derived VEGF Maintains Brain Glucose Uptake and Limits Cognitive Impairment in Obesity.

    Jais, Alexander; Solas, Maite; Backes, Heiko; Chaurasia, Bhagirath; Kleinridders, André; Theurich, Sebastian; Mauer, Jan; Steculorum, Sophie M; Hampel, Brigitte; Goldau, Julia; Alber, Jens; Förster, Carola Y; Eming, Sabine A; Schwaninger, Markus; Ferrara, Napoleone; Karsenty, Gerard; Brüning, Jens C

    2016-05-01

    High-fat diet (HFD) feeding induces rapid reprogramming of systemic metabolism. Here, we demonstrate that HFD feeding of mice downregulates glucose transporter (GLUT)-1 expression in blood-brain barrier (BBB) vascular endothelial cells (BECs) and reduces brain glucose uptake. Upon prolonged HFD feeding, GLUT1 expression is restored, which is paralleled by increased expression of vascular endothelial growth factor (VEGF) in macrophages at the BBB. In turn, inducible reduction of GLUT1 expression specifically in BECs reduces brain glucose uptake and increases VEGF serum concentrations in lean mice. Conversely, myeloid-cell-specific deletion of VEGF in VEGF(Δmyel) mice impairs BBB-GLUT1 expression, brain glucose uptake, and memory formation in obese, but not in lean mice. Moreover, obese VEGF(Δmyel) mice exhibit exaggerated progression of cognitive decline and neuroinflammation on an Alzheimer's disease background. These experiments reveal that transient, HFD-elicited reduction of brain glucose uptake initiates a compensatory increase of VEGF production and assign obesity-associated macrophage activation a homeostatic role to restore cerebral glucose metabolism, preserve cognitive function, and limit neurodegeneration in obesity. PMID:27133169

  19. Effects of lindane on the glucose metabolism in rat brain cortex cells

    The influence of 0.5 mM γ-hexachlorocyclohexane (γ-HCH, lindane) on glucose transport has been investigated using the analog 3-O-methyl-D(U-14C) glucose. The glucose uptake was lineal for at least 10 sec. Preincubation of dissociated brain cortex cells with lindane decreased the transport of glucose with respect to the controls. The treatment of brain cortex cells with other organochlorine compounds indicated that the α-, δ-HCH isomers and dieldrin reproduced the same inhibitory pattern, while β-HCH and endrin were inactive. The total radioactivity incorporated into CO2 from (U-14C) glucose in the cerebral cortex is also inhibited by lindane in a time dependent manner

  20. Effects of lindane on the glucose metabolism in rat brain cortex cells

    Pulido, J.A.; del Hoyo, N.; Perez-Albarsanz, M.A. (Univ. of Alcala, Madrid (Spain))

    1990-01-01

    The influence of 0.5 mM {gamma}-hexachlorocyclohexane ({gamma}-HCH, lindane) on glucose transport has been investigated using the analog 3-O-methyl-D(U-{sup 14}C) glucose. The glucose uptake was lineal for at least 10 sec. Preincubation of dissociated brain cortex cells with lindane decreased the transport of glucose with respect to the controls. The treatment of brain cortex cells with other organochlorine compounds indicated that the {alpha}-, {delta}-HCH isomers and dieldrin reproduced the same inhibitory pattern, while {beta}-HCH and endrin were inactive. The total radioactivity incorporated into CO{sub 2} from (U-{sup 14}C) glucose in the cerebral cortex is also inhibited by lindane in a time dependent manner.

  1. Restricted expression of the erythroid/brain glucose transporter isoform to perivenous hepatocytes in rats. Modulation by glucose.

    Tal, M.; Schneider, D L; Thorens, B.; Lodish, H F

    1990-01-01

    The "erythroid/brain" glucose transporter (GT) isoform is expressed only in a subset of hepatocytes, those forming the first row around the terminal hepatic venules, while the "liver" GT is expressed in all hepatocytes. After 3 d of starvation, a three- to fourfold elevation of expression of the erythroid/brain GT mRNA and protein is detected in the liver as a whole; this correlates with the expression of this GT in more hepatocytes, those forming the first three to four rows around the hepat...

  2. Brain metabolism in autism. Resting cerebral glucose utilization rates as measured with positron emission tomography

    The cerebral metabolic rate for glucose was studied in ten men (mean age = 26 years) with well-documented histories of infantile autism and in 15 age-matched normal male controls using positron emission tomography and (F-18) 2-fluoro-2-deoxy-D-glucose. Positron emission tomography was completed during rest, with reduced visual and auditory stimulation. While the autistic group as a whole showed significantly elevated glucose utilization in widespread regions of the brain, there was considerable overlap between the two groups. No brain region showed a reduced metabolic rate in the autistic group. Significantly more autistic, as compared with control, subjects showed extreme relative metabolic rates (ratios of regional metabolic rates to whole brain rates and asymmetries) in one or more brain regions

  3. Prevalence of glucose tolerance test abnormalities in women with polycystic ovarian syndrome

    Leila J. Gracelyn

    2015-12-01

    Conclusions: High prevalence of IGT and Non-Insulin Dependent Diabetes Mellitus (NIDDM in women with PCOS was observed than expected. They have accelerated conversion from IGT to NIDDM. IGT is often asymptomatic and is a known risk factor for type 2 DM and cardiovascular disease. OGTT with 75 gms of glucose is the best screening method for glucose intolerance and a good measure to diagnose type 2 DM in PCOS women. [Int J Reprod Contracept Obstet Gynecol 2015; 4(6.000: 1739-1745

  4. Gain of glucose-independent growth upon metastasis of breast cancer cells to the brain

    Chen, Jinyu; Lee, Ho-Jeong; Wu, Xuefeng; Huo, Lei; Kim, Sun-Jin; Xu, Lei; Wang, Yan; He, Junqing; Bollu, Lakshmi Reddy; Gao, Guang; Su, Fei; Briggs, James; Liu, Xiaojing; Melman, Tamar; Asara, John M.

    2014-01-01

    Breast cancer brain metastasis is resistant to therapy and a particularly poor prognostic feature in patient survival. Altered metabolism is a common feature of cancer cells but little is known as to what metabolic changes benefit breast cancer brain metastases. We found that brain-metastatic breast cancer cells evolved the ability to survive and proliferate independent of glucose due to enhanced gluconeogenesis and oxidations of glutamine and branched chain amino acids, which together sustai...

  5. Changes in local cerebral glucose utilization during rewarding brain stimulation.

    Esposito, R U; Porrino, L J; Seeger, T F; Crane, A M; Everist, H D; Pert, A

    1984-01-01

    The quantitative 2-deoxy[14C]glucose method was used to determine local cerebral glucose utilization in unrestrained rats responding (lever-press) for rewarding electrical stimulation to area A10 (ventral tegmental area) and in similarly implanted inactive controls. Self-stimulation was associated with significant increases in metabolic activity, highly circumscribed in the ventral tegmental area, that continued rostrally within a rather compact zone of activity through the medial forebrain b...

  6. A novel imaging platform for non-invasive screening of abnormal glucose tolerance.

    Jeong, Bosu; Jung, Chang Hee; Lee, Yong-Ho; Shin, Il-Hyung; Kim, Hansuk; Bae, Soo-Jin; Lee, Dae-Sic; Kang, Eun Seok; Kang, Uk; Kim, Jong Jin; Park, Joong-Yeol

    2016-06-01

    Optical measurement of skin auto-fluorescence (SAF), most likely emanating from accumulated advanced glycation end-products (AGEs), has been proposed for the noninvasive diagnosis of glucose intolerance in clinical settings. Here, we developed a novel imaging system with transmission geometry for SAF measurement and compared its diagnostic performance in a Korean population. PMID:27321320

  7. Relationship between regional brain glucose metabolism and temperament factor of personality

    Temperament factor of personality has been considered to have correlation with activity in a specific central monoaminergic system. In an attempt to explore neuronal substrate of biogenetic personality traits, we examined the relationship between regional brain glucose metabolism and temperament factor of personality. Twenty right-handed healthy subjects (age, 24±4 yr: 10 females and 10 males) were studied with FDG PET. Their temperaments were assessed using the Temperament and Character Inventory (TCI), which consisted of four temperament factors (harm avoidance (HA), novelty seeking (NS), reward dependence (RD), persistency) and three personality factors. The relationship between regional glucose metabolism and each temperament score was tested using SPM99 (P < 0.005, uncorrected). NS score was negatively correlated with glucose metabolism in the frontal areas, insula, and superior temporal gyrus mainly in the right hemisphere. Positive correlation between NS score and glucose metabolism was observed in the left superior temporal gyrus. HA score showed negative correlation with glucose metabolism in the middle and orbitofrontal gyri as well as in the parahippocampal gyrus. RD score was positively correlated with glucose metabolism in the left middle frontal gyrus and negative correlated in the posterior cingulate gyrus and caudate nucleus. We identified the relationship between regional brain glucose metabolism and temperamental personality trait. Each temperament factor had a relation with functions of specific brain areas. These results help understand biological background of personality and specific feedback circuits associated with each temperament factor

  8. Relationship between regional brain glucose metabolism and temperament factor of personality

    Cho, Sang Soo; Lee, Eun Ju; Yoon, Eun Jin; Kim, Yu Kyeong; Lee, Won Woo; Kim, Sang Eun [Seoul National University College of Medicine, Seoul (Korea, Republic of)

    2005-07-01

    Temperament factor of personality has been considered to have correlation with activity in a specific central monoaminergic system. In an attempt to explore neuronal substrate of biogenetic personality traits, we examined the relationship between regional brain glucose metabolism and temperament factor of personality. Twenty right-handed healthy subjects (age, 24{+-}4 yr: 10 females and 10 males) were studied with FDG PET. Their temperaments were assessed using the Temperament and Character Inventory (TCI), which consisted of four temperament factors (harm avoidance (HA), novelty seeking (NS), reward dependence (RD), persistency) and three personality factors. The relationship between regional glucose metabolism and each temperament score was tested using SPM99 (P < 0.005, uncorrected). NS score was negatively correlated with glucose metabolism in the frontal areas, insula, and superior temporal gyrus mainly in the right hemisphere. Positive correlation between NS score and glucose metabolism was observed in the left superior temporal gyrus. HA score showed negative correlation with glucose metabolism in the middle and orbitofrontal gyri as well as in the parahippocampal gyrus. RD score was positively correlated with glucose metabolism in the left middle frontal gyrus and negative correlated in the posterior cingulate gyrus and caudate nucleus. We identified the relationship between regional brain glucose metabolism and temperamental personality trait. Each temperament factor had a relation with functions of specific brain areas. These results help understand biological background of personality and specific feedback circuits associated with each temperament factor.

  9. Glucose and amino acid metabolism in rat brain during sustained hypoglycemia

    The metabolism of glucose in brains during sustained hypoglycemia was studied. [U-14C]Glucose (20 microCi) was injected into control rats, and into rats at 2.5 hr after a bolus injection of 2 units of insulin followed by a continuous infusion of 0.2 units/100 g rat/hr. This regimen of insulin injection was found to result in steady-state plasma glucose levels between 2.5 and 3.5 mumol per ml. In the brains of control rats carbon was transferred rapidly from glucose to glutamate, glutamine, gamma-aminobutyric acid and aspartate and this carbon was retained in the amino acids for at least 60 min. In the brains of hypoglycemic rats, the conversion of carbon from glucose to amino acids was increased in the first 15 min after injection. After 15 min, the specific activity of the amino acids decreased in insulin-treated rats but not in the controls. The concentrations of alanine, glutamate, and gamma-amino-butyric acid decreased, and the concentration of aspartate increased, in the brains of the hypoglycemic rats. The concentration of pyridoxal-5'-phosphate, a cofactor in many of the reactions whereby these amino acids are formed from tricarboxylic acid cycle intermediates, was less in the insulin-treated rats than in the controls. These data provide evidence that glutamate, glutamine, aspartate, and GABA can serve as energy sources in brain during insulin-induced hypoglycemia

  10. Thalamic abnormalities are a cardinal feature of alcohol-related brain dysfunction.

    Pitel, Anne Lise; Segobin, Shailendra H; Ritz, Ludivine; Eustache, Francis; Beaunieux, Hélène

    2015-07-01

    Two brain networks are particularly affected by the harmful effect of chronic and excessive alcohol consumption: the circuit of Papez and the frontocerebellar circuit, in both of which the thalamus plays a key role. Shrinkage of the thalamus is more severe in alcoholics with Korsakoff's syndrome (KS) than in those without neurological complication (AL). In accordance with the gradient effect of thalamic abnormalities between AL and KS, the pattern of brain dysfunction in the Papez's circuit results in anterograde amnesia in KS and only mild-to-moderate episodic memory disorders in AL. On the opposite, dysfunction of the frontocerebellar circuit results in a similar pattern of working memory and executive deficits in the AL and KS. Several hypotheses, mutually compatible, can be drawn to explain that the severe thalamic shrinkage observed in KS has different consequences in the neuropsychological profile associated with the two brain networks. PMID:25108034

  11. Positron emission tomography studies in the normal and abnormal ageing of human brain

    Until recently, the investigation of the neurophysiological correlates of normal and abnormal ageing of the human brain was limited by methodological constraints, as the technics available provided only a few parameters (e.g. electroencephalograms, cerebral blood flow) monitored in superficial brain structures in a grossly regional and poorly quantitative way. Lately several non invasive techniques have been developed which allow to investigate in vivo both quantitatively and on local basis a number of previously inaccessible important aspects of brain function. Among these techniques, such as single photon emission tomography imaging of computerized electric events, nuclear magnetic resonance, positron emission tomography stands out as the most powerful and promising method since it allows the in vivo measurement of biochemical and pharmacological parameters

  12. Simulation of realistic abnormal SPECT brain perfusion images: application in semi-quantitative analysis

    Simulation is useful in the validation of functional image analysis methods, particularly when considering the number of analysis techniques currently available lacking thorough validation. Problems exist with current simulation methods due to long run times or unrealistic results making it problematic to generate complete datasets. A method is presented for simulating known abnormalities within normal brain SPECT images using a measured point spread function (PSF), and incorporating a stereotactic atlas of the brain for anatomical positioning. This allows for the simulation of realistic images through the use of prior information regarding disease progression. SPECT images of cerebral perfusion have been generated consisting of a control database and a group of simulated abnormal subjects that are to be used in a UK audit of analysis methods. The abnormality is defined in the stereotactic space, then transformed to the individual subject space, convolved with a measured PSF and removed from the normal subject image. The dataset was analysed using SPM99 (Wellcome Department of Imaging Neuroscience, University College, London) and the MarsBaR volume of interest (VOI) analysis toolbox. The results were evaluated by comparison with the known ground truth. The analysis showed improvement when using a smoothing kernel equal to system resolution over the slightly larger kernel used routinely. Significant correlation was found between effective volume of a simulated abnormality and the detected size using SPM99. Improvements in VOI analysis sensitivity were found when using the region median over the region mean. The method and dataset provide an efficient methodology for use in the comparison and cross validation of semi-quantitative analysis methods in brain SPECT, and allow the optimization of analysis parameters

  13. Newly detected abnormal glucose regulation and long-term prognosis after acute myocardial infarction

    Pararajasingam, Gokulan; Høfsten, Dan Eik; Løgstrup, Brian Bridal;

    2016-01-01

    .07-2.30]) compared to patients categorized as normal/impaired fasting glycaemia/impaired glucose tolerance by OGTT and HbA1c <6.5%. Approximately 50% of the patients with newly diagnosed DM by OGTT were only detected due to 2-hour post-load glucose values. CONCLUSION: An OGTT is recommended in AMI patients without......BACKGROUND: An oral glucose tolerance test (OGTT) and/or glycosylated haemoglobin A1c (HbA1c) in patients with acute myocardial infarction (AMI) identify patients with increased mortality risk, but no comparison of the long-term prognostic values has yet been investigated. METHODS: This study was a......, when adjusting for known DM, no significance was detected. An OGTT did not show a significantly increased mortality, if used separately. A combined estimate showed a significantly increased mortality in patients categorized as newly diagnosed DM by OGTT and HbA1c<6.5% (HR 1.56 [95% CI 1...

  14. Subcortical brain volume abnormalities in 2028 individuals with schizophrenia and 2540 healthy controls via the ENIGMA consortium

    van Erp, TGM; Hibar, DP; Rasmussen, JM; Glahn, DC; Pearlson, GD; Andreassen, OA; Agartz, I.; Westlye, LT; Haukvik, UK; Dale, AM; Melle, I; Hartberg, CB; Gruber, O.; Kraemer, B; Zilles, D

    2016-01-01

    © 2015 Macmillan Publishers Limited The profile of brain structural abnormalities in schizophrenia is still not fully understood, despite decades of research using brain scans. To validate a prospective meta-analysis approach to analyzing multicenter neuroimaging data, we analyzed brain MRI scans from 2028 schizophrenia patients and 2540 healthy controls, assessed with standardized methods at 15 centers worldwide. We identified subcortical brain volumes that differentiated patients from contr...

  15. Blood-brain transport of new glucose analogs and their effect on yeast hexokinase

    Dihalogen derivates of D-glucal were formed by the direct addition of halogen to the unsaturated double-bond between C atoms 1 and 2 in D-glucal. 82Br-glucal and 36Cl-glucal were injected into the carotid artery of rats and brain uptake studied and compared with uptake for D-glucose and 2-deoxy-D-glucose. Investigations with enzymes have shown D-glucal dihalides to be good substrates for hexokinase. (U.K.)

  16. Glucose administration after traumatic brain injury improves cerebral metabolism and reduces secondary neuronal injury

    Moro, Nobuhiro; Ghavim, Sima; Harris, Neil G.; Hovda, David A.; Sutton, Richard L.

    2013-01-01

    Clinical studies have indicated an association between acute hyperglycemia and poor outcomes in patients with traumatic brain injury (TBI), although optimal blood glucose levels needed to maximize outcomes for these patients’ remains under investigation. Previous results from experimental animal models suggest that post-TBI hyperglycemia may be harmful, neutral, or beneficial. The current studies determined the effects of single or multiple episodes of acute hyperglycemia on cerebral glucose ...

  17. Structural Brain Abnormalities in Juvenile Myoclonic Epilepsy Patients: Volumetry and Voxel-Based Morphometry

    We aimed to find structural brain abnormalities in juvenile myoclonic epilepsy (JME) patients. The volumes of the cerebrum, hippocampus and frontal lobe and the area of the corpus callosum's subdivisions were all semiautomatically measured, and then optimized voxel-based morphometry (VBM) was performed in 19 JME patients and 19 age/gender matched normal controls. The rostrum and rostral body of the corpus callosum and the left hippocampus were significantly smaller than those of the normal controls, whereas the volume of the JME's left frontal lobe was significantly larger than that of the controls. The area of the rostral body had a significant positive correlation with the age of seizure onset (r=0.56, p=0.012), and the volume of the right frontal lobe had a significant negative correlation with the duration of disease (r=-0.51, p=0.025). On the VBM, the gray matter concentration of the prefrontal lobe (bilateral gyri rectus, anterior orbital gyri, left anterior middle frontal gyrus and right anterior superior frontal gyrus) was decreased in the JME group (corrected p<0.05). The JME patients showed complex structural abnormalities in the corpus callosum, frontal lobe and hippocampus, and also a decreased gray matter concentration of the prefrontal region, which all suggests there is an abnormal neural network in the JME brain

  18. Ethanol-induced alterations in sup 14 C-glucose utilization: Modulation by brain adenosine in mice

    Anwer, J.; Dar, M.S. (East Carolina Univ., Greenville, NC (United States))

    1992-02-26

    The possible role of brain adenosine (Ado) in acute ethanol-induced alteration in glucose utilization in the cerebellum and brain stem was investigated. The slices were incubated for 100 min in a glucose medium in Warburg flasks using {sup 14}C-glucose as a tracer. Trapped {sup 14}CO{sub 2} was counted to estimate glucose utilization. Ethanol markedly increased the glucose utilization in both areas of brain. Theophylline, an Ado antagonist, significantly reduced ethanol-induced increase in glucose utilization in both brain areas. Ado agonist CHA significantly accentuated ethanol-induced increase in glucose utilization in both motor areas. Ado agonist CHA significantly accentuated ethanol-induced increase in glucose utilization in both motor areas. Ethanol was still able to produce a smaller but significant increase in glucose utilization in both brain areas when theophylline and CHA were given together, suggesting an additional mechanism. Collectively, the data indicate that ethanol-induced glucose utilization in the cerebellum and brain stem is modulated by brain Ado receptor and by non-adenosinergic mechanism.

  19. Effect of Toxoplasma gondii infection on glucose metabolism in the brain of pregnant rats by [18F]FDG microPET imaging

    Toxoplasma gondii (T. gondii) is a pathogenic protozoan parasite, infection of which in early pregnancy increases the risk of serious sequelae in fetus. The aim of this study is to investigate the effect of T. gondii infection on glucose metabolism in the brain of pregnant rats by microPET using 18F-fluorodeoxygulcose (18F-FDG) as the tracer. Thirty female SD rats were divided into the T. gondii infection and control group. After set for pregnancy, the body weight was assessed, T. gondii infection was identified by PCR, ELISA technology and immunohistochemistry, and glucose metabolism in brain of rats was monitored by microPET scan. Our results showed that brain glucose metabolism was significantly increased in T. gondii-infected group comparing to the control, indicating microPET scan is more sensitive to detect the abnormality than traditional measurements. In addition, bio-distribution of 18F-FDG in T. gondii-infected rats was assessed by using another twenty female SD rats, which has higher uptake of 18F-FDG at 30 min after injection in whole brain. Furthermore, the expression profile of GLUT1 was also higher in the brain of pregnant rats of the infected group. Therefore, microPET can be effectively applied to in vivo assessment of small animals and contributes to early diagnosis of T. gondii infection, which also assists in understanding birth defects caused by T. gondii infection. (author)

  20. Cellular pathways of energy metabolism in the brain: is glucose used by neurons or astrocytes?

    Nehlig, Astrid; Coles, Jonathan A

    2007-09-01

    Most techniques presently available to measure cerebral activity in humans and animals, i.e. positron emission tomography (PET), autoradiography, and functional magnetic resonance imaging, do not record the activity of neurons directly. Furthermore, they do not allow the investigator to discriminate which cell type is using glucose, the predominant fuel provided to the brain by the blood. Here, we review the experimental approaches aimed at determining the percentage of glucose that is taken up by neurons and by astrocytes. This review is integrated in an overview of the current concepts on compartmentation and substrate trafficking between astrocytes and neurons. In the brain in vivo, about half of the glucose leaving the capillaries crosses the extracellular space and directly enters neurons. The other half is taken up by astrocytes. Calculations suggest that neurons consume more energy than do astrocytes, implying that astrocytes transfer an intermediate substrate to neurons. Experimental approaches in vitro on the honeybee drone retina and on the isolated vagus nerve also point to a continuous transfer of intermediate metabolites from glial cells to neurons in these tissues. Solid direct evidence of such transfer in the mammalian brain in vivo is still lacking. PET using [(18)F]fluorodeoxyglucose reflects in part glucose uptake by astrocytes but does not indicate to which step the glucose taken up is metabolized within this cell type. Finally, the sequence of metabolic changes occurring during a transient increase of electrical activity in specific regions of the brain remains to be clarified. PMID:17659529

  1. Microstructural brain abnormalities, affective temperaments, and suicidal behavior in patients with major depression

    Gianluca Serafini

    2015-01-01

    Full Text Available According to magnetic resonance imaging (MRI studies, brain white matter (WM abnormalities have been suggested to play a critical role in the pathogenesis of major depressive disorder (MDD and related suicidal behavior. However, MRI findings may be limited by low spatial resolution; therefore, an important contribution to the understanding of the role and significance of WM alterations derived by the development of the most recent magnetic resonance techniques, such as diffusion tensor imaging (DTI. Several DTI studies reported an association between altered WM integrity and MDD/suicidal behavior. Microstructural WM abnormalities may be located in neural circuits critically implicated in emotional processes and mood regulation resulting in enhanced vulnerability to psychiatric morbidity. WM abnormalities detected using DTI may contribute to functional deficits and help to clarify the pathophysiological mechanisms underlying MDD as well as suicidal behavior. By a clinical point of view, research also suggested that affective temperaments may play a relevant role in the psychopathological characteristics of mood disorders, clinical trajectory of episodes and polarity, long-term outcome and suicidality. Unfortunately, only few studies investigated the association between affective temperaments and WM abnormalities and discussed their possible implications in patients with MDD and suicidal behavior. Using a comprehensive search of Medline database, the aim of the present study was to critically review the current literature on the association between WM alterations as assessed by MRI and DTI techniques, affective temperaments, MDD and suicidal behavior.

  2. The impact of glucose disorders on cognition and brain volumes in the elderly: the Sydney Memory and Ageing Study

    Samaras, Katherine; Lutgers, Helen L.; Kochan, Nicole A.; Crawford, John D.; Campbell, Lesley V; Wen, Wei; Slavin, Melissa J.; Baune, Bernard T.; Lipnicki, Darren M; Brodaty, Henry; Julian N Trollor; Perminder S Sachdev

    2014-01-01

    Type 2 diabetes predicts accelerated cognitive decline and brain atrophy. We hypothesized that impaired fasting glucose (IFG) and incident glucose disorders have detrimental effects on global cognition and brain volume. We further hypothesized that metabolic and inflammatory derangements accompanying hyperglycaemia contribute to change in brain structure and function. This was a longitudinal study of a community-dwelling elderly cohort with neuropsychological testing (n = 880) and brain volum...

  3. Brain region-specificity of palmitic acid-induced abnormalities associated with Alzheimer's disease

    Melrose Joseph

    2008-06-01

    Full Text Available Abstract Background Alzheimer's disease (AD is a progressive, neurodegenerative disease mostly affecting the basal forebrain, cortex and hippocampus whereas the cerebellum is relatively spared. The reason behind this region-specific brain damage in AD is not well understood. Here, we report our data suggesting "differential free fatty acid metabolism in the different brain areas" as a potentially important factor in causing the region-specific damage observed in AD brain. Findings The astroglia from two different rat brain regions, cortex (region affected in AD and cerebellum (unaffected region, were treated with 0.2 mM of palmitic acid. The conditioned media were then transferred to the cortical neurons to study the possible effects on the two main, AD-associated protein abnormalities, viz. BACE1 upregulation and hyperphosphorylation of tau. The conditioned media from palmitic-acid treated cortical astroglia, but not the cerebellar astroglia, significantly elevated levels of phosphorylated tau and BACE1 in cortical neurons as compared to controls (47 ± 7% and 45 ± 4%, respectively. Conclusion The present data provide an experimental explanation for the region-specific damage observed in AD brain; higher fatty acid-metabolizing capacity of cortical astroglia as compared to cerebellar astroglia, may play a causal role in increasing vulnerability of cortex in AD, while sparing cerebellum.

  4. Estimation of kinetic parameters for glucose transport in human brain cortex

    3-O-C-11-methyl-D-glucose (CMG), F-18-3-deoxy-3-fluoro D-glucose (3FDG), and dynamic positron-emission-tomography (dPET) were used to measure the rate constants for glucose transport across the blood brain barrier (BBB) in human cortex. The assay takes advantage of CMG or 3FDG being practically not metabolized in brain and being transported back from the tissue into the circulation. The simultaneous registration of tracer concentration in blood and tissue by dPET at 1 min intervals for 40 min yields time activity curves, which permit the in vivo determination of the rate constants for CMG or 3FDG transport across the BBB. In the present study, 4 healthy volunteers and 10 patients suffering from a single-sided ischemic brain disease were examined. In all cases the CMG/3FDG measurements were carried out at two different glucose plasma concentrations i.e. at normoglycemia and hyperglycemia after i.v. application of 10 g glucose. The determination of glucose plasma concentration was performed just before and immediately after the CMG/3FDG study. Using these data and a new mathematical model the Michaelis-Menten constant (K/sub M/) and maximal velocity (V/sub M/) for CMG, 3FDG and glucose transport across the BBB in normal and non-affected human cortex were determined. K/sub M CMG/ was 7.21 μmol/g; K/sub M 3FDG/ was 3.93 μmol/g and K/sub M gluc/ was 6.31 μmol/g. V/sub M/ was found in all cases to be 2.1 μmol/min g. The data obtained suggest that the CMG/3FDG method might provide a powerful tool for studying the mechanisms involved in the pathological alterations of glucose carrier system

  5. A palatable hyperlipidic diet causes obesity and affects brain glucose metabolism in rats

    Motoyama Caio SM

    2011-09-01

    Full Text Available Abstract Background We have previously shown that either the continuous intake of a palatable hyperlipidic diet (H or the alternation of chow (C and an H diet (CH regimen induced obesity in rats. Here, we investigated whether the time of the start and duration of these feeding regimens are relevant and whether they affect brain glucose metabolism. Methods Male Wistar rats received C, H, or CH diets during various periods of their life spans: days 30-60, days 30-90, or days 60-90. Experiments were performed the 60th or the 90th day of life. Rats were killed by decapitation. The glucose, insulin, leptin plasma concentration, and lipid content of the carcasses were determined. The brain was sliced and incubated with or without insulin for the analysis of glucose uptake, oxidation, and the conversion of [1-14C]-glucose to lipids. Results The relative carcass lipid content increased in all of the H and CH groups, and the H30-60 and H30-90 groups had the highest levels. Groups H30-60, H30-90, CH30-60, and CH30-90 exhibited a higher serum glucose level. Serum leptin increased in all H groups and in the CH60-90 and CH30-90 groups. Serum insulin was elevated in the H30-60, H60-90, CH60-90, CH30-90 groups. Basal brain glucose consumption and hypothalamic insulin receptor density were lower only in the CH30-60 group. The rate of brain lipogenesis was increased in the H30-90 and CH30-90 groups. Conclusion These findings indicate that both H and CH diet regimens increased body adiposity independent treatment and the age at which treatment was started, whereas these diets caused hyperglycemia and affected brain metabolism when started at an early age.

  6. Abnormal expressions of proliferating cell nuclear antigen and P27 protein in brain glioma

    2007-01-01

    positive expressions of both proliferating cell nuclear antigen and P27 protein. Automatic imaging analytic system was used to quantitatively analyze staining results of tumor.MAIN OUTCOME MEASURES: To compare the expressions of proliferating cell nuclear antigen and P27 protein in brain glioma tissues and non-tumor brain tissues and investigate the effect of various sexes, ages,survival periods and severities on the expressions of them in brain tissues.RESULTS: There was no significant difference of sexes and ages in the expressions of proliferating cell nuclear antigen and P27 protein (P > 0.05); however, the expressions of proliferating cell nuclear antigen and P27 protein were milder in non-tumor brain tissues than those in the brain glioma tissues (P < 0.05).Expression of proliferating cell nuclear antigen in brain tissue of grade Ⅲ - Ⅳ severity was stronger than that of grade Ⅰ - Ⅱ severity, and the expression in ≥ 5-year survival periods were also stronger than that in < 5-year survival periods (P < 0.05). In addition, expression of P27 protein in brain tissue of grade Ⅲ - Ⅳ severity was stronger than that of grade Ⅰ - Ⅱ severity, and the expression in ≥ 5-year survival periods were also stronger than that in < 5-year survival periods (P < 0.05).CONCLUSION: Abnormal expressions of proliferating cell nuclear antigen and P27 protein in human brain glioma are closely related to onset, development and prognosis of tumor.

  7. Glucose Administration Enhances fMRI Brain Activation and Connectivity Related to Episodic Memory Encoding for Neutral and Emotional Stimuli

    Parent, Marise B.; Krebs-Kraft, Desiree L.; Ryan, John P.; Wilson, Jennifer S.; Harenski, Carla; Hamann, Stephan

    2011-01-01

    Glucose enhances memory in a variety of species. In humans, glucose administration enhances episodic memory encoding, although little is known regarding the neural mechanisms underlying these effects. Here we examined whether elevating blood glucose would enhance functional MRI (fMRI) activation and connectivity in brain regions associated with…

  8. Cerebral abnormalities in cocaine abusers: Demonstration by SPECT perfusion brain scintigraphy. Work in progress

    Single photon emission computed tomography (SPECT) perfusion brain scans with iodine-123 isopropyl iodoamphetamine (IMP) were obtained in 12 subjects who acknowledged using cocaine on a sporadic to a daily basis. The route of cocaine administration varied from nasal to intravenous. Concurrent abuse of other drugs was also reported. None of the patients were positive for human immunodeficiency virus. Brain scans demonstrated focal defects in 11 subjects, including seven who were asymptomatic, and no abnormality in one. Among the findings were scattered focal cortical deficits, which were seen in several patients and which ranged in severity from small and few to multiple and large, with a special predilection for the frontal and temporal lobes. No perfusion deficits were seen on I-123 SPECT images in five healthy volunteers. Focal alterations in cerebral perfusion are seen commonly in asymptomatic drug users, and these focal deficits are readily depicted by I-123 IMP SPECT

  9. Zika Virus Infection with Prolonged Maternal Viremia and Fetal Brain Abnormalities.

    Driggers, Rita W; Ho, Cheng-Ying; Korhonen, Essi M; Kuivanen, Suvi; Jääskeläinen, Anne J; Smura, Teemu; Rosenberg, Avi; Hill, D Ashley; DeBiasi, Roberta L; Vezina, Gilbert; Timofeev, Julia; Rodriguez, Fausto J; Levanov, Lev; Razak, Jennifer; Iyengar, Preetha; Hennenfent, Andrew; Kennedy, Richard; Lanciotti, Robert; du Plessis, Adre; Vapalahti, Olli

    2016-06-01

    The current outbreak of Zika virus (ZIKV) infection has been associated with an apparent increased risk of congenital microcephaly. We describe a case of a pregnant woman and her fetus infected with ZIKV during the 11th gestational week. The fetal head circumference decreased from the 47th percentile to the 24th percentile between 16 and 20 weeks of gestation. ZIKV RNA was identified in maternal serum at 16 and 21 weeks of gestation. At 19 and 20 weeks of gestation, substantial brain abnormalities were detected on ultrasonography and magnetic resonance imaging (MRI) without the presence of microcephaly or intracranial calcifications. On postmortem analysis of the fetal brain, diffuse cerebral cortical thinning, high ZIKV RNA loads, and viral particles were detected, and ZIKV was subsequently isolated. PMID:27028667

  10. Abnormal structural connectivity in the brain networks of children with hydrocephalus

    Weihong Yuan

    2015-01-01

    Full Text Available Increased intracranial pressure and ventriculomegaly in children with hydrocephalus are known to have adverse effects on white matter structure. This study seeks to investigate the impact of hydrocephalus on topological features of brain networks in children. The goal was to investigate structural network connectivity, at both global and regional levels, in the brains in children with hydrocephalus using graph theory analysis and diffusion tensor tractography. Three groups of children were included in the study (29 normally developing controls, 9 preoperative hydrocephalus patients, and 17 postoperative hydrocephalus patients. Graph theory analysis was applied to calculate the global network measures including small-worldness, normalized clustering coefficients, normalized characteristic path length, global efficiency, and modularity. Abnormalities in regional network parameters, including nodal degree, local efficiency, clustering coefficient, and betweenness centrality, were also compared between the two patients groups (separately and the controls using two tailed t-test at significance level of p < 0.05 (corrected for multiple comparison. Children with hydrocephalus in both the preoperative and postoperative groups were found to have significantly lower small-worldness and lower normalized clustering coefficient than controls. Children with hydrocephalus in the postoperative group were also found to have significantly lower normalized characteristic path length and lower modularity. At regional level, significant group differences (or differences at trend level in regional network measures were found between hydrocephalus patients and the controls in a series of brain regions including the medial occipital gyrus, medial frontal gyrus, thalamus, cingulate gyrus, lingual gyrus, rectal gyrus, caudate, cuneus, and insular. Our data showed that structural connectivity analysis using graph theory and diffusion tensor tractography is sensitive to

  11. A simple method for measuring glucose utilization of insulin-sensitive tissues by using the brain as a reference

    A simple method, without measurement of the plasma input function, to obtain semiquantitative values of glucose utilization in tissues other than the brain with radioactive deoxyglucose is reported. The brain, in which glucose utilization is essentially insensitive to plasma glucose and insulin concentrations, was used as an internal reference. The effects of graded doses of oral glucose loading (0.5, 1 and 2 mg/g body weight) on insulin-sensitive tissues (heart, muscle and fat tissue) were studied in the rat. By using the brain-reference method, dose-dependent increases in glucose utilization were clearly shown in all the insulin-sensitive tissues examined. The method seems to be of value for measurement of glucose utilization using radioactive deoxyglucose and positron emission tomography in the heart or other insulin-sensitive tissues, especially during glucose loading. (orig.)

  12. Structural abnormalities of the brain in schizophrenia: sex differences in the Cantabria First Episode of Schizophrenia Study.

    Vázquez-Barquero, J L; Cuesta Núñez, M J; Quintana Pando, F; de la Varga, M; Herrera Castanedo, S; Dunn, G

    1995-11-01

    This paper examines structural brain abnormalities, as evaluated by the CT scan, in first episodes of schizophrenia and their association with sociodemographic, diagnostic and clinical variables. The investigation included all patients with a first episode of schizophrenia who, over a 2-year period, made contact with any of the public mental health services of the Autonomous Region of Cantabria in Northern Spain. Diagnostic and clinical characteristics were evaluated through the use of the Spanish version of the Present State Examination (PSE-9) and the Scales for the Assessment of Positive and Negative Symptoms (SANS and SAPS respectively). The study demonstrated the presence of structural brain abnormalities in this sample of first episode schizophrenics. These abnormalities were mainly expressed in the presence of larger VBR for schizophrenic patients than in the controls, these findings being more marked in women than in men. We failed to reveal, however, any evidence of an association of these brain abnormalities with diagnostic or clinical characteristics. PMID:8637954

  13. Three-dimensional textural analysis of brain images reveals distributed grey-matter abnormalities in schizophrenia

    Three-dimensional (3-D) selective- and relative-scale texture analysis (TA) was applied to structural magnetic resonance (MR) brain images to quantify the presence of grey-matter (GM) and white-matter (WM) textural abnormalities associated with schizophrenia. Brain TA comprised volume filtration using the Laplacian of Gaussian filter to highlight fine, medium and coarse textures within GM and WM, followed by texture quantification. Relative TA (e.g. ratio of fine to medium) was also computed. T1-weighted MR whole-brain images from 32 participants with diagnosis of schizophrenia (n = 10) and healthy controls (n = 22) were examined. Five patients possessed marker alleles (SZ8) associated with schizophrenia on chromosome 8 in the pericentriolar material 1 gene while the remaining five had not inherited any of the alleles (SZ0). Filtered fine GM texture (mean grey-level intensity; MGI) most significantly differentiated schizophrenic patients from controls (P = 0.0058; area under the receiver-operating characteristic curve = 0.809, sensitivity = 90%, specificity = 70%). WM measurements did not distinguish the two groups. Filtered GM and WM textures (MGI) correlated with total GM and WM volume respectively. Medium-to-coarse GM entropy distinguished SZ0 from controls (P = 0.0069) while measures from SZ8 were intermediate between the two. 3-D TA of brain MR enables detection of subtle distributed morphological features associated with schizophrenia, determined partly by susceptibility genes. (orig.)

  14. Brain Microstructural Abnormalities Are Related to Physiological Alterations in End-Stage Renal Disease

    Tian, Junzhang; Dong, Jianwei; He, Jinlong; Zhan, Wenfeng; Xu, Lijuan; Xu, Yikai; Jiang, Guihua

    2016-01-01

    Purpose To study whole-brain microstructural alterations in patients with end-stage renal disease (ESRD) and examine the relationship between brain microstructure and physiological indictors in the disease. Materials and Methods Diffusion tensor imaging data were collected from 35 patients with ESRD (28 men, 18–61 years) and 40 age- and gender-matched healthy controls (HCs, 32 men, 22–58 years). A voxel-wise analysis was then used to identify microstructural alterations over the whole brain in the ESRD patients compared with the HCs. Multiple biochemical measures of renal metabolin, vascular risk factors, general cognitive ability and dialysis duration were correlated with microstructural integrity for the patients. Results Compared to the HCs, the ESRD patients exhibited disrupted microstructural integrity in not only white matter (WM) but also gray matter (GM) regions, as characterized by decreased fractional anisotropy (FA) and increased mean diffusivity (MD), axial diffusivity (AD) and radial diffusivity (RD). Further correlation analyses revealed that the in MD, AD and RD values showed significantly positive correlations with the blood urea nitrogen in the left superior temporal gyrus and significantly negative correlations with the calcium levels in the left superior frontal gyrus (orbital part) in the patients. Conclusion Our findings suggest that ESRD is associated with widespread diffusion abnormalities in both WM and GM regions in the brain, and microstructural integrity of several GM regions are related to biochemical alterations in the disease. PMID:27227649

  15. Three-dimensional textural analysis of brain images reveals distributed grey-matter abnormalities in schizophrenia

    Ganeshan, Balaji [University of Sussex, Falmer, Clinical Imaging Sciences Centre, Brighton and Sussex Medical School, Brighton (United Kingdom); University of Sussex, Falmer, Department of Engineering and Design, Brighton (United Kingdom); Miles, Kenneth A.; Critchley, Hugo D. [University of Sussex, Falmer, Clinical Imaging Sciences Centre, Brighton and Sussex Medical School, Brighton (United Kingdom); Young, Rupert C.D.; Chatwin, Christopher R. [University of Sussex, Falmer, Department of Engineering and Design, Brighton (United Kingdom); Gurling, Hugh M.D. [University College London, Department of Mental Health Sciences, London (United Kingdom)

    2010-04-15

    Three-dimensional (3-D) selective- and relative-scale texture analysis (TA) was applied to structural magnetic resonance (MR) brain images to quantify the presence of grey-matter (GM) and white-matter (WM) textural abnormalities associated with schizophrenia. Brain TA comprised volume filtration using the Laplacian of Gaussian filter to highlight fine, medium and coarse textures within GM and WM, followed by texture quantification. Relative TA (e.g. ratio of fine to medium) was also computed. T1-weighted MR whole-brain images from 32 participants with diagnosis of schizophrenia (n = 10) and healthy controls (n = 22) were examined. Five patients possessed marker alleles (SZ8) associated with schizophrenia on chromosome 8 in the pericentriolar material 1 gene while the remaining five had not inherited any of the alleles (SZ0). Filtered fine GM texture (mean grey-level intensity; MGI) most significantly differentiated schizophrenic patients from controls (P = 0.0058; area under the receiver-operating characteristic curve = 0.809, sensitivity = 90%, specificity = 70%). WM measurements did not distinguish the two groups. Filtered GM and WM textures (MGI) correlated with total GM and WM volume respectively. Medium-to-coarse GM entropy distinguished SZ0 from controls (P = 0.0069) while measures from SZ8 were intermediate between the two. 3-D TA of brain MR enables detection of subtle distributed morphological features associated with schizophrenia, determined partly by susceptibility genes. (orig.)

  16. Brain Microstructural Abnormalities Are Related to Physiological Alterations in End-Stage Renal Disease.

    Zhigang Bai

    Full Text Available To study whole-brain microstructural alterations in patients with end-stage renal disease (ESRD and examine the relationship between brain microstructure and physiological indictors in the disease.Diffusion tensor imaging data were collected from 35 patients with ESRD (28 men, 18-61 years and 40 age- and gender-matched healthy controls (HCs, 32 men, 22-58 years. A voxel-wise analysis was then used to identify microstructural alterations over the whole brain in the ESRD patients compared with the HCs. Multiple biochemical measures of renal metabolin, vascular risk factors, general cognitive ability and dialysis duration were correlated with microstructural integrity for the patients.Compared to the HCs, the ESRD patients exhibited disrupted microstructural integrity in not only white matter (WM but also gray matter (GM regions, as characterized by decreased fractional anisotropy (FA and increased mean diffusivity (MD, axial diffusivity (AD and radial diffusivity (RD. Further correlation analyses revealed that the in MD, AD and RD values showed significantly positive correlations with the blood urea nitrogen in the left superior temporal gyrus and significantly negative correlations with the calcium levels in the left superior frontal gyrus (orbital part in the patients.Our findings suggest that ESRD is associated with widespread diffusion abnormalities in both WM and GM regions in the brain, and microstructural integrity of several GM regions are related to biochemical alterations in the disease.

  17. Brain glucose concentrations in poorly controlled diabetes mellitus as measured by high-field magnetic resonance spectroscopy

    Seaquist, Elizabeth R.; Tkac, Ivan; Damberg, Greg; Thomas, William; Gruetter, Rolf

    2005-01-01

    Hyperglycemia and diabetes alter the function and metabolism of many tissues. The effect on the brain remains poorly defined, but some animal data suggest that chronic hyperglycemia reduces rates of brain glucose transport and/or metabolism. To address this question in human beings, we measured glucose in the occipital cortex of patients with poorly controlled diabetes and healthy volunteers at the same levels of plasma glucose using proton magnetic resonance spectroscopy. Fourteen patients w...

  18. Evaluation of Brain and Cervical MRI Abnormality Rates in Patients With Systemic Lupus Erythematosus With or Without Neurological Manifestations

    Central nervous system (CNS) involvement has been observed in 14-80% of patients with systemic lupus erythematosus (SLE). Magnetic resonance imaging (MRI) is an appropriate method for evaluating CNS involvement in these patients. Clinical manifestations and MRI findings of CNS lupus should be differentiated from other mimicking diseases such as multiple sclerosis (MS). The aim of this study was to evaluate the prevalence and extent of brain and cervical cord MRI lesions of lupus patients. The relationship between neurological signs and symptoms and MRI findings were evaluated as well. Fifty SLE patients who had been referred to the rheumatology clinic of our hospital within 2009 were included in a cross sectional study. All patients fulfilled the revised 1981 American College of Rheumatology (ACR) criteria for SLE. We evaluated the neurological signs and symptoms and brain and cervical MRI findings in these patients. Forty-one patients (82%) were female and nine (18%) were male. The mean age was 30.1 ± 9.3 years. Twenty eight (56%) patients had an abnormal brain MRI. No one showed any abnormality in the cervical MRI. The lesions in 20 patients were similar to demyelinative plaques. Seventeen patients with abnormal brain MRI were neurologically asymptomatic. There was only a significant relationship between neurological motor manifestations and brain MRI abnormal findings. Unlike the brain, cervical MRI abnormality and especially asymptomatic cord involvement in MRI is quite rare in SLE patients. This finding may be helpful to differentiate SLE from other CNS disorders such as MS

  19. Parameters of glucose metabolism and the aging brain: a magnetization transfer imaging study of brain macro- and micro-structure in older adults without diabetes

    Akintola, Abimbola A.; VAN DEN BERG, Annette; Altmann-Schneider, Irmhild; Jansen, Steffy W.; van Buchem, Mark A.; Slagboom, P. Eline; Westendorp, Rudi G.; van Heemst, Diana; van der Grond, Jeroen

    2015-01-01

    Given the concurrent, escalating epidemic of diabetes mellitus and neurodegenerative diseases, two age-related disorders, we aimed to understand the relation between parameters of glucose metabolism and indices of pathology in the aging brain. From the Leiden Longevity Study, 132 participants (mean age 66 years) underwent a 2-h oral glucose tolerance test to assess glucose tolerance (fasted and area under the curve (AUC) glucose), insulin sensitivity (fasted and AUC insulin and homeostatic mo...

  20. Assessment of regional glucose metabolism in aging brain and dementia with positron-emission tomography

    Reivich, M.; Alavi, A.; Ferris, S.; Christman, D.; Fowler, J.; MacGregor, R.; Farkas, T.; Greenberg, J.; Dann, R.; Wolf, A.

    1981-01-01

    This paper explores the alterations in regional glucose metabolism that occur in elderly subjects and those with senile dementia compared to normal young volunteers. Results showed a tendency for the frontal regions to have a lower metabolic rate in patients with dementia although this did not reach the level of significance when compared to the elderly control subjects. The changes in glucose metabolism were symmetrical in both the left and right hemispheres. There was a lack of correlation between the mean cortical metabolic rates for glucose and the global mental function in the patients with senile dementia. This is at variance with most of the regional cerebral blood flow data that has been collected. This may be partly related to the use of substrates other than glucose by the brain in elderly and demented subjects. (PSB)

  1. Effects of MDMA on blood glucose levels and brain glucose metabolism

    Soto-Montenegro, M L; Vaquero, Juan José; Arango, C.; Ricaurte, G.; García-Barreno, P; Desco, Manuel

    2007-01-01

    Purpose This study was designed to assess changes in glucose metabolism in rats administered single or repeated doses of MDMA. Methods Two different experiments were performed: (1) A single-dose study with four groups receiving 20 mg/kg, 40 mg/kg, saline or heat, and (2) a repeated-dose study with two groups receiving three doses, at intervals of 2 h, of 5 mg/kg or saline. Rats were imaged using a dedicated small-animal PET scanner 1 h after single-dose administration or 7 days after repeated...

  2. The nature of white matter abnormalities in blast-related mild traumatic brain injury

    Jasmeet P. Hayes

    2015-01-01

    Full Text Available Blast-related traumatic brain injury (TBI has been a common injury among returning troops due to the widespread use of improvised explosive devices in the Iraq and Afghanistan Wars. As most of the TBIs sustained are in the mild range, brain changes may not be detected by standard clinical imaging techniques such as CT. Furthermore, the functional significance of these types of injuries is currently being debated. However, accumulating evidence suggests that diffusion tensor imaging (DTI is sensitive to subtle white matter abnormalities and may be especially useful in detecting mild TBI (mTBI. The primary aim of this study was to use DTI to characterize the nature of white matter abnormalities following blast-related mTBI, and in particular, examine the extent to which mTBI-related white matter abnormalities are region-specific or spatially heterogeneous. In addition, we examined whether mTBI with loss of consciousness (LOC was associated with more extensive white matter abnormality than mTBI without LOC, as well as the potential moderating effect of number of blast exposures. A second aim was to examine the relationship between white matter integrity and neurocognitive function. Finally, a third aim was to examine the contribution of PTSD symptom severity to observed white matter alterations. One hundred fourteen OEF/OIF veterans underwent DTI and neuropsychological examination and were divided into three groups including a control group, blast-related mTBI without LOC (mTBI - LOC group, and blast-related mTBI with LOC (mTBI + LOC group. Hierarchical regression models were used to examine the extent to which mTBI and PTSD predicted white matter abnormalities using two approaches: 1 a region-specific analysis and 2 a measure of spatial heterogeneity. Neurocognitive composite scores were calculated for executive functions, attention, memory, and psychomotor speed. Results showed that blast-related mTBI + LOC was associated with greater odds of

  3. Comparison of clinical types of Wilson's disease and glucose metabolism in extrapyramidal motor brain regions.

    Hermann, W; Barthel, H; Hesse, S; Grahmann, F; Kühn, H-J; Wagner, A; Villmann, T

    2002-07-01

    In Wilson's disease a disturbed glucose metabolism especially in striatal and cerebellar areas has been reported. This is correlated with the severity of extrapyramidal motor symptoms (EPS). These findings are only based on a small number of patients. Up to now it is unknown whether EPS are caused by various patterns of disturbed basal ganglia glucose metabolism. We investigated 37 patients and 9 normal volunteers to characterize the disturbed glucose metabolism in Wilson's disease more precisely. The glucose metabolism was determined in 5 cerebellar and cerebral areas (putamen, caput nuclei caudati, cerebellum, midbrain and thalamic area) by using (18)F-Fluorodesoxyglucose-Positron-Emission-Tomography ( [(18)F]FDG-PET). The database was evaluated by a cluster analysis. Additionally, the severity extrapyramidal motor symptoms were judged by a clinical score system. Three characteristic patterns of glucose metabolism in basal ganglia were obtained. Two of them may be assigned to patients with neurological symptoms whereas the third cluster corresponds to most patients without EPS or normal volunteers. The clusters can be identified by characteristic consumption rates in this 5 brain areas. The severity of EPS can not clearly be assigned to one of the clusters with disturbed glucose metabolism. However, the most severe cases are characterized by the lowest consumption in the striatal area. When there is marked improvement of EPS impaired glucose consumption reveals a persistent brain lesion. Finally, the neurological symptoms in Wilson's disease are caused by (at least) two different patterns of disturbed glucose metabolism in basal ganglia and cerebellum. The severity of EPS seems to be determined by a disturbed consumption in the striatal area. PMID:12140675

  4. Exercise, Energy Intake, Glucose Homeostasis, and the Brain

    Van Praag, Henriette; Fleshner, Monika; Schwartz, Michael W.; Mattson, Mark P.

    2014-01-01

    Here we summarize topics covered in an SFN symposium that considered how and why exercise and energy intake affect neuroplasticity and, conversely, how the brain regulates peripheral energy metabolism. This article is not a comprehensive review of the subject, but rather a view of how the authors' findings fit into a broader context. Emerging findings elucidate cellular and molecular mechanisms by which exercise and energy intake modify the plasticity of neural circuits in ways that affect br...

  5. Glucose-coated gold nanoparticles transfer across human brain endothelium and enter astrocytes in vitro.

    Radka Gromnicova

    Full Text Available The blood-brain barrier prevents the entry of many therapeutic agents into the brain. Various nanocarriers have been developed to help agents to cross this barrier, but they all have limitations, with regard to tissue-selectivity and their ability to cross the endothelium. This study investigated the potential for 4 nm coated gold nanoparticles to act as selective carriers across human brain endothelium and subsequently to enter astrocytes. The transfer rate of glucose-coated gold nanoparticles across primary human brain endothelium was at least three times faster than across non-brain endothelia. Movement of these nanoparticles occurred across the apical and basal plasma membranes via the cytosol with relatively little vesicular or paracellular migration; antibiotics that interfere with vesicular transport did not block migration. The transfer rate was also dependent on the surface coating of the nanoparticle and incubation temperature. Using a novel 3-dimensional co-culture system, which includes primary human astrocytes and a brain endothelial cell line hCMEC/D3, we demonstrated that the glucose-coated nanoparticles traverse the endothelium, move through the extracellular matrix and localize in astrocytes. The movement of the nanoparticles through the matrix was >10 µm/hour and they appeared in the nuclei of the astrocytes in considerable numbers. These nanoparticles have the correct properties for efficient and selective carriers of therapeutic agents across the blood-brain barrier.

  6. Abnormal functional global and local brain connectivity in female patients with anorexia nervosa

    Geisler, Daniel; Borchardt, Viola; Lord, Anton R.; Boehm, Ilka; Ritschel, Franziska; Zwipp, Johannes; Clas, Sabine; King, Joseph A.; Wolff-Stephan, Silvia; Roessner, Veit; Walter, Martin; Ehrlich, Stefan

    2016-01-01

    Background Previous resting-state functional connectivity studies in patients with anorexia nervosa used independent component analysis or seed-based connectivity analysis to probe specific brain networks. Instead, modelling the entire brain as a complex network allows determination of graph-theoretical metrics, which describe global and local properties of how brain networks are organized and how they interact. Methods To determine differences in network properties between female patients with acute anorexia nervosa and pairwise matched healthy controls, we used resting-state fMRI and computed well-established global and local graph metrics across a range of network densities. Results Our analyses included 35 patients and 35 controls. We found that the global functional network structure in patients with anorexia nervosa is characterized by increases in both characteristic path length (longer average routes between nodes) and assortativity (more nodes with a similar connectedness link together). Accordingly, we found locally decreased connectivity strength and increased path length in the posterior insula and thalamus. Limitations The present results may be limited to the methods applied during preprocessing and network construction. Conclusion We demonstrated anorexia nervosa–related changes in the network configuration for, to our knowledge, the first time using resting-state fMRI and graph-theoretical measures. Our findings revealed an altered global brain network architecture accompanied by local degradations indicating wide-scale disturbance in information flow across brain networks in patients with acute anorexia nervosa. Reduced local network efficiency in the thalamus and posterior insula may reflect a mechanism that helps explain the impaired integration of visuospatial and homeostatic signals in patients with this disorder, which is thought to be linked to abnormal representations of body size and hunger. PMID:26252451

  7. Abnormality of peripheral nerve conduction velocity associated with illness course, symptoms and fasting blood glucose in patients with type 2 diabetes mellitus

    Suijing Cui; Jinhua Qiu; Weiliang Luo

    2006-01-01

    BACKGROUND: It has shown that abnormality of peripheral nerve conduction velocity during onset of diabetes mellitus is not related to age and sex, but to symptoms, illness course and level of fasting blood glucose.OBJECTIVE: To measure correlation of abnormality of peripheral nerve conduction velocity with various illness courses, symptoms and levels of fasting blood glucose of patients with type 2 diabetes mellitus.DESIGN: Case analysis.SETTING: Department of Neurology, Central People's Hospital of Huizhou.PARTICIPANTS: A total of 128 patients who were diagnosed as type 2 diabetes mellitus were selected from Central People's Hospital of Huizhou from September 2001 to October 2005. There were 75 males and 53 females aged 32-83 years and the illness course ranged from 1 month to 20 years.METHODS: All 128 patients with type 2 diabetes mellitus received neuro-electrophysiological study and their clinical data were retrospectively analyzed to measure peripheral nerve conduction velocity and fasting blood glucose so as to investigate the correlation of peripheral nerve conduction velocity with clinical symptoms,illness course and levels of fasting blood glucose.MAIN OUTCOME MEASURES: Correlation of peripheral nerve conduction velocity with clinical symptoms, illness course and levels of fasting blood glucose.RESULTS: All 128 patients with type 2 diabetes mellitus were involved in the final analysis. ① Among 128patients, 114 patients had abnormality of peripheral nerve conduction velocity; 110 patients had clinical symptoms, including 102 patients having abnormality of peripheral nerve conduction velocity; 18 patients did not have clinical symptoms, including 12 patients having abnormality of peripheral nerve conduction velocity.There were significant differences between them (x2=8.275, P=0.04). ② Among 128 patients, illness course of 75 patients was equal to or less than 5 years, including 27 patients having abnormality of peripheral nerve conduction velocity

  8. Methylphenidate decreased the amount of glucose needed by the brain to perform a cognitive task.

    Nora D Volkow

    Full Text Available The use of stimulants (methylphenidate and amphetamine as cognitive enhancers by the general public is increasing and is controversial. It is still unclear how they work or why they improve performance in some individuals but impair it in others. To test the hypothesis that stimulants enhance signal to noise ratio of neuronal activity and thereby reduce cerebral activity by increasing efficiency, we measured the effects of methylphenidate on brain glucose utilization in healthy adults. We measured brain glucose metabolism (using Positron Emission Tomography and 2-deoxy-2[18F]fluoro-D-glucose in 23 healthy adults who were tested at baseline and while performing an accuracy-controlled cognitive task (numerical calculations given with and without methylphenidate (20 mg, oral. Sixteen subjects underwent a fourth scan with methylphenidate but without cognitive stimulation. Compared to placebo methylphenidate significantly reduced the amount of glucose utilized by the brain when performing the cognitive task but methylphenidate did not affect brain metabolism when given without cognitive stimulation. Whole brain metabolism when the cognitive task was given with placebo increased 21% whereas with methylphenidate it increased 11% (50% less. This reflected both a decrease in magnitude of activation and in the regions activated by the task. Methylphenidate's reduction of the metabolic increases in regions from the default network (implicated in mind-wandering was associated with improvement in performance only in subjects who activated these regions when the cognitive task was given with placebo. These results corroborate prior findings that stimulant medications reduced the magnitude of regional activation to a task and in addition document a "focusing" of the activation. This effect may be beneficial when neuronal resources are diverted (i.e., mind-wandering or impaired (i.e., attention deficit hyperactivity disorder, but it could be detrimental when

  9. Multidimensional morphometric 3D MRI analyses for detecting brain abnormalities in children: impact of control population.

    Wilke, Marko; Rose, Douglas F; Holland, Scott K; Leach, James L

    2014-07-01

    Automated morphometric approaches are used to detect epileptogenic structural abnormalities in 3D MR images in adults, using the variance of a control population to obtain z-score maps in an individual patient. Due to the substantial changes the developing human brain undergoes, performing such analyses in children is challenging. This study investigated six features derived from high-resolution T1 datasets in four groups: normal children (1.5T or 3T data), normal clinical scans (3T data), and patients with structural brain lesions (3T data), with each n = 10. Normative control data were obtained from the NIH study on normal brain development (n = 401). We show that control group size substantially influences the captured variance, directly impacting the patient's z-scores. Interestingly, matching on gender does not seem to be beneficial, which was unexpected. Using data obtained at higher field scanners produces slightly different base rates of suprathreshold voxels, as does using clinically derived normal studies, suggesting a subtle but systematic effect of both factors. Two approaches for controlling suprathreshold voxels in a multidimensional approach (combining features and requiring a minimum cluster size) were shown to be substantial and effective in reducing this number. Finally, specific strengths and limitations of such an approach could be demonstrated in individual cases. PMID:25050423

  10. Impact of newly diagnosed abnormal glucose regulation on long-term prognosis in low risk patients with ST-elevation myocardial infarction: A follow-up study

    Abdelnoor Michael

    2011-07-01

    Full Text Available Abstract Background Patients with acute myocardial infarction and newly detected abnormal glucose regulation have been shown to have a less favourable prognosis compared to patients with normal glucose regulation. The importance and timing of oral glucose tolerance testing (OGTT in patients with acute myocardial infarction without known diabetes is uncertain. The aim of the present study was to evaluate the impact of abnormal glucose regulation classified by an OGTT in-hospital and at three-month follow-up on clinical outcome in patients with acute ST elevation myocardial infarction (STEMI without known diabetes. Methods Patients (n = 224, age 58 years with a primary percutanous coronary intervention (PCI treated STEMI were followed for clinical events (all-cause mortality, non-fatal myocardial re-infarction, recurrent ischemia causing hospital admission, and stroke. The patients were classified by a standardised 75 g OGTT at two time points, first, at a median time of 16.5 hours after hospital admission, then at three-month follow-up. Based on the OGTT results, the patients were categorised according to the WHO criteria and the term abnormal glucose regulation was defined as the sum of impaired fasting glucose, impaired glucose tolerance and type 2-diabetes. Results The number of patients diagnosed with abnormal glucose regulation in-hospital and at three-month was 105 (47% and 50 (25%, respectively. During the follow up time of (median 33 (27, 39 months, 58 (25.9% patients experienced a new clinical event. There were six deaths, 15 non-fatal re-infarction, 33 recurrent ischemia, and four strokes. Kaplan-Meier analysis of survival free of composite end-points showed similar results in patients with abnormal and normal glucose regulation, both when classified in-hospital (p = 0.4 and re-classified three months later (p = 0.3. Conclusions Patients with a primary PCI treated STEMI, without previously known diabetes, appear to have an excellent

  11. Apert and Crouzon syndromes-Cognitive development, brain abnormalities, and molecular aspects.

    Fernandes, Marilyse B L; Maximino, Luciana P; Perosa, Gimol B; Abramides, Dagma V M; Passos-Bueno, Maria Rita; Yacubian-Fernandes, Adriano

    2016-06-01

    Apert and Crouzon are the most common craniosynostosis syndromes associated with mutations in the fibroblast growth factor receptor 2 (FGFR2) gene. We conducted a study to examine the molecular biology, brain abnormalities, and cognitive development of individuals with these syndromes. A retrospective longitudinal review of 14 patients with Apert and Crouzon syndromes seen at the outpatient Craniofacial Surgery Hospital for Rehabilitation of Craniofacial Anomalies in Brazil from January 1999 through August 2010 was performed. Patients between 11 and 36 years of age (mean 18.29 ± 5.80), received cognitive evaluations, cerebral magnetic resonance imaging, and molecular DNA analyses. Eight patients with Apert syndrome (AS) had full scale intelligence quotients (FSIQs) that ranged from 47 to 108 (mean 76.9 ± 20.2), and structural brain abnormalities were identified in five of eight patients. Six patients presented with a gain-of-function mutation (p.Ser252Trp) in FGFR2 and FSIQs in those patients ranged from 47 to78 (mean 67.2 ± 10.7). One patient with a gain-of-function mutation (p.Pro253Arg) had a FSIQ of 108 and another patient with an atypical splice mutation (940-2A →G) had a FSIQ of 104. Six patients with Crouzon syndrome had with mutations in exons IIIa and IIIc of FGFR2 and their FSIQs ranged from 82 to 102 (mean 93.5 ± 6.7). These reveal that molecular aspects are another factor that can be considered in studies of global and cognitive development of patients with Apert and Crouzon syndrome (CS). © 2016 Wiley Periodicals, Inc. PMID:27028366

  12. Reduced cerebral glucose metabolism and increased brain capillary permeability following high-dose methotrexate chemotherapy: a positron emission tomographic study

    Regional glucose metabolic rate constants and blood-to-brain transport of rubidium were estimated using positron emission tomography in an adolescent patient with a brain tumor, before and after chemotherapy with intravenous high-dose methotrexate. Widespread depression of cerebral glucose metabolism was apparent 24 hours after drug administration, which may reflect reduced glucose phosphorylation, and the influx rate constant for 82Rb was increased, indicating a drug-induced alteration in blood-brain barrier function. Associated changes in neuropsychological performance, electroencephalogram, and plasma amino acid concentration were identified in the absence of evidence of systemic methotrexate toxicity, suggesting primary methotrexate neurotoxicity

  13. Bilateral brain abnormalities associated with dominantly inherited verbal and orofacial dyspraxia.

    Belton, Emma; Salmond, Claire H; Watkins, Kate E; Vargha-Khadem, Faraneh; Gadian, David G

    2003-03-01

    The KE family is a large three-generational pedigree in which half of the members suffer from a verbal and orofacial dyspraxia in association with a point mutation in the FOXP2 gene. This report extends previous voxel-based morphometric analyses of magnetic resonance imaging (MRI) scans (Watkins et al. [2002] Brain 125:465-478) using a bilateral conjunction analysis. This searches specifically for areas of grey matter density that differ bilaterally in the affected members compared with both matched controls and the unaffected family members. 3-D T1-weighted MRI datasets of 17 family members (10 affected, 7 unaffected) and matched controls were compared. The most significant findings were reduced grey matter density bilaterally in the caudate nucleus, the cerebellum, and the left and right inferior frontal gyrus in the affected members. In addition, increased grey matter density was found bilaterally in the planum temporale. These results confirm that a point mutation in FOXP2 is associated with several bilateral grey matter abnormalities in both motor and language related regions. The results also demonstrate the advantages of using a conjunction analysis when bilateral abnormalities are suspected. PMID:12599277

  14. Abnormal brain default-mode network functional connectivity in drug addicts.

    Ning Ma

    Full Text Available BACKGROUND: The default mode network (DMN is a set of brain regions that exhibit synchronized low frequency oscillations at resting-state, and is believed to be relevant to attention and self-monitoring. As the anterior cingulate cortex and hippocampus are impaired in drug addiction and meanwhile are parts of the DMN, the present study examined addiction-related alteration of functional connectivity of the DMN. METHODOLOGY: Resting-state functional magnetic resonance imaging data of chronic heroin users (14 males, age: 30.1±5.3 years, range from 22 to 39 years and non-addicted controls (13 males, age: 29.8±7.2 years, range from 20 to 39 years were investigated with independent component analysis to address their functional connectivity of the DMN. PRINCIPAL FINDINGS: Compared with controls, heroin users showed increased functional connectivity in right hippocampus and decreased functional connectivity in right dorsal anterior cingulate cortex and left caudate in the DMN. CONCLUSIONS: These findings suggest drug addicts' abnormal functional organization of the DMN, and are discussed as addiction-related abnormally increased memory processing but diminished cognitive control related to attention and self-monitoring, which may underlie the hypersensitivity toward drug related cues but weakened strength of cognitive control in the state of addiction.

  15. Association of Serum Ferritin Level with Risk of Incident Abnormal Glucose Metabolism in Southwestern China: a Prospective Cohort Study.

    Zhou, Fangli; Zhao, Zhuoxian; Tian, Li; Zheng, Tianpeng; Gao, Yun; Chen, Tao; Yan, Fangfang; Tian, Haoming

    2016-01-01

    This prospective cohort study aimed to analyze the association between serum ferritin levels and the risk of abnormal glucose metabolism (AGM) in Southwestern Chinese population. The 383 subjects who are aged ≥20 years and free of AGM at baseline between in 2007 and in 2008 were included in Southwestern China, and their baseline serum ferritin levels were measured. Among these subjects, 140 subjects were developed into AGM during the follow-up (2008-2012). In logistic regression models, the relative risk in the top versus that in the lowest quartile of serum ferritin levels was 2.86 (p = 0.013) in females and 3.50 (p = 0.029) in males after adjusting the age, gender, family history of diabetes, current smoking, and alcohol; however, serum ferritin levels were not significantly associated with incident of AGM after controlling for metabolic factors (waist circumference, systolic pressure (SBP), triglyceride (TG), and homeostasis model assessment formula insulin resistance (HOMA-IR)). Elevated serum ferritin levels are associated with AGM but not an independent risk factor. PMID:26073512

  16. Differing patterns of brain structural abnormalities between black and white patients with their first episode of psychosis.

    Morgan, K D

    2010-07-01

    African-Caribbean and black African people living in the UK are reported to have a higher incidence of diagnosed psychosis compared with white British people. It has been argued that this may be a consequence of misdiagnosis. If this is true they might be less likely to show the patterns of structural brain abnormalities reported in white British patients. The aim of this study therefore was to investigate whether there are differences in the prevalence of structural brain abnormalities in white and black first-episode psychosis patients.

  17. Glucose metabolism of fetal rat brain in utero, measured with labeled deoxyglucose

    Mammals have low cerebral metabolic rates immediately after birth and, by inference, also before birth. In this study, we extended the deoxyglucose method to the fetal rat brain in utero. Rate constants for deoxyglucose transfer across the maternal placental and fetal blood-brain barriers, and lumped constant, have not been reported. Therefore, we applied a new method of determining the lumped constant regionally to the fetal rat brain in utero. The lumped constant averaged 0.55 ± 0.15 relative to the maternal circulation. On this basis, we determined the glucose metabolic rate of the fetal rat brain to be one third of the corresponding maternal value, or 19 ± 2 μmol hg-1 min-1. (author)

  18. Structural brain abnormalities in the frontostriatal system and cerebellum in pedophilia.

    Schiffer, Boris; Peschel, Thomas; Paul, Thomas; Gizewski, Elke; Forsting, Michael; Leygraf, Norbert; Schedlowski, Manfred; Krueger, Tillmann H C

    2007-11-01

    Even though previous neuropsychological studies and clinical case reports have suggested an association between pedophilia and frontocortical dysfunction, our knowledge about the neurobiological mechanisms underlying pedophilia is still fragmentary. Specifically, the brain morphology of such disorders has not yet been investigated using MR imaging techniques. Whole brain structural T1-weighted MR images from 18 pedophile patients (9 attracted to males, 9 attracted to females) and 24 healthy age-matched control subjects (12 hetero- and 12 homosexual) from a comparable socioeconomic stratum were processed by using optimized automated voxel-based morphometry within multiple linear regression analyses. Compared to the homosexual and heterosexual control subjects, pedophiles showed decreased gray matter volume in the ventral striatum (also extending into the nucl. accumbens), the orbitofrontal cortex and the cerebellum. These observations further indicate an association between frontostriatal morphometric abnormalities and pedophilia. In this respect these findings may support the hypothesis that there is a shared etiopathological mechanism in all obsessive-compulsive spectrum disorders. PMID:16876824

  19. Predicting the Probability of Abnormal Stimulated Growth Hormone Response in Children After Radiotherapy for Brain Tumors

    Purpose: To develop a mathematical model utilizing more readily available measures than stimulation tests that identifies brain tumor survivors with high likelihood of abnormal growth hormone secretion after radiotherapy (RT), to avoid late recognition and a consequent delay in growth hormone replacement therapy. Methods and Materials: We analyzed 191 prospectively collected post-RT evaluations of peak growth hormone level (arginine tolerance/levodopa stimulation test), serum insulin-like growth factor 1 (IGF-1), IGF-binding protein 3, height, weight, growth velocity, and body mass index in 106 children and adolescents treated for ependymoma (n = 72), low-grade glioma (n = 28) or craniopharyngioma (n = 6), who had normal growth hormone levels before RT. Normal level in this study was defined as the peak growth hormone response to the stimulation test ≥7 ng/mL. Results: Independent predictor variables identified by multivariate logistic regression with high statistical significance (p < 0.0001) included IGF-1 z score, weight z score, and hypothalamic dose. The developed predictive model demonstrated a strong discriminatory power with an area under the receiver operating characteristic curve of 0.883. At a potential cutoff point of probability of 0.3 the sensitivity was 80% and specificity 78%. Conclusions: Without unpleasant and expensive frequent stimulation tests, our model provides a quantitative approach to closely follow the growth hormone secretory capacity of brain tumor survivors. It allows identification of high-risk children for subsequent confirmatory tests and in-depth workup for diagnosis of growth hormone deficiency.

  20. Predicting the Probability of Abnormal Stimulated Growth Hormone Response in Children After Radiotherapy for Brain Tumors

    Hua Chiaho, E-mail: Chia-Ho.Hua@stjude.org [Department of Radiological Sciences, St. Jude Children' s Research Hospital, Memphis, Tennessee (United States); Wu Shengjie [Department of Biostatistics, St. Jude Children' s Research Hospital, Memphis, Tennessee (United States); Chemaitilly, Wassim [Division of Endocrinology, Department of Pediatric Medicine, St. Jude Children' s Research Hospital, Memphis, Tennessee (United States); Lukose, Renin C.; Merchant, Thomas E. [Department of Radiological Sciences, St. Jude Children' s Research Hospital, Memphis, Tennessee (United States)

    2012-11-15

    Purpose: To develop a mathematical model utilizing more readily available measures than stimulation tests that identifies brain tumor survivors with high likelihood of abnormal growth hormone secretion after radiotherapy (RT), to avoid late recognition and a consequent delay in growth hormone replacement therapy. Methods and Materials: We analyzed 191 prospectively collected post-RT evaluations of peak growth hormone level (arginine tolerance/levodopa stimulation test), serum insulin-like growth factor 1 (IGF-1), IGF-binding protein 3, height, weight, growth velocity, and body mass index in 106 children and adolescents treated for ependymoma (n = 72), low-grade glioma (n = 28) or craniopharyngioma (n = 6), who had normal growth hormone levels before RT. Normal level in this study was defined as the peak growth hormone response to the stimulation test {>=}7 ng/mL. Results: Independent predictor variables identified by multivariate logistic regression with high statistical significance (p < 0.0001) included IGF-1 z score, weight z score, and hypothalamic dose. The developed predictive model demonstrated a strong discriminatory power with an area under the receiver operating characteristic curve of 0.883. At a potential cutoff point of probability of 0.3 the sensitivity was 80% and specificity 78%. Conclusions: Without unpleasant and expensive frequent stimulation tests, our model provides a quantitative approach to closely follow the growth hormone secretory capacity of brain tumor survivors. It allows identification of high-risk children for subsequent confirmatory tests and in-depth workup for diagnosis of growth hormone deficiency.

  1. Study of cerebral metabolism of glucose in normal human brain correlated with age

    Full text: The objective was to determine whether cerebral metabolism in various regions of the brain differs with advancing age by using 18F-FDG PET instrument and SPM software. Materials and Methods We reviewed clinical information of 295 healthy normal samples who were examined by a whole body GE Discovery LS PET-CT instrument in our center from Aug. 2004 to Dec. 2005.They (with the age ranging from 21 to 88; mean age+/-SD: 49.77+/-13.51) were selected with: (i)absence of clear focal brain lesions (epilepsy.cerebrovascular diseases etc);(ii) absence of metabolic diseases, such as hyperthyroidism, hypothyroidism and diabetes;(iii) absence of psychiatric disorders and abuse of drugs and alcohol. They were sub grouped into six groups with the interval of 10 years old starting from 21, and the gender, educational background and serum glucose were matched. All subgroups were compared to the control group of 31-40 years old (84 samples; mean age+/-SD: 37.15+/-2.63). All samples were injected with 18F-FDG (5.55MBq/kg), 45-60 minutes later, their brains were scanned for 10min. Pixel-by-pixel t-statistic analysis was applied to all brain images using the Statistical parametric mapping (SPM2) .The hypometabolic areas (p < 0. 01 or p<0.001, uncorrected) were identified in the Stereotaxic coordinate human brain atlas and three-dimensional localized by MNI Space utility (MSU) software. Results:Relative hypometabolic brain areas detected are mainly in the cortical structures such as bilateral prefrontal cortex, superior temporal gyrus(BA22), parietal cortex (inferior parietal lobule and precuneus(BA40, insula(BA13)), parahippocampal gyrus and amygdala (p<0.01).It is especially apparent in the prefrontal cortex (BA9)and sensory-motor cortex(BA5, 7) (p<0.001), while basal ganglia and cerebellum remained metabolically unchanged with advancing age. Conclusions Regional cerebral metabolism of glucose shows a descent tendency with aging, especially in the prefrontal cortex (BA9)and

  2. Elevation of brain glucose and polyol-pathway intermediates with accompanying brain-copper deficiency in patients with Alzheimer’s disease: metabolic basis for dementia

    Jingshu Xu; Paul Begley; Stephanie J. Church; Stefano Patassini; Selina McHarg; Nina Kureishy; Hollywood, Katherine A; Waldvogel, Henry J; Hong Liu; Shaoping Zhang; Wanchang Lin; Karl Herholz; Clinton Turner; Synek, Beth J.; Curtis, Maurice A.

    2016-01-01

    Impairment of brain-glucose uptake and brain-copper regulation occurs in Alzheimer’s disease (AD). Here we sought to further elucidate the processes that cause neurodegeneration in AD by measuring levels of metabolites and metals in brain regions that undergo different degrees of damage. We employed mass spectrometry (MS) to measure metabolites and metals in seven post-mortem brain regions of nine AD patients and nine controls, and plasma-glucose and plasma-copper levels in an ante-mortem cas...

  3. Cross-Sectional and Longitudinal Abnormalities in Brain Structure in Children with Severe Mood Dysregulation or Bipolar Disorder

    Adleman, Nancy E.; Fromm, Stephen J.; Razdan, Varun; Kayser, Reilly; Dickstein, Daniel P.; Brotman, Melissa A.; Pine, Daniel S.; Leibenluft, Ellen

    2012-01-01

    Background: There is debate as to whether chronic irritability (operationalized as severe mood dysregulation, SMD) is a developmental form of bipolar disorder (BD). Although structural brain abnormalities in BD have been demonstrated, no study compares neuroanatomy among SMD, BD, and healthy volunteers (HV) either cross-sectionally or over time.…

  4. Brain abnormalities on MRI in non-functioning pituitary adenoma patients treated with or without postoperative radiotherapy

    Background and purpose: To assess and compare brain abnormalities on Magnetic Resonance Imaging (MRI) in non-functioning pituitary macro-adenoma (NFA) patients treated with or without postoperative radiotherapy (RT). Material and methods: In 86 NFA patients, treated between 1987 and 2008 at the University Medical Center Groningen, white-matter lesions (WMLs), cerebral atrophy, brain infarctions and abnormalities of the temporal lobes and hippocampi were assessed on pre- and post-treatment MRI scans in patients treated with (n = 47) or without RT. Results: The median MRI follow-up time for RT patients was 10 (range 1–22) years and 5 (range 1–21) years in patients treated without RT. In RT patients the cumulative incidence of WMLs was significantly lower compared to patients treated without RT (log-rank test RR 0.49, 95% CI 0.25–0.97, p = .042). The cumulative incidences of cerebral atrophy, brain infarctions, abnormalities of the temporal lobes and hippocampi, and the severity of WMLs and cerebral atrophy ratings were not significantly different between the two treatment groups. Conclusions: Brain abnormalities on MRI are not observed more frequently in NFA patients treated with RT compared to patients treated with surgery-alone. Furthermore, RT was not associated with an increased severity of WMLs and cerebral atrophy ratings in this cohort of NFA patients

  5. Brain Gray Matter Abnormalities in First-Episode, Treatment-Naive Children with Obsessive-Compulsive Disorder

    Cheng, Bochao; Cai, Wu; Wang, Xiuli; Lei, Du; Guo, Yingkun; Yang, Xun; Wu, Qizhu; Gong, Jianping; Gong, Qiyong; Ning, Gang

    2016-01-01

    Although several magnetic resonance imaging (MRI) studies have been conducted in children with obsessive-compulsive disorder (OCD), the brain structural abnormalities in OCD, especially in children, are not yet well characterized. We aimed to identify gray matter (GM) abnormalities in the early stage of pediatric OCD and examine the relationship between these structural abnormalities with clinical characteristics. Examinations of 30 first-episode, treatment-naive pediatric OCD patients without any comorbidities and 30 matched healthy controls (HCs) were performed with 3.0 T magnetic resonance imaging (MRI). Voxel-based morphometry (VBM) following Diffeomorphic Anatomical Registration using Exponentiated Lie algebra (DARTEL) was used to conduct voxel-wise tests for group differences in regional gray matter volume (GMV). Compared to HCs, the patient group exhibited more GMV in the bilateral putamen and left orbitofrontal cortex (OFC) and less GMV in the left inferior parietal lobule (IPL). The GMV alternation in the right putamen of OCD patients was positively correlated with Hamilton Anxiety Rating Scale (HAM-A) scores, while the GMV alternation in the left IPL exhibited a trend to negatively correlate with HAM-A scores. Our current results suggest that the GM abnormalities were defined in the early stage of pediatric OCD. Moreover, these findings provided further evidence of brain GM abnormalities that are not only present in the classical fronto–striatal–thalamic circuit but also in the default mode network (DMN), which may represent the interaction of abnormally functional organization of both network in pediatric OCD. PMID:27445736

  6. Brain Gray Matter Abnormalities in First-Episode, Treatment-Naive Children with Obsessive-Compulsive Disorder.

    Cheng, Bochao; Cai, Wu; Wang, Xiuli; Lei, Du; Guo, Yingkun; Yang, Xun; Wu, Qizhu; Gong, Jianping; Gong, Qiyong; Ning, Gang

    2016-01-01

    Although several magnetic resonance imaging (MRI) studies have been conducted in children with obsessive-compulsive disorder (OCD), the brain structural abnormalities in OCD, especially in children, are not yet well characterized. We aimed to identify gray matter (GM) abnormalities in the early stage of pediatric OCD and examine the relationship between these structural abnormalities with clinical characteristics. Examinations of 30 first-episode, treatment-naive pediatric OCD patients without any comorbidities and 30 matched healthy controls (HCs) were performed with 3.0 T magnetic resonance imaging (MRI). Voxel-based morphometry (VBM) following Diffeomorphic Anatomical Registration using Exponentiated Lie algebra (DARTEL) was used to conduct voxel-wise tests for group differences in regional gray matter volume (GMV). Compared to HCs, the patient group exhibited more GMV in the bilateral putamen and left orbitofrontal cortex (OFC) and less GMV in the left inferior parietal lobule (IPL). The GMV alternation in the right putamen of OCD patients was positively correlated with Hamilton Anxiety Rating Scale (HAM-A) scores, while the GMV alternation in the left IPL exhibited a trend to negatively correlate with HAM-A scores. Our current results suggest that the GM abnormalities were defined in the early stage of pediatric OCD. Moreover, these findings provided further evidence of brain GM abnormalities that are not only present in the classical fronto-striatal-thalamic circuit but also in the default mode network (DMN), which may represent the interaction of abnormally functional organization of both network in pediatric OCD. PMID:27445736

  7. The study on glucose metabolism of the brain of patients with Parkinson's disease using 18F-FDG PET

    Objective: To study glucose metabolism of the brain of patients with Parkinson's disease (PD) by PET, to investigate the imaging characteristics of 18F-FDG PET in Chinese patients with PD. Methods: 50 min after intravenous administration of 18F-FDG, brain scan was performed on 33 patients with PD and 32 age-matched healthy subjects. Semiquantitative analysis was applied to assess the metabolic function of the brain by the ratio of mean radioactivity of various cerebral lobes (substantia nigra, putamen, caudatum, thalamus, temporal lobe, frontal lobe, parietal lobe, occipital lobe, hippocampus) to cerebellum (Rcl/cb). PET scan was compared with MRI. Results: In healthy subjects PET scan showed clear and symmetrical distribution of radioactivity in the cerebral lobes. 96.97% of PD patients showed abnormal PET images, 30.30% of PD patients' MRI showed abnormal, but only 9.09% of that was special. The radioactivity ratio of cerebral lobes to cerebellum of PD patients in nigra-striatum dopaminergic system and cerebral lobes was significantly decreased than that in healthy subjects. The opposite nigra-striatum system and frontal lobe of the more serious sick limbs were significantly more hypo-metabolic than the same side cerebral lobes. The characteristic PET images of PD patients showed that asymmetrical substantia nigra hypometabolism in 93.94% of the PD cases, striatum, thalamus asymmetrical hypometabolism in 69.70% and 36.36% PD cases; slight asymmetrical increase of radioactivity in striatum and thalamus in 15.15% PD cases; cerebral lobes asymmetrical hypometabolism of temporal lobe in 51.52%, frontal in 39.39%, parietal in 15.15%, occipital in 9.09%, hippocampal in 45.46% PD cases; slight cerebral asymmetrical hypermetabolism in 9.09% PD cases. Conclusions: In addition to cerebral structural lesions in the brain, asymmetrical hypometabolism and slight hypermetabolism can be found in nigra-striatum dopaminergic system accompany with cerebral hypometabolism or slight

  8. Clinical significance of brain SPECT abnormalities of thalami and cerebellum in cerebral palsy with normal MRI

    Park, C. H.; Lim, S. Y.; Lee, I. Y.; Kim, O. H.; Bai, M. S.; Kim, S. J.; Yoon, S. N.; Cho, C. W. [College of Medicine, Ajou Univ., Suwon (Korea, Republic of)

    1997-07-01

    The cerebral palsy(CP) encephalopathies are often of uncertain etiology and various functional image findings comparing with anatomical image findings have been reported. However, only a few have mentioned its clinical implications. The purpose of our report is to compare clinical severity and functional SPECT abnormalities of thalami and cerebellum in CP patients with normal MRI. Thirty six CP patients with bilateral spastic palsy who had normal MRI and brain SPECT were studied from July 1996 to September 1997. The patients' age at the time of SPECT was 22.84{+-}17.69 months. The patients were divided into two groups according to motor quotient(MQ); moderate defect (>50MQ : n=27 MQ=22.78{+-}10.36), mild defect (<50MQ : n=9, MQ=66.11{+-}13.87). The degree of rCBF decrease between the two groups was evaluated by {chi}{sup 2} test. Brain SPECT was performed following IV administration of 0.05-0.1 mCi/kg (minimum 2.0 mCi) of Tc-99m ECD and chloral hydrate sedation (50-80 mg/kg p.o) using a triple head system (MS 3, Siemens). Interpretation of brain SPECT was visual analysis: severe decrease is defined when the defect is moderate to marked and mild decrease in rCBF as mild. Seven of 36 (19.4%) showed unilateral or bilateral moderate decrease in rCBF in thalami, 20(55.6%) showed mild decrease, and 9(25.0%) showed no decreased rCBF. All 7 who had moderate thalamic defect reveled moderate motor defect clinically. Ten of 36(27.9%) revealed unilateral or bilateral moderate rCBF defect, 23 (63.9%) depicted mild defect, and 3(8.3%) showed no defect. Sixteen with moderate thalamic rCBF defect showed moderate motor defect in 15 patients. There was statistically significant (p=0.02605) relationship between rCBF defect and motor defect in our CP patients. In conclusion, brain SPECT appears sensitive, non-invasive tool in the evaluation as well as in the prognostication of bilateral spastic cerebral palsy patients and deserves further study using larger number of patients.

  9. Clinical significance of brain SPECT abnormalities of thalami and cerebellum in cerebral palsy with normal MRI

    The cerebral palsy(CP) encephalopathies are often of uncertain etiology and various functional image findings comparing with anatomical image findings have been reported. However, only a few have mentioned its clinical implications. The purpose of our report is to compare clinical severity and functional SPECT abnormalities of thalami and cerebellum in CP patients with normal MRI. Thirty six CP patients with bilateral spastic palsy who had normal MRI and brain SPECT were studied from July 1996 to September 1997. The patients' age at the time of SPECT was 22.84±17.69 months. The patients were divided into two groups according to motor quotient(MQ); moderate defect (>50MQ : n=27 MQ=22.78±10.36), mild defect (2 test. Brain SPECT was performed following IV administration of 0.05-0.1 mCi/kg (minimum 2.0 mCi) of Tc-99m ECD and chloral hydrate sedation (50-80 mg/kg p.o) using a triple head system (MS 3, Siemens). Interpretation of brain SPECT was visual analysis: severe decrease is defined when the defect is moderate to marked and mild decrease in rCBF as mild. Seven of 36 (19.4%) showed unilateral or bilateral moderate decrease in rCBF in thalami, 20(55.6%) showed mild decrease, and 9(25.0%) showed no decreased rCBF. All 7 who had moderate thalamic defect reveled moderate motor defect clinically. Ten of 36(27.9%) revealed unilateral or bilateral moderate rCBF defect, 23 (63.9%) depicted mild defect, and 3(8.3%) showed no defect. Sixteen with moderate thalamic rCBF defect showed moderate motor defect in 15 patients. There was statistically significant (p=0.02605) relationship between rCBF defect and motor defect in our CP patients. In conclusion, brain SPECT appears sensitive, non-invasive tool in the evaluation as well as in the prognostication of bilateral spastic cerebral palsy patients and deserves further study using larger number of patients

  10. Detection of glycemic abnormalities in adolescents with beta thalassemia using continuous glucose monitoring and oral glucose tolerance in adolescents and young adults with β-thalassemia major: Pilot study

    Ashraf T Soliman

    2013-01-01

    Full Text Available Background: Both insulin deficiency and resistance are reported in patients with β-thalassemia major (BTM. The use of continuous blood glucose monitoring (CGM, among the different methods for early detection of glycemic abnormalities, has not been studied thoroughly in these adolescents. Materials and Methods: To assess the oralglucose tolerance (OGT and 72-h continuous glucose concentration by the continuous glucose monitoring system (CGMS and calculate homeostatic model assessment (HOMA, and the quantitative insulin sensitivity check index (QUICKI was conducted in 16 adolescents with BTM who were receiving regular blood transfusions every 2-4 weeks and iron-chelation therapy since early childhood. Results: Sixteen adolescents with BTM (age: 19.75 ± 3 years were investigated. Using OGTT, (25% had impaired fasting blood (plasma glucose concentration (BG (>5.6 mmol/L. 2-h after the glucose load, one of them had BG = 16.2 mmol/L (diabetic and two had impaired glucose tolerance (IGT (BG > 7.8 and 11.1 mmol/L and 9 with IGT (56%. HOMA and QUICKI revealed levels 0.33 (0.36 ± 0.03, respectively, ruling out significant insulin resistance in these adolescents. There was a significant negative correlation between the β-cell function (B% on one hand and the fasting and the 2-h BG (r=−0.6, and − 0.48, P < 0.01, respectively on the other hand. Neither fasting serum insulin nor c-peptide concentrations were correlated with fasting BG or ferritin levels. The average and maximum blood glucose levels during CGM were significantly correlated with the fasting BG (r = 0.68 and 0.39, respectively, with P < 0.01 and with the BG at 2-hour after oral glucose intake (r = 0.87 and 0.86 respectively, with P < 0.001. Ferritin concentrations were correlated with the fasting BG and the 2-h blood glucose levels in the OGTT (r = 0.52, and r = 0.43, respectively, P < 0.01 as well as with the average BG recorded by CGM (r = 0.75, P < 0.01. Conclusion: CGM has proven to

  11. Steady-state brain glucose transport kinetics re-evaluated with a four-state conformational model

    João M N Duarte

    2009-10-01

    Full Text Available Glucose supply from blood to brain occurs through facilitative transporter proteins. A near linear relation between brain and plasma glucose has been experimentally determined and described by a reversible model of enzyme kinetics. A conformational four-state exchange model accounting for trans-acceleration and asymmetry of the carrier was included in a recently developed multi-compartmental model of glucose transport. Based on this model, we demonstrate that brain glucose (Gbrain as function of plasma glucose (Gplasma can be described by a single analytical equation namely comprising three kinetic compartments: blood, endothelial cells and brain. Transport was described by four parameters: apparent half saturation constant Kt, apparent maximum rate constant Tmax, glucose consumption rate CMRglc, and the iso-inhibition constant Kii that suggests Gbrain as inhibitor of the isomerisation of the unloaded carrier. Previous published data, where Gbrain was quantified as a function of plasma glucose by either biochemical methods or NMR spectroscopy, were used to determine the aforementioned kinetic parameters. Glucose transport was characterized by Kt ranging from 1.5 to 3.5 mM, Tmax/CMRglc from 4.6 to 5.6, and Kii from 51 to 149 mM. It was noteworthy that Kt was on the order of a few mM, as previously determined from the reversible model. The conformational four-state exchange model of glucose transport into the brain includes both efflux and transport inhibition by Gbrain, predicting that Gbrain eventually approaches a maximum concentration. However, since Kii largely exceeds Gplasma, iso-inhibition is unlikely to be of substantial importance for plasma glucose below 25 mM. As a consequence, the reversible model can account for most experimental observations under euglycaemia and moderate cases of hypo- and hyperglycaemia.

  12. Walking speed and brain glucose uptake are uncoupled in patients with multiple sclerosis

    John H. Kindred

    2015-02-01

    Full Text Available Motor impairments of the upper and lower extremities are common symptoms of multiple sclerosis (MS. While some peripheral effects like muscle weakness and loss of balance have been shown to influence these symptoms, central nervous system activity has not been fully elucidated. The purpose of this study was to determine if alterations in glucose uptake were associated with motor impairments in patients with multiple sclerosis. Eight patients with multiple sclerosis (4 men and 8 sex matched healthy controls performed 15 minutes of treadmill walking at a self-selected pace, during which ≈ 322 MBq of the positron emission tomography glucose analogue [18F]-Fluorodeoxyglucose was injected. Immediately after the cessation of walking, participants underwent positron emission tomography imaging. Patients with MS had lower FDG uptake in ≈ 40% of the brain compared to the healthy controls (pFWE-corr -0.75, P < 0.032. Within patients with MS only 3 of the 15 regions showed significant correlations: insula (r = -0.74, P = 0.036, hippocampus (r = -0.72, P = 0.045, and calcarine sulcus (r = -0.77, P = 0.026. This data suggests that walking impairments in patients with MS may be due to network wide alterations in glucose metabolism. Understanding how brain activity and metabolism are altered in patients with MS may allow for better measures of disability and disease status within this clinical population.

  13. Enzyme-Immobilized 3D-Printed Reactors for Online Monitoring of Rat Brain Extracellular Glucose and Lactate.

    Su, Cheng-Kuan; Yen, Shuo-Chih; Li, Tzu-Wen; Sun, Yuh-Chang

    2016-06-21

    In this study we constructed a highly sensitive system for in vivo monitoring of the concentrations of rat brain extracellular glucose and lactate. This system involved microdialysis (MD) sampling and fluorescence determination in conjunction with a novel sample derivatization scheme in which glucose oxidase and lactate oxidase were immobilized in ABS flow bioreactors (manufactured through low-cost three-dimensional printing (3DP)), via fused deposition modeling, for online oxidization of sampled glucose and lactate, respectively, in rat brain microdialysate. After optimizing the experimental conditions for MD sampling, the manufacture of the designed flow reactors, the enzyme immobilization procedure, and the online derivatization scheme, the available sampling frequency was 15 h(-1) and the system's detection limits reached as low as 0.060 mM for glucose and 0.059 mM for lactate, based on a 20-μL conditioned microdialysate; these characteristics were sufficient to reliably determine the concentrations of extracellular glucose and lactate in the brains of living rats. To demonstrate the system's applicability, we performed (i) spike analyses of offline-collected rat brain microdialysate and (ii) in vivo dynamic monitoring of the extracellular glucose and lactate in living rat brains, in addition to triggering neuronal depolarization by perfusing a high-K(+) medium from the implanted MD probe. Our analytical results and demonstrations confirm that postprinting functionalization of analytical devices manufactured using 3DP technology can be a powerful strategy for extending the diversity and adaptability of currently existing analytical configurations. PMID:27232384

  14. Quantitative rates of brain glucose metabolism distinguish minimally conscious from vegetative state patients.

    Stender, Johan; Kupers, Ron; Rodell, Anders; Thibaut, Aurore; Chatelle, Camille; Bruno, Marie-Aurélie; Gejl, Michael; Bernard, Claire; Hustinx, Roland; Laureys, Steven; Gjedde, Albert

    2015-01-01

    The differentiation of the vegetative or unresponsive wakefulness syndrome (VS/UWS) from the minimally conscious state (MCS) is an important clinical issue. The cerebral metabolic rate of glucose (CMRglc) declines when consciousness is lost, and may reveal the residual cognitive function of these patients. However, no quantitative comparisons of cerebral glucose metabolism in VS/UWS and MCS have yet been reported. We calculated the regional and whole-brain CMRglc of 41 patients in the states of VS/UWS (n=14), MCS (n=21) or emergence from MCS (EMCS, n=6), and healthy volunteers (n=29). Global cortical CMRglc in VS/UWS and MCS averaged 42% and 55% of normal, respectively. Differences between VS/UWS and MCS were most pronounced in the frontoparietal cortex, at 42% and 60% of normal. In brainstem and thalamus, metabolism declined equally in the two conditions. In EMCS, metabolic rates were indistinguishable from those of MCS. Ordinal logistic regression predicted that patients are likely to emerge into MCS at CMRglc above 45% of normal. Receiver-operating characteristics showed that patients in MCS and VS/UWS can be differentiated with 82% accuracy, based on cortical metabolism. Together these results reveal a significant correlation between whole-brain energy metabolism and level of consciousness, suggesting that quantitative values of CMRglc reveal consciousness in severely brain-injured patients. PMID:25294128

  15. Simultaneous telemetric monitoring of brain glucose and lactate and motion in freely moving rats.

    Rocchitta, Gaia; Secchi, Ottavio; Alvau, Maria Domenica; Farina, Donatella; Bazzu, Gianfranco; Calia, Giammario; Migheli, Rossana; Desole, Maria Speranza; O'Neill, Robert D; Serra, Pier A

    2013-11-01

    A new telemetry system for simultaneous detection of extracellular brain glucose and lactate and motion is presented. The device consists of dual-channel, single-supply miniature potentiostat-I/V converter, a microcontroller unit, a signal transmitter, and a miniaturized microvibration sensor. Although based on simple and inexpensive components, the biotelemetry device has been used for accurate transduction of the anodic oxidation currents generated on the surface of implanted glucose and lactate biosensors and animal microvibrations. The device was characterized and validated in vitro before in vivo experiments. The biosensors were implanted in the striatum of freely moving animals and the biotelemetric device was fixed to the animal's head. Physiological and pharmacological stimulations were given in order to induce striatal neural activation and to modify the motor behavior in awake, untethered animals. PMID:24102201

  16. Brain tissue- and region-specific abnormalities on volumetric MRI scans in 21 patients with Bardet-Biedl syndrome (BBS

    Johnston Jennifer

    2011-07-01

    Full Text Available Abstract Background Bardet-Biedl syndrome (BBS is a heterogeneous human disorder inherited in an autosomal recessive pattern, and characterized by the primary findings of obesity, polydactyly, hypogonadism, and learning and behavioural problems. BBS mouse models have a neuroanatomical phenotype consisting of third and lateral ventriculomegaly, thinning of the cerebral cortex, and reduction in the size of the corpus striatum and hippocampus. These abnormalities raise the question of whether humans with BBS have a characteristic morphologic brain phenotype. Further, although behavioral, developmental, neurological and motor defects have been noted in patients with BBS, to date, there are limited reports of brain findings in BBS. The present study represents the largest systematic evaluation for the presence of structural brain malformations and/or progressive changes, which may contribute to these functional problems. Methods A case-control study of 21 patients, most aged 13-35 years, except for 2 patients aged 4 and 8 years, who were diagnosed with BBS by clinical criteria and genetic analysis of known BBS genes, and were evaluated by qualitative and volumetric brain MRI scans. Healthy controls were matched 3:1 by age, sex and race. Statistical analysis was performed using SAS language with SAS STAT procedures. Results All 21 patients with BBS were found to have statistically significant region- and tissue-specific patterns of brain abnormalities. There was 1 normal intracranial volume; 2 reduced white matter in all regions of the brain, but most in the occipital region; 3 preserved gray matter volume, with increased cerebral cortex volume in only the occipital lobe; 4 reduced gray matter in the subcortical regions of the brain, including the caudate, putamen and thalamus, but not in the cerebellum; and 5 increased cerebrospinal fluid volume. Conclusions There are distinct and characteristic abnormalities in tissue- and region- specific volumes

  17. Prevalence of undiagnosed abnormal glucose tolerance in adult patients cared for by general practitioners in Hungary. Results of a risk-stratified screening based on FINDRISC questionnaire

    Winkler, Gábor; Hidvégi, Tibor; Vándorfi, Győző; Balogh, Sándor; Jermendy, György

    2013-01-01

    Background The prevalence of type 2 diabetes mellitus is rapidly increasing, worldwide and also in Hungary. Timely diagnosis and early treatment could be aided by targeted screening. Recognizing this, the Hungarian Diabetes Association initiated a risk-stratified screening with the involvement of primary care physicians. Material/Methods In the first phase of screening, the FINDRISC questionnaire was completed, followed by an oral glucose tolerance test (OGTT) for those with a score of ≥12. Between September 1, 2010 and March 31, 2011, 70,432 non-diabetic adults, who visited their general practitioners for any reason, were involved in the screening. Of these, 68,476 questionnaires proved to be suitable for processing. Results From the questionnaires, 28,077 (41.0%) had a score of ≥12. A valid OGTT was performed in 22,846 cases; of this group 3,217 subjects (14.1%) had elevated fasting glucose levels, 5,663 (24.8%) had impaired glucose tolerance, and 1,750 (7.6%) had manifest, previously undiagnosed, diabetes mellitus. Overall, from the valid OGTT group, 46.5% subjects had some degree of glucose intolerance. Conclusions Based on the FINDRISC questionnaire, the risk-stratified screening for diabetes mellitus proved to be simple and cost-effective method for the early detection of carbohydrate metabolism disorders. Using this method, the prevalence rate of previously undiagnosed abnormal glucose tolerance was high in adult patients cared for by general practitioners in Hungary. PMID:23344680

  18. A randomised trial of salsalate for insulin resistance and cardiovascular risk factors in persons with abnormal glucose tolerance

    Goldfine, A. B.; Conlin, P. R.; Halperin, F.; Koska, J.; Permana, P.; Schwenke, D.; Shoelson, S. E.

    2016-01-01

    Aims/hypothesis Chronic sub-acute inflammation contributes to the pathogenesis of type 2 diabetes mellitus and cardiovascular disease. High doses of salicylate reduce inflammation, glucose and triacylglycerols, and may improve insulin sensitivity, suggesting therapeutic potential in impaired fasting glucose and/or impaired glucose tolerance. This trial aimed to evaluate the effect of salsalate vs placebo on insulin resistance and glycaemia in impaired fasting glucose and/or impaired glucose tolerance. Methods We conducted a 12 week, two-centre, randomised, placebo-controlled study to evaluate the effect of salsalate (up to 4 g/day) vs placebo on systemic glucose disposal. Secondary objectives included treatment effects on glycaemia, inflammation and cardiovascular risk factors. Seventy-eight participants with impaired fasting glucose and/or impaired glucose tolerance from two VA healthcare systems were enrolled. Randomisation assignment was provided by the coordinating center directly to site pharmacists, and participants and research staff were blinded to treatment assignment. Results Seventy-one individuals were randomised to placebo (n = 36) or salsalate (n = 35). Glucose disposal did not change in either group (salsalate 1% [95% CI −39%, 56%]; placebo 6% [95% CI −20%, 61%], p = 0.3 for placebo vs salsalate). Fasting glucose was reduced by 6% during the study by salsalate (p = 0.006) but did not change with placebo. Declines in glucose were accompanied by declines in fasting C-peptide with salsalate. Insulin clearance was reduced with salsalate. In the salsalate group, triacylglycerol levels were lower by 25% (p = 0.01) and adiponectin increased by 53% (p = 0.02) at the end of the study. Blood pressure, endothelial function and other inflammation markers did not differ between groups. Adipose tissue nuclear factor κB (NF-κB) activity declined in the salsalate group compared with placebo (−16% vs 42%, p = 0.005), but was not correlated with metabolic

  19. Abnormal glucose metabolism is associated with reduced left ventricular contractile reserve and exercise intolerance in patients with chronic heart failure

    Egstrup, M; Kistorp, C N; Schou, M;

    2013-01-01

    AIMS: To investigate the associations between glucose metabolism, left ventricular (LV) contractile reserve, and exercise capacity in patients with chronic systolic heart failure (HF). METHODS AND RESULTS: From an outpatient HF clinic, 161 patients with systolic HF were included (mean age 70 ± 10...... years, 69% male, 59% had ischaemic heart disease, mean LV ejection fraction (LVEF) 37 ± 9%). Thirty-four (21%) patients had known diabetes mellitus (DM). Oral glucose tolerance testing (OGTT) classified patients without a prior DM diagnosis as normal glucose tolerance (NGT), impaired glucose tolerance...... (467 m) (P <0.001). Differences in clinical variables, resting echocardiographic parameters or contractile reserve, did not explain the exercise intolerance related to diabetes. CONCLUSION: Diabetes, known or newly detected by OGTT, is independently associated with reduced LV contractile reserve and...

  20. The impact of gestational diabetes mellitus on pregnancy outcome comparing different cut-off criteria for abnormal glucose tolerance.

    Anderberg, Eva; Källén, Karin; Berntorp, Kerstin

    2010-01-01

    Abstract Objective. To examine pregnancy outcomes in relation to different categories of glucose tolerance during pregnancy. Design. Prospective observational cohort study. Setting. Patient recruitment and data collection were performed in four delivery departments in southern Sweden. Population. Women delivering during 2003-2005; 306 with gestational diabetes mellitus, 744 with gestational impaired glucose tolerance and 329 randomly selected controls. Methods. All women were offered a 75 g o...

  1. Novel MRI methodology to detect human whole-brain connectivity changes after ingestion of fructose or glucose

    Tsao, Sinchai; Wilkins, Bryce; Page, Kathleen A.; Singh, Manbir

    2012-03-01

    A novel MRI protocol has been developed to investigate the differential effects of glucose or fructose consumption on whole-brain functional brain connectivity. A previous study has reported a decrease in the fMRI blood oxygen level dependent (BOLD) signal of the hypothalamus following glucose ingestion, but due to technical limitations, was restricted to a single slice covering the hypothalamus, and thus unable to detect whole-brain connectivity. In another previous study, a protocol was devised to acquire whole-brain fMRI data following food intake, but only after restricting image acquisition to an MR sampling or repetition time (TR) of 20s, making the protocol unsuitable to detect functional connectivity above 0.025Hz. We have successfully implemented a continuous 36-min, 40 contiguous slices, whole-brain BOLD acquisition protocol on a 3T scanner with TR=4.5s to ensure detection of up to 0.1Hz frequencies for whole-brain functional connectivity analysis. Human data were acquired first with ingestion of water only, followed by a glucose or fructose drink within the scanner, without interrupting the scanning. Whole-brain connectivity was analyzed using standard correlation methodology in the 0.01-0.1 Hz range. The correlation coefficient differences between fructose and glucose ingestion among targeted regions were converted to t-scores using the water-only correlation coefficients as a null condition. Results show a dramatic increase in the hypothalamic connectivity to the hippocampus, amygdala, insula, caudate and the nucleus accumben for fructose over glucose. As these regions are known to be key components of the feeding and reward brain circuits, these results suggest a preference for fructose ingestion.

  2. Treatment of Abnormal Glucose Regulation and Huge Ovarian Cysts with High Dose Insulin Glargine in an Infant with Leprechaunism - Case Report

    Ayşe Yasemin Çelik

    2010-12-01

    Full Text Available Introduction: Leprechaunism is a rare autosomal recessive disorder caused by mutations in the insulin receptor gene. In this report; we present a 75 days old infant with leprecahunism treated by high dose insulin glargine.Case Report: Yetmiş day old girl was diagnosed as leprechaunism because of the hyperglycemia, ketoacidosis and dysmorphic appearance. Huge cysts with multiple septa were determined in her ovaries. High dose insulin glargine were adjusted to achieve target blood glucose regulation. Huge ovarian cysts resolved by this treatment.Conclusion: Leprechaunism is characterized by intra-uterine and postnatal growth restriction, lipo-atrophy, characteristic facial features, severe acanthosis nigricans, abnormal glucose homeostasis, clitoromegaly and hirsutism. It is usually fatal within the 1st year of life because of diabetic ketoacidosis or recurrent infections. (Journal of Current Pediatrics 2010; 8: 119-22

  3. Regional Brain Glucose Hypometabolism in Young Women with Polycystic Ovary Syndrome: Possible Link to Mild Insulin Resistance

    Castellano, Christian-Alexandre; Baillargeon, Jean-Patrice; Nugent, Scott; Tremblay, Sébastien; Fortier, Mélanie; Imbeault, Hélène; Duval, Julie; Cunnane, Stephen C.

    2015-01-01

    Objective To investigate whether cerebral metabolic rate of glucose (CMRglu) is altered in normal weight young women with polycystic ovary syndrome (PCOS) who exhibit mild insulin resistance. Materials and methods Seven women with PCOS were compared to eleven healthy female controls of similar age, education and body mass index. Regional brain glucose uptake was quantified using FDG with dynamic positron emission tomography and magnetic resonance imaging, and its potential relationship with i...

  4. Voxel-based statistical analysis of cerebral glucose metabolism in patients with permanent vegetative state after acquired brain injury

    Yong Wook Kim; Hyoung Seop Kim; Young-Sil An; Sang Hee Im

    2010-01-01

    Background Permanent vegetative state is defined as the impaired level of consciousness longer than 12 months after traumatic causes and 3 months after non-traumatic causes of brain injury. Although many studies assessed the cerebral metabolism in patients with acute and persistent vegetative state after brain injury, few studies investigated the cerebral metabolism in patients with permanent vegetative state. In this study, we performed the voxel-based analysis of cerebral glucose metabolism and investigated the relationship between regional cerebral glucose metabolism and the severity of impaired consciousness in patients with permanent vegetative state after acquired brain injury.Methods We compared the regional cerebral glucose metabolism as demonstrated by F-18 fluorodeoxyglucose positron emission tomography from 12 patients with permanent vegetative state after acquired brain injury with those from 12 control subjects. Additionally, covariance analysis was performed to identify regions where decreased changes in regional cerebral glucose metabolism significantly correlated with a decrease of level of consciousness measured by JFK-coma recovery scare. Statistical analysis was performed using statistical parametric mapping.Results Compared with controls, patients with permanent vegetative state demonstrated decreased cerebral glucose metabolism in the left precuneus, both posterior cingulate cortices, the left superior parietal lobule (Pcorrected <0.001), and increased cerebral glucose metabolism in the both cerebellum and the right supramarginal cortices (Pcorrected <0.001). In the covariance analysis, a decrease in the level of consciousness was significantly correlated with decreased cerebral glucose metabolism in the both posterior cingulate cortices (Puncorrected <0.005).Conclusion Our findings suggest that the posteromedial parietal cortex, which are part of neural network for consciousness, may be relevant structure for pathophysiological mechanism

  5. Over-estimation of glucose-6-phosphatase activity in brain in vivo. Apparent difference in rates of [2-3H]glucose and [U-14C]glucose utilization is due to contamination of precursor pool with 14C-labeled products and incomplete recovery of 14C-labeled metabolites

    Significant dephosphorylation of glucose 6-phosphate due to glucose-6-phosphatase activity in rat brain in vivo was recently reported. The evidence was an apparent more rapid 3H than 14C loss from the glucose pool and faster [2-3H]glucose than [U-14C]glucose utilization following pulse labeling of the brain with [2-3H,U-14C]glucose. Radiochemical purity of the glucose and quantitative recovery of the labeled products of glucose metabolism isolated from the brain were obviously essential requirements of their study, but no evidence for purity and recovery was provided. When we repeated these experiments with the described isolation procedures, we replicated the results, but found that: 1) the precursor glucose pool contained detritiated, 14C-labeled contaminants arising from glucose metabolism, particularly 2-pyrrolidone-5-carboxylic acid derived from [14C]glutamine; 2) [14C]glucose metabolite were not quantitatively recovered; 3) the procedure used to isolate the glucose itself produced detritiated, 14C-labeled derivatives of [2-3H,U-14C]glucose. These deficiencies in the isolation procedures could fully account for the observations that were interpreted as evidence of significant glucose 6-phosphate dephosphorylation by glucose-6-phosphatase activity. When glucose was isolated by more rigorous procedures and its purity verified in the present studies, no evidence for such activity in rat brain was found

  6. Valine pyrrolidide preserves intact glucose-dependent insulinotropic peptide and improves abnormal glucose tolerance in minipigs with reduced beta-cell mass

    Larsen, Marianne Olholm; Rolin, Bidda; Ribel, Ulla; Wilken, Michael; Deacon, Carolyn F; Svendsen, Ove; Gotfredsen, Carsten F; Carr, Richard David

    2003-01-01

    for type 2 diabetes was evaluated in a new large animal model of insulin-deficient diabetes and reduced beta-cell mass, the nicotinamide (NIA) (67 mg/kg) and streptozotocin (STZ) (125 mg/kg)-treated minipig, using the DPPIV inhibitor, valine pyrrolidide (VP) (50 mg/kg). VP did not significantly affect...... levels of intact GLP-1 but increased levels of intact GIP (from 4543 +/- 1880 to 9208 +/- 3267 pM x min; P <.01), thus improving glucose tolerance (area under the curve [AUC] for glucose reduced from 1904 +/- 480 to 1582 +/- 353 mM x min; P =.05). VP did not increase insulin levels during the oral......; however, additional mechanisms for the effect of DPPIV inhibition cannot be excluded. The authors conclude that DPPIV inhibitors may be useful to treat type 2 diabetes, even when this is due to reduced beta-cell mass....

  7. Boron-doped graphene quantum dots for selective glucose sensing based on the "abnormal" aggregation-induced photoluminescence enhancement.

    Zhang, Li; Zhang, Zhi-Yi; Liang, Ru-Ping; Li, Ya-Hua; Qiu, Jian-Ding

    2014-05-01

    A hydrothermal approach for the cutting of boron-doped graphene (BG) into boron-doped graphene quantum dots (BGQDs) has been proposed. Various characterizations reveal that the boron atoms have been successfully doped into graphene structures with the atomic percentage of 3.45%. The generation of boronic acid groups on the BGQDs surfaces facilitates their application as a new photoluminescence (PL) probe for label free glucose sensing. It is postulated that the reaction of the two cis-diol units in glucose with the two boronic acid groups on the BGQDs surfaces creates structurally rigid BGQDs-glucose aggregates, restricting the intramolecular rotations and thus resulting in a great boost in the PL intensity. The present unusual "aggregation-induced PL increasing" sensing process excludes any saccharide with only one cis-diol unit, as manifested by the high specificity of BGQDs for glucose over its close isomeric cousins fructose, galactose, and mannose. It is believed that the doping of boron can introduce the GQDs to a new kind of surface state and offer great scientific insights to the PL enhancement mechanism with treatment of glucose. PMID:24708154

  8. A comparison between the impact of two types of dietary protein on brain glucose concentrations and oxidative stress in high fructose-induced metabolic syndrome rats

    MADANI, ZOHRA; Malaisse, Willy J.; AIT-YAHIA, DALILA

    2015-01-01

    The present study explored the potential of fish proteins to counteract high glucose levels and oxidative stress induced by fructose in the brain. A total of 24 male Wistar rats consumed sardine protein or casein with or without high fructose (64%). After 2 months, brain tissue was used for analyses. The fructose rats exhibited an increase in body mass index (BMI), body weight, absolute and relative brain weights and brain glucose; however, there was a decrease in food and water intake. Fruct...

  9. Can ketones compensate for deteriorating brain glucose uptake during aging? Implications for the risk and treatment of Alzheimer's disease.

    Cunnane, Stephen C; Courchesne-Loyer, Alexandre; St-Pierre, Valérie; Vandenberghe, Camille; Pierotti, Tyler; Fortier, Mélanie; Croteau, Etienne; Castellano, Christian-Alexandre

    2016-03-01

    Brain glucose uptake is impaired in Alzheimer's disease (AD). A key question is whether cognitive decline can be delayed if this brain energy defect is at least partly corrected or bypassed early in the disease. The principal ketones (also called ketone bodies), β-hydroxybutyrate and acetoacetate, are the brain's main physiological alternative fuel to glucose. Three studies in mild-to-moderate AD have shown that, unlike with glucose, brain ketone uptake is not different from that in healthy age-matched controls. Published clinical trials demonstrate that increasing ketone availability to the brain via moderate nutritional ketosis has a modest beneficial effect on cognitive outcomes in mild-to-moderate AD and in mild cognitive impairment. Nutritional ketosis can be safely achieved by a high-fat ketogenic diet, by supplements providing 20-70 g/day of medium-chain triglycerides containing the eight- and ten-carbon fatty acids octanoate and decanoate, or by ketone esters. Given the acute dependence of the brain on its energy supply, it seems reasonable that the development of therapeutic strategies aimed at AD mandates consideration of how the underlying problem of deteriorating brain fuel supply can be corrected or delayed. PMID:26766547

  10. Abnormal release of incretins and cortisol after oral glucose in subjects with insulin-resistant myotonic dystrophy

    Johansson, Asa; Olsson, Tommy; Cederquist, Kristina;

    2002-01-01

    interesting model for the study of hormonal perturbations accompanying marked insulin resistance without concomitant diabetes is myotonic dystrophy (DM1). DESIGN: The work was carried out in an out-patient setting. METHODS: An oral glucose tolerance test was performed in 18 males with DM1 and 18 controls to...... examine the release of incretins and counter-regulatory hormones. Genetic analyses were also performed in patients. RESULTS: We found that the increment in GLP-1 after oral glucose was significantly greater in patients, while there was no significant difference in GIP or glucagon responses between...... patients and controls, although long CTG repeat expansions were associated with a more pronounced GIP response. Interestingly, the GLP-1 response to oral glucose correlated with the insulin response in patients but not in controls whereas, in controls, the insulin response closely correlated with the GIP...

  11. Abnormal brain processing of pain in migraine without aura: a high-density EEG brain mapping study

    Egsgaard, L L; Jensen, R; Buchgreitz, L; Egsgaard, Line Lindhardt; Jensen, Rigmor Højland; Arendt-Nielsen, L; Bendtsen, L

    2010-01-01

    In the present study we used high-density EEG brain mapping to investigate spatio-temporal aspects of brain activity in response to experimentally induced muscle pain in 17 patients with migraine without aura and 15 healthy controls. Painful electrical stimuli were applied to the trapezius muscle...

  12. Neuromyelitis optica: brain abnormalities in a Brazilian cohort Neuromielite óptica: alterações encefálicas em pacientes brasileiros

    Denis Bernardi Bichuetti; René Leandro Magalhães Rivero; Daniel May Oliveira; Nilton Amorin de Souza; Nitamar Abdala; Enedina Maria Lobato de Oliveira; Alberto Alain Gabbai

    2008-01-01

    Neuromyelitis optica (NMO) is a demyelinating disease consisting of relapsing-remitting optic neuritis and myelitis with a more severe course than Multiple Sclerosis. Recently, it has been shown that almost 50% of patients with NMO can have brain magnetic resonance imaging (MRI) abnormalities. We report on six Brazilian patients with NMO, fulfilling the 1999 Wingerchuck criteria for this disease, with abnormal brain MRI and discuss their clinical and radiological features.Neuromielite óptica ...

  13. Prevalence of endocrine diseases and abnormal glucose tolerance tests in 340 Caucasian premenopausal women with hirsutism as the referral diagnosis

    Glintborg, Dorte; Henriksen, Jan Erik; Andersen, Marianne;

    2004-01-01

    capillary blood glucose. RESULT(S): Two hundred one patients were diagnosed as having idiopathic hirsutism (IH) and 134 as having polycystic ovary syndrome (PCOS). End diagnosis: prolactinoma: n = 1, Cushing's syndrome: n = 1, androgen-producing ovarian tumor: n = 1, late-onset 21-hydroxylase defects: n = 2...

  14. Abnormal face identity coding in the middle fusiform gyrus of two brain-damaged prosopagnosic patients.

    Steeves, J.; Dricot, L.; Goltz, H.C.; Sorger, B; Peters, J.; Milner, A D; Goodale, M. A.; Goebel, R.; B Rossion

    2009-01-01

    We report a functional magnetic resonance imaging (fMRI) adaptation study of two well-described patients, DF and PS, who present face identity recognition impairments (prosopagnosia) following brain-damage. Comparing faces to non-face objects elicited activation in all visual areas of the cortical face processing network that were spared subsequent to brain damage. The common brain lesion in the two patients was in the right inferior occipital cortex, in the territory of the right “occipital ...

  15. Brain region-specificity of palmitic acid-induced abnormalities associated with Alzheimer's disease

    Melrose Joseph; Balu Deebika; Patil Sachin; Chan Christina

    2008-01-01

    Abstract Background Alzheimer's disease (AD) is a progressive, neurodegenerative disease mostly affecting the basal forebrain, cortex and hippocampus whereas the cerebellum is relatively spared. The reason behind this region-specific brain damage in AD is not well understood. Here, we report our data suggesting "differential free fatty acid metabolism in the different brain areas" as a potentially important factor in causing the region-specific damage observed in AD brain. Findings The astrog...

  16. Single-subject-based whole-brain MEG slow-wave imaging approach for detecting abnormality in patients with mild traumatic brain injury

    Ming-Xiong Huang

    2014-01-01

    Full Text Available Traumatic brain injury (TBI is a leading cause of sustained impairment in military and civilian populations. However, mild TBI (mTBI can be difficult to detect using conventional MRI or CT. Injured brain tissues in mTBI patients generate abnormal slow-waves (1–4 Hz that can be measured and localized by resting-state magnetoencephalography (MEG. In this study, we develop a voxel-based whole-brain MEG slow-wave imaging approach for detecting abnormality in patients with mTBI on a single-subject basis. A normative database of resting-state MEG source magnitude images (1–4 Hz from 79 healthy control subjects was established for all brain voxels. The high-resolution MEG source magnitude images were obtained by our recent Fast-VESTAL method. In 84 mTBI patients with persistent post-concussive symptoms (36 from blasts, and 48 from non-blast causes, our method detected abnormalities at the positive detection rates of 84.5%, 86.1%, and 83.3% for the combined (blast-induced plus with non-blast causes, blast, and non-blast mTBI groups, respectively. We found that prefrontal, posterior parietal, inferior temporal, hippocampus, and cerebella areas were particularly vulnerable to head trauma. The result also showed that MEG slow-wave generation in prefrontal areas positively correlated with personality change, trouble concentrating, affective lability, and depression symptoms. Discussion is provided regarding the neuronal mechanisms of MEG slow-wave generation due to deafferentation caused by axonal injury and/or blockages/limitations of cholinergic transmission in TBI. This study provides an effective way for using MEG slow-wave source imaging to localize affected areas and supports MEG as a tool for assisting the diagnosis of mTBI.

  17. Influence of diabetes surgery on a gut-brain-liver axis regulating food intake and internal glucose production

    G. Mithieux

    2013-01-01

    Full Text Available It has long been known that the brain, especially the hypothalamus, can modulate both insulin secretion and hepatic glucose fluxes, via the modulation of the sympathetic system (promoting glycogen breakdown and the parasympathetic system (stimulating glycogen deposition. Central insulin signalling or hypothalamic long-chain fatty acid oxidation can also control insulin's suppression of endogenous glucose production. Interestingly, intestinal gluconeogenesis can initiate a portal glucose signal, transmitted to the hypothalamus via the gastrointestinal nervous system. This signal may modulate the sensation of hunger and satiety and insulin sensitivity of hepatic glucose fluxes as well. The rapid improvements of glucose control taking place after gastric bypass surgery in obese diabetics has long been mysterious. Actually, the specificity of gastric bypass in obese diabetic mice relates to major changes in the sensations of hunger and to rapid improvement in insulin sensitivity of endogenous glucose production. We have shown that an induction of intestinal gluconeogenesis plays a major role in these phenomena. In addition, the restoration of the secretion of glucagon like peptide 1 and consequently of insulin plays a key additional role to improve postprandial glucose tolerance. Therefore, a synergy between incretin effects and intestinal gluconeogenesis might be a key feature explaining the rapid improvement of glucose control in obese diabetics after bypass surgery.

  18. Monitoring arterio-venous differences of glucose and lactate in the anesthetized rat with or without brain damage with ultrafiltration and biosensor technology

    Leegsma-Vogt, G; Venema, K; Postema, F; Korf, J

    2001-01-01

    Continuous monitoring of arterio-venous glucose and lactate differences may serve as a diagnostic tool to assess normal brain function and brain pathology. We describe a method and some results obtained with arterio-venous measurements of glucose and lactate in the blood of the halothane-anesthetize

  19. Characterization of subtle brain abnormalities in a mouse model of Hedgehog pathway antagonist-induced cleft lip and palate.

    Robert J Lipinski

    Full Text Available Subtle behavioral and cognitive deficits have been documented in patient cohorts with orofacial clefts (OFCs. Recent neuroimaging studies argue that these traits are associated with structural brain abnormalities but have been limited to adolescent and adult populations where brain plasticity during infancy and childhood may be a confounding factor. Here, we employed high resolution magnetic resonance microscopy to examine primary brain morphology in a mouse model of OFCs. Transient in utero exposure to the Hedgehog (Hh signaling pathway antagonist cyclopamine resulted in a spectrum of facial dysmorphology, including unilateral and bilateral cleft lip and palate, cleft of the secondary palate only, and a non-cleft phenotype marked by midfacial hypoplasia. Relative to controls, cyclopamine-exposed fetuses exhibited volumetric differences in several brain regions, including hypoplasia of the pituitary gland and olfactory bulbs, hyperplasia of the forebrain septal region, and expansion of the third ventricle. However, in affected fetuses the corpus callosum was intact and normal division of the forebrain was observed. This argues that temporally-specific Hh signaling perturbation can result in typical appearing OFCs in the absence of holoprosencephaly--a condition classically associated with Hh pathway inhibition and frequently co-occurring with OFCs. Supporting the premise that some forms of OFCs co-occur with subtle brain malformations, these results provide a possible ontological basis for traits identified in clinical populations. They also argue in favor of future investigations into genetic and/or environmental modulation of the Hh pathway in the etiopathogenesis of orofacial clefting.

  20. An a contrario approach for the detection of patient-specific brain perfusion abnormalities with arterial spin labelling.

    Maumet, Camille; Maurel, Pierre; Ferré, Jean-Christophe; Barillot, Christian

    2016-07-01

    In this paper, we introduce a new locally multivariate procedure to quantitatively extract voxel-wise patterns of abnormal perfusion in individual patients. This a contrario approach uses a multivariate metric from the computer vision community that is suitable to detect abnormalities even in the presence of closeby hypo- and hyper-perfusions. This method takes into account local information without applying Gaussian smoothing to the data. Furthermore, to improve on the standard a contrario approach, which assumes white noise, we introduce an updated a contrario approach that takes into account the spatial coherency of the noise in the probability estimation. Validation is undertaken on a dataset of 25 patients diagnosed with brain tumours and 61 healthy volunteers. We show how the a contrario approach outperforms the massively univariate general linear model usually employed for this type of analysis. PMID:27039702

  1. Evidence that brain glucose availability influences exercise-enhanced extracellular 5-HT level in hippocampus: a microdialysis study in exercising rats.

    Béquet, F; Gomez-Merino, D; Berthelot, M; Guezennec, C Y

    2002-09-01

    The relationship between brain glucose and serotonin is still unclear and no direct evidence of an action of brain glucose on serotonergic metabolism in central fatigue phenomena has been shown yet. In order to determine whether or not brain glucose could influence the brain 5-hydroxytryptamine (5-HT) system, we have monitored in microdialysis the effects of a direct injection of glucose in rat brain hippocampus on serotonergic metabolism [i.e. 5-HT, 5-hydroxyindoleacetic acid (5-HIAA) and tryptophan (TRP)], during high intensive treadmill running. The injection was performed just before and after exercise. We have shown that glucose induced a decrease of brain 5-HT levels to a minimum of 73.0 +/- 3.5% of baseline after the first injection (P exercise-induced 5-HT enhanced levels. We have observed the same phenomenon concerning the 5-HIAA, but brain TRP levels were not decreased by the injections. In conclusion, this study demonstrates that brain glucose can act on serotonergic metabolism and thus can prevent exercise-induced increase of 5-HT levels. The results also suggest that extracellular brain glucose does not act on the synthesis way of 5-HT, but probably on the release/reuptake system. PMID:12193220

  2. Dyslexic brain activation abnormalities in deep and shallow orthographies: A meta-analysis of 28 functional neuroimaging studies.

    Martin, Anna; Kronbichler, Martin; Richlan, Fabio

    2016-07-01

    We used coordinate-based meta-analysis to objectively quantify commonalities and differences of dyslexic functional brain abnormalities between alphabetic languages differing in orthographic depth. Specifically, we compared foci of under- and overactivation in dyslexic readers relative to nonimpaired readers reported in 14 studies in deep orthographies (DO: English) and in 14 studies in shallow orthographies (SO: Dutch, German, Italian, Swedish). The separate meta-analyses of the two sets of studies showed universal reading-related dyslexic underactivation in the left occipitotemporal cortex (including the visual word form area (VWFA)). The direct statistical comparison revealed higher convergence of underactivation for DO compared with SO in bilateral inferior parietal regions, but this abnormality disappeared when foci resulting from stronger dyslexic task-negative activation (i.e., deactivation relative to baseline) were excluded. Higher convergence of underactivation for DO compared with SO was further identified in the left inferior frontal gyrus (IFG) pars triangularis, left precuneus, and right superior temporal gyrus, together with higher convergence of overactivation in the left anterior insula. Higher convergence of underactivation for SO compared with DO was found in the left fusiform gyrus, left temporoparietal cortex, left IFG pars orbitalis, and left frontal operculum, together with higher convergence of overactivation in the left precentral gyrus. Taken together, the findings support the notion of a biological unity of dyslexia, with additional orthography-specific abnormalities and presumably different compensatory mechanisms. The results are discussed in relation to current functional neuroanatomical models of developmental dyslexia. Hum Brain Mapp 37:2676-2699, 2016. © 2016 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc. PMID:27061464

  3. Brain perfusion abnormalities associated to drug abuse in recent abstinent patients using SPECT 99m Tc-ethylen-cysteinate-dimer (ECD)

    Several substances may produce brain perfusion abnormalities in drug-dependent patients. Their mechanism is unclear and several causes might be involved, especially vasospasm in cocaine consumption. Goal: To characterize residual brain perfusion abnormalities in substance-dependent population. We analyzed brain perfusion in 100 dependant patients (DSM-IV criteria) following a month of strict in-hospital abstinence (age:35±12 y.o.; 86% men); 55% corresponded to poly-drug dependents, mainly to cocaine, alcohol and cannabis; 44% mono-drug users, mostly to alcohol. Results: Single Photon Emission Computed Tomography (SPECT) with 99mTc-ethylen-cysteinate-dimer (ECD) was abnormal in 54% of the cases, with bilateral cortical hypo-perfusion in 89%, focal in 54% and diffuse in 46% of them, with moderate or severe intensity in 61%. The abnormal perfusion group's age was 38±12 versus 31±10 years in the normal SPECT group (P=0.005) with a consumption period of 16±11 versus 11±8 years, respectively (P=0.043). Only 29% of women had abnormal perfusion versus 58% of men (P=0.047). Abnormal brain perfusion in 64% of mono and 45% in poly-drug dependents (P=0.07). Psychometric tests performed in 25 patients demonstrated association between perfusion defects and cognitive abnormalities. Relative risk for abnormal psychometric test was 2.5 [95%;CI=1.1-5.6] for abnormal SPECT. Conclusion: Dependent population after a month of abstinence persists with cortical brain perfusion abnormalities, associated to age, sex and type of drug consumption

  4. Red-backed vole brain promotes highly efficient in vitro amplification of abnormal prion protein from macaque and human brains infected with variant Creutzfeldt-Jakob disease agent.

    Nemecek, Julie; Nag, Nabanita; Carlson, Christina M.; Schneider, Jay R.; Heisey, Dennis M.; Johnson, Christopher J.; Asher, David M.; Gregori, Luisa

    2013-01-01

    Rapid antemortem tests to detect individuals with transmissible spongiform encephalopathies (TSE) would contribute to public health. We investigated a technique known as protein misfolding cyclic amplification (PMCA) to amplify abnormal prion protein (PrPTSE) from highly diluted variant Creutzfeldt-Jakob disease (vCJD)-infected human and macaque brain homogenates, seeking to improve the rapid detection of PrPTSE in tissues and blood. Macaque vCJD PrPTSE did not amplify using normal macaque brain homogenate as substrate (intraspecies PMCA). Next, we tested interspecies PMCA with normal brain homogenate of the southern red-backed vole (RBV), a close relative of the bank vole, seeded with macaque vCJD PrPTSE. The RBV has a natural polymorphism at residue 170 of the PrP-encoding gene (N/N, S/S, and S/N). We investigated the effect of this polymorphism on amplification of human and macaque vCJD PrPTSE. Meadow vole brain (170N/N PrP genotype) was also included in the panel of substrates tested. Both humans and macaques have the same 170S/S PrP genotype. Macaque PrPTSE was best amplified with RBV 170S/S brain, although 170N/N and 170S/N were also competent substrates, while meadow vole brain was a poor substrate. In contrast, human PrPTSE demonstrated a striking narrow selectivity for PMCA substrate and was successfully amplified only with RBV 170S/S brain. These observations suggest that macaque PrPTSE was more permissive than human PrPTSE in selecting the competent RBV substrate. RBV 170S/S brain was used to assess the sensitivity of PMCA with PrPTSE from brains of humans and macaques with vCJD. PrPTSE signals were reproducibly detected by Western blot in dilutions through 10-12 of vCJD-infected 10% brain homogenates. This is the first report showing PrPTSE from vCJD-infected human and macaque brains efficiently amplified with RBV brain as the substrate. Based on our estimates, PMCA showed a sensitivity that might be sufficient to detect PrPTSE in v

  5. Stability of regional cerebral glucose metabolism in the normal brain measured by positron emission tomography

    Cerebral glucose utilization (LCMRGI) was measured using the [18F]fluorodeoxyglucose method with PET in two groups of ten healthy young volunteers, each scanned in a resting state under different methodological conditions. In addition, five subjects had a second scan within 48 hr. Mean hemispheric values averaged 45.8 +/- 3.3 mumol/100 g/min in the right cerebral hemisphere and 47.0 +/- 3.7 mumol/100 g/min in the left hemisphere. A four-way analysis of variance (group, sex, region, hemisphere) was carried out on the results using three different methods of data manipulation: (a) the raw values of glucose utilization, (b) LCMRGI values normalized by the mean hemispheric gray matter LCMRGI value, and (c) log transformed LCMRGI values. For all analysis techniques, significantly higher LCMRGI values were consistently seen in the left mid and posterior temporal area and caudate nucleus relative to the right, and in the right occipital region relative to the left. The coefficient of variation of intrasubject regional differences (9.9%) was significantly smaller than the coefficient of variation for regions between subjects (16.5%). No differences were noted between the sexes and no effect of repeat procedures was seen in subjects having multiple scans. In addition, inter-regional LCMRGI correlations were examined both in values from the 20 normal subjects, as well as in a set of hypothetical abnormal values. Results were compared with those reported from other PET centers; despite certain methodological differences, the intersubject and inter-regional variation of LCMRGI is fairly constant

  6. Brain abnormalities underlying limb apraxia in corticobasal degeneration: an fMRI study

    Beauchet, Olivier; Giraux, Pascal; Schneider, Fabien; Peyron, Roland; Barral, Fabrice; Laurent, Bernard

    2001-01-01

    Corticobasal degeneration is a neurodegenerative disease characterized, by cortical dysfunction and extrapyramidal signs. The most consistent symptom is a unilateral limb apraxia, which consists of an isolated disorder of gestural production involving primarily the upper limb. The objective of this study is to investigate the functional abnormalities that may underlie motor dysfunction, and those which might correlate to the severity of limb apraxia.

  7. Structural brain abnormalities in first episode schizophrenia. Is it just illness?

    Rais, M.

    2011-01-01

    Although neuroimaging studies consistently demonstrated brain volume alterations in patients with schizophrenia, confounding factors like age, IQ, duration of the illness, use of antipsychotic medication and drug (ab-)use might partly explain these results. Therefore, the relation between confoundin

  8. Metabolic abnormalities in lobar and subcortical brain regions of abstinent polysubstance users: Magnetic resonance spectroscopic imaging

    Abé, C.; Mon, A.; Hoefer, ME; Durazzo, TC; Pennington, DL; Schmidt, TP; Meyerhoff, DJ

    2013-01-01

    Aims: The aim of the study was to explore neurometabolic and associated cognitive characteristics of patients with polysubstance use (PSU) in comparison with patients with predominant alcohol use using proton magnetic resonance spectroscopy. Methods: Brain metabolite concentrations were examined in lobar and subcortical brain regions of three age-matched groups: 1-monthabstinent alcohol-dependent PSU, 1-month-abstinent individuals dependent on alcohol alone (ALC) and light drinking controls (...

  9. Metabolic Alterations Induced by Sucrose Intake and Alzheimer’s Disease Promote Similar Brain Mitochondrial Abnormalities

    Carvalho, Cristina; Cardoso, Susana; Correia, Sónia C; Santos, Renato X.; Santos, Maria S.; Baldeiras, Inês; oliveira, catarina r.; Moreira, Paula I.

    2012-01-01

    Evidence shows that diabetes increases the risk of developing Alzheimer’s disease (AD). Many efforts have been done to elucidate the mechanisms linking diabetes and AD. To demonstrate that mitochondria may represent a functional link between both pathologies, we compared the effects of AD and sucrose-induced metabolic alterations on mouse brain mitochondrial bioenergetics and oxidative status. For this purpose, brain mitochondria were isolated from wild-type (WT), triple transgenic AD (3xTg-A...

  10. Study of the brain glucose metabolism in different stage of mixed-type multiple system atrophy

    Objective: To investigate the brain glucose metabolism in different stage of mixed-type multiple system atrophy (MSA). Methods: Forty-six MSA patients with cerebellar or Parkinsonian symptoms and 18 healthy controls with similar age as patients were included. According to the disease duration,the patients were divided into three groups: group 1 (≤ 12 months, n=14), group 2 (13-24 months, n=13), group 3 (≥ 25 months, n=19). All patients and controls underwent 18F-FDG PET/CT brain imaging. To compare metabolic distributions between different groups, SPM 8 software and two-sample t test were used for image data analysis. When P<0.005, the result was considered statistically significant. Results: At the level of P<0.005, the hypometabolism in group 1 (all t>3.49) was identified in the frontal lobe, lateral temporal lobe, insula lobe, anterior cingulate cortex, caudate nucleus and anterior cerebellar hemisphere. The regions of hypometabolism extended to posterolateral putamen and part of posterior cerebellar hemisphere in group 2 (all t>3.21). In group 3, the whole parts of putamen and cerebellar hemisphere were involved as hypometabolism (all t>4.08). In addition to the hypometabolism regions, there were also stabled hypermetabolism regions mainly in the parietal lobe, medial temporal lobe and the thalamus in all patient groups (all t>3.27 in group 1, all t>3.02 in group 2,all t>3.30 in group 3). Conclusions: Disease duration is closely related to the FDG metabolism in the MSA patients. Frontal lobe, lateral temporal lobe, anterior cingulate cortex and caudate nucleus can be involved at early stage of the disease. Putaminal hypometabolism begins in its posterolateral part. Cerebellar hypometabolism occurs early at its anterior part. Besides, thalamus shows hypermetabolism in the whole duration. 18F-FDG metabolic changes of brain can reflect the development of mixed-type MSA. (authors)

  11. Abnormal baseline brain activity in patients with neuromyelitis optica: A resting-state fMRI study

    Purpose: Recent immunopathologic and MRI findings suggest that tissue damage in neuromyelitis optica (NMO) is not limited to spinal cord and optic nerve, but also in brain. Baseline brain activity can reveal the brain functional changes to the tissue damages and give clues to the pathophysiology of NMO, however, it has never been explored by resting-state functional MRI (fMRI). We used regional amplitude of low frequency fluctuation (ALFF) as an index in resting-state fMRI to investigate how baseline brain activity changes in patients with NMO. Methods: Resting-state fMRIs collected from seventeen NMO patients and seventeen age- and sex-matched normal controls were compared to investigate the ALFF difference between the two groups. The relationships between ALFF in regions with significant group differences and the EDSS (Expanded Disability Status Scale), disease duration were further explored. Results: Our results showed that NMO patients had significantly decreased ALFF in precuneus, posterior cingulate cortex (PCC) and lingual gyrus; and increased ALFF in middle frontal gyrus, caudate nucleus and thalamus, compared to normal controls. Moderate negative correlations were found between the EDSS and ALFF in the left middle frontal gyrus (r = -0.436, p = 0.040) and the left caudate (r = -0.542, p = 0.012). Conclusion: The abnormal baseline brain activity shown by resting-state fMRI in NMO is relevant to cognition, visual and motor systems. It implicates a complex baseline brain status of both functional impairments and adaptations caused by tissue damages in these systems, which gives clues to the pathophysiology of NMO.

  12. Motor Network Plasticity and Low-Frequency Oscillations Abnormalities in Patients with Brain Gliomas: A Functional MRI Study

    Niu, Chen; Zhang, Ming; Min, Zhigang; Rana, Netra; Zhang, Qiuli; Liu, Xin; Li, Min; Lin, Pan

    2014-01-01

    Brain plasticity is often associated with the process of slow-growing tumor formation, which remodels neural organization and optimizes brain network function. In this study, we aimed to investigate whether motor function plasticity would display deficits in patients with slow-growing brain tumors located in or near motor areas, but who were without motor neurological deficits. We used resting-state functional magnetic resonance imaging to probe motor networks in 15 patients with histopathologically confirmed brain gliomas and 15 age-matched healthy controls. All subjects performed a motor task to help identify individual motor activity in the bilateral primary motor cortex (PMC) and supplementary motor area (SMA). Frequency-based analysis at three different frequencies was then used to investigate possible alterations in the power spectral density (PSD) of low-frequency oscillations. For each group, the average PSD was determined for each brain region and a nonparametric test was performed to determine the difference in power between the two groups. Significantly reduced inter-hemispheric functional connectivity between the left and right PMC was observed in patients compared with controls (P<0.05). We also found significantly decreased PSD in patients compared to that in controls, in all three frequency bands (low: 0.01–0.02 Hz; middle: 0.02–0.06 Hz; and high: 0.06–0.1 Hz), at three key motor regions. These findings suggest that in asymptomatic patients with brain tumors located in eloquent regions, inter-hemispheric connection may be more vulnerable. A comparison of the two approaches indicated that power spectral analysis is more sensitive than functional connectivity analysis for identifying the neurological abnormalities underlying motor function plasticity induced by slow-growing tumors. PMID:24806463

  13. Motor network plasticity and low-frequency oscillations abnormalities in patients with brain gliomas: a functional MRI study.

    Chen Niu

    Full Text Available Brain plasticity is often associated with the process of slow-growing tumor formation, which remodels neural organization and optimizes brain network function. In this study, we aimed to investigate whether motor function plasticity would display deficits in patients with slow-growing brain tumors located in or near motor areas, but who were without motor neurological deficits. We used resting-state functional magnetic resonance imaging to probe motor networks in 15 patients with histopathologically confirmed brain gliomas and 15 age-matched healthy controls. All subjects performed a motor task to help identify individual motor activity in the bilateral primary motor cortex (PMC and supplementary motor area (SMA. Frequency-based analysis at three different frequencies was then used to investigate possible alterations in the power spectral density (PSD of low-frequency oscillations. For each group, the average PSD was determined for each brain region and a nonparametric test was performed to determine the difference in power between the two groups. Significantly reduced inter-hemispheric functional connectivity between the left and right PMC was observed in patients compared with controls (P<0.05. We also found significantly decreased PSD in patients compared to that in controls, in all three frequency bands (low: 0.01-0.02 Hz; middle: 0.02-0.06 Hz; and high: 0.06-0.1 Hz, at three key motor regions. These findings suggest that in asymptomatic patients with brain tumors located in eloquent regions, inter-hemispheric connection may be more vulnerable. A comparison of the two approaches indicated that power spectral analysis is more sensitive than functional connectivity analysis for identifying the neurological abnormalities underlying motor function plasticity induced by slow-growing tumors.

  14. Abnormal baseline brain activity in patients with neuromyelitis optica: A resting-state fMRI study

    Liu Yaou [Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing 100053 (China); Liang Peipeng [Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing 100053 (China); International WIC institute, Beijing University of Technology, Beijing 100024 (China); Duan Yunyun; Jia Xiuqin; Wang Fei; Yu Chunshui; Qin Wen [Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing 100053 (China); Dong Huiqing; Ye Jing [Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053 (China); Li Kuncheng, E-mail: likuncheng1955@yahoo.com.cn [Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing 100053 (China)

    2011-11-15

    Purpose: Recent immunopathologic and MRI findings suggest that tissue damage in neuromyelitis optica (NMO) is not limited to spinal cord and optic nerve, but also in brain. Baseline brain activity can reveal the brain functional changes to the tissue damages and give clues to the pathophysiology of NMO, however, it has never been explored by resting-state functional MRI (fMRI). We used regional amplitude of low frequency fluctuation (ALFF) as an index in resting-state fMRI to investigate how baseline brain activity changes in patients with NMO. Methods: Resting-state fMRIs collected from seventeen NMO patients and seventeen age- and sex-matched normal controls were compared to investigate the ALFF difference between the two groups. The relationships between ALFF in regions with significant group differences and the EDSS (Expanded Disability Status Scale), disease duration were further explored. Results: Our results showed that NMO patients had significantly decreased ALFF in precuneus, posterior cingulate cortex (PCC) and lingual gyrus; and increased ALFF in middle frontal gyrus, caudate nucleus and thalamus, compared to normal controls. Moderate negative correlations were found between the EDSS and ALFF in the left middle frontal gyrus (r = -0.436, p = 0.040) and the left caudate (r = -0.542, p = 0.012). Conclusion: The abnormal baseline brain activity shown by resting-state fMRI in NMO is relevant to cognition, visual and motor systems. It implicates a complex baseline brain status of both functional impairments and adaptations caused by tissue damages in these systems, which gives clues to the pathophysiology of NMO.

  15. Microstructural callosal abnormalities in normal-appearing brain of children with developmental delay detected with diffusion tensor imaging

    Callosal fibres play an important role in psychomotor and cognitive functions. The purpose of this study was to investigate possible microstructural abnormalities of the corpus callosum in children with developmental delay, who have normal conventional brain MR imaging results. Seventeen pediatric patients (aged 1-9 years) with developmental delay were studied. Quantitative T2 and fractional anisotropy (FA) values were measured at the genu and splenium of the corpus callosum (CC). Fibre tracking, volumetric determination, as well as fibre density calculations of the CC were also carried out. The results were compared with those of the age-matched healthy subjects. A general elevation of T2 relaxation times (105 ms in patients vs. 95 ms in controls) and reduction of the FA values (0.66 in patients vs. 0.74 in controls) at the genu of the CC were found in patients. Reductions of the fibre numbers (5,464 in patients vs. 8,886 in controls) and volumes (3,415 ml in patients vs. 5,235 ml in controls) of the CC were found only in patients older than 5 years. The study indicates that despite their inconspicuous findings in conventional MRI microstructural brain abnormalities are evident in these pediatric patients suffering from developmental delay. (orig.)

  16. Microstructural callosal abnormalities in normal-appearing brain of children with developmental delay detected with diffusion tensor imaging

    Ding, Xiao-Qi [Hannover Medical School, Institute of Diagnostic and Interventional Neuroradiology, Hannover (Germany); University Medical Center Hamburg-Eppendorf, Department of Neuroradiology, Hamburg (Germany); Sun, Yimeng; Illies, Till; Zeumer, Hermann; Fiehler, Jens [University Medical Center Hamburg-Eppendorf, Department of Neuroradiology, Hamburg (Germany); Kruse, Bernd [University Medical Center Hamburg-Eppendorf, Department of Pediatrics, Hamburg (Germany); Lanfermann, Heinrich [Hannover Medical School, Institute of Diagnostic and Interventional Neuroradiology, Hannover (Germany)

    2009-06-15

    Callosal fibres play an important role in psychomotor and cognitive functions. The purpose of this study was to investigate possible microstructural abnormalities of the corpus callosum in children with developmental delay, who have normal conventional brain MR imaging results. Seventeen pediatric patients (aged 1-9 years) with developmental delay were studied. Quantitative T2 and fractional anisotropy (FA) values were measured at the genu and splenium of the corpus callosum (CC). Fibre tracking, volumetric determination, as well as fibre density calculations of the CC were also carried out. The results were compared with those of the age-matched healthy subjects. A general elevation of T2 relaxation times (105 ms in patients vs. 95 ms in controls) and reduction of the FA values (0.66 in patients vs. 0.74 in controls) at the genu of the CC were found in patients. Reductions of the fibre numbers (5,464 in patients vs. 8,886 in controls) and volumes (3,415 ml in patients vs. 5,235 ml in controls) of the CC were found only in patients older than 5 years. The study indicates that despite their inconspicuous findings in conventional MRI microstructural brain abnormalities are evident in these pediatric patients suffering from developmental delay. (orig.)

  17. Abnormal neurological exam findings in individuals with mild traumatic brain injury (mTBI) versus psychiatric and healthy controls.

    Silva, Marc A; Donnell, Alison J; Kim, Michelle S; Vanderploeg, Rodney D

    2012-01-01

    In those with a history of mild traumatic brain injury (mTBI), cognitive and emotional disturbances are often misattributed to that preexisting injury. However, causal determinations of current symptoms cannot be conclusively determined because symptoms are often nonspecific to etiology and offer virtually no differential diagnostic value in postacute or chronic phases. This population-based study examined whether the presence of abnormalities during neurological examination would distinguish between mTBI (in the chronic phase), healthy controls, and selected psychiatric conditions. Retrospective analysis of data from 4462 community-dwelling Army veterans was conducted. Diagnostically unique groups were compared on examination of cranial nerve function and other neurological signs. Results demonstrated that individuals with mTBI were no more likely than those with a major depressive disorder, generalized anxiety disorder, posttraumatic stress disorder, or somatoform disorder to show any abnormality. Thus, like self-reported cognitive and emotional symptoms, the presence of cranial nerve or other neurological abnormalities offers no differential diagnostic value. Clinical implications and study limitations are presented. PMID:23020281

  18. Abnormal EEG Complexity and Functional Connectivity of Brain in Patients with Acute Thalamic Ischemic Stroke

    Liu, Shuang; Guo, Jie; Meng, Jiayuan; Wang, Zhijun; Yao, Yang; Yang, Jiajia; Qi, Hongzhi; Ming, Dong

    2016-01-01

    Ischemic thalamus stroke has become a serious cardiovascular and cerebral disease in recent years. To date the existing researches mostly concentrated on the power spectral density (PSD) in several frequency bands. In this paper, we investigated the nonlinear features of EEG and brain functional connectivity in patients with acute thalamic ischemic stroke and healthy subjects. Electroencephalography (EEG) in resting condition with eyes closed was recorded for 12 stroke patients and 11 healthy subjects as control group. Lempel-Ziv complexity (LZC), Sample Entropy (SampEn), and brain network using partial directed coherence (PDC) were calculated for feature extraction. Results showed that patients had increased mean LZC and SampEn than the controls, which implied the stroke group has higher EEG complexity. For the brain network, the stroke group displayed a trend of weaker cortical connectivity, which suggests a functional impairment of information transmission in cortical connections in stroke patients. These findings suggest that nonlinear analysis and brain network could provide essential information for better understanding the brain dysfunction in the stroke and assisting monitoring or prognostication of stroke evolution.

  19. Tinnitus perception and distress is related to abnormal spontaneous brain activity as measured by magnetoencephalography.

    2005-06-01

    Full Text Available BACKGROUND: The neurophysiological mechanisms underlying tinnitus perception are not well understood. Surprisingly, there have been no group studies comparing abnormalities in ongoing, spontaneous neuronal activity in individuals with and without tinnitus perception. METHODS AND FINDINGS: Here, we show that the spontaneous neuronal activity of a group of individuals with tinnitus (n = 17 is characterised by a marked reduction in alpha (8-12 Hz power together with an enhancement in delta (1.5-4 Hz as compared to a normal hearing control group (n = 16. This pattern was especially pronounced for temporal regions. Moreover, correlations with tinnitus-related distress revealed strong associations with this abnormal spontaneous activity pattern, particularly in right temporal and left frontal areas. Overall, effects were stronger for the alpha than for the delta frequency band. A data stream of 5 min, recorded with a whole-head neuromagnetometer under a resting condition, was sufficient to extract the marked differences. CONCLUSIONS: Despite some limitations, there are arguments that the regional pattern of abnormal spontaneous activity we found could reflect a tinnitus-related cortical network. This finding, which suggests that a neurofeedback approach could reduce the adverse effects of this disturbing condition, could have important implications for the treatment of tinnitus.

  20. Predictors of Abnormal Neuroimaging of the Brain in Children With Epilepsy Aged 1 Month to 2 Years: Useful Clues in a Resource-Limited Setting.

    Sanmaneechai, Oranee; Danchaivijitr, Nasuda; Likasitwattanakul, Surachai

    2015-10-01

    Neuroimaging should be performed on infants with seizure. However, there are economic limitations in performing neuroimaging in a resource-limited setting. The younger the age, the higher the risk of having abnormal neuroimaging. The aim was to determine frequency and predictors of abnormal neuroimaging in children with epilepsy aged 1 month to 2 years. History, physical examination, electroencephalogram (EEG), and neuroimaging were reviewed. Thirty-seven of 49 (76%) had neuroimaging studies; 19 computed tomography (CT), 14 magnetic resonance imaging (MRI), and 4 had both. Abnormal neuroimaging was found in 19 (51%). Predictors of abnormal neuroimages are developmental delay, abnormal head circumference, and abnormal neurologic examination. Eight children (21%) had lesions on neuroimaging studies that altered or influenced management. Of 8 patients with normal examination and EEG, 1 had a brain tumor and another had arteriovenous malformation. Neuroimaging should be considered as an essential aid in the evaluation of infants with epilepsy, even in a resource-limited setting. PMID:25792429

  1. Synthesis of iodine-123 labeled 3-O-(E)-3-iodopropen-2-yl-D-glucose: A potential new agent for the assessment of glucose transport into the brain and heart using SPECT

    The authors have developed a synthesis of iodine-123 labelled 3-O-(E)-3-iodopropen-2-yl-D-glucose as an analogue of carbon-11 labelled 3-O-methyl-D-glucose, with the objective of achieving high brain and heart uptake. The four reaction steps in the synthesis are discussed and tissue distributions in rats will be presented

  2. Effect of apamin on local rates of glucose utilization in the brain and the spinal cord in rats

    The effects of apamin on local rates of glucose utilization in the brain and spinal cord were studied employing the quantitative autoradiographic deoxyglucose method. Forty-five to 60 min after administration of apamin the animals lost exploratory behaviour, remaining completely immobile, with the 4 limbs overextended, unresponsive to auditory stimuli. Out of 30 neural structures examined, glucose utilization was significantly decreased in the cochlear n., superior olivary n., lateral lemniscus, inferior colliculus, medial geniculate body, fastigal n., globus pallidus, caudate-putamen, n. accumbens and the lumbar ventral horn of the spinal cord. These results show that apamin specifically affects the functional activity of the auditory and motor structures

  3. Co-Localisation of Abnormal Brain Structure and Function in Specific Language Impairment

    Badcock, Nicholas A.; Bishop, Dorothy V. M.; Hardiman, Mervyn J.; Barry, Johanna G.; Watkins, Kate E.

    2012-01-01

    We assessed the relationship between brain structure and function in 10 individuals with specific language impairment (SLI), compared to six unaffected siblings, and 16 unrelated control participants with typical language. Voxel-based morphometry indicated that grey matter in the SLI group, relative to controls, was increased in the left inferior…

  4. Brief Report: Abnormal Association between the Thalamus and Brain Size in Asperger's Disorder

    Hardan, Antonio Y.; Girgis, Ragy R.; Adams, Jason; Gilbert, Andrew R.; Melhem, Nadine M.; Keshavan, Matcheri S.; Minshew, Nancy J.

    2008-01-01

    The objective of this study was to examine the relationship between thalamic volume and brain size in individuals with Asperger's disorder (ASP). Volumetric measurements of the thalamus were performed on MRI scans obtained from 12 individuals with ASP (age range: 10-35 years) and 12 healthy controls (age range: 9-33 years). A positive correlation…

  5. Air Pollution, Cognitive Deficits and Brain Abnormalities: A Pilot Study with Children and Dogs

    Calderon-Garciduenas, Lilian; Mora-Tiscareno, Antonieta; Ontiveros, Esperanza; Gomez-Garza, Gilberto; Barragan-Mejia, Gerardo; Broadway, James; Chapman, Susan; Valencia-Salazar, Gildardo; Jewells, Valerie; Maronpot, Robert R.; Henriquez-Roldan, Carlos; Perez-Guille, Beatriz; Torres-Jardon, Ricardo; Herrit, Lou; Brooks, Diane; Osnaya-Brizuela, Norma; Monroy, Maria E.; Gonzalez-Maciel, Angelica; Reynoso-Robles, Rafael; Villarreal-Calderon, Rafael; Solt, Anna C.; Engle, Randall W.

    2008-01-01

    Exposure to air pollution is associated with neuroinflammation in healthy children and dogs in Mexico City. Comparative studies were carried out in healthy children and young dogs similarly exposed to ambient pollution in Mexico City. Children from Mexico City (n:55) and a low polluted city (n:18) underwent psychometric testing and brain magnetic…

  6. Abnormal Functional MRI BOLD Contrast in the Vegetative State after Severe Traumatic Brain Injury

    Heelmann, Volker

    2010-01-01

    For the rehabilitation process, the treatment of patients surviving brain injury in a vegetative state is still a serious challenge. The aim of this study was to investigate patients exhibiting severely disturbed consciousness using functional magnetic resonance imaging. Five cases of posttraumatic vegetative state and one with minimal…

  7. Abnormal hemodynamic response to forepaw stimulation in rat brain after cocaine injection

    Chen, Wei; Park, Kicheon; Choi, Jeonghun; Pan, Yingtian; Du, Congwu

    2015-03-01

    Simultaneous measurement of hemodynamics is of great importance to evaluate the brain functional changes induced by brain diseases such as drug addiction. Previously, we developed a multimodal-imaging platform (OFI) which combined laser speckle contrast imaging with multi-wavelength imaging to simultaneously characterize the changes in cerebral blood flow (CBF), oxygenated- and deoxygenated- hemoglobin (HbO and HbR) from animal brain. Recently, we upgraded our OFI system that enables detection of hemodynamic changes in response to forepaw electrical stimulation to study potential brain activity changes elicited by cocaine. The improvement includes 1) high sensitivity to detect the cortical response to single forepaw electrical stimulation; 2) high temporal resolution (i.e., 16Hz/channel) to resolve dynamic variations in drug-delivery study; 3) high spatial resolution to separate the stimulation-evoked hemodynamic changes in vascular compartments from those in tissue. The system was validated by imaging the hemodynamic responses to the forepaw-stimulations in the somatosensory cortex of cocaine-treated rats. The stimulations and acquisitions were conducted every 2min over 40min, i.e., from 10min before (baseline) to 30min after cocaine challenge. Our results show that the HbO response decreased first (at ~4min) followed by the decrease of HbR response (at ~6min) after cocaine, and both did not fully recovered for over 30min. Interestingly, while CBF decreased at 4min, it partially recovered at 18min after cocaine administration. The results indicate the heterogeneity of cocaine's effects on vasculature and tissue metabolism, demonstrating the unique capability of optical imaging for brain functional studies.

  8. Whole brain approaches for identification of microstructural abnormalities in individual patients: comparison of techniques applied to mild traumatic brain injury.

    Namhee Kim

    Full Text Available PURPOSE: Group-wise analyses of DTI in mTBI have demonstrated evidence of traumatic axonal injury (TAI, associated with adverse clinical outcomes. Although mTBI is likely to have a unique spatial pattern in each patient, group analyses implicitly assume that location of injury will be the same across patients. The purpose of this study was to optimize and validate a procedure for analysis of DTI images acquired in individual patients, which could detect inter-individual differences and be applied in the clinical setting, where patients must be assessed as individuals. MATERIALS AND METHODS: After informed consent and in compliance with HIPAA, 34 mTBI patients and 42 normal subjects underwent 3.0 Tesla DTI. Four voxelwise assessment methods (standard Z-score, "one vs. many" t-test, Family-Wise Error Rate control using pseudo t-distribution, EZ-MAP for use in individual patients, were applied to each patient's fractional anisotropy (FA maps and tested for its ability to discriminate patients from controls. Receiver Operating Characteristic (ROC analyses were used to define optimal thresholds (voxel-level significance and spatial extent for reliable and robust detection of mTBI pathology. RESULTS: ROC analyses showed EZ-MAP (specificity 71%, sensitivity 71%, "one vs. many" t-test and standard Z-score (sensitivity 65%, specificity 76% for both methods resulted in a significant area under the curve (AUC score for discriminating mTBI patients from controls in terms of the total number of abnormal white matter voxels detected while the FWER test was not significant. EZ-MAP is demonstrated to be robust to assumptions of Gaussian behavior and may serve as an alternative to methods that require strict Gaussian assumptions. CONCLUSION: EZ-MAP provides a robust approach for delineation of regional abnormal anisotropy in individual mTBI patients.

  9. Abnormal findings of magnetic resonance imaging (MRI) in patients with systemic lupus erythematosus involving the brain

    Ishikawa, Akira; Okada, Jun; Kondo, Hirobumi (Kitasato Univ., Sagamihara, Kanagawa (Japan). School of Medicine); Kashiwazaki, Sadao

    1992-06-01

    To elucidate the clinical significance of MRI on central nervous system systemic lupus erythematosus (CNS-SLE), MRI and CT scans were performed in 35 patients with SLE, of 18 patients who had CNS manifestations at the time of MRI examinations. The investigations were also carried out in 17 patients without CNS-SLE. The rate of detection of abnormal findings on MRI in patients with CNS-SLE was 77.2% (14/18), which was high, as compared with the rate of those on CT scans (50%: 9/18). Especially, all of 4 patients with seizure and 3 patients with encephalopathy showed abnormal MRI findings, although respectively 50% and 33.3% of them had abnormal CT scan findings. MRI findings were classified into 4 groups below: (1) Large focal are as increased signal intensity at T2 weighted image. These were observed in 2 of 4 patients with seizure and 1 of 3 patients with encephalopathy, which were completely resolved after treatment. (2) Patchy subcortical foci of increased signal intensity at T2 weighted image. These were observed in 11 of 18 CNS-SLE and 7 of 17 without CNS-SLE, which were not detected by CT scan. (3) All of six patients with cerebral infarctions showed high signal intensity areas at T2 weighted image and low signal intensity areas at T1 weighted image. (4) Normal findings were observed in 4 of 18 CNS-SLE (22.2%). We concluded that MRI is useful for the evaluation of CNS-SLE and provides more information than CT scan. (author).

  10. Brain glucose metabolism and neuropsychological test in patients with mild cognitive impairment

    曹秋云; 江开达; 张明园; 刘永昌; 肖世富; 左传涛; 黄红芳

    2003-01-01

    Objective To investigate the features of regional cerebral metabolic rate of glucose (rCMRglc) in patients with mild cognitive impairment(MCI) by positron emission-tomography and its relationship with neuropsychological test.Methods Positron emission tomography, mini-mental state examination and Wechsler memory scale were applied in 10 patients with MCI and 10 healthy volunteers as the control group.Results Scores of mini-mental state examination and Wechsler memory scale in MCI patients were lower than those in the control group (P<0.01). rCMRglc of the left orbital gyrus, right middle temporal gyrus and right putamen was lower in the MCI group than in the control group (P<0.05). Correlation analysis in the MCI group indicated that rCMRglc of many brain regions such as the orbital gyrus, putamen, left hippocampus and parahippocampal gyrus, cingulate gyrus, left amygdaloid body, precentral gyrus, postcentral gyrus, and medial occipitotemporal gyrus in MCI patients, were correlated negatively with age; while the rCMRglc of many parts of the brain such as the left putamen, temporal lobe, anterior cingulate gyrus, left insular lobe, amygdaloid body, precentral gyrus, postcentral gyrus and medial occipitotemporal gyrus were correlated positively with mini-mental state examination; and rCMRglc of the left putamen, temporal lobe, left insular lobe, precentral gyrus and postcentral gyrus were correlated positively with Wechsler memory scale. The right putamen, the right inferior temporal gyrus, precentral gyrus, and left postcentral gyrus were correlated positively with the length of education. However, only rCMRglc of the left amygdaloid body were correlated positively with gender. Conclusion The rCMRglc was lower in the orbital gyrus and putamen of MCI patients. Their rCMRglc were correlated with their cognitive impairment severity, age, length of education and sex.

  11. Brain gene expression differences are associated with abnormal tail biting behavior in pigs.

    Brunberg, E; Jensen, P; Isaksson, A; Keeling, L J

    2013-03-01

    Knowledge about gene expression in animals involved in abnormal behaviors can contribute to the understanding of underlying biological mechanisms. This study aimed to explore the motivational background to tail biting, an abnormal injurious behavior and severe welfare problem in pig production. Affymetrix microarrays were used to investigate gene expression differences in the hypothalamus and prefrontal cortex of pigs performing tail biting, pigs receiving bites to the tail and neutral pigs who were not involved in the behavior. In the hypothalamus, 32 transcripts were differentially expressed (P tail biters were compared with neutral pigs, 130 when comparing receiver pigs with neutrals, and two when tail biters were compared with receivers. In the prefrontal cortex, seven transcripts were differently expressed in tail biters when compared with neutrals, seven in receivers vs. neutrals and none in the tail biters vs. receivers. In total, 19 genes showed a different expression pattern in neutral pigs when compared with both performers and receivers. This implies that the functions of these may provide knowledge about why the neutral pigs are not involved in tail biting behavior as performers or receivers. Among these 19 transcripts were genes associated with production traits in pigs (PDK4), sociality in humans and mice (GTF2I) and novelty seeking in humans (EGF). These are in line with hypotheses linking tail biting with reduced back fat thickness and explorative behavior. PMID:23146156

  12. Classification of Abnormalities in Brain MRI Images Using PCA and SVM

    Ajala Funmilola A

    2015-07-01

    Full Text Available The impact of digital image processing is increasing by the day for its use in the medical and research areas. Medical image classification scheme has been on the increase in order to help physicians and medical practitioners in their evaluation and analysis of diseases. Several classification schemes such as Artificial Neural Network (ANN, Bayes Classification, Support Vector Machine (SVM and K-Means Nearest Neighbor have been used. In this paper, we evaluate and compared the performance of SVM and PCA by analyzing diseased image of the brain (Alzheimer and normal (MRI brain. The results show that Principal Components Analysis outperforms the Support Vector Machine in terms of training time and recognition time.

  13. Demonstration of cerebral abnormalities in cocaine abusers with SPECT perfusion brain scans

    This paper reports I-123 isopropyl iodoamphetamine (IMP) single-photon emission CT (SPECT) brain scans performed on cocaine users to investigate the effects of cocaine on the cerebral perfusion in a manner similar to previous CT, angiographic and positron-emission tomographic (PET) studies. Ten asymptomatic or mildly symptomatic cocaine users, two users with major neurovascular complications, and five normal subjects were studied with IMP SPECT. Rotating-brain images of the cerebral IMP uptake were displayed by using a distance-weighted surface-projection technique and were visually analyzed for focal cortical perfusion deficits. Eleven cocaine users had multiple scattered cortical IMP defects. Frontal lobe defects were most prominent. One user had confluent defects resembling swiss cheese. Concurrent CT scans available in nine patients were negative in seven and showed infarcts in two. No similar focal findings were visible in normals

  14. 3D PATTERN OF BRAIN ABNORMALITIES IN WILLIAMS SYNDROME VISUALIZED USING TENSOR-BASED MORPHOMETRY

    Chiang, Ming-Chang; Reiss, Allan L.; Lee, Agatha D.; Bellugi, Ursula; Galaburda, Albert M.; Korenberg, Julie R.; Mills, Debra L.; Toga, Arthur W.; Thompson, Paul M.

    2007-01-01

    Williams syndrome (WS) is a neurodevelopmental disorder associated with deletion of ~20 contiguous genes in chromosome band 7q11.23. Individuals with WS exhibit mild to moderate mental retardation, but are relatively more proficient in specific language and musical abilities. We used tensor-based morphometry (TBM) to visualize the complex pattern of gray/white matter reductions in WS, based on fluid registration of structural brain images.

  15. Facial Emotion Recognition Impairments are Associated with Brain Volume Abnormalities in Individuals with HIV

    Clark, Uraina S.; Walker, Keenan A.; Cohen, Ronald A.; Devlin, Kathryn N.; Folkers, Anna M.; Pina, Mathew M.; Tashima, Karen T.

    2015-01-01

    Impaired facial emotion recognition abilities in HIV+ patients are well documented, but little is known about the neural etiology of these difficulties. We examined the relation of facial emotion recognition abilities to regional brain volumes in 44 HIV-positive (HIV+) and 44 HIV-negative control (HC) adults. Volumes of structures implicated in HIV− associated neuropathology and emotion recognition were measured on MRI using an automated segmentation tool. Relative to HC, HIV+ patients demons...

  16. Cerebrovascular risk factors and brain microstructural abnormalities on diffusion tensor images in HIV-infected individuals

    Nakamoto, BK; Jahanshad, N.; McMurtray, A; Kallianpur, KJ; Chow, DC; Valcour, VG; Paul, RH; Marotz, L; Thompson, PM; Shikuma, CM

    2012-01-01

    HIV-associated neurocognitive disorder remains prevalent in HIV-infected individuals despite effective antire-troviral therapy. As these individuals age, comorbid cerebro-vascular disease will likely impact cognitive function. Effective tools to study this impact are needed. This study used diffusion tensor imaging (DTI) to characterize brain microstructural changes in HIV-infected individuals with and without cerebrovascular risk factors. Diffusion-weighted MRIs were obtained in 22 HIV-infec...

  17. Abnormal Brain Default-Mode Network Functional Connectivity in Drug Addicts

    Ma, Ning; Liu, Ying; Fu, Xian-ming; Li, Nan; Wang, Chang-Xin; Zhang, Hao; Qian, Ruo-Bing; Xu, Hu-Sheng; Hu, Xiaoping; Zhang, Da-Ren

    2011-01-01

    Background The default mode network (DMN) is a set of brain regions that exhibit synchronized low frequency oscillations at resting-state, and is believed to be relevant to attention and self-monitoring. As the anterior cingulate cortex and hippocampus are impaired in drug addiction and meanwhile are parts of the DMN, the present study examined addiction-related alteration of functional connectivity of the DMN. Methodology Resting-state functional magnetic resonance imaging data of chronic he...

  18. Focus on: Structural and Functional Brain Abnormalities in Fetal Alcohol Spectrum Disorders

    Nuñez, S. Christopher; Roussotte, Florence; Sowell, Elizabeth R.

    2011-01-01

    Children exposed to alcohol prenatally can experience significant deficits in cognitive and psychosocial functioning as well as alterations in brain structure and function related to alcohol’s teratogenic effects. These impairments are present both in children with fetal alcohol syndrome (FAS) and in children with heavy in utero alcohol exposure who do not have facial dysmorphology required for the FAS diagnosis. Neuropsychological and behavioral studies have revealed deficits in most cogniti...

  19. Analysis of MRI spectrum of brain abnormalities in tuberous sclerosis complex - data from one institution

    Tuberous sclerosis complex (TSC) is an autosomal dominant multisystem disorder with gene loci located on chromosomes 9q34 (TSC1) and 16p13 (TSC2). Brain is the most frequently affected organ. We retrospectively reviewed magnetic resonance features of the brain in 92 patients with tuberous sclerosis, examined in our Institute from 1997 to 2006. We analyzed MR imaging of the spectrum of supra- and infratentorial brain lesions encountered in TSC. MR examinations were performed with a 1.5 T scanner. The basic imaging protocol included axial SE T1WI, FSE PD, T2WI, FSE FLAIR images, sagittal T1,T2WI and coronal FLAIR images. Axial T1-WI contrast-enhanced images were obtained in each patient. Cortical tubers were found in 89 of the 92 patients (96.74%) and they have been located in frontal and parietal cerebral lobes predominantly. Cerebellar tubers were found in 12/92 (13.04%), cerebral white matter lesions in 34/92 patients (36.96%), subependymal nodules in 80/92 patients (86.96%) and subependymal giant cell astrocytomas in 11/92 of our patients (11.96%). Partial agenesis of corpus callosum, cortical dysplasia, cerebellar atrophy, intracranial arterial aneurysm, enlargement of ventricles and venous malformation were rare associated findings. Administration of gadolinium was useful in detecting and delineation subependymal giant cell astrocytomas - SGCAs. Our study presents a wide range of MR signs and variance of the cerebral manifestations with TSC patients. (author)

  20. Brain abnormalities among the mentally retarded prenatally exposed atomic bomb survivors

    An increased occurrence of severe mental retardation, with or without accompanying small head size, at specific gestational ages has been the most conspicuous effect on brain development of prenatal exposure to the bombings of Hiroshima and Nagasaki. A variety of biological mechanisms could be responsible for this finding, including cell killing and mismanaged neuronal migration. We describe here the findings on magnetic resonance imaging of the brains of five of these mentally retarded individuals, all of whom were exposed in the 8th through the 15th weeks following fertilization, the gestational period shown to be the most vulnerable to radiation-related damage. In the two cases exposed at the 8th or 9th week following fertilization, large areas of ectopic gray matter are seen, strong evidence of a failure of the neurons to migrate to their proper functional sites. The two individuals exposed in the 12th or 13th week show no readily recognized ectopic gray areas but do show mild macrogyria, which implies some impairment in the development of the cortical zone. Moreover, both have mega cisterna magna. Finally, the one individual seen who was exposed still later in development, in the 15th week, shows none of the changes seen in the other four individuals. This person's brain, though small, appears to have normal architecture. These findings are discussed in terms of the embryological events transpiring at the time of the prenatal exposure of these individuals to ionizing radiation. (author)

  1. Surface reconstructions of foetal brain abnormalities using ultrafast steady state 3D acquisitions

    MRI of the foetal brain in utero is performed in routine clinical practice using sequences that produce two-dimensional (2D) images. Recent developments in image post-processing have allowed the construction of three-dimensional (3D) volume data sets from 2D images acquired in different anatomical planes, but these have limitations due to the unpredictable nature of foetal movement. These limitations have been overcome by development of several different advanced computer techniques, which require specialist knowledge, software, and processing methods, which are rarely available in routine clinical settings. Our aim was to develop a technique that can be used in routine clinical situations without the need for custom-developed or expensive software by utilizing MRI sequences that can produce a 3D data set in “ultrafast” timescales. The 3D dataset, combined with versatile image post-processing and visualization techniques, has resulted in the production of high-resolution images of foetal brain surfaces in utero. The aim of this paper is to demonstrate our methods and early results by way of a pictorial review illustrating a range of developmental brain disease in utero

  2. Abnormal Brain Dynamics Underlie Speech Production in Children with Autism Spectrum Disorder.

    Pang, Elizabeth W; Valica, Tatiana; MacDonald, Matt J; Taylor, Margot J; Brian, Jessica; Lerch, Jason P; Anagnostou, Evdokia

    2016-02-01

    A large proportion of children with autism spectrum disorder (ASD) have speech and/or language difficulties. While a number of structural and functional neuroimaging methods have been used to explore the brain differences in ASD with regards to speech and language comprehension and production, the neurobiology of basic speech function in ASD has not been examined. Magnetoencephalography (MEG) is a neuroimaging modality with high spatial and temporal resolution that can be applied to the examination of brain dynamics underlying speech as it can capture the fast responses fundamental to this function. We acquired MEG from 21 children with high-functioning autism (mean age: 11.43 years) and 21 age- and sex-matched controls as they performed a simple oromotor task, a phoneme production task and a phonemic sequencing task. Results showed significant differences in activation magnitude and peak latencies in primary motor cortex (Brodmann Area 4), motor planning areas (BA 6), temporal sequencing and sensorimotor integration areas (BA 22/13) and executive control areas (BA 9). Our findings of significant functional brain differences between these two groups on these simple oromotor and phonemic tasks suggest that these deficits may be foundational and could underlie the language deficits seen in ASD. Autism Res 2016, 9: 249-261. © 2015 International Society for Autism Research, Wiley Periodicals, Inc. PMID:26363154

  3. Design, synthesis and preliminary bio-evaluation of glucose-cholesterol derivatives as ligands for brain targeting liposomes

    Fan Lei; Wei Fan; Xian Kun Li; Shan Wang; Li Hai; Yong Wu

    2011-01-01

    A series of glucose-cholesterol derivatives 8a-8e as ligands for brain targeting liposomes were synthesized. The preparation of compound 6 involved temporary protection of glucose with chlorotrimethylsilicane and hexamethyldisilazane followed by selectively hydrolyzed. The known cholesteryl tosylate 1 were coupled to ethylene glycols to afford alcohol 2a-2e. Substitution and deprotection of alcohol 2a-2e furnished the acids 4a-4e, which was condensed with compound 6 to get compounds 7a-7e, and then was deprotected in tetrahydrofuran with TEA to obtain the title compounds. As a model drug, tegafur was entrapped by liposomes coupled with 8b, and preliminary in vivo evaluation shown 8b could enhance the ability of liposomes delivering tegafur across the blood brain barrier.

  4. Parameters of facilitated glucose transport across the blood-brain barrier in subjects studied with positron emission tomography

    This contribution was undertaken as part of the interdisciplinary training for the author in this Laboratory, with the aim of providing an application of current concepts of membrane transport to a practical problem. It was intended to present a specific, mechanistic view of the physiology of glucose uptake in the brain on the basis of in vivo determinations of 18F-deoxyglucose (FDG) distribution by positron emission tomography

  5. Over-estimation of glucose-6-phosphatase activity in brain in vivo. Apparent difference in rates of [2-3H]glucose and [U-14C]glucose utilization is due to contamination of precursor pool with 14C-labeled products and incomplete recovery of 14C-labeled metabolites.

    Dienel, G A; Nelson, T; Cruz, N F; Jay, T; Crane, A M; Sokoloff, L

    1988-12-25

    Significant dephosphorylation of glucose 6-phosphate due to glucose-6-phosphatase activity in rat brain in vivo was recently reported (Huang, M., and Veech, R.L. (1982) J. Biol. Chem. 257, 11358-11363). The evidence was an apparent more rapid 3H than 14C loss from the glucose pool and faster [2-3H]glucose than [U-14C]glucose utilization following pulse labeling of the brain with [2-3H,U-14C]glucose. Radiochemical purity of the glucose and quantitative recovery of the labeled products of glucose metabolism isolated from the brain were obviously essential requirements of their study, but no evidence for purity and recovery was provided. When we repeated these experiments with the described isolation procedures, we replicated the results, but found that: 1) the precursor glucose pool contained detritiated, 14C-labeled contaminants arising from glucose metabolism, particularly 2-pyrrolidone-5-carboxylic acid derived from [14C]glutamine; 2) [14C]glucose metabolite were not quantitatively recovered; 3) the procedure used to isolate the glucose itself produced detritiated, 14C-labeled derivatives of [2-3H,U-14C]glucose. These deficiencies in the isolation procedures could fully account for the observations that were interpreted as evidence of significant glucose 6-phosphate dephosphorylation by glucose-6-phosphatase activity. When glucose was isolated by more rigorous procedures and its purity verified in the present studies, no evidence for such activity in rat brain was found. PMID:2848837

  6. 脑梗死与糖代谢异常相关性研究%The Correlation Study of Cerebral Infarction and Abnormal Glucose Metabolism

    赵德成; 袁建喜

    2014-01-01

    目的:观察不同损害程度脑梗死患者的血糖水平,分析其糖代谢异常情况,探讨脑梗死与糖代谢异常的关系,为脑梗死的预防、诊断、治疗提供依据。方法:选取2010年1月-2013年8月入住本院脑病科的108例急性脑梗死患者,根据梗死范围将其分为轻度组41例、中度组40例、重度组27例,通过检测空腹血糖(FPG)、餐后2 h血糖(PG)、糖化血红蛋白(HbA1c),观察患者的糖代谢情况。结果:糖调节受损、糖尿病与正常血糖患者比较,中度及重度组脑梗死比率明显升高;糖尿病患者脑梗死中度组、重度组比率较糖调节受损患者明显升高;脑梗死中度组、重度组的HbA1c、FPG、2 h PG水平均明显高于脑梗死轻度组,重度组的HbA1c、FPG、2 h PG水平明显高于中度组,差异均有统计学意义(P<0.05)。结论:糖代谢异常与脑梗死的发生及损害程度明显相关,良好的血糖控制有利于降低脑梗死的发生率,监测血糖并控制正常范围内可改善预后。%Objective:To observe blood glucose levels of cerebral infarction patients with different damage degrees, and to analyze the situation of abnormal glucose metabolism of patients with cerebral infarction,and to explore the relationship between cerebral infarction and glucose metabolism in order to provide the reference for prevention,diagnosis and treatment of cerebral infarction.Method:108 cases of acute cerebral infarction were selected from January 2010 to August 2013 admitted to our hospital department of encephalopathy,according to the scope of infarction cerebral infarction the damage degrees, they were divided into the mild degree for 41 cases,the moderate degree for 40 cases and the severe degree for 27 cases,and the situation of glucose metabolism in patients were observed by detecting fasting plasma glucose(FPG),blood sugar 2 hours after meal(PG)and glycosylated hemoglobin(HbA1c

  7. The neuro-radiological anatomy of the normal and abnormal rat brain

    In vivo and post mortem techniques for the radiological examination of normal brains have been developed, using 66 white adult rats. Aortic arch injections for survey angiograms (10 animals), selective catheterisation of the internal carotid artery (16 animals) and ventriculography by percutaneous needle puncture (20 animals) were performed in vivo; the animals survived and the examinations could be repeated. The techniques proved useful and accurate methods for the radiological demonstration of the topography and morphology of cerebral vessels and chambers; they also provided information on the function of the cerebral circulation and C.S.F. dynamics. The findings were checked and correlated by post mortem studies (20 animals) using contact radiography, micro-angiography and casts of the ventricles. As a result, extensive topographic and anatomic information concerning the cerebral vessels in the rat was obtained, including some microscopic-radiological findings. The combined use of these methods provided a basis for studying the growth of experimentally induced brain tumours and the effect of various types of treatment. (orig.)

  8. Brain structural abnormalities in behavior therapy-resistant obsessive-compulsive disorder revealed by voxel-based morphometry

    Hashimoto N

    2014-10-01

    Full Text Available Nobuhiko Hashimoto,1 Shutaro Nakaaki,2 Akiko Kawaguchi,1 Junko Sato,1 Harumasa Kasai,3 Takashi Nakamae,4 Jin Narumoto,4 Jun Miyata,5 Toshi A Furukawa,6,7 Masaru Mimura2 1Department of Psychiatry and Cognitive-Behavioral Medicine, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan; 2Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan; 3Department of Central Radiology, Nagoya City University Hospital, Nagoya, Japan; 4Department of Psychiatry, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan; 5Department of Psychiatry, Graduate School of Medicine, Kyoto University, Kyoto, Japan; 6Department of Health Promotion and Human Behavior, 7Department of Clinical Epidemiology, Kyoto University Graduate School of Medicine/School of Public Health, Kyoto, Japan Background: Although several functional imaging studies have demonstrated that behavior therapy (BT modifies the neural circuits involved in the pathogenesis of obsessive-compulsive disorder (OCD, the structural abnormalities underlying BT-resistant OCD remain unknown. Methods: In this study, we examined the existence of regional structural abnormalities in both the gray matter and the white matter of patients with OCD at baseline using voxel-based morphometry in responders (n=24 and nonresponders (n=15 to subsequent BT. Three-dimensional T1-weighted magnetic resonance imaging was performed before the completion of 12 weeks of BT. Results: Relative to the responders, the nonresponders exhibited significantly smaller gray matter volumes in the right ventromedial prefrontal cortex, the right orbitofrontal cortex, the right precentral gyrus, and the left anterior cingulate cortex. In addition, relative to the responders, the nonresponders exhibited significantly smaller white matter volumes in the left cingulate bundle and the left superior frontal white matter. Conclusion: These results suggest that the brain

  9. Theory of mind mediates the prospective relationship between abnormal social brain network morphology and chronic behavior problems after pediatric traumatic brain injury.

    Ryan, Nicholas P; Catroppa, Cathy; Beare, Richard; Silk, Timothy J; Crossley, Louise; Beauchamp, Miriam H; Yeates, Keith Owen; Anderson, Vicki A

    2016-04-01

    Childhood and adolescence coincide with rapid maturation and synaptic reorganization of distributed neural networks that underlie complex cognitive-affective behaviors. These regions, referred to collectively as the 'social brain network' (SBN) are commonly vulnerable to disruption from pediatric traumatic brain injury (TBI); however, the mechanisms that link morphological changes in the SBN to behavior problems in this population remain unclear. In 98 children and adolescents with mild to severe TBI, we acquired 3D T1-weighted MRIs at 2-8 weeks post-injury. For comparison, 33 typically developing controls of similar age, sex and education were scanned. All participants were assessed on measures of Theory of Mind (ToM) at 6 months post-injury and parents provided ratings of behavior problems at 24-months post-injury. Severe TBI was associated with volumetric reductions in the overall SBN package, as well as regional gray matter structural change in multiple component regions of the SBN. When compared with TD controls and children with milder injuries, the severe TBI group had significantly poorer ToM, which was associated with more frequent behavior problems and abnormal SBN morphology. Mediation analysis indicated that impaired theory of mind mediated the prospective relationship between abnormal SBN morphology and more frequent chronic behavior problems. Our findings suggest that sub-acute alterations in SBN morphology indirectly contribute to long-term behavior problems via their influence on ToM. Volumetric change in the SBN and its putative hub regions may represent useful imaging biomarkers for prediction of post-acute social cognitive impairment, which may in turn elevate risk for chronic behavior problems. PMID:26796967

  10. A small number of abnormal brain connections predicts adult autism spectrum disorder.

    Yahata, Noriaki; Morimoto, Jun; Hashimoto, Ryuichiro; Lisi, Giuseppe; Shibata, Kazuhisa; Kawakubo, Yuki; Kuwabara, Hitoshi; Kuroda, Miho; Yamada, Takashi; Megumi, Fukuda; Imamizu, Hiroshi; Náñez, José E; Takahashi, Hidehiko; Okamoto, Yasumasa; Kasai, Kiyoto; Kato, Nobumasa; Sasaki, Yuka; Watanabe, Takeo; Kawato, Mitsuo

    2016-01-01

    Although autism spectrum disorder (ASD) is a serious lifelong condition, its underlying neural mechanism remains unclear. Recently, neuroimaging-based classifiers for ASD and typically developed (TD) individuals were developed to identify the abnormality of functional connections (FCs). Due to over-fitting and interferential effects of varying measurement conditions and demographic distributions, no classifiers have been strictly validated for independent cohorts. Here we overcome these difficulties by developing a novel machine-learning algorithm that identifies a small number of FCs that separates ASD versus TD. The classifier achieves high accuracy for a Japanese discovery cohort and demonstrates a remarkable degree of generalization for two independent validation cohorts in the USA and Japan. The developed ASD classifier does not distinguish individuals with major depressive disorder and attention-deficit hyperactivity disorder from their controls but moderately distinguishes patients with schizophrenia from their controls. The results leave open the viable possibility of exploring neuroimaging-based dimensions quantifying the multiple-disorder spectrum. PMID:27075704

  11. A small number of abnormal brain connections predicts adult autism spectrum disorder

    Yahata, Noriaki; Morimoto, Jun; Hashimoto, Ryuichiro; Lisi, Giuseppe; Shibata, Kazuhisa; Kawakubo, Yuki; Kuwabara, Hitoshi; Kuroda, Miho; Yamada, Takashi; Megumi, Fukuda; Imamizu, Hiroshi; Náñez Sr, José E.; Takahashi, Hidehiko; Okamoto, Yasumasa; Kasai, Kiyoto; Kato, Nobumasa; Sasaki, Yuka; Watanabe, Takeo; Kawato, Mitsuo

    2016-01-01

    Although autism spectrum disorder (ASD) is a serious lifelong condition, its underlying neural mechanism remains unclear. Recently, neuroimaging-based classifiers for ASD and typically developed (TD) individuals were developed to identify the abnormality of functional connections (FCs). Due to over-fitting and interferential effects of varying measurement conditions and demographic distributions, no classifiers have been strictly validated for independent cohorts. Here we overcome these difficulties by developing a novel machine-learning algorithm that identifies a small number of FCs that separates ASD versus TD. The classifier achieves high accuracy for a Japanese discovery cohort and demonstrates a remarkable degree of generalization for two independent validation cohorts in the USA and Japan. The developed ASD classifier does not distinguish individuals with major depressive disorder and attention-deficit hyperactivity disorder from their controls but moderately distinguishes patients with schizophrenia from their controls. The results leave open the viable possibility of exploring neuroimaging-based dimensions quantifying the multiple-disorder spectrum. PMID:27075704

  12. Metabolic and vascular determinants of impaired cognitive performance and abnormalities on brain magnetic resonance imaging in patients with type 2 diabetes

    Manschot, S. M.; Biessels, G. J.; De Valk, H; Algra, A.; Rutten, G.E.H.M.; Grond, J.; Kappelle, L. J.; ,

    2007-01-01

    Aims/hypothesis The determinants of cerebral complications of type 2 diabetes are unclear. The present study aimed to identify metabolic and vascular factors that are associated with impaired cognitive performance and abnormalities on brain MRI in patients with type 2 diabetes. Methods The study included 122 patients and 56 controls. Neuropsychological test scores were divided into five cognitive domains and expressed as standardised z values. Brain MRI scans were rated for white matter lesio...

  13. Abnormal intrinsic brain activity patterns in leukoaraiosis with and without cognitive impairment.

    Li, Chuanming; Yang, Jun; Yin, Xuntao; Liu, Chen; Zhang, Lin; Zhang, Xiaochun; Gui, Li; Wang, Jian

    2015-10-01

    The amplitude of low frequency fluctuations (ALFF) from resting-state functional MRI (rs-fMRI) signals can be used to detect intrinsic spontaneous brain activity and provide valuable insights into the pathomechanism of neural disease. In this study, we recruited 56 patients who had been diagnosed as having mild to severe leukoaraiosis. According to the neuropsychological tests, they were subdivided into a leukoaraiosis with cognitive impairment group (n = 28) and a leukoaraiosis without cognitive impairment group (n = 28). 28 volunteers were included as normal controls. We found that the three groups showed significant differences in ALFF in the brain regions of the right inferior occipital gyrus (IOG_R), left middle temporal gyrus (MTG_L), left precuneus (Pcu_L), right superior frontal gyrus (SFG_R) and right superior occipital gyrus (SOG_R). Compared with normal controls, the leukoaraiosis without cognitive impairment group exhibited significantly increased ALFF in the IOG_R, Pcu_L, SFG_R and SOG_R. While compared with leukoaraiosis without cognitive impairment group, the leukoaraiosis with cognitive impairment group showed significantly decreased ALFF in IOG_R, MTG_L, Pcu_L and SOG_R. A close negative correlation was found between the ALFF values of the MTG_L and the Montreal Cognitive Assessment (MoCA) scores. Our data demonstrate that white matter integrity and cognitive impairment are associated with different amplitude fluctuations of rs-fMRI signals. Leukoaraiosis is related to ALFF increases in IOG_R, Pcu_L, SFG_Orb_R and SOG_R. Decreased ALFF in MTG_L is characteristic of cognitive impairment and may aid in its early detection. PMID:26116811

  14. Post-contrast FLAIR MR imaging of the brain in children: normal and abnormal intracranial enhancement

    Goo, Hyun Woo; Choi, Choong-Gon [Department of Radiology, Asan Medical Center, University of Ulsan College of Medicine, 388-1 Poongnap-dong, Songpa-gu, Seoul (Korea)

    2003-12-01

    To describe the normally enhancing intracranial structures on fluid-attenuated inversion recovery (FLAIR) MRI and evaluate the usefulness of postcontrast FLAIR images of the brain in the assessment of enhancing lesions by comparing postcontrast FLAIR imaging with postcontrast T1-weighted (T1-W) imaging in children. In 218 children, 249 pre- and postcontrast FLAIR MRI examinations of the brain were obtained consecutively between August 2001 and April 2002. The normally enhancing intracranial structures on FLAIR imaging were assessed in 77 MRI studies of 74 children who showed normal intracranial imaging findings. In 86 MRI studies in 68 children who showed enhancing intracranial lesions, lesion conspicuity on postcontrast FLAIR imaging was compared with that on postcontrast T1-W imaging for all lesions (n=107), intra-axial lesions (n=40), or extra-axial lesions (n=67). The normally enhancing intracranial structures on FLAIR MRI were the choroid plexus (99%, 76/77), pituitary stalk (84%, 65/77), pineal gland (71%, 55/77), dural sinuses (26%, 20/77), and cortical veins (9%, 7/77). Of all the enhancing lesions, lesion conspicuousness on postcontrast FLAIR imaging was better than postcontrast T1-weighted imaging in 42, equal in 28, and worse in 37. Of 40 intra-axial lesions, lesion conspicuousness on postcontrast FLAIR imaging was better in 6, equal in 10, and worse in 24. Of 67 extra-axial lesions, lesion conspicuity on postcontrast FLAIR imaging was better in 36, equal in 18, and worse in 13. Conspicuousness of extra-axial lesions was significantly better than that of intra-axial lesions on postcontrast FLAIR imaging (P<0.001). The choroid plexus, pituitary stalk, pineal gland, dural sinuses, and cortical veins show normal enhancement on postcontrast FLAIR MRI in children, and postcontrast FLAIR imaging appears better than postcontrast T1-W imaging in the assessment of extra-axial enhancing lesions in children. (orig.)

  15. Loss of neuronal integrity: a cause of hypometabolism in patients with traumatic brain injury without MRI abnormality in the chronic stage

    Traumatic brain injury (TBI) causes brain dysfunction in many patients. However, some patients have severe brain dysfunction but display no abnormalities on magnetic resonance imaging (MRI). There have been some reports of hypometabolism even in such patients. The purpose of this study was to investigate the relationship between metabolic abnormality and loss of neuronal integrity in TBI patients with some symptoms but without MRI abnormalities. The study population comprised ten patients with TBI and ten normal volunteers. All of the patients were examined at least 1 year after the injury. 15O-labelled gas PET and [11C]flumazenil (FMZ) positron emission tomography (PET) were carried out. The cerebral metabolic rate of oxygen (CMRO2) and binding potential (BP) images of FMZ were calculated. Axial T2WI, T2*WI and FLAIR images were obtained. Coronal images were added in some cases. All of the patients had normal MRI findings, and all showed areas with abnormally low CMRO2. Low uptake on BP images was observed in six patients (60%). No lesions that showed low uptake on BP images were without low CMRO2. On the other hand, there were 14 lesions with low CMRO2 but without BP abnormalities. These results indicate that there are metabolic abnormalities in TBI patients with some symptoms after brain injury but without abnormalities on MRI. Some of the hypometabolic lesions showed low BP, indicating a loss of neuronal integrity. Thus, FMZ PET may have potential to distinguish hypometabolism caused by neuronal loss from that caused by other factors. (orig.)

  16. No impact of vitamin D on the CYP3A biomarker 4β-hydroxycholesterol in patients with abnormal glucose regulation.

    Buster Mannheimer

    Full Text Available To investigate the effect of vitamin D3 on hepatic Cytochrome P450 enzyme (CYP 3A4 in patients with abnormal glucose regulation using the endogenous marker 4β-hydroxycholesterol (4β-OHC:cholesterol ratio.The present study took advantage of a trial primarily aiming to investigate the effect of vitamin D3 on beta cell function and insulin sensitivity in patients with abnormal glucose regulation. 44 subjects were randomized to receive vitamin D3, 30000 IU given orally once weekly or placebo for 8 weeks. The two sample t-test was used to test the means of the intra-individual differences of 4β-OHC:cholesterol ratio between the two groups.Mean (SD 4β-OHC in the whole group of patients before and after the intervention was 26 (11 ng/ml and 26 (12. Mean (SD 4β-OHC:cholesterol ratio in the whole group of patients before and after the intervention was 0.12 (0.046 and 0.13 (0.047. In the Vitamin D group mean (SD serum 25-OH-vitamin D3 increased from 46 (16 to 85nM (13 during the corresponding time period. To investigate the impact of vitamin D3 on hepatic CYP3A4 we calculated the mean intra-individual differences in 4β-OHC:cholesterol ratio (delta 4β-OHC:cholesterol ratio before versus after the intervention in the two treatment groups. The difference (95% CI between delta 4β-OHC:cholesterol ratio in the control group and intervention group was -0.0010 (-0.0093, 0.0072, a difference being not statistically significant (p = 0.80.We provide further evidence that vitamin D3 may not substantially affect hepatic CYP3A4. This does not exclude the possibility of an impact of intestinal first-pass metabolism of orally administered drugs which should be investigated.ClinicalTrials.gov NCT01497132.

  17. Age-related changes of glutathione content, glucose transport and metabolism, and mitochondrial electron transfer function in mouse brain

    To evaluate the oxidative stress-related parameters and to determine their order of appearance in the brain aging process, radionuclide experiments were carried out on male DBF1 mice at 3, 12, 24 and 30 months of age. The content of nonprotein sulfhydryl compounds, mainly glutathione, was estimated with technetium-99m meso-hexamethyl propyleneamine oxime ([99mTc]meso-HMPAO) tissue sampling. Glucose transport and metabolism was examined with [1-14C]2-deoxy-D-glucose (2-DG) tissue sampling. Mitochondrial electron transport function was estimated with [15O]O2 gas-tissue ARG. [99mTc]Meso-HMPAO uptake in brain expressed as standardized uptake value (SUV), (radioactivity in brain tissue/tissue weight)/(total administered radioactivity/body weight), reached maximum at 12 months of age and decreased at 24 and 30 months of age in every region examined. The pattern of 2-DG, expressed as SUV, showed a tendency to increase rather than decrease with aging. [15O]O2 fixation in brain slices remained constant until 24 months, while it decreased significantly at 30 months of age. The results suggested the possibility of using imaging techniques in vivo for longitudinal evaluation of the aging process and indicated reduction of nonprotein sulfhydryl compounds including GSH at the early stages of aging may also accelerate the dysfunction of mitochondrial electron transport and neurodegeneration

  18. Hypothalamic astroglial connexins are required for brain glucose sensing-induced insulin secretion

    Allard, Camille; Carneiro, Lionel; Grall, Sylvie; Cline, Brandon H.; Fioramonti, Xavier; Chrétien, Chloé; Baba-Aissa, Fawzia; Giaume, Christian; Pénicaud, Luc; Leloup, Corinne

    2013-01-01

    Hypothalamic glucose detection participates in maintaining glycemic balance, food intake, and thermogenesis. Although hypothalamic neurons are the executive cells involved in these responses, there is increasing evidence that astrocytes participate in glucose sensing (GS); however, it is unknown whether astroglial networking is required for glucose sensitivity. Astroglial connexins 30 and 43 (Cx30 and Cx43) form hexameric channels, which are apposed in gap junctions, allowing for the intercel...

  19. Cerebral glucose metabolism in long-term survivors of childhood primary brain tumors treated with surgery and radiotherapy

    Andersen, Preben B.; Krabbe, Katja; Leffers, Anne M.; Schmiegelow, Marianne; Holm, Søren; Laursen, Henning; Müller, Jørn R.; Paulson, Olaf B.

    2003-01-01

    Delayed structural cerebral sequelae has been reported following cranial radiation therapy (CRT) to children with primary brain tumors, but little is known about potential functional changes. Twenty-four patients were included, diagnosed and treated at a median age of 11 years, and examined after a...... general reduction in rCMRglc in long-term recurrence free survivors of childhood primary brain tumors treated with CRT in high doses (44-56 Gy)...... evaluable and regional cerebral metabolic rate for glucose (rCMRglc) was estimated in nontumoral brain regions in 12 patients treated with surgery alone and 9 patients treated with both surgery and CRT. Furthermore 10 normal controls matched for age at examination were included. Patients treated with both...

  20. Analysis of abnormal findings observed on brain MRI T2 weighted image in a system for the detection of asymptomatic brain disease in 1,200 cases

    In this study we described the significance of asymptomatic cerebral infarction (ACI) and periventricular hyperintensity (PVH) observed on brain MRI in a system for detection of asymptomatic brain disease with 1,200 cases. The risk factors (RF), population in each age bracket of ACI and PVH, among groups with hypertension (HTG) and without RF (no-RFG), were investigated. The RF of ACI were hypertension (HT), diabetes mellitus (DM), and aging. Without DM, those are common RF of PVH. The population of PVH and ACI with PVH increased with aging in no-RFG. On the other hand, only the population of ACI with PVH increased with aging in HTG. The rate of these abnormal findings in HTG was significantly higher than that in no-RFG. In addition, HT accelerated the occurrence of these findings by 10-20 years. When patients were over 60 years old, ACI increased rapidly. Accordingly, we concluded that PVH and ACI had a common background. Long term follow up concerning the incidence of ACI in the group with only PVH was necessary. It was desirable that treatment for RF should be effected before the age of sixty. (author)

  1. Structural brain abnormalities in postural tachycardia syndrome: A VBM-DARTEL study

    Satoshi eUmeda

    2015-03-01

    Full Text Available Postural tachycardia syndrome (PoTS, a form of dysautonomia, is characterized by orthostatic intolerance, and is frequently accompanied by a range of symptoms including palpitations, lightheadedness, clouding of thought, blurred vision, fatigue, anxiety and depression. Although the estimated prevalence of PoTS is approximately 5-10 times ascommon as the better-known condition orthostatic hypotension, the neural substrates of the syndrome are poorly characterized. In the present study, we used magnetic resonance imaging (MRI with voxel-based morphometry (VBM applying the diffeomorphic anatomical registration through exponentiated lie algebra (DARTEL procedure to examine variation in regional brain structure associated with PoTS. We recruited eleven patients with established PoTS and twenty-three age-matched normal controls. Group comparison of grey matter volume revealed diminished grey matter volume within the left anterior insula, right middle frontal gyrus and right cingulate gyrus in the PoTS group. We also observed lower white matter volume beneath the precentral gyrus and paracentral lobule, right pre- and post-central gyrus, paracentral lobule and superior frontal gyrus in PoTS patients. Subsequent ROI analyses revealed significant negative correlations between left insula volume and trait anxiety and depression scores. Together, these findings of structural differences, particularly within insular and cingulate components of the salience network, suggest a link between dysregulated physiological reactions arising from compromised central autonomic control (and interoceptive representation and increased vulnerability to psychiatric symptoms in PoTS patients.

  2. Clinical manifestations that predict abnormal brain computed tomography (CT in children with minor head injury

    Nesrin Alharthy

    2015-01-01

    Full Text Available Background: Computed tomography (CT used in pediatric pediatrics brain injury (TBI to ascertain neurological manifestations. Nevertheless, this practice is associated with adverse effects. Reports in the literature suggest incidents of morbidity and mortality in children due to exposure to radiation. Hence, it is found imperative to search for a reliable alternative. Objectives: The aim of this study is to find a reliable clinical alternative to detect an intracranial injury without resorting to the CT. Materials and Methods: Retrospective cross-sectional study was undertaken in patients (1-14 years with blunt head injury and having a Glasgow Coma Scale (GCS of 13-15 who had CT performed on them. Using statistical analysis, the correlation between clinical examination and positive CT manifestation is analyzed for different age-groups and various mechanisms of injury. Results: No statistically significant association between parameteres such as Loss of Consciousness, ′fall′ as mechanism of injury, motor vehicle accidents (MVA, more than two discrete episodes of vomiting and the CT finding of intracranial injury could be noted. Analyzed data have led to believe that GCS of 13 at presentation is the only important clinical predictor of intracranial injury. Conclusion: Retrospective data, small sample size and limited number of factors for assessing clinical manifestation might present constraints on the predictive rule that was derived from this review. Such limitations notwithstanding, the decision to determine which patients should undergo neuroimaging is encouraged to be based on clinical judgments. Further analysis with higher sample sizes may be required to authenticate and validate findings.

  3. Pattern of mri brain abnormalities in rheumatic patients with neurological involvement: a tertiary care teaching hospital experience

    Objective: To explore the pattern of abnormalities seen on MRI in rheumatic patients with neurological manifestations and to interpret the findings in relation to clinical picture. Study Design: Descriptive study. Place and Duration of Study: Rheumatology unit, King Khalid University Hospital, Riyadh, Saudi Arabia from January 2013 to February 2014. Patients and Methods: We prospectively included rheumatic patients with neurological symptoms and signs. The clinical data were correlated with MRI findings by a team comprising of a rheumatologist, neurologist and neuro-radiologist. Data was analyzed using simple statistical analysis. Results: Fifty patients were recruited with a mean age of 36.4 ± 10.76 years (range 17-62). Among SLE patients with seizures, focal deficit and headache white matter hyperintensities were found in 9 (64.28%), 4 (50%), 4 (80%) patients respectively. Out of seven SLE patients with global dysfunction, 3 (42.85%) had brain atrophy and 2 (28.57%) normal MRI. In Behcet disease with focal deficit, 3 (75%) patients had white matter hyperintensities and 1 (25%) had brainstem involvement. In Behcet disease with headache, 2 (50%) had normal MRI, 1 (25%) brainstem hyper-intensities and 1 (25%) had subacute infarct. Two (66%) of three Primary APS patients had white matter hyperintensities while third (33%) had old infarct. Both patients of polyarteritisnodosa, had white matter hyperintensities. Out of two Wegener granulomatosis one had white matter hyperintensities and other had ischemic changes in optic nerves. The only one scleroderma patient had white matter hyperintensities. Conclusion: We found that white matter hyperintensities was the most common MRI abnormality in our study group which in most of the cases had poor clinical correlation. No distinct pattern of CNS involvement on MRI was observed in various rheumatic disorders. (author)

  4. The prevalence of undiagnosed abnormalities on non-contrast-enhanced computed tomography compared to contrast-enhanced computed tomography of the brain

    Cornelia Minné

    2014-04-01

    Full Text Available Background: Even though magnetic resonance imaging (MRI is the gold standard investigation for intracranial pathology, it is not widely available in developing countries and computed tomography (CT of the brain remains the first-line investigation for patients with suspected intracranial pathology. It is generally accepted that certain intracranial pathology can be missed on non-contrast-enhanced CT (NECT of the brain if a contrast-enhanced CT (CECT is not done. We have to consider on the one hand the risk of delayed or missed diagnosis and on the other hand the cost, increased radiation exposure and contrast-induced reactions. Advances in CT technology have also improved the resolution of CT scan images, making it easier to identify pathology on an NECT of the brain. To date, no study comparing NECT to CECT of the brain, utilising 64-slice CT technology, has been published.Objectives: To determine the prevalence of undiagnosed abnormalities on non-contrast-enhanced computed tomography (NECT scans of the brain reported as normal, on a 64-slice CT scanner.Method: A descriptive retrospective study was undertaken of CT brain scans done during a 12-month period at a tertiary provincial hospital in the Northern Tshwane district of Gauteng, South Africa. The CT brain scans were evaluated by three reviewers (general radiologists. The NECT and contrast-enhanced computed tomography (CECT scans of the brain were reviewed independently on separate occasions. Reviewers were blinded to patient history, each other’s interpretation, and to their own interpretation of the NECT when evaluating the CECT and vice versa. Discrepancies in interpretation were resolved during a consensus meeting between all three reviewers. The reviewers also re-evaluated the NECT scans of the cases with undiagnosed abnormal findings during this session. A decision was made pertaining to the visibility of the abnormal findings on the NECT scan.Results: In this study, 3.28% of cases

  5. Clinical observation of abnormal glucose metabolism in patients with cardiovascular department of Internal Medicine%心血管内科住院患者糖代谢异常的临床观察

    李丽

    2015-01-01

    ObjectiveTo explore cardiovascular department of internal medicine hospitalized patients with abnormal glucose metabolism,understanding of abnormal glucose metabolism oncardiovascular effects of patient health,and better treatment of patients with cardiovasculardisease.MethodsIn our hospital in 2013 June~2014 year in March treated 200 cases ofcardiovascular department of internal medicine hospitalized patients as the research object,including 50 cases with clinical diagnosed with diabetes,the remaining 150 patients,were used toobserve the cardiovascular department of internal medicine sugar glucose metabolism of patients hospitalized for observation and analysis of tolerance test and fasting blood glucose detection two experimental methods.ResultsThe two test results show,in 200 patients with fasting blood glucose detection,diagnosis of abnormal glucose metabolism in 50 patients,and oral glucose tolerance test on the remaining 150 patients,diagnosed with abnormal glucose metabolism in 100 cases(67%) of the number of sampling experiment,by comparing with the glucose tolerance,test of cardiovascular patients blood glucose were detected,the rate of missed diagnosis of patients with greatly reduced.ConclusionThe oral glucose tolerance test glucose metabolism in patients with cardiovascular disease than that of fasting blood glucose test to conifrm the diagnosis of glucose metabolism in patients with cardiovascular disease rate is high,is worth in clinicaldetection of glucose metabolism of the patients,and vigorously promote the use of.%目的:探究心血管内科住院患者的糖代谢异常,了解糖代谢异常对心血管患者身体健康的影响,从而更好的治疗患者的心血管疾病。方法选取我院2013年6月~2014年3月收治的200例心血管内科住院的患者为研究对象,其中50例经过临床各项检查确诊为糖尿病,对剩余150例患者,分别采用葡萄糖耐量试验和空腹血糖检测实验方法对患者的

  6. PCP-induced alterations in cerebral glucose utilization in rat brain: blockade by metaphit, a PCP-receptor-acylating agent

    Tamminga, C.A.; Tanimoto, K.; Kuo, S.; Chase, T.N.; Contreras, P.C.; Rice, K.C.; Jackson, A.E.; O' Donohue, T.L.

    1987-01-01

    The effects of phencyclidine (PCP) on regional cerebral glucose utilization was determined by using quantitative autoradiography with (/sup 14/C)-2-deoxyglucose. PCP increased brain metabolism in selected areas of cortex, particularly limbic, and in the basal ganglia and thalamus, whereas the drug decreased metabolism in areas related to audition. These results are consistent with the known physiology of central PCP neurons and may help to suggest brain areas involved in PCP-mediated actions. Moreover, based on the behavioral similarities between PCP psychosis and an acute schizophrenic episode, these data may be relevant to the understanding of schizophrenia. The PCP-receptor-acylating agent, metaphit, blocked most of these PCP actions. In addition, metaphit by itself was found to diminish glucose utilization rather uniformly throughout brain. These results indicate an antagonist effect of metaphit on the PCP system and suggest a widespread action of metaphit, putatively at a PCP-related site, possibly in connection with the N-methyl-D-aspartate (NMDA) receptor.

  7. Brain abnormalities in male children and adolescents with hemophilia: detection with MR imaging. The Hemophilia Growth and Development Study Group.

    Wilson, D A; Nelson, M D; Fenstermacher, M J; Bohan, T P; Hopper, K D; Tilton, A; Mitchell, W G; Contant, C F; Maeder, M A; Donfield, S M

    1992-11-01

    Cranial magnetic resonance (MR) imaging was performed in 124 male patients (aged 7-19 years), from 14 institutions, in whom a diagnosis of moderate to severe hemophilia was made. Blood tests in all subjects were negative for human immunodeficiency virus. Findings in MR studies were abnormal in 25 (20.2%) subjects. Six lesions in five subjects were classified as congenital. The most commonly identified congenital lesion was a posterior fossa collection of cerebrospinal fluid (five cases). Twenty-two subjects had acquired lesions that were probably related to the hemophilia or its treatment. The most commonly acquired lesions were single- or multifocal areas of high signal intensity within the white matter on T2-weighted images noted in 14 (11.3%) subjects. Two subjects had large focal areas of brain atrophy, and six had some degree of diffuse cerebral cortical atrophy. Three subjects (2.4%) had hemorrhagic lesions. To the authors' knowledge, the unexpected finding of small, focal, nonhemorrhagic white matter lesions has not previously been reported. PMID:1410372

  8. Neuropsychological deficits and morphological MRI brain scan abnormalities in apparently health non-encephalopathic patients with cirrhosis

    By means of psychometric testing, we have determined the frequency of latent hepatic encephalopathy in a group of 19 cirrhotics with no clinical evidence of encephalopathy. Magnetic resonance imaging (MRI) of the brain was performed in order to determine whether morphological cerebral abnormalities were associated with latent encephalopathy. Nineteen age and educationally matched patient with normal liver function acted as controls. Significant differences (P < 0.05) between cirrhotics and controls were found in tests of short-term visual memory and speed of reaction to light (cirrhotics 326 ] 132 ms vs. controls 225 ] 36 ms), sound (cirrhotics 361 ] 152 ms vs. controls 236 ] 52 ms) and choice (cirrhotics 651 ] 190 ms vs. controls 406 ] 101 ms) stimuli (all values mean ] S.D.). Reitan trail test performance, however, was similar in both groups. ( Trail A: cirrhotics 43 ] 19 s vs. controls 35 ] 13 s; Trail B: cirrhotics 105 ] 66 s vs. controls 93 ] 36 s.) In patients with cirrhosis, MRI revealed statistically significant increases in the maximum fissure width of right frontal sulci, light and left parietal sulci, inter-hemispheric fissure width and in bicaudafe index. These changes, indicating cerebral atrophy, were largely confined to alcoholics. There was poor correlation between measurements of cerebral morphology and neuropsychological performance, only 10% of associations achieving statistical significance. (author). 2 refs.; 3 figs.; 5 tabs

  9. Neuropsychological deficits and morphological MRI brain scan abnormalities in apparently health non-encephalopathic patients with cirrhosis; A controlled Study

    Moore, J.W.; De Lacey, G.; Dunk, A.A.; Sinclair, T.S.; Mowat, M.A.G.; Brunt, P.W. (Royal Infirmary, Aberdeen (United Kingdom)); Deans, H. (Aberdeen Univ. (UK). Dept. of Medical Physics (United Kingdom)); Crawford, J.R. (Aberdeen University Medical School (United Kingdom). Department of Psychology (United Kingdom)); Besson, J.A.O. (Aberdeen University Medical School (United Kingdom). Department of Mental Health (United Kingdom))

    1989-11-01

    By means of psychometric testing, we have determined the frequency of latent hepatic encephalopathy in a group of 19 cirrhotics with no clinical evidence of encephalopathy. Magnetic resonance imaging (MRI) of the brain was performed in order to determine whether morphological cerebral abnormalities were associated with latent encephalopathy. Nineteen age and educationally matched patient with normal liver function acted as controls. Significant differences (P < 0.05) between cirrhotics and controls were found in tests of short-term visual memory and speed of reaction to light (cirrhotics 326 ( 132 ms vs. controls 225 ) 36 ms), sound (cirrhotics 361 ( 152 ms vs. controls 236 ) 52 ms) and choice (cirrhotics 651 ( 190 ms vs. controls 406 ) 101 ms) stimuli (all values mean S.D.). Reitan trail test performance, however, was similar in both groups. ( Trail A: cirrhotics 43 ( 19 s vs. controls 35 ) 13 s; Trail B: cirrhotics 105 ( 66 s vs. controls 93 ) 36 s.) In patients with cirrhosis, MRI revealed statistically significant increases in the maximum fissure width of right frontal sulci, light and left parietal sulci, inter-hemispheric fissure width and in bicaudafe index. These changes, indicating cerebral atrophy, were largely confined to alcoholics. There was poor correlation between measurements of cerebral morphology and neuropsychological performance, only 10% of associations achieving statistical significance. (author). 2 refs.; 3 figs.; 5 tabs.

  10. Neuronal LRP1 Regulates Glucose Metabolism and Insulin Signaling in the Brain

    Liu, Chia-Chen; Hu, Jin; Tsai, Chih-Wei; Yue, Mei; Melrose, Heather L.; Kanekiyo, Takahisa; Bu, Guojun

    2015-01-01

    Alzheimer's disease (AD) is a neurological disorder characterized by profound memory loss and progressive dementia. Accumulating evidence suggests that Type 2 diabetes mellitus, a metabolic disorder characterized by insulin resistance and glucose intolerance, significantly increases the risk for developing AD. Whereas amyloid-β (Aβ) deposition and neurofibrillary tangles are major histological hallmarks of AD, impairment of cerebral glucose metabolism precedes these pathological changes durin...

  11. The INTERPRET Decision-Support System version 3.0 for evaluation of Magnetic Resonance Spectroscopy data from human brain tumours and other abnormal brain masses

    Mercadal Guillem

    2010-11-01

    Full Text Available Abstract Background Proton Magnetic Resonance (MR Spectroscopy (MRS is a widely available technique for those clinical centres equipped with MR scanners. Unlike the rest of MR-based techniques, MRS yields not images but spectra of metabolites in the tissues. In pathological situations, the MRS profile changes and this has been particularly described for brain tumours. However, radiologists are frequently not familiar to the interpretation of MRS data and for this reason, the usefulness of decision-support systems (DSS in MRS data analysis has been explored. Results This work presents the INTERPRET DSS version 3.0, analysing the improvements made from its first release in 2002. Version 3.0 is aimed to be a program that 1st, can be easily used with any new case from any MR scanner manufacturer and 2nd, improves the initial analysis capabilities of the first version. The main improvements are an embedded database, user accounts, more diagnostic discrimination capabilities and the possibility to analyse data acquired under additional data acquisition conditions. Other improvements include a customisable graphical user interface (GUI. Most diagnostic problems included have been addressed through a pattern-recognition based approach, in which classifiers based on linear discriminant analysis (LDA were trained and tested. Conclusions The INTERPRET DSS 3.0 allows radiologists, medical physicists, biochemists or, generally speaking, any person with a minimum knowledge of what an MR spectrum is, to enter their own SV raw data, acquired at 1.5 T, and to analyse them. The system is expected to help in the categorisation of MR Spectra from abnormal brain masses.

  12. Quantitative autoradiography of 14C-D-glucose metabolism of normal and traumatized rat brain using micro-absorption photometry

    It could be shown using 14C-glucose as energy-providing substrate for brain tissue metabolism that for bolus type application a retarded and even channelling of the substrate into the metabolic process takes place. The presence of tracer in the tissue was established using autoradiography. A linear correlation between the amount of tissue-incorporated 14C section thickness and exposure time could be established by means of densitometric measurement of brain sections of various thicknesses, by applying various 14C-activities and by different exposure times. From these correlations direct conclusions may be made regarding the specific activity of the tissue provided that exposure time and section thickness of the sample are known. Comparative studies between cortex and narrow and between traumatized and non-traumatized brain tissue show that the rate of metabolism in brain cortex is markedly higher than in the marrow and that 14C-incorporation is higher in traumatized tissue than in non-traumatized tissue. Whilst the difference in rate of metabolism between brain cortex and marrow can be clearly related to the differing cell count/unit surface area for cortex and marrow, the different energy conversion rates for functionally damaged and normal brain tissue is a specific characteristic of injury. Apart from the fact that an increased 14C-deposition is in no way indicative of an increased metabolic activity, the possibility of quantifying 14C-tissue content provides a basis for estimating therapeutic effects e.g. in the treatment of trauma-caused brain edema. (orig.)

  13. Spectrum of brain abnormalities detected on whole body 18F FDG PET/CT in patients undergoing evaluation for non-CNS malignancies

    We present the pattern of metabolic brain abnormalities detected in patients undergoing whole body (WB) 18F flurodeoxyglucose (FDG) positron emission tomography/computed tomography (PET/CT) examination for non-central nervous system (CNS) malignancies. Knowledge of the PET/CT appearance of various intracranial metabolic abnormalities enables correct interpretation of PET scans in oncological patients where differentiation of metastasis from benign intracranial pathologies is important and improves specificity of the PET study. A complete clinical history and correlation with CT and MRI greatly helps in arriving at a correct imaging diagnosis. (author)

  14. Alcohol decreases baseline brain glucose metabolism more in heavy drinkers than controls but has no effect on stimulation-induced metabolic increases

    During alcohol intoxication the human brain increases metabolism of acetate and decreases metabolism of glucose as energy substrate. Here we hypothesized that chronic heavy drinking facilitates this energy substrate shift both for baseline and stimulation conditions. To test this hypothesis we compared the effects of alcohol intoxication (0.75g/kg alcohol versus placebo) on brain glucose metabolism during video-stimulation (VS) versus when given with no-stimulation (NS), in 25 heavy drinkers (HD) and 23 healthy controls each of whom underwent four PET-18FDG scans. We showed that resting whole-brain glucose metabolism (placebo-NS) was lower in HD than controls (13%, p=0.04); that alcohol (compared to placebo) decreased metabolism more in HD (20±13%) than controls (9±11%, p=0.005) and in proportion to daily alcohol consumption (r=0.36, p=0.01) but found that alcohol did not reduce the metabolic increases in visual cortex from VS in either group. Instead, VS reduced alcohol-induced decreases in whole-brain glucose metabolism (10±12%) compared to NS in both groups (15±13%, p=0.04), consistent with stimulation-related glucose metabolism enhancement. These findings corroborate our hypothesis that heavy alcohol consumption facilitates use of alternative energy substrates (i.e. acetate) for resting activity during intoxication, which might persist through early sobriety, but indicate that glucose is still favored as energy substrate during brain stimulation. Our findings are consistent with reduced reliance on glucose as the main energy substrate for resting brain metabolism during intoxication (presumably shifting to acetate or other ketones) and a priming of this shift in heavy drinkers, which might make them vulnerable to energy deficits during withdrawal

  15. The Effects of Cocaine on Regional Brain Glucose Metabolism Is Attenuated in Dopamine Transporter Knockout Mice

    Thanos, Panayotis K.; MICHAELIDES, MICHAEL; Benveniste, Helene; WANG, GENE JACK; Volkow, Nora D.

    2008-01-01

    Cocaine’s ability to block the dopamine transporter (DAT) is crucial for its reinforcing effects. However the brain functional consequences of DAT blockade by cocaine are less clear since they are confounded by its concomitant blockade of norepinephrine and serotonin transporters. To separate the dopaminergic from the non-dopaminergic effects of cocaine on brain function we compared the regional brain metabolic responses to cocaine between dopamine transporter deficient (DAT−/−) mice with tha...

  16. 糖化血红蛋白与血糖、血脂及心电图异常的相关性分析%Correlation analysis of glycosylated hemoglobin, blood glucose, blood lipid and electrocardiographic abnormality

    王晶

    2014-01-01

    Objective To investigate the relationship between glycosylated hemoglobin (HbA1c), blood glucose, blood lipid and electrocardiographic abnormality, in order to reveal the influence of blood glucose on atherosclerosis.Methods According to the 1999 WHO diagnostic criteria for diabetes and the results of physical examination of 408 subjects, the subjects were divided into normal blood glucose group and abnormal glucose metabolism group. According to the level of HbA1c, the abnormal glucose metabolism group was divided into three groups as group A, group B, and group C, they were HbA1c0.05). The difference of high-density lipoprotein cholesterol (HDL-C) between group A and group B was statistically significant (P0.05). The differences between group B and group C were statistically significant (P0.05),高密度脂蛋白(HDL-C)在A组与B 组间差异具有统计学意义(P0.05),在B 组与 C组间差异具有统计学意义(P<0.05)。分析组和对照组比较, HbA1c 、FBG、PBG、HDL-C、CHOL、TG以及心电图异常发生率各项差异均具有统计学意义(P<0.05)。结论血糖升高可导致血脂异常,从而导致动脉粥样硬化,血糖升高可产生“代谢记忆效应”,应该重视血糖监测以便尽早发现糖代谢异常而进行尽早干预,以减少糖尿病和动脉粥样硬化的发生。

  17. Abnormal N-glycosylation pattern for brain nucleotide pyrophosphatase-5 (NPP-5) in Mecp2-mutant murine models of Rett syndrome.

    Cortelazzo, Alessio; De Felice, Claudio; Guerranti, Roberto; Signorini, Cinzia; Leoncini, Silvia; Pecorelli, Alessandra; Scalabrì, Francesco; Madonna, Michele; Filosa, Stefania; Della Giovampaola, Cinzia; Capone, Antonietta; Durand, Thierry; Mirasole, Cristiana; Zolla, Lello; Valacchi, Giuseppe; Ciccoli, Lucia; Guy, Jacky; D'Esposito, Maurizio; Hayek, Joussef

    2016-04-01

    Neurological disorders can be associated with protein glycosylation abnormalities. Rett syndrome is a devastating genetic brain disorder, mainly caused by de novo loss-of-function mutations in the methyl-CpG binding protein 2 (MECP2) gene. Although its pathogenesis appears to be closely associated with a redox imbalance, no information on glycosylation is available. Glycoprotein detection strategies (i.e., lectin-blotting) were applied to identify target glycosylation changes in the whole brain of Mecp2 mutant murine models of the disease. Remarkable glycosylation pattern changes for a peculiar 50kDa protein, i.e., the N-linked brain nucleotide pyrophosphatase-5 were evidenced, with decreased N-glycosylation in the presymptomatic and symptomatic mutant mice. Glycosylation changes were rescued by selected brain Mecp2 reactivation. Our findings indicate that there is a causal link between the amount of Mecp2 and the N-glycosylation of NPP-5. PMID:26476268

  18. Glucose transport and utilization in the human brain: model using carbon-11 methylglucose and positron emission tomography

    3-0-[11C]-Methyl-D-glucose (CMG) is specifically suited for measuring carrier facilitated glucose (G) transport; it enters the free G pool in tissue from where it is not utilized for metabolism in contrast to G, but is transported back into circulation. The ratio of carrier affinity for G and CMG was reported to be 1.11. By simultaneously measuring CMG concentration in plasma and in cerebral cortex in vivo with positron tomography at 1-min intervals for 40 min, two time-activity curves are obtained, as reported previously, which together with the G concentration in plasma yield the in vivo rate constants of G transport across the blood-brain barrier and the rate of G inflow; a repeat measurement at a different G concentration in plasma gives the in vivo Michaelis-Menten constant KM and the maximal rate of transport VMAX. The present paper summarizes and extends this approach to analyzing the free G pool in tissue, the rate of G return to circulation, and the rate of G exit into metabolism with its corresponding rate constants. The data from six volunteers agreed with results reported for the individual biochemical parameters in primate brains

  19. Persistent resetting of the cerebral oxygen/glucose uptake ratio by brain activation

    Madsen, P L; Hasselbalch, S G; Hagemann, L P; Olsen, K S; Bülow, J; Holm, S; Wildschiødtz, Gordon; Paulson, O B; Lassen, N A

    1995-01-01

    showed that the activation-induced resetting of the relation between CMRglc and CMRO2 persisted virtually unaltered for > or = 40 min after the mental activation task was terminated. The activation-induced increase in cerebral lactate efflux measured over the same time period accounted for only a small......Global cerebral blood flow (CBF), global cerebral metabolic rates for oxygen (CMRO2), and for glucose (CMRglc), and lactate efflux were measured during rest and during cerebral activation induced by the Wisconsin card sorting test. Measurements were performed in healthy volunteers using the Kety...... stress indicators returned to baseline values. Activation-induced resetting of the cerebral oxygen/glucose uptake ratio is not necessarily accounted for by increased lactate production from nonoxidative glucose metabolism....

  20. Effect of hyperbaric oxygen on glucose utilization in a freeze-traumatized rat brain

    Local cerebral glucose utilization was measured with the autoradiographic 2-deoxyglucose technique in rats injured by a focal parietal cortical freeze lesion then treated with hyperbaric oxygen (HBO). The cold lesion depressed glucose utilization in the contralateral as well as in the ipsilateral hemisphere. The largest decreases were observed in ipsilateral cortical areas. Treatment of lesioned animals with HBO at 2 atm for 90 minutes on each of 4 consecutive days tended to increase the overall cerebral glucose utilization measured 5 days after injury when compared to animals exposed to normobaric air. This improvement reached statistical significance in five of the 21 structures studied: the auditory cortex, medial geniculate body, superior olivary nucleus, and lateral geniculate body ipsilateral to the lesion, and the mammillary body. The data indicate that changes in lesioned rats exposed to HBO are not restricted to the period of time that the animals are in the hyperbaric chamber but are persistent

  1. Structural and Perfusion Abnormalities of Brain on MRI and Technetium-99m-ECD SPECT in Children With Cerebral Palsy: A Comparative Study.

    Rana, Kamer Singh; Narwal, Varun; Chauhan, Lokesh; Singh, Giriraj; Sharma, Monica; Chauhan, Suneel

    2016-04-01

    Cerebral palsy has traditionally been associated with hypoxic ischemic brain damage. This study was undertaken to demonstrate structural and perfusion brain abnormalities. Fifty-six children diagnosed clinically as having cerebral palsy were studied between 1 to 14 years of age and were subjected to 3 Tesla magnetic resonance imaging (MRI). Brain and Technetium-99m-ECD brain single-photon emission computed tomography (SPECT) scan. Male to female ratio was 1.8:1 with a mean age of 4.16 ± 2.274 years. Spastic cerebral palsy was the most common type, observed in 91%. Birth asphyxia was the most common etiology (69.6%). White matter changes (73.2%) such as periventricular leukomalacia and corpus callosal thinning were the most common findings on MRI. On SPECT all cases except one revealed perfusion impairments in different regions of brain. MRI is more sensitive in detecting white matter changes, whereas SPECT is better in detecting cortical and subcortical gray matter abnormalities of perfusion. PMID:26353878

  2. Time series changes of MR/PET image of brain glucose metabolism in healthy subjects and alzheimer disease patients

    Combination of morphological information by MRI and functional one by positron emission tomography (PET) was applied to quantitative evaluation of brain regional glucose metabolism in healthy subjects (HS) and Alzheimer disease patients (AD) and their individual aging changes were elucidated for ultimate purpose of computer-aided diagnosis. Subjects were: 5 AD patients (3M/2F, av. age 77.27 y), 14 ε4-carrying HS (EHS, 4M/10F, 71.3y) and 24 non-ε4-carrying HS (NEHS, 4M/20F, 70.21), where ε4 (apolipoprotein E type 4 gene allele)-carrying HS were reported to be prone to early AD and to tend to give increased brain atrophy incidence. Acquisitions of T1-weighted 3D MR and PET images were in 256 x 256 x(88-104) and x (90-100) voxels, respectively, with digitization level 16 bits, and were repeated 3 times in the time series of 21-38 months. Segmentation was performed with the MR imaging software SPM8 (Statistic Parametric Mapping: Metalab) to specify the regions of white/gray matters and cerebrospinal fluid (CSF). The binary MR and registered PET images were fused for comparison of glucose metabolism by SUVs (standardized uptake values) in gray matter of the three subject groups. Findings were: SUV in AD was markedly reduced; average time series changes per year were 0.11% in AD, -2.63% in EHS and 1.48% in NEHS; and statistical significance of the changes was between AD and NEHS, and between EHS and NEHS. Glucose metabolism by MR/PET can be thus used for a distinction of ε4-carrier and non-carrier in HS. (T.T.)

  3. High prevalence of chronic pituitary and target-organ hormone abnormalities after blast-related mild traumatic brain injury

    CharlesW.Wilkinson

    2012-02-01

    Full Text Available Studies of traumatic brain injury from all causes have found evidence of chronic hypopituitarism, defined by deficient production of one or more pituitary hormones at least one year after injury, in 25-50% of cases. Most studies found the occurrence of posttraumatic hypopituitarism (PTHP to be unrelated to injury severity. Growth hormone deficiency (GHD and hypogonadism were reported most frequently. Hypopituitarism, and in particular adult GHD, is associated with symptoms that resemble those of PTSD, including fatigue, anxiety, depression, irritability, insomnia, sexual dysfunction, cognitive deficiencies, and decreased quality of life. However, the prevalence of PTHP after blast-related mild TBI (mTBI, an extremely common injury in modern military operations, has not been characterized. We measured concentrations of 12 pituitary and target-organ hormones in two groups of male US Veterans of combat in Iraq or Afghanistan. One group consisted of participants with blast-related mTBI whose last blast exposure was at least one year prior to the study. The other consisted of Veterans with similar military deployment histories but without blast exposure. Eleven of 26, or 42% of participants with blast concussions were found to have abnormal hormone levels in one or more pituitary axes, a prevalence similar to that found in other forms of TBI. Five members of the mTBI group were found with markedly low age-adjusted insulin-like growth factor-I (IGF-I levels indicative of probable GHD, and three had testosterone and gonadotropin concentrations consistent with hypogonadism. If symptoms characteristic of both PTHP and PTSD can be linked to pituitary dysfunction, they may be amenable to treatment with hormone replacement. Routine screening for chronic hypopituitarism after blast concussion shows promise for appropriately directing diagnostic and therapeutic decisions that otherwise may remain unconsidered and for markedly facilitating recovery and

  4. Sensory neuron-specific sodium channel SNS is abnormally expressed in the brains of mice with experimental allergic encephalomyelitis and humans with multiple sclerosis

    Black, Joel A.; Dib-Hajj, Sulayman; Baker, David; Newcombe, Jia; Cuzner, M. Louise; Waxman, Stephen G.

    2000-10-01

    Clinical abnormalities in multiple sclerosis (MS) have classically been considered to be caused by demyelination and/or axonal degeneration; the possibility of molecular changes in neurons, such as the deployment of abnormal repertoires of ion channels that would alter neuronal electrogenic properties, has not been considered. Sensory Neuron-Specific sodium channel SNS displays a depolarized voltage dependence, slower activation and inactivation kinetics, and more rapid recovery from inactivation than classical "fast" sodium channels. SNS is selectively expressed in spinal sensory and trigeminal ganglion neurons within the peripheral nervous system and is not expressed within the normal brain. Here we show that sodium channel SNS mRNA and protein, which are not present within the cerebellum of control mice, are expressed within cerebellar Purkinje cells in a mouse model of MS, chronic relapsing experimental allergic encephalomyelitis. We also demonstrate SNS mRNA and protein expression within Purkinje cells from tissue obtained postmortem from patients with MS, but not in control subjects with no neurological disease. These results demonstrate a change in sodium channel expression in neurons within the brain in an animal model of MS and in humans with MS and suggest that abnormal patterns of neuronal ion channel expression may contribute to clinical abnormalities such as ataxia in these disorders.

  5. Dichloroacetate effects on glucose and lactate oxidation by neurons and astroglia in vitro and on glucose utilization by brain in vivo

    Itoh, Yoshiaki; Esaki, Takanori; Shimoji, Kazuaki; Cook, Michelle; Law, Mona J.; Kaufman, Elaine; Sokoloff, Louis

    2003-01-01

    Neuronal cultures in vitro readily oxidized both D-[14C]glucose and l-[14C]lactate to 14CO2, whereas astroglial cultures oxidized both substrates sparingly and metabolized glucose predominantly to lactate and released it into the medium. [14C]Glucose oxidation to 14CO2 varied inversely with unlabeled lactate concentration in the medium, particularly in neurons, and increased progressively with decreasing lactate concentration. Adding unlabeled glucose to the medium inhibited [14C]lactate oxid...

  6. In vitro growth environment produces lipidomic and electron transport chain abnormalities in mitochondria from non-tumorigenic astrocytes and brain tumours

    Thomas N Seyfried

    2009-05-01

    Full Text Available The mitochondrial lipidome influences ETC (electron transport chain and cellular bioenergetic efficiency. Brain tumours are largely dependent on glycolysis for energy due to defects in mitochondria and oxidative phosphorylation. In the present study, we used shotgun lipidomics to compare the lipidome in highly purified mitochondria isolated from normal brain, from brain tumour tissue, from cultured tumour cells and from non-tumorigenic astrocytes. The tumours included the CT-2A astrocytoma and an EPEN (ependymoblastoma, both syngeneic with the C57BL/6J (B6 mouse strain. The mitochondrial lipidome in cultured CT-2A and EPEN tumour cells were compared with those in cultured astrocytes and in solid tumours grown in vivo. Major differences were found between normal tissue and tumour tissue and between in vivo and in vitro growth environments for the content or composition of ethanolamine glycerophospholipids, phosphatidylglycerol and cardiolipin. The mitochondrial lipid abnormalities in solid tumours and in cultured cells were associated with reductions in multiple ETC activities, especially Complex I. The in vitro growth environment produced lipid and ETC abnormalities in cultured non-tumorigenic astrocytes that were similar to those associated with tumorigenicity. It appears that the culture environment obscures the boundaries of the Crabtree and the Warburg effects. These results indicate that in vitro growth environments can produce abnormalities in mitochondrial lipids and ETC activities, thus contributing to a dependency on glycolysis for ATP production.

  7. Uniform distributions of glucose oxidation and oxygen extraction in gray matter of normal human brain: No evidence of regional differences of aerobic glycolysis.

    Hyder, Fahmeed; Herman, Peter; Bailey, Christopher J; Møller, Arne; Globinsky, Ronen; Fulbright, Robert K; Rothman, Douglas L; Gjedde, Albert

    2016-05-01

    Regionally variable rates of aerobic glycolysis in brain networks identified by resting-state functional magnetic resonance imaging (R-fMRI) imply regionally variable adenosine triphosphate (ATP) regeneration. When regional glucose utilization is not matched to oxygen delivery, affected regions have correspondingly variable rates of ATP and lactate production. We tested the extent to which aerobic glycolysis and oxidative phosphorylation power R-fMRI networks by measuring quantitative differences between the oxygen to glucose index (OGI) and the oxygen extraction fraction (OEF) as measured by positron emission tomography (PET) in normal human brain (resting awake, eyes closed). Regionally uniform and correlated OEF and OGI estimates prevailed, with network values that matched the gray matter means, regardless of size, location, and origin. The spatial agreement between oxygen delivery (OEF≈0.4) and glucose oxidation (OGI ≈ 5.3) suggests that no specific regions have preferentially high aerobic glycolysis and low oxidative phosphorylation rates, with globally optimal maximum ATP turnover rates (VATP ≈ 9.4 µmol/g/min), in good agreement with (31)P and (13)C magnetic resonance spectroscopy measurements. These results imply that the intrinsic network activity in healthy human brain powers the entire gray matter with ubiquitously high rates of glucose oxidation. Reports of departures from normal brain-wide homogeny of oxygen extraction fraction and oxygen to glucose index may be due to normalization artefacts from relative PET measurements. PMID:26755443

  8. Hypoxia inducible factor-1alpha mediates protection of DL-3-n-butylphthalide in brain microvascular endothelial cells against oxygen glucose deprivation-induced injury

    Weihong Yang; Ling Li; Ruxun Huang; Zhong Pei; Songjie Liao; Jinsheng Zeng

    2012-01-01

    Studies have demonstrated that DL-3-n-butylphthalide can significantly alleviate oxygen glucose deprivation-induced injury of human umbilical vein endothelial cells at least partly associated with its enhancement on oxygen glucose deprivation -induced hypoxia inducible factor-1α expression. In this study, we hypothesized that DL-3-n-butylphthalide can protect against oxygen glucose deprivation-induced injury of newborn rat brain microvascular endothelial cells by means of upregulating hypoxia inducible factor-1α expression. MTT assay and Hoechst staining results showed that DL-3-n-butylphthalide protected brain microvascular endothelial cells against oxygen glucose deprivation-induced injury in a dose-dependent manner. Western blot and immunofluorescent staining results further confirmed that the protective effect was related to upregulation of hypoxia inducible factor-1α. Real-time RT-PCR reaction results showed that DL-3-n-butylphthalide reduced apoptosis by inhibiting downregulation of pro-apoptotic gene caspase-3 mRNA expression and upregulation of apoptosis-executive protease bcl-2 mRNA expression; however, DL-3-n-butylphthalide had no protective effects on brain microvascular endothelial cells after knockdown of hypoxia inducible factor-1α by small interfering RNA. These findings suggest that DL-3-n-butylphthalide can protect brain microvascular endothelial cells against oxygen glucose deprivation-induced injury by upregulating bcl-2 expression and downregulating caspase-3 expression though hypoxia inducible factor-1α pathway.

  9. What is a normal blood glucose?

    Güemes, Maria; Rahman, Sofia A; Hussain, Khalid

    2016-06-01

    Glucose is the key metabolic substrate for tissue energy production. In the perinatal period the mother supplies glucose to the fetus and for most of the gestational period the normal lower limit of fetal glucose concentration is around 3 mmol/L. Just after birth, for the first few hours of life in a normal term neonate appropriate for gestational age, blood glucose levels can range between 1.4 mmol/L and 6.2 mmol/L but by about 72 h of age fasting blood glucose levels reach normal infant, child and adult values (3.5-5.5 mmol/L). Normal blood glucose levels are maintained within this narrow range by factors which control glucose production and glucose utilisation. The key hormones which regulate glucose homoeostasis include insulin, glucagon, epinephrine, norepinephrine, cortisol and growth hormone. Pathological states that affect either glucose production or utilisation will lead to hypoglycaemia. Although hypoglycaemia is a common biochemical finding in children (especially in the newborn) it is not possible to define by a single (or a range of) blood glucose value/s. It can be defined as the concentration of glucose in the blood or plasma at which the individual demonstrates a unique response to the abnormal milieu caused by the inadequate delivery of glucose to a target organ (eg, the brain). Hypoglycaemia should therefore be considered as a continuum and the blood glucose level should be interpreted within the clinical scenario and with respect to the counter-regulatory hormonal responses and intermediate metabolites. PMID:26369574

  10. Neurological and behavioral abnormalities, ventricular dilatation, altered cellular functions, inflammation, and neuronal injury in brains of mice due to common, persistent, parasitic infection

    Hwang Jong-Hee

    2008-10-01

    Full Text Available Abstract Background Worldwide, approximately two billion people are chronically infected with Toxoplasma gondii with largely unknown consequences. Methods To better understand long-term effects and pathogenesis of this common, persistent brain infection, mice were infected at a time in human years equivalent to early to mid adulthood and studied 5–12 months later. Appearance, behavior, neurologic function and brain MRIs were studied. Additional analyses of pathogenesis included: correlation of brain weight and neurologic findings; histopathology focusing on brain regions; full genome microarrays; immunohistochemistry characterizing inflammatory cells; determination of presence of tachyzoites and bradyzoites; electron microscopy; and study of markers of inflammation in serum. Histopathology in genetically resistant mice and cytokine and NRAMP knockout mice, effects of inoculation of isolated parasites, and treatment with sulfadiazine or αPD1 ligand were studied. Results Twelve months after infection, a time equivalent to middle to early elderly ages, mice had behavioral and neurological deficits, and brain MRIs showed mild to moderate ventricular dilatation. Lower brain weight correlated with greater magnitude of neurologic abnormalities and inflammation. Full genome microarrays of brains reflected inflammation causing neuronal damage (Gfap, effects on host cell protein processing (ubiquitin ligase, synapse remodeling (Complement 1q, and also increased expression of PD-1L (a ligand that allows persistent LCMV brain infection and CD 36 (a fatty acid translocase and oxidized LDL receptor that mediates innate immune response to beta amyloid which is associated with pro-inflammation in Alzheimer's disease. Immunostaining detected no inflammation around intra-neuronal cysts, practically no free tachyzoites, and only rare bradyzoites. Nonetheless, there were perivascular, leptomeningeal inflammatory cells, particularly contiguous to the aqueduct of

  11. Analysis of local perfusion rate and local glucose transport rate in brain and heart in man by means of C-11-methyl-D-glucose and dynamic positron emission tomography

    Because an imbalance of perfusion, transport and metabolism may determine the ultimate damage in ischemic brain - or heart disease, it appears desirable to simultaneously determine the rates of regional perfusion and glucose utilisation, in small brain or heart regions. Local tissue perfusion rate (LPR) and unidirectional glucose transmembrane transport rate (LGTR) may be simultaneously assayed by C-11-labelled methyl-D-glucose (CMG). This sugar analogue follows the pathway of glucose via perfusion and transmembrane transport, yet does not enter cellular metabolism; it returns to blood. Following intravenous application, CMG equilibrates between blood and tissue. The CMG concentration in blood (csub(B)) at various times may be taken as internal standard, against which the tracer accumulation in tissue is evaluated. 2-5 mCi of CMG were injected into an antecubital vein of the patient and transaxial activity distribution in one selected slice of brain or chest was registered with the ECAT II scanner at 2 minute intervals for 40 minutes. The measured attenuation correction was used for image reconstruction. Different regions of brain or heart scans were then selected and time activity curves created. The data from sup. long. sinus (brain) and left ventricular cavity (heart) were taken to represent csub(B). It was concluded from the data that for diagnostic evaluation of ultimate brain or heart damage simultaneous quantitative assessment of both LPR or LGTR is of basic importance. There is evidence that the CMG technique is an excellent tool which provide the possibility to obtain this information in defined morphological regions

  12. INCREASED GLUCOSE AVAILABILITY DOES NOT RESTORE PROLONGED SPREADING DEPRESSION DURATIONS IN HYPOTENSIVE RATS WITHOUT BRAIN INJURY

    Hoffmann, Ulrike; Sukhotinsky, Inna; ATALAY, YAHYA BURAK; Eikermann-Haerter, Katharina; Ayata, Cenk

    2012-01-01

    Maintenance of transmembrane ionic gradients and their restoration after cortical spreading depression (CSD) are energy dependent. We recently showed an inverse relationship between blood pressure and CSD duration that is independent of tissue oxygenation. Here, we tested the alternative hypothesis that glucose availability becomes rate-limiting for CSD recovery upon reduced blood pressure in anesthetized rats under full systemic physiological monitoring. Hypotension induced by controlled exs...

  13. Walking Speed and Brain Glucose Uptake are Uncoupled in Patients with Multiple Sclerosis

    Kindred, John H.; Tuulari, Jetro J.; Bucci, Marco; Kalliokoski, Kari K.; Rudroff, Thorsten

    2015-01-01

    Motor impairments of the upper and lower extremities are common symptoms of multiple sclerosis (MS). While some peripheral effects like muscle weakness and loss of balance have been shown to influence these symptoms, central nervous system activity has not been fully elucidated. The purpose of this study was to determine if alterations in glucose uptake were associated with motor impairments in patients with multiple sclerosis. Eight patients with multiple sclerosis (four men) and eight sex m...

  14. Walking speed and brain glucose uptake are uncoupled in patients with multiple sclerosis

    Tuulari, Jetro J.; Thorsten Rudroff

    2015-01-01

    Motor impairments of the upper and lower extremities are common symptoms of multiple sclerosis (MS). While some peripheral effects like muscle weakness and loss of balance have been shown to influence these symptoms, central nervous system activity has not been fully elucidated. The purpose of this study was to determine if alterations in glucose uptake were associated with motor impairments in patients with multiple sclerosis. Eight patients with multiple sclerosis (4 men) and 8 sex match...

  15. A sodium-glucose co-transporter 2 inhibitor empagliflozin prevents abnormality of circadian rhythm of blood pressure in salt-treated obese rats.

    Takeshige, Yui; Fujisawa, Yoshihide; Rahman, Asadur; Kittikulsuth, Wararat; Nakano, Daisuke; Mori, Hirohito; Masaki, Tsutomu; Ohmori, Koji; Kohno, Masakazu; Ogata, Hiroaki; Nishiyama, Akira

    2016-06-01

    Studies were performed to examine the effects of the selective sodium-glucose co-transporter 2 (SGLT2) inhibitor empagliflozin on urinary sodium excretion and circadian blood pressure in salt-treated obese Otsuka Long Evans Tokushima Fatty (OLETF) rats. Fifteen-week-old obese OLETF rats were treated with 1% NaCl (in drinking water), and vehicle (0.5% carboxymethylcellulose, n=10) or empagliflozin (10 mg kg(-1)per day, p.o., n=11) for 5 weeks. Blood pressure was continuously measured by telemetry system. Glucose metabolism and urinary sodium excretion were evaluated by oral glucose tolerance test and high salt challenge test, respectively. Vehicle-treated OLETF rats developed non-dipper type blood pressure elevation with glucose intolerance and insulin resistance. Compared with vehicle-treated animals, empagliflozin-treated OLETF rats showed an approximately 1000-fold increase in urinary glucose excretion and improved glucose metabolism and insulin resistance. Furthermore, empagliflozin prevented the development of blood pressure elevation with normalization of its circadian rhythm to a dipper profile, which was associated with increased urinary sodium excretion. These data suggest that empagliflozin elicits beneficial effects on both glucose homeostasis and hypertension in salt-replete obese states. PMID:26818652

  16. Riluzole protects Huntington disease patients from brain glucose hypometabolism and grey matter volume loss and increases production of neurotrophins

    Huntington disease (HD) mutation increases gain-of-toxic functions contributing to glutamate-mediated excitotoxicity. Riluzole interferes with glutamatergic neurotransmission, thereby reducing excitotoxicity, enhancing neurite formation in damaged motoneurons and increasing serum concentrations of BDNF, a brain cortex neurotrophin protecting striatal neurons from degeneration. We investigated metabolic and volumetric differences in distinct brain areas between 11 riluzole-treated and 12 placebo-treated patients by MRI and 18F-fluoro-2-deoxy-d-glucose (FDG) PET scanning, according to fully automated protocols. We also investigated the influence of riluzole on peripheral growth factor blood levels. Placebo-treated patients showed significantly greater proportional volume loss of grey matter and decrease in metabolic FDG uptake than patients treated with riluzole in all cortical areas (p<0.05). The decreased rate of metabolic FDG uptake correlated with worsening clinical scores in placebo-treated patients, compared to those who were treated with riluzole. The progressive decrease in metabolic FDG uptake observed in the frontal, parietal and occipital cortex correlated linearly with the severity of motor scores calculated by Unified Huntington Disease Rating Scale (UHDRS-I) in placebo-treated patients. Similarly, the rate of metabolic changes in the frontal and temporal areas of the brain cortex correlated linearly with worsening behavioural scores calculated by UHDRS-III in the placebo-treated patients. Finally, BDNF and transforming growth factor beta-1 serum levels were significantly higher in patients treated with riluzole. The linear correlation between decreased metabolic FDG uptake and worsening clinical scores in the placebo-treated patients suggests that FDG-PET may be a valuable procedure to assess brain markers of HD. (orig.)

  17. Riluzole protects Huntington disease patients from brain glucose hypometabolism and grey matter volume loss and increases production of neurotrophins

    Squitieri, Ferdinando; Orobello, Sara; Cannella, Milena; Martino, Tiziana [IRCCS Neuromed, Neurogenetics Unit and Centre for Rare Disease, Pozzilli (Italy); Romanelli, Pantaleo [IRCCS Neuromed, Department of Neurosurgery, Pozzilli (Italy); Giovacchini, Giampiero; Ciarmiello, Andrea [S. Andrea Hospital, Unit of Nuclear Medicine, La Spezia (Italy); Frati, Luigi [University ' ' Sapienza' ' , Department of Experimental Medicine, Rome (Italy); Mansi, Luigi [Second University of Naples, Department of Nuclear Medicine, Naples (Italy)

    2009-07-15

    Huntington disease (HD) mutation increases gain-of-toxic functions contributing to glutamate-mediated excitotoxicity. Riluzole interferes with glutamatergic neurotransmission, thereby reducing excitotoxicity, enhancing neurite formation in damaged motoneurons and increasing serum concentrations of BDNF, a brain cortex neurotrophin protecting striatal neurons from degeneration. We investigated metabolic and volumetric differences in distinct brain areas between 11 riluzole-treated and 12 placebo-treated patients by MRI and {sup 18}F-fluoro-2-deoxy-d-glucose (FDG) PET scanning, according to fully automated protocols. We also investigated the influence of riluzole on peripheral growth factor blood levels. Placebo-treated patients showed significantly greater proportional volume loss of grey matter and decrease in metabolic FDG uptake than patients treated with riluzole in all cortical areas (p<0.05). The decreased rate of metabolic FDG uptake correlated with worsening clinical scores in placebo-treated patients, compared to those who were treated with riluzole. The progressive decrease in metabolic FDG uptake observed in the frontal, parietal and occipital cortex correlated linearly with the severity of motor scores calculated by Unified Huntington Disease Rating Scale (UHDRS-I) in placebo-treated patients. Similarly, the rate of metabolic changes in the frontal and temporal areas of the brain cortex correlated linearly with worsening behavioural scores calculated by UHDRS-III in the placebo-treated patients. Finally, BDNF and transforming growth factor beta-1 serum levels were significantly higher in patients treated with riluzole. The linear correlation between decreased metabolic FDG uptake and worsening clinical scores in the placebo-treated patients suggests that FDG-PET may be a valuable procedure to assess brain markers of HD. (orig.)

  18. 妊娠期糖代谢异常162例母儿预后分析%Analysis on the outcomes of 162 maternal and fetal with abnormal glucose metabolism during pregnancy

    徐亚萍

    2011-01-01

    Objective: To investigate the effect of abnormal glucose metabolism during pregnancy on maternal and fetal outcomes.Methods: 162 patients were diagnosed definitely in our hospital from June 2003 to August 2007.They were divided into Gestational Diabetes Mellitus (GDM) group (58 cases) and gestational impaired glucose tolerance (GIGT) group (104 cases).150 pregnant women of normal blood glucose were taken as normal glucose tolerance (GNGT) group, maternal and fetal outcomes were compared in three groups.Results: The incidences of postpartum hemorrhage, cesarean section, pregnancy - induced hypertension, polyhydramnios, fatal macrosomia, premature delivery, neonatal hypoglycemia were higher in GDM group than in GNGT group (P < 0.05 ).The incidences of cesarean section, polyhydramnios, fatal acrosomia were higher in the GIGT group than in GNGT group (P <0.05).Conclusion: Abnormal glucose metabolism during pregnancy can produce adverse effect on mothers and neonates.It is very important to positive treatment the pregnant women of abnormal glucose metabolism during pregnancy.%目的:探讨妊娠期糖代谢异常对母儿预后的影响.方法:2003年6月~2007年8月在大同市第一人民医院诊断为妊娠期糖代谢异常的孕妇162例,其中妊娠期糖尿病(GDM)组58例,妊娠期糖耐量减低(GIGT)组104例,另选择150例血糖值正常孕妇作为血糖正常(GNGT)组,比较3组的母儿预后.结果:GDM组孕妇产后即时出血、剖宫产、妊娠期高血压疾病、羊水过多、巨大儿、早产儿和新生儿低血糖的发生率均显著高于GNGT组(P<0.05);GIGT组剖宫产、羊水过多、巨大儿的发生率显著高于GNGT组(P<0.05).结论:妊娠期糖代谢异常对孕产妇和围生儿的预后有不良影响,应对妊娠期糖代谢异常的孕产妇进行积极干预.

  19. A proposed method for the determination of cerebral regional intermediary glucose metabolism in humans in vivo using specifically labeled 11C-glucose and positron emission transverse tomography (PETT). I. An animal model with 14C-glucose and rat brain autoradiography

    Based upon data obtained with our arterio-venous technique for the determination of cerebral metabolism in humans in vivo we have proposed a method for the determination of cerebral regional intermediary glucose metabolism in humans in vivo using specifically labeled 11C-glucose and positron emission transverse tomography (PETT). In it we would give the subject successive intravenous injections of [3,4-11C] glucose, [2,5-11C] glucose and [1-11C] glucose. There would be a 30 min period of continuous PETT measurements following each injection and a 2 hr interval after the first and second injections. The data would be used with suitable equations and algorithms to estimate for each specific region of the subject's brain the dynamics of the Embden-Meyerhof-Parnas (EMP) and the tricarboxylic acid cycle (TCA) metabolic pathways and the incorporation of glucose carbons into lactate, and the extent of dilution of glucose carbons into lactate, and the extent of dilution of glucose carbons in traversing the TCA with their subsequent incorporation into other carbon pools of the brain (ie, glutamate, glutamine, GABA, alanine). Using 14C as a model for 11C and autoradiographs made with rat brain slices, we have produced an animal model to demonstrate the feasibility of our proposed method. The resulting autoradiographs have provided evidence of the validity of the predictions made from our arterio-venous data. The model was employed to show the selective reductions in the rates of incorporation of specific carbon atoms of glucose into regions of the rat brain and evidence of altered metabolic pathways following a single electroconvulsive shock (ECS) and after a series of nine ECS

  20. Simultaneous recording of brain extracellular glucose, spike and local field potential in real time using an implantable microelectrode array with nano-materials

    Wei, Wenjing; Song, Yilin; Fan, Xinyi; Zhang, Song; Wang, Li; Xu, Shengwei; Wang, Mixia; Cai, Xinxia

    2016-03-01

    Glucose is the main substrate for neurons in the central nervous system. In order to efficiently characterize the brain glucose mechanism, it is desirable to determine the extracellular glucose dynamics as well as the corresponding neuroelectrical activity in vivo. In the present study, we fabricated an implantable microelectrode array (MEA) probe composed of platinum electrochemical and electrophysiology microelectrodes by standard micro electromechanical system (MEMS) processes. The MEA probe was modified with nano-materials and implanted in a urethane-anesthetized rat for simultaneous recording of striatal extracellular glucose, local field potential (LFP) and spike on the same spatiotemporal scale when the rat was in normoglycemia, hypoglycemia and hyperglycemia. During these dual-mode recordings, we observed that increase of extracellular glucose enhanced the LFP power and spike firing rate, while decrease of glucose had an opposite effect. This dual mode MEA probe is capable of examining specific spatiotemporal relationships between electrical and chemical signaling in the brain, which will contribute significantly to improve our understanding of the neuron physiology.

  1. Quantitative Rates of Brain Glucose Metabolism Distinguish Minimally Conscious from Vegetative State Patients

    Stender, Johan; Kupers, Ron; Rodell, Anders;

    2015-01-01

    The differentiation of the vegetative or unresponsive wakefulness syndrome (VS/UWS) from the minimally conscious state (MCS) is an important clinical issue. The cerebral metabolic rate of glucose (CMRglc) declines when consciousness is lost, and may reveal the residual cognitive function of these...... indistinguishable from those of MCS. Ordinal logistic regression predicted that patients are likely to emerge into MCS at CMRglc above 45% of normal. Receiver-operating characteristics showed that patients in MCS and VS/UWS can be differentiated with 82% accuracy, based on cortical metabolism. Together these...

  2. An a contrario approach for the detection of patient-specific brain perfusion abnormalities with arterial spin labelling

    Maumet, Camille; Maurel, Pierre; Ferré, Jean-Christophe; Barillot, Christian

    2016-01-01

    International audience In this paper, we introduce a new locally multivariate procedure to quantitatively extract voxel-wise patterns of abnormal perfusion in individual patients. This a contrario approach uses a multivariate metric from the computer vision community that is suitable to detect abnormalities even in the presence of closeby hypo- and hyper-perfusions. This method takes into account local information without applying Gaussian smoothing to the data. Furthermore, to improve on ...

  3. Motor Network Plasticity and Low-Frequency Oscillations Abnormalities in Patients with Brain Gliomas: A Functional MRI Study

    Niu, Chen; Zhang, Ming; Min, Zhigang; Rana, Netra; Zhang, Qiuli; Liu, Xin; Li, Min; Lin, Pan

    2014-01-01

    Brain plasticity is often associated with the process of slow-growing tumor formation, which remodels neural organization and optimizes brain network function. In this study, we aimed to investigate whether motor function plasticity would display deficits in patients with slow-growing brain tumors located in or near motor areas, but who were without motor neurological deficits. We used resting-state functional magnetic resonance imaging to probe motor networks in 15 patients with histopatholo...

  4. Downstream targets of methyl CpG binding protein 2 and their abnormal expression in the frontal cortex of the human Rett syndrome brain

    Minchenko Dimitri

    2010-04-01

    Full Text Available Abstract Background The Rett Syndrome (RTT brain displays regional histopathology and volumetric reduction, with frontal cortex showing such abnormalities, whereas the occipital cortex is relatively less affected. Results Using microarrays and quantitative PCR, the mRNA expression profiles of these two neuroanatomical regions were compared in postmortem brain tissue from RTT patients and normal controls. A subset of genes was differentially expressed in the frontal cortex of RTT brains, some of which are known to be associated with neurological disorders (clusterin and cytochrome c oxidase subunit 1 or are involved in synaptic vesicle cycling (dynamin 1. RNAi-mediated knockdown of MeCP2 in vitro, followed by further expression analysis demonstrated that the same direction of abnormal expression was recapitulated with MeCP2 knockdown, which for cytochrome c oxidase subunit 1 was associated with a functional respiratory chain defect. Chromatin immunoprecipitation (ChIP analysis showed that MeCP2 associated with the promoter regions of some of these genes suggesting that loss of MeCP2 function may be responsible for their overexpression. Conclusions This study has shed more light on the subset of aberrantly expressed genes that result from MECP2 mutations. The mitochondrion has long been implicated in the pathogenesis of RTT, however it has not been at the forefront of RTT research interest since the discovery of MECP2 mutations. The functional consequence of the underexpression of cytochrome c oxidase subunit 1 indicates that this is an area that should be revisited.

  5. Formaldehyde Metabolism and Formaldehyde-induced Alterations in Glucose and Glutathione Metabolism of Cultured Brain Cells

    Tulpule, Ketki

    2013-01-01

    Formaldehyde is an environmental pollutant that is also generated in the body during normal metabolic processes. Interestingly, several pathological conditions are associated with an increase in formaldehyde-generating enzymes in the body. The level of formaldehyde in the brain is elevated with increasing age and in neurodegenerative conditions which may contribute to lowered cognitive functions. Although the neurotoxic potential of formaldehyde is well established, the molecular mechanisms i...

  6. Brain-Derived Neurotrophic Factor Val66Met and Blood Glucose: A Synergistic Effect on Memory

    Naftali Raz; Dahle, Cheryl L.; Rodrigue, Karen M.; Kennedy, Kristen M.; Land, Susan J.; Jacobs, Bradley S.

    2008-01-01

    Age-related declines in episodic memory performance are frequently reported, but their mechanisms remain poorly understood. Although several genetic variants and vascular risk factors have been linked to mnemonic performance in general and age differences therein, it is unknown whether and how they modify age-related memory declines. To address that question, we investigated the effect of Brain-Derived Neurotrophic Factor (BDNF) Val66Met polymorphism that affects secretion of BDNF, and fastin...

  7. Lactography as an approach to monitor glucose metabolism on-line in brain and muscle.

    Korf, J; de Boer, J

    1990-01-01

    1. Thus far metabolic processes in the intact animal (or man) have been studied either by the analysis of body fluids, of biopsies, of tissue obtained post mortem or by techniques, requiring dedicated and expensive equipment (such as positron emission tomography or magnetic resonance spectroscopy). 2. Here we describe a relatively simple and inexpensive technique, that can be applied in vivo to study metabolism in brain regions and muscle in the freely moving rat and in human peripheral tissue. 3. The method is based on microdialysis allowing continuous sampling from the extracellular space, the enzymatic conversion of lactate and the on-line detection of fluorescent NADH. 4. Examples of the application of our technique include the monitoring of lactate efflux from various brain regions of behaving animals under a variety of stress exposures, during ischemia or hypoxia and drug treatments. 5. The results indicate that in brain lactate is not exclusively formed under hypoxia and that neuronal activation leads also to lactate formation, possibly due to the compartmentation of both the involved enzymes and the energy metabolism. 6. The increase of lactate formation in contracting or ischemic muscle or during exercise could also be followed on-line in the rat, suggesting that our approach allows the continuous monitoring of anaerobic metabolism in man e.g. during traumatic or arteriosclerotic limb ischemia or lactic acidosis in shock states. 7. The principle of our approach can easily be adapted to other metabolites, thus enabling to monitor other metabolic pathways in vivo as well. PMID:2276411

  8. Abnormal pain processing in chronic tension-type headache: a high-density EEG brain mapping study

    Buchgreitz, L.; Egsgaard, L.L.; Jensen, R.; Arendt-Nielsen, L.; Bendtsen, L.

    Central sensitization caused by prolonged nociceptive input from muscles is considered to play an important role for chronification of tension-type headache. In the present study we used a new high-density EEG brain mapping technique to investigate spatiotemporal aspects of brain activity in...

  9. Resting-state EEG oscillatory dynamics in fragile X syndrome: abnormal functional connectivity and brain network organization.

    Melle J W van der Molen

    Full Text Available Disruptions in functional connectivity and dysfunctional brain networks are considered to be a neurological hallmark of neurodevelopmental disorders. Despite the vast literature on functional brain connectivity in typical brain development, surprisingly few attempts have been made to characterize brain network integrity in neurodevelopmental disorders. Here we used resting-state EEG to characterize functional brain connectivity and brain network organization in eight males with fragile X syndrome (FXS and 12 healthy male controls. Functional connectivity was calculated based on the phase lag index (PLI, a non-linear synchronization index that is less sensitive to the effects of volume conduction. Brain network organization was assessed with graph theoretical analysis. A decrease in global functional connectivity was observed in FXS males for upper alpha and beta frequency bands. For theta oscillations, we found increased connectivity in long-range (fronto-posterior and short-range (frontal-frontal and posterior-posterior clusters. Graph theoretical analysis yielded evidence of increased path length in the theta band, suggesting that information transfer between brain regions is particularly impaired for theta oscillations in FXS. These findings are discussed in terms of aberrant maturation of neuronal oscillatory dynamics, resulting in an imbalance in excitatory and inhibitory neuronal circuit activity.

  10. Abnormally upregulated αB-crystallin was highly coincidental with the astrogliosis in the brains of scrapie-infected hamsters and human patients with prion diseases.

    Wang, Ke; Zhang, Jin; Xu, Yin; Ren, Ke; Xie, Wu-Ling; Yan, Yu-E; Zhang, Bao-Yun; Shi, Qi; Liu, Yong; Dong, Xiao-Ping

    2013-11-01

    αB-crystallin is a member of the small heat shock protein family constitutively presenting in brains at a relatively low level. To address the alteration of αB-crystallin in prion disease, the αB-crystallin levels in the brains of scrapie agent 263 K-infected hamsters were analyzed. The levels of αB-crystallin were remarkably increased in the brains of 263 K-infected hamsters, showing a time-dependent manner along with incubation time. Immunohistochemical (IHC) and immunofluorescent (IFA) assays illustrated more αB-crystallin-positive signals in the regions of the cortex and thalamus containing severe astrogliosis. Double-stained IFA verified that the αB-crystallin signals colocalized with the enlarged glial fibrillary acidic protein-positive astrocytes, but not with neuronal nuclei-positive cells. IHC and IFA of the serial brain sections of infected hamsters showed no colocalization and correlation between PrP(Sc) deposits and αB-crystallin increase. Moreover, increased αB-crystallin deposits were observed in the brain sections of parietal lobe of a sporadic Creutzfeldt-Jakob disease (sCJD) case, parietal lobe and thalamus of a G114V genetic CJD case, and thalamus of a fatal family insomnia (FFI) case, but not in a parietal lobe of FFI where only very mild astrogliosis was addressed. Additionally, the molecular interaction between αB-crystallin and PrP was only observed in the reactions of recombinant proteins purified from Escherichia coli, but not either in that of brain homogenates or in that of the cultured cell lysates expressing human PrP and αB-crystallin. Our data indicate that brain αB-crystallin is abnormally upregulated in various prion diseases, which is coincidental with astrogliosis. Direct interaction between αB-crystallin and PrP seems not to be essential during the pathogenesis of prion infection. PMID:23832485

  11. Post-operative Changes of Cerebral Glucose Metabolism in Patients with Lumbar Spinal Stenosis with Pre-operative Anxiety: Statistical Parametric Mapping Analysis of F-18 FDG Brain PET

    Kim, Seong-Jang; Suh, Kuen Tak; Kim, Jeung Il; Lim, Jong Min; Goh, Tae Sik; Lee, Jung Sub

    2011-01-01

    Study Design A prospective study. Purpose To assess postoperative changes in cerebral glucose metabolism in anxiety patients with lumbar spinal stenosis (SS). Overview of Literature Although an association between preoperative anxiety and abnormal cerebral glucose metabolism may exist, only a limited number of studies using F-18 fluorodeoxyglucose positron emission tomography (FDG PET) have evaluated preoperative to postoperative changes in cerebral glucose metabolism in SS patients in detail...

  12. 18F-fluorodeoxyglucose accumulation in the heart, brain and skeletal muscle of rats; the influence of time after injection, depressed lipid metabolism and glucose-insulin

    To study the effect of lipid depressing drugs on 18FDG myocardial concentration. The changes of 18FDG uptake in myocardium, brain and skeletal muscle of rats were compared as influenced by acipimox, tyloxapol and glucose with insulin. 5.55 MBq of 18FDG were administered to Wistar rats. Control rats were killed 15, 30, 45 and 60 minutes following intravenous injection and the radioactivity concentration (cpm/g of tissue) in relation to injected cpm was determined in a well crystal adjusted to 511 KeV in order to check the time of maximal 18FDG tissue uptake. The radioactivity in myocardium, skeletal muscle and brain in intact animals was compared with that of rats treated with tyloxapol (tritton WR 1339, 125 mg intravenously immediately before 18FDG injection), acipimox (nicotinic acid derivative, 25 mg by stomach cannula 15 minutes before 18FDG), or glucose with insulin (intravenous injection of 0.04 g and 0.04 UI immediately before 18FDG). The animals were killed 45 minutes following 18FDG injection. Tyloxapol and acipimox significantly elevated myocardial 18FDG concentration (tyloxapol +37% and acipimox +48%), but the increase in 18FDG concentration after glucose and insulin was slight and insignificant. The changes in skeletal muscle after lipid depressing agents were quite contrasting; the decrease in 18FDG concentration was -74% after tyloxapol and -44% following acipimox administration. The accumulation of 18FDG in brain was not influenced markedly by the drugs used or by glucose with insulin. The highest 18FDG uptake in myocardium could be achieved by depressing the lipid metabolism and not by administration of glucose with insulin only. A marked increase in glucose accumulation in myocardium is not possible without previous shift from the utilisation of fatty acids. This finding is fully in agreement with present knowledge about energetic metabolism of myocardium. (author)

  13. Clinical features, MRI brain, and MRS abnormalities of drug-naïve neurologic Wilson′s disease

    Satyabrata Pulai

    2014-01-01

    Full Text Available Background: Magnetic resonance imaging (MRI helps in the diagnosis of neurologic Wilson′s disease (WD. The literature regarding MR spectroscopy (MRS and diffusion-weighted imaging (DWI in WD is limited. Objectives: To evaluate the clinical features and neuroimaging findings in drug-naοve neurologic WD and to find correlation between clinical stage and disease duration with different imaging findings. Materials and Methods: The study subjects included consecutive and follow-up neurologic WD patients attending movement disorder clinic. The initial clinical and MRI features before commencement of chelation therapy were noted. Of 78 patients, 34 underwent DWI study and MRS was done in 38 patients and in 32 control subjects. Results: Dystonia, dysarthria, tremor, and behavioral abnormality were common presenting features. All patients had MRI abnormality with major affection of basal ganglia. The clinical severity and anatomical extent of MRI abnormalities were positively correlated (P < 0.001; r s = 0.709. Presence of diffusion restriction was inversely related to duration of disease (P < 0.001; r s = 0.760. WD patients had reduced N-acetylaspartate/creatine (Cr and choline (Cho/Cr ratio (P < 0.001 as compared with control subjects in MRS study. Conclusion: Dystonia, dysarthria and tremor are common neurological features of WD. In this study, MRI abnormalities were positively correlated with disease severity; diffusion restriction was inversely correlated with the duration of the disease process. MRS was also a sensitive tool for diagnosing patient of neurologic WD.

  14. Abnormal blood-brain barrier permeability in normal appearing white matter in multiple sclerosis investigated by MRI

    Cramer, Stig Præstekær; Simonsen, Helle Juhl; Frederiksen, Jette Lautrup Battistini;

    2013-01-01

    To investigate whether blood-brain barrier (BBB) permeability is disrupted in normal appearing white matter in MS patients, when compared to healthy controls and whether it is correlated with MS clinical characteristics.......To investigate whether blood-brain barrier (BBB) permeability is disrupted in normal appearing white matter in MS patients, when compared to healthy controls and whether it is correlated with MS clinical characteristics....

  15. Subcortical brain volume abnormalities in 2028 individuals with schizophrenia and 2540 healthy controls via the ENIGMA consortium

    van Erp, T G M; Hibar, D P; Rasmussen, J M; Glahn, D. C.; Pearlson, G. D.; Andreassen, O. A.; Agartz, I.; Westlye, L. T.; Haukvik, U. K.; Dale, A M; Melle, I.; Hartberg, C B; Gruber, O.; B. Kraemer; Zilles, D

    2015-01-01

    The AMC study was supported by grants from ZonMW (grant numbers: 3160007, 91676084, 31160003, 31180002, 31000056, 2812412, 100001002, 100002034), NWO (grant numbers: 90461193, 40007080, 48004004, 40003330), and grants from the Amsterdam Brain Imaging Platform, Neuroscience Campus Amsterdam and the Dutch Brain foundation. The processing with Freesurfer was performed on the Dutch e-Science Grid through BiG Grid project and COMMIT project “e-Biobanking with imaging for healthcare”, which are fun...

  16. Abnormalities in the brain of streptozotocin-induced type 1 diabetic rats revealed by diffusion tensor imaging ☆

    Huang, Mingming; Gao, Lifeng; Yang, Liqin; Lin, Fuchun; Lei, Hao

    2012-01-01

    Diabetes mellitus affects the brain. Both type 1 and type 2 diabetic patients are associated with white matter (WM) damage observable to diffusion tensor imaging (DTI). The underlying histopathological mechanisms, however, are poorly understood. The objectives of this study are 1) to determine whether streptozotocin (STZ)-induced type 1 diabetes is associated with WM damage observable to DTI; and 2) to understand the pathophysiological aspects underlying STZ-induced brain injuries. Male Sprag...

  17. Annual Research Review: Growth connectomics – the organization and reorganization of brain networks during normal and abnormal development

    Vértes, Petra E.; Bullmore, Edward T

    2014-01-01

    Background We first give a brief introduction to graph theoretical analysis and its application to the study of brain network topology or connectomics. Within this framework, we review the existing empirical data on developmental changes in brain network organization across a range of experimental modalities (including structural and functional MRI, diffusion tensor imaging, magnetoencephalography and electroencephalography in humans). Synthesis We discuss preliminary evidence and current hyp...

  18. Brain glucose metabolic changes associated with chronic spontaneous Pain due to brachial plexus avulsion:a preliminary positron emission tomography study

    CHEN Fu-yong; TAO Wei; CHENG Xin; WANG Hong-yan; HU Yong-sheng; ZHANG Xiao-hua; LI Yong-jie

    2008-01-01

    Background Previous brain imaging studies suggested that the brain activity underlying the perception of chronic pain maV differ from that underlying acute pain.To investigate the brain regions involved in chronic spontaneous pain due to brachial plexus avulsion(BPA),fluorine-18fluorodeoxygIucose (19F-FDG) positron emission tomography (PET) scanning was applied to determine the glucose metabolic changes in patients with pain due to BPA.Methods Six right-handed patients with chronic spontaneous pain due to left-BPA and twelve right-handed age-and sex-matched healthy control subjects participated in the 18F-FDG PET study.The patients were rated by visual analog scale (VAS) during scanning and Hamilton depression scale and Hamilton anxiety scale after scanning.Statistical parametric mapping 2 (SPM2) was applied for data analysis.Results Compared with healthy subjects,the patients had significant glucose metabolism decreases in the right thalamus and S I(P<0.001,uncorrected),and significant glucose metabolism increases in the right orbitofrontaI cortex (OFC) (BA11),left rostral insula cortex and left dorsolateral prefrontal codex (DLPFC) (BA10/46) (P<0.001,uncorrected).Conclusion These findings suggest that the brain areas involved in emotion.aRention and internal modulation of pain may be related to the chronic spontaneous pain due to BPA.

  19. An Abnormal Nitric Oxide Metabolism Contributes to Brain Oxidative Stress in the Mouse Model for the Fragile X Syndrome, a Possible Role in Intellectual Disability

    Lima-Cabello, Elena; Garcia-Guirado, Francisco; Calvo-Medina, Rocio; el Bekay, Rajaa; Perez-Costillas, Lucia; Quintero-Navarro, Carolina; Sanchez-Salido, Lourdes

    2016-01-01

    Background. Fragile X syndrome is the most common genetic cause of mental disability. Although many research has been performed, the mechanism underlying the pathogenesis is unclear and needs further investigation. Oxidative stress played major roles in the syndrome. The aim was to investigate the nitric oxide metabolism, protein nitration level, the expression of NOS isoforms, and furthermore the activation of the nuclear factor NF-κB-p65 subunit in different brain areas on the fragile X mouse model. Methods. This study involved adult male Fmr1-knockout and wild-type mice as controls. We detected nitric oxide metabolism and the activation of the nuclear factor NF-κBp65 subunit, comparing the mRNA expression and protein content of the three NOS isoforms in different brain areas. Results. Fmr1-KO mice showed an abnormal nitric oxide metabolism and increased levels of protein tyrosine nitrosylation. Besides that, nuclear factor NF-κB-p65 and inducible nitric oxide synthase appeared significantly increased in the Fmr1-knockout mice. mRNA and protein levels of the neuronal nitric oxide synthase appeared significantly decreased in the knockout mice. However, the epithelial nitric oxide synthase isoform displayed no significant changes. Conclusions. These data suggest the potential involvement of an abnormal nitric oxide metabolism in the pathogenesis of the fragile X syndrome. PMID:26788253

  20. An Abnormal Nitric Oxide Metabolism Contributes to Brain Oxidative Stress in the Mouse Model for the Fragile X Syndrome, a Possible Role in Intellectual Disability

    Elena Lima-Cabello

    2016-01-01

    Full Text Available Background. Fragile X syndrome is the most common genetic cause of mental disability. Although many research has been performed, the mechanism underlying the pathogenesis is unclear and needs further investigation. Oxidative stress played major roles in the syndrome. The aim was to investigate the nitric oxide metabolism, protein nitration level, the expression of NOS isoforms, and furthermore the activation of the nuclear factor NF-κB-p65 subunit in different brain areas on the fragile X mouse model. Methods. This study involved adult male Fmr1-knockout and wild-type mice as controls. We detected nitric oxide metabolism and the activation of the nuclear factor NF-κBp65 subunit, comparing the mRNA expression and protein content of the three NOS isoforms in different brain areas. Results. Fmr1-KO mice showed an abnormal nitric oxide metabolism and increased levels of protein tyrosine nitrosylation. Besides that, nuclear factor NF-κB-p65 and inducible nitric oxide synthase appeared significantly increased in the Fmr1-knockout mice. mRNA and protein levels of the neuronal nitric oxide synthase appeared significantly decreased in the knockout mice. However, the epithelial nitric oxide synthase isoform displayed no significant changes. Conclusions. These data suggest the potential involvement of an abnormal nitric oxide metabolism in the pathogenesis of the fragile X syndrome.

  1. Cocaine addiction related reproducible brain regions of abnormal default-mode network functional connectivity: a group ICA study with different model orders.

    Ding, Xiaoyu; Lee, Seong-Whan

    2013-08-26

    Model order selection in group independent component analysis (ICA) has a significant effect on the obtained components. This study investigated the reproducible brain regions of abnormal default-mode network (DMN) functional connectivity related with cocaine addiction through different model order settings in group ICA. Resting-state fMRI data from 24 cocaine addicts and 24 healthy controls were temporally concatenated and processed by group ICA using model orders of 10, 20, 30, 40, and 50, respectively. For each model order, the group ICA approach was repeated 100 times using the ICASSO toolbox and after clustering the obtained components, centrotype-based anterior and posterior DMN components were selected for further analysis. Individual DMN components were obtained through back-reconstruction and converted to z-score maps. A whole brain mixed effects factorial ANOVA was performed to explore the differences in resting-state DMN functional connectivity between cocaine addicts and healthy controls. The hippocampus, which showed decreased functional connectivity in cocaine addicts for all the tested model orders, might be considered as a reproducible abnormal region in DMN associated with cocaine addiction. This finding suggests that using group ICA to examine the functional connectivity of the hippocampus in the resting-state DMN may provide an additional insight potentially relevant for cocaine-related diagnoses and treatments. PMID:23707901

  2. Neuromyelitis optica: brain abnormalities in a Brazilian cohort Neuromielite óptica: alterações encefálicas em pacientes brasileiros

    Denis Bernardi Bichuetti

    2008-03-01

    Full Text Available Neuromyelitis optica (NMO is a demyelinating disease consisting of relapsing-remitting optic neuritis and myelitis with a more severe course than Multiple Sclerosis. Recently, it has been shown that almost 50% of patients with NMO can have brain magnetic resonance imaging (MRI abnormalities. We report on six Brazilian patients with NMO, fulfilling the 1999 Wingerchuck criteria for this disease, with abnormal brain MRI and discuss their clinical and radiological features.Neuromielite óptica (NMO é doença desmielinizante, remitente-recorrente, com acometimento predominante dos nervos ópticos e medula espinal e uma evolução mais grave comparada à esclerose múltipla. Estudos recentes demonstraram que até 50% dos pacientes com NMO podem apresentar lesões encefálicas à ressonância magnética (RM. Relatamos seis pacientes brasileiros com NMO, que satisfazem os critérios diagnósticos de Wingerchuck (1999 para NMO, com alterações encefálicas em RM de encéfalo e discutimos seus dados clínicos e de imagem.

  3. Regional brain metabolite abnormalities in inherited prion disease and asymptomatic gene carriers demonstrated in vivo by quantitative proton magnetic resonance spectroscopy

    Inherited prion diseases are caused by mutations in the gene which codes for prion protein (PrP), leading to proliferation of abnormal PrP isomers in the brain and neurodegeneration; they include Gerstmann-Straeussler-Scheinker disease (GSS), fatal familial insomnia (FFI) and familial Creutzfeldt-Jakob disease (fCJD). We studied two patients with symptomatic inherited prion disease (P102L) and two pre-symptomatic P102L gene carriers using quantitative magnetic resonance spectroscopy (MRS). Short echo time spectra were acquired from the thalamus, caudate region and frontal white matter, metabolite levels and ratios were measured and z-scores calculated for individual patients relative to age-matched normal controls. MRS data were compared with structural magnetic resonance imaging. One fCJD case had generalised atrophy and showed increased levels of myo-inositol (MI) in the thalamus (z=3.7). The other had decreased levels of N-acetylaspartate (z=4) and diffuse signal abnormality in the frontal white matter. Both asymptomatic gene carriers had normal imaging, but increased frontal white matter MI (z=4.3, 4.1), and one also had increased MI in the caudate (z=5.3). Isolated MI abnormalities in asymptomatic gene carriers are a novel finding and may reflect early glial proliferation, prior to significant neuronal damage. MRS provides potential non-invasive surrogate markers of early disease and progression in inherited prion disease. (orig.)

  4. Regional brain metabolite abnormalities in inherited prion disease and asymptomatic gene carriers demonstrated in vivo by quantitative proton magnetic resonance spectroscopy

    Waldman, A.D.; Cordery, R.J.; Godbolt, A.; Rossor, M.N. [University College London, Dementia Research Group, Department of Neurodegenerative Disease, Institute of Neurology, London (United Kingdom); Imperial College of Science, Technology and Medicine, Division of Neuroscience and Psychological Medicine, Faculty of Medicine, London (United Kingdom); MacManus, D.G. [University College London, NMR Research Unit, Department of Clinical Neurology, Institute of Neurology, London (United Kingdom); Collinge, J. [University College London, MRC Prion Unit, Department of Neurodegenerative Disease, Institute of Neurology, London (United Kingdom)

    2006-06-15

    Inherited prion diseases are caused by mutations in the gene which codes for prion protein (PrP), leading to proliferation of abnormal PrP isomers in the brain and neurodegeneration; they include Gerstmann-Straeussler-Scheinker disease (GSS), fatal familial insomnia (FFI) and familial Creutzfeldt-Jakob disease (fCJD). We studied two patients with symptomatic inherited prion disease (P102L) and two pre-symptomatic P102L gene carriers using quantitative magnetic resonance spectroscopy (MRS). Short echo time spectra were acquired from the thalamus, caudate region and frontal white matter, metabolite levels and ratios were measured and z-scores calculated for individual patients relative to age-matched normal controls. MRS data were compared with structural magnetic resonance imaging. One fCJD case had generalised atrophy and showed increased levels of myo-inositol (MI) in the thalamus (z=3.7). The other had decreased levels of N-acetylaspartate (z=4) and diffuse signal abnormality in the frontal white matter. Both asymptomatic gene carriers had normal imaging, but increased frontal white matter MI (z=4.3, 4.1), and one also had increased MI in the caudate (z=5.3). Isolated MI abnormalities in asymptomatic gene carriers are a novel finding and may reflect early glial proliferation, prior to significant neuronal damage. MRS provides potential non-invasive surrogate markers of early disease and progression in inherited prion disease. (orig.)

  5. FDG-PET changes in brain glucose metabolism from normal cognition to pathologically verified Alzheimer's disease

    We report the first clinicopathological series of longitudinal FDG-PET scans in post-mortem (PM) verified cognitively normal elderly (NL) followed to the onset of Alzheimer's-type dementia (DAT), and in patients with mild DAT with progressive cognitive deterioration. Four NL subjects and three patients with mild DAT received longitudinal clinical, neuropsychological and dynamic FDG-PET examinations with arterial input functions. NL subjects were followed for 13 ± 5 years, received FDG-PET examinations over 7 ± 2 years, and autopsy 6 ± 3 years after the last FDG-PET. Two NL declined to mild cognitive impairment (MCI), and two developed probable DAT before death. DAT patients were followed for 9 ± 3 years, received FDG-PET examinations over 3 ± 2 years, and autopsy 7 ± 1 years after the last FDG-PET. Two DAT patients progressed to moderate-to-severe dementia and one developed vascular dementia. The two NL subjects who declined to DAT received a PM diagnosis of definite AD. Their FDG-PET scans indicated a progression of deficits in the cerebral metabolic rate for glucose (CMRglc) from the hippocampus to the parietotemporal and posterior cingulate cortices. One DAT patient showed AD with diffuse Lewy body disease (LBD) at PM, and her last in vivo PET was indicative of possible LBD for the presence of occipital as well as parietotemporal hypometabolism. Progressive CMRglc reductions on FDG-PET occur years in advance of clinical DAT symptoms in patients with pathologically verified disease. The FDG-PET profiles in life were consistent with the PM diagnosis. (orig.)

  6. Glucose transporter 5 (GLUT5)-like immunoreactivity is localized in subsets of neurons and glia in the rat brain.

    Kojo, Akiko; Yamada, Kentaro; Yamamoto, Toshiharu

    2016-07-01

    This study aimed at examining the distribution of glucose transporter 5 (GLUT5), which preferentially transports fructose, in the rat brain by immunohistochemistry and Western blotting. Small immunoreactive puncta (less than 0.7μm) were sparsely distributed all over the brain, some of which appeared to be associated with microglial processes detected by an anti-ionized calcium-binding adapter molecule 1 (Iba-1) monoclonal antibody. In addition, some of these immunoreactive puncta seemed to be associated with tanycyte processes that were labeled with anti-glial fibrillary acidic protein (GFAP) monoclonal antibody. Ependymal cells were also found to be immunopositive for GLUT5. Furthermore, several noticeable GLUT5 immunoreactive profiles were observed. GLUT5 immunoreactive neurons, confirmed by double staining with neuronal nuclei (NeuN), were seen in the entopeduncular nucleus and lateral hypothalamus. Cerebellar Purkinje cells were immunopositve for GLUT5. Dense accumulation of immunoreactive puncta, some of which were neuronal elements (confirmed by immunoelectron microscopy), were observed in the optic tract and their terminal fields, namely, superior colliculus, pretectum, nucleus of the optic tract, and medial terminal nucleus of the optic tract. In addition to the associated areas of the visual system, the vestibular and cochlear nuclei also contained dense GLUT5 immunoreactive puncta. Western blot analysis of the cerebellum indicated that the antibody used recognized the 33.5 and 37.0kDa bands that were also contained in jejunum and kidney extracts. Thus, these results suggest that GLUT5 may transport fructose in subsets of the glia and neurons for an energy source of these cells. PMID:27036089

  7. Role of 99mTc-ECD brain SPECT in the detection of cerebral perfusion abnormality in cases of Attention Deficit Hyperactivity Disorder

    Aim: A randomized placebo controlled drug trial with Mentat, a herbal pharmacological agent, was initiated in January 2000 in the department of pediatrics at AIIMS, New Delhi, to compare the efficacy of Mentat with a placebo in school children with Attention Deficit Hyperactivity Disorder (ADHD). Materials and Methods: Contact was established with 12 Public schools in Delhi, to identify poor performers in classes I-V (age 6-12 yrs.). About 195 children with poor school performance were recruited in the study. They were screened for causes of poor performance, which included attention problems, hyperactivity, behavior problems, emotional problems, mental sub-normality and learning disability. ADHD suspected children were identified using the Malin's WISC, Connor's rating scale, Problem Behavior checklist, Bender Gestalt test and some sub tests of the Kaufman's Assessment Battery for Children (K-ABC). Sixty children diagnosed as ADHD (using DSM-IV criteria), with an IQ between 90-110, were enrolled into the study. Of the 60 children randomized in the study, 30 received Mentat and 30 received an identical looking placebo. The drug/Placebo was given for a six-month period. 99mTC-ECD brain SPECT was performed in a subset of 34 children with ADHD. Results: Abnormal cerebral perfusion was seen in 23/34; thalamic hypoperfusion in 11, basal ganglia hypoperfusion in 9, thalamus and basal ganglia hypoperfusion in 2 and basifrontal hypoperfusion in 1. So far, in ten children with abnormal pretreatment scans, post treatment scans have also been done. In mentat group, 2/5 children showed normalization of perfusion abnormality after treatment whereas in placebo group, 1/5. Conclusion: This study suggests that there is selective focal cerebral hypoperfusion in cases of ADHD and 99mTc-ECD brain SPECT can be used for evaluation and further monitoring of therapeutic outcome in such cases

  8. Brain microstructural abnormalities revealed by diffusion tensor images in patients with treatment-resistant depression compared with major depressive disorder before treatment

    Treatment-resistant depression (TRD) is a therapeutic challenge for clinicians. Despite a growing interest in this area, an understanding of the pathophysiology of depression, particularly TRD, remains lacking. This study aims to detect the white matter abnormalities of whole brain fractional anisotropy (FA) in patients with TRD compared with major depressive disorder (MDD) before treatment by voxel-based analysis using diffusion tensor imaging. A total of 100 patients first diagnosed with untreated MDD underwent diffusion tensor imaging scans. 8 weeks after the first treatment, 54 patients showed response to the medication, whereas 46 did not. Finally, 20 patients were diagnosed with TRD after undergoing another treatment. A total of 20 patients with TRD and another 20 with MDD before treatment matched in gender, age, and education was enrolled in the research. For every subject, an FA map was generated and analyzed using SPM5. Subsequently, t-test was conducted to compare the FA values voxel to voxel between the two groups (p 7.57, voxel size > 30). Voxel-based morphometric (VBM) analysis was performed using T1W images. Significant reductions in FA were found in the white matter located in the bilateral of the hippocampus (left hippocampus: t = 7.63, voxel size = 50; right hippocampus: t = 7.82, voxel size = 48). VBM analysis revealed no morphological abnormalities between the two groups. Investigation of brain anisotropy revealed significantly decreased FA in both sides of the hippocampus. Although preliminary, our findings suggest that microstructural abnormalities in the hippocampus indicate vulnerability to treatment resistance.

  9. PEX13 deficiency in mouse brain as a model of Zellweger syndrome: abnormal cerebellum formation, reactive gliosis and oxidative stress

    C. Catharina Müller

    2011-01-01

    Delayed cerebellar development is a hallmark of Zellweger syndrome (ZS, a severe neonatal neurodegenerative disorder. ZS is caused by mutations in PEX genes, such as PEX13, which encodes a protein required for import of proteins into the peroxisome. The molecular basis of ZS pathogenesis is not known. We have created a conditional mouse mutant with brain-restricted deficiency of PEX13 that exhibits cerebellar morphological defects. PEX13 brain mutants survive into the postnatal period, with the majority dying by 35 days, and with survival inversely related to litter size and weaning body weight. The impact on peroxisomal metabolism in the mutant brain is mixed: plasmalogen content is reduced, but very-long-chain fatty acids are normal. PEX13 brain mutants exhibit defects in reflex and motor development that correlate with impaired cerebellar fissure and cortical layer formation, granule cell migration and Purkinje cell layer development. Astrogliosis and microgliosis are prominent features of the mutant cerebellum. At the molecular level, cultured cerebellar neurons from E19 PEX13-null mice exhibit elevated levels of reactive oxygen species and mitochondrial superoxide dismutase-2 (MnSOD, and show enhanced apoptosis together with mitochondrial dysfunction. PEX13 brain mutants show increased levels of MnSOD in cerebellum. Our findings suggest that PEX13 deficiency leads to mitochondria-mediated oxidative stress, neuronal cell death and impairment of cerebellar development. Thus, PEX13-deficient mice provide a valuable animal model for investigating the molecular basis and treatment of ZS cerebellar pathology.

  10. Abnormal Brain Activity in Social Reward Learning in Children with Autism Spectrum Disorder: An fMRI Study

    Choi, Uk-Su; Kim, Sun-Young; Sim, Hyeon Jeong; Lee, Seo-Young; Park, Sung-Yeon; Jeong, Joon-Sup; Seol, Kyeong In; Yoon, Hyo-Woon; Jhung, Kyungun; Park, Jee-In; Cheon, Keun-Ah

    2015-01-01

    Purpose We aimed to determine whether Autism Spectrum Disorder (ASD) would show neural abnormality of the social reward system using functional MRI (fMRI). Materials and Methods 27 ASDs and 12 typically developing controls (TDCs) participated in this study. The social reward task was developed, and all participants performed the task during fMRI scanning. Results ASDs and TDCs with a social reward learning effect were selected on the basis of behavior data. We found significant differences in...

  11. Glucose Metabolic Brain Networks in Early-Onset vs. Late-Onset Alzheimer's Disease

    Chung, Jinyong; Yoo, Kwangsun; Kim, Eunjoo; Na, Duk L.; Jeong, Yong

    2016-01-01

    Objective: Early-onset Alzheimer's disease (EAD) shows distinct features from late-onset Alzheimer's disease (LAD). To explore the characteristics of EAD, clinical, neuropsychological, and functional imaging studies have been conducted. However, differences between EAD and LAD are not clear, especially in terms of brain connectivity and networks. In this study, we investigated the differences in metabolic connectivity between EAD and LAD by adopting graph theory measures. Methods: We analyzed 18F-fluorodeoxyglucose-positron emission tomography (FDG-PET) images to investigate the distinct features of metabolic connectivity between EAD and LAD. Using metabolic connectivity and graph theory analysis, metabolic network differences between LAD and EAD were explored. Results: Results showed the decreased connectivity centered in the cingulate gyri and occipital regions in EAD, whereas decreased connectivity in the occipital and temporal regions as well as increased connectivity in the supplementary motor area were observed in LAD when compared with age-matched control groups. Global efficiency and clustering coefficients were decreased in EAD but not in LAD. EAD showed progressive network deterioration as a function of disease severity and clinical dementia rating (CDR) scores, mainly in terms of connectivity between the cingulate gyri and occipital regions. Global efficiency and clustering coefficients were also decreased along with disease severity. Conclusion: These results indicate that EAD and LAD have distinguished features in terms of metabolic connectivity, with EAD demonstrating more extensive and progressive deterioration. PMID:27445800

  12. Brain Natriuretic Peptide, Atrial Natriuretic Peptide and Endothelin-1 response to peak exercise in patients with coronary artery disease and correlation with myocardial perfusion scintigraphy abnormalities

    Aim: Plasma Brain Natriuretic Peptide (BNP) has been known as a promising marker of ventricular dysfunction in cardiac patients. There are conflicting reports about its response to exercise testing. Therefore, this study was performed to investigate the exercise induced changes in BNP, Atrial Natriuretic Peptide (ANP) and Endothelin-1 (E) levels and their correlation with perfusion abnormalities on myocardial perfusion scintigraphy (MPS). Materials and Methods: Study group consisted of 35 patients (mean age=53.9+11.8) who underwent MPS with suspicion or diagnosis of coronary artery disease. Plasma levels of BNP, ANP, and E were measured at rest and after symptom-limited ergometry. Patients were divided into two groups according to the presence of perfusion abnormality (i.e. ischemia or infarction) on MPS. Results: BNP, ANP and E levels did not change significantly with exercise, however baseline levels of BNP, ANP levels and peak-exercise level of BNP in patients with perfusion abnormalities were significantly higher. Hypertensive patients with or without perfusion abnormalities had higher baseline BNP, ANP levels, and peak-exercise BNP levels compared to normotensives. BNP levels at rest and after exercise had a significant correlation with age (r=0.57, p=0.04; r=0.58, p=0.04), as well as baseline ANP values (r=0.37, p=0.033). Highest baseline BNP, ANP and exercise BNP levels were observed in patients with infarction. Conclusion: Exercise-testing did not induce significant changes in plasma levels of BNP, ANP and E. Higher BNP levels had correlation with the presence of ischemia, infarction and hypertension, as well as, increasing age

  13. The duplication 17p13.3 phenotype: analysis of 21 families delineates developmental, behavioral and brain abnormalities, and rare variant phenotypes.

    Curry, Cynthia J; Rosenfeld, Jill A; Grant, Erica; Gripp, Karen W; Anderson, Carol; Aylsworth, Arthur S; Saad, Taha Ben; Chizhikov, Victor V; Dybose, Giedre; Fagerberg, Christina; Falco, Michelle; Fels, Christina; Fichera, Marco; Graakjaer, Jesper; Greco, Donatella; Hair, Jennifer; Hopkins, Elizabeth; Huggins, Marlene; Ladda, Roger; Li, Chumei; Moeschler, John; Nowaczyk, Malgorzata J M; Ozmore, Jillian R; Reitano, Santina; Romano, Corrado; Roos, Laura; Schnur, Rhonda E; Sell, Susan; Suwannarat, Pim; Svaneby, Dea; Szybowska, Marta; Tarnopolsky, Mark; Tervo, Raymond; Tsai, Anne Chun-Hui; Tucker, Megan; Vallee, Stephanie; Wheeler, Ferrin C; Zand, Dina J; Barkovich, A James; Aradhya, Swaroop; Shaffer, Lisa G; Dobyns, William B

    2013-08-01

    Chromosome 17p13.3 is a gene rich region that when deleted is associated with the well-known Miller-Dieker syndrome. A recently described duplication syndrome involving this region has been associated with intellectual impairment, autism and occasional brain MRI abnormalities. We report 34 additional patients from 21 families to further delineate the clinical, neurological, behavioral, and brain imaging findings. We found a highly diverse phenotype with inter- and intrafamilial variability, especially in cognitive development. The most specific phenotype occurred in individuals with large duplications that include both the YWHAE and LIS1 genes. These patients had a relatively distinct facial phenotype and frequent structural brain abnormalities involving the corpus callosum, cerebellar vermis, and cranial base. Autism spectrum disorders were seen in a third of duplication probands, most commonly in those with duplications of YWHAE and flanking genes such as CRK. The typical neurobehavioral phenotype was usually seen in those with the larger duplications. We did not confirm the association of early overgrowth with involvement of YWHAE and CRK, or growth failure with duplications of LIS1. Older patients were often overweight. Three variant phenotypes included cleft lip/palate (CLP), split hand/foot with long bone deficiency (SHFLD), and a connective tissue phenotype resembling Marfan syndrome. The duplications in patients with clefts appear to disrupt ABR, while the SHFLD phenotype was associated with duplication of BHLHA9 as noted in two recent reports. The connective tissue phenotype did not have a convincing critical region. Our experience with this large cohort expands knowledge of this diverse duplication syndrome. PMID:23813913

  14. Estudio Parto: postpartum diabetes prevention program for hispanic women with abnormal glucose tolerance in pregnancy: a randomised controlled trial – study protocol

    Chasan-Taber, Lisa; Marcus, Bess H.; Rosal, Milagros C.; Katherine L. Tucker; Hartman, Sheri J.; Pekow, Penelope; Braun, Barry; Moore Simas, Tiffany A; Solomon, Caren G.; Manson, JoAnn E.; Markenson, Glenn

    2014-01-01

    Background: Diabetes and obesity have reached epidemic proportions in the U.S. with rates consistently higher among Hispanics as compared to non-Hispanic whites. Among Hispanic women diagnosed with gestational diabetes mellitus (GDM), 50% will go on to develop type 2 diabetes within 5 years of the index pregnancy. Although randomised controlled trials among adults with impaired glucose tolerance have shown that diet and physical activity reduce the risk of type 2 diabetes, such programs have ...

  15. Treatment of Abnormal Glucose Regulation and Huge Ovarian Cysts with High Dose Insulin Glargine in an Infant with Leprechaunism - Case Report

    Ayşe Yasemin Çelik; Özgür Pirgon; Dursun Odabaş

    2010-01-01

    Introduction: Leprechaunism is a rare autosomal recessive disorder caused by mutations in the insulin receptor gene. In this report; we present a 75 days old infant with leprecahunism treated by high dose insulin glargine.Case Report: Yetmiş day old girl was diagnosed as leprechaunism because of the hyperglycemia, ketoacidosis and dysmorphic appearance. Huge cysts with multiple septa were determined in her ovaries. High dose insulin glargine were adjusted to achieve target blood glucose regul...

  16. Cortico-striato-thalamo-cortical circuit abnormalities in obsessive-compulsive disorder: A voxel-based morphometric and fMRI study of the whole brain.

    Tang, Wenxin; Zhu, Qifeng; Gong, Xiangyang; Zhu, Cheng; Wang, Yiquan; Chen, Shulin

    2016-10-15

    The primary aim of this study was to identify structural and functional abnormalities in the brains of obsessive-compulsive disorder (OCD) patients. Another aim was to assess the effect of serotonin selective reuptake inhibitors (SSRIs) on brain structure of OCD patients. All subjects underwent brain magnetic resonance imaging (MRI) and resting functional MRI (fMRI). High-resolution three-dimensional images were processed using the voxel-based morphometry (VBM) method. The final analysis included 18 OCD patients and 16 healthy controls. In the OCD patients there was a decrease in gray matter volume in the bilateral cingulate cortex and bilateral striatum. In some cortical structures including the cerebellar anterior lobe, left orbital frontal gyrus, right middle frontal gyrus, left middle temporal gyrus, precentral gyrus, and postcentral gyrus, there was an increase in gray matter volume. On fMRI the OCD patients had overactivation of the right cerebellum and right parietal lobe and reduced activation of the left cingulate gyrus, putamen, and caudate nucleus. Eleven OCD patients who improved during 12 weeks of drug treatment with sertraline hydrochloride had a significant increase in gray matter volume in several brain structures but no significant differences were found on resting fMRI. The results indicated a consistent trend between structural and functional images. Higher cortical structures showed increased gray matter volume and increased activation as did the cerebellum whereas subcortical structures showed decreased gray matter volume and decreased activation. And brain structure improvement consisted with symptom improvement after SSRIs treatment in OCD patients. PMID:27388149

  17. In vivo determination of the kinetic parameters of glucose transport in the human brain using 11C-methyl-D-glucose (CMG) and dynamic positron emission tomography (dPET)

    A method was developed to measure simultaneously (1) the rate constants for glucose influx and glucose efflux, and (2) the Michaelis-Menten constant (Ksub(M)) and maximal velocity (νsub(max)) for glucose transport across the blood-brain barrier (BBB) in any selected brain area. Moreover, on the basis of a mathematical model, the local perfusion rate (LPR) and local unidirectional glucose transport rate (LUGTR) are calculated in terms of parameters of the time-activity curves registered over different brain regions; 11C-methyl-D-glucose (CMG) is used as an indicator. The transaxial distribution of activity in the organism is registered using dynamic positron-emission tomography (dPET). The method was used in 4 normal subjects and 50 patients with ischemic brain disease. In normals, the rate constant for CMG efflux was found to be 0.25+-0.04 min-1 in the cortex and 0.12+-0.02 min-1 in white matter. In the cortex, the Ksub(M) was found to be 6.42 μmol/g and the Vsub(max) was 2.46 μmol/g per minute. The LUGTR ranged from 0.43 to 0.6 μmol/g per minute in white matter. The LPR was calculated to be 0.80-0.98 ml/g per minute for the cortex and 0.2-0.4 ml/g per minute for white matter. In patients with stroke, the ischemic defects appeared to be larger in CMG scans than in computed tomography (CT) scans. Prolonged reversible ischemic neurological deficit was associated with a significant fall in the LUGTR but not change in the LPR in the corresponding cerebral cortex. Normal LUGTR and significantly decreased LPR were registered in a patient with progressive occulsion of the middle cerebral artery. In a patient with transient ischemic attacks, a slightly reduced LPR and a disproportionally reduced LUGTR were observed before operation. After extra- and intracranial bypass surgery, the LPR became normal, whereas the LUGTR increased but did not achieve normal values. (orig.)

  18. Expression of hypoxia-inducible factor 1 alpha and oligodendrocyte lineage gene-1 in cultured brain slices after oxygen-glucose deprivation

    Hong Cui; Weijuan Han; Lijun Yang; Yanzhong Chang

    2013-01-01

    Oligodendrocyte lineage gene-1 expressed in oligodendrocytes may trigger the repair of neuronal myelin impairment, and play a crucial role in myelin repair. Hypoxia-inducible factor 1α, a transcription factor, is of great significance in premature infants with hypoxic-ischemic brain damage. There is little evidence of direct regulatory effects of hypoxia-inducible factor 1α on oligodendrocyte lineage gene-1. In this study, brain slices of Sprague-Dawley rats were cultured and subjected to oxygen-glucose deprivation. Then, slices were transfected with hypoxia-inducible factor 1α or oligodendrocyte lineage gene-1. The expression levels of hypoxia-inducible factor 1α and oligodendrocyte lineage gene-1 were significantly up-regulated in rat brains prior to transfection, as detected by immunohistochemical staining. Eight hours after transfection of slices with hypoxia-inducible factor 1α, oligodendrocyte lineage gene-1 expression was upregulated, and reached a peak 24 hours after transfection. Oligodendrocyte lineage gene-1 transfection induced no significant differences in hypoxia-inducible factor 1α levels in rat brain tissues with oxygen-glucose deprivation. These experimental findings indicate that hypoxia-inducible factor 1α can regulate oligodendrocyte lineage gene-1 expression in hypoxic brain tissue, thus repairing the neural impairment.

  19. Impaired Associative Taste Learning and Abnormal Brain Activation in Kinase-Defective eEF2K Mice

    Gildish, Iness; Manor, David; David, Orit; Sharma, Vijendra; Williams, David; Agarwala, Usha; Wang, Xuemin; Kenney, Justin W.; Proud, Chris G.; Rosenblum, Kobi

    2012-01-01

    Memory consolidation is defined temporally based on pharmacological interventions such as inhibitors of mRNA translation (molecular consolidation) or post-acquisition deactivation of specific brain regions (systems level consolidation). However, the relationship between molecular and systems consolidation are poorly understood. Molecular…

  20. Age- and Sex-Associated Changes in Cerebral Glucose Metabolism in Normal Healthy Subjects: Statistical Parametric Mapping Analysis of F-18 Fluorodeoxyglucose Brain Positron Emission Tomography

    Background: The age- and sex-associated changes of brain development are unclear and controversial. Several previous studies showed conflicting results of a specific pattern of cerebral glucose metabolism or no differences of cerebral glucose metabolism in association with normal aging process and sex. Purpose: To investigate the effects of age and sex on changes in cerebral glucose metabolism in healthy subjects using fluorine-18 fluorodeoxyglucose (F-18 FDG) brain positron emission tomography (PET) and statistical parametric mapping (SPM) analysis. Material and Methods: Seventy-eight healthy subjects (32 males, mean age 46.6±18.2 years; 46 females, mean age 40.6±19.8 years) underwent F-18 FDG brain PET. Using SPM, age- and sex-associated changes in cerebral glucose metabolism were investigated. Results: In males, a negative correlation existed in several gray matter areas, including the right temporopolar (Brodmann area [BA] 38), right orbitofrontal (BA 47), left orbitofrontal gyrus (BA 10), left dorsolateral frontal gyrus (BA 8), and left insula (BA 13) areas. A positive relationship existed in the left claustrum and left thalamus. In females, negative changes existed in the left caudate body, left temporopolar area (BA 38), right orbitofrontal gyri (BA 47 and BA 10), and right dorsolateral prefrontal cortex (BA 46). A positive association was demonstrated in the left subthalamic nucleus and the left superior frontal gyrus. In white matter, an age-associated decrease in FDG uptake in males was shown in the left insula, and increased FDG uptake was found in the left corpus callosum. The female group had an age-associated negative correlation of FDG uptake only in the right corpus callosum. Conclusion: Using SPM, we found not only similar areas of brain, but also sex-specific cerebral areas of age-associated changes of FDG uptake

  1. Age- and Sex-Associated Changes in Cerebral Glucose Metabolism in Normal Healthy Subjects: Statistical Parametric Mapping Analysis of F-18 Fluorodeoxyglucose Brain Positron Emission Tomography

    Kim, In-Ju; Kim, Seong-Jang; Kim, Yong-Ki (Dept. of Nuclear Medicine, Pusan National Univ. Hospital, Busan (Korea); Medical Research Institute, Pusan National Univ., Busan (Korea)). e-mail: growthkim@daum.net/growthkim@pusan.ac.kr)

    2009-12-15

    Background: The age- and sex-associated changes of brain development are unclear and controversial. Several previous studies showed conflicting results of a specific pattern of cerebral glucose metabolism or no differences of cerebral glucose metabolism in association with normal aging process and sex. Purpose: To investigate the effects of age and sex on changes in cerebral glucose metabolism in healthy subjects using fluorine-18 fluorodeoxyglucose (F-18 FDG) brain positron emission tomography (PET) and statistical parametric mapping (SPM) analysis. Material and Methods: Seventy-eight healthy subjects (32 males, mean age 46.6+-18.2 years; 46 females, mean age 40.6+-19.8 years) underwent F-18 FDG brain PET. Using SPM, age- and sex-associated changes in cerebral glucose metabolism were investigated. Results: In males, a negative correlation existed in several gray matter areas, including the right temporopolar (Brodmann area [BA] 38), right orbitofrontal (BA 47), left orbitofrontal gyrus (BA 10), left dorsolateral frontal gyrus (BA 8), and left insula (BA 13) areas. A positive relationship existed in the left claustrum and left thalamus. In females, negative changes existed in the left caudate body, left temporopolar area (BA 38), right orbitofrontal gyri (BA 47 and BA 10), and right dorsolateral prefrontal cortex (BA 46). A positive association was demonstrated in the left subthalamic nucleus and the left superior frontal gyrus. In white matter, an age-associated decrease in FDG uptake in males was shown in the left insula, and increased FDG uptake was found in the left corpus callosum. The female group had an age-associated negative correlation of FDG uptake only in the right corpus callosum. Conclusion: Using SPM, we found not only similar areas of brain, but also sex-specific cerebral areas of age-associated changes of FDG uptake

  2. Alterations in blood glucose and plasma glucagon concentrations during deep brain stimulation in the shell region of the nucleus accumbens in rats

    SusanneEla Fleur; Geoffreyvan der Plasse; MatthijsFeenstra; AndriesKalsbeek

    2013-01-01

    Deep brain stimulation (DBS) of the nucleus accumbens (NAc) is an effective therapy for obsessive compulsive disorder (OCD) and is currently under investigation as a treatment for eating disorders. DBS of this area is associated with altered food intake and pharmacological treatment of OCD is associated with the risk of developing type 2 diabetes. Therefore we examined if DBS of the NAc-shell (sNAc) influences glucose metabolism. Male Wistar rats were subjected to DBS, or sham stimulation...

  3. Dynamic changes in glucose metabolism of living rat brain slices induced by hypoxia and neurotoxic chemical-loading revealed by positron autoradiography

    Fresh rat brain slices were incubated with 2-deoxy-2-[18F]-fluoro-D-glucose ([18F]FDG) in oxygenated Krebs-Ringer solution at 36 degree C, and serial two-dimensional time-resolved images of [18F]FDG uptake were obtained from these specimens on imaging plates. The fractional rate constant (= k3*) of [18F]FDG proportional to the cerebral glucose metabolic rate (CMRglc) was evaluated by applying the Gjedde-Patlak graphical method to the image data. With hypoxia loading (oxygen deprivation) or glucose metabolism inhibitors acting on oxidative phosphorylation, the k3* value increased dramatically suggesting enhanced glycolysis. After relieving hypoxia ≤10-min, the k3* value returned to the pre-loading level. In contrast, with ≥20-min hypoxia only partial or no recovery was observed, indicating that irreversible neuronal damage had been induced. However, after loading with tetrodotoxin (TTX), the k3* value also decreased but returned to the pre-loading level even after 70-min TTX-loading, reflecting a transient inhibition of neuronal activity. This technique provides a new means of quantifying dynamic changes in the regional CMRglc in living brain slices in response to various interventions such as hypoxia and neurotoxic chemical-loading as well as determining the viability and prognosis of brain tissues. (author)

  4. Joint effect of birth weight and obesity measures on abnormal glucose metabolism at adulthood%出生体重与成年期肥胖指标联合效应对糖代谢异常的影响

    席波; 程红; 陈芳芳; 赵小元; 米杰

    2016-01-01

    +成年期腹型肥胖组OR(95%CI)值为3.18(2.33~4.32),低出生体重+成年期腹型肥胖组的OR(95%CI)值为4.78(2.01~11.38),高出生体重+腹型肥胖组的OR(95%CI)值4.35(1.38~13.65);低出生体重和高出生体重与成年期腰围均存在正交互作用,交互作用归因比分别为38.5%和28.3%。结论低出生体重和高出生体重可能分别与成年期肥胖存在正交互作用,共同增强了对成年期糖代谢异常的影响。%Objective To investigate the joint effect of birth weight and each of obesity measures (body mass index (BMI) and waist circumference (WC)) on abnormal glucose metabolism (including diabetes) at adulthood. Methods Using the historical cohort study design and the convenience sampling method, 1 921 infants who were born in Beijing Union Medical College Hospital from June 1948 to December 1954 were selected to do the follow-up in 1995 and 2001 respectively. Through Beijing Household Registration and Management System, they were invited to participate in this study. A total of 972 subjects (627 were followed up in 1995 and 345 were followed up in 2001) with complete information on genders, age, birth weight, family history of diabetes, BMI, WC, fasting plasma glucose (FPG) and 2-hour plasma glucose (2 h PG) met the study inclusion criteria at the follow-up visits. In the data analysis, they were divided into low, normal, and high birth weight, respectively. The ANOVA and Chi-squared tests were used to compare the differences in their characteristics by birth weight group. In addition, multiple binary Logistic regression model was used to investigate the single effect of birth weight, BMI, and waist circumference on abnormal glucose metabolism at adulthood. Stratification analysis was used to investigate the joint effect of birth weight and each of obesity measures (BMI and WC) on abnormal glucose metabolism. Results There were 972 subjects (males:50.7%, mean age:(46.0±2.2) years) included in the final data

  5. A case of acute lymphoblastic leukemia with abnormal brain CT scan after cranial irradiation for central nervous system leukemia

    A 21-year-old woman with acute lymphoblastic leukemia presented with central neurologic symptoms immediately after the second irradiation (20 Gy to the brain and 10 Gy to the spinal cord) for central nervous system (CNS)-leukemia 3 years and 2 months after the first cranial irradiation with 20 Gy. White matter was depicted as diffusely high density area on CT; histology revealed necrosis of leukemic cells. In the present patient with repeated recurrent CNS-leukemia, leukemic cells seemed to have been damaged simultaneously after irradiation because of parenchymal widespread involvement of leukemic cells, resulting in brain edema, an increased intracranial pressure and parenchymal disturbance. This finding may have an important implication for the risk of cranial irradiation in the case of widespread involvement of leukemic cells. Re-evaluation of cranial irradiation in such cases is suggested. (Namekawa, K.)

  6. Detection of whole-brain abnormalities in temporal lobe epilepsy using tensor-based morphometry with DARTEL

    Li, Wenjing; He, Huiguang; Lu, Jingjing; Lv, Bin; Li, Meng; Jin, Zhengyu

    2009-10-01

    Tensor-based morphometry (TBM) is an automated technique for detecting the anatomical differences between populations by examining the gradients of the deformation fields used to nonlinearly warp MR images. The purpose of this study was to investigate the whole-brain volume changes between the patients with unilateral temporal lobe epilepsy (TLE) and the controls using TBM with DARTEL, which could achieve more accurate inter-subject registration of brain images. T1-weighted images were acquired from 21 left-TLE patients, 21 right-TLE patients and 21 healthy controls, which were matched in age and gender. The determinants of the gradient of deformation fields at voxel level were obtained to quantify the expansion or contraction for individual images relative to the template, and then logarithmical transformation was applied on it. A whole brain analysis was performed using general lineal model (GLM), and the multiple comparison was corrected by false discovery rate (FDR) with p<0.05. For left-TLE patients, significant volume reductions were found in hippocampus, cingulate gyrus, precentral gyrus, right temporal lobe and cerebellum. These results potentially support the utility of TBM with DARTEL to study the structural changes between groups.

  7. Voxel-based statistical analysis of cerebral glucose metabolism in the rat cortical deafness model by 3D reconstruction of brain from autoradiographic images

    Animal models of cortical deafness are essential for investigation of the cerebral glucose metabolism in congenital or prelingual deafness. Autoradiographic imaging is mainly used to assess the cerebral glucose metabolism in rodents. In this study, procedures for the 3D voxel-based statistical analysis of autoradiographic data were established to enable investigations of the within-modal and cross-modal plasticity through entire areas of the brain of sensory-deprived animals without lumping together heterogeneous subregions within each brain structure into a large region of interest. Thirteen 2-[1-14C]-deoxy-D-glucose autoradiographic images were acquired from six deaf and seven age-matched normal rats (age 6-10 weeks). The deafness was induced by surgical ablation. For the 3D voxel-based statistical analysis, brain slices were extracted semiautomatically from the autoradiographic images, which contained the coronal sections of the brain, and were stacked into 3D volume data. Using principal axes matching and mutual information maximization algorithms, the adjacent coronal sections were co-registered using a rigid body transformation, and all sections were realigned to the first section. A study-specific template was composed and the realigned images were spatially normalized onto the template. Following count normalization, voxel-wise t tests were performed to reveal the areas with significant differences in cerebral glucose metabolism between the deaf and the control rats. Continuous and clear edges were detected in each image after registration between the coronal sections, and the internal and external landmarks extracted from the spatially normalized images were well matched, demonstrating the reliability of the spatial processing procedures. Voxel-wise t tests showed that the glucose metabolism in the bilateral auditory cortices of the deaf rats was significantly (P<0.001) lower than that in the controls. There was no significantly reduced metabolism in any

  8. Voxel-based statistical analysis of cerebral glucose metabolism in the rat cortical deafness model by 3D reconstruction of brain from autoradiographic images

    Lee, Jae Sung; Park, Kwang Suk [Seoul National University College of Medicine, Department of Nuclear Medicine, 28 Yungun-Dong, Chongno-Ku, Seoul (Korea); Seoul National University College of Medicine, Department of Biomedical Engineering, Seoul (Korea); Ahn, Soon-Hyun; Oh, Seung Ha; Kim, Chong Sun; Chung, June-Key; Lee, Myung Chul [Seoul National University College of Medicine, Department of Otolaryngology, Head and Neck Surgery, Seoul (Korea); Lee, Dong Soo; Jeong, Jae Min [Seoul National University College of Medicine, Department of Nuclear Medicine, 28 Yungun-Dong, Chongno-Ku, Seoul (Korea)

    2005-06-01

    Animal models of cortical deafness are essential for investigation of the cerebral glucose metabolism in congenital or prelingual deafness. Autoradiographic imaging is mainly used to assess the cerebral glucose metabolism in rodents. In this study, procedures for the 3D voxel-based statistical analysis of autoradiographic data were established to enable investigations of the within-modal and cross-modal plasticity through entire areas of the brain of sensory-deprived animals without lumping together heterogeneous subregions within each brain structure into a large region of interest. Thirteen 2-[1-{sup 14}C]-deoxy-D-glucose autoradiographic images were acquired from six deaf and seven age-matched normal rats (age 6-10 weeks). The deafness was induced by surgical ablation. For the 3D voxel-based statistical analysis, brain slices were extracted semiautomatically from the autoradiographic images, which contained the coronal sections of the brain, and were stacked into 3D volume data. Using principal axes matching and mutual information maximization algorithms, the adjacent coronal sections were co-registered using a rigid body transformation, and all sections were realigned to the first section. A study-specific template was composed and the realigned images were spatially normalized onto the template. Following count normalization, voxel-wise t tests were performed to reveal the areas with significant differences in cerebral glucose metabolism between the deaf and the control rats. Continuous and clear edges were detected in each image after registration between the coronal sections, and the internal and external landmarks extracted from the spatially normalized images were well matched, demonstrating the reliability of the spatial processing procedures. Voxel-wise t tests showed that the glucose metabolism in the bilateral auditory cortices of the deaf rats was significantly (P<0.001) lower than that in the controls. There was no significantly reduced metabolism in

  9. Effect of pretreatment with pentobarbital on the extent of [14C] incorporation from [U-14C]glucose into various rat brain glycolytic intermediates: relevance to regulation at hexokinase and phosphofructokinase

    In the present investigation we monitored the incorporation of [14C] from [U-14C]glucose into various rat brain glycolytic intermediates of conscious and pentobarbital-anesthetized animals. Labeled glucose was delivered to brain by single bolus intracarotid injection and brain tissue was subsequently prepared at 15, 30, and 45 sec by freeze-blowing. Glycolytic intermediates were then separated by column chromatography. Our results showed a gradual decrease with time of 14C-labeled glucose which gave a calculated rate for glucose metabolism of 0.86 mumol/min/g and 0.56 mumol/min/g in conscious and anesthetized animals, respectively. Compared to the results obtained using conscious animals the administration of pentobarbital not only resulted in a significant attenuation of the rate of glucose metabolism but also caused a similar reduction in the amount of 14C incorporated into several glycolytic intermediates. These intermediates included: glucose 6-phosphate, fructose 6-phosphate, fructose 1,6 diphosphate, dihydroxyacetone phosphate and post glycolytic compounds. In addition, pretreatment with pentobarbital resulted in a 75% increase in the endogenous concentration of glucose, 10% increase in glucose 6-phosphate, no change in fructose 6-phosphate and 42% decrease in lactate compared to levels in brains obtained from conscious animals. These results are discussed in relation to control of glycolysis through coupled regulation at hexokinase-phosphofructokinase

  10. Automatic Diagnosis of Abnormal Tumor Region from Brain Computed Tomography Images Using Wavelet Based Statistical Texture Features

    Padma, A

    2011-01-01

    The research work presented in this paper is to achieve the tissue classification and automatically diagnosis the abnormal tumor region present in Computed Tomography (CT) images using the wavelet based statistical texture analysis method. Comparative studies of texture analysis method are performed for the proposed wavelet based texture analysis method and Spatial Gray Level Dependence Method (SGLDM). Our proposed system consists of four phases i) Discrete Wavelet Decomposition (ii) Feature extraction (iii) Feature selection (iv) Analysis of extracted texture features by classifier. A wavelet based statistical texture feature set is derived from normal and tumor regions. Genetic Algorithm (GA) is used to select the optimal texture features from the set of extracted texture features. We construct the Support Vector Machine (SVM) based classifier and evaluate the performance of classifier by comparing the classification results of the SVM based classifier with the Back Propagation Neural network classifier(BPN...

  11. Extratemporal abnormalities of brain parenchyma in young adults with temporal lobe epilepsy: A diffusion tensor imaging study

    Aim: To examine extratemporal abnormalities of the cerebral parenchyma in young adult temporal lobe epilepsy (TLE) patients using diffusion tensor imaging (DTI). Materials and methods: The study comprised 20 adults with unilateral TLE and 20 controls. The fractional anisotropy (FA), apparent diffusion coefficient (ADC), parallel eigenvalue (λ∥), and perpendicular eigenvalue (λ⊥) were calculated in the regions of interest (ROIs) using a 3 T MRI system. ROIs included the anterior/posterior limb of the internal capsule (AIC/PIC), external capsule (EC), head of caudate nucleus (HCN), lenticular nucleus (LN), thalamus (TL), and genu/body/splenium of the corpus callosum (GCC/BCC/SCC). Results: Compared to controls, TLE patients showed lower FA in all ROIs; higher ADC in bilateral ECs, HCNs, TLs, and BCC; lower λ∥ in the ipsilateral LN and bilateral AICs, TL, and GCC; and higher λ⊥ in all ROIs except the bilateral PICs. In TLE patients, the ipsilateral TL had decreased FA compared with the contralateral TL. Pearson correlation analysis revealed a negative correlation between the ADC of the GCC and the age at onset of epilepsy; the λ∥ of the ipsilateral PIC and age at onset of epilepsy; the λ⊥ of the contralateral AIC and duration of epilepsy, respectively; and a positive correlation between the ADC of the GCC and the duration of epilepsy and the λ⊥ of the GCC and the duration of epilepsy, respectively. Conclusion: The study revealed bilateral extratemporal abnormalities in young adult TLE patients compared with controls. In addition, TLE patients with younger age at onset or longer duration of epilepsy may have more serious extratemporal changes

  12. Effects of abnormal results of simple glucose screening test on pregnancy%单纯葡萄糖筛查试验异常对妊娠的影响

    甘嫦勋; 蔡鹏宇; 吴淑芳; 黎美金; 吴怡萍; 钟金华

    2012-01-01

    Objective: To explore the effects of abnormal results of simple glucose screening test on pregnancy. Methods: The data of 2 473 pregnant women who gave birth to their babies in the hospital from January 2007 to June 2010 were analyzed retrospectively, 628 pregnant women with abnormal results of simple glucose screening test and normal results of oral glucose tolerance test ( OGTT) were selected as abnormal group, 1 845 pregnant women with normal results of simple glucose screening test were selected as control group. The gestation-al weeks at delivery, amniotic fluid index detected by ultrasonography before rupture of fetal membrane, birth weight, body height, and head circumference of neonates in the two groups were recorded; the incidences of polyhydramnios, premature delivery, macrosomia, fetal growth restriction, birth weight, body height, and head circumference of neonates in the two groups were compared. Results: The incidence of fetal growth restriction, birth weight, and head circumference of neonates in abnormal group were 2. 5% , (50. 8 ± 1. 4) cm, and (34. 2 ± 1. 5) cm, respectively; the incidence of fetal growth restriction, birth weight, and head circumference of neonates in normal group were 2, 9% , (50. 7 ± 1. 5) cm, and (34. 1 ± 1. 4) cm, respectively, there was no statistically significant difference between the two groups. The incidences of polyhydramnios, premature delivery, macrosomia, fetal growth restriction, and birth weight in abnormal group were 3.3%, 5.3%, 11.5% , and (3. 5 ±0.5) kg; the incidences of polyhydramnios , premature delivery, macrosomia, fetal growth restriction, and birth weight in normal group were 0. 6% , 2. 5% , 4. 7% , and (3. 2 ±0. 6) kg, there was statistically significant difference between the two groups. Conclusion: The incidences of polyhydramnios, premature delivery, macrosomia, fetal growth restriction, and birth weight of neonates in the patients with abnormal results of simple glucose screening test were

  13. An optimized voxel-based morphometry study in the evaluation of brain structural abnormalities in anisometropic amblyopia patients

    Objective: To investigate possible neural mechanism of anisometropic amblyopia by analysing the whole brain volume changes both in grey matter and white matter using optimized voxel-based morphometry (VBM). Methods: Twelve anisometropic amblyopia patients and 12 age,gender and handedness matched healthy volunteers underwent 3-dimensional (3D) fast spoiled gradient echo (FSPGR) sequence scanning on 1.5 Tesla MR system. Raw data was processed and analyzed using statistical parametric mapping (SPM) 5. Results: Compared to healthy controls,the grey matter exhibiting significantly decreased volume in patients included right cuneus, bilateral occipital gyrus, right middle frontal gyrus, left middle temporal gyrus, right superior temporal gyrus, right precuneus,and middle part of right cingulate gyrus (clusters > 10). The grey matter showing increased volume in patients included right cerebellum,right parahippocampal gyrus, left precentral gyrus,and left superior frontal gyrus (clusters > 10). The white matter volume in bilateral optic radiation and internal capsule, especially right optic radiation, decreased significantly in patient group (clusters > 10 ). No white matter showed significantly increased volume in patient group. Conclusion: VBM can be used to investigate the changes of grey matter volume and white matter volume in the whole brain of anisometropic amblyopia children, it provides a method to illustrate the presumed neuro-mechanism from a morphologic point of view. (authors)

  14. Alterations in blood glucose and plasma glucagon concentrations during deep brain stimulation in the shell region of the nucleus accumbens in rats

    Charlene eDiepenbroek

    2013-12-01

    Full Text Available Deep brain stimulation (DBS of the nucleus accumbens (NAc is an effective therapy for obsessive compulsive disorder (OCD and is currently under investigation as a treatment for eating disorders. DBS of this area is associated with altered food intake and pharmacological treatment of OCD is associated with the risk of developing type 2 diabetes. Therefore we examined if DBS of the NAc-shell (sNAc influences glucose metabolism. Male Wistar rats were subjected to DBS, or sham stimulation, for a period of one hour. To assess the effects of stimulation on blood glucose and glucoregulatory hormones, blood samples were drawn before, during and after stimulation. Subsequently, all animals were used for quantitative assessment of Fos immunoreactivity in the lateral hypothalamic area (LHA using computerized image analysis. DBS of the sNAc rapidly increased plasma concentrations of glucagon and glucose while sham stimulation and DBS outside the sNAc were ineffective. In addition, the increase in glucose was dependent on DBS intensity. In contrast, the DBS-induced increase in plasma corticosterone concentrations was independent of intensity and region, indicating that the observed DBS-induced metabolic changes were not due to corticosterone release. Stimulation of the sNAc with 200 μA increased Fos immunoreactivity in the LHA compared to sham or 100 μA stimulated animals. These data show that DBS of the sNAc alters glucose metabolism in a region- and intensity dependent manner in association with neuronal activation in the LHA. Moreover, these data illustrate the need to monitor changes in glucose metabolism during DBS-treatment of OCD patients.

  15. Alterations in blood glucose and plasma glucagon concentrations during deep brain stimulation in the shell region of the nucleus accumbens in rats.

    Diepenbroek, Charlene; van der Plasse, Geoffrey; Eggels, Leslie; Rijnsburger, Merel; Feenstra, Matthijs G P; Kalsbeek, Andries; Denys, Damiaan; Fliers, Eric; Serlie, Mireille J; la Fleur, Susanne E

    2013-01-01

    Deep brain stimulation (DBS) of the nucleus accumbens (NAc) is an effective therapy for obsessive compulsive disorder (OCD) and is currently under investigation as a treatment for eating disorders. DBS of this area is associated with altered food intake and pharmacological treatment of OCD is associated with the risk of developing type 2 diabetes. Therefore we examined if DBS of the NAc-shell (sNAc) influences glucose metabolism. Male Wistar rats were subjected to DBS, or sham stimulation, for a period of 1 h. To assess the effects of stimulation on blood glucose and glucoregulatory hormones, blood samples were drawn before, during and after stimulation. Subsequently, all animals were used for quantitative assessment of Fos immunoreactivity in the lateral hypothalamic area (LHA) using computerized image analysis. DBS of the sNAc rapidly increased plasma concentrations of glucagon and glucose while sham stimulation and DBS outside the sNAc were ineffective. In addition, the increase in glucose was dependent on DBS intensity. In contrast, the DBS-induced increase in plasma corticosterone concentrations was independent of intensity and region, indicating that the observed DBS-induced metabolic changes were not due to corticosterone release. Stimulation of the sNAc with 200 μA increased Fos immunoreactivity in the LHA compared to sham or 100 μA stimulated animals. These data show that DBS of the sNAc alters glucose metabolism in a region- and intensity- dependent manner in association with neuronal activation in the LHA. Moreover, these data illustrate the need to monitor changes in glucose metabolism during DBS-treatment of OCD patients. PMID:24339800

  16. Measurement of local glucose transport rate constant and free glucose pool in human brain using PET and CMG: First result in normals and Huntington patients

    Even in images reconstructed with the method of filtered backprojection it is possible to perform parametric images on a pixel by pixel base with use of appropriate stable algorithms. There is no doubt, that these analytical procedures are less efficient than the iterative ones, but they are doing well when relative values between pixels are of interest. The approach using a Lookup-Table was determined to be best and used in normals and Huntington patients. The first results show that in Huntington patients the transport of glucose is not regional affected, but globally reduced. Following studies on a large patient pool will challenge and proceed further this presented technique. (orig.)

  17. Brain

    ... will return after updating. Resources Archived Modules Updates Brain Cerebrum The cerebrum is the part of the ... the outside of the brain and spinal cord. Brain Stem The brain stem is the part of ...

  18. Brain Tumors

    A brain tumor is a growth of abnormal cells in the tissues of the brain. Brain tumors can be benign, with no cancer cells, or ... cancer cells that grow quickly. Some are primary brain tumors, which start in the brain. Others are metastatic, ...

  19. Brain Tumors

    A brain tumor is a growth of abnormal cells in the tissues of the brain. Brain tumors can be benign, with no cancer cells, ... cancer cells that grow quickly. Some are primary brain tumors, which start in the brain. Others are ...

  20. Stretch and/or oxygen glucose deprivation (OGD in an in vitro traumatic brain injury (TBI model induces calcium alteration and inflammatory cascade

    Ellaine Salvador

    2015-08-01

    Full Text Available The blood-brain barrier (BBB, made up of endothelial cells of capillaries in the brain, maintains the microenvironment of the central nervous system. During ischemia and traumatic brain injury (TBI, cellular disruption leading to mechanical insult results to the BBB being compromised. Oxygen glucose deprivation (OGD is the most commonly used in vitro model for ischemia. On the other hand, stretch injury is currently being used to model TBI in vitro. In this paper, the two methods are used alone or in combination, to assess their effects on cerebrovascular endothelial cells cEND in the presence or absence of astrocytic factors. Applying severe stretch and/or OGD to cEND cells in our experiments resulted to cell swelling and distortion. Damage to the cells induced release of lactate dehydrogenase enzyme (LDH and nitric oxide (NO into the cell culture medium. In addition, mRNA expression of inflammatory markers interleukin (IL-6, IL-1α, chemokine (C-C motif ligand 2 (CCL2 and tumor necrosis factor (TNF-α also increased. These events could lead to the opening of calcium ion channels resulting to excitotoxicity. This could be demonstrated by increased calcium level in OGD-subjected cEND cells incubated with astrocyte-conditioned medium. Furthermore, reduction of cell membrane integrity decreased tight junction proteins claudin-5 and occludin expression. In addition, permeability of the endothelial cell monolayer increased. Also, since cell damage requires an increased uptake of glucose, expression of glucose transporter glut1 was found to increase at the mRNA level after OGD. Overall, the effects of OGD on cEND cells appear to be more prominent than that of stretch with regards to TJ proteins, NO, glut1 expression and calcium level. Astrocytes potentiate these effects on calcium level in cEND cells. Combining both methods to model TBI in vitro shows a promising improvement to currently available models.

  1. MRI abnormalities and related risk factors of the brain in patients with neuromyelitis optica%视神经脊髓炎脑部异常的MRI表现及相关危险因素分析

    肖慧; 马林; 娄昕; 蔡幼铨; 王玉林; 王岩; 武雷; 吴卫平

    2011-01-01

    Objective To investigate the MRI features of the brain in patients with neuromyelitis optica (NMO), and to evaluate the correlation between the brain abnormalities and related risk factors.Methods Fifty-four patients with definite NMO according to 2006 Wingerchuk diagnosis criteria were enrolled in this study. MRI scanning of the brain was performed in these patients. Distribution and signalfeatures of all the lesions were analyzed. A Logistic regression analysis was used to evaluate the risk factors of brain abnormalities. Results Twenty-four NMO patients (44. 4%) showed unremarkable findings and thirty (55.6%) showed abnormalities on brain MRI. Multiple and non-specific small lesions in the subcortical white matter and grey-white matter junction were the most frequent abnormalities on brain MRI (13/30, 43. 3%). Typical lesion locations included corpus callosum, subependyma of ventricles,hypothalamus and brain stem. The lesions showed punctate, patchy and linear abnormal signals. Postcontrast MRI showed no abnormal enhancement in 16 cases. Logistic regression analysis showed that coexisting anto-immune disease or infection history had correlations with abnormalities of the brain on MRI (OR=3.519,P <0.05). Conclusions There was a high incidence of brain abnormalities in NMO.Subependymal white matter, corpus callosum, hypothalamus and brain stem were often involved in NMO.NMO patients with coexisting anto-immune disease and infection history had higher risk of brain abnormalities.%目的 分析视神经脊髓炎(NMO)脑部异常的MRI表现及特征,探讨脑内病灶发生的相关危险因素.方法 对符合2006年Wingerchuk诊断标准的54例NMO患者行脑部MR检查,分析脑部MRI异常患者病灶的分布及信号特点.采用Logistic回归分析评估脑内病灶发生的相关危险因素.结果 54例NMO患者脑部MRI正常24例(44.4%),MRI表现异常30例(55.6%),以多发的皮层下和皮髓质交界区白质小病灶最常见(13/30,43.3%).典型

  2. Comparison of different methods for attenuation correction in brain PET: Influence on the calculation of the metabolic glucose rate

    Aim: There are several approaches for correcting the effects of photon scatter or absorption by body tissues on positron emission tomography (PET). We examined the influence of cold, hot and segmented transmission as well as of a mathematical procedure on attenuation correction using regional cerebral glucose metabolism (rMRGlu). Methods: 6 patients with different cerebral diseases were examined under resting conditions using an ECAT Exact 922/47. The attenuation-corrected data (corrected by means of cold, hot and segmented transmission as well as a mathematical procedure) were then quantified absolutely for assessment of regional glucose metabolism in 16 regions of interest (ROIs). Results: Using absolutely quantified glucose metabolism in 16 ROIs, no significant differences were found between cold transmission and the mathematical procedure except for three regions (left and right temporal occipital and right parietal occipital). Unlike the mathematical procedure, both hot and segmented transmission showed a significantly lower value for regional glucose utilisation in all 16 ROIs than did cold transmission. The left and the right hemisphere both showed metabolic values (rMRGlu) in the same decreasing order: Cold transmission, the mathematical procedure, hot or segemented transmission. There was no significant difference between global cerebral glucose metabolism values for cold transmission and the mathematical procedure (p=0.25) while those for hot (p=0.03) and segmented transmission (p=0.03) did show a significant difference. (orig.)

  3. Analysis of local perfusion rate (LPR) and local glucose transport rate (LGTR) in brain and heart in man by means of C-11-methyl-D-glucose (CMG) and dynamic positron emission tomography (dPET)

    A method has been developed to measure simultaneously the LPR and LGTR. CMG is used as an indicator. The transaxial distribution of activity in organism is registered with dPET. On the basis of a mathematical model, the LPR and LGTR can be calculated in terms of parameters of the time activity curves registered over different brain or heart regions and over the sup. long. sinus (brain) or the ventricular cavity (heart) (blood activity). The method was used in 10 normal subjects and 20 patients with ischemic brain or heart disease. The values of LGTR range from 0.43 to 0.6 μmol/min g in normal cortex and from 0.09 to 0.12 μmol/min g in normal white matter. The LPR was 0.9-098 ml/min g for the cortex and 0.3-0.4 ml/min g for the white matter. In patients with stroke the ischemic defects appeared to be larger in CMG scans than in CT. The results obtained in a patient with left homonymous hemianopia, caused by infarctions in the distribution area of RMCA, and in a patient with TIA, demonstrate that the inactivation of morphologically intact, cerebral cortex, observed in stroke patients, may be caused by undercutting of cortical fiber tracts as well as by the impairment of the glucose transport systems in the inactivated area. In myocardial studies the LPR in normal left myocardium was 0.68 ml/min g (subendocardium 0.74 ml/min g; subepicardiuim 0.65 ml/min g). In patients with old myocardial infarction, the infarcted areas could be easily recognized as accumulation defects. The results obtained in a patient with narrowing of the RCA indicate that repeated exposure of myocardial tissue to transient ischemia produces an irreversible damage of the glucose transport system. We conclude from the data that for diagnostic evaluation of ultimate brain or heart damage simultaneous quantitative assessment of both LPR and LGTR is of basic importance. (Author)

  4. 糖脂代谢异常对肝硬化患者疾病进展的影响%Impact of abnormal glucose and lipid metabolism on the progression of disease in patients with cirrhosis

    岑光力; 岑柏春

    2015-01-01

    ,triglycerides (TG) in patients with different Child-Pugh score had no statistically significant difference,P =0.558,0.169.The level of serum albumin (ALB) of patients with DM in cirrhosis was significantly lower than those without DM,P =0.009.The patients with DM in liver cirrhosis had higher incidence of complications such as ascites,gastro esophageal variceal bleeding(GEVB) or hepatic encephalopathy than those without DM,P =0.000.Conclusion The patients with cirrhosis had higher incidence of abnormal glucose metabolism,and DM lead to progression of liver disease in turn.

  5. Brain regions involved in voluntary movements as revealed by radioisotopic mapping of CBF or CMR-glucose changes

    Lassen, N A; Ingvar, D H

    1990-01-01

    Mapping of cortical and subcortical grey matter active during voluntary movements by means of measurements of local increases of CBF or CMR-Glucose is reviewed. Most of the studies concern observations in man during hand movements using the intracarotid Xenon-133 injection technique, an approach...... motor area SMA on both sides increase in CBF/CMR-glucose and even internally ("mentally") going through the trained movements, causes such changes; complex purposeful movements also activate the premotor cortex, a response that is bilateral with greatest response contralaterally. Studies in patients...

  6. The protective role of isorhamnetin on human brain microvascular endothelial cells from cytotoxicity induced by methylglyoxal and oxygen-glucose deprivation.

    Li, Wenlu; Chen, Zhigang; Yan, Min; He, Ping; Chen, Zhong; Dai, Haibin

    2016-02-01

    As the first target of stroke, cerebral endothelial cells play a key role in brain vascular repair and maintenance, and their function is impeded in diabetes. Methylglyoxal (MGO), a reactive dicarbonyl produced during glucose metabolism, accumulates in diabetic patients. MGO and MGO-induced advanced glycation end-products (AGEs) could ameliorate stroke-induced brain vascular damage, closely related with ECs dysfunction. Using MGO plus oxygen-glucose deprivation (OGD) to mimic diabetic stroke, we reported the protective effect of isorhamnetin on OGD-induced cytotoxicity after MGO treatment on primary human brain microvascular endothelial cells (HBMEC) and explored the underlying mechanisms. Treatment of MGO for 24 h significantly enhanced 3-h OGD-induced HBMEC toxic effect, which was inhibited by pretreatment of isorhamnetin (100 μmol/L). Moreover, the protective effect of isorhamnetin is multiple function dependent, which includes anti-inflammation, anti-oxidative stress and anti-apoptosis effects. Besides its well-known inhibition on the mitochondria-dependent or intrinsic apoptotic pathway, isorhamnetin also reduced activation of the extrinsic apoptotic pathway, as characterized by the decreased expression and activity of caspase 3 and caspase 8. Furthermore, pretreatment with isorhamnetin specifically inhibited FAS/FASL expression and suppressed nuclear factor-kappa B nuclear translocation. Taken together, our results indicated that isorhamnetin protected against OGD-induced cytotoxicity after MGO treatment in cultured HBMEC due to its multiple protective effects and could inhibit Fas-mediated extrinsic apoptosis. Therefore, isorhamnetin is a promising reagent for the treatment of hyperglycemia and ischemia-induced cerebral vascular degeneration. A proposed model of the potential protective mechanism of isorhamnetin, a metabolite of quercetin, on methylglyoxal (MGO) treatment plus oxygen-glucose deprivation (OGD) exposure-induced cytotoxicity in cultured

  7. Study on the correlation of severity of acute pancreatitis with abnormal glucose metabolism and its prognosis%急性胰腺炎严重程度与糖代谢异常的相关性及其预后

    罗欣

    2013-01-01

    目的 探讨急性胰腺炎严重程度与糖代谢异常的相关性及其预后.方法 选择2004年12月至2012年12月广西柳钢集团公司医院消化科收治入院的急性胰腺炎患者158例,按疾病严重程度分为轻症急性胰腺炎(MAP)组68例和重症急性胰腺炎(SAP)组90例;检测两组患者糖代谢指标空腹静脉血糖(FPG)、负荷2h静脉血糖(PPG)及评定两组患者急性生理及慢性健康评分Ⅱ(APACHE Ⅱ),对两组的糖代谢指标和APACHE Ⅱ评分进行相关性分析,并观察两组患者的预后.结果 SAP组患者FPG、PPG、胰岛素水平(FINS)、胰岛素抵抗指数(IRI)明显高于MAP组,胰岛素敏感指数(ISI)低于MAP(P<0.01);急性胰腺炎(AP)患者的APACHE Ⅱ评分与FPG、PPG、FINS、IRI呈正相关(P <0.05,P<0.01),与ISI呈负相关(P<0.05);SAP组的假性囊肿、感染、脓肿、坏死、急性肺损伤或急性呼吸窘迫综合征(ARDS)、死亡发生率明显高于MAP组(P<0.05,P<0.01).结论 AP的严重程度与糖代谢异常存在密切的关系,两者相互影响,因此,在治疗AP时,应积极控制胰腺炎症,防止和减少胰腺坏死,将血糖降至正常范围,以降低并发症和死亡的发生率.%Objective To investigate correlation between severity of acute pancreatitis and abnormal glucose metabolism and its prognosis.Methods A total of 158 cases of patient admitted with acute pancreatitis in the Department of Digestion of our hospital from December 2004 and December 2012 were selected,and were divided into two groups:mild acute pancreatitis (MAP; n =68) and severe acute pancreatitis (SAP; n =90) according to disease severity.The patient's sugar metabolism such as fasting plasma glucose (FPG),postprandial plasma glucose (PPG) and acute physiology and chronic health evaluation Ⅱ (APACHEII) scores of two groups were detected.Correlation analysis was carried out between glucose metabolism index and APACHEII score.The prognosis of two groups was observed

  8. Relationship of metabolic and endocrine parameters to brain glucose metabolism in older adults: do cognitively-normal older adults have a particular metabolic phenotype?

    Nugent, S; Castellano, C A; Bocti, C; Dionne, I; Fulop, T; Cunnane, S C

    2016-02-01

    Our primary objective in this study was to quantify whole brain and regional cerebral metabolic rates of glucose (CMRg) in young and older adults in order to determine age-normalized reference CMRg values for healthy older adults with normal cognition for age. Our secondary objectives were to--(i) report a broader range of metabolic and endocrine parameters including body fat composition that could form the basis for the concept of a 'metabolic phenotype' in cognitively normal, older adults, and (ii) to assess whether medications commonly used to control blood lipids, blood pressure or thyroxine affect CMRg values in older adults. Cognition assessed by a battery of tests was normal for age and education in both groups. Compared to the young group (25 years old; n = 34), the older group (72 years old; n = 41) had ~14% lower CMRg (μmol/100 g/min) specifically in the frontal cortex, and 18% lower CMRg in the caudate. Lower grey matter volume and cortical thickness was widespread in the older group. These differences in CMRg, grey matter volume and cortical thickness were present in the absence of any known evidence for prodromal Alzheimer's disease (AD). Percent total body fat was positively correlated with CMRg in many brain regions but only in the older group. Before and after controlling for body fat, HOMA2-IR was significantly positively correlated to CMRg in several brain regions in the older group. These data show that compared to a healthy younger adult, the metabolic phenotype of a cognitively-normal 72 year old person includes similar plasma glucose, insulin, cholesterol, triglycerides and TSH, higher hemoglobin A1c and percent body fat, lower CMRg in the superior frontal cortex and caudate, but the same CMRg in the hippocampus and white matter. Age-normalization of cognitive test results is standard practice and we would suggest that regional CMRg in cognitively healthy older adults should also be age-normalized. PMID:26364049

  9. Antidiabetic drugs restore abnormal transport of amyloid-β across the blood-brain barrier and memory impairment in db/db mice.

    Chen, Fang; Dong, Rong Rong; Zhong, Kai Long; Ghosh, Arijit; Tang, Su Su; Long, Yan; Hu, Mei; Miao, Ming Xing; Liao, Jian Min; Sun, Hong Bing; Kong, Ling Yi; Hong, Hao

    2016-02-01

    Previous studies have shown significant changes in amyloid-β (Aβ) transport across the blood-brain barrier (BBB) under diabetic conditions with hypoinsulinemia, which is involved in diabetes-associated cognitive impairment. Present study employed db/db mice with hyperinsulinemia to investigate changes in Aβ transport across the BBB, hippocampal synaptic plasticity, and restorative effects of antidiabetic drugs. Our results showed that db/db mice exhibited similar changes in Aβ transport across the BBB to that of insulin-deficient mice. Chronic treatment of db/db mice with antidiabetic drugs such as metformin, glibenclamide and insulin glargine significantly decreased Aβ influx across the BBB determined by intra-arterial infusion of (125)I-Aβ(1-40), and expression of the receptor for advanced glycation end products (RAGE) participating in Aβ influx. Insulin glargine, but not, metformin or glibenclamide increased Aβ efflux across the BBB determined by stereotaxic intra-cerebral infusion of (125)I-Aβ(1-40), and expression of the low-density lipoprotein receptor related protein 1 (LRP1) participating in Aβ efflux. Moreover, treatment with these drugs significantly decreased hippocampal Aβ(1-40) or Aβ(1-42) and inhibited neuronal apoptosis. The drugs also ameliorated memory impairment confirmed by improved performance on behavioral tasks. However, insulin glargine or glibenclamide, but not metformin, restored hippocampal synaptic plasticity characterized by enhancing in vivo long-term potentiation (LTP). Further study found that these three drugs significantly restrained NF-κB, but only insulin glargine enhanced peroxisome proliferator-activated receptor γ (PPARγ) activity at the BBB in db/db mice. Our data indicate that the antidiabetic drugs can partially restore abnormal Aβ transport across the BBB and memory impairment under diabetic context. PMID:26211973

  10. The Association between N-terminal Pro-Brain Natriuretic Peptide Levels in the Umbilical Vein and Amniotic Fluid Volume Abnormalities.

    Ersoy, Ali Ozgur; Ozler, Sibel; Oztas, Efser; Ersoy, Ebru; Ergin, Merve; Erkaya, Salim; Uygur, Dilek

    2016-04-01

    Purpose The amniotic fluid volume (AFV) is known as a predictor for the wellness of a fetus. We aimed to investigate whether N-terminal pro-brain natriuretic peptide (NTproBNP) levels reflect AFV abnormalities in otherwise normal fetuses. Methods We recruited 24 women with isolated oligohydramnios, 23 women with isolated polyhydramnios, and 36 women with normal AFV at a tertiary referral center. NT-proBNP levels in umbilical venous samples and the individual characteristics of the three groups were compared. One-way ANOVA and Kruskal-Wallis analysis of variance were used for multi-group comparisons of continuous variables. When a significant difference was detected, the Scheffe test was performed as a post-hoc analysis. Proportions were compared using the Chi-square (χ2) test. Results Maternal age, body mass indices, weight gained in pregnancy and NT-proBNP levels were similar among the three groups. Apgar scores at 1 and 5 minutes significantly correlated with NT-proBNP levels in all newborns (Spearman's r = 0.23; p = 0.03 and Spearman's r = 0.24; p = 0.02, respectively). The umbilical venous NT-proBNP levels did not differ between newborns who needed mechanical ventilation and those who didn't (p = 0.595). Conclusions NT-proBNP is a biomolecule that may provide insights into the pathogenesis of fetal circulatory problems and subsequent renal failure. Further investigations are warranted. PMID:27096950

  11. A clinical analysis of abnormal gestational glucose metabolism and pregnancy outcome of the woman%妊娠期糖代谢异常与妊娠结局的临床分析

    米阳; 闫坤; 黄谱; 苟文丽

    2009-01-01

    Objective To investigate relationship between abnormal gestational glucose metabolism and pregnancy outcome of the woman. Methods 1 636 pregnant women who received antenatal examination in Shannxi Provincial Maternal and Child Health Hospital in a period from January to June, 2008 were screened at their 24~28 weeks of gestation with 50g glucose challenge test (GCT). Those pregnant women with abnormal GCT results further received oral 75g glucose tolerance test (OGTT). According to OGTT results, the pregnant women were divided into 2 groups: GDM group (n=69) and gestational impaired glucose tolerance group (GIGT group, n=124). 300 pregnant women with normal glucose metabolism were as controls. All of them were followed up untill delivery and the perinatal outcomes in the 3groups were compared. Results The incidence of GDM was 4.21% and that of GIGT was 7.58%. The incidences of hypertensive disorder complicating pregnancy, polyhydramnios, premature rupture of membrane and premature delivery in GDM group were higher than those in the control group (χ2=4.660,11.530,5.193,4.661 respectively,all P<0.05).In GIGT group ,the incidences of polyhydramnios and premature rupture of membrane were significantly higher than those in the control group(χ2=12.450,6.325,respectively,both P<0.05). Conclusion The pregnant women with GDM or GIGT have significantly high incidences of obstetric complications and rate of cesarean section. So, screening of GDM should be strengthened and early diagnosis, early treatment, gestational supervision and guidance should be carried out in order to reduce incidence rates of maternal and infantile complications.%目的 探讨妊娠期糖代谢异常与妊娠结局的关系.方法 选取2008年1~6月在陕西省妇幼保健院进行产前检查的1 636名孕妇,于24~28周进行50g葡萄糖筛查试验,异常者行75g糖耐量试验,按糖代谢异常情况分为妊娠期糖尿病组(69例)和妊娠期糖耐量受损组(124例);

  12. Incretins and Amylin: Neuroendocrine Communication between the Gut, Pancreas, and Brain in Control of Food Intake and Blood Glucose

    Hayes, Matthew R.; Mietlicki-Baase, Elizabeth G.; Kanoski, Scott E.; De Jonghe, Bart C.

    2014-01-01

    Arguably the most fundamental physiological systems for all eukaryotic life are those governing energy balance. Without sufficient energy, an individual is unable to survive and reproduce. Thus, an ever-growing appreciation is that mammalian physiology developed a redundant set of neuroendocrine signals that regulate energy intake and expenditure, which maintains sufficient circulating energy, predominantly in the form of glucose, to ensure that energy needs are met throughout the body. This ...

  13. 糖耐量异常对妊娠期糖尿病母儿并发症的影响%Investigation of Abnormal Glucose Tolerance on Gestational Diabetes to Maternal and Neonatal Complications

    聂秀娟

    2012-01-01

      Objective To investigate the occurrence of maternal and neonatal complications caused by gestational diabetes and abnormal factors of glucose tolerance tests .Methods The singleton primiparas who were accepted system antenatal examination and delivered in my hospital from 1st Jan,2009 to 1st Jan,2011 were studied.They were divided into two groups,the OGTT 84 abnormal pregnant women was observation group,the OGTT normal pregnant ones was control group .The outcomes of pregnancy of the two groups were :maternal compli-cations(polyhydramnios,hypertensive disorders in pregnancy ,premature delivery,fetal distress,cesarean section rate,postpartum hemorrhage) and neonatal complications (macrosomia,deformity,RDS,intrauterine fetal death).Results The rate of the complications (such as postpartum hemorrhage,macrosomia polyhydramnios ,malformations,fetal death in utero) of the observation group was obviously increased with significant differences(P <0.05).Conclusion Pregnant women should do OGTT test for the early diagnosis ,to strengthen their pregnant and gestation -al nutrition and health,in order to reduce the hazards of gestational diabetes on maternal -fetal.%  目的探讨妊娠期糖尿病母婴并发症的发生与糖耐量试验异常的相关因素.方法2009年1月~2011年1月在我院行系统产前检查并住院分娩的单胎初产妇.口服葡萄糖耐量试验(OGTT)异常孕妇84例为观察组,OGTT 正常孕妇84例为对照组.观察妊娠结局:包括孕产妇并发症(羊水过多、妊娠期高血压疾病、早产、胎儿窘迫、剖宫产率、产后出血)及新生儿并发症(巨大儿、畸形、RDS、胎死宫内,窒息).结果观察组孕妇的并发症如产后出血、巨大儿羊水过多、畸形、胎死宫内的发生率明显升高(P <0.05).结论孕妇应行 OGTT 试验进行早期诊断,加强孕期、孕后营养及保健,可降低妊娠期糖尿病对母儿的危害.

  14. Congenital Abnormalities

    ... blood flow to the fetus impair fetal growth. Alcohol consumption and certain drugs during pregnancy significantly increase the risk that a baby will be born with abnormalities (e.g. fetal alcohol spectrum disorders ). Eating raw or uncooked foods during pregnancy can also be dangerous to health of the ...

  15. Effects of special brain area regional cerebral blood flow abnormal perfusion on learning and memory function and its molecular mechanism in rats

    2008-01-01

    s To study the effect of special brain area regional cerebral blood flow (rCBF) abnormal perfusion on learning and memory function and its molecular mechanism,64 adult male healthy Spragne-Dawley (SD) rats were randomly divided into two groups,the false operation group (control group) and the operation group (model group).After surgical operation,the operation group undertook bilateral common carotid artery permanent ligation,while the other group did not.Learning and memory function were measured by Y-maze at 4 h,8 h,24 h and 3 d after surgical operation,respectively.The rCBF of the right frontal lobe and hippocampus was also detected by the PerifluxPF model laser Doppler flowmetry,and the expressions of c-fos or c-jun or Bcl-2 and Bax were also measured by immune histochemistry S-P method accordingly.Results showed that the rCBF of the right frontal lobe and hippocampus in the operation group was significantly lower than that in the false operation group (P < 0.05).The learning indexes,error number (EN),day of reach standard and total reaction time (TRT) in the operation group,were significantly higher than that in the false operation group (P< 0.05).However,the initiative evasion rate in the operation group was significantly lower than that in the false operation group.The study also found that the rCBF was relatively more,the indexes (EN,the day of reach standard and TRT) relatively fewer,but the initiative evasion rate and the memory keeping rate were relatively more.The positive expression and the average absorbency of Fos and Jun in the operation group were significantly higher than that in the false operation group (P< 0.05).Furthermore,Bax and Bcl-2 positive cells were all increased over time in the operation group,and the expression ratio of Bax/Bcl-2 in the operation group was significantly higher than that in the false operation group (P<0.01).In conclusion,rCBF decrease can impair the learning and memory function in rats,which may be related to

  16. Pre-symptomatic activation of antioxidant responses and alterations in glucose and pyruvate metabolism in Niemann-Pick Type C1-deficient murine brain.

    Barry E Kennedy

    Full Text Available Niemann-Pick Type C (NPC disease is an autosomal recessive neurodegenerative disorder caused in most cases by mutations in the NPC1 gene. NPC1-deficiency is characterized by late endosomal accumulation of cholesterol, impaired cholesterol homeostasis, and a broad range of other cellular abnormalities. Although neuronal abnormalities and glial activation are observed in nearly all areas of the brain, the most severe consequence of NPC1-deficiency is a near complete loss of Purkinje neurons in the cerebellum. The link between cholesterol trafficking and NPC pathogenesis is not yet clear; however, increased oxidative stress in symptomatic NPC disease, increases in mitochondrial cholesterol, and alterations in autophagy/mitophagy suggest that mitochondria play a role in NPC disease pathology. Alterations in mitochondrial function affect energy and neurotransmitter metabolism, and are particularly harmful to the central nervous system. To investigate early metabolic alterations that could affect NPC disease progression, we performed metabolomics analyses of different brain regions from age-matched wildtype and Npc1 (-/- mice at pre-symptomatic, early symptomatic and late stage disease by (1H-NMR spectroscopy. Metabolic profiling revealed markedly increased lactate and decreased acetate/acetyl-CoA levels in Npc1 (-/- cerebellum and cerebral cortex at all ages. Protein and gene expression analyses indicated a pre-symptomatic deficiency in the oxidative decarboxylation of pyruvate to acetyl-CoA, and an upregulation of glycolytic gene expression at the early symptomatic stage. We also observed a pre-symptomatic increase in several indicators of oxidative stress and antioxidant response systems in Npc1 (-/- cerebellum. Our findings suggest that energy metabolism and oxidative stress may present additional therapeutic targets in NPC disease, especially if intervention can be started at an early stage of the disease.

  17. Effects of organophosphorus anticholinesterase compounds on brain glucose and energy metabolism. Final summary report, 1 October 1981-29 February 1984

    Medina, M.A.; Miller, A.L.

    1984-09-01

    The effects of Soman and paraoxon on cerebral metabolic rate (CMRg) and the levels of various metabolites in rate brain were investigated. In non-convulsing animals, 0.8 of the paraoxon LD50 and 0.5 of the Soman LD50 tended to lower CMRg. A higher dose of Soman, 0.8-0.95 of the LD50, resulted in convulsive seizures in some but not all of the animals. In convulsing rats the CMRg and lactate levels were elevated primarily in the cortex and thalamus/basal ganglia. Decreased ATP and glucose levels with an elevated CMRg and lactate concentration was observed in the cortex, suggesting that Soman may be uncoupling oxidative phosphorylation. Pretreatment with atropine prevented the behavioral manifestations and the elevated CMRg but not the hyperglycemia produced by an 0.8 LD50 dose of Soman. These results suggest that Soman-induced convulsions are similar to those produced by other central nervous system (CNS) excitatory agents in that only certain brain regions are affected. The use of atropine to block the CNS disturbances produced by Soman appears to be effective also does not result in the extensive depression of CMRg observed with TAB, a mixture of trimedoxime, atropine and benactyzine.

  18. Comparing amyloid-β deposition, neuroinflammation, glucose metabolism, and mitochondrial complex I activity in brain: a PET study in aged monkeys

    Tsukada, Hideo; Nishiyama, Shingo; Ohba, Hiroyuki; Kanazawa, Masakatsu; Kakiuchi, Takeharu; Harada, Norihiro [Hamamatsu Photonics K.K., Central Research Laboratory, Shizuoka (Japan)

    2014-11-15

    The aim of the present study was to compare amyloid-β (Aβ) deposition, translocator protein (TSPO) activity, regional cerebral metabolic rate of glucose (rCMRglc), and mitochondrial complex I (MC-I) activity in the brain of aged monkeys. PET scans with {sup 11}C-PIB (Aβ), {sup 18}F-BCPP-EF (MC-I), {sup 11}C-DPA-713 (TSPO), and {sup 18}F-FDG (rCMRglc) were performed in aged monkeys (Macaca mulatta) in the conscious state and under isoflurane anaesthesia. {sup 11}C-PIB binding to Aβ and {sup 11}C-DPA-713 binding to TSPO were evaluated in terms of standard uptake values (SUV). The total volume of distribution (V{sub T}) of {sup 18}F-BCPP-EF and rCMRglc with {sup 18}F-FDG were calculated using arterial blood sampling. Isoflurane did not affect MC-I activity measured in terms of {sup 18}F-BCPP-EF uptake in living brain. There was a significant negative correlation between {sup 18}F-BCPP-EF binding (V{sub T}) and {sup 11}C-PIB uptake (SUVR), and there was a significant positive correlation between {sup 11}C-DPA-713 uptake (SUV) and {sup 11}C-PIB uptake. In contrast, there was no significant correlation between rCMRglc ratio and {sup 11}C-PIB uptake. {sup 18}F-BCPP-EF could be a potential PET probe for quantitative imaging of impaired MC-I activity that is correlated with Aβ deposition in the living brain. (orig.)

  19. Glucose Tests

    ... be limited. Home Visit Global Sites Search Help? Glucose Tests Share this page: Was this page helpful? ... the meaning of other test results. Fasting Blood Glucose Glucose Level Indication From 70 to 99 mg/ ...

  20. Brain Aneurysm

    A brain aneurysm is an abnormal bulge or "ballooning" in the wall of an artery in the brain. They are sometimes called berry aneurysms because they ... often the size of a small berry. Most brain aneurysms produce no symptoms until they become large, ...

  1. 成都地区中老年高血压人群糖代谢异常流行状况及其影响因素%An epidemiological study of abnormal glucose metabolism and its risk factors among middle and aged population with hypertension in Chengdu area

    易延静; 刘燕; 李秀钧; 赵思勤; 冉迅; 黄晓波; 刘雅; 张廷杰; 欧阳凌云; 曾伟; 徐俊波; 杨雷

    2010-01-01

    Objective To explore the epidemiological status of abnormal glucose metabolism and its influential factors among middle and aged population with hypertension in Chengdu area. Methods In 2008, after adopting the methods of stratified cluster sampling, the authors investigated 4685 subjects of the middle and aged population between the age of 40-79 in Chengdu urban and rural area by checking blood pressure and oral glucose tolerance test (OGTY). Patients with previously known diabetes mellitus (DM) were only asked to perform fasting glucose and to carry out a questionnaire. Comparison of the prevalence rates of abnormal glucose metabolism in hypertensive and non-hypertensive subjects was carried out. The prevalence rates of isolated impaired glucose tolerance (I-IGT) and isolated postprandial hyperglycemia (IPH) among middle and aged subjects with hypertension were acquired and the influential factors of abnormal glucose metabolism among middle and aged subjects with hypertension were analyzed. Results The prevalence rate of abnormal glucose metabolism in the hypertensive subjects was obviously higher than that in the non-hypertensive subjects; without using OGTT, 72.9% of the pre-diubetic and 54. 4% of the new diagnosed DM patients would remain undiagnosed if fasting plasma glucose detection was used alone. Age, diabetic history of first degree relatives ,overweight or obesity were the risk factors for the development of abnormal glucose metabolism among middle and aged male subjects with hypertension in Chengdu area. Exercise training and high education level were the protective factors. Age, diabetic history of first degree relatives,abdominal obesity and hypertriglyceridemia were the risk factors for the development of abnormal glucose metabolism among middle and aged female subjects with hypertension in Chengdu area. Conclusions More than 50% of middle and aged subjects with hypertension in Chengdu area has accompanying abnormal glucose metabolism. OGTT easily

  2. Hepatic glucose sensing is required to preserve β cell glucose competence.

    Seyer, Pascal; Vallois, David; Poitry-Yamate, Carole; Schutz, Frédéric; Metref, Salima; Tarussio, David; Maechler, Pierre; Staels, Bart; Lanz, Bernard; Grueter, Rolf; Decaris, Julie; Turner, Scott; Da Costa, Anabela; Preitner, Frédéric; Minehira, Kaori

    2013-01-01

    Liver glucose metabolism plays a central role in glucose homeostasis and may also regulate feeding and energy expenditure. Here we assessed the impact of glucose transporter 2 (Glut2) gene inactivation in adult mouse liver (LG2KO mice). Loss of Glut2 suppressed hepatic glucose uptake but not glucose output. In the fasted state, expression of carbohydrate-responsive element-binding protein (ChREBP) and its glycolytic and lipogenic target genes was abnormally elevated. Feeding, energy expenditu...

  3. Early detection of cryptic memory and glucose uptake deficits in pre-pathological APP mice.

    Beglopoulos, V; Tulloch, J; Roe, A D; Daumas, S; Ferrington, L; Watson, R; Fan, Z; Hyman, B T; Kelly, P A T; Bard, F; Morris, R G M

    2016-01-01

    Earlier diagnosis and treatment of Alzheimer's disease would greatly benefit from the identification of biomarkers at the prodromal stage. Using a prominent animal model of aspects of the disease, we here show using clinically relevant methodologies that very young, pre-pathological PDAPP mice, which overexpress mutant human amyloid precursor protein in the brain, exhibit two cryptic deficits that are normally undetected using standard methods of assessment. Despite learning a spatial memory task normally and displaying normal brain glucose uptake, they display faster forgetting after a long delay following performance to a criterion, together with a strong impairment of brain glucose uptake at the time of attempted memory retrieval. Preliminary observations suggest that these deficits, likely caused by an impairment in systems consolidation, could be rescued by immunotherapy with an anti-β-amyloid antibody. Our data suggest a biomarker strategy for the early detection of β-amyloid-related abnormalities. PMID:27249364

  4. FDG-PET changes in brain glucose metabolism from normal cognition to pathologically verified Alzheimer's disease

    Mosconi, Lisa [New York University School of Medicine, Department of Psychiatry, New York (United States); New York University School of Medicine, Center for Brain Health, MHL 400, New York, NY (United States); Mistur, Rachel; Switalski, Remigiusz; Glodzik, Lidia; Li, Yi; Pirraglia, Elizabeth; De Santi, Susan; Reisberg, Barry [New York University School of Medicine, Department of Psychiatry, New York (United States); Tsui, Wai Hon; De Leon, Mony J. [New York University School of Medicine, Department of Psychiatry, New York (United States); Nathan Kline Institute, Orangeburg, NY (United States); Wisniewski, Thomas [New York University School of Medicine, Department of Psychiatry, New York (United States); New York University School of Medicine, Department of Neurology, New York (United States); New York University School of Medicine, Department of Pathology, New York (United States)

    2009-05-15

    We report the first clinicopathological series of longitudinal FDG-PET scans in post-mortem (PM) verified cognitively normal elderly (NL) followed to the onset of Alzheimer's-type dementia (DAT), and in patients with mild DAT with progressive cognitive deterioration. Four NL subjects and three patients with mild DAT received longitudinal clinical, neuropsychological and dynamic FDG-PET examinations with arterial input functions. NL subjects were followed for 13 {+-} 5 years, received FDG-PET examinations over 7 {+-} 2 years, and autopsy 6 {+-} 3 years after the last FDG-PET. Two NL declined to mild cognitive impairment (MCI), and two developed probable DAT before death. DAT patients were followed for 9 {+-} 3 years, received FDG-PET examinations over 3 {+-} 2 years, and autopsy 7 {+-} 1 years after the last FDG-PET. Two DAT patients progressed to moderate-to-severe dementia and one developed vascular dementia. The two NL subjects who declined to DAT received a PM diagnosis of definite AD. Their FDG-PET scans indicated a progression of deficits in the cerebral metabolic rate for glucose (CMRglc) from the hippocampus to the parietotemporal and posterior cingulate cortices. One DAT patient showed AD with diffuse Lewy body disease (LBD) at PM, and her last in vivo PET was indicative of possible LBD for the presence of occipital as well as parietotemporal hypometabolism. Progressive CMRglc reductions on FDG-PET occur years in advance of clinical DAT symptoms in patients with pathologically verified disease. The FDG-PET profiles in life were consistent with the PM diagnosis. (orig.)

  5. 糖耐量异常对急性脑梗死患者血浆Hcy和血清hs-CRP水平的影响%The Influence of Abnormal Glucose Tolerance on the Levels of Plasma Homocysteine and Serum High-sensitivity C-reactive Protein in Patients with Acute Cerebral Infarction(ACI)

    赵红东; 陆敏; 唐冰

    2012-01-01

    Objective To observe the influence of abnormal glucose tolerance on the levels of homocysteine and high-sensitivity C-reactive protein in patients with acute cerebral infarction( AGI). Methods 756 patients with AGI were divided into normal glucose tolerance group (NGT, 33 leases) , abnormal glucose tolerance group(IGT,142cases) ,and diabetes mellitus group (DM,283 scase) ac-cording to the result of oral glucose tolerance test( OGTT). The serum levels of Hcy and hs-GRP were measured in 24 hours after ad-mission. Result The both levels of Hey and hs-GRP in IGT group(19.17 9.35juno]/L,20.46 10.56μmol/L) and DM group (8.0 2.9 mg/L,7.7 2.3 mg/L) were higher than the NGT group with no difference between each other. Conclusion The levels of Hey and hs-GRP in patients with AGI and abnormal glucose tolerance rise significantly,which indicate the presence of chronic low-grade inflammation and atherosclerosis in the stage of abnormal glucose tolerance. The results showed abnormal glucose tolerance is the risk factor of atherosclerosis as diabetes mellitus,and the OGTT test is valuable in screening risk factors of AGI and stroke prevention.%目的:观察糖耐量异常对急性脑梗死(acute cerebral infarction,ACI)患者的同型半胱氨酸(Hcy)、超敏C反应蛋白(hs-CRP)水平的影响.方法:756例ACI患者按葡萄糖耐量试验(OGTT)结果分为糖耐量正常组(NGT,331例)、单纯性糖耐量异常组(IGT,142例)、2型糖尿病组(DM2,283例).在入院24h之内测定血清Hcy、hs-CRP水平并进行组间比较.结果:IGT组及DM2组的Hcy水平(19.17±9.35)μmol/L、(20.46±10.56)μmol/L以及hs-CRP水平(8.0±2.9)mg/L、(7.7±2.3)mg/L明显高于NGT组(16.17±7.35)μmol/L、(3.5±1.2)mg/L.IGT组及DM2组两组之间的Hcy、hs-CRP水平差异均无统计学意义(P>0.05、P>0.05).结论:单纯性糖耐量异常的ACI患者血清Hcy、hs-CRP水平明显升高,表明在糖耐量异常阶段,已经出现了慢性低水平炎症和动脉粥样硬化的发生.提

  6. Glucose Sensing

    Geddes, Chris D

    2006-01-01

    Topics in Fluorescence Spectroscopy, Glucose Sensing is the eleventh volume in the popular series Topics in Fluorescence Spectroscopy, edited by Drs. Chris D. Geddes and Joseph R. Lakowicz. This volume incorporates authoritative analytical fluorescence-based glucose sensing reviews specialized enough to be attractive to professional researchers, yet also appealing to the wider audience of scientists in related disciplines of fluorescence. Glucose Sensing is an essential reference for any lab working in the analytical fluorescence glucose sensing field. All academics, bench scientists, and industry professionals wishing to take advantage of the latest and greatest in the continuously emerging field of glucose sensing, and diabetes care & management, will find this volume an invaluable resource. Topics in Fluorescence Spectroscopy Volume 11, Glucose Sensing Chapters include: Implantable Sensors for Interstitial Fluid Smart Tattoo Glucose Sensors Optical Enzyme-based Glucose Biosensors Plasmonic Glucose Sens...

  7. Brain Basics

    Full Text Available ... as in areas of the brain that control movement. When electrical signals are abnormal, they can cause ... normal mood functioning. Dopamine —mainly involved in controlling movement and aiding the flow of information to the ...

  8. Brain Basics

    Full Text Available ... illnesses, such as depression, can occur when this process does not work correctly. Communication between neurons can also be electrical, such as in areas of the brain that control movement. When electrical signals are abnormal, they can ...

  9. Biochemical imaging of the human brain in development and disease

    The authors used positron emission tomography (PET) to image cerebral glucose metabolism in more than 140 children aged 5 days to 15 years. Twenty-nine children were studied during normal development and the remainder because of infantile spasm, seizure, Lennox-Gastaut syndrome, or cerebral palsy. This exhibit demonstrates the temporal course of normal function (metabolic) development of the brain, and compares the relative value of PET, MR imaging, and x-ray CT in abnormal cases

  10. Dopamine and glucose, obesity and Reward Deficiency Syndrome

    Kenneth eBlum

    2014-09-01

    Full Text Available Obesity and many well described eating disorders are accurately considered a global epidemic. The consequences of Reward Deficiency Syndrome, a genetic and epigenetic phenomena that involves the interactions of powerful neurotransmitters, are impairments of brain reward circuitry, hypodopaminergic function and abnormal craving behavior. Numerous sound neurochemical and genetic studies provide strong evidence that food addiction is similar to psychoactive drug addiction. Important facts which could translate to potential therapeutic targets espoused in this review include: 1 brain dopamine (DA production and use is stimulated by consumption of alcohol in large quantities or carbohydrates bingeing; 2 in the mesolimbic system the enkephalinergic neurons are in close proximity, to glucose receptors; 3 highly concentrated glucose activates the calcium channel to stimulate dopamine release from P12 cells; 4 blood glucose and cerebrospinal fluid concentrations of homovanillic acid, the dopamine metabolite, are significantly correlated and 5 2-deoxyglucose the glucose analogue, in pharmacological doses associates with enhanced dopamine turnover and causes acute glucoprivation. Evidence from animal studies and human fMRI support the hypothesis that multiple, but similar brain circuits are disrupted in obesity and drug dependence and DA-modulated reward circuits are involved in pathologic eating behaviors. Treatment for addiction to glucose and drugs alike, based on a consensus of neuroscience research, should incorporate dopamine agonist therapy, in contrast to current theories and practices that use dopamine antagonists. Until now, powerful dopamine-D2 agonists have failed clinically, due to chronic down regulation of D2 receptors instead, consideration of novel less powerful D2 agonists that up-regulate D2 receptors seems prudent. We encourage new strategies targeted at improving DA function in the treatment and prevention of obesity a subtype of

  11. Glucose Sensing Neurons in the Ventromedial Hypothalamus

    Vanessa H. Routh

    2010-10-01

    Full Text Available Neurons whose activity is regulated by glucose are found in a number of brain regions. Glucose-excited (GE neurons increase while glucose-inhibited (GI neurons decrease their action potential frequency as interstitial brain glucose levels increase. We hypothesize that these neurons evolved to sense and respond to severe energy deficit (e.g., fasting that threatens the brains glucose supply. During modern times, they are also important for the restoration of blood glucose levels following insulin-induced hypoglycemia. Our data suggest that impaired glucose sensing by hypothalamic glucose sensing neurons may contribute to the syndrome known as hypoglycemia-associated autonomic failure in which the mechanisms which restore euglycemia following hypoglycemia become impaired. On the other hand, increased responses of glucose sensing neurons to glucose deficit may play a role in the development of Type 2 Diabetes Mellitus and obesity. This review will discuss the mechanisms by which glucose sensing neurons sense changes in interstitial glucose and explore the roles of these specialized glucose sensors in glucose and energy homeostasis.

  12. Expression of progerin in aging mouse brains reveals structural nuclear abnormalities without detectible significant alterations in gene expression, hippocampal stem cells or behavior

    Baek, Jean-Ha; Schmidt, Eva; Viceconte, Nikenza;

    2015-01-01

    , the HGPS mutation results in organ-specific defects. For example, bone and skin are strongly affected by HGPS, while the brain appears to be unaffected. There are no definite explanations as to the variable sensitivity to progeria disease among different organs. In addition, low levels of progerin...... have also been found in several tissues from normal individuals, but it is not clear if low levels of progerin contribute to the aging of the brain. In an attempt to clarify the origin of this phenomenon, we have developed an inducible transgenic mouse model with expression of the most common HGPS...... mutation in brain, skin, bone and heart to investigate how the mutation affects these organs. Ultrastructural analysis of neuronal nuclei after 70 weeks of expression of the LMNA c.1824C>T mutation showed severe distortion with multiple lobulations and irregular extensions. Despite severe distortions in...

  13. Abnormalities of inter- and intrahemispheric functional connectivity in Autism Spectrum Disorders: A study using the Autism Brain Imaging Data Exchange database

    Jung Min eLee

    2016-05-01

    Full Text Available Recently, the Autism Brain Imaging Data Exchange (ABIDE project revealed decreased functional connectivity in individuals with Autism Spectrum Disorders (ASD relative to the typically developing controls (TDCs. However, it is still questionable whether the source of functional underconnectivity in subjects with ASD is equally contributed by the ipsilateral and contralateral parts of the brain. In this study, we decomposed the inter- and intrahemispheric regions and compared the functional connectivity density (FCD between 458 subjects with ASD and 517 TDCs from the ABIDE database. We quantified the inter- and intrahemispheric FCDs in the brain by counting the number of functional connectivity with all voxels in the opposite and same hemispheric brain regions, respectively. Relative to TDCs, both inter- and intrahemispheric FCDs in the posterior cingulate cortex, lingual/parahippocampal gyrus, and postcentral gyrus were significantly decreased in subjects with ASD. Moreover, in the ASD group, the restricted and repetitive behavior subscore of the Autism Diagnostic Observation Schedule (ADOS-RRB score showed significant negative correlations with the average interhemispheric FCD and contralateral FCD in the lingual/parahippocampal gyrus cluster. Also, the ADOS-RRB score showed significant negative correlations with the average contralateral FCD in the default mode network regions such as the posterior cingulate cortex and precuneus. Taken together, our findings imply that a deficit of non-social functioning processing in ASD such as restricted and repetitive behaviors and sensory hypersensitivity could be determined via both inter- and intrahemispheric functional disconnections.

  14. Glycated albumin in screening the abnormal glucose metabolism in postpartum women with previous gestational diabetes mellitus%糖化白蛋白筛查妊娠期糖尿病患者产后糖代谢异常的意义

    方芳; 马宇航; 陈苏; 陈希; 任茜; 黄倩芳; 王煜非; 王育璠; 彭永德

    2015-01-01

    目的 探讨糖化白蛋白(GA)筛查妊娠期糖尿病(GDM)患者产后发生糖代谢异常和糖尿病的最佳切点. 方法 2012年4月至2014年10月依据2010年国际妊娠合并糖尿病研究组织所提出的诊断标准,选取我院241例诊断为GDM的患者为研究对象,于产后6~8周复诊,予75 g口服葡萄糖耐量试验(OGTT),根据结果分为正常糖耐量组(NGT组)、糖调节受损组(IGR组)和糖尿病组(DM组).通过绘制受试者工作特征(ROC)曲线,寻找GA诊断GDM产后糖代谢异常(IGR+DM)和DM的最佳切点.三组间计量资料比较采用方差分析或Kruskal Wallis (K-W)方法,计数资料比较采用卡方检验. 结果 (1)241例患者中NGT组128例(53.1%),IGR组66例(27.4%),DM组为47例(19.5%).(2)GDM患者产后GA与产前体重、目前体重呈负相关(r=-0.226、-0.198,均P12.7%,尤其>13.03%的GDM患者,应进一步行OGTT明确其糖代谢情况.%Objective To investigate the optimal cut-off point of glycated albumin for abnormal glucose metabolism and diabetes postpartum with previous gestational diabetes mellitus(GDM). Methods 75 g oral glucose tolerance test (OGTT) was underwent at 6-8 weeks after delivery in 241 GDM patients from Apr 2012 to Oct 2014. Diagnosis of GDM was based on International Association of Diabetic Pregnancy Study Group criteria. The clinical and biochemical characteristics were compared among normal glucose tolerance(NGT group), impaired glucose regulation(IGR group) and diabetes mellitus(DM group). Comparisons between three groups were performed using analysis of variance test (ANOVA) or Kruskal Wallis test. Chi square test was used in comparisons between proportions. The optimal cut-off point of glycated albumin(GA) for abnormal glucose metabolism(IGR+DM) and diabetes were obtained by drawing receiver operating characteristic (ROC) curve. Results (1)We found that the rates of NGT (n=128), IGR (n=66) and DM (n=47) were 53.1%, 27.4%and 19.5%, respectively.(2)GA was negatively

  15. Abnormal intrinsic brain activity in amnestic mild cognitive impairment revealed by amplitude of low-frequency fluctuation: a resting-state functional magnetic resonance imaging study

    XI Qian; ZHAO Xiao-hu; WANG Pei-jun; GUO Qi-hao; HE Yong

    2013-01-01

    Background Previous studies have shown that brain functional activity in the resting state is impaired in Alzheimer's disease (AD) patients.However,alterations in intrinsic brain activity patterns in mild cognitive impairment (MCI) patients are poorly understood.This study aimed to explore the differences in regional intrinsic activities throughout the whole brain between aMCI patients and controls.Methods In the present study,resting-state functional magnetic resonance imaging (fMRI) was performed on 18 amnestic MCI (aMCI) patients,18 mild AD patients and 20 healthy elderly subjects.And amplitude of low-frequency fluctuation (ALFF) method was used.Results Compared with healthy elderly subjects,aMCI patients showed decreased ALFF in the right hippocampus and parahippocampal cortex,left lateral temporal cortex,and right ventral medial prefrontal cortex (vMPFC) and increased ALFF in the left temporal-parietal junction (TPJ) and inferior parietal Iobule (IPL).Mild AD patients showed decreased ALFF in the left TPJ,posterior IPL (plPL),and dorsolateral prefrontal cortex compared with aMCI patients.Mild AD patients also had decreased ALFF in the right posterior cingulate cortex,right vMPFC and bilateral dorsal MPFC (dMPFC) compared with healthy elderly subjects.Conclusions Decreased intrinsic activities in brain regions closely related to episodic memory were found in aMCI and AD patients.Increased TPJ and IPL activity may indicate compensatory mechanisms for loss of memory function in aMCI patients.These findings suggest that the fMRI based on ALFF analysis may provide a useful tool in the study of aMCI patients.

  16. Active transport of C-11-Methyl-D-Glucose and 3-F-18-Deoxyglucose in acute ischemic brain disease and Huntington's chorea, studied by positron-emission-tomography (PET)

    C-11-Methyl-D-Glucose (CMG) and 3-F-18-Deoxyglucose (3FDG) were demonstrated to be non-metabolizable glucose analogues which are transported across the blood-brain-barrier into and out of tissue via the glucose carrier system (GCS). These two substances were used as indicators for determining the perfusion-independent rate constant of GCS in the brain. Five normals with informed consent, 12 patients with acute ischemic brain disease and 9 patients with initial and advanced Huntington's chorea were examined by PET after i.v. application of 5 mCi of GMG or 3FDG. In each patient 30 transaxial images were registered in 1 selected plane, image collection time being 1 min. Time-activity curves were created from different regions of interest. The slope to tracer steady state between tissue and blood yields the perfusion-independent rate constant of GCS from tissue to blood (k/sub 2/). In normals k/sub 2/ for CMG was 0.235 +- 0.03/min, as expected, and for 3FDG 0.47 +- 0.07/min indicating a higher affinity to GCS for 3FDG than CMG. In acute ischemic brain disease k/sub 2/ was normal or reduced at the site of insult for both CMG and 3FDG. In Huntington's chorea, k/sub 2/ was reduced in the basal ganglia but normal or occasionally significantly increased in frontal or occipital cortical areas, for CMG and 3FDG. The authors conclude that CMG permits noninvasive analysis of the perfusion-independent rate constant of CCS. 3FDG shows a higher affinity for CCS than CMC but gives comparable information

  17. Analysis the risk factors of coronary heart disease and clinical characters of coronary angiography in patients with abnormal glucose metabolism%冠心病合并糖代谢异常冠脉病变特点及其危险因素分析

    费利霞; 陈洁; 田刚

    2012-01-01

    目的:探讨糖代谢异常冠状动脉病变特点和冠心病的危险因素.方法:74例拟诊冠心病患者行冠脉造影(CAG),57例空腹血糖正常者行口服葡萄糖耐量试验(OGTT)检查.根据CAG结果分冠心病组(CAD)、非冠心病组(非CAD),分析危险因素的差异;冠心病组分为糖尿病组(DM)、糖调节受损组(IGR)、正常血糖组(NGT),观察冠状动脉病变的特点.结果:糖代谢异常在冠心病与非冠心病差异有统计学意义(χ2值为6.14,P<0.05).冠心病IGR组和DM组多支病变患病率,分别75%和50%,NGT组单支病变患病率55.6%,重度病变患病率DM组80%,NGT组77.8%.男性、DM、IGR、吸烟、危险因素累计数在CAD组与非CAD组差异有统计学意义(P<0.01).结论:冠心病合并糖代谢异常患病率高,48.6%通过OGTT诊断,OGTT应列为心血管病的常规检查;冠心病合并糖尿病和糖调节受损病变以多支病变为主,病变重而弥漫,正常血糖以单支病变多见,病变重而局限.%Objective: To analysis the risk factors of coronary heart disease and the clinical characters of coronary angiography in the patients who suffered with abnormal glucose metabolism. .Methods: 74 cases of patients who were preliminary diagnosed to coronary heart disease accepted coronary angiography (CAG),57 of them with normal fast blood glucose accepted the oral glucose tolerance test (OGTT). All the patients were divided into the CAD group and without CAD group according to the results of CAG. The CAD divided into three groups (DM, IGR and NGT) was compared with the difference of the clinical characters of coronary lesions. Results: The prevalence of abnormal glucose metabolism was 64% in patient with CAD.The prevalence of abnormal glucose metabolism in CAD was significantly higher than that of without CAD(was 6. 14,P<0. 05)). The coronary multivessel changes were more frequent in the IGR group and in the DM group than the NGT group (75%, 50% vs. 16.7%). The cor onary single

  18. Brain surgery

    ... piece of tumor for a biopsy Remove abnormal brain tissue Drain blood or an infection Free a nerve The bone flap is usually replaced after surgery, using small metal ... or if the brain was swollen. (This is called a craniectomy.) The ...

  19. Functional brain imaging to investigate the higher brain dysfunction induced by diffuse brain injury

    Higher brain dysfunction is the major problem of patients who recover from neurotrauma the prevents them from returning to their previous social life. Many such patients do not have focal brain damage detected with morphological imaging. We focused on studying the focal brain dysfunction that can be detected only with functional imaging with positron emission tomography (PET) in relation to the score of various cognition batteries. Patients who complain of higher brain dysfunction without apparent morphological cortical damage were recruited for this study. Thirteen patients with diffuse axonal injury (DAI) or cerebral concussion was included. They underwent a PET study to image glucose metabolism by 18F-fluorodeoxyglucose (FDG), and central benodiazepine receptor (cBZD-R) (marker of neuronal body) by 11C-flumazenil, together with cognition measurement by WAIS-R, WMS-R, and WCST etc. PET data were compared with age matched normal controls using statistical parametric mapping (SPM)2. DAI patients had a significant decrease in glucose matabolism and cBZD-R distribution in the cingulated cortex than normal controls. Patients diagnosed with concussion because of shorter consciousness disturbance also had abnormal FDG uptake and cBZD-R distribution. Cognition test scores were variable among patients. Degree of decreased glucose metabolism and cBZD-R distribution in the dominant hemishphere corresponded well to the severity of cognitive disturbance. PET molecular imaging was useful to depict focal cortical dysfunction of neurotrauma patients even when morphological change was not apparent. This method may be promising to clarify the pathophysiology of higher brain dysfunction of patients with diffuse axonal injury or chronic traumatic encephalopathy. (author)

  20. Abnormal Changes of Brain Cortical Anatomy and the Association with Plasma MicroRNA107 Level in Amnestic Mild Cognitive Impairment

    Wang, Tao; Shi, Feng; Jin, Yan; Jiang, Weixiong; Shen, Dinggang; Xiao, Shifu

    2016-01-01

    MicroRNA107 (Mir107) has been thought to relate to the brain structure phenotype of Alzheimer’s disease. In this study, we evaluated the cortical anatomy in amnestic mild cognitive impairment (aMCI) and the relation between cortical anatomy and plasma levels of Mir107 and beta-site amyloid precursor protein (APP) cleaving enzyme 1 (BACE1). Twenty aMCI (20 aMCI) and 24 cognitively normal control (NC) subjects were recruited, and T1-weighted MR images were acquired. Cortical anatomical measurements, including cortical thickness (CT), surface area (SA), and local gyrification index (LGI), were assessed. Quantitative RT-PCR was used to examine plasma expression of Mir107, BACE1 mRNA. Thinner cortex was found in aMCI in areas associated with episodic memory and language, but with thicker cortex in other areas. SA decreased in aMCI in the areas associated with working memory and emotion. LGI showed a significant reduction in aMCI in the areas involved in language function. Changes in Mir107 and BACE1 messenger RNA plasma expression were correlated with changes in CT and SA. We found alterations in key left brain regions associated with memory, language, and emotion in aMCI that were significantly correlated with plasma expression of Mir107 and BACE1 mRNA. This combination study of brain anatomical alterations and gene information may shed lights on our understanding of the pathology of AD. Clinical Trial Registration: http://www.ClinicalTrials.gov, identifier NCT01819545. PMID:27242521

  1. Effects of glucose load on cognitive functions in elderly people

    Zwaluw, N.L. van der; Rest, O. van de; Kessels, R.P.C.; Groot, L.C.P.G.M. de

    2015-01-01

    Glucose is the main fuel for the brain, and manipulation of the glucose supply may consequently affect brain function. The present review was conducted to provide an overview of studies that investigated the acute effects of glucose load on memory and other cognitive functions in elderly people. The

  2. The Marinesco-Sjoegren syndrome examined by computed tomography, magnetic resonance, and 18F-2-fluoro-2-deoxy-D-glucose and positron emission tomography

    The Marinesco-Sjoegren syndrome is an autosomal recessive degenerative disorder characterized by congenital cataracts, cerebellar ataxia, spasticity, mental deficiency, and skeletal abnormalities. We studied two adult siblings with Marinesco-Sjoegren syndrome using anatomic and metabolic brain imaging techniques to characterize the pattern and nature of abnormalities in the brain. Computed tomographic and magnetic resonance imaging showed diffuse brain atrophy of mild to moderate degree, involving primarily the white matter of the cerebrum, cerebellum, brain stem, and cervical spinal cord. The pattern of atrophy resembled that seen in diffuse leukoencephalopathies. Measurements of local cerebral glucose metabolic rates with positron emission tomography revealed no statistically significant differences from normal control subjects in most regions, but metabolic rate was decreased in the thalamus in one patient. The findings support a diffuse white matter disorder in Marinesco-Sjoegren syndrome.Aut

  3. Cerebral glucose metabolism change in patients with complex regional pain syndrome. A PET study

    The aim of this study was to examine abnormalities of the central nervous system in patients with chronic pain who were diagnosed with complex regional pain syndrome (CRPS). Brain activity was assessed using 18F-fluorodeoxyglucose positron emission tomography. The data collected from 18 patients were compared with data obtained from 13 normal age-matched controls. Our results showed that glucose metabolism was bilaterally increased in the secondary somatosensory cortex, mid-anterior cingulated cortex (ACC) or posterior cingulated cortex (PCC) (or both), parietal cortex, posterior parietal cortex (PPC), and cerebellum as well as in the right posterior insula and right thalamus in our patients. In contrast, glucose metabolism was reduced contralaterally in the dorsal prefrontal cortex and primary motor cortex. Glucose metabolism was bilaterally elevated in the mid-ACC/PCC and the PPC, which correlated with pain duration. These data suggested that glucose metabolism in the brains of patients with CRPS changes dramatically at each location. In particular, glucose metabolism was increased in the areas concerned with somatosensory perception, possibly due to continuous painful stimulation. (author)

  4. Noninvasive biosensor and wireless interrogating system for glucose in blood

    Varadan, Vijay K.; Whitchurch, Ashwin K.; Sarukesi, K.

    2003-07-01

    Hypoglycemia-abnormal decrease in blood sugar-is a major obstacle in the management of diabetes and prevention of long-term complications, and it may impose serious effects on the brain, including impairment of memory and other cognitive functions. This paper presents the development of a non-invasive sensor with miniaturized telemetry device in a wrist-watch for monitoring glucose concentration in blood. The sensor concept is based on optical chirality of glucose level in the interstitial fluid. The wrist watch consists of a laser power source of the wavelength compatible with the glucose. A nanofilm with specific chirality is placed at the bottom of the watch. The light then passes through the film and illuminates a small area on the skin. It has been documented that there is certain concentration of sugar level is taken by the intertitial fluid from the blood stream and deposit a portion of it at the dead skin. The wrist-watch when in contact with the outer skin of the human will thus monitor the glucose concentration. A wireless monitoring system in the watch then downloads the data from the watch to a Palm or a laptop computer.

  5. Change in hexose distribution volume and fractional utilization of ( sup 18 F)-2-deoxy-2-fluoro-D-glucose in brain during acute hypoglycemia in humans

    Shapiro, E.T.; Cooper, M.; Chen, C.T.; Given, B.D.; Polonsky, K.S. (Univ. of Chicago, IL (USA))

    1990-02-01

    We used positron emission tomography (PET) to study the effects of mild hypoglycemia on cerebral glucose uptake and metabolism. Nine healthy men were studied under basal saline-infusion conditions, and during euglycemic and hypoglycemic clamp studies. Insulin was infused at the same rate (1 mU.kg-1.min-1) in both clamp studies. In euglycemic clamp studies, glucose was infused at a rate sufficient to maintain the basal plasma glucose concentration, whereas in hypoglycemic clamp studies, the glucose infusion rate was reduced to maintain the plasma glucose at 3.1 mM. Each study lasted 3 h and included a 30-min baseline period and a subsequent 150-min period in which insulin or glucose was administered. Blood samples for measurement of insulin, glucose, cortisol, growth hormone, and glucagon were obtained at 20- to 30-min intervals. A bolus injection of 5-10 mCi (18F)-2-deoxy-2-fluoro-D-glucose (2-DFG) was administered 120 min after initiation of the study, and plasma radioactivity and dynamic PET scans were obtained at frequent intervals for the remaining 40-60 min of the study. Cerebral regions of interest were defined, and concentrations of radioactivity were calculated and used in the three-compartment model of 2-DFG distribution described by Sokoloff. Glucose levels were similar during saline-infusion (4.9 +/- 0.1 mM) and euglycemic clamp (4.8 +/- 0.1 mM) studies, whereas the desired degree of mild hypoglycemia was achieved during the hypoglycemic clamp study (3.1 +/- 0.1 mM, P less than 0.05). The insulin level during saline infusion was 41 +/- 7 pM.

  6. Change in hexose distribution volume and fractional utilization of [18F]-2-deoxy-2-fluoro-D-glucose in brain during acute hypoglycemia in humans

    We used positron emission tomography (PET) to study the effects of mild hypoglycemia on cerebral glucose uptake and metabolism. Nine healthy men were studied under basal saline-infusion conditions, and during euglycemic and hypoglycemic clamp studies. Insulin was infused at the same rate (1 mU.kg-1.min-1) in both clamp studies. In euglycemic clamp studies, glucose was infused at a rate sufficient to maintain the basal plasma glucose concentration, whereas in hypoglycemic clamp studies, the glucose infusion rate was reduced to maintain the plasma glucose at 3.1 mM. Each study lasted 3 h and included a 30-min baseline period and a subsequent 150-min period in which insulin or glucose was administered. Blood samples for measurement of insulin, glucose, cortisol, growth hormone, and glucagon were obtained at 20- to 30-min intervals. A bolus injection of 5-10 mCi [18F]-2-deoxy-2-fluoro-D-glucose (2-DFG) was administered 120 min after initiation of the study, and plasma radioactivity and dynamic PET scans were obtained at frequent intervals for the remaining 40-60 min of the study. Cerebral regions of interest were defined, and concentrations of radioactivity were calculated and used in the three-compartment model of 2-DFG distribution described by Sokoloff. Glucose levels were similar during saline-infusion (4.9 +/- 0.1 mM) and euglycemic clamp (4.8 +/- 0.1 mM) studies, whereas the desired degree of mild hypoglycemia was achieved during the hypoglycemic clamp study (3.1 +/- 0.1 mM, P less than 0.05). The insulin level during saline infusion was 41 +/- 7 pM

  7. Neuroimaging abnormalities in Griscelli's disease

    Griscelli's disease is a rare autosomal recessive immunodeficiency syndrome. We report a 7-1/2-month-old white girl who presented with this syndrome, but initially without neurological abnormalities. Initial CT of the brain was normal. Despite haematological remission with chemotherapy, she developed neurological symptoms, progressing to coma. At this time, CT showed areas of coarse calcification in the globi pallidi, left parietal white matter and left brachium pontis. Hypodense areas were present in the genu and posterior limb of the internal capsule on the right side, as well as posterior aspects of both thalami, together with minimal generalised atrophy. MRI revealed areas of increased T2 signal and a focal area of abnormal enhancement in the subcortical white matter. Griscelli's disease should be added to the list of acquired neuroimaging abnormalities in infants. (orig.)

  8. In Alzheimer’s Disease, 6-Month Treatment with GLP-1 Analog Prevents Decline of Brain Glucose Metabolism: Randomized, Placebo-Controlled, Double-Blind Clinical Trial

    Gejl, Michael; Gjedde, Albert; Egefjord, Lærke; Møller, Arne; Hansen, Søren B.; Vang, Kim; Rodell, Anders; Brændgaard, Hans; Gottrup, Hanne; Schacht, Anna; Møller, Niels; Brock, Birgitte; Rungby, Jørgen

    2016-01-01

    In animal models, the incretin hormone GLP-1 affects Alzheimer’s disease (AD). We hypothesized that treatment with GLP-1 or an analog of GLP-1 would prevent accumulation of Aβ and raise, or prevent decline of, glucose metabolism (CMRglc) in AD. In this 26-week trial, we randomized 38 patients with AD to treatment with the GLP-1 analog liraglutide (n = 18), or placebo (n = 20). We measured Aβ load in brain with tracer [11C]PIB (PIB), CMRglc with [18F]FDG (FDG), and cognition with the WMS-IV scale (ClinicalTrials.gov NCT01469351). The PIB binding increased significantly in temporal lobe in placebo and treatment patients (both P = 0.04), and in occipital lobe in treatment patients (P = 0.04). Regional and global increases of PIB retention did not differ between the groups (P ≥ 0.38). In placebo treated patients CMRglc declined in all regions, significantly so by the following means in precuneus (P = 0.009, 3.2 μmol/hg/min, 95% CI: 5.45; 0.92), and in parietal (P = 0.04, 2.1 μmol/hg/min, 95% CI: 4.21; 0.081), temporal (P = 0.046, 1.54 μmol/hg/min, 95% CI: 3.05; 0.030), and occipital (P = 0.009, 2.10 μmol/hg/min, 95% CI: 3.61; 0.59) lobes, and in cerebellum (P = 0.04, 1.54 μmol/hg/min, 95% CI: 3.01; 0.064). In contrast, the GLP-1 analog treatment caused a numerical but insignificant increase of CMRglc after 6 months. Cognitive scores did not change. We conclude that the GLP-1 analog treatment prevented the decline of CMRglc that signifies cognitive impairment, synaptic dysfunction, and disease evolution. We draw no firm conclusions from the Aβ load or cognition measures, for which the study was underpowered. PMID:27252647

  9. Childhood Brain Tumors

    Brain tumors are abnormal growths inside the skull. They are among the most common types of childhood ... still be serious. Malignant tumors are cancerous. Childhood brain and spinal cord tumors can cause headaches and ...

  10. Effect of Metformin Intervention on Blood Sugar of Patients with Breast Cancer Chemotherapy with Abnormal Glucose Metabolism%二甲双胍干预对乳腺癌化疗伴糖代谢异常患者血糖的影响

    翟媛媛

    2016-01-01

    Objective To research the effect of metformin intervention on blood sugar of patients with breast cancer chemotherapy with abnormal glucose metabolism. Methods 60 cases of patients with breast cancer chemotherapy with ab-normal glucose metabolism in our hospital from February 2012 to August 2014 were selected as the research object and randomly divided into two groups, the control group received AC-T chemotherapy plan, and were treated with diet control and exercise, the observation group were given additional metformin on the basis of the control group, the blood sugar con-trol conditions of the two groups were observed. Results The case number of patients with normal blood sugar at the end of chemotherapy and in 3 months after chemotherapy in the observation group was obviously more than that in the control group, and the difference was statistically significant (P0.05). Conclusion Metformin for controlling the blood sugar levels of patients with breast cancer chemotherapy with abnormal glucose metabolism has an obvious effect and has a potential anti-tumor effect, which is further research.%目的 研究二甲双胍干预对乳腺癌化疗伴糖代谢异常患者血糖的影响.方法 整群选择2012年2月—2014年8月来该院行乳腺癌化疗,伴糖代谢紊乱的60例患者作为研究对象,随机分为两组. 对照组给予AC-T化疗方案,同时给予患者饮食控制和运动治疗,观察组在对照组基础上加用二甲双胍,观察两组血糖控制情况. 结果 观察组化疗结束时和化疗结束后3个月正常血糖患者例数显著多于对照组,差异具有统计学意义(P0.05). 结论 二甲双胍对于控制乳腺癌化疗伴糖代谢紊乱患者血糖水平效果显著,且具有潜在抗肿瘤作用,值得进一步研究.

  11. Role of serotonin and/or norepinephrine in the MDMA-induced increase in extracellular glucose and glycogenolysis in the rat brain

    Pachmerhiwala, Rashida; Bhide, Nirmal; Straiko, Megan; Gudelsky, Gary A.

    2010-01-01

    The acute administration of MDMA has been shown to promote glycogenolysis and increase the extracellular concentration of glucose in the striatum. In the present study the role of serotonergic and/or noradrenergic mechanisms in the MDMA-induced increase in extracellular glucose and glycogenolysis was assessed. The relationship of these responses to the hyperthermia produced by MDMA also was examined. The administration of MDMA (10 mg/kg, i.p.) resulted in a significant and sustained increase ...

  12. Glucose allostasis

    Stumvoll, Michael; Tataranni, P Antonio; Stefan, Norbert;

    2003-01-01

    In many organisms, normoglycemia is achieved by a tight coupling of nutrient-stimulated insulin secretion in the pancreatic beta-cell (acute insulin response [AIR]) and the metabolic action of insulin to stimulate glucose disposal (insulin action [M]). It is widely accepted that in healthy...... individuals with normal glucose tolerance, normoglycemia can always be maintained by compensatorily increasing AIR in response to decreasing M (and vice versa). This has been mathematically described by the hyperbolic relationship between AIR and M and referred to as glucose homeostasis, with glucose...... chronic stress (insulin resistance), we propose to use the term "glucose allostasis." Allostasis (stability through change) ensures the continued homeostatic response (stability through staying the same) to acute stress at some cumulative costs to the system. With increasing severity and over time, the...

  13. Pericentric inversion of chromosome 11 (p14.3q21) associated with developmental delays, hypopigmented skin lesions and abnormal brain MRI findings - a new case report

    Zachor, D.A.; Lofton, M. [Univ. of Alabama, Birmingham (United States)

    1994-09-01

    We report 3 year old male, referred for evaluation of developmental delays. Pregnancy was complicated by oligohydramnios, proteinuria and prematurity. Medical history revealed: bilateral inguinal hernia, small scrotal sac, undescended testes, developmental delays and behavioral problems. The child had: microcephaly, facial dysmorphic features, single palmar creases, hypopigmented skin lesions of variable size, intermittent exotropia and small retracted testes. Neurological examination was normal. Cognitive level was at the average range with mild delay in his adaptive behavior. Expressive language delays and severe articulation disorder were noted, as well as clumsiness, poor control and precision of gross and fine motor skills. Chromosomal analysis of peripheral leukocytes indicated that one of the number 11 chromosomes had undergone a pericentric inversion with breakpoints on the short (p) arm at band p14.3 and the long (q) arm at band q21. An MRI of the brain showed mild delay in myelinization pattern of white matter. Chromosome 11 inversion in other sites was associated with Beckwith-Wiedemann syndrome and several malignancies. To our knowledge this is the first description of inv(11)(p14.3q21) that is associated with microcephaly, dysmorphic features, hypopigmented skin lesions and speech delay. This inversion may disrupt the expression of the involved genes. However, additional cases with the same cytogenetic anomaly are needed to explore the phenotypic significance of this disorder.

  14. Density abnormalities in normal-appearing gray matter in the middle-aged brain with white matter hyperintense lesions: a DARTEL-enhanced voxel-based morphometry study

    Peng Y

    2016-05-01

    Full Text Available Yan Peng,1,* Shenhong Li,2,* Ying Zhuang,3,* Xiaojia Liu,4 Lin Wu,2 Honghan Gong,2 Dewu Liu,1 Fuqing Zhou2 1Burn Center, 2Department of Radiology, The First Affiliated Hospital, Nanchang University, 3Department of Oncology, The Second Hospital of Nanchang, Nanchang, Jiangxi Province, 4Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, People’s Republic of China *These authors contributed equally to this work Background and purpose: Little is known about the structural alterations within gray matter (GM in middle-aged subjects with white matter hyperintense (WMH lesions. Here, we aimed to examine the anatomical changes within the GM and their relationship to WMH lesion loads in middle-aged subjects. Participants and methods: Twenty-three middle-aged subjects with WMH lesions (WMH group and 23 demographically matched healthy control subjects participated in the study. A Diffeomorphic Anatomical Registration Through Exponentiated Liealgebra-enhanced voxel-based morphometry was used to measure the GM density, and the correlations between WMH lesion volume and extracted GM values in abnormal regions were identified by voxel-based morphometry analysis. Results: Compared with the healthy control subjects, the WMH group had a significantly decreased GM density in the left middle frontal gyrus, bilateral anterior cingulate cortex, left and right premotor cortex, and left and right middle cingulate cortex and an increased GM density in the bilateral cerebellum anterior lobe, left middle temporal gyrus, right temporoparietal junction, left and right prefrontal cortex (PFC, and left inferior parietal lobule. A relationship was observed between the normalized WMH lesion volume and the decreased GM density, including the left middle frontal gyrus (ρ=-0.629, P=0.002, bilateral anterior cingulate cortex (ρ=-0.507, P=0.019, right middle cingulate cortex (ρ=-0.484, P=0.026, and

  15. Neuroimaging of schizophrenia: structural abnormalities and pathophysiological implications

    Buckley, Peter F.

    2005-01-01

    Schizophrenia, once considered a psychological malady devoid of any organic brain substrate, has been the focus of intense neuroimaging research. Findings reveal mild but generalized tissue loss as well as more selective focal loss. It is unclear whether these abnormalities reflect neurodevelopmental or neurodegenerative processes, or some combination of each; current evidence favors a preponderance of neurodevelopmental abnormalities. The pattern of brain abnormalities is also influenced by ...

  16. A simple method for detection of abnormal brain regions in Alzheimer's disease patients using [11C]MP4A. Comparison with [123I]IMP SPECT

    We have developed a radiolabeled lipophilic acetylcholine analogue, N-[11C]methylpiperidin-4-yl acetate ([11C]MP4A) to measure brain acetylcholinesterase (AChE) activity by positron emission tomography (PET) in vivo. Aiming to develop a new SPECT tracer similar to MP4A, we first proposed a simple method for diagnosing Alzheimer's disease (AD) using [11C]MP4A PET. We performed [11C]MP4A PET and N-isopropyl [123I]iodoamphetamine ([123I]IMP) SPECT in 13 patients with AD and in 17 normal controls (NC). We calculated the ratio of radioactivity of the cortical region of interest (ROI) to that of the cerebellum measured with [11C]MP4A PET (MP4A ratio) and the ratio of regional cerebral blood flow (rCBF) to that of the cerebellum measured with [123I]IMP SPECT (IMP ratio). Eleven cortical ROIs were placed in the frontal, sensorimotor, temporal, parietal, and occipital cortices in both hemispheres and in the posterior cingulate cortex, and z-score was calculated in each ROI in patients with AD compared with NC. When the z-score was 2 or more in a ROI, it was defined as a positive ROI. When a patient had 3 or more positive ROIs, the patient was diagnosed as having AD. The reduction in the MP4A ratio was greater than that in the IMP ratio in all cortical ROIs except for in the right parietal cortex and cingulate cortex in patients with AD. MP4A ratio method showed 92% sensitivity and the IMP ratio method 69% sensitivity for the diagnosis of AD. These results encourage us to develop a new SPECT tracer similar to MP4A for the diagnosis of AD. (author)

  17. Glucose enhancement of human memory: A comprehensive research review of the glucose memory facilitation effect

    Smith, Michael; Riby, Leigh; van Eekelen, Anke; Foster, Jonathan

    2011-01-01

    The brain relies upon glucose as its primary fuel. In recent years, a rich literature has developed from both human and animal studies indicating that increases in circulating blood glucose can facilitate cognitive functioning. This phenomenon has been termed the ‘glucose memory facilitation effect’. The purpose of this review is to discuss a number of salient studies which have investigated the influence of glucose ingestion on neurocognitive performance in individuals with (a) compromised n...

  18. Brain glycogen

    Obel, Linea Lykke Frimodt; Müller, Margit S; Walls, Anne B;

    2012-01-01

    Glycogen is a complex glucose polymer found in a variety of tissues, including brain, where it is localized primarily in astrocytes. The small quantity found in brain compared to e.g., liver has led to the understanding that brain glycogen is merely used during hypoglycemia or ischemia....... In this review evidence is brought forward highlighting what has been an emerging understanding in brain energy metabolism: that glycogen is more than just a convenient way to store energy for use in emergencies-it is a highly dynamic molecule with versatile implications in brain function, i.e., synaptic...... activity and memory formation. In line with the great spatiotemporal complexity of the brain and thereof derived focus on the basis for ensuring the availability of the right amount of energy at the right time and place, we here encourage a closer look into the molecular and subcellular mechanisms...

  19. Urine - abnormal color

    ... medlineplus.gov/ency/article/003139.htm Urine - abnormal color To use the sharing features on this page, please enable JavaScript. The usual color of urine is straw-yellow. Abnormally colored urine ...

  20. Models of Neurodevelopmental Abnormalities in Schizophrenia

    POWELL, Susan B

    2010-01-01

    The neurodevelopmental hypothesis of schizophrenia asserts that the underlying pathology of schizophrenia has its roots in brain development and that these brain abnormalities do not manifest themselves until adolescence or early adulthood. Animal models based on developmental manipulations have provided insight into the vulnerability of the developing fetus and the importance of the early environment for normal maturation. These models have provided a wide range of validated approaches to an...

  1. Type 1 cannabinoid receptor mapping with [18F]MK-9470 PET in the rat brain after quinolinic acid lesion: a comparison to dopamine receptors and glucose metabolism

    Several lines of evidence imply early alterations in metabolic, dopaminergic and endocannabinoid neurotransmission in Huntington's disease (HD). Using [18F]MK-9470 and small animal PET, we investigated cerebral changes in type 1 cannabinoid (CB1) receptor binding in the quinolinic acid (QA) rat model of HD in relation to glucose metabolism, dopamine D2 receptor availability and amphetamine-induced turning behaviour. Twenty-one Wistar rats (11 QA and 10 shams) were investigated. Small animal PET acquisitions were conducted on a Focus 220 with approximately 18 MBq of [18F]MK-9470, [18F]FDG and [11C]raclopride. Relative glucose metabolism and parametric CB1 receptor and D2 binding images were anatomically standardized to Paxinos space and analysed voxel-wise using Statistical Parametric Mapping (SPM2). In the QA model, [18F]MK-9470 uptake, glucose metabolism and D2 receptor binding were reduced in the ipsilateral caudate-putamen by 7, 35 and 77%, respectively (all p -5), while an increase for these markers was observed on the contralateral side (>5%, all p -4). [18F]MK-9470 binding was also increased in the cerebellum (p = 2.10-5), where it was inversely correlated to the number of ipsiversive turnings (p = 7.10-6), suggesting that CB1 receptor upregulation in the cerebellum is related to a better functional outcome. Additionally, glucose metabolism was relatively increased in the contralateral hippocampus, thalamus and sensorimotor cortex (p = 1.10-6). These data point to in vivo changes in endocannabinoid transmission, specifically for CB1 receptors in the QA model, with involvement of the caudate-putamen, but also distant regions of the motor circuitry, including the cerebellum. These data also indicate the occurrence of functional plasticity on metabolism, D2 and CB1 neurotransmission in the contralateral hemisphere. (orig.)

  2. Electroacupuncture Treatment Improves Learning-Memory Ability and Brain Glucose Metabolism in a Mouse Model of Alzheimer’s Disease: Using Morris Water Maze and Micro-PET

    Jing Jiang; Kai Gao; Yuan Zhou; Anping Xu; Suhua Shi; Gang Liu; Zhigang Li

    2015-01-01

    Introduction. Alzheimer’s disease (AD) causes progressive hippocampus dysfunctions leading to the impairment of learning and memory ability and low level of uptake rate of glucose in hippocampus. What is more, there is no effective treatment for AD. In this study, we evaluated the beneficial and protective effects of electroacupuncture in senescence-accelerated mouse prone 8 (SAMP8). Method. In the electroacupuncture paradigm, electroacupuncture treatment was performed once a day for 15 days ...

  3. Diminished glucose transport in Alzheimer's disease: Dynamic PET studies

    Dynamic positron emission tomography with [18F]fluorodeoxyglucose was used in six patients with Alzheimer's disease (AD) and seven healthy age-matched control subjects to estimate the kinetic parameters K1*, k2*, and k3* that describe glucose transport and phosphorylation. A high-resolution tomograph was used to acquire brain uptake data in one tomographic plane, and a radial artery catheter connected to a plastic scintillator was used to acquire arterial input data. A nonlinear iterative least-squares fitting procedure that included terms for the vascular fraction and time delay to the peripheral sampling site was used to fit a three-compartment model to the brain data. Regions studied included frontal, temporal, occipital, and the entire cortex and subcortical white matter. The values obtained for the individual rate constants and regional CMRglc (rCMRglc; calculated using regional values of the rate constants) were higher than those reported previously. A significant (p less than 0.05) decrease was found in K1* in frontal and temporal cortex in the AD patients compared with the controls, with values of 0.157 and 0.161 ml/g/min in frontal and temporal cortex, respectively, of controls and 0.127 and 0.126 ml/g/min in frontal and temporal cortex of the AD patients. rCMRglc was also significantly (p less than 0.02) lower in the AD patients than controls in all cortical brain regions. Lower values of k3* were found in all brain regions in the AD patients, although these were not statistically significant. These findings provide evidence of an in vivo abnormality of forward glucose transport in AD

  4. Participación del óxido nítrico, proteína Fos y el tallo cerebral en la retención de glucosa encefálica durante la hipoxia Involvement of the nitric oxide, Fos protein and brain stem in the retention of brain glucose during hypoxia

    Mónica Lemus Vidal

    2009-12-01

    Full Text Available Se ha descrito que el núcleo del tracto solitario (NTS, estructura del tallo cerebral y vía de relevo de las aferencias del los quimiorreceptores del senocuerpo carotídeo (RSCC, participa en el aumento en la retención de glucosa por el cerebro (RGC ante una hipoxia. Es probable que en esta respuesta participe el óxido nítrico (NO y la proteína Fos. En este trabajo se analiza el papel del NO en el NTS sobre la modificación de la RGC y la expresión de la proteína inmunorreactiva Fos (Fos-ir en ratas in vivo. La inyección de un donador del NO como es el nitroprusiato de sodio (NPS en el NTS, 4 min antes de la estimulación de los RSCC, disminuyó la RGC, pero incrementó la expresión de Fos-ir en un mayor número de neuronas en el NTS con respecto a las ratas control, que sólo recibieron líquido cefalorraquídeo artificial (LCRa antes de la estimulación RSCC. En contraste, un inhibidor selectivo del NO como el N?-nitro-L-arginina metil éster (L-NAME en el NTS 4 min antes de la estimulación RSCC con NaCN, aumentó la RGC, pero disminuyó el número de neuronas Fos-ir comparados con el control o con NPS. La detección inmunohistoquímica de la expresión de Fos-ir en las células del tallo cerebral indica que la estimulación RSCC activa vías dependientes de NO en el NTS, para regular la RGC. El estudio de esta población de células en el NTS, será importante para definir su caracterización.It has been said that the nucleus tractus solitarii (NTS, one structure of the brain stem and path of apherences of chemoreceptors of carotid sinus-body, is involved in the increased glucose retention by the brain in case of hypoxia. It is likely that nitric oxide and Fos protein also take part in this response. This paper analyzes the role of nitric oxide in the NTS on the change of glucose retention by the brain and the expression of inmunoreactive protein Fos (ir-Fos in rats in vivo. The injection of a NO donor such as sodium nitroprusiate

  5. Brain Basics

    Full Text Available ... occur when this process does not work correctly. Communication between neurons can also be electrical, such as in areas of the brain that control movement. When electrical signals are abnormal, they can cause tremors or symptoms found in Parkinson's disease. Serotonin — ...

  6. Metabolic abnormalities in Williams-Beuren syndrome

    Palacios Verd??, Mar??a Gabriela, 1983-; Segura Puimedon, Maria, 1985-; Borralleras, Cristina; Flores, Raquel; Campo Casanelles, Miguel del, 1966-; Campuzano Uceda, Mar??a Victoria; P??rez Jurado, Luis Alberto

    2015-01-01

    BACKGROUND: Williams-Beuren syndrome (WBS, OMIM-194050) is a neurodevelopmental disorder with multisystemic manifestations caused by a 1.55-1.83???Mb deletion at 7q11.23 including 26-28 genes. Reported endocrine and metabolic abnormalities include transient hypercalcaemia of infancy, subclinical hypothyroidism in ???30% of children and impaired glucose tolerance in ???75% of adult individuals. The purpose of this study was to further study metabolic alterations in patients with WBS, as well a...

  7. Alterations in Glucose Metabolism on Cognition: A Possible Link Between Diabetes and Dementia.

    González-Reyes, Rodrigo E; Aliev, Gjumrakch; Ávila-Rodrigues, Marco; Barreto, George E

    2016-01-01

    The use of the carbohydrate glucose as an energetic source is essential for an adequate function of the human body. The complex regulation of this molecule involves the coordinated action of various organs such as pancreas, liver and brain. Any disruption of this physiological balance may result in a dangerous compromise of general metabolic activities increasing the possibility of developing T1DM, T2DM and possibly AD. Astrocytes convert glucose into lactate and transfer it to neurons. This lactate is essential for neuronal metabolism and for various processes including the formation of synapses, dendrites and the expression of genes involved in memory. The brain is highly susceptible to variations in glucose blood levels, and both hypoglycemia and hyperglycemia can be dangerous. Pathological hyperglycemia induces changes in plasmatic osmotic pressure, mitochondrial production of free radicals, oxidative stress and activation of neuronal apoptosis, among others. Both AD and diabetes are chronic diseases having age as an important risk factor. As the brain ages, it seems to become much more susceptible to cellular damage induced by excess of circulating glucose and this could explain the appearance of cognitive changes observed in some patients with diabetes. Excessive circulation of pro-inflammatory agents has been observed in insulin resistance and is likely that some of these mediators may cross the bloodbrain barrier and induce abnormal neuroinflammation. GSK-3 is overexpressed in diabetes and also has been reported to regulate tau phosphorylation and production of Aβ peptides in the brain. Currently, diabetes (hyperglycemia) is considered as a risk factor for the development of AD. A novel therapeutic approach, using intranasal insulin and anti-diabetic medications in patients suffering from AD is being explored and is discussed in this review. PMID:26648470

  8. Bang to the Brain: What We Know about Concussions

    ... later leads to an even steeper drop in glucose use and memory problems that last longer. But when the brain has several days to recover, and the use of glucose returns to normal, a second mild brain injury ...

  9. Correlation between arterial wall stiffness, N-terminal prohormone of brain natriuretic peptide, functional and structural myocardial abnormalities in patients with type 2 diabetes mellitus and cardiac autonomic neuropathy

    Viktoriya Aleksandrovna Serhiyenko

    2013-12-01

    Full Text Available Aim. To assess arterial wall stiffness, plasma levels of of N-terminal prohormone of brain natriuretic peptide (NT-proBNP, as well as functional state and structure of the myocardium in patients with type 2 diabetes mellitus (T2DM and cardiac autonomic neuropathy (CAN.Materials and Methods. The study involved a total of 65 patients with T2DM. 12 had no evidence of cardiovascular disease (CVD or CAN, 14 were diagnosed with subclinical stage of CAN, 18 – with functional stage, and 21 – with organic stage. We measured aortic pulse wave velocity (PWV, aortic augmentation index (AIx, brachial artery AIx, ambulatory arterial stiffness index (AASI and plasma levels of NT-proBNP. Clinical examination included ECG, Holter monitoring, ambulatory BP measurement and echocardiography.Results. Patients with isolated T2DM showed a trend for increased vascular wall stiffness. PWV was increased in patients with subclinical stage of CAN. Aortic and brachial AIx, PWV and AASI were elevated in patients with functional stage of CAN, PWV being significantly higher vs. subclinical CAN subgroup. Organic stage was characterized by pathologically increased values of all primary parameters; PWV and AASI were significantly higher compared with other groups. Development and progression of CAN was accompanied by an increase in NT-proBNP plasma levels. Concentration of NT-proBNP was in direct correlation with left ventricular mass (LVM and PWV. PWV and LVM values also directly correlated between themselves.Conclusion. Development and progression of CAN in patients with T2DM is accompanied by an increase in vascular wall stiffness. The elevation of plasma NT-proBNP in patients with T2DM correlates with the development of CAN and is significantly and independently associated with an increase in LVM and PWV. Our data suggests the pathophysiological interconnection between metabolic, functional and structural myocardial abnormalities in patients with T2DM and CAN.

  10. The impact of brain function and local glucose metabolism of subthalamic nucleus stimulation in Parkinson's disease patients%丘脑底核电刺激对帕金森病患者脑神经功能及局部糖代谢的影响

    刘丹荣; 胡伟; 尤志珺; 邓超

    2016-01-01

    Objective To investigate the effect of subthalamic nucleus stimulation ( STN-DBS) in Parkinson disease ( PD) brain function in patients with local glucose metabolism abnormal.Methods From June 2011 to June 2014, 60 cases of PD patients in Shiyan people's Hospital, Hubei Medical College were enrolled in this study, they were randomly divided into observation group and control group with 30 cases in each group.Control group was given oral levodopa daily, the observation group based on the treatment in the control group, also added the uplink STN-DBS treatment, before treatment and after treat-ment for 3 months, using Unified Parkinson's Disease Rating Scale ( UPDRS) to assess motor function of patients in two groups respectively, using the Montreal Cognitive Assessment Scale ( MoCA) and mini mental state table ( MMSE) to evaluate neural function and patients were underwent the resting F-deoxyglucose FDG/PET examination.Results Compared with before treat-ment, after treatment, the two groups of patients'UPDRS total score decreased significantly ( P 0.05), and significantly higher in the obser-vation group than the control group ( P 0.05),且观察组显著高于对照组(P<0.05).观察组治疗后每日左旋多巴口服剂量显著少于治疗前及对照组(P<0.05),异动症及运动症状波动发生率显著低于对照组(3.33%vs.26.67%,0 vs.20.00%,P<0.05).结论 STN-DBS能有效改善PD患者各脑区葡糖糖代谢及脑神经功能,促进肢体协调、改善肢体运动功能,提高患者生存质量.

  11. A comparative study in Alzheimer's and normal brains of trace element distribution using PIXE and INA analyses and glucose metabolism by positron emission tomography

    Cutts, DA; Maguire, RP; Stedman, JD; Leenders, KL; Spyrou, NM

    1999-01-01

    The onset of Alzheimer's disease has been shown to affect trace element concentrations in the brain when compared to "normal" subjects in ex vivo samples. The techniques used to determine trace element concentrations were proton-induced X-ray emission and instrumental neutron activation analysis. Wi

  12. Hyperbaric oxygen therapy or hydroxycobalamin attenuates surges in brain interstitial lactate and glucose; and hyperbaric oxygen improves respiratory status in cyanide-intoxicated rats

    Lawson-Smith, P; Olsen, Niels Vidiendal; Hyldegaard, Ole

    2011-01-01

    Cyanide (CN) intoxication inhibits cellular oxidative metabolism and may result in brain damage. Hydroxycobalamin (OHCob) is one among other antidotes that may be used following intoxication with CN. Hyperbaric oxygen (HBO2) is recommended when supportive measures or antidotes fail. However, the...

  13. At the centennial of Michaelis and Menten, competing Michaelis-Menten steps explain effect of GLP-1 on blood-brain transfer and metabolism of glucose

    Jensen, Michael Gejl; Rungby, Jørgen; Brock, Birgitte;

    2014-01-01

    Glucagon-like peptide-1 (GLP-1) is a potent insulinotropic incretin hormone with pancreatic and extrapancreatic effects. Studies reveal significant effects in regions of brain tissue that regulate appetite and satiety. The effects cause that mimetics of GLP-1 serves as treatment of type 2 diabete...

  14. The Whole-Brain "Global" Signal from Resting State fMRI as a Potential Biomarker of Quantitative State Changes in Glucose Metabolism.

    Thompson, Garth J; Riedl, Valentin; Grimmer, Timo; Drzezga, Alexander; Herman, Peter; Hyder, Fahmeed

    2016-07-01

    The evolution of functional magnetic resonance imaging to resting state (R-fMRI) allows measurement of changes in brain networks attributed to state changes, such as in neuropsychiatric diseases versus healthy controls. Since these networks are observed by comparing normalized R-fMRI signals, it is difficult to determine the metabolic basis of such group differences. To investigate the metabolic basis of R-fMRI network differences within a normal range, eyes open versus eyes closed in healthy human subjects was used. R-fMRI was recorded simultaneously with fluoro-deoxyglucose positron emission tomography (FDG-PET). Higher baseline FDG was observed in the eyes open state. Variance-based metrics calculated from R-fMRI did not match the baseline shift in FDG. Functional connectivity density (FCD)-based metrics showed a shift similar to the baseline shift of FDG, however, this was lost if R-fMRI "nuisance signals" were regressed before FCD calculation. Average correlation with the mean R-fMRI signal across the whole brain, generally regarded as a "nuisance signal," also showed a shift similar to the baseline of FDG. Thus, despite lacking a baseline itself, changes in whole-brain correlation may reflect changes in baseline brain metabolism. Conversely, variance-based metrics may remain similar between states due to inherent region-to-region differences overwhelming the differences between normal physiological states. As most previous studies have excluded the spatial means of R-fMRI metrics from their analysis, this work presents the first evidence of a potential R-fMRI biomarker for baseline shifts in quantifiable metabolism between brain states. PMID:27029438

  15. Electroacupuncture Treatment Improves Learning-Memory Ability and Brain Glucose Metabolism in a Mouse Model of Alzheimer’s Disease: Using Morris Water Maze and Micro-PET

    Jing Jiang

    2015-01-01

    Full Text Available Introduction. Alzheimer’s disease (AD causes progressive hippocampus dysfunctions leading to the impairment of learning and memory ability and low level of uptake rate of glucose in hippocampus. What is more, there is no effective treatment for AD. In this study, we evaluated the beneficial and protective effects of electroacupuncture in senescence-accelerated mouse prone 8 (SAMP8. Method. In the electroacupuncture paradigm, electroacupuncture treatment was performed once a day for 15 days on 7.5-month-old SAMP8 male mice. In the normal control paradigm and AD control group, 7.5-month-old SAMR1 male mice and SAMP8 male mice were grabbed and bandaged while electroacupuncture group therapy, in order to ensure the same treatment conditions, once a day, 15 days. Results. From the Morris water maze (MWM test, we found that the treatment of electroacupuncture can improve the spatial learning and memory ability of SAMP8 mouse, and from the micro-PET test, we proved that after the electroacupuncture treatment the level of uptake rate of glucose in hippocampus was higher than normal control group. Conclusion. These results suggest that the treatment of electroacupuncture may provide a viable treatment option for AD.

  16. Gene Abnormality May Be Key to Down Syndrome, Scientists Say

    ... nlm.nih.gov/medlineplus/news/fullstory_157468.html Gene Abnormality May Be Key to Down Syndrome, Scientists ... release. His research team compared the activity of genes in different areas of the brain in people ...

  17. Urine - abnormal color

    The usual color of urine is straw-yellow. Abnormally colored urine may be cloudy, dark, or blood-colored. ... Abnormal urine color may be caused by infection, disease, medicines, or food you eat. Cloudy or milky urine is a sign ...

  18. Evaluation of regional metabolic abnormality and treatment effect in patients with narcolepsy

    The aim of the present study was to evaluated regional metabolic abnormalities in untreated narcoleptic patients and the changes in regional cerebral metabolism after treatment with modafinil. Eight drug free narcoleptic patients (mean age of 17±1 yr) participated in this study. Two [18F]fluorodeoxyglucose positron emission tomography (FDG-PET) scans before and after a 2-week titrated modafinil treatment (target dose = 100∼400 mg/day). The PET data were analyzed by using statistical parametric mapping methods to identify the regional cerebral abnormalities compared with those of healthy young controls. In addition, treatment effect was evaluated by comparison between before and after treatment scan. In narcolepsy patients, a significant reduction of regional metabolism was demonstrated in the brain stem, bilateral hypothalamus, posterior thalamus, hippocampus, parahippocampal gyrus, and adjacent perihinal area on pretreatment scans compared with those of healthy subjects. The decrease glucose metabolism was also found in the occipital cortex and cerebellum. The patients could control daytime sleepiness after treatment. Posttreatment scan showed a significant increase in regional metabolism in the left hippocampus. This study demonstrated the metabolic abnormalities and the effect of modafinil treatment in narcoleptic patients in the sleep associated regions. This results could be helpful to understand the pathophysiology of the narcolepsy and treatment mechanism

  19. Evaluation of regional metabolic abnormality and treatment effect in patients with narcolepsy

    Kim, Yu Kyeong; Yoon, In Young; Shin, Youn Kyung; Eo, Jae Sean; Won, Oh So; Lee, Won Woo; Kim, Sang Eun [Seoul National University College of Medicine, Seoul (Korea, Republic of)

    2005-07-01

    The aim of the present study was to evaluated regional metabolic abnormalities in untreated narcoleptic patients and the changes in regional cerebral metabolism after treatment with modafinil. Eight drug free narcoleptic patients (mean age of 17{+-}1 yr) participated in this study. Two [{sup 18}F]fluorodeoxyglucose positron emission tomography (FDG-PET) scans before and after a 2-week titrated modafinil treatment (target dose = 100{approx}400 mg/day). The PET data were analyzed by using statistical parametric mapping methods to identify the regional cerebral abnormalities compared with those of healthy young controls. In addition, treatment effect was evaluated by comparison between before and after treatment scan. In narcolepsy patients, a significant reduction of regional metabolism was demonstrated in the brain stem, bilateral hypothalamus, posterior thalamus, hippocampus, parahippocampal gyrus, and adjacent perihinal area on pretreatment scans compared with those of healthy subjects. The decrease glucose metabolism was also found in the occipital cortex and cerebellum. The patients could control daytime sleepiness after treatment. Posttreatment scan showed a significant increase in regional metabolism in the left hippocampus. This study demonstrated the metabolic abnormalities and the effect of modafinil treatment in narcoleptic patients in the sleep associated regions. This results could be helpful to understand the pathophysiology of the narcolepsy and treatment mechanism.

  20. Brain imaging and schizophrenia

    Brain structures and brain function have been investigated by the new brain imaging techniques for more than ten years. In Psychiatry, these techniques could afford a new understanding of mental diseases. In schizophrenic patients, CAT scanner and RMI pointed out statistically significant ventricular enlargments which are presently considered as evidence for abnormalities in brain maturation. Functional imaging techniques reported metabolic dysfunctions in the cortical associative areas which are probably linked to the cognitive features of schizophrenics

  1. Scans Show Range of Zika-Linked Infant Brain Defects

    ... most closely linked to a birth defect called microcephaly -- an abnormally small head and an underdeveloped brain, ... of a new study said. But along with microcephaly, other brain abnormalities can also occur in fetuses ...

  2. Review of the Neuroanatomic Landscape Implicated in Glucose Sensing and Regulation of Nutrient Signaling: Immunophenotypic Localization of Diabetes Gene Tcf7l2 in the Developing Murine Brain

    Weaver, Cyprian; Turner, Nolan; Hall, Jennifer

    2012-01-01

    Genetic variants in the transcription factor 7-like 2(Tcf7l2) gene have been found to confer a significant risk of type 2 diabetes and attenuated insulin secretion. Based on its genomic wide association Tcf7l2 is considered the single most important predictor of diabetes to date. Previous studies of Tcf7l2 mRNA localization in the adult brain suggest a putative role of Tcf7l2 in the CNS regulation of energy homeostasis. The present study further characterizes the immunophenotypic distribution...

  3. Neuroimaging of schizophrenia: structural abnormalities and pathophysiological implications

    Buckley, Peter F

    2005-01-01

    Schizophrenia, once considered a psychological malady devoid of any organic brain substrate, has been the focus of intense neuroimaging research. Findings reveal mild but generalized tissue loss as well as more selective focal loss. It is unclear whether these abnormalities reflect neurodevelopmental or neurodegenerative processes, or some combination of each; current evidence favors a preponderance of neurodevelopmental abnormalities. The pattern of brain abnormalities is also influenced by environmental and genetic risk factors, as well as by the course (and possibly even treatment) of this illness. These findings are described in this article. PMID:18568069

  4. Chromosomal Abnormalities in ADHD

    J Gordon Millichap

    2002-07-01

    Full Text Available The prevalence of fragile X syndrome, velocardiofacial syndrome (VCFS, and other cytogenetic abnormalities among 100 children (64 boys with combined type ADHD and normal intelligence was assessed at the NIMH and Georgetown University Medical Center.

  5. Chromosomal abnormalities and autism

    Farida El-Baz

    2016-01-01

    Conclusion: Chromosomal abnormalities were not detected in the studied autistic children, and so the relation between the genetics and autism still needs further work up with different study methods and techniques.

  6. Cerebral Abnormalities in Adults with Ataxia-Telangiectasia

    Lin, D.D.M.; Barker, P. B.; Lederman, H M; Crawford, T O

    2013-01-01

    Ataxia-telangiectasia, an autosomal recessive disorder caused by defect of the ataxia-telangiectasia mutated gene, is characterized by progressive neurologic impairment with cerebellar atrophy, ocular and cutaneous telangiectasia, immunodeficiency, heightened sensitivity to ionizing radiation and susceptibility to developing lymphoreticular malignancy. Supratentorial brain abnormalities have been reported only rarely. In this study, brain MRI was performed in 10 adults with ataxia-telangiecta...

  7. Peripheral and central glucose utilizations modulated by mitochondrial DNA 10398A in bipolar disorder.

    Li, Cheng-Ta; Bai, Ya-Mei; Hsieh, Jen-Chuen; Lee, Hsin-Chen; Yang, Bang-Hung; Chen, Mu-Hong; Lin, Wei-Chen; Tsai, Chia-Fen; Tu, Pei-Chi; Wang, Shyh-Jen; Su, Tung-Ping

    2015-05-01

    Bipolar disorder (BD) is highly heritable and associated with dysregulation of brain glucose utilizations (GU). The mitochondrial DNA (mtDNA) 10398A polymorphism, as a reported BD risk factor, leads to deficient glycolytic energy production by affecting mitochondrial matrix pH and intracellular calcium levels. However, whether mtDNA-10398A has functional effects on the brain and how our body responds remain elusive. We compared peripheral and central glucose-utilizing patterns between mtDNA A10398G polymorphisms in BD and their unaffected siblings (BDsib). Since siblings carry identical mtDNA, we hypothesized that certain characteristics co-segregate in BD families. We recruited twenty-seven pairs of non-diabetic BD patients and their BDsib and 30 well-matched healthy control subjects (HC). The following were investigated: mtDNA, fasting plasma glucose/insulin, cognitive functions including Montreal Cognitive Assessment (MoCA), and brain GU at rest. Insulin resistance was rechecked in sixty-one subjects (19-BD, 18-BDsibib, and 24-HC) six months later. We found that BD-pairs (BD+BDsib) carried more mtDNA-10398A and had higher fasting glucose, even after controlling for many covariates. BD-pairs had abnormally lower dorso-prefrontal-GU and higher cerebellar-GU, but only BD demonstrated lower medio-prefrontal-GU and MoCA. Subjects carrying mtDNA-10398A had significantly lower prefrontal-GU (FWE-corrected p<0.05). An abnormal inverse pattern of insulin-GU and insulin-MoCA correlation was found in BD-pairs. The insulin-MoCA correlation was particularly prominent in those carrying mtDNA-10398A. mtDNA-10398A predicted insulin resistance 6 months later. In conclusion, mtDNA-10398A was associated with impaired prefrontal-GU. An up-regulation of glucose utilizations was found in BD-pairs, probably compensating for mtDNA-10398A-related energy loss. PMID:25727318

  8. Islet glucose metabolism and insulin release in two animal models of glucose intolerance

    Ling, Zong-Chao

    1999-01-01

    Type 2 diabetes is a complex and heterogenous disease resulting from the interaction of defects of both genetic and environmental origin. Abnormalities contributing to the pathogenesis of type 2 diabetes include impaired [beta]-cell function, peripheral insulin resistance and increased hepatic glucose production. In the present study we have mainly used two animal models of glucose intolerance, i.e., spontaneously diabetic GK rats and transgenic mice with overexpressed gluco...

  9. Abnormal radionuclide cerebral angiograms and scans due to seizures

    The effect of recent seizures on the brain scan was determined in a retrospective study of patients who had had seizures. All patients who underwent brain scanning within eight days of seizures and who did not have a specific intracranial lesion were included. The /sup 99m/Tc-pertechnetate cerebral angiogram and/or delayed scan was abnormal in 73 percent of 22 patients. The data suggest that if seizures occur within six days of the brain imaging, the image is likely to be abnormal. (auth)

  10. Alzheimer's disease: Is this a brain specific diabetic condition?

    Rani, Vanita; Deshmukh, Rahul; Jaswal, Priya; Kumar, Puneet; Bariwal, Jitender

    2016-10-01

    Alzheimer's disease (AD) and type 2 diabetes (T2DM) are the two major health issues affecting millions of elderly people worldwide, with major impacts in the patient's daily life. Numerous studies have demonstrated that patients with diabetes have an increased risk of developing AD compared with healthy individuals. The principal biological mechanisms that associate with the progression of diabetes and AD are not completely understood. Impaired insulin signaling, uncontrolled glucose metabolism, oxidative stress, abnormal protein processing, and the stimulation of inflammatory pathways are common features to both AD and T2DM. In recent years brain specific abnormalities in insulin and insulin like growth factor (IGF) signaling considered as a major trigger involved in the etiopathogenesis of AD, showing T2DM like milieu. This review summarizes the pathways that might link diabetes and AD and the effect of diminished insulin. PMID:27235734

  11. Glucagon-like peptide-1 decreases intracerebral glucose content by activating hexokinase and changing glucose clearance during hyperglycemia

    Jensen, Michael Gejl; Egefjord, Lærke; Lerche, Susanne;

    2012-01-01

    and stroke: Although the mechanism is unclear, glucose homeostasis appears to be important. We conducted a randomized, double-blinded, placebo-controlled crossover study in nine healthy males. Positron emission tomography was used to determine the effect of GLP-1 on cerebral glucose transport and......Type 2 diabetes and hyperglycemia with the resulting increase of glucose concentrations in the brain impair the outcome of ischemic stroke, and may increase the risk of developing Alzheimer's disease (AD). Reports indicate that glucagon-like peptide-1 (GLP-1) may be neuroprotective in models of AD...... metabolism during a hyperglycemic clamp with 18fluoro-deoxy-glucose as tracer. Glucagon-like peptide-1 lowered brain glucose (P=0.023) in all regions. The cerebral metabolic rate for glucose was increased everywhere (P=0.039) but not to the same extent in all regions (P=0.022). The unidirectional glucose...

  12. Safety and efficacy of insulin aspart versus regular human insulin in pregnant women with abnormal glucose metabolism%门冬胰岛素与人胰岛素对妊娠合并糖代谢异常患者的有效性及安全性

    李楠; 杨慧霞; 翟桂荣; 吴春凤

    2011-01-01

    异常孕妇中,相比人胰岛素,门冬胰岛素能更快、更有效地控制血糖,同时可明显降低低血糖事件的发生.对分娩结局的影响方面,Asp组有优于HI组的趋势.%Objective To analyze and compare the safety and efficacy of insulin aspart versus regular human insulin in pregnant women with abnormal glucose metabolism.Methods In this study,the data of 77 pregnant women with pre-pregnant diabetes mellitus( DM,n =22 ) or gestational diabetes mellitus ( GDM,n =55 ) treated from January 2004 to May 2010 with insulin aspart ( Asp group) were investigated.And 77 pregnant women with abnormal glucose metabolism using regular human insulin in the mean time were selected as control ( HI group) in a ratio of 1 ∶ 1.The changes of glucose levels,time for reaching glucose targets,incidence of hypoglycemia and pregnancy outcomes after the treatment were compared between the two groups by using t or rank test.Results One week of treatment after,the 2 h post-breakfast and post-supper glucose levels in DM women in Asp group were (6.5 ± 1.1 ) and (7.1 ± 1.1 ) mmol/L and those were (8.0 ± 1.1 ) and (7.8 ±0.8) mmol/L DM women in HI group; the 2 h post-breakfast,postlunch and post-supper glucose levels in GDM women in Asp group were (6.5 ± 0.7 ),(6.8 ± 0.7 ) and (6.7 ± 0.7 ) mmol/L,and those were ( 7.1 ± 0.9),( 7.3 ± 0.9) and ( 7.4 ± 0.8 ) mmoL/L in GDM women in HI group.The postprandial glucose levels were all lower in Asp group than those in the HI group ( all P < 0.05 ).The time for 2 h post-breakfast glucose level to reach standard in DM women in Asp group was (3.0 ± 2.2) d,and it was ( 5.0 ± 2.1 ) d in DM women in HI group; and those were (2.3 ± 1.6) and (4.3 ±2.6)d in GDM women in Asp group and in HI group,respectively.The time for reaching glucose targets in Asp group were all shorter than those in HI group(P <0.05).The incidence of hypoglycemia in Asp group was 3.9% ( 1 case of DM and 2 eases of GDM) and it was 24.7% in HI

  13. Low Blood Glucose (Hypoglycemia)

    ... Other Dental Problems Diabetic Eye Disease Low Blood Glucose (Hypoglycemia) What is hypoglycemia? Hypoglycemia, also called low ... actions can also help prevent hypoglycemia: Check blood glucose levels Knowing your blood glucose level can help ...

  14. Glucose test (image)

    ... person with diabetes constantly manages their blood's sugar (glucose) levels. After a blood sample is taken and tested, it is determined whether the glucose levels are low or high. If glucose levels ...

  15. Chronic daily headache: biochemical and neurotransmitter abnormalities

    Gallai, Virgilio; Sarchielli, Paola; Genco, Sergio; Alberti, Andrea; D'Andrea, Giovanni

    2000-01-01

    Although chronic daily headache (CDH) represents one of the most relevant complaints of patients in headache centers, the mechanisms underlying the chronicization of head pain are poorly understood. Experimental animal models of chronic pain suggest the involvement of a functional disturbance of several neuronal pathways. The disturbances include an abnormal excitability of nociceptive fibers supplying pain-sensitive structures in the brain responsible for peripheral sensitization (chronic ne...

  16. Changes in brain function and anatomical structure following treatment of hyperbaric oxygen for visual pathway abnormalities In 16 cases Evaluation of functional magnetic resonance Imaging combined with diffusion tensor imaging

    Ziqian Chen; Ping Ni; Hui Xiao; Jinhua Chen; Gennian Qian; Youqiang Ye; Shangwen Xu; Jinliang Wang; Xizhang Yang

    2008-01-01

    BACKGROUND:There is a growing research focus on the combination of blood oxygenation level dependent functional magnetic resonance imaging(BOLD-fMRI)and diffusion tensor imaging(DTI)to evaluate visual cortical function and structural changes in the cerebrum,as well as morphological changes to the white matter fiber tracks,after visual pathway lesions.However,the combined application of BOLD-fMRI and DTI in treating of visual pathway abnormalities still requires further studies. OBJECTIVE:To observe and evaluate the effects of hyperbaric oxygen on visual pathway abnormalities,and to evaluate the characteristics of cerebral function and anatomic structural changes by using BOLD-fMRI combined with DTI technique. DESIGN:Case contrast observation. SETTING:Fuzhou General Hospital of Nanjing Military Area Command of Chinese PLA.PARTICIPANTS:Sixteen patients(9 males and 7 females,15-77 years old)with lateral or bilateral visual disorder induced by visual pathway lesions were selected from the Department of Neurology,Fuzhou General Hospital of Nanjing Military Area Command of Chinese PLA from January 2006 to May 2007.These patients comprised the lesion group.Measures of interventional therapy:hyperbaric oxygen of two normal atmospheres for three courses(10 d/course)and routine internal medicine treatment.In addition,12 healthy subjects of similar sex and age to the lesion group were regarded as the control group.The control group underwent routine ophthalmological and ocular fundus examinations; diagnostic results were normal. The experiment received confirmed consent from the local ethic committee,and all patients provided informed consent.METHODS:BOLD-fMRI and DTI manifestations in the lesion group were observed before and after hyperbaric oxygen intervention,and the results were compared with the control group.The subjects were positioned on their back,and BOLD-fMRI images were collected with the following GRE EPI sequence:TR= 2 000 ms,TE=40 ms,layer thickness=5 mm

  17. The rate-limiting step for glucose transport into the hypothalamus is across the blood-hypothalamus interface

    Poitry-Yamate, Carole; Lei, Hongxia; Gruetter, Rolf

    2009-01-01

    Specialized glucosensing neurons are present in the hypothalamus, some of which neighbor the median eminence, where the blood-brain barrier has been reported leaky. A leaky blood-brain barrier implies high tissue glucose levels and obviates a role for endothelial glucose transporters in the control of hypothalamic glucose concentration, important in understanding the mechanisms of glucose sensing We therefore addressed the question of blood-brain barrier integrity at the hypothalamus for gluc...

  18. Abnormal Thiamine-Dependent Processes in Alzheimer’s Disease. Lessons from Diabetes

    Gibson, Gary E.; Hirsch, Joseph A.; Cirio, Rosanna T.; Jordan, Barry D.; Fonzetti, Pasquale; Elder, Jessica

    2012-01-01

    Reduced glucose metabolism is an invariant feature of Alzheimer’s Disease (AD) and an outstanding biomarker of disease progression. Glucose metabolism may be an attractive therapeutic target, whether the decline initiates AD pathophysiology or is a critical component of a cascade. The cause of cerebral regional glucose hypometabolism remains unclear. Thiamine-dependent processes are critical in glucose metabolism and are diminished in brains of AD patients at autopsy. Further, the reductions ...

  19. Abnormal cholesterol is associated with prefrontal white matter abnormalities among obese adults, a diffusion tensor imaging study

    Cohen, Jessica I.; Cazettes, Fanny; Convit, Antonio

    2011-01-01

    The brain is the most cholesterol-rich organ in the body. Although most of the cholesterol in the brain is produced endogenously, some studies suggest that systemic cholesterol may be able to enter the brain. We investigated whether abnormal cholesterol profiles correlated with diffusion-tensor-imaging-based estimates of white matter microstructural integrity of lean and overweight/obese (o/o) adults. Twenty-two lean and 39 obese adults underwent magnetic resonance imaging, kept a 3-day food ...

  20. Neurological abnormalities predict disability

    Poggesi, Anna; Gouw, Alida; van der Flier, Wiesje;

    2014-01-01

    To investigate the role of neurological abnormalities and magnetic resonance imaging (MRI) lesions in predicting global functional decline in a cohort of initially independent-living elderly subjects. The Leukoaraiosis And DISability (LADIS) Study, involving 11 European centres, was primarily aimed...... at evaluating age-related white matter changes (ARWMC) as an independent predictor of the transition to disability (according to Instrumental Activities of Daily Living scale) or death in independent elderly subjects that were followed up for 3 years. At baseline, a standardized neurological examination...... abnormality independently predicted transition to disability or death [HR (95 % CI) 1.53 (1.01-2.34)]. The hazard increased with increasing number of abnormalities. Among MRI lesions, only ARWMC of severe grade independently predicted disability or death [HR (95 % CI) 2.18 (1.37-3.48)]. In our cohort...

  1. The appropriation of glucose through primate neurodevelopment.

    Bauernfeind, Amy L; Babbitt, Courtney C

    2014-12-01

    The human brain is considerably larger and more energetically costly than that of other primate species. As such, discovering how human ancestors were able to provide sufficient energy to their brains is a central theme in the study of hominin evolution. However, many discussions of metabolism frequently omit the different ways in which energy, primarily glucose, is used once made available to the brain. In this review, we discuss two glucose metabolic pathways, oxidative phosphorylation and aerobic glycolysis, and their respective contributions to the energetic and anabolic budgets of the brain. While oxidative phosphorylation is a more efficient producer of energy, aerobic glycolysis contributes essential molecules for the growth of the brain and maintaining the structure of its cells. Although both pathways occur in the brain throughout the lifetime, aerobic glycolysis is a critical pathway during development, and oxidative phosphorylation is highest during adulthood. We outline how elevated levels of aerobic glycolysis may support the protracted neurodevelopmental sequence of humans compared with other primates. Finally, we review the genetic evidence for differences in metabolic function in the brains of primates and explore genes that may provide insight into how glucose metabolism may differ across species. PMID:25110208

  2. Intracranial delivery of interleukin-17A via adeno-associated virus fails to induce physical and learning disabilities and neuroinflammation in mice but improves glucose metabolism through AKT signaling pathway.

    Yang, Junling; Kou, Jinghong; Lim, Jeong-Eun; Lalonde, Robert; Fukuchi, Ken-Ichiro

    2016-03-01

    Interleukin-17A (IL-17A) is generally considered as one of the pathogenic factors involved in multiple sclerosis (MS). Indirect evidence for this is that IL-17A-producing T helper 17 (Th17) cells preferentially accumulate in lesions of MS and experimental autoimmune encephalomyelitis (EAE). However, a direct involvement of IL-17A in MS pathogenesis is still an open question. In this study, we overexpressed IL-17A in the brains of mice (IL-17A-in-Brain mice) via recombinant adeno-associated virus serotype 5 (rAAV5)-mediated gene delivery. In spite of high levels of IL-17A expression in the brain and blood, IL-17A-in-Brain mice exhibit no inflammatory responses and no abnormalities in motor coordination and spatial orientation. Unexpectedly, IL-17A-in-Brain mice show decreases in body weight and adipose tissue mass and an improvement in glucose tolerance and insulin sensitivity. IL-17A enhances glucose uptake in PC12 cells by activation of AKT. Our results provide direct evidence for the first time that IL-17A overexpression in the central nervous system does not cause physical and learning disabilities and neuroinflammation and suggest that IL-17A may regulate glucose metabolism through the AKT signaling pathway. PMID:26562537

  3. Carbamazepine for acute psychosis with eeg abnormalities

    Ivković Maja

    2004-01-01

    Full Text Available Aim. To investigate the efficacy of carbamazepine as adjuvant drug therapy in acute paranoid psychosis with associated EEG abnormalities, compared to sole antipsychotic treatment. Methods. Eleven medication-naive patients diagnosed with acute paranoid psychosis with associated EEG abnormalities were divided into two treatment groups: sole fluphenazine group, with flexible dosing of 5-10 mg/day (n=6, and carbamazepine group (n=5 with the addition of carbamazepine (600 mg/day to fluphenazine treatment. Clinical Global Impression (CGI, Brief Psychiatric Rating Scale (BPRS, Scale for the Assessment of Negative Symptoms (SANS, and EEG were assessed on the baseline and after 6 weeks of treatment. Paired and two-tailed t-tests were used for statistical significance. Results. All the patients showed significant improvement of mental state after 6 weeks of treatment with no significant differences in CGI, BPRS, and total SANS scores in relation to the therapy with carbamazepine. Nevertheless, after 6 weeks of the treatment, EEG findings were significantly better in carbamazepine group, in relation to the findings from the onset of the treatment, as well as in comparison to sole fluphenazine group. Conclusion. Although carbamazepine stabilized abnormal brain electrical activities it seemed that the associated EEG abnormalities were not significant for acute psychosis observed. These preliminary results suggested that there was no convincing evidence that carbamazepine was efficient as the augmentation of antipsychotic treatment for patients with both acute paranoid psychosis and EEG abnormalities.

  4. 糖代谢异常孕妇体质量及相关因素对新生儿出生体质量的影响%Factors relevant to newborn birth weight in pregnancy complicated with abnormal glucose Metabolism

    杨延冬; 翟桂荣; 杨慧霞

    2010-01-01

    Objective To investigate the influencing factors of neonatal birth body mass in women with abnormal glucose metabolism during pregnancy. Methods A study was conducted on 1157 singleton gravidas, who were diagnosed and treated for abnormal glucose metabolism and delivered in the Department of Obstetrics and Gynecology, First Hospital, Peking University from January 2005 to December 2009, by reviewing the medical records. Based on the pre-pregnant body mass index, the selected cases were divided into 4 groups: low body mass group [ body mass index (BMI) < 18.5 kg/m2, n =53], ideal body mass group ( BMI 18.5 - 23.9 kg/m2, n = 647 ), over body mass group ( BMI 24.0 - 27.9 kg/m2, n = 323 ),and obese group (BMI≥28.0 kg/m2, n = 134). 1157 newborns were divided by birth body mass into 3 groups: normal birth body mass group (body mass 2500 -4000 g, n =987), of which 545 cases of birth body mass 3000 -3500 g for the appropriate newborns, macrosomia group (body mass≥4000 g, n = 112);low birth body mass group (body mass < 2500 g, n = 58 ). The following information was collected,including pre-pregnancy body mass, height, gestational age of diagnosis and body mass gain after diagnosis,maternal serum level of cholesterol, history of adverse pregnancy, and family history of diabetes, gestational age, delivering body mass, neonatal birth body mass. The influence of pre-pregnant BMI, body mass gain during pregnancy, gestational age of diagnosis, body mass gain after diagnosis, maternal serum level of cholesterol, family history of diabetes on the newborns' birth body mass was analyzed. The appropriate ranges of gestational body mass gain were calculated in women with abnormal glucose metabolism. Results ( 1 )The average neonatal birth body mass for each group respectively were (3142 ±333) g for low body mass group, (3339 ±476) g for the ideal body mass group, (3381 ±581) g for over body mass group, and (3368 ± 644) g for obese group. The neonatal birth body mass was

  5. CT of pleural abnormalities

    Briefly discussed were CT diagnosis of pleural thickening, CT technique for examining the pleura or pleuro-pulmonary disease, diagnosis of pleural collections, diagnosis of pleural fluid abnormalities in patients with pneumonia, pleural neoplasms, malignant (diffuse) mesothelioma, metastases, local fibrous tumor of the pleura (benign mesothelioma) (21 refs.)

  6. SPM analysis of brain perfusion SPECT and F-18 FDG PET in the Korean autosomal dominant nocturnal frontal lobe epilepsy family

    This study attempted to investigate the specific pattern of brain perfusion and glucose metabolism in the Korean autosomal dominant nocturnal frontal lobe epilepsy (ADNFLE) family. Using Tc-99m ECD brain perfusion SPECT. we assessed brain perfusion in 6 patients at interictal period and 5 patients at ictal period. Interictal F-18 FDG PET was performed on 6 affected family members. The scans were statistically analyzed by using statistical parametric mapping (SPM99). The data of the affected family members were compared to those of the control subjects. Interictal F-18 FDG PET SPM group analysis showed decreased glucose metabolism over the left middle and superior frontal gyri and the left central regions including the anterior parietal lobe. There was a less pronounced decrease in glucose uptake in the right anterior superior frontal gyrus. Interictal brain perfusion SPECT SPM group analysis showed similar pattern of decreased perfusion compared to those of interictal F-18 FDG PET. Ictal brain perfusion SPECT SPM group analysis revealed increased perfusion over the left pre-and postcentral gyri and less pronounced increased perfusion in the right postcentral gyrus. lnterictal F -18 PET and brain perfusion SPECT SPM group analysis suggest that major abnormalities of ADNFLE family are in the left frontal lobe. These findings may be helpful to elucidate the pathophysiological mechanism of this rare disease entity

  7. Brain MRI in Parkinson's disease

    Meijer, F.J.A.; Goraj, B.M.

    2014-01-01

    In this review article, conventional brain MRI and advanced MRI techniques in Parkinson`s disease (PD) are discussed, with emphasis on clinical relevance. Conventional brain MRI sequences generally demonstrate limited abnormalities specific for PD and in clinical practice brain MRI is mainly used to

  8. Blood Test: Glucose

    ... Things to Know About Zika & Pregnancy Blood Test: Glucose KidsHealth > For Parents > Blood Test: Glucose Print A A A Text Size What's in ... de sangre: glucosa What It Is A blood glucose test measures the amount of glucose (the main ...

  9. Gray matter volumetric abnormalities associated with the onset of psychosis

    Wi Hoon eJung

    2012-12-01

    Full Text Available Patients with psychosis display structural brain abnormalities in multiple brain regions. The disorder is characterized by a putative prodromal period called ultra-high-risk (UHR status, which precedes the onset of full-blown psychotic symptoms. Recent studies on psychosis have focused on this period. Neuroimaging studies of UHR individuals for psychosis have revealed that the structural brain changes observed during the established phases of the disorder are already evident prior to the onset of the illness. Moreover, certain brain regions show extremely dynamic changes during the transition to psychosis. These neurobiological features may be used as prognostic and predictive biomarkers for psychosis. With advances in neuroimaging techniques, neuroimaging studies focusing on gray matter abnormalities provide new insights into the pathophysiology of psychosis, as well as new treatment strategies. Some of these novel approaches involve antioxidants administration, because it is suggested that this treatment may delay the progression of UHR to a full-blown psychosis and prevent progressive structural changes. The present review includes an update on the most recent developments in early intervention strategies for psychosis and potential therapeutic treatments for schizophrenia. First, we provide the basic knowledge of the brain regions associated with structural abnormalities in individuals at UHR. Next, we discuss the feasibility on the use of magnetic resonance imaging (MRI-biomarkers in clinical practice. Then, we describe potential etiopathological mechanisms underlying structural brain abnormalities in prodromal psychosis. Finally, we discuss the potentials and limitations related to neuroimaging studies in individuals at UHR.

  10. Abnormal ionization in sonoluminescence

    张文娟; 安宇

    2015-01-01

    Sonoluminescence is a complex phenomenon, the mechanism of which remains unclear. The present study reveals that an abnormal ionization process is likely to be present in the sonoluminescing bubble. To fit the experimental data of previous studies, we assume that the ionization energies of the molecules and atoms in the bubble decrease as the gas density increases and that the decrease of the ionization energy reaches about 60%–70%as the bubble flashes, which is difficult to explain by using previous models.

  11. Ultrasonography of splenic abnormalities

    Ming-Jen Chen; Ming-Jer Huang; Wen-Hsiung Chang; Tsang-En Wang; Horng-Yuan Wang; Cheng-Hsin Chu; Shee-Chan Lin; Shou-Chuan Shih

    2005-01-01

    AIM: This report gives a comprehensive overview of ultrasonography of splenic abnormalities. Certain ultrasonic features are also discussed with pathologic correlation.METHODS: We review the typical ultrasonic characteristics of a wide range of splenic lesions, illustrating them with images obtained in our institution from 2000 to 2003.One hundred and three patients (47 men, 56 women),with a mean age of 54 years (range 9-92 years), were found to have an abnormal ultrasonic pattern of spleen.RESULTS: We describe the ultrasonic features of various splenic lesions such as accessory spleen, splenomegaly,cysts, cavernous hemangiomas, lymphomas, abscesses,metastatic tumors, splenic infarctions, hematomas, and rupture, based on traditional gray-scale and color Doppler sonography.CONCLUSION: Ultrasound is a widely available, noninvasive,and useful means of diagnosing splenic abnormalities. A combination of ultrasonic characteristics and clinical data may provide an accurate diagnosis. If the US appearance alone is not enough, US may also be used to guide biopsy of suspicious lesions.

  12. Behavior-associated and post-consumption glucose entry into the nucleus accumbens extracellular space during glucose free-drinking in trained rats

    Eugene A Kiyatkin

    2015-07-01

    Full Text Available Glucose is the primary energetic substrate for the metabolic activity of brain cells and its proper delivery from the arterial blood is essential for neural activity and normal brain functions. Glucose is also a unique natural reinforcer, supporting glucose-drinking behavior without food or water deprivation. While it is known that glucose enters brain tissue via gradient-dependent facilitated diffusion, it remains unclear how glucose levels are changed during natural behavior and whether the direct central action of ingested glucose can be involved in regulating glucose-drinking behavior. Here, we used glucose biosensors with high-speed amperometry to examine the pattern of phasic and tonic changes in extracellular glucose in the nucleus accumbens (NAc during unrestricted glucose-drinking in well-trained rats. We found that the drinking behavior is highly cyclic and is associated with relatively large and prolonged increases in extracellular glucose levels. These increases had two distinct components: a highly phasic but relatively small behavior-related rise and a larger tonic elevation that results from the arrival of consumed glucose into the brain’s extracellular space. The large post-ingestion increases in NAc glucose began minutes after the cessation of drinking and were consistently associated with periods of non-drinking, suggesting that the central action of ingested glucose could inhibit drinking behavior by inducing a pause in activity between repeated drinking bouts. Finally, the difference in NAc glucose responses found between active, behavior-mediated and passive glucose delivery via an intra-gastric catheter confirms that motivated behavior is also associated with metabolic glucose use by brain cells.

  13. Abnormal Movement Preparation in Task-Specific Focal Hand Dystonia

    Jankowski, Jakob; Paus, Sebastian; Scheef, Lukas; Bewersdorff, Malte; Schild, Hans H; Klockgether, Thomas; Boecker, Henning

    2013-01-01

    Electrophysiological and behavioral studies in primary dystonia suggest abnormalities during movement preparation, but this crucial phase preceding movement onset has not yet been studied specifically with functional magnetic resonance imaging (fMRI). To identify abnormalities in brain activation during movement preparation, we used event-related fMRI to analyze behaviorally unimpaired sequential finger movements in 18 patients with task-specific focal hand dystonia (FHD) and 18 healthy subje...

  14. Effects of fluctuating glucose levels on neuronal cells in vitro.

    Russo, Vincenzo C; Higgins, Sandra; Werther, George A; Cameron, Fergus J

    2012-08-01

    There is increasing evidence for glucose fluctuation playing a role in the damaging effects of diabetes on various organs, including the brain. We aimed to study the effects of glycaemic variation (GV) upon mitochondrial activity using an in vitro human neuronal model. The metabolic disturbance of GV in neuronal cells, was mimicked via exposure of neuroblastoma cells SH-SY5Y to constant glucose or fluctuating (i.e. 6 h cycles) for 24 and 48 h. Mitochondrial dehydrogenase activity was determined via MTT assay. Cell mitochondrial activity (MTT) was moderately decreased in constant high glucose, but markedly decreased following 24 and 48 h of cyclical glucose fluctuations. Glucose transport determined via 2-deoxy-D-[1-(14)C] glucose uptake was regulated in an exaggerated manner in response to glucose variance, accompanied by modest changes in GLUT 1 mRNA abundance. Osmotic components of these glucose effects were investigated in the presence of the osmotic-mimics mannitol and L: -glucose. Both treatments showed that fluctuating osmolality did not result in a significant change in mitochondrial activity and had no effects on (14)Cglucose uptake, suggesting that adverse effects on mitochondrial function were specifically related to metabolically active glucose fluctuations. Apoptosis gene expression showed that both intrinsic and extrinsic apoptotic pathways were modulated by glucose variance, with two major response clusters corresponding to (i) glucose stress-modulated genes, (ii) glucose mediated osmotic stress-modulated genes. Gene clustering analysis by STRING showed that most of the glucose stress-modulated genes were components of the intrinsic/mitochondrial apoptotic pathway including Bcl-2, Caspases and apoptosis executors. On the other hand the glucose mediated osmotic stress-modulated genes were mostly within the extrinsic apoptotic pathway, including TNF receptor and their ligands and adaptors/activators/initiators of apoptosis. Fluctuating glucose levels

  15. Marble brain syndrome: osteopetrosis, renal acidosis and calcification of the brain

    Jacquemin, C.; Mullaney, P.; Svedberg, E. [King Khaled Eye Specialist Hospital, Riyadh (Saudi Arabia)

    1998-10-01

    Cerebral calcification in children is frequently associated with systemic metabolic disease. We present a case of ``marble brain syntrome``, which showed this abnormality. (orig.) (orig.) With 2 figs.

  16. Four grams of glucose

    Wasserman, David H.

    2008-01-01

    Four grams of glucose circulates in the blood of a person weighing 70 kg. This glucose is critical for normal function in many cell types. In accordance with the importance of these 4 g of glucose, a sophisticated control system is in place to maintain blood glucose constant. Our focus has been on the mechanisms by which the flux of glucose from liver to blood and from blood to skeletal muscle is regulated. The body has a remarkable capacity to satisfy the nutritional need for glucose, while ...

  17. Reversible splenial abnormality in hypoglycemic encephalopathy

    Kim, Ji Hyun; Choi, Jeong Yoon; Koh, Seong-Beom [Korea University School of Medicine, Department of Neurology, Guro Hospital, Seoul (Korea); Lee, Younghen [Korea University School of Medicine, Department of Radiology, Ansan Hospital, Ansan City (Korea)

    2007-03-15

    Lesions involving the splenium of the corpus callosum (SCC) have been rarely reported in cases of hypoglycemic brain injury. We identified signal abnormalities in the SCC in three adult patients with hypoglycemic encephalopathy by using diffusion-weighted imaging (DWI) on a 1.5-T MR scanner. Repeat DWI was performed in all patients following a marked clinical improvement, and MR angiography and routine MRI were also performed. We examined each patient's detailed medical history and blood laboratory tests in order to exclude other conditions causing similar SCC abnormalities. Initial DWI was performed during which each patient showed altered mental status that was attributed to profound hypoglycemia. We observed an identical pattern of DWI abnormality characterized by high signals in the SCC with apparent diffusion coefficient reductions that were reversed completely within several days following appropriate correction of hypoglycemia. T2-weighted or FLAIR images also showed no residual lesion in the SCC and MR angiography was normal in all patients. These case reports suggest that the SCC should be added to the list of selective vulnerability to hypoglycemia and that hypoglycemia, in turn, be included in the differential diagnosis of reversible SCC abnormalities. (orig.)

  18. Reversible splenial abnormality in hypoglycemic encephalopathy

    Lesions involving the splenium of the corpus callosum (SCC) have been rarely reported in cases of hypoglycemic brain injury. We identified signal abnormalities in the SCC in three adult patients with hypoglycemic encephalopathy by using diffusion-weighted imaging (DWI) on a 1.5-T MR scanner. Repeat DWI was performed in all patients following a marked clinical improvement, and MR angiography and routine MRI were also performed. We examined each patient's detailed medical history and blood laboratory tests in order to exclude other conditions causing similar SCC abnormalities. Initial DWI was performed during which each patient showed altered mental status that was attributed to profound hypoglycemia. We observed an identical pattern of DWI abnormality characterized by high signals in the SCC with apparent diffusion coefficient reductions that were reversed completely within several days following appropriate correction of hypoglycemia. T2-weighted or FLAIR images also showed no residual lesion in the SCC and MR angiography was normal in all patients. These case reports suggest that the SCC should be added to the list of selective vulnerability to hypoglycemia and that hypoglycemia, in turn, be included in the differential diagnosis of reversible SCC abnormalities. (orig.)

  19. Cardiac Arrhythmias and Abnormal Electrocardiograms After Acute Stroke.

    Ruthirago, Doungporn; Julayanont, Parunyou; Tantrachoti, Pakpoom; Kim, Jongyeol; Nugent, Kenneth

    2016-01-01

    Cardiac arrhythmias and electrocardiogram (ECG) abnormalities occur frequently but are often underrecognized after strokes. Acute ischemic and hemorrhagic strokes in some particular area of brain can disrupt central autonomic control of the heart, precipitating cardiac arrhythmias, ECG abnormalities, myocardial injury and sometimes sudden death. Identification of high-risk patients after acute stroke is important to arrange appropriate cardiac monitoring and effective management of arrhythmias, and to prevent cardiac morbidity and mortality. More studies are needed to better clarify pathogenesis, localization of areas associated with arrhythmias and practical management of arrhythmias and abnormal ECGs after acute stroke. PMID:26802767

  20. Automatic Medical Image Classification and Abnormality Detection Using KNearest Neighbour

    Dr. R. J. Ramteke , Khachane Monali Y.

    2012-12-01

    Full Text Available This research work presents a method for automatic classification of medical images in two classes Normal and Abnormal based on image features and automatic abnormality detection. Our proposed system consists of four phases Preprocessing, Feature extraction, Classification, and Post processing. Statistical texture feature set is derived from normal and abnormal images. We used the KNN classifier for classifying image. The KNN classifier performance compared with kernel based SVM classifier (Linear and RBF. The confusion matrix computed and result shows that KNN obtain 80% classification rate which is more than SVM classification rate. So we choose KNN algorithm for classification of images. If image classified as abnormal then post processing step applied on the image and abnormal region is highlighted on the image. The system has been tested on the number of real CT scan brain images.