WorldWideScience

Sample records for ablative materials

  1. Thermal Ablation Modeling for Silicate Materials

    Chen, Yih-Kanq

    2016-01-01

    A general thermal ablation model for silicates is proposed. The model includes the mass losses through the balance between evaporation and condensation, and through the moving molten layer driven by surface shear force and pressure gradient. This model can be applied in the ablation simulation of the meteoroid and the glassy ablator for spacecraft Thermal Protection Systems. Time-dependent axisymmetric computations are performed by coupling the fluid dynamics code, Data-Parallel Line Relaxation program, with the material response code, Two-dimensional Implicit Thermal Ablation simulation program, to predict the mass lost rates and shape change. The predicted mass loss rates will be compared with available data for model validation, and parametric studies will also be performed for meteoroid earth entry conditions.

  2. Thermal Ablation Modeling for Silicate Materials

    Chen, Yih-Kanq

    2016-01-01

    A thermal ablation model for silicates is proposed. The model includes the mass losses through the balance between evaporation and condensation, and through the moving molten layer driven by surface shear force and pressure gradient. This model can be applied in ablation simulations of the meteoroid or glassy Thermal Protection Systems for spacecraft. Time-dependent axi-symmetric computations are performed by coupling the fluid dynamics code, Data-Parallel Line Relaxation program, with the material response code, Two-dimensional Implicit Thermal Ablation simulation program, to predict the mass lost rates and shape change. For model validation, the surface recession of fused amorphous quartz rod is computed, and the recession predictions reasonably agree with available data. The present parametric studies for two groups of meteoroid earth entry conditions indicate that the mass loss through moving molten layer is negligibly small for heat-flux conditions at around 1 MW/cm(exp. 2).

  3. Ablating and charring of heat shield materials

    Rahimian, M.H.; Shabani, M.R. [Univ. of Tehran, Faculty of Engineering, Mechanical Engineering Dept., Tehran (Iran, Islamic Republic of)]. E-mail: rahimyan@ut.ac.ir; shubani@me.ut.ac.ir

    2003-07-01

    The objective of this research is to estimate ablating and charring of heat shield materials in severe aero thermal / erosive environments. This requires an accurate and rapid technique for its serious heat transfer with moving boundary. Aerodynamic heating is obtained by an explicit relation. Fully implicit method is used for heat transfer calculation. Moving boundary is captured by VOF method. Thickness of heat shield, temperature of moving surface and radiation heat is presented. The results are in good agreement with other calculations. (author)

  4. Ablating and charring of heat shield materials

    The objective of this research is to estimate ablating and charring of heat shield materials in severe aero thermal / erosive environments. This requires an accurate and rapid technique for its serious heat transfer with moving boundary. Aerodynamic heating is obtained by an explicit relation. Fully implicit method is used for heat transfer calculation. Moving boundary is captured by VOF method. Thickness of heat shield, temperature of moving surface and radiation heat is presented. The results are in good agreement with other calculations. (author)

  5. Analysis of iodinated contrast delivered during thermal ablation: is material trapped in the ablation zone?

    Wu, Po-hung; Brace, Chris L.

    2016-08-01

    Intra-procedural contrast-enhanced CT (CECT) has been proposed to evaluate treatment efficacy of thermal ablation. We hypothesized that contrast material delivered concurrently with thermal ablation may become trapped in the ablation zone, and set out to determine whether such an effect would impact ablation visualization. CECT images were acquired during microwave ablation in normal porcine liver with: (A) normal blood perfusion and no iodinated contrast, (B) normal perfusion and iodinated contrast infusion or (C) no blood perfusion and residual iodinated contrast. Changes in CT attenuation were analyzed from before, during and after ablation to evaluate whether contrast was trapped inside of the ablation zone. Visualization was compared between groups using post-ablation contrast-to-noise ratio (CNR). Attenuation gradients were calculated at the ablation boundary and background to quantitate ablation conspicuity. In Group A, attenuation decreased during ablation due to thermal expansion of tissue water and water vaporization. The ablation zone was difficult to visualize (CNR  =  1.57  ±  0.73, boundary gradient  =  0.7  ±  0.4 HU mm‑1), leading to ablation diameter underestimation compared to gross pathology. Group B ablations saw attenuation increase, suggesting that iodine was trapped inside the ablation zone. However, because the normally perfused liver increased even more, Group B ablations were more visible than Group A (CNR  =  2.04  ±  0.84, boundary gradient  =  6.3  ±  1.1 HU mm‑1) and allowed accurate estimation of the ablation zone dimensions compared to gross pathology. Substantial water vaporization led to substantial attenuation changes in Group C, though the ablation zone boundary was not highly visible (boundary gradient  =  3.9  ±  1.1 HU mm‑1). Our results demonstrate that despite iodinated contrast being trapped in the ablation zone, ablation visibility

  6. Morphology Characterization of Uranium Particles From Laser Ablated Uranium Materials

    2011-01-01

    In the study, metallic uranium and uranium dioxide material were ablated by laser beam in order to simulate the process of forming the uranium particles in pyrochemical process. The morphology characteristic of uranium particles and the surface of

  7. Compatibility of dielectric and heat shield material combinations during ablations

    The surface recession and mass-transfer rates of materials suitable for reentry thermal protection of microwave antennas have been examined. Experiments were performed with subsonic-turbulent flow of air in a confined channel. In supporting experiments, selected material combinations were subjected to ablative splash tests in the Sandia High Enthalpy Arc Tunnel. Microwave window materials were tested adjacent to ablative heat shield materials in combinations and configurations under consideration for reentry vehicle applications. Test results indicated that fused silica was compatible with quartz-phenolic and carbon-phenolic heat shield materials while the ablative characteristics of hot-pressed boron nitride were very similar to those of the STC-7 carbon composite developed by Sandia Laboratories. (U.S.)

  8. Microscopic Scale Simulation of the Ablation of Fibrous Materials

    Lachaud, Jean Romain; Mansour, Nagi N.

    2010-01-01

    Ablation by oxidation of carbon-fiber preforms impregnated in carbonized phenolic matrix is modeled at microscopic scale. Direct numerical simulations show that the carbonized phenolic matrix ablates in volume leaving the carbon fibers exposed. This is due to the fact that the reactivity of carbonized phenolic is higher than the reactivity of carbon fibers. After the matrix is depleted, the fibers ablate showing progressive reduction of their diameter. The overall material recession occurs when the fibers are consumed. Two materials with the same carbon-fiber preform, density and chemical composition, but with different matrix distributions are studied. These studies show that at moderate temperatures (recession rate; a fact that is not captured by current models that are based on chemical composition only. Surprisingly, the response of these impregnated-fiber materials is weakly dependent on the microstructure at very high temperatures (e.g., Stardust peak heating conditions: 3360K).

  9. Permeability of ablative materials under rarefied gas conditions

    White, Craig; Scanlon, Thomas J.; Brown, Richard E.

    2016-01-01

    Numerical meshes of both cork and carbon fiber ablative materials in their virgin and pyrolized states, with realistic porosity and tortuosity, have been created from microcomputed tomography scans. The porosity of each material has been calculated from the microcomputed scans and used to extract smaller representative sample volumes to perform numerical simulations on. Direct simulation Monte Carlo simulations of rarefied gas flow through these materials have been performed to find the perme...

  10. Laser Ablation of Materials for Propulsion of Spacecraft

    Edwards, David L.; Carruth, Ralph; Campbell, Jonathan; Gray, Perry

    2004-01-01

    A report describes experiments performed as part of a continuing investigation of the feasibility of laser ablation of materials as a means of propulsion for small spacecraft. In each experiment, a specimen of ablative material was mounted on a torsion pendulum and irradiated with a laser pulse having an energy of 5 J. The amplitude of the resulting rotation of the torsion pendulum was taken to be an indication of the momentum transferred from the laser beam. Of the ablative materials tested, aluminum foils yielded the smallest rotation amplitudes of the order of 10 degrees. Black coating materials yielded rotation amplitudes of the order of 90 degrees. Samples of silver coated with a fluorinated ethylene propylene (FEP) copolymer yielded the largest rotation amplitudes 6 to 8 full revolutions. The report presents a theory involving heating of a confined plasma followed by escape of the plasma to explain the superior momentum transfer performance of the FEP specimens. It briefly discusses some concepts for optimizing designs of spacecraft engines to maximize the thrust obtainable by exploiting the physical mechanisms of the theory. Also discussed is the use of laser-ablation engines with other types of spacecraft engines.

  11. Interfacial Design of Composite Ablative Materials Project

    National Aeronautics and Space Administration — This Small Business Innovation Research (SBIR) project proposes the development of a computational software package to provide NASA with advanced materials...

  12. Bursting for enhanced ablation of materials

    Hendow, Sami; Rea, Edward; Kosa, Nadhir; Bengtsson, Magnus; Shakir, Sami

    2014-03-01

    A significant enhancement in the rate of material removal is demonstrated using a nanosecond-pulsed UV fiber laser in multi-pulsing burst mode, as compared to the case without bursting. Percussion drilling and scribing of thin-film and bulk material tests show that, in general, laser bursts with increased pulse count and reduced pulse spacing show higher rates of material removal. A considerable improvement in removal rate is demonstrated, when bursting is applied to scribing of mono-crystalline silicon (m-Si) and up to 30% in percussion drilling speed. Likewise, improved material removal is demonstrated for scribing of thin film of indium tin oxide (ITO) on glass or metal film on sapphire. Examples of material processing are given with and without bursting at similar experimental conditions of average power, scan speed, and burst/pulse energies. Experimental results included are for m-Si, ITO thin films on glass, and metal films on sapphire.

  13. Photogrammetric recession measurements of ablative materials in arcjets

    This paper describes an optical method for measuring the recession time histories of ablative thermal protection system (TPS) materials as they are tested in an arcjet facility. The method is non-intrusive and requires no external light source or modifications to the test article. It does require, first, a test article that exhibits texture as it ablates, and, second, high-resolution video images of the ablating surface from at least two directions. Software automatically reads the sequences of images and, by successive image cross correlation, tracks the deformation of a surface grid that conforms to the shape of the test article. Standard photogrammetric transformations are used to convert image-plane displacements of the surface grid to object-space displacements. The method yields a time history of the displacement of each node of the grid for the full time that the test article is exposed to the arcjet flow. Measurements have been made during many tests in the 60 MW arcjet at NASA Ames Research Center, including tests of TPS materials for the Orion Crew Exploration Vehicle and Mars Science Laboratory. The photogrammetric recession measurements have been in good agreement with post-test measurements of the change in thickness of the test articles

  14. Ablation mechanism study on metallic materials with a 10 ps laser under high fluence

    Single shot ablation of metallic materials of aluminium, titanium alloy (Ti6Al4V) and gold has been studied with 10 picoseconds (ps) laser pulses experimentally and theoretically. The ablation rate variation at high fluence was explained by a simplified predictive model based on critical-point phase separation (CPPS) theory. A comparison between experimental and numerical results inferred that CPPS may well be the dominant ablation mechanism for high fluence laser ablation at 10 ps laser duration.

  15. Laser Ablation Spectroscopy for Impurity Depth Profiling in Hot Wall Materials of Thermonuclear Fisuon reactors

    Jeļena Butikova

    2009-01-01

    ABSTRACT The main motivation of thesis work was showing the efficiency of the laser-induced ablation for analysis of the impurities in plasma facing components. The major tasks of the study are setting up and testing the equipment for laser ablation spectroscopy and developing methodology for impurity depth profiling. The thesis describes the investigation of the plasma facing materials of ASDEX Upgrade (AUG) tokamak using laser-induced ablation spectroscopy and profilometry of ablation...

  16. Intumescent-ablators as improved thermal protection materials

    Sawko, P. M.; Riccitiello, S. R.

    1977-01-01

    Nitroaromatic amine-based intumescent coatings were improved with regard to their thermal protection ability by adding endothermic decomposing fillers with endotherms at or near the exothermic reaction of the intumescent agent, since the effectiveness of the intumescent coatings without fillers is reduced by the exothermic behavior of the coatings during thermal activation. Fillers were dispersed directly in the base coating. Potassium fluoborate, ammonium fluoborate, zinc borate, and ammonium oxalate function as endothermic ablative materials at specific temperature regions, and also enhance the char formation during the intumescent process.

  17. Analysis of fabric materials cut using ultraviolet laser ablation

    Tsai, Hsin-Yi; Yang, Chih-Chung; Hsiao, Wen-Tse; Huang, Kuo-Cheng; Andrew Yeh, J.

    2016-04-01

    Laser ablation technology has widely been applied in the clothing industry in recent years. However, the laser mechanism would affect the quality of fabric contours and its components. Hence, this study examined carbonization and oxidation conditions and contour variation in nonwoven, cotton, and composite leather fabrics cut by using an ultraviolet laser at a wavelength of 355 nm. Processing parameters such as laser power, pulse frequency, scanning speed, and number of pulses per spot were adjusted to investigate component variation of the materials and to determine suitable cutting parameters for the fabrics. The experimental results showed that the weights of the component changed substantially by pulse frequency but slightly by laser power, so pulse frequency of 100 kHz and laser power of 14 W were the approximate parameters for three fabrics for the smaller carbonization and a sufficient energy for rapidly cutting, which the pulse duration of laser system was fixed at 300 μs and laser irradiance was 0.98 J/mm2 simultaneously. In addition, the etiolate phenomenon of nonwoven was reduced, and the component weight of cotton and composite leather was closed to the value of knife-cut fabric as the scanning speed increased. The approximate scanning speed for nonwoven and composite leather was 200 mm/s, and one for cotton was 150 mm/s, respectively. The sharper and firmer edge is obtained by laser ablation mechanism in comparison with traditional knife cutting. Experimental results can serve as the reference for laser cutting in the clothing industry, for rapidly providing smoother patterns with lower carbonization and oxidation edge in the fashion industry.

  18. Remote Recession Sensing of Ablative Heat Shield Materials

    Winter, Michael W.; Stackpoole, Margaret; Nawaz, Anuscheh; Gonzales, Gregory Lewis; Ho, Thanh

    2014-01-01

    Material recession and charring are two major processes determining the performance of ablative heat shield materials. Even in ground testing, the characterization of these two mechanisms relies on measurements of material thickness before and after testing, thus providing only information integrated over the test time. For recession measurements, optical methods such as imaging the sample surface during testing are under investigation but require high alignment and instrument effort, therefore being not established as a standard measurement method. For char depth measurements, the most common method so far consists in investigation of sectioned samples after testing or in the case of Stardust where core extractions were performed to determine char information. In flight, no reliable recession measurements are available, except total recession after recovering the heat shield on ground. Developments of mechanical recession sensors have been started but require substantial on board instrumentation adding mass and complexity. In this work, preliminary experiments to evaluate the feasibility of remote sensing of material recession and possibly char depth through optically observing the emission signatures of seeding materials in the post shock plasma is investigated. It is shown that this method can provide time resolved recession measurements without the necessity of accurate alignment procedures of the optical set-up and without any instrumentation on board of a spacecraft. Furthermore, recession data can be obtained without recovering flight hardware which would be a huge benefit for inexpensive heat shield material testing on board of small re-entry probes, e.g. on new micro-satellite re-entry probes as a possible future application of Cubesats or RBR

  19. Laser-solid interaction and dynamics of laser-ablated materials

    An annealing model is extended to treat the vaporization process, and a hydrodynamic model describes the ablated material. We find that dynamic source and ionization effects accelerate the expansion front of the ablated plume with thermal vaporization temperature. The vaporization process and plume propagation in high background gas pressure are studied

  20. Nuclear radiation effects on the ablation performance of advanced composite heatshield materials

    Results are presented from experiments to define the influence of simulated nuclear radiation damage on the ablation response of carbon-phenolic materials. Tests were conducted in a 50 MW arc jet facility. Several damaging methods were used and the effects of material properties were studied. The data were used to refine theoretical models of the ablation response. Effects of nonisothermal thermocouple measurements and material expansion due to outgassing and delamination are included. Results show that the ablation response is critically dependent upon the char layer expansion characteristics and material properties are shown to have a significant influence. The effect of the simulated nuclear damage on the ablation performance of these materials is negligible

  1. Preparation of Nanostructurated Materials by ArF Laser Ablation

    Koštejn, Martin; Fajgar, Radek; Tomovska, R.; Blazevska-Gilev, J.

    -: -, 2014, s. 243. ISBN N. [International Conference on Nanosciences & Nanotechnologie (NN13) /10./. Thessaloniki (GR), 09.07.2014-12.07.2014] Institutional support: RVO:67985858 Keywords : laser ablation * electron diffraction * spectroscopy Subject RIV: CH - Nuclear ; Quantum Chemistry

  2. Potential of short wavelength laser ablation of organic materials

    Jonathan S. Watson; Sestak, Stephen; Sherlock, Sarah; Greenwood, Paul F.; Fuentes, David

    2009-01-01

    Although the literature contains several articles on UV laser ablation of synthetic polymers [1] and human tissue for surgical applications, to our knowledge there is no published record on organic geochemical applications for UV laser pyrolysis–gas chromatography–mass spectrometry (LA-GC-MS). In this study we have demonstrated the use of a 213 nm UV laser beam for ablating kerogens and organic rich rocks to liberate and analyse hydrocarbon signatures and compared the results against IR laser...

  3. Femtosecond laser ablation of dielectric materials in the optical breakdown regime: Expansion of a transparent shell

    Garcia-Lechuga, M.; Siegel, J., E-mail: j.siegel@io.cfmac.csic.es; Hernandez-Rueda, J.; Solis, J. [Laser Processing Group, Instituto de Optica, Serrano 121, 28006 Madrid (Spain)

    2014-09-15

    Phase transition pathways of matter upon ablation with ultrashort laser pulses have been considered to be understood long-since for metals and semiconductors. We provide evidence that also certain dielectrics follow the same pathway, even at high pulse energies triggering optical breakdown. Employing femtosecond microscopy, we observe a characteristic ring pattern within the ablating region that dynamically changes for increasing time delays between pump and probe pulse. These transient Newton rings are related to optical interference of the probe beam reflected at the front surface of the ablating layer with the reflection at the interface of the non-ablating substrate. Analysis of the ring structure shows that the ablation mechanism is initiated by a rarefaction wave leading within a few tens of picoseconds to the formation of a transparent thin shell of reduced density and refractive index, featuring optically sharp interfaces. The shell expands and eventually detaches from the solid material at delays of the order of 100 ps.

  4. Laser ablation characteristics of metallic materials: Role of Debye-Waller thermal parameter

    The interaction of a high intensity laser pulse with a solid target results in the formation of a crater and a plasma plume. The characteristics of both depend on physical properties of target material, environmental conditions, and laser parameters (e.g. wavelength, pulse duration, energy, beam diameter) etc. It has been shown for numerous metals and their alloys that plasma threshold fluence, plasma threshold energy, ablation efficiency, ablation yield, angular distribution of laser produced plasma (LPP) ions, etc. are a unique function of the Debye-Waller thermal parameter B or the mean-square amplitude of atomic vibration of the target material for given experimental conditions. The FWHM of the angular distribution of LPP ions, ablation yield, and ablation efficiency increase whereas plasma threshold fluence and plasma threshold energy decrease as B-factor of the target material increases

  5. Analysis and removal of ITER relevant materials and deposits by laser ablation

    The analysis of the deposition of eroded wall material on the plasma-facing materials in fusion devices is one of the crucial issues to maintain the plasma performance and to fulfill safety requirements with respect to tritium retention by co-deposition. Laser ablation with minimal damage to the plasma facing material is a promising method for in situ monitoring and removal of the deposition, especially for plasma-shadowed areas which are difficult to reach by other cleaning methods like plasma discharge. It requires the information of ablation process and the ablation threshold for quantitative analysis and effective removal of the different deposits. This paper presents systemic laboratory experimental analysis of the behavior of the ITER relevant materials, graphite, tungsten, aluminum (as a substitution of beryllium) and mixed deposits ablated by a Nd:YAG laser (1064 nm) with different energy densities (1–27 J/cm2, power density 0.3–3.9 GW/cm2). The mixed deposits consisted of W–Al–C layer were deposited on W substrate by magnetron sputtering and arc plasma deposition. The aim was to select the proper parameters for the quantitative analysis and for laser removal of the deposits by investigating the ablation efficiency and ablation threshold for the bulk materials and deposits. The comparison of the ablation and saturation energy thresholds for pure and mixed materials shows that the ablation threshold of the mixed layer depends on the concentration of the components. We propose laser induced breakdown spectroscopy for determination of the elemental composition of deposits and then we select the laser parameters for the layer removal. Comparison of quantitative analysis results from laboratory to that from TEXTOR shows reasonable agreements. The dependence of the spectra on plasma parameters and ambient gas pressure is investigated

  6. Endometrial ablation

    Hysteroscopy-endometrial ablation; Laser thermal ablation; Endometrial ablation-radiofrequency; Endometrial ablation-thermal balloon ablation; Rollerball ablation; Hydrothermal ablation; Novasure ablation

  7. Comparative study of the ablation of materials by femtosecond and pico- or nanosecond laser pulses

    A series of studies was carried out on the ablation of steel, Si3N4 ceramic, and diamond in air by femtosecond (200 and 900 fs) pulses of different wavelengths (532 and 266 nm) and in a wide energy density range (1 - 103 J cm-2 ). The ablation rates were measured for different geometries of the irradiation surface [a shallow crater and a channel with a high (up to 10) aspect ratio]. The ablation rates (in a shallow crater) and the morphologies of the irradiated surface were compared for femtosecond and longer (220 ps, 7 ns) pulses. The role of the laser-generated plasma in the ablation of materials by subpicosecond pulses as well as the prospects for the practical application of ultrashort laser pulses in the processing of materials are analysed. (interaction of laser radiation with matter. laser plasma)

  8. Estimation of surface heat flux for ablation and charring of thermal protection material

    Qian, Wei-qi; He, Kai-feng; Zhou, Yu

    2016-07-01

    Ablation of the thermal protection material of the reentry hypersonic flight vehicle is a complex physical and chemical process. To estimate the surface heat flux from internal temperature measurement is much more complex than the conventional inverse heat conduction problem case. In the paper, by utilizing a two-layer pyrogeneration-plane ablation model to model the ablation and charring of the material, modifying the finite control volume method to suit for the numerical simulation of the heat conduction equation with variable-geometry, the CGM along with the associated adjoint problem is developed to estimate the surface heat flux. This estimation method is verified with a numerical example at first, the results show that the estimation method is feasible and robust. The larger is the measurement noise, the greater is the deviation of the estimated result from the exact value, and the measurement noise of ablated surface position has a significant and more direct influence on the estimated result of surface heat flux. Furthermore, the estimation method is used to analyze the experimental data of ablation of blunt Carbon-phenolic material Narmco4028 in an arc-heater. It is shown that the estimated surface heat flux agrees with the heating power value of the arc-heater, and the estimation method is basically effective and potential to treat the engineering heat conduction problem with ablation.

  9. Material properties of lithium fluoride for predicting XUV laser ablation rate and threshold fluence

    Blejchař, Tomáś; Nevrlý, Václav; Vašinek, Michal; Dostál, Michal; Pečínka, Lukáś; Dlabka, Jakub; Stachoň, Martin; Juha, Libor; Bitala, Petr; Zelinger, Zdeněk.; Pira, Peter; Wild, Jan

    2015-05-01

    This paper deals with prediction of extreme ultraviolet (XUV) laser ablation of lithium fluoride at nanosecond timescales. Material properties of lithium fluoride were determined based on bibliographic survey. These data are necessary for theoretical estimation of surface removal rate in relevance to XUV laser desorption/ablation process. Parameters of XUV radiation pulses generated by the Prague capillary-discharge laser (CDL) desktop system were assumed in this context. Prediction of ablation curve and threshold laser fluence for lithium fluoride was performed employing XUV-ABLATOR code. Quasi-random sampling approach was used for evaluating its predictive capabilities in the means of variance and stability of model outputs in expected range of uncertainties. These results were compared to experimental data observed previously.

  10. Off-Hugoniot characterization of alternative inertial confinement fusion ablator materials.

    Moore, Alastair S.; Prisbrey, Shon; Baker, Kevin L.; Celliers, Peter M.; Fry, Jonathan; Dittrich, Thomas R.; Wu, Kuang-Jen J.; Kervin, Margaret L.; Schoff, Michael E.; Farrell, Mike; Nikroo, Abbas; Hurricane, Omar A.

    2016-05-01

    The ablation material used during the National Ignition Campaign, a glow- discharge polymer (GDP), does not couple as efficiently as simulations indicated to the multiple- shock inducing radiation drive environment created by laser power profile [1]. We investigate the performance of two other ablators, boron carbide (B4C) and high-density carbon (HDC) and compare with GDP under the same hohlraum conditions. Ablation performance is determined through measurement of the shock speed produced in planar samples of the ablator subjected to the identical multiple-shock inducing radiation drive environments that are similar to a generic three-shock ignition drive. Simulations are in better agreement with the off-Hugoniot performance of B4C than either HDC or GDP.

  11. Experiment and analysis of ablation and condensation in NIF first wall materials

    Experiments were performed on Nova at Lawrence Livermore National Laboratory to study the ablation and condensation process of National Ignition Facility (NIF) first wall materials. Plates of candidate first wall materials (SiO2, B4, and Al2O3) were exposed to x-rays from hohlraums in the Nova chamber. Ablated material was collected and measured on a receiving plate which was blocked form direct x-ray exposure. This article presents the results form these experiments and comparisons with predictions from numerical simulations The net condensation flux was calculated using the TSUNAMI code, which was modified to incorporate the feature of condensation boundaries

  12. Comparison of Ablation Predictions for Carbonaceous Materials Using CEA and JANAF-Based Species Thermodynamics

    Milos, Frank S.

    2011-01-01

    In most previous work at NASA Ames Research Center, ablation predictions for carbonaceous materials were obtained using a species thermodynamics database developed by Aerotherm Corporation. This database is derived mostly from the JANAF thermochemical tables. However, the CEA thermodynamics database, also used by NASA, is considered more up to date. In this work, the FIAT code was modified to use CEA-based curve fits for species thermodynamics, then analyses using both the JANAF and CEA thermodynamics were performed for carbon and carbon phenolic materials over a range of test conditions. The ablation predictions are comparable at lower heat fluxes where the dominant mechanism is carbon oxidation. However, the predictions begin to diverge in the sublimation regime, with the CEA model predicting lower recession. The disagreement is more significant for carbon phenolic than for carbon, and this difference is attributed to hydrocarbon species that may contribute to the ablation rate.

  13. Liquid-assisted laser ablation of advanced ceramics and glass-ceramic materials

    Garcia-Giron, A.; Sola, D.; Peña, J. I.

    2016-02-01

    In this work, results obtained by laser ablation of advanced ceramics and glass-ceramic materials assisted by liquids are reported. A Q-switched Nd:YAG laser at its fundamental wavelength of 1064 nm with pulse-width in the nanosecond range was used to machine the materials, which were immersed in water and ethylene glycol. Variation in geometrical parameters, morphology, and ablation yields were studied by using the same laser working conditions. It was observed that machined depth and removed volume depended on the thermal, optical, and mechanical features of the processed materials as well as on the properties of the surrounding medium in which the laser processing was carried out. Variation in ablation yields was studied in function of the liquid used to assist the laser process and related to refractive index and viscosity. Material features and working conditions were also related to the obtained results in order to correlate ablation parameters with respect to the hardness of the processed materials.

  14. Characterization of Candidate Materials for Remote Recession Measurements of Ablative Heat Shield Materials

    Butler, Bradley D.; Winter, Michael; Panerai, Francesco; Martin, Alexandre; Bailey, Sean C. C.; Stackpoole, Margaret; Danehy, Paul M.; Splinter, Scott

    2016-01-01

    A method of remotely measuring surface recession of a material sample in a plasma flow through emission spectroscopy of the post shock layer was characterized through experiments in the NASA Langley HYMETS arc jet facility. Different methods for delivering the seed products into the Phenolic Impregnated Carbon Ablator (PICA) material samples were investigated. Three samples were produced by seeding the PICA material with combinations of Al, Si, HfO2, VB2, Al2O3, SiO2, TiC, HfC, NaCl, and MgCl2 through infusing seed materials into a core of PICA, or through encapsulating seed material in an epoxy disk, mechanically bonding the disk to a PICA sample. The PICA samples seeded with the candidate tracers were then tested at surface temperatures near 2400 K under low pressure air plasma. The emission of Al, Ti, V, Na, and Mg in the post-shock layer was observed in the UV with a high resolution imaging spectrometer viewing the whole stagnation line from the side, and from UV to NIR with a fiber-coupled miniaturized spectrometer observing the sample surface in the wavelength range from 200 nm to 1,100 nm from the front through a collimator. Al, Na, and Mg were found to be emitting in the post-shock spectra even before the recession reached the seeding depth - therefore possibly characterizing the pyrolysis process rather than the recession itself. The appearance of Ti and V emission in the spectra was well correlated with the actual recession which was monitored through a video of the front surface of the sample. The applicability of a seed material as an indicator for recession appears to be related to the melting temperature of the seed material. Future parametric studies will be carried out in low power plasma facilities at the University of Kentucky.

  15. Preparation of nano-sized functional materials using laser ablation in liquids

    We propose a convenient technique applicable for investigations of various functions of nanoparticles produced by laser ablation in liquids. It was demonstrated that nanoparticles of anatase-TiO2, a electrode material for lithium secondary batteries, produced by laser ablation in acetone could be efficiently deposited on a substrate by using an electrophoresis technique. Analysis of the electrochemical properties of nanoparticles become much more facile with those deposited nanoparticles than with dispersed nanoparticles. In addition, it was demonstrated that comparison of the electrochemical properties between nanoparticles and microparticles were possible by means of this technique.

  16. Investigation of plumes produced by material ablation with two time-delayed femtosecond laser pulses

    We experimentally investigated and herewith reported the results of laser ablation of copper and gold with two time-delayed femtosecond laser pulses at 800 nm in vacuum. The ablation plume dynamic was monitored by fast plume imaging and time- and space-resolved optical emission spectroscopy. Optical microscopy was used to follow the ablation depth as a function of the delay between the two laser pulses. Nanoparticles deposition on mica substrates was analysed by atomic force microscopy. We estimate roughly the plume's atomization degree - that is the mass fraction of atomized material over the total ablated mass - from the relative intensities of radiation emitted from atoms and nanoparticles. It is shown that the atomization degree depends critically on the time delay between both laser pulses and on the characteristic time of electron-lattice relaxation. The increase of the atomization degree is accompanied by the decrease of the ablation depth. Atomic force microscopy measurements confirm the partial atomization of nanoparticles, as the analyses of particle deposition on mica substrates show a large decrease of the number of nanoparticles for large delay between the two pulses.

  17. Low-order harmonic generation in nanosecond laser ablation plasmas of carbon containing materials

    In this work we report on a systematic study of the spatiotemporal behaviour of low-order harmonics generated in nanosecond laser ablation plasmas of carbon containing materials. Plasmas were generated from targets of graphite and boron carbide ablated with a nanosecond Q-switched Nd:YAG laser at 1064 nm. Low-order harmonics (3rd and 5th) of the fundamental wavelength of a ns Nd:YAG driving laser, propagating perpendicularly to the ablation laser at variable time delays, were observed. The temporal study of the low-order harmonics generated under vacuum and atmospheres of Kr and Xe, revealed the presence of two populations that contribute to the harmonic generation (HG) at different times. It was found that under vacuum only small species contribute to the HG process, whereas under buffer gas, heavier species, such as clusters and nanoparticles, contribute to the HG at longer times. Optical emission spectroscopy, time of flight mass spectrometry and characterization of deposits collected on-line on a nearby substrate provided additional information that complemented the results of the spatiotemporal study of the generated harmonics. This approach to ablation plume analysis allows elucidating the identity of the nonlinear emitters in laser ablation plasmas and facilitates the investigation of efficient, nanoparticle-enhanced, coherent short wavelength generation processes.

  18. Production of nanodispersed materials and thin films by laser ablation techniques in liquid and in vacuum

    The methods of laser ablation of chemical compounds in a liquid medium and in vacuum used for the production of highly dispersed materials and films, respectively, are considered. Features and advantages of these methods are noted and the potential of their application for the design of novel materials is discussed. Examples of application of these methods in scientific research are given. The bibliography includes 177 references.

  19. Experiment and analysis of ablation and condensation in NIF first wall materials

    Jin, H.; Peterson, P.F. [California Univ., Berkeley, CA (United States). Dept. of Nuclear Engineering; Turner, R.E.; Anderson, A.T.

    1996-06-14

    Experiments were performed on Nova at Lawrence Livermore National Laboratory to study the ablation and condensation process of National Ignition Facility (NIF) first wall materials. Plates of candidate first wall materials (SiO{sub 2}, B{sub 4}, and Al{sub 2}O{sub 3}) were exposed to x-rays from hohlraums in the Nova chamber. Ablated material was collected and measured on a receiving plate which was blocked form direct x-ray exposure. This article presents the results form these experiments and comparisons with predictions from numerical simulations The net condensation flux was calculated using the TSUNAMI code, which was modified to incorporate the feature of condensation boundaries.

  20. Heat generation caused by ablation of dental restorative materials with an ultra short pulse laser (USPL) system

    Braun, Andreas; Wehry, Richard; Brede, Olivier; Frentzen, Matthias; Schelle, Florian

    2011-03-01

    The aim of this study was to assess heat generation in dental restoration materials following laser ablation using an Ultra Short Pulse Laser (USPL) system. Specimens of phosphate cement (PC), ceramic (CE) and composite (C) were used. Ablation was performed with an Nd:YVO4 laser at 1064 nm and a pulse length of 8 ps. Heat generation during laser ablation depended on the thickness of the restoration material. A time delay for temperature increase was observed in the PC and C group. Employing the USPL system for removal of restorative materials, heat generation has to be considered.

  1. Equations of State for Ablator Materials in Inertial Confinement Fusion Simulations

    Sterne, P. A.; Benedict, L. X.; Hamel, S.; Correa, A. A.; Milovich, J. L.; Marinak, M. M.; Celliers, P. M.; Fratanduono, D. E.

    2016-05-01

    We discuss the development of the tabular equation of state (EOS) models for ablator materials in current use at Lawrence Livermore National Laboratory in simulations of inertial confinement fusion (ICF) experiments at the National Ignition Facility. We illustrate the methods with a review of current models for ablator materials and discuss some of the challenges in performing hydrocode simulations with high-fidelity multiphase models. We stress the importance of experimental data, as well as the utility of ab initio electronic structure calculations, in regions where data is not currently available. We illustrate why Hugoniot data alone is not sufficient to constrain the EOS models. These cases illustrate the importance of experimental EOS data in multi-megabar regimes, and the vital role they play in the development and validation of EOS models for ICF simulations.

  2. Emission Spectroscopic Boundary Layer Investigation during Ablative Material Testing in Plasmatron.

    Helber, Bernd; Chazot, Olivier; Hubin, Annick; Magin, Thierry E

    2016-01-01

    Ablative Thermal Protection Systems (TPS) allowed the first humans to safely return to Earth from the moon and are still considered as the only solution for future high-speed reentry missions. But despite the advancements made since Apollo, heat flux prediction remains an imperfect science and engineers resort to safety factors to determine the TPS thickness. This goes at the expense of embarked payload, hampering, for example, sample return missions. Ground testing in plasma wind-tunnels is currently the only affordable possibility for both material qualification and validation of material response codes. The subsonic 1.2MW Inductively Coupled Plasmatron facility at the von Karman Institute for Fluid Dynamics is able to reproduce a wide range of reentry environments. This protocol describes a procedure for the study of the gas/surface interaction on ablative materials in high enthalpy flows and presents sample results of a non-pyrolyzing, ablating carbon fiber precursor. With this publication, the authors envisage the definition of a standard procedure, facilitating comparison with other laboratories and contributing to ongoing efforts to improve heat shield reliability and reduce design uncertainties. The described core techniques are non-intrusive methods to track the material recession with a high-speed camera along with the chemistry in the reactive boundary layer, probed by emission spectroscopy. Although optical emission spectroscopy is limited to line-of-sight measurements and is further constrained to electronically excited atoms and molecules, its simplicity and broad applicability still make it the technique of choice for analysis of the reactive boundary layer. Recession of the ablating sample further requires that the distance of the measurement location with respect to the surface is known at all times during the experiment. Calibration of the optical system of the applied three spectrometers allowed quantitative comparison. At the fiber scale

  3. Obtaining and characterization of composite material base on ablative phenolic resin and carbon fibers

    Srebrenkoska, Vineta

    2002-01-01

    In this master paper is optimized a technological treatment for production of a molding compound based on short carbon fibers and ablative phenol- formaldehyde resin for high temperature application. The characterization of the starting raw materials is performed and molding compounds with different fiber/matrix ratio and different fiber length are obtained. From the different lab-samples molded parts are made by thermocompression. All physical, mechanical and thermal properties of the co...

  4. A FULLY IMPLICIT MATERIAL RESPONSE CODE WITH ABLATION AND PYROLYSIS FOR SIMULATION OF THERMAL PROTECTION SYSTEMS

    D'Ambrosio, Domenic; Dal Bianco, Alessandra; Mareschi, Vincenzo

    2015-01-01

    The purpose of this paper is to introduce and describe a 2-D fully implicit numerical simulation tool capable of evaluating the behaviour of an ablative charring thermal protection system during atmospheric entry. In particular, the computational tool can model the heat transfer inside a solid porous material and the decomposition of the latter, pyrolysis gas density, pressure and speed distributions and surface recession. The governing equations are fully coupled and are integrated using a t...

  5. Emission Spectroscopic Boundary Layer Investigation during Ablative Material Testing in Plasmatron

    Helber, Bernd; Chazot, Olivier; Hubin, Annick; Magin, Thierry E.

    2016-01-01

    Ablative Thermal Protection Systems (TPS) allowed the first humans to safely return to Earth from the moon and are still considered as the only solution for future high-speed reentry missions. But despite the advancements made since Apollo, heat flux prediction remains an imperfect science and engineers resort to safety factors to determine the TPS thickness. This goes at the expense of embarked payload, hampering, for example, sample return missions. Ground testing in plasma wind-tunnels is currently the only affordable possibility for both material qualification and validation of material response codes. The subsonic 1.2MW Inductively Coupled Plasmatron facility at the von Karman Institute for Fluid Dynamics is able to reproduce a wide range of reentry environments. This protocol describes a procedure for the study of the gas/surface interaction on ablative materials in high enthalpy flows and presents sample results of a non-pyrolyzing, ablating carbon fiber precursor. With this publication, the authors envisage the definition of a standard procedure, facilitating comparison with other laboratories and contributing to ongoing efforts to improve heat shield reliability and reduce design uncertainties. The described core techniques are non-intrusive methods to track the material recession with a high-speed camera along with the chemistry in the reactive boundary layer, probed by emission spectroscopy. Although optical emission spectroscopy is limited to line-of-sight measurements and is further constrained to electronically excited atoms and molecules, its simplicity and broad applicability still make it the technique of choice for analysis of the reactive boundary layer. Recession of the ablating sample further requires that the distance of the measurement location with respect to the surface is known at all times during the experiment. Calibration of the optical system of the applied three spectrometers allowed quantitative comparison. At the fiber scale

  6. A simulation-based and analytic analysis of the off-Hugoniot response of alternative inertial confinement fusion ablator materials

    Moore, Alastair S.; Prisbrey, Shon; Baker, Kevin L.; Celliers, Peter M.; Fry, Jonathan; Dittrich, Thomas R.; Wu, Kuang-Jen J.; Kervin, Margaret L.; Schoff, Michael E.; Farrell, Mike; Nikroo, Abbas; Hurricane, Omar A.

    2016-09-01

    The attainment of self-propagating fusion burn in an inertial confinement target at the National Ignition Facility will require the use of an ablator with high rocket-efficiency and ablation pressure. The ablation material used during the National Ignition Campaign (Lindl et al. 2014) [1], a glow-discharge polymer (GDP), does not couple as efficiently as simulations indicated to the multiple-shock inducing radiation drive environment created by laser power profile (Robey et al., 2012). We investigate the performance of two other ablators, boron carbide (B4C) and high-density carbon (HDC) compared to the performance of GDP under the same hohlraum conditions. Ablation performance is determined through measurement of the shock speed produced in planar samples of the ablator material subjected to the identical multiple-shock inducing radiation drive environments that are similar to a generic three-shock ignition drive. Simulations are in better agreement with the off-Hugoniot performance of B4C than either HDC or GDP, and analytic estimations of the ablation pressure indicate that while the pressure produced by B4C and GDP is similar when the ablator is allowed to release, the pressure reached by B4C seems to exceed that of HDC when backed by a Au/quartz layer.

  7. Ablation by-products of dental materials from the Er:YAG laser and the dental handpiece

    Wigdor, Harvey A.; Visuri, Steven R.; Walsh, Joseph T., Jr.

    1995-05-01

    Recently there has been much interest in lasers and their potential use to replace the dental drill. The research has been directed towards vital dental tissues. It must be understood that any laser to be used in dentistry which will replace the dental drill must also ablate and remove existing dental materials. Some concern exists about the ablation products when the Er:YAG laser is used to ablate dental materials. It is incumbent on the professionals using these lasers to understand the materials being produced by these lasers and protect themselves and their patients from possible toxic products. It is the intent of this paper to evaluate the products produced by the ablation of both dental amalgam and composite dental restorative materials and compare them with those produced by the traditional dental handpiece (drill).

  8. An experimental research to study the microwaves transmission characteristics of ablating material in arc-heated plasma flow

    An experimental research about the effect of ablating material on the reflection and the transmission of microwaves in arc-heated plasma flow is presented by using the C band microwave measuring system. The results show that the ablating material with accidented surface and its high temperature have remarkably affected the reflection and the transmission of microwaves. The experiment proves that the system has outstanding precision and reliability

  9. Multiscale Modeling of Ablation and Pyrolysis in PICA-Like materials

    Lachaud, Jean; Mansour, Nagi N.

    2008-01-01

    During atmospheric entry of planetary probes, the thermal protection system (TIPS) of the probe is exposed to high temperatures under low pressures. In these conditions, carbonous fibrous TIPS materials may undergo oxidation leading to mass loss and wall recession called ablation. This work aims to improve the understanding of material/environment interactions through a study of the coupling between oxygen transport in the Knudsen regime, heterogeneous oxidation of carbon, and surface recession. A 3D Random Walk Monte Carlo simulation tool is used for this study. The fibrous architecture of a model material, consisting of high porosity random array of carbon fibers, is numerically represented on a 3D Cartesian grid. Mass transport in the Knudsen regime from the boundary layer to the surface, and inside this porous material is simulated by random walk. A reaction probability is used to simulate the heterogeneous oxidation reaction. The surface recession of the fibers is followed by front tracking using a simplified marching cube approach. The output data of the simulations are ablation velocity and dynamic evolution of the material porosity. A parametric study is carried out to analyze the material behavior as a function of Knudsen number for the porous media (length of the mean free path compared to the mean pore diameter) and the intrinsic reactivity of the carbon fibers. The model is applied to Stardust mission reentry conditions and explains the unexpected behavior of the TIPS material that underwent mass loss in volume.

  10. Laser-solid interaction and dynamics of the laser-ablated materials

    Rapid transformations through the liquid and vapor phases induced by laser-solid interactions are described by the authors' thermal model with the Clausius-Clapeyron equation to determine the vaporization temperature under different surface pressure condition. Hydrodynamic behavior of the vapor during and after ablation is described by gas dynamic equations. These two models are coupled. Modeling results show that lower background pressure results lower laser energy density threshold for vaporization. The ablation rate and the amount of materials removed are proportional to the laser energy density above its threshold. The authors also demonstrate a dynamic source effect that accelerates the unsteady expansion of laser-ablated material in the direction perpendicular to the solid. A dynamic partial ionization effect is studied as well. A self-similar theory shows that the maximum expansion velocity is proportional to csα, where 1 - α is the slope of the velocity profile. Numerical hydrodynamic modeling is in good agreement with the theory. With these effects, α is reduced. Therefore, the expansion front velocity is significantly higher than that from conventional models. The results are consistent with experiments. They further study how the plume propagates in high background gas condition. Under appropriate conditions, the plume is slowed down, separates with the background, is backward moving, and hits the solid surface. Then, it splits into two parts when it rebounds from the surface. The results from the modeling will be compared with experimental observations where possible

  11. Selective ablation of photovoltaic materials with UV laser sources for monolithic interconnection of devices based on a-Si:H

    Molpeceres, C. [Centro Laser UPM, Univ. Politecnica de Madrid, Crta. de Valencia Km 7.3, 28031 Madrid (Spain)], E-mail: carlos.molpeceres@upm.es; Lauzurica, S.; Garcia-Ballesteros, J.J.; Morales, M.; Guadano, G.; Ocana, J.L. [Centro Laser UPM, Univ. Politecnica de Madrid, Crta. de Valencia Km 7.3, 28031 Madrid (Spain); Fernandez, S.; Gandia, J.J. [Dept. de Energias Renovables, Energia Solar Fotovoltaica, CIEMAT, Avda, Complutense 22, 28040 Madrid (Spain); Villar, F.; Nos, O.; Bertomeu, J. [CeRMAE Dept. Fisica Aplicada i Optica, Universitat de Barcelona, Av. Diagonal 647, 08028 Barcelona (Spain)

    2009-03-15

    Lasers are essential tools for cell isolation and monolithic interconnection in thin-film-silicon photovoltaic technologies. Laser ablation of transparent conductive oxides (TCOs), amorphous silicon structures and back contact removal are standard processes in industry for monolithic device interconnection. However, material ablation with minimum debris and small heat affected zone is one of the main difficulty is to achieve, to reduce costs and to improve device efficiency. In this paper we present recent results in laser ablation of photovoltaic materials using excimer and UV wavelengths of diode-pumped solid-state (DPSS) laser sources. We discuss results concerning UV ablation of different TCO and thin-film silicon (a-Si:H and nc-Si:H), focussing our study on ablation threshold measurements and process-quality assessment using advanced optical microscopy techniques. In that way we show the advantages of using UV wavelengths for minimizing the characteristic material thermal affection of laser irradiation in the ns regime at higher wavelengths. Additionally we include preliminary results of selective ablation of film on film structures irradiating from the film side (direct writing configuration) including the problem of selective ablation of ZnO films on a-Si:H layers. In that way we demonstrate the potential use of UV wavelengths of fully commercial laser sources as an alternative to standard backscribing process in device fabrication.

  12. Three-dimensional thermal simulation of nanosecond laser ablation for semitransparent material

    Ahn, Junsu, E-mail: junsuahn@kaist.ac.kr; Na, Suck-Joo, E-mail: sjna@kaist.ac.kr

    2013-10-15

    A numerical study of nanosecond laser ablation process for semitransparent material was performed. A heat source model using ray tracing is suggested for three-dimensional simulations of laser material processing based on the volume-of-fluid (VOF) method. The model is capable to describe both the ray transmission into the material and the reflections from the material surface. In the computational implementation of the model, a stochastic approach was introduced to avoid the recursive branching of an incident ray into transmitted and reflected rays. Since the ray tracing highly depends on the shape of the target material, proper surface reconstruction method is also considered. For the spatially continuous representation of the free surface of the material, the piecewise linear surface of the VOF method was converted into the level set surface reconstructed by the interpolation of the signed distance function. The applicability of the model was validated by example simulations and experiments on polyimide workpiece with nanosecond laser.

  13. Non-Intrusive Sensor for In-Situ Measurement of Recession Rate of Ablative and Eroding Materials

    Papadopoulos, George (Inventor); Tiliakos, Nicholas (Inventor); Benel, Gabriel (Inventor); Thomson, Clint (Inventor)

    2014-01-01

    A non-intrusive sensor for in-situ measurement of recession rate of heat shield ablatives. An ultrasonic wave source is carried in the housing. A microphone is also carried in the housing, for collecting the reflected ultrasonic waves from an interface surface of the ablative material. A time phasing control circuit is also included for time-phasing the ultrasonic wave source so that the waves reflected from the interface surface of the ablative material focus on the microphone, to maximize the acoustic pressure detected by the microphone and to mitigate acoustic velocity variation effects through the material through a de-coupling process that involves a software algorithm. A software circuit for computing the location off of which the ultrasonic waves scattered to focus back at the microphone is also included, so that the recession rate of the heat shield ablative may be monitored in real-time through the scan-focus approach.

  14. Degradation of carbon-based materials under ablative conditions produced by a high enthalpy plasma jet

    Gilberto Petraconi

    2010-04-01

    Full Text Available A stationary experiment was performed to study the degradation of carbon-based materials by immersion in a plasma jet. In the experiment, graphite and C/C composite were chosen as the target materials, and the reactive plasma jet was generated by an air plasma torch. For macroscopic study of the material degradation, the sample’s mass losses were measured as function of the exposure time under various temperatures on the sample surface. A microscopic analysis was then carried out for the study of microscopic aspects of the erosion of material surface. These experiments showed that the mass loss per unit area is approximately proportional to the exposure time and strongly depends on the temperature of the material surface. The mass erosion rate of graphite was appreciably higher than the C/C composite. The ablation rate in the carbon matrix region in C/C composite was also noticeably higher than that in the fiber region. In addition, the latter varied according to the orientation of fibers relatively to the flow direction. These tests indicated an excellent ablation resistance of the C/C composite, thus being a reliable material for rocket nozzles and heat shielding elements of the protection systems of hypersonic apparatuses from aerodynamic heating.

  15. Lightweight Ablative and Ceramic Thermal Protection System Materials for NASA Exploration Systems Vehicles

    Valentine, Peter G.; Lawrence, Timothy W.; Gubert, Michael K.; Milos, Frank S.; Kiser, James D.; Ohlhorst, Craig W.; Koenig, John R.

    2006-01-01

    As a collaborative effort among NASA Centers, the "Lightweight Nonmetallic Thermal Protection Materials Technology" Project was set up to assist mission/vehicle design trade studies, to support risk reduction in thermal protection system (TPS) material selections, to facilitate vehicle mass optimization, and to aid development of human-rated TPS qualification and certification plans. Missions performing aerocapture, aerobraking, or direct aeroentry rely on advanced heatshields that allow reductions in spacecraft mass by minimizing propellant requirements. Information will be presented on candidate materials for such reentry approaches and on screening tests conducted (material property and space environmental effects tests) to evaluate viable candidates. Seventeen materials, in three classes (ablatives, tiles, and ceramic matrix composites), were studied. In additional to physical, mechanical, and thermal property tests, high heat flux laser tests and simulated-reentry oxidation tests were performed. Space environmental effects testing, which included exposures to electrons, atomic oxygen, and hypervelocity impacts, was also conducted.

  16. Laser ablation in liquids as a new technique of sampling in elemental analysis of solid materials

    Laser ablation in liquid media is considered as a new sample preparation technique in the elemental composition analysis of materials using optical emission spectroscopy of inductively coupled plasma (ICP-OES). Solid samples are transformed into uniform colloidal solutions of nanosized analyte particles using laser radiation focused onto the sample surface. High homogeneity of the resulting solution allows performing the ICP-OES quantitative analysis especially for the samples, which are poorly soluble in acids. The technique is compatible with the conventional solution-based standards

  17. Experimental performance of an ablative material as an external insulator for a hypersonic research aircraft

    Puster, R. L.; Chapman, A. J.

    1977-01-01

    An ablative material composed of silica-filled elastomeric silicone was tested to evaluate its thermal and structural performance as an external insulator, or heat shield, for a hypersonic research aircraft. The material was also tested to determine whether it would form a durable char layer when initially heated and thereafter function primarily as an insulator with little further pyrolysis or char removal. Aerothermal tests were representative of nominal Mach 6 cruise conditions of the aircraft, and additional tests were representative of Mach 8 cruise and interference heating conditions. Radiant heating tests were used to simulate the complete nominal Mach 6 surface-temperature history. The silica char that formed during aerothermal tests was not durable. The char experienced a general and preferential surface recession, with the primary mechanism for char removal being erosion. Tests revealed that radiant heating is not a valid technique for simulating aerodynamic heating of the material.

  18. Characterization of material ablation driven by laser generated intense extreme ultraviolet light

    Tanaka, Nozomi; Masuda, Masaya; Deguchi, Ryo; Murakami, Masakatsu; Sunahara, Atsushi; Fujioka, Shinsuke; Yogo, Akifumi; Nishimura, Hiroaki

    2015-09-01

    We present a comparative study on the hydrodynamic behaviour of plasmas generated by material ablation by the irradiation of nanosecond extreme ultraviolet (EUV or XUV) or infrared laser pulses on solid samples. It was clarified that the difference in the photon energy deposition and following material heating mechanism between these two lights result in the difference in the plasma parameters and plasma expansion characteristics. Silicon plate was ablated by either focused intense EUV pulse (λ = 9-25 nm, 10 ns) or laser pulse (λ = 1064 nm, 10 ns), both with an intensity of ˜109 W/cm2. Both the angular distributions and energy spectra of the expanding ions revealed that the photoionized plasma generated by the EUV light differs significantly from that produced by the laser. The laser-generated plasma undergoes spherical expansion, whereas the EUV-generated plasma undergoes planar expansion in a comparatively narrow angular range. It is presumed that the EUV radiation is transmitted through the expanding plasma and directly photoionizes the samples in the solid phase, consequently forming a high-density and high-pressure plasma. Due to a steep pressure gradient along the direction of the target normal, the EUV plasma expands straightforward resulting in the narrower angular distribution observed.

  19. Characterization of material ablation driven by laser generated intense extreme ultraviolet light

    Tanaka, Nozomi, E-mail: tanaka-n@ile.osaka-u.ac.jp; Masuda, Masaya; Deguchi, Ryo; Murakami, Masakatsu; Fujioka, Shinsuke; Yogo, Akifumi; Nishimura, Hiroaki [Institute of Laser Engineering, Osaka University, 2-6 Yamadaoka, Suita, Osaka 565-0871 (Japan); Sunahara, Atsushi [Institute for Laser Technology, 2-6 Yamadaoka, Suita, Osaka 565-0871 (Japan)

    2015-09-14

    We present a comparative study on the hydrodynamic behaviour of plasmas generated by material ablation by the irradiation of nanosecond extreme ultraviolet (EUV or XUV) or infrared laser pulses on solid samples. It was clarified that the difference in the photon energy deposition and following material heating mechanism between these two lights result in the difference in the plasma parameters and plasma expansion characteristics. Silicon plate was ablated by either focused intense EUV pulse (λ = 9–25 nm, 10 ns) or laser pulse (λ = 1064 nm, 10 ns), both with an intensity of ∼10{sup 9 }W/cm{sup 2}. Both the angular distributions and energy spectra of the expanding ions revealed that the photoionized plasma generated by the EUV light differs significantly from that produced by the laser. The laser-generated plasma undergoes spherical expansion, whereas the EUV-generated plasma undergoes planar expansion in a comparatively narrow angular range. It is presumed that the EUV radiation is transmitted through the expanding plasma and directly photoionizes the samples in the solid phase, consequently forming a high-density and high-pressure plasma. Due to a steep pressure gradient along the direction of the target normal, the EUV plasma expands straightforward resulting in the narrower angular distribution observed.

  20. Multidisciplinary approach to materials selection for bipropellant thrusters using ablative and radiative cooling

    A Adami; M Mortazavi; M Nosratollahi

    2016-01-01

    Reduction of costs is a main consideration in every space mission, and propulsion system is an important subsystem of those missions where orbital maneuvers are considered. Lighter propulsions with higher performance are necessary to reduce the mission costs. Bipropellant propulsions have been widely used in launch vehicles and upper-stages as well as deorbit modules because of better performances in comparison with other propulsion systems. Unfortunately heat transfer and thermal control limit bipropellant propulsion performance and maximum performance cannot be achieved. Well-known cooling methods such as regenerative and film cooling increase the cost using extra equipment and high temperature materials. In this paper, a new approach for cooling is presented based on combined ablative and radiative cooling. Governing equations are derived for two or three layers of thermal protection system (TPS) to optimize the TPS mass. The first layer is used as an ablative layer to control the temperature where the second and third layers are used as an insulator to control the heat fluxes. Proposed cooling method has been applied for two real bipropellant thrusters. According to the results, the presented algorithm can suitably predict the heat fluxes and satisfy the wall temperature constraint. Then, the algorithm has been used to minimize the wall temperatures as low as possible and replace high temperature materials (platinum alloy) with common materials (composite or steel). It is shown that selection of TPS materials affects the TPS mass and Isp simultaneously, but conversely. Best solution should be derived by trading off between structure temperature (cost), Isp (performance), and TPS thicknesses (geometry). Multidisciplinary approach to TPS and structure material selection of a bipropellant thruster is presented for a case study. It has been shown that mass and performance penalties of using TPS are acceptable, considering the advantages of using steel alloy instead

  1. Laser ablation of electronic materials including the effects of energy coupling and plasma interactions

    Zeng, Xianzhong

    2004-01-01

    Many laser ablation applications such as laser drilling and micromachining generate cavity structures. The study of laser ablation inside a cavity is of both fundamental and practical significance. In this dissertation, cavities with different aspect ratios (depth/diameter) were fabricated in fused silica by laser micromachining. Pulsed laser ablation in the cavities was studied and compared with laser ablation on a flat surface. The formation of laser-induced plasmas in the cavities and...

  2. Ablative Thermal Protection System Fundamentals

    Beck, Robin A. S.

    2013-01-01

    This is the presentation for a short course on the fundamentals of ablative thermal protection systems. It covers the definition of ablation, description of ablative materials, how they work, how to analyze them and how to model them.

  3. Modeling Initial Stage of Ablation Material Pyrolysis: Graphitic Precursor Formation and Interfacial Effects

    Desai, Tapan G.; Lawson, John W.; Keblinski, Pawel

    2010-01-01

    Reactive molecular dynamics simulations are used to study initial stage of pyrolysis of ablation materials and their composites with carbon nanotubes and carbon fibers. The products formed during pyrolysis are characterized and water is found as the primary product in all cases. The water formation mechanisms are analyzed and the value of the activation energy for water formation is estimated. A detailed study on graphitic precursor formation reveals the presence of two temperature zones. In the lower temperature zone (less than 2000 K) polymerization occurs resulting in formation of large, stable graphitic precursors, and in the high temperature zone (greater than 2000 K) polymer scission results in formation of short polymer chains/molecules. Simulations performed in the high temperature zone on the phenolic resin composites (with carbon nanotubes and carbon fibers) shows that the presence of interfaces had no substantial effect on the chain scission rate or the activation energy value for water formation.

  4. Dynamic materials evaluation by confined plasma ablation and laser-generated shocks

    Paisley, Dennis L.; Swift, D. C.; Forsman, A. C.; Kyrala, George A.; Johnson, Randall P.; Kopp, Roger A.; Hauer, Allan A.; Wark, Justin S.; Loveridge, A.; Allen, A. M.; Kalantar, Daniel H.

    2000-08-01

    Laser-generated shocks can and have been used to study their effects on single crystal materials during shock compression. While a crystal undergoes shock compression and release, the transient x- ray diffraction (TXD) of the Bragg and Laue signals is indicative of the change in the crystal lattice spacing. The lattice spacing directly relates to the strain in the crystal. From the dynamic lattice data, strain, strain rate, and/or phase change in a material may be determined. Confined ablation plasmas can efficiently launch a flyer plate for direct impact on a target material imparting a well-characterized shock input and generate kilobar to megabar pressure pulses over a wide range of pulse duration (EQ 1 - >= 20 ns). The laser-launched flyer plates are analogous to those launched by gas guns, but the smaller size provides an experimental method not easily accessible by larger gas gun experiments. With lasers, diagnostic equipment can be easily synchronized to study dynamic material parameters, i.e., single crystal shock dynamics, interfacial bond strengths of thin coatings, grain-interfaces, texture, and high strain rates (106 - 109 sec-1).

  5. Modeling and experiments of x-ray ablation of National Ignition Facility first wall materials

    This paper discusses results of modeling and experiments on the x-ray response of selected materials relevant to NIF target chamber design. X-ray energy deposition occurs in such small characteristic depths (on the order of a micron) that thermal conduction and hydrodynamic motion significantly affect the material response, even during the typical 10-ns pulses. The finite-difference ablation model integrates four separate processes: x-ray energy deposition, heat conduction, hydrodynamics, and surface vaporization. Experiments have been conducted at the Nova laser facility in Livermore on response of various materials to NIF-relevant x-ray fluences. Fused silica, Si nitride, B carbide, B, Si carbide, C, Al2O3, and Al were tested. Response was diagnosed using post-shot examinations of the surfaces with SEM and atomic force microscopes. Judgements were made about the dominant removal mechanisms for each material; relative importances of these processes were also studied with the x-ray response model

  6. Laser beam deflection as a probe of laser ablation of materials

    Helium-neon laser beam deflection is used to study excimer laser ablation of polymers and a YBa2Cu3O7-x superconductor. Density gradients above pulsed laser heated or ablated samples deflect the He-Ne laser beam and this is measured using a position sensitive detector. The technique permits the determination of the laser fluence threshold for ablation both in a vacuum and in air, and the velocity of the ablation products in a vacuum. A model of the thermal deflection at low fluence was developed which enables measurements of thermal diffusivity of the air

  7. Evaulation of B{sub 4}C as an ablator material for NIF capsules. Revision 1

    Burnham, A.K.; Alford, C.S.; Makowiecki, D.M.; Dittrich, T.R.; Wallace, R.J.; Honea, E.C.; King, C.M. [Lawrence Livermore National Lab., CA (United States); Steinman, D. [General Atomics, San Diego, CA (United States)

    1997-03-26

    Boron carbide (B{sub 4}C) is examined as a potential fuel container and ablator for implosion capsules on the National Ignition Facility (NIF). A capsule of pure B{sub 4}C encasing a layer of solid DT implodes stably and ignites with anticipated NIF x-ray drives, producing 18 MJ of energy. Thin films of B{sub 4}C were found to be resistant to oxidation and modestly transmitting in the infrared (IR), possibly enabling IR fuel characterization and enhancement for thin permeation barriers but not for full-thickness capsules. Polystyrene mandrels 0.5 mm in diameter were successfully coated with 0.15-2.0 micrometers of B{sub 4}C. Thickness estimated from optical density agreed well with those measured by scanning electron microscopy (SEM). The B{sub 4}C microstructure was columnar but finer than for Be made at the same conditions. B{sub 4}C is a very strong material, with a fiber tensile strength capable of holding NIF fill pressures at room temperature, but it is also very brittle, and microscopic flaws or grain structure may limit the noncryogenic fill pressure. Argon (Ar) permeation rates were measured for a few capsules that had been further coated with 5 micrometers of plasma polymer. The B{sub 4}C coatings tended to crack under tensile load. Some shells filled more slowly than they leaked, suggesting that the cracks open and close under opposite pressure loading. As observed earlier for Ti coatings, 0.15-micrometer layers of B{sub 4}C had better gas retention properties than 2-micrometer layers, possibly because of fewer cracks. Permeation and fill strength issues for capsules with a full ablator thickness of B{sub 4}C are unresolved. 21 refs., 6 figs.

  8. Classification of plastic materials by imaging laser-induced ablation plumes

    Negre, Erwan; Motto-Ros, Vincent; Pelascini, Frederic; Yu, Jin

    2016-08-01

    A method of rapid classification and identification of plastic materials has been studied in this work. Such method is based on fast spectroscopic imagery of laser-induced ablation plume on plastics to be analyzed. More specifically, a classification schema has been developed first according to the nature of the CC bonds which characterize the polymer matrix. Our results show that the spatial distribution and the evolution of the molecular species in the ablation plume, such as C2 and CN, exhibit clear different behaviors for polymers without any native CC bond, with CC single bonds or with CC double bonds respectively. Therefore the morphological parameters of the populations of the molecular species extracted from the time-resolved spectroscopic images of the plumes provide efficient indicators to classify the polymers characterized by the above mentioned different kinds of CC bonds. When dealing with different polymers with the same kind of CC bond, CC single bond for instance, other indicators should be introduced to provide the further discrimination. Such indicators can be for example a specific native molecular bond other than CC bonds, CN for example, the total emission intensity of which may exhibit specific time evolution. The robustness of the developed classification schema has been then studied with respect to two of the most frequently used additives in plastics fabrication, graphite and titanium. Our results show a negligible influence of these additives in the morphology of the populations of the molecular species when such additives are mixed into the polymer matrix with the percentages usually used in plastics productions, which demonstrates the validity of the developed classification schema for plastics.

  9. Standard Test Method for Oxyacetylene Ablation Testing of Thermal Insulation Materials

    American Society for Testing and Materials. Philadelphia

    2008-01-01

    1.1 This test method covers the screening of ablative materials to determine the relative thermal insulation effectiveness when tested as a flat panel in an environment of a steady flow of hot gas provided by an oxyacetylene burner. 1.2 This test method should be used to measure and describe the properties of materials, products, or assemblies in response to heat and flame under controlled laboratory conditions and should not be used to describe or appraise the fire hazard of materials, products, or assemblies under actual fire conditions. However, results of this test method may be used as elements of a fire risk assessment which takes into account all of the factors which are pertinent to an assessment of the fire hazard of a particular end use. 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limi...

  10. Laser ablation inductively coupled plasma optical emission spectrometry for analysis of pellets of plant materials

    Gomes, Marcos S. [Departamento de Química, Universidade Federal de São Carlos, Rod. Washington Luís, km 235, 13565-905 São Carlos, SP (Brazil); Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Av. Centenário 303, 13416-000 Piracicaba, SP (Brazil); Schenk, Emily R. [Department of Chemistry and Biochemistry, Florida International University, Miami, FL (United States); International Forensic Research Institute, Florida International University, Miami, FL (United States); Santos, Dário [Departamento de Ciências Exatas e da Terra, Universidade Federal de São Paulo, Rua Professor Arthur Riedel 275, Diadema, SP (Brazil); Krug, Francisco José [Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Av. Centenário 303, 13416-000 Piracicaba, SP (Brazil); Almirall, José R., E-mail: almirall@fiu.edu [Department of Chemistry and Biochemistry, Florida International University, Miami, FL (United States); International Forensic Research Institute, Florida International University, Miami, FL (United States)

    2014-04-01

    An evaluation of laser ablation inductively coupled plasma optical emission spectroscopy (LAICP OES) for the direct analysis of pelleted plant material is reported. Ground leaves of orange citrus, soy and sugarcane were comminuted using a high-speed ball mill, pressed into pellets and sampled directly with laser ablation and analyzed by ICP OES. The limits of detection (LODs) for the method ranged from as low as 0.1 mg kg{sup −1} for Zn to as high as 94 mg kg{sup −1} for K but were generally below 6 mg kg{sup −1} for most of the elements of interest. A certified reference material consisting of a similar matrix (NIST SRM 1547 peach leaves) was used to check the accuracy of the calibration and the reported method resulted in an average bias of ∼ 5% for all the elements of interest. The precision for the reported method ranged from as low as 4% relative standard deviation (RSD) for Mn to as high as 17% RSD for Zn but averaged ∼ 6.5% RSD for all the elements (n = 10). The proposed method was tested for the determination of Ca, Mg, P, K, Fe, Mn, Zn and B, and the results were in good agreement with those obtained for the corresponding acid digests by ICP-OES, no differences being observed by applying a paired t-test at the 95% confidence level. The reported direct solid sampling method provides a fast alternative to acid digestion that results in similar and appropriate analytical figures of merit with regard to sensitivity, accuracy and precision for plant material analysis. - Highlights: • An evaluation of LA-ICP-OES for the direct analysis of pelleted plant material is reported. • Orange citrus, soy and sugarcane plants were pressed into pellets and sampled directly. • The element menu consisted of Ca, Mg, P, K, Fe, Mn, Zn and B. • LODs for the method ranged from 0.1 mg kg{sup −1} for Zn to 94 mg kg{sup −1} for K. • The precision ranged from 4% RSD for Mn to 17% RSD for Zn (∼ 6.5% RSD average)

  11. Ablation, surface activation, and electroless metallization of insulating materials by pulsed excimer laser irradiation

    Pulsed-laser irradiation of wide bandgap ceramic substrates, using photons with sub-bandgap energies, activates the ceramic surface for subsequent electroless copper deposition. The copper deposit is confined within the irradiated region when the substrate is subsequently immersed in an electroless copper bath. However, a high laser fluence (typically several j/cm2) and repeated laser shots are needed to obtain uniform copper coverage by this direct-irradiation process. In contrast, by first applying an evaporated SiOx thin film (with x ∼1), laser ablation at quite low energy density (∼0.5 J/cm2) results in re-deposition on the ceramic substrate of material that is catalytic for subsequent electroless copper deposition. Experiments indicate that the re-deposited material is on silicon, on which copper nucleates. Using an SiOx film on a laser-transparent substrate, quite fine (∼12 μm) copper lines can be formed at the boundary of the region that is laser-etched in SiOx. Using SiOx with an absorbing (polycrystalline) ceramic substrate, more-or-less uniform activation and subsequent copper deposition are obtained. In the later case, interactions with the ceramic substrate also may be important for uniform deposition

  12. Material Strength Effects on Feedthru of the Ablative Richtmyer-Meshkov Instability

    Loomis, Eric; Peralta, Pedro; Fortin, Elizabeth; Lynch, Jenna

    2015-11-01

    Mitigating hydrodynamic instabilities in Inertial Confinement Fusion (ICF) is of prime importance for producing self-heating and reaching ignition. One possible mitigation strategy involves the use of metal ablators (e.g., Be) that remain solid following passage of the first shock. Finite material strength in these capsules would alter the feedthru characteristics (oscillation frequency and decay rate) of perturbations initially on the outer surface. To study the physics associated with material strength effects on rippled shock oscillations and feedthru, experiments were performed at the Los Alamos Trident laser. These experiments directly measured the surface height amplitude imprinted by the shock ripple at the opposite free surface with 20 nm precision over a timespan of 25 ns using an in-situ diagnostic called Transient Imaging Displacement Interferometry (TIDI). Simulations from the Lawrence Livermore National Lab code HYDRA predicted that the free surface ripple grows about 3 times more without the use of a strength model in Cu for an initial 5 micron amplitude, 50 micron wavelength sinusoid driven to a free surface velocity of 600 m/s. By increasing the perturbation wavelength we slowed the shock oscillation frequency and decay rate to increase the free surface ripple amplitude to roughly half the perturbations initial amplitude. The time dependent imprinted amplitude was considerably less in high strength Fe versus the softer Cu. This research made possible by a grant from the Office of Fusion Energy Sciences - High Energy Density Laboratory Plasmas.

  13. Production and characterization of composite material based on ablative phenolic resin and carbon fibers

    The optimisation of technology for production of moulding compound based on short carbon fibers and ablative phenolic resin is carried out. The characterisation of the starting raw materials is performed and moulding compounds With different fiber/matrix ratios and different fiber lengths are prepared. From the different samples, mouldings are produced by thermal compression. All physical, mechanical and thermal properties of the composites are tested. From the obtained results the optimal fiber/matrix ratio, for high temperature moulding compounds production are determined. Also, in order to meet the request for high thermal and mechanics properties of the composite, optimization is carded out on the moulding process itself. The optimization is fulfilled by a planned experiment. The full factorial experimental design is applied in which the following parameters are varied: fiber length, temperature and time of the press cycle. Regression equations for the influence of the parameters to the impact resistance, compression strength, flexural strength and the modulus of elasticity of the molding, are obtained. The obtained mechanical properties of the composite rate this material for potential application in the automotive, leisure, military and other industries.(Author)

  14. Dissociation along the principal Hugoniot of the Laser Mégajoule ablator material.

    Colin-Lalu, P; Recoules, V; Salin, G; Plisson, T; Brambrink, E; Vinci, T; Bolis, R; Huser, G

    2016-08-01

    Glow discharge polymer hydrocarbon (GDP-CH) is used as the ablator material in inertial confinement fusion (ICF) capsules for the Laser Mégajoule and National Ignition Facility. Due to its fabrication process, GDP-CH chemical composition and structure differ from commercially available plastics and detailed knowledge of its properties in the warm dense matter regime is needed to achieve accurate design of ICF capsules. First-principles ab initio simulations of the GDP-CH principal Hugoniot up to 8 Mbar were performed using the quantum molecular dynamics (QMD) code abinit and showed that atomic bond dissociation has an effect on the compressibility. Results from these simulations are used to parametrize a quantum semiempirical model in order to generate a tabulated equation of state that includes dissociation. Hugoniot measurements obtained from an experiment conducted at the LULI2000 laser facility confirm QMD simulations as well as EOS modeling. We conclude by showing the EOS model influence on shock timing in a hydrodynamic simulation. PMID:27627404

  15. Thin film growing by the laser ablation technique: possibilities for growing of dosimetric materials

    In this talk we will present the basics about the laser ablation technique and how it is used for thin film growing, either as a single film or a stack of thin films, as well as some methods to characterize in real time the film thickness. Finally, we will discuss the possibilities of using laser ablation for growing thin films with applications to dosimetry. (Author)

  16. Study of the Wavelength Dependence in Laser Ablation of Advanced Ceramics and Glass-Ceramic Materials in the Nanosecond Range

    Daniel Sola; Jose I. Peña

    2013-01-01

    In this work, geometrical dimensions and ablation yields as a function of the machining method and reference position were studied when advanced ceramics and glass-ceramic materials were machined with pulsed lasers in the nanosecond range. Two laser systems, emitting at 1064 and 532 nm, were used. It was shown that the features obtained depend on whether the substrate is processed by means of pulse bursts or by grooves. In particular, when the samples were processed by grooves, machined depth...

  17. Radial Movement of Pellet Ablation Material in Tokamaks Due to the Grad-B Effect

    Parks, P. B.; Sessions, W.; Ventrice, C. A.; Baylor, L. R.

    1998-11-01

    The mass source from a pellet represents a significant disturbance to the plasma. Initially the ablated substance is a highly localized, high-beta (>1) plasmoid, which will polarize and drift towards the low field side of the tokamak. Propagation of shear Alfvén waves brakes the outward motion,(P.B. Parks, Nucl. Fusion 32), 2137 (1992). much like its role as a restoring force in the ballooning mode. The grad-B drift drive will weaken because of pressure relaxation as the ablated substance spreads out along the field lines. The ablation blob will stop before it becomes assimilated into the plasma. An analytic model was developed to predict the stopping distance, i.e., the outward large-R shift for radial, vertical, and inside launch locations. Comparison of the model with experiments on TFTR, JET, DIII--D, and a 3D MHD simulation(H. Strauss, Int. Sherwood Fusion Theory Conf. 1998.) will be presented.

  18. Synthesis of nanohybrid materials by femtosecond laser ablation in liquid medium

    ZnO nanoparticles were synthesized by means of femtosecond laser ablation of a ZnO target in different pure liquids such as deionized water and ethanol, and in solutions of doand octa-decanethiol. Samples produced in water at low laser fluence contained nanoparticles whose radius is less than the Bohr radius as revealed by photoluminescence measurements that illustrate explicitly the effect of quantum confinement directly linked to the presence of nanoparticles. In fact, particles of about 1 nm in diameter were identified by AFM and TEM observations, which also show the increase in ablated particle size when increasing the fluence. Processing in ethanol and at low fluence led to the formation of ZnO particles of a few nanometers in diameter. When ablating in thiol solutions, slow cluster-growth promotes the formation of facetted particles

  19. Production of microstructures in wide-band-gap and organic materials using pulsed laser ablation at 157 nm wavelength

    Haehnel, Falk; Bertram, Rene; Reisse, Guenter; Boettcher, Rene; Weissmantel, Steffen

    2010-11-01

    New results on three-dimensional microstructuring of fused silica, sapphire, calcium fluoride, magnesium fluoride, and PTFE using pulsed laser ablation at 157 nm wavelength are presented. A largely automated high-precision fluorine laser micromachining station was used for the investigations. In some fundamental investigations, threshold fluences of 0.9 J/cm2 for fused silica, 0.6 J/cm2 for sapphire, 1.7 J/cm2 for calcium fluoride, and of 0.05 J/cm2 for PTFE have been determined. The ablation rates at 3 J/cm2 fluence were 60 to 100 nm/pulse for the inorganic insulators and 450 nm/pulse for PTFE. In the second part of the paper, it is shown that on the basis of the knowledge of the ablation rates and the laser beam parameters, bores of a few µm size and complex 3D microstructures with a variety of geometries can be produced in the surface of these materials. Thereby, no cracking occurs if proper parameters are used.

  20. Investigation of the particle size distribution of the ejected material generated during the single femtosecond laser pulse ablation of aluminium

    Highlights: • Single 50 fs laser pulse ablation of an aluminium target in vacuum is investigated in our experiments. • Nanoparticles with large radii of several hundred nanometers are observed. • The nanoparticles are most likely from the mechanical tensile stress relaxation. - Abstract: Single femtosecond laser pulses are employed to ablate an aluminium target in vacuum, and the particle size distribution of the ablated material deposited on a mica substrate is examined with atomic force microscopy (AFM). The recorded AFM images show that these particles have a mean radius of several tens of nanometres. It is also determined that the mean radius of these deposited nanoparticles increases when the laser fluence at the aluminium target increases from 0.44 J/cm2 to 0.63 J/cm2. The mechanism of the laser-induced nanoparticle generation is thought to be photomechanical tensile stress relaxation. Raman spectroscopy measurements confirm that the nanoparticles thus produced have the same structure as the bulk aluminium

  1. Observation of the dependence on the fluence and materials in femto-second laser ablation process by using the soft x-ray laser probe

    We have succeeded in simultaneous observation of the ablation front and the expansion front with thin filmy structure in the femto-second laser ablation process of a gold target by using the 13.9 nm soft x-ray probe (incident angle to the sample ∼70deg) with soft x-ray interferometer. The dependence on the laser local fluence and materials was obtained by the comparison between gold and tungsten. (author)

  2. Preliminary Evaluation of Techniques to Fabricate Beryllium, Polyimide, and Ge-doped CH/CD Ablator Materials

    Cook, B; Letts, S; Nikroo, A; Nobile, A; McElfresh, M; Cooley, J; Alexander, D

    2004-11-08

    This report including appendices provides information to complete this deliverable. It summarizes the important features of each ablator material, with particular focus to its usefulness for ignition capsules. More detailed discussions of each ablator type are in the Appendix. Included at the end of each separate discussion in the Appendix is a list of all published work with an ICF focus on that ablator type. This report is organized into Be based and polymer (C) based ablators. We summarize status, outstanding issues, and how we plan to address them. Details are in the Appendix. For Be there are two fabrication routes, one by machining bulk pieces into hemi-shells which are then bonded together, and the other by sputtering Be with Cu dopant onto spherical plastic mandrels to build up a wall. This method allows for radial variation in the Cu dopant concentration, while the machining approach is best suited to a uniform doping level. For plastic, we have already made a down select, eliminating polyimide because its performance as an ablator has been seen to be significantly different from that predicted by simulations. The other polymer, GDP (glow discharge polymer or sometimes called plasma polymer) comes in both a normal (hydrogenated) and deuterated form. There are differences between them (besides the H or D) and these will be detailed. The choice between them will be determined in part by cryogenic measurement of the IR absorption spectrum of DT scheduled to occur in the next few months. An initial list of specifications for ignition targets exists. However these specifications are continuing to evolve. This is due to evolving plans for NIF's deliverable energy and to more refined design simulations. Many requirements are not well specified due to lack of knowledge of the effect on the implosion. These requirements include: grain size and texture, fill hole size, fill tube size, bond joint thickness, allowable porosity (size and number), diameter and wall

  3. Femtosecond laser ablation properties of transparent materials: impact of the laser process parameters on the machining throughput

    Matylitsky, V. V.; Hendricks, F.; Aus der Au, J.

    2013-03-01

    High average power, high repetition rate femtosecond lasers with μJ pulse energies are increasingly used for bio-medical and material processing applications. With the introduction of femtosecond laser systems such as the SpiritTM platform developed by High Q Lasers and Spectra-Physics, micro-processing of solid targets with femtosecond laser pulses have obtained new perspectives for industrial applications [1]. The unique advantage of material processing with subpicosecond lasers is efficient, fast and localized energy deposition, which leads to high ablation efficiency and accuracy in nearly all kinds of solid materials. The study on the impact of the laser processing parameters on the removal rate for transparent substrate using femtosecond laser pulses will be presented. In particular, examples of micro-processing of poly-L-lactic acid (PLLA) - bio-degradable polyester and XensationTM glass (Schott) machined with SpiritTM ultrafast laser will be shown.

  4. Progress in Research on Ablative Material Resins with High Carbonization Rate%烧蚀材料高成碳树脂的研究进展

    钟瑶冰; 魏伯荣; 刘郁杨

    2011-01-01

    耐烧蚀材料在国防工业上有十分重要的应用价值,碳化型烧蚀材料是利用高分子材料在高温碳化吸热量的材料.树脂基烧蚀材料一般要求具有高相对分子质量、高芳基化、高交联密度、高C/O比,以使材料烧蚀后成碳率高.材料的烧蚀率与成碳率成反比关系,树脂的成碳率越高,其耐烧蚀性能越好.材料的成碳率高低由树脂的化学结构决定.目前烧蚀材料的研究方向是:成碳率高、比热大、热导率小、密度小、碳化层强度高、热分解温度高的材料.综述了改性酚醛树脂:酚三嗪树脂、硼酚醛树脂及聚芳基乙炔树脂的合成、烧蚀性能、高成碳率的研究近况,并对今后烧蚀材料的研究作了展望.%Ablation-resistant materials play an important role in the defense industry, carbon-based ablative material is a kind of material which uses the feature that the carbonization of polymer material at high temperature can absorb heat. General requirements for resin-based ablative material are high molecular weight, high-arylation, high crosslinking density and high C / 0 ratio, so that the carbonization rate of materials can be higher after ablation. Material ablation rate is inversely proportional to the carbonization rate. The resin which has higher carbonization rate will possess better resistance to ablation. The carbonization rates of material are mainly determined by the chemical structure of resin. At present, the research trends of ablative material are summarized as follows: high carbonization rate, large specific heat capacity, low thermal conductivity, small density, carbon layer with high strength and high thermal decomposition temperature. The recent studies are summarized, such as on the synthesis of modified phenolic resin: phenolic triazine resin, boron phenolic resin and polyarylacetylene resin, ablation performance and high carbonization rates. And the future research on ablative material is prospected.

  5. Transient Ablation of Teflon Hemispheres

    Arai, Norio; Karashima, Kei-ichi; Sato, Kiyoshi

    1997-01-01

    For high-speed entry of space vehicles into atmospheric environments, ablation is a practical method for alleviating severe aerodynamic heating. Several studies have been undertaken on steady or quasi-steady ablation. However, ablation is a very complicated phenomenon in which a nonequilibrium chemical process is associated with an aerodynamic process that involves changes in body shape with time. Therefore, it seems realistic to consider that ablation is an unsteady phenomenon. In the design of an ablative heat-shield system, since the ultimate purpose of the heat shield is to keep the internal temperature of the space vehicle at a safe level during entry, the transient heat conduction characteristics of the ablator may be critical in the selection of the material and its thickness. This note presents an experimental study of transient ablation of Teflon, with particular emphasis on the change in body shape, the instantaneous internal temperature distribution, and the effect of thermal expansion on ablation rate.

  6. Metallurgical and chemical characterization of copper alloy reference materials within laser ablation inductively coupled plasma mass spectrometry: Method development for minimally-invasive analysis of ancient bronze objects

    Walaszek, Damian, E-mail: damian.walaszek@empa.ch [Laboratory for Analytical Chemistry, Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600 Dübendorf (Switzerland); University of Warsaw, Faculty of Chemistry, Pasteura 1, 02-093 Warsaw (Poland); Senn, Marianne [Laboratory for Analytical Chemistry, Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600 Dübendorf (Switzerland); Faller, Markus [Laboratory for Jointing Technology and Corrosion, Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600 Dübendorf (Switzerland); Philippe, Laetitia [Laboratory for Mechanics of Materials and Nanostructures, Swiss Federal Laboratories for Materials Science and Technology, Feuerwerkstrasse 39, CH-3602 Thun (Switzerland); Wagner, Barbara; Bulska, Ewa [University of Warsaw, Faculty of Chemistry, Pasteura 1, 02-093 Warsaw (Poland); Ulrich, Andrea [Laboratory for Analytical Chemistry, Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600 Dübendorf (Switzerland)

    2013-01-01

    The chemical composition of ancient metal objects provides important information for manufacturing studies and authenticity verification of ancient copper or bronze artifacts. Non- or minimal-destructive analytical methods are preferred to mitigate visible damage. Laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS) enables the determination of major elements as well as impurities down to lower ppm-levels, however, accuracy and precision of analysis strongly depend on the homogeneity of reference materials used for calibration. Moreover, appropriate analytical procedures are required e.g. in terms of ablation strategies (scan mode, spot size, etc.). This study reviews available copper alloy (certified) reference materials — (C)RMs from different sources and contributes new metallurgical data on homogeneity and spatial elemental distribution. Investigations of the standards were performed by optical and scanning electron microscopy with X-ray spectrometry (SEM-EDX) for the following copper alloy and bronze (certified) reference materials: NIST 454, BAM 374, BAM 211, BAM 227, BAM 374, BAM 378, BAS 50.01-2, BAS 50.03-4, and BAS 50.04-4. Additionally, the influence of inhomogeneities on different ablation and calibration strategies is evaluated to define an optimum analytical strategy in terms of line scan versus single spot ablation, variation of spot size, selection of the most appropriate RMs or minimum number of calibration reference materials. - Highlights: ► New metallographic data for copper alloy reference materials are provided. ► Influence of RMs homogeneity on quality of LA-ICPMS analysis was evaluated. ► Ablation and calibration strategies were critically discussed. ► An LA-ICPMS method is proposed for analyzing most typical ancient copper alloys.

  7. Metallurgical and chemical characterization of copper alloy reference materials within laser ablation inductively coupled plasma mass spectrometry: Method development for minimally-invasive analysis of ancient bronze objects

    The chemical composition of ancient metal objects provides important information for manufacturing studies and authenticity verification of ancient copper or bronze artifacts. Non- or minimal-destructive analytical methods are preferred to mitigate visible damage. Laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS) enables the determination of major elements as well as impurities down to lower ppm-levels, however, accuracy and precision of analysis strongly depend on the homogeneity of reference materials used for calibration. Moreover, appropriate analytical procedures are required e.g. in terms of ablation strategies (scan mode, spot size, etc.). This study reviews available copper alloy (certified) reference materials — (C)RMs from different sources and contributes new metallurgical data on homogeneity and spatial elemental distribution. Investigations of the standards were performed by optical and scanning electron microscopy with X-ray spectrometry (SEM-EDX) for the following copper alloy and bronze (certified) reference materials: NIST 454, BAM 374, BAM 211, BAM 227, BAM 374, BAM 378, BAS 50.01-2, BAS 50.03-4, and BAS 50.04-4. Additionally, the influence of inhomogeneities on different ablation and calibration strategies is evaluated to define an optimum analytical strategy in terms of line scan versus single spot ablation, variation of spot size, selection of the most appropriate RMs or minimum number of calibration reference materials. - Highlights: ► New metallographic data for copper alloy reference materials are provided. ► Influence of RMs homogeneity on quality of LA-ICPMS analysis was evaluated. ► Ablation and calibration strategies were critically discussed. ► An LA-ICPMS method is proposed for analyzing most typical ancient copper alloys

  8. Towards the Industrial Application of Spark Ablation for Nanostructured Functional Materials

    Pfeiffer, T.V.

    2014-01-01

    Nanostructuring of functional materials is an essential part in the design of energy related devices – but the industrial tools we have to make these materials are lacking. This dissertation explores the green, flexible, and scalable spark discharge process for the fabrication of complex nanostructu

  9. femtosecond laser ablation

    Margetic, Vanja

    2003-01-01

    Femtosecond laser ablation was investigated as a solid sampling method for elemental chemical analysis. In comparison to the sampling with longer laser pulses, two aspects could be improved by using ultrashort pulses: elimination of the elemental fractionation from the ablation crater, which is necessary for an accurate quantitative analysis, and better control of the material removal (especially for metals), which increases the spatial resolution of microanalysis. Basic aspects of ultrashort...

  10. Materials for Multifunctional Balloon Catheters With Capabilities in Cardiac Electrophysiological Mapping and Ablation Therapy

    Kim, Dae-Hyeong; Lu, Nanshu; Ghaffari, Roozbeh; Kim, Yun-Soung; Lee, Stephen P.; Xu, Lizhi; Wu, Jian; Kim, Rak-Hwan; Song, Jizhou; Liu, Zhuangjian; Viventi, Jonathan; de Graff, Bassel; Elolampi, Brian; Mansour, Moussa; Slepian, Marvin J.

    2011-01-01

    Development of advanced surgical tools for minimally invasive procedures represents an activity of central importance to improvements in human health. A key materials challenge is in the realization of bio-compatible interfaces between the classes of semiconductor and sensor technologies that might be most useful in this context and the soft, curvilinear surfaces of the body. This paper describes a solution based on biocompatible materials and devices that integrate directly with the thin ela...

  11. Laser ablation of the lysozyme protein: a model system for soft materials

    Schou, Jørgen; Matei, Andreea; Constantinescu, Catalin;

    expected in MAPLE, but is surprising in PLD, where a high degree of thermal fragmentation is typically required for generation of a sufficient amount of volatile decomposition products that drive the transfer of molecules to the film substrate. The experimental results will be discussed based on the...... ionization) in contrast to many other organic materials. Also the thermal properties, including the heat-induced decomposition behavior are comparatively well-known. For laser-irradiation at wavelengths above 310 nm, no photochemical processes occur initially, but the material is ejected via photothermal...

  12. Seven-wavelength pyrometer for determining surface temperature of ablation materials

    Yi, H.

    1985-01-01

    Results which were achieved by a seven-wavelength pyrometer last year are reported in this paper. These studies are directed toward the development of a method for determining the real surface temperature of thermal protection materials and for evaluating its emittance under varieties of reentry environment. A description of the data processing method and apparatus is also included.

  13. High spatial resolution mapping of deposition layers on plasma facing materials by laser ablation microprobe time-of-flight mass spectroscopy

    A laser ablation microprobe time-of-flight mass spectroscopy (LAM-TOF-MS) system with high spatial resolution, ∼20 nm in depth and ∼500 μm or better on the surface, is developed to analyze the composition distributions of deposition layers on the first wall materials or first mirrors in tokamak. The LAM-TOF-MS system consists of a laser ablation microprobe combined with a TOF-MS and a data acquisition system based on a LabVIEW program software package. Laser induced ablation combined with TOF-MS is an attractive method to analyze the depth profile of deposited layer with successive laser shots, therefore, it can provide information for composition reconstruction of the plasma wall interaction process. In this work, we demonstrate that the LAM-TOF-MS system is capable of characterizing the depth profile as well as mapping 2D composition of deposited film on the molybdenum first mirror retrieved from HL-2A tokamak, with particular emphasis on some of the species produced during the ablation process. The presented LAM-TOF-MS system provides not only the 3D characterization of deposition but also the removal efficiency of species of concern

  14. Femtosecond pulse laser ablation of metallic, semiconducting, ceramic, and biological materials

    Kautek, Wolfgang; Krueger, Joerg

    1994-09-01

    Production of holes and grooves of microcracks extending from an annular melting zone, or substantial disruption, respectively. Experimental results are presented which demonstrate that the development of intense ultrashort pulse laser systems (>> 1012 W cm-2, (tau) bone material, and human cornea transplants. The fs-laser generates its own absorption in transparent materials by a multiphoton absorption process, and thus forces the absorption of visible radiation. Because the time is too short (< ps) for significant transport of mass and energy, the beam interaction generally results in the formation of a thin plasma layer of approximately solid state density. Only after the end of the subpicosecond laser pulse, it expands rapidly away from the surface without any light absorption and further plasma heating. Therefore, energy transfer (heat and impulse) to the target material, and thermal and mechanical disruption are minimized. In contrast to heat- affected zones (HAZ's) generated by conventional nanosecond pulse lasers of the order of 1 - 10 micrometers , HAZ's of less than 0.02 micrometers were observed.

  15. Increase in Volume of Ablation Zones during Follow-up Is Highly Suggestive of Ablation Site Recurrence in Colorectal Liver Metastases Treated with Radiofrequency Ablation

    Kele, Petra G.; de Jong, Koert P.; van der Jagt, Eric J.

    2012-01-01

    Purpose: To test the hypothesis that volume changes of ablation zones (AZs) on successive computed tomography (CT) scans could predict ablation site recurrences (ASRs) in patients with colorectal liver metastases treated by radiofrequency (RF) ablation. Materials and Methods: RF ablation was perform

  16. On-line double isotope dilution laser ablation inductively coupled plasma mass spectrometry for the quantitative analysis of solid materials

    Graphical abstract: Development and validation of a new on-line double IDMS methodology to achieve an accurate, precise, and time-effective strategy for direct determination of trace elements in solid samples by LA-ICP-MS. - Highlights: • Development of a double IDMS strategy for direct solid analysis by LA-ICP-MS. • The proposed method requires the sequential analysis of the sample and a standard. • The previous characterization of the spike solution is not required in double IDMS. • Quantitative bulk analysis of Sr, Rb and Pb were performed in silicate glasses and powdered samples. • Powdered samples were analyzed as pressed pellets and glasses prepared by fusion. - Abstract: We report on the determination of trace elements in solid samples by the combination of on-line double isotope dilution and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). The proposed method requires the sequential analysis of the sample and a certified natural abundance standard by on-line IDMS using the same isotopically-enriched spike solution. In this way, the mass fraction of the analyte in the sample can be directly referred to the certified standard so the previous characterization of the spike solution is not required. To validate the procedure, Sr, Rb and Pb were determined in certified reference materials with different matrices, including silicate glasses (SRM 610, 612 and 614) and powdered samples (PACS-2, SRM 2710a, SRM 1944, SRM 2702 and SRM 2780). The analysis of powdered samples was carried out both by the preparation of pressed pellets and by lithium borate fusion. Experimental results for the analysis of powdered samples were in agreement with the certified values for all materials. Relative standard deviations in the range of 6–21% for pressed pellets and 3–21% for fused solids were obtained from n = 3 independent measurements. Minimal sample preparation, data treatment and consumption of the isotopically-enriched isotopes are the

  17. Ablative and fractional ablative lasers.

    Brightman, Lori A; Brauer, Jeremy A; Anolik, Robert; Weiss, Elliot; Karen, Julie; Chapas, Anne; Hale, Elizabeth; Bernstein, Leonard; Geronemus, Roy G

    2009-10-01

    The field of nonsurgical laser resurfacing for aesthetic enhancement continues to improve with new research and technological advances. Since its beginnings in the 1980s, the laser-resurfacing industry has produced a multitude of devices employing ablative, nonablative, and fractional ablative technologies. The three approaches largely differ in their method of thermal damage, weighing degrees of efficacy, downtime, and side effect profiles against each other. Nonablative technologies generate some interest, although only for those patient populations seeking mild improvements. Fractional technologies, however, have gained dramatic ground on fully ablative resurfacing. Fractional laser resurfacing, while exhibiting results that fall just short of the ideal outcomes of fully ablative treatments, is an increasingly attractive alternative because of its far more favorable side effect profile, reduced recovery time, and significant clinical outcome. PMID:19850197

  18. The direct determination of trace metals in gold and silver materials by laser ablation inductively coupled plasma mass spectrometry without matrix matched standards

    Kogan, Valentina V.; Hinds, Michael W.; Ramendik, Gregory I.

    1994-04-01

    Typically, accurate trace element determination in solid samples by laser ablation ICP-MS requires calibration with matrix matched standards. Trace metal analysis was performed in high purity gold, high purity silver and 14 karat gold-silver alloys. A Nd : YAG laser was used to evaporate solid samples of precious metals into an inductively coupled plasma mass spectrometer. Analytical data and a study of the crater sizes indicated that approximately the same amount of material for both gold and silver samples was vaporized by a Nd : YAG laser operated in a Q-switched mode with the following parameters: 210 mJ laser energy; 8 Hz repetition rate; and focused 7 mm below the sample surface. High purity gold and silver, and a 14 karat gold-silver alloy were analyzed for trace metals common to gold and silver reference materials. In general, the determination of Fe, Ni, Cu, Zn, Pd, Pt, Pb, and Bi did not strongly depend on whether gold or silver reference materials were used for calibration. This permits these trace metals to be determined directly with only one set of reference materials, by laser ablation ICP-MS, in a wide variety of gold-silver alloys.

  19. Local thermal ablation of renal cell carcinoma

    Purpose: With evolving local thermal ablation technology, the clinical application of thermal ablation has been actively investigated in the treatment for renal cell carcinoma. We review the evolution and current status of radiofrequency ablation and microwave ablation for renal cell carcinoma. Materials and methods: All articles published in English on radiofrequency ablation or microwave ablation as a treatment for renal cell carcinoma were identified with a MEDLINE® and PubMed® search from 1990 to 2010. Results: Local thermal ablation has several advantages, including keeping more normal renal units, relatively simple operation, easy tolerance, fewer complications, a shorter hospitalization and convalescence period. Long-term data has determined radiofrequency ablation is responsible for poor surgical candidates with renal cell carcinoma, however, tumor size, location and shape might affect the efficacy of radiofrequency ablation. Microwave ablation can induce large ablation volumes and yield good local tumor control. Associated complications appear to be low. Conclusions: Local ablative approaches seem to represent an attractive alternative to extirpative surgery for the treatment of small renal neoplasms in select patients. Potential developments include concepts to improve the accuracy and effectiveness of thermal ablation by improving the guiding, monitoring capabilities and detection capacity of multi-center lesions to provide at least equivalent cancer control to conventional surgery.

  20. Power Laser Ablation Symposia

    Phipps, Claude

    2007-01-01

    Laser ablation describes the interaction of intense optical fields with matter, in which atoms are selectively driven off by thermal or nonthermal mechanisms. The field of laser ablation physics is advancing so rapidly that its principal results are seen only in specialized journals and conferences. This is the first book that combines the most recent results in this rapidly advancing field with authoritative treatment of laser ablation and its applications, including the physics of high-power laser-matter interaction. Many practical applications exist, ranging from inertial confinement fusion to propulsion of aerostats for pollution monitoring to laser ignition of hypersonic engines to laser cleaning nanoscale contaminants in high-volume computer hard drive manufacture to direct observation of the electronic or dissociative states in atoms and molecules, to studying the properties of materials during 200kbar shocks developed in 200fs. Selecting topics which are representative of such a broad field is difficu...

  1. Trace elements in landfill calcite: a comparison of solution & laser ablation ICP-MS and calibration to different standard material (SRM NIST glass and USGS MACS carbonate)

    Strnad, L.; Ettler, V.; Mihaljevič, M.; Hladil, Jindřich

    2008-01-01

    Roč. 9, - (2008), s. 235-236. ISSN 1885-7264. [Reunión de la Sociedad Española de Mineralogía /28./ ; Reunión de la Sociedad Española de Arcillas /21./. Zaragoza, 16.09.2008-19.09.2008] R&D Projects: GA AV ČR IAA300130702 Institutional research plan: CEZ:AV0Z30130516 Keywords : trace elements * reference material * carbonate * ICP-MS * laser ablation Subject RIV: DB - Geology ; Mineralogy http://www.ehu.es/sem/macla_pdf/macla9/macla9_235.pdf

  2. Preliminary characterisation of new glass reference materials (GSA-1G, GSC-1G, GSD-1G and GSE-1G) by laser ablation-inductively coupled plasma-mass spectrometry using 193 nm, 213 nm and 266 nm wavelengths

    Guillong, M.; Hametner, K.; Reusser, E.; Wilson, S.A.; Gunther, D.

    2005-01-01

    New glass reference materials GSA-1G, GSC-1G, GSD-1G and GSE-1G have been characterised using a prototype solid state laser ablation system capable of producing wavelengths of 193 nm, 213 nm and 266 nm. This system allowed comparison of the effects of different laser wavelengths under nearly identical ablation and ICP operating conditions. The wavelengths 213 nm and 266 nm were also used at higher energy densities to evaluate the influence of energy density on quantitative analysis. In addition, the glass reference materials were analysed using commercially available 266 nm Nd:YAG and 193 nm ArF excimer lasers. Laser ablation analysis was carried out using both single spot and scanning mode ablation. Using laser ablation ICP-MS, concentrations of fifty-eight elements were determined with external calibration to the NIST SRM 610 glass reference material. Instead of applying the more common internal standardisation procedure, the total concentration of all element oxide concentrations was normalised to 100%. Major element concentrations were compared with those determined by electron microprobe. In addition to NIST SRM 610 for external calibration, USGS BCR-2G was used as a more closely matrix-matched reference material in order to compare the effect of matrix-matched and non matrix-matched calibration on quantitative analysis. The results show that the various laser wavelengths and energy densities applied produced similar results, with the exception of scanning mode ablation at 266 nm without matrix-matched calibration where deviations up to 60% from the average were found. However, results acquired using a scanning mode with a matrix-matched calibration agreed with results obtained by spot analysis. The increased abundance of large particles produced when using a scanning ablation mode with NIST SRM 610, is responsible for elemental fractionation effects caused by incomplete vaporisation of large particles in the ICP.

  3. Microwave Ablation Compared with Radiofrequency Ablation for Breast Tissue in an Ex Vivo Bovine Udder Model

    Purpose: To compare the effectiveness of microwave (MW) ablation with radiofrequency (RF) ablation for treating breast tissue in a nonperfused ex vivo model of healthy bovine udder tissue. Materials and Methods: MW ablations were performed at power outputs of 25W, 35W, and 45W using a 915-MHz frequency generator and a 2-cm active tip antenna. RF ablations were performed with a bipolar RF system with 2- and 3-cm active tip electrodes. Tissue temperatures were continuously monitored during ablation. Results: The mean short-axis diameters of the coagulation zones were 1.34 ± 0.14, 1.45 ± 0.13, and 1.74 ± 0.11 cm for MW ablation at outputs of 25W, 35W, and 45W. For RF ablation, the corresponding values were 1.16 ± 0.09 and 1.26 ± 0.14 cm with electrodes having 2- and 3-cm active tips, respectively. The mean coagulation volumes were 2.27 ± 0.65, 2.85 ± 0.72, and 4.45 ± 0.47 cm3 for MW ablation at outputs of 25W, 35W, and 45W and 1.18 ± 0.30 and 2.29 ± 0.55 cm3 got RF ablation with 2- and 3-cm electrodes, respectively. MW ablations at 35W and 45W achieved significantly longer short-axis diameters than RF ablations (P < 0.05). The highest tissue temperature was achieved with MW ablation at 45W (P < 0.05). On histological examination, the extent of the ablation zone in MW ablations was less affected by tissue heterogeneity than that in RF ablations. Conclusion: MW ablation appears to be advantageous with respect to the volume of ablation and the shape of the margin of necrosis compared with RF ablation in an ex vivo bovine udder.

  4. Ablation of lung tumours

    Gillams, Alice

    2012-01-01

    Abstract Radiofrequency, laser, microwave and cryotherapy have all been used for the ablation of lung tumours. However, radiofrequency ablation (RFA) and microwave ablation are the most widely used technologies. RFA has been successfully applied to tumour measuring from

  5. Quantitative analysis of trace elements in environmental powders with laser ablation inductively coupled mass spectrometry using non-sample-corresponding reference materials for signal evaluation

    Bauer, Gerald; Limbeck, Andreas

    2015-11-01

    Laser ablation inductively coupled plasma-mass spectrometry (LA-ICP-MS) is an attractive alternative to traditional procedures for the analysis of environmental samples (i.e., conventional liquid measurement after sample digestion). However, for accurate quantification, certified reference materials (CRM) are necessary which match the composition of the sample and include all elements of interest at the required concentration levels. The limited availability of appropriate CRMs hampers therefore substantial application. In this work, an LA-ICP-MS procedure allowing for accurate determination of trace element contents in powdered environmental samples is presented. For LA-ICP-MS analysis, the samples are mixed with an internal standard (silver oxide) and a binder (sodium tetra borate) and subsequently pressed to pellets. Quantification is accomplished using a calibration function determined using CRMs with varying matrix composition and analyte content, pre-treated and measured in the same way as the samples. With this approach, matrix-induced ablation differences resulting from varying physical/chemical properties of the individual CRMs could be compensated. Furthermore, ICP-related matrix-effects could be minimized using collision/reaction cell technology. Applicability of the procedure has been demonstrated by assessment of Cd, Cu, Ni, and Zn in four different environmental CRMs (NIST SRM1648a (urban particulate matter), NIST SRM2709 (San Joaquin Soil), BCR144 (sewage sludge), and BCR723 (road dust)). Signal evaluation was performed by alternative use of three CRMs for calculation of the calibration function whereas the remaining fourth CRM acted as unknown sample, resulting in a good agreement between measured and certified values for all elements and reference materials.

  6. Meteoroid ablation models

    Popova, Olga

    2004-12-01

    The fate of entering meteoroids in atmosphere is determined by their size, velocity and substance properties. Material from ablation of small-sized meteors (roughly R≤0.01-1 cm) is mostly deposited between 120 and 80 km altitudes. Larger bodies (up to meter sizes) penetrate deeper into the atmosphere (down to 20 km altitude). Meteoroids of cometary origin typically have higher termination altitude due to substance properties and higher entry velocity. Fast meteoroids ( V>30-40 km/s) may lose a part of their material at higher altitudes due to sputtering. Local flow regime realized around the falling body determines the heat transfer and mass loss processes. Classic approach to meteor interaction with atmosphere allows describing two limiting cases: - large meteoroid at relatively low altitude, where shock wave is formed (hydrodynamical models); - small meteoroid/or high altitudes - free molecule regime of interaction, which assumes no collisions between evaporated meteoroid particles. These evaporated particles form initial train, which then spreads into an ambient air due to diffusion. Ablation models should make it possible to describe physical conditions that occur around meteor body. Several self-consistent hydrodynamical models are developed, but similar models for transition and free molecule regimes are still under study. This paper reviews existing ablation models and discusses model boundaries.

  7. Attachment and proliferation of human osteoblast-like cells (MG-63) on laser-ablated titanium implant material

    Demand is increasing for shortening the long (3–6 months) osseointegration period to rehabilitate patients' damaged chewing apparatus in as short a time as possible. For dental implants, as for biomaterials in general, the bio- and osseointegration processes can be controlled at molecular and cellular levels by modification of the implant surface. One of the most promising of such surface modifications is laser ablation, as demonstrated by our previous results [46]. Commercially pure (CP4) sand-blasted, acid-etched titanium disks (Denti® System Ltd., Hungary) were irradiated with a KrF excimer laser (248 nm, fluence 0.4 J/cm2, FWHM 18 ns, 2000 pulses), or with a Nd:YAG laser (532 nm, 1.3 J/cm2, 10 ns, 200 pulses) then examined by SEM, AFM, and XPS. In vitro attachment (24 h) and proliferation (72 h) of MG-63 osteoblast cells were investigated via dimethylthiazol-diphenyl tetrazolium bromide (MTT), alamarBlue (AB) assays alkaline phosphatase quantification (ALP) and SEM. SEM and AFM revealed significant changes in morphology and roughness. XPS confirmed the presence of TiO2 on each sample; after Nd:YAG treatment a reduced state of Ti (Ti3+) was also observed. MTT, AB and ALP measurements detected an increase in the number of cells between the 24- and 72 hour observations; however, laser treatment did not affect cell attachment and proliferation significantly. - Highlights: • CP4 titanium implant surfaces were modified with Nd:YAG and KrF excimer laser. • SEM and AFM revealed significant changes in morphology and roughness. • XPS confirmed the presence of TiO2 on each sample; after Nd:YAG treatment a reduced state of Ti (Ti3+) was found. • Cell proliferation experiments detected an increased number of MG-63 cells between the 24 h and 72 h observations. • Laser treatments neither disturbed, nor enhanced MG-63 cell attachment and proliferation significantly

  8. Time-stepping for laser ablation

    Harihar Khanal; David Autrique; Vasilios Alexiades

    2013-01-01

    Nanosecond laser ablation is a popular technique, applied in many areas of science and technology such as medicine, archaeology, chemistry, environmental and materials sciences. We outline a computational model for radiative and collisional processes occurring during ns-laser ablation, and compare the performance of various low and high order time-stepping algorithms.

  9. Pellet ablation and ablation model development

    A broad survey of pellet ablation is given, based primarily on information presented at this meeting. The implications of various experimental observations for ablation theory are derived from qualitative arguments of the physics involved. The major elements of a more complete ablation theory are then outlined in terms of these observations. This is followed by a few suggestions on improving the connections between theory and experimental results through examination of ablation data. Although this is a rather aggressive undertaking for such a brief (and undoubtedly incomplete) assessment, some of the discussion may help us advance the understanding of pellet ablation. 17 refs

  10. A rapid isotope ratio analysis protocol for nuclear solid materials using nano-second laser-ablation time-of-flight ICP-MS

    The analysis of the isotopic composition of nuclear or non-nuclear solid materials is performed in a variety of fields, e.g., for quality assurance in the production of nuclear fuels, as signatures in forensics, nuclear safeguards, and non-proliferation control, in material characterization, geology, and archeology. We have investigated the capability of laser ablation (New Wave Research, 213 nm) coupled to time-of-flight (TOF) ICP-MS (GBC OptiMass 8000) as a rapid analytical protocol for multi-isotope screening of nuclear and non-nuclear solid samples. This includes natural and non-natural isotopic compositions for elements including Cu, Zr, Mo, Cd, In, Ba, Ta, W, Re, Pt, Pb, and U, in pure metals, alloys, and glasses. Without correcting for mass bias (mass fractionation), an overall precision and accuracy of about 4% (1σ) can be achieved by minimizing the deposited laser power and thus fractionation (mass removal based on thermal properties). The precision and accuracy in combination with literally no or minimized sample preparation enables a rapid isotope screening of solid samples that is of particular interest to support nuclear forensic and safeguard analysis.

  11. A rapid isotope ratio analysis protocol for nuclear solid materials using nano-second laser-ablation time-of-flight ICP-MS

    Buerger, S. [Chemical and Isotope Mass Spectrometry Group, Transuranium Research Institute, Chemical Sciences Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831-6375 (United States); Department of Energy, New Brunswick Laboratory, 9800 South Cass Avenue, Bldg 350, Argonne, IL 60439 (United States)], E-mail: stefan.buerger@ch.doe.gov; Riciputi, L.R. [Chemical and Isotope Mass Spectrometry Group, Transuranium Research Institute, Chemical Sciences Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831-6375 (United States); Nuclear and Radiochemistry Group, Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545 (United States)

    2009-11-15

    The analysis of the isotopic composition of nuclear or non-nuclear solid materials is performed in a variety of fields, e.g., for quality assurance in the production of nuclear fuels, as signatures in forensics, nuclear safeguards, and non-proliferation control, in material characterization, geology, and archeology. We have investigated the capability of laser ablation (New Wave Research, 213 nm) coupled to time-of-flight (TOF) ICP-MS (GBC OptiMass 8000) as a rapid analytical protocol for multi-isotope screening of nuclear and non-nuclear solid samples. This includes natural and non-natural isotopic compositions for elements including Cu, Zr, Mo, Cd, In, Ba, Ta, W, Re, Pt, Pb, and U, in pure metals, alloys, and glasses. Without correcting for mass bias (mass fractionation), an overall precision and accuracy of about 4% (1{sigma}) can be achieved by minimizing the deposited laser power and thus fractionation (mass removal based on thermal properties). The precision and accuracy in combination with literally no or minimized sample preparation enables a rapid isotope screening of solid samples that is of particular interest to support nuclear forensic and safeguard analysis.

  12. Emerging Local Ablation Techniques

    Stone, Michael J.; Wood, Bradford J.

    2006-01-01

    Local ablation technologies for hepatic malignancy have developed rapidly in the past decade, with advances in several percutaneous or externally delivered treatment methods including radiofrequency ablation, microwave ablation, laser ablation, and high-intensity focused ultrasound. Research has focused on increasing the size of the ablation zone and minimizing heat-sink effects. More recent developments include improvements in treatment planning and navigation with integration of several ima...

  13. Attachment and proliferation of human osteoblast-like cells (MG-63) on laser-ablated titanium implant material

    Györgyey, Ágnes; Ungvári, Krisztina [Department of Oral Biology and Experimental Dental Research, Faculty of Dentistry, University of Szeged, H-6720 Szeged (Hungary); Kecskeméti, Gabriella; Kopniczky, Judit [Department of Optics and Quantum Electronics, Faculty of Science and Informatics, University of Szeged, H-6720 Szeged (Hungary); Hopp, Béla [Research Group on Laser Physics, Hungarian Academy of Sciences and University of Szeged, H-6720 Szeged (Hungary); Oszkó, Albert [Department of Physical Chemistry and Materials Science, Faculty of Science and Informatics, University of Szeged, H-6720 Szeged (Hungary); Pelsöczi, István; Rakonczay, Zoltán [Department of Oral Biology and Experimental Dental Research, Faculty of Dentistry, University of Szeged, H-6720 Szeged (Hungary); Nagy, Katalin [Department of Oral Surgery, Faculty of Dentistry, University of Szeged, H-6720 Szeged (Hungary); Turzó, Kinga, E-mail: kturzo@yahoo.com [Department of Oral Biology and Experimental Dental Research, Faculty of Dentistry, University of Szeged, H-6720 Szeged (Hungary)

    2013-10-15

    Demand is increasing for shortening the long (3–6 months) osseointegration period to rehabilitate patients' damaged chewing apparatus in as short a time as possible. For dental implants, as for biomaterials in general, the bio- and osseointegration processes can be controlled at molecular and cellular levels by modification of the implant surface. One of the most promising of such surface modifications is laser ablation, as demonstrated by our previous results [46]. Commercially pure (CP4) sand-blasted, acid-etched titanium disks (Denti® System Ltd., Hungary) were irradiated with a KrF excimer laser (248 nm, fluence 0.4 J/cm{sup 2}, FWHM 18 ns, 2000 pulses), or with a Nd:YAG laser (532 nm, 1.3 J/cm{sup 2}, 10 ns, 200 pulses) then examined by SEM, AFM, and XPS. In vitro attachment (24 h) and proliferation (72 h) of MG-63 osteoblast cells were investigated via dimethylthiazol-diphenyl tetrazolium bromide (MTT), alamarBlue (AB) assays alkaline phosphatase quantification (ALP) and SEM. SEM and AFM revealed significant changes in morphology and roughness. XPS confirmed the presence of TiO{sub 2} on each sample; after Nd:YAG treatment a reduced state of Ti (Ti{sup 3+}) was also observed. MTT, AB and ALP measurements detected an increase in the number of cells between the 24- and 72 hour observations; however, laser treatment did not affect cell attachment and proliferation significantly. - Highlights: • CP4 titanium implant surfaces were modified with Nd:YAG and KrF excimer laser. • SEM and AFM revealed significant changes in morphology and roughness. • XPS confirmed the presence of TiO{sub 2} on each sample; after Nd:YAG treatment a reduced state of Ti (Ti{sup 3+}) was found. • Cell proliferation experiments detected an increased number of MG-63 cells between the 24 h and 72 h observations. • Laser treatments neither disturbed, nor enhanced MG-63 cell attachment and proliferation significantly.

  14. Studies of ablation pressure, ablative acceleration and ablative implosions

    Time and space resolved X-ray spectroscopy have been used to measure ablation rate and ablation pressure on plane targets irradiated by the first and second harmonics of Nd glass laser light. Streaked X-ray shadowgraphy has been applied to the study of ablatively imploded spherical shell targets uniformly irradiated by six 1.05 μm laser beams. The results give a direct measurement of shell acceleration and thus of ablation pressure and show evidence of fluid instability increasing as the shell ratio is varied from 10 to 100. A direct determination of implosion core density is also obtained. (author)

  15. A Self-Limiting Electro-Ablation Technique for the Top-Down Synthesis of Large-Area Monolayer Flakes of 2D Materials

    Das, Saptarshi; Bera, Mrinal K.; Tong, Sheng; Narayanan, Badri; Kamath, Ganesh; Mane, Anil; Paulikas, Arvydas P.; Antonio, Mark R.; Sankaranarayanan, Subramanian K. R. S.; Roelofs, Andreas K.

    2016-01-01

    We report the discovery of an electrochemical process that converts two dimensional layered materials of arbitrary thicknesses into monolayers. The lateral dimensions of the monolayers obtained by the process within a few seconds time at room temperature were as large as 0.5 mm. The temporal and spatial dynamics of this physical phenomenon, studied on MoS2 flakes using ex-situ AFM imaging, Raman mapping, and photoluminescence measurements trace the origin of monolayer formation to a substrate-assisted self-limiting electrochemical ablation process. Electronic structure and atomistic calculations point to the interplay between three essential factors in the process: (1) strong covalent interaction of monolayer MoS2 with the substrate; (2) electric-field induced differences in Gibbs free energy of exfoliation; (3) dispersion of MoS2 in aqueous solution of hydrogen peroxide. This process was successful in obtaining monolayers of other 2D transition metal dichalcogenides, like WS2 and MoTe2 as well. PMID:27323877

  16. Ablative Ceramic Foam Based TPS Project

    National Aeronautics and Space Administration — A novel composite material ablative TPS for planetary vehicles that can survive a dual heating exposure is proposed. NextGen's TPS concept is a bi-layer functional...

  17. Femtosecond laser ablation of dentin

    The surface morphology, structure and composition of human dentin treated with a femtosecond infrared laser (pulse duration 500 fs, wavelength 1030 nm, fluences ranging from 1 to 3 J cm-2) was studied by scanning electron microscopy, x-ray diffraction, x-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy. The average dentin ablation threshold under these conditions was 0.6 ± 0.2 J cm-2 and the ablation rate achieved in the range 1 to 2 µm/pulse for an average fluence of 3 J cm-2. The ablation surfaces present an irregular and rugged appearance, with no significant traces of melting, deformation, cracking or carbonization. The smear layer was entirely removed by the laser treatment. For fluences only slightly higher than the ablation threshold the morphology of the laser-treated surfaces was very similar to the dentin fracture surfaces and the dentinal tubules remained open. For higher fluences, the surface was more porous and the dentin structure was partially concealed by ablation debris and a few resolidified droplets. Independently on the laser processing parameters and laser processing method used no sub-superficial cracking was observed. The dentin constitution and chemical composition was not significantly modified by the laser treatment in the processing parameter range used. In particular, the organic matter is not preferentially removed from the surface and no traces of high temperature phosphates, such as the β-tricalcium phosphate, were observed. The achieved results are compatible with an electrostatic ablation mechanism. In conclusion, the high beam quality and short pulse duration of the ultrafast laser used should allow the accurate preparation of cavities, with negligible damage of the underlying material. (paper)

  18. Ultrashort Pulse Laser Ablation for Depth Profiling of Bacterial Biofilms

    Milasinovic, Slobodan; Liu, Yaoming; Gasper, Gerald L.; Zhao, Youbo; Johnston, Joanna L.; Gordon, Robert J.; Hanley, Luke

    2010-01-01

    Sample ablation by pulsed lasers is one option for removing material from a sample surface for in situ depth profiling during imaging mass spectrometry, but ablation is often limited by laser-induced damage of the remaining material. A preliminary evaluation was performed of sub-100 fs, 800 nm pulsed laser ablation for depth profiling of bacterial biofilms grown on glass by the drip flow method. Electron and optical microscopy were combined with laser desorption vacuum ultraviolet postionizat...

  19. Experimental investigation of interface conditions between oxidic melt and ablating concrete during MCCI by means of simulating material experiments: the Artemis program

    Full text of publication follows: In the frame work of R and D on Severe Accidents in PWR plants, an estimation by codes of time of basemat melt-through by Corium is required. For this, the heat flux distribution along the cavity wall must be properly modelled. Hence the knowledge of the heat transfer coefficient as well as the temperature at the interface between the melt and the solid become key issues. Phase diagram of the melt and composition governs the interface temperature which controls, at least partly, the thickness of the Corium crust formed on the molten concrete. Crust behaviour (time evolution of thickness, mechanical interaction with gas) implies a release mode of molten concrete in Corium which in turn alters the melt composition. Clearly, the molten corium-concrete interaction (MCCI) phenomenon is the result of a strong coupling between physico-chemistry and thermohydraulics. The main goal of the first test series of the Artemis program is to make a link between the interface temperature and the physico-chemistry of the melt (phase diagram) through tests conducted with simulating materials and to provide an insight on the existence, the behaviour and the composition of the crust. This test series considers 1D MCCI using a non eutectic LiCl-BaCl2 mixture poured at 1000 deg. C in a cylindrical test section (internal diameter 0.3 m) to interact with the 0.35 m deep basemat made of the same salt mixture at the eutectic composition. This 'concrete' was especially manufactured with sintered granulates to allow gas flow from the bottom (argon), then simulating gas released by concrete in the reactor case. Constant power is applied in the pool with an helical coil and 1D MCCI is ensured by counterbalancing heat losses by controlled heating at the lateral walls and at the top of the test section. Concrete ablation is followed from the output of 45 0.5 mm diameter thermocouples. An instrumented rod periodically investigates the temperature and the position

  20. Nonequilibrium Ablation of Phenolic Impregnated Carbon Ablator

    Milos, Frank S.; Chen, Yih K.; Gokcen, Tahir

    2012-01-01

    In previous work, an equilibrium ablation and thermal response model for Phenolic Impregnated Carbon Ablator was developed. In general, over a wide range of test conditions, model predictions compared well with arcjet data for surface recession, surface temperature, in-depth temperature at multiple thermocouples, and char depth. In this work, additional arcjet tests were conducted at stagnation conditions down to 40 W/sq cm and 1.6 kPa. The new data suggest that nonequilibrium effects become important for ablation predictions at heat flux or pressure below about 80 W/sq cm or 10 kPa, respectively. Modifications to the ablation model to account for nonequilibrium effects are investigated. Predictions of the equilibrium and nonequilibrium models are compared with the arcjet data.

  1. Fracture in Phenolic Impregnated Carbon Ablator

    Agrawal, Parul; Chavez-Garcia, Jose; Pham, John

    2013-01-01

    This paper describes the development of a novel technique to understand the failure mechanisms inside thermal protection materials. The focus of this research is on the class of materials known as phenolic impregnated carbon ablators. It has successfully flown on the Stardust spacecraft and is the thermal protection system material chosen for the Mars Science Laboratory and SpaceX Dragon spacecraft. Although it has good thermal properties, structurally, it is a weak material. To understand failure mechanisms in carbon ablators, fracture tests were performed on FiberForm(Registered TradeMark) (precursor), virgin, and charred ablator materials. Several samples of these materials were tested to investigate failure mechanisms at a microstructural scale. Stress-strain data were obtained simultaneously to estimate the tensile strength and toughness. It was observed that cracks initiated and grew in the FiberForm when a critical stress limit was reached such that the carbon fibers separated from the binder. However, both for virgin and charred carbon ablators, crack initiation and growth occurred in the matrix (phenolic) phase. Both virgin and charred carbon ablators showed greater strength values compared with FiberForm samples, confirming that the presence of the porous matrix helps in absorbing the fracture energy.

  2. Femtosecond laser ablation of brass in air and liquid media

    Laser ablation of brass in air, water, and ethanol was investigated using a femtosecond laser system operating at a wavelength of 785 nm and a pulse width less than 130 fs. Scanning electron and optical microscopy were used to study the efficiency and quality of laser ablation in the three ablation media at two different ablation modes. With a liquid layer thickness of 3 mm above the target, ablation rate was found to be higher in water and ethanol than in air. Ablation under water and ethanol showed cleaner surfaces and less debris re-deposition compared to ablation in air. In addition to spherical particles that are normally formed from re-solidified molten material, micro-scale particles with varying morphologies were observed scattered in the ablated structures (craters and grooves) when ablation was conducted under water. The presence of such particles indicates the presence of a non-thermal ablation mechanism that becomes more apparent when ablation is conducted under water.

  3. Laser ablation loading of a surface-electrode ion trap

    Leibrandt, David R.; Clark, Robert J.; Labaziewicz, Jaroslaw; Antohi, Paul; Bakr, Waseem; Brown, Kenneth R.; Chuang, Isaac L.

    2007-01-01

    We demonstrate loading by laser ablation of $^{88}$Sr$^+$ ions into a mm-scale surface-electrode ion trap. The laser used for ablation is a pulsed, frequency-tripled Nd:YAG with pulse energies of 1-10 mJ and durations of 3-5 ns. An additional laser is not required to photoionize the ablated material. The efficiency and lifetime of several candidate materials for the laser ablation target are characterized by measuring the trapped ion fluorescence signal for a number of consecutive loads. Addi...

  4. Lung Ablation: Whats New?

    Xiong, Lillian; Dupuy, Damian E

    2016-07-01

    Lung cancer had an estimated incidence of 221,200 in 2015, making up 13% of all cancer diagnoses. Tumor ablation is an important treatment option for nonsurgical lung cancer and pulmonary metastatic patients. Radiofrequency ablation has been used for over a decade with newer modalities, microwave ablation, cryoablation, and irreversible electroporation presenting as additional and possibly improved treatment options for patients. This minimally invasive therapy is best for small primary lesions or favorably located metastatic tumors. These technologies can offer palliation and sometimes cure of thoracic malignancies. This article discusses the current available technologies and techniques available for tumor ablation. PMID:27050331

  5. Laser ablation in analytical chemistry - A review

    Russo, Richard E.; Mao, Xianglei; Liu, Haichen; Gonzalez, Jhanis; Mao, Samuel S.

    2001-10-10

    Laser ablation is becoming a dominant technology for direct solid sampling in analytical chemistry. Laser ablation refers to the process in which an intense burst of energy delivered by a short laser pulse is used to sample (remove a portion of) a material. The advantages of laser ablation chemical analysis include direct characterization of solids, no chemical procedures for dissolution, reduced risk of contamination or sample loss, analysis of very small samples not separable for solution analysis, and determination of spatial distributions of elemental composition. This review describes recent research to understand and utilize laser ablation for direct solid sampling, with emphasis on sample introduction to an inductively coupled plasma (ICP). Current research related to contemporary experimental systems, calibration and optimization, and fractionation is discussed, with a summary of applications in several areas.

  6. Basic ablation phenomena during laser thrombolysis

    Sathyam, Ujwal S.; Shearin, Alan; Prahl, Scott A.

    1997-05-01

    This paper presents studies of microsecond ablation phenomena that take place during laser thrombolysis. The main goals were to optimize laser parameters for efficient ablation, and to investigate the ablation mechanism. Gelatin containing an absorbing dye was used as the clot model. A parametric study was performed to identify the optimal wavelength, spot size, pulse energies, and repetition rate for maximum material removal. The minimum radiant exposures to achieve ablation at any wavelength were measured. The results suggest that most visible wavelengths were equally efficient at removing material at radiant exposures above threshold. Ablation was initiated at surface temperatures just above 100 degrees Celsius. A vapor bubble was formed during ablation. Less than 5% of the total pulse energy is coupled into the bubble energy. A large part of the delivered energy is unaccounted for and is likely released partly as acoustic transients from the vapor expansion and partly wasted as heat. The current laser and delivery systems may not be able to completely remove large clot burden that is sometimes encountered in heart attacks. However, laser thrombolysis may emerge as a favored treatment for strokes where the occlusion is generally smaller and rapid recanalization is of paramount importance. A final hypothesis is that laser thrombolysis should be done at radiant exposures close to threshold to minimize any damaging effects of the bubble dynamics on the vessel wall.

  7. Laser ablation principles and applications

    1994-01-01

    Laser Ablation provides a broad picture of the current understanding of laser ablation and its many applications, from the views of key contributors to the field. Discussed are in detail the electronic processes in laser ablation of semiconductors and insulators, the post-ionization of laser-desorbed biomolecules, Fourier-transform mass spectroscopy, the interaction of laser radiation with organic polymers, laser ablation and optical surface damage, laser desorption/ablation with laser detection, and laser ablation of superconducting thin films.

  8. Phenolic Impregnated Carbon Ablator (PICA) Gap Filler for Heat Shield Assemblies Project

    National Aeronautics and Space Administration — During this program Fiber Materials, Inc. (FMIREG) will develop practical methods for preparing Phenolic Impregnated Carbon Ablator (PICA) materials for joining...

  9. Phenolic Impregnated Carbon Ablator (PICA) Gap Filler for Heat Shield Assemblies Project

    National Aeronautics and Space Administration — During this program, Fiber Materials, Inc. (FMI) will develop practical methods for preparing Phenolic Impregnated Carbon Ablator (PICA) materials for joining...

  10. Limitation for performing ultrasound-guided radiofrequency ablation of small renal masses

    Park, Byung Kwan, E-mail: rapark@skku.ed [Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, Zip code: 135-710, Seoul (Korea, Republic of); Kim, Chan Kyo [Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, Zip code: 135-710, Seoul (Korea, Republic of); Choi, Han Yong; Lee, Hyun Moo; Jeon, Seong Soo; Seo, Seong Il; Han, Deok Hyun [Department of Urology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of)

    2010-08-15

    Purpose: To evaluate which factor is involved in limiting ultrasound (US)-guided radiofrequency (RF) ablation of small renal masses. Materials and methods: Twenty-five patients with 31 renal masses underwent image-guided RF ablation. If a lesion was visible on US, US-guided RF ablation was performed. If a lesion was invisible on US or if the lesion was incompletely ablated or recurred following US-guided RF ablation, CT-guided RF ablation was performed. We analyzed the various factors which were involved in US-guided RF ablation. Results: Of 31 masses, thirteen were US-visible lesions and underwent US-guided RF ablation whereas thirteen were US-invisible lesions and thus underwent CT-guided RF ablation. The remaining five lesions were US-visible but needed additional CT-guided RF ablation, due to incomplete ablation (n = 4) or recurrence (n = 1); these renal masses (3.1 {+-} 1.0 cm) were significantly larger than those (1.8 {+-} 0.6 cm) ablated with US alone (p < 0.05). Steam bubbles (4.4 cm {+-} 0.7 cm) of the masses requiring additional CT-guided RF ablation were significantly larger than those (2.9 cm {+-} 0.7 cm) of the tumors completely ablated with US alone in size (p < 0.05). Conclusions: US-invisibility, lesion size, and steam bubbles may limit to perform US-guided RF ablation of small renal masses.

  11. Hard tissue ablation with a spray-assisted mid-IR laser

    The objective of this study was to understand the dominant mechanism(s) for dental enamel ablation with the application of water spray. A free-running Er,Cr:YSGG (yttrium, scandium, gallium, garnet) laser was used to ablate human enamel tissue at various radiant exposures. During dental ablation, distilled water was sprayed on the sample surface, and these results were compared to ablation without a spray (dry ablation). In order to identify dominant ablation mechanisms, transient acoustic waves were compared to ablation thresholds and the volume of material removed. The ablation profile and depth were measured using optical coherence tomography (OCT). Irregular surface modification, charring and peripheral cracks were associated with dry ablation, whereas craters for spray samples were relatively clean without thermal damage. In spite of a 60% higher ablation threshold for spray associated irradiations owing to water absorption, acoustic peak pressures were six times higher and ablation volume was up to a factor of 2 larger compared to dry ablation. The enhanced pressure and ablation performance of the spray-assisted process was the result of rapid water vaporization, material ejection with recoil stress, interstitial water explosion and possibly liquid-jet formation. With water cooling and abrasive/disruptive mechanical effects, the spray ablation can be a safe and efficient modality for dental treatment

  12. Hard tissue ablation with a spray-assisted mid-IR laser

    Kang, H W [American Medical Systems, Minnetonka, MN (United States); Rizoiu, I [BioLase Technology, Irvine, CA (United States); Welch, A J [Department of Biomedical Engineering, University of Texas at Austin, Austin, TX (United States)

    2007-12-21

    The objective of this study was to understand the dominant mechanism(s) for dental enamel ablation with the application of water spray. A free-running Er,Cr:YSGG (yttrium, scandium, gallium, garnet) laser was used to ablate human enamel tissue at various radiant exposures. During dental ablation, distilled water was sprayed on the sample surface, and these results were compared to ablation without a spray (dry ablation). In order to identify dominant ablation mechanisms, transient acoustic waves were compared to ablation thresholds and the volume of material removed. The ablation profile and depth were measured using optical coherence tomography (OCT). Irregular surface modification, charring and peripheral cracks were associated with dry ablation, whereas craters for spray samples were relatively clean without thermal damage. In spite of a 60% higher ablation threshold for spray associated irradiations owing to water absorption, acoustic peak pressures were six times higher and ablation volume was up to a factor of 2 larger compared to dry ablation. The enhanced pressure and ablation performance of the spray-assisted process was the result of rapid water vaporization, material ejection with recoil stress, interstitial water explosion and possibly liquid-jet formation. With water cooling and abrasive/disruptive mechanical effects, the spray ablation can be a safe and efficient modality for dental treatment.

  13. High resolution patterning of sapphire by F2-laser ablation

    Wiesner, Markus; Ihlemann, Jürgen

    2011-01-01

    The ablation behavior of single crystalline sapphire with nanosecond laser pulses at 157 nm wavelength is investigated. Ablation rates of about 10 to 100 nm/pulse are obtained at fluences ranging from 1 to 9 J/cm2. At moderate fluences, incubation behavior is observed, i.e. ablation starts after material modification by a number of laser pulses. The ablation can be utilized to fabricate sapphire micro-optics. The capability of creating lenses or gratings on the tip of sapphire fibers is demon...

  14. Simulation of pellet ablation for tokamak fueling with ITAPS front tracking

    A magnetohydrodynamic numerical model and parallel software for the ablation of cryogenic deuterium pellets in the process of tokamak fueling has been developed based on the method of front tracking of ITAPS Center. The main features of the model are the explicit tracking of material interfaces, a surface ablation model, a kinetic model for the electron heat flux, a cloud charging and rotation model, and an equation of state accounting for atomic processes in the ablation cloud. The software was used for the first systematic studies of the pellet ablation rate and properties of the ablation channel in magnetic fields. Simulations revealed new features of the pellet ablation such as strong dependence of the radius of the ablation channel and ablation rate on the 'warm-up' time and supersonic spinning of the ablation channel

  15. Pulsed laser ablation of solids basics, theory and applications

    Stafe, Mihai; Puscas, Niculae N

    2014-01-01

    The book introduces ‘the state of the art' of pulsed laser ablation and its applications. It is based on recent theoretical and experimental studies. The book reaches from the basics to advanced topics of pulsed laser ablation. Theoretical and experimental fundamental phenomena involved in pulsed laser ablation are discussed with respect to material properties, laser wavelength, fluence and intensity regime of the light absorbed linearly or non-linearly in the target material. The energy absorbed by the electrons leads to atom/molecule excitation, ionization and/or direct chemical bond breaking and is also transferred to the lattice leading to material heating and phase transitions. Experimental  non-invasive optical methods for analyzing these phenomena in real time are described. Theoretical models for pulsed laser ablation and phase transitions induced by laser beams and laser-vapour/plasma interaction during the plume expansion above the target are also presented. Calculations of the ablation speed and...

  16. A New Ablative Heat Shield Sensor Suite Project

    Bose, Deepak

    2014-01-01

    A new sensor suite is developed to measure performance of ablative thermal protection systems used in planetary entry vehicles for robotic and human exploration. The new sensor suite measures ablation of the thermal protection system under extreme heating encountered during planetary entry. The sensor technology is compatible with a variety of thermal protection materials, and is applicable over a wide range of entry conditions.

  17. Ablative microstructuring with plasma-based XUV lasers and efficient processing of materials by dual action of XUV/NIR–VIS ultrashort pulses

    Mocek, Tomáš; Jakubczak, Krzysztof; Kozlová, Michaela; Polan, Jiří; Homer, Pavel; Hřebíček, J.; Sawicka, Magdalena; Kim, I.J.; Park, S.B.; Kim, C. M.; Lee, G.H.; Kim, T.K.; Nam, C. H.; Chalupský, Jaromír; Hájková, Věra; Juha, Libor; Sobota, Jaroslav; Fořt, Tomáš; Rus, Bedřich

    2010-01-01

    Roč. 165, 6-10 (2010), s. 551-558. ISSN 1042-0150 R&D Projects: GA AV ČR KAN300100702; GA MŠk(CZ) LC528; GA MŠk LA08024; GA ČR GC202/07/J008 Institutional research plan: CEZ:AV0Z10100523; CEZ:AV0Z20650511 Keywords : XUV lasers * ablation * microstructuring * laser-induced periodic surface structures Subject RIV: BH - Optics, Masers, Lasers Impact factor: 0.660, year: 2010

  18. Radiofrequency ablation in dermatology

    Sachdeva Silonie

    2007-01-01

    Full Text Available Radiofreqeuency ablation is a versatile dermatosurgical procedure used for surgical management of skin lesions by using various forms of alternating current at an ultra high frequency. The major modalities in radiofrequency are electrosection, electrocoagulation, electrodessication and fulguration. The use of radiofrequency ablation in dermatosurgical practice has gained importance in recent years as it can be used to treat most of the skin lesions with ease in less time with clean surgical field due to adequate hemostasis and with minimal side effects and complications. This article focuses on the major tissue effects and factors influencing radiofrequency ablation and its application for various dermatological conditions.

  19. Liver tumor ablation

    Minimal-invasive techniques for ablation of primary and secondary hepatic tumors gain increasingly clinical importance. This is especially true since surgical resection and classic chemotherapy is successful only in a limited number of patients. Local ablative methods incorporate chemo- (percutaneous alcohol instillation, transarterial chemoembolization), thermo- (radiofrequency-, laser-, microwave-, cryoablation, high intensive focused ultrasound) and radio-ablative techniques (interstitial brachytherapy, selective internal radiotherapy). Regarding their implementation and specific effects these methods are varying widely, nevertheless all of them have a high therapeutical efficacy together with a low complication rate in common - correct application presumed. The knowledge on specific indications and contraindications is crucial to implement these methods into multimodality therapy concepts. (orig.)

  20. Microwave Ablation of Hepatic Malignancy

    Lubner, Meghan G.; Brace, Christopher L.; Ziemlewicz, Tim J.; Hinshaw, J. Louis; Lee, Fred. T.

    2013-01-01

    Microwave ablation is an extremely promising heat-based thermal ablation modality that has particular applicability in treating hepatic malignancies. Microwaves can generate very high temperatures in very short time periods, potentially leading to improved treatment efficiency and larger ablation zones. As the available technology continues to improve, microwave ablation is emerging as a valuable alternative to radiofrequency ablation in the treatment of hepatic malignancies. This article rev...

  1. Femtosecond laser bone ablation with a high repetition rate fiber laser source

    Mortensen, Luke J.; Alt, Clemens; Turcotte, Raphaël; Masek, Marissa; Liu, Tzu-Ming; Côté, Daniel C.; Xu, Chris; Intini, Giuseppe; Lin, Charles P.

    2014-01-01

    Femtosecond laser pulses can be used to perform very precise cutting of material, including biological samples from subcellular organelles to large areas of bone, through plasma-mediated ablation. The use of a kilohertz regenerative amplifier is usually needed to obtain the pulse energy required for ablation. This work investigates a 5 megahertz compact fiber laser for near-video rate imaging and ablation in bone. After optimization of ablation efficiency and reduction in autofluorescence, th...

  2. Percutaneous Microwave Ablation of Renal Angiomyolipomas

    PurposeTo evaluate the safety and efficacy of US-guided percutaneous microwave (MW) ablation in the treatment of renal angiomyolipoma (AML).Materials and MethodsFrom January 2011 to April 2014, seven patients (5 females and 2 males; mean age 51.4) with 11 renal AMLs (9 sporadic type and 2 tuberous sclerosis associated) with a mean size of 3.4 ± 0.7 cm (range 2.4–4.9 cm) were treated with high-powered, gas-cooled percutaneous MW ablation under US guidance. Tumoral diameter, volume, and CT/MR enhancement were measured on pre-treatment, immediate post-ablation, and delayed post-ablation imaging. Clinical symptoms and creatinine were assessed on follow-up visits.ResultsAll ablations were technically successful and no major complications were encountered. Mean ablation parameters were ablation power of 65 W (range 60–70 W), using 456 mL of hydrodissection fluid per patient, over 4.7 min (range 3–8 min). Immediate post-ablation imaging demonstrated mean tumor diameter and volume decreases of 1.8 % (3.4–3.3 cm) and 1.7 % (27.5–26.3 cm3), respectively. Delayed imaging follow-up obtained at a mean interval of 23.1 months (median 17.6; range 9–47) demonstrated mean tumor diameter and volume decreases of 29 % (3.4–2.4 cm) and 47 % (27.5–12.1 cm3), respectively. Tumoral enhancement decreased on immediate post-procedure and delayed imaging by CT/MR parameters, indicating decreased tumor vascularity. No patients required additional intervention and no patients experienced spontaneous bleeding post-ablation.ConclusionOur early experience with high-powered, gas-cooled percutaneous MW ablation demonstrates it to be a safe and effective modality to devascularize and decrease the size of renal AMLs

  3. Percutaneous Microwave Ablation of Renal Angiomyolipomas

    Cristescu, Mircea, E-mail: mcristescu@uwhealth.org [University of Wisconsin, Department of Radiology (United States); Abel, E. Jason, E-mail: abel@urology.wisc.edu [University of Wisconsin, Department of Urology (United States); Wells, Shane, E-mail: swells@uwhealth.org; Ziemlewicz, Timothy J., E-mail: tziemlewicz@uwhealth.org [University of Wisconsin, Department of Radiology (United States); Hedican, Sean P., E-mail: hedican@surgery.wisc.edu [University of Wisconsin, Department of Urology (United States); Lubner, Megan G., E-mail: mlubner@uwhealth.org; Hinshaw, J. Louis, E-mail: jhinshaw@uwhealth.org; Brace, Christopher L., E-mail: cbrace@uwhealth.org; Lee, Fred T., E-mail: flee@uwhealth.org [University of Wisconsin, Department of Radiology (United States)

    2016-03-15

    PurposeTo evaluate the safety and efficacy of US-guided percutaneous microwave (MW) ablation in the treatment of renal angiomyolipoma (AML).Materials and MethodsFrom January 2011 to April 2014, seven patients (5 females and 2 males; mean age 51.4) with 11 renal AMLs (9 sporadic type and 2 tuberous sclerosis associated) with a mean size of 3.4 ± 0.7 cm (range 2.4–4.9 cm) were treated with high-powered, gas-cooled percutaneous MW ablation under US guidance. Tumoral diameter, volume, and CT/MR enhancement were measured on pre-treatment, immediate post-ablation, and delayed post-ablation imaging. Clinical symptoms and creatinine were assessed on follow-up visits.ResultsAll ablations were technically successful and no major complications were encountered. Mean ablation parameters were ablation power of 65 W (range 60–70 W), using 456 mL of hydrodissection fluid per patient, over 4.7 min (range 3–8 min). Immediate post-ablation imaging demonstrated mean tumor diameter and volume decreases of 1.8 % (3.4–3.3 cm) and 1.7 % (27.5–26.3 cm{sup 3}), respectively. Delayed imaging follow-up obtained at a mean interval of 23.1 months (median 17.6; range 9–47) demonstrated mean tumor diameter and volume decreases of 29 % (3.4–2.4 cm) and 47 % (27.5–12.1 cm{sup 3}), respectively. Tumoral enhancement decreased on immediate post-procedure and delayed imaging by CT/MR parameters, indicating decreased tumor vascularity. No patients required additional intervention and no patients experienced spontaneous bleeding post-ablation.ConclusionOur early experience with high-powered, gas-cooled percutaneous MW ablation demonstrates it to be a safe and effective modality to devascularize and decrease the size of renal AMLs.

  4. Metal particles produced by laser ablation for ICP-MSmeasurements

    Gonzalez, Jhanis J.; Liu, Chunyi; Wen, Sy-Bor; Mao, Xianglei; Russo, Richard E.

    2007-06-01

    Pulsed laser ablation (266nm) was used to generate metal particles of Zn and Al alloys using femtosecond (150 fs) and nanosecond (4 ns) laser pulses with identical fluences of 50 J cm{sup -2}. Characterization of particles and correlation with Inductively Coupled Plasma Mass Spectrometer (ICP-MS) performance was investigated. Particles produced by nanosecond laser ablation were mainly primary particles with irregular shape and hard agglomerates (without internal voids). Particles produced by femtosecond laser ablation consisted of spherical primary particles and soft agglomerates formed from numerous small particles. Examination of the craters by white light interferometric microscopy showed that there is a rim of material surrounding the craters formed after nanosecond laser ablation. The determination of the crater volume by white light interferometric microscopy, considering the rim of material surrounding ablation craters, revealed that the volume ratio (fs/ns) of the craters on the selected samples was approximately 9 (Zn), 7 (NIST627 alloy) and 5 (NIST1711 alloy) times more ablated mass with femtosecond pulsed ablation compared to nanosecond pulsed ablation. In addition, an increase of Al concentration from 0 to 5% in Zn base alloys caused a large increase in the diameter of the particles, up to 65% while using nanosecond laser pulses. When the ablated particles were carried in argon into an ICP-MS, the Zn and Al signals intensities were greater by factors of {approx} 50 and {approx} 12 for fs vs. ns ablation. Femtosecond pulsed ablation also reduced temporal fluctuations in the {sup 66}Zn transient signal by a factor of ten compared to nanosecond laser pulses.

  5. Suitability of a tumour-mimicking material for the evaluation of high-intensity focused ultrasound ablation under magnetic resonance guidance

    Pichardo, S.; Kivinen, J.; Melodelima, D.; Curiel, L.

    2013-04-01

    This study tests the suitability of a tumour-mimic for targeting magnetic resonance (MR)-guided high-intensity focused ultrasound (HIFU). An agarose-based tumour-mimic was injected as a warm solution that polymerized in tissue. Thermal characteristics and acoustic absorption of the mimic were observed within the values reported for tissues. The relaxation times at 3T were 1679 ± 15 ms for T1 and 41 ± 1 ms for T2. The mimic was clearly visible on in vivo images. With lower contrast the tumour-mimic was visible on T2-weighted images, where it was possible to detect the ablated tissue surrounding the mimic after sonications. HIFU sonications were performed to induce thermal ablation on and around the mimic using a Sonalleve system (Philips). MR thermometry maps were performed during HIFU. The average temperature when the sonication was done at the tumour-mimic was 67.6 ± 8.0 °C in vitro and 67.6 ± 5.0 °C in vivo. The average temperature for sonications at tissues was 68.4 ± 8.7 °C in vitro (liver) and 66.0 ± 2.6 °C in vivo (muscle), with no significant difference between tissue and tumour-mimic (p > 0.05). The tumour-mimic behaviour when using MR-guided HIFU was similar to tissues, showing that this mimic can be used as an alternative to tumour models for validating MR-guided HIFU devices targeting.

  6. MR Guided RF Ablation and Thermometery

    Sara Eskandari

    2009-01-01

    Full Text Available "nIntroduction: Liver metastasis is detected in more than one million people in each year. Only 10% of them are eligible for surgery. Radiofrequency ablation is the most popular local ablation technique for the management of the other 90% of the metastases. Complete ablation of the lesion with a safe margin is the goal of such a local ablative method. There is no routine available technique for monitoring the treatment process. MRI is the only method which can monitor tissue ablation in real time however interaction of radiofrequency energy by MRI acquisition makes it impossible for clinical use. "nMaterials and Methods: In our in-vitro study, the effect of bipolar needles were evaluated on the signal intensity of theliver parenchyma. This evaluation was repeated 15 times. A calibration curve was also calculated from the in-vitro measurement of tissue temperature with an interstitial NTC sensor with dedicated data collecting software written by our team. Finally the correlation between temperature and signal intensity was prepared and during the RF ablation, the temperature map could be created in an almost real time manner. "nResults: Our results show an exponential calibration curve for sensors and a linear reduction of the signal intensities during the RF procedure. "nConclusion: We introduce a method for calibration of the MRI signal intensity with tissue temperature between alternative RF pulses. This method brings MR monitoring as the practical method in clinical use. By this innovative technique it is possible for all the hospitals and clinics to use their routine MR scanner for monitoring this ablative technique without any additional hardware.  

  7. Determining ablation depth using CT imaging

    Urzová, J.; Jelínek, Miroslav; Remsa, Jan; Vopálka, R.

    Kladno: CTU Faculty of Biomedical Engineering, 2015 - (Jelínek, M.). s. 17 ISBN 978-80-01-05809-1. [Progressive Biomedical Materials and Technologies 2015. 09.10.2015-10.10.2015, Kladno] Institutional support: RVO:68378271 Keywords : ablation depth * CT imaging * excimer laser Subject RIV: BM - Solid Matter Physics ; Magnetism

  8. Kilohertz laser ablation for doping helium nanodroplets

    Mudrich, M; Müller, S; Dvorak, M; Buenermann, O; Stienkemeier, F

    2007-01-01

    A new setup for doping helium nanodroplets by means of laser ablation at kilohertz repetition rate is presented. The doping process is characterized and two distinct regimes of laser ablation are identified. The setup is shown to be efficient and stable enough to be used for spectroscopy, as demonstrated on beam-depletion spectra of lithium atoms attached to helium nanodroplets. For the first time, helium droplets are doped with high temperature refractory materials such as titanium and tantalum. Doping with the non-volatile DNA basis Guanine is found to be efficient and a number of oligomers are detected.

  9. Fundamental studies of pulsed laser ablation

    Claeyssens, F

    2001-01-01

    dopant) have resulted in a coherent view of the resulting plume, which exhibits a multi-component structure correlated with different regimes of ablation, which are attributed to ejection from ZnO and ablation from a Zn melt. OES measurements show that the emitting Zn component within the plume accelerates during expansion in vacuum - an observation attributable to the presence of hot, fast electrons in the plume. The same acceleration behaviour is observed in the case of Al atomic emissions resulting from ablation of an Al target in vacuum. Deposition conditions, substrate temperature and background gas pressure were all varied in a quest for optimally aligned, high quality ZnO thin films. Initial ab initio calculations were performed also, to aid in understanding the stability of these c-axis aligned films. The pulsed ultraviolet (lambda = 193, 248 nm) laser ablation of graphite, polycrystalline diamond and ZnO targets has been investigated. Characteristics of the resulting plumes of ablated material have b...

  10. Thermochemical Ablation Analysis of the Orion Heatshield

    Sixel, William

    2015-01-01

    The Orion Multi-Purpose Crew Vehicle will one day carry astronauts to the Moon and beyond, and Orion's heatshield is a critical component in ensuring their safe return to Earth. The Orion heatshield is the structural component responsible for absorbing the intense heating environment caused by re-entry to Earth's atmosphere. The heatshield is primarily composed of Avcoat, an ablative material that is consumed during the re-entry process. Ablation is primarily characterized by two processes: pyrolysis and recession. The decomposition of in-depth virgin material is known as pyrolysis. Recession occurs when the exposed surface of the heatshield reacts with the surrounding flow. The Orion heatshield design was changed from an individually filled Avcoat honeycomb to a molded block Avcoat design. The molded block Avcoat heatshield relies on an adhesive bond to keep it attached to the capsule. In some locations on the heatshield, the integrity of the adhesive bond cannot be verified. For these locations, a mechanical retention device was proposed. Avcoat ablation was modelled in CHAR and the in-depth virgin material temperatures were used in a Thermal Desktop model of the mechanical retention device. The retention device was analyzed and shown to cause a large increase in the maximum bondline temperature. In order to study the impact of individual ablation modelling parameters on the heatshield sizing process, a Monte Carlo simulation of the sizing process was proposed. The simulation will give the sensitivity of the ablation model to each of its input parameters. As part of the Monte Carlo simulation, statistical uncertainties on material properties were required for Avcoat. Several properties were difficult to acquire uncertainties for: the pyrolysis gas enthalpy, non-dimensional mass loss rate (B´c), and Arrhenius equation parameters. Variability in the elemental composition of Avcoat was used as the basis for determining the statistical uncertainty in pyrolysis gas

  11. Renal Artery Embolization Combined With Radiofrequency Ablation in a Porcine Kidney Model: Effect of Small and Narrowly Calibrated Microparticles as Embolization Material on Coagulation Diameter, Volume, and Shape

    The purpose of this study was to evaluate the effect of renal artery embolization with small and narrowly calibrated microparticles on the coagulation diameter, volume, and shape of radiofrequency ablations (RFAs) in porcine kidneys. Forty-eight RFAs were performed in 24 kidneys of 12 pigs. In 6 animals, bilateral renal artery embolization was performed with small and narrowly calibrated microparticles. Upper and lower kidney poles were ablated with identical system parameters. Applying three-dimensional segmentation software, RFAs were segmented on registered 2 mm-thin macroscopic slices. Length, depth, width, volumesegmented, and volumecalculated were determined to describe the size of the RFAs. To evaluate the shape of the RFAs, depth-to-width ratio (perfect symmetry-to-lesion length was indicated by a ratio of 1), sphericity ratio (perfect sphere was indicated by a sphericity ratio of 1), eccentricity (perfect sphere was indicated by an eccentricity of 0), and circularity (perfect circle was indicated by a circularity of 1) were determined. Embolized compared with nonembolized RFAs showed significantly greater depth (23.4 ± 3.6 vs. 17.2 ± 1.8 mm; p segmented (8.6 ± 3.2 vs. 3.0 ± 0.7 ml; p calculated (8.4 ± 3.0 ml vs. 3.3 ± 1.1 ml; p < 0.001); significantly lower depth-to-width (1.17 ± 0.10 vs. 1.48 ± 0.44; p < 0.05), sphericity (1.55 ± 0.44 vs. 1.96 ± 0.43; p < 0.01), and eccentricity (0.84 ± 0.61 vs. 1.73 ± 0.91; p < 0.01) ratios; and significantly greater circularity (0.62 ± 0.14 vs. 0.45 ± 0.16; p < 0.01). Renal artery embolization with small and narrowly calibrated microparticles affected the coagulation diameter, volume, and shape of RFAs in porcine kidneys. Embolized RFAs were significantly larger and more spherical compared with nonembolized RFAs.

  12. Graded Density Carbon Bonded Carbon Fiber (CBCF) Preforms for Lightweight Ablative Thermal Protection Systems (TPS) Project

    National Aeronautics and Space Administration — FMI currently manufactures Phenolic Impregnated Carbon Ablator (PICA) material for Thermal Protection Systems (TPS) systems, such as the Stardust Sample Return...

  13. Graded Density Carbon Bonded Carbon Fiber (CBCF) Preforms for Lightweight Ablative Thermal Protection Systems (TPS) Project

    National Aeronautics and Space Administration — FMI has developed graded density CBCF preforms for graded density phenolic impregnated carbon ablator (PICA) material to meet NASA's future exploration mission...

  14. Ultrasound-guided percutaneous thermal ablation of hepatocellular carcinoma using microwave and radiofrequency ablation

    AIM: To investigate the therapeutic efficacy of thermal ablation for treatment of hepatocellular carcinoma (HCC) using microwave and radiofrequency (RF) energy application. MATERIALS AND METHODS: A total of 190 nodules in 97 patients (84 male, 13 female; mean age 53.4 years, range 24-74 years) with HCC were treated with microwave or RF ablation in the last 4 years. The applicators were introduced into the tumours under conscious analgesic sedation by intravenous administration of fentanyl citrate and droperidol and local anaesthesia in both thermal ablation procedures. The patients were then followed up with contrast-enhanced computed tomography (CT) to evaluate treatment response. Survival was analysed using the Kaplan-Meier method. RESULTS: Complete ablation was obtained in 92.6% (176/190) nodules. The complete ablation rates were 94.6% (106/112) in microwave ablation and 89.7% (70/78) in RF ablation. The complete ablation rates in tumours≤2.0, 2.1-3.9 and ≥4.0 cm were 93.1, 93.8 and 86.4%, respectively. Local recurrence was found in 9.5% nodules and the rates in tumours≤2.0, 2.1-3.9 and ≥4.0 cm in diameter were 3.4, 9.9 and 31.8%, respectively. In the follow-up period, 7.1% nodules ablated by microwave and 12.8% by RF presented local recurrence. The 1, 2 and 3-year distant recurrence-free survivals were 47.2, 34.9 and 31.0%, respectively. Estimated mean survival was 32 months, and 1, 2 and 3-year cumulative survivals were 75.6, 58.5, and 50.0%, respectively. One and 2 years survivals of Child-Pugh class A, B and C patients were 83.8 and 70.4%, 78.2 and 53.2%, 36.3 and 27.3%, respectively. CONCLUSION: Thermal ablation therapy by means of microwave and RF energy application is an effective and safe therapeutic technique for hepatocellular carcinoma. Large tumours can be completely ablated, but have a significantly higher risk of local recurrence at follow-up

  15. Ultrasound-guided percutaneous thermal ablation of hepatocellular carcinoma using microwave and radiofrequency ablation

    Xu, H.-X.; Xie, X.-Y.; Lu, M.-D. E-mail: lumd@21cn.com; Chen, J.-W.; Yin, X.-Y.; Xu, Z.-F.; Liu, G.-J

    2004-01-01

    AIM: To investigate the therapeutic efficacy of thermal ablation for treatment of hepatocellular carcinoma (HCC) using microwave and radiofrequency (RF) energy application. MATERIALS AND METHODS: A total of 190 nodules in 97 patients (84 male, 13 female; mean age 53.4 years, range 24-74 years) with HCC were treated with microwave or RF ablation in the last 4 years. The applicators were introduced into the tumours under conscious analgesic sedation by intravenous administration of fentanyl citrate and droperidol and local anaesthesia in both thermal ablation procedures. The patients were then followed up with contrast-enhanced computed tomography (CT) to evaluate treatment response. Survival was analysed using the Kaplan-Meier method. RESULTS: Complete ablation was obtained in 92.6% (176/190) nodules. The complete ablation rates were 94.6% (106/112) in microwave ablation and 89.7% (70/78) in RF ablation. The complete ablation rates in tumours{<=}2.0, 2.1-3.9 and {>=}4.0 cm were 93.1, 93.8 and 86.4%, respectively. Local recurrence was found in 9.5% nodules and the rates in tumours{<=}2.0, 2.1-3.9 and {>=}4.0 cm in diameter were 3.4, 9.9 and 31.8%, respectively. In the follow-up period, 7.1% nodules ablated by microwave and 12.8% by RF presented local recurrence. The 1, 2 and 3-year distant recurrence-free survivals were 47.2, 34.9 and 31.0%, respectively. Estimated mean survival was 32 months, and 1, 2 and 3-year cumulative survivals were 75.6, 58.5, and 50.0%, respectively. One and 2 years survivals of Child-Pugh class A, B and C patients were 83.8 and 70.4%, 78.2 and 53.2%, 36.3 and 27.3%, respectively. CONCLUSION: Thermal ablation therapy by means of microwave and RF energy application is an effective and safe therapeutic technique for hepatocellular carcinoma. Large tumours can be completely ablated, but have a significantly higher risk of local recurrence at follow-up.

  16. Nanoparticle fabrication of hydroxyapatite by laser ablation in water

    Synthetic polycrystalline hydroxyapatite was ablated in water with 337 nm radiation from a UV nitrogen pulsed laser. According to transmission electron microscopy micrographs, the ablated particles were approximately spherical and had a size of ∼80 nm. Raman spectroscopic analysis demonstrated that particles had the same structure as the original crystal. X-ray photoelectron spectroscopy showed that the surface chemical composition was close to that of the original material. The characteristics of the ablated particles and estimations of the temperature rise of the hydroxyapatite surface under laser irradiation are consistent with the mechanism of explosive boiling being responsible for ablation. The experimental observations offer the basis for preparation of hydroxyapatite nanoparticles by laser ablation in water

  17. Ablation of CsI by XUV Capillary Discharge Laser

    Pira, Peter; Zelinger, Zdenek; Burian, Tomas; Vysin, Ludek; Wild, Jan; Juha, Libor; Lancok, Jan; Nevrly, Vaclav

    2015-09-01

    XUV capillary discharge laser (CDL) is suitable source for ablation of ionic crystals as material which is difficult to ablate by conventional laser. Single crystal of CsI was irradiated by 2.5 ns pulses of a 46.9 nm radiation at 2 Hz. The CDL beam was focused by Sc/Si multilayer spherical mirror. Attenuation length of CsI for this wavelength is 38 nm. Ablation rate was calculated after irradiation of 10, 20, 30, 50 and 100 pulses. Depth of the craters was measured by optical profiler (white light interferometry). Ablation threshold was determined from craters after irradiation with the changing fluence and compared with modeling by XUV-ABLATOR.

  18. Probable approaches to develop particle beam energy drivers and to calculate wall material ablation with X ray radiation from imploded targets

    The first subject was the development of future ion beam driver with medium-mass ion specie. This may enable us to develop a compromised driver from the point of view of the micro-divergence angle and the cost. We produced nitrogen ion beams, and measured the micro-divergence angle on the anode surface. The measured value was 5-6mrad for the above beam with 300-400keV energy, 300A peak current and 50ns duration. This value was enough small and tolerable for the future energy driver. The corresponding value for the proton beam with higher peak current was 20-30mrad, which was too large. So that, the scale-up experiment with the above kind of medium-mass ion beam must be realized urgently to clarify the beam characteristics in more details. The reactor wall ablation with the implosion X-ray was also calculated as the second subject in this paper. (author)

  19. A study of angular dependence in the ablation rate of polymers by nanosecond pulses

    Pedder, James E. A.; Holmes, Andrew S.

    2006-02-01

    Measurements of ablation rate have traditionally been carried out only at normal incidence. However, in real-world applications ablation is often carried out at oblique angles, and it is useful to have prior knowledge of the ablation rate in this case. Detailed information about the angular dependence is also important for the development of ablation simulation tools, and can provide additional insight into the ablation mechanism. Previously we have reported on the angular dependence of direct-write ablation at 266 nm wavelength in solgel and polymer materials. In this paper we present a systematic study of angular dependence for excimer laser ablation of two polymer materials of interest for microfabrication: polycarbonate and SU8 photoresist. The results are used to improve simulation models to aid in mask design.

  20. Thermal protection system ablation sensor

    Gorbunov, Sergey (Inventor); Martinez, Edward R. (Inventor); Scott, James B. (Inventor); Oishi, Tomomi (Inventor); Fu, Johnny (Inventor); Mach, Joseph G. (Inventor); Santos, Jose B. (Inventor)

    2011-01-01

    An isotherm sensor tracks space vehicle temperatures by a thermal protection system (TPS) material during vehicle re-entry as a function of time, and surface recession through calibration, calculation, analysis and exposed surface modeling. Sensor design includes: two resistive conductors, wound around a tube, with a first end of each conductor connected to a constant current source, and second ends electrically insulated from each other by a selected material that becomes an electrically conductive char at higher temperatures to thereby complete an electrical circuit. The sensor conductors become shorter as ablation proceeds and reduced resistance in the completed electrical circuit (proportional to conductor length) is continually monitored, using measured end-to-end voltage change or current in the circuit. Thermocouple and/or piezoelectric measurements provide consistency checks on local temperatures.

  1. Optical-vortex laser ablation

    Hamazaki, Junichi; Morita, Ryuji; Chujo, Keisuke; Kobayashi, Yusuke; Tanda, Satoshi; Omatsu, Takashige

    2010-01-01

    Laser ablation of Ta plates using nanosecond optical vortex pulses was carried out, for the first time. It was suggested that owing to orbital angular momentum of optical vortex, clearer and smoother processed surfaces were obtained with less ablation threshold fluence, in comparison with the ablation by a nonvortex annular beam modified from a spatially Gaussian beam.

  2. XUV-laser induced ablation of PMMA with nano-, pico-, and femtosecond pulses

    For conventional wavelength (UV-vis-IR) lasers delivering radiation energy to the surface of materials, ablation thresholds, etch (ablation) rates, and the quality of ablated structures often differ dramatically between short (typically nanosecond) and ultrashort (typically femtosecond) pulses. Various very short-wavelength (λ < 100 nm) lasers, emitting pulses with durations ranging from ∼10 fs to ∼1 ns, have recently been placed into routine operation. This has facilitated the investigation of how ablation characteristics depend on the pulse duration in the XUV spectral region. Ablation of poly(methyl methacrylate) (PMMA) induced by three particular short-wavelength lasers emitting pulses of various durations, is reported in this contribution

  3. Spark ablation device

    Schmidt-Ott, A.; Pfeiffer, T.V.

    2013-01-01

    A spark ablation device for generating nanoparticles comprising a spark generator; the spark generator comprising first and second electrodes, wherein the spark generator further comprises at least one power source which is arranged to be operative at a first energy level for maintaining a discharge

  4. Tumor ablations in IMRI

    Roberto Blanco Sequeiros

    2002-01-01

    @@ IntroductionMagnetic resonance imaging based guidance control and monitoring of minimally invasive intervention has developed from a hypothetical concept to a practical possibility. Magnetic-resonance-guided interstitial therapy in principle is defined as a treatment technique for ablating deepseated tumors in the human body.

  5. Ablation of film stacks in solar cell fabrication processes

    Harley, Gabriel; Kim, Taeseok; Cousins, Peter John

    2013-04-02

    A dielectric film stack of a solar cell is ablated using a laser. The dielectric film stack includes a layer that is absorptive in a wavelength of operation of the laser source. The laser source, which fires laser pulses at a pulse repetition rate, is configured to ablate the film stack to expose an underlying layer of material. The laser source may be configured to fire a burst of two laser pulses or a single temporally asymmetric laser pulse within a single pulse repetition to achieve complete ablation in a single step.

  6. Overview of the CHarring Ablator Response (CHAR) Code

    Amar, Adam J.; Oliver, A. Brandon; Kirk, Benjamin S.; Salazar, Giovanni; Droba, Justin

    2016-01-01

    An overview of the capabilities of the CHarring Ablator Response (CHAR) code is presented. CHAR is a one-, two-, and three-dimensional unstructured continuous Galerkin finite-element heat conduction and ablation solver with both direct and inverse modes. Additionally, CHAR includes a coupled linear thermoelastic solver for determination of internal stresses induced from the temperature field and surface loading. Background on the development process, governing equations, material models, discretization techniques, and numerical methods is provided. Special focus is put on the available boundary conditions including thermochemical ablation and contact interfaces, and example simulations are included. Finally, a discussion of ongoing development efforts is presented.

  7. Laser ablation in a liquid-confined environment using a nanosecond laser pulse

    Kang, Hyun Wook; Lee, Ho; Welch, Ashley J.

    2008-04-01

    Laser ablation of aluminum metal with 1ns, 800nm pulse at low radiant exposures was investigated in air (dry) and water (wet) environments. Compared to dry ablation, an approximately eight times increase in material removal rate was associated with wet ablation. Based on optical reflectance and scanning electron microscope images, bubble formation/collapse was responsible for augmented acoustic pressure and ablation performance. Numerically simulated temperature distributions during wet ablation were consistent with the occurrence of explosive water vaporization near the critical temperature of water. Strong pressure emission during liquid vaporization and jet formation can account for enhanced ablation process. Radial expansion of bubbles minimized the redeposition of debris, leading to improvements in energy coupling to the target and ablation performance.

  8. Laser ablation in a liquid-confined environment using a nanosecond laser pulse

    Laser ablation of aluminum metal with 1 ns, 800 nm pulse at low radiant exposures was investigated in air (dry) and water (wet) environments. Compared to dry ablation, an approximately eight times increase in material removal rate was associated with wet ablation. Based on optical reflectance and scanning electron microscope images, bubble formation/collapse was responsible for augmented acoustic pressure and ablation performance. Numerically simulated temperature distributions during wet ablation were consistent with the occurrence of explosive water vaporization near the critical temperature of water. Strong pressure emission during liquid vaporization and jet formation can account for enhanced ablation process. Radial expansion of bubbles minimized the redeposition of debris, leading to improvements in energy coupling to the target and ablation performance

  9. Analytical optimization of the ablation efficiency at normal and non-normal incidence for generic super Gaussian beam profiles

    Arba-Mosquera, Samuel; Verma, Shwetabh

    2013-01-01

    We suggest a general method to determine the optimum laser parameters for maximizing the ablation efficiency for different materials (in particular human cornea) at different incidence angles. The model is comprehensive and incorporates laser beam characteristics and ablative spot properties. The model further provides a method to convert energy fluctuations during ablation to equivalent ablation deviations in the cornea. The proposed model can be used for calibration, verification and valida...

  10. Enthalpy model for heating, melting, and vaporization in laser ablation

    Vasilios Alexiades; David Autrique

    2010-01-01

    Laser ablation is used in a growing number of applications in various areas including medicine, archaeology, chemistry, environmental and materials sciences. In this work the heat transfer and phase change phenomena during nanosecond laser ablation of a copper (Cu) target in a helium (He) background gas at atmospheric pressure are presented. An enthalpy model is outlined, which accounts for heating, melting, and vaporization of the target. As far as we know, this is the first model th...

  11. 3D Multifunctional Ablative Thermal Protection System

    Feldman, Jay; Venkatapathy, Ethiraj; Wilkinson, Curt; Mercer, Ken

    2015-01-01

    NASA is developing the Orion spacecraft to carry astronauts farther into the solar system than ever before, with human exploration of Mars as its ultimate goal. One of the technologies required to enable this advanced, Apollo-shaped capsule is a 3-dimensional quartz fiber composite for the vehicle's compression pad. During its mission, the compression pad serves first as a structural component and later as an ablative heat shield, partially consumed on Earth re-entry. This presentation will summarize the development of a new 3D quartz cyanate ester composite material, 3-Dimensional Multifunctional Ablative Thermal Protection System (3D-MAT), designed to meet the mission requirements for the Orion compression pad. Manufacturing development, aerothermal (arc-jet) testing, structural performance, and the overall status of material development for the 2018 EM-1 flight test will be discussed.

  12. Transpiration cooling assisted ablative thermal protection of aerospace substructures

    Ablatives are heat-shielding materials used to protect aerospace substructures. These materials are sacrificial in nature and provide protection primarily through the large endothermic transformation during exposure to hyper thermal environment such as encountered in re-entry modules. The performance of certain ablatives was reported in terms of their TGA/DTA in Advanced Materials-97 (pp 57-65). The focus of this earlier research resided in the consolidation of interface between the refractory inclusion and the host polymeric matrix to improve thermal resistance. In the present work we explore the scope of transpiration cooling in ablative performance through flash evaporation of liquid incorporated in the host EPDM (Ethylene Propylene Diene Monomer) matrix. The compression-molded specimens were exposed separately to plasma flame (15000 C) and oxyacetylene torch (3000 C) and the back face transient temperature is recorded in situ employing a thermocouple/data logger system. Both head on impingement (HOI) and parallel flow (PF) through a central cavity in the ablator were used. It is observed that transpiration cooling is effective and yields (a) rapid thermal equilibrium in the specimen, (b) lower back face temperature and (c) lower ablation rate, compared to conventional ablatives. SEM/EDS analysis is presented to amplify the point. (author)

  13. Mécanismes fondamentaux de l'ablation laser femtoseconde en "flux intermédiaire"

    Petite, Guillaume

    2005-01-01

    This chapter aims at identifying what is specific to femtosecond laser ablation. It reviews the essential basic processes which contribute to femtosecond laser ablation of various materials : energy absorption by the material's electrons, electronic relaxation processes involving either electron-electron or electron-lattice interactions. A number of widely used models are briefly discussed, as well as some pending questions.

  14. Assessment of tbe Performance of Ablative Insulators Under Realistic Solid Rocket Motor Operating Conditions (a Doctoral Dissertation)

    Martin, Heath Thomas

    2013-01-01

    Ablative insulators are used in the interior surfaces of solid rocket motors to prevent the mechanical structure of the rocket from failing due to intense heating by the high-temperature solid-propellant combustion products. The complexity of the ablation process underscores the need for ablative material response data procured from a realistic solid rocket motor environment, where all of the potential contributions to material degradation are present and in their appropriate proportions. For this purpose, the present study examines ablative material behavior in a laboratory-scale solid rocket motor. The test apparatus includes a planar, two-dimensional flow channel in which flat ablative material samples are installed downstream of an aluminized solid propellant grain and imaged via real-time X-ray radiography. In this way, the in-situ transient thermal response of an ablator to all of the thermal, chemical, and mechanical erosion mechanisms present in a solid rocket environment can be observed and recorded. The ablative material is instrumented with multiple micro-thermocouples, so that in-depth temperature histories are known. Both total heat flux and thermal radiation flux gauges have been designed, fabricated, and tested to characterize the thermal environment to which the ablative material samples are exposed. These tests not only allow different ablative materials to be compared in a realistic solid rocket motor environment but also improve the understanding of the mechanisms that influence the erosion behavior of a given ablative material.

  15. Thermal properties of ablative phenolic resins

    Srebrenkoska, Vineta; Dimeski, Dimko; BOGOEVA-GACEVA, Gordana

    2002-01-01

    Phenolic resins are known for their excellent thermal properties and chemical stability and are widely used in automotive industry, electrical engineering, military industry and industry of construction materials. Their attractive properties have been especially exploited in high temperature applications. Recently a wide range of phenolic resins for different applications is available on the market. In this paper the properties of two types of ablative phenolic resins are compared: resin B...

  16. Bone and Soft Tissue Ablation

    Foster, Ryan C.B.; Joseph M Stavas

    2014-01-01

    Bone and soft tissue tumor ablation has reached widespread acceptance in the locoregional treatment of various benign and malignant musculoskeletal (MSK) lesions. Many principles of ablation learned elsewhere in the body are easily adapted to the MSK system, particularly the various technical aspects of probe/antenna design, tumoricidal effects, selection of image guidance, and methods to reduce complications. Despite the common use of thermal and chemical ablation procedures in bone and soft...

  17. Ames Infusion Stories for NASA Annual Technology Report: Development of an Ablative 3D Quartz / Cyanate Ester Composite Multi-Functional Material for the Orion Spacecraft Compression Pad

    Smith, Brandon; Jan, Darrell Leslie; Venkatapathy, Ethiraj

    2015-01-01

    Vehicles re-entering Earth's atmosphere require protection from the heat of atmospheric friction. The Orion Multi-Purpose Crew Vehicle (MPCV) has more demanding thermal protection system (TPS) requirements than the Low Earth Orbit (LEO) missions, especially in regions where the structural load passes through. The use of 2-dimensional laminate materials along with a metal insert, used in EFT1 flight test for the compression pad region, are deemed adequate but cannot be extended for Lunar return missions.

  18. Thin film growing by the laser ablation technique: possibilities for growing of dosimetric materials; Crecimiento de capas delgadas por la tecnica de ablacion laser: posibilidades para crecimiento de materiales dosimetricos

    Rojas R, E.M.; Melo M, M.; Enriquez Z, E.; Fernandez G, M.; Haro P, E.; Hernandez P, J.L. [UAM-I, Laboratorio de Optica Cuantica, 09340 Mexico D.F. (Mexico)

    2005-07-01

    In this talk we will present the basics about the laser ablation technique and how it is used for thin film growing, either as a single film or a stack of thin films, as well as some methods to characterize in real time the film thickness. Finally, we will discuss the possibilities of using laser ablation for growing thin films with applications to dosimetry. (Author)

  19. Endoscopic ultrasound guided radiofrequency ablation in pancreas

    Seicean, Andrada; Tefas, Cristian; Ungureanu, Bogdan;

    2014-01-01

    Radiofrequency ablation of the pancreas represents a more effective tumor-destruction method compared to other ablation techniques. The endoscopic ultrasound guided radiofrequency ablation is indicated for locally advanced, non-metastatic pancreatic adenocarcinoma, without the need of general...

  20. Role of shielding in modelling cryogenic deuterium pellet ablation

    For the better characterization of pellet ablation, the numerical LLP code has been enhanced by combining two relevant shielding mechanisms: that of the spherically expanding neutral cloud surrounding the pellet and that of the field elongated ionized material forming a channel flow. In contrast to our expectation the presence of the channel flow can increase the ablation rate although it reduces the heat flux travelling through it. The contribution of the different shielding effect in the ablation process is analysed for several pellet and plasma parameters and an ablation rate scaling is presented based on simple regression in the ASDEX Upgrade pellet and plasma parameter range. Finally the simulated results are compared with experimental data from typical ASDEX Upgrade discharges

  1. Laser ablation in analytical chemistry-a review.

    Russo, Richard E; Mao, Xianglei; Liu, Haichen; Gonzalez, Jhanis; Mao, Samuel S

    2002-05-24

    Laser ablation is becoming a dominant technology for direct solid sampling in analytical chemistry. Laser ablation refers to the process in which an intense burst of energy delivered by a short laser pulse is used to sample (remove a portion of) a material. The advantages of laser ablation chemical analysis include direct characterization of solids, no chemical procedures for dissolution, reduced risk of contamination or sample loss, analysis of very small samples not separable for solution analysis, and determination of spatial distributions of elemental composition. This review describes recent research to understand and utilize laser ablation for direct solid sampling, with emphasis on sample introduction to an inductively coupled plasma (ICP). Current research related to contemporary experimental systems, calibration and optimization, and fractionation is discussed, with a summary of applications in several areas. PMID:18968642

  2. Excimer laser ablation of polycarbonate-based plastic substrates

    Ablation of polycarbonate-based plastics under excimer laser irradiation has been studied, with emphasis on the influence of specific inorganic additives in the polymer to the ablation process. Such additives consisted of 0.2 μm sized, (spherical) TiO2 grains, in either 5% or 10% mass concentration. Irradiation products are analyzed, with respect to roughness and ablation, by scanning electron microscopy, energy dispersive X-ray spectroscopy and stylus-profilometry. In the surface region (0-5 μm) of the plastic substrate (i.e. where additives are nearly absent), single pulse irradiation at fluences below 1 J/cm2 yields no ablation and induces the formation of a spongeous polycarbonate medium. Upon repeated irradiation, ablation of this medium proceeds and gives access to the additive-containing material. Evidences are then obtained for subsequent ablation and for a particular structuring of the TiO2-containing material surface in the form of roll-forming cells. The cell formation is indicative of irradiation-monitored melting of the polymer and phase separation between additive and polymer

  3. Effect of air-flow on the evaluation of refractive surgery ablation patterns

    Dorronsoro, Carlos; Schumacher, Silvia; Pérez Merino, Pablo; Siegel, Jan; Mrochen, Michael; Marcos, Susana

    2011-01-01

    Allegretto Eye-Q laser platform (Wavelight GmbH, Erlangen, Germany) was used to study the effect of air-flow speed on the ablation of artificial polymer corneas used for testing refractive surgery patterns. Flat samples of two materials (PMMA and Filofocon A) were ablated at four different air flow conditions. The shape and profile of the ablated surfaces were measured with a precise non-contact optical surface profilometer. Significant asymmetries in the measured profiles were found when the...

  4. The changes in complete blood count in thyroid cancer patients treated with radioactive iodine ablation therapy

    Bircan Sönmez; İsmail Doğan; Canan Yavruoğlu; Gamze Can; Mehmet Sönmez

    2010-01-01

    Objective: The aim of this study was to evaluate the effect of radioactive iodine (RAI) ablation therapy on the complete blood count (CBC) in thyroid cancer patients. Materials and Methods: One hundred sixty four patients undergoing RAI ablation therapy after total thyroidectomy were included. CBC results were available from the patients’ medical records at the time of ablation and at the 1st, 6th, and 12th months after RAI therapy.Results: Hemoglobin (Hb), white blood cell (WBC) and platelet...

  5. Ablation and Thermal Response Property Model Validation for Phenolic Impregnated Carbon Ablator

    Milos, F. S.; Chen, Y.-K.

    2009-01-01

    Phenolic Impregnated Carbon Ablator was the heatshield material for the Stardust probe and is also a candidate heatshield material for the Orion Crew Module. As part of the heatshield qualification for Orion, physical and thermal properties were measured for newly manufactured material, included emissivity, heat capacity, thermal conductivity, elemental composition, and thermal decomposition rates. Based on these properties, an ablation and thermal-response model was developed for temperatures up to 3500 K and pressures up to 100 kPa. The model includes orthotropic and pressure-dependent thermal conductivity. In this work, model validation is accomplished by comparison of predictions with data from many arcjet tests conducted over a range of stagnation heat flux and pressure from 107 Watts per square centimeter at 2.3 kPa to 1100 Watts per square centimeter at 84 kPa. Over the entire range of test conditions, model predictions compare well with measured recession, maximum surface temperatures, and in depth temperatures.

  6. Simulated ablation of carbon wall by alpha particles for a laser fusion reactor

    Thermal reactions of materials heated by charged particles may lead to serious damage in a laser fusion reactor. When charged particles irradiate and heat the wall material with high intensity like at above 109 W/cm2, the material can be ablated. Once the wall is ablated, expanding gas or plasma can disturb the propagation of laser light irradiating the fuel target if it stagnates long enough for next laser shot. In order to understand the ablation dynamics in detail, we have performed 1-D hydro simulation to evaluate this ablation. As a new feature, we introduce the calculation of energy deposition by charged particles focusing on the interaction between ablated material and charged particles

  7. Hydrodynamic stability theory of double ablation front structures in inertial confinement fusion

    For moderate-Z materials, the hydrodynamic structure of the ablation region formed by the irradiation of high intensity laser beams differs from that of low-Z materials (hydrogenic ablators). In particular, the role played by the radiative energy flux becomes non-negligible for increasing atomic number material and ended up forming a second ablation front. This structure of two separated ablation fronts, called double ablation (DA) front, was confirmed in the simulations carried out by Fujioka et al. In this work a linear stability theory of DA fronts is developed for direct-drive inertial confinement fusion targets. Two models are proposed. First, a sharp boundary model where the thin front approximation is assumed for both ablation fronts. The information about the corona region that permits to close the sharp boundary model is obtained from a prior self-consistent analysis of the electronic-radiative ablation (ERA) front. Numerical results are presented as well as an analytical approach for the radiation dominated regime of very steep double ablation front structure. Second, a self-consistent numerical method where the finite length of the ablation fronts is considered. Accurate hydrodynamic profiles are taken into account in the theoretical model by means of a fitting parameters method using one-dimensional simulation results. Numerical dispersion relation is compared to the analytical sharp boundary model showing an excellent agreement for the radiation dominated regime, and the stabilization due to smooth profiles. 2D simulations are presented to validate the linear stability theory

  8. Laser ablation of multilayer polymer films

    We study the efficiency of using multilayer structures as an etch-stop mechanism in the ablation of polyimide films by ultraviolet lasers. The study is done using a photothermal model that includes the light absorption by the decomposed fragments, which shield the polymer from the laser beam, an intermediate zone in which the polymer is suffering a phase transition and the underlying unburned material. The layers are differentiated from each other through their optical properties. Variation in the optical properties of polyimide has been achieved by a proper selection of impurities. From our modeling work, we conclude that optically thin foils may be used as etch stop in the ablation process when the penetration depth of the middle layer is around three times larger than the penetration depth of the surrounding layers, this for fluences below 200 mJ/cm2. We also present some experimental results

  9. Thermal Performance of Ablative/ Ceramic Composite

    Adriana STEFAN

    2014-12-01

    Full Text Available A hybrid thermal protection system for atmospheric earth re-entry based on ablative materials on top of ceramic matrix composites is investigated for the protection of the metallic structure in oxidative and high temperature environment of the space vehicles. The paper focuses on the joints of ablative material (carbon fiber based CALCARB® or cork based NORCOAT TM and Ceramic Matrix Composite (CMC material (carbon fibers embedded in silicon carbide matrix, Cf/SiC, SICARBON TM or C/C-SiC using commercial high temperature inorganic adhesives. To study the thermal performance of the bonded materials the joints were tested under thermal shock at the QTS facility. For carrying out the test, the sample is mounted into a holder and transferred from outside the oven at room temperature, inside the oven at the set testing temperature (1100°C, at a heating rate that was determined during the calibration stage. The dwell time at the test temperature is up to 2 min at 1100ºC at an increasing rate of temperature up to ~ 9,5°C/s. Evaluating the atmospheric re-entry real conditions we found that the most suited cooling method is the natural cooling in air environment as the materials re-entering the Earth atmosphere are subjected to similar conditions. The average weigh loss was calculated for all the samples from one set, without differentiating the adhesive used as the weight loss is due to the ablative material consumption that is the same in all the samples and is up to 2%. The thermal shock test proves that, thermally, all joints behaved similarly, the two parts withstanding the test successfully and the assembly maintaining its integrity.

  10. LASER ABLATION STUDIES OF CONCRETE

    Laser ablation was studied as a means of removing radioactive contaminants from the surface and near-surface regions of concrete. We present the results of ablation tests on cement and concrete samples using a 1.6 kW pulsed Nd:YAG laser with fiber optic beam delivery. The laser-s...

  11. The effect of radiofrequency ablation on different organs: Ex vivo and in vivo comparative studies

    Kim, Yoo Na [Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, 50 Ilwon-dong, Kangnam-Ku, Seoul 135-710 (Korea, Republic of); Rhim, Hyunchul, E-mail: rhimhc@skku.edu [Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, 50 Ilwon-dong, Kangnam-Ku, Seoul 135-710 (Korea, Republic of); Choi, Dongil; Kim, Young-sun; Lee, Min Woo; Chang, Ilsoo; Lee, Won Jae; Lim, Hyo K. [Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, 50 Ilwon-dong, Kangnam-Ku, Seoul 135-710 (Korea, Republic of)

    2011-11-15

    Objective: The purposes of this study are to evaluate the ex vivo and in vivo efficacy of radiofrequency ablation (RFA) on different porcine tissues by the ablation of three different sites simultaneously. Materials and methods: A multichannel RFA system, enables three separate tumors to be ablated simultaneously, was used. RFA procedures were applied to normal porcine liver, kidney, and muscle together ex vivo (n = 12) and in vivo (n = 17). Pre-impedances, defined as baseline systemic impedances of tissues before beginning RFA, and the areas of ablation zones were measured and compared. Results: The areas of ablation zones among three organs had a significant difference in decreasing order as follows: liver, muscle, and kidney in the ex vivo study (p = 0.001); muscle, liver, and kidney in the in vivo study (p < 0.0001). The areas of ablation zones between ex vivo and in vivo had a significant difference in the liver and muscle (each p < 0.05). There was no significant correlation between the areas of ablation zones and pre-impedances in both studies. Conclusions: Renal RFA produced the smallest ablation zone in both in vivo and ex vivo studies. Muscular RFA demonstrated the largest ablation zone in the in vivo study, and hepatic RFA showed the largest ablation zone in the ex vivo study. This variability in the tissues should be considered for performing an optimized RFA for each organ site.

  12. Ablation characteristics of electrospun core-shell nanofiber by femtosecond laser.

    Park, ChangKyoo; Xue, Ruipeng; Lannutti, John J; Farson, Dave F

    2016-08-01

    This study examined the femtosecond laser ablation properties of core and shell polymers their relationship to the ablation characteristics of core-shell nanofibers. The single-pulse ablation threshold of bulk polycaprolactone (PCL) was measured to be 2.12J/cm(2) and that of bulk polydimethylsiloxane (PDMS) was 4.07J/cm(2). The incubation coefficients were measured to be 0.82±0.02 for PCL and 0.53±0.03 for PDMS. PDMS-PCL core-shell and pure PCL nanofibers were fabricated by electrospinning. The energy/volume of pure PCL and PDMS-PCL core-shell nanofiber ablation was investigated by measuring linear ablation grooves made at different scanning speeds. At large scanning speed, higher energy/volume was required for machining PDMS-PCL nanofiber than for PCL nanofiber. However, at small scanning speed, comparable energy/volume was measured for PDMS-PCL and PCL nanofiber ablation. Additionally, in linear scanned ablation of PDMS-PCL fibers at small laser pulse energy and large scanning speed, there were partially ablated fibers where the shell was ablated but the core remained. This was attributed to the lower ablation threshold of the shell material. PMID:27157748

  13. The inverse problem in zero linear ablation of aluminizing carbon composites under high heat flux

    Huang Haiming

    2013-01-01

    Full Text Available The concept of zero linear ablation is introduced to describe the mass ablation without shape change, and it is employed to design thermal protection materials under an extreme thermal environment. Aluminizing carbon composites are used as a sample to study numerically the heat response. As indicated in the numerical results, the shape of the composites did not change under a high heat flux because the phase transition (melt or evaporation of aluminum can absorb a lot of energy before the ablation of carbon, and the zero linear ablation depends on not only the volume fraction of aluminum, but also the heating period and the heat flux.

  14. Molecular dynamics simulations of cluster distribution from femtosecond laser ablation in aluminum

    Sonntag, S.; Trichet Paredes, C.; Roth, J.; Trebin, H.-R.

    2011-08-01

    Femtosecond laser ablation and plume evolution of aluminum is investigated for various inhomogeneous laser pulses. For the simulations of the atoms the molecular dynamics code IMD is used. The ablated gas-phase is scanned by a cluster algorithm (DBSCAN), from which we gain a cluster size distribution of the ablated material. Per single pulse, only a small portion of the total volume evaporates into the gas phase. Therefore—to have reasonable statistics—we have to deal with huge samples (6×107 atoms). The ablation threshold is determined by comparing the depth of the holes to the applied fluence. Angular and velocity distributions of the plume are compared to experiments.

  15. A study of structure formation on PET, PBT, and PS surfaces by excimer laser ablation

    Kim, Jongdae

    Usually polymer surface treatment is performed to modify surface layers by inserting some functional group and/or by inducing roughness on surfaces to improve their wettability, printability, and adhesion to other polymers or metals. In this work, different polymer surfaces were treated using an excimer laser (LPX 240i, Lambda Physik). Polystyrene, polyethylene terephtalate, and polybutylene terephtalate were chosen as model materials for this study. Films were made by cast film processing and stretched with biaxial stretching machine. With excimer laser treatment on polymer surfaces, it was found that we could produce 1--2 micron size structures depending on material properties and film processing conditions. Materials with lower UV absorption coefficient produced double digit micron size structures, while those with higher UV absorption coefficients produced single digit micron size structures. In all these cases the structures formed only on stretched films. In addition to those microstructure developments, the determination of ablation threshold fluence was of interest mainly for understanding fundamentals of ablation behavior and technical applications. In this study, ablation thresholds were measured by various methods including ablation depth, ablation weight, and ablation sound level measurements. Among these methods, we confirmed that the measurement by ablation sound level gives the most reliable results, because this method is based on single pulse ablation. To understand the ablation phenomenon, and how microstructures can be developed during ablation, different material processing and excimer laser conditions were chosen for experimentation. During our experiments, we observed incubation phenomenon during laser ablation and showed that this incubation was significant for materials with low UV absorption coefficients. Based on UV absorption value change after excimer laser irradiation, we proposed a mechanism to explain the ablation of PS films. From

  16. Effect of liquid properties on laser ablation of aluminum and titanium alloys

    Ouyang, Peixuan; Li, Peijie; Leksina, E. G.; Michurin, S. V.; He, Liangju

    2016-01-01

    In order to study the effect of liquid properties on laser ablation in liquids, aluminum 5A06 and titanium TB5 targets were irradiated by single-pulse infrared laser in isopropanol, distilled water, glycerin and as a comparison, in air, respectively. Craters induced by laser ablation were characterized using scanning electron and white-light interferometric microscopies. The results show that for liquid-mediated ablation, craters with porous surface structures were formed in aluminum target through phase explosion, while no micro-cavities were formed in titanium target owing to high critical temperature of titanium. In addition, ablation rates of aluminum and titanium targets vary with types of ambient media in accordance with such sequence: air isopropanol properties on material-removal mechanisms for laser ablation in liquid is discussed. It is concluded that the density, thermal conductivity and acoustical impedance of liquid play a dominant role in laser ablation efficiency.

  17. Numerical study of the thermal ablation of wet solids by ultrashort laser pulses

    The ablation by ultrashort laser pulses at relatively low fluences (i.e., in the thermal regime) of solids wetted by a thin liquid film is studied using a generic numerical model. In comparison with dry targets, the liquid is found to significantly affect ablation by confining the solid and slowing down the expansion of the laser-heated material. These factors affect the relative efficiency of the various ablation mechanisms, leading, in particular, to the complete inhibition of phase explosion at lower fluences, a reduced ablation yield, and significant changes in the composition of the plume. As a consequence, at fluences above the ablation threshold, the size of the ejected nanoclusters is lower in presence of the liquid. Our results provide a qualitative understanding of the effect of wetting layers on the ablation process

  18. Radiofrequency Ablation for the Treatment of Hepatocellular Carcinoma in Patients with Transjugular Intrahepatic Portosystemic Shunts

    Park, Jonathan K., E-mail: jonathan.park09@gmail.com [David Geffen School of Medicine at UCLA, Department of Radiology (United States); Al-Tariq, Quazi Z., E-mail: qat200@gmail.com [Stanford University School of Medicine, Department of Radiology (United States); Zaw, Taryar M., E-mail: taryar.zaw@gmail.com; Raman, Steven S., E-mail: sraman@mednet.ucla.edu; Lu, David S.K., E-mail: dlu@mednet.ucla.edu [David Geffen School of Medicine at UCLA, Department of Radiology (United States)

    2015-10-15

    PurposeTo assess radiofrequency (RF) ablation efficacy, as well as the patency of transjugular intrahepatic portosystemic shunts (TIPSs), in patients with hepatocellular carcinoma (HCC).Materials and MethodsRetrospective database review of patients with pre-existing TIPS undergoing RF ablation of HCC was conducted over a 159-month period ending in November 2013. TIPS patency pre- and post-RF ablation was assessed by ultrasound, angiography, and/or contrast-enhanced CT or MRI. Patient demographics and immediate post-RF ablation outcomes and complications were also reviewed.Results19 patients with 21 lesions undergoing 25 RF ablation sessions were included. Child-Pugh class A, B, and C scores were seen in 1, 13, and 5 patients, respectively. Eleven patients (58 %) ultimately underwent liver transplantation. Immediate technical success was seen in all ablation sessions without residual tumor enhancement (100 %). No patients (0 %) suffered liver failure within 1 month of ablation. Pre-ablation TIPS patency was demonstrated in 22/25 sessions (88 %). Of 22 cases with patent TIPS prior to ablation, post-ablation patency was demonstrated in 22/22 (100 %) at immediate post-ablation imaging and in 21/22 (95 %) at last follow-up (1 patient was incidentally noted to have occlusion 31 months later). No immediate complications were observed.ConclusionAblation efficacy was similar to the cited literature values for patients without TIPS. Furthermore, TIPS patency was preserved in the majority of cases. Patients with both portal hypertension and HCC are not uncommonly encountered, and a pre-existing TIPS does not appear to be a definite contraindication for RF ablation.

  19. EUV ablation of organic polymers at a high fluence

    Chiara; Liberatore; Klaus; Mann; Matthias; Mller; Ladislav; Pina; Libor; Juha; Jorge; J.Rocca; Akira; Endo; Tomas; Mocek

    2014-01-01

    A preliminary investigation on short-wavelength ablation mechanisms of poly(methyl methacrylate)(PMMA) and poly(1,4-phenylene ether ether-sulfone)(PPEES) by extreme ultraviolet(EUV) radiation at 13.5 nm using a table-top laserproduced plasma from a gas-puff target at LLG(Gttingen) and at 46.9 nm by a 10 Hz desktop capillary discharge laser operated at the Institute of Physics(Prague) is presented.Ablation of polymer materials is initiated by photoinduced polymer chain scissions.The ablation occurs due to the formation of volatile products by the EUV radiolysis removed as an ablation plume from the irradiated material into the vacuum.In general,cross-linking of polymer molecules can compete with the chain decomposition.Both processes may influence the efficiency and quality of micro(nano)structuring in polymer materials.Wavelength is a critical parameter to be taken into account when an EUV ablation process occurs,because different wavelengths result in different energy densities in the near-surface region of the polymer exposed to nanosecond pulses of intense EUV radiation.

  20. Two-Dimensional Finite Element Ablative Thermal Response Analysis of an Arcjet Stagnation Test

    Dec, John A.; Laub, Bernard; Braun, Robert D.

    2011-01-01

    The finite element ablation and thermal response (FEAtR, hence forth called FEAR) design and analysis program simulates the one, two, or three-dimensional ablation, internal heat conduction, thermal decomposition, and pyrolysis gas flow of thermal protection system materials. As part of a code validation study, two-dimensional axisymmetric results from FEAR are compared to thermal response data obtained from an arc-jet stagnation test in this paper. The results from FEAR are also compared to the two-dimensional axisymmetric computations from the two-dimensional implicit thermal response and ablation program under the same arcjet conditions. The ablating material being used in this arcjet test is phenolic impregnated carbon ablator with an LI-2200 insulator as backup material. The test is performed at the NASA, Ames Research Center Interaction Heating Facility. Spatially distributed computational fluid dynamics solutions for the flow field around the test article are used for the surface boundary conditions.

  1. Femtosecond laser ablation behavior of gold, crystalline silicon, and fused silica: a comparative study

    The influence of target material on the ablation behavior of femtosecond laser pulses was investigated. Three different materials, representing the spectrum of electrical conductivities, were selected: a dielectric (fused silica), a semiconductor (crystalline silicon), and a metal (gold). Ablation was performed in ambient air using a Ti:sapphire laser, which emits radiation at a wavelength of 785 nm and a pulse width of 130 fs. Surface morphology and ablation depth were evaluated using optical and scanning electron microscopy. Significant changes in surface morphology were observed with variation of the fluence and number of laser pulses. In all materials, two different ablation regimes were distinguished depending on the fluence. Ablation threshold, which was determined from the relationship between crater diameter squared and the logarithm of laser energy, was found to depend on the number of laser pulses incident on the same spot (i.e. incubation phenomenon). (paper)

  2. Laser ablation of iron: A comparison between femtosecond and picosecond laser pulses

    In this study, a comparison between femtosecond (fs) and picosecond (ps) laser ablation of electrolytic iron was carried out in ambient air. Experiments were conducted using a Ti:sapphire laser that emits radiation at 785 nm and at pulse widths of 110 ps and 130 fs, before and after pulse compression, respectively. Ablation rates were calculated from the depth of craters produced by multiple laser pulses incident normally to the target surface. Optical and scanning electron microscopy showed that picosecond laser pulses create craters that are deeper than those created by the same number of femtosecond laser pulses at the same fluence. Most of the ablated material was ejected from the ablation site in the form of large particles (few microns in size) in the case of picosecond laser ablation, while small particles (few hundred nanometers) were produced in femtosecond laser ablation. Thermal effects were apparent at high fluence in both femtosecond and picosecond laser ablation, but were less prevalent at low fluence, closer to the ablation threshold of the material. The quality of craters produced by femtosecond laser ablation at low fluence is better than those created at high fluence or using picosecond laser pulses

  3. Computational studies of ultraviolet ablation of poly(methyl methacrylate)

    The results from our recent molecular dynamics and electronic calculations studies of the interaction of ultraviolet light with poly(methyl methacrylate) are discussed. Molecular dynamics simulations in the photochemical and photothermal regimes demonstrate the delayed onset of ablation due to the slow pressure relaxation in the polymeric material. Electronic structure calculations show the possible wavelength-dependent pathways of exothermic and endothermic release of gaseous and small molecules which could induce the ablation pocess. The results from our studies are the centerpiece for the current development of the mesoscale model of the light irradiation of polymeric material

  4. Development of Low Density, Flexible Carbon Phenolic Ablators

    Stackpoole, Mairead; Thornton, Jeremy; Fan, Wendy; Covington, Alan; Doxtad, Evan; Beck, Robin; Gasch, Matt; Arnold, Jim

    2012-01-01

    Phenolic Impregnated Carbon Ablator (PICA) was the enabling TPS material for the Stardust mission where it was used as a single piece heatshield. PICA has the advantages of low density (approximately 0.27 grams per cubic centimeter) coupled with efficient ablative capability at high heat fluxes. Due to its brittle nature and low strain to failure recent efforts at NASA ARC have focused on alternative architectures to yield flexible and more conformal carbon phenolic materials with comparable densities to PICA. This presentation will discuss flexible alternatives to PICA and include preliminary mechanical and thermal properties as well as recent arc jet and LHMEL screening test results.

  5. CT-based temperature monitoring during hepatic RF ablation : Feasibility in an animal model

    Bruners, Philipp; Pandeya, Ganga D.; Levit, Elena; Roesch, Eva; Penzkofer, Tobias; Isfort, Peter; Schmidt, Bernhardt; Greuter, Marcel J. W.; Oudkerk, Matthijs; Schmitz-Rode, Thomas; Kuhl, Christiane K.; Mahnken, Andreas H.

    2012-01-01

    Purpose: The aim of this paper was to establish non-invasive CT-based temperature monitoring during hepatic radiofrequency (RF) ablation in an ex vivo porcine model followed by transfer of the technique into a feasibility in vivo experiment. Materials and methods: Bipolar RF ablations were performed

  6. Evaluation of ablation efficiency and surface morphology of human teeth upon irradiation with femtosecond laser pulses

    This study investigates changes in ablation efficiency and surface morphology induced in human dental enamel and dentin upon interaction with femtosecond laser pulses at variable energies and number of laser pulses. Craters were created using a Ti:sapphire femtosecond laser ablation system operating at a wavelength of 785 nm, pulse width of 130 fs, and repetition rate of 20 Hz. Various techniques, such as optical and scanning electron microscopy and inductively coupled plasma mass spectrometry (ICP-MS), were used to evaluate ablation depth, amount of material ablated, and surface morphology of the craters. Ablation rate (ablation depth per pulse) was found to be lower in enamel than dentin with the maximum rate occurring at fluence of 12.4 J cm−2 in both materials. A drop in ablation rate was observed for fluence greater than 12.4 J cm−2 and was attributed to attenuation of laser energy due to interaction with the laser-generated particles. Above this fluence, signs of thermal effects, such as melting and formation of droplets of molten material at the sample surface, were observed. The response of the ICP-MS indicated that the amount of ablated material removed from dentin is greater than that removed from enamel by a factor of 1.5 or more at all investigated fluence. (paper)

  7. Evaluation of ablation efficiency and surface morphology of human teeth upon irradiation with femtosecond laser pulses

    Shaheen, M. E.; Gagnon, J. E.; Fryer, B. J.

    2014-11-01

    This study investigates changes in ablation efficiency and surface morphology induced in human dental enamel and dentin upon interaction with femtosecond laser pulses at variable energies and number of laser pulses. Craters were created using a Ti:sapphire femtosecond laser ablation system operating at a wavelength of 785 nm, pulse width of 130 fs, and repetition rate of 20 Hz. Various techniques, such as optical and scanning electron microscopy and inductively coupled plasma mass spectrometry (ICP-MS), were used to evaluate ablation depth, amount of material ablated, and surface morphology of the craters. Ablation rate (ablation depth per pulse) was found to be lower in enamel than dentin with the maximum rate occurring at fluence of 12.4 J cm-2 in both materials. A drop in ablation rate was observed for fluence greater than 12.4 J cm-2 and was attributed to attenuation of laser energy due to interaction with the laser-generated particles. Above this fluence, signs of thermal effects, such as melting and formation of droplets of molten material at the sample surface, were observed. The response of the ICP-MS indicated that the amount of ablated material removed from dentin is greater than that removed from enamel by a factor of 1.5 or more at all investigated fluence.

  8. Nephron-sparing percutaneous ablation of a 5 cm renal cell carcinoma by superselective embolization and percutaneous RF-ablation

    Purpose: To report on the nephron-sparing, percutaneous ablation of a large renal cell carcinoma by combined superselective embolization and percutaneous radiofrequency ablation. Materials and Methods: A 5 cm renal cell carcinoma of a 43-year-old drug abusing male with serologically proven HIV, hepatitis B and C infection, who refused surgery, was superselectively embolized using microspheres (size: 500 - 700 μm) and a platinum coil under local anesthesia. Percutaneous radiofrequency ablation using a 7F LeVeen probe (size of expanded probe tip: 40 mm) and a 200 Watt generator was performed one day after transcatheter embolization under general anesthesia. Results: The combined treatment resulted in complete destruction of the tumor without relevant damage of the surrounding healthy renal tissue. The patient was discharged 24 hours after RF ablation. No complications like urinary leaks or fistulas were observed and follow up CT one day and 4 weeks after the radiofrequency intervention revealed no signs of residual tumor growth. Conclusion: The combined transcatheter embolization and percutaneous radiofrequency ablation of renal cell carcinoma has proved technically feasible, effective, and safe in this patient. It may be offered as an alternative treatment to partial or radical nephrectomy under certain circumstances. Abbreviations: RF = radiofrequency ablation; CT = computed tomography; HIV = human immunodeficiency virus. (orig.)

  9. A comparison of the characteristics of excimer and femtosecond laser ablation of acrylonitrile butadiene styrene (ABS)

    See, Tian Long; Liu, Zhu; Li, Lin; Zhong, Xiang Li

    2016-02-01

    This paper presents an investigation on the ablation characteristics of excimer laser (λ = 248 nm, τ = 15 ns) and femtosecond laser (λ = 800 nm, τ = 100 fs) on ABS polymer sheets. The laser-material interaction parameters (ablation threshold, optical penetration depth and incubation factor) and the changes in material chemical properties were evaluated and compared between the two lasers. The work shows that the ablation threshold and effective optical penetration depth values are dependent on the wavelength of laser beam (photon energy) and the pulse width. The ablation threshold value is lower for the excimer laser ablation of ABS (Fth = 0.087 J/cm2) than that for the femtosecond laser ablation of ABS (Fth = 1.576 J/cm2), demonstrating a more dominating role of laser wavelength than the pulse width in influencing the ablation threshold. The ablation depth versus the logarithmic scale of laser fluence shows two linear regions for the fs laser ablation, not previously known for polymers. The effective optical penetration depth value is lower for excimer laser ablation (α-1 = 223 nm) than that for femtosecond laser ablation (α-1 = 2917 nm). The ablation threshold decreases with increasing number of pulses (NOP) due to the chain scission process that shortens the polymeric chains, resulting in a weaker polymeric configuration and the dependency is governed by the incubation factor. Excimer laser treatment of ABS eliminates the Cdbnd C bond completely through the chain scission process whereas Cdbnd C bond is partially eliminated through the femtosecond laser treatment due to the difference in photon energy of the two laser beams. A reduction in the Cdbnd C bond through the chain scission process creates free radical carbons which then form crosslinks with each other or react with oxygen, nitrogen and water in air producing oxygen-rich (Csbnd O and Cdbnd O bond) and nitrogen-rich (Csbnd N) functional groups.

  10. Radiative Ablation of Disks Around Massive Stars

    Kee, N D

    2015-01-01

    Hot, massive stars (spectral types O and B) have extreme luminosities ($10^4 -10^6 L_\\odot$) that drive strong stellar winds through UV line-scattering. Some massive stars also have disks, formed by either decretion from the star (as in the rapidly rotating "Classical Be stars"), or accretion during the star's formation. This dissertation examines the role of stellar radiation in driving (ablating) material away from these circumstellar disks. A key result is that the observed month to year decay of Classical Be disks can be explained by line-driven ablation without, as previously done, appealing to anomalously strong viscous diffusion. Moreover, the higher luminosity of O stars leads to ablation of optically thin disks on dynamical timescales of order a day, providing a natural explanation for the lack of observed Oe stars. In addition to the destruction of Be disks, this dissertation also introduces a model for their formation by coupling observationally inferred non-radial pulsation modes and rapid stellar...

  11. Osteoid Osteoma Treated with Radiofrequency Ablation

    Murat Çakar

    2015-01-01

    Full Text Available Purpose. Our aim is to evaluate the results of treatment with computed tomography (CT guided percutaneous radiofrequency ablation for osteoid osteomas which were localized in a difficult area for operation. Materials and Methods. Glenoid, distal tibia, humerus shaft, proximal humerus, and in third finger of the hand proximal phalanx were involved in one patient. Proximal femur was involved in three patients, distal femur was involved in three patients, and proximal tibia was involved in two patients. 9 males and 4 females were aged 4 to 34 years (mean age: 18.5 years. All patients had pain and were evaluated with X-rays, CT, bone scintigraphy, and MRI. In all patients, RF ablation was performed with local anesthesia. The lesion heated to 90°C for 6 minutes. Results. All of the patients achieved complete pain relief after ablation and were fully weight bearing without any support. In all patients, there was soft tissue edema after the procedure. During follow-up, all patients were free from the pain and there was no sign about the tumor. There was no other complication after the process. Conclusion. CT guided RFA is a minimally invasive, safe, and cost-effective treatment for osteoid osteoma placed in difficult area for surgery.

  12. Lesion size in relation to ablation site during radiofrequency ablation

    Petersen, H H; Chen, X; Pietersen, A;

    1998-01-01

    performed during two different flow-velocities in a tissue bath, while electrode contact pressure and position were unchanged. Target temperature was 80 degrees C. Obtained tip temperature, power consumption and lesion dimensions were measured. In vivo lesion volume, depth and width were found significantly...... convective cooling by induction of a flow around the electrode tip increases lesion dimensions and power consumptions. Furthermore we conclude that for the given target temperature the power consumption is positively correlated with lesion volume (p <0.001), whereas the obtained tip temperature is not.......This study was designed to investigate the effect of the convective cooling of the tip of the ablation electrode during temperature controlled radiofrequency ablation. In vivo two different application sites in the left ventricle of anaesthetised pigs were ablated and in vitro ablation was...

  13. Optodynamic aspect of a pulsed laser ablation process

    Hrovatin, Rok; Možina, Janez

    1995-02-01

    A study of a pulsed laser ablation process is presented from a novel, optodynamic aspect. By quantitative analysis of laser-induced bulk ultrasonic and blast waves in the air the ablation dynamics is characterized. In this way the influence of the laser pulse parameters and of the interacting material on the ablation process was assessed. By the analysis of the laser drilling process of thin layered samples the material influence was demonstrated. Besides the ultrasonic evaluation of the laser pulse power density the plasma shielding for 10 ns laser pulses was analyzed by the same method. All measurements were noncontact. Bulk waves in the solid and blast waves in the air were measured simultaneously, an interferometric and a probe beam deflection method were used, respectively.

  14. Fractional ablative erbium YAG laser

    Taudorf, Elisabeth H; Haak, Christina S; Erlendsson, Andrés M;

    2014-01-01

    BACKGROUND AND OBJECTIVES: Treatment of a variety of skin disorders with ablative fractional lasers (AFXL) is driving the development of portable AFXLs. This study measures micropore dimensions produced by a small 2,940 nm AFXL using a variety of stacked pulses, and determines a model correlating...... laser parameters with tissue effects. MATERIALS AND METHODS: Ex vivo pig skin was exposed to a miniaturized 2,940 nm AFXL, spot size 225 µm, density 5%, power levels 1.15-2.22 W, pulse durations 50-225 microseconds, pulse repetition rates 100-500 Hz, and 2, 20, or 50 stacked pulses, resulting in pulse...... 190 to 347 µm. CONCLUSIONS: Pulse stacking with a small, low power 2,940 nm AFXL created reproducible shallow to deep micropores, and influenced micropore configuration. Mathematical modeling established relations between laser settings and micropore dimensions, which assists in choosing laser...

  15. Ion acceleration enhanced by target ablation

    Laser proton acceleration can be enhanced by using target ablation, due to the energetic electrons generated in the ablation preplasma. When the ablation pulse matches main pulse, the enhancement gets optimized because the electrons' energy density is highest. A scaling law between the ablation pulse and main pulse is confirmed by the simulation, showing that for given CPA pulse and target, proton energy improvement can be achieved several times by adjusting the target ablation

  16. Interfacial Design of Composite Ablative Materials Project

    National Aeronautics and Space Administration — This Phase I Small Business Innovative Research project proposes to develop a multiscale computational methodology capable of accurate prediction of the properties...

  17. Field enhancement induced laser ablation

    Fiutowski, Jacek; Maibohm, Christian; Kjelstrup-Hansen, Jakob;

    Sub-diffraction spatially resolved, quantitative mapping of strongly localized field intensity enhancement on gold nanostructures via laser ablation of polymer thin films is reported. Illumination using a femtosecond laser scanning microscope excites surface plasmons in the nanostructures...

  18. Laser ablation in analytical chemistry.

    Russo, Richard E; Mao, Xianglei; Gonzalez, Jhanis J; Zorba, Vassilia; Yoo, Jong

    2013-07-01

    In 2002, we wrote an Analytical Chemistry feature article describing the Physics of Laser Ablation in Microchemical Analysis. In line with the theme of the 2002 article, this manuscript discusses current issues in fundamental research, applications based on detecting photons at the ablation site (LIBS and LAMIS) and by collecting particles for excitation in a secondary source (ICP), and directions for the technology. PMID:23614661

  19. Ablative therapy for liver tumours

    Dick, E A; Taylor-Robinson, S D; Thomas, H C; Gedroyc, W M W

    2002-01-01

    Established ablative therapies for the treatment of primary and secondary liver tumours, including percutaneous ethanol injection, cryotherapy, and radiofrequency ablation, are discussed. Newer techniques such as magnetic resonance imaging guided laser interstitial thermal therapy of liver tumours has produced a median survival rate of 40.8 months after treatment. The merits of this newly emerging technique are discussed, together with future developments, such as focused ultrasound therapy, ...

  20. Percutaneous Ablation of Hepatic Tumors

    McCarley, James R.; Soulen, Michael C.

    2010-01-01

    The liver is a common site of both primary and secondary malignancy resulting in significant morbidity and mortality. Careful patient evaluation and triage allows for optimal utilization of all oncologic therapies, including radiation, systemic chemotherapy, surgery, transarterial therapies, and ablation. Although the role of interventional oncologists in the management of hepatic malignancies continues to evolve, the use of percutaneous ablation therapies has proven to be an effective and mi...

  1. Comparing ablation induced by fs, ps, and ns XUV-laser pulses

    Bittner, Michal; Juha, Libor; Chvostova, Dagmar; Letal, Vit; Krasa, Josef; Otcenasek, Zdenek; Kozlova, Michaela; Polan, Jiri; Praeg, Ansgar R.; Rus, Bedrich; Stupka, Michal; Krzywinski, Jacek; Andrejczuk, Andrzej; Pelka, Jerzy B.; Sobierajski, Ryszard; Feldhaus, Josef; Boody, Frederick P.; Grisham, Michael E.; Vaschenko, Georgiy O.; Menoni, Carmen S.; Rocca, Jorge J.

    2004-09-01

    Ablation thresholds, etch rates, and quality of ablated structures often differ dramatically if a conventional, UV-Vis-IR laser delivers radiation energy onto a material surface in a short (nanosecond) or ultra-short (picosecond/femtosecond) pulses. Various short-wavelength (λ free-electron laser (FEL) operated at the TESLA Test Facility (TTF1 FEL) in Hamburg. The beam of the Ne-like Zn XUV laser (λ = 21.2 nm, τ < 100 ps) driven by the Prague Asterix Laser System (PALS) was also successfully focused by a spherical Si/Mo multilayer-coated mirror to ablate various materials. Based on the results of the experiment the etch rates for three different pulse durations are compared using the XUV-ABLATOR code to compensate for the wavelength difference. Comparing the values of etch rates calculated for short pulses with the measured ones for ultrashort pulses we may study the influence of pulse duration on the XUV ablation efficiency.

  2. UV laser ablation of intraocular lenses: SEM and AFM microscopy examination of the biomaterial surface

    Several new materials and patterns are studied for the formation and etching of intraocular lenses (IOLs), in order to improve their optical properties, to reduce the diffractive aberrations and to decrease the incidence of posterior capsular opacification. The aim of this study is to investigate the use of UV (λ = 266 nm) laser pulses to ablate the intraocular lenses materials, and thus to provide an alternative to conventional surface shaping techniques for IOLs fabrication. Ablation experiments were conducted using various polymer substrates of hydrophobic acrylic IOLs and PMMA IOLs. We investigated the ablation efficiency and the morphology of the ablated area by imaging the surface modification with atomic force microscopy (AFM) and scanning electron microscopy (SEM). The morphological appearance of IOL samples reveals the effect of a photochemical and photothermal ablation mechanism.

  3. Findings of multidetector row computed tomography of HCCs treated by HIFU ablation

    Purpose: We evaluated the efficacy of high-intensity focused ultrasound (HIFU) ablation for hepatocellular carcinoma (HCC), and a long-term study by follow-up multidetector-row computed tomography (CT) was conducted to evaluate the changes occurring in the treatment area following the HIFU ablation. Materials and methods: HIFU ablation was carried out in 14 patients with small HCCs (≤3 lesions, ≤3 cm in diameter). The HIFU system (Chongqing Haifu Tech) was used under ultrasound guidance. The evaluations were performed by follow-up CT at 1 week, 1, 3, 6 and 12 months after the HIFU ablation. Results: HIFU ablation was carried out successfully in 11 of the 14 patients. At 1 week after the HIFU, a peripheral rim enhancement was found in all cases (100%). This finding was persistent in 6 of the 11 cases (54.5%) at 1 month, and in 1 of the 11 (9%) cases at 3 months after HIFU ablation. In all cases, the rim enhancement disappeared by 6 or 12 months after the HIFU ablation. At the 12 months follow-up, a decrease in the diameter of the ablated lesions was found. The enhancement around the treated area was found to be persistent at the 12 months follow-up in the one case of recurrence of the treated site in which the safety margin was not sufficiently wide. During the follow-up period, there were 2 cases with residual of HCC tumors. We performed radiofrequency ablation (RFA) for these residual tumors after the HIFU ablation. Conclusion: To ascertain the cause of the peripheral enhancement on follow-up CT images after the HIFU ablation, in particular, to determine whether it might be caused by residual tumor or recurrence at the treated site, careful follow-up is important, especially in cases where the safety margin of the ablated area was not sufficiently wide.

  4. M\\'{e}canismes fondamentaux de l'ablation laser femtoseconde en "flux interm\\'{e}diaire"

    Petite, Guillaume

    2005-01-01

    This chapter aims at identifying what is specific to femtosecond laser ablation. It reviews the essential basic processes which contribute to femtosecond laser ablation of various materials : energy absorption by the material's electrons, electronic relaxation processes involving either electron-electron or electron-lattice interactions. A number of widely used models are briefly discussed, as well as some pending questions.

  5. Thermal-mechanical modeling of laser ablation hybrid machining

    Matin, Mohammad Kaiser

    2001-08-01

    Hard, brittle and wear-resistant materials like ceramics pose a problem when being machined using conventional machining processes. Machining ceramics even with a diamond cutting tool is very difficult and costly. Near net-shape processes, like laser evaporation, produce micro-cracks that require extra finishing. Thus it is anticipated that ceramic machining will have to continue to be explored with new-sprung techniques before ceramic materials become commonplace. This numerical investigation results from the numerical simulations of the thermal and mechanical modeling of simultaneous material removal from hard-to-machine materials using both laser ablation and conventional tool cutting utilizing the finite element method. The model is formulated using a two dimensional, planar, computational domain. The process simulation acronymed, LAHM (Laser Ablation Hybrid Machining), uses laser energy for two purposes. The first purpose is to remove the material by ablation. The second purpose is to heat the unremoved material that lies below the ablated material in order to ``soften'' it. The softened material is then simultaneously removed by conventional machining processes. The complete solution determines the temperature distribution and stress contours within the material and tracks the moving boundary that occurs due to material ablation. The temperature distribution is used to determine the distance below the phase change surface where sufficient ``softening'' has occurred, so that a cutting tool may be used to remove additional material. The model incorporated for tracking the ablative surface does not assume an isothermal melt phase (e.g. Stefan problem) for laser ablation. Both surface absorption and volume absorption of laser energy as function of depth have been considered in the models. LAHM, from the thermal and mechanical point of view is a complex machining process involving large deformations at high strain rates, thermal effects of the laser, removal of

  6. Fundamental Mechanisms of Pulsed Laser Ablation of Biological Tissue

    Albagli, Douglas

    The ability to cut and remove biological tissue with short pulsed laser light, a process called laser ablation, has the potential to revolutionize many surgical procedures. Ablation procedures using short pulsed lasers are currently being developed or used in many fields of medicine, including cardiology, ophthalmology, dermatology, dentistry, orthopedics, and urology. Despite this, the underlying physics of the ablation process is not well understood. In fact, there is wide disagreement over whether the fundamental mechanism is primarily photothermal, photomechanical, or photochemical. In this thesis, both experimental and theoretical techniques are developed to explore this issue. The photothermal model postulates that ablation proceeds through vaporization of the target material. The photomechanical model asserts that ablation is initiated when the laser-induced tensile stress exceeds the ultimate tensile strength of the target. I have developed a three dimensional model of the thermoelastic response of tissue to short pulsed laser irradiation which allows the time dependent stress distribution to be calculated given the optical, thermal and mechanical properties of the target. A complimentary experimental technique has been developed to verify this model, measure the needed physical properties of the tissue, and record the thermoelastic response of the tissue at the onset of ablation. The results of this work have been widely disseminated to the international research community and have led to significant findings which support the photomechanical model of ablation of tissue. First, the energy deposited in tissue is an order of magnitude less than that required for vaporization. Second, unlike the one-dimensional thermoelastic model of laser-induced stress generation that has appeared in the literature, the full three-dimensional model predicts the development of significant tensile stresses on the surface of the target, precisely where ablation is observed to

  7. 飞秒激光与宽禁带物质相互作用过程中光子-电子-声子之间的微能量传导Ⅰ:光子吸收过程%Microscopic energy transport through photon-electron-phonon interactions during ultrashort laser ablation of wide bandgap materials Part Ⅰ:photon absorption

    姜澜; 李丽珊; 王素梅

    2009-01-01

    The new phenomena induced by femtosecond lasers lead to the new area of ultrafast science.It is a significant challenge to explain the phenomena associated with complex non-equilibrium and non-linear processes.Although there is a growing body of experimental observation,a comprehensive model remains undeveloped.We review the challenges in understanding the photon absorption stage mainly for the femtosecond ablation of wide bandgap materials at the intensities of 1013~1014 W/cm2.Major opinions and challenges in ionization mechanisms are presented by primarily considering multiphoton ionization and avalanche ionization.

  8. Esophageal papilloma: Flexible endoscopic ablation byradiofrequency

    Gianmattia del Genio; Federica del Genio; Pietro Schettino; Paolo Limongelli; Salvatore Tolone; Luigi Brusciano; Manuela Avellino; Chiara Vitiello; Giovanni Docimo; Angelo Pezzullo; Ludovico Docimo

    2015-01-01

    Squamous papilloma of the esophagus is a rare benignlesion of the esophagus. Radiofrequency ablation is anestablished endoscopic technique for the eradication ofBarrett esophagus. No cases of endoscopic ablation ofesophageal papilloma by radiofrequency ablation (RFA)have been reported. We report a case of esophagealpapilloma successfully treated with a single sessionof radiofrequency ablation. Endoscopic ablation ofthe lesion was achieved by radiofrequency using anew catheter inserted through the working channelof endoscope. The esophageal ablated tissue wasremoved by a specifically designed cup. Completeablation was confirmed at 3 mo by endoscopy withbiopsies. This case supports feasibility and safety of asa new potential indication for BarrxTM RFA in patientswith esophageal papilloma.

  9. Direct coupling of a laser ablation cell to an AMS

    In rare cases, cleaned samples can be directly inserted into a negative ion source of an AMS and still meet the requirements for long-term and stable measurements. We present the coupling of a laser ablation system to the gas ion source of an AMS system (MICADAS, ETH Zurich) for direct and continuous CO2 introduction. Solid carbonate samples like stalagmites or corals are suitable sample materials, which can be ablated and decomposed continuously using a pulsed laser focused onto the surface of a solid sample, which is placed in an airtight ablation cell. CO2 formed during the ablation of a CaCO3 sample is continually flushed with He into the gas ion source. The production rate of CO2 can be adjusted via the laser pulse repetition rate (1–20 Hz), the crater diameter (1–150 μm) and the energy density applied (0.2–3 mJ/pulse) of the laser (frequency quintupled Nd:YAG at 213 nm with 5 ns pulse duration). In our first test, measurements of one sample with known age were replicated within one sigma. Blanks showed 5% contamination of modern carbon of yet unknown origin. In order to develop LA-AMS into a routine sampling tool the ablation cell geometry and settings of the gas ion source have to be further optimized.

  10. Insights into secondary reactions occurring during atmospheric ablation of micrometeoroids

    Court, Richard W.; Tan, Jonathan

    2016-05-01

    Ablation of micrometeoroids during atmospheric entry yields volatile gases such as water, carbon dioxide, and sulfur dioxide, capable of altering atmospheric chemistry and hence the climate and habitability of the planetary surface. While laboratory experiments have revealed the yields of these gases during laboratory simulations of ablation, the reactions responsible for the generation of these gases have remained unclear, with a typical assumption being that species simply undergo thermal decomposition without engaging in more complex chemistry. Here, pyrolysis-Fourier transform infrared spectroscopy reveals that mixtures of meteorite-relevant materials undergo secondary reactions during simulated ablation, with organic matter capable of taking part in carbothermic reduction of iron oxides and sulfates, resulting in yields of volatile gases that differ from those predicted by simple thermal decomposition. Sulfates are most susceptible to carbothermic reduction, producing greater yields of sulfur dioxide and carbon dioxide at lower temperatures than would be expected from simple thermal decomposition, even when mixed with meteoritically relevant abundances of low-reactivity Type IV kerogen. Iron oxides were less susceptible, with elevated yields of water, carbon dioxide, and carbon monoxide only occurring when mixed with high abundances of more reactive Type III kerogen. We use these insights to reinterpret previous ablation simulation experiments and to predict the reactions capable of occurring during ablation of carbonaceous micrometeoroids in atmospheres of different compositions.

  11. Percutaneous Renal Tumor Ablation: Radiation Exposure During Cryoablation and Radiofrequency Ablation

    IntroductionOnce reserved solely for non-surgical cases, percutaneous ablation is becoming an increasingly popular treatment option for a wider array of patients with small renal masses and the radiation risk needs to be better defined as this transition continues.Materials and MethodsRetrospective review of our renal tumor ablation database revealed 425 patients who underwent percutaneous ablation for treatment of 455 renal tumors over a 5-year time period. Imparted radiation dose information was reviewed for each procedure and converted to effective patient dose and skin dose using established techniques. Statistical analysis was performed with each ablative technique.ResultsFor the 331 cryoablation procedures, the mean DLP was 6987 mGycm (SD = 2861) resulting in a mean effective dose of 104.7 mSv (SD = 43.5) and the mean CTDIvol was 558 mGy (SD = 439) resulting in a mean skin dose of 563.2 mGy (SD = 344.1). For the 124 RFA procedures, the mean DLP was 3485 mGycm (SD = 1630) resulting in a mean effective dose of 50.3 mSv (SD = 24.0) and the mean CTDIvol was 232 mGy (SD = 149) resulting in a mean skin dose of 233.2 mGy (SD = 117.4). The difference in patient radiation exposure between the two renal ablation techniques was statistically significant (p < 0.001).ConclusionBoth cryoablation and RFA imparted an average skin dose that was well below the 2 Gy deterministic threshold for appreciable sequela. Renal tumor cryoablation resulted in a mean skin and effective radiation dose more than twice that for RFA. The radiation exposure for both renal tumor ablation techniques was at the high end of the medical imaging radiation dose spectrum

  12. Percutaneous Renal Tumor Ablation: Radiation Exposure During Cryoablation and Radiofrequency Ablation

    McEachen, James C., E-mail: james.mceachen2@gmail.com [Mayo Clinic, Division of Preventive, Occupational, and Aerospace Medicine (United States); Leng, Shuai; Atwell, Thomas D. [Mayo Clinic, Department of Radiology (United States); Tollefson, Matthew K. [Mayo Clinic, Department of Urology (United States); Friese, Jeremy L. [Mayo Clinic, Department of Radiology (United States); Wang, Zhen; Murad, M. Hassan [Mayo Clinic, Division of Preventive, Occupational, and Aerospace Medicine (United States); Schmit, Grant D. [Mayo Clinic, Department of Radiology (United States)

    2016-02-15

    IntroductionOnce reserved solely for non-surgical cases, percutaneous ablation is becoming an increasingly popular treatment option for a wider array of patients with small renal masses and the radiation risk needs to be better defined as this transition continues.Materials and MethodsRetrospective review of our renal tumor ablation database revealed 425 patients who underwent percutaneous ablation for treatment of 455 renal tumors over a 5-year time period. Imparted radiation dose information was reviewed for each procedure and converted to effective patient dose and skin dose using established techniques. Statistical analysis was performed with each ablative technique.ResultsFor the 331 cryoablation procedures, the mean DLP was 6987 mGycm (SD = 2861) resulting in a mean effective dose of 104.7 mSv (SD = 43.5) and the mean CTDI{sub vol} was 558 mGy (SD = 439) resulting in a mean skin dose of 563.2 mGy (SD = 344.1). For the 124 RFA procedures, the mean DLP was 3485 mGycm (SD = 1630) resulting in a mean effective dose of 50.3 mSv (SD = 24.0) and the mean CTDI{sub vol} was 232 mGy (SD = 149) resulting in a mean skin dose of 233.2 mGy (SD = 117.4). The difference in patient radiation exposure between the two renal ablation techniques was statistically significant (p < 0.001).ConclusionBoth cryoablation and RFA imparted an average skin dose that was well below the 2 Gy deterministic threshold for appreciable sequela. Renal tumor cryoablation resulted in a mean skin and effective radiation dose more than twice that for RFA. The radiation exposure for both renal tumor ablation techniques was at the high end of the medical imaging radiation dose spectrum.

  13. Careful treatment planning enables safe ablation of liver tumors adjacent to major blood vessels by percutaneous irreversible electroporation (IRE)

    Kos Bor; Voigt Peter; Miklavcic Damijan; Moche Michael

    2015-01-01

    Background Irreversible electroporation (IRE) is a tissue ablation method, which relies on the phenomenon of electroporation. When cells are exposed to a sufficiently electric field, the plasma membrane is disrupted and cells undergo an apoptotic or necrotic cell death. Although heating effects are known IRE is considered as non-thermal ablation technique and is currently applied to treat tumors in locations where thermal ablation techniques are contraindicated. Materials and methods. The man...

  14. The effect of ultrafast laser wavelength on ablation properties and implications on sample introduction in inductively coupled plasma mass spectrometry

    LaHaye, N. L.; Harilal, S. S.; Diwakar, P. K.; Hassanein, A.; Kulkarni, P.

    2013-01-01

    We investigated the role of femtosecond (fs) laser wavelength on laser ablation (LA) and its relation to laser generated aerosol counts and particle distribution, inductively coupled plasma-mass spectrometry (ICP-MS) signal intensity, detection limits, and elemental fractionation. Four different NIST standard reference materials (610, 613, 615, and 616) were ablated using 400 nm and 800 nm fs laser pulses to study the effect of wavelength on laser ablation rate, accuracy, precision, and fract...

  15. Laser Ablation of Polymer Microfluidic Devices

    Killeen, Kevin

    2004-03-01

    Microfluidic technology is ideal for processing precious samples of limited volumes. Some of the most important classes of biological samples are both high in sample complexity and low in concentration. Combining the elements of sample pre-concentration, chemical separation and high sensitivity detection with chemical identification is essential for realizing a functional microfluidic based analysis system. Direct write UV laser ablation has been used to rapidly fabricate microfluidic devices capable of high performance liquid chromatography (HPLC)-MS. These chip-LC/MS devices use bio-compatible, solvent resistant and flexible polymer materials such as polyimide. A novel microfluidic to rotary valve interface enables, leak free, high pressure fluid switching between multiple ports of the microfluidic chip-LC/MS device. Electrospray tips with outer dimension of 50 um and inner of 15 um are formed by ablating the polymer material concentrically around a multilayer laminated channel structure. Biological samples of digested proteins were used to evaluate the performance of these microfluidic devices. Liquid chromatography separation and similar sample pretreatments have been performed using polymeric microfluidic devices with on-chip separation channels. Mass spectrometry was performed using an Agilent Technologies 1100 series ion trap mass spectrometer. Low fmol amounts of protein samples were positively and routinely identified by searching the MS/MS spectral data against protein databases. The sensitivity and separation performance of the chip-LC devices has been found to be comparable to state of the art nano-electrospray systems.

  16. Image and pathological changes after microwave ablation of breast cancer: A pilot study

    Zhou, Wenbin [Department of Breast Surgery, The First Affiliated Hospital, Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029 (China); Jiang, Yanni [Department of Radiology, The First Affiliated Hospital, Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029 (China); Chen, Lin; Ling, Lijun; Liang, Mengdi; Pan, Hong [Department of Breast Surgery, The First Affiliated Hospital, Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029 (China); Wang, Siqi [Department of Radiology, The First Affiliated Hospital, Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029 (China); Ding, Qiang [Department of Breast Surgery, The First Affiliated Hospital, Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029 (China); Liu, Xiaoan, E-mail: liuxiaoan@126.com [Department of Breast Surgery, The First Affiliated Hospital, Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029 (China); Wang, Shui, E-mail: ws0801@hotmail.com [Department of Breast Surgery, The First Affiliated Hospital, Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029 (China)

    2014-10-15

    Highlights: • We report successful experience of MWA in breast cancer under local anesthesia. • We report MR imaging evaluation of microwave ablation zone in breast cancer. • Pathological changes after microwave ablation in breast cancer was reported. • 2 min MWA caused an ablation zone with three diameters > 2 cm in breast cancer. - Abstract: Purpose: To prospectively assess MR imaging evaluation of the ablation zone and pathological changes after microwave ablation (MWA) in breast cancer. Materials and methods: Twelve enrolled patients, diagnosed with non-operable locally advanced breast cancer (LABC), were treated by MWA and then neoadjuvant chemotherapy, followed by surgery. MR imaging was applied to evaluate the effect of MWA. Hematoxylin-eosin (HE) staining and transmission electron microscopy (TEM) were applied to analyze the ablated area. Results: All MWA procedures were performed successfully under local anesthesia. For a mean duration of 2.15 min, the mean largest, middle and smallest diameters in the ablated zone 24-h post-ablation in MR imaging were 2.98 cm ± 0.53, 2.51 cm ± 0.41 and 2.23 cm ± 0.41, respectively. The general shape of the ablation zone was close to a sphere. The ablated area became gradually smaller in MR imaging. No adverse effects related to MWA were noted in all 12 patients during and after MWA. HE staining could confirm the effect about 3 months after MWA, which was confirmed by TEM. Conclusions: 2 min MWA can cause an ablation zone with three diameters larger than 2 cm in breast cancer, which may be suitable for the local treatment of breast cancer up to 2 cm in largest diameter. However, the long-term effect of MWA in the treatment of small breast cancer should be determined in the future.

  17. Image and pathological changes after microwave ablation of breast cancer: A pilot study

    Highlights: • We report successful experience of MWA in breast cancer under local anesthesia. • We report MR imaging evaluation of microwave ablation zone in breast cancer. • Pathological changes after microwave ablation in breast cancer was reported. • 2 min MWA caused an ablation zone with three diameters > 2 cm in breast cancer. - Abstract: Purpose: To prospectively assess MR imaging evaluation of the ablation zone and pathological changes after microwave ablation (MWA) in breast cancer. Materials and methods: Twelve enrolled patients, diagnosed with non-operable locally advanced breast cancer (LABC), were treated by MWA and then neoadjuvant chemotherapy, followed by surgery. MR imaging was applied to evaluate the effect of MWA. Hematoxylin-eosin (HE) staining and transmission electron microscopy (TEM) were applied to analyze the ablated area. Results: All MWA procedures were performed successfully under local anesthesia. For a mean duration of 2.15 min, the mean largest, middle and smallest diameters in the ablated zone 24-h post-ablation in MR imaging were 2.98 cm ± 0.53, 2.51 cm ± 0.41 and 2.23 cm ± 0.41, respectively. The general shape of the ablation zone was close to a sphere. The ablated area became gradually smaller in MR imaging. No adverse effects related to MWA were noted in all 12 patients during and after MWA. HE staining could confirm the effect about 3 months after MWA, which was confirmed by TEM. Conclusions: 2 min MWA can cause an ablation zone with three diameters larger than 2 cm in breast cancer, which may be suitable for the local treatment of breast cancer up to 2 cm in largest diameter. However, the long-term effect of MWA in the treatment of small breast cancer should be determined in the future

  18. Ablation and radar-wave transmission performances of the nitride ceramic matrix composites

    2008-01-01

    The 2.5 dimensional silica fiber reinforced nitride matrix composites (2.5D SiO2f/Si3N4-BN) were prepared through the preceramic polymer impregnation pyro- lysis (PIP) method. The ablation and radar-wave transparent performances of the composite at high temperature were evaluated under arc jet. The composition and ablation surface microstructures were studied by X-ray diffraction (XRD) and scanning electron microscope (SEM). The results show that the 2.5D SiO2f/Si3N4-BN composites have a linear ablation rate of 0.33 mm/s and high radar-wave trans- parent ratio of 98.6%. The fused layer and the matrix are protected by each other, and no fused layer accumulates on the ablation surface. The nitride composite is a high-temperature ablation resistivity and microwave transparent material.

  19. On the structure of quasi-stationary laser ablation fronts in strongly radiating plasmas

    The effect of strong thermal radiation on the structure of quasi-stationary laser ablation fronts is investigated under the assumption that all the laser flux is absorbed at the critical surface. Special attention is paid to adequate formulation of the boundary-value problem for a steady-state planar ablation flow. The dependence of the laser-to-x-ray conversion efficiency ϕr on the laser intensity IL and wavelength λL is analyzed within the non-equilibrium diffusion approximation for radiation transfer. The scaling of the main ablation parameters with IL and λL in the strongly radiative regime 1−ϕr≪1 is derived. It is demonstrated that strongly radiating ablation fronts develop a characteristic extended cushion of “radiation-soaked” plasma between the condensed ablated material and the critical surface, which can efficiently suppress perturbations from the instabilities at the critical surface

  20. Surgical Ablation of Atrial Fibrillation.

    Ramlawi, Basel; Abu Saleh, Walid K

    2015-01-01

    The Cox-maze procedure for the restoration of normal sinus rhythm, initially developed by Dr. James Cox, underwent several iterations over the years. The main concept consists of creating a series of transmural lesions in the right and left atria that disrupt re-entrant circuits responsible for propagating the abnormal atrial fibrillation rhythm. The left atrial appendage is excluded as a component of the Maze procedure. For the first three iterations of the Cox- maze procedure, these lesions were performed using a surgical cut-and-sew approach that ensured transmurality. The Cox-Maze IV is the most currently accepted iteration. It achieves the same lesion set of the Cox- maze III but uses alternative energy sources to create the transmural lesions, potentially in a minimally invasive approach on the beating heart. High-frequency ultrasound, microwave, and laser energy have all been used with varying success in the past. Today, bipolar radiofrequency heat or cryotherapy cooling are the most accepted sources for creating linear lesions with consistent safety and transmurality. The robust and reliable nature of these energy delivery methods has yielded a success rate reaching 90% freedom from atrial fibrillation at 12 months. Such approaches offer a significant long-term advantage over catheter-based ablation, especially in patients having longstanding, persistent atrial fibrillation with characteristics such as dilated left atrial dimensions, poor ejection fraction, and failed catheter ablation. Based on these improved results, there currently is significant interest in developing a hybrid ablation strategy that incorporates the superior transmural robust lesions of surgical ablation, the reliable stroke prevention potential of epicardial left atrial appendage exclusion, and sophisticated mapping and confirmatory catheter-based ablation technology. Such a minimally invasive hybrid strategy for ablation may lead to the development of multidisciplinary "Afib teams" to

  1. Microwave ablation of hepatocellular carcinoma

    2015-01-01

    Although surgical resection is still the optimal treatmentoption for early-stage hepatocellular carcinoma(HCC) in patients with well compensated cirrhosis,thermal ablation techniques provide a valid nonsurgicaltreatment alternative, thanks to their minimalinvasiveness, excellent tolerability and safety profile,proven efficacy in local disease control, virtuallyunlimited repeatability and cost-effectiveness. Differentenergy sources are currently employed in clinics asphysical agents for percutaneous or intra-surgicalthermal ablation of HCC nodules. Among them, radiofrequency(RF) currents are the most used, whilemicrowave ablations (MWA) are becoming increasinglypopular. Starting from the 90s', RF ablation (RFA) rapidlybecame the standard of care in ablation, especially inthe treatment of small HCC nodules; however, RFAexhibits substantial performance limitations in thetreatment of large lesions and/or tumors located nearmajor heat sinks. MWA, first introduced in the FarEastern clinical practice in the 80s', showing promisingresults but also severe limitations in the controllabilityof the emitted field and in the high amount of poweremployed for the ablation of large tumors, resultingin a poor coagulative performance and a relativelyhigh complication rate, nowadays shows better resultsboth in terms of treatment controllability and of overallcoagulative performance, thanks to the improvementof technology. In this review we provide an extensiveand detailed overview of the key physical and technicalaspects of MWA and of the currently available systems,and we want to discuss the most relevant published dataon MWA treatments of HCC nodules in regard to clinicalresults and to the type and rate of complications, both inabsolute terms and in comparison with RFA.

  2. Microwave ablation of hepatocellular carcinoma.

    Poggi, Guido; Tosoratti, Nevio; Montagna, Benedetta; Picchi, Chiara

    2015-11-01

    Although surgical resection is still the optimal treatment option for early-stage hepatocellular carcinoma (HCC) in patients with well compensated cirrhosis, thermal ablation techniques provide a valid non-surgical treatment alternative, thanks to their minimal invasiveness, excellent tolerability and safety profile, proven efficacy in local disease control, virtually unlimited repeatability and cost-effectiveness. Different energy sources are currently employed in clinics as physical agents for percutaneous or intra-surgical thermal ablation of HCC nodules. Among them, radiofrequency (RF) currents are the most used, while microwave ablations (MWA) are becoming increasingly popular. Starting from the 90s', RF ablation (RFA) rapidly became the standard of care in ablation, especially in the treatment of small HCC nodules; however, RFA exhibits substantial performance limitations in the treatment of large lesions and/or tumors located near major heat sinks. MWA, first introduced in the Far Eastern clinical practice in the 80s', showing promising results but also severe limitations in the controllability of the emitted field and in the high amount of power employed for the ablation of large tumors, resulting in a poor coagulative performance and a relatively high complication rate, nowadays shows better results both in terms of treatment controllability and of overall coagulative performance, thanks to the improvement of technology. In this review we provide an extensive and detailed overview of the key physical and technical aspects of MWA and of the currently available systems, and we want to discuss the most relevant published data on MWA treatments of HCC nodules in regard to clinical results and to the type and rate of complications, both in absolute terms and in comparison with RFA. PMID:26557950

  3. Formation and characterization of nanoparticles via laser ablation in solution

    Golightly, Justin Samuel

    The work presented in this thesis encompassed laser ablation of various transition metals within a liquid environment. Through an improved understanding of the ablation process, control over the properties of the resultant nanoparticles can be obtained, and thusly nanoparticles can be tailored with specific properties. Creation of nanoparticles via laser ablation in solution is a relatively youngtechnique for nanoparticle synthesis, and the work presented should prove useful in guiding further exploration in ablation processes in liquids for nanomaterial production. When a laser is focused onto a target under a liquid environment, the target material and its surrounding liquid are vaporized. The concoction of vapor is ejected normal to the surface as a bubble. The bubble has a temperature reaching the boiling point of the metal, and has a gradient to the boiling point of the solvent. The bubble expands until it reaches a critical volume, and then subsequently collapses. It is within this bubble that nanoparticle formation occurs. As the bubble expands, the vapor cools and nanoparticle growth transpires. During the bubble collapse, pressures reaching GigaPascals have been reported, and a secondary nanoparticle formation occurs as a result of these high pressures. Chapter 1 delves a little more into the nanoparticle formation mechanisms, as well as an introduction to the analytical techniques used for characterization. Ablation of titanium took place in isopropanol, ethanol, water, and n-hexane, under various fluences, with a 532 nm Nd:YAG operating at 10 Hz. It was found that a myriad of nanoparticles could be made with vastly different compositions that were both solvent and fluence dependent. Nanoparticles were made that incorporated carbon and oxygen from the solvent, showing how solvent choice is an important factor in nanoparticle creation. Chapter 3 discusses the results of the titanium work in great detail and demonstrates carbide production with ablation in

  4. Transhemangioma Ablation of Hepatocellular Carcinoma

    Radiofrequency ablation (RFA) is a well-established treatment modality in the treatment of early hepatocellular carcinoma (HCC) [1]. Safe trajectory of the RFA probe is crucial in decreasing collateral tissue damage and unwarranted probe transgression. As a percutaneous technique, however, the trajectory of the needle is sometimes constrained by the available imaging plane. The presence of a hemangioma beside an HCC is uncommon but poses the question of safety related to probe transgression. We hereby describe a case of transhemangioma ablation of a dome HCC.

  5. Transhemangioma Ablation of Hepatocellular Carcinoma

    Pua, Uei, E-mail: druei@yahoo.com [Tan Tock Seng Hospital, Department of Diagnostic Radiology (Singapore)

    2012-12-15

    Radiofrequency ablation (RFA) is a well-established treatment modality in the treatment of early hepatocellular carcinoma (HCC) [1]. Safe trajectory of the RFA probe is crucial in decreasing collateral tissue damage and unwarranted probe transgression. As a percutaneous technique, however, the trajectory of the needle is sometimes constrained by the available imaging plane. The presence of a hemangioma beside an HCC is uncommon but poses the question of safety related to probe transgression. We hereby describe a case of transhemangioma ablation of a dome HCC.

  6. Influence of Coupled Radiation and Ablation on the Aerothermodynamic Environment of Planetary Entry Vehicles

    Johnston, Christopher O.; Gnoffo, Peter A.; Mazaheri, Alireza

    2013-01-01

    A review of recently published coupled radiation and ablation capabilities involving the simulation of hypersonic flowfields relevant to Earth, Mars, or Venus entry is presented. The three fundamental mechanisms of radiation coupling are identified as radiative cooling, precursor photochemistry, and ablation-radiation interaction. The impact of these mechanisms are shown to be significant for a 3 m radius sphere entering Earth at hypothetical Mars return conditions (approximately 15 km/s). To estimate the influence precursor absorption on the radiative flux for a wide range of conditions, a simplified approach is developed that requires only the non-precursor solution. Details of a developed coupled ablation approach, which is capable of treating both massively ablating flowfields in the sublimation regime and weakly ablating diffusion Climited oxidation cases, are presented. A review of the two primary uncoupled ablation approximations, identified as the blowing correction and film coefficient approximations, is made and their impact for Earth and Mars entries is shown to be significant for recession and convective heating predictions. Fully coupled ablation and radiation simulations are presented for the Mars return sphere throughout its entire trajectory. Applying to the Mars return sphere the Pioneer- Venus heritage carbon phenolic heatshield, which has properties available in the open literature, the differences between steady state ablation and coupling to a material response code are shown to be significant.

  7. Percutaneous radiofrequency ablation for lung tumors beneath the rib under CT fluoroscopic guidance with gantry tilt

    Suzuki, Takanobu; Yamagami, Takuji; Tanaka, Osamu; Yoshimatsu, Rika; Miura, Hiroshi; Nishimura, Tsunehiko (Dept. of Radiology, Graduate School of Medical Science, Kyoto Prefectural Univ. of Medicine, Kamigyo, Kyoto (Japan)), e-mail: yamagami@koto.kpu-m.ac.jp

    2010-05-15

    Background: Radiofrequency (RF) ablation of lung tumors has become a treatment of choice, especially for unresectable cases. However, RF ablation of small lung lesions located just beneath the rib is difficult. Purpose: To evaluate the efficacy and safety of gantry tilting for the performance of RF ablation of peripheral lesions located beneath the rib. Material and Methods: Our study was based on 18 of 293 lesions in the lung for which RF ablation was performed under CT scan fluoroscopic guidance at our institution between October 2004 and March 2009. For these 18 lesions, RF ablation was performed with gantry tilting because a rib blocked visualization of the RF ablation route even after other attempts had been made to change the relationship between the target and the rib. Results: All RF needles, with only one exception, were successfully advanced to hit the tumor. The commonest complication was a pneumothorax, which occurred in seven procedures. No serious complications occurred. The progression-free rates were 82.4% at 6 months, 62.5% at 12 months, and 30% at 24 months. Mean local progression-free duration was 17.6+-11.6 months (range 4-36 months). Conclusion: RF ablation under CT scan fluoroscopic guidance with gantry tilt is a useful and safe technique for RF ablation of lung nodules located beneath the rib

  8. Radiofrequency ablation of hepatic metastasis: Results of treatment in forty patients

    Rath G

    2008-01-01

    Full Text Available Aim: To evaluate the local control of hepatic metastasis with radiofrequency ablation treatment. Materials and Methods: We did a retrospective analysis in 40 patients treated with radiofrequency ablation for hepatic metastasis. The tumors ablated included up to two metastatic liver lesions, with primaries in breast, gastrointestinal tract, cervix, etc. Radiofrequency ablation was performed under general anesthesia in all cases, using ultrasound guidance. Radionics Cool-Tip RF System was used to deliver the treatment. Results: The median age of patients treated was 49 years. There were 13 female and 27 male patients. The median tumor size ablated was 1.5 cm (0.75-4.0 cm. A total of 52 radiofrequency ablation cycles were delivered. Successful ablation was achieved in all patients with hepatic metastasis less than 3 cm in size. Pain was the most common complication seen (75%. One patients developed skin burns. At 2-year follow-up 7.5% of patients had locally recurrent disease. Conclusions: Radiofrequency ablation is a minimally invasive treatment modality. It can be useful in a select group of patients with solitary liver metastasis of less than 3 cm size.

  9. Soft thrombus formation in radiofrequency catheter ablation

    Demolin, JM; Eick, OJ; Munch, K; Koullick, E; Nakagawa, H; Wittkampf, FHM

    2002-01-01

    During RF catheter ablation, local temperature elevation can result in coagulum formation on the ablation electrode, resulting in impedance rise. A recent study has also demonstrated the formation of a so-called soft thrombus during experimental ablations. This deposit poorly adhered to the catheter

  10. Ablation of Solid Hydrogen in a Plasma

    Jørgensen, L. W.; Sillesen, Alfred Hegaard

    1979-01-01

    Several hydrogen pellet ablation models based on the formation of a shielding neutral cloud have been reported by different authors. The predicted ablation rates are shown to follow almost the same scaling law and this is used to explain the authors' ablation experiment....