WorldWideScience

Sample records for ablation inductively couple

  1. Direct solid soil analysis by laser ablation inductively coupled plasma atomic emission spectrometry

    Determination of heavy metals in soils by inductively coupled plasma atomic emission spectrometry (ICP-AES) usually involves the time-consuming step of preparing a solution of the solid that is then nebulized into the plasma. According to regulations, digestion by aqua regia(hydrochloric acid + nitric acid, 3 + 1) should be carried out although it is known that this method is incomplete for silicate soils. The problem can be eliminated by introducing the solid directly into the plasma using the laser ablation technique for sampling. Results are described for a study of laser ablation using a Q-switched Nd: YAG laser coupled with a new échelle spectrometer which has a multichannel solid-state detector. The laser pulses were focused onto the solid surface of pressed soil samples to generate an aerosol which is entrained in a flowing Ar stream, transported through a tube and then introduced directly into the inductively coupled plasma. Some characteristics of the preparation technique, the selection of an internal standard and homogeneity tests of the elemental distribution are reported along with a comparison and evaluation of three methods of calibration. The criteria used to measure the performance of laser ablation ICP-AES are the relative standard deviations obtained of 4.9–12.7% and the accuracy, 0.3–12.4% for Fe, Mn, Cu, Pb, Cr, Zn and Ni

  2. The effect of ultrafast laser wavelength on ablation properties and implications on sample introduction in inductively coupled plasma mass spectrometry

    LaHaye, N. L.; Harilal, S. S.; Diwakar, P. K.; Hassanein, A.; Kulkarni, P.

    2013-01-01

    We investigated the role of femtosecond (fs) laser wavelength on laser ablation (LA) and its relation to laser generated aerosol counts and particle distribution, inductively coupled plasma-mass spectrometry (ICP-MS) signal intensity, detection limits, and elemental fractionation. Four different NIST standard reference materials (610, 613, 615, and 616) were ablated using 400 nm and 800 nm fs laser pulses to study the effect of wavelength on laser ablation rate, accuracy, precision, and fract...

  3. Inductively Coupled Plasma: Fundamental Particle Investigations with Laser Ablation and Applications in Magnetic Sector Mass Spectrometry

    Saetveit, Nathan Joe [Iowa State Univ., Ames, IA (United States)

    2008-01-01

    Particle size effects and elemental fractionation in laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) are investigated with nanosecond and femtosecond laser ablation, differential mobility analysis, and magnetic sector ICP-MS. Laser pulse width was found to have a significant influence on the LA particle size distribution and the elemental composition of the aerosol and thus fractionation. Emission from individual particles from solution nebulization, glass, and a pressed powder pellet are observed with high speed digital photography. The presence of intact particles in an ICP is shown to be a likely source of fractionation. A technique for the online detection of stimulated elemental release from neural tissue using magnetic sector ICP-MS is described. Detection limits of 1 μg L-1 or better were found for P, Mn, Fe, Cu, and Zn in a 60 μL injection in a physiological saline matrix.

  4. Inductively Coupled Plasma: Fundamental Particle Investigations with Laser Ablation and Applications in Magnetic Sector Mass Spectrometry

    Particle size effects and elemental fractionation in laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) are investigated with nanosecond and femtosecond laser ablation, differential mobility analysis, and magnetic sector ICP-MS. Laser pulse width was found to have a significant influence on the LA particle size distribution and the elemental composition of the aerosol and thus fractionation. Emission from individual particles from solution nebulization, glass, and a pressed powder pellet are observed with high speed digital photography. The presence of intact particles in an ICP is shown to be a likely source of fractionation. A technique for the online detection of stimulated elemental release from neural tissue using magnetic sector ICP-MS is described. Detection limits of 1 (micro)g L-1 or better were found for P, Mn, Fe, Cu, and Zn in a 60 (micro)L injection in a physiological saline matrix

  5. Fluorescence imaging of ion distributions in an inductively coupled plasma with laser ablation sample introduction

    Moses, Lance M.; Ellis, Wade C. [Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602 (United States); Jones, Derick D. [Giesel School of Medicine, Hanover, NH 03755 (United States); Farnsworth, Paul B. [Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602 (United States)

    2015-03-01

    High-resolution images of the spatial distributions of Sc II, Ca II, and Ba II ion densities in the 10 mm upstream from the sampling cone in a laser ablation-inductively coupled plasma-mass spectrometer (LA-ICP-MS) were obtained using planar laser induced fluorescence. Images were obtained for each analyte as a function of the carrier gas flow rate with laser ablation (LA) sample introduction and compared to images with solution nebulization (SN) over the same range of flow rates. Additionally, images were obtained using LA at varying fluences and with varying amounts of helium added to a constant flow of argon gas. Ion profiles in SN images followed a pattern consistent with previous work: increasing gas flow caused a downstream shift in the ion profiles. When compared to SN, LA led to ion profiles that were much narrower radially and reached a maximum near the sampling cone at higher flow rates. Increasing the fluence led to ions formed in the ICP over greater axial and radial distances. The addition of He to the carrier gas prior to the ablation cell led to an upstream shift in the position of ionization and lower overall fluorescence intensities. - Highlights: • We map distributions of analytes in the ICP using laser ablation sample introduction. • We compare images from laser ablation with those from a pneumatic nebulizer. • We document the effects of water added to the laser ablation aerosol. • We compare distributions from a metal to those from crystalline solids. • We document the effect of laser fluence on ion distributions.

  6. Fluorescence imaging of ion distributions in an inductively coupled plasma with laser ablation sample introduction

    High-resolution images of the spatial distributions of Sc II, Ca II, and Ba II ion densities in the 10 mm upstream from the sampling cone in a laser ablation-inductively coupled plasma-mass spectrometer (LA-ICP-MS) were obtained using planar laser induced fluorescence. Images were obtained for each analyte as a function of the carrier gas flow rate with laser ablation (LA) sample introduction and compared to images with solution nebulization (SN) over the same range of flow rates. Additionally, images were obtained using LA at varying fluences and with varying amounts of helium added to a constant flow of argon gas. Ion profiles in SN images followed a pattern consistent with previous work: increasing gas flow caused a downstream shift in the ion profiles. When compared to SN, LA led to ion profiles that were much narrower radially and reached a maximum near the sampling cone at higher flow rates. Increasing the fluence led to ions formed in the ICP over greater axial and radial distances. The addition of He to the carrier gas prior to the ablation cell led to an upstream shift in the position of ionization and lower overall fluorescence intensities. - Highlights: • We map distributions of analytes in the ICP using laser ablation sample introduction. • We compare images from laser ablation with those from a pneumatic nebulizer. • We document the effects of water added to the laser ablation aerosol. • We compare distributions from a metal to those from crystalline solids. • We document the effect of laser fluence on ion distributions

  7. Investigation on elemental and isotopic fractionation during 196 nm femtosecond laser ablation multiple collector inductively coupled plasma mass spectrometry

    Horn, I.; Friedhelm von Blanckenburg;  

    2007-01-01

    Despite the large number of successful applications of laser ablation, elemental and isotopic fractionation coupled to inductively coupled plasma mass spectrometry (ICP-MS) remain as the main limitations for many applications of this technique in the fields of analytical chemistry and Earth Sciences. A substantial effort has been made to control such fractionations, which are well-established features of nanosecond laser ablation systems. Technological advancements made over the past decade n...

  8. Biomonitoring of hair samples by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS)

    Sela, H.; Karpas, Z.; Zoriy, M.; Pickhardt, C.; Becker, J. S.

    2007-03-01

    An analytical method for determining essential elements (Zn, Fe and Cu) and toxic elements (Cr, Pb and U) on single hair strands by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-SFMS) using a double focusing sector field mass spectrometer was developed. Results obtained directly using LA-ICP-SFMS of hair were compared with those measured by inductively coupled plasma quadrupole mass spectrometry (ICP-QMS) of solutions of digested hair samples and the analytical methods were found to agree well. Different quantification strategies for trace element determination in hair samples such as external calibration, standard addition and isotope dilution were compared and demonstrated for uranium. For uranium determination in powdered hair by LA-ICP-MS solution-based calibration was applied by coupling the laser ablation chamber to an ultrasonic nebulizer. The significance of single hair analysis by LA-ICP-SFMS was demonstrated by a case study of a person who changed living environment. Differences in the uranium content observed along the single hair strand correlated with the changes in the level of uranium in drinking water. The uranium concentration in a single hair decreased from 212 to 18 ng g-1 with a change in the uranium concentration in drinking water from 2000 to 30 ng l-1. In addition, measurements of uranium isotope ratios showed a natural isotopic composition throughout the whole period in the drinking water, as well as in the hair samples. This paper demonstrates the potential use of laser ablation ICP-MS to provide measurements on a single hair strand and its potential to become a very powerful tool in hair analysis for biological monitoring.

  9. A “wire” signal smoothing device for laser ablation inductively coupled plasma mass spectrometry analysis

    A novel signal smoothing device for laser ablation inductively coupled plasma mass spectrometry was developed. The “wire” signal smoothing device consists of a copper cylinder filled with steel wire, with an internal volume of approx. 94 cm3. The effectiveness of the “wire” signal smoothing device was evaluated with respect to both signal stability and decay time. With the developed “wire” smoothing device, no oscillation of the signal intensity was observed, even at a repetition rate of 1 Hz. This finding indicates that this device is well suited for routine optimization of laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). The signal stability was improved by a factor of 11 compared to the absence of a signal smoothing device at a repetition rate of 1 Hz. Another significant advantage of the “wire” smoothing device is that the signal decay time is similar to that without the signal smoothing device. These properties cause the “wire” smoothing device to be well suited for low repetition rate laser ablation analysis, which provides smaller elemental fractionation and better spatial resolution. The proposed “wire” signal smoothing device has been successfully used for high depth resolution zircon dating. - Highlights: ► The wire stabilizer is able to provide smooth signals at a repetition rate of 1 Hz. ► The signal decay time is similar to that in the absence of a signal stabilizer. ► The wire stabilizer has been successfully used for zircon dating.

  10. Determination of elemental content off rocks by laser ablation inductively coupled plasma mass spectrometry

    Lichte, F.E.

    1995-01-01

    A new method of analysis for rocks and soils is presented using laser ablation inductively coupled plasma mass spectrometry. It is based on a lithium borate fusion and the free-running mode of a Nd/YAG laser. An Ar/N2 sample gas improves sensitivity 7 ?? for most elements. Sixty-three elements are characterized for the fusion, and 49 elements can be quantified. Internal standards and isotopic spikes ensure accurate results. Limits of detection are 0.01 ??g/g for many trace elements. Accuracy approaches 5% for all elements. A new quality assurance procedure is presented that uses fundamental parameters to test relative response factors for the calibration.

  11. Femtosecond laser ablation: Experimental study of the repetition rate influence on inductively coupled plasma mass spectrometry performance

    Gonzalez, Jhanis J. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Fernandez, Alberto [Centro de Fisicoquimica. Escuela de Quimica, Universidad Central de Venezuela, Caracas 1020-A (Venezuela); Oropeza, Dayana; Mao Xianglei [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Russo, Richard E. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States)], E-mail: RERusso@lbl.gov

    2008-02-15

    This paper demonstrates the feasibility of performing bulk chemical analysis based on laser ablation for good lateral resolution with only nominal mass ablated per pulse. The influence of repetition rate (1-1000 Hz) and scan speed (1-200 {mu}m/s) using a low energy (30 {mu}J) and a small spot size ({approx} 10 {mu}m) UV-femtosecond laser beam was evaluated for chemical analysis of silica glass samples, based on laser ablation sampling and inductively coupled plasma mass spectrometry (ICP-MS). Accuracy to approximately 14% and precision of 6% relative standard deviation (RSD) were measured.

  12. Minimally-invasive Laser Ablation Inductively Coupled Plasma Mass Spectrometry analysis of model ancient copper alloys

    This work describes an evaluation of a strategy for multi-elemental analysis of typical ancient bronzes (copper, lead bronze and tin bronze) by means of laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS).The samples originating from archeological experiments on ancient metal smelting processes using direct reduction in a ‘bloomery’ furnace as well as historical casting techniques were investigated with the use of the previously proposed analytical procedure, including metallurgical observation and preliminary visual estimation of the homogeneity of the samples. The results of LA-ICPMS analysis were compared to the results of bulk composition obtained by X-ray fluorescence spectrometry (XRF) and by inductively coupled plasma mass spectrometry (ICPMS) after acid digestion. These results were coherent for most of the elements confirming the usefulness of the proposed analytical procedure, however the reliability of the quantitative information about the content of the most heterogeneously distributed elements was also discussed in more detail. - Highlights: • The previously proposed procedure was evaluated by analysis of model copper alloys. • The LA-ICPMS results were comparable to the obtained by means of XRF and ICPMS. • LA-ICPMS results indicated the usefulness of the proposed analytical procedure

  13. Minimally-invasive Laser Ablation Inductively Coupled Plasma Mass Spectrometry analysis of model ancient copper alloys

    Walaszek, Damian [University of Warsaw, Faculty of Chemistry, Biological and Chemical Research Centre, Żwirki i Wigury 101, 02-089 Warszawa (Poland); Laboratory for Analytical Chemistry, Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600 Dübendorf (Switzerland); Senn, Marianne; Wichser, Adrian [Laboratory for Analytical Chemistry, Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600 Dübendorf (Switzerland); Faller, Markus [Laboratory for Jointing Technology and Corrosion, Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600 Dübendorf (Switzerland); Wagner, Barbara; Bulska, Ewa [University of Warsaw, Faculty of Chemistry, Biological and Chemical Research Centre, Żwirki i Wigury 101, 02-089 Warszawa (Poland); Ulrich, Andrea [Laboratory for Analytical Chemistry, Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600 Dübendorf (Switzerland)

    2014-09-01

    This work describes an evaluation of a strategy for multi-elemental analysis of typical ancient bronzes (copper, lead bronze and tin bronze) by means of laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS).The samples originating from archeological experiments on ancient metal smelting processes using direct reduction in a ‘bloomery’ furnace as well as historical casting techniques were investigated with the use of the previously proposed analytical procedure, including metallurgical observation and preliminary visual estimation of the homogeneity of the samples. The results of LA-ICPMS analysis were compared to the results of bulk composition obtained by X-ray fluorescence spectrometry (XRF) and by inductively coupled plasma mass spectrometry (ICPMS) after acid digestion. These results were coherent for most of the elements confirming the usefulness of the proposed analytical procedure, however the reliability of the quantitative information about the content of the most heterogeneously distributed elements was also discussed in more detail. - Highlights: • The previously proposed procedure was evaluated by analysis of model copper alloys. • The LA-ICPMS results were comparable to the obtained by means of XRF and ICPMS. • LA-ICPMS results indicated the usefulness of the proposed analytical procedure.

  14. Inductively coupled plasma mass spectrometer with laser ablation metal ions release detection in the human mouth

    Kueerova, Hana; Dostalova, Tatjana; Prochazkova, J.

    2002-06-01

    Presence of more dental alloys in oral cavity often causes pathological symptoms. Due to various and multi-faced symptomatology, they tend to be a source of significant problems not only for the patient but also for the dentist. Metal ions released from alloys can cause subjective and objective symptoms in mouth. The aim of this study was detection of metal elements presence in saliva. There were 4 groups of examined persons: with intact teeth (15 individuals) with metallic restorations, pathological currents 5-30 (mu) A, multi-faced subjective symptomatology and uncharacteristic objective diagnosis (32 patients), with metallic restorations and no subjective symptoms (14 persons) and with metallic restorations, without pathological currents and with problems related to galvanism (13 patients). Presence of 14 metal elements was checked by inductively coupled plasma mass spectrometer with laser ablation. Nd:YAG laser detector was used. There were significant differences in content of silver, gold and mercury between persons with intact teeth and other three groups. There were no differences found between subjects with and without galvanic currents, and presence of subjective and objective symptoms.

  15. Study of plasma parameters influencing fractionation in laser ablation-inductively coupled plasma-mass spectrometry

    Methods permitting to test the influence of the matrix as well as of its local and temporal distribution on the plasma conditions in laser ablation-inductively coupled plasma mass spectrometry (LA-ICP-MS) are developed. For this purpose, the MS interface is used as plasma probe allowing to investigate the average plasma condition within the ICP zone observed in terms of temporal and spatial distribution of the matrix. Inserted matrix particles, particularly when being atomized and ionized, can cause considerable changes in both electron density and plasma temperature thus influencing the ionization equilibrium of the individual analytes. In this context, the plasma probe covers a region of the plasma for which no local thermodynamic equilibrium can be assumed. The differences in temperature, identified within the region of the plasma observed, amounted up to 3000 K. While in the central region conditions were detected that would not allow efficient atomization and ionization of the matrix, these conditions improve considerably towards the margin of the area observed. Depending on the nature as well as on the temporally and locally variable density of the matrix, this can lead to varying intensity ratios of the analytes and explain fractionation effects. By means of a derived equation it is shown that the deviation of the intensity ratio from the concentration ratio turns out to be more serious the higher the difference of the ionization potential of the analytes observed, the lower the plasma temperature and the higher the matrix concentration within the area observed.

  16. Laser ablation inductively coupled plasma optical emission spectrometry for analysis of pellets of plant materials

    Gomes, Marcos S. [Departamento de Química, Universidade Federal de São Carlos, Rod. Washington Luís, km 235, 13565-905 São Carlos, SP (Brazil); Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Av. Centenário 303, 13416-000 Piracicaba, SP (Brazil); Schenk, Emily R. [Department of Chemistry and Biochemistry, Florida International University, Miami, FL (United States); International Forensic Research Institute, Florida International University, Miami, FL (United States); Santos, Dário [Departamento de Ciências Exatas e da Terra, Universidade Federal de São Paulo, Rua Professor Arthur Riedel 275, Diadema, SP (Brazil); Krug, Francisco José [Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Av. Centenário 303, 13416-000 Piracicaba, SP (Brazil); Almirall, José R., E-mail: almirall@fiu.edu [Department of Chemistry and Biochemistry, Florida International University, Miami, FL (United States); International Forensic Research Institute, Florida International University, Miami, FL (United States)

    2014-04-01

    An evaluation of laser ablation inductively coupled plasma optical emission spectroscopy (LAICP OES) for the direct analysis of pelleted plant material is reported. Ground leaves of orange citrus, soy and sugarcane were comminuted using a high-speed ball mill, pressed into pellets and sampled directly with laser ablation and analyzed by ICP OES. The limits of detection (LODs) for the method ranged from as low as 0.1 mg kg{sup −1} for Zn to as high as 94 mg kg{sup −1} for K but were generally below 6 mg kg{sup −1} for most of the elements of interest. A certified reference material consisting of a similar matrix (NIST SRM 1547 peach leaves) was used to check the accuracy of the calibration and the reported method resulted in an average bias of ∼ 5% for all the elements of interest. The precision for the reported method ranged from as low as 4% relative standard deviation (RSD) for Mn to as high as 17% RSD for Zn but averaged ∼ 6.5% RSD for all the elements (n = 10). The proposed method was tested for the determination of Ca, Mg, P, K, Fe, Mn, Zn and B, and the results were in good agreement with those obtained for the corresponding acid digests by ICP-OES, no differences being observed by applying a paired t-test at the 95% confidence level. The reported direct solid sampling method provides a fast alternative to acid digestion that results in similar and appropriate analytical figures of merit with regard to sensitivity, accuracy and precision for plant material analysis. - Highlights: • An evaluation of LA-ICP-OES for the direct analysis of pelleted plant material is reported. • Orange citrus, soy and sugarcane plants were pressed into pellets and sampled directly. • The element menu consisted of Ca, Mg, P, K, Fe, Mn, Zn and B. • LODs for the method ranged from 0.1 mg kg{sup −1} for Zn to 94 mg kg{sup −1} for K. • The precision ranged from 4% RSD for Mn to 17% RSD for Zn (∼ 6.5% RSD average)

  17. Determination of minor elements in steelmaking flue dusts using laser ablation inductively coupled plasma mass spectrometry.

    Coedo, A G; Padilla, I; Dorado, M T

    2005-07-15

    Element determination in solid waste products from the steel industry usually involves the time-consuming step of preparing a solution of the solid. Laser ablation (LA) inductively coupled plasma mass spectrometry (ICP-MS) has been applied to the analysis of Cr, Ni, Cu, As, Cd and Sn, elements of importance from the point of view of their impact on the environment, in electric arc furnace flue dust (EAFD). A simple method of sample preparation as pressed pellets using a mixture of cellulose and paraffin as binder material was applied. Calibration standards were prepared spiking multielement solution standards to a 1:1 ZnO+Fe(2)O(3) synthetic matrix. The wet powder was dried and mechanically homogenised. Quantitative analysis were based on external calibration using a set of matrix matched calibration standards with Rh as a internal standard. Results obtained using only one-point for calibration without matrix matched, needing less time for standardization and data processing, are also presented. Data are calculated for flue dust reference materials: CRM 876-1 (EAFD), AG-6203 (EAFD), AG-6201 (cupola dust) and AG-SX3705 (coke ashes), and for two representative electrical arc furnace flue dusts samples from Spanish steelmaking companies: MS-1 and MS-2. For the reference materials, an acceptable agreement with certificate values was achieved, and the results for the MS samples matched with those obtained from conventional nebulization solutions (CN). The analytical precision was found to be better than 7% R.S.D. both within a single pellet and between several pellets of the same sample for all the elements. PMID:18970147

  18. Characterization of binary silver based alloys by nanosecond-infrared-laser-ablation-inductively coupled plasma-optical emission spectrometer

    A nanosecond infrared laser ablation (LA) system was examined to determine the composition of several silver–copper alloys through an inductively coupled plasma-optical emission spectrometer (ICP-OES). Samples with different concentrations were prepared and analyzed by atomic absorption, and ICP-OES after sample digestion, and compared with an energy-dispersive x-ray spectrometer–scanning electron microscopy (EDX–SEM). Elemental fractionation during the ablation process and within the ICP was investigated for different laser frequencies and fluences. Samples were used for optimizing and calibrating the coupling between LA to the ICP-OES system. Results obtained from the samples analysis were in agreement with those obtained by atomic absorption spectroscopy, ICP-OES and EDX–SEM, showing that fractionation was not significant for laser fluences higher than 55 J cm−2. (paper)

  19. Determination of phosphorus and metals in human brain proteins after isolation by gel electrophoresis by laser ablation inductively coupled plasma source mass spectrometry

    Becker, J. S.; M. Zoriy; Becker, J. Su.; Pickhardt, C.; Przybylski, M.

    2004-01-01

    Phosphorus, sulfur, silicon and metal concentrations (Al, Cu and Zn) were determined in human brain, proteins by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) after separation of protein mixtures by two dimensional (2-D) gel electrophoresis. The analysis of phosphorus, silicon and metals in single protein spots in the gel was' performed with an optimized microanalytical method using a double-focusing sector field inductively coupled plasma mass spectrometer coupled t...

  20. Determination of rare earth element in carbonate using laser-ablation inductively-coupled plasma mass spectrometry: An examination of the influence of the matrix on laser-ablation inductively-coupled plasma mass spectrometry analysis

    Tanaka, Kazuya [Department of Earth and Planetary Systems Science, Graduate School of Science, Hiroshima University, Kagamiyama 1-3-1, Higashi-Hiroshima 739-8526 (Japan)]. E-mail: tanaka@geol.sci.hiroshima-u.ac.jp; Takahashi, Yoshio [Department of Earth and Planetary Systems Science, Graduate School of Science, Hiroshima University, Kagamiyama 1-3-1, Higashi-Hiroshima 739-8526 (Japan); Shimizu, Hiroshi [Department of Earth and Planetary Systems Science, Graduate School of Science, Hiroshima University, Kagamiyama 1-3-1, Higashi-Hiroshima 739-8526 (Japan)

    2007-02-05

    In this study, we examined the influence of the matrix on rare earth element (REE) analyses of carbonate with laser-ablation inductively-coupled plasma mass spectrometry (LA-ICP-MS) using carbonate and NIST glass standards. A UV 213 nm Nd:YAG laser system was coupled to an ICP-MS. Laser-ablation was carried out in both He and Ar atmospheres to investigate the influence of ablation gas on the analytical results. A small amount of N{sub 2} gas was added to the carrier gas to enhance the signal intensities. Synthetic CaCO{sub 3} standards, doped with REEs, as well as NIST glasses (NIST SRM 610 and 612) were used as calibration standards. Carbonatite, which is composed of pure calcite, was analyzed as carbonate samples. The degree of the influence of the matrix on the results was evaluated by comparing the results, which were calibrated by the synthetic CaCO{sub 3} and NIST glass standards. With laser-ablation in a He atmosphere, the differences between the results calibrated by the synthetic CaCO{sub 3} and NIST glass standards were less than 10% across the REE series, except for those of La which were 25%. In contrast, for the measurements made in an Ar atmosphere, the results calibrated by the synthetic CaCO{sub 3} and NIST glass standards differed by 25-40%. It was demonstrated that the LA-ICP-MS system can provide quantitative analysis of REE concentrations in carbonate samples using non matrix-matched standards of NIST glasses.

  1. Determination of rare earth element in carbonate using laser-ablation inductively-coupled plasma mass spectrometry: an examination of the influence of the matrix on laser-ablation inductively-coupled plasma mass spectrometry analysis.

    Tanaka, Kazuya; Takahashi, Yoshio; Shimizu, Hiroshi

    2007-02-01

    In this study, we examined the influence of the matrix on rare earth element (REE) analyses of carbonate with laser-ablation inductively-coupled plasma mass spectrometry (LA-ICP-MS) using carbonate and NIST glass standards. A UV 213 nm Nd:YAG laser system was coupled to an ICP-MS. Laser-ablation was carried out in both He and Ar atmospheres to investigate the influence of ablation gas on the analytical results. A small amount of N2 gas was added to the carrier gas to enhance the signal intensities. Synthetic CaCO3 standards, doped with REEs, as well as NIST glasses (NIST SRM 610 and 612) were used as calibration standards. Carbonatite, which is composed of pure calcite, was analyzed as carbonate samples. The degree of the influence of the matrix on the results was evaluated by comparing the results, which were calibrated by the synthetic CaCO3 and NIST glass standards. With laser-ablation in a He atmosphere, the differences between the results calibrated by the synthetic CaCO3 and NIST glass standards were less than 10% across the REE series, except for those of La which were 25%. In contrast, for the measurements made in an Ar atmosphere, the results calibrated by the synthetic CaCO3 and NIST glass standards differed by 25-40%. It was demonstrated that the LA-ICP-MS system can provide quantitative analysis of REE concentrations in carbonate samples using non matrix-matched standards of NIST glasses. PMID:17386560

  2. Calibration of laser ablation inductively coupled plasma mass spectrometry using dried solution aerosols for the quantitative analysis of solid samples

    Leach, J.

    1999-02-12

    Inductively coupled plasma mass spectrometry (ICP-MS) has become the method of choice for elemental and isotopic analysis. Several factors contribute to its success. Modern instruments are capable of routine analysis at part per trillion levels with relative detection limits in part per quadrillion levels. Sensitivities in these instruments can be as high as 200 million counts per second per part per million with linear dynamic ranges up to eight orders of magnitude. With standards for only a few elements, rapid semiquantitative analysis of over 70 elements in an individual sample can be performed. Less than 20 years after its inception ICP-MS has shown to be applicable to several areas of science. These include geochemistry, the nuclear industry, environmental chemistry, clinical chemistry, the semiconductor industry, and forensic chemistry. In this introduction, the general attributes of ICP-MS will be discussed in terms of instrumentation and sample introduction. The advantages and disadvantages of current systems are presented. A detailed description of one method of sample introduction, laser ablation, is given. The paper also gives conclusions and suggestions for future work. Chapter 2, Quantitative analysis of solids by laser ablation inductively coupled plasma mass spectrometry using dried solution aerosols for calibration, has been removed for separate processing.

  3. Determination of Trace Elements in Ice Core Samples by Laser Ablation Inductively Coupled Plasma Mass Spectrometry

    Reinhardt, Heiko; Kriews, Michael; Schrems, Otto; Lüdke, C.; Hoffmann, E; Skole, J.

    2001-01-01

    The snow and iceshields of the polar regions serve as a climate archiveand deliver a useful insight back to about 250.000 years of earth climatehistory1,2. The aim of our investigation reported here was to establisha new method for the determination of trace elements in ice cores frompolar regions with Laserablation Inductively Coupled Plasma MassSpectrometry (LA-ICP-MS)3. Primarily, the construction of a cryogeniclaserablation chamber and the optimization of the analysis system forthe sample...

  4. Imaging of Copper, Zinc and other Elements in Thin Section of Human Brain Samples (Hippocampus) by Laser Ablation Inductively Coupled Plasma Mass Spectrometry

    Becker, J. S.; Zoriy, M. V.; Pickhardt, C.; Palomero-Gallagher, N.; Zilles, K.

    2005-01-01

    Laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS) was used to produce images of element distribution in 20-microm thin sections of human brain tissue. The sample surface was scanned (raster area approximately 80 mm(2)) with a focused laser beam (wavelength 213 nm, diameter of laser crater 50 microm, and laser power density 3 x 10(9) W cm(-2)) in a cooled laser ablation chamber developed for these measurements. The laser ablation system was coupled to a double-focusing sec...

  5. Trace, ultratrace and isotope analysis of long-lived radionuclides by laser ablation inductively coupled plasma mass spectrometry

    Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) has become established as a very efficient and sensitive technique for the analysis of solids. For the determination of long-lived radionuclides in solid nuclear waste or contaminated environmental samples LA-ICP-MS is the method of choice. The capability of LA-ICP-MS for measurements on long-lived radionuclides in non-conducting concrete matrix, which is a very common matrix in waste packages will be investigated. Of special interest are the limits of detection of long-lived radionuclides, which are compared for two different types of mass spectrometer coupled to a commercial laser ablation system. The limits of detection of long-lived radionuclides investigated in concrete matrix are determined in the low pg g-1 range in quadrupole LA-ICP-MS and in double-focusing sector field LA-ICP-MS. The main problem in the quantification of analytical results is that no suitable standard reference materials are available. Therefore synthetic laboratory standards (concrete matrix doped with long-lived radionuclides, such as 99Tc, 232Th, 233U, 235U, 237Np, 238U) were investigated by LA-ICP-MS. Different calibration procedures - the correction of analytical results with experimentally determined relative sensitivity coefficients (RSCs), the use of calibration curves and solution calibration by coupling LA-ICP-MS with an ultrasonic nebulizer - were applied for the determination of long-lived radionuclides, especially for Th and U in different solid samples. (orig.)

  6. Multielemental analysis of prehistoric animal teeth by laser-induced breakdown spectroscopy and laser ablation inductively coupled plasma mass spectrometry

    Galiova, Michaela; Kaiser, Jozef; Fortes, Francisco J.; Novotny, Karel; Malina, Radomir; Prokes, Lubomir; Hrdlicka, Ales; Vaculovic, Tomas; Nyvltova Fisakova, Miriam; Svoboda, Jiri; Kanicky, Viktor; Laserna, Javier J.

    2010-05-01

    Laser-induced breakdown spectroscopy (LIBS) and laser ablation (LA) inductively coupled plasma (ICP) mass spectrometry (MS) were utilized for microspatial analyses of a prehistoric bear (Ursus arctos) tooth dentine. The distribution of selected trace elements (Sr, Ba, Fe) was measured on a 26 mmx15 mm large and 3 mm thick transverse cross section of a canine tooth. The Na and Mg content together with the distribution of matrix elements (Ca, P) was also monitored within this area. The depth of the LIBS craters was measured with an optical profilometer. As shown, both LIBS and LA-ICP-MS can be successfully used for the fast, spatially resolved analysis of prehistoric teeth samples. In addition to microchemical analysis, the sample hardness was calculated using LIBS plasma ionic-to-atomic line intensity ratios of Mg (or Ca). To validate the sample hardness calculations, the hardness was also measured with a Vickers microhardness tester.

  7. Determination of uranium and thorium in aluminium with flow injection and laser ablation inductively coupled plasma mass spectrometry

    In order to determine uranium and thorium at the sub-ng g-1 level in aluminium, the limit of detection (LOD) for continuous-flow nebulization inductively coupled plasma mass spectrometry (ICP-MS) is not sufficient, when a sample solution with the usual maximum concentration of 1 mg ml-1 is used. Therefore, two alternative sample introduction techniques have been used, flow injection (FI) and laser ablation (LA). With FI-ICP-MS the achievement of sub-ng g-1 detection limits is hampered by the presence of 'spikes'. Although these spikes are also present with LA, it is possible to obtain a 0.2 ng g-1 LOD for uranium and thorium. This LOD is achieved artificially, by rejecting all measurements containing spikes. (author)

  8. Multielemental analysis of prehistoric animal teeth by laser-induced breakdown spectroscopy and laser ablation inductively coupled plasma mass spectrometry

    Laser-induced breakdown spectroscopy (LIBS) and laser ablation (LA) inductively coupled plasma (ICP) mass spectrometry (MS) were utilized for microspatial analyses of a prehistoric bear (Ursus arctos) tooth dentine. The distribution of selected trace elements (Sr, Ba, Fe) was measured on a 26 mmx15 mm large and 3 mm thick transverse cross section of a canine tooth. The Na and Mg content together with the distribution of matrix elements (Ca, P) was also monitored within this area. The depth of the LIBS craters was measured with an optical profilometer. As shown, both LIBS and LA-ICP-MS can be successfully used for the fast, spatially resolved analysis of prehistoric teeth samples. In addition to microchemical analysis, the sample hardness was calculated using LIBS plasma ionic-to-atomic line intensity ratios of Mg (or Ca). To validate the sample hardness calculations, the hardness was also measured with a Vickers microhardness tester.

  9. Characterization of the aerosol produced by infrared femtosecond laser ablation of polyacrylamide gels for the sensitive inductively coupled plasma mass spectrometry detection of selenoproteins

    A 2D high repetition rate femtosecond laser ablation strategy (2-mm wide lane) previously developed for the detection of selenoproteins in gel electrophoresis by inductively coupled plasma mass spectrometry was found to increase signal sensitivity by a factor of 40 compared to conventional nanosecond ablation (0.12-mm wide lane) [G. Ballihaut, F. Claverie, C. Pecheyran, S. Mounicou, R. Grimaud and R. Lobinski, Sensitive Detection of Selenoproteins in Gel Electrophoresis by High Repetition Rate Femtosecond Laser Ablation-Inductively Coupled Plasma Mass Spectrometry, Anal. Chem. 79 (2007) 6874-6880]. Such improvement couldn't be explained solely by the difference of amount of material ablated, and then, was attributed to the aerosol properties. In order to validate this hypothesis, the characterization of the aerosol produced by nanosecond and high repetition rate femtosecond laser ablation of polyacrylamide gels was investigated. Our 2D high repetition rate femtosecond laser ablation strategy of 2-mm wide lane was found to produce aerosols of similar particle size distribution compared to nanosecond laser ablation of 0.12-mm wide lane, with 38% mass of particles < 1 μm. However, at high repetition rate, when the ablated surface was reduced, the particle size distribution was shifted toward thinner particle diameter (up to 77% for a 0.12-mm wide lane at 285 μm depth). Meanwhile, scanning electron microscopy was employed to visualize the morphology of the aerosol. In the case of larger ablation, the fine particles ejected from the sample were found to form agglomerates due to higher ablation rate and then higher collision probability. Additionally, investigations of the plasma temperature changes during the ablation demonstrated that the introduction of such amount of polyacrylamide gel particles had very limited impact on the ICP source (ΔT∼ 25 ± 5 K). This suggests that the cohesion forces between the thin particles composing these large aggregates were weak

  10. Characterization of the aerosol produced by infrared femtosecond laser ablation of polyacrylamide gels for the sensitive inductively coupled plasma mass spectrometry detection of selenoproteins

    Claverie, Fanny [Laboratoire de Chimie Analytique Bio-Inorganique et Environnement, Institut Pluridisciplinaire de Recherche sur l' Environnement et les Materiaux, UMR 5254 CNRS- Universite de Pau et des Pays de l' Adour, Helioparc Pau-Pyrenees, 2 Avenue du President Angot, 64053 Pau Cedex 9 (France); Novalase SA, Z.I de la Briqueterie, 6 Impasse du bois de la Grange, 33610 Canejan (France); Pecheyran, Christophe [Laboratoire de Chimie Analytique Bio-Inorganique et Environnement, Institut Pluridisciplinaire de Recherche sur l' Environnement et les Materiaux, UMR 5254 CNRS- Universite de Pau et des Pays de l' Adour, Helioparc Pau-Pyrenees, 2 Avenue du President Angot, 64053 Pau Cedex 9 (France)], E-mail: Christophe.pecheyran@univ-pau.fr; Mounicou, Sandra [Laboratoire de Chimie Analytique Bio-Inorganique et Environnement, Institut Pluridisciplinaire de Recherche sur l' Environnement et les Materiaux, UMR 5254 CNRS- Universite de Pau et des Pays de l' Adour, Helioparc Pau-Pyrenees, 2 Avenue du President Angot, 64053 Pau Cedex 9 (France); Ballihaut, Guillaume [Laboratoire de Chimie Analytique Bio-Inorganique et Environnement, Institut Pluridisciplinaire de Recherche sur l' Environnement et les Materiaux, UMR 5254 CNRS- Universite de Pau et des Pays de l' Adour, Helioparc Pau-Pyrenees, 2 Avenue du President Angot, 64053 Pau Cedex 9 (France); Laboratoire d' Ecologie Moleculaire (Microbiologie), UMR 5254 CNRS- Universite de Pau et des Pays de l' Adour, avenue de l' Universite, B.P. 1155, F-64013 Pau (France); Fernandez, Beatriz [Laboratoire de Chimie Analytique Bio-Inorganique et Environnement, Institut Pluridisciplinaire de Recherche sur l' Environnement et les Materiaux, UMR 5254 CNRS- Universite de Pau et des Pays de l' Adour, Helioparc Pau-Pyrenees, 2 Avenue du President Angot, 64053 Pau Cedex 9 (France); Alexis, Joel [Laboratoire Genie de Production, Ecole Nationale d' Ingenieurs de Tarbes, 47 avenue d' Azereix BP 1629, 65016 Tarbes (France)] (and others)

    2009-07-15

    A 2D high repetition rate femtosecond laser ablation strategy (2-mm wide lane) previously developed for the detection of selenoproteins in gel electrophoresis by inductively coupled plasma mass spectrometry was found to increase signal sensitivity by a factor of 40 compared to conventional nanosecond ablation (0.12-mm wide lane) [G. Ballihaut, F. Claverie, C. Pecheyran, S. Mounicou, R. Grimaud and R. Lobinski, Sensitive Detection of Selenoproteins in Gel Electrophoresis by High Repetition Rate Femtosecond Laser Ablation-Inductively Coupled Plasma Mass Spectrometry, Anal. Chem. 79 (2007) 6874-6880]. Such improvement couldn't be explained solely by the difference of amount of material ablated, and then, was attributed to the aerosol properties. In order to validate this hypothesis, the characterization of the aerosol produced by nanosecond and high repetition rate femtosecond laser ablation of polyacrylamide gels was investigated. Our 2D high repetition rate femtosecond laser ablation strategy of 2-mm wide lane was found to produce aerosols of similar particle size distribution compared to nanosecond laser ablation of 0.12-mm wide lane, with 38% mass of particles < 1 {mu}m. However, at high repetition rate, when the ablated surface was reduced, the particle size distribution was shifted toward thinner particle diameter (up to 77% for a 0.12-mm wide lane at 285 {mu}m depth). Meanwhile, scanning electron microscopy was employed to visualize the morphology of the aerosol. In the case of larger ablation, the fine particles ejected from the sample were found to form agglomerates due to higher ablation rate and then higher collision probability. Additionally, investigations of the plasma temperature changes during the ablation demonstrated that the introduction of such amount of polyacrylamide gel particles had very limited impact on the ICP source ({delta}T{approx} 25 {+-} 5 K). This suggests that the cohesion forces between the thin particles composing these large

  11. Infrared laser ablation study of pressed soil pellets with inductively coupled plasma atomic emission spectrometry

    Mikolas, J.; Musil, P.; Stuchlikova, V.; Novotny, K.; Otruba, V.; Kanicky, V. [Laboratory of Atomic Spectrochemistry, Faculty of Science, Masaryk University Brno, Kotlarska 2, 61137 Brno (Czech Republic)

    2002-09-01

    Potential of infrared laser ablation (LA) coupled with ICP-AES as a technique suitable for the determination of trace elements (Zn, Cu, Ni, Cr, and V) in agricultural soils was studied. Operating parameters such as laser beam energy, laser beam focusing with respect to the sample surface, and velocity of the sample translation in the plane perpendicular to the laser beam were optimized. Soil samples were mixed with powdered Ag as a binder, and an internal standard (GeO{sub 2}), and pressed into pellets. Calibration samples were prepared by adding known amounts of oxides of elements of interest into soils of known elemental composition and then processed in the same way as the analyzed samples. Calibration curves were found to be linear at least up to several hundreds of mg kg{sup -1} for the elements of interest. The elemental contents obtained by using LA-ICP-AES were compared with those obtained by analysis using wet chemistry followed by ICP-AES with pneumatic nebulization (PN). The results were in good agreement. Accuracy was also tested using certified reference soils with a bias not exceeding 10% relative. (orig.)

  12. Application of a particle separation device to reduce inductively coupled plasma-enhanced elemental fractionation in laser ablation-inductively coupled plasma-mass spectrometry

    The particle size distribution of laser ablation aerosols are a function of the wavelength, the energy density and the pulse duration of the laser, as well as the sample matrix and the gas environment. Further the size of the particles affects the vaporization and ionization efficiency in the inductively coupled plasma (ICP). Some matrices produce large particles, which are not completely vaporized and ionized in the ICP. The previous work has shown that analytical results such as matrix-independent calibration, accuracy and precision can be significantly influenced by the particle sizes of the particles. To minimize the particle size related incomplete conversion of the sample to ions in the ICP a particle separation device was developed, which allows effective particle separation using centrifugal forces in a thin coiled tube. In this device, the particle cut-off size is varied by changing the number of turns in the coil, as well as by changing the gas flow and the tube diameter. The interaction of the laser with the different samples leads to varying particle size distributions. When carrying out quantitative analysis with non-matrix matched calibration reference materials, it was shown that different particle cut-off sizes were required depending on the ICP conditions and the instrument used for analysis. Various sample materials were investigated in this study to demonstrate the applicability of the device. For silicate matrices, the capability of the ICP to produce ions was significantly reduced for particles larger than 0.5 μm, and was dependent on the element monitored. To reduce memory effects caused by the separated particles, a washout procedure was developed, which additionally allowed the analysis of the trapped particles. These results clearly demonstrate the very important particle size dependent ICP-MS signal response and the potential of the described particle size based separator for the reduction of ICP induced elemental fractionation

  13. Elemental analysis of glass by laser ablation inductively coupled plasma optical emission spectrometry (LA-ICP-OES).

    Schenk, Emily R; Almirall, José R

    2012-04-10

    The elemental analysis of glass evidence has been established as a powerful discrimination tool for forensic analysts. Laser ablation inductively coupled plasma optical emission spectrometry (LA-ICP-OES) has been compared to laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) and energy dispersive micro X-ray fluorescence spectroscopy (μXRF/EDS) as competing instrumentation for the elemental analysis of glass. The development of a method for the forensic analysis of glass coupling laser ablation to ICP-OES is presented for the first time. LA-ICP-OES has demonstrated comparable analytical performance to LA-ICP-MS based on the use of the element menu, Al (Al I 396.15 nm), Ba (Ba II 455.40 nm), Ca (Ca II 315.88 nm), Fe (Fe II 238.20 nm), Li (Li I 670.78 nm), Mg (Mg I 285.21 nm), Sr (Sr II 407.77 nm), Ti (Ti II 368.51 nm), and Zr (Zr II 343.82 nm). The relevant figures of merit, such as precision, accuracy and sensitivity, are presented and compared to LA-ICP-MS. A set of 41 glass samples was used to assess the discrimination power of the LA-ICP-OES method in comparison to other elemental analysis techniques. This sample set consisted of several vehicle glass samples that originated from the same source (inside and outside windshield panes) and several glass samples that originated from different vehicles. Different match criteria were used and compared to determine the potential for Type I and Type II errors. It was determined that broader match criteria is more applicable to the forensic comparison of glass analysis because it can reduce the affect that micro-heterogeneity inherent in the glass fragments and a less than ideal sampling strategy can have on the interpretation of the results. Based on the test set reported here, a plus or minus four standard deviation (± 4s) match criterion yielded the lowest possibility of Type I and Type II errors. The developed LA-ICP-OES method has been shown to perform similarly to LA-ICP-MS in the

  14. High-resolution line-scan analysis of resin-embedded sediments using laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS)

    Hennekam, Rick; Jilbert, Tom; Mason, Paul R D; de Lange, Gert J.; Reichart, Gert Jan

    2015-01-01

    Laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) line-scanning is a promising technique for producing high-resolution (μm-scale) geochemical records on resin-embedded sediments. However, this approach has not yet been thoroughly tested on sediment samples of known elemental co

  15. High-resolution line-scan analysis of resin-embedded sediments using laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS)

    Hennekam, R.; Jilbert, T.; de Lange, G.J.; Reichart, G.J.

    2015-01-01

    Laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) line-scanning is a promising technique for producing high-resolution (µm-scale) geochemical records on resin-embedded sediments. However, this approach has not yet been thoroughly tested on sediment samples of known elemental co

  16. Elemental fractionation in 785 nm picosecond and femtosecond laser ablation inductively coupled plasma mass spectrometry

    Shaheen, M.E., E-mail: mshaheen73@science.tanta.edu.eg [Department of Physics, Faculty of Sciences, Tanta University, Tanta (Egypt); Gagnon, J.E.; Fryer, B.J. [Great Lakes Institute for Environmental Research (GLIER), University of Windsor, Windsor, Ontario N9B 3P4 (Canada); Department of Earth and Environmental Sciences, University of Windsor, Windsor, Ontario N9B 3P4 (Canada)

    2015-05-01

    Elemental fractionation and ICP-MS signal response were investigated for two different pulse width laser beams originating from the same laser system. Femtosecond and picosecond laser beams at pulse widths of 130 fs and 110 ps, respectively, and wavelength of 785 nm were used to ablate NIST 610 synthetic glass and SRM 1107 Naval Brass B at the same spot for 800 to 1000 laser pulses at different repetition rates (5 to 50 Hz). Elemental fractionation was found to depend on repetition rate and showed a trend with femtosecond laser ablation that is opposite to that observed in picosecond laser ablation for most measured isotopes. ICP-MS signal intensity was higher in femtosecond than picosecond LA-ICP-MS in both NIST 610 and naval brass when ablation was conducted under the same fluence and repetition rate. The differences in signal intensity were partly related to differences in particle size distribution between particles generated by femtosecond and picosecond laser pulses and the consequent differences in transport and ionization efficiencies. The main reason for the higher signal intensity resulting from femtosecond laser pulses was related to the larger crater sizes compared to those created during picosecond laser ablation. Elemental ratios measured using {sup 66}Zn/{sup 63}Cu, {sup 208}Pb/{sup 238}U, {sup 232}Th/{sup 238}U, {sup 66}Zn/{sup 232}Th and {sup 66}Zn/{sup 208}Pb were found to change with the number of laser pulses with data points being more scattered in picosecond than femtosecond laser pulses. Reproducibility of replicate measurements of signal intensities, fractionation and elemental ratios was better for fs-LA-ICP-MS (RSD ~ 3 to 6%) than ps-LA-ICP-MS (RSD ~ 7 to 11%). - Highlights: • Fractionation and ICP-MS signal response were investigated for two different pulse widths using NIST 610 and Naval Brass. • Dependence of fractionation indices on repetition rate and pulse width. • Higher ablation rate was observed in picosecond compared to

  17. Elemental fractionation in 785 nm picosecond and femtosecond laser ablation inductively coupled plasma mass spectrometry

    Elemental fractionation and ICP-MS signal response were investigated for two different pulse width laser beams originating from the same laser system. Femtosecond and picosecond laser beams at pulse widths of 130 fs and 110 ps, respectively, and wavelength of 785 nm were used to ablate NIST 610 synthetic glass and SRM 1107 Naval Brass B at the same spot for 800 to 1000 laser pulses at different repetition rates (5 to 50 Hz). Elemental fractionation was found to depend on repetition rate and showed a trend with femtosecond laser ablation that is opposite to that observed in picosecond laser ablation for most measured isotopes. ICP-MS signal intensity was higher in femtosecond than picosecond LA-ICP-MS in both NIST 610 and naval brass when ablation was conducted under the same fluence and repetition rate. The differences in signal intensity were partly related to differences in particle size distribution between particles generated by femtosecond and picosecond laser pulses and the consequent differences in transport and ionization efficiencies. The main reason for the higher signal intensity resulting from femtosecond laser pulses was related to the larger crater sizes compared to those created during picosecond laser ablation. Elemental ratios measured using 66Zn/63Cu, 208Pb/238U, 232Th/238U, 66Zn/232Th and 66Zn/208Pb were found to change with the number of laser pulses with data points being more scattered in picosecond than femtosecond laser pulses. Reproducibility of replicate measurements of signal intensities, fractionation and elemental ratios was better for fs-LA-ICP-MS (RSD ~ 3 to 6%) than ps-LA-ICP-MS (RSD ~ 7 to 11%). - Highlights: • Fractionation and ICP-MS signal response were investigated for two different pulse widths using NIST 610 and Naval Brass. • Dependence of fractionation indices on repetition rate and pulse width. • Higher ablation rate was observed in picosecond compared to femtosecond laser ablation of NIST 610 and Brass. • Formation

  18. Inductively coupled plasma mass spectrometry with a twin quadrupole instrument using laser ablation sample introduction and monodisperse dried microparticulate injection

    Allen, L.A.

    1997-02-01

    The focus of this dissertation is the use of a twin quadrupole inductively coupled plasma mass spectrometer (ICP-MS) for the simultaneous detection of two m/z values. The twin quadrupole ICP-MS is used with laser ablation sample introduction in both the steady state (10 Hz) and single pulse modes. Steady state signals are highly correlated and the majority of flicker noise cancels when the ratio is calculated. Using a copper sample, the isotope ratio {sup 63}Cu{sup +}/{sup 65}Cu{sup +} is measured with a relative standard deviation (RSD) of 0.26%. Transient signals for single laser pulses are also obtained. Copper isotope ratio measurements for several laser pulses are measured with an RSD of 0.85%. Laser ablation (LA) is used with steel samples to assess the ability of the twin quadrupole ICP-MS to eliminate flicker noise of minor components of steel samples. Isotopic and internal standard ratios are measured in the first part of this work. The isotope ratio {sup 52}Cr{sup +}/{sup 53}Cr{sup +} (Cr present at 1.31 %) can be measured with an RSD of 0.06 % to 0.1 %. For internal standard elements, RSDs improve from 1.9 % in the Cr{sup +} signal to 0.12% for the ratio of {sup 51}V{sup +} to {sup 52}Cr{sup +}. In the second part of this work, one mass spectrometer is scanned while the second channel measures an individual m/z value. When the ratio of these two signals is calculated, the peak shapes in the mass spectrum are improved significantly. Pulses of analyte and matrix ions from individual drops are measured simultaneously using the twin quadrupole ICP-MS with monodisperse dried microparticulate injection (MDMI). At modest Pb concentrations (500 ppm), a shoulder on the leading edge of the Li{sup +} signal becomes apparent. Space charge effects are consistent with the disturbances seen.

  19. Mapping of lead, magnesium and copper accumulation in plant tissues by laser-induced breakdown spectroscopy and laser-ablation inductively coupled plasma mass spectrometry

    Kaiser, J. [Institute of Physical Engineering, Faculty of Mechanical Engineering, Brno University of Technology, Technicka 2896/2, 616 69 Brno (Czech Republic)], E-mail: kaiser@fme.vutbr.cz; Galiova, M.; Novotny, K.; Cervenka, R. [Department of Chemistry, Faculty of Science, Masaryk University, Kotlarska 2, 611 37 Brno (Czech Republic); Reale, L. [Faculty of Sciences, University of L' Aquila, Via Vetoio (Coppito 1), 67010 L' Aquila (Italy); Novotny, J.; Liska, M.; Samek, O. [Institute of Physical Engineering, Faculty of Mechanical Engineering, Brno University of Technology, Technicka 2896/2, 616 69 Brno (Czech Republic); Kanicky, V.; Hrdlicka, A. [Department of Chemistry, Faculty of Science, Masaryk University, Kotlarska 2, 611 37 Brno (Czech Republic); Stejskal, K.; Adam, V.; Kizek, R. [Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University of Agriculture and Forestry, Zemedelska 1, 613 00 Brno (Czech Republic)

    2009-01-15

    Laser-Induced Breakdown Spectroscopy (LIBS) and Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS) were utilized for mapping the accumulation of Pb, Mg and Cu with a resolution up to 200 {mu}m in a up to cm x cm area of sunflower (Helianthus annuus L.) leaves. The results obtained by LIBS and LA-ICP-MS are compared with the outcomes from Atomic Absorption Spectrometry (AAS) and Thin-Layer Chromatography (TLC). It is shown that laser-ablation based analytical methods can substitute or supplement these techniques mainly in the cases when a fast multi-elemental mapping of a large sample area is needed.

  20. Mapping of lead, magnesium and copper accumulation in plant tissues by laser-induced breakdown spectroscopy and laser-ablation inductively coupled plasma mass spectrometry

    Kaiser, J.; Galiová, M.; Novotný, K.; Červenka, R.; Reale, L.; Novotný, J.; Liška, M.; Samek, O.; Kanický, V.; Hrdlička, A.; Stejskal, K.; Adam, V.; Kizek, R.

    2009-01-01

    Laser-Induced Breakdown Spectroscopy (LIBS) and Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS) were utilized for mapping the accumulation of Pb, Mg and Cu with a resolution up to 200 μm in a up to cm × cm area of sunflower ( Helianthus annuus L.) leaves. The results obtained by LIBS and LA-ICP-MS are compared with the outcomes from Atomic Absorption Spectrometry (AAS) and Thin-Layer Chromatography (TLC). It is shown that laser-ablation based analytical methods can substitute or supplement these techniques mainly in the cases when a fast multi-elemental mapping of a large sample area is needed.

  1. Mapping of lead, magnesium and copper accumulation in plant tissues by laser-induced breakdown spectroscopy and laser-ablation inductively coupled plasma mass spectrometry

    Laser-Induced Breakdown Spectroscopy (LIBS) and Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS) were utilized for mapping the accumulation of Pb, Mg and Cu with a resolution up to 200 μm in a up to cm x cm area of sunflower (Helianthus annuus L.) leaves. The results obtained by LIBS and LA-ICP-MS are compared with the outcomes from Atomic Absorption Spectrometry (AAS) and Thin-Layer Chromatography (TLC). It is shown that laser-ablation based analytical methods can substitute or supplement these techniques mainly in the cases when a fast multi-elemental mapping of a large sample area is needed

  2. Visualizing fossilization using laser ablation-inductively coupled plasma-mass spectrometry maps of trace elements in Late Cretaceous bones

    Koenig, A.E.; Rogers, R.R.; Trueman, C.N.

    2009-01-01

    Elemental maps generated by laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) provide a previously unavailable high-resolution visualization of the complex physicochemical conditions operating within individual bones during the early stages of diagenesis and fossilization. A selection of LA-ICP-MS maps of bones collected from the Late Cretaceous of Montana (United States) and Madagascar graphically illustrate diverse paths to recrystallization, and reveal unique insights into geochemical aspects of taphonomic history. Some bones show distinct gradients in concentrations of rare earth elements and uranium, with highest concentrations at external bone margins. Others exhibit more intricate patterns of trace element uptake related to bone histology and its control on the flow paths of pore waters. Patterns of element uptake as revealed by LA-ICP-MS maps can be used to guide sampling strategies, and call into question previous studies that hinge upon localized bulk samples of fossilized bone tissue. LA-ICP-MS maps also allow for comparison of recrystallization rates among fossil bones, and afford a novel approach to identifying bones or regions of bones potentially suitable for extracting intact biogeochemical signals. ?? 2009 Geological Society of America.

  3. Direct multielement trace analyses of silicon carbide powders by spark ablation simultaneous inductively coupled plasma optical emission spectrometry

    Kiera, Arne F.; Schmidt-Lehr, Sebastian; Song, Ming; Bings, Nicolas H.; Broekaert, José A. C.

    2008-02-01

    A procedure for the direct analysis of silicon carbide powders (SiC) by simultaneous detection inductively coupled plasma optical emission spectrometry using a Spectro-CIROS™ spectrometer (CCD-ICP-OES) and a novel spark ablation system Spectro-SASSy (SA) as sample introduction technique is described. The sample preparation procedure for SA of non-conducting material is based on mixing the sample powders with a conducting matrix, in this case copper and briquetting pellets. Pressing time, pressure and mixing ratio are shown to be important parameters of the pelleting technique with respect to their mechanical stability for the reliability of the analysis results. A mixing ratio of 0.2 g +0.6 g for SiC and Cu, a pressure of 10 t cm - 2 and a pressing time of 8 min have been found optimum. It has also been shown that the spark parameters selected are crucial for uniform volatilization. Electron probe micrographs of the burning spots and the analytical signal magnitude showed that a rather hard spark at 100 Hz was optimum. The determination of trace elements in silicon carbide powders is demonstrated using a calibration based on the addition of standard solutions. For Al, Ti, V, Mn and Fe detection limits in the lower µg g - 1 range can be achieved. Internal standardization with Y in combination with the addition of standard solutions allows relative standard deviations in the range of 4 to 24% for concentration levels of the order of 3 to 350 µg g - 1 .

  4. Provenance determination of oriental porcelain using laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS).

    Bartle, Emma K; Watling, R John

    2007-03-01

    The sale of fraudulent oriental ceramics constitutes a large proportion of the illegal artifact and antique trade and threatens to undermine the legitimate international market. The sophistication and skill of forgers has reached a level where, using traditional appraisal by eye and hand, even the most experienced specialist is often unable to distinguish between a genuine and fraudulent piece. In addition, current provenancing techniques such as energy-dispersive X-ray fluorescence (EDXRF) spectrometry and thermoluminescence (TL) dating can result in significant damage to the artifact itself. Laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS), a relatively nondestructive analytical technique, has been used for the provenance determination of materials based on geographical origin. The technique requires the production of a laser crater, c. 100 microm in diameter, which is essentially invisible to the naked eye. Debris from this crater is analyzed using ICP-MS, with the results forming the basis of the provenance establishment protocol. Chinese, Japanese, and English porcelain shards have been analyzed using this protocol and generic isotopic distribution patterns have been produced that enable the provenance establishment of porcelain artifacts to their country of production. Minor variations between elemental fingerprints of artifacts produced in the same country also indicate that it may be possible to further provenance oriental ceramics to a specific production region or kiln site. PMID:17316230

  5. High-resolution line-scan analysis of resin-embedded sediments using laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS)

    Hennekam, R; Jilbert, T.; De Lange, G. J.; G. J. Reichart

    2015-01-01

    Laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) line-scanning is a promising technique for producing high-resolution (µm-scale) geochemical records on resin-embedded sediments. However, this approach has not yet been thoroughly tested on sediment samples of known elemental compositions. Here, we address this through the analysis of resin-embedded quartz, calcite, and clay (montmorillonite) sediments spiked with Al, V, Mo, and Ba across a range of concentrations. LA-ICP...

  6. Evaluation of Laser Ablation Inductively Coupled Plasma Mass Spectrometry for the Quantitative Determination of Lead in Different Parts of Archeological Human Teeth

    Bellis, David J.; Parsons, Patrick J.; Jones, Joseph; Amarasiriwardena, Dula

    2009-01-01

    The lead content of teeth or tooth-parts has been used as a biomarker of cumulative lead exposure in clinical, epidemiological, environmental, and archaeological studies. Through the application of laser ablation inductively coupled plasma mass spectrometry, a pilot study of the micrometer-scale distribution and quantification of lead was conducted for two human teeth obtained from an archeological burial site in Manhattan, New York, USA. Lead was highly localized within each tooth, with accu...

  7. In situ multi-element analysis of the Mount Pinatubo quartz-hosted melt inclusions by NIR femtosecond laser ablation-inductively coupled plasma-mass spectrometry

    A. Y. Borisova; Freydier, R.; Polvé, Mireille; Salvi, S; F. Candaudap; Aigouy, T.

    2008-01-01

    Microscopic melt inclusions found in magmatic minerals are undoubtedly one of the most important sources of information on the chemical composition of melts. This paper reports on the successful application of near-infrared (NIR) femtosecond laser ablation (LA) - inductively coupled plasma-mass spectrometry to in situ determination of incompatible trace elements (Li, Rb, Sr, Y, Zr, Nb, Cs, Ba, REE, Ta, Th, U) and ore metals (As, Mo, Pb) in individual melt inclusions hosted in quartz from the ...

  8. Determination of refractive and volatile elements in sediment using laser ablation inductively coupled plasma mass spectrometry.

    Duodu, Godfred Odame; Goonetilleke, Ashantha; Allen, Charlotte; Ayoko, Godwin A

    2015-10-22

    Wet-milling protocol was employed to produce pressed powder tablets with excellent cohesion and homogeneity suitable for laser ablation (LA) analysis of volatile and refractive elements in sediment. The influence of sample preparation on analytical performance was also investigated, including sample homogeneity, accuracy and limit of detection. Milling in volatile solvent for 40 min ensured sample is well mixed and could reasonably recover both volatile (Hg) and refractive (Zr) elements. With the exception of Cr (-52%) and Nb (+26%) major, minor and trace elements in STSD-1 and MESS-3 could be analysed within ±20% of the certified values. Comparison of the method with total digestion method using HF was tested by analysing 10 different sediment samples. The laser method recovers significantly higher amounts of analytes such as Ag, Cd, Sn and Sn than the total digestion method making it a more robust method for elements across the periodic table. LA-ICP-MS also eliminates the interferences from chemical reagents as well as the health and safety risks associated with digestion processes. Therefore, it can be considered as an enhanced method for the analysis of heterogeneous matrices such as river sediments. PMID:26526906

  9. Study of ferrites with perovskite crystal structure by laser ablation. Inductively coupled plasma mass spectrometry

    Complete text of publication follows. From the point of view of modern material sciences, the lanthanum and strontium containing ferrites are very important materials due to their colossal magnetoresistance and their good properties as oxygen adsorbents. Current studies are also covering multiple production methods and the properties' dependency of the composition. The accurate chemical analysis is mandatory for both purposes because the possible contaminations and inhomogeneity can also modify the magnetic parameters, and they indicate the limitations of the production technology. In our study, multiple samples of LSCF (lanthan-strontium-cobalt-ferrite), prepared at the Pannon University (Veszprem, Hungary), were analyzed. The samples had a constant iron:cobalt ratio while the Sr:La ratio was varied. Our goal was to determine the ratio of these elements using a solid sample introduction system, which is capable of mapping the inhomogeneity of the sample. For this investigation, a high resolution ICP-MS (Element 2, Thermo-Finnigan, Bremen, Germany) equipped with a laser ablation system (New Wave Research UP-213, Fremont, California, USA) was used. In order to develop a quantitative method, a part of the samples was digested applying a microwave assisted digestion system (Ethos TC, Milestone, Sorisole, Italy). On basis of calibration curves obtained by solution technique, the element ratios and, thereby the homogeneity of ferrites can be controlled within a few minutes; therefore the LA-ICP-MS is a powerful analytical technique for rapid quality control in the crystal production.

  10. Temporal changes of fractionation index caused by changes in the large size of ablated particles in laser ablation–inductively coupled plasma mass spectrometry

    To elucidate mechanisms of elemental fractionation that are observed in laser ablation–inductively coupled plasma mass spectrometry, the relative intensities of 34 elements, each normalized by a Ca internal standard, were measured every minute during a 10-min laser ablation of an NIST 610 glass standard. Temporal changes in the fractionation index (FI) were obtained by dividing the relative intensity of every minute by that of the first minute. The particles generated by laser ablation were collected on a filter every minute, and they were observed using scanning electron microscopy to investigate changes in the large size of particles. Large variations among the large size of particles were observed using single-site mode and under 1.0 mm defocus conditions. The 34 measured elements were classified into two groups, depending on their observed FI variation. The FI variation was rationalized by elemental behavior due to changes in the large size of ablated particles introduced into the ICP. (author)

  11. 2D elemental mapping of sections of human kidney stones using laser ablation inductively-coupled plasma-mass spectrometry: Possibilities and limitations

    Vašinová Galiová, Michaela; Čopjaková, Renata; Škoda, Radek; Štěpánková, Kateřina; Vaňková, Michaela; Kuta, Jan; Prokeš, Lubomír; Kynický, Jindřich; Kanický, Viktor

    2014-10-01

    A 213 nm Nd:YAG-based laser ablation (LA) system coupled to quadrupole-based inductively coupled plasma-mass spectrometer and an ArF* excimer-based LA-system coupled to a double-focusing sector field inductively coupled plasma-mass spectrometer were employed to study the spatial distribution of various elements in kidney stones (uroliths). Sections of the surfaces of uroliths were ablated according to line patterns to investigate the elemental profiles for the different urolith growth zones. This exploratory study was mainly focused on the distinguishing of the main constituents of urinary calculus fragments by means of LA-ICP-mass spectrometry. Changes in the ablation rate for oxalate and phosphate phases related to matrix density and hardness are discussed. Elemental association was investigated on the basis of 2D mapping. The possibility of using NIST SRM 1486 Bone Meal as an external standard for calibration was tested. It is shown that LA-ICP-MS is helpful for determination of the mineralogical composition and size of all phases within the analyzed surface area, for tracing down elemental associations and for documenting the elemental content of urinary stones. LA-ICP-MS results (elemental contents and maps) are compared to those obtained with electron microprobe analysis and solution analysis ICP-MS.

  12. Direct multielement trace analyses of silicon carbide powders by spark ablation simultaneous inductively coupled plasma optical emission spectrometry

    A procedure for the direct analysis of silicon carbide powders (SiC) by simultaneous detection inductively coupled plasma optical emission spectrometry using a Spectro-CIROSTM spectrometer (CCD-ICP-OES) and a novel spark ablation system Spectro-SASSy (SA) as sample introduction technique is described. The sample preparation procedure for SA of non-conducting material is based on mixing the sample powders with a conducting matrix, in this case copper and briquetting pellets. Pressing time, pressure and mixing ratio are shown to be important parameters of the pelleting technique with respect to their mechanical stability for the reliability of the analysis results. A mixing ratio of 0.2 g +0.6 g for SiC and Cu, a pressure of 10 t cm-2 and a pressing time of 8 min have been found optimum. It has also been shown that the spark parameters selected are crucial for uniform volatilization. Electron probe micrographs of the burning spots and the analytical signal magnitude showed that a rather hard spark at 100 Hz was optimum. The determination of trace elements in silicon carbide powders is demonstrated using a calibration based on the addition of standard solutions. For Al, Ti, V, Mn and Fe detection limits in the lower μg g-1 range can be achieved. Internal standardization with Y in combination with the addition of standard solutions allows relative standard deviations in the range of 4 to 24% for concentration levels of the order of 3 to 350 μg g-1

  13. Visualizing trace element distribution in quartz using cathodoluminescence, electron microprobe, and laser ablation-inductively coupled plasma-mass spectrometry

    Rusk, Brian; Koenig, Alan; Lowers, Heather

    2011-01-01

    Cathodoluminescent (CL) textures in quartz reveal successive histories of the physical and chemical fluctuations that accompany crystal growth. Such CL textures reflect trace element concentration variations that can be mapped by electron microprobe or laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS). Trace element maps in hydrothermal quartz from four different ore deposit types (Carlin-type Au, epithermal Ag, porphyry-Cu, and MVT Pb-Zn) reveal correlations among trace elements and between trace element concentrations and CL textures. The distributions of trace elements reflect variations in the physical and chemical conditions of quartz precipitation. These maps show that Al is the most abundant trace element in hydrothermal quartz. In crystals grown at temperatures below 300 °C, Al concentrations may vary by up to two orders of magnitude between adjacent growth zones, with no evidence for diffusion. The monovalent cations Li, Na, and K, where detectable, always correlate with Al, with Li being the most abundant of the three. In most samples, Al is more abundant than the combined total of the monovalent cations; however, in the MVT sample, molar Al/Li ratios are ~0.8. Antimony is present in concentrations up to ~120 ppm in epithermal quartz (~200–300 °C), but is not detectable in MVT, Carlin, or porphyry-Cu quartz. Concentrations of Sb do not correlate consistently with those of other trace elements or with CL textures. Titanium is only abundant enough to be mapped in quartz from porphyry-type ore deposits that precipitate at temperatures above ~400 °C. In such quartz, Ti concentration correlates positively with CL intensity, suggesting a causative relationship. In contrast, in quartz from other deposit types, there is no consistent correlation between concentrations of any trace element and CL intensity fluctuations.

  14. 2D elemental mapping of sections of human kidney stones using laser ablation inductively-coupled plasma-mass spectrometry: Possibilities and limitations

    A 213 nm Nd:YAG-based laser ablation (LA) system coupled to quadrupole-based inductively coupled plasma-mass spectrometer and an ArF* excimer-based LA-system coupled to a double-focusing sector field inductively coupled plasma-mass spectrometer were employed to study the spatial distribution of various elements in kidney stones (uroliths). Sections of the surfaces of uroliths were ablated according to line patterns to investigate the elemental profiles for the different urolith growth zones. This exploratory study was mainly focused on the distinguishing of the main constituents of urinary calculus fragments by means of LA-ICP-mass spectrometry. Changes in the ablation rate for oxalate and phosphate phases related to matrix density and hardness are discussed. Elemental association was investigated on the basis of 2D mapping. The possibility of using NIST SRM 1486 Bone Meal as an external standard for calibration was tested. It is shown that LA-ICP-MS is helpful for determination of the mineralogical composition and size of all phases within the analyzed surface area, for tracing down elemental associations and for documenting the elemental content of urinary stones. LA-ICP-MS results (elemental contents and maps) are compared to those obtained with electron microprobe analysis and solution analysis ICP-MS. - Highlights: • Elements in phosphate and oxalate urolith phases were quantified by LA-ICP-MS. • SRM NIST 1486 Bone Meal was proved suitable for quantification in uroliths. • Different ablation rates in particular phases were included at quantification. • Oxalate and apatite phases show opposite hardness order to natural minerals. • Uroliths were classified according to elemental association to phases

  15. 2D elemental mapping of sections of human kidney stones using laser ablation inductively-coupled plasma-mass spectrometry: Possibilities and limitations

    Vašinová Galiová, Michaela [Department of Chemistry, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno (Czech Republic); Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, 625 00 Brno (Czech Republic); Čopjaková, Renata; Škoda, Radek [Department of Geological Sciences, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno (Czech Republic); Štěpánková, Kateřina; Vaňková, Michaela [Department of Chemistry, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno (Czech Republic); Kuta, Jan [Research Centre for Toxic Compounds in the Environment (RECETOX), Masaryk University, Kamenice 126/3, 625 00 Brno (Czech Republic); Prokeš, Lubomír [Department of Chemistry, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno (Czech Republic); Department of Physical Electronics, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno (Czech Republic); Kynický, Jindřich [Department of Pedology and Geology, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemědělská 3, 613 00 Brno (Czech Republic); and others

    2014-10-01

    A 213 nm Nd:YAG-based laser ablation (LA) system coupled to quadrupole-based inductively coupled plasma-mass spectrometer and an ArF* excimer-based LA-system coupled to a double-focusing sector field inductively coupled plasma-mass spectrometer were employed to study the spatial distribution of various elements in kidney stones (uroliths). Sections of the surfaces of uroliths were ablated according to line patterns to investigate the elemental profiles for the different urolith growth zones. This exploratory study was mainly focused on the distinguishing of the main constituents of urinary calculus fragments by means of LA-ICP-mass spectrometry. Changes in the ablation rate for oxalate and phosphate phases related to matrix density and hardness are discussed. Elemental association was investigated on the basis of 2D mapping. The possibility of using NIST SRM 1486 Bone Meal as an external standard for calibration was tested. It is shown that LA-ICP-MS is helpful for determination of the mineralogical composition and size of all phases within the analyzed surface area, for tracing down elemental associations and for documenting the elemental content of urinary stones. LA-ICP-MS results (elemental contents and maps) are compared to those obtained with electron microprobe analysis and solution analysis ICP-MS. - Highlights: • Elements in phosphate and oxalate urolith phases were quantified by LA-ICP-MS. • SRM NIST 1486 Bone Meal was proved suitable for quantification in uroliths. • Different ablation rates in particular phases were included at quantification. • Oxalate and apatite phases show opposite hardness order to natural minerals. • Uroliths were classified according to elemental association to phases.

  16. Application of femtosecond laser ablation inductively coupled plasma mass spectrometry for quantitative analysis of thin Cu(In,Ga)Se2 solar cell films

    This work reports that the composition of Cu(In,Ga)Se2 (CIGS) thin solar cell films can be quantitatively predicted with high accuracy and precision by femtosecond laser ablation-inductively coupled plasma-mass spectrometry (fs-LA-ICP-MS). It is demonstrated that the results are strongly influenced by sampling conditions during fs-laser beam (λ = 1030 nm, τ = 450 fs) scanning on the CIGS surface. The fs-LA-ICP-MS signals measured at optimal sampling conditions generally provide a straight line calibration with respect to the reference concentrations measured by inductively coupled plasma optical emission spectroscopy (ICP-OES). The concentration ratios predicted by fs-LA-ICP-MS showed high accuracy, to 95–97% of the values measured with ICP-OES, for Cu, In, Ga, and Se elements. - Highlights: • Laser ablation inductively coupled plasma mass spectrometry of thin film is reported. • Concentration ratio prediction with a confidence level of 95–97% is achieved. • Quantitative determination of composition is demonstrated

  17. Application of femtosecond laser ablation inductively coupled plasma mass spectrometry for quantitative analysis of thin Cu(In,Ga)Se{sub 2} solar cell films

    Lee, Seokhee [School of Mechatronics, Gwangju Institute of Science and Technology, 1 Oryong-dong, Buk-gu, Gwangju 500-712 (Korea, Republic of); Gonzalez, Jhanis J. [Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States); Applied Spectra Inc., 46665 Fremont Boulevard, Fremont, CA 94538 (United States); Yoo, Jong H. [Applied Spectra Inc., 46665 Fremont Boulevard, Fremont, CA 94538 (United States); Chirinos, Jose R. [Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States); Facultad de Ciencias, Universidad Central de Venezuela, Caracas 1041A (Venezuela, Bolivarian Republic of); Russo, Richard E. [Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States); Applied Spectra Inc., 46665 Fremont Boulevard, Fremont, CA 94538 (United States); Jeong, Sungho, E-mail: shjeong@gist.ac.kr [School of Mechatronics, Gwangju Institute of Science and Technology, 1 Oryong-dong, Buk-gu, Gwangju 500-712 (Korea, Republic of)

    2015-02-27

    This work reports that the composition of Cu(In,Ga)Se{sub 2} (CIGS) thin solar cell films can be quantitatively predicted with high accuracy and precision by femtosecond laser ablation-inductively coupled plasma-mass spectrometry (fs-LA-ICP-MS). It is demonstrated that the results are strongly influenced by sampling conditions during fs-laser beam (λ = 1030 nm, τ = 450 fs) scanning on the CIGS surface. The fs-LA-ICP-MS signals measured at optimal sampling conditions generally provide a straight line calibration with respect to the reference concentrations measured by inductively coupled plasma optical emission spectroscopy (ICP-OES). The concentration ratios predicted by fs-LA-ICP-MS showed high accuracy, to 95–97% of the values measured with ICP-OES, for Cu, In, Ga, and Se elements. - Highlights: • Laser ablation inductively coupled plasma mass spectrometry of thin film is reported. • Concentration ratio prediction with a confidence level of 95–97% is achieved. • Quantitative determination of composition is demonstrated.

  18. Application of laser ablation inductively coupled plasma multicollector mass spectometry in determination of lead isotope ratios in common glass for forensic purposes

    Sjåstad, Knut-Endre, E-mail: knutesj@geo.uio.no [National Criminal Investigation Service (KRIPOS) (Norway); Department of Geosciences, University of Oslo (Norway); Andersen, Tom; Simonsen, Siri Lene [Department of Geosciences, University of Oslo (Norway)

    2013-11-01

    Samples of glass used as trace evidence in criminal cases are commonly small, with particle sizes below a millimeter. To perform chemical analysis suitable for forensic purposes, methods capable of analyzing such small samples are required. In this paper, analyses of lead isotope ratios by means of laser ablation inductively coupled multicollector mass spectrometry (LA-MC-ICP-MS) are presented. Sampling by use of laser ablation allows fragments down to 0.1 mg to be analyzed with sufficient precision to discriminate between glasses of different origin. In fact, the use of lead isotopes determined by LA-MC-ICP-MS approaches the discrimination attainable by multicollector inductively coupled plasma mass spectrometry (MC-ICP-MS) analysis of dissolved samples of 5 mg or more. Further, we have obtained a probability distribution by two dimensional kernel density estimates for the collected data set as an alternative presentation method to the well-established bivariate plot. The underlying information available from kernel density estimates is of importance for forensic scientists involved in probabilistic interpretation of physical evidence. - Highlights: • Lead isotope ratios prove suitable to discriminate glass for forensic purposes. • 96% of glass samples from different sources were separated by lead isotopic ratios. • Laser ablation allows fragments of glass with extension of 0.5 mm to be analyzed. • Isotopic ratios of lead are well suited for statistical analysis of evidence.

  19. Application of laser ablation inductively coupled plasma multicollector mass spectometry in determination of lead isotope ratios in common glass for forensic purposes

    Samples of glass used as trace evidence in criminal cases are commonly small, with particle sizes below a millimeter. To perform chemical analysis suitable for forensic purposes, methods capable of analyzing such small samples are required. In this paper, analyses of lead isotope ratios by means of laser ablation inductively coupled multicollector mass spectrometry (LA-MC-ICP-MS) are presented. Sampling by use of laser ablation allows fragments down to 0.1 mg to be analyzed with sufficient precision to discriminate between glasses of different origin. In fact, the use of lead isotopes determined by LA-MC-ICP-MS approaches the discrimination attainable by multicollector inductively coupled plasma mass spectrometry (MC-ICP-MS) analysis of dissolved samples of 5 mg or more. Further, we have obtained a probability distribution by two dimensional kernel density estimates for the collected data set as an alternative presentation method to the well-established bivariate plot. The underlying information available from kernel density estimates is of importance for forensic scientists involved in probabilistic interpretation of physical evidence. - Highlights: • Lead isotope ratios prove suitable to discriminate glass for forensic purposes. • 96% of glass samples from different sources were separated by lead isotopic ratios. • Laser ablation allows fragments of glass with extension of 0.5 mm to be analyzed. • Isotopic ratios of lead are well suited for statistical analysis of evidence

  20. On-line double isotope dilution laser ablation inductively coupled plasma mass spectrometry for the quantitative analysis of solid materials

    Graphical abstract: Development and validation of a new on-line double IDMS methodology to achieve an accurate, precise, and time-effective strategy for direct determination of trace elements in solid samples by LA-ICP-MS. - Highlights: • Development of a double IDMS strategy for direct solid analysis by LA-ICP-MS. • The proposed method requires the sequential analysis of the sample and a standard. • The previous characterization of the spike solution is not required in double IDMS. • Quantitative bulk analysis of Sr, Rb and Pb were performed in silicate glasses and powdered samples. • Powdered samples were analyzed as pressed pellets and glasses prepared by fusion. - Abstract: We report on the determination of trace elements in solid samples by the combination of on-line double isotope dilution and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). The proposed method requires the sequential analysis of the sample and a certified natural abundance standard by on-line IDMS using the same isotopically-enriched spike solution. In this way, the mass fraction of the analyte in the sample can be directly referred to the certified standard so the previous characterization of the spike solution is not required. To validate the procedure, Sr, Rb and Pb were determined in certified reference materials with different matrices, including silicate glasses (SRM 610, 612 and 614) and powdered samples (PACS-2, SRM 2710a, SRM 1944, SRM 2702 and SRM 2780). The analysis of powdered samples was carried out both by the preparation of pressed pellets and by lithium borate fusion. Experimental results for the analysis of powdered samples were in agreement with the certified values for all materials. Relative standard deviations in the range of 6–21% for pressed pellets and 3–21% for fused solids were obtained from n = 3 independent measurements. Minimal sample preparation, data treatment and consumption of the isotopically-enriched isotopes are the

  1. Laser ablation inductively coupled plasma dynamic reaction cell mass spectrometry for the multi-element analysis of polymers

    Resano, M.; García-Ruiz, E.; Vanhaecke, F.

    2005-11-01

    In this work, the potential of laser ablation-inductively coupled plasma-mass spectrometry for the fast analysis of polymers has been explored. Different real-life samples (polyethylene shopping bags, an acrylonitrile butadiene styrene material and various plastic bricks) as well as several reference materials (VDA 001 to 004, Cd in polyethylene) have been selected for the study. Two polyethylene reference materials (ERM-EC 680 and 681), for which a reference or indicative value for the most relevant metals is available, have proved their suitability as standards for calibration. Special attention has been paid to the difficulties expected for the determination of Cr at the μg g - 1 level in this kind of materials, due to the interference of ArC + ions on the most abundant isotopes of Cr. The use of ammonia as a reaction gas in a dynamic reaction cell is shown to alleviate this problem, resulting in a limit of detection of 0.15 μg g - 1 for this element, while limiting only modestly the possibilities of the technique for simultaneous multi-element analysis. In this regard, As is the analyte most seriously affected by the use of ammonia, and its determination has to be carried out in vented mode, at the expense of measuring time. In all cases studied, accurate results could be obtained for elements ranging in content from the sub-μg g - 1 level to tens of thousands of μg g - 1 . However, the use of an element of known concentration as internal standard may be needed for materials with a matrix significantly different from that of the standard (polyethylene in this work). Precision ranged between 5% and 10% RSD for elements found at the 10 μg g - 1 level or higher, while this value could deteriorate to 20% for analytes found at the sub-μg g - 1 level. Overall, the technique evaluated presents many advantages for the fast and accurate multi-element analysis of these materials, avoiding laborious digestion procedures and minimizing the risk of analyte losses due

  2. Measurement of the isotopic composition of uranium micrometer-size particles by femtosecond laser ablation-inductively coupled plasma mass spectrometry

    In this paper, we will describe and indicate the performance of a new method based on the use of femtosecond laser ablation (fs-LA) coupled to a quadrupole-based inductively coupled plasma mass spectrometer (ICP-QMS) for analyzing the isotopic composition of micrometer-size uranium particles. The fs-LA device was equipped with a high frequency source (till 10 kHz). We applied this method to 1–2 μm diameter-uranium particles of known isotopic composition and we compared this technique with the two techniques currently used for uranium particle analysis: Secondary Ionization Mass Spectrometry (SIMS) and Fission Track Thermal Ionization Mass Spectrometry (FT-TIMS). By optimizing the experimental conditions, we achieved typical accuracy and reproducibility below 4% on 235U/238U for short transient signals of only 15 s related to 10 to 200 pg of uranium. The detection limit (at the 3 sigma level) was ∼ 350 ag for the 235U isotope, meaning that 235U/238U isotope ratios in natural uranium particles of ∼ 220 nm diameter can be measured. We also showed that the local contamination resulting from the side deposition of ablation debris at ∼ 100 μm from the ablation crater represented only a small percentage of the initial uranium signal of the ablated particle. Despite the use of single collector ICP-MS, we were able to demonstrate that fs-LA-ICP-MS is a promising alternative technique for determining uranium isotopic composition in particle analysis. - Highlights: • An infrared femtosecond laser ablation device coupled to an ICP-MS is used. • The isotopic composition of micrometer-size U particles is measured. • Results are in good agreement with the ones obtained by other relevant techniques. • Detection limit is 350 attograms for the 235U isotope • 235U/238U ratios can be measured in 220 nm diameter natural uranium particles

  3. Direct analysis of samples by mass spectrometry: From elements to bio-molecules using laser ablation inductively couple plasma mass spectrometry and laser desorption/ionization mass spectrometry

    Perdian, David C. [Iowa State Univ., Ames, IA (United States)

    2009-01-01

    Mass spectrometric methods that are able to analyze solid samples or biological materials with little or no sample preparation are invaluable to science as well as society. Fundamental research that has discovered experimental and instrumental parameters that inhibit fractionation effects that occur during the quantification of elemental species in solid samples by laser ablation inductively coupled plasma mass spectrometry is described. Research that determines the effectiveness of novel laser desorption/ionization mass spectrometric methods for the molecular analysis of biological tissues at atmospheric pressure and at high spatial resolution is also described. A spatial resolution is achieved that is able to analyze samples at the single cell level.

  4. Lanthanide Elements as Labels in Multiplexed Analysis of Proteins and MicroRNAs by Laser Ablation Inductively Coupled Plasma Mass Spectrometry

    de Bang, Thomas Christian

    antibodies and DNA probes, enabled quantitative and multiplexed analysis of the analytes using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). The results obtained by the new methods were compared to different state-of-the-art techniques and the analytical figures of merits were...... two assays were very similar. Protein or RNA samples were separated by polyacrylamide gel electrophoresis and transferred to membranes by electroblotting where specific recognition of target analytes was achieved by antibodies and DNA probes, respectively. The use of lanthanides as labels on different...

  5. Elemental Quantitative Distribution and Statistical Analysis on Cross Section of Stainless Steel Sheet by Laser Ablation Inductively Coupled Plasma Mass Spectrometry

    Qian-hua LUO; Hai-zhou WANG

    2015-01-01

    An innovative application of laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) technique in illustrating elemental distributions on stainless steel sheets was presented. The technique proved to be a systematic and accurate ap-proach in producing visual images or maps of elemental distributions at cross-sectional surface of a stainless steel sheet. Two stain-less steel sheets served as research objects: 3 mm×1 300 mm hot-rolled stainless steel plate and 1 mm×1 260 mm cold-rolled plate. The cross-sectional surfaces of the two samples at 1/4 position along the width direction were scanned (raster area-44 mm2 and 11 mm2) with a focused laser beam (wavelength 213 nm, diameter of laser crater 100 μm, and laser power 1.6 mJ) in a laser abla-tion chamber. The laser ablation system was coupled to a quadrupole ICP-MS, which made the detection of ion intensities of27Al+, 44Ca+,47Ti+,55Mn+ and56Fe+ within an area of interest possible. One-dimensional (1D) content line distribution maps and two-dimensional (2D) contour maps for speciifc positions or areas were plotted to indicate the element distribution of a target area with high accuracy. Statistic method was used to analyze the acquired data by calculating median contents, maximum segregation, sta-tistic segregation and content-frequency distribution.

  6. Metallurgical and chemical characterization of copper alloy reference materials within laser ablation inductively coupled plasma mass spectrometry: Method development for minimally-invasive analysis of ancient bronze objects

    Walaszek, Damian, E-mail: damian.walaszek@empa.ch [Laboratory for Analytical Chemistry, Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600 Dübendorf (Switzerland); University of Warsaw, Faculty of Chemistry, Pasteura 1, 02-093 Warsaw (Poland); Senn, Marianne [Laboratory for Analytical Chemistry, Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600 Dübendorf (Switzerland); Faller, Markus [Laboratory for Jointing Technology and Corrosion, Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600 Dübendorf (Switzerland); Philippe, Laetitia [Laboratory for Mechanics of Materials and Nanostructures, Swiss Federal Laboratories for Materials Science and Technology, Feuerwerkstrasse 39, CH-3602 Thun (Switzerland); Wagner, Barbara; Bulska, Ewa [University of Warsaw, Faculty of Chemistry, Pasteura 1, 02-093 Warsaw (Poland); Ulrich, Andrea [Laboratory for Analytical Chemistry, Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600 Dübendorf (Switzerland)

    2013-01-01

    The chemical composition of ancient metal objects provides important information for manufacturing studies and authenticity verification of ancient copper or bronze artifacts. Non- or minimal-destructive analytical methods are preferred to mitigate visible damage. Laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS) enables the determination of major elements as well as impurities down to lower ppm-levels, however, accuracy and precision of analysis strongly depend on the homogeneity of reference materials used for calibration. Moreover, appropriate analytical procedures are required e.g. in terms of ablation strategies (scan mode, spot size, etc.). This study reviews available copper alloy (certified) reference materials — (C)RMs from different sources and contributes new metallurgical data on homogeneity and spatial elemental distribution. Investigations of the standards were performed by optical and scanning electron microscopy with X-ray spectrometry (SEM-EDX) for the following copper alloy and bronze (certified) reference materials: NIST 454, BAM 374, BAM 211, BAM 227, BAM 374, BAM 378, BAS 50.01-2, BAS 50.03-4, and BAS 50.04-4. Additionally, the influence of inhomogeneities on different ablation and calibration strategies is evaluated to define an optimum analytical strategy in terms of line scan versus single spot ablation, variation of spot size, selection of the most appropriate RMs or minimum number of calibration reference materials. - Highlights: ► New metallographic data for copper alloy reference materials are provided. ► Influence of RMs homogeneity on quality of LA-ICPMS analysis was evaluated. ► Ablation and calibration strategies were critically discussed. ► An LA-ICPMS method is proposed for analyzing most typical ancient copper alloys.

  7. Metallurgical and chemical characterization of copper alloy reference materials within laser ablation inductively coupled plasma mass spectrometry: Method development for minimally-invasive analysis of ancient bronze objects

    The chemical composition of ancient metal objects provides important information for manufacturing studies and authenticity verification of ancient copper or bronze artifacts. Non- or minimal-destructive analytical methods are preferred to mitigate visible damage. Laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS) enables the determination of major elements as well as impurities down to lower ppm-levels, however, accuracy and precision of analysis strongly depend on the homogeneity of reference materials used for calibration. Moreover, appropriate analytical procedures are required e.g. in terms of ablation strategies (scan mode, spot size, etc.). This study reviews available copper alloy (certified) reference materials — (C)RMs from different sources and contributes new metallurgical data on homogeneity and spatial elemental distribution. Investigations of the standards were performed by optical and scanning electron microscopy with X-ray spectrometry (SEM-EDX) for the following copper alloy and bronze (certified) reference materials: NIST 454, BAM 374, BAM 211, BAM 227, BAM 374, BAM 378, BAS 50.01-2, BAS 50.03-4, and BAS 50.04-4. Additionally, the influence of inhomogeneities on different ablation and calibration strategies is evaluated to define an optimum analytical strategy in terms of line scan versus single spot ablation, variation of spot size, selection of the most appropriate RMs or minimum number of calibration reference materials. - Highlights: ► New metallographic data for copper alloy reference materials are provided. ► Influence of RMs homogeneity on quality of LA-ICPMS analysis was evaluated. ► Ablation and calibration strategies were critically discussed. ► An LA-ICPMS method is proposed for analyzing most typical ancient copper alloys

  8. Imaging of copper, zinc, and other elements in thin section of human brain samples (hippocampus) by laser ablation inductively coupled plasma mass spectrometry.

    Becker, J S; Zoriy, M V; Pickhardt, C; Palomero-Gallagher, N; Zilles, K

    2005-05-15

    Laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS) was used to produce images of element distribution in 20-microm thin sections of human brain tissue. The sample surface was scanned (raster area approximately 80 mm(2)) with a focused laser beam (wavelength 213 nm, diameter of laser crater 50 microm, and laser power density 3 x 10(9) W cm(-2)) in a cooled laser ablation chamber developed for these measurements. The laser ablation system was coupled to a double-focusing sector field ICPMS. Ion intensities of 31P+, 32S+, 56Fe+, 63Cu+, 64Zn+, 232Th+, and 238U+ were measured within the area of interest of the human brain tissue (hippocampus) by LA-ICPMS. The quantitative determination of copper, zinc, uranium, and thorium distribution in thin slices of the human hippocampus was performed using matrix-matched laboratory standards. In addition, a new arrangement in solution-based calibration using a micronebulizer, which was inserted directly into the laser ablation chamber, was applied for validation of synthetic laboratory standard. The mass spectrometric analysis yielded an inhomogeneous distribution (layered structure) for P, S, Cu, and Zn in thin brain sections of the hippocampus. In contrast, Th and U are more homogeneously distributed at a low-concentration level with detection limits in the low-nanogram per gram range. The unique analytical capability and the limits of LA-ICPMS will be demonstrated for the imaging of element distribution in thin cross sections of brain tissue from the hippocampus. LA-ICPMS provides new information on the spatial element distribution of the layered structure in thin sections of brain tissues from the hippocampus. PMID:15889910

  9. Influence of binders on infrared laser ablation of powdered tungsten carbide pressed pellets in comparison with sintered tungsten carbide hardmetals studied by inductively coupled plasma atomic emission spectrometry

    Laser ablation (LA) was studied as a sample introduction technique for the analysis of powdered and sintered tungsten carbides (WC/Co) by inductively coupled plasma optical emission spectrometry (ICP-OES). The possibility to work with powdered and compact materials with close chemical composition provided the opportunity to compare LA sampling of similar substances in different forms that require different preparation procedures. Powdered WC/Co precursors of sintered hardmetals were prepared for the ablation as pressed pellets with and without powdered silver as a binder, while sintered hardmetal blocks were embedded into a resin to obtain discs, which were then smoothed and polished. A Q-switched Nd:YAG laser operated at its fundamental wavelength of 1064 nm with a pulse frequency of 10 Hz and maximum pulse energy of 220 mJ was used. A single lens was used for the laser beam focusing. An ablation cell (14 cm3) mounted on a PC-controlled XY-translator was connected to an ICP spectrometer Jobin Yvon 170 Ultrace (laterally viewed ICP, mono- and polychromator) using a 1.5-m tubing (4 mm i.d.). Ablation was performed in a circular motion (2 mm diameter). Close attention was paid to the study of the crater parametres depending on hardness, cohesion and Ag binder presence in WC/Co samples. The influence of the Co content on the depth and structure of the ablation craters of the binderless pellets was also studied. Linear calibration plots of Nb, Ta and Ti were obtained for cemented WC/Co samples, binderless and binder-containing pellets. Relative widths of uncertainty intervals about the centroids vary between ± 3% and ± 7%, and exceptionally reach a value above 10%. The lowest determinable quantities (LDQ) of Nb, Ta and Ti calculated from the calibration lines were less than 0.5% (m/m). To evaluate the possibility of quantitative elemental analysis by LA-ICP-OES, two real sintered WC/Co samples and two real samples of powdered WC/Co materials were analysed. The

  10. Influence of binders on infrared laser ablation of powdered tungsten carbide pressed pellets in comparison with sintered tungsten carbide hardmetals studied by inductively coupled plasma atomic emission spectrometry

    Hola, Marketa [Research Centre for Environmental Chemistry and Ecotoxicology and Laboratory of Atomic Spectrochemistry, Faculty of Science, Masaryk University in Brno, Kotlarska 2, CZ 611 37 Brno (Czech Republic); Otruba, Vitezslav [Research Centre for Environmental Chemistry and Ecotoxicology and Laboratory of Atomic Spectrochemistry, Faculty of Science, Masaryk University in Brno, Kotlarska 2, CZ 611 37 Brno (Czech Republic); Kanicky, Viktor [Research Centre for Environmental Chemistry and Ecotoxicology and Laboratory of Atomic Spectrochemistry, Faculty of Science, Masaryk University in Brno, Kotlarska 2, CZ 611 37 Brno (Czech Republic)]. E-mail: viktork@chemi.muni.cz

    2006-05-15

    Laser ablation (LA) was studied as a sample introduction technique for the analysis of powdered and sintered tungsten carbides (WC/Co) by inductively coupled plasma optical emission spectrometry (ICP-OES). The possibility to work with powdered and compact materials with close chemical composition provided the opportunity to compare LA sampling of similar substances in different forms that require different preparation procedures. Powdered WC/Co precursors of sintered hardmetals were prepared for the ablation as pressed pellets with and without powdered silver as a binder, while sintered hardmetal blocks were embedded into a resin to obtain discs, which were then smoothed and polished. A Q-switched Nd:YAG laser operated at its fundamental wavelength of 1064 nm with a pulse frequency of 10 Hz and maximum pulse energy of 220 mJ was used. A single lens was used for the laser beam focusing. An ablation cell (14 cm{sup 3}) mounted on a PC-controlled XY-translator was connected to an ICP spectrometer Jobin Yvon 170 Ultrace (laterally viewed ICP, mono- and polychromator) using a 1.5-m tubing (4 mm i.d.). Ablation was performed in a circular motion (2 mm diameter). Close attention was paid to the study of the crater parametres depending on hardness, cohesion and Ag binder presence in WC/Co samples. The influence of the Co content on the depth and structure of the ablation craters of the binderless pellets was also studied. Linear calibration plots of Nb, Ta and Ti were obtained for cemented WC/Co samples, binderless and binder-containing pellets. Relative widths of uncertainty intervals about the centroids vary between {+-} 3% and {+-} 7%, and exceptionally reach a value above 10%. The lowest determinable quantities (LDQ) of Nb, Ta and Ti calculated from the calibration lines were less than 0.5% (m/m). To evaluate the possibility of quantitative elemental analysis by LA-ICP-OES, two real sintered WC/Co samples and two real samples of powdered WC/Co materials were analysed

  11. Laser ablation inductively coupled plasma mass spectrometry: A new technique for the determination of trace and ultra-trace elements in silicates

    This paper describes recent work applying a laser ablation system coupled to an inductively coupled plasma mass spectrometer (LA-ICP-MS) for the direct analysis of solid geological materials. This work demonstrates the potential of LA-ICP-MS for the determination of a wide range of petrogenetically important trace and ultra-trace elements (including for example REE, Hf, Ta, Nb, Th, U) following a routine method of sample preparation. Powdered geological materials have been prepared as both pressed powder disks and fused glasses; both common methods of sample preparation for X-ray fluorescence (XRF) analysis. The solid materials were sampled by ablation using a pulsed Nd:YAG laser operating at 1,064 nm. Analyses can be produced at approximately 10 samples per hour. This instrumental method has limits of detection at or close to those in chondritic meteorites and gives linear calibrations over four orders of magnitude. The accuracy of the technique has been evaluated using reference materials to calibrate the instrument and treating Geological Survey of Japan basalts JB-1a, JB-2, and JB-3 as 'unknowns.' Detection limits are better than routine XRF analysis and compare favorably with Instrumental Neutron Activation Analysis. Laser ablation overcomes the problems of sample dissolution employed in standard wet chemical techniques, whilst the fused glasses provide homogeneous solid samples. The fused glass technique has been applied to a wide range of reference materials from ultra-basic rocks through basalts and andesites to granites, as well as syenite, mica schist, and black shale. For all of the elements commonly used to generate multi-element discrimination diagrams the data obtained define straight line calibrations. This method is therefore capable of analyzing the complete range of silicate compositions normally encountered with a single calibration (i.e., there is no apparent matrix effect). 47 refs., 4 figs., 5 tabs

  12. Laser ablation-inductively coupled plasma-mass spectrometry: Examinations of the origins of polyatomic ions and advances in the sampling of particulates

    Witte, Travis [Iowa State Univ., Ames, IA (United States)

    2011-01-01

    This dissertation provides a general introduction to Inductively coupled plasma-mass spectrometry (ICP-MS) and laser ablation (LA) sampling, with an examination of analytical challenges in the employment of this technique. It discusses the origin of metal oxide ions (MO+) in LA-ICP-MS, as well as the effect of introducing helium and nitrogen to the aerosol gas flow on the formation of these polyatomic interferences. It extends the study of polyatomic ions in LA-ICP-MS to metal argide (MAr+) species, an additional source of possible significant interferences in the spectrum. It describes the application of fs-LA-ICP-MS to the determination of uranium isotope ratios in particulate samples.

  13. Investigation of heavy-metal accumulation in selected plant samples using laser induced breakdown spectroscopy and laser ablation inductively coupled plasma mass spectrometry

    Galiová, M.; Kaiser, J.; Novotný, K.; Novotný, J.; Vaculovič, T.; Liška, M.; Malina, R.; Stejskal, K.; Adam, V.; Kizek, R.

    2008-12-01

    Single-pulse Laser-Induced Breakdown Spectroscopy (LIBS) and Laser-Ablation Inductively Coupled Plasma Mass-Spectrometry (LA-ICP-MS) were applied for mapping the silver and copper distribution in Helianthus Annuus L. samples treated with contaminant in controlled conditions. For Ag and Cu detection the 328.07 nm Ag(I) and 324.75 nm Cu(I) lines were used, respectively. The LIBS experimental conditions (mainly the laser energy and the observation window) were optimized in order to avoid self-absorption effect in the measured spectra. In the LA-ICP-MS analysis the Ag 107 and Cu 63 isotopes were detected. The capability of these two analytical techniques for high-resolution mapping of selected trace chemical elements was demonstrated.

  14. Demonstration of femtosecond laser ablation inductively coupled plasma mass spectrometry for uranium isotopic measurements in U-10Mo nuclear fuel foils

    Havrilla, George Joseph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Gonzalez, Jhanis [Applied Spectra Inc., Fremont, CA (United States)

    2015-06-10

    The use of femtosecond laser ablation inductively coupled plasma mass spectrometry was used to demonstrate the feasibility of measuring the isotopic ratio of uranium directly in U-10Mo fuel foils. The measurements were done on both the flat surface and cross sections of bare and Zr clad U-10Mo fuel foil samples. The results for the depleted uranium content measurements were less than 10% of the accepted U235/238 ratio of 0.0020. Sampling was demonstrated for line scans and elemental mapping over large areas. In addition to the U isotopic ratio measurement, the Zr thickness could be measured as well as trace elemental composition if required. A number of interesting features were observed during the feasibility measurements which could provide the basis for further investigation using this methodology. The results demonstrate the feasibility of using fs-LA-ICP-MS for measuring the U isotopic ratio in U-10Mo fuel foils.

  15. The direct determination of trace metals in gold and silver materials by laser ablation inductively coupled plasma mass spectrometry without matrix matched standards

    Kogan, Valentina V.; Hinds, Michael W.; Ramendik, Gregory I.

    1994-04-01

    Typically, accurate trace element determination in solid samples by laser ablation ICP-MS requires calibration with matrix matched standards. Trace metal analysis was performed in high purity gold, high purity silver and 14 karat gold-silver alloys. A Nd : YAG laser was used to evaporate solid samples of precious metals into an inductively coupled plasma mass spectrometer. Analytical data and a study of the crater sizes indicated that approximately the same amount of material for both gold and silver samples was vaporized by a Nd : YAG laser operated in a Q-switched mode with the following parameters: 210 mJ laser energy; 8 Hz repetition rate; and focused 7 mm below the sample surface. High purity gold and silver, and a 14 karat gold-silver alloy were analyzed for trace metals common to gold and silver reference materials. In general, the determination of Fe, Ni, Cu, Zn, Pd, Pt, Pb, and Bi did not strongly depend on whether gold or silver reference materials were used for calibration. This permits these trace metals to be determined directly with only one set of reference materials, by laser ablation ICP-MS, in a wide variety of gold-silver alloys.

  16. Multivariate classification of edible salts: Simultaneous Laser-Induced Breakdown Spectroscopy and Laser-Ablation Inductively Coupled Plasma Mass Spectrometry Analysis

    Lee, Yonghoon; Nam, Sang-Ho; Ham, Kyung-Sik; Gonzalez, Jhanis; Oropeza, Dayana; Quarles, Derrick; Yoo, Jonghyun; Russo, Richard E.

    2016-04-01

    Laser-Induced Breakdown Spectroscopy (LIBS) and Laser-Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS), both based on laser ablation sampling, can be employed simultaneously to obtain different chemical fingerprints from a sample. We demonstrated that this analysis approach can provide complementary information for improved classification of edible salts. LIBS could detect several of the minor metallic elements along with Na and Cl, while LA-ICP-MS spectra were used to measure non-metallic and trace heavy metal elements. Principal component analysis using LIBS and LA-ICP-MS spectra showed that their major spectral variations classified the sample salts in different ways. Three classification models were developed by using partial least squares-discriminant analysis based on the LIBS, LA-ICP-MS, and their fused data. From the cross-validation performances and confusion matrices of these models, the minor metallic elements (Mg, Ca, and K) detected by LIBS and the non-metallic (I) and trace heavy metal (Ba, W, and Pb) elements detected by LA-ICP-MS provided complementary chemical information to distinguish particular salt samples.

  17. Ablation behavior and constraints on the U–Pb and Th–Pb geochronometers in titanite analyzed by quadrupole inductively coupled plasma mass spectrometry coupled to a 193 nm excimer laser

    U–Th–Pb geochronology of titanite by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) is a promising technique to constrain the history of igneous and metamorphic rocks. However, the quality of the resulting ages depends strongly on protocol adopted for the analyses and data reduction. There is no general agreement on the laser ablation settings and methodology that should be applied for titanite LA-ICP-MS geochronology. In particular it is essential to define an analytical procedure that could minimize the elemental fractionation for titanite U–Th–Pb geochronology, and to evaluate if non matrix-matched standards and samples (e.g. zircon and titanite) are suitable to obtain precise and accurate ages. In this study, ablation experiments were carried out in spot mode using an ArF 193 nm excimer laser coupled to a quadrupole ICP-MS, with varying fluence, spot size and repetition rate conditions. The ablation behavior of the Khan titanite reference material was described in details and compared to the Plešovice zircon standard. The ratio-of-the-mean intensity method was used for data reduction. Three sources of fractionation and systematic errors between zircon and titanite are considered together: mass bias coefficients, shape of the time-dependent fractionation, and differences of ablated volumes. Even if the laser-induced elemental fractionation and matrix effects can be minimized between the Plešovice zircon standard and the Khan titanite, a matrix-matched standardization with a titanite standard is required for precise U–Th–Pb titanite ages, as well as at low frequency and fluence conditions. - Highlights: • This study presents ablation experiments on Khan titanite compared Plešovice zircon. • Matrix effects related to laser induced elemental fractionation are monitored. • Low frequency and fluence conditions are required for precise U–Th–Pb titanite data. • The Khan titanite can hardly be substituted by a zircon

  18. Laser ablation single-collector inductively coupled plasma mass spectrometry for lead isotopic analysis to investigate evolution of the Bilbilis mint

    This work explores the performance of laser ablation-inductively coupled plasma mass spectrometry using different types of single-collector devices (sector field and time-of-flight instrumentation) for lead isotopic analysis of bronze coins, minted in the ancient city of Bilbilis. The aim of the study was achieving sufficient discrimination power to reveal similarities and differences for coins originating from different historical periods, and to obtain information on the possible source of the lead ores used in their production, while restricting the damage inflicted to the samples such that it is not visible to the naked eye. It was found that satisfactory results (RSD in the 0.15-0.30% range for 207Pb/206Pb and 208Pb/206Pb ratios) could be finally obtained, despite the noisy nature of signals generated upon ablation of the highly inhomogeneous coins, by means of a methodology based on: (a) selection of the line profiling ablation mode; (b) use of a dual pass spray chamber that permits the simultaneous introduction of a solution (containing thallium of known isotopic composition), thus resulting in a wet plasma that showed an increased robustness towards matrix effects and (c) detection using a TOF-ICPMS unit, which proved to be much better suited to deal with the transient signals obtained, while being also sufficiently sensitive to obtain good counting statistics, owing to the high lead level (average around 5%) present in the samples. Moreover, under these conditions, the simultaneous aspiration of the thallium spike permitted accurate correction for mass discrimination, such that it was not necessary to use external matrix-matched standards for calibration.

  19. Current developments in laser ablation-inductively coupled plasma-mass spectrometry for use in geology, forensics, and nuclear nonproliferation research

    Messerly, Joshua D. [Iowa State Univ., Ames, IA (United States)

    2008-08-26

    This dissertation focused on new applications of laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). The diverse fields that were investigated show the versatility of the technique. In Chapter 2, LA-ICP-MS was used to investigate the rare earth element (REE) profiles of garnets from the Broken Hill Deposit in New South Wales, Australia. The normalized REE profiles helped to shed new light on the formation of deposits of sulfide ores. This information may be helpful in identifying the location of sulfide ore deposits in other locations. New sources of metals such as Pg, Zn, and Ag, produced from these ores, are needed to sustain our current technological society. The application of LA-ICP-MS presented in Chapter 3 is the forensics analysis of automotive putty and caulking. The elemental analysis of these materials was combined with the use of Principal Components Analysis (PCA). The PCA comparison was able to differentiate the automotive putty samples by manufacturer and lot number. The analysis of caulk was able to show a differentiation based on manufacturer, but no clear differentiation was shown by lot number. This differentiation may allow matching of evidence in the future. This will require many more analyses and the construction of a database made up of many different samples. The 4th chapter was a study of the capabilities of LA-ICP-MS for fast and precise analysis of particle ensembles for nuclear nonproliferation applications. Laser ablation has the ability to spatially resolve particle ensembles which may contain uranium or other actinides from other particles present in a sample. This is of importance in samples obtained from air on filter media. The particle ensembles of interest may be mixed in amongst dust and other particulates. A problem arises when ablating these particle ensembles directly from the filter media. Dust particles other than ones of interest may be accidentally entrained in the aerosol of the ablated particle

  20. Quantitative analysis of trace elements in environmental powders with laser ablation inductively coupled mass spectrometry using non-sample-corresponding reference materials for signal evaluation

    Bauer, Gerald; Limbeck, Andreas

    2015-11-01

    Laser ablation inductively coupled plasma-mass spectrometry (LA-ICP-MS) is an attractive alternative to traditional procedures for the analysis of environmental samples (i.e., conventional liquid measurement after sample digestion). However, for accurate quantification, certified reference materials (CRM) are necessary which match the composition of the sample and include all elements of interest at the required concentration levels. The limited availability of appropriate CRMs hampers therefore substantial application. In this work, an LA-ICP-MS procedure allowing for accurate determination of trace element contents in powdered environmental samples is presented. For LA-ICP-MS analysis, the samples are mixed with an internal standard (silver oxide) and a binder (sodium tetra borate) and subsequently pressed to pellets. Quantification is accomplished using a calibration function determined using CRMs with varying matrix composition and analyte content, pre-treated and measured in the same way as the samples. With this approach, matrix-induced ablation differences resulting from varying physical/chemical properties of the individual CRMs could be compensated. Furthermore, ICP-related matrix-effects could be minimized using collision/reaction cell technology. Applicability of the procedure has been demonstrated by assessment of Cd, Cu, Ni, and Zn in four different environmental CRMs (NIST SRM1648a (urban particulate matter), NIST SRM2709 (San Joaquin Soil), BCR144 (sewage sludge), and BCR723 (road dust)). Signal evaluation was performed by alternative use of three CRMs for calculation of the calibration function whereas the remaining fourth CRM acted as unknown sample, resulting in a good agreement between measured and certified values for all elements and reference materials.

  1. Quantitation of trace metals in liquid samples by dried-droplet laser ablation inductively coupled plasma mass spectrometry.

    Yang, Lu; Sturgeon, Ralph E; Mester, Zoltán

    2005-05-01

    A new, discrete sample introduction approach based on laser ablation (LA) is described for the quantitation of several trace metals in aqueous samples by ICPMS. Dried microdroplets of sample, previously mixed with a sodium acetate matrix, were quantitatively ablated from a polystyrene substrate. Calibration via the method of standard additions or isotope dilution provided accurate results for Ni, Cd, and Pb in drinking water and Se in a yeast extract. Compared to conventional solution nebulization, LA sample introduction provided a 2-7-fold enhancement in absolute sensitivity and transport efficiency of 2-14% for the elements examined. Estimated detection limits are 1-7-fold poorer for the dried-droplet LA technique, primarily a result of degraded precision arising from counting statistics limitations for discrete sample introduction. On the basis of the several-second half-width of the resulting transient signals, sample throughput can be in the range of 250 samples per hour. Additionally, integration of the transient signal should eliminate contributions to elemental fractionation from the LA step. Dried-droplet LA-ICPMS offers several advantages over its counterpart, ETV-ICPMS, with respect to background intensity, throughput, and ease of desorption. PMID:15859618

  2. Quantitative imaging analysis and investigation of transmission loss in PbF2 crystals by laser ablation-inductively coupled plasma-mass spectrometry method.

    Zhang, Guoxia; Wang, Zheng; Li, Qing; Zhou, Hui; Zhu, Yan; Du, Yiping

    2016-07-01

    We developed a procedure for preparing matrix-matched calibration standards for the quantitative imaging of multiple trace elements in PbF2 crystals by laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS). In this facile approach, PbO powder was employed as the matrix with the addition of a series of standard solutions, followed by drying and tableting, for determining the concentrations of (24)Mg, (27)Al, (89)Y, (103)Rh, (133)Cs, (175)Lu and (209)Bi in transparent samples (with homogeneous element distribution). (206)Pb was chosen as the internal standard and the correlation coefficients of the calibration curves for all elements ranged from 0.9987 to 0.9999 after internal standard correction. The analysis showed good agreement with the results observed by established ICP-MS methods, following acid dissolution of the samples. Finally, the element distributions and transmission curves of a PbF2 sample with non-transparent and transparent sections were visualized. The distribution images, in conjunction with the transmission curves, suggested that the enrichment of Mg, Al, Rh, Cs, and Bi atoms in the non-transparent section of the sample could explain the loss in transmission observed for that section. PMID:27154704

  3. Improving Precision and Accuracy of Isotope Ratios from Short Transient Laser Ablation-Multicollector-Inductively Coupled Plasma Mass Spectrometry Signals: Application to Micrometer-Size Uranium Particles.

    Claverie, Fanny; Hubert, Amélie; Berail, Sylvain; Donard, Ariane; Pointurier, Fabien; Pécheyran, Christophe

    2016-04-19

    The isotope drift encountered on short transient signals measured by multicollector inductively coupled plasma mass spectrometry (MC-ICPMS) is related to differences in detector time responses. Faraday to Faraday and Faraday to ion counter time lags were determined and corrected using VBA data processing based on the synchronization of the isotope signals. The coefficient of determination of the linear fit between the two isotopes was selected as the best criterion to obtain accurate detector time lag. The procedure was applied to the analysis by laser ablation-MC-ICPMS of micrometer sized uranium particles (1-3.5 μm). Linear regression slope (LRS) (one isotope plotted over the other), point-by-point, and integration methods were tested to calculate the (235)U/(238)U and (234)U/(238)U ratios. Relative internal precisions of 0.86 to 1.7% and 1.2 to 2.4% were obtained for (235)U/(238)U and (234)U/(238)U, respectively, using LRS calculation, time lag, and mass bias corrections. A relative external precision of 2.1% was obtained for (235)U/(238)U ratios with good accuracy (relative difference with respect to the reference value below 1%). PMID:27031645

  4. Medieval glass from the Cathedral in Paderborn: a comparative study using X-ray absorption spectroscopy, X-ray fluorescence, and inductively coupled laser ablation mass spectrometry

    We have investigated four stained glass samples recovered from an archaeological excavation at the Cathedral in Paderborn (Germany) between 1978 and 1980. On two of the samples there are parts of paintings. Concentrations of major elements were determined using two independent techniques: LA-ICP-MS (a UV laser ablation microsampler combined with an inductively coupled plasma mass spectrometer) and synchrotron radiation X-ray excited X-ray fluorescence (SR-XRF). The SR-XRF data were quantified by using the program package PyMCA developed by the software group of the ESRF in Grenoble. Significant differences were found between the concentrations determined by the two techniques that can be explained by concentration gradients near the surface of the glasses caused, for example, by corrosion/leaching processes and the different surface sensitivities of the applied techniques. For several of the elements that were detected in the glass and in the colour pigments used for the paintings X-ray absorption near edge structure (XANES) spectra were recorded in order to determine the chemical speciation of the elements of interest. As was expected, most elements in the glass were found as oxides in their most stable form. Two notable exceptions were observed: titanium was not found as rutile - the most stable form of TiO2 - but in the form of anatase, and lead was not found in one defined chemical state but as a complex mixture of oxide, sulphate, and other compounds. (orig.)

  5. Medieval glass from the Cathedral in Paderborn: a comparative study using X-ray absorption spectroscopy, X-ray fluorescence, and inductively coupled laser ablation mass spectrometry

    Hormes, J. [University of Saskatchewan, Canadian Light Source Inc., Saskatoon, SK (Canada); Louisiana State University, CAMD, Baton Rouge, LA (United States); Roy, A.; Bovenkamp, G.L. [Louisiana State University, CAMD, Baton Rouge, LA (United States); Simon, K. [University of Goettingen, Geochemistry, Centre for Geosciences, Goettingen (Germany); Kim, C.Y. [University of Saskatchewan, Canadian Light Source Inc., Saskatoon, SK (Canada); Boerste, N. [Faculty for Theology Paderborn, Paderborn (Germany); Gai, S. [LWL - Archaeologie fuer Westfalen, Muenster (Germany)

    2013-04-15

    We have investigated four stained glass samples recovered from an archaeological excavation at the Cathedral in Paderborn (Germany) between 1978 and 1980. On two of the samples there are parts of paintings. Concentrations of major elements were determined using two independent techniques: LA-ICP-MS (a UV laser ablation microsampler combined with an inductively coupled plasma mass spectrometer) and synchrotron radiation X-ray excited X-ray fluorescence (SR-XRF). The SR-XRF data were quantified by using the program package PyMCA developed by the software group of the ESRF in Grenoble. Significant differences were found between the concentrations determined by the two techniques that can be explained by concentration gradients near the surface of the glasses caused, for example, by corrosion/leaching processes and the different surface sensitivities of the applied techniques. For several of the elements that were detected in the glass and in the colour pigments used for the paintings X-ray absorption near edge structure (XANES) spectra were recorded in order to determine the chemical speciation of the elements of interest. As was expected, most elements in the glass were found as oxides in their most stable form. Two notable exceptions were observed: titanium was not found as rutile - the most stable form of TiO{sub 2} - but in the form of anatase, and lead was not found in one defined chemical state but as a complex mixture of oxide, sulphate, and other compounds. (orig.)

  6. Determination of Os by isotope dilution-inductively coupled plasma-mass spectrometry with the combination of laser ablation to introduce chemically separated geological samples

    Sun, Yali; Ren, Minghao; Xia, Xiaoping; Li, Congying; Sun, Weidong

    2015-11-01

    A method was developed for the determination of trace Os in geological samples by laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) with the combination of chemical separation and preconcentration. Samples are digested using aqua regia in Carius tubes, and the Os analyte is converted into volatile OsO4, which is distilled and absorbed with HBr. The HBr solution is concentrated for further Os purification using the microdistillation technique. The purified Os is dissolved in 10 μl of 0.02% sucrose-0.005% H3PO4 solution and then evaporated on pieces of perfluoroalkoxy (PFA) film, resulting in the formation of a tiny object (< 3 × 104 μm2 superficial area). Using LA-ICP-MS measurements, the object can give Os signals at least 100 times higher than those provided by routine solution-ICP-MS while successfully avoiding the memory effect. The procedural blank and detection limit in the developed technique are 3.0 pg and 1.8 pg for Os, respectively when 1 g of samples is taken. Reference materials (RM) are analyzed, and their Os concentrations obtained by isotope dilution are comparable to reference or literature values. Based on the individual RM results, the precision is estimated within the range of 0.6 to 9.4% relative standard deviation (RSD), revealing that this method is applicable to the determination of trace Os in geological samples.

  7. Laser ablation-inductively coupled plasma-mass spectrometry imaging of white and gray matter iron distribution in Alzheimer's disease frontal cortex.

    Hare, Dominic J; Raven, Erika P; Roberts, Blaine R; Bogeski, Mirjana; Portbury, Stuart D; McLean, Catriona A; Masters, Colin L; Connor, James R; Bush, Ashley I; Crouch, Peter J; Doble, Philip A

    2016-08-15

    Iron deposition in the brain is a feature of normal aging, though in several neurodegenerative disorders, including Alzheimer's disease, the rate of iron accumulation is more advanced than in age-matched controls. Using laser ablation-inductively coupled plasma-mass spectrometry imaging we present here a pilot study that quantitatively assessed the iron content of white and gray matter in paraffin-embedded sections from the frontal cortex of Alzheimer's and control subjects. Using the phosphorus image as a confirmed proxy for the white/gray matter boundary, we found that increased intrusion of iron into gray matter occurs in the Alzheimer's brain compared to controls, which may be indicative of either a loss of iron homeostasis in this vulnerable brain region, or provide evidence of increased inflammatory processes as a response to chronic neurodegeneration. We also observed a trend of increasing iron within the white matter of the frontal cortex, potentially indicative of disrupted iron metabolism preceding loss of myelin integrity. Considering the known potential toxicity of excessive iron in the brain, our results provide supporting evidence for the continuous development of novel magnetic resonance imaging approaches for assessing white and gray matter iron accumulation in Alzheimer's disease. PMID:27233149

  8. Evaluation of the Forensic Utility of Scanning Electron Microscopy-Energy Dispersive Spectroscopy and Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry for Printing Ink Examinations.

    Corzo, Ruthmara; Subedi, Kiran; Trejos, Tatiana; Almirall, José R

    2016-05-01

    Improvements in printing technology have exacerbated the problem of document counterfeiting, prompting the need for analytical techniques that better characterize inks for forensic analysis and comparisons. In this study, 319 printing inks (toner, inkjet, offset, and Intaglio) were analyzed directly on the paper substrate using scanning electron microscopy-energy dispersive spectroscopy (SEM-EDS) and Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry (LA-ICP-MS). As anticipated, the high sensitivity of LA-ICP-MS pairwise comparisons resulted in excellent discrimination (average of ~ 99.6%) between different ink samples from each of the four ink types and almost 100% correct associations between ink samples known to originate from the same source. SEM-EDS analysis also resulted in very good discrimination for different toner and intaglio inks (>97%) and 100% correct association for samples from the same source. SEM-EDS provided complementary information to LA-ICP-MS for certain ink types but showed limited utility for the discrimination of inkjet and offset inks. PMID:27122412

  9. Development of a multi-variate calibration approach for quantitative analysis of oxidation resistant Mo-Si-B coatings using laser ablation inductively coupled plasma mass spectrometry

    Cakara, Anja; Bonta, Maximilian; Riedl, Helmut; Mayrhofer, Paul H.; Limbeck, Andreas

    2016-06-01

    Nowadays, for the production of oxidation protection coatings in ultrahigh temperature environments, alloys of Mo-Si-B are employed. The properties of the material, mainly the oxidation resistance, are strongly influenced by the Si to B ratio; thus reliable analytical methods are needed to assure exact determination of the material composition for the respective applications. For analysis of such coatings, laser ablation inductively coupled mass spectrometry (LA-ICP-MS) has been reported as a versatile method with no specific requirements on the nature of the sample. However, matrix effects represent the main limitation of laser-based solid sampling techniques and usually the use of matrix-matched standards for quantitative analysis is required. In this work, LA-ICP-MS analysis of samples with known composition and varying Mo, Si and B content was carried out. Between known analyte concentrations and derived LA-ICP-MS signal intensities no linear correlation could be found. In order to allow quantitative analysis independent of matrix effects, a multiple linear regression model was developed. Besides the three target analytes also the signals of possible argides (40Ar36Ar and 98Mo40Ar) as well as detected impurities of the Mo-Si-B coatings (108Pd) were considered. Applicability of the model to unknown samples was confirmed using external validation. Relative deviations from the values determined using conventional liquid analysis after sample digestion between 5 and 10% for the main components Mo and Si were observed.

  10. Element bioimaging of liver needle biopsy specimens from patients with Wilson's disease by laser ablation-inductively coupled plasma-mass spectrometry.

    Hachmöller, Oliver; Aichler, Michaela; Schwamborn, Kristina; Lutz, Lisa; Werner, Martin; Sperling, Michael; Walch, Axel; Karst, Uwe

    2016-05-01

    A laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) method is developed and applied for the analysis of paraffin-embedded liver needle biopsy specimens of patients with Wilson's disease (WD), a rare autosomal recessive disorder of the copper metabolism causing various hepatic, neurological and psychiatric symptoms due to a copper accumulation in the liver and the central nervous system. The sample set includes two WD liver samples and one negative control sample. The imaging analysis was performed with a spatial resolution of 10 μm. Besides copper, iron was monitored because an elevated iron concentration in the liver is known for WD. In addition to this, both elements were quantified using an external calibration based on matrix-matched gelatine standards. The presented method offers low limits of detection of 1 and 5 μg/g for copper and iron, respectively. The high detection power and good spatial resolution allow the analysis of small needle biopsy specimen using this method. The two analyzed WD samples can be well differentiated from the control sample due to their inhomogeneous copper distribution and high copper concentrations of up to 1200μg/g. Interestingly, the WD samples show an inverse correlation of regions with elevated copper concentrations and regions with high iron concentrations. PMID:27049132

  11. Determination of major, minor and trace elements in rock samples by laser ablation inductively coupled plasma mass spectrometry: Progress in the utilization of borate glasses as targets

    The present work is a continuation of a research study performed at our laboratory aiming at the multielement analysis of rock samples (basalts and shale) by inductively coupled plasma mass spectrometry in combination with laser ablation using borate glasses as analytical targets. Argon, nitrogen-argon mixtures and helium were evaluated as cell gases, the latter confirming its better performance. Different operational parameters of the laser, such as gas flow, energy, focus, scanning speed and sampling frequency were optimized. External calibration was made with standards prepared by fusion of geological reference materials (basalts 688 and BCR-2, obsidian SRM 278, and shale SGR-1) of different mass fractions in the meta-tetra borate matrix. Coefficients of determination (R2) were > 0.99 for 30 elements from o total of 40 determined. Method validation was then performed using additional certified reference materials (BHVO-2, BIR-1, SCo-1) produced as borate targets in a similar way. Accuracies were better than 10% for most of the elements studied and analytical precisions, calculated from the residual standard deviations of calibration curves were, typically, between 6% and 10%. Additionally, the semiquantitative TotalQuant (registered) technique was applied, which gave, within the expected uncertainty for this calibration technique, concordant results when compared to the quantitative external calibration procedure. Both methods were then used for the analysis of marine shale samples, which are of great geological interest in petroleum prospecting.

  12. Determination of impurities in thoria (ThO{sub 2}) using Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS)

    Alamelu, Devanathan [Fuel Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Choudhary, Ashwini Kumar [Institute Instrumentation Centre, Indian Institute of Technology, Roorkee 247 667 (India); Aggarwal, Suresh Kumar, E-mail: skaggr2002@rediffmail.co [Fuel Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India)

    2010-11-30

    Elemental impurities in nuclear grade thoria were determined using Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS) employing ArF laser (20 ns, 193 nm, 20 Hz). Three certified standards of thoria, prepared in the Department of Atomic Energy (DAE), India were used for this work. Magnesium was used as an internal standard for quantification in view of its addition during fuel fabrication. The concentrations determined for 16 different elements (Al, B, Cd, Ce, Cu, Dy, Er, Eu, Fe, Gd, Mg, Mn, Mo, Ni, Sb, Sm and V), spanning four orders of magnitude, were within 20% of the certified values in the standards. The methodology is of interest to reduce the analytical effort with regard to dissolution of thoria samples, avoid the production of radioactive liquid waste streams and relatively simple mass spectrum as compared to complex emission spectra in atomic emission spectroscopy (AES) and laser induced breakdown spectroscopy (LIBS). The development and validation of analytical methodologies based on independent physico-chemical principles is of great relevance to characterize the in-house prepared working standards for routine applications.

  13. Matrix and energy effects during in-situ determination of Cu isotope ratios by ultraviolet-femtosecond laser ablation multicollector inductively coupled plasma mass spectrometry

    Copper isotope compositions in Cu-bearing metals and minerals have been measured by deep (194 nm) ultraviolet femtosecond laser ablation multi-collector inductively coupled plasma mass spectrometry (UV-fsLA-MC-ICP-MS). Pure Cu-metal, brass, and several Cu-rich minerals (chalcopyrite, enargite, covellite, malachite and cuprite) have been investigated. A long-term reproducibility of better than 0.08‰ at the 95% confidence limit on the NIST SRM 976 (National Institute of Standards and Technology) Cu-metal standard has been achieved with this technique. The δ65Cu values for all samples have been calculated by standard-sample-standard bracketing with NIST SRM 976. All analyses have been carried out using Ni as a mass discrimination monitor added by nebulization prior to entering the plasma torch. For further verification samples have been analysed by conventional solution nebulization MC-ICP-MS and the results obtained have been compared with those from UV-fsLA-MC-ICP-MS. Several potential matrix-induced molecular interferences on the mineral copper isotope ratio, such as (32S33S)+ and (32S-16O17O)+ do not affect the Cu isotope measurements on sulfides, while hydrides, such as Zn–H or doubly-charged Sn2+ that interfere Ni isotopes can be either neglected or stripped by calculation. Matrix independent Cu-isotope measurements are sensitive to the energy density (fluence) applied onto the sample and can produce artificial shifts in the obtained δ65Cu values which are on the order of 3‰ for Cu-metal, 0.5‰ for brass and 0.3‰ for malachite when using energy density of up to 2 J/cm2 for ablation. A positive correlation between applied energy density and the magnitude of the isotope ratio shift has been found in the energy density range from 0.2 to 1.3 J/cm2 which is below the ablation threshold for ns-laser ablation. The results demonstrate that by using appropriate low fluence it is possible to measure Cu isotopic ratios in native copper and Cu-bearing sulfides

  14. Matrix and energy effects during in-situ determination of Cu isotope ratios by ultraviolet-femtosecond laser ablation multicollector inductively coupled plasma mass spectrometry

    Lazarov, Marina, E-mail: m.lazarov@mineralogie.uni-hannover.de; Horn, Ingo

    2015-09-01

    Copper isotope compositions in Cu-bearing metals and minerals have been measured by deep (194 nm) ultraviolet femtosecond laser ablation multi-collector inductively coupled plasma mass spectrometry (UV-fsLA-MC-ICP-MS). Pure Cu-metal, brass, and several Cu-rich minerals (chalcopyrite, enargite, covellite, malachite and cuprite) have been investigated. A long-term reproducibility of better than 0.08‰ at the 95% confidence limit on the NIST SRM 976 (National Institute of Standards and Technology) Cu-metal standard has been achieved with this technique. The δ{sup 65}Cu values for all samples have been calculated by standard-sample-standard bracketing with NIST SRM 976. All analyses have been carried out using Ni as a mass discrimination monitor added by nebulization prior to entering the plasma torch. For further verification samples have been analysed by conventional solution nebulization MC-ICP-MS and the results obtained have been compared with those from UV-fsLA-MC-ICP-MS. Several potential matrix-induced molecular interferences on the mineral copper isotope ratio, such as ({sup 32}S{sup 33}S){sup +} and ({sup 32}S-{sup 16}O{sup 17}O){sup +} do not affect the Cu isotope measurements on sulfides, while hydrides, such as Zn–H or doubly-charged Sn{sup 2+} that interfere Ni isotopes can be either neglected or stripped by calculation. Matrix independent Cu-isotope measurements are sensitive to the energy density (fluence) applied onto the sample and can produce artificial shifts in the obtained δ{sup 65}Cu values which are on the order of 3‰ for Cu-metal, 0.5‰ for brass and 0.3‰ for malachite when using energy density of up to 2 J/cm{sup 2} for ablation. A positive correlation between applied energy density and the magnitude of the isotope ratio shift has been found in the energy density range from 0.2 to 1.3 J/cm{sup 2} which is below the ablation threshold for ns-laser ablation. The results demonstrate that by using appropriate low fluence it is possible

  15. Application of nanosecond-UV laser ablation-inductively coupled plasma mass spectrometry for the isotopic analysis of single submicrometer-size uranium particles

    For the first time, laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS) was used to carry out isotopic measurement on single submicrometer-size uranium particles. The analytical procedure was applied on two particle-containing samples already analyzed in the same laboratory by established techniques for particle analysis: combination of the fission track technique with thermo-ionization mass spectrometry (FT-TIMS) and secondary ion mass spectrometry (SIMS). Particles were extracted from their initial matrix with ethanol and deposited on a polycarbonate disk where they were fixed in a layer of an organic compound (collodion). Prior to the isotopic analysis, particles were precisely located on the disk's surface by scanning electron microscopy (SEM) for one sample and using the fission track technique for the other sample. Most of the particles were smaller than 1 μm, and their 235U content was in the femto-gram range. 235U/238U ratios were successfully analyzed for all located particles using a nanosecond-UV laser (Cetac LSX 213 nm) coupled to a quadrupole-based ICPMS (Thermo 'X-Series II'). LA-ICPMS results, although less precise, and accurate (typically 10%) than the ones obtained by FT-TIMS and SIMS due to short (20-40 s), transient, and noisy signals, are in good agreement with the certified values or with the results obtained with other techniques. Thanks to good measurement efficiency (similar to 6 * 10'-'4) and high signal/noise ratio during the analysis, LA-ICPMS can be considered a very promising technique for fast particle analysis, provided that uranium-bearing particles are fixed on the sample holder and located prior to isotope measurement. (authors)

  16. Forensic analysis of printing inks using tandem Laser Induced Breakdown Spectroscopy and Laser Ablation Inductively Coupled Plasma Mass Spectrometry

    Subedi, Kiran; Trejos, Tatiana; Almirall, José

    2015-01-01

    Elemental analysis, using either LA-ICP-MS or LIBS, can be used for the chemical characterization of materials of forensic interest to discriminate between source materials originating from different sources and also for the association of materials known to originate from the same source. In this study, a tandem LIBS/LA-ICP-MS system that combines the benefits of both LIBS and LA-ICP-MS was evaluated for the characterization of samples of printing inks (toners, inkjets, intaglio and offset.). The performance of both laser sampling methods is presented. A subset of 9 black laser toners, 10 colored (CMYK) inkjet samples, 12 colored (CMYK) offset samples and 12 intaglio inks originating from different manufacturing sources were analyzed to evaluate the discrimination capability of the tandem method. These samples were selected because they presented a very similar elemental profile by LA-ICP-MS. Although typical discrimination between different ink sources is found to be > 99% for a variety of inks when only LA-ICP-MS was used for the analysis, additional discrimination was achieved by combining the elemental results from the LIBS analysis to the LA-ICP-MS analysis in the tandem technique, enhancing the overall discrimination capability of the individual laser ablation methods. The LIBS measurements of the Ca, Fe, K and Si signals, in particular, improved the discrimination for this specific set of different ink samples previously shown to exhibit very similar LA-ICP-MS elemental profiles. The combination of these two techniques in a single setup resulted in better discrimination of the printing inks with two distinct fingerprint spectra, providing information from atomic/ionic emissions and isotopic composition (m/z) for each ink sample.

  17. Quantitative determination of trace metals in high-purity silicon carbide powder by laser ablation inductively coupled plasma mass spectrometry without binders

    We have developed a laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) method to directly determine the concentrations of trace metals in high-purity powdery silicon carbide (SiC) samples. The sample preparation procedure is simple and rapid. The sample was formed into pellets using no binders and heated at 1000 °C for 2 h. The operation parameters for LA and ICP-MS were optimized to achieve a table signal intensity and high sensitivity. National Institute of Standards and Technology Standard Reference Materials glasses were chosen as calibration standards, with 29Si chosen as the internal standard. The relative sensitivity factor obtained from the glass matrix was used to calculate the concentrations of analytes in the SiC ceramic samples. The regression correlation coefficients of the calibration curves for elements with internal standard correction ranged from 0.9981 to 0.9999, which are better than those obtained with an external standard correction method only. The relative standard deviation of the measured trace element concentrations was less than 5%. The limits of detection were 0.02, 0.08, 0.04, 0.005, 0.01, 0.02, 0.004, 0.07, and 0.006 mg kg−1 for B, Ti, Cr, Mn, Fe, Ni, Co, Cu, and Sr, respectively. The method was applied to analyze SiC samples with two different particle sizes. The analysis showed good agreement with the results of inductively coupled plasma optical emission spectrometry. The reliability of the proposed method was confirmed by determining the contents of B, Ti, Cr, Mn, Fe, Ni, and Cu in BAM-S003. - Highlights: • Powdery SiC was converted into stable targets without any binders. • Stable signals for trace elements were obtained with RSDs less than 5%. • This method was successfully used to analyze silicon carbide samples with μm and nm particle sizes. • The limits of detection were much better than those obtained for INAA, SIS-ET-AAS, ICP-MS-decomposition, and other methods

  18. Forensic analysis of printing inks using tandem Laser Induced Breakdown Spectroscopy and Laser Ablation Inductively Coupled Plasma Mass Spectrometry

    Elemental analysis, using either LA-ICP-MS or LIBS, can be used for the chemical characterization of materials of forensic interest to discriminate between source materials originating from different sources and also for the association of materials known to originate from the same source. In this study, a tandem LIBS/LA-ICP-MS system that combines the benefits of both LIBS and LA-ICP-MS was evaluated for the characterization of samples of printing inks (toners, inkjets, intaglio and offset.). The performance of both laser sampling methods is presented. A subset of 9 black laser toners, 10 colored (CMYK) inkjet samples, 12 colored (CMYK) offset samples and 12 intaglio inks originating from different manufacturing sources were analyzed to evaluate the discrimination capability of the tandem method. These samples were selected because they presented a very similar elemental profile by LA-ICP-MS. Although typical discrimination between different ink sources is found to be > 99% for a variety of inks when only LA-ICP-MS was used for the analysis, additional discrimination was achieved by combining the elemental results from the LIBS analysis to the LA-ICP-MS analysis in the tandem technique, enhancing the overall discrimination capability of the individual laser ablation methods. The LIBS measurements of the Ca, Fe, K and Si signals, in particular, improved the discrimination for this specific set of different ink samples previously shown to exhibit very similar LA-ICP-MS elemental profiles. The combination of these two techniques in a single setup resulted in better discrimination of the printing inks with two distinct fingerprint spectra, providing information from atomic/ionic emissions and isotopic composition (m/z) for each ink sample. - Highlights: • The optimization of the parameters for LA-ICP-MS and LIBS in a tandem experiment are presented. • The analytical figures of merit for the tandem experiment for data collected simultaneously, are presented. • A

  19. Forensic analysis of printing inks using tandem Laser Induced Breakdown Spectroscopy and Laser Ablation Inductively Coupled Plasma Mass Spectrometry

    Subedi, Kiran, E-mail: ksube001@fiu.edu; Trejos, Tatiana, E-mail: trejost@fiu.edu; Almirall, José, E-mail: almirall@fiu.edu

    2015-01-01

    Elemental analysis, using either LA-ICP-MS or LIBS, can be used for the chemical characterization of materials of forensic interest to discriminate between source materials originating from different sources and also for the association of materials known to originate from the same source. In this study, a tandem LIBS/LA-ICP-MS system that combines the benefits of both LIBS and LA-ICP-MS was evaluated for the characterization of samples of printing inks (toners, inkjets, intaglio and offset.). The performance of both laser sampling methods is presented. A subset of 9 black laser toners, 10 colored (CMYK) inkjet samples, 12 colored (CMYK) offset samples and 12 intaglio inks originating from different manufacturing sources were analyzed to evaluate the discrimination capability of the tandem method. These samples were selected because they presented a very similar elemental profile by LA-ICP-MS. Although typical discrimination between different ink sources is found to be > 99% for a variety of inks when only LA-ICP-MS was used for the analysis, additional discrimination was achieved by combining the elemental results from the LIBS analysis to the LA-ICP-MS analysis in the tandem technique, enhancing the overall discrimination capability of the individual laser ablation methods. The LIBS measurements of the Ca, Fe, K and Si signals, in particular, improved the discrimination for this specific set of different ink samples previously shown to exhibit very similar LA-ICP-MS elemental profiles. The combination of these two techniques in a single setup resulted in better discrimination of the printing inks with two distinct fingerprint spectra, providing information from atomic/ionic emissions and isotopic composition (m/z) for each ink sample. - Highlights: • The optimization of the parameters for LA-ICP-MS and LIBS in a tandem experiment are presented. • The analytical figures of merit for the tandem experiment for data collected simultaneously, are presented. • A

  20. Using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) to characterize copper, zinc and mercury along grizzly bear hair providing estimate of diet

    We enhanced an existing technique, laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS), to function as a non-lethal tool in the temporal characterization of trace element exposure in wild mammals. Mercury (Hg), copper (Cu), cadmium (Cd), lead (Pb), iron (Fe) and zinc (Zn) were analyzed along the hair of captive and wild grizzly bears (Ursus arctos horribilis). Laser parameters were optimized (consecutive 2000 μm line scans along the middle line of the hair at a speed of 50 μm/s; spot size = 30 μm) for consistent ablation of the hair. A pressed pellet of reference material DOLT-2 and sulfur were used as external and internal standards, respectively. Our newly adapted method passed the quality control tests with strong correlations between trace element concentrations obtained using LA-ICP-MS and those obtained with regular solution-ICP-MS (r2 = 0.92, 0.98, 0.63, 0.57, 0.99 and 0.90 for Hg, Fe, Cu, Zn, Cd and Pb, respectively). Cross-correlation analyses revealed good reproducibility between trace element patterns obtained from hair collected from the same bear. One exception was Cd for which external contamination was observed resulting in poor reproducibility. In order to validate the method, we used LA-ICP-MS on the hair of five captive grizzly bears fed known and varying amounts of cutthroat trout over a period of 33 days. Trace element patterns along the hair revealed strong Hg, Cu and Zn signals coinciding with fish consumption. Accordingly, significant correlations between Hg, Cu, and Zn in the hair and Hg, Cu, and Zn intake were evident and we were able to develop accumulation models for each of these elements. While the use of LA-ICP-MS for the monitoring of trace elements in wildlife is in its infancy, this study highlights the robustness and applicability of this newly adapted method. - Highlights: • LA-ICP-MS provides temporal trace metal exposure information for wild grizzly bears. • Cu and Zn temporal exposures provide

  1. Using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) to characterize copper, zinc and mercury along grizzly bear hair providing estimate of diet

    Noël, Marie, E-mail: marie.noel@stantec.com [Stantec Consulting Ltd. 2042 Mills Road, Unit 11, Sidney BC V8L 4X2 (Canada); Christensen, Jennie R., E-mail: jennie.christensen@stantec.com [Stantec Consulting Ltd. 2042 Mills Road, Unit 11, Sidney BC V8L 4X2 (Canada); Spence, Jody, E-mail: jodys@uvic.ca [School of Earth and Ocean Sciences, Bob Wright Centre A405, University of Victoria, PO BOX 3065 STN CSC, Victoria, BC V8W 3V6 (Canada); Robbins, Charles T., E-mail: ctrobbins@wsu.edu [School of the Environment and School of Biological Sciences, Washington State University, Pullman, WA 99164-4236 (United States)

    2015-10-01

    We enhanced an existing technique, laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS), to function as a non-lethal tool in the temporal characterization of trace element exposure in wild mammals. Mercury (Hg), copper (Cu), cadmium (Cd), lead (Pb), iron (Fe) and zinc (Zn) were analyzed along the hair of captive and wild grizzly bears (Ursus arctos horribilis). Laser parameters were optimized (consecutive 2000 μm line scans along the middle line of the hair at a speed of 50 μm/s; spot size = 30 μm) for consistent ablation of the hair. A pressed pellet of reference material DOLT-2 and sulfur were used as external and internal standards, respectively. Our newly adapted method passed the quality control tests with strong correlations between trace element concentrations obtained using LA-ICP-MS and those obtained with regular solution-ICP-MS (r{sup 2} = 0.92, 0.98, 0.63, 0.57, 0.99 and 0.90 for Hg, Fe, Cu, Zn, Cd and Pb, respectively). Cross-correlation analyses revealed good reproducibility between trace element patterns obtained from hair collected from the same bear. One exception was Cd for which external contamination was observed resulting in poor reproducibility. In order to validate the method, we used LA-ICP-MS on the hair of five captive grizzly bears fed known and varying amounts of cutthroat trout over a period of 33 days. Trace element patterns along the hair revealed strong Hg, Cu and Zn signals coinciding with fish consumption. Accordingly, significant correlations between Hg, Cu, and Zn in the hair and Hg, Cu, and Zn intake were evident and we were able to develop accumulation models for each of these elements. While the use of LA-ICP-MS for the monitoring of trace elements in wildlife is in its infancy, this study highlights the robustness and applicability of this newly adapted method. - Highlights: • LA-ICP-MS provides temporal trace metal exposure information for wild grizzly bears. • Cu and Zn temporal exposures provide

  2. Multi-element quantification of ancient/historic glasses by laser ablation inductively coupled plasma mass spectrometry using sum normalization calibration

    Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) for quantitative analysis of ancient/historic glasses is subject to calibration issues which have been addressed in this work. Since ancient/historic glasses have widely ranging matrix compositions, a complementary analysis by an alternative method is generally employed to determine at least one major element which can be used as an internal standard. We demonstrate that such a complementary analysis is unnecessary using a so-called sum normalization calibration technique (mathematically formulated) by simultaneous measurement of 54 elements and normalizing them to 100% [w/w] based on their corresponding oxide concentrations. The crux of this approach is that by assuming a random internal standard concentration of a particular major oxide, e.g. SiO2, the normalization algorithm varies the internal standard concentration until the cumulated concentrations of all 54 elemental oxides reach 100% [w/w]. The fact that 54 elements are measured simultaneously predetermines the laser ablation mode to rastering. Nine glass standards, some replicating historic compositions, were used for calibration. The linearity of the calibration graphs (forced through the origin) represented by the relative standard deviations in the slope were between 0.1 and 6.6% using SiO2 as an internal standard. This allows high-accuracy determination of elemental oxides as confirmed by good agreement between found and reported values for major and minor elemental oxides in some synthetic glasses with typical medieval composition (European Science Foundation 151 and 158). Also for trace elemental concentrations of lanthanides in a reference glass (P and H Developments Ltd. DLH7, a base glass composition with nominally 75 μg g-1 elements added) accurate data were obtained. Interferences from polyatomic species and doubly charged species on the masses of trace elements are possible, depending on the base composition of the glass

  3. Testing the limits of micro-scale analyses of Si stable isotopes by femtosecond laser ablation multicollector inductively coupled plasma mass spectrometry with application to rock weathering

    An analytical protocol for accurate in-situ Si stable isotope analysis has been established on a new second-generation custom-built femtosecond laser ablation system. The laser was coupled to a multicollector inductively coupled plasma mass spectrometer (fsLA-MC-ICP-MS). We investigated the influence of laser parameters such as spot size, laser focussing, energy density and repetition rate, and ICP-MS operating conditions such as ICP mass load, spectral and non-spectral matrix effects, signal intensities, and data processing on precision and accuracy of Si isotope ratios. We found that stable and reproducible ICP conditions were obtained by using He as aerosol carrier gas mixed with Ar/H2O before entering the plasma. Precise δ29Si and δ30Si values (better than ± 0.23‰, 2SD) can be obtained if the area ablated is at least 50 × 50 μm; or, alternatively, for the analysis of geometric features down to the width of the laser spot (about 20 μm) if an equivalent area is covered. Larger areas can be analysed by rastering the laser beam, whereas small single spot analyses reduce the attainable precision of δ30Si to ca. ± 0.6‰, 2SD, for < 30 μm diameter spots. It was found that focussing the laser beam beneath the sample surface with energy densities between 1 and 3.8 J/cm2 yields optimal analytical conditions for all materials investigated here. Using pure quartz (NIST 8546 aka. NBS-28) as measurement standard for calibration (standard-sample-bracketing) did result in accurate and precise data of international reference materials and samples covering a wide range in chemical compositions (Si single crystal IRMM-017, basaltic glasses KL2-G, BHVO-2G and BHVO-2, andesitic glass ML3B-G, rhyolitic glass ATHO-G, diopside glass JER, soda-lime glasses NIST SRM 612 and 610, San Carlos olivine). No composition-dependent matrix effect was discernible within uncertainties of the method. The method was applied to investigate the Si isotope signature of rock weathering at

  4. Feasibility of depth profiling of Zn-based coatings by laser ablation inductively coupled plasma optical emission and mass spectrometry using infrared Nd:YAG and ArF* lasers

    The feasibility of depth profiling of zinc-coated iron sheets by laser ablation (LA) was studied using an Nd:YAG laser (1064 nm) with inductively coupled plasma optical emission spectrometry (ICP-OES), and an excimer ArF* laser (193 nm) with a beam homogenizer. The latter was coupled to an ICP with mass spectrometry (ICP-MS). Fixed-spot ablation was applied. Both LA systems were capable of providing depth profiles that approach the profiles obtained by glow discharge optical emission spectroscopy (GD-OES) and electron probe X-ray microanalysis (EPXMA). For Nd:YAG laser an artefact consisting of zinc depth profile signal tailing appeared, enlarging thus erroneously diffusional coating-substrate interface profile. However, the ArF* system partially reduced but not suppressed that phenomenon. For both LA systems the Fe signal from the substrate increased with depth as expected and reached a plateau. The depth resolution (depth range corresponding to 84%-16% change in the full signal) achieved was several micrometers. Ablation rate was found to depend on ablation spot area at constant irradiance. Consequently, ablated volume per shot dependence on pulse energy exhibits deviation from linear course

  5. Feasibility of depth profiling of Zn-based coatings by laser ablation inductively coupled plasma optical emission and mass spectrometry using infrared Nd:YAG and ArF* lasers

    Hrdlicka, Ales [Laboratory of Atomic Spectrochemistry, Faculty of Science, Masaryk University in Brno, Kotlarska 2, CZ 611 37 Brno (Czech Republic)]. E-mail: ahrdlicka@chemi.muni.cz; Otruba, Vitezslav [Laboratory of Atomic Spectrochemistry, Faculty of Science, Masaryk University in Brno, Kotlarska 2, CZ 611 37 Brno (Czech Republic); Novotny, Karel [Laboratory of Atomic Spectrochemistry, Faculty of Science, Masaryk University in Brno, Kotlarska 2, CZ 611 37 Brno (Czech Republic); Guenther, Detlef [Laboratory of Inorganic Chemistry, ETH Zurich, Hoenggerberg HCI G113, Wolfgang-Pauli-Strasse 10, CH-8083 Zurich (Switzerland); Kanicky, Viktor [Laboratory of Atomic Spectrochemistry, Faculty of Science, Masaryk University in Brno, Kotlarska 2, CZ 611 37 Brno (Czech Republic)]. E-mail: viktork@chemi.muni.cz

    2005-03-31

    The feasibility of depth profiling of zinc-coated iron sheets by laser ablation (LA) was studied using an Nd:YAG laser (1064 nm) with inductively coupled plasma optical emission spectrometry (ICP-OES), and an excimer ArF* laser (193 nm) with a beam homogenizer. The latter was coupled to an ICP with mass spectrometry (ICP-MS). Fixed-spot ablation was applied. Both LA systems were capable of providing depth profiles that approach the profiles obtained by glow discharge optical emission spectroscopy (GD-OES) and electron probe X-ray microanalysis (EPXMA). For Nd:YAG laser an artefact consisting of zinc depth profile signal tailing appeared, enlarging thus erroneously diffusional coating-substrate interface profile. However, the ArF* system partially reduced but not suppressed that phenomenon. For both LA systems the Fe signal from the substrate increased with depth as expected and reached a plateau. The depth resolution (depth range corresponding to 84%-16% change in the full signal) achieved was several micrometers. Ablation rate was found to depend on ablation spot area at constant irradiance. Consequently, ablated volume per shot dependence on pulse energy exhibits deviation from linear course.

  6. Investigation of gold nanoparticles uptake and their tissue level distribution in rice plants by laser ablation-inductively coupled-mass spectrometry

    The tissue level uptake and spatial distribution of gold nanoparticles (AuNPs) in rice (Oryza sativa L.) roots and shoots under hydroponic conditions was investigated using laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS). Rice plants were hydroponically exposed to positively, neutrally, and negatively charged AuNPs [AuNP1(+), AuNP2(0), AuNP3(−)] with a core diameter of 2 nm. Plants were exposed to AuNPs having 1.6 mg Au/L for 5 days or 0.14 mg Au/L for 3 months to elucidate how the surface charges of the nanoparticles affects their uptake into living plant tissues. The results demonstrate that terminal functional groups greatly affected the AuNP uptake into plant tissues. Au concentration determined by LA-ICP-MS in 5 day treated rice roots followed this order: AuNP1(+) > AuNP2(0) > AuNP3(−) but this order was reversed for rice shoots, indicating preferential translocation of AuNP3(−). Bioimages revealed distributions of mesophyll and vascular AuNP dependent on organ or AuNP concentration. Highlights: ► LA-ICP-MS technique was effectively used to quantify engineered AuNP in rice plant. ► Uptake and translocation of AuNPs are evident in rice roots and shoots. ► Organ level distribution of AuNPs is affected by their surface charges. ► Bioimaging of AuNP distribution in rice tissues by LA-ICP-MS was demonstrated. -- The tissue level uptake and spatial distribution of engineered gold nanoparticles (AuNP) by rice plants was demonstrated by LA-ICP-MS bioimaging

  7. Study on the uptake and distribution of gadolinium based contrast agents in biological samples using laser ablation with inductively coupled plasma mass spectroscopy

    Gadolinium based contrast agents are used for magnetic resonance imaging. After their excretion by medicated patients they reach surface water passing waste water treatment plants where they are not removed sufficiently. The behavior of the contrast agents in the environment and the interaction with organisms was investigated in this work due to the toxicity of the free Gd3+ ion and the associated risks, such as accumulation in the human food chain. In this work, the two elemental analytical imaging methods laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) and synchrotron radiation X-ray fluorescence analysis (SRXRF) have been used to investigate the uptake, distribution, and excretion of Gd-based contrast agents by various biological systems. Both methods were analytically characterized and compared for this application. The detection limits of gadolinium were determined under optimized conditions by LA-ICP-MS and SRXRF. With calibration by remains of dried elemental standard droplets detection limits of 0.78 pg absolute amount of gadolinium (LA-ICP-MS), respectively 89 pg (SRXRF) were reached. Based on filamentous algae as water plants the uptake and the excretion of Gd-based contrast agents were revealed. The dependence on concentration of the contrast agent in the exposition solution and the independence of temporal uptake within one to seven days were studied for duckweed. By LA-ICP-MS gadolinium was quantified in a leaf of cress plant. The verification of the results was performed by SRXRF and ICP-MS after digestion. Furthermore, the uptake and distribution of Gd-based contrast agents in higher organisms (water flea) were observed. The exact location of gadolinium was resolved by three-dimensional μ-computed tomography by the comparison of an exposed with a Gd-free water flea. In all studies, gadolinium was detected in the investigated exposed model organisms. It can be concluded that the contrast agents were taken from the environment.

  8. Extravasation of Pt-based chemotherapeutics - bioimaging of their distribution in resectates using laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS).

    Egger, Alexander E; Kornauth, Christoph; Haslik, Werner; Hann, Stephan; Theiner, Sarah; Bayer, Günther; Hartinger, Christian G; Keppler, Bernhard K; Pluschnig, Ursula; Mader, Robert M

    2015-03-01

    Platinum-based drugs (cisplatin, carboplatin and oxaliplatin) are widely used in cancer treatment. They are administered intravenously, thus accidental extravasations of infusions can occur. This may cause severe complications for the patient as the toxic platinum compounds likely persist in subcutaneous tissue. At high concentrations, platinum toxicity in combination with local thrombosis may result in tissue necrosis, eventually requiring surgical intervention. To describe tissue distribution at the anatomic level, we quantified drug extravasation in cryosections of various tissues (muscle, nerve tissue, connective tissue, fat tissue) by means of quantitative laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) and compared the resulting data with bulk analysis of microwave-assisted digestion of tissue samples followed by ICP-MS analysis. Samples of three patients receiving systemic chemotherapy either via peripheral venous access or central access via port-a-cath® were analyzed. Pt was enriched up to 50-times in connective tissue when compared with muscle tissue or drain samples collected over five days. The large areas of subcutaneous fat tissue showed areactive necrosis and average Pt concentrations (determined upon sample digestion) ranged from 0.2 μg g(-1) (therapy with 25 mg m(-2) cisplatin, four weeks after peripheral extravasation) to 10 μg g(-1) (therapy with 50 mg m(-2) oxaliplatin: four weeks after port-a-cath® extravasation). A peripheral nerve subjected to bioimaging by LA-ICP-MS showed a 5-times lower Pt concentration (0.2 μg g(-1)) than the surrounding connective tissue (1.0 μg g(-1)). This is in accordance with the patient showing no signs of neurotoxicity during recovery from extravasation side-effects. Thus, bioimaging of cutaneous nerve tissue may contribute to understand the risk of peripheral neurotoxic events. PMID:25659827

  9. Validation of the determination of the B isotopic composition in Roman glasses with laser ablation multi-collector inductively coupled plasma-mass spectrometry

    The applicability of laser ablation multi-collector inductively coupled plasma-mass spectrometry (LA-MC-ICP-MS) for the determination of the B isotopic composition in Roman glasses was investigated. The δ11B values thus obtained provide information on the natron flux used during the glass-making process. The glass samples used for this purpose were previously characterized using pneumatic nebulization (PN) MC-ICP-MS. Unfortunately, this method is time-consuming and labor-intensive and consumes some 100 mg of sample, which is a rather high amount for ancient materials. Therefore, the use of the less invasive and faster LA-MC-ICP-MS approach was explored. In this work, the results for 29 Roman glasses and 4 home-made glasses obtained using both techniques were compared to assess the suitability of LA-MC-ICP-MS in this context. The results are in excellent agreement within experimental uncertainty. No difference in overall mass discrimination was observed between the Roman glasses, NIST SRM 610 reference glass and B6 obsidian. The expanded uncertainty of the LA-MC-ICP-MS approach was estimated to be < 2‰, which is similar to that obtained upon sample digestion and PN-MC-ICP-MS measurement. - Highlights: • First use of LA-MC-ICP-MS for B isotopic analysis of ancient glass • Careful validation of LA-MC-ICP-MS approach • Similar precision & accuracy via solution MC-ICP-MS after isolation of B • Enhancement of sample throughput & reduction of sample consumption • Improved conditions for archeometric research on (pre-)Roman glass

  10. Analytical procedure for characterization of medieval wall-paintings by X-ray fluorescence spectrometry, laser ablation inductively coupled plasma mass spectrometry and Raman spectroscopy

    Analytical procedure for the comprehensive chemical characterization of samples from medieval Nubian wall-paintings by means of portable X-ray fluorescence (pXRF), laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS) and Raman spectroscopy (RS) was proposed in this work. The procedure was used for elemental and molecular investigations of samples from archeological excavations in Nubia (modern southern Egypt and northern Sudan). Numerous remains of churches with painted decorations dated back to the 7th–14th century were excavated in the region of medieval kingdoms of Nubia but many aspects of this art and its technology are still unknown. Samples from the selected archeological sites (Faras, Old Dongola and Banganarti) were analyzed in the form of transfers (n = 26), small fragments collected during the excavations (n = 35) and cross sections (n = 15). XRF was used to collect data about elemental composition, LA-ICPMS allowed mapping of selected elements, while RS was used to get the molecular information about the samples. The preliminary results indicated the usefulness of the proposed analytical procedure for distinguishing the substances, from both the surface and sub-surface domains of the wall-paintings. The possibility to identify raw materials from the wall-paintings will be used in the further systematic, archeometric studies devoted to the detailed comparison of various historic Nubian centers. - Highlights: • The analytical procedure for examination of unique wall paintings was proposed. • Identification of pigments and supporting layers of wall-paintings was obtained. • Heterogeneous samples were mapped with the use of LA-ICPMS. • Anatase in the sub-surface regions of samples was detected by Raman spectroscopy

  11. Analytical procedure for characterization of medieval wall-paintings by X-ray fluorescence spectrometry, laser ablation inductively coupled plasma mass spectrometry and Raman spectroscopy

    Syta, Olga; Rozum, Karol; Choińska, Marta [Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw (Poland); Zielińska, Dobrochna [Institute of Archaeology, University of Warsaw, Krakowskie Przedmieście 26/28, 00-927 Warsaw (Poland); Żukowska, Grażyna Zofia [Chemical Faculty, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw (Poland); Kijowska, Agnieszka [National Museum in Warsaw, Aleje Jerozolimskie 3, 00-495 Warsaw (Poland); Wagner, Barbara, E-mail: barbog@chem.uw.edu.pl [Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw (Poland)

    2014-11-01

    Analytical procedure for the comprehensive chemical characterization of samples from medieval Nubian wall-paintings by means of portable X-ray fluorescence (pXRF), laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS) and Raman spectroscopy (RS) was proposed in this work. The procedure was used for elemental and molecular investigations of samples from archeological excavations in Nubia (modern southern Egypt and northern Sudan). Numerous remains of churches with painted decorations dated back to the 7th–14th century were excavated in the region of medieval kingdoms of Nubia but many aspects of this art and its technology are still unknown. Samples from the selected archeological sites (Faras, Old Dongola and Banganarti) were analyzed in the form of transfers (n = 26), small fragments collected during the excavations (n = 35) and cross sections (n = 15). XRF was used to collect data about elemental composition, LA-ICPMS allowed mapping of selected elements, while RS was used to get the molecular information about the samples. The preliminary results indicated the usefulness of the proposed analytical procedure for distinguishing the substances, from both the surface and sub-surface domains of the wall-paintings. The possibility to identify raw materials from the wall-paintings will be used in the further systematic, archeometric studies devoted to the detailed comparison of various historic Nubian centers. - Highlights: • The analytical procedure for examination of unique wall paintings was proposed. • Identification of pigments and supporting layers of wall-paintings was obtained. • Heterogeneous samples were mapped with the use of LA-ICPMS. • Anatase in the sub-surface regions of samples was detected by Raman spectroscopy.

  12. Micro-spectrochemical analysis of document paper and gel inks by laser ablation inductively coupled plasma mass spectrometry and laser induced breakdown spectroscopy

    Current methods used in document examinations are not suitable to associate or discriminate between sources of paper and gel inks with a high degree of certainty. Nearly non-destructive, laser-based methods using laser induced breakdown spectroscopy (LIBS) and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) were used to improve the forensic comparisons of gel inks, ballpoint inks and document papers based on similarities in elemental composition. Some of the advantages of these laser-based methods include minimum sample consumption/destruction, high sensitivity, high selectivity and excellent discrimination between samples from different origins. Figures of merit are reported including limits of detection, precision, homogeneity at a micro-scale and linear dynamic range. The variation of the elemental composition in paper was studied within a single sheet, between pages from the same ream, between papers produced by the same plant at different time intervals and between seventeen paper sources produced by ten different plants. The results show that elemental analysis of paper by LIBS and LA-ICP-MS provides excellent discrimination (> 98%) between different sources. Batches manufactured at weekly and monthly intervals in the same mill were also differentiated. The ink of more than 200 black pens was analyzed to determine the variation of the chemical composition of the ink within a single pen, between pens from the same package and between brands of gel inks and ballpoint inks. Homogeneity studies show smaller variation of elemental compositions within a single source than between different sources (i.e. brands and types). It was possible to discriminate between pen markings from different brands and between pen markings from the same brand but different model. Discrimination of ∼ 96-99% was achieved for sets that otherwise would remain inseparable by conventional methods. The results show that elemental analysis, using either LA-ICP-MS or

  13. Forensic investigation of brick stones using instrumental neutron activation analysis (INAA), laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) and X-ray fluorescence analysis (XRF)

    Brick stones collected from different production facilities were studied for their elemental compositions under forensic aspects using laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS), instrumental neutron activation analysis (INAA) and X-ray fluorescence analysis (XRF). The aim of these examinations was to assess the potential of these methods in forensic comparison analyses of brick stones. The accuracy of the analysis methods was evaluated using NIST standard reference materials (679, 98b and 97b). In order to compare the stones to each other, multivariate data analysis was used. The evaluation of the INAA results (based on the concentrations of V, Na, K, Sm, U, Sc, Fe, Co, Rb and Cs) using principal component analysis (PCA) and cluster analysis is presented as an example. The results derived from the different analytical methods are consistent. It was shown that elemental analysis using the described methods is a valuable tool for forensic examinations of brick stones.

  14. Application of laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) to investigate trace metal spatial distributions in human tooth enamel and dentine growth layers and pulp

    Kang, Daniel; Amarasiriwardena, Dulasiri; Goodman, Alan H. [School of Natural Science, Hampshire College, 01002, Amherst, MA (United States)

    2004-03-01

    Human tooth enamel provides a nearly permanent and chronological record of an individual's nutritional status and anthropogenic trace metal exposure during development; it might thus provide an excellent bio archive. We investigated the micro-spatial distribution of trace metals (Cu, Fe, Mg, Sr, Pb, and Zn) in 196 x 339 {mu}m{sup 2} raster pattern areas (6.6 x 10{sup 4} {mu}m{sup 2}) in a deciduous tooth using laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS). Ablated areas include prenatal and postnatal enamel, the neonatal line, the dentine-enamel junction (DEJ), dentine, and the dentine-pulp junction. Topographic variations in the surface elemental distribution of lead, zinc, strontium, and iron intensities in a deciduous tooth revealed heterogeneous distribution within and among regions. {sup 43}Ca normalized elemental intensities showed the following order: Sr>Mg>>Zn>Pb>Fe>Cu. Elevated zinc and lead levels were present in the dental pulp region and at the neonatal line. This study demonstrates the ability of LA-ICP-MS to provide unique elemental distribution information in micro spatial areas of dental hard tissues. Elemental distribution plots could be useful in decoding nutrition and pollution information embedded in their bio apatite structure. (orig.)

  15. Elemental mapping in fossil tooth root section of Ursus arctos by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS)

    Vašinová Galiová, M.; Nývltová Fišáková, Miriam; Kynický, J.; Prokeš, L.; Neff, H.; Mason, A. Z.; Gadas, P.; Košler, J.; Kanický, V.

    2013-01-01

    Roč. 105, 15 February 2013 (2013), s. 235-243. ISSN 0039-9140 Institutional research plan: CEZ:AV0Z80010507 Institutional support: RVO:68081758 Keywords : Diagenesis * Diet * Geochemical analysis * Laser ablation ICP-MS * Migration Subject RIV: AC - Archeology, Anthropology, Ethnology Impact factor: 3.511, year: 2013

  16. Zircon U–Pb dating by 213 nm Nd. YAG laser ablation inductively coupled plasma mass spectrometry. Optimization of the analytical condition to use NIST SRM 610 for Pb/U fractionation correction

    We carried out an optimization of analytical parameters for U–Pb zircon dating by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) using a NIST SRM 610 glass. As a result, we obtained the following optimum analytical parameters: laser energy: 11.7 J/cm2, repetition rate: 10 Hz, pre-ablation time: 8 sec, integration time: 10 sec and crater diameter: 25 μm. The average 206Pb/238U ratio of the NIST SRM 610 glass normalized by a 91500 zircon standard under the conditions mentioned above was 0.2236±0.0044 (1σ, N : 87). The median value of this result matches with that of the literature value within range of the analytical precision. Furthermore, the 206Pb/238U weighted mean ages of the Plešovice, OD-3 and Fish Canyon Tuff zircons, having the proposed 206Pb/238U ages of 335.48±0.95 Ma (95% conf., N : 38, MSWD : 1.1), 33.25±0.38 Ma (95% conf., N : 23, MSWD : 1.5), 28.56±0.49 Ma (95% conf., N : 34, MSWD : 5.1), respectively, were measured, normalized by the NIST SRM 610 glass standard. The results were consistent within 1% error range of the recommended values. These results suggest that the matrix effect can be reduced to less than analytical precision on materials with different physical properties under well-optimized analytical conditions. (author)

  17. In Situ Determination of Trace Elements in Fish Otoliths by Laser Ablation Double Focusing Sector Field Inductively Coupled Plasma Mass Spectrometry Using a Solution Standard Addition Calibration Method

    Chen, Z.; Jones, C. M.

    2002-05-01

    Microchemistry of fish otoliths (fish ear bones) is a very useful tool for monitoring aquatic environments and fish migration. However, determination of the elemental composition in fish otolith by ICP-MS has been limited to either analysis of dissolved sample solution or measurement of limited number of trace elements by laser ablation (LA)- ICP-MS due to low sensitivity, lack of available calibration standards, and complexity of polyatomic molecular interference. In this study, a method was developed for in situ determination of trace elements in fish otoliths by laser ablation double focusing sector field ultra high sensitivity Finnigan Element 2 ICP-MS using a solution standard addition calibration method. Due to the lack of matrix-match solid calibration standards, sixteen trace elements (Na, Mg, P, Cr, Mn, Fe, Ni, Cu, Rb, Sr, Y, Cd, La, Ba, Pb and U) were determined using a solution standard calibration with Ca as an internal standard. Flexibility, easy preparation and stable signals are the advantages of using solution calibration standards. In order to resolve polyatomic molecular interferences, medium resolution (M/delta M > 4000) was used for some elements (Na, Mg, P, Cr, Mn, Fe, Ni, and Cu). Both external calibration and standard addition quantification strategies are compared and discussed. Precision, accuracy, and limits of detection are presented.

  18. Study of essential element accumulation in the leaves of a Cu-tolerant plant Elsholtzia splendens after Cu treatment by imaging laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS)

    Wu Bei [Department of Environmental Engineering, Zhejiang University, Hangzhou, 310029 (China); Central Division of Analytical Chemistry, Research Center Juelich, D-52425 Juelich (Germany); Chen Yingxu [Department of Environmental Engineering, Zhejiang University, Hangzhou, 310029 (China); Becker, J. Sabine [Central Division of Analytical Chemistry, Research Center Juelich, D-52425 Juelich (Germany)], E-mail: s.becker@fz-juelich.de

    2009-02-09

    Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) was used for the quantitative imaging of Cu and other essential elements (such as K, Mg, Mn, P, S and B) in the leaves of a Cu-tolerant plant Elsholtzia splendens treated with the enriched {sup 65}Cu isotope tracer (isotope abundance of 89.2%). The leaves (newly formed, fully grown and oldest) were scanned directly with a focused Nd:YAG laser in the laser ablation chamber. The ablated material was transported with argon as carrier gas to a quadrupole-based ICP-MS (ICP-QMS), and the ion intensities of {sup 65}Cu{sup +}, {sup 39}K{sup +}, {sup 24}Mg{sup +}, {sup 55}Mn{sup +}, {sup 31}P{sup +}, {sup 34}S{sup +} and {sup 11}B{sup +} were measured by ICP-QMS to study the accumulation of Cu and other elements of interest. Standard reference material NIST SRM 1515 Apple Leaves doped with known concentrations of analytes (from 0.1 to 2000 mg L{sup -1}) was measured together with the samples by LA-ICP-MS and was used for the quantification of the analytical data. Notable accumulation of Cu in the newly formed leaves was clearly identified by imaging LA-ICP-MS. The increased isotope ratios of {sup 65}Cu/{sup 63}Cu measured by LA-ICP-MS demonstrated the path of Cu uptake and accumulation via the petiole and main veins in the leaves. Cu stress-induced accumulation of K, Mg, Mn, P and S in the newly formed leaves was observed, while B was not significantly affected. In the present study, the concentrations of K, Mg, Mn, P and S were not obviously changed in the fully grown leaves after short-term treatment. Along with the treatment, a visible decrease of K and P was found in the oldest leaves, while other elements were not influenced by Cu stress.

  19. Development of a 2D laser ablation inductively coupled plasma mass spectrometry mapping procedure for mercury in maize (Zea mays L.) root cross-sections

    Graphical abstract: -- Highlights: •LA-ICP-MS mapping to study the distribution of Hg in plant root cross-sections. •Sorption of LA-generated Hg vapour leads to serious memory effects. •Spot analysis with a delay time of 10 s in between spots alleviates memory effects. •Ablation straight through the sample simplifies calibration. •Hg2+ does not cross the endodermal root barrier of maize plants. -- Abstract: A LA-ICP-MS method based on a 213 nm Nd:YAG laser and a quadrupole ICP-MS has been developed for mapping of mercury in root cross-sections of maize (Zea mays L.) to investigate the mechanism of mercury uptake from soil and its potential translocation to the edible parts. Conventional rastering was found to be unusable due to sorption of mercury onto the internal parts of the LA device, giving rising to memory effects resulting in serious loss of resolution and inaccurate quantification. Spot analysis on a virtual grid on the surface of the root sections using washout times of 10 s in between spots greatly alleviated problems related to these memory effects. By ablating straight through the root sections on a poly(methyl methacrylate) support the calibration process was simplified as internal standardization and matrix-matching could be circumvented. Mercury-spiked freeze-drying embedding medium, sectioned similarly to the root sections, was used for the preparation of the standards. Standards and root sections were subjected to spot analysis using the following operational parameters: beam diameter, 15 μm; laser fluence, 2.5 J cm−2; repetition rate, 20 Hz; dwell time, 1 s; acquisition time, 0.1 s. The mercury peaks for standards and roots sections could be consistently integrated for quantification and construction of the 2D mercury maps for the root sections. This approach was successfully used to investigate the mercury distribution in root sections of maize grown in soil spiked to a level of 50 mg kg−1 DW HgCl2. It was found that at given Hg

  20. A novel quantification strategy of transferrin and albumin in human serum by species-unspecific isotope dilution laser ablation inductively coupled plasma mass spectrometry (ICP-MS)

    Highlights: • Species-unspecific ID-PAGE-LA-ICP-MS was used to quantify Alb and Tf in human serum. • Addition methods of species-unspecific 34S spike were evaluated. • Isotope change conditions were investigated to reach satisfactory “isotope equilibration”. • Human serum CRM (ERM-DA470k/IFCC) was used to validate the new arrangements. • The developed method offers potential for accurate quantification of protein by ID-PAGE-LA-ICP-MS. - Abstract: Species-specific (SS) isotope dilution analysis with gel electrophoresis (GE)-laser ablation (LA)-ICP-MS is a promising technique for the quantification of particular metal-binding proteins in biological samples. However, unavailable isotopically enriched spike and metal losses in GE separation are main limitations for SS-isotope dilution PAGE-LA-ICP-MS. In this study, we report for the first time the absolute quantification of transferrin (Tf) and albumin (Alb) in human serum by non-denaturing (native) GE combined with species-unspecific isotope dilution mass spectrometry (IDMS). In order to achieve a homogeneous distribution of both protein and isotope-enriched spike (simulated isotope equilibration), immersing the protein strips with 34S spike solution after gel electrophoresis was demonstrated to be an effective way of spike addition. Furthermore, effects of immersion time and 34S spike concentration were investigated to obtain optimal conditions of the post-electrophoresis isotope dilution method. The relative mass of spike and ablated sample (msp/msam) in IDMS equation was calculated by standard Tf and Alb proteins, which could be applied to the quantification of Tf and Alb in ERM-DA470k/IFCC for method confirmation. The results were in agreement with the certified value with good precision and small uncertainty (1.5–3%). In this method, species-specific spike protein is not necessary and the integrity of the heteroatom-protein could be maintained in sample preparation process. Moreover, the

  1. A novel quantification strategy of transferrin and albumin in human serum by species-unspecific isotope dilution laser ablation inductively coupled plasma mass spectrometry (ICP-MS)

    Feng, Liuxing, E-mail: fenglx@nim.ac.cn; Zhang, Dan; Wang, Jun; Shen, Dairui; Li, Hongmei

    2015-07-16

    Highlights: • Species-unspecific ID-PAGE-LA-ICP-MS was used to quantify Alb and Tf in human serum. • Addition methods of species-unspecific {sup 34}S spike were evaluated. • Isotope change conditions were investigated to reach satisfactory “isotope equilibration”. • Human serum CRM (ERM-DA470k/IFCC) was used to validate the new arrangements. • The developed method offers potential for accurate quantification of protein by ID-PAGE-LA-ICP-MS. - Abstract: Species-specific (SS) isotope dilution analysis with gel electrophoresis (GE)-laser ablation (LA)-ICP-MS is a promising technique for the quantification of particular metal-binding proteins in biological samples. However, unavailable isotopically enriched spike and metal losses in GE separation are main limitations for SS-isotope dilution PAGE-LA-ICP-MS. In this study, we report for the first time the absolute quantification of transferrin (Tf) and albumin (Alb) in human serum by non-denaturing (native) GE combined with species-unspecific isotope dilution mass spectrometry (IDMS). In order to achieve a homogeneous distribution of both protein and isotope-enriched spike (simulated isotope equilibration), immersing the protein strips with {sup 34}S spike solution after gel electrophoresis was demonstrated to be an effective way of spike addition. Furthermore, effects of immersion time and {sup 34}S spike concentration were investigated to obtain optimal conditions of the post-electrophoresis isotope dilution method. The relative mass of spike and ablated sample (m{sub sp}/m{sub sam}) in IDMS equation was calculated by standard Tf and Alb proteins, which could be applied to the quantification of Tf and Alb in ERM-DA470k/IFCC for method confirmation. The results were in agreement with the certified value with good precision and small uncertainty (1.5–3%). In this method, species-specific spike protein is not necessary and the integrity of the heteroatom-protein could be maintained in sample preparation

  2. Development of a 2D laser ablation inductively coupled plasma mass spectrometry mapping procedure for mercury in maize (Zea mays L.) root cross-sections

    Debeljak, Marta [Analytical Chemistry Laboratory, National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana (Slovenia); Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna Pot 111, SI-1000 Ljubljana (Slovenia); Elteren, Johannes T. van, E-mail: elteren@ki.si [Analytical Chemistry Laboratory, National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana (Slovenia); Vogel-Mikuš, Katarina [Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna Pot 111, SI-1000 Ljubljana (Slovenia)

    2013-07-17

    Graphical abstract: -- Highlights: •LA-ICP-MS mapping to study the distribution of Hg in plant root cross-sections. •Sorption of LA-generated Hg vapour leads to serious memory effects. •Spot analysis with a delay time of 10 s in between spots alleviates memory effects. •Ablation straight through the sample simplifies calibration. •Hg{sup 2+} does not cross the endodermal root barrier of maize plants. -- Abstract: A LA-ICP-MS method based on a 213 nm Nd:YAG laser and a quadrupole ICP-MS has been developed for mapping of mercury in root cross-sections of maize (Zea mays L.) to investigate the mechanism of mercury uptake from soil and its potential translocation to the edible parts. Conventional rastering was found to be unusable due to sorption of mercury onto the internal parts of the LA device, giving rising to memory effects resulting in serious loss of resolution and inaccurate quantification. Spot analysis on a virtual grid on the surface of the root sections using washout times of 10 s in between spots greatly alleviated problems related to these memory effects. By ablating straight through the root sections on a poly(methyl methacrylate) support the calibration process was simplified as internal standardization and matrix-matching could be circumvented. Mercury-spiked freeze-drying embedding medium, sectioned similarly to the root sections, was used for the preparation of the standards. Standards and root sections were subjected to spot analysis using the following operational parameters: beam diameter, 15 μm; laser fluence, 2.5 J cm{sup −2}; repetition rate, 20 Hz; dwell time, 1 s; acquisition time, 0.1 s. The mercury peaks for standards and roots sections could be consistently integrated for quantification and construction of the 2D mercury maps for the root sections. This approach was successfully used to investigate the mercury distribution in root sections of maize grown in soil spiked to a level of 50 mg kg{sup −1} DW HgCl{sub 2}. It was

  3. Elemental analysis of coal by tandem laser induced breakdown spectroscopy and laser ablation inductively coupled plasma time of flight mass spectrometry

    The capabilities and analytical benefits of combined LIBS and LA-ICP-MS were evaluated for the analysis of coal samples. The ablation system consisted of a Nd:YAG laser operated 213 nm. A Czerny-turner spectrograph with ICCD detector and time-of-flight based mass spectrometer were utilized for LIBS and ICP-MS detection, respectively. This tandem approach allows simultaneous determination of major and minor elements (C, Si, Ca, Al, Mg), and trace elements (V, Ba, Pb, U, etc.) in the coal samples. The research focused on calibration strategies, specifically the use of univariate and multivariate data analysis on analytical performance. Partial least square regression (PLSR) was shown to minimize and compensate for matrix effects in the emission and mass spectra improving quantitative analysis by LIBS and LA-ICP-MS, respectively. The correlation between measurements from these two techniques demonstrated that mass spectral data combined with LIBS emission measurements by PLSR improved the accuracy and precision for quantitative analysis of trace elements in coal. - Highlights: • Tandem LIBS LA-ICP-MS • Simultaneous determination of major and minor elements and trace elements in the coal samples. • Extended Dynamic Range • Correlation between LIBS with LA-ICP-MS demonstrated improved the accuracy and precision for quantitative analysis of coal

  4. Elemental analysis of coal by tandem laser induced breakdown spectroscopy and laser ablation inductively coupled plasma time of flight mass spectrometry

    Dong, Meirong [School of Electric Power, South China University of Technology, Guangzhou, Guangdong 510640 (China); Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720 (United States); Oropeza, Dayana [Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720 (United States); Chirinos, José [Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720 (United States); Escuela de Química, Facultad de Ciencias, Universidad Central de Venezuela, Caracas 1041a (Venezuela, Bolivarian Republic of); González, Jhanis J. [Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720 (United States); Lu, Jidong [School of Electric Power, South China University of Technology, Guangzhou, Guangdong 510640 (China); Mao, Xianglei [Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720 (United States); Russo, Richard E., E-mail: RERusso@lbl.gov [Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720 (United States)

    2015-07-01

    The capabilities and analytical benefits of combined LIBS and LA-ICP-MS were evaluated for the analysis of coal samples. The ablation system consisted of a Nd:YAG laser operated 213 nm. A Czerny-turner spectrograph with ICCD detector and time-of-flight based mass spectrometer were utilized for LIBS and ICP-MS detection, respectively. This tandem approach allows simultaneous determination of major and minor elements (C, Si, Ca, Al, Mg), and trace elements (V, Ba, Pb, U, etc.) in the coal samples. The research focused on calibration strategies, specifically the use of univariate and multivariate data analysis on analytical performance. Partial least square regression (PLSR) was shown to minimize and compensate for matrix effects in the emission and mass spectra improving quantitative analysis by LIBS and LA-ICP-MS, respectively. The correlation between measurements from these two techniques demonstrated that mass spectral data combined with LIBS emission measurements by PLSR improved the accuracy and precision for quantitative analysis of trace elements in coal. - Highlights: • Tandem LIBS LA-ICP-MS • Simultaneous determination of major and minor elements and trace elements in the coal samples. • Extended Dynamic Range • Correlation between LIBS with LA-ICP-MS demonstrated improved the accuracy and precision for quantitative analysis of coal.

  5. Using laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) to explore geochemical taphonomy of vertebrate fossils in the upper cretaceous two medicine and Judith River formations of Montana

    Rogers, R.R.; Fricke, H.C.; Addona, V.; Canavan, R.R.; Dwyer, C.N.; Harwood, C.L.; Koenig, A.E.; Murray, R.; Thole, J.T.; Williams, J.

    2010-01-01

    Laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) was used to determine rare earth element (REE) content of 76 fossil bones collected from the Upper Cretaceous (Campanian) Two Medicine (TMF) and Judith River (JRF) Formations of Montana. REE content is distinctive at the formation scale, with TMF samples exhibiting generally higher overall REE content and greater variability in REE enrichment than JRF samples. Moreover, JRF bones exhibit relative enrichment in heavy REE, whereas TMF bones span heavy and light enrichment fields in roughly equal proportions. TMF bones are also characterized by more negative Ce anomalies and greater U enrichment than JRF bones, which is consistent with more oxidizing diagenetic conditions in the TMF. Bonebeds in both formations show general consistency in REE content, with no indication of spatial or temporal mixing within sites. Previous studies, however, suggest that the bonebeds in question are attritional assemblages that accumulated over considerable time spans. The absence of geochemical evidence for mixing is consistent with diagenesis transpiring in settings that remained chemically and hydrologically stable during recrystallization. Lithology-related patterns in REE content were also compared, and TMF bones recovered from fluvial sandstones show relative enrichment in heavy REE when compared with bones recovered from fine-grained floodplain deposits. In contrast, JRF bones, regardless of lithologic context (sandstone versus mudstone), exhibit similar patterns of REE uptake. This result is consistent with previous reconstructions that suggest that channel-hosted microfossil bonebeds of the JRF developed via the reworking of preexisting concentrations embedded in the interfluve. Geochemical data further indicate that reworked elements were potentially delivered to channels in a recrystallized condition, which is consistent with rapid adsorption of REE postmortem. Copyright ?? 2010, SEPM (Society for

  6. Bayesian Integration and Classification of Composition C-4 Plastic Explosives Based on Time-of-Flight-Secondary Ion Mass Spectrometry and Laser Ablation-Inductively Coupled Plasma Mass Spectrometry.

    Mahoney, Christine M; Kelly, Ryan T; Alexander, Liz; Newburn, Matt; Bader, Sydney; Ewing, Robert G; Fahey, Albert J; Atkinson, David A; Beagley, Nathaniel

    2016-04-01

    Time-of-flight-secondary ion mass spectrometry (TOF-SIMS) and laser ablation-inductively coupled plasma mass spectrometry (LA-ICPMS) were used for characterization and identification of unique signatures from a series of 18 Composition C-4 plastic explosives. The samples were obtained from various commercial and military sources around the country. Positive and negative ion TOF-SIMS data were acquired directly from the C-4 residue on Si surfaces, where the positive ion mass spectra obtained were consistent with the major composition of organic additives, and the negative ion mass spectra were more consistent with explosive content in the C-4 samples. Each series of mass spectra was subjected to partial least squares-discriminant analysis (PLS-DA), a multivariate statistical analysis approach which serves to first find the areas of maximum variance within different classes of C-4 and subsequently to classify unknown samples based on correlations between the unknown data set and the original data set (often referred to as a training data set). This method was able to successfully classify test samples of C-4, though with a limited degree of certainty. The classification accuracy of the method was further improved by integrating the positive and negative ion data using a Bayesian approach. The TOF-SIMS data was combined with a second analytical method, LA-ICPMS, which was used to analyze elemental signatures in the C-4. The integrated data were able to classify test samples with a high degree of certainty. Results indicate that this Bayesian integrated approach constitutes a robust classification method that should be employable even in dirty samples collected in the field. PMID:26913559

  7. The Effect of the Asphericity of Myopic Laser Ablation Profiles on the Induction of Wavefront Aberrations

    Bühren, Jens; Nagy, Lana; Yoon, Geunyoung; MacRae, Scott; Kohnen, Thomas; Huxlin, Krystel R.

    2010-01-01

    A PMMA model study showed that spherical aberration induction in laser refractive surgery is due to loss of ablation efficiency in the corneal periphery. Aspheric ablation induced less spherical aberration and provided better theoretical image quality.

  8. Superconducting Resonant Inductive Power Coupling Project

    National Aeronautics and Space Administration — The proposed effort will develop a technology to wirelessly and efficiently transfer power over hundreds of meters via resonant inductive coupling. The key...

  9. Antenna-coupled microwave kinetic inductance detectors

    Day, P.K. [Jet Propulsion Laboratory, 4800 Oak Grove Dr., Pasadena, CA 91109 (United States)]. E-mail: Peter.K.Day@jpl.nasa.gov; Leduc, H.G. [Jet Propulsion Laboratory, 4800 Oak Grove Dr., Pasadena, CA 91109 (United States); Goldin, A. [Jet Propulsion Laboratory, 4800 Oak Grove Dr., Pasadena, CA 91109 (United States); Vayonakis, T. [California Institute of Technology, 1200 E. California Blvd., Pasadena, CA 91125 (United States); Mazin, B.A. [Jet Propulsion Laboratory, 4800 Oak Grove Dr., Pasadena, CA 91109 (United States); Kumar, S. [California Institute of Technology, 1200 E. California Blvd., Pasadena, CA 91125 (United States); Gao, J. [California Institute of Technology, 1200 E. California Blvd., Pasadena, CA 91125 (United States); Zmuidzinas, J. [California Institute of Technology, 1200 E. California Blvd., Pasadena, CA 91125 (United States)

    2006-04-15

    We report on the development of Microwave Kinetic Inductance Detectors (MKIDs) coupled to planar antennas for millimeter/submillimeter wavelengths. The MKID is a relatively new type of superconducting photon detector which is applicable from millimeter-wave frequencies to X-rays. Photons are absorbed in a superconductor, producing quasiparticle excitations, which change the surface reactance (kinetic inductance) of the superconductor. The changes in kinetic inductance are monitored using microwave high-Q thin-film superconducting resonators. Because the MKID is particularly amenable to frequency-domain multiplexing, with likely detector multiplexing factors of {approx}10{sup 3} or more per cryogenic amplifier, these detectors are well suited for use in large arrays. We have fabricated MKIDs coupled to submillimeter slot-array antennas using microstrip lines and have detected power from a thermal radiation source. We discuss the potential of antenna-coupled MKID arrays for ground and space-based millimeter/submillimeter imaging.

  10. Inductively coupled wireless RF coil arrays.

    Bulumulla, S B; Fiveland, E; Park, K J; Foo, T K; Hardy, C J

    2015-04-01

    As the number of coils increases in multi-channel MRI receiver-coil arrays, RF cables and connectors become increasingly bulky and heavy, degrading patient comfort and slowing workflow. Inductive coupling of signals provides an attractive "wireless" approach, with the potential to reduce coil weight and cost while simplifying patient setup. In this work, multi-channel inductively coupled anterior arrays were developed and characterized for 1.5T imaging. These comprised MR receiver coils inductively (or "wirelessly") linked to secondary or "sniffer" coils whose outputs were transmitted via preamps to the MR system cabinet. The induced currents in the imaging coils were blocked by passive diode circuits during RF transmit. The imaging arrays were totally passive, obviating the need to deliver power to the coils, and providing lightweight, untethered signal reception with easily positioned coils. Single-shot fast spin echo images were acquired from 5 volunteers using a 7-element inductively coupled coil array and a conventionally cabled 7-element coil array of identical geometry, with the inductively-coupled array showing a relative signal-to-noise ratio of 0.86 +/- 0.07. The concept was extended to a larger 9-element coil array to demonstrate the effect of coil element size on signal transfer and RF-transmit blocking. PMID:25523607

  11. Uranium isotopic ratio measurements (235U/238U) by laser ablation high resolution inductively coupled plasma mass spectrometry for environmental radioactivity monitoring - 235U/238U isotope ratio analysis by LA-ICP-MS-HR for environmental radioactivity monitoring

    The protection of the aquatic and terrestrial environments from a broad range of contaminants spread by nuclear activities (nuclear plants, weapon tests or mining) require continuous monitoring of long-lives radionuclides that were released into the environment. The precise determination of uranium isotope ratios in both natural and potential contaminated samples is of primary concern for the nuclear safeguards and the control of environmental contamination. As an example, analysis of environmental samples around nuclear plants are carried out to detect the traces in the environment originating from nuclear technology activities. This study deals with the direct analysis of 235U/238U isotope ratios in real environmental solid samples performed with laser ablation (LA)-HR-ICP-MS. A similar technique has already been reported for the analysis of biological samples or uranium oxide particles [1,2] but to our knowledge, this was never applied on real environmental samples. The high sensitivity, rapid acquisition time and low detection limits are the main advantages of high resolution ICP-MS for accurate and precise isotope ratio measurements of uranium at trace and ultra-trace levels. In addition, the use of laser ablation allows the analysis of solid samples with minimal preparation. A a consequence, this technique is very attractive for conducting rapid direct 235U/238U isotope ratio analysis on a large set of various matrix samples likely to be encountered in environmental monitoring such as corals, soils, sands, sediments, terrestrial and marine bio-indicators. For the present study, LA-ICP-MS-HR analyses are performed using a New Wave UP213 nano-second Nd:YAG laser coupled to a Thermo Element-XR high resolution mass spectrometer. Powdered samples are compacted with an hydraulic press (5 tons) in order to obtain disk-shaped pellet (10-13 mm in diameter and 2 mm in thickness). The NIST612 reference glass is used for LA-ICP-MS-HR tuning and as standard control during

  12. Direct coupling of a laser ablation cell to an AMS

    In rare cases, cleaned samples can be directly inserted into a negative ion source of an AMS and still meet the requirements for long-term and stable measurements. We present the coupling of a laser ablation system to the gas ion source of an AMS system (MICADAS, ETH Zurich) for direct and continuous CO2 introduction. Solid carbonate samples like stalagmites or corals are suitable sample materials, which can be ablated and decomposed continuously using a pulsed laser focused onto the surface of a solid sample, which is placed in an airtight ablation cell. CO2 formed during the ablation of a CaCO3 sample is continually flushed with He into the gas ion source. The production rate of CO2 can be adjusted via the laser pulse repetition rate (1–20 Hz), the crater diameter (1–150 μm) and the energy density applied (0.2–3 mJ/pulse) of the laser (frequency quintupled Nd:YAG at 213 nm with 5 ns pulse duration). In our first test, measurements of one sample with known age were replicated within one sigma. Blanks showed 5% contamination of modern carbon of yet unknown origin. In order to develop LA-AMS into a routine sampling tool the ablation cell geometry and settings of the gas ion source have to be further optimized.

  13. Implicit Coupling Approach for Simulation of Charring Carbon Ablators

    Chen, Yih-Kanq; Gokcen, Tahir

    2013-01-01

    This study demonstrates that coupling of a material thermal response code and a flow solver with nonequilibrium gas/surface interaction for simulation of charring carbon ablators can be performed using an implicit approach. The material thermal response code used in this study is the three-dimensional version of Fully Implicit Ablation and Thermal response program, which predicts charring material thermal response and shape change on hypersonic space vehicles. The flow code solves the reacting Navier-Stokes equations using Data Parallel Line Relaxation method. Coupling between the material response and flow codes is performed by solving the surface mass balance in flow solver and the surface energy balance in material response code. Thus, the material surface recession is predicted in flow code, and the surface temperature and pyrolysis gas injection rate are computed in material response code. It is demonstrated that the time-lagged explicit approach is sufficient for simulations at low surface heating conditions, in which the surface ablation rate is not a strong function of the surface temperature. At elevated surface heating conditions, the implicit approach has to be taken, because the carbon ablation rate becomes a stiff function of the surface temperature, and thus the explicit approach appears to be inappropriate resulting in severe numerical oscillations of predicted surface temperature. Implicit coupling for simulation of arc-jet models is performed, and the predictions are compared with measured data. Implicit coupling for trajectory based simulation of Stardust fore-body heat shield is also conducted. The predicted stagnation point total recession is compared with that predicted using the chemical equilibrium surface assumption

  14. Preliminary characterisation of new glass reference materials (GSA-1G, GSC-1G, GSD-1G and GSE-1G) by laser ablation-inductively coupled plasma-mass spectrometry using 193 nm, 213 nm and 266 nm wavelengths

    Guillong, M.; Hametner, K.; Reusser, E.; Wilson, S.A.; Gunther, D.

    2005-01-01

    New glass reference materials GSA-1G, GSC-1G, GSD-1G and GSE-1G have been characterised using a prototype solid state laser ablation system capable of producing wavelengths of 193 nm, 213 nm and 266 nm. This system allowed comparison of the effects of different laser wavelengths under nearly identical ablation and ICP operating conditions. The wavelengths 213 nm and 266 nm were also used at higher energy densities to evaluate the influence of energy density on quantitative analysis. In addition, the glass reference materials were analysed using commercially available 266 nm Nd:YAG and 193 nm ArF excimer lasers. Laser ablation analysis was carried out using both single spot and scanning mode ablation. Using laser ablation ICP-MS, concentrations of fifty-eight elements were determined with external calibration to the NIST SRM 610 glass reference material. Instead of applying the more common internal standardisation procedure, the total concentration of all element oxide concentrations was normalised to 100%. Major element concentrations were compared with those determined by electron microprobe. In addition to NIST SRM 610 for external calibration, USGS BCR-2G was used as a more closely matrix-matched reference material in order to compare the effect of matrix-matched and non matrix-matched calibration on quantitative analysis. The results show that the various laser wavelengths and energy densities applied produced similar results, with the exception of scanning mode ablation at 266 nm without matrix-matched calibration where deviations up to 60% from the average were found. However, results acquired using a scanning mode with a matrix-matched calibration agreed with results obtained by spot analysis. The increased abundance of large particles produced when using a scanning ablation mode with NIST SRM 610, is responsible for elemental fractionation effects caused by incomplete vaporisation of large particles in the ICP.

  15. Resonant inductive coupling wireless power transfer

    Bou Balust, Elisenda

    2012-01-01

    Recent research on wireless power transfer (WPT) using resonant inductive coupling has demonstrated very promising efficiencies (above 80%) [1] at large distances compared to the antenna dimensions (more than three times the receiver/transmitter diameters). Due to the number of applications that could benefit from WPT: from electric vehicles to sensor networks, commercial electronic devices, health equipment, biomedical implants, in-space systems and so on, the development and optimizat...

  16. Enhanced coupling of optical energy during liquid-confined metal ablation

    Kang, Hyun Wook, E-mail: wkang@pknu.ac.kr [Department of Biomedical Engineering, Pukyong National University, Busan, South Korea and Center for Marine-integrated Biomedical Technology (MIBT), Pukyong National University, Busan (Korea, Republic of); Welch, Ashley J. [Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas, 78712 (United States)

    2015-10-21

    Liquid-confined laser ablation was investigated with various metals of indium, aluminum, and nickel. Ablation threshold and rate were characterized in terms of surface deformation, transient acoustic responses, and plasma emissions. The surface condition affected the degree of ablation dynamics due to variations in reflectance. The liquid confinement yielded up to an order of larger ablation crater along with stronger acoustic transients than dry ablation. Enhanced ablation performance resulted possibly from effective coupling of optical energy at the interface during explosive vaporization, plasma confinement, and cavitation. The deposition of a liquid layer can induce more efficient ablation for laser metal processing.

  17. Enhanced coupling of optical energy during liquid-confined metal ablation

    Liquid-confined laser ablation was investigated with various metals of indium, aluminum, and nickel. Ablation threshold and rate were characterized in terms of surface deformation, transient acoustic responses, and plasma emissions. The surface condition affected the degree of ablation dynamics due to variations in reflectance. The liquid confinement yielded up to an order of larger ablation crater along with stronger acoustic transients than dry ablation. Enhanced ablation performance resulted possibly from effective coupling of optical energy at the interface during explosive vaporization, plasma confinement, and cavitation. The deposition of a liquid layer can induce more efficient ablation for laser metal processing

  18. Wireless Power Transmission Using Resonance Inductive Coupling

    Prof. Vishal V. Pande,

    2014-04-01

    Full Text Available In this paper, we present the concept of transmitting power without using wires i.e.transmitting power as Magnetic waves from one place to another is in order to reduce the transmission and distribution losses. This concept is known as Resonance Inductive Coupling (RIC. We also discussed the technological developments in Wireless Power Transmission (WPT. The advantages, disadvantages, biological impacts and applications of WPT are also presented. Wireless power or wireless energy transmission is the transmission of electrical energy from a power source to an electrical load without man-made conductors. Wireless transmission is useful in cases where interconnecting wires are inconvenient, hazardous, or impossible. the proportion of energy received becomes critical only if it is too low for the signal to be distinguished from the background noise. With wireless power, efficiency is the more significant parameter. A large part of the energy sent out by the generating plant must arrive at the receiver or receivers to make the system economical.The most common form of wireless power transmission is carried out using direct induction followed by resonant magnetic induction. Other methods under consideration are electromagnetic radiation in the form of microwaves or lasers and electrical conduction through natural media

  19. Isotope dilution inductively coupled plasma mass spectrometry

    The potential of isotope dilution inductively coupled plasma mass spectrometry (ICP-MS) was evaluated for the determination of trace amounts of uranium and thorium in silicate rocks. Compared with conventional isotope dilution methods using thermal ionization mass spectrometers, the major benefit is a large increase in sample through-put without a significant decrease in precision and accuracy. This results from direct liquid sampling at atmospheric pressure and from the capability of measuring isotope ratios on raw solutions, without chemical separation of the analytes from the matrix elements. Isotope dilution ICP-MS alleviates the need for matrix-matched standards. Further, it is insensitive to possible causes of intensity drift (e.g., clogging of the plasma/mass spectrometer interface and defocusing of the ion beam) and to chemical effects (e.g. oxide formulation). Results obtained on some international rock standards are in good agreement with recommended values. (author). 26 refs.; 1 fig., tabs

  20. Laser ablated coupling structures for optical printed circuit boards

    Van Steenberge, Geert; Geerinck, Peter; Riester, Markus; Pongratz, Siegfried; Van Daele, Peter

    2005-09-01

    We report on the cost effective fabrication of 45° micromirror couplers within single-mode polymer waveguides for achieving fully embedded board-level optoelectronic interconnections. Compatibility with existing board manufacturing technology is achieved by making use of polymers with high thermal stability. The sol-gel polymers behave as negative photo resist and waveguides are patterned by UV exposure. Micromirrors are fabricated using excimer laser ablation, a very flexible technology that is particularly well suited for structuring of polymers because of their excellent UV-absorption properties and highly non-thermal ablation behavior. A coupling structure based on total internal reflection (TIR) is enhanced by developing a process for embedding a metal coated 45° mirror in the optical layers. The mirrors are selectively metallized using a lift-off process. Filling up the angled via without the presence of air bubbles and providing a flat surface above the mirror is only possible by enhancing the cladding deposition process with ultrasound agitation. Surface roughness of both the mirrors and the upper cladding surface above the mirrors is investigated using a non-contact optical profiler. Initial loss measurements at 1.3 μm show a propagation loss of 0.62 dB/cm and an excess mirror loss of 1.55 dB. During most recent experiments mirror roughness has been reduced from 160 nm to 20 nm, which will seriously reduce the mirror loss.

  1. Aerosol detection efficiency in inductively coupled plasma mass spectrometry

    Hubbard, Joshua A.; Zigmond, Joseph A.

    2016-05-01

    An electrostatic size classification technique was used to segregate particles of known composition prior to being injected into an inductively coupled plasma mass spectrometer (ICP-MS). Size-segregated particles were counted with a condensation nuclei counter as well as sampled with an ICP-MS. By injecting particles of known size, composition, and aerosol concentration into the ICP-MS, efficiencies of the order of magnitude aerosol detection were calculated, and the particle size dependencies for volatile and refractory species were quantified. Similar to laser ablation ICP-MS, aerosol detection efficiency was defined as the rate at which atoms were detected in the ICP-MS normalized by the rate at which atoms were injected in the form of particles. This method adds valuable insight into the development of technologies like laser ablation ICP-MS where aerosol particles (of relatively unknown size and gas concentration) are generated during ablation and then transported into the plasma of an ICP-MS. In this study, we characterized aerosol detection efficiencies of volatile species gold and silver along with refractory species aluminum oxide, cerium oxide, and yttrium oxide. Aerosols were generated with electrical mobility diameters ranging from 100 to 1000 nm. In general, it was observed that refractory species had lower aerosol detection efficiencies than volatile species, and there were strong dependencies on particle size and plasma torch residence time. Volatile species showed a distinct transition point at which aerosol detection efficiency began decreasing with increasing particle size. This critical diameter indicated the largest particle size for which complete particle detection should be expected and agreed with theories published in other works. Aerosol detection efficiencies also displayed power law dependencies on particle size. Aerosol detection efficiencies ranged from 10- 5 to 10- 11. Free molecular heat and mass transfer theory was applied, but

  2. 激光剥蚀-等离子体质谱技术及其在地球化学宇宙化学和环境研究中的应用%Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry and Its Application in Geochemistry, Cosmochemistry and Environmental Research

    JOCHUM Klaus Peter; KUZMIN Dmitry; MERTZ-KRAUS Regina; MüLLER Werner E G; REGNERY Julia; SOBOLEV Alexander; 王晓红; 詹秀春; STOLL Brigitte; FRIEDRICH Jon M; AMINI Marghaleray; BECKER Stefan; DüCKING Marc; EBEL Denton S; ENZWEILER Jacinta; HU Ming-yue

    2009-01-01

    激光剥蚀-等离子体质谱(LA-ICPMS)已成为地球化学、宇宙化学和环境研究领域元素和同位素原位分析最重要的技术之一.文章介绍了多种类型的质谱仪及其使用的激光器.用途最广的LA-ICPMS仪器之一是单接收器扇形磁场质谱仪,配有Nd:YAG激光剥蚀系统(激光波长分为193 nm和213 nm两种),MPI Mainz实验室使用的就是这套系统,文章对此作一详细介绍.文中阐述了数据优化技术及其多种校正过程;介绍LA-ICPMS在痕量元素和同位素分析领域的一些应用,包括参考物质的研制,Hawaiian玄武岩、Martian陨石、生物骨针和珊瑚虫中痕量元素分析及熔融包裹体和富钙-铝碳质球粒陨石中的铅和锶同位素测量.%Laser ablation (LA)-inductively coupled plasma-mass spectrometry (ICP-MS) has become one of the most important methods for in situ trace elemental and isotopic analysis in geochemistry, cosmochemistry and environmental research. For these purposes, different kinds of mass spectrometers and lasers are used, which are presented in this paper. One of the most useful LA-ICPMS instruments is the combination of a single-collector sector field mass spectrometer with Nd:YAG laser ablation systems (193 nm and 213 nm wavelengths, respectively). This design used in the MPI Mainz laboratory is described in detail in this paper. Data optimization techniques including diverse correction procedures are also discussed. To demonstrate the power of LA-ICPMS, several applications of trace elemental and isotopic analysis are presented, such as investigations of reference materials, trace element analysis in Hawaiian basalts, Martian meteorites, biological spicules and corals, as well as Pb and Sr isotope measurements of melt inclusions and Ca-Al rich inclusions of carbonaceous chondrites.

  3. Titanium oxidation by rf inductively coupled plasma

    Valencia-Alvarado, R.; de la Piedad-Beneitez, A.; López-Callejas, R.; Barocio, S. R.; Mercado-Cabrera, A.; Peña-Eguiluz, R.; Muñoz-Castro, A. E.; Rodríguez-Méndez, B. G.; de la Rosa-Vázquez, J. M.

    2014-05-01

    The development of titanium dioxide (TiO2) films in the rutile and anatase phases is reported. The films have been obtained from an implantation/diffusion and sputtering process of commercially pure titanium targets, carried out in up to 500 W plasmas. The experimental outcome is of particular interest, in the case of anatase, for atmospheric pollution degradation by photocatalysis and, as to the rutile phase, for the production of biomaterials required by prosthesis and implants. The reactor employed consists in a cylindrical pyrex-like glass vessel inductively coupled to a 13.56 MHz RF source. The process takes place at a 5×10-2 mbar pressure with the target samples being biased from 0 to -3000 V DC. The anatase phase films were obtained from sputtering the titanium targets over glass and silicon electrically floated substrates placed 2 cm away from the target. The rutile phase was obtained by implantation/diffusion on targets at about 700 °C. The plasma was developed from a 4:1 argon/oxygen mixture for ~5 hour processing periods. The target temperature was controlled by means of the bias voltage and the plasma source power. The obtained anatase phases did not require annealing after the plasma oxidation process. The characterization of the film samples was conducted by means of x-ray diffraction, scanning electron microscopy, x-ray photoelectron spectroscopy and Raman spectroscopy.

  4. Induction of Th1Immune responses following laser ablation in a murine model of colorectal liver metastases

    Muralidharan Vijayaragavan; Nikfarjam Mehrdad; Malcontenti-Wilson Caterina; Fifis Theodora; Lin Wen; Nguyen Linh; Christophi Christopher

    2011-01-01

    Abstract Background Preliminary experimental studies have suggested that the in situ destruction of tumor tissue by local laser ablation (LA) may also stimulate host immunity against cancer. We investigated local and systemic induction of immune responses after laser ablation in the setting of residual tumor. Methods A murine colorectal cancer (CRC) liver metastasis model was used. Selected tumors of liver CRC bearing mice and livers of mice without tumor induction were treated with LA. Liver...

  5. Study on the uptake and distribution of gadolinium based contrast agents in biological samples using laser ablation with inductively coupled plasma mass spectroscopy; Untersuchungen zur Aufnahme und Verteilung von gadoliniumbasierten Kontrastmitteln in biologischen Proben mittels Laserablation mit induktiv gekoppelter Plasma-Massenspektrometrie

    Lingott, Jana

    2016-01-05

    Gadolinium based contrast agents are used for magnetic resonance imaging. After their excretion by medicated patients they reach surface water passing waste water treatment plants where they are not removed sufficiently. The behavior of the contrast agents in the environment and the interaction with organisms was investigated in this work due to the toxicity of the free Gd{sup 3+} ion and the associated risks, such as accumulation in the human food chain. In this work, the two elemental analytical imaging methods laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) and synchrotron radiation X-ray fluorescence analysis (SRXRF) have been used to investigate the uptake, distribution, and excretion of Gd-based contrast agents by various biological systems. Both methods were analytically characterized and compared for this application. The detection limits of gadolinium were determined under optimized conditions by LA-ICP-MS and SRXRF. With calibration by remains of dried elemental standard droplets detection limits of 0.78 pg absolute amount of gadolinium (LA-ICP-MS), respectively 89 pg (SRXRF) were reached. Based on filamentous algae as water plants the uptake and the excretion of Gd-based contrast agents were revealed. The dependence on concentration of the contrast agent in the exposition solution and the independence of temporal uptake within one to seven days were studied for duckweed. By LA-ICP-MS gadolinium was quantified in a leaf of cress plant. The verification of the results was performed by SRXRF and ICP-MS after digestion. Furthermore, the uptake and distribution of Gd-based contrast agents in higher organisms (water flea) were observed. The exact location of gadolinium was resolved by three-dimensional μ-computed tomography by the comparison of an exposed with a Gd-free water flea. In all studies, gadolinium was detected in the investigated exposed model organisms. It can be concluded that the contrast agents were taken from the

  6. Influence of Coupled Radiation and Ablation on the Aerothermodynamic Environment of Planetary Entry Vehicles

    Johnston, Christopher O.; Gnoffo, Peter A.; Mazaheri, Alireza

    2013-01-01

    A review of recently published coupled radiation and ablation capabilities involving the simulation of hypersonic flowfields relevant to Earth, Mars, or Venus entry is presented. The three fundamental mechanisms of radiation coupling are identified as radiative cooling, precursor photochemistry, and ablation-radiation interaction. The impact of these mechanisms are shown to be significant for a 3 m radius sphere entering Earth at hypothetical Mars return conditions (approximately 15 km/s). To estimate the influence precursor absorption on the radiative flux for a wide range of conditions, a simplified approach is developed that requires only the non-precursor solution. Details of a developed coupled ablation approach, which is capable of treating both massively ablating flowfields in the sublimation regime and weakly ablating diffusion Climited oxidation cases, are presented. A review of the two primary uncoupled ablation approximations, identified as the blowing correction and film coefficient approximations, is made and their impact for Earth and Mars entries is shown to be significant for recession and convective heating predictions. Fully coupled ablation and radiation simulations are presented for the Mars return sphere throughout its entire trajectory. Applying to the Mars return sphere the Pioneer- Venus heritage carbon phenolic heatshield, which has properties available in the open literature, the differences between steady state ablation and coupling to a material response code are shown to be significant.

  7. Production date determination of uranium-oxide materials by inductively coupled plasma mass spectrometry

    The paper describes analytical methods developed for the production date determination of uranium-based nuclear materials by the measurement of 230Th/234U isotope ratio. An improved sample preparation method for the destructive analysis involving extraction chromatographic separation with TEVATM resin was applied prior to the measurement by isotope dilution inductively coupled plasma sector field mass spectrometry (ICP-SFMS). The results obtained were compared with the direct, quasi-non-destructive measurement using laser ablation ICP-SFMS technique for age determination. The advantages and limitations of both methods are discussed

  8. Inductive Coupling of Power Converter’s – EMC

    Irena Kováčová

    2009-07-01

    Full Text Available The paper presents a computer analysis of inductive coupling of theelectromagnetic compatibility (EMC problem. Its focus is on power electronics andelectrical drives and tests performed by a numerical computer simulation that can disclosesuite surprising findings about EMC.

  9. Progress in antenna coupled kinetic inductance detectors

    Baryshev, A.; Baselmans, J.J.A.; Freni, A.; Gerini, G.; Hoevers, H.; Iacono, A.; Neto, A.

    2011-01-01

    This paper describes the combined Dutch efforts toward the development of large wideband focal plane array receivers based on kinetic inductance detectors (KIDs). Taking into account strict electromagnetic and detector sensitivity requirements for future ground and space based observatories, this wo

  10. Implementation of Radiation, Ablation, and Free Energy Minimization Modules for Coupled Simulations of Hypersonic Flow

    Gnoffo, Peter A.; Johnston, Christopher O.; Thompson, Richard A.

    2009-01-01

    A description of models and boundary conditions required for coupling radiation and ablation physics to a hypersonic flow simulation is provided. Chemical equilibrium routines for varying elemental mass fraction are required in the flow solver to integrate with the equilibrium chemistry assumption employed in the ablation models. The capability also enables an equilibrium catalytic wall boundary condition in the non-ablating case. The paper focuses on numerical implementation issues using FIRE II, Mars return, and Apollo 4 applications to provide context for discussion. Variable relaxation factors applied to the Jacobian elements of partial equilibrium relations required for convergence are defined. Challenges of strong radiation coupling in a shock capturing algorithm are addressed. Results are presented to show how the current suite of models responds to a wide variety of conditions involving coupled radiation and ablation.

  11. Dense strongly coupled plasma in double laser pulse ablation of lithium: Experiment and simulation

    In a simple method of low power nano-second double pulsed laser ablation experiment in collinear geometry, formation of high density strongly coupled plasma is demonstrated. Using time-resolved measurements of the Stark broadened line width and line intensity ratio of the emission lines, the density and temperature of the plasma were estimated respectively. In this experiment, it is shown that ions are strongly coupled (ion-ion coupling parameter comes out to be >4). For comparison, both single and double pulsed laser ablations are presented. For the estimated experimental plasma parameters, first principle Langevin dynamics simulation corroborates the existence of a strongly coupled regime

  12. Developments and trends in inductively coupled plasma mass spectrometry and its influence on the recent advances in trace element analysis

    A brief introduction to the various instrumental methods such as atomic absorption spectrometry, x-ray fluorescence spectrometry, neutron activation analysis, inductively coupled plasma atomic emission spectrometry, thermal ionization mass spectrometry, etc. are presented highlighting their relative merits and demerits. The history and developments of inductively coupled plasma mass spectrometry (ICP-MS) and its advantages and limitations over other multi-element instrumental techniques are reviewed. Extended capabilities by hyphenating ICP-MS to various other well-known sample introduction techniques such as flow-injection, electrothermal vaporization, chromatographic methods and laser ablation are discussed in brief. The recent development of high resolution multi-collector double-focusing magnetic mass spectrometer with inductively coupled plasma at atmospheric pressure as source is also discussed. Some of the areas where more developments can be expected in future are suggested. (author). 77 refs., 4 tabs., 3 figs

  13. Determination of trace elements in petroleum products by inductively coupled plasma techniques: A critical review

    The fundamentals, applications and latter developments of petroleum products analysis through inductively coupled plasma optical emission spectrometry (ICP-OES) and mass spectrometry (ICP-MS) are revisited in the present bibliographic survey. Sample preparation procedures for the direct analysis of fuels by using liquid sample introduction systems are critically reviewed and compared. The most employed methods are sample dilution, emulsion or micro-emulsion preparation and sample decomposition. The first one is the most widely employed due to its simplicity. Once the sample has been prepared, an organic matrix is usually present. The performance of the sample introduction system (i.e., nebulizer and spray chamber) depends strongly upon the nature and properties of the solution finally obtained. Many different devices have been assayed and the obtained results are shown. Additionally, samples can be introduced into the plasma by using an electrothermal vaporization (ETV) device or a laser ablation system (LA). The recent results published in the literature showing the feasibility, advantages and drawbacks of latter alternatives are also described. Therefore, the main goal of the review is the discussion of the different approaches developed for the analysis of crude oil and its derivates by inductively coupled plasma (ICP) techniques. - Highlights: • Analysis of petroleum products by inductively coupled plasma techniques is revisited. • Fundamental studies are included together with reports dealing with applications. • Conventional and non-conventional sample introduction methods are considered. • Sample preparation methods are critically compared and described

  14. Determination of trace elements in petroleum products by inductively coupled plasma techniques: A critical review

    Sánchez, Raquel [Department of Analytical Chemistry, Nutrition and Food Sciences, P.O. Box 99, 03080, Alicante (Spain); Todolí, José Luis, E-mail: jose.todoli@ua.es [Department of Analytical Chemistry, Nutrition and Food Sciences, P.O. Box 99, 03080, Alicante (Spain); Lienemann, Charles-Philippe [IFP Energies Nouvelles, Rond-point de l' échangeur de Solaize, BP 3, F-69360 Solaize (France); Mermet, Jean-Michel [Spectroscopy Forever, 01390 Tramoyes (France)

    2013-10-01

    The fundamentals, applications and latter developments of petroleum products analysis through inductively coupled plasma optical emission spectrometry (ICP-OES) and mass spectrometry (ICP-MS) are revisited in the present bibliographic survey. Sample preparation procedures for the direct analysis of fuels by using liquid sample introduction systems are critically reviewed and compared. The most employed methods are sample dilution, emulsion or micro-emulsion preparation and sample decomposition. The first one is the most widely employed due to its simplicity. Once the sample has been prepared, an organic matrix is usually present. The performance of the sample introduction system (i.e., nebulizer and spray chamber) depends strongly upon the nature and properties of the solution finally obtained. Many different devices have been assayed and the obtained results are shown. Additionally, samples can be introduced into the plasma by using an electrothermal vaporization (ETV) device or a laser ablation system (LA). The recent results published in the literature showing the feasibility, advantages and drawbacks of latter alternatives are also described. Therefore, the main goal of the review is the discussion of the different approaches developed for the analysis of crude oil and its derivates by inductively coupled plasma (ICP) techniques. - Highlights: • Analysis of petroleum products by inductively coupled plasma techniques is revisited. • Fundamental studies are included together with reports dealing with applications. • Conventional and non-conventional sample introduction methods are considered. • Sample preparation methods are critically compared and described.

  15. Induction of Th1Immune responses following laser ablation in a murine model of colorectal liver metastases

    Muralidharan Vijayaragavan

    2011-05-01

    Full Text Available Abstract Background Preliminary experimental studies have suggested that the in situ destruction of tumor tissue by local laser ablation (LA may also stimulate host immunity against cancer. We investigated local and systemic induction of immune responses after laser ablation in the setting of residual tumor. Methods A murine colorectal cancer (CRC liver metastasis model was used. Selected tumors of liver CRC bearing mice and livers of mice without tumor induction were treated with LA. Liver and tumor tissues from the ablation sites and from distant sites were collected at various time points following LA and changes in CD3+ T cells and Kupffer cells (F4/80 marker infiltration and the expression of interferon gamma (IFNγ were investigated by immunohistochemistry and ELISpot. Base line levels of CD3+ T cells and Kupffer cells were established in untreated mice. Results The presence of tumor induced significant accumulation of CD3+ T cells and Kupffer cells at the tumor-host interface, within the tumor vascular lakes and increased their baseline concentration within the liver parenchyma. LA of the liver induced accumulation of CD3+ T-cells and Kupffer cells at the site of injury and systemic induction of immune responses as discerned by the presence of IFNγ secreting splenocytes. LA of liver tumors induced significant increase of CD3+ T-cells at site of injury, within normal liver parenchyma, and the tumor-host interface of both ablated and distant tumors. In contrast Kupffer cells only accumulated in ablated tumors and the liver parenchyma but not in distant tumors. IFNγ expression increased significantly in ablated tumors and showed an increasing trend in distant tumors. Conclusion Laser ablation in addition to local tumor destruction induces local and systemic Th1 type immune responses which may play a significant role in inhibiting tumor recurrence from residual micrometastases or circulating tumor cells.

  16. Estimation of detection limits in inductively coupled plasma mass spectrometry

    Prudnikov, E.D. [Earth`s Crust Inst., State Univ., St. Petersburg (Russian Federation); Barnes, R.M. [Department of Chemistry, University of Massachusetts, Amherst, MA (United States)

    1998-11-01

    The theoretical estimation of the detection limits in inductively coupled plasma mass spectrometry has been investigated. This calculation includes significant parameters of the ICP source and mass spectrometer. The calculated values show generally good agreement with experimental results. The development of a mathematical relationship may be useful for evaluation of instrumental parameters and sample introduction techniques. (orig.) With 1 tab., 28 refs.

  17. Zinc isotope discrimination effect in inductively coupled plasma mass spectrometer

    Inductively coupled plasma mass spectrometry (ICPMS) has recently been used for isotope ratio analysis. The isotope discrimination effect in the mass spectrometer is a primary factor contributing to loss of precision and accuracy in isotope ratio analysis. The discrimination effect of zinc isotopes was investigated by comparing the results obtained using a quadrupole type ICPMS with those obtained using a thermal ionization mass spectrometer

  18. Design And Construction Of Wireless Charging System Using Inductive Coupling

    Do Lam Mung

    2015-06-01

    Full Text Available Abstract Wireless charging system described by using the method of inductive coupling. In this project oscillation circuit converts DC energy to AC energytransmitter coil to transmit magnetic field by passing frequency and then induce the receiver coil. The properties of Induction coupling are wavemagnetic field-wideband rangevery shortcm efficiencyhight and operation frequencyLF-bandseveral handred kHz.The project shows as a small charging for 5V battery of phone in this method. The system bases on coupling magnetic field then designed and constructed as two parts. There are transmitter part and receiver part. The transmitter coil transmitter part transmits coupling magnetic field to receiver coil receiver part by passing frequency at about 1.67MHz. The Amperes law Biot-Savart law and Faraday law are used to calculate the inductive coupling between the transmitter coil and the receiver coil. The calculation of this law shows how many power transfer in receiver part when how many distance between the transmitter coil and the receiver coil. The system is safe for users and neighbouring electronic devices. To get more accurate wireless charging system it needs to change the design of the following keywords.

  19. Superposition of Inductive and Capacitive Coupling in Superconducting LC Resonators

    Gladchenko, Sergiy; Khalil, Moe; Lobb, C. J.; Wellstood, F. C.; Osborn, Kevin D.

    2011-06-01

    We present an experimental investigation of lumped-element superconducting LC resonators designed to provide different types of coupling to a transmission line. We have designed four resonator geometries including dipole and quadrupole configured inductors connected in parallel with low loss SiNx dielectric parallel-plate capacitors. The design of the resonator allows a small change in the symmetry of the inductor or grounding of the capacitor to allow LC resonators with: 1) inductive coupling, 2) capacitive coupling, 3) both types of coupling, or 4) greatly reduced coupling. We measured all four designs at a temperature of 30mK at different values of power. We compare the extracted data from the four resonator types and find that both capacitive and inductive coupling can be included and that when left off, only a minor change in the circuit design is necessary. We also find a variation in the measured loss tangent of less than a few percent, which is a test of the systematic precision of the measurement technique.

  20. Inductively coupled plasma mass spectrometry (ICP-MS) and its application in life sciences

    Inductively-coupled plasma mass spectrometry (ICP-MS) has made much progress since its birth in the late 1990s. The author will give a rather systematic overview on the use of this technique in new devices and technologies related to plasma source, sample-introducing device and detecting spectrometer etc. In this overview, an emphasis will be put on the evaluation of the ICP-MS technique in combination with a series of physical, chemical and biological techniques, such as laser ablation (LA), capillary electrophoresis (CE) and high performance liquid chromatograph (HPLC), along with their representative high accuracy and high sensitivity. Finally, comprehensive and fruitful applications of the ICP-MS and its combinative techniques in the detection of trace metallic elements and isotopes in complex biological and environmental samples will be revealed

  1. Inductively coupled plasma mass spectrometry with ambient helium surrounding ion source

    An enclosed device surrounding the argon inductively coupled plasma torch was fabricated to exclude air entrainment and attenuate background interferences. Helium was introduced into the enclosure, and ambient helium plasma was formed stably. Under cold plasma condition, we found that the spectral background decreased about 1 order of magnitude averagely compared with that in typical operation condition. For laser ablation with a Nd:YAG laser, the limits of detection of 28Si, 29Si, 31P, and 32S in an iron matrix were improved significantly; the linearity of their calibration curves was greatly improved as well compared with standard mode and cool mode ICP-MS with no ambient helium. The result indicates that polyatomic interferences from nitrogen, oxygen, hydrogen, carbon, etc. were effectively reduced in helium ambient ICP-MS.

  2. Magnetic superlens-enhanced inductive coupling for wireless power transfer

    Huang, Da; Urzhumov, Yaroslav; Smith, David R; Teo, Koon Hoo; Zhang, Jinyun

    2012-01-01

    We investigate numerically the use of a negative-permeability "perfect lens" for enhancing wireless power transfer between two current carrying coils. The negative permeability slab serves to focus the flux generated in the source coil to the receiver coil, thereby increasing the mutual inductive coupling between the coils. The numerical model is compared with an analytical theory that treats the coils as point dipoles separated by an infinite planar layer of magnetic material [Urzhumov et al...

  3. Superconducting atomic contacts inductively coupled to a microwave resonator

    Janvier, C.; Tosi, L.; Girit, Ç. Ö.; Goffman, M.F.; Pothier, H.; Urbina, C.

    2014-01-01

    We describe and characterize a microwave setup to probe the Andreev levels of a superconducting atomic contact. The contact is part of a superconducting loop inductively coupled to a superconducting coplanar resonator. By monitoring the resonator reflection coefficient close to its resonance frequency as a function of both flux through the loop and frequency of a second tone we perform spectroscopy of the transition between two Andreev levels of highly transmitting channels of the contact. Th...

  4. Interference analysis on resonant inductive coupled wireless power transfer

    Bou Balust, Elisenda; Alarcón Cot, Eduardo José; Sedwick, Raymond; Fisher, Peter

    2013-01-01

    Resonant Inductive Coupling Wireless Power Transfer is a key technology to provide an efficient and harmless wireless energy channel to consumer electronics, biomedical implants and wireless sensor networks. However, there are two factors that are limiting the applicability of this technology: the effects of distance variation between transmitter and receiver and the effects of interfering objects. While distance variation in WPT has been thoroughly studied, the effects of interfering objects...

  5. Coupled Aeroheating and Ablative Thermal Response Simulation Tool Project

    National Aeronautics and Space Administration — A predictive tool with tight coupling of the fluid and thermal physics will give insights into the conservatism of the uncoupled design process and could lead to...

  6. Volumetric loss quantification using ultrasonic inductively coupled transducers

    Gong, Peng; Hay, Thomas R.; Greve, David W.; Oppenheim, Irving J.

    2015-03-01

    The pulse-echo method is widely used for plate and pipe thickness measurement. However, the pulse echo method does not work well for detecting localized volumetric loss in thick-wall tubes, as created by erosion damage, when the morphology of volumetric loss is irregular and can reflect ultrasonic pulses away from the transducer, making it difficult to detect an echo. In this paper, we propose a novel method using an inductively coupled transducer to generate longitudinal waves propagating in a thick-wall aluminum tube for the volumetric loss quantification. In the experiment, longitudinal waves exhibit diffraction effects during the propagation which can be explained by the Huygens-Fresnel principle. The diffractive waves are also shown to be significantly delayed by the machined volumetric loss on the inside surface of the thick-wall aluminum tube. It is also shown that the inductively coupled transducers can generate and receive similar ultrasonic waves to those from wired transducers, and the inductively coupled transducers perform as well as the wired transducers in the volumetric loss quantification when other conditions are the same.

  7. Radionuclide determination in environmental samples by inductively coupled plasma mass spectrometry

    The determination of naturally occurring and anthropogenic radionuclides in the environment by inductively coupled plasma mass spectrometry has gained recognition over the last fifteen years, relative to radiometric techniques, as the result of improvement in instrumental performance, sample introduction equipment, and sample preparation. With the increase in instrumental sensitivity, it is now possible to measure ultratrace levels (fg range) of many radioisotopes, including those with half-lives between 1 and 1000 years, without requiring very complex sample pre-concentration schemes. However, the identification and quantification of radioisotopes in environmental matrices is still hampered by a variety of analytical issues such as spectral (both atomic and molecular ions) and non-spectral (matrix effect) interferences and instrumental limitations (e.g., abundance sensitivity). The scope of this review is to highlight recent analytical progress and issues associated with the determination of radionuclides by inductively coupled plasma mass spectrometry. The impact of interferences, instrumental limitations (e.g., degree of ionization, abundance sensitivity, detection limits) and low sample-to-plasma transfer efficiency on the measurement of radionuclides by inductively coupled plasma mass spectrometry will be described. Solutions that overcome these issues will be discussed, highlighting their pros and cons and assessing their impact on the measurement of environmental radioactivity. Among the solutions proposed, mass and chemical resolution through the use of sector-field instruments and chemical reactions/collisions in a pressurized cell, respectively, will be described. Other methods, such as unique sample introduction equipment (e.g., laser ablation, electrothermal vaporisation, high efficiency nebulization) and instrumental modifications/optimizations (e.g., instrumental vacuum, radiofrequency power, guard electrode) that improve sensitivity and performance

  8. Ablation range of focusing delivery devices coupled to pulsed CO2 lasers: implications for intracorporeal application

    Verdaasdonck, Rudolf M.; van Swol, Christiaan F. P.

    1996-05-01

    For intracorporeal CO2 laser surgery, the laser beam is usually delivered through long focal length optics coupled to an operating microscope or an endoscope. While the target tissue is in focus for viewing, the power density in the spot of the beam can be affected by defocusing or irradiating tissue under a small angle of incidence. When the beam is used to drill a channel (e.g. transmyocardial revascularization, TMR), the power density along the beam will determine the shape of the channel. The area for effective ablation was studied for an ultra-pulsed CO2 laser beam in combination with devices accommodating optics with focal lengths of 120 to 450 mm. The position of the ablation threshold along the waist of the beam in water and crater depths in (model) tissue were determined in relation to pulse energy (1 to 250 mJ) and angle of incidence. The crater formation during ablation of the model tissue and lateral thermal effects were recorded using fast photography and a thermal-imaging method based on Schlieren techniques. Using Gaussian beam theory, the ablation area in the beam of these optical systems was calculated. For the highest energies, the ablation area extended over a length up to 60 mm resulting in the formation of channels of similar length within several pulses. In the waist of the beam, the channels were only 100 - 300 micrometers with minimal thermal effects laterally. Away from the focus, more pulses were needed, larger diameter channels were formed and thermal effects became more pronounced. The theoretical predicted ablation area was in correspondence with of the measurements. For the beam delivery devices studied, tissue effects are along the `depth of focus' of viewing due to the relatively long `ablation waist' of the focused laser beam. However, for superficial applications, the depth of the narrow ablation craters is hard to appreciate and tissues in the depth can easily be perforated. Ablation is more controlled using larger spot sizes (> 0

  9. Double-pulse laser ablation coupled to laser-induced breakdown spectroscopy

    Laser ablation coupled to laser-induced breakdown spectroscopy (LA-LIBS) is an analytical method, which minimizes sample matrix effects typically found in quantitative LIBS-based direct solid analyses. This paper reports the application of double-pulse laser ablation (DP-LA) to improve the analyte response and the achievable precisions of LA-LIBS. Two coaxial laser beams were applied at the ablation site and the analytical signals were then collected from a second free-standing LIBS plasma downstream of the ablation site. Signal improvements of up to one order of magnitude were observed compared to single-pulse LA-LIBS. The effect of the interpulse delay on the observed signal-to-noise ratios was studied and the quantification capabilities of the optimized DP-LA-LIBS setup were investigated for manganese and iron in a broad range of different alloy types. A linear response was observed for manganese across the different matrices, allowing for nonmatrix-matched calibrations. Matrix effects were observed when analyzing aluminum samples, which, however, could be compensated for by applying iron as internal standard. Size distributions of the ablated material and electron density measurements provide additional insight into the double-pulse process, with additional future work suggested. - Highlights: • Double-pulse laser ablation was coupled to laser-induced breakdown spectroscopy. • Nonmatrix-matched calibration of manganese in various alloys was performed. • Improved sensitivities and precisions compared to single-pulse LA were demonstrated. • Remaining matrix effects and internal standardization are discussed

  10. Fundamental and methodological investigations for the improvement of elemental analysis by inductively coupled plasma mass soectrometry

    Ebert, Christopher Hysjulien [Ames Lab., Ames, IA (United States)

    2012-01-01

    This dissertation describes a variety of studies meant to improve the analytical performance of inductively coupled plasma mass spectrometry (ICP-MS) and laser ablation (LA) ICP-MS. The emission behavior of individual droplets and LA generated particles in an ICP is studied using a high-speed, high frame rate digital camera. Phenomena are observed during the ablation of silicate glass that would cause elemental fractionation during analysis by ICP-MS. Preliminary work for ICP torch developments specifically tailored for the improvement of LA sample introduction are presented. An abnormal scarcity of metal-argon polyatomic ions (MAr{sup +}) is observed during ICP-MS analysis. Evidence shows that MAr{sup +} ions are dissociated by collisions with background gas in a shockwave near the tip of the skimmer cone. Method development towards the improvement of LA-ICP-MS for environmental monitoring is described. A method is developed to trap small particles in a collodion matrix and analyze each particle individually by LA-ICP-MS.

  11. Depth profiling of nanometer thin layers by pulsed micro-discharge with inductively coupled plasma mass spectrometry

    A depth profile technique has been developed for ultrathin layer analysis by combining a pulsed micro-discharge device with inductively coupled plasma mass spectrometry (ICPMS). With a tungsten needle as the anode and the sample as the cathode, a local micro-plasma was formed in the 50 μm discharge gap, which contributed to the ablation of the sample. We analyzed a series of Ni coating samples with thicknesses of 5, 10, 15, and 20 nm in this study. Although the micro-discharge was shown to be an arc, pulsed mode operation provided an extra control over the power output and the discharge time that enabled precision ablation of submillimeter in lateral scale and 0.6 nm in depth per pulse. A further attempt was made to demonstrate the ability in thickness determination using the calibration curve for layers of different thicknesses. Our results show that the pulsed micro-discharge could directly ablate a solid sample under ambient conditions and that it is an effective low-cost method for depth profiling of nanometer thin layers. - Highlights: • Depth profile technique has been developed for ultrathin layer analysis. • Pulsed micro-discharge was used for solid surface sampling. • Discharge can be controlled by voltage, pulse width, and frequency. • Ablation rate can be controlled, 0.6 nm in depth per pulse was achieved. • Thickness determination using the calibration curve was demonstrated

  12. Depth profiling of nanometer thin layers by pulsed micro-discharge with inductively coupled plasma mass spectrometry

    Cheng, Xiaoling; Li, Weifeng [Department of Chemistry and the MOE Key Lab of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005 (China); Hang, Wei, E-mail: weihang@xmu.edu.cn [Department of Chemistry and the MOE Key Lab of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005 (China); State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361005 (China); Huang, Benli [Department of Chemistry and the MOE Key Lab of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005 (China)

    2015-09-01

    A depth profile technique has been developed for ultrathin layer analysis by combining a pulsed micro-discharge device with inductively coupled plasma mass spectrometry (ICPMS). With a tungsten needle as the anode and the sample as the cathode, a local micro-plasma was formed in the 50 μm discharge gap, which contributed to the ablation of the sample. We analyzed a series of Ni coating samples with thicknesses of 5, 10, 15, and 20 nm in this study. Although the micro-discharge was shown to be an arc, pulsed mode operation provided an extra control over the power output and the discharge time that enabled precision ablation of submillimeter in lateral scale and 0.6 nm in depth per pulse. A further attempt was made to demonstrate the ability in thickness determination using the calibration curve for layers of different thicknesses. Our results show that the pulsed micro-discharge could directly ablate a solid sample under ambient conditions and that it is an effective low-cost method for depth profiling of nanometer thin layers. - Highlights: • Depth profile technique has been developed for ultrathin layer analysis. • Pulsed micro-discharge was used for solid surface sampling. • Discharge can be controlled by voltage, pulse width, and frequency. • Ablation rate can be controlled, 0.6 nm in depth per pulse was achieved. • Thickness determination using the calibration curve was demonstrated.

  13. LLNL large-area inductively coupled plasma (ICP) source: Experiments

    We describe initial experiments with a large (76-cm diameter) plasma source chamber to explore the problems associated with large-area inductively coupled plasma (ICP) sources to produce high density plasmas useful for processing 400-mm semiconductor wafers. Our experiments typically use a 640-nun diameter planar ICP coil driven at 13.56 MHz. Plasma and system data are taken in Ar and N2 over the pressure range 3-50 mtorr. RF inductive power was run up to 2000W, but typically data were taken over the range 100-1000W. Diagnostics include optical emission spectroscopy, Langmuir probes, and B probes as well as electrical circuit measurements. The B and E-M measurements are compared with models based on commercial E-M codes. Initial indications are that uniform plasmas suitable for 400-mm processing are attainable

  14. Systematic analysis and experiment of inductive coupling and induced voltage for inductively coupled wireless implantable neurostimulator application

    The main strategy for wireless power transfer to implantable devices is to use inductive coupling technology. The induced voltage of implanted devices highly depends on factors such as mutual inductance between the external transmitter coil and the receiver coil, quality factor of the receiver circuit and operation frequency. In this paper, the mutual inductance under a variety of geometries of external coil and under the condition of different vertical distances, lateral displacements and angular misalignments between two coils were theoretically calculated and simulated. To ascertain the condition of maximum power transmission for certain coils’ position requirements, an LC tank (2.7 mm × 2 mm) consisting of a microfabricated gold inductor coil and a small surface mounted capacitor was designed and fabricated as the telemetric part of a neurostimulator. The induced voltage of the LC tank was measured in both air and artificial tissue media under different sizes of power coil and operation frequencies. As a result, the optimum size of a transmitter coil is selected to be of 4 mm inner radius with six turns of coil, while the whole coupling system operates at 94 MHz resonant frequency within 5–11 mm vertical distance, 0–4 mm lateral and 0°–50° angular misalignment between two coils. With the change of the above coils’ positions, the measured induced voltage drops within 30%, satisfying the surgical requirement for neurostimulator implantation. (paper)

  15. SU-8 etching in inductively coupled oxygen plasma

    Rasmussen, Kristian Hagsted; Keller, Stephan Sylvest; Jensen, Flemming;

    2013-01-01

    Structuring or removal of the epoxy based, photo sensitive polymer SU-8 by inductively coupled plasma reactive ion etching (ICP-RIE) was investigated as a function of plasma chemistry, bias power, temperature, and pressure. In a pure oxygen plasma, surface accumulation of antimony from the photo......-initiator introduced severe roughness and reduced etch rate significantly. Addition of SF6 to the plasma chemistry reduced the antimony surface concentration with lower roughness and higher etch rate as an outcome. Furthermore the etch anisotropy could be tuned by controlling the bias power. Etch rates up to 800 nm...

  16. Quantum Effects of Mesoscopic Inductance and Capacity Coupling Circuits

    LIU Jian-Xin; AN Zhan-Yuan; SONG Yong-Hua

    2006-01-01

    Using the quantum theory for a mesoscopic circuit based on the discretenes of electric charges, the finitedifference Schrodinger equation of the non-dissipative mesoscopic inductance and capacity coupling circuit is achieved.The Coulomb blockade effect, which is caused by the discreteness of electric charges, is studied. Appropriately choose the components in the circuits, the finite-difference Schrodinger equation can be divided into two Mathieu equations in p representation. With the WKBJ method, the currents quantum fluctuations in the ground states of the two circuits are calculated. The results show that the currents quantum zero-point fluctuations of the two circuits are exist and correlated.

  17. Superconducting atomic contacts inductively coupled to a microwave resonator

    Janvier, C.; Tosi, L.; Girit, Ç. Ö.; Goffman, M. F.; Pothier, H.; Urbina, C.

    2014-11-01

    We describe and characterize a microwave setup to probe the Andreev levels of a superconducting atomic contact. The contact is part of a superconducting loop inductively coupled to a superconducting coplanar resonator. By monitoring the resonator reflection coefficient close to its resonance frequency as a function of both flux through the loop and frequency of a second tone we perform spectroscopy of the transition between two Andreev levels of highly transmitting channels of the contact. The results indicate how to perform coherent manipulation of these states.

  18. A double inductively coupled plasma for sterilization of medical devices

    A double inductively coupled low pressure plasma for sterilization of bio-medical materials is introduced. It is developed for homogeneous treatment of three-dimensional objects. The short treatment times and low temperatures allow the sterilization of heat sensitive materials like ultra-high-molecular-weight-polyethylene or polyvinyl chloride. Using a non-toxic atmosphere reduces the total process time in comparision with common methods. Langmuir probe measurements are presented to show the difference between ICP- and CCP-mode discharges, the spatial homogeneity and the influence on the sterilization efficiency. To know more about the sterilization mechanisms optical emission is measured and correlated with sterilization results

  19. Development of a low-cost inductively coupled argon plasma

    The aim of this investigation is to drastically reduce running costs of an inductively coupled plasma. This is done by reducing the argon consumption from 20 l/min to about 1 l/min. First, a sample introduction system operating on 0.1 l/min of carrier argon is described. This system ensures a high ratio of plasma argon and carrier argon even at the low total argon consumptions intended. Next, the developed low consumption plasma is presented. In the proposed design, air is blown perpendicularly against the outside of the torch. A different coil has been developed to make air-cooling efficient. Preliminary data on coupling efficiency for the air-cooled plasma are presented. A similarly low argon consumption has been achieved with water as an external coolant medium. It is concluded that a cheaper alternative to the current ICP has become available. (Auth.)

  20. Microwave Kinetic Inductance Detector with Selective Polarization Coupling

    Wollack, Edward; U-yen, Kongpop; Stevenson, Thomas; Brown, Ari; Moseley, Samuel; Hsieh, Wen-Ting

    2013-01-01

    A conventional low-noise detector requires a technique to both absorb incident power and convert it to an electrical signal at cryogenic temperatures. This innovation combines low-noise detector and readout functionality into one device while maintaining high absorption, controlled polarization sensitivity, and broadband detection capability. The resulting far-infrared detectors can be read out with a simple approach, which is compact and minimizes thermal loading. The proposed microwave kinetic inductance detector (MKID) consists of three basic elements. The first is the absorptive section in which the incident power is coupled to a superconducting resonator at far-infrared frequency above its superconducting critical frequency (where superconductor becomes normal conductor). This absorber's shape effectively absorbs signals in the desired polarization state and is resonant at the radio frequency (RF) used for readout of the device. Control over the metal film used in the absorber allows realization of structures with either a 50% broadband or 100% resonance absorptance over a 30% fractional bandwidth. The second element is a microwave resonator - which is realized from the thin metal films used to make the absorber as transmission lines - whose resonance frequency changes due to a variation in its kinetic inductance. The resonator's kinetic inductance is a function of the power absorbed by the device. A low-loss dielectric (mono-crystalline silicon) is used in a parallel-plate transmission line structure to realize the desired superconducting resonators. There is negligible coupling among the adjacent elements used to define the polarization sensitivity of each detector. The final component of the device is a microwave transmission line, which is coupled to the resonator, and allows detection of changes in resonance frequency for each detector in the focal plane array. The spiral shape of the detector's absorber allows incident power with two polarizations to

  1. Extended-field electromagnetic model for inductively coupled plasma

    An extended-field (EF), two dimensional (2D) model formulation is proposed for inductively coupled plasma. By extending the calculating domain of the electromagnetic (EM) field outside of the plasma discharge region, the boundary conditions of vector potential used by the standard (ST) 2D model are replaced by simpler far field boundary conditions. The extended model converges faster than the standard formulation and gives rise to consistent solutions throughout the computational domain. Vector potential equations are solved with corresponding continuity, momentum, and energy transfer equations using the commercial code 'FLUENT'. The computational domain for vector potential equations are extended well beyond the induction coil region, while for all the other equations, computations are limited to the discharge region inside the plasma confinement tube. The computational results are compared with those obtained using the ST 2D model. The difference between the results of the two models is noted mostly in the entrance regions of the flow, and close to the induction coil. To validate the EF model, a load with constant electric conductivity is placed centrally in the coil region and the calculated radial profile of the axial magnetic field is compared with existing analytical solutions. The results are in good agreement within an uncertainty of 1%. (author)

  2. Uranium isotopic ratio measurements ({sup 235}U/{sup 238}U) by laser ablation high resolution inductively coupled plasma mass spectrometry for environmental radioactivity monitoring - {sup 235}U/{sup 238}U isotope ratio analysis by LA-ICP-MS-HR for environmental radioactivity monitoring

    David, K.; Mokili, M.B.; Rousseau, G.; Deniau, I.; Landesman, C. [SUBATECH, Ecole des Mines de Nantes, Universite de Nantes, CNRS/IN2P3, 4 rue Alfred Kastler, 44307 Nantes cedex 3 (France)

    2014-07-01

    The protection of the aquatic and terrestrial environments from a broad range of contaminants spread by nuclear activities (nuclear plants, weapon tests or mining) require continuous monitoring of long-lives radionuclides that were released into the environment. The precise determination of uranium isotope ratios in both natural and potential contaminated samples is of primary concern for the nuclear safeguards and the control of environmental contamination. As an example, analysis of environmental samples around nuclear plants are carried out to detect the traces in the environment originating from nuclear technology activities. This study deals with the direct analysis of {sup 235}U/{sup 238}U isotope ratios in real environmental solid samples performed with laser ablation (LA)-HR-ICP-MS. A similar technique has already been reported for the analysis of biological samples or uranium oxide particles [1,2] but to our knowledge, this was never applied on real environmental samples. The high sensitivity, rapid acquisition time and low detection limits are the main advantages of high resolution ICP-MS for accurate and precise isotope ratio measurements of uranium at trace and ultra-trace levels. In addition, the use of laser ablation allows the analysis of solid samples with minimal preparation. A a consequence, this technique is very attractive for conducting rapid direct {sup 235}U/{sup 238}U isotope ratio analysis on a large set of various matrix samples likely to be encountered in environmental monitoring such as corals, soils, sands, sediments, terrestrial and marine bio-indicators. For the present study, LA-ICP-MS-HR analyses are performed using a New Wave UP213 nano-second Nd:YAG laser coupled to a Thermo Element-XR high resolution mass spectrometer. Powdered samples are compacted with an hydraulic press (5 tons) in order to obtain disk-shaped pellet (10-13 mm in diameter and 2 mm in thickness). The NIST612 reference glass is used for LA-ICP-MS-HR tuning and as

  3. Inductively coupled plasma mass spectrometry (ICP-MS)

    The period of investigation for the previous general remarks on the progress of ICP-MS was from January, 1991 to September, 1993. In the investigation of this time, for the object of the Chemical Abstracts from January, 1994 to September, 1996, retrieval was carried out by using the STN International. As the key words, ICP-MS, Inductively Coupled Plasma Mass Spectrometry or Inductively Coupled Plasma Mass Spectrometer was used. The number of hit was 373 in 1994, 462 in 1995, and 356 as of September, 1996, 1191 in total. The cumulative number of the papers from 1980 to 1996 is shown. It is known how rapidly the ICP-MS has pervaded as the means of analysis. In order to cope with the enormous number of papers, this time, it was decided to do the review by limiting to the papers which were published in the main journals deeply related to analytical chemistry. As to the tendency in the last three years, it is summarized as how to overcome the spectrum interference and matrix effect in the ICP-MS and the trend of using the ICP-MS as the high sensitivity detector for separation techniques. The technical basic research of the ICP-MS on spectrum interference, sample introduction method and others and the analysis of living body samples are reported. (K.I.)

  4. Using Some Coupled Numerical Models in Problems of Designing an Inductive Electrothermal Equipment

    LEUCA Teodor

    2014-05-01

    Full Text Available This paper focuses on the numerical modeling of coupling the electromagnetic and the thermal field, in the process of inductive heating, for inductive electrothermal equipments. Numerical results are carried out by using a FLUX2D application.

  5. Progress in determination of long-lived radionuclides by inductively coupled plasma mass spectrometry

    Mass spectrometric methods (such as inductively coupled plasma mass spectrometry - ICP-MS and laser ablation (LA)-ICP-MS) with their ability to provide a very sensitive multielemental and precise isotopic analysis have become established for the determination of radionuclides in quite different sample materials. The determination of long-lived radionuclides is of increasing interest for the characterization of radioactive waste materials and for the detection of radionuclide contamination in environmental materials in which several radioactive nuclides are present from fallout due to nuclear weapons testing, nuclear power plants or nuclear accidents. Due to its multielement capability, excellent sensitivity, low detection limits (up to sub pg I1 range), very good precision, easy sample preparation and measurement procedures ICP-MS of aqueous solutions has been increasingly applied for the ultrasensitive determination of long-lived radionuclides such as 99Tc, 129I, 230Th, 232Th, 234U, 235U, 236U, 239Pu, 240Pu and 241Am and precise isotope ratio measurements of U,Th and Pu. The application especially of microanalytical methods (analysis of some MU by flow injection and on-line coupling techniques as capillary electrophoresis (CE-ICP-MS) or HPLC-ICP-MS) for the precise determination nuclide abundances and concentration of long-lived radionuclides at ultra trace concentration levels in radioactive waste and also for controlling contamination from radioactive waste in the environment is a challenging task

  6. Study of laser ablation inductively coupled plasma mass spectrometry in heavy metal analysis of coatings%激光剥蚀电感耦合等离子体质谱在涂料重金属分析中的应用

    张锁慧; 楚民生; 周韵; 林苗

    2013-01-01

    Coupled laser ablation sampling technology with a ICP-MS detector, the LA-ICP-MS technology was applied in heavy metal element analysis of coatings in this paper. The operating parameters of LA and ICP-MS were optimized step by step, and by employing dual gas flow calibration technique as well as taking both 13 C and 103Rh as internal standards, the element signal intensity and stability were greatly improved. Besides, the fractionation and memory effects were also studied. Finally, the method of quantitative analysis for Cr, As, Cd, Sn, Sb, Hg, Pb elements in coatings was established. The results detected by this method agreed with those by ICP-OES with wet digestion sampling. It is shown that this detection method is fast and effective in screening large quantities of coatings, and may contribute to the expansion of its application in solid materials.%将激光剥蚀进样技术(LA)与ICP-MS检测器联用,并将这一新技术应用在涂料重金属元素的检测上,通过优化LA和ICP-MS参数,并采用双气流校正技术,以13C、103Rh为双内标,有效地改善了信号强度和稳定性,同时对Hg的记忆效应进行研究,最终建立了LA-ICP-MS法测定涂料中Cr、As、Cd、Sn、Sb、Hg、Pb元素的定量分析方法,样品测定结果与湿法消解ICP-OES法基本吻合.

  7. Computational study of nanosecond pulsed laser ablation and the application to momentum coupling

    Yuan Hong; Tong Huifeng; Li Mu; Sun Chengwei [Institute of Fluid Physics, Chinese Academy of Engineering Physics, P.O. Box 919-113, Mianyang, Sichuan 621900 (China)

    2012-07-15

    During the evaporation and ablation of a matter induced by intensive laser radiation, the vapor plasma is ejected from the surface of the target which induces the recoil pressure and impulse in the target. Impulse coupling of laser beams with matter has been extensively studied as the basis of laser propulsion and laser clearing space debris. A one-dimensional (1D) bulk absorption model to simulate the solid target ablated directly by the laser beam is presented; numerical calculation of impulse acting on the target in vacuum with different laser parameters is performed with fluid dynamics theory and 1D Lagrange difference scheme. The calculated results of the impulse coupling coefficients are in good agreement with the experimental results and Phipps' empirical value. The simulated results show that the mechanical coupling coefficients decrease with the increment of laser intensity when the laser pulses generate plasma. The present model can be applied when the laser intensity is 10{sup 8} - 10{sup 10} W/cm{sup 2}, which will provide a guide to the study of momentum coupling of laser beams with matter.

  8. Endometrial ablation

    Hysteroscopy-endometrial ablation; Laser thermal ablation; Endometrial ablation-radiofrequency; Endometrial ablation-thermal balloon ablation; Rollerball ablation; Hydrothermal ablation; Novasure ablation

  9. Exchange-coupled magnetic nanoparticles for efficient heat induction

    Lee, Jae-Hyun; Jang, Jung-Tak; Choi, Jin-Sil; Moon, Seung Ho; Noh, Seung-Hyun; Kim, Ji-Wook; Kim, Jin-Gyu; Kim, Il-Sun; Park, Kook In; Cheon, Jinwoo

    2011-07-01

    The conversion of electromagnetic energy into heat by nanoparticles has the potential to be a powerful, non-invasive technique for biotechnology applications such as drug release, disease treatment and remote control of single cell functions, but poor conversion efficiencies have hindered practical applications so far. In this Letter, we demonstrate a significant increase in the efficiency of magnetic thermal induction by nanoparticles. We take advantage of the exchange coupling between a magnetically hard core and magnetically soft shell to tune the magnetic properties of the nanoparticle and maximize the specific loss power, which is a gauge of the conversion efficiency. The optimized core-shell magnetic nanoparticles have specific loss power values that are an order of magnitude larger than conventional iron-oxide nanoparticles. We also perform an antitumour study in mice, and find that the therapeutic efficacy of these nanoparticles is superior to that of a common anticancer drug.

  10. Transition of electron kinetics in weakly magnetized inductively coupled plasmas

    Transition of the electron kinetics from nonlocal to local regime was studied in weakly magnetized solenoidal inductively coupled plasma from the measurement of the electron energy probability function (EEPF). Without DC magnetic field, the discharge property was governed by nonlocal electron kinetics at low gas pressure. The electron temperatures were almost same in radial position, and the EEPFs in total electron energy scale were radially coincided. However, when the DC magnetic field was applied, radial non-coincidence of the EEPFs in total electron energy scale was observed. The electrons were cooled at the discharge center where the electron heating is absent, while the electron temperature was rarely changed at the discharge boundary with the magnetic field. These changes show the transition from nonlocal to local electron kinetics and the transition is occurred when the electron gyration diameter was smaller than the skin depth. The nonlocal to local transition point almost coincided with the calculation results by using nonlocal parameter and collision parameter

  11. A new nebulizer for inductively coupled plasma spectrometry

    A nebulizer for use in Inductively Coupled Plasma Emission Spectroscopy (ICP-ES) is designed. An unusual concept is used to generate the aerosol. The system is mechanically reliable, relatively simple and cheap to construct compared to the currently available commercial systems. The effect of geometrical design parameters (e.g. the droplet size mass distribution of the aerosol particles) on performance of the system is presented. The analytical merit of the newly designed system is determined by measuring its analytical performance. Detection limits and analytical range are measured for Cu, Ag, Au, Pt, Pb, Cd, V, Fe, Mn, Mo, B, Se and Zn. These values are compared with detection limits and analytical ranges obtained with commercial systems. The persistence of memory effects is found to be the major disadvantage of the system. Results are presented showing these effects and possible ways to eliminate them. (author)

  12. Monitoring microbial metabolites using an inductively coupled resonance circuit

    Karnaushenko, Daniil; Baraban, Larysa; Ye, Dan; Uguz, Ilke; Mendes, Rafael G.; Rümmeli, Mark H.; de Visser, J. Arjan G. M.; Schmidt, Oliver G.; Cuniberti, Gianaurelio; Makarov, Denys

    2015-08-01

    We present a new approach to monitor microbial population dynamics in emulsion droplets via changes in metabolite composition, using an inductively coupled LC resonance circuit. The signal measured by such resonance detector provides information on the magnetic field interaction with the bacterial culture, which is complementary to the information accessible by other detection means, based on electric field interaction, i.e. capacitive or resistive, as well as optical techniques. Several charge-related factors, including pH and ammonia concentrations, were identified as possible contributors to the characteristic of resonance detector profile. The setup enables probing the ionic byproducts of microbial metabolic activity at later stages of cell growth, where conventional optical detection methods have no discriminating power.

  13. High voltage breakdown in an inductively coupled ion source

    An inductively coupled plasma source, designed for ion beam applications, is allowed to float up to several kilovolt positive. If one side of the radio frequency (rf) antenna is grounded and the dielectric source tube and the surrounding air are allowed to reach a threshold temperature corona breakdown at the rf antenna occurs. The experiments presented here show that a dc corona can be ignited with the presence of a dielectric barrier, which normally precludes dc breakdown. The formation of a negative barrier corona initiates a transition to a continuous arc from the rf antenna to the source tube. It is suggested that the onset of the first filaments heat the dielectric locally, such that the dielectric strength drops. DC current channels are then formed in the source tube, allowing a resistive corona with continuous arcs to exist

  14. Molecular Nitrogen Vibrational Temperature in an Inductively Coupled Plasma

    康正德; 蒲以康

    2002-01-01

    Using a technique applied previously to vibrationally excited molecular nitrogen (N*2) in the region of daytime and nighttime aurora, the emission intensity of the N2 second positive band system in an inductively coupled plasma (ICP) has been analysed and the vibrational temperature of nitrogen molecules in the ICP is thus determined. The result shows that the vibrational temperature increases with the increase of the neutral gas pressure from 0.04Pa to 10Pa, then decreases with the further increase of the pressure from 10Pa to 100Pa. Also,this is explained by using the Boltzmann relation between the vibrational temperature and the concentration of the vibrationally excited N*2(X1∑+g ) molecules.

  15. Matrix effects in inductively coupled plasma mass spectrometry

    Chen, Xiaoshan

    1995-07-07

    The inductively coupled plasma is an electrodeless discharge in a gas (usually Ar) at atmospheric pressure. Radio frequency energy generated by a RF power source is inductively coupled to the plasma gas through a water cooled load coil. In ICP-MS the {open_quotes}Fassel{close_quotes} TAX quartz torch commonly used in emission is mounted horizontally. The sample aerosol is introduced into the central flow, where the gas kinetic temperature is about 5000 K. The aerosol is vaporized, atomized, excited and ionized in the plasma, and the ions are subsequently extracted through two metal apertures (sampler and skimmer) into the mass spectrometer. In ICP-MS, the matrix effects, or non-spectroscopic interferences, can be defined as the type of interferences caused by dissolved concomitant salt ions in the solution. Matrix effects can be divided into two categories: (1) signal drift due to the deposition of solids on the sampling apertures; and/or (2) signal suppression or enhancement by the presence of the dissolved salts. The first category is now reasonably understood. The dissolved salts, especially refractory oxides, tend to deposit on the cool tip of the sampling cone. The clogging of the orifices reduces the ion flow into the ICP-MS, lowers the pressure in the first stage of ICP-MS, and enhances the level of metal oxide ions. Because the extent of the clogging increases with the time, the signal drifts down. Even at the very early stage of the development of ICP-MS, matrix effects had been observed. Houk et al. found out that the ICP-MS was not tolerant to solutions containing significant amounts of dissolved solids.

  16. Matrix effects in inductively coupled plasma mass spectrometry

    The inductively coupled plasma is an electrodeless discharge in a gas (usually Ar) at atmospheric pressure. Radio frequency energy generated by a RF power source is inductively coupled to the plasma gas through a water cooled load coil. In ICP-MS the open-quotes Fasselclose quotes TAX quartz torch commonly used in emission is mounted horizontally. The sample aerosol is introduced into the central flow, where the gas kinetic temperature is about 5000 K. The aerosol is vaporized, atomized, excited and ionized in the plasma, and the ions are subsequently extracted through two metal apertures (sampler and skimmer) into the mass spectrometer. In ICP-MS, the matrix effects, or non-spectroscopic interferences, can be defined as the type of interferences caused by dissolved concomitant salt ions in the solution. Matrix effects can be divided into two categories: (1) signal drift due to the deposition of solids on the sampling apertures; and/or (2) signal suppression or enhancement by the presence of the dissolved salts. The first category is now reasonably understood. The dissolved salts, especially refractory oxides, tend to deposit on the cool tip of the sampling cone. The clogging of the orifices reduces the ion flow into the ICP-MS, lowers the pressure in the first stage of ICP-MS, and enhances the level of metal oxide ions. Because the extent of the clogging increases with the time, the signal drifts down. Even at the very early stage of the development of ICP-MS, matrix effects had been observed. Houk et al. found out that the ICP-MS was not tolerant to solutions containing significant amounts of dissolved solids

  17. Magnetic superlens-enhanced inductive coupling for wireless power transfer

    Huang, Da; Urzhumov, Yaroslav; Smith, David R.; Hoo Teo, Koon; Zhang, Jinyun

    2012-03-01

    We investigate numerically the use of a negative-permeability "perfect lens" for enhancing wireless power transfer between two current carrying coils. The negative permeability slab serves to focus the flux generated in the source coil to the receiver coil, thereby increasing the mutual inductive coupling between the coils. The numerical model is compared with an analytical theory that treats the coils as point dipoles separated by an infinite planar layer of magnetic material [Urzhumov et al., Phys. Rev. B 19, 8312 (2011)]. In the limit of vanishingly small radius of the coils, and large width of the metamaterial slab, the numerical simulations are in excellent agreement with the analytical model. Both the idealized analytical and realistic numerical models predict similar trends with respect to metamaterial loss and anisotropy. Applying the numerical models, we further analyze the impact of finite coil size and finite width of the slab. We find that, even for these less idealized geometries, the presence of the magnetic slab greatly enhances the coupling between the two coils, including cases where significant loss is present in the slab. We therefore conclude that the integration of a metamaterial slab into a wireless power transfer system holds promise for increasing the overall system performance.

  18. Inductively Coupled Plasma Zoom-Time-of-Flight Mass Spectrometry

    Dennis, Elise A.; Ray, Steven J.; Enke, Christie G.; Hieftje, Gary M.

    2016-03-01

    A zoom-time-of-flight mass spectrometer has been coupled to an inductively coupled plasma (ICP) ionization source. Zoom-time-of-flight mass spectrometry (zoom-TOFMS) combines two complementary types of velocity-based mass separation. Specifically, zoom-TOFMS alternates between conventional, constant-energy acceleration (CEA) TOFMS and energy-focused, constant-momentum acceleration (CMA) (zoom) TOFMS. The CMA mode provides a mass-resolution enhancement of 1.5-1.7× over CEA-TOFMS in the current, 35-cm ICP-zoom-TOFMS instrument geometry. The maximum resolving power (full-width at half-maximum) for the ICP-zoom-TOFMS instrument is 1200 for CEA-TOFMS and 1900 for CMA-TOFMS. The CMA mode yields detection limits of between 0.02 and 0.8 ppt, depending upon the repetition rate and integration time—compared with single ppt detection limits for CEA-TOFMS. Isotope-ratio precision is shot-noise limited at approximately 0.2% relative-standard deviation (RSD) for both CEA- and CMA-TOFMS at a 10 kHz repetition rate and an integration time of 3-5 min. When the repetition rate is increased to 43.5 kHz for CMA, the shot-noise limited, zoom-mode isotope-ratio precision is improved to 0.09% RSD for the same integration time.

  19. An inductively coupled miniature plasma jet source at microwave frequencies

    A miniature double plasma jet source driven at microwave frequencies (∼2.45 GHz) was developed and analyzed. The source consists of a copper resonator (screened within an aluminum housing) that excites plasma simultaneously in two alumina tubes of 5 mm internal diameter. Field and plasma simulations were performed using the software Comsol. Assuming a homogeneous electron distribution we calculate the plasma impedance as a function of its conductivity. The electron density and the plasma conductivity are estimated as a function of the absorbed power in plasma for argon and oxygen. Experimentally it was shown that the microwave energy is coupled into oxygen plasma with an efficiency of >85% and into argon plasma with ∼30%. The source efficiently produces atomic oxygen and nitrogen as is demonstrated by plasma-enhanced atomic layer deposition. Finally, the time evolution during ignition, the transition from low efficient capacitive to highly efficient inductive coupling, the free electron distribution as a function of time and other parameters are analyzed. (paper)

  20. Investigations on Capacitor Compensation Topologies Effects of Different Inductive Coupling Links Configurations

    Norezmi Jamal

    2015-06-01

    Full Text Available This paper presents investigations on capacitor compensation topologies with different inductive coupling links for loosely coupled inductive power transfer (IPT system. In general, the main constraint of the loosely coupled IPT system is power losses due to the large leakage inductances. Therefore, to overcome the aforementioned problem, in this work, capacitor compensation is proposed to be used by adding an external capacitor to the system. By using this approach, the resonant inductive coupling can be achieved efficiently and hence the efficiency of the system is also increased significantly. This paper analyzes the performance of two different compensation topologies, which are primary series-secondary series (SS and primary series- secondary parallel (SP topology. The performance of such topologies is evaluated through the experimental results at 1MHz operating frequency for different types of inductive coupling. From the results, SS topology produces a high power transfer but SP topology gives better efficiency.

  1. Etching of oxynitride thin films using inductively coupled plasma

    In this study, silicon oxynitride (SiON) has been etched in a C2F6 inductively coupled plasma. The process parameters examined include a radio frequency source power, bias power, pressure, and C2F6 flow rate. For process optimization, a statistical experimental design was employed to investigate parameter effects under various plasma conditions. The etch rate increased almost linearly with increasing the source or bias power. Main effect analysis revealed that the etch rate is dominated by the source power. The C2F6 flow rate exerted the least impact on both etch rate and profile angle. It was estimated that the C2F6 effect is transparent only as the etchant is supplied sufficiently. Depending on the pressure levels, the etch rate varied in a complicated way. Parameter effects on the profile angle were very small and the profile angle varied between 83 deg. and 87 deg. for all etching experiments. In nearly all experiments, microtrenching was observed. The etch rate and profile angle, optimized at 1000 W source power, 30 W bias power, 6 mTorr pressure, and 60 sccm C2F6 flow rate, are 434 nm/min and 86 deg., respectively

  2. AETHER: A simulation platform for inductively coupled plasma

    Turkoz, Emre; Celik, Murat

    2015-04-01

    An in-house code is developed to simulate the inductively coupled plasma (ICP). The model comprises the fluid, electromagnetic and transformer submodels. Fluid equations are solved to evaluate the plasma flow parameters, including the plasma and neutral densities, ion and neutral velocities, electron flux, electron temperature, and electric potential. The model relies on the ambipolar approximation and offers the evaluation of plasma parameters without solving the sheath region. The electromagnetic model handles the calculation of the electric and magnetic fields using the magnetic vector potential. The transformer model captures the effect of the matching circuit utilized in laboratory experiments for RF power deposition. The continuity and momentum equations are solved using finite volume method. The energy, electric potential, and magnetic vector potential equations are solved using finite difference method. The resulting linear systems of equations are solved with iterative solvers including Jacobi and GMRES. The code is written using the C++ programming language, it works in parallel and has graphical user interface. The model is applied to study ICP characteristics of a plasma confined within a cylindrical chamber with dielectric walls for two different power deposition cases. The results obtained from the developed model are verified using the plasma module of COMSOL Multiphysics. The model is also applied to a plasma source configuration, and it is demonstrated that there is an overall increase in the plasma potential when current is extracted from ICP with a biased wall electrode.

  3. Negative ion density in inductively coupled chlorine plasmas

    Laser photodetachment spectroscopy has been used to infer the density of chlorine negative ions in an inductively coupled chlorine plasma. Time dependent, excess electron density produced by photodetaching electrons from Cl- was detected by a microwave interferometer operating at 80 GHz. By focusing the microwave probe beam through the center of the discharge, negative ion density measurements could be performed in a small, 1.5 cm3, volume. As the rf power into the plasma increased from 155 to 340 W at 20 mTorr, the Cl- density in the center of the bulk plasma increased from 3.4 to 5.2x1011 cm-3. As the pressure was increased from 15 to 50 mTorr at 240 W, the Cl- density increased from 3.5 to 5x1011 cm3. Over this parameter space, the negative ion density equaled the electron density to within a factor of 2. The negative ion radial distribution was relatively constant, with a 20% decrease in the center of the plasma for some operating conditions. When the surface of the bias electrode was changed from stainless steel to silicon, the electron density remained constant but the Cl- density decreased by a factor of 2 to 3. copyright 1996 American Vacuum Society

  4. Chemically active species in an Oxygen Inductively Coupled Plasma

    Ly, Nathaniel; Boffard, John; Lin, Chun; Wendt, Amy; Radovanov, Svetlana; Persing, Harold; Likhanskii, Alexandre

    2015-09-01

    Oxygen plasmas are used in a wide variety of applications including ion implantation and photoresist striping. Here we combine noninvasive optical emission spectroscopy (OES) measurements and numerical simulations to investigate the plasma parameters in both oxygen inductively coupled plasmas (ICP) and oxygen-argon ICPs. An emission model makes use of available electron impact excitation cross sections for atomic and molecular oxygen to relate measured O and O2+emission intensities to corresponding plasma parameters, including the electron temperature, electron density, and the dissociation fraction of the neutral oxygen. For plasma simulations we use the CRTRS, 2D/3D code that selfconsistently solves for ICP power deposition, electrostatic potential and plasma dynamics in the driftdiffusion approximation (or full momentum equations). Comparison of the experimental OES measurements are used to check the validity of the plasma simulation which yields results that the OES approach has difficulty in measuring including the relative fluxes of O+ and O2+,which is important for ion implantation. The authors acknowledge support from NSF Grant PHY-1068670, and from Dr. Shahid Rauf for developing CRTRS.

  5. Chemical characterization of materials by inductively coupled plasma mass spectrometry

    An Inductively Coupled Plasma Mass Spectrometer was procured for trace elemental determination in diverse samples. Since its installation a number of analytical measurements have been carried out on different sample matrices. These include chemical quality control measurements of nuclear fuel and other materials such as uranium metal. Uranium peroxide, ADU, ThO2, UO2; isotopic composition of B, Li; chemical characterization of simulated ThO2 + 2%UO2 fuel; sodium zirconium phosphate and trace metallic elements in zirconium; Antarctica rock samples and wet phosphoric acid. Necessary separation methodologies required for effective removal of matrix were indigenously developed. In addition, a rigorous analytical protocol, which includes various calibration methodologies such as mass calibration, response calibration, detector cross calibration and linearity check over the entire dynamic range of 109 required for quantitative determination of elements at trace and ultra trace level,, has been standardized. This report summarizes efforts of RACD that have been put in this direction for the application of ICP-MS for analytical measurements. (author)

  6. Three-phase inductive-coupled structures for contactless PHEV charging system

    Lee, Jia-You; Shen, Hung-Yu; Li, Cheng-Bin

    2016-07-01

    In this article, a new-type three-phase inductive-coupled structure is proposed for the contactless plug-in hybrid electric vehicle (PHEV) charging system regarding with SAE J-1773. Four possible three-phase core structures are presented and subsequently investigated by the finite element analysis. To study the correlation between the core geometric parameter and the coupling coefficient, the magnetic equivalent circuit model of each structure is also established. In accordance with the simulation results, the low reluctance and the sharing of flux path in the core material are achieved by the proposed inductive-coupled structure with an arc-shape and three-phase symmetrical core material. It results in a compensation of the magnetic flux between each phase and a continuous flow of the output power in the inductive-coupled structure. Higher coupling coefficient between inductive-coupled structures is achieved. A comparison of coupling coefficient, mutual inductance, and self-inductance between theoretical and measured results is also performed to verify the proposed model. A 1 kW laboratory scale prototype of the contactless PHEV charging system with the proposed arc-shape three-phase inductive-coupled structure is implemented and tested. An overall system efficiency of 88% is measured when two series lithium iron phosphate battery packs of 25.6 V/8.4 Ah are charged.

  7. An investigation of algebraic quantum dynamics for mesoscopic coupled electric circuits with mutual inductance

    Pahlavani, H.; Kolur, E. Rahmanpour

    2016-08-01

    Based on the electrical charge discreteness, the Hamiltonian operator for the mutual inductance coupled quantum mesoscopic LC circuits has been found. The persistent current on two driven coupled mesoscopic electric pure L circuits (two quantum loops) has been obtained by using algebraic quantum dynamic approach. The influence of the mutual inductance on energy spectrum and quantum fluctuations of the charge and current for two coupled quantum electric mesoscopic LC circuits have been investigated.

  8. A tightly coupled non-equilibrium model for inductively coupled radio-frequency plasmas

    The objective of the present work is the development of a tightly coupled magneto-hydrodynamic model for inductively coupled radio-frequency plasmas. Non Local Thermodynamic Equilibrium (NLTE) effects are described based on a hybrid State-to-State approach. A multi-temperature formulation is used to account for thermal non-equilibrium between translation of heavy-particles and vibration of molecules. Excited electronic states of atoms are instead treated as separate pseudo-species, allowing for non-Boltzmann distributions of their populations. Free-electrons are assumed Maxwellian at their own temperature. The governing equations for the electro-magnetic field and the gas properties (e.g., chemical composition and temperatures) are written as a coupled system of time-dependent conservation laws. Steady-state solutions are obtained by means of an implicit Finite Volume method. The results obtained in both LTE and NLTE conditions over a broad spectrum of operating conditions demonstrate the robustness of the proposed coupled numerical method. The analysis of chemical composition and temperature distributions along the torch radius shows that: (i) the use of the LTE assumption may lead to an inaccurate prediction of the thermo-chemical state of the gas, and (ii) non-equilibrium phenomena play a significant role close the walls, due to the combined effects of Ohmic heating and macroscopic gradients

  9. A tightly coupled non-equilibrium model for inductively coupled radio-frequency plasmas

    Munafò, A., E-mail: munafo@illinois.edu; Alfuhaid, S. A., E-mail: alfuhai2@illinois.edu; Panesi, M., E-mail: mpanesi@illinois.edu [Department of Aerospace Engineering, University of Illinois at Urbana-Champaign, Talbot Laboratory, 104 S. Wright St., Urbana, Illinois 61801 (United States); Cambier, J.-L., E-mail: jean-luc.cambier@us.af.mil [Edwards Air Force Base Research Laboratory, 10 E. Saturn Blvd., Edwards AFB, California 93524 (United States)

    2015-10-07

    The objective of the present work is the development of a tightly coupled magneto-hydrodynamic model for inductively coupled radio-frequency plasmas. Non Local Thermodynamic Equilibrium (NLTE) effects are described based on a hybrid State-to-State approach. A multi-temperature formulation is used to account for thermal non-equilibrium between translation of heavy-particles and vibration of molecules. Excited electronic states of atoms are instead treated as separate pseudo-species, allowing for non-Boltzmann distributions of their populations. Free-electrons are assumed Maxwellian at their own temperature. The governing equations for the electro-magnetic field and the gas properties (e.g., chemical composition and temperatures) are written as a coupled system of time-dependent conservation laws. Steady-state solutions are obtained by means of an implicit Finite Volume method. The results obtained in both LTE and NLTE conditions over a broad spectrum of operating conditions demonstrate the robustness of the proposed coupled numerical method. The analysis of chemical composition and temperature distributions along the torch radius shows that: (i) the use of the LTE assumption may lead to an inaccurate prediction of the thermo-chemical state of the gas, and (ii) non-equilibrium phenomena play a significant role close the walls, due to the combined effects of Ohmic heating and macroscopic gradients.

  10. Mass spectrometric measurements in inductively coupled CF4/Ar plasmas

    Positive ion fluxes, mean ion energies and ion energy distribution functions in low pressure CF4/Ar plasmas have been measured. The experiments were conducted in a Gaseous Electronics Conference cell using an inductively coupled plasma device powered by a 13.56 MHz radiofrequency (rf) power source. The measurements were made at 200 and 300 W of input rf power and at 10, 20, 30 and 50 mTorr gas pressures for three gas mixtures: (i) 20% CF4 : 80% Ar, (ii) 50% CF4 : 50% Ar and (iii) 80% CF4 : 20% Ar. A Langmuir probe was also used to measure plasma parameters such as ne, ni+ and electron energy distribution functions (EEDF) which were subsequently used to reconcile the mass spectrometer data. CF3+ is the most dominant fluorocarbon ion product of the plasma, followed by CF2+ and CF+. Ar+ is also detected in significant amounts with its relative flux increasing with the increase in Ar content in the gas mixture. Significant amounts of etch products, SiFx+/COF+x (x = 0-3), of the quartz window were also detected. The fluorocarbon ions are produced by direct electron impact and by ion-molecule reactions between Ar+ and CF4 as well as between CF3+ and CF4. However, the concentrations of CF2+ and CF+ are much larger than that which can be possibly produced from these two processes. The available cross-section data suggest that the direct electron impact ionization of the fragment neutrals and negative ion production by electron attachment may be responsible for the increase in the concentrations of the minor ions. F- densities, estimated by using the measured EEDF and positive ion flux data and the available cross-section data, agree well with the published experimental data

  11. Advanced Burnup Method using Inductively Coupled Plasma Mass Spectrometry

    Hilton, Bruce A. [Idaho Natonal Laboratory, P.O. Box 1625, Idaho Falls, ID 83415-6188 (United States); Glagolenko, Irina; Giglio, Jeffrey J.; Cummings, Daniel G

    2009-06-15

    Nuclear fuel burnup is a key parameter used to assess irradiated fuel performance, to characterize the dependence of property changes due to irradiation, and to perform nuclear materials accountability. For advanced transmutation fuels and high burnup LWR fuels that have multiple fission sources, the existing Nd-148 ASTM burnup determination practice requires input of calculated fission fractions (identifying the specific fission source isotope and neutron energy that yielded fission, e.g., U-235 from thermal neutron, U-238 from fast neutron) from computational neutronics analysis in addition to the measured concentration of a single fission product isotope. We report a novel methodology of nuclear fuel burnup determination, which is completely independent of model predictions and reactor types. The proposed method leverages the capability of Inductively Coupled Plasma Mass Spectrometry (ICP-MS) to quantify multiple fission products and actinides and uses these data to develop a system of burnup equations whose solution is the fission fractions. The fission fractions are substituted back in the equations to determine burnup. This technique requires high fidelity fission yield data, which is not uniformly available for all fission products. We discuss different means that can potentially assist in indirect determination, verification and improvement (refinement) of the ambiguously known fission yields. A variety of irradiated fuel samples are characterized by ICP-MS and the results used to test the advanced burnup method. The samples include metallic alloy fuel irradiated in fast spectrum reactor (EBRII) and metallic alloy in a tailored spectrum and dispersion fuel in the thermal spectrum of the Advanced Test Reactor (ATR). The derived fission fractions and measured burnups are compared with calculated values predicted by neutronics models. (authors)

  12. Advanced Burnup Method using Inductively Coupled Plasma Mass Spectrometry

    Nuclear fuel burnup is a key parameter used to assess irradiated fuel performance, to characterize the dependence of property changes due to irradiation, and to perform nuclear materials accountability. For advanced transmutation fuels and high burnup LWR fuels that have multiple fission sources, the existing Nd-148 ASTM burnup determination practice requires input of calculated fission fractions (identifying the specific fission source isotope and neutron energy that yielded fission, e.g., U-235 from thermal neutron, U-238 from fast neutron) from computational neutronics analysis in addition to the measured concentration of a single fission product isotope. We report a novel methodology of nuclear fuel burnup determination, which is completely independent of model predictions and reactor types. The proposed method leverages the capability of Inductively Coupled Plasma Mass Spectrometry (ICP-MS) to quantify multiple fission products and actinides and uses these data to develop a system of burnup equations whose solution is the fission fractions. The fission fractions are substituted back in the equations to determine burnup. This technique requires high fidelity fission yield data, which is not uniformly available for all fission products. We discuss different means that can potentially assist in indirect determination, verification and improvement (refinement) of the ambiguously known fission yields. A variety of irradiated fuel samples are characterized by ICP-MS and the results used to test the advanced burnup method. The samples include metallic alloy fuel irradiated in fast spectrum reactor (EBRII) and metallic alloy in a tailored spectrum and dispersion fuel in the thermal spectrum of the Advanced Test Reactor (ATR). The derived fission fractions and measured burnups are compared with calculated values predicted by neutronics models. (authors)

  13. Laser ablation of electronic materials including the effects of energy coupling and plasma interactions

    Zeng, Xianzhong

    2004-01-01

    Many laser ablation applications such as laser drilling and micromachining generate cavity structures. The study of laser ablation inside a cavity is of both fundamental and practical significance. In this dissertation, cavities with different aspect ratios (depth/diameter) were fabricated in fused silica by laser micromachining. Pulsed laser ablation in the cavities was studied and compared with laser ablation on a flat surface. The formation of laser-induced plasmas in the cavities and...

  14. Inductively coupled plasma - mass spectrometry (ICP-MS) and inductively coupled plasma – optical emission spectrometry (IP-OES) analysis of elements in Macedonian wines

    Ivanova, Violeta; Wiltsche, Helmar; Stafilov, Trajče; Motter, Herber; Stefova, Marina; Lankmayr, Ernst

    2013-01-01

    In this study the major, minor and trace elements in 25 Macedonian white, rose and red wines from different wine regions were determined. Analysis was performed with inductively coupled plasma - mass spectrometry (ICP-MS) and inductively coupled plasma – optical emission spectrometry (ICP-OES) for accurate determination of the concentration of 42 elements (Ag, Al, Au, B, Ba, Be, Bi, Ca, Cd, Ce, Co, Cu, Dy, Er, Eu, Fe, Ga, Gd, Ge, Ho, La, Lu, Mg, Mn, Mo, Na, Nd, Ni, P, Pb, Pr, S, Sm, Tb, Ti, T...

  15. Radio-frequency inductively coupled plasma-chemical installation for preparation of nanodispersed powders

    Full text: The wide application of radio-frequency inductively coupled plasma (rf-ICP) is due to the following. Rf-ICPs are clean because these types of plasma do not use any electrode and, hence, are contamination free. Rf-ICPs are stable and can be used over a wide range of operating conditions. They have relatively large volumes and low plasma velocities, which result in complete melting of the solid materials in materials processing because of the longer residence time. The preciseness of the rf-ICPs is important in determining contamination effects (which inevitably occur because of electrode evaporation and nozzle ablation) on gas circuit breaker arcs as well as to predict plasma properties for all materials processing, and any gas or mixture of gases can be excited by the rf fields, so there is wide flexibility when choosing plasma gas(es) depending on the type of application [1].; The experimental plasma set-up used for the production of nanosized powders (carbides, carbon nano-structures (nanotubes, fullerenes), oxides, nitrides, catalysts, pigments, etc.) consists of a radio-frequency generator (maximum power 60 kW, frequency 1+30 MHz), a water-cooled quartz plasma-chemical reactor with inductor, raw powder and gas supply systems, a gas quenching device, heat exchangers and cloth filter for powder collection. Ar, N2, Ar+N2, air, air+O2, and Ar+H2 can be used as plasma-forming gases. The quenching gases are air, Ar, N2, and CO2. The raw powder is injected into the upper part of the plasma-chemical reactor. A chemical reaction is carried out in the reactor and after complete evaporation of the micron size powder, it enters the quenching device. After that, the nanosized product is captured by the heat exchangers and cloth filter

  16. Documenting utility of paddlefish otoliths for quantification of metals using inductively coupled plasma mass spectrometry

    Long, James M.; Schaffler, James J.

    2013-01-01

    RATIONALE The otoliths of the inner ear of fishes record the environment of their surrounding water throughout their life. For paddlefish (Polyodon spathula), otoliths have not been routinely used by scientists since their detriments were outlined in the early 1940s. We sought to determine if paddlefish otoliths were useful for resolving elemental information contained within. METHODS Adult paddlefish were collected from two wild, self-sustaining populations in Oklahoma reservoirs in the Arkansas River basin. Juveniles were obtained from a hatchery in the Red River basin of Oklahoma. Otoliths were removed and laser ablation, inductively coupled plasma mass spectrometry (ICP-MS) was used to quantify eight elements (Li, Mg, Mn, Rb, Sr, Y, Ba, and Pb) along the core and edge portions, which were analyzed for differences between otolith regions and among paddlefish sources. RESULTS Differences were found among samples for six of the eight elements examined. Otoliths from Red River basin paddlefish born in a hatchery had significantly lower amounts of Mg and Mn, but higher levels of Rb than otoliths from wild paddlefish in the Arkansas River basin. Concentrations of Y, Sr, and Ba were reduced on the edges of adult paddlefish from both reservoirs compared with the cores. CONCLUSIONS This research shows the utility of using an ICP-MS analysis of paddlefish otoliths. Future research that seeks to determine sources of paddlefish production, such as which reservoir tributaries are most important for reproduction or what proportion of the population is composed of wild versus hatchery-produced individuals, appears promising. Published in 2013. This article is a U.S. Government work and is in the public domain in the USA.

  17. Quantum Fluctuation of a Mesoscopic Inductance Coupling Circuit at Finite Temperature

    SONG Tong-Qiang; ZHU Yue-Jin

    2003-01-01

    We study the quantization of mesoscopic inductance coupling circuit and discuss its time evolution. Bymeans of the thermal field dynamics theory we study the quantum fluctuation of the system at finite temperature.

  18. Application of inductively coupled plasma mass spectrometry (ICP-MS) to radioecology

    The advantages of Inductively Coupled Plasma Mass Spectrometry (ICP-MS) over conventional radioanalytical measurements are presented and the applications of the ICP-MS technique to environmental samples are given

  19. Determination of traces of thorium in uranium by inductively coupled plasma mass spectrometry (ICP-MS)

    An analytical methodology for the determination of traces of thorium in uranium oxide by Inductively Coupled Plasma Mass Spectrometry has been developed. Recovery studies were carried out by standard addition and also by tracer technique to validate the methodology. (author)

  20. Design of an Improved Type Rotary Inductive Coupling Structure for Rotatable Contactless Power Transfer System

    Lee Jia-You

    2015-01-01

    Full Text Available This paper is aimed at analyzing the rotary inductive coupling structure of contactless rotary transformer. The main feature of the proposed rotatable contactless power transfer system is which winding is coaxial-interlayered for improving the magnetic coupling capability. There is no ferrite core used in the secondary-side of the rotary inductive coupling structure, this helps to ease the exerted force that is stress by the secondary-side on spindle. In order to verify the feasibility of the proposed contactless power transfer system for rotary applications, an inductive powered rotary machinery and the control system have been integrated. The experimental results show that the maximum power transfer efficiency of the proposed rotary inductive coupling structure is about 94.8%. The maximum output power received in the load end is 1030 W with transmission efficiency of 88%.

  1. Velocity field measurements in an inductively coupled plasma

    With the rapid development of laser doppler anemometry, a new tool became available that proved to be quite useful for gas and particle velocity measurements under plasma conditions. The objective of the present study was to adapt this technique to measurements in an induction plasma and to obtain gas and particle velocity data in the discharge zone under different operating conditions

  2. Modelling of Continual Induction Hardening in Quasi-Coupled Formulation

    Barglik, J.; Doležel, Ivo; Karban, P.; Ulrych, B.

    2005-01-01

    Roč. 24, č. 1 (2005), s. 251-260. ISSN 0332-1649 Grant ostatní: PSRC(PL) 4T08C 04823 Institutional research plan: CEZ:AV0Z20570509 Keywords : mathematical modelling * electromagnetism * induction Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 0.188, year: 2005

  3. Modelling of Continual Induction Hardening in Quasi-Coupled Formulation

    Barglik, J.; Doležel, Ivo; Karban, P.; Ulrych, B.

    Padua: University of Padua, 2004 - (Lupi, S.; Dughiero, F.), s. 599-606 ISBN 88-86281-92-7. [International Symposium on Heating by Electromagnetic Sources (HES-04). Padua (IT), 22.06.2004-25.06.2004] Institutional research plan: CEZ:AV0Z2057903 Keywords : electromagnetic field * induction heating * numerical analysis Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering

  4. Velocity field measurements in an inductively coupled plasma

    Boulos, M.I. Lesinski, J.; Barnes, R.M.

    1982-01-01

    With the rapid development of laser doppler anemometry, a new tool became available that proved to be quite useful for gas and particle velocity measurements under plasma conditions. The objective of the present study was to adapt this technique to measurements in an induction plasma and to obtain gas and particle velocity data in the discharge zone under different operating conditions.

  5. Low wireless power transfer using inductive coupling for mobile phone charger

    A wireless power transfer (WPT) using inductive coupling for mobile phone charger is studied. The project is offer to study and fabricate WPT using inductive coupling for mobile phone charger that will give more information about distance is effect for WPT performance and WPT is not much influenced by the presence of hands, books and types of plastics. The components used to build wireless power transfer can be divided into 3 parts components, the transceiver for power transmission, the inductive coils in this case as the antenna, receiver and the rectifier which act convert AC to DC. Experiments have been conducted and the wireless power transfer using inductive coupling is suitable to be implemented for mobile phone charger.

  6. Analysis of Bifurcation Phenomena of Voltage-fed inductively Coupled Power Transfer System Varying with Coupling Coefficient

    Zhihui Wang

    2013-01-01

    Full Text Available This study investigates the frequency bifurcation phenomena of a typical voltage-fed resonant converter based on mutual induction model. It is found that the Zero Current Switching (ZCS operating frequency has the bifurcation region as the coupling coefficient varies due to the distance. The expression for the bifurcation boundary is derived and analyzed. Such results are very useful for guiding the design of practical Inductively Coupled Power Transfer (ICPT systems especially in applications which have the requirement of the position flexibility. Analytical results are verified both via MATLAB simulations and experimental prototype.

  7. Controlled Dissolution of Surface Layers for Elemental Analysis by Inductively Coupled Plasma-Mass Spectrometry

    Susan Elizabeth Lorge

    2007-12-01

    Determining the composition of thin layers is increasingly important for a variety of industrial materials such as adhesives, coatings and microelectronics. Secondary ion mass spectrometry (SIMS), Auger electron spectroscopy (AES), X-ray photoelectron spectroscopy (XPS), glow discharge optical emission spectroscopy (GDOES), glow discharge mass spectrometry (GDMS), and laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) are some of the techniques that are currently employed for the direct analysis of the sample surface. Although these techniques do not suffer from the contamination problems that often plague sample dissolution studies, they do require matrix matched standards for quantification. Often, these standards are not readily available. Despite the costs of clean hoods, Teflon pipette tips and bottles, and pure acids, partial sample dissolution is the primary method used in the semiconductor industry to quantify surface impurities. Specifically, vapor phase decomposition (VPD) coupled to ICP-MS or total reflection x-ray fluorescence (TXRF) provides elemental information from the top most surface layers at detection sensitivities in the 10{sup 7}-10{sup 10}atoms/cm{sup 2} range. The ability to quantify with standard solutions is a main advantage of these techniques. Li and Houk applied a VPD-like technique to steel. The signal ratio of trace element to matrix element was used for quantification. Although controlled dissolution concentrations determined for some of the dissolved elements agreed with the certified values, concentrations determined for refractory elements (Ti, Nb and Ta) were too low. LA-ICP-MS and scanning electron microscopy (SEM) measurements indicated that carbide grains distributed throughout the matrix were high in these refractory elements. These elements dissolved at a slower rate than the matrix element, Fe. If the analyte element is not removed at a rate similar to the matrix element a true representation of the

  8. Elemental speciation by capillary electrophoresis with inductively coupled plasma spectrometry: A new approach by flow focusing® nebulization

    Kovachev, Nikolay; Aguirre Pastor, Miguel Ángel; Hidalgo Núñez, Montserrat; Simitchiev, Kiril; Stefanova, Violeta M.; Kmetov, Veselin Y.; Canals Hernández, Antonio

    2014-01-01

    A novel system for Capillary Electrophoresis (CE) and Inductively Coupled Plasma (ICP) sample introduction that incorporates a dedicated Flow-Focusing® based nebulizer as aerosol generation unit is presented, aiming to provide high signal sensitivity and low detection limits for element speciation at short analysis times. To prove its viability, the system prototype constructed has been coupled to an inductively coupled plasma - optical emission spectrometer (ICP-OES) and an inductively coupl...

  9. Interfacing capillary electrophoresis with inductively coupled plasma mass spectrometry by direct injection nebulization for selenium speciation

    Bendahl, Lars; Gammelgaard, Bente; Jons, O.;

    2001-01-01

    A demountable direct injection high efficiency nebulizer operating at low sample uptake rates was developed and used for coupling of capillary electrophoresis (CE) with inductively coupled plasma mass spectrometry (ICP-MS). When the nebulizer was used for continuous sample introduction, detection...

  10. Effects of leakage inductances on magnetically-coupled impedance-source networks

    Siwakoti, Yam P.; Loh, Poh Chiang; Blaabjerg, Frede;

    2014-01-01

    Coupled inductors have lately been used with impedance-source networks for keeping their shoot-through times short, while providing higher voltage boosts. The parameter that is critical to the operation of such impedance network based converter with coupled inductors is the leakage inductances. H...

  11. Development of NbTiN-Al direct antenna coupled kinetic inductance detectors

    Lankwarden, Y.J.Y.; Endo, A; Baselmans, J. J. A.; Bruijn, M.P.

    2012-01-01

    We have developed a coplanar waveguide (CPW) Kinetic Inductance Detector consisting of Al and NbTiN, coupled at its shorted end to a planar antenna. To suppress the odd mode due to direct coupling to sky radiation by the KID we have also developed freestanding metal air bridges

  12. Ultra-wide bandwidth improvement of piezoelectric energy harvesters through electrical inductance coupling

    Abdelmoula, H.; Abdelkefi, A.

    2015-11-01

    The design and analysis of innovative ultra-wide bandwidth piezoelectric energy harvesters are deeply investigated. An electrical inductance is considered in the harvester's circuit to be connected in series or parallel to a load resistance. A lumped-parameter model is used to model the electromechanical response of the harvester when subjected to harmonic excitations. A linear comprehensive analysis is performed to investigate the effects of an electrical inductance on the coupled frequencies and damping of the harvester. It is shown that including an electrical inductance connected in series or in parallel to an electrical load resistance can result in the appearance of a second coupled frequency of electrical type. The results show that the inclusion of an inductance may give the opportunity to tune one of the coupled frequencies of mechanical and electrical types to the available excitation frequency in the environment. Using the gradient method, an optimization analysis is then performed to determine the optimum values of the electrical inductance and load resistance that maximize the harvested power. It is demonstrated that, for each excitation frequency, there is a combination of optimum values of the electrical inductance and resistance in such a way an optimum constant value of the harvested power is found. Numerical analysis is then performed to show the importance of considering an additional inductance in the harvester's circuitry in order to design broadband energy harvesters. The results show that the presence of the second coupled frequency of electrical type due to the inductance gives the possibility to design optimal broadband inductive-resistive piezoelectric energy harvesters with minimum displacement due to shunt damping effect.

  13. Ablation of triadin causes loss of cardiac Ca2+ release units, impaired excitation–contraction coupling, and cardiac arrhythmias

    Chopra, Nagesh; Yang, Tao; Asghari, Parisa; Moore, Edwin D.; Huke, Sabine; Akin, Brandy; Cattolica, Robert A.; Perez, Claudio F.; Hlaing, Thinn; Knollmann-Ritschel, Barbara E. C.; Jones, Larry R.; Pessah, Isaac N; Allen, Paul D.; Franzini-Armstrong, Clara; Knollmann, Björn C.

    2009-01-01

    Heart muscle excitation–contraction (E-C) coupling is governed by Ca2+ release units (CRUs) whereby Ca2+ influx via L-type Ca2+ channels (Cav1.2) triggers Ca2+ release from juxtaposed Ca2+ release channels (RyR2) located in junctional sarcoplasmic reticulum (jSR). Although studies suggest that the jSR protein triadin anchors cardiac calsequestrin (Casq2) to RyR2, its contribution to E-C coupling remains unclear. Here, we identify the role of triadin using mice with ablation of the Trdn gene (...

  14. Mathematical Modeling of the Three Phase Induction Motor Couple to DC Motor in Hybrid Electric Vehicle

    Zulkarnain Lubis; A. N. Abdalla; Mortaza; Ruzlaini Ghon

    2009-01-01

    Problem statement: With emphasis on a cleaner environment and efficient operation, vehicles today rely more and more heavily on electrical power generation for success. Approach: Mathematical modeling the components of the HEV as the three phase induction motor couple to DC motor in hybrid electric vehicle was introduced. The controller of Induction Motor (IM) was designed based on input-output feedback linearization technique. It allowed greater electrical generation capacity and the fuel ec...

  15. UHF RFID Antenna: Printed Dipole Antenna with a CPS Matching Circuit and Inductively Coupled Feed

    Nenad Popović

    2011-01-01

    This paper presents simulated (WIPL‐D pro) and measured results of a UHF RFID antenna realized with a dipole matched to a CPS (Coplanar Stripline) and inductively coupled with a small rectangular loop. Such a design enables achieving and controlling high values of the inductive reactance that is necessary for obtaining good match of the antenna to an Application Specific Integrated Circuit (ASIC) chip. The antenna is characterized by a simple and robust design, which results in low‐cost re...

  16. Plasmoids and the E-to-H transition in an inductively coupled plasma

    McCarter, Angus J.

    2005-01-01

    An Inductively Coupled Plasma (ICP) exhibits two distinct modes of operation. A low input power capacitive E-mode, and a high input power inductive H-mode. The gas initially breaks down m the E-mode, switching to H-mode as input power is increased above a certain threshold. This transition between the E and H modes is observed by a dramatic increase in light output from the plasma, and a ‘glitch3 in the antenna current as the load characteristics of the plasma change from capacitive to induct...

  17. Computational Tool for Coupled Simulation of Nonequilibrium Hypersonic Flows with Ablation Project

    National Aeronautics and Space Administration — The goal of this SBIR project is to develop a computational tool with unique predictive capabilities for the aerothermodynamic environment around ablation-cooled...

  18. Computational Tool for Coupled Simulation of Nonequilibrium Hypersonic Flows with Ablation Project

    National Aeronautics and Space Administration — The goal of this SBIR project is to develop a predictive computational tool for the aerothermal environment around ablation-cooled hypersonic atmospheric entry...

  19. Ablation-Radiation Coupling Modelling for Hayabusa Re-entry Vehicle

    Marguet, Valentin

    2013-01-01

    Reentry vehicles undergo extreme thermal conditions as they reach hypersonic velocities in particular conditions. Thus thermal protection system (TPS) are required to prevent the probe to be damaged. When it comes to Earth’s reentry, capsules like Hayabusa are equipped with an carbon phenolic TPS which ablates and releases ablation products into the boundary layer during reentry. Besides, as radiation can be a significant component of the overall heat load, chemical reactions may occur betwee...

  20. New approach to the calculation of relative sensitivity factors in inductively coupled plasma mass spectrometry

    The relative sensitivity factors (RSFs) of 68 elements including alkali, alkaline earth, rare earth, and transition elements, Cd, B, In, Te, I in the analysis by inductively coupled plasma mass spectrometry were determined. The ionization process in an inductively coupled plasma was found to be only approximately described by the Saha-Eggert equation. A relationship between the RSFs and the absolute electronegativities of atoms of the elements was found. This factor has the strongest effect on the accuracy of calculations of RSFs for chemically active elements. The average relative systematic error of calculations of RSFs with consideration for absolute electronegativity was reduced to 0.30

  1. Characterization of an inductively coupled plasma source with convergent nozzle

    Dropmann, Michael; Clements, Kathryn; Edgren, Josh; Laufer, Rene; Herdrich, Georg; Matthews, Lorin; Hyde, Truell

    2015-11-01

    The inductively heated plasma generator (IPG6-B) located in the CASPER labs at Baylor University has recently been characterized for both air, nitrogen and helium. A primary area of research within the intended scope of the instrument is the analysis of material degradation under high heat fluxes such as those imposed by a plasma during atmospheric entry of a spacecraft and at the divertor within various fusion experiment. In order to achieve higher flow velocities and respectively higher heat fluxes, a new exit flange has been designed to allow the installation of nozzles with varying geometries at the exit of the plasma generator. This paper will discuss characterization of the plasma generator for a convergent nozzle accelerating the plasma jet to supersonic velocity. The diagnostics employed include a cavity calorimeter to measure the total plasma power, a Pitot probe to measure stagnation pressure and a heat flux probe to measure the local heat flux. Radial profiles of stagnation pressure and heat flux allowing the determination of the local plasma enthalpy in the plasma jet will be presented. Support from the NSF and the DOE (award numbers PHY-1262031 and PHY-1414523) is gratefully acknowledged.

  2. Experimental Observation of Nonlinear Mode Coupling In the Ablative Rayleigh-Taylor Instability on the NIF

    Martinez, David

    2015-11-01

    We investigate on the National Ignition Facility (NIF) the ablative Rayleigh-Taylor (RT) instability in the transition from linear to highly nonlinear regimes. This work is part of the Discovery Science Program on NIF and of particular importance to indirect-drive inertial confinement fusion (ICF) where careful attention to the form of the rise to final peak drive is calculated to prevent the RT instability from shredding the ablator in-flight and leading to ablator mixing into the cold fuel. The growth of the ablative RT instability was investigated using a planar plastic foil with pre-imposed two-dimensional broadband modulations and diagnosed using x-ray radiography. The foil was accelerated for 12ns by the x-ray drive created in a gas-filled Au radiation cavity with a radiative temperature plateau at 175 eV. The dependence on initial conditions was investigated by systematically changing the modulation amplitude, ablator material and the modulation pattern. For each of these cases bubble mergers were observed and the nonlinear evolution of the RT instability showed insensitivity to the initial conditions. This experiment provides critical data needed to validate current theories on the ablative RT instability for indirect drive that relies on the ablative stabilization of short-scale modulations for ICF ignition. This paper will compare the experimental data to the current nonlinear theories. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC.

  3. Macroscopic quantum effects in capacitively- and inductively-coupled intrinsic Josephson junctions

    Koyama, T.; Machida, M.

    2009-03-01

    A theory for macroscopic quantum tunneling (MQT) in intrinsic Josephson junction stacks is formulated. Both capacitive and inductive couplings between junctions are taken into account. We calculate the escape rate in the switching to the first resistive branch in the quantum regime. It is shown that the enhancement of the escape rate is caused mainly by the capacitive coupling between junctions in IJJ's with small in-plane area of ~ 1μm2.

  4. Implementation of Inductive Magnetosphere-Ionosphere Coupling and its Effects on Global MHD Magnetospheric Simulations

    Xi, S.; Lotko, W.; Zhang, B.; Brambles, O.; Wiltberger, M. J.; Lyon, J.; Merkin, V. G.

    2010-12-01

    In global modeling, magnetosphere-ionosphere (MI) coupling physically connects a global magnetospheric (GM) model and a global ionospheric-thermospheric (GIT) model. The field-aligned current from the GM model and the conductance distributions from the GIT model are used in a Poisson equation derived from the ionospheric Ohm's law combined with current continuity to determine the electrostatic potential in the ionosphere. In current GM models, this electrostatic potential is mapped to the inner boundary of the GM simulation to determine electrostatic boundary conditions on the electric field and MHD velocity there. Inductive effects and the finite Alfven transit time between the low-altitude GM boundary and the high-altitude GIT boundary (MI gap region) are neglected in this formulation of MI coupling. Using fields and currents derived from Lyon-Fedder-Mobarry GM simulations, and conductance distributions derived from its standalone empirical conductance model in the MI coupling Poisson equation, we have computed the fast Fourier transform of the electrostatic field at the low-altitude LFM simulation boundary as described above, and the FFT of the inductive electric field at the boundary under the assumption that μ 0 Σ P vA ≤ 1, where Σ P is the ionospheric Pedersen conductance and vA is the smallest value of the Alfven speed in the MI gap region. In this regime, the complete electric field at the low-altitude simulation boundary includes the usual mapped electrostatic field with an inductive addition for which the finite Alfven transit time and the diversion of field-aligned into polarization currents in the gap region are negligible (Lotko, 2004). By comparing the boundary-averaged spectra of the electrostatic and so-determined inductive fields, we confirm that the purely electrostatic formulation of MI coupling is valid when the MHD state varies on times scales exceeding about 200 s. For faster MHD time variations, the inductive electric field is shown to

  5. Determination of platinum in human subcellular microsamples by inductively coupled plasma mass spectrometry

    Björn, Erik; Nygren, Yvonne; Nguyen, Tam T. T. N.;

    2007-01-01

    A fast and robust method for the determination of platinum in human subcellular microsamples by inductively coupled plasma mass spectrometry was developed, characterized, and validated. Samples of isolated DNA and exosome fractions from human ovarian (2008) and melanoma (T289) cancer cell lines...

  6. Determination of Arsenic in Sinus Wash and Tap Water by Inductively Coupled Plasma-Mass Spectrometry

    Donnell, Anna M.; Nahan, Keaton; Holloway, Dawone; Vonderheide, Anne P.

    2016-01-01

    Arsenic is a toxic element to which humans are primarily exposed through food and water; it occurs as a result of human activities and naturally from the earth's crust. An experiment was developed for a senior level analytical laboratory utilizing an Inductively Coupled Plasma-Mass Spectrometer (ICP-MS) for the analysis of arsenic in household…

  7. Thorium determination in thorotrast patient organs using inductively coupled plasma mass spectrometry and imaging plate autoradiography

    In this study inductively coupled plasma mass spectrometry (ICP-MS) have been used for the determination of Th in liver and spleen collected from autopsy subjects in Thorotrast patients to obtain useful information for dosimetry. The applicability of an imaging plate autoradiography technique for the determination of thorium distributions in organs to obtain information related to microdosimetry has also been evaluated

  8. Determination of trimethylselenonium ion in urine by ion chromatography and inductively coupled plasma mass spectrometry detection

    Gammelgaard, Bente; Jessen, K.D.; Kristensen, F.H.;

    2000-01-01

    H 3. The Se-78 and Se-82 isotopes were used for the inductively coupled plasma mass spectrometry (ICP-MS) detection. Using the chromatographic system on urine diluted 1 + 1, a large shift in retention times was observed. TMSe+ could be separated from the other species, but the signal from SeMet co...

  9. Simultaneous multielement analysis of rock samples by inductively coupled plasma mass spectrometry using discrete microsampling technique

    Simultaneous multielement analysis of geological standard rock samples (JG-1 and JB-2) has been successfully performed by inductively coupled plasma mass spectrometry using a discrete microsampling technique. In this technique only 100 μl sample solution was used for simultaneous determination of 5-10 elements in solution. (author)

  10. Improvement of Uniformity of Inductively Coupled Plasma with a Cone Spiral Antenna

    LI Lin-Sen; XU Xu; LIU Feng; ZHOU Qian-Hong; NIE Zong-Fu; LIANG Yi-Zi; LIANG Rong-Qing

    2008-01-01

    Uniformity of inductively coupled plasma (ICP) is improved with a cone spiral antenna in our experiment. Performance of the ICP with a new type of antenna is experimentally investigated, The results indicate that the uniformity of plasma density in the radial direction is obviously improved as compared to the ICP with a planar spiral antenna. Performance of ICP is analysed with the experimental results.

  11. INDUCTIVELY COUPLED ARGON PLASMA AS AN ION SOURCE FOR MASS SPECTROMETRIC DETERMINATION OF TRACE ELEMENTS

    Solution aerosols are injected into an inductively coupled argon plasma (ICP) to generate a relatively high number density of positive ions derived from elemental constituents. A small fraction of these ions is extracted through a sampling orifice into a differentially pumped vac...

  12. Polymerization by plasma of trichloroethylene by means of resistive and inductive coupling

    It was carried out the polymerization for plasma of the trichloroethylene by means of two types of coupling, resistive and inductive with the objective of studying the structure, morphology and the electric properties of the polymers obtained under these conditions. The structure and morphology of the polymers were studied by means of EDS and FT-IR spectroscopies. (Author)

  13. Inductively coupled plasma-atomic emission spectroscopy: The determination of trace impurities in uranium hexafluoride

    Floyd, M. A.; Morrow, R. W.; Farrar, R. B.

    An analytical method has been developed for the determination of trace impurities in high-purity uranium hexafluoride using liquid-liquid extraction of the uranium from the trace impurities followed by analysis with inductively coupled plasma-atomic emission spectroscopy. Detection limits, accuracy, and precision data are presented.

  14. Inductively coupled plasma and ion sources: History and state-of-the-art

    Over 100 years ago Hittorf first generated an electrodeless ''ring'' discharge by electromagnetic induction and began a 40 year controversy as to the true physical origin of such a discharge. Even Tesla advocated that these plasmas were merely the result of large electrostatic potential differences rather than electric fields induced by high frequency currents. Through clever experiments using crude spark gaps and leyden jars, the inductive nature of the discharge was confirmed in the late 1920's by MacKinnon, thus supporting the theories and experiments of Sir J.J. Thomson, perhaps the most staunch advocate of the induction mechanism. Today the authors routinely exploit the intense plasmas which are generated by induction. In this talk, the characteristics of inductively coupled plasma (ICP) and ion sources will be reviewed and future applications of intense plasma sources will be discussed. The inductively coupled plasma is Joule heated at moderate gas pressures, but the electromagnetic field penetration of these dense plasmas is limited by the plasma skin depth, typically a few millimeters to a few centimeters. The induction plasma is thus edge heated, a fact that constrains uniformity over large areas if helical induction coils are used. Flat, spiral coils may be used to improve uniformity by driving the plasma using a planar geometry. Issues of dimensional and frequency scaling will be discussed as they apply to large diameter sources. Ion beams extracted from ICPs are used for many applications including space propulsion, high power neutral beams, and materials processing. Broad ion beam (∼10 cm) current densities in excess of 100 mA-cm2 at 100 keV are obtained in pulsed mode operation. Recently, however, more consumer-oriented applications of less intense ICPs are emerging

  15. Trace analysis of irradiated steel samples from hiroshima by laser ablation inductively coupled plasma mass spectrometry

    A double focusing (JEOL, PLASMAX2) and quadrupole (ELAN6000, Perkin Elmer) mass spectrometers were used for the quantitative analysis of trace elements in steel samples from Hiroshima. The quantification of the analytical results was carried out using steel 468 as a standard reference material. The relative sensitivity coefficients (RSC's) for most of the elements varied between 0.12 and 2.93. The effect of iron as a matrix and the non-spectroscopic interferences are studied. Comparison of the results obtained on two steel samples from Hiroshima with that obtained on steel 468 standard reference materials demonstrated that there is no significant difference between them. Therefore, it is possible to say that the irradiated steel samples from Hiroshima have nearly the same specifications of trace element content as those of the normal steel samples

  16. Development of sulfide calibration standards for the laser ablation inductively-coupled plasma mass spectrometry technique

    Wilson, S.A.; Ridley, W.I.; Koenig, A.E.

    2002-01-01

    The requirements of standard materials for LA-ICP-MS analysis have been difficult to meet for the determination of trace elements in sulfides. We describe a method for the production of synthetic sulfides by precipitation from solution. The method is detailed by the production of approximately 200 g of a material, PS-1, with a suite of chalcophilic trace elements in an Fe-Zn-Cu-S matrix. Preliminary composition data, together with an evaluation of the homogeneity for individual elements, suggests that this type of material meets the requirements for a sulfide calibration standard that allows for quantitative analysis. Contamination of the standard with Na suggests that H2S gas may prove a better sulfur source for future experiments. We recommend that calibration data be collected in whatever mode is closest to that employed for the analysis of the unknown material, because of variable fractionation effects as a function of analytical mode. For instance, if individual spot analyses are attempted on unknown sample, then a raster of several individual spot analyses, not a continuous scan, should be collected and averaged for the standard. Hg and Au are exceptions to the above and calibration data should always be collected in a scanning mode. Au is more heterogeneously distributed than other trace metals and large-area scans are required to provide an average value for calibration purposes. We emphasize that the values given in Table 1 are preliminary values. Further chemical characterization of this standard, through a round-robin analysis program, will allow the USGS to provide both certified and recommended values for individual elements. The USGS has developed PS-1 as a potential new LA-ICP-MS standard for use by the analytical community, and requests for this material should be addressed to S. Wilson. However, it is stressed that an important aspect of the method described here is the flexibility for individual investigators to produce sulfides with a wide range of trace metals in variable matrices. For example, PS-1 is not well suited to the analysis of galena, and it would be relatively straightforward for other standards to be developed with Pb present in the matrix as a major constituent. These standards can be made easily and cheaply in a standard wet chemistry laboratory using equipment and chemicals that are readily available.

  17. Improving the isotope ratio capabilities of laser ablation-inductively coupled plasma mass spectrometry

    Full text: In this work, a systematic study investigating some of the strategies used for improving the performance of isotope ratio determinations by means of LA-ICPMS (i.e. the use of an inert gas in a collision/reaction cell, a dual spray chamber for wetting the plasma, or a sector-field instrument) is presented. Lead isotope ratios have been selected for the study due to their widespread use in various fields of applications. The glasses NIST612, NIST610 and BCR126A with different lead concentrations have been considered. The influence of the different methodologies on the precision and accuracy of the results will be presented and critically evaluated. (author)

  18. Laser ablation in analytical chemistry - A review

    Russo, Richard E.; Mao, Xianglei; Liu, Haichen; Gonzalez, Jhanis; Mao, Samuel S.

    2001-10-10

    Laser ablation is becoming a dominant technology for direct solid sampling in analytical chemistry. Laser ablation refers to the process in which an intense burst of energy delivered by a short laser pulse is used to sample (remove a portion of) a material. The advantages of laser ablation chemical analysis include direct characterization of solids, no chemical procedures for dissolution, reduced risk of contamination or sample loss, analysis of very small samples not separable for solution analysis, and determination of spatial distributions of elemental composition. This review describes recent research to understand and utilize laser ablation for direct solid sampling, with emphasis on sample introduction to an inductively coupled plasma (ICP). Current research related to contemporary experimental systems, calibration and optimization, and fractionation is discussed, with a summary of applications in several areas.

  19. Mathematical modeling of intrinsic Josephson junctions with capacitive and inductive couplings

    Rahmonov, I. R.; Shukrinov, Yu M.; Zemlyanaya, E. V.; Sarhadov, I.; Andreeva, O.

    2012-11-01

    We investigate the current voltage characteristics (CVC) of intrinsic Josephson junctions (IJJ) with two types of couplings between junctions: capacitive and inductive. The IJJ model is described by a system of coupled sine-Gordon equations which is solved numerically by the 4th order Runge-Kutta method. The method of numerical simulation and numerical results are presented. The magnetic field distribution is calculated as the function of coordinate and time at different values of the bias current. The influence of model parameters on the CVC is studied. The behavior of the IJJ in dependence on coupling parameters is discussed.

  20. A fully analytic treatment of resonant inductive coupling in the far field

    For the application of resonant inductive coupling for wireless power transfer, fabrication of flat spiral coils using ribbon wire allows for analytic expressions of the capacitance and inductance of the coils and therefore the resonant frequency. The expressions can also be used in an approximate way for the analysis of coils constructed from cylindrical wire. Ribbon wire constructed from both standard metals as well as high temperature superconducting material is commercially available, so using these derived expressions as a basis, a fully analytic treatment is presented that allows for design trades to be made for hybrid designs incorporating either technology. The model is then extended to analyze the performance of the technology as applied to inductively coupled communications, which has been demonstrated as having an advantage in circumstances where radiated signals would suffer unacceptable levels of attenuation. - Highlights: ► An analytic framework finds power and efficiency for resonant inductive coupling. ► The framework supports superconducting, resistive and dielectric elements. ► Maximum power transfer occurs at an efficiency of 50% when in close proximity. ► A 100 turn superconducting design achieves 10% efficiency out to 280 coil radii. ► The system response to narrow band amplitude modulation is modeled and presented.

  1. Multi-element analysis using inductively coupled plasma mass spectrometry and inductively coupled plasma atomic emission spectroscopy for provenancing of animals at the continental scale.

    Kreitals, Natasha M; Watling, R John

    2014-11-01

    Chemical signatures within the environment vary between regions as a result of climatological, geochemical and anthropogenic influences. These variations are incorporated into the region's geology, soils, water and vegetation; ultimately making their way through the food chain to higher level organisms. Because the variation in chemical signatures between areas is significant, a specific knowledge of differences in elemental distribution patterns between, and within populations, could prove beneficial for provenancing animals or animal related products when applied to indigenous and feral faunal populations. The domestic pig (Sus scrofa domestica) was used as an investigative model to determine the feasibility of using a chemical traceability method for the provenance determination of animal tissue. Samples of pig muscle, tongue, stomach, heart, liver and kidney were collected from known farming areas around Australia. Samples were digested in 1:3 H2O2:HNO3 and their elemental composition determined using solution based Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-AES) and Inductively Coupled Plasma Mass Spectrometry (ICP-MS). Pigs from different growing regions in Australia could be distinguished based on the chemical signature of each individual tissue type. Discrimination was possible at a region, state and population level. This investigation demonstrates the potential for multi-element analysis of low genetic variation native and feral species of forensic relevance. PMID:25240220

  2. Mathematical Modeling of the Three Phase Induction Motor Couple to DC Motor in Hybrid Electric Vehicle

    Zulkarnain Lubis

    2009-01-01

    Full Text Available Problem statement: With emphasis on a cleaner environment and efficient operation, vehicles today rely more and more heavily on electrical power generation for success. Approach: Mathematical modeling the components of the HEV as the three phase induction motor couple to DC motor in hybrid electric vehicle was introduced. The controller of Induction Motor (IM was designed based on input-output feedback linearization technique. It allowed greater electrical generation capacity and the fuel economy and emissions benefits of hybrid electric automotive propulsion. Results: A typical series hybrid electric vehicle was modeled and investigated. Conclusion: Various tests, such as acceleration traversing ramp and fuel consumption and emission were performed on the proposed model of 3 phase induction motor coupler DC motor in electric hybrid vehicles drive.

  3. High-repetition rate laser ablation coupled to dielectric barrier discharge postionization for ambient mass spectrometry.

    Bierstedt, Andreas; Riedel, Jens

    2016-07-15

    Most ambient sample introduction and ionization techniques for native mass spectrometry are highly selective for polar agents. To achieve a more general sensitivity for a wider range of target analytes, a novel laser ablation dielectric barrier discharge (LA DBD) ionization scheme was developed. The approach employs a two-step mechanism with subsequent sample desorption and post-ionization. Effective ablation was achieved by the second harmonic output (λ=532nm) of a diode pumped Nd:YVO4 laser operating at a high-repetition rate of several kHz and pulse energies below 100μJ. The ejected analyte-containing aerosol was consecutively vaporized and ionized in the afterglow of a DBD plasma jet. Depending on their proton affinity the superexcited helium species in this afterglow produced analyte ions as protonated and ammoniated species, as well as radical cations. The optimization procedure could corroborate underlying conceptual consideration on the ablation, desorption and ionization mechanisms. A successful detection of a variety of target molecules could be shown from the pharmaceutical ibuprofen, urea, the amino acids l-arginine, l-lysine, the polymer polyethylene glycol, the organometallic compound ferrocene and the technical mixture wild mint oil. For a reliable evaluation of the introduced detection procedure spectra from the naturally abundant alkaloid capsaicin in dried capsicum fruits were recorded. PMID:26851554

  4. The population distribution of argon atoms in Paschen 1s levels in an inductively coupled plasma

    The population distribution of argon atoms in Paschen 1s levels in inductively coupled plasmas is investigated using a collisional-radiative model and the optical emission spectroscopy method. The modelling results of population densities are in good agreement with the experimental ones. According to this model, the population distribution of 1s levels is affected mainly by the electron impact transfer and the resonance radiation processes. As a result, a simple relationship on the population ratio of 1s4 and 1s5 is obtained. From this relationship, three kinetic regimes with different electron densities and discharge pressures are identified, which can be used to characterize the population distribution of argon 1s levels in inductively coupled plasmas.

  5. Determination of trace impurities in uranium hexafluoride using inductively coupled plasma-atomic emission spectroscopy

    A procedure has been developed to determine 30 trace elements in high-purity uranium hexafluoride (UF6) using inductively coupled plasma-atomic emission spectroscopy. The analytical method consists of a liquid-liquid extraction of the uranium from the trace impurities with a tri-(2-ethyl-hexyl)-phosphate (TEHP)-hexane mixture. A computer-controlled scanning monochromator system interfaced to an inductively coupled plasma (ICP) is then used to determine the levels of 30 trace elements present in the UF6. A single sample dissolution procedure is used for all elements investigated. This preliminary report details experimental work done to date as part of a countinuing program to determine metallic impurities in uranium by ICP

  6. Study on spatial distribution of plasma parameters in a magnetized inductively coupled plasma

    Cheong, Hee-Woon; Lee, Woohyun; Kim, Ji-Won; Whang, Ki-Woong, E-mail: kwhang@snu.ac.kr [Plasma Laboratory, Inter-University Semiconductor Research Center, Department of Electrical and Computer Engineering, Seoul National University, Seoul 151-742 (Korea, Republic of); Kim, Hyuk [Samsung Electronics Co., Banwol-dong, Hwaseong 445-701 (Korea, Republic of); Park, Wanjae [Tokyo Electron Miyagi Ltd., Taiwa-cho, Kurokawa-gun, Miyagi 981-3629 (Japan)

    2015-07-15

    Spatial distributions of various plasma parameters such as plasma density, electron temperature, and radical density in an inductively coupled plasma (ICP) and a magnetized inductively coupled plasma (M-ICP) were investigated and compared. Electron temperature in between the rf window and the substrate holder of M-ICP was higher than that of ICP, whereas the one just above the substrate holder of M-ICP was similar to that of ICP when a weak (<8 G) magnetic field was employed. As a result, radical densities in M-ICP were higher than those in ICP and the etch rate of oxide in M-ICP was faster than that in ICP without severe electron charging in 90 nm high aspect ratio contact hole etch.

  7. Considerations about the detection efficiency in inductively coupled plasma mass spectrometry

    Experimental investigations of analyte atomization, ionization and diffusion processes in the inductively coupled plasma applying single droplet introduction and optical emission spectroscopy provide hints how to improve the detection efficiency of inductively coupled plasma mass spectrometry. It is discussed how the flow, amount and type of injector gas, the size of droplets injected, the analyte mass, and the sampler interface of the mass spectrometer determine the position of analyte atomization and ionization as well as the magnitude of radial analyte ion diffusion at the interface of the mass spectrometer applied. - Highlights: ► Parameters determining analyte atomization and ionization in ICP's are discussed. ► Dependence of analyte diffusion on experimental conditions is described. ► Actions for improving the detection efficiency of ICP-MS are highlighted.

  8. Trace element analysis of samples by inductively coupled plasma mass spectrometry (ICP-MS)

    This paper reports the capability of inductively coupled plasma mass spectrometry (ICP-MS) for trace elements determination in several types of sample. Sample preparation, standardization and detection including effect of chemical and instrumental interferences were discussed. The analytical results of water sample from UN GEMS/Water PE from an inter-comparison study and lichens (IAEA 338 and quality control material) from a proficiency test were presented. (Author)

  9. Copper Determination in Gunshot Residue by Cyclic Voltammetric and Inductive Coupled Plasma-Optical Emission Spectroscopy

    Mohd Hashim Nurul’Afiqah Hashimah; Mohd Zain Zainiharyati; Jaafar Mohd Zuli

    2016-01-01

    Analysis of gunshot residue (GSR) is a crucial evidences for a forensic analyst in the fastest way. GSR analysis insists a suitable method provides a relatively simple, rapid and precise information on the spot at the crime scene. Therefore, the analysis of Cu(II) in GSR using cyclic voltammetry (CV) on screen printed carbon electrode (SPCE) is a better choice compared to previous alternative methods such as Inductive Coupled Plasma-Optical Emission Spectroscopy (ICP-OES) those required a lon...

  10. OPTIMAL CONTROL OF A NONLINEAR COUPLED ELECTROMAGNETIC INDUCTION HEATING SYSTEM WITH POINTWISE STATE CONSTRAINTS

    Irwin Yousept

    2010-01-01

    An optimal control problem arising in the context of 3D electromagnetic induction heating is investigated. The state equation is given by a quasilinear stationary heat equation coupled with a semilinear time harmonic eddy current equation. The temperature-dependent electrical conductivity and the presence of pointwise inequality state-constraints represent the main challenge of the paper. In the first part of the paper, the existence and regularity of the state are addressed. The second part ...

  11. Computational Finite Element Software Assisted Development of a 3D Inductively Coupled Power Transfer System

    Pratik Raval; Dariusz Kacprzak; Aiguo Patrick Hu

    2014-01-01

    To date inductively coupled power transfer (ICPT) systems have already found many practical applications including battery charging pads. In fact, current charging platforms tend to largely support only one- or two-dimensional planar movement in load. This paper proposes a new concept of extending the aspect ratios of the operating power transfer volume of ICPT systems to support arbitrary three dimensional load movements with respect to the primary coils. This is done by use of modern finite...

  12. On frequency optimization of assymetric resonant inductive coupling wireless power transfer links

    Egidos, Nuria; Bou, Elisenda; Sedwick, Raymond; Alarcón Cot, Eduardo José

    2014-01-01

    Resonant Inductive Coupling Wireless Power Transfer (RIC-WPT) is a leading field of research due to the growing number of applications that can benefit from this technology: from biomedical implants to consumer electronics, fractionated spacecraft and electric vehicles amongst others. However, current applications are limited to symetric point-to-point-links. New challenges and applications of RIC-WPT emphasize the necessity to explore, predict and optimize the behavior of these links for dif...

  13. TRACE ELEMENTS ANALYSIS IN PAPER USING INDUCTIVELY COUPLED PLASMA - MASS SPECTROMETRY (ICP - MS)

    ABOUL-ENEIN, Y; TANASE, I. Gh.; UDRISTIOIU, Florin Mihai; BUNACIU, Andrei A.

    2012-01-01

    The forensic examination and dating of documents is important in our society, because documents are used throughout our lives to record everything we do. The analysis of questioned documents therefore involves different types of analysis including comparison of the handwriting, ink, typescript or print, as well as physical and chemical characterization of the paper itself. Inductively coupled plasma mass spectrometry (ICP-MS) has already successfully been applied to applications in geology, f...

  14. Wave Energy Conversion: Direct Coupled Point Absorber in Heave with Induction Machine as Power Take Off

    Skjervheim, Ottar

    2007-01-01

    In the area of offshore renewable, wave energy can give great contribution. There has been research for developing wave energy converters since the late eighteenth century when the first patent was applied for in 1799 [1], without any remarkable breakthrough. This master thesis will discuss the topic of wave energy conversion by a point absorber in heave with a directly coupled induction machine power take off. A wave to wire approach has been attempted in this thesis. The tool needed is a h...

  15. Ion balance in waters through inductively coupled plasma optical emission spectrometry

    Sánchez Rodríguez, Carlos; Maestre Pérez, Salvador; Prats Moya, Soledad; Todolí Torró, José Luis

    2014-01-01

    Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES) has been employed to carry out the determination of both major anions and cations in water samples. The anion quantification has been performed by means of a new automatic accessory. In this device chloride has been determined by continuously adding a silver nitrate solution. As a result solid silver chloride particles are formed and retained on a nylon filter inserted in the line. The emission intensity is read at a silver ch...

  16. Atomic Mineral Characteristics of Indonesian Osteoporosis by High-Resolution Inductively Coupled Plasma Mass Spectrometry

    Zairin Noor; Sutiman Bambang Sumitro; Mohammad Hidayat; Agus Hadian Rahim; Akhmad Sabarudin; Tomonari Umemura

    2012-01-01

    Clinical research indicates that negative calcium balance is associated with low bone mass, rapid bone loss, and high fracture rates. However, some studies revealed that not only calcium is involved in bone strengthening as risk factor of fracture osteoporosis. Thus, in this report, the difference of metallic and nonmetallic elements in osteoporosis and normal bones was studied by high-resolution inductively coupled plasma mass spectrometry (HR-ICP-MS). The influence of these elements on bone...

  17. Plutonium age dating (production date measurement) by inductively coupled plasma mass spectrometry

    Varga, Zsolt; Nicholl, Adrian; Wallenius, Maria; Mayer, Klaus

    2015-01-01

    This paper describes rapid methods for the determination of the production date (age dating) of plutonium (Pu) materials by inductively coupled plasma mass spectrometry (ICP-MS) for nuclear forensic and safeguards purposes. One of the presented methods is a rapid, direct measurement without chemical separation using 235U/239Pu and 236U/240Pu chronometers. The other method comprises a straightforward extraction chromatographic separation, followed by ICP-MS measurement for the 234U/238Pu, 235U...

  18. 87Sr/86Sr measurements on marine sediments by inductively coupled plasma-mass spectrometry

    The application of inductively coupled plasma-mass spectrometry (ICP-MS) is documented for the study of the strontium isotopic composition (87Sr/86Sr) in geological samples, i.e. in the marine lithic fraction of core sediments. Methods for the determination of the isotopic composition, its accuracy and precision are reported. The results obtained simultaneously on 11 samples by both ICP-MS and thermal ionization mass spectrometry (TIMS) reveal a very good correlation (r2 = 0.955). (orig.)

  19. Development of analytical methods for multiplex bio-assay with inductively coupled plasma mass spectrometry

    Ornatsky, Olga I.; Kinach, Robert; Bandura, Dmitry R.; Lou, Xudong; Tanner, Scott D; Baranov, Vladimir I.; Nitz, Mark; Mitchell A. Winnik

    2008-01-01

    Advances in the development of highly multiplexed bio-analytical assays with inductively coupled plasma mass spectrometry (ICP-MS) detection are discussed. Use of novel reagents specifically designed for immunological methods utilizing elemental analysis is presented. The major steps of method development, including selection of elements for tags, validation of tagged reagents, and examples of multiplexed assays, are considered in detail. The paper further describes experimental protocols for...

  20. Iron-Isotopic Fractionation Studies Using Multiple Collector Inductively Coupled Plasma Mass Spectrometry

    Anbar, A. D.; Zhang, C.; Barling, J.; Roe, J. E.; Nealson, K. H.

    1999-01-01

    The importance of Fe biogeochemistry has stimulated interest in Fe isotope fractionation. Recent studies using thermal ionization mass spectrometry (TIMS) and a "double spike" demonstrate the existence of biogenic Fe isotope effects. Here, we assess the utility of multiple-collector inductively-coupled plasma mass spectrometry(MC-ICP-MS) with a desolvating sample introduction system for Fe isotope studies, and present data on Fe biominerals produced by a thermophilic bacterium. Additional information is contained in the original extended abstract.

  1. Determination of trace elements in petroleum products by inductively coupled plasma techniques: A critical review

    Sánchez Romero, Raquel; Todolí Torró, José Luis; Lienemann, Charles Philippe; Mermet, Jean Michel

    2013-01-01

    The fundamentals, applications and latter developments of petroleum products analysis through inductively coupled plasma optical emission spectrometry (ICP-OES) and mass spectrometry (ICP-MS) are revisited in the present bibliographic survey. Sample preparation procedures for the direct analysis of fuels by using liquid sample introduction systems are critically reviewed and compared. The most employed methods are sample dilution, emulsion or micro-emulsion preparation and sample decompositio...

  2. Determination of uranium and thorium isotope ratios by inductively coupled plasma mass spectrometry

    Measurements conditions were selected and a procedure was proposed for determining the 234U/238U and 230Th/232Th isotope ratios using an ELEMENT single-channel double-focusing inductively coupled plasma mass spectrometer. The procedure was tested in analyzing bottom sediments from Lake Baikal with the extraction preconcentration of uranium and thorium. The accuracy of the procedure was verified using certified reference materials and a model solution by comparing the results obtained with the data of α spectrometry

  3. Applications of inductively coupled plasma mass spectrometry to the production control of aerospace and nuclear materials

    Inductively coupled plasma source mass spectrometry (ICP-MS) has proved to be a useful practical tool in a high-volume quality control laboratory. The application of this technique to materials produced for the aerospace and nuclear industries is discussed. Techniques employed for uranium isotope ratio determination and elemental determination of gadolinium, samarium and thorium in hafnium and zirconium alloys are described. Strategies employed for a semi-quantitative survey analysis for a wide range of elements are also presented. (author)

  4. Photon noise limited radiation detection with lens-antenna coupled Microwave Kinetic Inductance Detectors

    Yates, S J C; Baselmans, J. J. A.; Endo, A; Janssen, R. M. J.; Ferrari, L; Diener, P.; Baryshev, A.M.

    2011-01-01

    Microwave kinetic inductance detectors (MKIDs) have shown great potential for sub-mm instrumentation because of the high scalability of the technology. Here, we demonstrate for the first time in the sub-mm band (0.1–2 mm) a photon noise limited performance of a small antenna coupled MKID detector array and we describe the relation between photon noise and MKID intrinsic generation-recombination noise. Additionally, we use the observed photon noise to measure the optical efficiency of detector...

  5. Integrated CFD Model for Nanoparticle Production in Inductively Coupled Plasma Reactor: Implementation and Application

    Benros Santos Lopes, Silvania

    2016-01-01

    Nanoparticles represent a very exciting new area of research. Their small size, ranging from several nanometers to tens of nanometers, is responsible for many changes in the structural, thermal, electromagnetic, optical and mechanical properties in comparison with the bulk solid of the same materials. However, promoting the use of such material requires well-controlled synthesis techniques to be developed. Inductively coupled thermal plasma (ICTP) reactors have been shown to offer unique adva...

  6. Plasma Diagnostics and Plasma-Surface Interactions in Inductively Coupled Plasmas

    Titus, Monica Joy

    2010-01-01

    The semiconductor industry's continued trend of manufacturing device features on the nanometer scale requires increased plasma processing control and improved understanding of plasma characteristics and plasma-surface interactions. This dissertation presents a series of experimental results for focus studies conducted in an inductively coupled plasma (ICP) system. First novel "on-wafer" diagnostic tools are characterized and related to plasma characteristics. Second, plasma-polymer interactio...

  7. Quantum Fluctuations of Mesoscopic Damped Circuit Involving Capacitance-Inductance Coupling at a Finite Temperature

    Xu, Xing-Lei; Xu, Shi-Min; Li, Hong-Qi

    2008-06-01

    The quantization of mesoscopic damped circuit involving capacitance-inductance coupling is proposed by the method of thrice linear transformation and damped harmonic oscillator quantization. The quantum fluctuations of the charges and current of each loop are calculated by thermo-field dynamics (TFD) in thermal vacuum state, thermal coherent state and thermal squeezed state, respectively. It is shown that the quantum fluctuations of the charges and current not only depend on circuit inherent parameter and coupled magnitude, but also rely on squeezed coefficients, squeezed angle, environmental temperature and damped resistance. And, because of influence of environmental temperature and damped resistance, the quantum fluctuations increase with increasing temperature and decrease with prolonging time.

  8. Thermochemical Nonequilibrium 2D Modeling of Nitrogen Inductively Coupled Plasma Flow

    Yu, Minghao; Yusuke, Takahashi; Hisashi, Kihara; Ken-ichi, Abe; Kazuhiko, Yamada; Takashi, Abe; Satoshi, Miyatani

    2015-09-01

    Two-dimensional (2D) numerical simulations of thermochemical nonequilibrium inductively coupled plasma (ICP) flows inside a 10-kW inductively coupled plasma wind tunnel (ICPWT) were carried out with nitrogen as the working gas. Compressible axisymmetric Navier-Stokes (N-S) equations coupled with magnetic vector potential equations were solved. A four-temperature model including an improved electron-vibration relaxation time was used to model the internal energy exchange between electron and heavy particles. The third-order accuracy electron transport properties (3rd AETP) were applied to the simulations. A hybrid chemical kinetic model was adopted to model the chemical nonequilibrium process. The flow characteristics such as thermal nonequilibrium, inductive discharge, effects of Lorentz force were made clear through the present study. It was clarified that the thermal nonequilibrium model played an important role in properly predicting the temperature field. The prediction accuracy can be improved by applying the 3rd AETP to the simulation for this ICPWT. supported by Grant-in-Aid for Scientific Research (No. 23560954), sponsored by the Japan Society for the Promotion of Science

  9. Quantification of water and plasma diagnosis for electrothermal vaporization-inductively coupled plasma-mass spectrometry: the use of argon and argide polyatomics as probing species

    The water content of the carrier flow originating from an electrothermal vaporization unit (ETV) attached to an inductively coupled plasma mass spectrometer was monitored by following the argon hydride ion (ArH+) at m/z=37. The goal was to measure the water expelled by the ETV at sample vaporization and evaluate the influence of this parameter on the ion-generation efficiency. Linear responses from the argon hydride were obtained when the water loading in the plasma injector flow was increased from 0 to 3.3 mg/min. Other argides and water-derived species (Ar+, Ar+2 and O+2) were also monitored simultaneously and the effects from operating parameters have been calculated for each species. The magnitude of these effects can eventually be used as diagnosis tools. It was also found that signals for zinc, copper, lead, antimony and arsenic were greatly influenced by slight variations in water loading at low water levels. These signal fluctuations are greatly attenuated and transients' shapes restored by convoluting each element transient with the ArH+ or Ar+2 curves that were recorded simultaneously. Envisioned applications that would benefit from a water-enhanced signal include spray electrothermal vaporization, direct sample insertion and laser ablation for inductively coupled plasma-mass spectrometry. The argon dimer Ar+2 seems more appropriate for making the correction since it provides a direct insight on the plasma temperature and provides a robust signal. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam. All rights reserved.)

  10. Resolving Bias in Laser Ablation Geochronology

    Bowring, James; Horstwood, Matthew; Gehrels, George

    2013-06-01

    Increasingly, scientific investigations requiring geochronology utilize laser ablation (LA)-inductively coupled plasma mass spectrometry (ICPMS), taking advantage of the efficiency and throughput possible for uranium-thorium-lead (U-Th-Pb) dating. A number of biases exist when comparing data among laboratories and an ongoing community-based effort is working to resolve and eliminate these biases to improve the accuracy of scientific interpretation based on these data.

  11. Development and characterization of induction heating electrothermal vaporization (IH-ETV) sample introduction for inductively coupled plasma spectrometry

    Rybak, Michael E.; Salin, Eric D.

    2001-03-01

    A general study of performance attributes was conducted for a prototypical electrothermal vaporization (ETV) sample introduction system, in which induction heating (IH) was used to facilitate the drying, pyrolysis, and vaporization of samples from long, undercut graphite cup probes in a radio-frequency (RF) induction field. In the first part of this study, experiments were carried out to determine the heating characteristics and temperature control aspects of an IH-ETV arrangement. Using a remote-sensing infrared thermocouple, it was determined that a 3/8-inch (9.53-mm) outer diameter graphite cup sample probe could be heated to a maximum temperature of 1860°C in the induction field of the IH-ETV under full forward power (1.5 kW). The IH-ETV device was found to have a rapid heating response (1/ e time-constant of 2.0±0.2 s) that was independent of the initial/final temperatures chosen. Linear temperature control was possible by regulating either the DC voltage applied to the plate or the current flowing to the grid of the RF generator oscillator tube. The second part of this work consisted of studies to establish benchmarks, such as limits of detection (LOD) with inductively coupled plasma optical emission spectrometry (ICP-OES) and transport efficiency for analyte vaporization under several x-Ar mixed gas atmospheres [where x=15% N 2, 10% O 2, HCl (sparged), or 15% SF 6 (v/v)]. In general, reproducible transient signals with evolution times of 5-15 s were seen for the vaporization of most elements studied, with peak area intensity and reproducibility generally being the best with SF 6-Ar. A 10-fold increase in transport efficiency was seen for refractory carbide-forming analytes (Cr, V) when vaporization was conducted in a halogenous ( x=HCl, SF 6) versus non-halogenous ( x=N 2, O 2) environment, with a two-fold improvement being observed for most other non-refractory elements (Cd, Cu, Fe, Mn, Ni, Pb, Zn). The transport of arsenic proved to be a special case

  12. Induction

    Sprogøe, Jonas; Elkjaer, Bente

    2010-01-01

    The purpose of this paper is to explore how induction of newcomers can be understood as both organizational renewal and the maintenance of status quo, and to develop ways of describing this in terms of learning.......The purpose of this paper is to explore how induction of newcomers can be understood as both organizational renewal and the maintenance of status quo, and to develop ways of describing this in terms of learning....

  13. Multi-Angle Switched HIFU: A New Ultrasound Device for Controlled Non-Invasive Induction of Small Spherical Ablation Zones—Simulation and Ex-Vivo Results

    Novák, Petr; Jamshidi-Parsian, Azemat; Benson, Donny G.; Webber, Jessica S.; Moros, Eduardo G.; Shafirstein, Gal; Griffin, Robert J.

    2009-04-01

    Current HIFU devices produce elongated elliptical lesions (cigar shaped) in a single energy deposition. This prohibits the effective use of HIFU in small animal research as well as in clinical treatment where small volumes of tissue surrounded by critical structures need to be destroyed. We developed an ultrasound ablation device that non-invasively creates spheroidal lesions of an arbitrary diameter of up to 1 cm in a depth of up to 5 cm. The device consists of two focused ultrasound transducers aimed to the ablation target volume from two directions at a 90 degree angle. The operation of the transducers is switched back and forth so that only one transducer is energized at a time. A transient analysis of this ablation approach was performed using coupled simulations of acoustical pressure distributions, resulting temperature distributions, and thermal dose deposited to soft tissue. A prototype of the device was developed and tested in-vitro in a phantom and later in ex-vivo experiments in pig liver. The experimental results agreed with the numerical simulations and confirmed the ability of the multi-angle switched HIFU (MASH) device to create small spheroidal lesions in soft tissue within 2 minutes without significantly affecting the surrounding tissues.

  14. Effect of coupling currents on the dynamic inductance during fast transient in superconducting magnets

    Marinozzi, V.; Sorbi, M.; Manfreda, G.; Bellina, F.; Bajas, H.; Chlachidze, G.

    2015-03-01

    We present electromagnetic models aiming to calculate the variation of the inductance in a magnet due to dynamic effects such as the variation of magnetization or the coupling with eddy currents. The models are studied with special regard to the calculation of the inductance in superconducting magnets which are affected by interfilament coupling currents. The developed models have been compared with experimental data coming from tests of prototype Nb3Sn magnets designed for the new generation of accelerators. This work is relevant for the quench protection study of superconducting magnets: quench is an unwanted event, when part of the magnet becomes resistive; in these cases, the current should be discharged as fast as possible, in order to maintain the resistive zone temperature under a safe limit. The magnet inductance is therefore a relevant term for the description of the current discharge, especially for the high-field new generation superconducting magnets for accelerators, and this work shows how to calculate the correct value during rapid current changes, providing a mean for simulations of the reached temperature.

  15. Specific Aspects Regarding Coupled Numerical Modeling of Inverter and Load Equipments in an Induction Heating Installation

    Claudiu MICH-VANCEA

    2008-05-01

    Full Text Available The most propitious projection of inductiveelectrothermic installation requires a deep study ofcoupled electrothermic and circuits problems; thereforethe present paper follows the same line. Research inspecific literature have emphasized that induction heatinghas a much higher efficiency if the supply of the charge(inductor – piece is done at frequencies other thatindustrial one. [1]. Due to material alter depending ontemperature and, implicitly, the variation of the electricalparameters of the heating installation it is necessary totackle the projection of these inductive electrothermicinstallation projected through coupled numericalmodeling of the inverter circuit and of the heatingthrough induction process. The paper presents thenumerical modeling of the continuous current –alternating current conversion bridge (inverter withelements of static switch – over, the type of commandsignal (PWM of elements of static switch of power, thenumerical modeling of the heating throughelectromagnetic induction process and aspects ofcorrelation regarding the functioning/ working of theinstallation depending on the parameters of the load. Theparameters get modified due to material alter dependingon temperature during the heating process.

  16. Considerations of particle vaporization and analyte diffusion in single-particle inductively coupled plasma-mass spectrometry

    empirical equation is formulated for the estimation of the position of complete vaporization of a particle in the ICP. The equation takes into account the particle properties (diameter, density, boiling point, and molecular weight of the constituents of the particle) and the ICP operating parameters (ICP forward power and central channel gas flow rate). The proportional constant and exponents of the variables in the equation were solved using literature values of ICP operating conditions for single-particle inductively coupled plasma-mass spectrometry (ICP-MS) and inductively coupled plasma-atomic emission spectrometry (ICP-AES) measurements of 6 kinds of particles in 12 studies. The calculated position is a useful guide for the selection of sampling depth or observation height for ICP-MS and ICP-AES measurements of single particles as well as discrete particles in a flow, such as laser-ablated materials and airborne particulates. - Highlights: • Calibration curve constructed from ICPMS intensity and particle mass distributions • Degree of vaporization and analyte diffusion determine calibration curve linearity. • Single-particle ICPMS requires standard particle/solution droplet for calibration. • Empirical equation to estimate complete vaporization position of particle in ICP

  17. Elemental labelling combined with liquid chromatography inductively coupled plasma mass spectrometry for quantification of biomolecules: A review

    Kretschy, Daniela; Koellensperger, Gunda; Hann, Stephan

    2012-01-01

    This article reviews novel quantification concepts where elemental labelling is combined with flow injection inductively coupled plasma mass spectrometry (FI-ICP-MS) or liquid chromatography inductively coupled plasma mass spectrometry (LC–ICP-MS), and employed for quantification of biomolecules such as proteins, peptides and related molecules in challenging sample matrices. In the first sections an overview on general aspects of biomolecule quantification, as well as of labelling will be pre...

  18. Ion Flux and Ion Energy Distributions in an Inductively Coupled GEC Rf Refererence Cell in Chlorine

    Radovanov, Svetlana; Forrister, Ray; Anderson, Harold

    1996-10-01

    Ion flux and energy distribution measurements in pure chlorine were performed in an inductively coupled Gaseous Electronics Reference Cell 13.56 MHz radiofrequency discharge . Measurements were made using miniaturized gridded energy analyzer. This detector was developed at the University of New Mexico, based on earlier design of the small size energy analyzers at MIT. The detector was mounted on a 12 inch water cooled carrier to suppress probe heating. The probe could be radially moved in the discharge cell to monitor the radial uniformity of the plasma. In addition, the detector was protected with a ceramic coating to supress for the electron saturation current of unshielded probe areas. The measurements were done in the "bright " mode dominated by inductive coupling at different pressures and powers. The radial variation of the ion flux in pure chlorine and argon show similar strongly nonuniform profile. As expected, absolute ion flux values in chlorine are substantially decreased compared to pure argon discharge. The spatial nonuniformity across the 16 cm diameter surface of the grounded electrode is in agreement with the Langmuir probe measurements done by Miller and MIT measurements in pure argon. The ion energy distribution functions (IEDs) measured exhibit a complex structure indicative of both light Cl^+ and heavier Cl_2^+ ions. The IEDs in chlorine are much broder than those measured in pure argon plasma. The radial profile of IEDs found in the GEC/ICP chlorine discharge indicate large changes are occuring in the nature of power coupling to the discharge moving center to edge.

  19. 3D-PIC simulation of an inductively coupled ion source

    Henrich, Robert; Muehlich, Nina Sarah; Becker, Michael; Heiliger, Christian

    2015-09-01

    Inductively coupled ion sources are applied to a wide range of plasma applications, especially surface modifications. The knowledge of the behavior and precise information of the plasma parameters are of main importance. These values are tedious to measure without influencing the discharge. By applying our fully three-dimensional PlasmaPIC tool we are able to reach these plasma parameters with a spatial and temporal resolution which is quite hard to achieve experimentally. PlasmaPIC is used for modeling discharges in arbitrary geometries without limitations to any symmetry. By this means we are able to demonstrate that the plasma density has an irrotational character. Furthermore, we will show the dependence of the plasma parameters of different working conditions. We will show that for gridded inductively coupled ion sources the neutral gas pressure inside the discharge chamber depends on the extraction of ions. This effect is considered in PlasmaPIC by a self-consistent coupling of the neutral gas simulation and the plasma simulation whereas the neutral gas distribution is calculated using the direct simulation Monte Carlo method (DSMC). This work has been supported by the ``Bundesministerium fuer Wirtschaft und Energie.'' Grant 50RS1507.

  20. Online Coupling of Flow-Field Flow Fractionation and Single Particle Inductively Coupled Plasma-Mass Spectrometry: Characterization of Nanoparticle Surface Coating Thickness and Aggregation State

    Surface coating thickness and aggregation state have strong influence on the environmental fate, transport, and toxicity of engineered nanomaterials. In this study, flow-field flow fractionation coupled on-line with single particle inductively coupled plasma-mass spectrometry i...

  1. The Tuned Substrate Self-bias in a Radio-frequency Inductively Coupled Plasma

    丁振峰; 霍伟刚; 王友年

    2004-01-01

    The radio frequency (rf) self-bias of the substrate in a rf inductively coupled plasma is controlled by means of varying the impedance of an external LC network inserted between the substrate and the ground. Experimental studies were done on the relations of the tuned substrate self-bias with varying discharge and external circuit parameters. Under a certain discharge gas pressure, the curves of tuned substrate self-bias Vtsb versus tuning capacitance Ct demonstrate jumps and hysteresises when rf discharge power is higher than a threshold. The hysteresis loop in terms of ACtcrit1 (= Ccrit1 - Ccrit2, here, Ccrit1, Ccrit2 are critical capacitance magnitudes under which the tuned substrate self-bias jumps) decreases with increasing rf discharge power, while the maximum | Vtsbimn | is achieved in the middle discharge-power region. Under a constant discharge power |Vtsb min|, Ctcrit1 and Ctcrit2 achieve their minimums in the middle gas-pressure region.When the tuning capacitance is pre-set at a lower value, Vtsb varies slightly with gas-flow rate;in the case of tuning capacitance sufficiently approaching CtcritX, Vtdb undergoes the jump and hysteresis with the changing gas-flow rate. By inserting a resistor R into the external network,the characteristics of Vtsb - Ct curves are changed with the reduced quality factor Q depending on resistance values. Based on inductive- and capacitive-coupling characteristics of inductively coupled plasma, the dependence of a plasma sheath on plasma parameters, and the impedance properties of the substrate branch, the observed results can be qualitatively interpreted.

  2. Inductively coupled plasma mass spectrometry for stable isotope metabolic tracer studies of living systems

    Luong, E.

    1999-05-10

    This dissertation focuses on the development of methods for stable isotope metabolic tracer studies in living systems using inductively coupled plasma single and dual quadrupole mass spectrometers. Sub-nanogram per gram levels of molybdenum (Mo) from human blood plasma are isolated by the use of anion exchange alumina microcolumns. Million-fold more concentrated spectral and matrix interferences such as sodium, chloride, sulfate, phosphate, etc. in the blood constituents are removed from the analyte. The recovery of Mo from the alumina column is 82 {+-} 5% (n = 5). Isotope dilution inductively coupled plasma mass spectrometry (ID-ICP-MS) is utilized for the quantitative ultra-trace concentration determination of Mo in bovine and human blood samples. The average Mo concentration in reference bovine serum determined by this method is 10.2 {+-} 0.4 ng/g, while the certified value is 11.5 {+-} 1.1 ng/g (95% confidence interval). The Mo concentration of one pool of human blood plasma from two healthy male donors is 0.5 {+-} 0.1 ng/g. The inductively coupled plasma twin quadrupole mass spectrometer (ICP-TQMS) is used to measure the carbon isotope ratio from non-volatile organic compounds and bio-organic molecules to assess the ability as an alternative analytical method to gas chromatography combustion isotope ratio mass spectrometry (GC-combustion-IRMS). Trytophan, myoglobin, and {beta}-cyclodextrin are chosen for the study, initial observation of spectral interference of {sup 13}C{sup +} with {sup 12}C{sup 1}H{sup +} comes from the incomplete dissociation of myoglobin and/or {beta}-cyclodextrin.

  3. EVALUATION OF CORROSION OF ENGINEERING CERAMICS BY ATOMIC EMISSION SPECTROMETRY IN INDUCTIVELY COUPLED PLASMA

    DAGMAR GALUSKOVÁ; DUŠAN GALUSEK; PAVOL ŠAJGALÍK

    2014-01-01

    An analytical method has been developed and verified, facilitating chemical analysis of saline aqueous solutions from corrosion tests of two types of engineering ceramics, i.e. polycrystalline alumina, and silicon nitride. The method is capable of providing complementary information related to mechanisms of corrosion and kinetics of dissolution of the two main components of the ceramics, i.e. Al in α-Al2O3, and Si in Si3N4. A radially viewed inductively coupled plasma atomic emission spectros...

  4. Determination Of Hafnium In Zirconium Dioxide Using Inductively Coupled Plasma Mass Spectrometry (ICP-MS)

    A method for determination of hafnium (Hf) in zirconium dioxide (ZrO2) using inductively coupled plasma mass spectrometry (ICP-MS) is proposed. The method involves the decomposition of ZrO2 sample, the chemical separation of Hf from zirconium (Zr) matrix by ion-exchange chromatography with sulfuric acid as a medium of sample solution and an eluent as well. The methods are suitable for analysis of Hf impurity in ZrO2, which is used as nuclear material. The procedure was well applied for determination of Hf in ZrO2 product of the Institute for Technology of Radioactive and Rare Elements (ITRRE), VAEI. (author)

  5. Photon noise limited radiation detection with lens-antenna coupled Microwave Kinetic Inductance Detectors

    Yates, S J C; Endo, A; Janssen, R M J; Ferrari, L; Diener, P; Baryshev, A M

    2011-01-01

    Microwave Kinetic Inductance Detectors (MKIDs) have shown great potential for sub-mm instrumentation because of the high scalability of the technology. Here we demonstrate for the first time in the sub-mm band (0.1...2 mm) a photon noise limited performance of a small antenna coupled MKID detector array and we describe the relation between photon noise and MKID intrinsic generation-recombination noise. Additionally we use the observed photon noise to measure the optical efficiency of detectors to be 0.8+-0.2.

  6. Construction of Larger Area Density-Uniform Plasma with Collisional Inductively Coupled Plasma Cells

    OUYANG Liang; LIU Wandong; BAI Xiaoyan; CHEN Zhipeng; WANG Huihui; LI LUO Chen; JI Liangliang; HU Bei

    2007-01-01

    The plasma density and electron temperature of a multi-source plasma system composed of several collisional inductively coupled plasma (ICP) cells were measured by a double-probe. The discharges of the ICP cells were shown to be independent of each other. Furthermore, the total plasma density at simultaneous multi-cell discharge was observed to be approximately equal to the summation of the plasma density when the cells discharge separately. Based on the linear summation phenomenon, it was shown that a larger area plasma with a uniform density and temperature profile could be constructed with multi-collisional ICP cells.

  7. Surface Modification of Nanometre Silicon Carbide Powder with Polystyrene by Inductively Coupled Plasma

    WEI Gang; MENG Yuedong; ZHONG Shaofeng; LIU Feng; JIANG Zhongqing; SHU Xingsheng; REN Zhaoxing; WANG Xiangke

    2008-01-01

    An investigation was made into polystyrene (PS) grafted onto nanometre sili-con carbide (SIC) particles. In our experiment, the grafting polymerization reaction was in-duced by a radio frequency (RF) inductively coupled plasma (ICP) treatment of the nanome-tre powder. FTIR (Fourier transform infrared spectrum) and XPS (X-ray photoelectron spec-troscopy) results reveal that PS is grafted onto the surface of silicon carbide powder. An analysis is presented on the effectiveness of this approach as a function of plasma operating variables including the plasma treating power, treating time, and grafting reaction temperature and time.

  8. Inductively coupled plasma-atomic emission spectrometry (ICP-AES) in support of nuclear waste management

    Simulated complex nuclear waste solutions are characterized by Inductively Coupled Plasma-Atomic Emission Spectrometry (ICP-AEC). The system uses and ICP source focused on both a polychromator and a computer-controlled scanning monochromator for intensity measurements. This instrumentation allows for simultaneous and sequential measurements of liquid extraction distribution coefficients needed in the development of process flow sheets for component separations. A large number of elements are determined rapidly with adequate sensitivity and accuracy. The focus of this investigation centers on the analysis of nuclear fission products. 13 references, 13 tables

  9. Hard-Coupled Nonlinear Model of Induction Heating of Nonmagnetic Cylindrical Billets In Rotation

    Karban, P.; Mach, F.; Doležel, Ivo

    Funchal - Madeira: A.P.D.E.E. Associação Portuguesa para a Promoção e Desenvolvimento da Engenharia Electrotécnica, 2011 - (Antunes, C.; Wiak, S.), s. 1-8 ISBN 978-972-8822-24-8. [International Symposium on Electromagnetic Fields in Mechatronics, Electrical and Electronic Engineering, ISEF2011 /15./. Funchal - Madeira (PT), 01.09.2011-03.09.2011] R&D Projects: GA ČR(CZ) GAP102/11/0498 Institutional research plan: CEZ:AV0Z20570509 Keywords : induction heating * hard-coupled model * magnetic field Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering http://www.apdee.org

  10. Hard-Coupled Modeling of Induction Shrink Fit of Gas-Turbine Active Wheel

    Kotlan, V.; Karban, P.; Ulrych, B.; Doležel, Ivo; Kůs, Pavel

    Heidelberg: Springer, 2012 - (Kyamakya, K.; Halang, W.; Mathis, W.; Chedjou, J.; Li, Z.), s. 287-301. (Studies in Computational Intelligence. 459). ISBN 978-3-642-34559-3 R&D Projects: GA ČR(CZ) GAP102/11/0498; GA ČR GA102/09/1305 Institutional research plan: CEZ:AV0Z20570509 Keywords : induction shrink fit * finite element methods of higher order of accuracy * coupled problem Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering http://www.springer.com/series/7092

  11. Effect of neutral gas heating in argon radio frequency inductively coupled plasma

    Heating of neutral gas in inductively coupled plasma (ICP) is known to result in neutral gas depletion. In this work, this effect is considered in the simulation of the magnetic field distribution of a 13.56 MHz planar coil ICP. Measured electron temperatures and densities at argon pressures of 0.03, 0.07 and 0.2 mbar were used in the simulation whilst neutral gas temperatures were heuristically fitted. The simulated results showed reasonable agreement with the measured magnetic field profile. (author)

  12. Analysis of neodymium oxide for rare earth impurities by inductively coupled plasma atomic emission spectrometry

    A procedure for the determination of the rare earths elements in neodymium oxide with purity grade above 99% by inductively coupled plasma optical emission spectrometry is described. Determination limits were 0,005% for the elements Eu, Dy, Gd, Tb, Ho and Y and 0,01% for Sm and La. The precision of the method was evaluated through the relative standard deviation (RSD) for individual rare earth elements. The values lies in the range of 3 -7% for most of them but lanthanum, has shown 13% RSD. (author)

  13. Inductively Coupled Plasma Optical-Emission Spectroscopy Determination of Major and Minor Elements in Vinegar

    Arzu AKPINAR-BAYIZIT

    2010-12-01

    Full Text Available This study characterizes the mineral content of vinegar samples. The concentrations of Na, K, Ca, Mg and P (major elements as well as Fe, Mn, Sn, Cu, Ni, Zn, Pb and Cd (minor elements were determined in 35 commercial vinegar samples using inductively coupled plasma optical-emission spectrometry (ICP-OES. The elements with the highest concentrations were K, Na, Ca, Mg and P. The concentrations of heavy metals in the vinegar samples, including Cd, Ni, Sn and Pb, were not considered a health risk.

  14. Electron Temperature Control in Inductively Coupled Nitrogen Plasmas by Adding Argon/Helium

    康正德; 蒲以康

    2002-01-01

    A new technique, adding argon or helium into nitrogen plasma, has been used to regulate the electron temperature in an inductively coupled plasma. The electron temperature is determined by analysing the intensity ratio of two nitrogen spectrum lines. The results show that, when the total pressure is 0.7Pa, the electron temperature increases with the increase of the He partial pressure in He/N2 plasma, but the electron temperature decreases with the increase of the Ar partial pressure in Ar/N2 plasma. The regulation effect of electron temperature is weaker in higher pressure N2/He plasma of 2.6Pa.

  15. Characterization of silicon isotropic etch by inductively coupled plasma etcher for microneedle array fabrication

    This work investigates the isotropic etching properties in inductively coupled plasma (ICP) etcher for microneedle arrays fabrication. The effects of process variables including powers, gas and pressure on needle structure generation are characterized by factorial design of experiment (DOE). The experimental responses of vertical etching depth, lateral etching length, ratio of vertical etching depth to lateral etching length and photoresist etching rate are reported. The relevance of the etching variables is also presented. The obtained etching behaviours for microneedle structure generation will be applied to develop recipes to fabricate microneedles in designed dimensions

  16. Considerations for the installation of an inductively coupled plasma for the analysis of radioactive samples

    The sensitivity, dynamic range, and sample through-put rate attributes of the inductively coupled plasma (ICP) call for its consideration as the instrument of choice for the multielement analysis of radioactive samples. Based on our experience in handling radioactive materials, considerations are presented concerning safety of the operator, modularity of the ICP-atomic emission spectrometer systems, reduction of the complex actinide spectra, atomization systems, drain and recovery systems, aerosol containment, heat dissipation, radiolysis effects of sample on dry-box environment, and liquid and solid sampling

  17. Surface Modification of Nanometre Silicon Carbide Powder with Polystyrene by Inductively Coupled Plasma

    An investigation was made into polystyrene (PS) grafted onto nanometre silicon carbide (SiC) particles. In our experiment, the grafting polymerization reaction was induced by a radio frequency (RF) inductively coupled plasma (ICP) treatment of the nanometre powder. FTIR (Fourier transform infrared spectrum) and XPS (X-ray photoelectron spectroscopy) results reveal that PS is grafted onto the surface of silicon carbide powder. An analysis is presented on the effectiveness of this approach as a function of plasma operating variables including the plasma treating power, treating time, and grafting reaction temperature and time.

  18. Surface Modification of Nanometre Silicon Carbide Powder with Polystyrene by Inductively Coupled Plasma

    Wei, Gang; Meng, Yuedong; Zhong, Shaofeng; Liu, Feng; Jiang, Zhongqing; Shu, Xingsheng; Ren, Zhaoxing; Wang, Xiangke

    2008-02-01

    An investigation was made into polystyrene (PS) grafted onto nanometre silicon carbide (SiC) particles. In our experiment, the grafting polymerization reaction was induced by a radio frequency (RF) inductively coupled plasma (ICP) treatment of the nanometre powder. FTIR (Fourier transform infrared spectrum) and XPS (X-ray photoelectron spectroscopy) results reveal that PS is grafted onto the surface of silicon carbide powder. An analysis is presented on the effectiveness of this approach as a function of plasma operating variables including the plasma treating power, treating time, and grafting reaction temperature and time.

  19. Concentrations of Th and U in human tissues determined by inductively coupled plasma-mass spectrometry

    In about 20 specimens of untreated human soft tissues, Th and U, were analyzed by inductively coupled plasma-mass spectrometry (ICP-MS). The concentration values obtained, particularly in the case of U, tended to be lower than reported ones. In order to investigate the source of the discrepancy, human tissue samples (treated for preservation), which had been analyzed for U in the previous study by fission tracks, were analyzed again by ICP-MS. This demonstrated the difference may be a reflection of the variance between treated and untreated samples. The problems involved in the analysis and the sample treatment are discussed. (author)

  20. Determination of thorium and uranium in total diet samples by inductively coupled plasma mass spectrometry

    The Th and U contents in total diet samples were determined by inductively coupled plasma mass spectrometry (ICP-MS). The internal standardization method was adopted to compensate for non-spectral interferences arising from matrix elements in the sample solutions. Concentration levels of the order of pg ml-1 of Th and U in the total diet sample were determined easily and rapidly by using Bi as an internal standard. The mean concentrations and standard deviations of Th and U in the total diet samples were found to be 25 ± 12 and 44 ± 20 ng g-1 of ash, respectively (for n = 62). (author)

  1. Photon noise limited radiation detection with lens-antenna coupled microwave kinetic inductance detectors

    Microwave kinetic inductance detectors (MKIDs) have shown great potential for sub-mm instrumentation because of the high scalability of the technology. Here, we demonstrate for the first time in the sub-mm band (0.1-2 mm) a photon noise limited performance of a small antenna coupled MKID detector array and we describe the relation between photon noise and MKID intrinsic generation-recombination noise. Additionally, we use the observed photon noise to measure the optical efficiency of detectors to be 0.8 ± 0.2.

  2. Neptunium determination by inductively coupled plasma mass spectrometry (ICP-MS)

    The determination of neptunium-237 (237Np) traditionally has been performed by alpha spectrometry or neutron activation analysis. These methods are labor intensive and require several days for completion. Inductively Coupled Plasma Mass Spectrometry (ICP-MS) is a possible alternative for 237Np determinations. This paper describes the analytical method developed for samples that have significant levels of uranium present. The lower reporting limits achievable by ICP-MS are competitive with the counting methods, but the real advantage for this laboratory lies in the lower cost and faster turnaround time provided by ICP-MS. (author)

  3. Application of Inductively Coupled Wireless Radio Frequency Probe to Knee Joint in Magnetic Resonance Image

    Yuki Katayama

    2009-10-01

    Full Text Available An inductively coupled wireless coil for a radio frequency (RF probe has been designed and applied to a human knee joint to improve the signal to noise ratio (SNR in a magnetic resonance image (MRI. A birdcage type of a primary coil and a Helmholtz type of a wireless secondary coil have been manufactured. The coils were applied to a human knee with a 3 T MRI system. SNR was calculated both in the proton density image and in the T2 weighted image of MRI. The experimental results show that the designed coils are effective to increase SNR in the human knee MRI.

  4. Argon metastable state densities in inductively coupled plasma in mixtures of Ar and O2

    We have measured the densities of 1s5 and 1s3 argon metastables as a function of the abundance of molecular oxygen in an inductively coupled plasma (ICP) in mixtures of Ar and O2. Laser absorption spectroscopy was used to determine the densities of the metastables. It was found that even small abundances of oxygen lead to large increases in metastable density, mostly due to the reduction in the electron number density, since electron-induced quenching determines the metastable density. At abundances higher than 7% to 15% for powers between 50 and 150 W, quenching by oxygen molecules begins to dominate and the metastable density drops again.

  5. Fabrication of lithographically defined optical coupling facets for silicon-on-insulator waveguides by inductively coupled plasma etching

    We present a technique to lithographically define and fabricate all required optical facets on a silicon-on-insulator photonic integrated circuit by an inductively coupled plasma etch process. This technique offers 1 μm positioning accuracy of the facets at any location within the chip and eliminates the need of polishing. Facet fabrication consists of two separate steps to ensure sidewall verticality and minimize attack on the end surfaces of the waveguides. Protection of the waveguides by a thermally evaporated aluminum layer before the 40-70 μm deep optical facet etching has been proven essential in assuring the facet smoothness and integrity. Both scanning electron microscopy analysis and optical measurement results show that the quality of the facets prepared by this technique is comparable to the conventional facets prepared by polishing

  6. Novel applications of high performance ion chromatography - inductively coupled plasma mass spectrometry (HPIC-ICP-MS)

    This work demonstrates the development of highly sensitive and selective analytical methods, which make use of the hyphenation of high performance ion chromatography (HPIC) to inductively coupled plasma sector field mass spectrometry (ICP-SFMS). On-line coupling a chromatographic separation method with an elemental detection method provides two advantages: (1) The components of a possibly interfering matrix can be separated allowing accurate and precise ultra trace analysis of the element of interest and (2) elemental species of an element can be separated and quantified. In this work, matrix separation methods for interference free determination of 232Th, 234U, 235U and 238U in geological matrices were developed and employed. Furthermore HPIC-ICP-SFMS was applied for ultra trace analysis of Pd in environmental and geological matrices. The usefulness of HPIC-ICP-SFMS for speciation studies was demonstrated by investigating the interaction of an anti-cancer drug (cisplatin) with guanosine monophosphates. (author)

  7. State-space modeling of the radio frequency inductively-coupled plasma generator

    Computational fluid dynamics models of RF-ICP are useful in understanding the basic transport phenomenon in an ICP torch under a wide variety of operating conditions. However, these models lack the ability to evaluate the effects of the plasma condition on the RF generator. In this paper, simulation of an induction plasma generator has been done using state space modelling by considering inductively coupled plasma as a part of RF network .The time dependent response of the RF-ICP generator circuit to given input excitation has been computed by extracting the circuit's state-space variables and their constraint matrices. MATLAB 7.1 software has been used to solve the state equations. The values of RF coil current, frequency and plasma power has been measured experimentally also at different plate bias voltage. The simulated model is able to predict RF coil current, frequency, plasma power, overall efficiency of the generator. The simulated and measured values are in agreement with each other. This model can prove useful as a design tool for the Induction plasma generator.

  8. State-space modeling of the radio frequency inductively-coupled plasma generator

    Dewangan, Rakesh Kumar; Punjabi, Sangeeta B; Mangalvedekar, H A; Lande, B K [Electrical Engineering Department, V J T I, Mumbai-400019 (India); Joshi, N K; Barve, D N, E-mail: ham.vjti@gmail.co [Laser and Plasma Technology Division, BARC, Mumbai-400085 (India)

    2010-02-01

    Computational fluid dynamics models of RF-ICP are useful in understanding the basic transport phenomenon in an ICP torch under a wide variety of operating conditions. However, these models lack the ability to evaluate the effects of the plasma condition on the RF generator. In this paper, simulation of an induction plasma generator has been done using state space modelling by considering inductively coupled plasma as a part of RF network .The time dependent response of the RF-ICP generator circuit to given input excitation has been computed by extracting the circuit's state-space variables and their constraint matrices. MATLAB 7.1 software has been used to solve the state equations. The values of RF coil current, frequency and plasma power has been measured experimentally also at different plate bias voltage. The simulated model is able to predict RF coil current, frequency, plasma power, overall efficiency of the generator. The simulated and measured values are in agreement with each other. This model can prove useful as a design tool for the Induction plasma generator.

  9. Excellent Silicon Surface Passivation Achieved by Industrial Inductively Coupled Plasma Deposited Hydrogenated Intrinsic Amorphous Silicon Suboxide

    Jia Ge

    2014-01-01

    Full Text Available We present an alternative method of depositing a high-quality passivation film for heterojunction silicon wafer solar cells, in this paper. The deposition of hydrogenated intrinsic amorphous silicon suboxide is accomplished by decomposing hydrogen, silane, and carbon dioxide in an industrial remote inductively coupled plasma platform. Through the investigation on CO2 partial pressure and process temperature, excellent surface passivation quality and optical properties are achieved. It is found that the hydrogen content in the film is much higher than what is commonly reported in intrinsic amorphous silicon due to oxygen incorporation. The observed slow depletion of hydrogen with increasing temperature greatly enhances its process window as well. The effective lifetime of symmetrically passivated samples under the optimal condition exceeds 4.7 ms on planar n-type Czochralski silicon wafers with a resistivity of 1 Ωcm, which is equivalent to an effective surface recombination velocity of less than 1.7 cms−1 and an implied open-circuit voltage (Voc of 741 mV. A comparison with several high quality passivation schemes for solar cells reveals that the developed inductively coupled plasma deposited films show excellent passivation quality. The excellent optical property and resistance to degradation make it an excellent substitute for industrial heterojunction silicon solar cell production.

  10. Ion flux and ion distribution function measurements in synchronously pulsed inductively coupled plasmas

    Brihoum, Melisa; Cunge, Gilles; Darnon, Maxime; Joubert, Olivier [Laboratoire des Technologies de la Microelectronique CNRS, Grenoble Cedex 9, Isere 38054 (France); Gahan, David [Impedans Ltd., Dublin 17 (Ireland); Braithwaite, Nicholas St. J. [Department of Physical Sciences, Open University, Walton Hall, Milton Keynes MK7 6AA (United Kingdom)

    2013-03-15

    Changes in the ion flux and the time-averaged ion distribution functions are reported for pulsed, inductively coupled RF plasmas (ICPs) operated over a range of duty cycles. For helium and argon plasmas, the ion flux increases rapidly after the start of the RF pulse and after about 50 {mu}s reaches the same steady state value as that in continuous ICPs. Therefore, when the plasma is pulsed at 1 kHz, the ion flux during the pulse has a value that is almost independent of the duty cycle. By contrast, in molecular electronegative chlorine/chlorosilane plasmas, the ion flux during the pulse reaches a steady state value that depends strongly on the duty cycle. This is because both the plasma chemistry and the electronegativity depend on the duty cycle. As a result, the ion flux is 15 times smaller in a pulsed 10% duty cycle plasma than in the continuous wave (CW) plasma. The consequence is that for a given synchronous RF biasing of a wafer-chuck, the ion energy is much higher in the pulsed plasma than it is in the CW plasma of chlorine/chlorosilane. Under these conditions, the wafer is bombarded by a low flux of very energetic ions, very much as it would in a low density, capacitively coupled plasma. Therefore, one can extend the operating range of ICPs through synchronous pulsing of the inductive excitation and capacitive chuck-bias, offering new means by which to control plasma etching.

  11. Ion flux and ion distribution function measurements in synchronously pulsed inductively coupled plasmas

    Changes in the ion flux and the time-averaged ion distribution functions are reported for pulsed, inductively coupled RF plasmas (ICPs) operated over a range of duty cycles. For helium and argon plasmas, the ion flux increases rapidly after the start of the RF pulse and after about 50 μs reaches the same steady state value as that in continuous ICPs. Therefore, when the plasma is pulsed at 1 kHz, the ion flux during the pulse has a value that is almost independent of the duty cycle. By contrast, in molecular electronegative chlorine/chlorosilane plasmas, the ion flux during the pulse reaches a steady state value that depends strongly on the duty cycle. This is because both the plasma chemistry and the electronegativity depend on the duty cycle. As a result, the ion flux is 15 times smaller in a pulsed 10% duty cycle plasma than in the continuous wave (CW) plasma. The consequence is that for a given synchronous RF biasing of a wafer-chuck, the ion energy is much higher in the pulsed plasma than it is in the CW plasma of chlorine/chlorosilane. Under these conditions, the wafer is bombarded by a low flux of very energetic ions, very much as it would in a low density, capacitively coupled plasma. Therefore, one can extend the operating range of ICPs through synchronous pulsing of the inductive excitation and capacitive chuck-bias, offering new means by which to control plasma etching.

  12. Lithium Iron Phosphate Powders and Coatings Obtained by Means of Inductively Coupled Thermal Plasma

    Major, K.; Veilleux, J.; Brisard, G.

    2016-01-01

    Lithium-ion batteries have high energy efficiency and good cycling life and are considered as one of the best energy storage device for hybrid and/or electrical vehicle. Still, several problems must be solved prior to a broad adoption by the automotive industry: energy density, safety, and costs. To enhance both energy density and safety, the current study aims at depositing binder-free cathode materials using inductively coupled thermal plasma. In a first step, lithium iron phosphate (LiFePO4) powders are synthesized in an inductively coupled thermal plasma reactor and dispersed in a conventional polyvinylidene fluoride (PVDF) binder. Then, binder-free LiFePO4 coatings are directly deposited onto nickel current collectors by solution precursor plasma spraying (SPPS). The morphology, microstructure, and composition of the synthesized LiFePO4 powders and coatings are fully characterized by electronic microscopy, x-ray diffraction, and x-ray photoelectron spectroscopy (XPS). Quantifying Li with XPS requires the substitution of iron with manganese in the SPPS precursors (LiMPO4, where M = Fe or Mn). The plasma-derived cathodes (with and without PVDF binder) are assembled in button cells and tested. Under optimized plasma conditions, cyclic voltammetry shows that the electrochemical reversibility of plasma-derived cathodes is improved over that of conventional sol-gel-derived LiFePO4 cathodes.

  13. Determination of the rare-earth elements in geological materials by inductively coupled plasma mass spectrometry

    Lichte, F.E.; Meier, A.L.; Crock, J.G.

    1987-01-01

    A method of analysis of geological materials for the determination of the rare-earth elements using the Inductively coupled plasma mass spectrometric technique (ICP-MS) has been developed. Instrumental parameters and factors affecting analytical results have been first studied and then optimized. Samples are analyzed directly following an acid digestion, without the need for separation or preconcentration with limits of detection of 2-11 ng/g, precision of ?? 2.5% relative standard deviation, and accuracy comparable to inductively coupled plasma emission spectrometry and instrumental neutron activation analysis. A commercially available ICP-MS instrument is used with modifications to the sample introduction system, torch, and sampler orifice to reduce the effects of high salt content of sample solutions prepared from geologic materials. Corrections for isobaric interferences from oxide ions and other diatomic and triatomic ions are made mathematically. Special internal standard procedures are used to compensate for drift in metahmetal oxide ratios and sensitivity. Reference standard values are used to verify the accuracy and utility of the method.

  14. Applications of inductively coupled plasma-mass spectrometry to radionuclide determinations

    The symposium, Applications of Inductively Coupled-Mass Spectrometry to Radionuclide Determinations, was held in Gatlinburg, Tennessee on 13--14 October 1994. Despite the fact that the United States Department of Energy (DOE) is changing the mission of many facilities from defense-related nuclear materials production to site remediation and monitoring, the need to fully characterize wastes and environmental samples, combined with the need to monitor worker radiation exposure by means of internal dosimetry, continues to increase the demand for radioisotope determinations. Active nuclear facilities in the United States and elsewhere are strongly emphasizing these determinations, and they are concurrently demanding better and faster analysis techniques to assure the quality of the materials that they supply for nuclear energy production and other nuclear technologies. Many alternatives to radiometry are being studied, however, one of the most promising techniques for radionuclide determinations appears to be inductively coupled plasma - mass spectrometry (ICP-MS). The symposium was a continuation of work started by the Plasma Spectroscopy task group of ASTM Subcommittee C26.05 on Nuclear Fuel Cycle Test Methods, but the DOE Office of Transportation, Emergency Management, and Analytical Services (EM-76) was involved in the genesis of the symposium. Papers covered applications in nuclear material production, high-level waste characterization, environmental monitoring and waste management, and internal dosimetry and health protection. Eleven papers have been processed separately for inclusion on the data base

  15. Serum/plasma methylmercury determination by isotope dilution gas chromatography-inductively coupled plasma mass spectrometry

    Highlights: · We determine methylmercury in serum and plasma using isotope dilution calibration. · Separation by gas chromatography and detection by inductively coupled plasma mass spectrometry. · Data for 50 specimens provides first reference range for methylmercury in serum. · Serum samples shown to be stable for 11 months in refrigerator. - Abstract: A method for the determination of methylmercury in plasma and serum samples was developed. The method uses isotope dilution with 198Hg-labeled methylmercury, extraction into dichloromethane, back-extraction into water, aqueous-phase ethylation, purge and trap collection, thermal desorption, separation by gas chromatography, and mercury isotope specific detection by inductively coupled plasma mass spectrometry. By spiking 2 mL sample with 1.2 ng tracer, measurements in a concentration interval of (0.007-2.9) μg L-1 could be performed with uncertainty amplification factors -1 was estimated at 10 times the standard deviation of concentrations measured in preparation blanks. Within- and between-run relative standard deviations were -1, 0.35 μg L-1 and 2.8 μg L-1, with recoveries in the range 82-110%. Application of the method to 50 plasma/serum samples yielded a median (mean; range) concentration of methylmercury of 0.081 (0.091; -1. This is the first time methylmercury has been directly measured in this kind of specimen, and is therefore the first estimate of a reference range.

  16. Trace metal analysis of road dust by inductively coupled plasma mass spectrometry

    Dust from roads in an air impingement zone close to anthropogenic sources of air pollutants can be a concern for people living in the immediate vicinity. The Ministry of the Environment (MOE) has conducted a case study to monitor the concentration of uranium, strontium, thorium and arsenic in road dust from one such area. A method for the analysis of road dust by inductively coupled plasma mass spectrometry (ICP-MS) has been developed with detection limits in the ng/1 range. A digestion technique has been developed by conducting experiments using single and combinations of acids in open-vessel wet digestions. Accuracy has been determined by the use of matrix representative certified reference materials (CRMs). Digestion precision was determined by elemental concentration measurements of the most representative CRM through replicates. Spike recovery data were from 95% to 110% for all elements, and inter-method comparison studies between hydride generation atomic absorption spectrometry (AAS) inductively coupled plasma atomic emission spectrometry (ICP-AES) and ICP-MS for arsenic and strontium show good agreement. (author)

  17. Inductively coupled plasma etching of BZN thin films in SF6/Ar plasmas

    Wang, Gang; Li, Ping; Zhang, Guojun; Li, Wei; Dai, Liping; Jiang, Jing

    2013-03-01

    Etching mechanisms and characteristics of bismuth zinc niobate (BZN) thin films were investigated in inductively coupled SF6/Ar plasmas. The influences of various etching parameters including the gas flow ratio, process pressure, and ICP power on the etching results were analyzed. It is found that the chemical etching with F radicals was more effective than the physical sputtering etching with Ar ions for the inductively coupled plasma etching of BZN thin films. The mechanism of ion assisted chemical etching of BZN thin films in SF6/Ar plasmas was proposed. A maximum etch rate of approximately 43.15 nm/min for the BZN thin film was obtained at the optimum etching conditions: 3/2 for the SF6/Ar gas flow ratio, 10 mTorr for the process pressure, and 600 W for the ICP power. The surface morphology of the etched BZN thin film was observed, where was smooth and clean and no post-etch residues were remained.

  18. Trace determination of Pu by LIF in an inductively coupled plasma

    Inductively Coupled Plasma/Emission Spectrometry (ICP/ES) technique is largely used in the nuclear industry as an elementary analytical technique. Nevertheless, when the sample to analyse presents elements with a lot of emission spectral lines, spectral interferences lead to limited sensitivity. This is the case for Pu determination in presence of large U concentration. In pure aqueous solution, the limit of detection (LOD) for Pu is 10 μg/1. In presence of U, the LOD is determined by a ratio U/Pu = 1000. Pulsed Laser Induced Fluorescence (LIF) spectrometry is known to be a very selective technique when associated with an Inductively Coupled Plasma source. The absolute sensitivity is better by 2 or 3 orders of magnitude; its principle is based on selective excitation of the ionic species in the plasma followed by fluorescence radiation detection of these species; this radiation being practically free from spectral interferences, it is possible to improve the relative LOD. In this presentation, experimental results performed at Cogema/Marcoule laboratory are presented. After the experimental set-up description, first results of LIF are shown: - very good selectivity is effectively obtained, - a series of analytical results obtained with excitation scanning from the visible to the U.V. show that sensitivity of LIF technique is strictly related to the spectroscopic scheme

  19. Inductively coupled plasma-mass spectrometry: an initial assessment of the VG isotopes Plasmaquad

    The Chemical Analysis Group has been approached by a British Scientific instrument maker regarding the possibility of the group participating in a Department of Trade and Industry sponsored scheme whereby we would have a 12 month period to assess the advantages and disadvantages of a new analytical technique, Inductively Coupled Plasma-Mass Spectrometry. This report details our initial assessment of the instrument, carried out in order to decide whether to participate in the scheme. We have attempted to discover whether the instrument meets the claims made of it in advertising literature, and have attempted to compare the technique with another, proven technique, Inductively Coupled Plasma - Optical Emission Spectroscopy. The Plasmaquad offers excellent sensitivity for almost all of the elements of the periodic table, giving a distinct improvement over the Chemical Analysis Group's present capabilities for many elements. The isotope ratio measuring ability is important, as the Group has no such capability at the moment and a demand for this type of measurement is foreseen. Our conclusions, while inevitably somewhat subjective, form the basis for recommending Harwell to participate in the scheme. (author)

  20. Inductively coupled hydrogen plasma processing of AZO thin films for heterojunction solar cell applications

    Highlights: • A high-density plasma reactor of inductively coupled plasma source is used in this work. • The conductivity and transmittance can be enhanced simultaneously in the hydrogen process. • The formation of additional donors and passivation due to the hydrogen plasma processing. • The photovoltaic improvement due to the improved AZO layer and hetero-interface quality in the solar cells. - Abstract: Al-doped ZnO (AZO) thin films deposited by means of RF magnetron sputtering were processed in a low frequency inductively coupled plasma of H2, aiming at heterojunction (HJ) solar cell applications. A variety of characterization results show that the hydrogen plasma processing exerts a significant influence on the microstructures, electrical and optical properties of the AZO films. The incorporation of hydrogen under the optimum treatment simultaneously promoted the transmittance and conductivity due to the hydrogen associated passivation effect on the native defects and the formation of shallow donors in the films, respectively. A p-type c-Si based HJ solar cell with a front AZO contact was also treated in as-generated non-equilibrium hydrogen plasma and the photovoltaic performance of the solar cell was prominently improved. The underlying mechanism was discussed in terms of the beneficial impacts of high-density hydrogen plasma on the properties of AZO itself and the hetero-interfaces involved in the HJ structure (interface defect and energy band configuration)

  1. Inductively coupled hydrogen plasma processing of AZO thin films for heterojunction solar cell applications

    Zhou, H.P. [State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Energy Science and Engineering, University of Electronic Science and Technology of China, 2006 Xiyuan Ave, West High-Tech Zone, Chengdu, Sichuan 611731 (China); Plasma Sources and Application Center, NIE, and Institute of Advanced Studies, Nanyang Technological University, 637616 Singapore (Singapore); Xu, S., E-mail: shuyan.xu@nie.edu.sg [Plasma Sources and Application Center, NIE, and Institute of Advanced Studies, Nanyang Technological University, 637616 Singapore (Singapore); Zhao, Z. [School of Microelectronics and Solid-state electronics, University of Electronic Science and Technology of China, No.4, Section 2, North Jianshe Rd, Chengdu 610054 (China); Xiang, Y., E-mail: Xiang@uestc.edu.cn [State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Energy Science and Engineering, University of Electronic Science and Technology of China, 2006 Xiyuan Ave, West High-Tech Zone, Chengdu, Sichuan 611731 (China); Institute of Electronic and Information Engineering in Dongguan,UESTC, Dongguan 523808, Guangdong (China)

    2014-10-15

    Highlights: • A high-density plasma reactor of inductively coupled plasma source is used in this work. • The conductivity and transmittance can be enhanced simultaneously in the hydrogen process. • The formation of additional donors and passivation due to the hydrogen plasma processing. • The photovoltaic improvement due to the improved AZO layer and hetero-interface quality in the solar cells. - Abstract: Al-doped ZnO (AZO) thin films deposited by means of RF magnetron sputtering were processed in a low frequency inductively coupled plasma of H{sub 2}, aiming at heterojunction (HJ) solar cell applications. A variety of characterization results show that the hydrogen plasma processing exerts a significant influence on the microstructures, electrical and optical properties of the AZO films. The incorporation of hydrogen under the optimum treatment simultaneously promoted the transmittance and conductivity due to the hydrogen associated passivation effect on the native defects and the formation of shallow donors in the films, respectively. A p-type c-Si based HJ solar cell with a front AZO contact was also treated in as-generated non-equilibrium hydrogen plasma and the photovoltaic performance of the solar cell was prominently improved. The underlying mechanism was discussed in terms of the beneficial impacts of high-density hydrogen plasma on the properties of AZO itself and the hetero-interfaces involved in the HJ structure (interface defect and energy band configuration)

  2. Direct Determination of Total Arsenic and Arsenic Species by Ion Chromatography Coupled with Inductively Coupled Plasma Mass Spectrometry

    The simultaneous determination of As(III), As(V), and DMA has been performed by ion chromatography (IC) coupled with inductively coupled plasma-mass spectrometry (ICP-MS). The separation of the three arsenic species was achieved by an anionic separator column (AS 7) with an isocratic elution system. The separated species were directly detected by ICP-MS as an element-selective detection method. The IC-ICP-MS technique was applied for the determination of arsenic species in a NIST SRM 1643d water sample. An As(III) only was detected in the sample. The detection limits of As(III), As(V) and DMA were 0.31, 0.45, and 2.09 ng/mL, respectively. It was also applied for the determination of arsenic species in a human urine obtained by a volunteer, and three arsenic species were identified. The determination of total As in human urines that were obtained from 25 volunteers at the different age was also carried out by ICP-MS

  3. Ablation of triadin causes loss of cardiac Ca2+ release units, impaired excitation-contraction coupling, and cardiac arrhythmias.

    Chopra, Nagesh; Yang, Tao; Asghari, Parisa; Moore, Edwin D; Huke, Sabine; Akin, Brandy; Cattolica, Robert A; Perez, Claudio F; Hlaing, Thinn; Knollmann-Ritschel, Barbara E C; Jones, Larry R; Pessah, Isaac N; Allen, Paul D; Franzini-Armstrong, Clara; Knollmann, Björn C

    2009-05-01

    Heart muscle excitation-contraction (E-C) coupling is governed by Ca(2+) release units (CRUs) whereby Ca(2+) influx via L-type Ca(2+) channels (Cav1.2) triggers Ca(2+) release from juxtaposed Ca(2+) release channels (RyR2) located in junctional sarcoplasmic reticulum (jSR). Although studies suggest that the jSR protein triadin anchors cardiac calsequestrin (Casq2) to RyR2, its contribution to E-C coupling remains unclear. Here, we identify the role of triadin using mice with ablation of the Trdn gene (Trdn(-/-)). The structure and protein composition of the cardiac CRU is significantly altered in Trdn(-/-) hearts. jSR proteins (RyR2, Casq2, junctin, and junctophilin 1 and 2) are significantly reduced in Trdn(-/-) hearts, whereas Cav1.2 and SERCA2a remain unchanged. Electron microscopy shows fragmentation and an overall 50% reduction in the contacts between jSR and T-tubules. Immunolabeling experiments show reduced colocalization of Cav1.2 with RyR2 and substantial Casq2 labeling outside of the jSR in Trdn(-/-) myocytes. CRU function is impaired in Trdn(-/-) myocytes, with reduced SR Ca(2+) release and impaired negative feedback of SR Ca(2+) release on Cav1.2 Ca(2+) currents (I(Ca)). Uninhibited Ca(2+) influx via I(Ca) likely contributes to Ca(2+) overload and results in spontaneous SR Ca(2+) releases upon beta-adrenergic receptor stimulation with isoproterenol in Trdn(-/-) myocytes, and ventricular arrhythmias in Trdn(-/-) mice. We conclude that triadin is critically important for maintaining the structural and functional integrity of the cardiac CRU; triadin loss and the resulting alterations in CRU structure and protein composition impairs E-C coupling and renders hearts susceptible to ventricular arrhythmias. PMID:19383796

  4. Impulse-coupling coefficients from a pulsed-laser ablation of semiconductor GaAs

    2006-01-01

    Impulse-coupling coefficients from 1.06 - μm, 10-ns Nd:YAG pulsed-laser radiation to GaAs targets with different areas were measured using the ballistic pendulum method in the laser power density ranging from 4.0 × 108 to 5.0 × 109 W·cm-2.A detonation wave model of the plasma was established theoretically. The expansion process of plasma after the laser pulse ends is described in detail, and the impulse-coupling coefficients from pulsed laser with different energies to GaAs with different areas were calculated using the given model. It is found that the theoretical results agree well with the experimental data.

  5. Laser ablation in analytical chemistry-a review.

    Russo, Richard E; Mao, Xianglei; Liu, Haichen; Gonzalez, Jhanis; Mao, Samuel S

    2002-05-24

    Laser ablation is becoming a dominant technology for direct solid sampling in analytical chemistry. Laser ablation refers to the process in which an intense burst of energy delivered by a short laser pulse is used to sample (remove a portion of) a material. The advantages of laser ablation chemical analysis include direct characterization of solids, no chemical procedures for dissolution, reduced risk of contamination or sample loss, analysis of very small samples not separable for solution analysis, and determination of spatial distributions of elemental composition. This review describes recent research to understand and utilize laser ablation for direct solid sampling, with emphasis on sample introduction to an inductively coupled plasma (ICP). Current research related to contemporary experimental systems, calibration and optimization, and fractionation is discussed, with a summary of applications in several areas. PMID:18968642

  6. Metal particles produced by laser ablation for ICP-MSmeasurements

    Gonzalez, Jhanis J.; Liu, Chunyi; Wen, Sy-Bor; Mao, Xianglei; Russo, Richard E.

    2007-06-01

    Pulsed laser ablation (266nm) was used to generate metal particles of Zn and Al alloys using femtosecond (150 fs) and nanosecond (4 ns) laser pulses with identical fluences of 50 J cm{sup -2}. Characterization of particles and correlation with Inductively Coupled Plasma Mass Spectrometer (ICP-MS) performance was investigated. Particles produced by nanosecond laser ablation were mainly primary particles with irregular shape and hard agglomerates (without internal voids). Particles produced by femtosecond laser ablation consisted of spherical primary particles and soft agglomerates formed from numerous small particles. Examination of the craters by white light interferometric microscopy showed that there is a rim of material surrounding the craters formed after nanosecond laser ablation. The determination of the crater volume by white light interferometric microscopy, considering the rim of material surrounding ablation craters, revealed that the volume ratio (fs/ns) of the craters on the selected samples was approximately 9 (Zn), 7 (NIST627 alloy) and 5 (NIST1711 alloy) times more ablated mass with femtosecond pulsed ablation compared to nanosecond pulsed ablation. In addition, an increase of Al concentration from 0 to 5% in Zn base alloys caused a large increase in the diameter of the particles, up to 65% while using nanosecond laser pulses. When the ablated particles were carried in argon into an ICP-MS, the Zn and Al signals intensities were greater by factors of {approx} 50 and {approx} 12 for fs vs. ns ablation. Femtosecond pulsed ablation also reduced temporal fluctuations in the {sup 66}Zn transient signal by a factor of ten compared to nanosecond laser pulses.

  7. Coupling an induction motor type generator to ac power lines. [making windmill generators compatible with public power lines

    Nola, F. J. (Inventor)

    1984-01-01

    A system for coupling an induction motor type generator to an A.C. power line includes an electronic switch means that is controlled by a control system and is regulated to turn on at a relatively late point in each half cycle of its operation. The energizing power supplied by the line to the induction motor type generator is decreased and the net power delivered to the line is increased.

  8. Multi-element analysis of Macedonian wines by inductively coupled plasma–mass spectrometry (ICP–MS) and inductively coupled plasma–optical emission spectrometry (IP–OES) for regional classification

    Ivanova, Violeta; Wiltsche, Helmar; Stafilov, Trajče; Stefova, Marina; Motter, Herber; Lankmayr, Ernst

    2013-01-01

    Major, minor, and trace elements in wines from the Republic of Macedonia were determined in this study. Both inductively coupled plasma–mass spectrometry (ICP-MS) and inductively coupled plasma– optical emission spectrometry (ICP-OES) were used for accurate determination of the concentration of 42 elements (Ag, Al, Au, B, Ba, Be, Bi, Ca, Cd, Ce, Co, Cu, Dy, Er, Eu, Fe, Ga, Gd, Ge, Ho, La, Lu, Mg, Mn, Mo, Na, Nd, Ni, P, Pb, Pr, S, Sm, Tb, Ti, Tl, Tm, U, V, Yb, Zn, Zr) in 25 Macedonian white, r...

  9. Rapid lead isotope analysis of archaeological metals by multiple-collector inductively coupled plasma mass spectrometry

    Baker, J.A.; Stos, S.; Waight, Tod Earle

    2006-01-01

    Lead isotope ratios in archaeological silver and copper were determined by MC-ICPMS using laser ablation and bulk dissolution without lead purification. Laser ablation results on high-lead metals and bulk solution analyses on all samples agree within error of TIMS data, suggesting that problems f...

  10. Evaluation of the temporal profiles and the analytical features of a laser ablation - Pulsed glow discharge coupling for optical emission spectrometry

    González de Vega, Claudia; Bordel, Nerea; Pereiro, Rosario; Sanz-Medel, Alfredo

    2016-07-01

    The coupling of a glow discharge (GD) in pulsed mode (PGD) as secondary source for excitation/ionization of the material provided by laser ablation (LA) has been investigated using optical emission spectrometry (OES). The variation of the laser pulse delay with respect to the GD pulse allows to producing the ablation process during prepeak, plateau or afterglow GD regions. Emission properties of the LA-PGD plasma in each temporal region of the GD pulse have been evaluated for analytical lines of different elements. Resonant atomic lines have shown higher emission intensity in the prepeak region compared to non-resonant lines. Non-resonant lines showed higher enhancement of the emission intensity in the afterglow region. Moreover, the coupled LA-PGD system offered better linear correlation coefficients using a set of glass standards for calibration as well as lower detection limits (by at least a factor of two) when compared to laser induced breakdown spectroscopy.

  11. Sulfur analysis by inductively coupled plasma-mass spectrometry: A review

    Giner Martínez-Sierra, J.; Galilea San Blas, O.; Marchante Gayón, J.M.; García Alonso, J.I., E-mail: jiga@uniovi.es

    2015-06-01

    In recent years the number of applications of sulfur (S) analysis using inductively coupled plasma mass spectrometry (ICP-MS) as detector has increased significantly. In this article we describe in some depth the application of ICP-MS for S analysis with emphasis placed on the sulfur-specific detection by hyphenated techniques such as LC, GC, CE and LA coupled on-line to ICP-MS. The different approaches available for sulfur isotope ratio measurements by ICP-MS are also detailed. Particular attention has been paid to the quantification of peptides/proteins and the analysis of metallopeptides/metalloproteins via sulfur by LC–ICP-MS. Likewise, the speciation analysis of metal-based pharmaceuticals and metallodrugs and non-metal selective detection of pharmaceuticals via S are highlighted. Labeling procedures for metabolic applications are also included. Finally, the measurement of natural variations in S isotope composition with multicollector ICP-MS instruments is also covered in this review. - Highlights: • Emphasis placed on the sulfur-specific detection by chromatographic techniques coupled on-line to ICP-MS. • Different instrumental approaches available for sulfur measurements by ICP-MS. • Quantification of proteins and the analysis of metalloproteins via sulfur by LC-ICP-MS. • Labelling procedures for metabolic applications are also included. • The measurement of natural variations in S isotope composition with multicollector ICP-MS.

  12. Sulfur analysis by inductively coupled plasma-mass spectrometry: A review

    In recent years the number of applications of sulfur (S) analysis using inductively coupled plasma mass spectrometry (ICP-MS) as detector has increased significantly. In this article we describe in some depth the application of ICP-MS for S analysis with emphasis placed on the sulfur-specific detection by hyphenated techniques such as LC, GC, CE and LA coupled on-line to ICP-MS. The different approaches available for sulfur isotope ratio measurements by ICP-MS are also detailed. Particular attention has been paid to the quantification of peptides/proteins and the analysis of metallopeptides/metalloproteins via sulfur by LC–ICP-MS. Likewise, the speciation analysis of metal-based pharmaceuticals and metallodrugs and non-metal selective detection of pharmaceuticals via S are highlighted. Labeling procedures for metabolic applications are also included. Finally, the measurement of natural variations in S isotope composition with multicollector ICP-MS instruments is also covered in this review. - Highlights: • Emphasis placed on the sulfur-specific detection by chromatographic techniques coupled on-line to ICP-MS. • Different instrumental approaches available for sulfur measurements by ICP-MS. • Quantification of proteins and the analysis of metalloproteins via sulfur by LC-ICP-MS. • Labelling procedures for metabolic applications are also included. • The measurement of natural variations in S isotope composition with multicollector ICP-MS

  13. Analytical Model and Optimized Design of Power Transmitting Coil for Inductively Coupled Endoscope Robot.

    Ke, Quan; Luo, Weijie; Yan, Guozheng; Yang, Kai

    2016-04-01

    A wireless power transfer system based on the weakly inductive coupling makes it possible to provide the endoscope microrobot (EMR) with infinite power. To facilitate the patients' inspection with the EMR system, the diameter of the transmitting coil is enlarged to 69 cm. Due to the large transmitting range, a high quality factor of the Litz-wire transmitting coil is a necessity to ensure the intensity of magnetic field generated efficiently. Thus, this paper builds an analytical model of the transmitting coil, and then, optimizes the parameters of the coil by enlarging the quality factor. The lumped model of the transmitting coil includes three parameters: ac resistance, self-inductance, and stray capacitance. Based on the exact two-dimension solution, the accurate analytical expression of ac resistance is derived. Several transmitting coils of different specifications are utilized to verify this analytical expression, being in good agreements with the measured results except the coils with a large number of strands. Then, the quality factor of transmitting coils can be well predicted with the available analytical expressions of self- inductance and stray capacitance. Owing to the exact estimation of quality factor, the appropriate coil turns of the transmitting coil is set to 18-40 within the restrictions of transmitting circuit and human tissue issues. To supply enough energy for the next generation of the EMR equipped with a Ø9.5×10.1 mm receiving coil, the coil turns of the transmitting coil is optimally set to 28, which can transfer a maximum power of 750 mW with the remarkable delivering efficiency of 3.55%. PMID:26292335

  14. Determination of technetium-99 in soil samples by high performance liquid chromatography coupled to inductively coupled plasma mass spectrometry

    Muto, Toshio; Shimokawa, Toshinari [Tokyo Metropolitan Isotope Research Center (Japan)

    1997-03-01

    A new powerful analytical technique viz. high performance liquid chromatography(HPLC) coupled to inductively coupled plasma mass spectrometry(HPLC/ICP-MS) has been applied to the determination of technetium-99({sup 99}Tc) in soils as a typical environmental sample. Technetium was enriched in a solution from incinerated soil samples by leaching in HNO{sub 3} and passed through `TEVA resin` column. The solution was injected into HPLC/ICP-MS system to eliminate the interfering elements (i.e. Ru and Mo) and to determine the {sup 99}Tc concentration at the same time. The concentrations of {sup 99}Tc in the incinerated soils were found to be 0.49Bq/kg(0.77ng/kg)-1.4Bq/kg(2.2ng/kg) with the determination limit of 0.02Bq/kg(0.03ng/kg(0.03ppt)). The results indicate the following findings; 1) the determination of {sup 99}Tc by ICP-MS after strict elimination of the interfering elements by HPLC brings about the improvement in their reliability; 2) the detection limits identified are much lower compared with those by conventional ICP-MS methods because of the concentration of {sup 99}Tc to smaller volume, which is due to only 100{mu}l of samples could be measured by HPLC/ICP-MS system; 3) sample preparation could be simplified because of strict elimination of the interfering elements by HPLC. This research showed that HPLC/ICP-MS system is very effective to determine {sup 99}Tc in environmental samples. (author)

  15. Determination of technetium-99 in soil samples by high performance liquid chromatography coupled to inductively coupled plasma mass spectrometry

    A new powerful analytical technique viz. high performance liquid chromatography(HPLC) coupled to inductively coupled plasma mass spectrometry(HPLC/ICP-MS) has been applied to the determination of technetium-99(99Tc) in soils as a typical environmental sample. Technetium was enriched in a solution from incinerated soil samples by leaching in HNO3 and passed through 'TEVA resin' column. The solution was injected into HPLC/ICP-MS system to eliminate the interfering elements (i.e. Ru and Mo) and to determine the 99Tc concentration at the same time. The concentrations of 99Tc in the incinerated soils were found to be 0.49Bq/kg(0.77ng/kg)-1.4Bq/kg(2.2ng/kg) with the determination limit of 0.02Bq/kg(0.03ng/kg(0.03ppt)). The results indicate the following findings; 1) the determination of 99Tc by ICP-MS after strict elimination of the interfering elements by HPLC brings about the improvement in their reliability; 2) the detection limits identified are much lower compared with those by conventional ICP-MS methods because of the concentration of 99Tc to smaller volume, which is due to only 100μl of samples could be measured by HPLC/ICP-MS system; 3) sample preparation could be simplified because of strict elimination of the interfering elements by HPLC. This research showed that HPLC/ICP-MS system is very effective to determine 99Tc in environmental samples. (author)

  16. Bulk plasma fragmentation in a C4F8 inductively coupled plasma: A hybrid modeling study

    A hybrid model is used to investigate the fragmentation of C4F8 inductive discharges. Indeed, the resulting reactive species are crucial for the optimization of the Si-based etching process, since they determine the mechanisms of fluorination, polymerization, and sputtering. In this paper, we present the dissociation degree, the density ratio of F vs. CxFy (i.e., fluorocarbon (fc) neutrals), the neutral vs. positive ion density ratio, details on the neutral and ion components, and fractions of various fc neutrals (or ions) in the total fc neutral (or ion) density in a C4F8 inductively coupled plasma source, as well as the effect of pressure and power on these results. To analyze the fragmentation behavior, the electron density and temperature and electron energy probability function (EEPF) are investigated. Moreover, the main electron-impact generation sources for all considered neutrals and ions are determined from the complicated C4F8 reaction set used in the model. The C4F8 plasma fragmentation is explained, taking into account many factors, such as the EEPF characteristics, the dominance of primary and secondary processes, and the thresholds of dissociation and ionization. The simulation results are compared with experiments from literature, and reasonable agreement is obtained. Some discrepancies are observed, which can probably be attributed to the simplified polymer surface kinetics assumed in the model

  17. Characterization of stationary and pulsed inductively coupled RF discharges for plasma sterilization

    Sterilization of bio-medical materials using radio frequency (RF) excited inductively coupled plasmas (ICPs) has been investigated. A double ICP has been developed and studied for homogenous treatment of three-dimensional objects. Sterilization is achieved through a combination of ultraviolet light, ion bombardment and radical treatment. For temperature sensitive materials, the process temperature is a crucial parameter. Pulsing of the plasma reduces the time average heat strain and also provides additional control of the various sterilization mechanisms. Certain aspects of pulsed plasmas are, however, not yet fully understood. Phase resolved optical emission spectroscopy and time resolved ion energy analysis illustrate that a pulsed ICP ignites capacitively before reaching a stable inductive mode. Time resolved investigations of the post-discharge, after switching off the RF power, show that the plasma boundary sheath in front of a substrate does not fully collapse for the case of hydrogen discharges. This is explained by electron heating through super-elastic collisions with vibrationally excited hydrogen molecules

  18. Characterization of stationary and pulsed inductively coupled RF discharges for plasma sterilization

    Gans, T.; Osiac, M.; O'Connell, D.; Kadetov, V. A.; Czarnetzki, U.; Schwarz-Selinger, T.; Halfmann, H.; Awakowicz, P.

    2005-05-01

    Sterilization of bio-medical materials using radio frequency (RF) excited inductively coupled plasmas (ICPs) has been investigated. A double ICP has been developed and studied for homogenous treatment of three-dimensional objects. Sterilization is achieved through a combination of ultraviolet light, ion bombardment and radical treatment. For temperature sensitive materials, the process temperature is a crucial parameter. Pulsing of the plasma reduces the time average heat strain and also provides additional control of the various sterilization mechanisms. Certain aspects of pulsed plasmas are, however, not yet fully understood. Phase resolved optical emission spectroscopy and time resolved ion energy analysis illustrate that a pulsed ICP ignites capacitively before reaching a stable inductive mode. Time resolved investigations of the post-discharge, after switching off the RF power, show that the plasma boundary sheath in front of a substrate does not fully collapse for the case of hydrogen discharges. This is explained by electron heating through super-elastic collisions with vibrationally excited hydrogen molecules.

  19. Spectroanalytical investigations on inductively coupled N2/Ar and Ar/Ar high frequency plasmas

    In order to improve the detection limits of trace elements in corrosion products of metallic materials, the inductively coupled plasma excitation source (ICP) was applied for spectroscopic analysis. Besides optimizing the working conditions for the mentioned materials, the fundamental research clearing the excitation processes in ICP was carried out. Basicly, two plasma systems were investigated: the nitrogen cooled N2/Ar- and pure Ar/Ar-plasma. The computed detection limits for 8 chosen elements are between 0.1 and 50 μg ml-1 in both plasmas. The advantage of ion lines was clearly present; in N2/Ar-plasma it was larger than in Ar/Ar-plasma. The excitation temperatures measured with help of ArI, FeI and ZnI lines rise with increasing power and decreasing distance from the induction coil. The distribution of Zn excitation temperature in N2/Ar-plasma as well as the measured N+2 rotational and CN vibrational temperatures indicate, that the toroidal structure of Ar/Ar-plasma is not analogue to the N2/Ar-plasma. The values of the various excitation temperatures (Ar, Fe, Zn) and the differences between the excitation, vibration, rotation and ionization temperatures (Tsub(i) > Tsub(n) = Tsub(vib) > Tsub(rot)) indicate an absence of thermal equilibrium in the concerned system. (orig.)

  20. Numerical Study of a System of Long Josephson Junctions with Inductive and Capacitive Couplings

    Rahmonov, I. R.; Shukrinov, Yu. M.; Plecenik, A.; Zemlyanaya, E. V.; Bashashin, M. V.

    2016-02-01

    The phase dynamics of the stacked long Josephson junctions is investigated taking into account the inductive and capacitive couplings between junctions and the diffusion current. The simulation of the current-voltage characteristics is based on the numerical solution of a system of nonlinear partial differential equations by a fourth order Runge-Kutta method and finite-difference approximation. A parallel implementation is based on the MPI technique. The effectiveness of the MPI/C++ code is confirmed by calculations on the multi-processor cluster CICC (LIT JINR, Dubna). We demonstrate the appearance of the charge traveling wave (CTW) at the boundary of the zero field step. Based on this fact, we conclude that the CTW and the fluxons coexist.

  1. Three-dimensional discharge simulation of inductively coupled plasma (ICP) etching reactor

    2008-01-01

    More and more importance has been attached to inductively coupled plasma (ICP) in semiconductor manufacture. For a deep understanding of the plasma discharge process in the etching reactor, this study made a three-dimensional simulation on the Ar plasma discharge process with the commercial software CFD-ACE, which is according to the real experiment conditions and data supplied by North Microelec-tronic Corporation. The error of the simulation results is in the range of ±20% with credibility. The numerical results show that the three-dimentional spatial distribu-tion of electron density is reduced from the chamber center to the wall. The distri-bution of electron density, electron temperature and power deposition is related to the shape and placement of the coil.

  2. Nonlinear electromagnetic fields in 0.5 MHz inductively coupled plasmas

    Ostrikov, K.N.; Tsakadze, E.L.; Xu, S.;

    2003-01-01

    the fundamental frequency harmonics only. After transition to higher-power (similar to1130 W) H-mode, the second-harmonic nonlinear azimuthal magnetic field B-phi(2omega) that is in 4-6 times larger than the fundamental frequency component B-phi(omega), has been observed. A simplified plasma fluid......Radial profiles of magnetic fields in the electrostatic (E) and electromagnetic (H) modes of low-frequency (similar to500 kHz) inductively coupled plasmas have been measured using miniature magnetic probes. In the low-power (similar to170 W) E-mode, the magnetic field pattern is purely linear, with...... model explaining the generation of the second harmonics of the azimuthal magnetic field in the plasma source is proposed. The nonlinear second harmonic poloidal (r-z) rf current generating the azimuthal magnetic field B-phi(2omega) is attributed to nonlinear interactions between the fundamental...

  3. Heat Transfer During Radio Frequency Inductively Coupled Plasma Deposition of Tungsten

    JIANG Xianliang; M.I.BOULOS

    2007-01-01

    Particle melting and substrate temperature are important in controlling deposited density and residual stress in thermal plasma deposition of refractory materials.In this paper,both the heating and cooling behaviours of tungsten particles inside a radio frequency inductively coupled plasma(ICP)and the plasma heat flux to the substrate were investigated.The distribution of the plasma-generated heat on device,powder injection probe,deposition chamber,and substrate Was determined by measuring the water flow rate and the flow-in and flow-out water temperatures in the four parts.Substrate temperature Was measured by a two-colour pyrometer during the ICP deposition of tungsten.Experimental results show that the heat flux to the substrate accounts for about 20% of the total plasma energy,the substrate temperature can reach as high as 2100 K,and the heat loss by radiation is significant in the plasma deposition of tungsten.

  4. Isotope ratio determinations by inductively coupled plasma/mass spectrometry for zinc bioavailability studies

    A method is described for the measurement of 67Zn/68Zn and 70Zn/68Zn ratios by inductively coupled plasma/mass spectrometry with ultrasonic nebulization. The method provides sufficient accuracy and precision for zinc bioavailability studies that use samples of human feces or blood plasma. Extraction of zinc from ashed samples yields aqueous solutions sufficiently devoid of matrix ions that could affect count rates and isotope ratios. Effects of sodium matrix, zinc concentration, and instrumental parameters on the precision of isotope ratio determinations are documented. Additions of spikes enriched in 67Zn and 70Zn to natural-abundance fecal samples verify that ratios can be determined on solutions 30 μM in zinc (70Zn and to 84 atom% excess of 67Zn. (Auth.)

  5. OPTIMAL CONTROL OF A NONLINEAR COUPLED ELECTROMAGNETIC INDUCTION HEATING SYSTEM WITH POINTWISE STATE CONSTRAINTS

    Irwin Yousept

    2010-07-01

    Full Text Available An optimal control problem arising in the context of 3D electromagnetic induction heating is investigated. The state equation is given by a quasilinear stationary heat equation coupled with a semilinear time harmonic eddy current equation. The temperature-dependent electrical conductivity and the presence of pointwise inequality state-constraints represent the main challenge of the paper. In the first part of the paper, the existence and regularity of the state are addressed. The second part of the paper deals with the analysis of the corresponding linearized equation. Some suffcient conditions are presented which guarantee thesolvability of the linearized system. The final part of the paper is concerned with the optimal control. The aim of the optimization is to find the optimal voltage such that a desired temperature can be achieved optimally. The corresponding first-order necessary optimality condition is presented.

  6. Real-time analysis of CuO by inductively coupled plasma emission without external calibration

    The study of a method, devoted to real-time detection of metallic pollutants present in stack gas, is investigated. This method is based on spectroanalysis using an inductively coupled plasma (ICP) emission system without external calibration. The fluidized bed technology is employed to inject metallic species into the ICP emission. The mass fluxes of copper oxide (CuO) are then determined by using the intensity ratios of the metallic element spectral lines with those of the plasma gas element (argon or dry air). These ratios and the plasma characteristics (atomic excitation temperature, degree of thermal disequilibrium θ=Te/Th) are inserted into a calculation code of plasma composition to determine the mass flux. The results are in good agreement using either argon plasma or dry air plasma. A study of the fluidized bed properties is made to compare our values with those resulting from the elutriation calculation of the copper oxide

  7. Plutonium age dating (production date measurement) by inductively coupled plasma mass spectrometry

    This paper describes rapid methods for the determination of the production date (age dating) of plutonium (Pu) materials by inductively coupled plasma mass spectrometry (ICP-MS) for nuclear forensic and safeguards purposes. One of the presented methods is a rapid, direct measurement without chemical separation using 235U/239Pu and 236U/240Pu chronometers. The other method comprises a straightforward extraction chromatographic separation, followed by ICP-MS measurement for the 234U/238Pu, 235U/239Pu, 236U/240Pu and 238U/242Pu chronometers. Age dating results of two plutonium certified reference materials (SRM 946 and 947, currently distributed as NBL CRM 136 and 137) are in good agreement with the archive purification dates. (author)

  8. Determination of rare earth elements by liquid chromatographic separation using inductively coupled plasma mass spectrometric detection

    High-performance liquid chromatography (HPLC) is used to separate the rare earth elements (REEs) prior to detection by inductively coupled plasma mass spectrometry (ICP-MS). The use of HPLC-ICP-MS in series combines the separation power and speed of HPLC with the sensitivity, isotopic selectivity and speed of ICP-MS. The detection limits for the REEs are in the sub-ng ml-1 range and the response is linear over four orders of magnitude. A preliminary comparison of isotope dilution and external standard results for the determination of REEs in National Institute of Standards and Technology (NIST) Standard Reference Material (SRM 1633a) Fly Ash is presented. (author)

  9. Computational Finite Element Software Assisted Development of a 3D Inductively Coupled Power Transfer System

    Pratik Raval

    2014-02-01

    Full Text Available To date inductively coupled power transfer (ICPT systems have already found many practical applications including battery charging pads. In fact, current charging platforms tend to largely support only one- or two-dimensional planar movement in load. This paper proposes a new concept of extending the aspect ratios of the operating power transfer volume of ICPT systems to support arbitrary three dimensional load movements with respect to the primary coils. This is done by use of modern finite element method analysis software to propose the primary and secondary magnetic structures of such an ICPT system. Firstly, two primary magnetic structures are proposed based on contrasting modes of operation and different field directions. This includes a single-phase and multi-phase current model. Next, a secondary magnetic structure is customized to be compatible with both primary structures. The resulting system is shown to produce a 3D power transfer volume for battery cell charging applications.

  10. The inductively coupled plasma as a source for the measurement of fundamental spectroscopic constants

    Inductively coupled plasmas (ICPs) are stable, robust sources for the generation of spectra from neutral and singly ionized atoms. They are used extensively for analytical spectrometry, but have seen limited use for the measurement of fundamental spectroscopic constants. Several properties of the ICP affect its suitability for such fundamental measurements. They include: spatial structure, spectral background, noise characteristics, electron densities and temperatures, and the state of equilibrium in the plasma. These properties are particularly sensitive to the means by which foreign atoms are introduced into the plasma. With some departures from the operating procedures normally used in analytical measurements, the ICP promise to be a useful source for the measurement of fundamental atomic constants. (orig.)

  11. Measurement of neutral gas temperature in a 13.56 MHz inductively coupled plasma

    Jayapalan, Kanesh K.; Chin, Oi Hoong [Plasma Technology Research Centre, Department of Physics, University of Malaya, 50603 Kuala Lumpur (Malaysia)

    2015-04-24

    Measuring the temperature of neutrals in inductively coupled plasmas (ICP) is important as heating of neutral particles will influence plasma characteristics such as the spatial distributions of plasma density and electron temperature. Neutral gas temperatures were deduced using a non-invasive technique that combines gas actinometry, optical emission spectroscopy and simulation which is described here. Argon gas temperature in a 13.56 MHz ICP were found to fall within the range of 500 − 800 K for input power of 140 − 200 W and pressure of 0.05 − 0.2 mbar. Comparing spectrometers with 0.2 nm and 0.5 nm resolution, improved fitting sensitivity was observed for the 0.2 nm resolution.

  12. Sulphate analysis in uranium leach iron(III) chloride solutions by inductively coupled argon plasma spectrometry

    Inductively coupled Argon Plasma Spectrometry is used for the indirect determination of sulphate in iron(III) chloride leach solution of Elliot Lake uranium ores via addition of a known amount of barium ions and analyzing for excess of barium. The ore contains ∼ 7 wt% pyrite, FeS2, as the major mineral which oxidizes to generate sulphate during leaching with Fe(III). The effects of pH, the concentrations of Fe(III) and chloride ions and for presence of ethanol in the test samples on the accuracy of analysis are studied. It is found that unlike the Rhodizonate method, removal of iron(III) from or addition of ethanol to the test sample prior to analysis are not required. Linear calibration curves are obtained. (author)

  13. RF electric field penetration and power deposition into nonequilibrium planar-type inductively coupled plasmas

    Mao Ming; Wang Shuai; Dai Zhong-Ling; Wang You-Nian

    2007-01-01

    The RF electric field penetration and the power deposition into planar-type inductively coupled plasmas in lowpressure discharges have been studied by means of a self-consistent model which consists of Maxwell equations combined with the kinetic equation of electrons. The Maxwell equations are solved based on the expansion of the Fourier-Bessel series for determining the RF electric field. Numerical results show the influence of a non-Maxwellian electron energy distribution on the RF electric field penetration and the power deposition for different coil currents. Moreover, the two-dimensional spatial profiles of RF electric field and power density are also shown for different numbers of RF coil turns.

  14. Improved etch characteristics of SiO2 by the enhanced inductively coupled plasma

    The generation of active species for silicon dioxide etch and the formation of passivation layers on Si or photoresist is important for etching contact holes of high aspect ratio in sub-half-micron technology. Some methods use a process gas with high C/F ratio chemistry, such as C4F8, and/or apply a pulsed plasma technique, or radical control by chamber-wall modification. As a simple novel method, enhanced inductively coupled plasma (E-ICP) is expected to control the plasma characteristics by changing its E-ICP frequency; we tested the feasibility of using E-ICP for the process of contact hole etching. Scanning electron microscope images of etched profiles for micropatterns of 1 and 0.3 μm are shown to compare to the results by CW-ICP, magnetized-ICP, and E-ICP

  15. Fabrication of resonator-quantum well infrared photodetector focal plane array by inductively coupled plasma etching

    Sun, Jason; Choi, Kwong-Kit

    2016-02-01

    Inductively coupled plasma (ICP) etching has distinct advantages over reactive ion etching in that the etching rates are considerably higher, the uniformity is much better, and the sidewalls of the etched material are highly anisotropic due to the higher plasma density and lower operating pressure. Therefore, ICP etching is a promising process for pattern transfer required during microelectronic and optoelectronic fabrication. Resonator-quantum well infrared photodetectors (R-QWIPs) are the next generation of QWIP detectors that use resonances to increase the quantum efficiency (QE). To fabricate R-QWIP focal plane arrays (FPAs), two optimized ICP etching processes are developed. Using these etching techniques, we have fabricated R-QWIP FPAs of several different formats and pixel sizes with the required dimensions and completely removed the substrates of the FPAs. Their QE spectra were tested to be 30 to 40%. The operability and spectral nonuniformity of the FPA is ˜99.5 and 3%, respectively.

  16. Inductively coupled plasma-induced etch damage of GaN p-n junctions

    Plasma-induced etch damage can degrade the electrical and optical performance of III-V nitride electronic and photonic devices. We have investigated the etch-induced damage of an inductively coupled plasma (ICP) etch system on the electrical performance of mesa-isolated GaN pn-junction diodes. GaN positive-insulating-negative mesa diodes were formed by Cl2/BCl3/Ar ICP etching under different plasma conditions. The reverse leakage current in the mesa diodes showed a strong relationship to chamber pressure, ion energy, and plasma flux. Plasma induced damage was minimized at moderate flux conditions (≤500 W), pressures ≥2 mTorr, and at ion energies below approximately -275 V. (c) 2000 American Vacuum Society

  17. Anisotropic Ta2O5 waveguide etching using inductively coupled plasma etching

    Smooth and vertical sidewall profiles are required to create low loss rib and ridge waveguides for integrated optical device and solid state laser applications. In this work, inductively coupled plasma (ICP) etching processes are developed to produce high quality low loss tantalum pentoxide (Ta2O5) waveguides. A mixture of C4F8 and O2 gas are used in combination with chromium (Cr) hard mask for this purpose. In this paper, the authors make a detailed investigation of the etch process parameter window. Effects of process parameters such as ICP power, platen power, gas flow, and chamber pressure on etch rate and sidewall slope angle are investigated. Chamber pressure is found to be a particularly important factor, which can be used to tune the sidewall slope angle and so prevent undercut

  18. Horn-coupled, commercially-fabricated aluminum lumped-element kinetic inductance detectors for millimeter wavelengths

    McCarrick, H., E-mail: hlm2124@columbia.edu; Flanigan, D.; Jones, G.; Johnson, B. R.; Araujo, D.; Limon, M.; Luu, V.; Miller, A. [Department of Physics, Columbia University, New York, New York 10025 (United States); Ade, P.; Doyle, S.; Tucker, C. [School of Physics and Astronomy, Cardiff University, Cardiff, Wales CF24 3AA (United Kingdom); Bradford, K.; Che, G. [Department of Physics, Arizona State University, Tempe, Arizona 85287 (United States); Cantor, R. [STAR Cryoelectronics, Santa Fe, New Mexico 87508 (United States); Day, P.; Leduc, H. [Jet Propulsion Laboratory, Caltech, Pasadena, California 91109 (United States); Mauskopf, P. [School of Physics and Astronomy, Cardiff University, Cardiff, Wales CF24 3AA (United Kingdom); Department of Physics and School of Earth and Space Exploration, Arizona State University, Tempe, Arizona 85287 (United States); Mroczkowski, T. [Naval Research Laboratory, Washington DC 20375 (United States); Zmuidzinas, J. [Jet Propulsion Laboratory, Caltech, Pasadena, California 91109 (United States); Department of Physics, Caltech, Pasadena, California 91125 (United States)

    2014-12-15

    We discuss the design, fabrication, and testing of prototype horn-coupled, lumped-element kinetic inductance detectors (LEKIDs) designed for cosmic microwave background studies. The LEKIDs are made from a thin aluminum film deposited on a silicon wafer and patterned using standard photolithographic techniques at STAR Cryoelectronics, a commercial device foundry. We fabricated 20-element arrays, optimized for a spectral band centered on 150 GHz, to test the sensitivity and yield of the devices as well as the multiplexing scheme. We characterized the detectors in two configurations. First, the detectors were tested in a dark environment with the horn apertures covered, and second, the horn apertures were pointed towards a beam-filling cryogenic blackbody load. These tests show that the multiplexing scheme is robust and scalable, the yield across multiple LEKID arrays is 91%, and the measured noise-equivalent temperatures for a 4 K optical load are in the range 26±6 μK√(s)

  19. Inductively coupled plasma induced deep levels in epitaxial n-GaAs

    The electronic properties of defects introduced by low energy inductively coupled Ar plasma etching of n-type (Si doped) GaAs were investigated by deep level transient spectroscopy (DLTS) and Laplace DLTS. Several prominent electron traps (Ec—0.046 eV, Ec—0.186 eV, Ec—0.314 eV. Ec—0.528 eV and Ec—0.605 eV) were detected. The metastable defect Ec—0.046 eV having a trap signature similar to E1 is observed for the first time. Ec—0.314 eV and Ec—0.605 eV are metastable and appear to be similar to the M3 and M4 defects present in dc H-plasma exposed GaAs.

  20. Effect of Skimmer Cone Material on the Spectra of Inductively Coupled Plasma Mass Spectrometry

    The inductively coupled plasma ion source for mass spectrometry is very sensitive for multielement analysis with detection limits down to sub part per trillion (ppt). Polyatomic ions which could be formed in the mass spectra may interfere in the analysis of some element. Experimental conditions have great influences on the formation of polyatomic ions. The present work demonstrates that the skimmer materials (Au, Ag, Ni, and Cu) are participating in the formation of polyatomic ions, meanwhile the sampler materials have no real effect. The mechanism of formation of polyatomic ions is explained. Heats of formation of polyatomic species formed from the skimmer materials such as: Au X, Ag X, Ni X and Cu X; where X= Ar, O, N, C and H are calculated by Gaussian program (G 94 W)

  1. Photoluminescence enhancement by inductively coupled argon plasma exposure for quantum-well intermixing

    The exposure of InGaAs/InGaAsP quantum-well (QW) structures to argon (Ar) plasma in an inductively coupled system has been studied. An increase in photoluminescence (PL) intensity without PL peak shift was observed for 5-min Ar plasma exposure compared to the as-grown sample. The exposure creates point defects, and upon rapid thermal annealing produces intermixing between barriers and QWs, resulting in the blueshift of QWs. A selective intermixing using a 200-nm-thick of SiO2 layer as an intermixing mask exhibited a differential band-gap blueshift of 86 nm, with a differential linewidth broadening of 0.3 nm between masked and unmasked section. The improvement of PL intensity in combination with selective intermixing process can pave the way for high-quality hybrid photonic and optoelectronic integrated circuits

  2. Multi-elemental analysis of aqueous geological samples by inductively coupled plasma-optical emission spectrometry

    Todorov, Todor I.; Wolf, Ruth E.; Adams, Monique

    2014-01-01

    Typically, 27 major, minor, and trace elements are determined in natural waters, acid mine drainage, extraction fluids, and leachates of geological and environmental samples by inductively coupled plasma-optical emission spectrometry (ICP-OES). At the discretion of the analyst, additional elements may be determined after suitable method modifications and performance data are established. Samples are preserved in 1–2 percent nitric acid (HNO3) at sample collection or as soon as possible after collection. The aqueous samples are aspirated into the ICP-OES discharge, where the elemental emission signals are measured simultaneously for 27 elements. Calibration is performed with a series of matrix-matched, multi-element solution standards.

  3. A comprehensive study of different gases in inductively coupled plasma torch operating at one atmosphere

    Punjabi, Sangeeta B. [Electrical Engineering Department, V. J.T.I, Matunga, Mumbai 400019 (India); Department of Physics, University of Mumbai, Kalina, Santacruz(E) 400098 (India); Joshi, N. K. [Faculty of Engineering and technology, MITS, lakshmangarh, (Sikar), Rajasthan 332311 (India); Mangalvedekar, H. A.; Lande, B. K. [Electrical Engineering Department, V. J.T.I, Matunga, Mumbai 400019 (India); Das, A. K. [Laser and Plasma Technology Division, BARC, Mumbai 400085 (India); Kothari, D. C. [Department of Physics, University of Mumbai, Kalina, Santacruz(E) 400098 (India)

    2012-01-15

    A numerical study is done to understand the possible operating regimes of RF-ICP torch (3 MHz, 50 kW) using different gases for plasma formation at atmospheric pressure. A two dimensional numerical simulation of RF-ICP torch using argon, nitrogen, oxygen, and air as plasma gas has been investigated using computational fluid dynamic (CFD) software fluent{sup (c)}. The operating parameters varied here are central gas flow, sheath gas flow, RF-power dissipated in plasma, and plasma gas. The temperature contours, flow field, axial, and radial velocity profiles were investigated under different operating conditions. The plasma resistance, inductance of the torch, and the heat distribution for various plasma gases have also been investigated. The plasma impedance of ICP torch varies with different operating parameters and plays an important role for RF oscillator design and power coupling. These studies will be useful to decide the design criteria for ICP torches required for different material processing applications.

  4. Evaluation of correction method for mass discrimination effect in multiple collector inductively coupled plasma mass spectrometry

    This paper describes advances in isotopic measurements that have been made with an inductively coupled plasma source magnetic sector multiple collector mass spectrometer (MC-ICP-MS) and presents results of new experiments aimed at further evaluating the instrumental capability as well as the correction technique for the mass discrimination effects. The ability to correct for the mass discrimination effect using a second element of similar mass and very high sensitivity for elements that are otherwise difficult to ionize gives this instrument major advantages over other conventional techniques for isotopic measurements. The isotopic data obtained by MC-ICP-MS clearly demonstrate potential as a new technique to produce precise and reproducible isotopic data for the elements that are difficult to measure by thermal ionization mass spectrometry (TIMS). (author)

  5. A study of isotope ratio measurement by inductively coupled plasma mass spectrometry

    The measurement of isotopic ratios by inductively coupled plasma mass spectrometry (ICP-MS) has the benefits of ionising all metallic elements, simplifying sample preparation and reducing analysis time, when compared with thermal ionisation mass spectrometry (TIMS). However, the use of ICP-MS in isotopic ratio studies has been somewhat restricted by its failure to offer the precision and accuracy required by a variety of applications. The precision achievable by ICP-MS, typically 0.2 to 0.3% RSD, for isotopic ratios, has generally been regarded as being primarily limited by instrumental instability. An investigation of the sources of instrumental noise in ICP-MS has been undertaken, utilising noise spectral analysis as a diagnostic aid. Study of parametric variation upon noise production has identified the methods by which modulation of the ion signal occurs. Noise spectral analysis has allowed an understanding of the limitations imposed upon measurement precision by the various contributing noise sources to be established. (author)

  6. Stable isotope dilution analysis of hydrologic samples by inductively coupled plasma mass spectrometry

    Garbarino, J.R.; Taylor, H.E.

    1987-01-01

    Inductively coupled plasma mass spectrometry is employed in the determination of Ni, Cu, Sr, Cd, Ba, Ti, and Pb in nonsaline, natural water samples by stable isotope dilution analysis. Hydrologic samples were directly analyzed without any unusual pretreatment. Interference effects related to overlapping isobars, formation of metal oxide and multiply charged ions, and matrix composition were identified and suitable methods of correction evaluated. A comparability study snowed that single-element isotope dilution analysis was only marginally better than sequential multielement isotope dilution analysis. Accuracy and precision of the single-element method were determined on the basis of results obtained for standard reference materials. The instrumental technique was shown to be ideally suited for programs associated with certification of standard reference materials.

  7. Standard practice for alternate actinide calibration for inductively coupled plasma-mass spectrometry

    American Society for Testing and Materials. Philadelphia

    2004-01-01

    1.1 This practice provides guidance for an alternate linear calibration for the determination of selected actinide isotopes in appropriately prepared aqueous solutions by Inductively Coupled Plasma-Mass Spectrometry (ICP-MS). This alternate calibration is mass bias adjusted using thorium-232 (232Th) and uranium-238 (238U) standards. One of the benefits of this standard practice is the ability to calibrate for the analysis of highly radioactive actinides using calibration standards at much lower specific activities. Environmental laboratories may find this standard practice useful if facilities are not available to handle the highly radioactive standards of the individual actinides of interest. 1.2 The instrument response for a series of determinations of known concentration of 232Th and 238U defines the mass versus response relationship. For each standard concentration, the slope of the line defined by 232Th and 238U is used to derive linear calibration curves for each mass of interest using interference equ...

  8. Ion kinetic energies in inductively coupled plasma/mass spectrometry (ICP-MS)

    Ion kinetic energies in an inductively coupled plasma/mass spectrometer (ICP-MS) system have been measured with the use of a retarding potential on the analyzing quadrupole. The energies differ markedly from those previously reported in the literature. This is attributed to the elimination of any arcing of the ICP to the sampling orifice or skimmer of the ICP-MS system. In the absence of secondary discharge effects, the ion energies increase with the mass of the ion and are consistent with those expected from molecular beam sampling from a plasma with a temperature of --5000 K and a potential of --2 V. Ion energies are found to be virtually independent of aerosol gas flow, plasma power, and sample matrix composition, allowing independent optimization of plasma parameters and ion optics

  9. Metal determination in samples of plants by high resolution inductively coupled plasma mass spectrometry

    In the last years, the use of environmental monitoring to determine anthropogenic metal insertions in the environment has been widely discussed as an alternative method to the direct measurement of these emissions to the ecosystem. This paper describes the determination of several chemical elements present in pine needles samples, including thorium, uranium using the High Resolution inductively Coupled Plasma and rare earths, Mass Spectrometer (HR-ICP-MS). The method of internal standardization was used to compense the non-spectral interferences of the different elements present in sample solution matrix. The chemical element bismuth (Bi) was chosen to act as an internal standard. In order to determine the accuracy of the proposed method, certified samples of pine needles (Nation Bureau of Standards Standard Reference Material 1575) were analyzed. (author)

  10. Low-frequency, self-sustained oscillations in inductively coupled plasmas used for optical pumping

    Coffer, J.; Encalada, N.; Huang, M.; Camparo, J. [Physical Sciences Laboratories, The Aerospace Corporation 2310, E. El Segundo Blvd., El Segundo, California 90245 (United States)

    2014-10-28

    We have investigated very low frequency, on the order of one hertz, self-pulsing in alkali-metal inductively-coupled plasmas (i.e., rf-discharge lamps). This self-pulsing has the potential to significantly vary signal-to-noise ratios and (via the ac-Stark shift) resonant frequencies in optically pumped atomic clocks and magnetometers (e.g., the atomic clocks now flying on GPS and Galileo global navigation system satellites). The phenomenon arises from a nonlinear interaction between the atomic physics of radiation trapping and the plasma's electrical nature. To explain the effect, we have developed an evaporation/condensation theory (EC theory) of the self-pulsing phenomenon.

  11. Pulsed radio-frequency discharge inductively coupled plasma mass spectrometry for oxide analysis

    Li, Weifeng; Yin, Zhibin; Hang, Wei; Li, Bin; Huang, Benli

    2016-08-01

    A direct solid sampling technique has been developed based on a pulsed radio-frequency discharge (RFD) in mixture of N2 and Ar environment at atmospheric pressure. With an averaged input power of 65 W, a crater with the diameter of 80 μm and depth of 50 μm can be formed on sample surface after discharge for 1 min, suggesting the feasibility of the pulsed RFD for sampling nonconductive solids. Combined with inductively coupled plasma mass spectrometry (ICPMS), this technique allows to measure elemental composition of solids directly with relative standard deviation (RSD) of ~ 20%. Capability of quantitative analysis was demonstrated by the use of soil standards and artificial standards. Good calibration linearity and limits of detection (LODs) in range of 10- 8-10- 9 g/g were achieved for most elements.

  12. Modeling and simulation of ion-filtered inductively coupled plasma using argon plasma

    An ion-filtered inductively coupled plasma (IF-ICP) is proposed to reduce ion bombardment and provide high metastable species density for chemical vapor deposition. Argon plasma, which has simple reaction mechanism, is simulated to show the effects of ion filter. Compared to typical ICP, the maximum density of ions of IF-ICP is lower while that of metastable species is higher. The filter can absorb ions effectively and relatively small amount of metastable species, with the absorption coefficient proportional to its surface area. A proper gap between filter and substrate can achieve more metastable species and less ions on the substrate. The pressure and RF power need to be optimized based on the tradeoff between deposition rate and ion damage. The density of ions on the substrate can be reduced by two orders of magnitude while that of metastable species are maintained in the order of 1017 m-3 under the optimized conditions. (author)

  13. Effect of the electron energy distribution on total energy loss with argon in inductively coupled plasmas

    The total energy lost per electron-ion pair lost εT is investigated with the electron energy distribution function (EEDF). The EEDFs are measured at various argon powers in RF inductively coupled plasma, and the EEDFs show a depleted distribution (a discontinuity occurring at the minimum argon excitation threshold energy level) with the bulk temperature and the tail temperature. The total energy loss per electron-ion pair lost εT is calculated from a power balance model with the Maxwellian EEDFs and the depleted EEDFs and then compared with the measured εT from the floating probe. It is concluded that the small population of the depleted high energy electrons dramatically increases the collisional energy loss, and the calculated εT from the depleted EEDFs has a value that is similar to the measured εT

  14. Expressing self-absorption in the analytical function of inductively coupled plasma atomic emission spectrometry

    Kántor, Tibor; Bartha, András

    2015-11-01

    The self-absorption of spectral lines was studied with up to date multi-element inductively coupled plasma atomic emission spectrometry (ICP-AES) instrumentation using radial and axial viewing of the plasma, as well, performing line peak height and line peak area measurements. Two resonance atomic and ionic lines of Cd and Mg were studied, the concentration range was extended up to 2000 mg/L. At the varying analyte concentration, constant matrix concentration of 10,000 mg/L Ca was ensured in the pneumatically nebulized solutions. The physical and the phenomenological formulation of the emission analytical function is overviewed and as the continuity of the earlier results the following equation is offered:

  15. Inductively coupled plasma optical emission spectroscopy determination of trace element composition of argan oil.

    Gonzálvez, A; Ghanjaoui, M E; El Rhazi, M; de la Guardia, M

    2010-02-01

    A methodology based on inductively coupled plasma optical emission spectroscopy (ICP-OES) after microwave assisted acid digestion has been developed to determine the trace element content of Moroccan argan oil. Limit of detection values equal or lower than few mg/kg were obtained for all elements under study. To assure the accuracy of the whole procedure, recovery studies were carried out on argan oil samples spiked at different concentration levels from 10 to 200 µg/L. Quantitative average recovery values were obtained for all elements evaluated, demonstrating the suitability of this methodology for the determination of trace elements in argan oil samples. Aluminum, calcium, chromium, iron, potassium, lithium, magnesium, sodium, vanadium and zinc were quantitatively determined in Moroccan argan oils being found that their concentration is different of that found in other edible oils thus offering a way for authentication and for the evaluation of possible adulterations. PMID:21339122

  16. Heavy metals in aromatic spices by inductively coupled plasma-mass spectrometry.

    Bua, Daniel Giuseppe; Annuario, Giovanni; Albergamo, Ambrogina; Cicero, Nicola; Dugo, Giacomo

    2016-09-01

    Objective of this study was to determine the content of Cd, Hg, As and Pb in common spices traded in the Italian market, using inductively coupled plasma-mass spectrometry (ICP-MS). The results were compared with the maximum limits established by the national Legislative Decree (LD) no. 107 implementing the Council Directive 88/388/EEC and by international organisations, such as Food and Agriculture Organization (FAO) and World Health Organization (WHO). Food safety for spices was assessed considering the tolerable weekly intake (TWI) and the provisional tolerable weekly intake (PTWI), respectively, for Cd and Hg and the 95% lower confidence limit of the benchmark dose of 1% extra risk (BMDL01) for As and Pb. Investigated elements in all samples were within the maximum limits as set by the national and international normative institutions. Nevertheless, the heavy metal content of some spices exceeded the PTWI, TWI and BMDL01, which needs attention when considering consumer's health. PMID:27074712

  17. Determination of Rare Earth Elements in Thai Monazite by Inductively Coupled Plasma and Nuclear Analytical techniques

    The inductively coupled plasma atomic emission spectroscopy (ICP-AES) for the determination of individual rare-earth elements (REE) was evaluated by comparison with instrumental neutron activation analysis (INAA) and x-ray fluorescence spectrometry (XRF). The accuracy and precision of INAA and ICP-AES were evaluated by using standard reference material IGS-36, a monazite concentrate. For INAA, the results were close to the certified value while ICP-AES were in good agreement except for some low concentration rare earth. The techniques were applied for the analysis of some rare earth elements in two Thai monazite samples preparing as the in-house reference material for the Rare Earth Research and Development Center, Chemistry Division, Office of Atoms for Peace. The analytical results obtained by these techniques were in good agreement with each other

  18. Homogeneous nanocrystalline cubic silicon carbide films prepared by inductively coupled plasma chemical vapor deposition.

    Cheng, Qijin; Xu, S; Long, Jidong; Huang, Shiyong; Guo, Jun

    2007-11-21

    Silicon carbide films with different carbon concentrations x(C) have been synthesized by inductively coupled plasma chemical vapor deposition from a SiH(4)/CH(4)/H(2) gas mixture at a low substrate temperature of 500 °C. The characteristics of the films were studied by x-ray photoelectron spectroscopy, x-ray diffraction, scanning electron microscopy, high-resolution transmission electron microscopy, Fourier transform infrared absorption spectroscopy, and Raman spectroscopy. Our experimental results show that, at x(C) = 49 at.%, the film is made up of homogeneous nanocrystalline cubic silicon carbide without any phase of silicon, graphite, or diamond crystallites/clusters. The average size of SiC crystallites is approximately 6 nm. At a lower value of x(C), polycrystalline silicon and amorphous silicon carbide coexist in the films. At a higher value of x(C), amorphous carbon and silicon carbide coexist in the films. PMID:21730481

  19. Al-Induced Crystallization Growth of Si Films by Inductively Coupled Plasma Chemical Vapour Deposition

    LI Jun-Shuai; WANG Jin-Xiao; YIN Min; GAO Ping-Qi; HE De-Yan

    2006-01-01

    Polycrystalline Si (poly-Si) films are in situ grown on Al-coated glass substrates by inductively coupled plasma chemical vapour deposition at a temperature as low as 350 C. Compared to the traditional annealing crystallization of amorphous Si/Al-layer structures, no layer exchange is observed and the resultant poly-Si film is much thicker than Al layer. By analysing the depth profiles of the elemental composition, no remains of Al atoms are detected in Si layer within the limit (< 0.01 at. %) of the used evaluations. It is indicated that the poly-Si material obtained by Al-induced crystallization growth has more potential applications than that prepared by annealing the amorphous Si/Al-layer structures.

  20. Determination of long-lived actinides in soil leachates by inductively coupled plasma: Mass spectrometry

    Inductively coupled plasma -- mass spectrometry (ICP-MS) was used to concurrently determine multiple long-lived (t1/2 > 104 y) actinide isotopes in soil samples. Ultrasonic nebulization was found to maximize instrument sensitivity. Instrument detection limits for actinides in solution ranged from 50 mBq L-1 (239Pu) to 2 μBq L-1 (235U) Hydride adducts of 232Th and 238U interfered with the determinations of 233U and 239 Pu; thus, extraction chromatography was, used to eliminate the sample matrix, concentrate the analytes, and separate uranium from the other actinides. Alpha spectrometric determinations of 230Th, 239Pu, and the 234U/238U activity ratio in soil leachates compared well with ICP-MS determinations; however, there were some small systematic differences (ca. 10%) between ICP-MS and a-spectrometric determinations of 234U and 238U activities

  1. Assessment of the analytical capabilities of inductively coupled plasma-mass spectrometry

    Taylor, H.E.; Garbarino, J.R.

    1988-01-01

    A thorough assessment of the analytical capabilities of inductively coupled plasma-mass spectrometry was conducted for selected analytes of importance in water quality applications and hydrologic research. A multielement calibration curve technique was designed to produce accurate and precise results in analysis times of approximately one minute. The suite of elements included Al, As, B, Ba, Be, Cd, Co, Cr, Cu, Hg, Li, Mn, Mo, Ni, Pb, Se, Sr, V, and Zn. The effects of sample matrix composition on the accuracy of the determinations showed that matrix elements (such as Na, Ca, Mg, and K) that may be present in natural water samples at concentration levels greater than 50 mg/L resulted in as much as a 10% suppression in ion current for analyte elements. Operational detection limits are presented.

  2. Transport and trapping of dust particles in a potential well created by inductively coupled diffused plasma

    Choudhary, Mangilal; Bandyopadhyay, P

    2016-01-01

    A versatile linear dusty (complex) plasma device is designed to study the transport and dynamical behavior of dust particles in a large volume. Diffused inductively coupled plasma is generated in the background of argon gas. A novel technique is used to introduce the dust particles in the main plasma by striking a secondary direct current (DC) glow discharge. These dust particles are found to get trapped in an electrostatic potential well which is formed due to the combination of the ambipolar electric field caused by diffusive plasma and the field produced by the charged glass wall of the vacuum chamber. According to the requirements, the volume of the dust cloud can be controlled very precisely by tuning the plasma and discharge parameters. The present device can be used to address the underlying physics behind the transport of dust particles, self excited dust acoustic waves and instabilities. The detailed design of this device, plasma production and characterization, trapping and transport of the dust par...

  3. Qualitative and quantitative spectro-chemical analysis of dates using UV-pulsed laser induced breakdown spectroscopy and inductively coupled plasma mass spectrometry.

    Mehder, A O; Habibullah, Y B; Gondal, M A; Baig, Umair

    2016-08-01

    Laser Induced Breakdown Spectroscopy (LIBS) is demonstrated for the spectral analysis of nutritional and toxic elements present in several varieties of date fruit samples available in the Saudi Arabia market. The method analyzes the optical emission of a test sample when subjected to pulsed laser ablation. In this demonstration, our primary focus is on calcium (Ca) and magnesium (Mg), as nutritional elements, and on chromium (Cr), as a toxic element. The local thermodynamic equilibrium (LTE) condition was confirmed prior to the elemental characterization of date samples to ensure accuracy of the LIBS analysis. This was achieved by measuring parameters associated with the plasma, such as the electron temperature and the electron number density. These plasma parameters aid interpretation of processes such as ionization, dissociation, and excitation occurring in the plasma plume formed by ablating the date palm sample. The minimum detection limit was established from calibration curves that involved plotting the LIBS signal intensity as a function of standard date samples with known concentrations. The concentration of Ca and Mg detected in different varieties of date samples was between 187 and 515 and 35-196mgL(-1) respectively, while Cr concentration measured between 1.72 and 7.76mgL(-1). In order to optimize our LIBS system, we have studied how the LIBS signal intensity depends on the incident laser energy and the delay time. In order to validate our LIBS analysis results, standard techniques such as inductively coupled plasma mass spectrometry (ICP-MS) were also applied on an identical (duplicate) date samples as those used for the LIBS analysis. The LIBS results exhibit remarkable agreement with those obtained from the ICP-MS analysis. In addition, the finger print wavelengths of other elements present in date samples were also identified and are reported here, which has not been previously reported, to the best of our knowledge. PMID:27216665

  4. Comparison of germanium and silicon dry etching by using inductively coupled BCl3 plasma

    We have investigated the etch rates and the angle subtended for Ge and Si as a function of the BCl3 flow rate, the inductively coupled plasma (ICP) power, and the work pressure. The Ge etch rate is always greater than the Si etch rate, and the maxima of the Ge and Si etch rates are observed to be functions of the BCl3 flow rate. The peak etch rate is at 40 sccm BCl3 flow rate. The etch rate of Ge decreases from 2370 to 1780 A/min as the BCl3 flow rate increases from 40 to 80 sccm. Also, the etch rate of Si decreases from 640 to 460 A/min as the BCl3 flow rate increases from 20 to 80 sccm. The largest Ge/Si etch rate ratio is obtained for BCl3 flow rate of 60 sccm. The etch rate of Ge decreases from 2835 to 2094 A/min as the ICP power increases from 200 to 500 W whereas the etching rate of Ge increases from 2370 to 2900 A/min as the work pressure increases from 10 to 50 mTorr. As the BCl3 flow, ICP power, and work pressure, increase the angle subtended also increases. Optical emission spectroscopy (OES) has been used to examine the gas phase species in the plasma, and emission from excited atomic B and Cl has been identified. The composition of the reaction layer on germanium due to the BCl3 plasmas has been obtained by using X-ray photoelectron spectroscopy (XPS). The reaction layer on germanium due to inductively coupled BCl3 plasma etching is found to be typically a very thin layer of the Ge-Cl and Ge-O.

  5. Ignition delay of a pulsed inductively coupled plasma (ICP) in tandem with an auxiliary ICP

    Liu, Lei; Sridhar, Shyam; Donnelly, Vincent M.; Economou, Demetre J.

    2015-12-01

    Plasma ignition delays were observed in a ‘main’ inductively coupled plasma (ICP), in tandem with an ‘auxiliary’ ICP. The Faraday-shielded ICPs were separated by a grounded metal grid. Power (13.56 MHz) to the main ICP was pulsed with a frequency of 1 kHz, while the auxiliary ICP was operated in continuous wave (cw) mode. In chlorine plasmas, ignition delay was observed for duty cycles greater than 60% and, in contrast to expectation, the delay was longer with increasing duty cycle up to ~99.5%. The ignition delay could be varied by changing the auxiliary and/or main ICP power. Langmuir probe measurements provided the temporal evolution of electron temperature, and electron and positive ion densities. These measurements revealed that the plasma was ignited shortly after the decaying positive ion density (n +), in the afterglow of the main ICP, reached the density ({{n}+},\\text{aux} ) prevailing when only the auxiliary ICP was powered. At that time, production of electrons began to dominate their loss in the main ICP, due to hot electron injection from the auxiliary ICP. As a result, {{n}\\text{e}} increased from a value below {{n}\\text{e,\\text{aux}}} , improving inductive power coupling efficiency, further increasing plasma density leading to plasma ignition. Plasma ignition delay occurred when the afterglow of the pulsed plasma was not long enough for the ion density to reach {{n}+},\\text{aux} during the afterglow. Besides Cl2, plasma ignition delays were also observed in other electronegative gases (SF6, CF4/O2 and O2) but not in an electropositive gas (Ar).

  6. Analysis of non-equilibrium phenomena in inductively coupled plasma generators

    Zhang, W.; Lani, A.; Panesi, M.

    2016-07-01

    This work addresses the modeling of non-equilibrium phenomena in inductively coupled plasma discharges. In the proposed computational model, the electromagnetic induction equation is solved together with the set of Navier-Stokes equations in order to compute the electromagnetic and flow fields, accounting for their mutual interaction. Semi-classical statistical thermodynamics is used to determine the plasma thermodynamic properties, while transport properties are obtained from kinetic principles, with the method of Chapman and Enskog. Particle ambipolar diffusive fluxes are found by solving the Stefan-Maxwell equations with a simple iterative method. Two physico-mathematical formulations are used to model the chemical reaction processes: (1) A Local Thermodynamics Equilibrium (LTE) formulation and (2) a thermo-chemical non-equilibrium (TCNEQ) formulation. In the TCNEQ model, thermal non-equilibrium between the translational energy mode of the gas and the vibrational energy mode of individual molecules is accounted for. The electronic states of the chemical species are assumed in equilibrium with the vibrational temperature, whereas the rotational energy mode is assumed to be equilibrated with translation. Three different physical models are used to account for the coupling of chemistry and energy transfer processes. Numerical simulations obtained with the LTE and TCNEQ formulations are used to characterize the extent of non-equilibrium of the flow inside the Plasmatron facility at the von Karman Institute. Each model was tested using different kinetic mechanisms to assess the sensitivity of the results to variations in the reaction parameters. A comparison of temperatures and composition profiles at the outlet of the torch demonstrates that the flow is in non-equilibrium for operating conditions characterized by pressures below 30 000 Pa, frequency 0.37 MHz, input power 80 kW, and mass flow 8 g/s.

  7. Multicapillary gas chromatography coupled to inductively coupled plasma-time-of-flight mass spectrometry for rapid mercury speciation analysis

    A simple, rapid and accurate method on the basis of multicapillary gas chromatography (MCGC) combined with inductively coupled plasma-time-of-flight mass spectrometry (ICP-TOFMS) was developed for speciation analysis of methylmercury (MeHg+) and inorganic mercury (Hg2+). The potential of the ICP-TOFMS for transient multi-isotope detection of very short signals (peak width of 0.4 s at half peak height) was evaluated. Two injection systems (purge-and-trap (PTI) and split (SI) injections) were compared in terms of species separation resolution and transient signal profile. Using purge-and-trap injection, after in situ derivatization of the ionic mercury species with sodium tetraethylborate, a baseline separation of MeHg+ and Hg2+ was achieved within a chromatographic run of +) was used as internal standard. Detection limits of 16 and 257 fg g-1 for MeHg+ (as Hg) and Hg2+, respectively, were achieved. The analytical precision (R.S.D. (%)) for 10 successive injections of a standard mixture containing 10 pg MeHg+ (as Hg) and Hg2+ was 1.2% for MeHg+ and 4.1% for Hg2+. The method was validated by analysis of two biological certified reference materials (CRM): a dogfish muscle (DORM-2) and a freeze-dried tuna fish (CRM 464)

  8. Quantitative Characterization of Gold Nanoparticles by Field-Flow Fractionation Coupled Online with Light Scattering Detection and Inductively Coupled Plasma Mass Spectrometry

    Schmidt, Bjørn; Löschner, Katrin; Hadrup, Niels; Mortensen, Alicja; Sloth, Jens Jørgen; Bender Koch, Christian; Larsen, Erik Huusfeldt

    2011-01-01

    An analytical platform coupling asymmetric flow field-flow fractionation (AF4) with multiangle light scattering (MALS), dynamic light scattering (DLS), and inductively coupled plasma mass spectrometry (ICPMS) was established and used for separation and quantitative determination of size and mass concentration of nanoparticles (NPs) in aqueous suspension. Mixtures of three polystyrene (PS) NPs between 20 and 100 nm in diameter and mixtures of three gold (Au) NPs between 10 and 60 nm in diamete...

  9. Sulfur analysis by inductively coupled plasma-mass spectrometry: A review

    Giner Martínez-Sierra, J.; Galilea San Blas, O.; Marchante Gayón, J. M.; García Alonso, J. I.

    2015-06-01

    In recent years the number of applications of sulfur (S) analysis using inductively coupled plasma mass spectrometry (ICP-MS) as detector has increased significantly. In this article we describe in some depth the application of ICP-MS for S analysis with emphasis placed on the sulfur-specific detection by hyphenated techniques such as LC, GC, CE and LA coupled on-line to ICP-MS. The different approaches available for sulfur isotope ratio measurements by ICP-MS are also detailed. Particular attention has been paid to the quantification of peptides/proteins and the analysis of metallopeptides/metalloproteins via sulfur by LC-ICP-MS. Likewise, the speciation analysis of metal-based pharmaceuticals and metallodrugs and non-metal selective detection of pharmaceuticals via S are highlighted. Labeling procedures for metabolic applications are also included. Finally, the measurement of natural variations in S isotope composition with multicollector ICP-MS instruments is also covered in this review.

  10. Determination of trace elements in serum by dynamic reaction cell inductively coupled plasma mass spectrometry

    D' Ilio, S. [Department of Environment and Primary Prevention, Istituto Superiore di Sanita, Viale Regina Elena 299, 00161 Rome (Italy)]. E-mail: sdilio@iss.it; Violante, N. [Department of Environment and Primary Prevention, Istituto Superiore di Sanita, Viale Regina Elena 299, 00161 Rome (Italy); Caimi, S. [Department of Environment and Primary Prevention, Istituto Superiore di Sanita, Viale Regina Elena 299, 00161 Rome (Italy); Di Gregorio, M. [Department of Environment and Primary Prevention, Istituto Superiore di Sanita, Viale Regina Elena 299, 00161 Rome (Italy); Petrucci, F. [Department of Environment and Primary Prevention, Istituto Superiore di Sanita, Viale Regina Elena 299, 00161 Rome (Italy); Senofonte, O. [Department of Environment and Primary Prevention, Istituto Superiore di Sanita, Viale Regina Elena 299, 00161 Rome (Italy)

    2006-07-28

    An inductively coupled plasma mass spectrometer (ICP-MS), equipped with a dynamic reaction cell (DRC) and coupled with a desolvating nebulizing system (Apex-ACM) to reduce the oxide formation, was used in the determination of Al, Co, Cr, Mn, Ni and Se in serum samples. The effect of the operating conditions of the DRC system was studied to get the best signal-to-background (S/B) ratio. The potentially interfering molecular ions at the masses m/z {sup 27}Al, {sup 59}Co, {sup 52}Cr, {sup 55}Mn, {sup 60}Ni and {sup 78}Se, were significantly reduced in intensity by using NH{sub 3} and H{sub 2}, as the reaction cell gases in the DRC, while a proper Dynamic Bandpass Tuning parameter q (RPq) value was optimized. The detection limits for {sup 27}Al, {sup 59}Co, {sup 52}Cr, {sup 55}Mn, {sup 60}Ni and {sup 78}Se, estimated with 3-{sigma} method, resulted to be 0.14, 0.003, 0.002, 0.01, 0.01 and 1.8 {mu}g L{sup -1}, respectively. This analytical method was developed on both a human serum certified reference material and a lyophilized animal serum produced and proposed in an intercomparison study. The results obtained for the reference samples agreed satisfactorily with the certified values. Precision (expressed as CV%) between sample replicates was better than 10% for elements determination, with the only exception of aluminium (14%)

  11. Determination of trace elements in serum by dynamic reaction cell inductively coupled plasma mass spectrometry

    An inductively coupled plasma mass spectrometer (ICP-MS), equipped with a dynamic reaction cell (DRC) and coupled with a desolvating nebulizing system (Apex-ACM) to reduce the oxide formation, was used in the determination of Al, Co, Cr, Mn, Ni and Se in serum samples. The effect of the operating conditions of the DRC system was studied to get the best signal-to-background (S/B) ratio. The potentially interfering molecular ions at the masses m/z 27Al, 59Co, 52Cr, 55Mn, 60Ni and 78Se, were significantly reduced in intensity by using NH3 and H2, as the reaction cell gases in the DRC, while a proper Dynamic Bandpass Tuning parameter q (RPq) value was optimized. The detection limits for 27Al, 59Co, 52Cr, 55Mn, 60Ni and 78Se, estimated with 3-σ method, resulted to be 0.14, 0.003, 0.002, 0.01, 0.01 and 1.8 μg L-1, respectively. This analytical method was developed on both a human serum certified reference material and a lyophilized animal serum produced and proposed in an intercomparison study. The results obtained for the reference samples agreed satisfactorily with the certified values. Precision (expressed as CV%) between sample replicates was better than 10% for elements determination, with the only exception of aluminium (14%)

  12. Normal zone detectors for a large number of inductively coupled coils

    Owen, E.W.; Shimer, D.W.

    1983-01-10

    In order to protect a set of inductively coupled superconducting magnets, it is necessary to locate and measure normal zone voltages that are small compared with the mutual and self-induced voltages. The method described in this report uses two sets of voltage measurements to locate and measure one or more normal zones in any number of coupled coils. One set of voltages is the outputs of bridges that balance out the self-induced voltages The other set of voltages can be the voltages across the coils, although alternatives are possible. The two sets of equations form a single combined set of equations. Each normal zone location or combination of normal zones has a set of these combined equations associated with it. It is demonstrated that the normal zone can be located and the correct set chosen, allowing determination of the size of the normal zone. Only a few operations take plae in a working detector: multiplication of a constant, addition, and simple decision-making. In many cases the detector for each coil, although weakly linked to the other detectors, can be considered to be independent. An example of the detector design is given for four coils with realistic parameters. The effect on accuracy of changes in the system parameters is discussed.

  13. Separation Of Uranium And Plutonium Isotopes For Measurement By Multi Collector Inductively Coupled Plasma Mass Spectroscopy

    Martinelli, R E; Hamilton, T F; Williams, R W; Kehl, S R

    2009-03-29

    Uranium (U) and plutonium (Pu) isotopes in coral soils, contaminated by nuclear weapons testing in the northern Marshall Islands, were isolated by ion-exchange chromatography and analyzed by mass spectrometry. The soil samples were spiked with {sup 233}U and {sup 242}Pu tracers, dissolved in minerals acids, and U and Pu isotopes isolated and purified on commercially available ion-exchange columns. The ion-exchange technique employed a TEVA{reg_sign} column coupled to a UTEVA{reg_sign} column. U and Pu isotope fractions were then further isolated using separate elution schemes, and the purified fractions containing U and Pu isotopes analyzed sequentially using multi-collector inductively coupled plasma mass spectrometer (MCICP-MS). High precision measurements of {sup 234}U/{sup 235}U, {sup 238}U/{sup 235}U, {sup 236}U/{sup 235}U, and {sup 240}Pu/{sup 239}Pu in soil samples were attained using the described methodology and instrumentation, and provide a basis for conducting more detailed assessments of the behavior and transfer of uranium and plutonium in the environment.

  14. Scandium analysis in silicon-containing minerals by inductively coupled plasma tandem mass spectrometry

    Whitty-Léveillé, Laurence; Drouin, Elisabeth; Constantin, Marc; Bazin, Claude; Larivière, Dominic

    2016-04-01

    This article reports on the development of a new method for the accurate and precise determination of the amount of scandium, Sc, in silicon-containing minerals, based on the use of tandem quadrupole inductively coupled plasma mass spectrometry (ICP-MS/MS). The tandem quadrupole instrument enables new mass filtering configurations, which can reduce polyatomic interferences during the determination of Sc in mineral matrices. He and O2 were used and compared as collision and reaction gases for the removal of interferences at m/z 45 and 61. Using helium gas was ineffective to overcome all of the spectral interferences observed at m/z 45 and particularly for Si-based interferences. However, conversion of Sc+ ions into ScO+ ions (after bombardment with O2 in the octopole reaction system coupled with the use of the instrument in MS/MS mass-shift mode) provided interference-free conditions and sufficiently low limits of detection, down to 3 ng L- 1, to accurately detect Sc. The accuracy of the proposed methodology was assessed by analyzing five different reference materials (BX-N, OKA-2, NIM-L, SY-3 and GH).

  15. Investigation of large-area multicoil inductively coupled plasma sources using three-dimensional fluid model

    Brcka, Jozef

    2016-07-01

    A multi inductively coupled plasma (ICP) system can be used to maintain the plasma uniformity and increase the area processed by a high-density plasma. This article presents a source in two different configurations. The distributed planar multi ICP (DM-ICP) source comprises individual ICP sources that are not overlapped and produce plasma independently. Mutual coupling of the ICPs may affect the distribution of the produced plasma. The integrated multicoil ICP (IMC-ICP) source consists of four low-inductance ICP antennas that are superimposed in an azimuthal manner. The identical geometry of the ICP coils was assumed in this work. Both configurations have highly asymmetric components. A three-dimensional (3D) plasma model of the multicoil ICP configurations with asymmetric features is used to investigate the plasma characteristics in a large chamber and the operation of the sources in inert and reactive gases. The feasibility of the computational calculation, the speed, and the computational resources of the coupled multiphysics solver are investigated in the framework of a large realistic geometry and complex reaction processes. It was determined that additional variables can be used to control large-area plasmas. Both configurations can form a plasma, that azimuthally moves in a controlled manner, the so-called “sweeping mode” (SM) or “polyphase mode” (PPM), and thus they have the potential for large-area and high-density plasma applications. The operation in the azimuthal mode has the potential to adjust the plasma distribution, the reaction chemistry, and increase or modulate the production of the radicals. The intrinsic asymmetry of the individual coils and their combined operation were investigated within a source assembly primarily in argon and CO gases. Limited investigations were also performed on operation in CH4 gas. The plasma parameters and the resulting chemistry are affected by the geometrical relation between individual antennas. The aim of

  16. Characterisation of nuclear fuel samples by quadrupole and multi-collector inductively coupled plasma mass spectrometry

    The characterisation of nuclear fuel cycle materials for trace and minor metallic constituents is of great interest for the nuclear industry and safeguard officials. The main objective of various international programmes dealing with postirradiation examinations is to improve the knowledge of the inventories of actinides, fission and spallation products in spent nuclear fuels. The low detection limits for a large number of elements combined with the ability to analyse the isotopic composition of the elements have established inductively coupled plasma mass spectrometry (ICP-MS) as a powerful multi-element technique in diverse analytical applications for the characterisation of nuclear materials. Because numerous isobaric overlaps restrict the direct determination of many fission products by mass spectrometry, extensive chemical separations are required for these elements. In order to simplify this sample preparation procedure, a high performance liquid chromatography system (HPLC) was online coupled to the mass spectrometer. Since about 10 years a quadrupole based ICP-MS (Q-ICP-MS) combined with an HPLC is used within the Hot Laboratory of the Paul Scherrer Institut for different applications on nuclear fuel samples. Since May 2003 also a new multi-collector ICP-MS (MC-ICP-MS) is used for the mass spectrometric characterisation of nuclear fuel samples, especially for the precise determination of the isotopic vectors of fission products and actinides. Therefore, two complementary analytical systems are now available in the group of 'Isotope and Wet Analytical Chemistry'. A comparison of the analytical performance of both systems (with and without an online coupled HPLC system) for the determination of the isotopic composition and the elemental concentration of different nuclides in nuclear fuel samples, the advantages and limitations of both techniques, the accuracy and precision of the results and typical applications for both methods will be discussed in the

  17. Quantitative Analysis of Sulfide Minerals by Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry Using Glass Reference Materials with Matrix Normalization Plus Sulfur Internal Standardization Calibration%玻璃标样结合硫内标归一定量技术在激光剥蚀-等离子体质谱分析硫化物矿物中的应用

    袁继海; 詹秀春; 范晨子; 赵令浩; 孙冬阳; 贾泽荣; 胡明月; 蒯丽君

    2012-01-01

    A novel strategy for microanalysis of sulfides by laser ablation (LA)-ICP-MS was established. In this method, the relative sensitivity factor of Ca relative to S in anhydrite mineral reference material was taken as a transition bridge, by which the relative sensitivity factors of interesting elements in glass reference materials relative to Ca could be converted into relative sensitivity factors relative to S by the transition bridge, then the quantitative analysis of multi-elements in sulfide minerals by multi-glass reference materials with matrix normalization plus sulfur internal standardizationcalibration was carried out. 20 elements in the American polymetal sulfide mineral reference material MASS-1 were analyzed using this new method. The relative errors of major elements in MASS-1 were less than 10% ? And the results of trace elements with reference values were nearly within the uncertainty of the preliminary values. Multi-elements in 12 sulfide single minerals were analyzed by applying this new method. The relative errors of the greatest number of major elements were less than 10% , with which the results of most major elements were accurate than those obtained by MASS-1 as calibration standard with matrix normalization plus internal standardization or internal standard calibration. And the results to trace elements agreed well with the calibrated results by MASS-1 with matrix normalization plus internal standardization or internal standard calibration. This method overcomes the problem of non-matrix matched standards, enables to accurately determine the major composition of sulfur in sulfide minerals and suggests a new approach for analysis of sulfide minerals.%以硬石膏矿物标样中Ca相对于S的灵敏度因子为基准,将玻璃标样中主量和痕量元素相对于Ca的灵敏度因子转换成元素相对于S的灵敏度因子,建立了多玻璃标样结合硫内标归一定量技术分析硫化物单矿物多元素的新方法.利用本方法

  18. Development of an axially viewed inductively coupled plasma for atomic emission spectrometry and comparison between the detection limits of lead

    An ICP(Inductively Coupled plasma) emission spectrometer was developed with an axially viewed ICP source incorporated by a 5-turned induction coil and a torch, outer quartz tube of which was 50 mm longer than that used in conventional ICP/AES(Inductively Coupled Plasma Atomic Emission Spectrometry). The optimization of the system has been performed in terms of the determination of signal-to-noise ratio and background intensity at various rf powers, sample flow rates, argon gas flow rates and cut-off gas flow rates. The spectro-analytical characteristics of the spectrum obtained between 200 and 500 nm was revealed to be similar compared with a vertically viewed ICP source. The detection limit of Pb(II) at 220.35 nm was 11 ppb which was 5 times lower than that obtained with a vertically viewed ICP source. (author)

  19. Determination of platinum surface contamination in veterinary and human oncology centres using inductively coupled plasma mass spectrometry

    Janssens, T.; Brouwers, E. E M; de Vos, J. P.; de Vries, N.; Schellens, J. H M; Beijnen, J. H.

    2015-01-01

    The objective of this study was to determine the surface contamination with platinum-containing antineoplastic drugs in veterinary and human oncology centres. Inductively coupled plasma mass spectrometry was used to measure platinum levels in surface samples. In veterinary and human oncology centres

  20. HIGH RESOLUTION INDUCTIVELY COUPLED PLASMA MASS SPECTROMETRY ALLOWS RAPID ASSESSMENT OF IRON ABSORPTION IN INFANTS AND CHILDREN

    Stable isotope absorption studies of iron have been limited by the high cost and limited availability of isotope ratio analysis using thermal ionization MS (TIMS). The development of high-resolution double focusing inductively coupled plasma MS (ICP-MS) may permit more cost-efficient sample analysis...

  1. Sector field inductively coupled plasma mass spectrometry in the elemental and isotopic analysis of lanthanides and actinides

    Plutonium is one element which is indispensable in identifying the source and for estimating the hazardous effects of rad. The isotopic ratios of plutonium (240Pu/239Pu) and its total concentration in environmental samples were also precisely estimated by high resolution inductively coupled plasma mass spectrometry

  2. A comparison of neutron activation analysis and inductively coupled plasma mass spectrometry for trace element analysis of biological materials

    Fifty individual food types were analysed by instrumental and radiochemical neutron activation analysis as well as inductively coupled plasma mass spectrometry after testing all techniques by analysing IAEA mixed human diet, H-9. The performance of these trace element techniques and their limitations were evaluated under normal, routine, multielement surveys of a large range of solid biological materials. (author) 18 refs.; 2 tabs

  3. 40 CFR Appendix C to Part 136 - Inductively Coupled Plasma-Atomic Emission Spectrometric Method for Trace Element Analysis of...

    2010-07-01

    ... absorption spectrometry, or other approved methodology. 5.2.4Wavelength scanning of analyte line region. If..., Publication No. 77-206, August 1977. 14.8“OSHA Safety and Health Standards, General Industry,” (29 CFR part... 40 Protection of Environment 22 2010-07-01 2010-07-01 false Inductively Coupled...

  4. Comparison of sample digestion techniques for the determination of trace and residual catalyst metal content in single-wall carbon nanotubes by inductively coupled plasma mass spectrometry

    A single-wall carbon nanotube material produced by laser ablation of renewable biochar in the presence of Ni and Co catalyst was characterized for residual catalyst (Co and Ni) as well as trace metal impurity content (Fe, Mo, Cr, Pb and Hg) by isotope dilution ICP-MS following sample digestion. Several matrix destruction procedures were evaluated, including a multi-step microwave-assisted acid digestion, dry ashing at 450 °C and microwave-induced combustion with oxygen. Results were benchmarked against those derived from neutron activation analysis and also supported by solid sampling continuum source GF-AAS for several of the elements. Although laborious to execute, the multi-step microwave-assisted acid digestion proved to be most reliable for recovery of the majority of the analytes, although content of Cr remained biased low for each approach, likely due to its presence as refractory carbide. - Highlights: • Determination of trace and residual catalyst metal content in Single-Wall Carbon Nanotubes by Inductively Coupled Plasma Mass Spectrometry. • Comparative study of digestion methodology combined with high precision isotope dilution ICP-MS for quantitation of elements of toxicologic relevance. • Results were benchmarked against those derived from neutron activation analysis and also supported by solid sampling continuum source GF-AAS for several of the elements

  5. Comparison of sample digestion techniques for the determination of trace and residual catalyst metal content in single-wall carbon nanotubes by inductively coupled plasma mass spectrometry

    Grinberg, Patricia, E-mail: patricia.grinberg@nrc.ca [Measurement Science and Standards, National Research Council Canada, Ottawa (Canada); Sturgeon, Ralph E. [Measurement Science and Standards, National Research Council Canada, Ottawa (Canada); Diehl, Liange de O.; Bizzi, Cezar A. [Measurement Science and Standards, National Research Council Canada, Ottawa (Canada); Chemistry Department, Universidade Federal de Santa Maria, Santa Maria (Brazil); Flores, Erico M.M. [Chemistry Department, Universidade Federal de Santa Maria, Santa Maria (Brazil)

    2015-03-01

    A single-wall carbon nanotube material produced by laser ablation of renewable biochar in the presence of Ni and Co catalyst was characterized for residual catalyst (Co and Ni) as well as trace metal impurity content (Fe, Mo, Cr, Pb and Hg) by isotope dilution ICP-MS following sample digestion. Several matrix destruction procedures were evaluated, including a multi-step microwave-assisted acid digestion, dry ashing at 450 °C and microwave-induced combustion with oxygen. Results were benchmarked against those derived from neutron activation analysis and also supported by solid sampling continuum source GF-AAS for several of the elements. Although laborious to execute, the multi-step microwave-assisted acid digestion proved to be most reliable for recovery of the majority of the analytes, although content of Cr remained biased low for each approach, likely due to its presence as refractory carbide. - Highlights: • Determination of trace and residual catalyst metal content in Single-Wall Carbon Nanotubes by Inductively Coupled Plasma Mass Spectrometry. • Comparative study of digestion methodology combined with high precision isotope dilution ICP-MS for quantitation of elements of toxicologic relevance. • Results were benchmarked against those derived from neutron activation analysis and also supported by solid sampling continuum source GF-AAS for several of the elements.

  6. Determination of traces of uranium and thorium in titanium and copper used for the construction of the Russian Emission Detector 100 by inductively coupled plasma mass spectrometry.

    Poteshin, Sergey S; Sysoev, Alexey A; Lagunov, Sergey S; Sereda, Andrei; Sosnovtsev, Valery V; Bolozdynya, Alexander I; Efremenko, Yuriy B

    2015-01-01

    The Russian Emission Detector 100 (RED-100) under construction at the National Research Nuclear University MEPhI (Moscow Engineering Physics Institute) is designed to detect the presently undiscovered effect of coherent neutrino scattering. One of the factors limiting the sensitivity of the detector is the spontaneous decay of uranium and thorium in the detector materials. Radioactive impurities in detector materials at levels of parts per billion can significantly affect the sensitivity. Five random samples of titanium and one of copper from materials used in the construction of the detector were selected for assay. The concentration of (232)Th and (238)U were measured by inductively coupled plasma mass spectrometry (ICP- MS) in solid titanium using both: solutions in acids and direct sampling by laser ablation (LA-ICP-MS). The LA- ICP-MS method allowed us to determine (238)U and (232)Th at subnanogram per gram levels. This method is much faster than ICP-MS with liquid injection. The titanium samples studied have impurities in the range between 1 ng g(-1) and 21 ng g(-1) for (238)U and 3 ng g(-1) and 31 ng g(-1) for (232)Th. In copper we set upper limits of 0.4 ng g(-1) for (238)U and 1 ng g(-1)for (232)Th. The total activity of the cryostat constructed from materials studied was estimated to be 43 Bq. PMID:26307714

  7. Computational hydrodynamics and optical performance of inductively-coupled plasma adaptive lenses

    Mortazavi, M.; Urzay, J., E-mail: jurzay@stanford.edu; Mani, A. [Center for Turbulence Research, Stanford University, Stanford, California 94305-3024 (United States)

    2015-06-15

    This study addresses the optical performance of a plasma adaptive lens for aero-optical applications by using both axisymmetric and three-dimensional numerical simulations. Plasma adaptive lenses are based on the effects of free electrons on the phase velocity of incident light, which, in theory, can be used as a phase-conjugation mechanism. A closed cylindrical chamber filled with Argon plasma is used as a model lens into which a beam of light is launched. The plasma is sustained by applying a radio-frequency electric current through a coil that envelops the chamber. Four different operating conditions, ranging from low to high powers and induction frequencies, are employed in the simulations. The numerical simulations reveal complex hydrodynamic phenomena related to buoyant and electromagnetic laminar transport, which generate, respectively, large recirculating cells and wall-normal compression stresses in the form of local stagnation-point flows. In the axisymmetric simulations, the plasma motion is coupled with near-wall axial striations in the electron-density field, some of which propagate in the form of low-frequency traveling disturbances adjacent to vortical quadrupoles that are reminiscent of Taylor-Görtler flow structures in centrifugally unstable flows. Although the refractive-index fields obtained from axisymmetric simulations lead to smooth beam wavefronts, they are found to be unstable to azimuthal disturbances in three of the four three-dimensional cases considered. The azimuthal striations are optically detrimental, since they produce high-order angular aberrations that account for most of the beam wavefront error. A fourth case is computed at high input power and high induction frequency, which displays the best optical properties among all the three-dimensional simulations considered. In particular, the increase in induction frequency prevents local thermalization and leads to an axisymmetric distribution of electrons even after introduction of

  8. Computational hydrodynamics and optical performance of inductively-coupled plasma adaptive lenses

    This study addresses the optical performance of a plasma adaptive lens for aero-optical applications by using both axisymmetric and three-dimensional numerical simulations. Plasma adaptive lenses are based on the effects of free electrons on the phase velocity of incident light, which, in theory, can be used as a phase-conjugation mechanism. A closed cylindrical chamber filled with Argon plasma is used as a model lens into which a beam of light is launched. The plasma is sustained by applying a radio-frequency electric current through a coil that envelops the chamber. Four different operating conditions, ranging from low to high powers and induction frequencies, are employed in the simulations. The numerical simulations reveal complex hydrodynamic phenomena related to buoyant and electromagnetic laminar transport, which generate, respectively, large recirculating cells and wall-normal compression stresses in the form of local stagnation-point flows. In the axisymmetric simulations, the plasma motion is coupled with near-wall axial striations in the electron-density field, some of which propagate in the form of low-frequency traveling disturbances adjacent to vortical quadrupoles that are reminiscent of Taylor-Görtler flow structures in centrifugally unstable flows. Although the refractive-index fields obtained from axisymmetric simulations lead to smooth beam wavefronts, they are found to be unstable to azimuthal disturbances in three of the four three-dimensional cases considered. The azimuthal striations are optically detrimental, since they produce high-order angular aberrations that account for most of the beam wavefront error. A fourth case is computed at high input power and high induction frequency, which displays the best optical properties among all the three-dimensional simulations considered. In particular, the increase in induction frequency prevents local thermalization and leads to an axisymmetric distribution of electrons even after introduction of

  9. Computational hydrodynamics and optical performance of inductively-coupled plasma adaptive lenses

    Mortazavi, M.; Urzay, J.; Mani, A.

    2015-06-01

    This study addresses the optical performance of a plasma adaptive lens for aero-optical applications by using both axisymmetric and three-dimensional numerical simulations. Plasma adaptive lenses are based on the effects of free electrons on the phase velocity of incident light, which, in theory, can be used as a phase-conjugation mechanism. A closed cylindrical chamber filled with Argon plasma is used as a model lens into which a beam of light is launched. The plasma is sustained by applying a radio-frequency electric current through a coil that envelops the chamber. Four different operating conditions, ranging from low to high powers and induction frequencies, are employed in the simulations. The numerical simulations reveal complex hydrodynamic phenomena related to buoyant and electromagnetic laminar transport, which generate, respectively, large recirculating cells and wall-normal compression stresses in the form of local stagnation-point flows. In the axisymmetric simulations, the plasma motion is coupled with near-wall axial striations in the electron-density field, some of which propagate in the form of low-frequency traveling disturbances adjacent to vortical quadrupoles that are reminiscent of Taylor-Görtler flow structures in centrifugally unstable flows. Although the refractive-index fields obtained from axisymmetric simulations lead to smooth beam wavefronts, they are found to be unstable to azimuthal disturbances in three of the four three-dimensional cases considered. The azimuthal striations are optically detrimental, since they produce high-order angular aberrations that account for most of the beam wavefront error. A fourth case is computed at high input power and high induction frequency, which displays the best optical properties among all the three-dimensional simulations considered. In particular, the increase in induction frequency prevents local thermalization and leads to an axisymmetric distribution of electrons even after introduction of

  10. Inductively coupled plasma-atomic emission spectroscopy glovebox assembly system at the West Valley Demonstration Project

    The inductively coupled plasma/atomic emission spectroscopy [ICP/AES (ICP)] system for elemental analyses in support of vitrification processing was first installed in 1986. The initial instrument was a Jobin Yvon (JY) Model JY-70 ICP that consisted of sequential and simultaneous spectrometers for analysis of nonradioactive samples as radioactive surrogates. The JY-70 ICP continued supporting nonradioactive testing during the Functional and Checkout Testing of Systems (FACTS) using the full-scale melter with ''cold'' (nonradioactive) testing campaigns. As a result, the need for another system was identified to allow for the analysis of radioactive samples. The Mass Spec (Spectrometry) Lab was established for the installation of the modified ICP system for handling radioactive samples. The conceptual setup of another ICP was predicated on the use of a hood to allow ease of accessibility of the torch, nebulizer, and spray chamber, and the minimization of air flow paths. However, reconsideration of the radioactive sample dose rate and contamination levels led to the configuration of the glovebox system with a common transfer interface box for the ICP and the inductively coupled plasma-mass spectrometer (ICP-MS) glovebox assemblies. As a result, a simultaneous Model JY-50P ICP with glovebox was installed in 1990 as a first generation ICP glovebox system. This was one of the first ICP glovebox assemblies connected with an ICP-MS glovebox system. Since the economics of processing high-level radioactive waste (HLW) required the availability of an instrument to operate 24 hours a day throughout the year without any downtime, a second generation ICP glovebox assembly was designed, manufactured, and installed in 1995 using a Model JY-46P ICP. These two ICP glovebox systems continue to support vitrification of the HLW into canisters for storage. The ICP systems have been instrumental in monitoring vitrification batch processing. To date, remote sample preparation and

  11. Measurement of the isotopic abundance of boron-10 by inductively coupled plasma-quadrupole mass spectrometry

    This article describes the method for measuring the isotopic abundance of 10B in nuclear grade boron carbide using inductively coupled plasma-quadrupole mass spectrometry (ICP-QMS). The results of investigation revealed that both the integration time and the dwell time have a major influence on the reproducibility of ICP-QMS measurements. As a result of optimization of the measurement conditions, reproducibility below 0.2% relative standard deviation (RSD) (0.17% RSD maximum) was achieved. In addition, the measured value of the isotopic abundance of 10B for each sample well agreed with the values measured by the TIMS. Thus, the method described in the present investigation was very effective in the analysis of isotopic abundance of 10B in B4C or H3BO3. The results of this study suggest that ICP-QMS could be applied to the precise analysis of the isotopic abundance of 10B required in the field of nuclear applications. (author)

  12. Accurate determination of silver nanoparticles in animal tissues by inductively coupled plasma mass spectrometry

    Veverková, Lenka [Regional Centre of Advanced Technologies and Materials, Department of Analytical Chemistry, Faculty of Science, Palacky University, 17.listopadu 12, CZ 771 46 Olomouc (Czech Republic); Hradilová, Šárka [Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University, 17.listopadu 12, CZ 771 46 Olomouc (Czech Republic); Milde, David, E-mail: david.mlde@upol.cz [Regional Centre of Advanced Technologies and Materials, Department of Analytical Chemistry, Faculty of Science, Palacky University, 17.listopadu 12, CZ 771 46 Olomouc (Czech Republic); Panáček, Aleš [Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University, 17.listopadu 12, CZ 771 46 Olomouc (Czech Republic); Skopalová, Jana [Regional Centre of Advanced Technologies and Materials, Department of Analytical Chemistry, Faculty of Science, Palacky University, 17.listopadu 12, CZ 771 46 Olomouc (Czech Republic); Kvítek, Libor [Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University, 17.listopadu 12, CZ 771 46 Olomouc (Czech Republic); Petrželová, Kamila [Regional Centre of Advanced Technologies and Materials, Department of Analytical Chemistry, Faculty of Science, Palacky University, 17.listopadu 12, CZ 771 46 Olomouc (Czech Republic); National Reference Laboratory for Chemical Elements, Department of Residues in Kroměříž, State Veterinary Institute Olomouc, Hulínská 2286, CZ 767 60 Kroměříž (Czech Republic); and others

    2014-12-01

    This study examined recoveries of silver determination in animal tissues after wet digestion by inductively coupled plasma mass spectrometry. The composition of the mineralization mixture for microwave assisted digestion was optimized and the best recoveries were obtained for mineralization with HNO{sub 3} and addition of HCl promptly after digestion. The optimization was performed on model samples of chicken meat spiked with silver nanoparticles and a solution of ionic silver. Basic calculations of theoretical distribution of Ag among various silver-containing species were implemented and the results showed that most of the silver is in the form of soluble complexes AgCl{sub 2}{sup −} and AgCl{sub 3}{sup 2−} for the optimized composition of the mineralization mixture. Three animal tissue certified reference materials were then analyzed to verify the trueness and precision of the results. - Highlights: • We performed detailed optimization of microwave assisted digestion procedure of animal tissue used prior to Ag determination by ICP-MS. • We provide basic equilibrium calculations to give theoretical explanation of results from optimization of tested mineralization mixtures. • Results from method validation that was done by analysis of several matrix CRMs are presented.

  13. Macro-loading Effects in Inductively Coupled Plasma Etched Mercury Cadmium Telluride

    Apte, Palash; Rybnicek, Kimon; Stoltz, Andrew

    2016-09-01

    This paper reports the effect of macro-loading on mercury cadmium telluride (Hg1- x Cd x Te) and Photoresist (PR) etched in an inductively coupled plasma (ICP). A significant macro-loading effect is observed, which affects the etch rates of both PR and Hg1- x Cd x Te. It is observed that the exposed silicon area has a significant effect on the PR etch rate, but not on the Hg1- x Cd x Te etch rate. It is also observed that the exposed Hg1- x Cd x Te area has a significant effect on the etch rate of the PR, but the exposed PR area does not seem to have an effect on the Hg1- x Cd x Te etch rate. Further, the exposed Hg1- x Cd x Te area is shown to affect the etch rate of the Hg1- x Cd x Te, but there does not seem to be a similar effect for the exposed PR area on the etch rate of the PR. Since the macro-loading affects the selectivity significantly, this effect can cause significant problems in the etching of deep trenches. A few techniques to reduce the effect of macro-loading on the etch rates of the PR and Hg1- x Cd x Te are listed, herein.

  14. EVALUATION OF CORROSION OF ENGINEERING CERAMICS BY ATOMIC EMISSION SPECTROMETRY IN INDUCTIVELY COUPLED PLASMA

    DAGMAR GALUSKOVÁ

    2014-03-01

    Full Text Available An analytical method has been developed and verified, facilitating chemical analysis of saline aqueous solutions from corrosion tests of two types of engineering ceramics, i.e. polycrystalline alumina, and silicon nitride. The method is capable of providing complementary information related to mechanisms of corrosion and kinetics of dissolution of the two main components of the ceramics, i.e. Al in α-Al2O3, and Si in Si3N4. A radially viewed inductively coupled plasma atomic emission spectroscopy was used, and the operating conditions for the analysis were optimised. The method was validated. Internal standardisation, matrix matching, standard addition technique and direct measurement without matrix correction were applied, and the results were critically discussed. The technique of internal standard was shown to be the most sensitive. The method exhibited satisfactory precision (relative standard deviation up to 5 %, analytical recoveries from 95 to 100 %, and acceptable limits of detection based on 3σ criterion of 0.095 mg∙l-1 for Al (measured at 308.215 nm and 0.099 mg∙l-1 for Si (at 251.611 nm.

  15. Thin film passivation of organic light emitting diodes by inductively coupled plasma chemical vapor deposition

    Kim, Han-Ki [Department of Information and Nano Materials Engineering, Kumoh National Institute of Technology (KIT), 1 Yangho-dong, Gumi, Gyeongbuk, 730-701 (Korea, Republic of)]. E-mail: hkkim@kumoh.ac.kr; Kim, Sang-Woo [Department of Information and Nano Materials Engineering, Kumoh National Institute of Technology (KIT), 1 Yangho-dong, Gumi, Gyeongbuk, 730-701 (Korea, Republic of); Kim, Do-Geun [Surface Technology Research Center, Korea Institute of Machinery and Materials, 66 Sangnam-dong, Changwon-si, Gyeongnam, 641-831 (Korea, Republic of); Kang, Jae-Wook [Organic Light Emitting Diodes (OLED) Center, Seoul National University, Silim-dong, Seoul 151-741 (Korea, Republic of); Kim, Myung Soo [Core Technology Laboratory, Samsung SDI, Co., LTD., 575 Shin-dong, Youngtong-Gu, Suwon, Gyeonggi-Do, 442-391 (Korea, Republic of); Cho, Woon Jo [Nano Device Research Center, Korea Institute of Science and Technology, 39-1, Haweolgok-Dong, Seongbuk-Gu, Seoul, 136-791 (Korea, Republic of)

    2007-04-09

    The characteristics of an SiN {sub x} passivation layer grown by a specially designed inductively coupled plasma chemical vapor deposition (ICP-CVD) system with straight antennas for the top-emitting organic light emitting diodes (TOLEDs) are investigated. Using a high-density plasma on the order of {approx} 10{sup 11} electrons/cm{sup 3} formed by nine straight antennas connected in parallel, a high-density SiN {sub x} passivation layer was deposited on a transparent Mg-Ag cathode at a substrate temperature of 40 deg. C. Even at a low substrate temperature, single SiN {sub x} passivation layer prepared by ICP-CVD showed a low water vapor transmission rate of 5 x 10{sup -2} g/m{sup 2}/day and a transparency of {approx} 85% respectively. In addition, current-voltage-luminescence results of the TOLED passivated by the SiN {sub x} layer indicated that the electrical and optical properties of the TOLED were not affected by the high-density plasma during the SiN {sub x} deposition process.

  16. Investigations of the use of inductively coupled plasma emissions for chemical analysis

    Heine, D. R.

    Investigations of applications of the inductively coupled plasma (ICP) for analytical atomic emission spectroscopy are performed. Emissions below 185 nm, analysis of wear metals in lubricating oils, and use of the ICP as a selective detector for high performance liquid chromatography (HPLC) are studied. A unique plasma coolant tube containing a side arm which allows direct observation of the discharge is used to investigate emissions in the vacuum ultraviolet spectral region between 120 and 185 nm. Emission from elements which do not emit radiation in the visible region are observed. A heated sample introduction system attached to a Babington nebulizer is investigated as a means to aerosolize lubricating oils for introduction into the ICP. This allows direct analysis of wear metals in oil samples without requiring the usual sample dilutions. The ICP is used as a selective detector for HPLC. Nucleotides separated by anion exchange chromatography are determined in the ICP by observing phosphorous emissions. Methanol and acetonitrile used for reverse phase HPLC are successfully run in the IPC.

  17. Interlaboratory comparison for boron isotope ratio measurement with inductively coupled plasma-quadrupole mass spectrometer

    Boron isotope ratios were analyzed in seven domestic analytical labs for boric acid solutions with various compositions of boron isotope abundances, using an Inductively Coupled Plasma-Quadrupole Mass Spectrometer (ICP-QMS). Five sample solutions with different isotope abundances of 10B were prepared in the range of 10 to 20 % by mixing two boric acid solutions containing natural B and enriched 11B, respectively. Then, the 10B isotope abundances of each sample were certified by analyzing with thermal ionization mass spectrometry (TI-MS) according to ASTM-C791-04. Results obtained from each lab have indicated good coincidences with TI-MS results. Also, the relative standard deviations of results with ICP-QMS of seven analytical labs were 0.11 to 0.81 %. The measurement precision for ICP-QMS would be sufficient in terms of practical use, while taking into consideration a valid requirement required for verifying a depletion of the 10B isotope abundance in the PWR coolant, while this is greater than a nominal analytical error (relative value : 0.22 %) for TI-MS shown in ASTM-C791-04. (author)

  18. External control of electron energy distributions in a dual tandem inductively coupled plasma

    Liu, Lei; Sridhar, Shyam; Zhu, Weiye; Donnelly, Vincent M., E-mail: vmdonnelly@uh.edu; Economou, Demetre J., E-mail: economou@uh.edu [Plasma Processing Laboratory, Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204-4004 (United States); Logue, Michael D.; Kushner, Mark J., E-mail: mjkush@umich.edu [Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, Michigan 48109-2122 (United States)

    2015-08-28

    The control of electron energy probability functions (EEPFs) in low pressure partially ionized plasmas is typically accomplished through the format of the applied power. For example, through the use of pulse power, the EEPF can be modulated to produce shapes not possible under continuous wave excitation. This technique uses internal control. In this paper, we discuss a method for external control of EEPFs by transport of electrons between separately powered inductively coupled plasmas (ICPs). The reactor incorporates dual ICP sources (main and auxiliary) in a tandem geometry whose plasma volumes are separated by a grid. The auxiliary ICP is continuously powered while the main ICP is pulsed. Langmuir probe measurements of the EEPFs during the afterglow of the main ICP suggests that transport of hot electrons from the auxiliary plasma provided what is effectively an external source of energetic electrons. The tail of the EEPF and bulk electron temperature were then elevated in the afterglow of the main ICP by this external source of power. Results from a computer simulation for the evolution of the EEPFs concur with measured trends.

  19. Wireless thin film transistor based on micro magnetic induction coupling antenna.

    Jun, Byoung Ok; Lee, Gwang Jun; Kang, Jong Gu; Kim, Seunguk; Choi, Ji-Woong; Cha, Seung Nam; Sohn, Jung Inn; Jang, Jae Eun

    2015-01-01

    A wireless thin film transistor (TFT) structure in which a source/drain or a gate is connected directly to a micro antenna to receive or transmit signals or power can be an important building block, acting as an electrical switch, a rectifier or an amplifier, for various electronics as well as microelectronics, since it allows simple connection with other devices, unlike conventional wire connections. An amorphous indium gallium zinc oxide (α-IGZO) TFT with magnetic antenna structure was fabricated and studied for this purpose. To enhance the induction coupling efficiency while maintaining the same small antenna size, a magnetic core structure consisting of Ni and nanowires was formed under the antenna. With the micro-antenna connected to a source/drain or a gate of the TFT, working electrical signals were well controlled. The results demonstrated the device as an alternative solution to existing wire connections which cause a number of problems in various fields such as flexible/wearable devices, body implanted devices, micro/nano robots, and sensors for the 'internet of things' (IoT). PMID:26691929

  20. Optimization of operating parameters for inductively coupled plasma mass spectrometry: A computational study

    Aghaei, Maryam; Lindner, Helmut; Bogaerts, Annemie

    2012-10-01

    An inductively coupled plasma, connected to a mass spectrometer interface, is computationally investigated. The effect of pressure behind the sampler, injector gas flow rate, auxiliary gas flow rate, and applied power is studied. There seems to be an optimum range of injector gas flow rate for each setup which guaranties the presence and also a proper length of the central channel in the torch. Moreover, our modeling results show that for any specific purpose, it is possible to control that either only the central gas flow passes through the sampler orifice or that it is accompanied by the auxiliary gas flow. It was also found that depending on geometry, the variation of outgoing gas flow rate is much less than the variation of the injector gas flow rate and this causes a slightly higher pressure inside the torch. The general effect of increasing the applied power is a rise in the plasma temperature, which results in a higher ionization in the coil region. However, the negative effect is reducing the length of the cool central channel which is important to transfer the sample substances to the sampler. Using a proper applied power can enhance the efficiency of the system. Indeed, by changing the gas path lines, the power can control which flow (i.e., only from injector gas or also from the auxiliary gas) goes to the sampler orifice. Finally, as also reported from experiments in literature, the pressure behind the sampler has no dramatic effect on the plasma characteristics.

  1. Damage in etching of (Ba, Sr)TiO3 thin films using inductively coupled plasma

    High dielectric (Ba, Sr)TiO3 thin films were etched in an inductively coupled plasma as a function of the Cl2/Ar gas mixing ratio. Under Cl2 (20)/Ar (80), the maximum etch rate of the BST film was 400 Aa/min and the selectivities of BST to Pt and PR obtained were 0.4 and 0.2, respectively. Etching by-products remained on the surface of BST and resulted in varying the stochiometry. Therefore, we investigated the surface of the etched BST using x-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), and x-ray diffraction (XRD). From the results of XPS analysis, we found that metal (Ba or Sr) chloride compounds remained on the surface of the etched BST for high boiling points. The morphology of the etched surface was evaluated with AFM. The surface roughness decreased as the Cl2 increased in the Cl2/Ar plasma. From the results of XRD analysis, the crystallinity of etched BST films under Ar only and under Cl2 (20)/Ar (80) was similar to that of as-deposited BST. However, the (100) diffraction peak abruptly decreased at the Cl2 only plasma. It was assumed that metal (Ba or Sr) chloride compounds remained on the etched BST surface and changed the stoichiometry, resulting in crystallinity of the BST film during the etch process

  2. Determination of selenium in blood serum by inductively coupled plasma atomic emission spectrometry with pneumatic nebulization

    Machat, Jiri; Kanicky, Viktor; Otruba, Vitezslav [Laboratory of Plasma Sources for Chemical Analysis-Laboratory of Atomic Spectrochemistry, Faculty of Science, Masaryk University Brno (Czech Republic)

    2002-02-01

    The possibility of determining selenium in blood serum using inductively coupled plasma emission spectrometry with conventional pneumatic nebulization was studied. A high-resolution spectrometer (SBW=6 pm) with laterally viewed ICP was employed. Analysis with conventional pneumatic nebulization could overcome laborious and demanding digestion, which is necessary for hydride generation. A pressure digestion with nitric acid at 160 C was sufficient to decrease the carbon content in the serum sample to 5%-10% of its original value. Spectral interference of the CN band was observed and mathematically corrected. It was found that the carbon-induced selenium line emission enhancement occurred even under ICP optimized conditions. A method of determination was developed and applied to the analysis of blood serum. True limit of detection in real samples is 0.01-0.02 mg/L and the limit of quantification (RSD 10%) is 0.03-0.07 mg/L using Se I 196.090 nm line at an integration time of 10-2 s. The method was tested by analysis of porcine blood serum and the serum reference material Seronorm MI 0181. (orig.)

  3. Arsenic speciation in soil using high performance liquid chromatography/inductively coupled plasma/mass spectrometry

    Bass, D.A.; Yaeger, J.S.; Parish, K.J.; Crain, J.S.; Kiely, J.T.; Gowdy, M.J. [Argonne National Lab., IL (United States); Mohrman, G.B.; Besmer, M.G. [Rocky Mountain Arsenal, Commerce City, CO (United States)

    1996-08-01

    A method has been developed to identify and quantify As(III), As(V), and organoarsenic compounds in soil samples from the Rocky Mountain Arsenal (RMA) by high performance liquid chromatography/inductively coupled plasma/mass spectrometry (HPLC/ICP/MS). The soils were extracted using tetrabutylammonium hydroxide (TBAH) and sonication. The percentages of As(III), As(V), and organoarsenic species extracted from soil samples were 30, 50, and 100 respectively. The arsenic species were not altered during the extraction process. They were separated by reversed-phase, ion-pairing, HPLC using a microbore Inertsil-ODS{trademark} column. The HPLC column effluent was introduced into an ICP/MS system using a direct injection nebulizer (DIN). Detection limits of less than 1 pg were readily obtained for each arsenic species. Internal standards are recommended to increase accuracy and precision. Soil samples spiked with arsenic oxide, sodium arsenate, dimethylarsinic acid (DMAA), and chlorovinyl arsenious acid (CVAA) were extracted, identified and quantified with the HPLC/ICP/MS system. The soil samples were analyzed in support of the analytical needs of a thermal desorption treatability study being conducted at the RMA.

  4. Synthesis of ultrafine particles and processing of nano-structured films with inductively coupled plasma

    The inductively coupled plasma (ICP) at atmospheric pressure is particularly suited for melting and evaporation of materials. The electrodeless ICP can be generated without limitation of the kind of plasma forming gases. Therefore, using an argon-oxygen gas mixture as sheath gas of the ICP nanoparticles can be processed by combustion of metal-organic liquid precursors injected in the hot plasma core. By this way, nanoparticles of alumina, titania and of a perovskite type oxide are produced. The powder particles are collected by an electrostatic filter. They are characterized by a log-normal size distribution with a median diameter of about 10 nm depending on the plasma parameters used. Interesting metastable phases and exactly doped, very pure materials can be obtained. Nanophase coatings synthesized by the ICP are made from the same precursor materials. For depositions, the plasma jet has to be supersonic. Impinging onto the substrate placed near the nozzle thin and dense coatings are obtained. The composition and the grain size of as-deposited coatings are analyzed by XRD. (author)

  5. Surface roughening of ground fused silica processed by atmospheric inductively coupled plasma

    Xin, Qiang; Li, Na; Wang, Jun; Wang, Bo; Li, Guo; Ding, Fei; Jin, Huiliang

    2015-06-01

    Subsurface damage (SSD) is a defect that is inevitably induced during mechanical processes, such as grinding and polishing. This defect dramatically reduces the mechanical strength and the laser damage thresholds of optical elements. Compared with traditional mechanical machining, atmospheric pressure plasma processing (APPP) is a relatively novel technology that induces almost no SSD during the processing of silica-based optical materials. In this paper, a form of APPP, inductively coupled plasma (ICP), is used to process fused silica substrates with fluorocarbon precursor under atmospheric pressure. The surface morphology evolution of ICP-processed substrates was observed and characterized by confocal laser scanning microscope (CLSM), field emission scanning electron microscope (SEM), and atomic force microscopy (AFM). The results show that the roughness evolves with the etching depth, and the roughness evolution is a single-peaked curve. This curve results from the opening and the coalescing of surface cracks and fractures. The coalescence procedure of these microstructures was simulated with two common etched pits on a polished fused silica surface. Understanding the roughness evolution of plasma-processed surface might be helpful in optimizing the optical fabrication chain that contains APPP.

  6. Determination of copper, molybdenum and selenium in biological reference materials by inductively coupled plasma mass spectrometry

    In a contribution to the elemental characterization of 10 new reference materials, Bovine Muscle Powder (136), Corn Starch (162), Hard Red Spring Wheat Flour (165), Soft Winter Wheat Flour (166), Whole Milk Powder (183), Wheat Gluten (184), Corn Bran (186). Durum Wheat Flour (187), Whole Egg Powder (188) and Microcrystalline Cellulose (189), the total concentrations of Cu, Mo and Se were determined by the application of an analytical method based on isotope dilution inductively coupled plasma mass spectrometry. Cu and Mo contents were quantified by measurement of 65Cu/63Cu and 97Mo/100Mo isotopic ratios following spiking with 65Cu and 97Mo and digestion with nitric acid. Selenium was separated as hydrogen selenide from the matrix using sodium borohydride after spiking with 82Se and acid digestion-dry ashing and quantified by measurement of the 82Se/78Se isotopic ratio. Comparison of these results with those from a variety of other methods and assessment of the procedures using certified reference materials indicated that the determinations of Cu, Mo and Se were performed without analytical bias. (orig.)

  7. Effect of axial finiteness on electron heating in low-frequency inductively coupled plasmas

    Total power absorption inside the plasma (by taking the thermal motion of the electrons into account) has been calculated using different inductively coupled plasma models. The comparison shows that in the low-frequency region the results of the semi-infinite plasma models are different from those of the finite-length plasma models. The semi-infinite plasma models show net reduction of heating in the low-frequency region, due to thermal motion of the electrons from inside the skin region to outside the skin region. The finite-length plasma models on the other hand (due to change in the skin depth owing to the boundary condition of E=0 at z=L, and reflection of electrons from the plasma boundary) show that the decrease in heating due to the motion of the electrons from inside the skin depth to outside the skin depth is recovered by the reflection of the electrons from the plasma boundary. Hence, it is concluded that the results of the semi-infinite plasma models presented by Tyshetskiy et al. [Phys Rev. Lett. 90, 255002 (2003)] can be misleading (in the low-frequency region), since they overlooked the effect of axial finiteness of the plasma

  8. Depleted uranium analysis in blood by inductively coupled plasma mass spectrometry

    Todorov, T.I.; Xu, H.; Ejnik, J.W.; Mullick, F.G.; Squibb, K.; McDiarmid, M.A.; Centeno, J.A.

    2009-01-01

    In this study we report depleted uranium (DU) analysis in whole blood samples. Internal exposure to DU causes increased uranium levels as well as change in the uranium isotopic composition in blood specimen. For identification of DU exposure we used the 235U/238U ratio in blood samples, which ranges from 0.00725 for natural uranium to 0.002 for depleted uranium. Uranium quantification and isotopic composition analysis were performed by inductively coupled plasma mass spectrometry. For method validation we used eight spiked blood samples with known uranium concentrations and isotopic composition. The detection limit for quantification was determined to be 4 ng L-1 uranium in whole blood. The data reproduced within 1-5% RSD and an accuracy of 1-4%. In order to achieve a 235U/238U ratio range of 0.00698-0.00752% with 99.7% confidence limit a minimum whole blood uranium concentration of 60 ng L??1 was required. An additional 10 samples from a cohort of veterans exposed to DU in Gulf War I were analyzed with no knowledge of their medical history. The measured 235U/ 238U ratios in the blood samples were used to identify the presence or absence of DU exposure within this patient group. ?? 2009 The Royal Society of Chemistry.

  9. Methods for detecting and correcting inaccurate results in inductively coupled plasma-atomic emission spectrometry

    Chan, George C. Y.; Hieftje, Gary M.

    2010-08-03

    A method for detecting and correcting inaccurate results in inductively coupled plasma-atomic emission spectrometry (ICP-AES). ICP-AES analysis is performed across a plurality of selected locations in the plasma on an unknown sample, collecting the light intensity at one or more selected wavelengths of one or more sought-for analytes, creating a first dataset. The first dataset is then calibrated with a calibration dataset creating a calibrated first dataset curve. If the calibrated first dataset curve has a variability along the location within the plasma for a selected wavelength, errors are present. Plasma-related errors are then corrected by diluting the unknown sample and performing the same ICP-AES analysis on the diluted unknown sample creating a calibrated second dataset curve (accounting for the dilution) for the one or more sought-for analytes. The cross-over point of the calibrated dataset curves yields the corrected value (free from plasma related errors) for each sought-for analyte.

  10. [Determination of Heavy Metal Elements in Diatomite Filter Aid by Inductively Coupled Plasma Mass Spectrometry].

    Nie, Xi-du; Fu, Liang

    2015-11-01

    This study established a method for determining Be, Cr, Ni, As, Cd, Sb, Sn, Tl, Hg and Pb, total 10 heavy metals in diatomite filter aid. The diatomite filter aid was digested by using the mixture acid of HNO₃ + HF+ H₃PO₄ in microwave system, 10 heavy metals elements were determined by inductively coupled plasma mass spectrometry (ICP-MS). The interferences of mass spectrometry caused by the high silicon substrate were optimized, first the equipment parameters and isotopes of test metals were selected to eliminate these interferences, the methane was selected as reactant gas, and the mass spectral interferences were eliminated by dynamic reaction cell (DRC). Li, Sc, Y, In and Bi were selected as the internal standard elements to correct the interferences caused by matrix and the drift of sensitivity. The results show that the detection limits for analyte is in the range of 3.29-15.68 ng · L⁻¹, relative standard deviations (RSD) is less than 4.62%, and the recovery is in the range of 90.71%-107.22%. The current method has some advantages such as, high sensitivity, accurate, and precision, which can be used in diatomite filter aid quality control and safety estimations. PMID:26978934

  11. Heteroepitaxial growth of wafer scale highly oriented graphene using inductively coupled plasma chemical vapor deposition

    Gao, Libo; Xu, Hai; Li, Linjun; Yang, Yang; Fu, Qiang; Bao, Xinhe; Loh, Kian Ping

    2016-06-01

    The chemical vapor deposition (CVD) of graphene on Cu has attracted much attention because of its industrial scalability. Herein, we report inductively coupled plasma-assisted CVD of epitaxially grown graphene on (111)-textured Cu film alloyed with a small amount of Ni, where large area high quality graphene film can be grown in less than 5 min at 800 °C, thus affording industrial scalability. The epitaxially grown graphene films on (111)-textured Cu contain grains which are predominantly aligned with the Cu lattice and about 10% of 30°-rotated grains (anti-grains). Such graphene films are exclusively monolayer and possess good electrical conductivity, high carrier mobility, and room temperature quantum Hall effect. Magnetoresistance measurements reveal that the reduction of the grain sizes from 150 nm to 50 nm produce increasing Anderson localization and the appearance of a transport gap. Owing to the presence of grain boundaries in these anti-grains, epitaxially grown graphene films possess n-type characteristics and exhibit ultra-high sensitivity to adsorbates.

  12. Inductively coupled plasma induced deep levels in epitaxial n-GaAs

    Auret, F.D.; Janse van Rensburg, P.J.; Meyer, W.E.; Coelho, S.M.M. [Department of Physics, University of the Pretoria, Lynnwood Road, Pretoria 0002 (South Africa); Kolkovsky, Vl. [Technische Universitaet, Dresden, 01062 Dresden (Germany); Botha, J.R.; Nyamhere, C. [Department of Physics, Nelson Mandela Metropolitan University, PO Box 77000, Port Elizabeth 6031 (South Africa); Venter, A., E-mail: andre.venter@nmmu.ac.za [Department of Physics, Nelson Mandela Metropolitan University, PO Box 77000, Port Elizabeth 6031 (South Africa)

    2012-05-15

    The electronic properties of defects introduced by low energy inductively coupled Ar plasma etching of n-type (Si doped) GaAs were investigated by deep level transient spectroscopy (DLTS) and Laplace DLTS. Several prominent electron traps (E{sub c}-0.046 eV, E{sub c}-0.186 eV, E{sub c}-0.314 eV. E{sub c}-0.528 eV and E{sub c}-0.605 eV) were detected. The metastable defect E{sub c}-0.046 eV having a trap signature similar to E1 is observed for the first time. E{sub c}-0.314 eV and E{sub c}-0.605 eV are metastable and appear to be similar to the M3 and M4 defects present in dc H-plasma exposed GaAs.

  13. Cooperative analysis of alloying elements in zirconium alloys using inductively coupled plasma atomic emission spectrometry

    The Second Sub-Committee on Zircaloy Analysis, under Committee on Analytical Chemistry of Nuclear Fuels and Reactor Materials, JAERI, carried out a cooperative analysis with the nine laboratories on the determination of tin, iron, nickel and chromium in zirconium alloys to evaluate the practical applicability of inductively coupled plasma (ICP) atomic emission spectrometry. This report describes the sample decomposition procedures, determination conditions and procedures, and analytical results. The results obtained for alloying elements in samples for cooperative analysis (JAERI CRMs Z11 to Z14 and others) were compared with certified values or those obtained by X-ray fluorescence method, and were in good agreement with those values. ICP atomic emission spectrometry were shown to be an effective field method for determining alloying elements (C.V. % 2 to 7 for 0.5 to 1.90 % Sn, C.V. % 2 to 3 for 0.093 to 0.130 % Fe, C.V. % 3 to 6 for 0.095 to 0.110 % Ni and C.V. % 2 to 7 for 0.01 to 0.150 % Cr) in zirconium alloys. (author)

  14. Sulfur-based absolute quantification of proteins using isotope dilution inductively coupled plasma mass spectrometry

    Lee, Hyun-Seok; Heun Kim, Sook; Jeong, Ji-Seon; Lee, Yong-Moon; Yim, Yong-Hyeon

    2015-10-01

    An element-based reductive approach provides an effective means of realizing International System of Units (SI) traceability for high-purity biological standards. Here, we develop an absolute protein quantification method using double isotope dilution (ID) inductively coupled plasma mass spectrometry (ICP-MS) combined with microwave-assisted acid digestion for the first time. We validated the method and applied it to certify the candidate protein certified reference material (CRM) of human growth hormone (hGH). The concentration of hGH was determined by analysing the total amount of sulfur in hGH. Next, the size-exclusion chromatography method was used with ICP-MS to characterize and quantify sulfur-containing impurities. By subtracting the contribution of sulfur-containing impurities from the total sulfur content in the hGH CRM, we obtained a SI-traceable certification value. The quantification result obtained with the present method based on sulfur analysis was in excellent agreement with the result determined via a well-established protein quantification method based on amino acid analysis using conventional acid hydrolysis combined with an ID liquid chromatography-tandem mass spectrometry. The element-based protein quantification method developed here can be generally used for SI-traceable absolute quantification of proteins, especially pure-protein standards.

  15. Transport and trapping of dust particles in a potential well created by inductively coupled diffused plasmas

    Choudhary, Mangilal; Mukherjee, S.; Bandyopadhyay, P.

    2016-05-01

    A versatile linear dusty (complex) plasma device is designed to study the transport and dynamical behavior of dust particles in a large volume. Diffused inductively coupled plasma is generated in the background of argon gas. A novel technique is used to introduce the dust particles in the main plasma by striking a secondary direct current glow discharge. These dust particles are found to get trapped in an electrostatic potential well, which is formed due to the combination of the ambipolar electric field caused by diffusive plasma and the field produced by the charged glass wall of the vacuum chamber. According to the requirements, the volume of the dust cloud can be controlled very precisely by tuning the plasma and discharge parameters. The present device can be used to address the underlying physics behind the transport of dust particles, self-excited dust acoustic waves, and instabilities. The detailed design of this device, plasma production and characterization, trapping and transport of the dust particle, and some of the preliminary experimental results are presented.

  16. Studies of selenium and xenon in inductively coupled plasma mass spectrometry

    Bricker, T.

    1994-07-27

    Since its development, inductively coupled plasma mass spectrometry (ICP-MS) has been a widely used analytical technique. ICP-MS offers low detection limits, easy determination of isotope ratios, and simple mass spectra from analyte elements. ICP-MS has been successfully employed for many applications including geological, environmental, biological, metallurgical, food, medical, and industrial. One specific application important to many areas of study involves elemental speciation by using ICP-MS as an element specific detector interfaced to liquid chromatography. Elemental speciation information is important and cannot be obtained by atomic spectrometric methods alone which measure only the total concentration of the element present. Part 1 of this study describes the speciation of selenium in human serum by size exclusion chromatography (SEC) and detection by ICP-MS. Although ICP-MS has been widely sued, room for improvement still exists. Difficulties in ICP-MS include noise in the background, matrix effects, clogging of the sampling orifice with deposited solids, and spectral interference caused by polyatomic ions. Previous work has shown that the addition of xenon into the central channel of the ICP decreases polyatomic ion levels. In Part 2 of this work, a fundamental study involving the measurement of the excitation temperature is carried out to further understand xenon`s role in the reduction of polyatomic ions. 155 refs.

  17. Studies of selenium and xenon in inductively coupled plasma mass spectrometry

    Since its development, inductively coupled plasma mass spectrometry (ICP-MS) has been a widely used analytical technique. ICP-MS offers low detection limits, easy determination of isotope ratios, and simple mass spectra from analyte elements. ICP-MS has been successfully employed for many applications including geological, environmental, biological, metallurgical, food, medical, and industrial. One specific application important to many areas of study involves elemental speciation by using ICP-MS as an element specific detector interfaced to liquid chromatography. Elemental speciation information is important and cannot be obtained by atomic spectrometric methods alone which measure only the total concentration of the element present. Part 1 of this study describes the speciation of selenium in human serum by size exclusion chromatography (SEC) and detection by ICP-MS. Although ICP-MS has been widely sued, room for improvement still exists. Difficulties in ICP-MS include noise in the background, matrix effects, clogging of the sampling orifice with deposited solids, and spectral interference caused by polyatomic ions. Previous work has shown that the addition of xenon into the central channel of the ICP decreases polyatomic ion levels. In Part 2 of this work, a fundamental study involving the measurement of the excitation temperature is carried out to further understand xenon's role in the reduction of polyatomic ions. 155 refs

  18. Surface characterization of hydrophobic thin films deposited by inductively coupled and pulsed plasmas

    Different fluorocarbon thin films were deposited on Si substrates using a plasma-polymerization method. Fluorine-containing hydrophobic thin films were obtained by inductively coupled plasma (ICP) and pulsed plasma (PP) with a mixture of fluorocarbon precursors C2F6, C3F8, and c-C4F8 and the unsaturated hydrocarbons of C2H2. The influence on the fluorocarbon surfaces of the process parameters for plasma polymerization, including the gas ratio and the plasma power, were investigated under two plasma-polymerized techniques with different fluorocarbon gas precursors. The hydrophobic properties, surface morphologies, and chemical compositions were elucidated using water contact angle measurements, field emission-scanning electron microscope, x-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FT-IR), and time-of-flight secondary ion mass spectrometry (TOF-SIMS). In this study, the ICP technique provides coarser grained films and more hydrophobic surfaces as well as a higher deposition rate compared to the PP technique. XPS, FT-IR, and TOF-SIMS analyses indicated that the ICP technique produced more fluorine-related functional groups, including CF2 and CF3, on the surface. From the curve-fitted XPS results, fluorocarbon films grown under ICP technique exhibited less degree of cross-linking and higher CF2 concentrations than those grown under PP technique.

  19. Use of laser-excited atomic fluorescence spectroscopy for characterization of an argon inductively coupled plasma

    Laser-excited atomic fluorescence spectroscopy (LEAFS) is investigated and employed as a diagnostic technique for study of the argon inductively coupled plasma (ICP). Computer simulations are used to describe the behavior of nonsteady-state laser excited fluorescence (LEF) for multi-level atomic systems under conditions expected to be encountered in the ICP and an atmospheric pressure flame. These simulations are then compared to experimental data collected under similar conditions in the ICP and a flame. These studies show that LEAFS should be a useful tool for characterization of an ICP, with certain limitations. Relatively small changes in saturated LEF signals under changing quenching and mixing conditions are both predicted theoretically and observed experimentally for several atomic systems. This independence from quenching and mixing effects allows one to relate saturated LEF signals directly to relative number densities of species when spatially scanning over an inhomogeneous medium, such as an ICP discharge, where significant changes in quenching can be encountered in a single scan. SSI values are also found to be useful as indicators of relative collisional quenching rates and relative degree of LTE establishment in the ICP, as well as ease of saturation for a given transition

  20. 200-mm-diameter neutral beam source based on inductively coupled plasma etcher and silicon etching

    The authors developed a neutral beam source consisting of a 200-mm-diameter inductively coupled plasma etcher and a graphite neutralization aperture plate based on the design of a neutral beam source that Samukawa et al. [Jpn. J. Appl. Phys., Part 2 40, L779 (2001)] developed. They measured flux and energy of neutral particles, ions, and photons using a silicon wafer with a thermocouple and a Faraday cup and calculated the neutralization efficiency. An Ar neutral beam flux of more than 1 mA/cm2 in equivalent current density and a neutralization efficiency of more than 99% were obtained. The spatial uniformity of the neutral beam flux was within ±6% within a 100 mm diameter. Silicon etching using a F2-based neutral beam was done at an etch rate of about 47 nm/min, while Cl2-based neutral beam realized completely no undercut. The uniformity of etch rate was less than ±5% within the area. The etch rate increased by applying bias power to the neutralization aperture plate, which shows that accelerated neutral beam was successfully obtained. These results indicate that the neutral beam source is scalable, making it possible to obtain a large-diameter and uniform neutral beam, which is inevitable for application to mass production.

  1. The etching of silicon carbide in inductively coupled SF6/O2 plasma

    The etching mechanisms of silicon carbide in an inductively coupled plasma (ICP) reactor using a SF6/O2 gas mixture, have been investigated using optical emission spectroscopy (OES) and Langmuir probe measurements. The etching is shown to be ion induced with a high degree of anisotropy. An optimum etch rate is achieved with 20% oxygen content within the gas mixture. By studying the independent influence of the ICP power and the substrate bias voltage on the ion current density, as well as the fluorine and oxygen radical densities in the plasma, the etch mechanism is found to be dominated by the number of ions bombarding the SiC surface. The steady state sputter yield observed at P>0.7 Pa, despite the increase in F radical concentration indicates the dominant role of ion bombardment in this etch regime, while at P<0.7 Pa, the etch mechanism is limited by the number of F radicals in the plasma. The OES results have shown that the etch rate is dependent upon the concentration of reactive radicals present with the [F]/[0] ratio = 8 at the optimum. Whilst using the optimum gas composition, the parameters which dominate the physical side of the reaction, ICP power and bias voltage, produce an increase of the etch rate as the potential difference between the substrate and the plasma is increased

  2. Patterning of titanium oxide surfaces using inductively coupled plasma for gas sensing

    Hotovy, I., E-mail: ivan.hotovy@stuba.sk [Institute of Electronics and Photonics, Slovak University of Technology, Ilkovicova 3, 812 19 Bratislava (Slovakia); Kostic, I. [Institute of Informatics, Slovak Academy of Sciences, Dubravska cesta 9, 845 07 Bratislava (Slovakia); Hascik, S. [Institute of Electrical Engineering, Slovak Academy of Sciences, Dubravska cesta 9, 845 07 Bratislava (Slovakia); Rehacek, V.; Predanocy, M. [Institute of Electronics and Photonics, Slovak University of Technology, Ilkovicova 3, 812 19 Bratislava (Slovakia); Bencurova, A. [Institute of Informatics, Slovak Academy of Sciences, Dubravska cesta 9, 845 07 Bratislava (Slovakia)

    2014-09-01

    Highlights: • Etching characteristics of TiO{sub 2} films using CF{sub 4} plasma in ICP system were studied. • TiO{sub 2} tips with minimal diameter of 100 nm were patterned using ICP etching. • Pyramidal TiO{sub 2} nanotips were fabricated by self-assembled AuNPs as ICP etch mask. • TiO{sub 2} tip arrays may have important application in gas microsensors. - Abstract: Titanium oxide thin films were deposited at room temperature by reactive magnetron sputtering in a mixture of oxygen and argon on oxidized silicon substrates. The optimal etching characteristics of TiO{sub 2} films by an inductively coupled plasma system were investigated. The maximum etch rate of TiO{sub 2} was 104 nm/min at fixed 200 W of ICP power and the highest investigated value of RF chuck power of 150 W. Patterning of TiO{sub 2} tip arrays by electron beam lithography and dry etching was conducted. Experimental results showed that the exposure dose optimization was a significant parameter for controlling the tip size and its shape. Pyramidal TiO{sub 2} tip arrays were successfully fabricated by dry etching in CF{sub 4}/Ar plasma through a Au nanoparticle mask. The TiO{sub 2} tip arrays can be expected to have an important application in gas microsensors.

  3. Fabrication of SiC nanopillars by inductively coupled SF6/O2 plasma etching

    In this paper, we demonstrate a top-down fabrication technique for nanometre scale silicon carbide (SiC) pillars using inductively coupled plasma etching. A set of experiments in SF6-based plasma was carried out in order to realize high aspect ratio SiC nanopillars. The etched SiC nanopillars using a small circular mask pattern (115 nm diameter) show high aspect ratio (7.4) with a height of 2.2 µm at an optimum bias voltage (300 V) and pressure (6 mTorr). Under the optimal etching conditions using a large circular mask pattern with 370 nm diameter, the obtained SiC nanopillars exhibit high anisotropy features (6.4) with a large etch depth (>7 µm). The etch characteristic of the SiC nanopillars under these conditions shows a high etch rate (550 nm min-1) and a high selectivity (over 60 for Ni). We also studied the etch profile of the SiC nanopillars and mask evolution over the etching time. As the mask pattern size shrinks in nanoscale, vertical and lateral mask erosion plays a crucial role in the etch profile of the SiC nanopillars. Long etching process makes the pillars appear with a hexagonal shape, coming from the crystallographic structure of α-SiC. It is found that the feature of pillars depends not only on the etching process parameters, but also on the crystallographic structure of the SiC phase. (paper)

  4. Optimization of inductively coupled plasma deep etching of GaN and etching damage analysis

    Inductively coupled plasma (ICP) etching of GaN with an etching depth up to 4 μm is systemically studied by varying ICP power, RF power and chamber pressure, respectively, which results in etch rates ranging from ∼370 nm/min to 900 nm/min. The surface morphology and damages of the etched surface are characterized by optical microscope, scanning electron microscope, atomic force microscopy, cathodoluminescence mapping and photoluminescence (PL) spectroscopy. Sub-micrometer-scale hexagonal pits and pillars originating from part of the structural defects within the original GaN layer are observed on the etched surface. The density of these surface features varies with etching conditions. Considerable reduction of PL band-edge emission from the etched GaN surface indicates that high-density non-radiative recombination centers are created by ICP etching. The density of these non-radiative recombination centers is found largely dependent on the degree of physical bombardments, which is a strong function of the RF power applied. Finally, a low-surface-damage etch recipe with high ICP power, low RF power, high chamber pressure is suggested.

  5. Measuring ion velocity distribution functions through high-aspect ratio holes in inductively coupled plasmas

    Cunge, G.; Darnon, M.; Dubois, J.; Bezard, P.; Mourey, O.; Petit-Etienne, C.; Vallier, L.; Despiau-Pujo, E.; Sadeghi, N.

    2016-02-01

    Several issues associated with plasma etching of high aspect ratio structures originate from the ions' bombardment of the sidewalls of the feature. The off normal angle incident ions are primarily due to their temperature at the sheath edge and possibly to charging effects. We have measured the ion velocity distribution function (IVDF) at the wafer surface in an industrial inductively coupled plasma reactor by using multigrid retarding field analyzers (RFA) in front of which we place 400 μm thick capillary plates with holes of 25, 50, and 100 μm diameters. The RFA then probes IVDF at the exit of the holes with Aspect Ratios (AR) of 16, 8, and 4, respectively. The results show that the ion flux dramatically drops with the increase in AR. By comparing the measured IVDF with an analytical model, we concluded that the ion temperature is 0.27 eV in our plasma conditions. The charging effects are also observed and are shown to significantly reduce the ion energy at the bottom of the feature but only with a "minor" effect on the ion flux and the shape of the IVDF.

  6. High sensitivity ultra-broad-band absorption spectroscopy of inductively coupled chlorine plasma

    Marinov, Daniil; Foucher, Mickaël; Campbell, Ewen; Brouard, Mark; Chabert, Pascal; Booth, Jean-Paul

    2016-06-01

    We propose a method to measure the densities of vibrationally excited Cl2(v) molecules in levels up to v  =  3 in pure chlorine inductively coupled plasmas (ICPs). The absorption continuum of Cl2 in the 250–450 nm spectral range is deconvoluted into the individual components originating from the different vibrational levels of the ground state, using a set of ab initio absorption cross sections. It is shown that gas heating at constant pressure is the major depletion mechanism of the Cl2 feedstock in the plasma. In these line-integrated absorption measurements, the absorption by the hot (and therefore rarefied) Cl2 gas in the reactor centre is masked by the cooler (and therefore denser) Cl2 near the walls. These radial gradients in temperature and density make it difficult to assess the degree of vibrational excitation in the centre of the reactor. The observed line-averaged vibrational distributions, when analyzed taking into account the radial temperature gradient, suggest that vibrational and translational degrees of freedom in the plasma are close to local equilibrium. This can be explained by efficient vibrational-translational (VT) relaxation between Cl2 and Cl atoms. Besides the Cl2(v) absorption band, a weak continuum absorption is observed at shorter wavelengths, and is attributed to photodetachment of Cl‑ negative ions. Thus, line-integrated densities of negative ions in chlorine plasmas can be directly measured using broad-band absorption spectroscopy.

  7. Biofuel Cell Based on Microscale Nanostructured Electrodes with Inductive Coupling to Rat Brain Neurons

    Andoralov, Viktor; Falk, Magnus; Suyatin, Dmitry B.; Granmo, Marcus; Sotres, Javier; Ludwig, Roland; Popov, Vladimir O.; Schouenborg, Jens; Blum, Zoltan; Shleev, Sergey

    2013-11-01

    Miniature, self-contained biodevices powered by biofuel cells may enable a new generation of implantable, wireless, minimally invasive neural interfaces for neurophysiological in vivo studies and for clinical applications. Here we report on the fabrication of a direct electron transfer based glucose/oxygen enzymatic fuel cell (EFC) from genuinely three-dimensional (3D) nanostructured microscale gold electrodes, modified with suitable biocatalysts. We show that the process underlying the simple fabrication method of 3D nanostructured electrodes is based on an electrochemically driven transformation of physically deposited gold nanoparticles. We experimentally demonstrate that mediator-, cofactor-, and membrane-less EFCs do operate in cerebrospinal fluid and in the brain of a rat, producing amounts of electrical power sufficient to drive a self-contained biodevice, viz. 7 μW cm-2 in vitro and 2 μW cm-2 in vivo at an operating voltage of 0.4 V. Last but not least, we also demonstrate an inductive coupling between 3D nanobioelectrodes and living neurons.

  8. Determination of cobalamins using capillary electrophoresis inductively coupled plasma mass spectrometry

    Baker, S. A.; Miller-Ihli, N. J.

    2000-12-01

    The determination of cobalamins using capillary electrophoresis inductively coupled plasma mass spectrometry (CE-ICP-MS) was investigated. Both capillary zone electrophoresis (CZE) and micellar electrokinetic chromatography (MEKC) modes of operation were studied. The optimal separation of four cobalamin species (cyanocobalamin, hydroxocobalamin, methylcobalamin, and 5'-deoxyadenosylcobalamin) and a potentially harmful corrinoid analogue (cobinamide dicyanide) was obtained using CZE at a pH of 2.5. Both 20 mM phosphate and 20 mM formate buffers were used with success, although the formate buffer provided improved resolution. The CZE-ICP-MS method was used to quantify cyanocobalamin in a vitamin supplement and the analytical results were in good agreement (±5%) with values obtained by ICP-MS for total Co levels. The solution detection limits for cobalamins using CZE-ICP-MS were approximately 50 ng/ml. MEKC was found to be useful for the screening of vitamin preparations because it provided a rapid means of distinguishing cyanocobalamin (the form most commonly used in vitamin preparations) from free cobalt. The separation of free cobalt and cyanocobalamin using MEKC was achieved in less than 10 min.

  9. Low-frequency, high-density, inductively coupled plasma sources: Operation and applications

    Operation regimes, plasma parameters, and applications of the low-frequency (∼500 kHz) inductively coupled plasma (ICP) sources with a planar external coil are investigated. It is shown that highly uniform, high-density (ne∼9x1012 cm-3) plasmas can be produced in low-pressure argon discharges with moderate rf powers. The low-frequency ICP sources operate in either electrostatic (E) or electromagnetic (H) regimes in a wide pressure range without any Faraday shield or an external multipolar magnetic confinement, and exhibit high power transfer efficiency, and low circuit loss. In the H mode, the ICP features high level of uniformity over large processing areas and volumes, low electron temperatures, and plasma potentials. The low-density, highly uniform over the cross-section, plasmas with high electron temperatures and plasma and sheath potentials are characteristic to the electrostatic regime. Both operation regimes offer great potential for various plasma processing applications. As examples, the efficiency of the low-frequency ICP for steel nitriding and plasma-enhanced chemical vapor deposition of hydrogenated diamond-like carbon (DLC) films, is demonstrated. It appears possible to achieve very high nitriding rates and dramatically increase micro-hardness and wear resistance of the AISI 304 stainless steel. It is also shown that the deposition rates and mechanical properties of the DLC films can be efficiently controlled by selecting the discharge operating regime

  10. Extraction and neutralization of positive and negative ions from a pulsed electronegative inductively coupled plasma

    Marinov, D.; el Otell, Z.; Bowden, M. D.; Braithwaite, N. St. J.

    2015-12-01

    Almost electron-free (ion-ion) plasmas can be transiently formed during the afterglow phase of pulsed plasmas in electronegative gases. In ion-ion plasmas, both positive and negative ions can be extracted which makes them advantageous for a number of applications. In this paper, we investigate the extraction and acceleration of positive and negative ion beams from a pulsed inductively coupled plasma in SF6. The plasma is bounded by two electrodes biased synchronously with the discharge modulation. It is shown that when a DC bias voltage is applied during the afterglow phase, positive/negative ions are accelerated in a positive/negative space charge sheath formed in front of one of the electrodes. The energy of extracted ions closely follows the amplitude of the applied bias voltage (25-150 V) and the peak beam current density reaches 2 A m-2. With a view to using the described system as a source of energetic neutral beams for low damage material processing, simultaneous extraction and surface neutralization of positive and negative ions using an extraction electrode with high aspect ratio apertures is investigated.

  11. Inductively coupled plasma mass spectrometry in the analysis of biological samples and pharmaceutical drugs

    Ossipov, K.; Seregina, I. F.; Bolshov, M. A.

    2016-04-01

    Inductively coupled plasma mass spectrometry (ICP-MS) is widely used in the analysis of biological samples (whole blood, serum, blood plasma, urine, tissues, etc.) and pharmaceutical drugs. The shortcomings of this method related to spectral and non-spectral interferences are manifested in full measure in determination of the target analytes in these complex samples strongly differing in composition. The spectral interferences are caused by similarity of masses of the target component and sample matrix components. Non-spectral interferences are related to the influence of sample matrix components on the physicochemical processes taking place during formation and transportation of liquid sample aerosols into the plasma, on the value and spatial distribution of plasma temperature and on the transmission of the ion beam from the interface to mass spectrometer detector. The review is devoted to analysis of different mechanisms of appearance of non-spectral interferences and to ways for their minimization or elimination. Special attention is paid to the techniques of biological sample preparation, which largely determine the mechanisms of the influence of sample composition on the results of element determination. The ways of lowering non-spectral interferences by instrumental parameter tuning and application of internal standards are considered. The bibliography includes 189 references.

  12. Isotope ratio analysis of lead in biological materials by inductively coupled plasma mass spectrometry

    Inductively coupled plasma mass spectrometry (ICP-MS) allowed 0.2-0.3% imprecision (1 sigma) in 204Pb/206Pb 207Pb/'206Pb, and 208Pb/206Pb measurements at the 20-100 ppb level, which was precise enough to detect some of the isotopic variations observed in nature. Mass discrimination could be corrected within ±0.5% of the true value by periodical analysis of standard reference material of known lead isotopic composition. As a separation method for lead in human bone, which contains enormous amounts of calcium and phosphorus, anion exchange of the Pb-Br complex was found to be effective. Lead isotope ratios in bone, measured by ICP-MS after separation, were consistent with those measured by thermal ionization mass spectrometry. Hair matrix did not have any influence on the accuracy and precision of the analysis; a digested sample could be directly analyzed and this offered rapid sample throughput. Preliminary data on lead isotope ratios in bone and hair from prehistoric and contemporary Japanese are presented. (author)

  13. Hydride interference on the determination of minor actinide isotopes by inductively coupled plasma mass spectrometry

    Hydrogen adducts of the major naturally occurring actinide isotopes 232Th and 238U were studied using an inductively coupled plasma mass spectrometer. The hydride:atomic ion ratios for both elements varied as a function of the parameters that were studied, i.e., nebulizer flow rate, solution uptake rate and desolvation conditions. When the instrument sensitivity for U and Th was optimized, 232ThH+:232Th+ was found to be (3.9±0.2) x 10-5 with pneumatic nebulization and (2.10±0.07) x 10-5 with ultrasonic nebulization. Under the same conditions, 238UH+:238U+ was found to be (3.2±0.2) x 10-5 and (1.8±0.1) x 10-5 using pneumatic and ultrasonic nebulization, respectively. Conditions that reduced hydrogen number density and/or increased plasma temperature decreased the hydride:atomic ion ratio. Such conditions are best if 233U and 239Pu are to be determined in the presence of 232Th and 238U. (Author)

  14. Determination of long-lived radioisotopes using electrothermal vaporization-inductively coupled plasma mass spectrometry

    A general method for the determination of long-lived radioisotopes by integrating electrothermal vaporization and inductively coupled plasma-mass spectrometry (ETV-ICP-MS) to vaporize environmental samples with complex inorganic matrices is described. The method required no sample pre-treatment and minimized sample size. The rationale was to use chemical modifiers such as CHF3 to form metal fluorides with much lower boiling-points than other metal compounds (such as oxides and carbides). Given sufficiently high temperatures and long reaction times, samples in other chemical forms are converted into elemental halides and vaporized. The characterization and application of ETV-ICP-MS for the determination of radioisotopes is described. The detection limits for 99Tc, 238U, 236U, 232Th, 230Th and 226Ra were similar to those obtained with ultrasonic nebulization (USN-ICP-MS). Absolute detection limits ranged from 0.6 fg for 226Ra to 5 fg for 238U. Analytical calibration plots were linear over a range of 2-3 orders of magnitude. Matrix effects caused by Group IA and IIA elements were minimized by changing the nature of the sample and by using temporal-thermal programming without affecting analytical performance. Comparison studies between ETV-ICP-MS and classical radiometric techniques were performed for various environmental samples. (author)

  15. Application of inductively coupled plasma mass spectrometry to the study of environmental radioactivity

    Applications of inductively coupled plasma mass spectrometry (ICP-MS) to the determination of long-lived radionuclides in environmental samples were summarized. In order to predict the long-term behavior of the radionuclides, related stable elements were also determined. Compared with radioactivity measurements, the ICP-MS method has advantages in terms of its simple analytical procedures, prompt measurement time, and capability of determining the isotope ratio such as 240Pu/239Pu, which can not be separated by radiation. Concentration of U and Th in Japanese surface soils were determined in order to determine the background level of the natural radionuclides. The 235U/238U ratio was successfully used to detect the release of enriched U from reconversion facilities to the environment and to understand the source term. The 240Pu/239Pu ratios in environmental samples varied widely depending on the Pu sources. Applications of ICP-MS to the measurement of I and Tc isotopes were also described. The ratio between radiocesium and stable Cs is useful for judging the equilibrium of deposited radiocesium in a forest ecosystem. (author)

  16. Using inductively coupled plasma-mass spectrometry for calibration transfer between environmental CRMs.

    Turk, G C; Yu, L L; Salit, M L; Guthrie, W F

    2001-06-01

    Multielement analyses of environmental reference materials have been performed using existing certified reference materials (CRMs) as calibration standards for inductively coupled plasma-mass spectrometry. The analyses have been performed using a high-performance methodology that results in comparison measurement uncertainties that are significantly less than the uncertainties of the certified values of the calibration CRM. Consequently, the determined values have uncertainties that are very nearly equivalent to the uncertainties of the calibration CRM. Several uses of this calibration transfer are proposed, including, re-certification measurements of replacement CRMs, establishing traceability of one CRM to another, and demonstrating the equivalence of two CRMs. RM 8704, a river sediment, was analyzed using SRM 2704, Buffalo River Sediment, as the calibration standard. SRM 1632c, Trace Elements in Bituminous Coal, which is a replacement for SRM 1632b, was analyzed using SRM 1632b as the standard. SRM 1635, Trace Elements in Subbituminous Coal, was also analyzed using SRM 1632b as the standard. PMID:11451248

  17. Speciation of heavy metals in electroplating industry sludge and wastewater residue using inductively coupled plasma

    The speciation of metals in environmental samples is a critical factor in assessing the potential environmental impacts, before their disposal. The distribution and speciation of toxic heavy metals in plating wastewater residues and sludge was investigated for four samples using sequential extraction method. Tessier method was used to fractionate the metal content into exchangeable, acid extractable, reducible and oxidizable fractions. Residual and total metal contents were determined in aqua regia digest. The extracts were analysed for metals using inductively coupled plasma -atomic emission spectrometry. The bioavailable fraction (exchangeable and acid extractable fractions) is comprised less than the other forms. The oxidisable and reducible forms are dominants for all the four samples studied. The major metal constitute in the samples is iron, the wastewater residue contains (12.3 and 7.4 g/Kg respectively on dry basis) and the sludge contains (31.5 and 41.6 g /Kg) respectively. Cr concentration is higher in wastewater residue of second electroplating industry. The descending order of the average total metal contents for these four samples were Fe > Cr > Sn > Zn >Cu > Ni > Mn > Pb > Cd > Ag. Based on the average of absolute values for the four samples the highest bioavailability order of metals is Cr (39 %) in wastewater residues and Zn (32 %) in sludge samples. Metal recovery was good, with < 10 % difference between the total metal recovered through the extractant steps and the total metal determined using aqua regia extract

  18. Determination of eight trace elements in doped crystal ALN by inductively coupled plasma atomic emission spectrometry

    Complete text of publication follows. In this paper, an accurate and simple method has been developed for the determination of trace Cr, Co, Cu, Fe, Mg, Mn ,Ni and Zn in doped AlN crystal using inductively coupled plasma atomic emission spectrometry (ICP-AES). AlN crystal becomes ideal substrate for the epitaxial growth of GaN, AlGaN with high Al ingredient and AlN which are used to fabricate ultraviolet LEDs, blue- ultraviolet solid state LDs, lasers, ultraviolet detectors. At present, It is a very important aspect for scientific workers to promote in the transition metals elements doped AlN showing ferromagne. Owing its low detection limits and multi-element capability, ICP-AES has been used in many fields.The optimum instrument working conditions are selected .AlN crystal was fused with KOH and the fusion product was dissolved in dilute aqua regia. Matrix effect from KOH and interference to the spectral lines of the elements to be determined were investigated and corrected by matrix matching and background correction method. Detection limits of elements were 0.01% to 0.0002% The recoveries for elements were 98% to 104%. The relative standard deviation was 0.5% to 4.0%.

  19. Speciation of metals in soil extracts by size exclusion chromatography/inductively coupled plasma mass spectrometry

    Metal ion speciation influences the mobility of metals in the environment and their bioavailability. Dissolved humic substances (HS) and low molecular weight organic acids greatly influence the speciation of metals in soil and other natural environment. This study was conducted to identify HS bound metal in citric acid extracts from soil by size exclusion chromatography/inductively coupled plasma mass spectrometry (SEC/ICP-MS). The size exclusion column, which has optimal separation range from 3000-7000, was used. Absorption was monitored at 280 nm using an UV/VIS absorption detector. The eluate from the detector was directly introduced to the ICP-MS through a nebulizer. The size exclusion chromatography could separate HS and citric acid used for extraction. This was confirmed by the results obtained using a multi-channel diode array detector. HS was evidenced by broad absorption from UV to VIS range while organic acid was by narrow UV absorption. Analysis showed that most of iron was bound to HS, while part of aluminium was bound HS. Other metals were not bound to HS and some transitional metals except manganese made complex with citric acid. Most of silicon was not bound to HS and probably existed in the form of silicic acid. (author)

  20. On-line elemental analysis of fossil fuel process streams by inductively coupled plasma spectrometry

    Chisholm, W.P.

    1995-06-01

    METC is continuing development of a real-time, multi-element plasma based spectrometer system for application to high temperature and high pressure fossil fuel process streams. Two versions are under consideration for development. One is an Inductively Coupled Plasma system that has been described previously, and the other is a high power microwave system. The ICP torch operates on a mixture of argon and helium with a conventional annular swirl flow plasma gas, no auxiliary gas, and a conventional sample stream injection through the base of the plasma plume. A new, demountable torch design comprising three ceramic sections allows bolts passing the length of the torch to compress a double O-ring seal. This improves the reliability of the torch. The microwave system will use the same data acquisition and reduction components as the ICP system; only the plasma source itself is different. It will operate with a 750-Watt, 2.45 gigahertz microwave generator. The plasma discharge will be contained within a narrow quartz tube one quarter wavelength from a shorted waveguide termination. The plasma source will be observed via fiber optics and a battery of computer controlled monochromators. To extract more information from the raw spectral data, a neural net computer program is being developed. This program will calculate analyte concentrations from data that includes analyte and interferant spectral emission intensity. Matrix effects and spectral overlaps can be treated more effectively by this method than by conventional spectral analysis.

  1. Instrumental neutron activation analysis and inductively coupled plasma mass spectrometry on atmospheric biomonitors

    In a biomonitoring study aiming to find alternatives to lower epiphytes as air-quality monitors, lichens and tree bark were exposed at different sites for discontinuous periods of 2 months and continuously. Native lichens were collected as well. The contents for 22 elements were obtained by both instrumental neutron activation analysis (INAA) and inductively coupled plasma mass spectrometry (ICP-MS). Quality control as asserted by analyzing ISE-921, NIST-1547 and TL-1 was good. Losses of As and Se by volatilization during sample digestion and neutron irradiation were evident; Ca contents by ICP-MS appeared underestimated probably due to the formation of the insoluble fluoride. ICP-MS featured a better precision than INAA. Nonparametric statistics were applied to the ICP-MS replicates, to those determined by INAA, and to compare the results of both techniques. High or even excellent correlations were found between replicates in INAA, whereas, in ICP-MS, Cr and Ta were just fairly or not correlated. As an overall comparison of the techniques, biased results were found for As, Ba, Ce, Cr, Cs, Hf, La, Sc, Se, Ta, and Zn; unbiased results could be found for Ca, Co, Fe, K, Na, Rb, Sb, Sm, Tb, Th, and U. (author)

  2. Etch Process Sensitivity To An Inductively Coupled Plasma Etcher Treated With Fluorine-Based Plasma

    Xu, Songlin; Sun, Zhiwen; Qian, Xueyu; Yin, Gerald

    1997-10-01

    Significant etch rate drop after the treatment of an etch chamber with Fluorine-based plasma has been found for some silicon etch processes on an inductively coupled plasma reactor, which might cause problems in IC production line once the etch chamber runs alternative processes with F-based and F-free chemistry, or needs frequent cleaning with F-plasma. In this work, a systematic study of the root cause of process sensitivity to the etch chamber treated with F-plasma has been conducted. The experimental results show that pressure is a key factor to affect the etch rate drop. Processes at high pressure are more sensitive than those at low pressure because the quenching of neutral reactive species becomes more severe after the F-treatment. O2 addition also increases the etch rate sensitivity, basically due to higher O2(subscript: )concentration after F-treatment which enhances the oxidation of silicon. The EDX and XPS elemental analysis of the chamber interior wall reveals a significant composition change after the interaction with F-plasma, the altered surface might accelerate the recombination of free radical species.

  3. [Analysis of Trace Inorganic Elements in Castor Oil by Inductively Coupled Plasma Mass Spectrometry].

    Li, Tan-ping; Xie, Hua-lin; Nie, Xi-du

    2015-10-01

    A method for the determination of Na, Mg, Si, P, K, Ca, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Sr, Mo, Cd, Hg and Pb in castor oil after direct dilution with ethanol by inductively coupled plasma mass spectrometry (ICP-MS) was established. The sample was diluted by ethanol before ICP-MS determination. The condensation and deposition of high concentrations of carbon in mass cone interface and ion lens, which will decrease the sensitivity of element analysis, were avoided effectively by introducing O2 to plasma. The mass spectral interferences were eliminated by octopole reaction system (ORS). The matrix effects were calibrated to using Sc, Ge, Rh and Ir as internal standard elements. Au standard solution, which could form amalgam alloy with Hg, was dropped to eliminate the memory effect of Hg. The results show that the correlation coefficient for analyte is no less than 0.999 5, the detection limits is in the range of 0.06 - 20.1 ng x L(-1), the recovery is in the range of 990.4% - 110.2%, and the RSD is less than 4.8%. This method was very fast, simple and accurate to simultaneously analyze multi-elements in castor oil. PMID:26904837

  4. Determination of manganese in thermoluminescent materials by inductively coupled plasma atomic emission spectrometry and spectrophotometry

    The content of manganese in the mixed fluorides CaF2: MnF2 and CaF2: Mn thermoluminophors was determined by inductively coupled plasma atomic emission spectrometry (ICP-AES) and spectrophotometry. The various Mn emission lines were compared and the manganese emission line at 257.610 nm was used for ICP-AES analysis. For the spectrophotometric determination the manganese(II) ions were oxidized to intensively coloured permanganate ions using potassium periodate. No statistically significant differences were found between the results of ICP-AES and spectrophotometric methods of analysis. The thermoluminophors were synthesized by coprecipitation of manganese with CaF2, varying the concentration of manganese in the initial solutions in the range of 0.01 - 2.0 % (m/m). The coprecipitated mixed fluorides CaF2: MnF2 were heated at 1423 K. The glow curves of synthesized CaF2: Mn thermoluminophors were measured. (author)

  5. Biofuel cell based on microscale nanostructured electrodes with inductive coupling to rat brain neurons.

    Andoralov, Viktor; Falk, Magnus; Suyatin, Dmitry B; Granmo, Marcus; Sotres, Javier; Ludwig, Roland; Popov, Vladimir O; Schouenborg, Jens; Blum, Zoltan; Shleev, Sergey

    2013-01-01

    Miniature, self-contained biodevices powered by biofuel cells may enable a new generation of implantable, wireless, minimally invasive neural interfaces for neurophysiological in vivo studies and for clinical applications. Here we report on the fabrication of a direct electron transfer based glucose/oxygen enzymatic fuel cell (EFC) from genuinely three-dimensional (3D) nanostructured microscale gold electrodes, modified with suitable biocatalysts. We show that the process underlying the simple fabrication method of 3D nanostructured electrodes is based on an electrochemically driven transformation of physically deposited gold nanoparticles. We experimentally demonstrate that mediator-, cofactor-, and membrane-less EFCs do operate in cerebrospinal fluid and in the brain of a rat, producing amounts of electrical power sufficient to drive a self-contained biodevice, viz. 7 μW cm(-2) in vitro and 2 μW cm(-2) in vivo at an operating voltage of 0.4 V. Last but not least, we also demonstrate an inductive coupling between 3D nanobioelectrodes and living neurons. PMID:24253492

  6. Control of plasma density distribution via wireless power transfer in an inductively coupled plasma

    With an enlargement of the wafer size, development of large-area plasma sources and control of plasma density distribution are required. To control the spatial distribution of the plasma density, wireless power transfer is applied to an inductively coupled plasma for the first time. An inner powered antenna and an outer resonant coil connected to a variable capacitor are placed on the top of the chamber. As the self-resonance frequency ωr of the resonant coil is adjusted, the power transfer rate from the inner powered coil to the outer resonant coil is changed and the dramatic evolution of the plasma density profile is measured. As ωr of the outer resonant coil changes from the non-resonant condition (where ωr is not the driving angular frequency ωrf) to the resonant condition (where ωr = ωrf), the plasma density profile evolves from a convex shape with maximal plasma density at the radial center into a concave shape with maximal plasma density in the vicinity of the resonant antenna coil. This result shows that the plasma density distribution can be successfully controlled via wireless resonance power transfer. (fast track communication)

  7. Accurate determination of silver nanoparticles in animal tissues by inductively coupled plasma mass spectrometry

    This study examined recoveries of silver determination in animal tissues after wet digestion by inductively coupled plasma mass spectrometry. The composition of the mineralization mixture for microwave assisted digestion was optimized and the best recoveries were obtained for mineralization with HNO3 and addition of HCl promptly after digestion. The optimization was performed on model samples of chicken meat spiked with silver nanoparticles and a solution of ionic silver. Basic calculations of theoretical distribution of Ag among various silver-containing species were implemented and the results showed that most of the silver is in the form of soluble complexes AgCl2− and AgCl32− for the optimized composition of the mineralization mixture. Three animal tissue certified reference materials were then analyzed to verify the trueness and precision of the results. - Highlights: • We performed detailed optimization of microwave assisted digestion procedure of animal tissue used prior to Ag determination by ICP-MS. • We provide basic equilibrium calculations to give theoretical explanation of results from optimization of tested mineralization mixtures. • Results from method validation that was done by analysis of several matrix CRMs are presented

  8. Electromagnetic wave attenuation measurements in a ring-shaped inductively coupled air plasma

    An aerocraft with the surface, inlet and radome covered large-area inductive coupled plasma (ICP) can attenuate its radar echo effectively. The shape, thickness, and electron density (Ne) distribution of ICP are critical to electromagnetic wave attenuation. In the paper, an air all-quartz ICP generator in size of 20 × 20 × 7 cm3 without magnetic confinement is designed. The discharge results show that the ICP is amorphous in E-mode and ring-shaped in H-mode. The structure of ICP stratifies into core region and edge halo in H-mode, and its width and thickness changes from power and pressure. Such phenomena are explained by the distribution of RF magnetic field, the diffusion of negative ions plasma and the variation of skin depth. In addition, the theoretical analysis shows that the Ne achieves nearly uniform within the electronegative core and sharply steepens in the edge. The Ne of core region is diagnosed by microwave interferometer under varied conditions (pressure in range of 10–50 Pa, power in 300–700 W). Furthermore, the electromagnetic wave attenuation measurements were carried out with the air ICP in the frequencies of 4–5 GHz. The results show that the interspaced ICP is still effective to wave attenuation, and the wave attenuation increases with the power and pressure. The measured attenuation is approximately in accordance with the calculation data of finite-different time-domain simulations

  9. Plutonium determination in seawater by inductively coupled plasma mass spectrometry: A review.

    Cao, Liguo; Bu, Wenting; Zheng, Jian; Pan, Shaoming; Wang, Zhongtang; Uchida, Shigeo

    2016-05-01

    Knowing the concentration and isotopic ratio of Pu in seawater is of critical importance for assessing Pu contamination and investigating oceanic processes. In recent decades, the concentration of (239+240)Pu in seawater, particularly for surface seawater, has presented an exponential decreasing trend with time; thus determination of Pu in seawater has become a challenge nowadays. Here, we have summarized and critically discussed a variety of reported analytical methods for Pu determination in seawater sample based on inductively coupled plasma mass spectrometry (ICP-MS) analytical technique for rapid ultra-trace detection of Pu. Generally, pretreatments for seawater sample include co-precipitation, valence adjustment and chemical separation and purification procedures, all of which are comprehensively reviewed. Overall, the selected anion-exchange, extraction resins and operation condition are important for decontamination of interference from matrix elements and achieving satisfactory chemical yields. In addition, other mass spectrometric and radiometric detections are briefly addressed and compared with the focus on assessing ICP-MS. Finally, we discuss some issues and prospects in determination and application of Pu isotopes in seawater samples for future research. PMID:26946007

  10. Analytic Couple Modeling Introducing Device Design Factor, Fin Factor, Thermal Diffusivity Factor, and Inductance Factor

    Mackey, Jon; Sehirlioglu, Alp; Dynys, Fred

    2014-01-01

    A set of convenient thermoelectric device solutions have been derived in order to capture a number of factors which are previously only resolved with numerical techniques. The concise conversion efficiency equations derived from governing equations provide intuitive and straight-forward design guidelines. These guidelines allow for better device design without requiring detailed numerical modeling. The analytical modeling accounts for factors such as i) variable temperature boundary conditions, ii) lateral heat transfer, iii) temperature variable material properties, and iv) transient operation. New dimensionless parameters, similar to the figure of merit, are introduced including the device design factor, fin factor, thermal diffusivity factor, and inductance factor. These new device factors allow for the straight-forward description of phenomenon generally only captured with numerical work otherwise. As an example a device design factor of 0.38, which accounts for thermal resistance of the hot and cold shoes, can be used to calculate a conversion efficiency of 2.28 while the ideal conversion efficiency based on figure of merit alone would be 6.15. Likewise an ideal couple with efficiency of 6.15 will be reduced to 5.33 when lateral heat is accounted for with a fin factor of 1.0.

  11. External control of electron energy distributions in a dual tandem inductively coupled plasma

    The control of electron energy probability functions (EEPFs) in low pressure partially ionized plasmas is typically accomplished through the format of the applied power. For example, through the use of pulse power, the EEPF can be modulated to produce shapes not possible under continuous wave excitation. This technique uses internal control. In this paper, we discuss a method for external control of EEPFs by transport of electrons between separately powered inductively coupled plasmas (ICPs). The reactor incorporates dual ICP sources (main and auxiliary) in a tandem geometry whose plasma volumes are separated by a grid. The auxiliary ICP is continuously powered while the main ICP is pulsed. Langmuir probe measurements of the EEPFs during the afterglow of the main ICP suggests that transport of hot electrons from the auxiliary plasma provided what is effectively an external source of energetic electrons. The tail of the EEPF and bulk electron temperature were then elevated in the afterglow of the main ICP by this external source of power. Results from a computer simulation for the evolution of the EEPFs concur with measured trends

  12. Time evolution of electronegativity in a pulsed inductively coupled oxygen plasma

    The electronegativity in a continuous wave (CW) and pulsed mode plasmas was calculated using the measured results of both the single Langmuir probe and the retarding field analyzer. For the pulsed mode measurement, both of the measurements were performed in a time-resolved method using a boxcar sampling technique. For the conversion of the retarding field analyzer measurement results into absolute positive ion densities, argon plasma was used as a reference. The pulsed oxygen plasma was generated using the inductively coupled antenna and modulated at a repetition rate of 5 kHz and the duty ratio of 50%. The gas pressure was changed from 5 to 30 mTorr. The time evolution of the electronegativity shows that there is a pressure regime where the electron attachment reaction during the RF on-time is very active, indicating that the negative ion density reaches its maximum value during the RF on-time. Compared to the CW oxygen plasma, the electronegativity of the pulsed oxygen plasma varies within a wider range of values.

  13. [Direct Determination of Heavy Metal Elements in Propolis by Inductively Coupled Plasma Mass Spectrometry].

    Zhang, Ping; Fu, Liang; Xie, Hua-lin

    2015-10-01

    In current study, a method was established for simultaneous quantitative analysis of Cr, Ni, As, Cd, Sb, Sn, Hg and Pb in propolis by using inductively coupled plasma mass spectrometry. Before analyzed by ICP-MS, the propolis was diluted with n-propanol/xylene (70 : 30, φ). Organic sample can remain stable by diluting with n-propanol/xylene, result from long-time sample dispersion in the solution. Carbon accumulation on the sampling cone, which comes from the high carbon content of butter, will clog the orifice and decrease analysis sensitivity. Thus a small amount of oxygen was added into the argon gas line to eliminate carbon. ORS was used to eliminate the polyatomic interferences caused by the high salty matrixes. The effects of the He collision gas flow rate on estimating detection limits of Cr, Ni and As were investigated. The matrix effects and the instrument drift have been calibrated with Rh as internal standard element. The results show that the detection limits is in the range of 20.8-102.7 ng x L(-1), the recovery is in the range of 92.0%-109.0%, and the RSD is less than 3.5%. This method was simple, sensitive and precise to simultaneously analyze 8 heavy metal elements in propolis. PMID:26904836

  14. Electron heating during E-H transition in inductively coupled RF plasmas

    Wegner, Th; Küllig, C.; Meichsner, J.

    2015-08-01

    A planar inductively coupled RF discharge (13.56 MHz) in argon and oxygen was exemplarily studied using space and phase resolved optical emission spectroscopy. The characteristic excitation rate pattern due to the electron heating during the sheath expansion was found for both gases in the E-mode. Furthermore, an intensive pattern in oxygen appears during the sheath collapse. This is associated with the electron heating caused by electric field reversal due to the strong electronegativity. The transition from the E- to the H-mode may be stepwise or continuous, depending on the gas type and total gas pressure. In the H-mode, significant differences in the excitation rate patterns exist. A broad and weakly modulated pattern is found over the RF cycle in argon, whereas in oxygen two separated patterns appear representing the electron heating for each half cycle. The reason may be the different excitation processes of the investigated resonant states and the influence of metastable argon atoms as well as attachment/detachment processes and dissociative recombination in oxygen. The E-H transition in oxygen at 5 Pa develops continuously and was studied in detail through the excitation rate. During the transition, the E- and H-mode are present and a hybrid mode was observed.

  15. Wireless thin film transistor based on micro magnetic induction coupling antenna

    Jun, Byoung Ok; Lee, Gwang Jun; Kang, Jong Gu; Kim, Seunguk; Choi, Ji-Woong; Cha, Seung Nam; Sohn, Jung Inn; Jang, Jae Eun

    2015-12-01

    A wireless thin film transistor (TFT) structure in which a source/drain or a gate is connected directly to a micro antenna to receive or transmit signals or power can be an important building block, acting as an electrical switch, a rectifier or an amplifier, for various electronics as well as microelectronics, since it allows simple connection with other devices, unlike conventional wire connections. An amorphous indium gallium zinc oxide (α-IGZO) TFT with magnetic antenna structure was fabricated and studied for this purpose. To enhance the induction coupling efficiency while maintaining the same small antenna size, a magnetic core structure consisting of Ni and nanowires was formed under the antenna. With the micro-antenna connected to a source/drain or a gate of the TFT, working electrical signals were well controlled. The results demonstrated the device as an alternative solution to existing wire connections which cause a number of problems in various fields such as flexible/wearable devices, body implanted devices, micro/nano robots, and sensors for the ‘internet of things’ (IoT).

  16. Effect of low-damage inductively coupled plasma on shallow nitrogen-vacancy centers in diamond

    Near-surface nitrogen-vacancy (NV) centers in diamond have been successfully employed as atomic-sized magnetic field sensors for external spins over the last years. A key challenge is still to develop a method to bring NV centers at nanometer proximity to the diamond surface while preserving their optical and spin properties. To that aim we present a method of controlled diamond etching with nanometric precision using an oxygen inductively coupled plasma process. Importantly, no traces of plasma-induced damages to the etched surface could be detected by X-ray photoelectron spectroscopy and confocal photoluminescence microscopy techniques. In addition, by profiling the depth of NV centers created by 5.0 keV of nitrogen implantation energy, no plasma-induced quenching in their fluorescence could be observed. Moreover, the developed etching process allowed even the channeling tail in their depth distribution to be resolved. Furthermore, treating a 12C isotopically purified diamond revealed a threefold increase in T2 times for NV centers with <4 nm of depth (measured by nuclear magnetic resonance signal from protons at the diamond surface) in comparison to the initial oxygen-terminated surface

  17. Determination of myo-inositol hexakisphosphate (phytate) in urine by inductively coupled plasma atomic emission spectrometry

    Grases, F.; Perello, J.; Isern, B.; Prieto, R.M

    2004-05-10

    Myo-inositol hexakisphosphate (phytate) is a substance present in urine with an important role in preventing calcium renal calculi development. In spite of this, the use of urinary phytate levels on stone-formers' evaluation and treatment is still notably restricted as a consequence of the enormous difficulty to analyze this substance in urine. In this paper, a simple procedure for routinary urinary phytate determination based on phosphorus determination through inductively coupled plasma atomic emission spectrometry is described. The method only requires a previous separation of phytate from other components by column anion exchange chromatography. The working linear range used was 0-2 mg l{sup -1} phosphorus (0-7 mg l{sup -1} phytate). The limit of detection was 64 {mu}g l{sup -1} of phytate and the limit of quantification was 213 {mu}g l{sup -1}. The relative standard deviation (R.S.D.) for 1.35 mg l{sup -1} phytate was 2.4%. Different urine samples were analyzed using an alternative analytical methodology based on gas chromatography (GC)/mass detection used for inositol determination (phytate was previously hydrolyzed), resulting both methods comparable using as criterion to assess statistical significance P<0.05.

  18. ''SensArray'' voltage sensor analysis in an inductively coupled plasma

    A commercially manufactured PlasmaVolt sensor wafer was studied in an inductively coupled plasma reactor in an effort to validate sensor measurements. A pure Ar plasma at various powers (25-420 W), for a range of pressures (10-80 mT), and bias voltages (0-250 V) was utilized. A numerical sheath simulation was simultaneously developed in order to interpret experimental results. It was found that PlasmaVolt sensor measurements are proportional to the rf-current through the sheath. Under conditions such that the sheath impedance is dominantly capacitive, sensor measurements follow a scaling law derived from the inhomogeneous sheath model of Lieberman and Lichtenberg, [Principles of Plasma Discharges and Materials Processing (Wiley, New York, 2005)]. Under these conditions, sensor measurements are proportional to the square root of the plasma density at the plasma-sheath interface, the one-fourth root of the electron temperature, and the one-fourth root of the rf bias voltage. When the sheath impedance becomes increasingly resistive, the sensor measurements deviate from the scaling law and tend to be directly proportional to the plasma density. The measurements and numerical sheath simulation demonstrate the scaling behavior as a function of changing sheath impedance for various plasma conditions.

  19. Plasma Characteristics Using Superimposed Dual Frequency Inductively Coupled Plasma Source for Next Generation Device Processing.

    Lee, Seung Min; Lee, Chul Hee; Kim, Tae Hyung; Yeom, Geun Young; Kim, Kyong Nam

    2015-11-01

    U-shaped inductively coupled plasma (ICP) source was investigated as a linear plasma source for the next generation roll-to-toll flexible display processing. For the radio frequency power to the source, the dual frequency composed of 13.56 MHz and 2 MHz was used and the effect of dual frequency to the U-shaped ICP source on the plasma density, electron temperature, and plasma uniformity was investigated. As the operating condition, 200 mTorr Ar was used without operating turbo pumps. The use of superimposed dual frequency composed of 13.56 MHz + 2 MHz instead the single frequency of 13.56 MHz increased the plasma density slightly at the same total power. In addition, the addition of 2 MHz rf power to 0.4 kW while maintaining 1 kW 13.56 MHz rf power not only decreased electron temperature but also improved both the plasma uniformity and the process uniformity measured by photoresist etching. Therefore, by using the dual frequency to the U-shaped ICP source, not only the plasma density but also plasma uniformity could be improved in addition to the decrease of possible damage to the substrate. PMID:26726573

  20. Determination of zinc stable isotopes in biological materials using isotope dilution inductively coupled plasma mass spectrometry

    A method is described for using isotope dilution to determine both the amount of natural zinc and enriched isotopes of zinc in biological samples. Isotope dilution inductively coupled plasma mass spectrometry offers a way to quantify not only the natural zinc found in a sample but also the enriched isotope tracers of zinc. Accurate values for the enriched isotopes and natural zinc are obtained by adjusting the mass count rate data for measurable instrumental biases. Analytical interferences from the matrix are avoided by extracting the zinc from the sample matrix using diethylammonium diethyldithiocarbamate. The extraction technique separates the zinc from elements which form interfering molecular ions at the same nominal masses as the zinc isotopes. Accuracy of the method is verified using standard reference materials. The detection limit is 0.06 μg Zn per sample. Precision of the abundance ratios range from 0.3-0.8%. R.S.D. for natural zinc concentrations is about 200-600 μg g-1. The accuracy and precision of the measurements make it possible to follow enriched isotopic tracers of zinc in biological samples in metabolic tracer studies. (author). 19 refs.; 1 fig., 4 tabs