WorldWideScience

Sample records for abiotic stress-responsive gene

  1. Genes Acting on Transcriptional Control during Abiotic Stress Responses

    Glacy Jaqueline da Silva

    2014-01-01

    Full Text Available Abiotic stresses are the major cause of yield loss in crops around the world. Greater genetic gains are possible by combining the classical genetic improvement with advanced molecular biology techniques. The understanding of mechanisms triggered by plants to meet conditions of stress is of fundamental importance for the elucidation of these processes. Current genetically modified crops help to mitigate the effects of these stresses, increasing genetic gains in order to supply the agricultural market and the demand for better quality food throughout the world. To obtain safe genetic modified organisms for planting and consumption, a thorough grasp of the routes and genes that act in response to these stresses is necessary. This work was developed in order to collect important information about essential TF gene families for transcriptional control under abiotic stress responses.

  2. APUM5, encoding a Pumilio RNA binding protein, negatively regulates abiotic stress responsive gene expression

    Huh, Sung Un; Paek, Kyung-Hee

    2014-01-01

    Background A mutant screening was carried out previously to look for new genes related to the Cucumber mosaic virus infection response in Arabidopsis. A Pumilio RNA binding protein-coding gene, Arabidopsis Pumilio RNA binding protein 5 (APUM5), was obtained from this screening. Results APUM5 transcriptional profiling was carried out using a bioinformatics tool. We found that APUM5 was associated with both biotic and abiotic stress responses. However, bacterial and fungal pathogen infection su...

  3. Plant Core Environmental Stress Response Genes Are Systemically Coordinated during Abiotic Stresses

    Kenneth W. Berendzen

    2013-04-01

    Full Text Available Studying plant stress responses is an important issue in a world threatened by global warming. Unfortunately, comparative analyses are hampered by varying experimental setups. In contrast, the AtGenExpress abiotic stress experiment displays intercomparability. Importantly, six of the nine stresses (wounding, genotoxic, oxidative, UV-B light, osmotic and salt can be examined for their capacity to generate systemic signals between the shoot and root, which might be essential to regain homeostasis in Arabidopsis thaliana. We classified the systemic responses into two groups: genes that are regulated in the non-treated tissue only are defined as type I responsive and, accordingly, genes that react in both tissues are termed type II responsive. Analysis of type I and II systemic responses suggest distinct functionalities, but also significant overlap between different stresses. Comparison with salicylic acid (SA and methyl-jasmonate (MeJA responsive genes implies that MeJA is involved in the systemic stress response. Certain genes are predominantly responding in only one of the categories, e.g., WRKY genes respond mainly non-systemically. Instead, genes of the plant core environmental stress response (PCESR, e.g., ZAT10, ZAT12, ERD9 or MES9, are part of different response types. Moreover, several PCESR genes switch between the categories in a stress-specific manner.

  4. The AKR gene family and modifying sex ratios in palms through abiotic stress responsiveness.

    Somyong, Suthasinee; Poopear, Supannee; Jomchai, Nukoon; Uthaipaisanwong, Pichahpuk; Ruang-Areerate, Panthita; Sangsrakru, Duangjai; Sonthirod, Chutima; Ukoskit, Kittipat; Tragoonrung, Somvong; Tangphatsornruang, Sithichoke

    2015-05-01

    Sex ratio (SR), the ratio of female inflorescences to total inflorescences, is one of the main yield components of oil palm (Elaeis guineensis Jacq). The SR quantitative trait locus (QTL) was recently identified on linkage (LG) 8 with a phenotype variance explained (PVE) of 11.3 %. The use of both genetic and physical mapping is one strategy for uncovering the genetic basis of the traits. Here, we report the construction of bacterial artificial chromosome (BAC) and fosmid libraries, and their use for physical mapping in oil palm. Combined, the libraries consist of more than 200,000 clones, representing 6.35 genome equivalents. Physical mapping at the SR locus was implemented by incorporating the published oil palm genome sequence and positive BAC/fosmid clones as identified by colony PCR screening. Based on the previously published sequences, the interval (about 184 kb) was comprised of 19 contigs of the known sequences (~117 kb, 64 %). After, combining the 454 pyrosequences of 15 positive clones and the previously published sequences, the known sequences were revealed to cover about 82 % of the interval (~150 kb), and were used for identifying the new markers by designing 35 gene-based and 23 simple sequence repeat (SSR)-amplified primers. As a result, a putative aldo-keto reductase gene (named EgAKR1) was revealed to be a promising candidate for sex ratio determination, via controlling female inflorescence number (11 % of PVE). This was predicted from the two newly identified polymorphic marker loci (mEgSSRsr8-21LB and mEgAKR1-9) designing from EgAKR1. The functions of AKR gene families in other plant species and our promoter analysis suggested that EgAKR1 may contribute to the sex ratio through abiotic stress responsiveness. PMID:25504196

  5. Rice Mitogen-activated Protein Kinase Gene Family and Its Role in Biotic and Abiotic Stress Response

    Jai S. Rohila; Yinong Yang

    2007-01-01

    The mitogen-activated protein kinase (MARK) cascade is an important signaling module that transduces extracellular stimuli into intracellular responses in eukaryotic organisms. An increasing body of evidence has shown that the MAPK-mediated cellular signaling is crucial to plant growth and development, as well as biotic and abiotic stress responses. To date, a total of 17 MARK genes have been identified from the rice genome. Expression profiling, biochemical characterization and/or functional analysis were carried out with many members of the rice MARK gene family, especially those associated with biotic and abiotic stress responses. In this review, the phylogenetic relationship and classification of rice MARK genes are discussed to facilitate a simple nomenclature and standard annotation of the rice MARK gene family. Functional data relating to biotic and abiotic stress responses are reviewed for each MARK group and show that despite overlapping in functionality, there is a certain level of functional specificity among different rice MAP kinases. The future challenges are to functionally characterize each MARK, to identify their downstream substrates and upstream kinases, and to genetically manipulate the MARK signaling pathway in rice crops for the improvement of agronomically important traits.

  6. Identification of Synchronized Role of Transcription Factors, Genes, and Enzymes in Arabidopsis thaliana under Four Abiotic Stress Responsive Pathways

    Samsad Razzaque

    2014-01-01

    Full Text Available Microarray datasets are widely used resources to predict and characterize functional entities of the whole genomics. The study initiated here aims to identify overexpressed stress responsive genes using microarray datasets applying in silico approaches. The target also extended to build a protein-protein interaction model of regulatory genes with their upstream and downstream connection in Arabidopsis thaliana. Four microarray datasets generated treating abiotic stresses like salinity, cold, drought, and abscisic acid (ABA were chosen. Retrieved datasets were firstly filtered based on their expression comparing to control. Filtered datasets were then used to create an expression hub. Extensive literature mining helped to identify the regulatory molecules from the expression hub. The study brought out 42 genes/TF/enzymes as the role player during abiotic stress response. Further bioinformatics study and also literature mining revealed that thirty genes from those forty-two were highly correlated in all four datasets and only eight from those thirty genes were determined as highly responsive to the above abiotic stresses. Later their protein-protein interaction (PPI, conserved sequences, protein domains, and GO biasness were studied. Some web based tools and software like String database, Gene Ontology, InterProScan, NCBI BLASTn suite, etc. helped to extend the study arena.

  7. X1-homologous genes family as central components in biotic and abiotic stresses response in maize (Zea mays L.).

    Zhang, Zhongbao; Chen, Yajuan; Zhao, Dan; Li, Ruifen; Wang, Hongzhi; Zhang, Jiewei; Wei, Jianhua

    2014-03-01

    X1-homologous genes (XHS) encode plant specific proteins containing three basic domains (XH, XS, zf-XS). In spite of their physiological importance, systematic analyses of ZmXHS genes have not yet been explored. In this study, we isolated and characterized ten ZmXHS genes in a whole-of-genome analysis of the maize genome. A total of ten members of this family were identified in maize genome. The ten ZmXHS genes were distributed on seven maize chromosomes. Multiple alignment and motif display results revealed that most ZmXHS proteins share all the three conserved domains. Putative cis-elements involved in abiotic stress responsive, phytohormone, pollen-specific and quantitative, seed development and germination, light and circadian rhythms regulation, Ca(2+)-responsive, root hair cell-specific, and CO(2)-responsive transcriptional activation were observed in the promoters of ZmXHS genes. Yeast hybrid assay revealed that the XH domain of ZmXHS5 was necessary for interaction with itself and ZmXHS2. Microarray data showed that the ZmXHS genes had tissue-specific expression patterns in the maize developmental steps and biotic stresses response. Quantitative real-time PCR analysis results indicated that, except ZmXHS9, the other nine ZmXHS genes were induced in the seedling leaves by at least one of the four abiotic stresses applied. PMID:24676795

  8. Abiotic stressors and stress responses

    Sulmon, Cecile; Van Baaren, Joan; Cabello-Hurtado, Francisco;

    2015-01-01

    Abstract Organisms are regularly subjected to abiotic stressors related to increasing anthropogenic activities, including chemicals and climatic changes that induce major stresses. Based on various key taxa involved in ecosystem functioning (photosynthetic microorganisms, plants, invertebrates), we...... review how organisms respond and adapt to chemical- and temperature-induced stresses from molecular to population level. Using field-realistic studies, our integrative analysis aims to compare i) how molecular and physiological mechanisms related to protection, repair and energy allocation can impact...... complexity. We provide new insights into the understanding of the impact of molecular and cellular responses on individual and population dynamics and assess the potential related effects on communities and ecosystem functioning....

  9. Arabidopsis Non-Coding RNA Regulation in Abiotic Stress Responses

    Akihiro Matsui

    2013-11-01

    Full Text Available Plant growth and productivity are largely affected by environmental stresses. Therefore, plants have evolved unique adaptation mechanisms to abiotic stresses through fine-tuned adjustment of gene expression and metabolism. Recent advanced technologies, such as genome-wide transcriptome analysis, have revealed that a vast amount of non-coding RNAs (ncRNAs apart from the well-known housekeeping ncRNAs such as rRNAs, tRNAs, small nuclear RNAs (snRNAs and small nucleolar RNAs (snoRNAs are expressed under abiotic stress conditions. These various types of ncRNAs are involved in chromatin regulation, modulation of RNA stability and translational repression during abiotic stress response. In this review, we summarize recent progress that has been made on ncRNA research in plant abiotic stress response.

  10. Involvement of Histone Modifications in Plant Abiotic Stress Responses

    Lianyu Yuan; Xuncheng Liu; Ming Luo; Songguang Yang; Keqiang Wu

    2013-01-01

    As sessile organisms, plants encounter various environmental stimuli including abiotic stresses during their lifecycle. To survive under adverse conditions, plants have evolved intricate mechanisms to perceive external signals and respond accordingly. Responses to various stresses largely depend on the plant capacity to modulate the transcriptome rapidly and specifically. A number of studies have shown that the molecular mechanisms driving the responses of plants to environmental stresses often depend on nucleosome histone post-translational modifications including histone acetylation, methylation, ubiquitination, and phosphorylation. The combined effects of these modifications play an essential role in the regulation of stress responsive gene expression. In this review, we highlight our current understanding of the epigenetic mechanisms of histone modifications and their roles in plant abiotic stress response.

  11. HOS3, an ELO-Like Gene, Inhibits Effects of ABA and Implicates a S-1-P/Ceramide Control System for Abiotic Stress Responses in Arabidopsis thaliana

    Tanya M. Quist; Irina Sokolchik; Huazhong Shi; Robert J. Joly; Ray A. Bressan; Albino Maggio; Meena Narsimhan; Xia Li

    2009-01-01

    A hyper-osmotically sensitive mutant of Arabidopsis thaliana, designated hos3-1 (high expression of osmotically responsive genes), was identified based on its hyper-luminescence of RD29A:LUC promoter fusion plants upon treatment with NaCI and ABA. These responses implicate the disrupted gene as a direct or indirect negative regulator of the RD29A stress-responsive pathway. By sequencing the flanking regions of the T-DNA borders, it was determined that the disrupted gene is at locus At4g36830, annotated as encoding a putative protein with high homology to CIG30 (ELO2/FEN1).CIG30 has been implicated in synthesis of very long chain fatty acids (VLCFA), which are essential precursors for sphingolipids and ceramides. Altered stress responses characteristic of ABA-hypersensitivity, including reduced root growth inhibition and reduced germination with ABA treatment and reduced water loss from leaves, were exhibited by allelic hos3-1 and hos3-2 mutants. The hos3-2 mutant is partially suppressed in its transcript abundance and is inherited as a recessive trait. Further, the HOS30RF under the control of the 35SCaMV promoter restored wild-type NaCI- and ABA-root growth sensitivity as well as RD29A:LUC luminescence in mutant plants. We also show here that the HOS3 wild-type gene functionally complements the sensitivity of elo2 and elo3 yeast mutants to monensin. Furthermore, both hos3-1 and hos3-2 alleles shared increased sensitivity to the herbicide Metolachlor, which inhibits acyl chain elongation in synthesis of VLCFA, and HOS3 functionally complemented both elo2 and elo3 and restored levels of VLCFA. Together, these data establish that HOS3 inhibits ABA-mediated stress responses and implicate the VLCFA pathway and products as control points for several aspects of abiotic stress signaling and responses. The results also provide support for a role of ceramide in the control of stomatal behavior.

  12. Structure, function and networks of transcription factors involved in abiotic stress responses

    Lindemose, Søren; O'Shea, Charlotte; Jensen, Michael Krogh;

    2013-01-01

    phytohormone ABA. Although ectopic expression of several TFs has improved abiotic stress tolerance in plants, fine-tuning of TF expression and protein levels remains a challenge to avoid crop yield loss. To further our understanding of TFs in abiotic stress responses, emerging gene regulatory networks based on......Transcription factors (TFs) are master regulators of abiotic stress responses in plants. This review focuses on TFs from seven major TF families, known to play functional roles in response to abiotic stresses, including drought, high salinity, high osmolarity, temperature extremes and the...... disorder (ID), referring to their lack of fixed tertiary structures. ID is now an emerging topic in plant science. Furthermore, the importance of the ubiquitin-proteasome protein degradation systems and modification by sumoylation is also apparent from the interactomes. Therefore; TF interaction partners...

  13. Characterization of Rice Homeobox Genes, OsHOX22 and OsHOX24, and Over-expression of OsHOX24 in Transgenic Arabidopsis Suggest their Role in Abiotic Stress Response

    Annapurna eBhattacharjee

    2016-05-01

    Full Text Available Homeobox transcription factors are well known regulators of plant growth and development. In this study, we carried out functional analysis of two candidate stress-responsive HD-ZIP I class homeobox genes from rice, OsHOX22 and OsHOX24. These genes were highly upregulated under various abiotic stress conditions at different stages of rice development, including seedling, mature and reproductive stages. The transcript levels of these genes were enhanced significantly in the presence of plant hormones, including abscisic acid (ABA, auxin, salicylic acid and gibberellic acid. The recombinant full-length and truncated homeobox proteins were found to be localized in the nucleus. Electrophoretic mobility shift assay established the binding of these homeobox proteins with specific DNA sequences, AH1 (CAAT(A/TATTG and AH2 (CAAT(C/GATTG. Transactivation assays in yeast revealed the transcriptional activation potential of full-length OsHOX22 and OsHOX24 proteins. Homo- and hetero-dimerization capabilities of these proteins have also been demonstrated. Further, we identified putative novel interacting proteins of OsHOX22 and OsHOX24 via yeast-two hybrid analysis. Over-expression of OsHOX24 imparted higher sensitivity to stress hormone, ABA, and abiotic stresses in the transgenic Arabidopsis plants as revealed by various physiological and phenotypic assays. Microarray analysis revealed differential expression of several stress-responsive genes in transgenic lines as compared to wild-type. Many of these genes were found to be involved in transcriptional regulation and various metabolic pathways. Altogether, our results suggest the possible role of OsHOX22/OsHOX24 homeobox proteins as negative regulators in abiotic stress responses.

  14. Characterization of Rice Homeobox Genes, OsHOX22 and OsHOX24, and Over-expression of OsHOX24 in Transgenic Arabidopsis Suggest Their Role in Abiotic Stress Response.

    Bhattacharjee, Annapurna; Khurana, Jitendra P; Jain, Mukesh

    2016-01-01

    Homeobox transcription factors are well known regulators of plant growth and development. In this study, we carried out functional analysis of two candidate stress-responsive HD-ZIP I class homeobox genes from rice, OsHOX22, and OsHOX24. These genes were highly up-regulated under various abiotic stress conditions at different stages of rice development, including seedling, mature and reproductive stages. The transcript levels of these genes were enhanced significantly in the presence of plant hormones, including abscisic acid (ABA), auxin, salicylic acid, and gibberellic acid. The recombinant full-length and truncated homeobox proteins were found to be localized in the nucleus. Electrophoretic mobility shift assay established the binding of these homeobox proteins with specific DNA sequences, AH1 (CAAT(A/T)ATTG) and AH2 (CAAT(C/G)ATTG). Transactivation assays in yeast revealed the transcriptional activation potential of full-length OsHOX22 and OsHOX24 proteins. Homo- and hetero-dimerization capabilities of these proteins have also been demonstrated. Further, we identified putative novel interacting proteins of OsHOX22 and OsHOX24 via yeast-two hybrid analysis. Over-expression of OsHOX24 imparted higher sensitivity to stress hormone, ABA, and abiotic stresses in the transgenic Arabidopsis plants as revealed by various physiological and phenotypic assays. Microarray analysis revealed differential expression of several stress-responsive genes in transgenic lines as compared to wild-type. Many of these genes were found to be involved in transcriptional regulation and various metabolic pathways. Altogether, our results suggest the possible role of OsHOX22/OsHOX24 homeobox proteins as negative regulators in abiotic stress responses. PMID:27242831

  15. Characterization of Rice Homeobox Genes, OsHOX22 and OsHOX24, and Over-expression of OsHOX24 in Transgenic Arabidopsis Suggest Their Role in Abiotic Stress Response

    Bhattacharjee, Annapurna; Khurana, Jitendra P.; Jain, Mukesh

    2016-01-01

    Homeobox transcription factors are well known regulators of plant growth and development. In this study, we carried out functional analysis of two candidate stress-responsive HD-ZIP I class homeobox genes from rice, OsHOX22, and OsHOX24. These genes were highly up-regulated under various abiotic stress conditions at different stages of rice development, including seedling, mature and reproductive stages. The transcript levels of these genes were enhanced significantly in the presence of plant hormones, including abscisic acid (ABA), auxin, salicylic acid, and gibberellic acid. The recombinant full-length and truncated homeobox proteins were found to be localized in the nucleus. Electrophoretic mobility shift assay established the binding of these homeobox proteins with specific DNA sequences, AH1 (CAAT(A/T)ATTG) and AH2 (CAAT(C/G)ATTG). Transactivation assays in yeast revealed the transcriptional activation potential of full-length OsHOX22 and OsHOX24 proteins. Homo- and hetero-dimerization capabilities of these proteins have also been demonstrated. Further, we identified putative novel interacting proteins of OsHOX22 and OsHOX24 via yeast-two hybrid analysis. Over-expression of OsHOX24 imparted higher sensitivity to stress hormone, ABA, and abiotic stresses in the transgenic Arabidopsis plants as revealed by various physiological and phenotypic assays. Microarray analysis revealed differential expression of several stress-responsive genes in transgenic lines as compared to wild-type. Many of these genes were found to be involved in transcriptional regulation and various metabolic pathways. Altogether, our results suggest the possible role of OsHOX22/OsHOX24 homeobox proteins as negative regulators in abiotic stress responses. PMID:27242831

  16. Regulation of abiotic and biotic stress responses by plant hormones

    Grosskinsky, Dominik Kilian; van der Graaff, Eric; Roitsch, Thomas Georg

    2016-01-01

    Plant hormones (phytohormones) are signal molecules produced within the plant, and occur in very low concentrations. In the present chapter, the current knowledge on the regulation of biotic and biotic stress responses by plant hormones is summarized with special focus on the novel insights into...... the complex hormonal crosstalk of classical growth stimulating plant hormones within the naturally occurring biotic and abiotic multistress environment of higher plants. The MAPK- and phytohormone-cascades which comprise a multitude of single molecules on different signalling levels, as well as...... interactions and cross-regulations within and between these signalling pathways allow very specific and fine-tuned modulation of plant immunity. The endoplasmic reticulum (ER)-associated protein degradation system (ERAD) is a quality control system that degrades improperly folded proteins from the secretory...

  17. Molecular Characterization of MaCCS, a Novel Copper Chaperone Gene Involved in Abiotic and Hormonal Stress Responses in Musa acuminata cv. Tianbaojiao.

    Feng, Xin; Chen, Fanglan; Liu, Weihua; Thu, Min Kyaw; Zhang, Zihao; Chen, Yukun; Cheng, Chunzhen; Lin, Yuling; Wang, Tianchi; Lai, Zhongxiong

    2016-01-01

    Copper/zinc superoxide dismutases (Cu/ZnSODs) play important roles in improving banana resistance to adverse conditions, but their activities depend on the copper chaperone for superoxide dismutase (CCS) delivering copper to them. However, little is known about CCS in monocots and under stress conditions. Here, a novel CCS gene (MaCCS) was obtained from a banana using reverse transcription PCR and rapid-amplification of cDNA ends (RACE) PCR. Sequence analyses showed that MaCCS has typical CCS domains and a conserved gene structure like other plant CCSs. Alternative transcription start sites (ATSSs) and alternative polyadenylation contribute to the mRNA diversity of MaCCS. ATSSs in MaCCS resulted in one open reading frame containing two in-frame start codons to form two protein versions, which is supported by the MaCCS subcellular localization of in both cytosol and chloroplasts. Furthermore, MaCCS promoter was found to contain many cis-elements associated with abiotic and hormonal responses. Quantitative real-time PCR analysis showed that MaCCS was expressed in all tested tissues (leaves, pseudostems and roots). In addition, MaCCS expression was significantly induced by light, heat, drought, abscisic acid and indole-3-acetic acid, but inhibited by relatively high concentrations of CuSO₄ and under cold treatment, which suggests that MaCCS is involved in abiotic and hormonal responses. PMID:27023517

  18. Promoter Analysis and Transcriptional Profiling of Ginkgo biloba 3-Hydroxy-3-Methylglutaryl Coenzyme A Reductase (GbHMGR gene in Abiotic Stress Responses

    Yongling LIAO

    2015-04-01

    Full Text Available The terpene trilactones (TTLs are believed to be important for the pharmacological properties of Ginkgo biloba leaves extract. 3-Hydroxy-3-methylglutaryl coenzyme A reductase (HMGR is a critical enzyme involved in the biosynthetic pathway of TTLs. In this study, an 1.2-kb fragment of 5’ flanking region of the HMGR gene (GbHMGR, was isolated from G. biloba by genome walking. Extensive sequence analysis revealed the presence of evolutionarily conserved and over-represented putative cis-acting elements in light-regulated transcription,  hormone signaling (gibberellic acid, jasmonate and salicylic acid, elicitor and stress responses (cold/dehydration responses, and plant defense signaling (W-box/WRKY that are common to the promoter region of GbHMGR. EMSA analysis suggested possible functionality of W-box in GbHMGR promoter region. The behavior of gene transcripts in ginkgo callus upon light, low temperature, MeJA and SA treatments further verified the regulatory function of GbHMGR promoter. A significant positive relationship between gene expression level and total TTL contents suggested that GbHMGR might be one of key genes involved in TTL biosynthesis in G. biloba.

  19. Systematic Phenotype Analysis of Arabidopsis Ds-tagged Mutants to Unravel Gene Functions in Abiotic Stress Response as well as Growth and Development

    By the availability of various mutant resources in Arabidopsis, it is now possible to investigate mutant lines for almost every gene. Arabidopsis is then, not only a model plant for plant research, but also a model species in which it is possible to carry out 'saturation mutagenesis' for all genes, and to totally analyze each gene and mutant of one organism. One of the future goals of the 'phenome' project is to collect information about the knockout-type mutant phenotypes for each Arabidopsis gene. We have generated thousands of Dissociation (Ds) transposon-tagged lines, which have a single insertion because of an advantage of the Activator/Dissociation (Ac/Ds) system, and deposited it to the RIKEN BioResource Center. In this resource, we selected 4,000 transposon-tagged lines with a transposon insertion in gene-coding regions, and systematically observed the visible phenotype of each line as a first step of phenome analysis. In total, about 200 clear visible phenotypes were classified into 43 categories of morphological phenotypes. Phenotypic images have been entered into a searchable database. Parallel to this, we have been selecting homozygous transposon-insertional plants, which would be useful resources to detect other phenotypes besides the visible ones. We are setting three categories of measurement to search various traits for total phenome analysis, such as physical, chemical or biological methods. Recently, we started to investigate biologically-measured phenotypes, which are stress-responsive or conditional phenotypes, using homozygous mutant resources. We are also collecting any mutant phenotype information from published reports in journal research activity to make a comprehensive phenotype database of Arabidopsis genes and mutants. (author)

  20. Molecular Analysis of Rice CIPKs Involved in Both Biotic and Abiotic Stress Responses

    CHEN Xi-feng; Gu Zhi-min; LIU Feng; MA Bo-jun; ZHANG Hong-sheng

    2011-01-01

    Plant calcineurin B-like (CBL) proteins have been proposed as important Ca2+ sensors and specifically interact with CBL-interacting protein kinases (CIPKs) in plant-specific calcium signaling.Here,we identified and isolated 15 CIPK genes in a japonica rice variety Nipponbare based on the predicted sequences of rice CIPK gene family.Gene structure analysis showed that these 15 genes were divided into intron-less and intron-rich groups,and OsCIPK3 and OsCIPK24 exhibited alternative splicing in their mature process.The phylogenetic analyses indicated that rice CIPKs shared an ancestor with Arabidopsis and poplar CIPKs.Analyses of gene expression showed that these OsCIPK genes were differentially induced by biotic stresses such as bacterial blight and abiotic stresses (heavy metal such as Hg2+,high salinity,cold and ABA).Interestingly,five OsCIPK genes,OsCIPK1,2,10,11 and 12,were transcriptionally up-regulated after bacterial blight infection whereas four OsCIPK genes,OsCIPK2,10,11 and 14,were induced by all treatments,indicating that some of OsCIPK genes are involved in multiple stress response pathways in plants.Our finding suggests that CIPKs play a key role in both biotic and abiotic stress responses.

  1. Overexpression of calmodulin-like (ShCML44) stress-responsive gene from Solanum habrochaites enhances tolerance to multiple abiotic stresses.

    Munir, Shoaib; Liu, Hui; Xing, Yali; Hussain, Saddam; Ouyang, Bo; Zhang, Yuyang; Li, Hanxia; Ye, Zhibiao

    2016-01-01

    Calmodulin-like (CML) proteins are important Ca(2+) sensors, which play significant role in mediating plant stress tolerance. In the present study, cold responsive calmodulin-like (ShCML44) gene was isolated from cold tolerant wild tomato (Solanum habrochaites), and functionally characterized. The ShCML44 was differentially expressed in all plant tissues including root, stem, leaf, flower and fruit, and was strongly up-regulated under cold, drought and salinity stresses along with plant growth hormones. Under cold stress, progressive increase in the expression of ShCML44 was observed particularly in cold-tolerant S. habrochaites. The ShCML44-overexpressed plants showed greater tolerance to cold, drought, and salinity stresses, and recorded higher germination and better seedling growth. Transgenic tomato plants demonstrated higher antioxidant enzymes activity, gas exchange and water retention capacity with lower malondialdehyde accumulation and membrane damage under cold and drought stresses compared to wild-type. Moreover, transgenic plants exhibited reduced reactive oxygen species and higher relative water contents under cold and drought stress, respectively. Greater stress tolerance of transgenic plants was further reflected by the up-/down-regulation of stress-related genes including SOD, GST, CAT, POD, LOX, PR and ERD. In crux, these results strengthen the molecular understanding of ShCML44 gene to improve the abiotic stress tolerance in tomato. PMID:27546315

  2. Role of auxin-responsive genes in biotic stress responses

    Ghanashyam, Challa; Jain, Mukesh

    2009-01-01

    Although the phytohormone auxin has been implicated primarily in developmental processes, some recent studies suggest its involvement in stress/defense responses as well. Recently, we identified auxin-responsive genes and reported their comprehensive transcript profiling during various stages of development and abiotic stress responses in crop plant rice. The analysis revealed tissue-specific and overlapping expression profiles of auxin-responsive genes during various stages of reproductive d...

  3. Understanding Abiotic Stress Tolerance Mechanisms: Recent Studies on Stress Response in Rice

    Ji-Ping Gao; Dai-Yin Chao; Hong-Xuan Lin

    2007-01-01

    Abiotic stress is the main factor negatively affecting crop growth and productivity worldwide. The advances in physiology, genetics, and molecular biology have greatly improved our understanding of plant responses to stresses. Rice plants are sensitive to various abiotic stresses. In this short review, we present recent progresses in adaptation of rice to salinity, water deficit and submergence. Many studies show that salt tolerance is tightly associated with the ability to maintain ion homeostasis under salinity. Na+ transporter SKC1 unloads NaMrom xylem, plasma membrane NaVHTantiporter SOS1 excludes sodium out of cytosol and tonoplast Na+/H+antiporter NHX1 sequesters Na+ into the vacuole. Silicon deposition in exodermis and endodermis of rice root reduces sodium transport through the apoplastic pathway. A number of transcription factors regulate stress-inducible gene expression that leads to initiating stress responses and establishing plant stress tolerance. Overexpression of some transcription factors, including DREB/CBF and MAC, enhances salt, drought, and cold tolerance in rice. A variant of one of ERF family genes, Sub1A-1, confers immersion tolerance to lowland rice. These findings and their exploitation will hold promise for engineering breeding to protect crop plants from certain abiotic stresses.

  4. Are karrikins involved in plant abiotic stress responses?

    Li, Weiqiang; Tran, Lam-Son Phan

    2015-09-01

    Recent reports have shown that strigolactones play a positive role in plant responses to drought and salt stress through MAX2 (More Axillary Growth 2). Increasing evidence suggests that MAX2 is also involved in karrikin signaling, raising the question whether karrikins play any role in plant adaptation to abiotic stresses. PMID:26255855

  5. QlicRice: a web interface for abiotic stress responsive QTL and loci interaction channels in rice.

    Smita, Shuchi; Lenka, Sangram Keshari; Katiyar, Amit; Jaiswal, Pankaj; Preece, Justin; Bansal, Kailash Chander

    2011-01-01

    The QlicRice database is designed to host publicly accessible, abiotic stress responsive quantitative trait loci (QTLs) in rice (Oryza sativa) and their corresponding sequenced gene loci. It provides a platform for the data mining of abiotic stress responsive QTLs, as well as browsing and annotating associated traits, their location on a sequenced genome, mapped expressed sequence tags (ESTs) and tissue and growth stage-specific expressions on the whole genome. Information on QTLs related to abiotic stresses and their corresponding loci from a genomic perspective has not yet been integrated on an accessible, user-friendly platform. QlicRice offers client-responsive architecture to retrieve meaningful biological information--integrated and named 'Qlic Search'--embedded in a query phrase autocomplete feature, coupled with multiple search options that include trait names, genes and QTL IDs. A comprehensive physical and genetic map and vital statistics have been provided in a graphical manner for deciphering the position of QTLs on different chromosomes. A convenient and intuitive user interface have been designed to help users retrieve associations to agronomically important QTLs on abiotic stress response in rice. Database URL: http://nabg.iasri.res.in:8080/qlic-rice/. PMID:21965557

  6. The cell morphogenesis ANGUSTIFOLIA (AN) gene, a plant homolog of CtBP/BARS, is involved in abiotic and biotic stress response in higher plants

    Emma W Gachomo; Jimenez-Lopez, Jose C; Smith, Sarah R.; Cooksey, Anthony B; Oghoghomeh, Oteri M; Johnson, Nicholas; Baba-Moussa, Lamine; Simeon O Kotchoni

    2013-01-01

    Abstract Background ANGUSTIFOLIA (AN), one of the CtBP family proteins, plays a major role in microtubule-dependent cell morphogenesis. Microarray analysis of mammalian AN homologs suggests that AN might function as a transcriptional activator and regulator of a wide range of genes. Genetic characterization of AN mutants suggests that AN might be involved in multiple biological processes beyond cell morphology regulation. Results Using a reverse genetic approach, we provide in this paper the ...

  7. The transcriptional regulatory network in the drought response and its crosstalk in abiotic stress responses including drought, cold and heat

    Kazuo eNakashima

    2014-05-01

    Full Text Available Drought negatively impacts plant growth and the productivity of crops around the world. Understanding the molecular mechanisms in the drought response is important for improvement of drought tolerance using molecular techniques. In plants, abscisic acid (ABA is accumulated under osmotic stress conditions caused by drought, and has a key role in stress responses and tolerance. Comprehensive molecular analyses have shown that ABA regulates the expression of many genes under osmotic stress conditions, and the ABA-responsive element (ABRE is the major cis-element for ABA-responsive gene expression. Transcription factors (TFs are master regulators of gene expression. ABRE-binding protein (AREB and ABRE-binding factor (ABF TFs control gene expression in an ABA-dependent manner. SNF1-related protein kinases 2, group A 2C-type protein phosphatases, and ABA receptors were shown to control the ABA signaling pathway. ABA-independent signaling pathways such as dehydration-responsive element-binding protein (DREB TFs and NAC TFs are also involved in stress responses including drought, heat and cold. Recent studies have suggested that there are interactions between the major ABA signaling pathway and other signaling factors in stress responses. The important roles of these transcription factors in crosstalk among abiotic stress responses will be discussed. Control of ABA or stress signaling factor expression can improve tolerance to environmental stresses. Recent studies using crops have shown that stress-specific overexpression of TFs improves drought tolerance and grain yield compared with controls in the field.

  8. Calcium-Dependent Protein Kinase CPK21 Functions in Abiotic Stress Response in Arabidopsis thaliana

    Sandra Franz; Britta Ehlert; Anja Liese; Joachim Kurth; Anne-Claire Cazalé; Tina Romeis

    2011-01-01

    Calcium-dependent protein kinases(CDPKs)comprise a family of plant serine/threonine protein kinases in which the calcium sensing domain and the kinase effector domain are combined within one molecule.So far,a biological function in abiotic stress signaling has only been reported for few CDPK isoforms,whereas the underlying biochemical mechanism for these CDPKs is still mainly unknown.Here,we show that CPK21 from Arabidopsis thaliana is biochemically activated in vivo in response to hyperosmotic stress.Loss-of-function seedlings of cpk21 are more tolerant to hyperosmotic stress and mutant plants show increased stress responses with respect to marker gene expression and metabolite accumulation.In transgenic Arabidopsis complementation lines in the cpk21 mutant background,in which either CPK21 wildtype,or a full-length enzyme variant carrying an amino-acid substitution were stably expressed,stress responsitivity was restored by CPK21 but not with the kinase inactive variant.The biochemical characterization of in planta synthesized and purified CPK21 protein revealed that within the calcium-binding domain,N-terminal EF1- and EF2-motifs compared to C-terminal EF3- and EF4-motifs differ in their contribution to calcium-regulated kinase activity,suggesting a crucial role for the N-terminal EF-hand pair.Our data provide evidence for CPK21 contributing in abiotic stress signaling and suggest that the N-terminal EF-hand pair is a calcium-sensing determinant controlling specificity of CPK21 function.

  9. Role of miRNAs and siRNAs in biotic and abiotic stress responses of plants

    Khraiwesh, Basel

    2012-02-01

    Small, non-coding RNAs are a distinct class of regulatory RNAs in plants and animals that control a variety of biological processes. In plants, several classes of small RNAs with specific sizes and dedicated functions have evolved through a series of pathways. The major classes of small RNAs include microRNAs (miRNAs) and small interfering RNAs (siRNAs), which differ in their biogenesis. miRNAs control the expression of cognate target genes by binding to reverse complementary sequences, resulting in cleavage or translational inhibition of the target RNAs. siRNAs have a similar structure, function, and biogenesis as miRNAs but are derived from long double-stranded RNAs and can often direct DNA methylation at target sequences. Besides their roles in growth and development and maintenance of genome integrity, small RNAs are also important components in plant stress responses. One way in which plants respond to environmental stress is by modifying their gene expression through the activity of small RNAs. Thus, understanding how small RNAs regulate gene expression will enable researchers to explore the role of small RNAs in biotic and abiotic stress responses. This review focuses on the regulatory roles of plant small RNAs in the adaptive response to stresses. This article is part of a Special Issue entitled: Plant gene regulation in response to abiotic stress. © 2011 Elsevier B.V.

  10. Abiotic stressors and stress responses: What commonalities appear between species across biological organization levels?

    Organisms are regularly subjected to abiotic stressors related to increasing anthropogenic activities, including chemicals and climatic changes that induce major stresses. Based on various key taxa involved in ecosystem functioning (photosynthetic microorganisms, plants, invertebrates), we review how organisms respond and adapt to chemical- and temperature-induced stresses from molecular to population level. Using field-realistic studies, our integrative analysis aims to compare i) how molecular and physiological mechanisms related to protection, repair and energy allocation can impact life history traits of stressed organisms, and ii) to what extent trait responses influence individual and population responses. Common response mechanisms are evident at molecular and cellular scales but become rather difficult to define at higher levels due to evolutionary distance and environmental complexity. We provide new insights into the understanding of the impact of molecular and cellular responses on individual and population dynamics and assess the potential related effects on communities and ecosystem functioning. - Highlights: • Responses to chemical and thermal stressors are reviewed across organization levels. • Common responses between taxa are evident at the molecular and cellular scales. • At individual level, energy allocation connects species-specific stress responses. • Commonality decreases at higher levels due to increasing environmental complexity. - The commonality of stress responses to chemical and thermal stressors among taxa is evident at the molecular and cellular scales but remains unclear at higher levels of organization

  11. Genome-wide analyses of the bZIP family reveal their involvement in the development, ripening and abiotic stress response in banana.

    Hu, Wei; Wang, Lianzhe; Tie, Weiwei; Yan, Yan; Ding, Zehong; Liu, Juhua; Li, Meiying; Peng, Ming; Xu, Biyu; Jin, Zhiqiang

    2016-01-01

    The leucine zipper (bZIP) transcription factors play important roles in multiple biological processes. However, less information is available regarding the bZIP family in the important fruit crop banana. In this study, 121 bZIP transcription factor genes were identified in the banana genome. Phylogenetic analysis showed that MabZIPs were classified into 11 subfamilies. The majority of MabZIP genes in the same subfamily shared similar gene structures and conserved motifs. The comprehensive transcriptome analysis of two banana genotypes revealed the differential expression patterns of MabZIP genes in different organs, in various stages of fruit development and ripening, and in responses to abiotic stresses, including drought, cold, and salt. Interaction networks and co-expression assays showed that group A MabZIP-mediated networks participated in various stress signaling, which was strongly activated in Musa ABB Pisang Awak. This study provided new insights into the complicated transcriptional control of MabZIP genes and provided robust tissue-specific, development-dependent, and abiotic stress-responsive candidate MabZIP genes for potential applications in the genetic improvement of banana cultivars. PMID:27445085

  12. STIFDB2: An Updated Version of Plant Stress-Responsive TranscrIption Factor DataBase with Additional Stress Signals, Stress-Responsive Transcription Factor Binding Sites and Stress-Responsive Genes in Arabidopsis and Rice

    Naika, Mahantesha; Shameer, Khader; Mathew, Oommen K; Gowda, Ramanjini; Sowdhamini, Ramanathan

    2013-01-01

    Understanding the principles of abiotic and biotic stress responses, tolerance and adaptation remains important in plant physiology research to develop better varieties of crop plants. Better understanding of plant stress response mechanisms and application of knowledge derived from integrated experimental and bioinformatics approaches are gaining importance. Earlier, we showed that compiling a database of stress-responsive transcription factors and their corresponding target binding sites in...

  13. Tomato NAC transcription factor SlSRN1 positively regulates defense response against biotic stress but negatively regulates abiotic stress response.

    Bo Liu

    Full Text Available Biotic and abiotic stresses are major unfavorable factors that affect crop productivity worldwide. NAC proteins comprise a large family of transcription factors that play important roles in plant growth and development as well as in responses to biotic and abiotic stresses. In a virus-induced gene silencing-based screening to identify genes that are involved in defense response against Botrytis cinerea, we identified a tomato NAC gene SlSRN1 (Solanum lycopersicum Stress-related NAC1. SlSRN1 is a plasma membrane-localized protein with transactivation activity in yeast. Expression of SlSRN1 was significantly induced by infection with B. cinerea or Pseudomonas syringae pv. tomato (Pst DC3000, leading to 6-8 folds higher than that in the mock-inoculated plants. Expression of SlSRN1 was also induced by salicylic acid, jasmonic acid and 1-amino cyclopropane-1-carboxylic acid and by drought stress. Silencing of SlSRN1 resulted in increased severity of diseases caused by B. cinerea and Pst DC3000. However, silencing of SlSRN1 resulted in increased tolerance against oxidative and drought stresses. Furthermore, silencing of SlSRN1 accelerated accumulation of reactive oxygen species but attenuated expression of defense genes after infection by B. cinerea. Our results demonstrate that SlSRN1 is a positive regulator of defense response against B. cinerea and Pst DC3000 but is a negative regulator for oxidative and drought stress response in tomato.

  14. Overexpression of a Cytosolic Abiotic Stress Responsive Universal Stress Protein (SbUSP) Mitigates Salt and Osmotic Stress in Transgenic Tobacco Plants.

    Udawat, Pushpika; Jha, Rajesh K; Sinha, Dinkar; Mishra, Avinash; Jha, Bhavanath

    2016-01-01

    The universal stress protein (USP) is a ubiquitous protein and plays an indispensable role in plant abiotic stress tolerance. The genome of Salicornia brachiata contains two homologs of intron less SbUSP gene which encodes for salt and osmotic responsive USP. In vivo localization reveals that SbUSP is a membrane bound cytosolic protein. The role of the gene was functionally validated by developing transgenic tobacco and compared with control [wild-type (WT) and vector control (VC)] plants under different abiotic stress condition. Transgenic lines (T1) exhibited higher chlorophyll, relative water, proline, total sugar, reducing sugar, free amino acids, polyphenol contents, osmotic potential, membrane stability, and lower electrolyte leakage and lipid peroxidation (malondialdehyde content) under stress treatments than control (WT and VC) plants. Lower accumulation of H2O2 and [Formula: see text] radicals was also detected in transgenic lines compared to control plants under stress conditions. Present study confers that overexpression of the SbUSP gene enhances plant growth, alleviates ROS buildup, maintains ion homeostasis and improves the physiological status of the plant under salt and osmotic stresses. Principal component analysis exhibited a statistical distinction of plant response to salinity stress, and a significant response was observed for transgenic lines under stress, which provides stress endurance to the plant. A possible signaling role is proposed that some downstream genes may get activated by abiotic stress responsive cytosolic SbUSP, which leads to the protection of cell from oxidative damages. The study unveils that ectopic expression of the gene mitigates salt or osmotic stress by scavenging ROS and modulating the physiological process of the plant. PMID:27148338

  15. Overexpression of a cytosolic abiotic stress responsive universal stress protein (SbUSP mitigates salt and osmotic stress in transgenic tobacco plants

    Pushpika eUdawat

    2016-04-01

    Full Text Available The Universal Stress Protein (USP is a ubiquitous protein and plays an indispensable role in plant abiotic stress tolerance. The genome of Salicornia brachiata contains two homologues of intron less SbUSP gene which encodes for salt and osmotic responsive universal stress protein. In vivo localization reveals that SbUSP is a membrane bound cytosolic protein. The role of the gene was functionally validated by developing transgenic tobacco and compared with control (wild type and vector control plants under different abiotic stress condition. Transgenic lines (T1 exhibited higher chlorophyll, relative water, proline, total sugar, reducing sugar, free amino acids, polyphenol contents, osmotic potential, membrane stability and lower electrolyte leakage and lipid peroxidation (malondialdehyde content under stress treatments than control (WT and VC plants. Lower accumulation of H2O2 and O2- radicals was also detected in transgenic lines compared to control plants under stress conditions. Present study confers that overexpression of the SbUSP gene enhances plant growth, alleviates ROS buildup, maintains ion homeostasis and improves the physiological status of the plant under salt and osmotic stresses. Principal component analysis (PCA exhibited a statistical distinction of plant response to salinity stress, and a significant response was observed for transgenic lines under stress, which provides stress endurance to the plant. A possible signaling role is proposed that some downstream genes may get activated by abiotic stress responsive cytosolic SbUSP, which leads to the protection of cell from oxidative damages. The study unveils that ectopic expression of the gene mitigates salt or osmotic stress by scavenging ROS and modulating the physiological process of the plant.

  16. Ethylene response factor Sl-ERF.B.3 is responsive to abiotic stresses and mediates salt and cold stress response regulation in tomato.

    Klay, Imen; Pirrello, Julien; Riahi, Leila; Bernadac, Anne; Cherif, Ameur; Bouzayen, Mondher; Bouzid, Sadok

    2014-01-01

    Sl-ERF.B.3 (Solanum lycopersicum ethylene response factor B.3) gene encodes for a tomato transcription factor of the ERF (ethylene responsive factor) family. Our results of real-time RT-PCR showed that Sl-ERF.B.3 is an abiotic stress responsive gene, which is induced by cold, heat, and flooding, but downregulated by salinity and drought. To get more insight into the role of Sl-ERF.B.3 in plant response to separate salinity and cold, a comparative study between wild type and two Sl-ERF.B.3 antisense transgenic tomato lines was achieved. Compared with wild type, Sl-ERF.B.3 antisense transgenic plants exhibited a salt stress dependent growth inhibition. This inhibition was significantly enhanced in shoots but reduced in roots, leading to an increased root to shoot ratio. Furthermore, the cold stress essay clearly revealed that introducing antisense Sl-ERF.B.3 in transgenic tomato plants reduces their cell injury and enhances their tolerance against 14 d of cold stress. All these results suggest that Sl-ERF.B.3 gene is involved in plant response to abiotic stresses and may play a role in the layout of stress symptoms under cold stress and in growth regulation under salinity. PMID:25215313

  17. Ethylene Response Factor Sl-ERF.B.3 Is Responsive to Abiotic Stresses and Mediates Salt and Cold Stress Response Regulation in Tomato

    Imen Klay

    2014-01-01

    Full Text Available Sl-ERF.B.3 (Solanum lycopersicum ethylene response factor B.3 gene encodes for a tomato transcription factor of the ERF (ethylene responsive factor family. Our results of real-time RT-PCR showed that Sl-ERF.B.3 is an abiotic stress responsive gene, which is induced by cold, heat, and flooding, but downregulated by salinity and drought. To get more insight into the role of Sl-ERF.B.3 in plant response to separate salinity and cold, a comparative study between wild type and two Sl-ERF.B.3 antisense transgenic tomato lines was achieved. Compared with wild type, Sl-ERF.B.3 antisense transgenic plants exhibited a salt stress dependent growth inhibition. This inhibition was significantly enhanced in shoots but reduced in roots, leading to an increased root to shoot ratio. Furthermore, the cold stress essay clearly revealed that introducing antisense Sl-ERF.B.3 in transgenic tomato plants reduces their cell injury and enhances their tolerance against 14 d of cold stress. All these results suggest that Sl-ERF.B.3 gene is involved in plant response to abiotic stresses and may play a role in the layout of stress symptoms under cold stress and in growth regulation under salinity.

  18. The Generation Challenge Programme comparative plant stress-responsive gene catalogue.

    Wanchana, Samart; Thongjuea, Supat; Ulat, Victor Jun; Anacleto, Mylah; Mauleon, Ramil; Conte, Matthieu; Rouard, Mathieu; Ruiz, Manuel; Krishnamurthy, Nandini; Sjolander, Kimmen; van Hintum, Theo; Bruskiewich, Richard M

    2008-01-01

    The Generation Challenge Programme (GCP; www.generationcp.org) has developed an online resource documenting stress-responsive genes comparatively across plant species. This public resource is a compendium of protein families, phylogenetic trees, multiple sequence alignments (MSA) and associated experimental evidence. The central objective of this resource is to elucidate orthologous and paralogous relationships between plant genes that may be involved in response to environmental stress, mainly abiotic stresses such as water deficit ('drought'). The web-based graphical user interface (GUI) of the resource includes query and visualization tools that allow diverse searches and browsing of the underlying project database. The web interface can be accessed at http://dayhoff.generationcp.org. PMID:17933772

  19. The transcriptional regulatory network in the drought response and its crosstalk in abiotic stress responses including drought, cold, and heat

    Nakashima, Kazuo; Yamaguchi-Shinozaki, Kazuko; Shinozaki, Kazuo

    2014-01-01

    Drought negatively impacts plant growth and the productivity of crops around the world. Understanding the molecular mechanisms in the drought response is important for improvement of drought tolerance using molecular techniques. In plants, abscisic acid (ABA) is accumulated under osmotic stress conditions caused by drought, and has a key role in stress responses and tolerance. Comprehensive molecular analyses have shown that ABA regulates the expression of many genes under osmotic stress cond...

  20. Gene Networks in Plant Ozone Stress Response and Tolerance

    Agnieszka Ludwikow; Jan Sadowski

    2008-01-01

    For many plant species ozone stress has become much more severe in the last decade. The accumulating evidence for the significant effects of ozone pollutant on crop and forest yield situate ozone as one of the most important environmental stress factors that limits plant productivity woddwide. Today, transcdptomic approaches seem to give the best coverage of genome level responses. Therefore, microarray serves as an invaluable tool for global gene expression analyses, unravelling new information about gene pathways, in-species and crose-species gene expression comparison, and for the characterization of unknown relationships between genes. In this review we summadze the recent progress in the transcdptomics of ozone to demonstrate the benefits that can be harvested from the application of integrative and systematic analytical approaches to study ozone stress response. We focused our consideration on microarray analyses identifying gene networks responsible for response and tolerance to elevated ozone concentration. From these analyses it is now possible to notice how plant ozone defense responses depend on the interplay between many complex signaling pathways and metabolite signals.

  1. The cowpea RING ubiquitin ligase VuDRIP interacts with transcription factor VuDREB2A for regulating abiotic stress responses.

    Sadhukhan, Ayan; Panda, Sanjib Kumar; Sahoo, Lingaraj

    2014-10-01

    Cowpea (Vigna unguiculata L. Walp) is an important grain legume cultivated in drought-prone parts of the world, having higher tolerance to heat and drought than many other crops. The transcription factor, Dehydration-Responsive Element-Binding protein 2A (DREB2A), controls expression of many genes involved in osmotic and heat stress responses of plants. In Arabidopsis, DREB2A-interacting proteins (DRIPs), which function as E3 ubiquitin ligases (EC 6.3.2.19), regulate the stability of DREB2A by targeting it for proteasome-mediated degradation. In this study, we cloned the cowpea ortholog of DRIP (VuDRIP) using PCR based methods. The 1614 bp long VuDRIP mRNA encoded a protein of 433 amino acids having a C3HC4-type Really Interesting New Gene (RING) domain in the N-terminus and a C-terminal conserved region, similar to Arabidopsis DRIP1 and DRIP2. We found VuDRIP up-regulation in response to various abiotic stresses and phytohormones. Using yeast (Saccharomyces cerevisae) two-hybrid analysis, VuDRIP was identified as a VuDREB2A-interacting protein. The results indicate negative regulation of VuDREB2A by ubiquitin ligases in cowpea similar to Arabidopsis along with their other unknown roles in stress and hormone signaling pathways. PMID:25090086

  2. A nucleotide metabolite controls stress-responsive gene expression and plant development

    Chen, Hao

    2011-10-19

    Abiotic stress, such as drought and high salinity, activates a network of signaling cascades that lead to the expression of many stress-responsive genes in plants. The Arabidopsis FIERY1 (FRY1) protein is a negative regulator of stress and abscisic acid (ABA) signaling and exhibits both an inositol polyphosphatase and a 3?,5?-bisphosphate nucleotidase activity in vitro. The FRY1 nucleotidase degrades the sulfation byproduct 3?-phosphoadenosine-5?-phosphate (PAP), yet its in vivo functions and particularly its roles in stress gene regulation remain unclear. Here we developed a LC-MS/MS method to quantitatively measure PAP levels in plants and investigated the roles of this nucleotidase activity in stress response and plant development. It was found that PAP level was tightly controlled in plants and did not accumulate to any significant level either under normal conditions or under NaCl, LiCl, cold, or ABA treatments. In contrast, high levels of PAP were detected in multiple mutant alleles of FRY1 but not in mutants of other FRY1 family members, indicating that FRY1 is the major enzyme that hydrolyzes PAP in vivo. By genetically reducing PAP levels in fry1 mutants either through overexpression of a yeast PAP nucleotidase or by generating a triple mutant of fry1 apk1 apk2 that is defective in the biosynthesis of the PAP precursor 3?-phosphoadenosine-5?-phosphosulfate (PAPS), we demonstrated that the developmental defects and superinduction of stress-responsive genes in fry1 mutants correlate with PAP accumulation in planta. We also found that the hypersensitive stress gene regulation in fry1 requires ABH1 but not ABI1, two other negative regulators in ABA signaling pathways. Unlike in yeast, however, FRY1 overexpression in Arabidopsis could not enhance salt tolerance. Taken together, our results demonstrate that PAP is critical for stress gene regulation and plant development, yet the FRY1 nucleotidase that catabolizes PAP may not be an in vivo salt toxicity target

  3. A nucleotide metabolite controls stress-responsive gene expression and plant development.

    Hao Chen

    Full Text Available Abiotic stress, such as drought and high salinity, activates a network of signaling cascades that lead to the expression of many stress-responsive genes in plants. The Arabidopsis FIERY1 (FRY1 protein is a negative regulator of stress and abscisic acid (ABA signaling and exhibits both an inositol polyphosphatase and a 3',5'-bisphosphate nucleotidase activity in vitro. The FRY1 nucleotidase degrades the sulfation byproduct 3'-phosphoadenosine-5'-phosphate (PAP, yet its in vivo functions and particularly its roles in stress gene regulation remain unclear. Here we developed a LC-MS/MS method to quantitatively measure PAP levels in plants and investigated the roles of this nucleotidase activity in stress response and plant development. It was found that PAP level was tightly controlled in plants and did not accumulate to any significant level either under normal conditions or under NaCl, LiCl, cold, or ABA treatments. In contrast, high levels of PAP were detected in multiple mutant alleles of FRY1 but not in mutants of other FRY1 family members, indicating that FRY1 is the major enzyme that hydrolyzes PAP in vivo. By genetically reducing PAP levels in fry1 mutants either through overexpression of a yeast PAP nucleotidase or by generating a triple mutant of fry1 apk1 apk2 that is defective in the biosynthesis of the PAP precursor 3'-phosphoadenosine-5'-phosphosulfate (PAPS, we demonstrated that the developmental defects and superinduction of stress-responsive genes in fry1 mutants correlate with PAP accumulation in planta. We also found that the hypersensitive stress gene regulation in fry1 requires ABH1 but not ABI1, two other negative regulators in ABA signaling pathways. Unlike in yeast, however, FRY1 overexpression in Arabidopsis could not enhance salt tolerance. Taken together, our results demonstrate that PAP is critical for stress gene regulation and plant development, yet the FRY1 nucleotidase that catabolizes PAP may not be an in vivo salt

  4. The tomato DWD motif-containing protein DDI1 interacts with the CUL4–DDB1-based ubiquitin ligase and plays a pivotal role in abiotic stress responses

    Highlights: • We identify DDI1 as a DAMAGED DNA BINDING PROTEIN1 (DDB1)-interacting protein. • DDI1 interacts with the CUL4–DDB1-based ubiquitin ligase in the nucleus. • DDI1 plays a positive role in regulating abiotic stress response in tomato. - Abstract: CULLIN4(CUL4)–DAMAGED DNA BINDING PROTEIN1 (DDB1)-based ubiquitin ligase plays significant roles in multiple physiological processes via ubiquitination-mediated degradation of relevant target proteins. The DDB1–CUL4-associated factor (DCAF) acts as substrate receptor in the CUL4–DDB1 ubiquitin ligase complex and determines substrate specificity. In this study, we identified a tomato (Solanum lycopersicum) DDB1-interacting (DDI1) protein as a DCAF protein involved in response to abiotic stresses, including UV radiation, high salinity and osmotic stress. Co-immunoprecipitation and bimolecular fluorescence complementation assay indicated that DDI1 associates with CUL4–DDB1 in the nucleus. Quantitative RT-PCR analysis indicated the DDI1 gene is induced by salt, mannitol and UV-C treatment. Moreover, transgenic tomato plants with overexpression or knockdown of the DDI1 gene exhibited enhanced or attenuated tolerance to salt/mannitol/UV-C, respectively. Thus, our data suggest that DDI1 functions as a substrate receptor of the CUL4–DDB1 ubiquitin ligase, positively regulating abiotic stress response in tomato

  5. The tomato DWD motif-containing protein DDI1 interacts with the CUL4–DDB1-based ubiquitin ligase and plays a pivotal role in abiotic stress responses

    Miao, Min [Ministry of Education Key Laboratory for Bio-resource and Eco-environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064 (China); School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei 230009 (China); Department of Plant, Soil and Entomological Sciences, University of Idaho, Moscow, ID 83844-2339 (United States); Zhu, Yunye [School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei 230009 (China); Qiao, Maiju [Ministry of Education Key Laboratory for Bio-resource and Eco-environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064 (China); Tang, Xiaofeng [Ministry of Education Key Laboratory for Bio-resource and Eco-environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064 (China); School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei 230009 (China); Zhao, Wei [School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei 230009 (China); Xiao, Fangming [Department of Plant, Soil and Entomological Sciences, University of Idaho, Moscow, ID 83844-2339 (United States); Liu, Yongsheng, E-mail: liuyongsheng1122@hfut.edu.cn [Ministry of Education Key Laboratory for Bio-resource and Eco-environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064 (China); School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei 230009 (China)

    2014-08-08

    Highlights: • We identify DDI1 as a DAMAGED DNA BINDING PROTEIN1 (DDB1)-interacting protein. • DDI1 interacts with the CUL4–DDB1-based ubiquitin ligase in the nucleus. • DDI1 plays a positive role in regulating abiotic stress response in tomato. - Abstract: CULLIN4(CUL4)–DAMAGED DNA BINDING PROTEIN1 (DDB1)-based ubiquitin ligase plays significant roles in multiple physiological processes via ubiquitination-mediated degradation of relevant target proteins. The DDB1–CUL4-associated factor (DCAF) acts as substrate receptor in the CUL4–DDB1 ubiquitin ligase complex and determines substrate specificity. In this study, we identified a tomato (Solanum lycopersicum) DDB1-interacting (DDI1) protein as a DCAF protein involved in response to abiotic stresses, including UV radiation, high salinity and osmotic stress. Co-immunoprecipitation and bimolecular fluorescence complementation assay indicated that DDI1 associates with CUL4–DDB1 in the nucleus. Quantitative RT-PCR analysis indicated the DDI1 gene is induced by salt, mannitol and UV-C treatment. Moreover, transgenic tomato plants with overexpression or knockdown of the DDI1 gene exhibited enhanced or attenuated tolerance to salt/mannitol/UV-C, respectively. Thus, our data suggest that DDI1 functions as a substrate receptor of the CUL4–DDB1 ubiquitin ligase, positively regulating abiotic stress response in tomato.

  6. Reconstructing a Network of Stress-Response Regulators via Dynamic System Modeling of Gene Regulation

    Wei-Sheng Wu

    2008-01-01

    Full Text Available Unicellular organisms such as yeasts have evolved mechanisms to respond to environmental stresses by rapidly reorganizing the gene expression program. Although many stress-response genes in yeast have been discovered by DNA microarrays, the stress-response transcription factors (TFs that regulate these stress-response genes remain to be investigated. In this study, we use a dynamic system model of gene regulation to describe the mechanism of how TFs may control a gene’s expression. Then, based on the dynamic system model, we develop the Stress Regulator Identification Algorithm (SRIA to identify stress-response TFs for six kinds of stresses. We identified some general stress-response TFs that respond to various stresses and some specific stress-response TFs that respond to one specifi c stress. The biological significance of our findings is validated by the literature. We found that a small number of TFs is probably suffi cient to control a wide variety of expression patterns in yeast under different stresses. Two implications can be inferred from this observation. First, the response mechanisms to different stresses may have a bow-tie structure. Second, there may be regulatory cross-talks among different stress responses. In conclusion, this study proposes a network of stress-response regulators and the details of their actions.

  7. Genome-Wide Identification, Evolutionary Analysis, and Stress Responses of the GRAS Gene Family in Castor Beans

    Wei Xu

    2016-06-01

    Full Text Available Plant-specific GRAS transcription factors play important roles in regulating growth, development, and stress responses. Castor beans (Ricinus communis are important non-edible oilseed plants, cultivated worldwide for its seed oils and its adaptability to growth conditions. In this study, we identified and characterized a total of 48 GRAS genes based on the castor bean genome. Combined with phylogenetic analysis, the castor bean GRAS members were divided into 13 distinct groups. Functional divergence analysis revealed the presence of mostly Type-I functional divergence. The gene structures and conserved motifs, both within and outside the GRAS domain, were characterized. Gene expression analysis, performed in various tissues and under a range of abiotic stress conditions, uncovered the potential functions of GRAS members in regulating plant growth development and stress responses. The results obtained from this study provide valuable information toward understanding the potential molecular mechanisms of GRAS proteins in castor beans. These findings also serve as a resource for identifying the genes that allow castor beans to grow in stressful conditions and to enable further breeding and genetic improvements in agriculture.

  8. Differential Gene Expression Reveals Candidate Genes for Drought Stress Response in Abies alba (Pinaceae)

    David Behringer; Heike Zimmermann; Birgit Ziegenhagen; Sascha Liepelt

    2015-01-01

    Increasing drought periods as a result of global climate change pose a threat to many tree species by possibly outpacing their adaptive capabilities. Revealing the genetic basis of drought stress response is therefore implemental for future conservation strategies and risk assessment. Access to informative genomic regions is however challenging, especially for conifers, partially due to their large genomes, which puts constraints on the feasibility of whole genome scans. Candidate genes offer...

  9. Comparative transcriptional profiling of melatonin synthesis and catabolic genes indicates the possible role of melatonin in developmental and stress responses in rice

    Yunxie eWei

    2016-05-01

    Full Text Available As a well-known animal hormone, melatonin (N-acetyl-5-methoxytryptamine is also involved in multiple plant biological processes, especially in various stress responses. Rice is one of the most important crops, and melatonin is taken in by many people everyday from rice. However, the transcriptional profiling of melatonin-related genes in rice is largely unknown. In this study, the expression patterns of 11 melatonin related genes in rice in different periods, tissues, in response to different treatments were synthetically analyzed using published microarray data. These results suggest that the melatonin-related genes may play important and dual roles in rice developmental stages. We highlight the commonly regulation of rice melatonin-related genes by abscisic acid (ABA, jasmonic acid (JA, various abiotic stresses and pathogen infection, indicating the possible role of these genes in multiple stress responses and underlying crosstalks of plant hormones, especially ABA and JA. Taken together, this study may provide insight into the association among melatonin biosynthesis and catabolic pathway, plant development and stress responses in rice. The profile analysis identified candidate genes for further functional characterization in circadian rhythm and specific stress responses.

  10. Inspection of the Grapevine BURP Superfamily Highlights an Expansion of RD22 Genes with Distinctive Expression Features in Berry Development and ABA-Mediated Stress Responses

    Matus, José Tomás; Aquea, Felipe; Espinoza, Carmen; Vega, Andrea; Cavallini, Erika; Santo, Silvia Dal; Cañón, Paola; de la Guardia, Amparo Rodríguez-Hoces; Serrano, Jennifer; Tornielli, Giovanni Battista; Arce-Johnson, Patricio

    2014-01-01

    The RESPONSIVE TO DEHYDRATION 22 (RD22) gene is a molecular link between abscisic acid (ABA) signalling and abiotic stress responses. Its expression has been used as a reliable ABA early response marker. In Arabidopsis, the single copy RD22 gene possesses a BURP domain also located at the C-terminus of USP embryonic proteins and the beta subunit of polygalacturonases. In grapevine, a RD22 gene has been identified but putative paralogs are also found in the grape genome, possibly forming a lar...

  11. MicroRNA Regulation of Abiotic Stress Response in 7B-1 Male-Sterile Tomato Mutant

    Omidvar, Vahid; Mohorianu, I.; Dalmay, T.; Fellner, Martin

    2015-01-01

    Roč. 8, č. 3 (2015), s. 1-13. ISSN 1940-3372 R&D Projects: GA MŠk(CZ) LO1204 Institutional support: RVO:61389030 Keywords : 7B-1 mutant * abiotic stress * miRNAs Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.933, year: 2014

  12. Identification and functional characterization of the pepper CaDRT1 gene involved in the ABA-mediated drought stress response.

    Baek, Woonhee; Lim, Sohee; Lee, Sung Chul

    2016-05-01

    Plants are constantly challenged by various environmental stresses, including high salinity and drought, and they have evolved defense mechanisms to counteract the deleterious effects of these stresses. The plant hormone abscisic acid (ABA) regulates plant growth and developmental processes and mediates abiotic stress responses. Here, we identified the Capsicum annuum DRought Tolerance 1 (CaDRT1) gene from pepper leaves treated with ABA. CaDRT1 was strongly expressed in pepper leaves in response to environmental stresses and after ABA treatment, suggesting that the CaDRT1 protein functions in the abiotic stress response. Knockdown expression of CaDRT1 via virus-induced gene silencing resulted in a high level of drought susceptibility, and this was characterized by increased transpirational water loss via decreased stomatal closure. CaDRT1-overexpressing (OX) Arabidopsis plants exhibited an ABA-hypersensitive phenotype during the germinative, seedling, and adult stages. Additionally, these CaDRT1-OX plants exhibited a drought-tolerant phenotype characterized by low levels of transpirational water loss, high leaf temperatures, increased stomatal closure, and enhanced expression levels of drought-responsive genes. Taken together, our results suggest that CaDRT1 is a positive regulator of the ABA-mediated drought stress response. PMID:26869261

  13. Global Gene-Expression Analysis to Identify Differentially Expressed Genes Critical for the Heat Stress Response in Brassica rapa.

    Xiangshu Dong

    Full Text Available Genome-wide dissection of the heat stress response (HSR is necessary to overcome problems in crop production caused by global warming. To identify HSR genes, we profiled gene expression in two Chinese cabbage inbred lines with different thermotolerances, Chiifu and Kenshin. Many genes exhibited >2-fold changes in expression upon exposure to 0.5- 4 h at 45°C (high temperature, HT: 5.2% (2,142 genes in Chiifu and 3.7% (1,535 genes in Kenshin. The most enriched GO (Gene Ontology items included 'response to heat', 'response to reactive oxygen species (ROS', 'response to temperature stimulus', 'response to abiotic stimulus', and 'MAPKKK cascade'. In both lines, the genes most highly induced by HT encoded small heat shock proteins (Hsps and heat shock factor (Hsf-like proteins such as HsfB2A (Bra029292, whereas high-molecular weight Hsps were constitutively expressed. Other upstream HSR components were also up-regulated: ROS-scavenging genes like glutathione peroxidase 2 (BrGPX2, Bra022853, protein kinases, and phosphatases. Among heat stress (HS marker genes in Arabidopsis, only exportin 1A (XPO1A (Bra008580, Bra006382 can be applied to B. rapa for basal thermotolerance (BT and short-term acquired thermotolerance (SAT gene. CYP707A3 (Bra025083, Bra021965, which is involved in the dehydration response in Arabidopsis, was associated with membrane leakage in both lines following HS. Although many transcription factors (TF genes, including DREB2A (Bra005852, were involved in HS tolerance in both lines, Bra024224 (MYB41 and Bra021735 (a bZIP/AIR1 [Anthocyanin-Impaired-Response-1] were specific to Kenshin. Several candidate TFs involved in thermotolerance were confirmed as HSR genes by real-time PCR, and these assignments were further supported by promoter analysis. Although some of our findings are similar to those obtained using other plant species, clear differences in Brassica rapa reveal a distinct HSR in this species. Our data could also provide a

  14. Molecular cloning, expression, and stress response of the estrogen-related receptor gene (AccERR) from Apis cerana cerana

    Zhang, Weixing; Zhu, Ming; Zhang, Ge; Liu, Feng; Wang, Hongfang; Guo, Xingqi; Xu, Baohua

    2016-04-01

    Estrogen-related receptor (ERR), which belongs to the nuclear receptor superfamily, has been implicated in diverse physiological processes involving the estrogen signaling pathway. However, little information is available on ERR in Apis cerana cerana. In this report, we isolated the ERR gene and investigated its involvement in antioxidant defense. Quantitative real-time polymerase chain reaction (qPCR) revealed that the highest mRNA expression occurred in eggs during different developmental stages. The expression levels of AccERR were highest in the muscle, followed by the rectum. The predicted transcription factor binding sites in the promoter of AccERR suggested that AccERR potentially functions in early development and in environmental stress responses. The expression of AccERR was induced by cold (4 °C), heat (42 °C), ultraviolet light (UV), HgCl2, and various types of pesticides (phoxim, deltamethrin, triadimefon, and cyhalothrin). Western blot was used to measure the expression levels of AccERR protein. These data suggested that AccERR might play a vital role in abiotic stress responses.

  15. Simultaneous expression of abiotic stress responsive transcription factors, AtDREB2A, AtHB7 and AtABF3 improves salinity and drought tolerance in peanut (Arachis hypogaea L..

    Vittal Pruthvi

    Full Text Available Drought, salinity and extreme temperatures are the most common abiotic stresses, adversely affecting plant growth and productivity. Exposure of plants to stress activates stress signalling pathways that induce biochemical and physiological changes essential for stress acclimation. Stress tolerance is governed by multiple traits, and importance of a few traits in imparting tolerance has been demonstrated. Under drought, traits linked to water mining and water conservation, water use efficiency and cellular tolerance (CT to desiccation are considered to be relevant. In this study, an attempt has been made to improve CT in drought hardy crop, peanut (Arachis hypogaea L., cv. TMV2 by co-expressing stress-responsive transcription factors (TFs, AtDREB2A, AtHB7 and AtABF3, associated with downstream gene expression. Transgenic plants simultaneously expressing these TFs showed increased tolerance to drought, salinity and oxidative stresses compared to wild type, with an increase in total plant biomass. The transgenic plants exhibited improved membrane and chlorophyll stability due to enhanced reactive oxygen species scavenging and osmotic adjustment by proline synthesis under stress. The improvement in stress tolerance in transgenic lines were associated with induced expression of various CT related genes like AhGlutaredoxin, AhAldehyde reductase, AhSerine threonine kinase like protein, AhRbx1, AhProline amino peptidase, AhHSP70, AhDIP and AhLea4. Taken together the results indicate that co-expression of stress responsive TFs can activate multiple CT pathways, and this strategy can be employed to improve abiotic stress tolerance in crop plants.

  16. Changes in the Arabidopsis thaliana Proteome Implicate cAMP in Biotic and Abiotic Stress Responses and Changes in Energy Metabolism

    Alqurashi, May

    2016-06-01

    The second messenger 3′,5′-cyclic adenosine monophosphate (cAMP) is increasingly recognized as having many different roles in plant responses to environmental stimuli. To gain further insights into these roles, Arabidopsis thaliana cell suspension culture was treated with 100 nM of cell permeant 8-bromo-cAMP for 5 or 10 min. Here, applying mass spectrometry and comparative proteomics, 20 proteins were identified as differentially expressed and we noted a specific bias in proteins with a role in abiotic stress, particularly cold and salinity, biotic stress as well as proteins with a role in glycolysis. These findings suggest that cAMP is sufficient to elicit specific stress responses that may in turn induce complex changes to cellular energy homeostasis.

  17. The Generation Challenge Programme comparative plant stress-responsive gene catalogue

    Wanchana, S.; Thongjuea, S.; Ulat, V.J.; Anacleto, M.; Mauleon, R.; Conte, M.; Rouard, M.; Ruiz, M.; Krishnamurthy, N.; Sjolander, K.; Hintum, van T.J.L.; Bruskiewich, R.M.

    2008-01-01

    The Generation Challenge Programme (GCP; www.generationcp.org) has developed an online resource documenting stress-responsive genes comparatively across plant species. This public resource is a compendium of protein families, phylogenetic trees, multiple sequence alignments (MSA) and associated expe

  18. A rice stress-responsive NAC gene enhances tolerance of transgenic wheat to drought and salt stresses.

    Saad, Abu Sefyan I; Li, Xu; Li, He-Ping; Huang, Tao; Gao, Chun-Sheng; Guo, Mao-Wei; Cheng, Wei; Zhao, Guang-Yao; Liao, Yu-Cai

    2013-04-01

    Drought and salinity are the primary factors limiting wheat production worldwide. It has been shown that a rice stress-responsive transcription factor encoded by the rice NAC1 gene (SNAC1) plays an important role in drought stress tolerance. Therefore, we introduced the SNAC1 gene under the control of a maize ubiquitin promoter into an elite Chinese wheat variety Yangmai12. Plants expressing SNAC1 displayed significantly enhanced tolerance to drought and salinity in multiple generations, and contained higher levels of water and chlorophyll in their leaves, as compared to wild type. In addition, the fresh and dry weights of the roots of these plants were also increased, and the plants had increased sensitivities to abscisic acid (ABA), which inhibited root and shoot growth. Furthermore, quantitative real-time polymerase chain reactions revealed that the expressions of genes involved in abiotic stress/ABA signaling, such as wheat 1-phosphatidylinositol-3-phosphate-5-kinase, sucrose phosphate synthase, type 2C protein phosphatases and regulatory components of ABA receptor, were effectively regulated by the alien SNAC1 gene. These results indicated high and functional expression of the rice SNAC1 gene in wheat. And our study provided a promising approach to improve the tolerances of wheat cultivars to drought and salinity through genetic engineering. PMID:23415326

  19. Caspases in plants: metacaspase gene family in plant stress responses.

    Fagundes, David; Bohn, Bianca; Cabreira, Caroline; Leipelt, Fábio; Dias, Nathalia; Bodanese-Zanettini, Maria H; Cagliari, Alexandro

    2015-11-01

    Programmed cell death (PCD) is an ordered cell suicide that removes unwanted or damaged cells, playing a role in defense to environmental stresses and pathogen invasion. PCD is component of the life cycle of plants, occurring throughout development from embryogenesis to the death. Metacaspases are cysteine proteases present in plants, fungi, and protists. In certain plant-pathogen interactions, the PCD seems to be mediated by metacaspases. We adopted a comparative genomic approach to identify genes coding for the metacaspases in Viridiplantae. We observed that the metacaspase was divided into types I and II, based on their protein structure. The type I has a metacaspase domain at the C-terminus region, presenting or not a zinc finger motif in the N-terminus region and a prodomain rich in proline. Metacaspase type II does not feature the prodomain and the zinc finger, but has a linker between caspase-like catalytic domains of 20 kDa (p20) and 10 kDa (p10). A high conservation was observed in the zinc finger domain (type I proteins) and in p20 and p10 subunits (types I and II proteins). The phylogeny showed that the metacaspases are divided into three principal groups: type I with and without zinc finger domain and type II metacaspases. The algae and moss are presented as outgroup, suggesting that these three classes of metacaspases originated in the early stages of Viridiplantae, being the absence of the zinc finger domain the ancient condition. The study of metacaspase can clarify their assignment and involvement in plant PCD mechanisms. PMID:26277721

  20. Microarray Meta-Analysis Focused on the Response of Genes Involved in Redox Homeostasis to Diverse Abiotic Stresses in Rice

    de Abreu Neto, Joao B.; Frei, Michael

    2016-01-01

    Plants are exposed to a wide range of abiotic stresses (AS), which often occur in combination. Because physiological investigations typically focus on one stress, our understanding of unspecific stress responses remains limited. The plant redox homeostasis, i.e., the production and removal of reactive oxygen species (ROS), may be involved in many environmental stress conditions. Therefore, this study intended to identify genes, which are activated in diverse AS, focusing on ROS-related pathwa...

  1. SNPs in stress-responsive rice genes: validation, genotyping, functional relevance and population structure

    Parida Swarup K; Mukerji Mitali; Singh Ashok K; Singh Nagendra K; Mohapatra Trilochan

    2012-01-01

    Abstract Background Single nucleotide polymorphism (SNP) validation and large-scale genotyping are required to maximize the use of DNA sequence variation and determine the functional relevance of candidate genes for complex stress tolerance traits through genetic association in rice. We used the bead array platform-based Illumina GoldenGate assay to validate and genotype SNPs in a select set of stress-responsive genes to understand their functional relevance and study the population structure...

  2. Cloning and functional characterization of two abiotic stress-responsive Jerusalem artichoke (Helianthus tuberosus) fructan 1-exohydrolases (1-FEHs).

    Xu, Huanhuan; Liang, Mingxiang; Xu, Li; Li, Hui; Zhang, Xi; Kang, Jian; Zhao, Qingxin; Zhao, Haiyan

    2015-01-01

    Two fructan hydrolases were previously reported to exist in Jerusalem artichoke (Helianthus tuberosus) and one native fructan-β-fructosidase (1-FEH) was purified to homogeneity by SDS-PAGE, but no corresponding cDNA was cloned. Here, we cloned two full-length 1-FEH cDNA sequences from Jerusalem artichoke, named Ht1-FEH I and Ht1-FEH II, which showed high levels of identity with chicory 1-FEH I and 1-FEH II. Functional characterization of the corresponding recombinant proteins in Pichia pastoris X-33 demonstrated that both Ht1-FEHs had high levels of hydrolase activity towards β(2,1)-linked fructans, but low or no activity towards β(2,6)-linked levan and sucrose. Like other plant FEHs, the activities of the recombinant Ht1-FEHs were greatly inhibited by sucrose. Real-time quantitative PCR analysis showed that Ht1-FEH I transcripts accumulated to high levels in the developing leaves and stems of artichoke, whereas the expression levels of Ht1-FEH II increased in tubers during tuber sprouting, which implies that the two Ht1-FEHs play different roles. The levels of both Ht1-FEH I and II transcript were significantly increased in the stems of NaCl-treated plants. NaCl treatment also induced transcription of both Ht1-FEHs in the tubers, while PEG treatments slightly inhibited the expression of Ht1-FEH II in tubers. Analysis of sugar-metabolizing enzyme activities and carbohydrate concentration via HPLC showed that the enzyme activities of 1-FEHs were increased but the fructose content was decreased under NaCl and PEG treatments. Given that FEH hydrolyzes fructan to yield Fru, we discuss possible explanations for the inconsistency between 1-FEH activity and fructan dynamics in artichokes subjected to abiotic stress. PMID:25522837

  3. Transcriptional profiling of Medicago truncatula under salt stress identified a novel CBF transcription factor MtCBF4 that plays an important role in abiotic stress responses

    Su Zhen

    2011-07-01

    Full Text Available Abstract Background Salt stress hinders the growth of plants and reduces crop production worldwide. However, different plant species might possess different adaptive mechanisms to mitigate salt stress. We conducted a detailed pathway analysis of transcriptional dynamics in the roots of Medicago truncatula seedlings under salt stress and selected a transcription factor gene, MtCBF4, for experimental validation. Results A microarray experiment was conducted using root samples collected 6, 24, and 48 h after application of 180 mM NaCl. Analysis of 11 statistically significant expression profiles revealed different behaviors between primary and secondary metabolism pathways in response to external stress. Secondary metabolism that helps to maintain osmotic balance was induced. One of the highly induced transcription factor genes was successfully cloned, and was named MtCBF4. Phylogenetic analysis revealed that MtCBF4, which belongs to the AP2-EREBP transcription factor family, is a novel member of the CBF transcription factor in M. truncatula. MtCBF4 is shown to be a nuclear-localized protein. Expression of MtCBF4 in M. truncatula was induced by most of the abiotic stresses, including salt, drought, cold, and abscisic acid, suggesting crosstalk between these abiotic stresses. Transgenic Arabidopsis over-expressing MtCBF4 enhanced tolerance to drought and salt stress, and activated expression of downstream genes that contain DRE elements. Over-expression of MtCBF4 in M. truncatula also enhanced salt tolerance and induced expression level of corresponding downstream genes. Conclusion Comprehensive transcriptomic analysis revealed complex mechanisms exist in plants in response to salt stress. The novel transcription factor gene MtCBF4 identified here played an important role in response to abiotic stresses, indicating that it might be a good candidate gene for genetic improvement to produce stress-tolerant plants.

  4. Gene expression dynamics in the oxidative stress response of fission yeast

    Papadakis, Emmanouil

    Changes in the environment continuously challenge living organisms during their lifetime. A cell’s survival depends on its ability to coordinate a rapid and successful stress response when exposed to acute doses of damaging agents. Oxidative stress caused by an excess of reactive oxygen species, is......,972 mRNAs and 2,310 proteins were determined, and a web application for profile visualization was developed. We found a high correlation between mRNA and protein levels both at the steady state and the time of the maximum expression response. In most cases increase in protein abundance was concomitant......RNA levels peaked. Accordingly, for coherently repressed proteins the maximum degradation rate was often observed at the time of the minimum mRNA response (Chapter 5). To date, gene expression in the stress response of fission yeast cells to HP has been studied in batch cultures of different starting cell...

  5. Stress Responsive Zinc-finger Protein Gene of Populus euphratica in Tobacco Enhances Salt Tolerance

    2008-01-01

    The Populus euphratica stress responsive zinc-finger protein gene PSTZ, which encodes a protein including typical Cys2/His2 zinc finger structure, was isolated by reverse transcription-polymerase chain reaction from P. euphratica.Northern hybridization revealed that its expression was induced under drought and salt stress conditions. To examine its function, cDNA of the PSTZ gene, driven by the cauliflower mosaic virus 35S promoter, was cloned into a plant expression vector pBin438 and introduced into tobacco plants. Transgenic tobacco showed an enhanced salt tolerance, suggesting that PSTZ may play a role in plant responsiveness to salt stress.

  6. IRE1/bZIP60-mediated unfolded protein response plays distinct roles in plant immunity and abiotic stress responses.

    Adrian A Moreno

    Full Text Available Endoplasmic reticulum (ER-mediated protein secretion and quality control have been shown to play an important role in immune responses in both animals and plants. In mammals, the ER membrane-located IRE1 kinase/endoribonuclease, a key regulator of unfolded protein response (UPR, is required for plasma cell development to accommodate massive secretion of immunoglobulins. Plant cells can secrete the so-called pathogenesis-related (PR proteins with antimicrobial activities upon pathogen challenge. However, whether IRE1 plays any role in plant immunity is not known. Arabidopsis thaliana has two copies of IRE1, IRE1a and IRE1b. Here, we show that both IRE1a and IRE1b are transcriptionally induced during chemically-induced ER stress, bacterial pathogen infection and treatment with the immune signal salicylic acid (SA. However, we found that IRE1a plays a predominant role in the secretion of PR proteins upon SA treatment. Consequently, the ire1a mutant plants show enhanced susceptibility to a bacterial pathogen and are deficient in establishing systemic acquired resistance (SAR, whereas ire1b is unaffected in these responses. We further demonstrate that the immune deficiency in ire1a is due to a defect in SA- and pathogen-triggered, IRE1-mediated cytoplasmic splicing of the bZIP60 mRNA, which encodes a transcription factor involved in the expression of UPR-responsive genes. Consistently, IRE1a is preferentially required for bZIP60 splicing upon pathogen infection, while IRE1b plays a major role in bZIP60 processing upon Tunicamycin (Tm-induced stress. We also show that SA-dependent induction of UPR-responsive genes is altered in the bzip60 mutant resulting in a moderate susceptibility to a bacterial pathogen. These results indicate that the IRE1/bZIP60 branch of UPR is a part of the plant response to pathogens for which the two Arabidopsis IRE1 isoforms play only partially overlapping roles and that IRE1 has both bZIP60-dependent and bZIP60-independent

  7. Sugar signalling and gene expression in relation to carbohydrate metabolism under abiotic stresses in plants

    Anil K Gupta; Narinder Kaur

    2005-12-01

    Sucrose is required for plant growth and development. The sugar status of plant cells is sensed by sensor proteins. The signal generated by signal transduction cascades, which could involve mitogen-activated protein kinases, protein phosphatases, Ca2+ and calmodulins, results in appropriate gene expression. A variety of genes are either induced or repressed depending upon the status of soluble sugars. Abiotic stresses to plants result in major alterations in sugar status and hence affect the expression of various genes by down- and up-regulating their expression. Hexokinase-dependent and hexokinase-independent pathways are involved in sugar sensing. Sucrose also acts as a signal molecule as it affects the activity of a proton-sucrose symporter. The sucrose transporter acts as a sucrose sensor and is involved in phloem loading. Fructokinase may represent an additional sensor that bypasses hexokinase phosphorylation especially when sucrose synthase is dominant. Mutants isolated on the basis of response of germination and seedling growth to sugars and reporter-based screening protocols are being used to study the response of altered sugar status on gene expression. Common cis-acting elements in sugar signalling pathways have been identified. Transgenic plants with elevated levels of sugars/sugar alcohols like fructans, raffinose series oligosaccharides, trehalose and mannitol are tolerant to different stresses but have usually impaired growth. Efforts need to be made to have transgenic plants in which abiotic stress responsive genes are expressed only at the time of adverse environmental conditions instead of being constitutively synthesized.

  8. Sequencing analysis of 20,000 full-length cDNA clones from cassava reveals lineage specific expansions in gene families related to stress response

    Sakaki Yoshiyuki

    2007-12-01

    Full Text Available Abstract Background Cassava, an allotetraploid known for its remarkable tolerance to abiotic stresses is an important source of energy for humans and animals and a raw material for many industrial processes. A full-length cDNA library of cassava plants under normal, heat, drought, aluminum and post harvest physiological deterioration conditions was built; 19968 clones were sequence-characterized using expressed sequence tags (ESTs. Results The ESTs were assembled into 6355 contigs and 9026 singletons that were further grouped into 10577 scaffolds; we found 4621 new cassava sequences and 1521 sequences with no significant similarity to plant protein databases. Transcripts of 7796 distinct genes were captured and we were able to assign a functional classification to 78% of them while finding more than half of the enzymes annotated in metabolic pathways in Arabidopsis. The annotation of sequences that were not paired to transcripts of other species included many stress-related functional categories showing that our library is enriched with stress-induced genes. Finally, we detected 230 putative gene duplications that include key enzymes in reactive oxygen species signaling pathways and could play a role in cassava stress response features. Conclusion The cassava full-length cDNA library here presented contains transcripts of genes involved in stress response as well as genes important for different areas of cassava research. This library will be an important resource for gene discovery, characterization and cloning; in the near future it will aid the annotation of the cassava genome.

  9. Sequencing analysis of 20,000 full-length cDNA clones from cassava reveals lineage specific expansions in gene families related to stress response

    Sakurai, Tetsuya; Plata, Germán; Rodríguez-Zapata, Fausto; Seki, Motoaki; Salcedo, Andrés; Toyoda, Atsushi; Ishiwata, Atsushi; Tohme, Joe; Sakaki, Yoshiyuki; Shinozaki, Kazuo; Ishitani, Manabu

    2007-01-01

    Background Cassava, an allotetraploid known for its remarkable tolerance to abiotic stresses is an important source of energy for humans and animals and a raw material for many industrial processes. A full-length cDNA library of cassava plants under normal, heat, drought, aluminum and post harvest physiological deterioration conditions was built; 19968 clones were sequence-characterized using expressed sequence tags (ESTs). Results The ESTs were assembled into 6355 contigs and 9026 singletons that were further grouped into 10577 scaffolds; we found 4621 new cassava sequences and 1521 sequences with no significant similarity to plant protein databases. Transcripts of 7796 distinct genes were captured and we were able to assign a functional classification to 78% of them while finding more than half of the enzymes annotated in metabolic pathways in Arabidopsis. The annotation of sequences that were not paired to transcripts of other species included many stress-related functional categories showing that our library is enriched with stress-induced genes. Finally, we detected 230 putative gene duplications that include key enzymes in reactive oxygen species signaling pathways and could play a role in cassava stress response features. Conclusion The cassava full-length cDNA library here presented contains transcripts of genes involved in stress response as well as genes important for different areas of cassava research. This library will be an important resource for gene discovery, characterization and cloning; in the near future it will aid the annotation of the cassava genome. PMID:18096061

  10. In silico identification of known osmotic stress responsive genes from Arabidopsis in soybean and Medicago

    Nina M. Soares-Cavalcanti

    2012-01-01

    Full Text Available Plants experience various environmental stresses, but tolerance to these adverse conditions is a very complex phenomenon. The present research aimed to evaluate a set of genes involved in osmotic response, comparing soybean and medicago with the well-described Arabidopsis thaliana model plant. Based on 103 Arabidopsis proteins from 27 categories of osmotic stress response, comparative analyses against Genosoja and Medicago truncatula databases allowed the identification of 1,088 soybean and 1,210 Medicago sequences. The analysis showed a high number of sequences and high diversity, comprising genes from all categories in both organisms. Genes with unknown function were among the most representative, followed by transcription factors, ion transport proteins, water channel, plant defense, protein degradation, cellular structure, organization & biogenesis and senescence. An analysis of sequences with unknown function allowed the annotation of 174 soybean and 217 Medicago sequences, most of them concerning transcription factors. However, for about 30% of the sequences no function could be attributed using in silico procedures. The establishment of a gene set involved in osmotic stress responses in soybean and barrel medic will help to better understand the survival mechanisms for this type of stress condition in legumes.

  11. Genome-wide characterization and analysis of bZIP transcription factor gene family related to abiotic stress in cassava.

    Hu, Wei; Yang, Hubiao; Yan, Yan; Wei, Yunxie; Tie, Weiwei; Ding, Zehong; Zuo, Jiao; Peng, Ming; Li, Kaimian

    2016-01-01

    The basic leucine zipper (bZIP) transcription factor family plays crucial roles in various aspects of biological processes. Currently, no information is available regarding the bZIP family in the important tropical crop cassava. Herein, 77 bZIP genes were identified from cassava. Evolutionary analysis indicated that MebZIPs could be divided into 10 subfamilies, which was further supported by conserved motif and gene structure analyses. Global expression analysis suggested that MebZIPs showed similar or distinct expression patterns in different tissues between cultivated variety and wild subspecies. Transcriptome analysis of three cassava genotypes revealed that many MebZIP genes were activated by drought in the root of W14 subspecies, indicating the involvement of these genes in the strong resistance of cassava to drought. Expression analysis of selected MebZIP genes in response to osmotic, salt, cold, ABA, and H2O2 suggested that they might participate in distinct signaling pathways. Our systematic analysis of MebZIPs reveals constitutive, tissue-specific and abiotic stress-responsive candidate MebZIP genes for further functional characterization in planta, yields new insights into transcriptional regulation of MebZIP genes, and lays a foundation for understanding of bZIP-mediated abiotic stress response. PMID:26947924

  12. 植物DNA甲基化变异对生物和非生物胁迫的响应机制%DNA Methylation Variation of Biological and Abiotic Stress Response Mechanism in Plant

    王晓凤; 曾凡锁; 詹亚光

    2011-01-01

    高等植物具有复杂的机制使其对环境的变化做出响应,这种机制是通过长期进化建立起来的.它们能够对出现的生物和非生物胁迫产生响应.在分子水平上,植物对各种胁迫的响应是受多基因表达变化调控的,包括植物激素水杨酸、脱落酸等信号途径在整合、协调植物胁迫过程中起关键作用.近年来的研究表明,在植物响应胁迫这一过程中还进行着表观遗传调控这一进程.我们简要综述了生物胁迫和非生物胁迫对表观遗传的影响以及胁迫印记的产生,并讨论了植物响应胁迫的表观遗传调控机制.%Plants have complex mechanisms to respond to environmental changes, such a mechanism is established through long-term evolution. They can response to biological and abiotic stress. At the molecular level, plants of various stress response are regulated by multiple gene expression, including the plant hormone salicylic acid, ABA signaling pathways in the integration, coordination of plant stress play a key role in the process. Recent studies showed that plant responses to stress are also engaged in the process of epigenetic regulation in this process. In this paper we reviewed the biological stress and abiotic stress on the impact of epigenetic imprint stress generation,and discussed the plant response to stress epigenetic mechanisms.

  13. ATP binding by the P-loop NTPase OsYchF1 (an unconventional G protein) contributes to biotic but not abiotic stress responses.

    Cheung, Ming-Yan; Li, Xiaorong; Miao, Rui; Fong, Yu-Hang; Li, Kwan-Pok; Yung, Yuk-Lin; Yu, Mei-Hui; Wong, Kam-Bo; Chen, Zhongzhou; Lam, Hon-Ming

    2016-03-01

    G proteins are involved in almost all aspects of the cellular regulatory pathways through their ability to bind and hydrolyze GTP. The YchF subfamily, interestingly, possesses the unique ability to bind both ATP and GTP, and is possibly an ancestral form of G proteins based on phylogenetic studies and is present in all kingdoms of life. However, the biological significance of such a relaxed ligand specificity has long eluded researchers. Here, we have elucidated the different conformational changes caused by the binding of a YchF homolog in rice (OsYchF1) to ATP versus GTP by X-ray crystallography. Furthermore, by comparing the 3D relationships of the ligand position and the various amino acid residues at the binding sites in the crystal structures of the apo-bound and ligand-bound versions, a mechanism for the protein's ability to bind both ligands is revealed. Mutation of the noncanonical G4 motif of the OsYchF1 to the canonical sequence for GTP specificity precludes the binding/hydrolysis of ATP and prevents OsYchF1 from functioning as a negative regulator of plant-defense responses, while retaining its ability to bind/hydrolyze GTP and its function as a negative regulator of abiotic stress responses, demonstrating the specific role of ATP-binding/hydrolysis in disease resistance. This discovery will have a significant impact on our understanding of the structure-function relationships of the YchF subfamily of G proteins in all kingdoms of life. PMID:26912459

  14. Analysis of global gene expression in Brachypodium distachyon reveals extensive network plasticity in response to abiotic stress.

    Henry D Priest

    Full Text Available Brachypodium distachyon is a close relative of many important cereal crops. Abiotic stress tolerance has a significant impact on productivity of agriculturally important food and feedstock crops. Analysis of the transcriptome of Brachypodium after chilling, high-salinity, drought, and heat stresses revealed diverse differential expression of many transcripts. Weighted Gene Co-Expression Network Analysis revealed 22 distinct gene modules with specific profiles of expression under each stress. Promoter analysis implicated short DNA sequences directly upstream of module members in the regulation of 21 of 22 modules. Functional analysis of module members revealed enrichment in functional terms for 10 of 22 network modules. Analysis of condition-specific correlations between differentially expressed gene pairs revealed extensive plasticity in the expression relationships of gene pairs. Photosynthesis, cell cycle, and cell wall expression modules were down-regulated by all abiotic stresses. Modules which were up-regulated by each abiotic stress fell into diverse and unique gene ontology GO categories. This study provides genomics resources and improves our understanding of abiotic stress responses of Brachypodium.

  15. Gene Expression Profile in the Long-Living Lotus: Insights into the Heat Stress Response Mechanism.

    Liu, Xiaojing; Du, Fengfeng; Li, Naiwei; Chang, Yajun; Yao, Dongrui

    2016-01-01

    Lotus (Nelumbo Adans) is an aquatic perennial plant that flourished during the middle Albian stage. In this study, we characterized the digital gene expression signatures for China Antique lotus under conditions of heat shock stress. Using RNA-seq technology, we sequenced four libraries, specifically, two biological replicates for control plant samples and two for heat stress samples. As a result, 6,528,866 to 8,771,183 clean reads were mapped to the reference genome, accounting for 92-96% total clean reads. A total of 396 significantly altered genes were detected across the genome, among which 315 were upregulated and 81 were downregulated by heat shock stress. Gene ontology (GO) enrichment of differentially expressed genes revealed protein folding, cell morphogenesis and cellular component morphogenesis as the top three functional terms under heat shock stress. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis led to the identification of protein processing in endoplasmic reticulum, plant-pathogen interactions, spliceosome, endocytosis, and protein export as significantly enriched pathways. Among the upregulated genes, small heat shock proteins (sHsps) and genes related to cell morphogenesis were particularly abundant under heat stress. Data from the current study provide valuable clues that may help elucidate the molecular events underlying heat stress response in China Antique lotus. PMID:27018792

  16. Gene Expression Profile in the Long-Living Lotus: Insights into the Heat Stress Response Mechanism.

    Xiaojing Liu

    Full Text Available Lotus (Nelumbo Adans is an aquatic perennial plant that flourished during the middle Albian stage. In this study, we characterized the digital gene expression signatures for China Antique lotus under conditions of heat shock stress. Using RNA-seq technology, we sequenced four libraries, specifically, two biological replicates for control plant samples and two for heat stress samples. As a result, 6,528,866 to 8,771,183 clean reads were mapped to the reference genome, accounting for 92-96% total clean reads. A total of 396 significantly altered genes were detected across the genome, among which 315 were upregulated and 81 were downregulated by heat shock stress. Gene ontology (GO enrichment of differentially expressed genes revealed protein folding, cell morphogenesis and cellular component morphogenesis as the top three functional terms under heat shock stress. Kyoto Encyclopedia of Genes and Genomes (KEGG analysis led to the identification of protein processing in endoplasmic reticulum, plant-pathogen interactions, spliceosome, endocytosis, and protein export as significantly enriched pathways. Among the upregulated genes, small heat shock proteins (sHsps and genes related to cell morphogenesis were particularly abundant under heat stress. Data from the current study provide valuable clues that may help elucidate the molecular events underlying heat stress response in China Antique lotus.

  17. Inspection of the grapevine BURP superfamily highlights an expansion of RD22 genes with distinctive expression features in berry development and ABA-mediated stress responses.

    José Tomás Matus

    Full Text Available The RESPONSIVE TO DEHYDRATION 22 (RD22 gene is a molecular link between abscisic acid (ABA signalling and abiotic stress responses. Its expression has been used as a reliable ABA early response marker. In Arabidopsis, the single copy RD22 gene possesses a BURP domain also located at the C-terminus of USP embryonic proteins and the beta subunit of polygalacturonases. In grapevine, a RD22 gene has been identified but putative paralogs are also found in the grape genome, possibly forming a large RD22 family in this species. In this work, we searched for annotations containing BURP domains in the Vitis vinifera genome. Nineteen proteins were defined by a comparative analysis between the two genome predictions and RNA-Seq data. These sequences were compared to other plant BURPs identified in previous genome surveys allowing us to reconceive group classifications based on phylogenetic relationships and protein motif occurrence. We observed a lineage-specific evolution of the RD22 family, with the biggest expansion in grapevine and poplar. In contrast, rice, sorghum and maize presented highly expanded monocot-specific groups. The Vitis RD22 group may have expanded from segmental duplications as most of its members are confined to a region in chromosome 4. The inspection of transcriptomic data revealed variable expression of BURP genes in vegetative and reproductive organs. Many genes were induced in specific tissues or by abiotic and biotic stresses. Three RD22 genes were further studied showing that they responded oppositely to ABA and to stress conditions. Our results show that the inclusion of RNA-Seq data is essential while describing gene families and improving gene annotations. Robust phylogenetic analyses including all BURP members from other sequenced species helped us redefine previous relationships that were erroneously established. This work provides additional evidence for RD22 genes serving as marker genes for different organs or stresses

  18. Inspection of the grapevine BURP superfamily highlights an expansion of RD22 genes with distinctive expression features in berry development and ABA-mediated stress responses.

    Matus, José Tomás; Aquea, Felipe; Espinoza, Carmen; Vega, Andrea; Cavallini, Erika; Dal Santo, Silvia; Cañón, Paola; Rodríguez-Hoces de la Guardia, Amparo; Serrano, Jennifer; Tornielli, Giovanni Battista; Arce-Johnson, Patricio

    2014-01-01

    The RESPONSIVE TO DEHYDRATION 22 (RD22) gene is a molecular link between abscisic acid (ABA) signalling and abiotic stress responses. Its expression has been used as a reliable ABA early response marker. In Arabidopsis, the single copy RD22 gene possesses a BURP domain also located at the C-terminus of USP embryonic proteins and the beta subunit of polygalacturonases. In grapevine, a RD22 gene has been identified but putative paralogs are also found in the grape genome, possibly forming a large RD22 family in this species. In this work, we searched for annotations containing BURP domains in the Vitis vinifera genome. Nineteen proteins were defined by a comparative analysis between the two genome predictions and RNA-Seq data. These sequences were compared to other plant BURPs identified in previous genome surveys allowing us to reconceive group classifications based on phylogenetic relationships and protein motif occurrence. We observed a lineage-specific evolution of the RD22 family, with the biggest expansion in grapevine and poplar. In contrast, rice, sorghum and maize presented highly expanded monocot-specific groups. The Vitis RD22 group may have expanded from segmental duplications as most of its members are confined to a region in chromosome 4. The inspection of transcriptomic data revealed variable expression of BURP genes in vegetative and reproductive organs. Many genes were induced in specific tissues or by abiotic and biotic stresses. Three RD22 genes were further studied showing that they responded oppositely to ABA and to stress conditions. Our results show that the inclusion of RNA-Seq data is essential while describing gene families and improving gene annotations. Robust phylogenetic analyses including all BURP members from other sequenced species helped us redefine previous relationships that were erroneously established. This work provides additional evidence for RD22 genes serving as marker genes for different organs or stresses in grapevine. PMID

  19. Gene-Environment Interactions in Stress Response Contribute Additively to a Genotype-Environment Interaction

    Matsui, Takeshi; Ehrenreich, Ian M.

    2016-01-01

    How combinations of gene-environment interactions collectively give rise to genotype-environment interactions is not fully understood. To shed light on this problem, we genetically dissected an environment-specific poor growth phenotype in a cross of two budding yeast strains. This phenotype is detectable when certain segregants are grown on ethanol at 37°C (‘E37’), a condition that differs from the standard culturing environment in both its carbon source (ethanol as opposed to glucose) and temperature (37°C as opposed to 30°C). Using recurrent backcrossing with phenotypic selection, we identified 16 contributing loci. To examine how these loci interact with each other and the environment, we focused on a subset of four loci that together can lead to poor growth in E37. We measured the growth of all 16 haploid combinations of alleles at these loci in all four possible combinations of carbon source (ethanol or glucose) and temperature (30 or 37°C) in a nearly isogenic population. This revealed that the four loci act in an almost entirely additive manner in E37. However, we also found that these loci have weaker effects when only carbon source or temperature is altered, suggesting that their effect magnitudes depend on the severity of environmental perturbation. Consistent with such a possibility, cloning of three causal genes identified factors that have unrelated functions in stress response. Thus, our results indicate that polymorphisms in stress response can show effects that are intensified by environmental stress, thereby resulting in major genotype-environment interactions when multiple of these variants co-occur. PMID:27437938

  20. ERK Oscillation-Dependent Gene Expression Patterns and Deregulation by Stress-Response

    Waters, Katrina M.; Cummings, Brian S.; Shankaran, Harish; Scholpa, Natalie E.; Weber, Thomas J.

    2014-09-15

    Studies were undertaken to determine whether ERK oscillations regulate a unique subset of genes in human keratinocytes and subsequently, whether the p38 stress response inhibits ERK oscillations. A DNA microarray identified many genes that were unique to ERK oscillations, and network reconstruction predicted an important role for the mediator complex subunit 1 (MED1) node in mediating ERK oscillation-dependent gene expression. Increased ERK-dependent phosphorylation of MED1 was observed in oscillating cells compared to non-oscillating counterparts as validation. Treatment of keratinocytes with a p38 inhibitor (SB203580) increased ERK oscillation amplitudes and MED1 and phospho-MED1 protein levels. Bromate is a probable human carcinogen that activates p38. Bromate inhibited ERK oscillations in human keratinocytes and JB6 cells and induced an increase in phospho-p38 and decrease in phospho-MED1 protein levels. Treatment of normal rat kidney cells and primary salivary gland epithelial cells with bromate decreased phospho-MED1 levels in a reversible fashion upon treatment with p38 inhibitors (SB202190; SB203580). Our results indicate that oscillatory behavior in the ERK pathway alters homeostatic gene regulation patterns and that the cellular response to perturbation may manifest differently in oscillating vs non-oscillating cells.

  1. Late Embryogenesis Abundant (LEA Constitutes a Large and Diverse Family of Proteins Involved in Development and Abiotic Stress Responses in Sweet Orange (Citrus sinensis L. Osb..

    Andresa Muniz Pedrosa

    Full Text Available Late Embryogenesis Abundant (LEA proteins are an ubiquitous group of polypeptides that were first described to accumulate during plant seed dehydration, at the later stages of embryogenesis. Since then they have also been recorded in vegetative plant tissues experiencing water limitation and in anhydrobiotic bacteria and invertebrates and, thereby, correlated with the acquisition of desiccation tolerance. This study provides the first comprehensive study about the LEA gene family in sweet orange (Citrus sinensis L. Osb., the most important and widely grown fruit crop around the world. A surprisingly high number (72 of genes encoding C. sinensis LEAs (CsLEAs were identified and classified into seven groups (LEA_1, LEA_2, LEA_3 and LEA_4, LEA_5, DEHYDRIN and SMP based on their predicted amino acid sequences and also on their phylogenetic relationships with the complete set of Arabidopsis thaliana LEA proteins (AtLEAs. Approximately 60% of the CsLEAs identified in this study belongs to the unusual LEA_2 group of more hydrophobic LEA proteins, while the other LEA groups contained a relatively small number of members typically hydrophilic. A correlation between gene structure and motif composition was observed within each LEA group. Investigation of their chromosomal localizations revealed that the CsLEAs were non-randomly distributed across all nine chromosomes and that 33% of all CsLEAs are segmentally or tandemly duplicated genes. Analysis of the upstream sequences required for transcription revealed the presence of various stress-responsive cis-acting regulatory elements in the promoter regions of CsLEAs, including ABRE, DRE/CRT, MYBS and LTRE. Expression analysis using both RNA-seq data and quantitative real-time RT-PCR (qPCR revealed that the CsLEA genes are widely expressed in various tissues, and that many genes containing the ABRE promoter sequence are induced by drought, salt and PEG. These results provide a useful reference for further

  2. Late Embryogenesis Abundant (LEA) Constitutes a Large and Diverse Family of Proteins Involved in Development and Abiotic Stress Responses in Sweet Orange (Citrus sinensis L. Osb.).

    Pedrosa, Andresa Muniz; Martins, Cristina de Paula Santos; Gonçalves, Luana Pereira; Costa, Marcio Gilberto Cardoso

    2015-01-01

    Late Embryogenesis Abundant (LEA) proteins are an ubiquitous group of polypeptides that were first described to accumulate during plant seed dehydration, at the later stages of embryogenesis. Since then they have also been recorded in vegetative plant tissues experiencing water limitation and in anhydrobiotic bacteria and invertebrates and, thereby, correlated with the acquisition of desiccation tolerance. This study provides the first comprehensive study about the LEA gene family in sweet orange (Citrus sinensis L. Osb.), the most important and widely grown fruit crop around the world. A surprisingly high number (72) of genes encoding C. sinensis LEAs (CsLEAs) were identified and classified into seven groups (LEA_1, LEA_2, LEA_3 and LEA_4, LEA_5, DEHYDRIN and SMP) based on their predicted amino acid sequences and also on their phylogenetic relationships with the complete set of Arabidopsis thaliana LEA proteins (AtLEAs). Approximately 60% of the CsLEAs identified in this study belongs to the unusual LEA_2 group of more hydrophobic LEA proteins, while the other LEA groups contained a relatively small number of members typically hydrophilic. A correlation between gene structure and motif composition was observed within each LEA group. Investigation of their chromosomal localizations revealed that the CsLEAs were non-randomly distributed across all nine chromosomes and that 33% of all CsLEAs are segmentally or tandemly duplicated genes. Analysis of the upstream sequences required for transcription revealed the presence of various stress-responsive cis-acting regulatory elements in the promoter regions of CsLEAs, including ABRE, DRE/CRT, MYBS and LTRE. Expression analysis using both RNA-seq data and quantitative real-time RT-PCR (qPCR) revealed that the CsLEA genes are widely expressed in various tissues, and that many genes containing the ABRE promoter sequence are induced by drought, salt and PEG. These results provide a useful reference for further exploration of

  3. Absence of functional TolC protein causes increased stress response gene expression in Sinorhizobium meliloti

    Moreira Leonilde M

    2010-06-01

    Full Text Available Abstract Background The TolC protein from Sinorhizobium meliloti has previously been demonstrated to be required for establishing successful biological nitrogen fixation symbiosis with Medicago sativa. It is also needed in protein and exopolysaccharide secretion and for protection against osmotic and oxidative stresses. Here, the transcriptional profile of free-living S. meliloti 1021 tolC mutant is described as a step toward understanding its role in the physiology of the cell. Results Comparison of tolC mutant and wild-type strains transcriptomes showed 1177 genes with significantly increased expression while 325 had significantly decreased expression levels. The genes with an increased expression suggest the activation of a cytoplasmic and extracytoplasmic stress responses possibly mediated by the sigma factor RpoH1 and protein homologues of the CpxRA two-component regulatory system of Enterobacteria, respectively. Stress conditions are probably caused by perturbation of the cell envelope. Consistent with gene expression data, biochemical analysis indicates that the tolC mutant suffers from oxidative stress. This is illustrated by the elevated enzyme activity levels detected for catalase, superoxide dismutase and glutathione reductase. The observed increase in the expression of genes encoding products involved in central metabolism and transporters for nutrient uptake suggests a higher metabolic rate of the tolC mutant. We also demonstrated increased swarming motility in the tolC mutant strain. Absence of functional TolC caused decreased expression mainly of genes encoding products involved in nitrogen metabolism and transport. Conclusion This work shows how a mutation in the outer membrane protein TolC, common to many bacterial transport systems, affects expression of a large number of genes that act in concert to restore cell homeostasis. This finding further underlines the fundamental role of this protein in Sinorhizobium meliloti biology.

  4. Identification of salt-stress responsive genes in rice (Oryza sativa L.) by cDNA array

    何新建; 陈建权; 张志刚; 张劲松; 陈受宜

    2002-01-01

    To identify salt stress-responsive genes, we constructed a cDNA library with the salt-tolerant rice cultivar, Lansheng. About 15000 plasmids were extracted and dotted on filters with Biomeck 2000 HDRT system or by hand. Thirty genes were identified to display altered expression levels responding to 150 mmol/L NaCl. Among them eighteen genes were up-regulated and the remainders down-regulated. Twenty-seven genes have their homologous genes in GenBank Databases. The expression of twelve genes was studied by Northern analysis. Based on the functions, these genes can be classified into five categories, including photosynthesis-related gene, transport-related gene, metabolism-related gene, stress- or resistance-related gene and the others with various functions. The results showed that salt stress influenced many aspects of rice growth. Some of these genes may play important roles in plant salt tolerance.

  5. Monitoring expression profiles of rice (Oryza sativa L.) genes under abiotic stresses using cDNA Microarray Analysis (abstract)

    Transcript regulation in response to cold, drought, high salinity and ABA application was investigated in rice (Oryza sativa L., Nipponbare) with microarray analysis including approx. 1700 independent DNA elements derived from three cDNA libraries constructed from 15-day old rice seedlings stressed with drought, cold and high salinity. A total of 141 non-redundant genes were identified, whose expression ratios were more than three-fold compared with the control genes for at least one of stress treatments in microarray analysis. However, after RNA gel blot analysis, a total of 73 genes were identified, among them the transcripts of 36, 62, 57 and 43 genes were found increased after cold, drought, high salinity and ABA application, respectively. Sixteen of these identified genes have been reported previously to be stress inducible in rice, while 57 of which are novel that have not been reported earlier as stress responsive in rice. We observed a strong association in the expression patterns of stress responsive genes and found 15 stress inducible genes that responded to all four treatments. Based on Venn diagram analysis, 56 genes were induced by both drought and high salinity, whereas 22 genes were upregulated by both cold and high salinity stress. Similarly 43 genes were induced by both drought stress and ABA application, while only 17 genes were identified as cold and ABA inducible genes. These results indicated the existence of greater cross talk between drought, ABA and high salinity stress signaling processes than those between cold and ABA, and cold and high salinity stress signaling pathways. The cold, drought, high salinity and ABA inducible genes were classified into four gene groups from their expression profiles. Analysis of data enabled us to identify a number of promoters and possible cis-acting DNA elements of several genes induced by a variety of abiotic stresses by combining expression data with genomic sequence data of rice. Comparative analysis of

  6. Identification of Novel Stress-responsive Transcription Factor Genes in Rice by cDNA Array Analysis

    Cong-Qing Wu; Hong-Hong Hu; Ya Zeng; Da-Cheng Liang; Ka-Bin Xie; Jian-Wei Zhang; Zhao-Hui Chu; Li-Zhong Xiong

    2006-01-01

    Numerous studies have shown that array of transcription factors has a role in regulating plant responses to environmental stresses. Only a small portion of them however, have been identified or characterized.More than 2 300 putative transcription factors were predicted in the rice genome and more than half of them were supported by expressed sequences. With an attempt to identify novel transcription factors involved in the stress responses, a cDNA array containing 753 putative rice transcription factors was generated to analyze the transcript profiles of these genes under drought and salinity stresses and abscisic acid treatment at seedling stage of rice. About 80% of these transcription factors showed detectable levels of transcript in seedling leaves. A total of 18 up-regulated transcription factors and 29 down-regulated transcription factors were detected with the folds of changes from 2.0 to 20.5 in at least one stress treatment.Most of these stress-responsive genes have not been reported and the expression patterns for five genes under stress conditions were further analyzed by RNA gel blot analysis. These novel stress-responsive transcription factors provide new opportunities to study the regulation of gene expression in plants under stress conditions.

  7. Overexpression of GmHsp90s, a heat shock protein 90 (Hsp90 gene family cloning from soybean, decrease damage of abiotic stresses in Arabidopsis thaliana.

    Jinyan Xu

    Full Text Available Hsp90 is one of the most conserved and abundant molecular chaperones and is an essential component of the protective stress response; however, its roles in abiotic stress responses in soybean (Glycine max remain obscure. Here, 12 GmHsp90 genes from soybean were identified and found to be expressed and to function differentially under abiotic stresses. The 12 GmHsp90 genes were isolated and named GmHsp90A1-GmHsp90A6, GmHsp90B1, GmHsp90B2, GmHsp90C1.1, GmHsp90C1.2, GmHsp90C2.1 and GmHsp90C2.2 based on their characteristics and high homology to other Hsp90s according to a new nomenclature system. Quantitative real-time PCR expression data revealed that all the genes exhibited higher transcript levels in leaves and could be strongly induced under heat, osmotic and salt stress but not cold stress. Overexpression of five typical genes (GmHsp90A2, GmHsp90A4, GmHsp90B1, GmHsp90C1.1 and GmHsp90C2.1 in Arabidopsis thaliana provided useful evidences that GmHsp90 genes can decrease damage of abiotic stresses. In addition, an abnormal accumulation of proline was detected in some transgenic Arabidopsis plants suggested overexpressing GmHsp90s may affect the synthesis and response system of proline. Our work represents a systematic determination of soybean genes encoding Hsp90s, and provides useful evidence that GmHsp90 genes function differently in response to abiotic stresses and may affect the synthesis and response system of proline.

  8. Epigenetic marks in an adaptive water stress-responsive gene in tomato roots under normal and drought conditions

    González, Rodrigo M; Martiniano M Ricardi; Iusem, Norberto D

    2013-01-01

    Tolerance to water deficits was evolutionarily relevant to the conquest of land by primitive plants. In this context, epigenetic events may have played important roles in the establishment of drought stress responses. We decided to inspect epigenetic marks in the plant organ that is crucial in the sensing of drought stress: the root. Using tomato as a crop model plant, we detected the methylated epialleles of Asr2, a protein-coding gene widespread in the plant kingdom and thought to alleviate...

  9. Induction of cytochrome P450 1 genes and stress response genes in developing zebrafish exposed to ultraviolet radiation

    Behrendt, Lars [Biology Department, Redfield 352 MS-32, Woods Hole Oceanographic Institution, 45 Water Street, Woods Hole, MA 02543 (United States); Joensson, Maria E. [Biology Department, Redfield 352 MS-32, Woods Hole Oceanographic Institution, 45 Water Street, Woods Hole, MA 02543 (United States); Department of Environmental Toxicology, Uppsala University (Sweden); Goldstone, Jared V. [Biology Department, Redfield 352 MS-32, Woods Hole Oceanographic Institution, 45 Water Street, Woods Hole, MA 02543 (United States); Stegeman, John J., E-mail: jstegeman@whoi.edu [Biology Department, Redfield 352 MS-32, Woods Hole Oceanographic Institution, 45 Water Street, Woods Hole, MA 02543 (United States)

    2010-06-01

    Ultraviolet (UV) radiation damages cell molecules, and has been suggested to up-regulate mammalian cytochrome P4501 (CYP1) genes through an aryl hydrocarbon receptor (AHR) mediated mechanism. In this study, embryos and larvae of zebrafish (Danio rerio) were exposed to UV to determine the effects on expression of CYP1 and stress response genes in vivo in these fish. Zebrafish embryos were exposed for varying times to UV on two consecutive days, with exposure beginning at 24 and 48 h post-fertilization (hpf). Embryos exposed for 2, 4 or 6 h twice over 2 days to UVB (0.62 W/m{sup 2}; 8.9-26.7 kJ/m{sup 2}) plus UVA (2.05 W/m{sup 2}; 29.5-144.6 kJ/m{sup 2}) had moderately (2.4 {+-} 0.8-fold) but significantly up-regulated levels of CYP1A. UVA alone had no effect on CYP1A expression. Proliferating cellular nuclear antigen (PCNA) and Cu-Zn superoxide dismutase (SOD1) transcript levels were induced (2.1 {+-} 0.2 and 2.3 {+-} 0.5-fold, respectively) in embryos exposed to two 6-h pulses of 0.62 W/m{sup 2} UVB (26.8 kJ/m{sup 2}). CYP1A was induced also in embryos exposed to higher intensity UVB (0.93 W/m{sup 2}) for two 3-h or two 4-h pulses (20.1 or 26.8 kJ/m{sup 2}). CYP1B1, SOD1 and PCNA expression was induced by the two 3-h pulses of the higher intensity UVB, but not after two 4-h pulses of the higher intensity UVB, possibly due to impaired condition of surviving embryos, reflected in a mortality of 34% at that UVB dose. A single 8-h long exposure of zebrafish larvae (8 dpf) to UVB at 0.93 W/m{sup 2} (26.8 kJ/m{sup 2}) significantly induced CYP1A and CYP1B1 expression, but other CYP1 genes (CYP1C1, CYP1C2 and CYP1D1) showed no significant increase. The results show that UVB can induce expression of CYP1 genes as well stress response genes in developing zebrafish, and that UVB intensity and duration influence the responses.

  10. Heterografting with nonself rootstocks induces genes involved in stress responses at the graft interface when compared with autografted controls

    Cookson, S. J.

    2014-01-01

    Although grafting is widely used in the agriculture of fruit-bearing crops, little is known about graft union formation in particular when two different species are grafted together. It is fascinating that two different plant species brought together can develop harmoniously as one organism for many decades. The objective of this study was to determine whether grafting two different grapevine genotypes alters gene expression at the graft interface in comparison to the presumably wound-like gene expression changes induced in autografts. Gene expression at the graft interface was studied 3, 7, 14, and 28 d after grafting in hetero- and autografts of grapevine (Vitis spp.). Genes differentially expressed between the hetero- and autografts during graft union formation were identified. These genes were clustered according to their expression profile over the time course. MapMan and Gene Ontology enrichment analysis revealed the coordinated upregulation of genes from numerous functional categories related to stress responses in the hetero- compared to the autografts. This indicates that heterografting with nonself rootstocks upregulates stress responses at the graft interface, potentially suggesting that the cells of the graft interface can detect the presence of a nonself grafting partner. PMID:24692649

  11. Overexpression of a stress-responsive NAC transcription factor gene ONAC022 improves drought and salt tolerance in rice

    Yongbo eHong

    2016-01-01

    Full Text Available The NAC transcription factors play critical roles in regulating stress responses in plants. However, the functions for many of the NAC family members in rice are yet to be identified. In the present study, a novel stress-responsive rice NAC gene, ONAC022, was identified. Expression of ONAC022 was induced by drought, high salinity and abscisic acid (ABA. The ONAC022 protein was found to bind specifically to a canonical NAC recognition cis-element sequence and showed transactivation activity at its C-terminus in yeast. The ONAC022 protein was localized to nucleus when transiently expressed in Nicotiana benthamiana. Three independent transgenic rice lines with overexpression of ONAC022 were generated and used to explore the function of ONAC022 in drought and salt stress tolerance. Under drought stress condition in greenhouse, soil-grown ONAC022-overexpressing (N22oe transgenic rice plants showed an increased drought tolerance, leading to higher survival ratios and better growth than wild type plants. When grown hydroponically in Hogland solution supplemented with 150 mM NaCl, the N22oe plants displayed an enhanced salt tolerance and accumulated less Na+ in roots and shoots as compared to the wild type plants. Under drought stress condition, the N22oe plants exhibited decreased rates of water loss and transpiration, reduced percentage of open stomata and increased contents of proline and soluble sugars. However, the N22oe lines showed increased sensitivity to exogenous ABA at seed germination and seedling growth stages but contained higher level of endogenous ABA. Expression of some ABA biosynthetic genes (OsNCEDs and OsPSY, signaling and regulatory genes (OsPP2C02, OsPP2C49, OsPP2C68, OsbZIP23, OsAP37, OsDREB2a and OsMYB2 and late stress-responsive genes (OsRAB21, OsLEA3 and OsP5CS1 was upregulated in the N22oe plants. Our data demonstrate that ONAC022 functions as a stress-responsive NAC with transcriptional activator activity and plays a positive

  12. Overexpression of a Stress-Responsive NAC Transcription Factor Gene ONAC022 Improves Drought and Salt Tolerance in Rice.

    Hong, Yongbo; Zhang, Huijuan; Huang, Lei; Li, Dayong; Song, Fengming

    2016-01-01

    The NAC transcription factors play critical roles in regulating stress responses in plants. However, the functions for many of the NAC family members in rice are yet to be identified. In the present study, a novel stress-responsive rice NAC gene, ONAC022, was identified. Expression of ONAC022 was induced by drought, high salinity, and abscisic acid (ABA). The ONAC022 protein was found to bind specifically to a canonical NAC recognition cis-element sequence and showed transactivation activity at its C-terminus in yeast. The ONAC022 protein was localized to nucleus when transiently expressed in Nicotiana benthamiana. Three independent transgenic rice lines with overexpression of ONAC022 were generated and used to explore the function of ONAC022 in drought and salt stress tolerance. Under drought stress condition in greenhouse, soil-grown ONAC022-overexpressing (N22oe) transgenic rice plants showed an increased drought tolerance, leading to higher survival ratios and better growth than wild-type (WT) plants. When grown hydroponically in Hogland solution supplemented with 150 mM NaCl, the N22oe plants displayed an enhanced salt tolerance and accumulated less Na(+) in roots and shoots as compared to WT plants. Under drought stress condition, the N22oe plants exhibited decreased rates of water loss and transpiration, reduced percentage of open stomata and increased contents of proline and soluble sugars. However, the N22oe lines showed increased sensitivity to exogenous ABA at seed germination and seedling growth stages but contained higher level of endogenous ABA. Expression of some ABA biosynthetic genes (OsNCEDs and OsPSY), signaling and regulatory genes (OsPP2C02, OsPP2C49, OsPP2C68, OsbZIP23, OsAP37, OsDREB2a, and OsMYB2), and late stress-responsive genes (OsRAB21, OsLEA3, and OsP5CS1) was upregulated in N22oe plants. Our data demonstrate that ONAC022 functions as a stress-responsive NAC with transcriptional activator activity and plays a positive role in drought

  13. New Insights on Drought Stress Response by Global Investigation of Gene Expression Changes in Sheepgrass (Leymus chinensis)

    Zhao, Pincang; Liu, Panpan; Yuan, Guangxiao; Jia, Junting; Li, Xiaoxia; Qi, Dongmei; Chen, Shuangyan; Ma, Tian; Liu, Gongshe; Cheng, Liqin

    2016-01-01

    Water is a critical environmental factor that restricts the geographic distribution of plants. Sheepgrass [Leymus chinensis, (Trin.) Tzvel] is an important forage grass in the Eurasia Steppe and a close germplasm for wheat and barley. This native grass adapts well to adverse environments such as cold, salinity, alkalinity and drought, and it can survive when the soil moisture may be less than 6% in dry seasons. However, little is known about how sheepgrass tolerates water stress at the molecular level. Here, drought stress experiment and RNA-sequencing (RNA-seq) was performed in three pools of RNA samples (control, drought stress, and rewatering). We found that sheepgrass seedlings could still survive when the soil water content (SWC) was reduced to 14.09%. Differentially expressed genes (DEGs) analysis showed that 7320 genes exhibited significant responses to drought stress. Of these DEGs, 2671 presented opposite expression trends before and after rewatering. Furthermore, ~680 putative sheepgrass-specific water responsive genes were revealed that can be studied deeply. Gene ontology (GO) annotation revealed that stress-associated genes were activated extensively by drought treatment. Interestingly, cold stress-related genes were up-regulated greatly after drought stress. The DEGs of MAPK and calcium signal pathways, plant hormone ABA, jasmonate, ethylene, brassinosteroid signal pathways, cold response CBF pathway participated coordinatively in sheepgrass drought stress response. In addition, we identified 288 putative transcription factors (TFs) involved in drought response, among them, the WRKY, NAC, AP2/ERF, bHLH, bZIP, and MYB families were enriched, and might play crucial and significant roles in drought stress response of sheepgrass. Our research provided new and valuable information for understanding the mechanism of drought tolerance in sheepgrass. Moreover, the identification of genes involved in drought response can facilitate the genetic improvement of

  14. Analysis of Stress-Responsive Gene Expression in Cultivated and Weedy Rice Differing in Cold Stress Tolerance.

    Bevilacqua, Caroline Borges; Basu, Supratim; Pereira, Andy; Tseng, Te-Ming; Zimmer, Paulo Dejalma; Burgos, Nilda Roma

    2015-01-01

    Rice (Oryza sativa L.) cultivars show impairment of growth in response to environmental stresses such as cold at the early seedling stage. Locally adapted weedy rice is able to survive under adverse environmental conditions, and can emerge in fields from greater soil depth. Cold-tolerant weedy rice can be a good genetic source for developing cold-tolerant, weed-competitive rice cultivars. An in-depth analysis is presented here of diverse indica and japonica rice genotypes, mostly weedy rice, for cold stress response to provide an understanding of different stress adaptive mechanisms towards improvement of the rice crop performance in the field. We have tested a collection of weedy rice genotypes to: 1) classify the subspecies (ssp.) grouping (japonica or indica) of 21 accessions; 2) evaluate their sensitivity to cold stress; and 3) analyze the expression of stress-responsive genes under cold stress and a combination of cold and depth stress. Seeds were germinated at 25°C at 1.5- and 10-cm sowing depth for 10d. Seedlings were then exposed to cold stress at 10°C for 6, 24 and 96h, and the expression of cold-, anoxia-, and submergence-inducible genes was analyzed. Control plants were seeded at 1.5cm depth and kept at 25°C. The analysis revealed that cold stress signaling in indica genotypes is more complex than that of japonica as it operates via both the CBF-dependent and CBF-independent pathways, implicated through induction of transcription factors including OsNAC2, OsMYB46 and OsF-BOX28. When plants were exposed to cold + sowing depth stress, a complex signaling network was induced that involved cross talk between stresses mediated by CBF-dependent and CBF-independent pathways to circumvent the detrimental effects of stresses. The experiments revealed the importance of the CBF regulon for tolerance to both stresses in japonica and indica ssp. The mechanisms for cold tolerance differed among weedy indica genotypes and also between weedy indica and cultivated

  15. Analysis of Stress-Responsive Gene Expression in Cultivated and Weedy Rice Differing in Cold Stress Tolerance.

    Caroline Borges Bevilacqua

    Full Text Available Rice (Oryza sativa L. cultivars show impairment of growth in response to environmental stresses such as cold at the early seedling stage. Locally adapted weedy rice is able to survive under adverse environmental conditions, and can emerge in fields from greater soil depth. Cold-tolerant weedy rice can be a good genetic source for developing cold-tolerant, weed-competitive rice cultivars. An in-depth analysis is presented here of diverse indica and japonica rice genotypes, mostly weedy rice, for cold stress response to provide an understanding of different stress adaptive mechanisms towards improvement of the rice crop performance in the field. We have tested a collection of weedy rice genotypes to: 1 classify the subspecies (ssp. grouping (japonica or indica of 21 accessions; 2 evaluate their sensitivity to cold stress; and 3 analyze the expression of stress-responsive genes under cold stress and a combination of cold and depth stress. Seeds were germinated at 25°C at 1.5- and 10-cm sowing depth for 10d. Seedlings were then exposed to cold stress at 10°C for 6, 24 and 96h, and the expression of cold-, anoxia-, and submergence-inducible genes was analyzed. Control plants were seeded at 1.5cm depth and kept at 25°C. The analysis revealed that cold stress signaling in indica genotypes is more complex than that of japonica as it operates via both the CBF-dependent and CBF-independent pathways, implicated through induction of transcription factors including OsNAC2, OsMYB46 and OsF-BOX28. When plants were exposed to cold + sowing depth stress, a complex signaling network was induced that involved cross talk between stresses mediated by CBF-dependent and CBF-independent pathways to circumvent the detrimental effects of stresses. The experiments revealed the importance of the CBF regulon for tolerance to both stresses in japonica and indica ssp. The mechanisms for cold tolerance differed among weedy indica genotypes and also between weedy indica and

  16. Comprehensive expression analysis suggests overlapping and specific roles of rice glutathione S-transferase genes during development and stress responses

    Bhattacharjee Annapurna

    2010-01-01

    Full Text Available Abstract Background Glutathione S-transferases (GSTs are the ubiquitous enzymes that play a key role in cellular detoxification. Although several GSTs have been identified and characterized in various plant species, the knowledge about their role in developmental processes and response to various stimuli is still very limited. In this study, we report genome-wide identification, characterization and comprehensive expression analysis of members of GST gene family in crop plant rice, to reveal their function(s. Results A systematic analysis revealed the presence of at least 79 GST genes in the rice genome. Phylogenetic analysis grouped GST proteins into seven classes. Sequence analysis together with the organization of putative motifs indicated the potential diverse functions of GST gene family members in rice. The tandem gene duplications have contributed a major role in expansion of this gene family. Microarray data analysis revealed tissue-/organ- and developmental stage-specific expression patterns of several rice GST genes. At least 31 GST genes showed response to plant hormones auxin and cytokinin. Furthermore, expression analysis showed the differential expression of quite a large number of GST genes during various abiotic stress (20, arsenate stress (32 and biotic stress (48 conditions. Many of the GST genes were commonly regulated by developmental processes, hormones, abiotic and biotic stresses. Conclusion The transcript profiling suggests overlapping and specific role(s of GSTs during various stages of development in rice. Further, the study provides evidence for the role of GSTs in mediating crosstalk between various stress and hormone response pathways and represents a very useful resource for functional analysis of selected members of this family in rice.

  17. Stress-responsive expression patterns and functional characterization of cold shock domain proteins in cabbage (Brassica rapa) under abiotic stress conditions.

    Choi, Min Ji; Park, Ye Rin; Park, Su Jung; Kang, Hunseung

    2015-11-01

    Although the functional roles of cold shock domain proteins (CSDPs) have been demonstrated during the growth, development, and stress adaptation of Arabidopsis (Arabidopsis thaliana), rice (Oryza sativa), and wheat (Triticum aestivum), the functions of CSDPs in other plants species, including cabbage (Brassica rapa), are largely unknown. To gain insight into the roles of CSDPs in cabbage under stress conditions, the genes encoding CSDPs in cabbage were isolated, and the functional roles of CSDPs in response to environmental stresses were analyzed. Real-time RT-PCR analysis revealed that the levels of BrCSDP transcripts increased during cold, salt, or drought stress, as well as upon ABA treatment. Among the five BrCSDP genes found in the cabbage genome, one CSDP (BRU12051), named BrCSDP3, was unique in that it is localized to the chloroplast as well as to the nucleus. Ectopic expression of BrCSDP3 in Arabidopsis resulted in accelerated seed germination and better seedling growth compared to the wild-type plants under high salt or dehydration stress conditions, and in response to ABA treatment. BrCSDP3 did not affect the splicing of intron-containing genes and processing of rRNAs in the chloroplast. BrCSDP3 had the ability to complement RNA chaperone-deficient Escherichia coli mutant cells under low temperatures as well as DNA- and RNA-melting abilities, suggesting that it possesses RNA chaperone activity. Taken together, these results suggest that BrCSDP3, harboring RNA chaperone activity, plays a role as a positive regulator in seed germination and seedling growth under stress conditions. PMID:26263516

  18. Identification of Multiple Stress Responsive Genes by Sequencing a Normalized cDNA Library from Sea-Land Cotton (Gossypium barbadense L..

    Bin Zhou

    Full Text Available Plants often face multiple stresses including drought, extreme temperature, salinity, nutrition deficiency and biotic stresses during growth and development. All the stresses result in a series of physiological and metabolic reactions and then generate reversible inhibition of metabolism and growth and can cause seriously irreversible damage, even death. At each stage of cotton growth, environmental stress conditions pose devastating threats to plant growth and development, especially yield and quality. Due to the complex stress conditions and unclear molecular mechanisms of stress response, there is an urgent need to explore the mechanisms of cotton response against abiotic stresses.A normalized cDNA library was constructed using Gossypium barbadense Hai-7124 treated with different stress conditions (heat, cold, salt, drought, potassium and phosphorus deficit and Verticillium dahliae infection. Random sequencing of this library generated 6,047 high-quality expressed sequence tags (ESTs. The ESTs were clustered and assembled into 3,135 uniESTs, composed of 2,497 contigs and 638 singletons. The blastx results demonstrated 2,746 unigenes showing significant similarity to known genes, 74 uniESTs displaying significant similarity to genes of predicted proteins, and 315 uniESTs remain uncharacterized. Functional classification unveiled the abundance of uniESTs in binding, catalytic activity, and structural molecule activity. Annotations of the uniESTs by the plant transcription factor database (PlantTFDB and Plant Stress Protein Database (PSPDB disclosed that transcription factors and stress-related genes were enriched in the current library. The expression of some transcription factors and specific stress-related genes were verified by RT-PCR under various stress conditions.Annotation results showed that a huge number of genes respond to stress in our study, such as MYB-related, C2H2, FAR1, bHLH, bZIP, MADS, and mTERF. These results will improve our

  19. Identification of Multiple Stress Responsive Genes by Sequencing a Normalized cDNA Library from Sea-Land Cotton (Gossypium barbadense L.)

    Zhou, Bin; Zhang, Lin; Ullah, Abid; Jin, Xin; Yang, Xiyan; Zhang, Xianlong

    2016-01-01

    Background Plants often face multiple stresses including drought, extreme temperature, salinity, nutrition deficiency and biotic stresses during growth and development. All the stresses result in a series of physiological and metabolic reactions and then generate reversible inhibition of metabolism and growth and can cause seriously irreversible damage, even death. At each stage of cotton growth, environmental stress conditions pose devastating threats to plant growth and development, especially yield and quality. Due to the complex stress conditions and unclear molecular mechanisms of stress response, there is an urgent need to explore the mechanisms of cotton response against abiotic stresses. Methodology and Principal Findings A normalized cDNA library was constructed using Gossypium barbadense Hai-7124 treated with different stress conditions (heat, cold, salt, drought, potassium and phosphorus deficit and Verticillium dahliae infection). Random sequencing of this library generated 6,047 high-quality expressed sequence tags (ESTs). The ESTs were clustered and assembled into 3,135 uniESTs, composed of 2,497 contigs and 638 singletons. The blastx results demonstrated 2,746 unigenes showing significant similarity to known genes, 74 uniESTs displaying significant similarity to genes of predicted proteins, and 315 uniESTs remain uncharacterized. Functional classification unveiled the abundance of uniESTs in binding, catalytic activity, and structural molecule activity. Annotations of the uniESTs by the plant transcription factor database (PlantTFDB) and Plant Stress Protein Database (PSPDB) disclosed that transcription factors and stress-related genes were enriched in the current library. The expression of some transcription factors and specific stress-related genes were verified by RT-PCR under various stress conditions. Conclusions/Significance Annotation results showed that a huge number of genes respond to stress in our study, such as MYB-related, C2H2, FAR1, b

  20. Regulation of MIR Genes in Response to Abiotic Stress in Hevea brasiliensis

    Chaorong Tang

    2013-09-01

    Full Text Available Increasing demand for natural rubber (NR calls for an increase in latex yield and also an extension of rubber plantations in marginal zones. Both harvesting and abiotic stresses lead to tapping panel dryness through the production of reactive oxygen species. Many microRNAs regulated during abiotic stress modulate growth and development. The objective of this paper was to study the regulation of microRNAs in response to different types of abiotic stress and hormone treatments in Hevea. Regulation of MIR genes differs depending on the tissue and abiotic stress applied. A negative co-regulation between HbMIR398b with its chloroplastic HbCuZnSOD target messenger is observed in response to salinity. The involvement of MIR gene regulation during latex harvesting and tapping panel dryness (TPD occurrence is further discussed.

  1. Identification of conserved drought stress responsive gene-network across tissues and developmental stages in rice

    Smita, Shuchi; Katiyar, Amit; Pandey, Dev Mani; Chinnusamy, Viswanathan; Archak, Sunil; Bansal, Kailash Chander

    2013-01-01

    Identification of genes that are coexpressed across various tissues and environmental stresses is biologically interesting, since they may play coordinated role in similar biological processes. Genes with correlated expression patterns can be best identified by using coexpression network analysis of transcriptome data. In the present study, we analyzed the temporal-spatial coordination of gene expression in root, leaf and panicle of rice under drought stress and constructed network using WGCN...

  2. Isolation and expression studies of the ERD15 gene involved in drought-stressed responses.

    Shao, H H; Chen, S D; Zhang, K; Cao, Q H; Zhou, H; Ma, Q Q; He, B; Yuan, X H; Wang, Y; Chen, Y H; Yong, B

    2014-01-01

    The early response to the dehydration 15 (ERD15) gene is widely involved in the processes of signal transduction, programmed cell death, gene transcription, and stress tolerance in plants. In a previous study, the ERD15 gene was shown to be an important regulator of the abscisic acid response and salicylic acid-dependent defense pathway, acting as an important negative regulator of abscisic acid. The complete IbERD15 gene (accession No. KF723428) was isolated by reverse transcription-polymerase chain reaction. The IbERD15 gene contains an open reading frame of 504 bp, encodes a peptide of 167 amino acids, and has a molecular mass of 18.725 kDa. The transcript levels of the IbERD15 gene in a variety of tissues were examined by digital gene expression profiling. The roots of the sweet potato were treated by 3 degrees of polyethylene glycol, and the results indicate that the IbERD15 gene might play an important role in the defense response to drought stress. Moreover, the IbERD15 gene was successfully transformed into yeast cells for analysis of drought tolerance in transgenic yeast. PMID:25526205

  3. Evidence for adaptive evolution of low-temperature stress response genes in a Pooideae grass ancestor

    Vigeland, Magnus D; Spannagl, Manuel; Asp, Torben;

    2013-01-01

    evolution of LTI pathway genes was important for Pooideae evolution. Substitution rates and signatures of positive selection were analyzed using 4330 gene trees including three warm climate-adapted species (maize (Zea mays), sorghum (Sorghum bicolor), and rice (Oryza sativa)) and five temperate Pooideae...

  4. Novel metastasis-related gene CIM functions in the regulation of multiple cellular stress-response pathways.

    Yanagisawa, Kiyoshi; Konishi, Hiroyuki; Arima, Chinatsu; Tomida, Shuta; Takeuchi, Toshiyuki; Shimada, Yukako; Yatabe, Yasushi; Mitsudomi, Tetsuya; Osada, Hirotaka; Takahashi, Takashi

    2010-12-01

    Various stresses of the tumor microenvironment produced by insufficient nutrients, pH, and oxygen can contribute to the generation of altered metabolic and proliferative states that promote the survival of metastatic cells. Among many cellular stress-response pathways activated under such conditions are the hypoxia-inducible factor (HIF) pathway and the unfolded protein response (UPR), which is elicited as a response to endoplasmic reticulum (ER) stress. In this study, we report the identification of a novel cancer invasion and metastasis-related gene (hereafter referred to as CIM, also called ERLEC1), which influences both of these stress-response pathways to promote metastasis. CIM was identified by comparing the gene expression profile of a highly metastatic human lung cancer cell line with its weakly metastatic parental clone. We showed that CIM is critical for metastatic properties in this system. Proteomic approaches combined with bioinformatic analyses revealed that CIM has multifaceted roles in controlling the response to hypoxia and ER stress. Specifically, CIM sequestered OS-9 from the HIF-1α complex and PHD2, permitting HIF-1α accumulation by preventing its degradation. Ectopic expression of CIM in lung cancer cells increased their tolerance to hypoxia. CIM also modulated UPR through interaction with the key ER stress protein BiP, influencing cell proliferation under ER stress conditions. Our findings shed light on how tolerance to multiple cellular stresses at a metastatic site can be evoked by an integrated mechanism involving CIM, which can function to coordinate those responses in a manner that promotes metastatic cell survival. PMID:21118962

  5. De novo transcriptome and small RNA analysis of two Chinese willow cultivars reveals stress response genes in Salix matsudana.

    Guodong Rao

    Full Text Available Salix matsudana Koidz. is a deciduous, rapidly growing, and drought resistant tree and is one of the most widely distributed and commonly cultivated willow species in China. Currently little transcriptomic and small RNAomic data are available to reveal the genes involve in the stress resistant in S. matsudana. Here, we report the RNA-seq analysis results of both transcriptome and small RNAome data using Illumina deep sequencing of shoot tips from two willow variants(Salix. matsudana and Salix matsudana Koidz. cultivar 'Tortuosa'. De novo gene assembly was used to generate the consensus transcriptome and small RNAome, which contained 106,403 unique transcripts with an average length of 944 bp and a total length of 100.45 MB, and 166 known miRNAs representing 35 miRNA families. Comparison of transcriptomes and small RNAomes combined with quantitative real-time PCR from the two Salix libraries revealed a total of 292 different expressed genes(DEGs and 36 different expressed miRNAs (DEMs. Among the DEGs and DEMs, 196 genes and 24 miRNAs were up regulated, 96 genes and 12 miRNA were down regulated in S. matsudana. Functional analysis of DEGs and miRNA targets showed that many genes were involved in stress resistance in S. matsudana. Our global gene expression profiling presents a comprehensive view of the transcriptome and small RNAome which provide valuable information and sequence resources for uncovering the stress response genes in S. matsudana. Moreover the transcriptome and small RNAome data provide a basis for future study of genetic resistance in Salix.

  6. Transcriptome Profiling of Louisiana iris Root and Identification of Genes Involved in Lead-Stress Response

    Songqing Tian

    2015-11-01

    Full Text Available Louisiana iris is tolerant to and accumulates the heavy metal lead (Pb. However, there is limited knowledge of the molecular mechanisms behind this feature. We describe the transcriptome of Louisiana iris using Illumina sequencing technology. The root transcriptome of Louisiana iris under control and Pb-stress conditions was sequenced. Overall, 525,498 transcripts representing 313,958 unigenes were assembled using the clean raw reads. Among them, 43,015 unigenes were annotated and their functions classified using the euKaryotic Orthologous Groups (KOG database. They were divided into 25 molecular families. In the Gene Ontology (GO database, 50,174 unigenes were categorized into three GO trees (molecular function, cellular component and biological process. After analysis of differentially expressed genes, some Pb-stress-related genes were selected, including biosynthesis genes of chelating compounds, metal transporters, transcription factors and antioxidant-related genes. This study not only lays a foundation for further studies on differential genes under Pb stress, but also facilitates the molecular breeding of Louisiana iris.

  7. Differential Regulation of Genes Coding for Organelle and Cytosolic ClpATPases under Biotic and Abiotic Stresses in Wheat.

    Muthusamy, Senthilkumar K; Dalal, Monika; Chinnusamy, Viswanathan; Bansal, Kailash C

    2016-01-01

    A sub-group of class I Caseinolytic proteases (Clps) function as molecular chaperone and confer thermotolerance to plants. We identified class I Clp family consisting of five ClpB/HSP100, two ClpC, and two ClpD genes from bread wheat. Phylogenetic analysis showed that these genes were highly conserved across grass genomes. Subcellular localization prediction revealed that TaClpC and TaClpD subgroup proteins and TaClpB1 proteins are potentially targeted to chloroplast, while TaClpB5 to mitochondria, and TaClpB2, TaClpB3, and TaClpB4 to cytoplasm. Spatio-temporal expression pattern analysis revealed that four TaClpB and TaClpD2 genes are expressed in majority of all tissues and developmental stages of wheat. Real-time RT-PCR analysis of expression levels of Clp genes in seven wheat genotypes under different abiotic stresses revealed that genes coding for the cytosolic Clps namely TaClpB2 and TaClpB3 were upregulated under heat, salt and oxidative stress but were downregulated by cold stress in most genotypes. In contrast, genes coding for the chloroplastic Clps TaClpC1, TaClpC2, and TaClpD1 genes were significantly upregulated by mainly by cold stress in most genotypes, while TaClpD2 gene was upregulated >2 fold by salt stress in DBW16. The TaClpB5 gene coding for mitochondrial Clp was upregulated in all genotypes under heat, salt and oxidative stresses. In addition, we found that biotic stresses also upregulated TaClpB4 and TaClpD1. Among biotic stresses, Tilletia caries induced TaClpB2, TaClpB3, TaClpC1, and TaClpD1. Differential expression pattern under different abiotic and biotic stresses and predicted differential cellular localization of Clps suggest their non-redundant organelle and stress-specific roles. Our results also suggest the potential role of Clps in cold, salt and biotic stress responses in addition to the previously established role in thermotolerance of wheat. PMID:27446158

  8. Cloning and Expression Analysis of OsNADPH1 Gene from Rice in Drought Stress Response

    CHEN Jing; WAN Jia; JIANG Hua; GAO Xiao-ling; WANG Ping-rong; XI Jiang; XU Zheng-jun

    2006-01-01

    An experiment was conducted to compare the mRNA expression difference in rice leaves and roots under drought stress and normal conditions using Fluorescent Differential Display (FDD) method. One positive fragment was isolated by combination of the H. A. Yellow-PAGE (contained 0.1% H. A. Yellow) separation and macroarray screening methods. Compared to Arabidopsis thaliana NADPH oxidoreductase gene, it has 96% identity. The cDNA was 1423 bp, and contained a complete open reading frame of 1048 bp encoding a protein with 345 amino acid residues. Moreover, the gene expression level was higher under drought stress than that under normal conditions. The possible role of NADPH oxidoreductase gene under drought response was also discussed.

  9. Arabidopsis Raf-Like Mitogen-Activated Protein Kinase Kinase Kinase Gene Raf43 Is Required for Tolerance to Multiple Abiotic Stresses.

    Nasar Virk

    Full Text Available Mitogen-activated protein kinase (MAPK cascades are critical signaling modules that mediate the transduction of extracellular stimuli into intracellular response. A relatively large number of MAPKKKs have been identified in a variety of plant genomes but only a few of them have been studied for their biological function. In the present study, we identified an Arabidopsis Raf-like MAPKKK gene Raf43 and studied its function in biotic and abiotic stress response using a T-DNA insertion mutant raf43-1 and two Raf43-overexpressing lines Raf43-OE#1 and Raf43-OE#13. Expression of Raf43 was induced by multiple abiotic and biotic stresses including treatments with drought, mannitol and oxidative stress or defense signaling molecule salicylic acid and infection with necrotrophic fungal pathogen Botrytis cinerea. Seed germination and seedling root growth of raf43-1 were significantly inhibited on MS medium containing mannitol, NaCl, H2O2 or methyl viologen (MV while seed germination and seedling root growth of the Raf43-OE#1 and Raf43-OE#13 lines was similar to wild type Col-0 under the above stress conditions. Soil-grown raf43-1 plants exhibited reduced tolerance to MV, drought and salt stress. Abscisic acid inhibited significantly seed germination and seedling root growth of the raf43-1 line but had no effect on the two Raf43-overexpressing lines. Expression of stress-responsive RD17 and DREB2A genes was significantly down-regulated in raf43-1 plants. However, the raf43-1 and Raf43-overexpressing plants showed similar disease phenotype to the wild type plants after infection with B. cinerea or Pseudomonas syringae pv. tomato DC3000. Our results demonstrate that Raf43, encoding for a Raf-like MAPKKK, is required for tolerance to multiple abiotic stresses in Arabidopsis.

  10. A novel role for pigment genes in the stress response in rainbow trout (Oncorhynchus mykiss)

    Khan, Uniza Wahid; Øverli, Øyvind; Hinkle, Patricia M;

    2016-01-01

    In many vertebrate species visible melanin-based pigmentation patterns correlate with high stress- and disease-resistance, but proximate mechanisms for this trait association remain enigmatic. Here we show that a missense mutation in a classical pigmentation gene, melanocyte stimulating hormone...... protein (ASIP) mRNA in skin, likely explaining the association between HR-traits and reduced skin melanin patterning. Molecular dynamics simulations predict that melanocortin 2 receptor accessory protein (MRAP), needed for MC2R function, binds differently to the two MC1R variants. Considering that m...

  11. Serum stress responsive gene EhslncRNA of Entamoeba histolytica is a novel long noncoding RNA.

    Saha, Arpita; Bhattacharya, Sudha; Bhattacharya, Alok

    2016-01-01

    Non coding RNAs are known to play important roles in regulating gene expression at the transcriptional and posttranscriptional levels in metazoans. There is very little information available about non coding RNAs in protists such as Entamoeba histolytica. Antisense and micro RNAs have been reported in E. histolytica, however no long non coding RNAs has been reported yet. Here, we report our findings on an in vitro serum stress-inducible gene EhslncRNA, a member of B1 transmembrane kinase family of E. histolytica. EhslncRNA encodes a transcript of 2.6 kb and sequence analysis revealed that there is no ORF >150 bp within this transcript. The transcript was found to be polyadenylated and mainly associated with monosomes in the cytoplasm under serum starvation. In normal proliferating cells this RNA is mainly present in the nucleus. The promoter element was mapped between 437 to 346 nucleotides upstream of transcriptional start site and has both positive and negative regulatory elements. Deletion of the negative element converted the promoter to serum inducible type. Oxygen and heat stress also increased expression levels of EhslncRNA. These observations suggest that EhslncRNA may be a long non coding RNA and likely to help cells withstand stressful conditions in the host. PMID:27273618

  12. Copy number variations of genes involved in stress responses reflect the redox state and DNA damage in brewing yeasts.

    Adamczyk, Jagoda; Deregowska, Anna; Skoneczny, Marek; Skoneczna, Adrianna; Natkanska, Urszula; Kwiatkowska, Aleksandra; Rawska, Ewa; Potocki, Leszek; Kuna, Ewelina; Panek, Anita; Lewinska, Anna; Wnuk, Maciej

    2016-09-01

    The yeast strains of the Saccharomyces sensu stricto complex involved in beer production are a heterogeneous group whose genetic and genomic features are not adequately determined. Thus, the aim of the present study was to provide a genetic characterization of selected group of commercially available brewing yeasts both ale top-fermenting and lager bottom-fermenting strains. Molecular karyotyping revealed that the diversity of chromosome patterns and four strains with the most accented genetic variabilities were selected and subjected to genome-wide array-based comparative genomic hybridization (array-CGH) analysis. The differences in the gene copy number were found in five functional gene categories: (1) maltose metabolism and transport, (2) response to toxin, (3) siderophore transport, (4) cellular aldehyde metabolic process, and (5) L-iditol 2-dehydrogenase activity (p stress stimuli compared to other strains. We suggest that compromised stress response may not only promote oxidant-based changes in the nucleolus state that may affect fermentation performance but also provide novel directions for future strain improvement. PMID:27299603

  13. Expression Patterns of Genes Involved in the Defense and Stress Response of Spiroplasma citri Infected Madagascar Periwinkle Catharanthus roseus

    Naghmeh Nejat

    2012-02-01

    Full Text Available Madagascar periwinkle is an ornamental and a medicinal plant, and is also an indicator plant that is highly susceptible to phytoplasma and spiroplasma infections from different crops. Periwinkle lethal yellows, caused by Spiroplasma citri, is one of the most devastating diseases of periwinkle. The response of plants to S. citri infection is very little known at the transcriptome level. In this study, quantitative real-time PCR (RT-qPCR was used to investigate the expression levels of four selected genes involved in defense and stress responses in naturally and experimentally Spiroplasma citri infected periwinkles. Strictosidine β-glucosidase involved in terpenoid indole alkaloids (TIAs biosynthesis pathway showed significant upregulation in experimentally and naturally infected periwinkles. The transcript level of extensin increased in leaves of periwinkles experimentally infected by S. citri in comparison to healthy ones. A similar level of heat shock protein 90 and metallothionein expression was observed in healthy, naturally and experimentally spiroplasma-diseased periwinkles. Overexpression of Strictosidine β-glucosidase demonstrates the potential utility of this gene as a host biomarker to increase the fidelity of S. citri detection and can also be used in breeding programs to develop stable disease-resistance varieties.

  14. Expression Patterns of Genes Involved in the Defense and Stress Response of Spiroplasma citri Infected Madagascar Periwinkle Catharanthus roseus

    Nejat, Naghmeh; Vadamalai, Ganesan; Dickinson, Matthew

    2012-01-01

    Madagascar periwinkle is an ornamental and a medicinal plant, and is also an indicator plant that is highly susceptible to phytoplasma and spiroplasma infections from different crops. Periwinkle lethal yellows, caused by Spiroplasma citri, is one of the most devastating diseases of periwinkle. The response of plants to S. citri infection is very little known at the transcriptome level. In this study, quantitative real-time PCR (RT-qPCR) was used to investigate the expression levels of four selected genes involved in defense and stress responses in naturally and experimentally Spiroplasma citri infected periwinkles. Strictosidine β-glucosidase involved in terpenoid indole alkaloids (TIAs) biosynthesis pathway showed significant upregulation in experimentally and naturally infected periwinkles. The transcript level of extensin increased in leaves of periwinkles experimentally infected by S. citri in comparison to healthy ones. A similar level of heat shock protein 90 and metallothionein expression was observed in healthy, naturally and experimentally spiroplasma-diseased periwinkles. Overexpression of Strictosidine β-glucosidase demonstrates the potential utility of this gene as a host biomarker to increase the fidelity of S. citri detection and can also be used in breeding programs to develop stable disease-resistance varieties. PMID:22408455

  15. The two α-dox genes of Nicotiana attenuata: overlapping but distinct functions in development and stress responses

    Steppuhn Anke

    2010-08-01

    Full Text Available Abstract Background Plant fatty acid α-dioxygenases (α-DOX are oxylipin-forming enzymes induced by biotic and abiotic stresses, which also participate in developmental processes. In Nicotiana attenuata, herbivory strongly induces the expression of an α-dox1 gene. To determine its role, we silenced its expression using Agrobacterium-mediated plant transformation with an inverted repeat construct. More than half of the transformed lines showed a severe dwarf growth phenotype that was very similar to the phenotype of tomato plants mutated at a second α-dox isoform. This led us to identify the corresponding α-dox2 gene in N. attenuata and examine the regulation of both α-dox genes as well as the consequences of their silencing in plant development and anti-herbivore defense. Results The transformed lines exhibiting a dwarf growth phenotype are co-silenced for both α-dox genes resulting in a nearly complete suppression of α-DOX activity, which is associated with increases in ABA, JA and anthocyanin levels, all metabolic signatures of oxidative stress. The other lines, only silenced for α-dox1, developed similarly to wild-type plants, exhibited a 40% reduction of α-DOX activity resulting in a 50% reduction of its main product in planta (2-HOT and showed no signs of oxidative stress. In contrast to α-dox1, the expression of α-dox2 gene is not induced by wounding or elicitors in the oral secretions of Manduca sexta. Instead, α-dox2 is expressed in roots and flowers which lack α-dox1 expression, but both genes are equally regulated during leaf maturation. We transiently silenced α-dox gene copies with gene-specific constructs using virus induced gene silencing and determined the consequences for plant development and phytohormone and 2-HOT levels. While individual silencing of α-dox1 or α-dox2 had no effects on plant growth, the co-suppression of both α-dox genes decreased plant growth. Plants transiently silenced for both α-dox genes

  16. Isolation and characterization of a catalase gene "HuCAT3" from pitaya (Hylocereus undatus) and its expression under abiotic stress.

    Nie, Qiong; Gao, Guo-Li; Fan, Qing-jie; Qiao, Guang; Wen, Xiao-Peng; Liu, Tao; Peng, Zhi-Jun; Cai, Yong-Qiang

    2015-05-25

    Abiotic stresses usually cause H2O2 accumulation, with harmful effects, in plants. Catalase may play a key protective role in plant cells by detoxifying this excess H2O2. Pitaya (Hylocereus undatus) shows broad ecological adaptation due to its high tolerance to abiotic stresses, e.g. drought, heat and poor soil. However, involvement of the pitaya catalase gene (HuCAT) in tolerance to abiotic stresses is unknown. In the present study, a full-length HuCAT3 cDNA (1870 bp) was isolated from pitaya based on our previous microarray data and RACE method. The cDNA sequence and deduced amino acid sequence shared 73-77% and 75-80% identity with other plant catalases, respectively. HuCAT3 contains conserved catalase family domain and catalytic sites. Pairwise comparison and phylogenetic analysis indicated that HuCAT3 is most similar to Eriobotrya japonica CAT, followed by Dimocarpus longan CAT and Nicotiana tabacum CAT1. Expression profile analysis demonstrated that HuCAT3 is mainly expressed in green cotyledons and mature stems, and was regulated by H2O2, drought, cold and salt stress, whereas, its expression patterns and maximum expression levels varied with stress types. HuCAT activity increased as exposure to the tested stresses, and the fluctuation of HuCAT activity was consistent with HuCAT3 mRNA abundance (except for 0.5 days upon drought stress). HuCAT3 mRNA elevations and HuCAT activities changes under cold stress were also in conformity with the cold tolerances among the four genotypes. The obtained results confirmed a major role of HuCAT3 in abiotic stress response of pitaya. This may prove useful in understanding pitaya's high tolerance to abiotic stresses at molecular level. PMID:25752288

  17. A novel role for pigment genes in the stress response in rainbow trout (Oncorhynchus mykiss)

    Khan, Uniza Wahid

    2016-07-04

    In many vertebrate species visible melanin-based pigmentation patterns correlate with high stress- and disease-resistance, but proximate mechanisms for this trait association remain enigmatic. Here we show that a missense mutation in a classical pigmentation gene, melanocyte stimulating hormone receptor (MC1R), is strongly associated with distinct differences in steroidogenic melanocortin 2 receptor (MC2R) mRNA expression between high- (HR) and low-responsive (LR) rainbow trout (Oncorhynchus mykiss). We also show experimentally that cortisol implants increase the expression of agouti signaling protein (ASIP) mRNA in skin, likely explaining the association between HR-traits and reduced skin melanin patterning. Molecular dynamics simulations predict that melanocortin 2 receptor accessory protein (MRAP), needed for MC2R function, binds differently to the two MC1R variants. Considering that mRNA for MC2R and the MC1R variants are present in head kidney cells, we hypothesized that MC2R activity is modulated in part by different binding affinities of the MC1R variants for MRAP. Experiments in mammalian cells confirmed that trout MRAP interacts with the two trout MC1R variants and MC2R, but failed to detect regulation of MC2R signaling, possibly due to high constitutive MC1R activity.

  18. A novel role for pigment genes in the stress response in rainbow trout (Oncorhynchus mykiss).

    Khan, Uniza Wahid; Øverli, Øyvind; Hinkle, Patricia M; Pasha, Farhan Ahmad; Johansen, Ida Beitnes; Berget, Ingunn; Silva, Patricia I M; Kittilsen, Silje; Höglund, Erik; Omholt, Stig W; Våge, Dag Inge

    2016-01-01

    In many vertebrate species visible melanin-based pigmentation patterns correlate with high stress- and disease-resistance, but proximate mechanisms for this trait association remain enigmatic. Here we show that a missense mutation in a classical pigmentation gene, melanocyte stimulating hormone receptor (MC1R), is strongly associated with distinct differences in steroidogenic melanocortin 2 receptor (MC2R) mRNA expression between high- (HR) and low-responsive (LR) rainbow trout (Oncorhynchus mykiss). We also show experimentally that cortisol implants increase the expression of agouti signaling protein (ASIP) mRNA in skin, likely explaining the association between HR-traits and reduced skin melanin patterning. Molecular dynamics simulations predict that melanocortin 2 receptor accessory protein (MRAP), needed for MC2R function, binds differently to the two MC1R variants. Considering that mRNA for MC2R and the MC1R variants are present in head kidney cells, we hypothesized that MC2R activity is modulated in part by different binding affinities of the MC1R variants for MRAP. Experiments in mammalian cells confirmed that trout MRAP interacts with the two trout MC1R variants and MC2R, but failed to detect regulation of MC2R signaling, possibly due to high constitutive MC1R activity. PMID:27373344

  19. A novel role for pigment genes in the stress response in rainbow trout (Oncorhynchus mykiss)

    Khan, Uniza Wahid; Øverli, Øyvind; Hinkle, Patricia M.; Pasha, Farhan Ahmad; Johansen, Ida Beitnes; Berget, Ingunn; Silva, Patricia I. M.; Kittilsen, Silje; Höglund, Erik; Omholt, Stig W.; Våge, Dag Inge

    2016-01-01

    In many vertebrate species visible melanin-based pigmentation patterns correlate with high stress- and disease-resistance, but proximate mechanisms for this trait association remain enigmatic. Here we show that a missense mutation in a classical pigmentation gene, melanocyte stimulating hormone receptor (MC1R), is strongly associated with distinct differences in steroidogenic melanocortin 2 receptor (MC2R) mRNA expression between high- (HR) and low-responsive (LR) rainbow trout (Oncorhynchus mykiss). We also show experimentally that cortisol implants increase the expression of agouti signaling protein (ASIP) mRNA in skin, likely explaining the association between HR-traits and reduced skin melanin patterning. Molecular dynamics simulations predict that melanocortin 2 receptor accessory protein (MRAP), needed for MC2R function, binds differently to the two MC1R variants. Considering that mRNA for MC2R and the MC1R variants are present in head kidney cells, we hypothesized that MC2R activity is modulated in part by different binding affinities of the MC1R variants for MRAP. Experiments in mammalian cells confirmed that trout MRAP interacts with the two trout MC1R variants and MC2R, but failed to detect regulation of MC2R signaling, possibly due to high constitutive MC1R activity. PMID:27373344

  20. The effect of Mycobacterium tuberculosis CRISPR-associated Cas2 (Rv2816c) on stress response genes expression, morphology and macrophage survival of Mycobacterium smegmatis.

    Huang, Qinqin; Luo, Hongping; Liu, Minqiang; Zeng, Jie; Abdalla, Abualgasim Elgaili; Duan, Xiangke; Li, Qiming; Xie, Jianping

    2016-06-01

    Clustered regularly interspaced short palindromic repeats (CRISPR) are present in the genome of 40% bacteria and 90% archaea. CRISPR and accompanying Cas proteins constitute an adaptive immune system against disruptive mobile genetic elements. Two CRISPRs and 9 genes encoding CRISPR-associated proteins have been found in the genome of Mycobacterium tuberculosis. The CRISPR-associated Cas2 is an endoribonuclease required for the acquisition of new spacers. In this study, Cas2 encoded by Rv2816c was expressed in Mycobacterium smegmatis lacking CRISPR-Cas system and its role in stress responses of M. smegmatis in vitro and within macrophages was studied. We found that Cas2 mediated M. smegmatis stress response changes were associated with the altered expression of sigma factors which involved in mycobacterial stress response and virulence. We also found that Cas2 decreased the survival of M. smegmatis within macrophages. This study provides new insights on the role of Cas2. PMID:26498723

  1. Characterization of abiotic stress genes from different species of eucalyptus

    The stresses causing dehydration damage to the plant cell like cold, drought, and high salinity are the most frequent environmental stresses that influence plant growth, development and restraining productivity in cultivated areas world-wide. Many drought, salinity and cold inducible genes causing tolerance to environmental stresses in many plants include Dehydrin1 (DHN1), Dehydrin2 (DHN2), Dehydrin10 (DHN10), putative phosphate transporter (Ecpt2), choline monooxygenase (CMO) and DREB/CBF1c genes. Gene specific primer pairs were designed for each gene using DNAStar software. These genes were amplified from different species of eucalyptus such as Eucalyptus camaldulensis, E. globulus, E. tereticornis and E. gunii through PCR. Dehydrin2 gene of E. camaldulensis and dehydrin10 gene of E. globulus were cloned using the TA Cloning Kit with pCR 2.1 vector and sequenced. The Dehydrin genes sequences were submitted to GeneBank: Eucalyptus globulus dehydrin10 gene (Accession No. HG915712) and E. camaldulensis dehydrin 2 gene (Accession No. HG813113). The amino acid sequence of Dehydrin10 from E. globulus showed 97% homology to E. globulus DHN10 (JN052210) and Dehydrin2 from E. camaldulensis presented 94% homology to E. globulus DHN2 (JN052209). These genes can be employed in generating drought resistant crop plants. (author)

  2. Acidic pH shock induces the expressions of a wide range of stress-response genes

    Hong Soon-Kwang

    2008-12-01

    Full Text Available Abstract Background Environmental signals usually enhance secondary metabolite production in Streptomycetes by initiating complex signal transduction system. It is known that different sigma factors respond to different types of stresses, respectively in Streptomyces strains, which have a number of unique signal transduction mechanisms depending on the types of environmental shock. In this study, we wanted to know how a pH shock would affect the expression of various sigma factors and shock-related proteins in S. coelicolor A3(2. Results According to the results of transcriptional and proteomic analyses, the major number of sigma factor genes were upregulated by an acidic pH shock. Well-studied sigma factor genes of sigH (heat shock, sigR (oxidative stress, sigB (osmotic shock, and hrdD that play a major role in the secondary metabolism, were all strongly upregulated by the pH shock. A number of heat shock proteins including the DnaK family and chaperones such as GroEL2 were also observed to be upregulated by the pH shock, while their repressor of hspR was strongly downregulated. Oxidative stress-related proteins such as thioredoxin, catalase, superoxide dismutase, peroxidase, and osmotic shock-related protein such as vesicle synthases were also upregulated in overall. Conclusion From these observations, an acidic pH shock was considered to be one of the strongest stresses to influence a wide range of sigma factors and shock-related proteins including general stress response proteins. The upregulation of the sigma factors and shock proteins already found to be related to actinorhodin biosynthesis was considered to have contributed to enhanced actinorhodin productivity by mediating the pH shock signal to regulators or biosynthesis genes for actinorhodin production.

  3. Overexpression of wheat ubiquitin gene, Ta-Ub2, improves abiotic stress tolerance of Brachypodium distachyon.

    Kang, Hanhan; Zhang, Meng; Zhou, Shumei; Guo, Qifang; Chen, Fengjuan; Wu, Jiajie; Wang, Wei

    2016-07-01

    Ubiquitination plays an important role in regulating plant's development and adaptability to abiotic stress. To investigate the possible functions of a wheat monoubiquitin gene Ta-Ub2 in abiotic stress in monocot and compare it with that in dicot, we generated transgenic Brachypodium plants overexpressing Ta-Ub2 under the control of CaMV35s and stress-inducible RD29A promoters. The constitutive expression of Ta-Ub2 displayed slight growth inhibition in the growth of transgenic Brachypodium distachyon under the control conditions. However, this inhibition was minimized by expression of Ta-Ub2 under the control of stress-inducible RD29A promoter. Compared with WT, the transgenic plants preserved more water and showed higher enzymatic antioxidants under drought stress, which might be related to the change in the expression of some antioxidant genes. The expression of C-repeat binding factors transcription factor genes in the transgenic B. distachyon lines were upregulated under water stress. Salt and cold tolerances of transgenic B. distachyon were also improved. Although the phenotypic changes in the transgenic plants were different, overexpression of Ta-Ub2 improved the abiotic stress tolerance in both dicot and monocot plants. The improvement in Ta-Ub2 transgenic plants in abiotic stress tolerance might be, at least partly, through regulating the gene expression and increasing the enzymatic antioxidants. PMID:27181952

  4. The auxin response factor gene family in banana: genome-wide identification and expression analyses during development, ripening, and abiotic stress.

    Hu, Wei; Zuo, Jiao; Hou, Xiaowan; Yan, Yan; Wei, Yunxie; Liu, Juhua; Li, Meiying; Xu, Biyu; Jin, Zhiqiang

    2015-01-01

    Auxin signaling regulates various auxin-responsive genes via two types of transcriptional regulators, Auxin Response Factors (ARF) and Aux/IAA. ARF transcription factors act as critical components of auxin signaling that play important roles in modulating various biological processes. However, limited information about this gene family in fruit crops is currently available. Herein, 47 ARF genes were identified in banana based on its genome sequence. Phylogenetic analysis of the ARFs from banana, rice, and Arabidopsis suggested that the ARFs could be divided into four subgroups, among which most ARFs from the banana showed a closer relationship with those from rice than those from Arabidopsis. Conserved motif analysis showed that all identified MaARFs had typical DNA-binding and ARF domains, but 12 members lacked the dimerization domain. Gene structure analysis showed that the number of exons in MaARF genes ranged from 5 to 21, suggesting large variation amongst banana ARF genes. The comprehensive expression profiles of MaARF genes yielded useful information about their involvement in diverse tissues, different stages of fruit development and ripening, and responses to abiotic stresses in different varieties. Interaction networks and co-expression assays indicated the strong transcriptional response of banana ARFs and ARF-mediated networks in early fruit development for different varieties. Our systematic analysis of MaARFs revealed robust tissue-specific, development-dependent, and abiotic stress-responsive candidate MaARF genes for further functional assays in planta. These findings could lead to potential applications in the genetic improvement of banana cultivars, and yield new insights into the complexity of the control of MaARF gene expression at the transcriptional level. Finally, they support the hypothesis that ARFs are a crucial component of the auxin signaling pathway, which regulates a wide range of physiological processes. PMID:26442055

  5. The auxin response factor gene family in banana: genome-wide identification and expression analyses during development, ripening, and abiotic stress

    Wei eHu

    2015-09-01

    Full Text Available Auxin signaling regulates various auxin-responsive genes via two types of transcriptional regulators, Auxin Response Factors (ARF and Aux/IAA. ARF transcription factors act as critical components of auxin signaling that play important roles in modulating various biological processes. However, limited information about this gene family in fruit crops is currently available. Herein, 47 ARF genes were identified in banana based on its genome sequence. Phylogenetic analysis of the ARFs from banana, rice, and Arabidopsis suggested that the ARFs could be divided into four subgroups, among which most ARFs from the banana showed a closer relationship with those from rice than those from Arabidopsis. Conserved motif analysis showed that all identified MaARFs had typical DNA-binding and ARF domains, but 12 members lacked the dimerization domain. Gene structure analysis showed that the number of exons in MaARF genes ranged from 5 to 21, suggesting large variation amongst banana ARF genes. The comprehensive expression profiles of MaARF genes yielded useful information about their involvement in diverse tissues, different stages of fruit development and ripening, and responses to abiotic stresses in different varieties. Interaction networks and co-expression assays indicated the strong transcriptional response of banana ARFs and ARF-mediated networks in early fruit development for different varieties. Our systematic analysis of MaARFs revealed robust tissue-specific, development-dependent, and abiotic stress-responsive candidate MaARF genes for further functional assays in planta. These findings could lead to potential applications in the genetic improvement of banana cultivars, and yield new insights into the complexity of the control of MaARF gene expression at the transcriptional level. Finally, they support the hypothesis that ARFs are a crucial component of the auxin signaling pathway, which regulates a wide range of physiological processes.

  6. Loss of p24 function in Drosophila melanogaster causes a stress response and increased levels of NF-κB-regulated gene products

    Carney Ginger E

    2008-05-01

    Full Text Available Abstract Background Secretory and transmembrane proteins traverse the endoplasmic reticulum (ER and Golgi compartments for final maturation prior to reaching their functional destinations. Members of the p24 protein family, which are transmembrane constituents of ER and Golgi-derived transport vesicles, function in trafficking some secretory proteins in yeast and higher eukaryotes. Yeast p24 mutants have minor secretory defects and induce an ER stress response that likely results from accumulation of proteins in the ER due to disrupted trafficking. We tested the hypothesis that loss of Drosophila melanogaster p24 protein function causes a transcriptional response characteristic of ER stress activation. Results We performed genome-wide profiling experiments on tissues from Drosophila females with a mutation in the p24 gene logjam (loj and identified changes in message levels for 641 genes. We found that loj mutants have expression profiles consistent with activation of stress responses. Of particular note is our observation that approximately 20% of the loci up regulated in loj mutants are Drosophila immune-regulated genes (DIRGs, many of which are transcriptional targets of NF-κB or JNK signaling pathways. Conclusion The loj mutant expression profiling data support the hypothesis that loss of p24 function causes a stress response. Genes involved in ameliorating stress, such as those encoding products involved in proteolysis, metabolism and protein folding, are differentially expressed in loj mutants compared to controls. Nearly 20% of the genes with increased message levels in the loj mutant are transcriptional targets of Drosophila NF-κB proteins. Activation of NF-κB transcription factors is the hallmark of an ER stress response called the ER overload response. Therefore, our data are consistent with the hypothesis that Drosophila p24 mutations induce stress, possibly via activation of ER stress response pathways. Because of the molecular

  7. Discovery of core biotic stress responsive genes in Arabidopsis by weighted gene co-expression network analysis.

    Amrine, Katherine C H; Blanco-Ulate, Barbara; Cantu, Dario

    2015-01-01

    Intricate signal networks and transcriptional regulators translate the recognition of pathogens into defense responses. In this study, we carried out a gene co-expression analysis of all currently publicly available microarray data, which were generated in experiments that studied the interaction of the model plant Arabidopsis thaliana with microbial pathogens. This work was conducted to identify (i) modules of functionally related co-expressed genes that are differentially expressed in response to multiple biotic stresses, and (ii) hub genes that may function as core regulators of disease responses. Using Weighted Gene Co-expression Network Analysis (WGCNA) we constructed an undirected network leveraging a rich curated expression dataset comprising 272 microarrays that involved microbial infections of Arabidopsis plants with a wide array of fungal and bacterial pathogens with biotrophic, hemibiotrophic, and necrotrophic lifestyles. WGCNA produced a network with scale-free and small-world properties composed of 205 distinct clusters of co-expressed genes. Modules of functionally related co-expressed genes that are differentially regulated in response to multiple pathogens were identified by integrating differential gene expression testing with functional enrichment analyses of gene ontology terms, known disease associated genes, transcriptional regulators, and cis-regulatory elements. The significance of functional enrichments was validated by comparisons with randomly generated networks. Network topology was then analyzed to identify intra- and inter-modular gene hubs. Based on high connectivity, and centrality in meta-modules that are clearly enriched in defense responses, we propose a list of 66 target genes for reverse genetic experiments to further dissect the Arabidopsis immune system. Our results show that statistical-based data trimming prior to network analysis allows the integration of expression datasets generated by different groups, under different

  8. Discovery of core biotic stress responsive genes in Arabidopsis by weighted gene co-expression network analysis.

    Katherine C H Amrine

    Full Text Available Intricate signal networks and transcriptional regulators translate the recognition of pathogens into defense responses. In this study, we carried out a gene co-expression analysis of all currently publicly available microarray data, which were generated in experiments that studied the interaction of the model plant Arabidopsis thaliana with microbial pathogens. This work was conducted to identify (i modules of functionally related co-expressed genes that are differentially expressed in response to multiple biotic stresses, and (ii hub genes that may function as core regulators of disease responses. Using Weighted Gene Co-expression Network Analysis (WGCNA we constructed an undirected network leveraging a rich curated expression dataset comprising 272 microarrays that involved microbial infections of Arabidopsis plants with a wide array of fungal and bacterial pathogens with biotrophic, hemibiotrophic, and necrotrophic lifestyles. WGCNA produced a network with scale-free and small-world properties composed of 205 distinct clusters of co-expressed genes. Modules of functionally related co-expressed genes that are differentially regulated in response to multiple pathogens were identified by integrating differential gene expression testing with functional enrichment analyses of gene ontology terms, known disease associated genes, transcriptional regulators, and cis-regulatory elements. The significance of functional enrichments was validated by comparisons with randomly generated networks. Network topology was then analyzed to identify intra- and inter-modular gene hubs. Based on high connectivity, and centrality in meta-modules that are clearly enriched in defense responses, we propose a list of 66 target genes for reverse genetic experiments to further dissect the Arabidopsis immune system. Our results show that statistical-based data trimming prior to network analysis allows the integration of expression datasets generated by different groups

  9. Towards the Identification of New Genes Involved in ABA-Dependent Abiotic Stresses Using Arabidopsis Suppressor Mutants of abh1 Hypersensitivity to ABA during Seed Germination

    Iwona Szarejko

    2013-06-01

    Full Text Available Abscisic acid plays a pivotal role in the abiotic stress response in plants. Although great progress has been achieved explaining the complexity of the stress and ABA signaling cascade, there are still many questions to answer. Mutants are a valuable tool in the identification of new genes or new alleles of already known genes and in elucidating their role in signaling pathways. We applied a suppressor mutation approach in order to find new components of ABA and abiotic stress signaling in Arabidopsis. Using the abh1 (ABA hypersensitive 1 insertional mutant as a parental line for EMS mutagenesis, we selected several mutants with suppressed hypersensitivity to ABA during seed germination. Here, we present the response to ABA and a wide range of abiotic stresses during the seed germination and young seedling development of two suppressor mutants—soa2 (suppressor of abh1 hypersensitivity to ABA 2 and soa3 (suppressor of abh1 hypersensitivity to ABA 3. Generally, both mutants displayed a suppression of the hypersensitivity of abh1 to ABA, NaCl and mannitol during germination. Both mutants showed a higher level of tolerance than Columbia-0 (Col-0—the parental line of abh1 in high concentrations of glucose. Additionally, soa2 exhibited better root growth than Col-0 in the presence of high ABA concentrations. soa2 and soa3 were drought tolerant and both had about 50% fewer stomata per mm2 than the wild-type but the same number as their parental line—abh1. Taking into account that suppressor mutants had the same genetic background as their parental line—abh1, it was necessary to backcross abh1 with Landsberg erecta four times for the map-based cloning approach. Mapping populations, derived from the cross of abh1 in the Landsberg erecta background with each suppressor mutant, were created. Map based cloning in order to identify the suppressor genes is in progress.

  10. The HOG pathway controls osmotic regulation of transcription via the stress response element (STRE) of the Saccharomyces cerevisiae CTT1 gene.

    Schüller, C; Brewster, J L; M. R. Alexander; Gustin, M C; Ruis, H

    1994-01-01

    The HOG signal pathway of the yeast Saccharomyces cerevisiae is defined by the PBS2 and HOG1 genes encoding members of the MAP kinase kinase and of the MAP kinase family, respectively. Mutations in this pathway (deletions of PBS2 or HOG1, or point mutations in HOG1) almost completely abolish the induction of transcription by osmotic stress that is mediated by stress response elements (STREs). We have demonstrated previously that STREs also mediate induction of transcription by heat shock, nit...

  11. Regulation of the human stress response gene GADD153 expression: role of ETS1 and FLI-1 gene products.

    Seth, A; Giunta, S; Franceschil, C; Kola, I; Venanzoni, M C

    1999-09-01

    We have previously shown that ETS transcription factors, regulate cell growth and differentiation, and ETS1 and ETS2 are able to transcriptionally regulate wt p53 gene expression. In the present study we show that the ETS transcription factors also play a role in regulating expression of GADD153, a wt p53 inducible gene, which induces growth arrest and apoptosis in response to stress signals or DNA damage. We report the presence of a single EBS in the human GADD153 promoter, and that the GADD45 gene promoter lacks EBSs. The GADD153 promoter EBS shows a very high affinity for ETS1 and FLI-1 gene products. In addition, our data show that both ETS1 and FLI-1 strongly activate transcription of the GADD153 EBS linked to the CAT reporter gene. Our results also demonstrate how ETS1 and FLI-1 specifically regulate GADD153 expression. In addition, ectopic ETS2 protein expression resulted in only a weak induction of the same CAT reporter construct. The ETS1 and FLI-1 proteins provide a novel mechanism of activation for GADD153, allowing these two ETS genes to control its expression during cell growth and differentiation, rather than in response to oxidative stress. PMID:10510472

  12. Comparison of drought stress response and gene expression between a GM maize variety and a near-isogenic non-GM variety.

    Gullì, Mariolina; Salvatori, Elisabetta; Fusaro, Lina; Pellacani, Claudia; Manes, Fausto; Marmiroli, Nelson

    2015-01-01

    Maize MON810, grown and commercialised worldwide, is the only cultivated GM event in the EU. Maize MON810, variety DKC6575, and the corresponding near-isogenic line Tietar were studied in different growth conditions, to compare their behaviour in response to drought. Main photosynthetic parameters were significantly affected by drought stress in both GM and non-GM varieties to a similar extent. Though DKC6575 (GM) had a greater sensitivity in the early phase of stress response as compared with Tietar (non-GM), after six days of stress they behaved similarly, and both varieties recovered from stress damage. Profiling gene expression in water deficit regimes and in a generalised drought stress condition showed an up-regulation of many stress-responsive genes, but a greater number of differentially expressed genes was observed in Tietar, with genes belonging to transcription factor families and genes encoding heat shock proteins, late embryogenesis abundant proteins and detoxification enzymes. Since induction of these genes have been indicated from the literature as typical of stress responses, their activation in Tietar rather than in DKC6575 may be reminiscent of a more efficient response to drought. DKC6575 was also analysed for the expression of the transgene CryIAb (encoding the delta-endotoxin insecticidal protein) in water deficit conditions. In all the experiments, the CryIAb transcript was not influenced by drought stress, but was expressed at a constant level. This suggests that though possessing a different pattern of sensitivity to stress, the GM variety maintains the same expression level for the transgene. PMID:25692547

  13. Comparison of drought stress response and gene expression between a GM maize variety and a near-isogenic non-GM variety.

    Mariolina Gullì

    Full Text Available Maize MON810, grown and commercialised worldwide, is the only cultivated GM event in the EU. Maize MON810, variety DKC6575, and the corresponding near-isogenic line Tietar were studied in different growth conditions, to compare their behaviour in response to drought. Main photosynthetic parameters were significantly affected by drought stress in both GM and non-GM varieties to a similar extent. Though DKC6575 (GM had a greater sensitivity in the early phase of stress response as compared with Tietar (non-GM, after six days of stress they behaved similarly, and both varieties recovered from stress damage. Profiling gene expression in water deficit regimes and in a generalised drought stress condition showed an up-regulation of many stress-responsive genes, but a greater number of differentially expressed genes was observed in Tietar, with genes belonging to transcription factor families and genes encoding heat shock proteins, late embryogenesis abundant proteins and detoxification enzymes. Since induction of these genes have been indicated from the literature as typical of stress responses, their activation in Tietar rather than in DKC6575 may be reminiscent of a more efficient response to drought. DKC6575 was also analysed for the expression of the transgene CryIAb (encoding the delta-endotoxin insecticidal protein in water deficit conditions. In all the experiments, the CryIAb transcript was not influenced by drought stress, but was expressed at a constant level. This suggests that though possessing a different pattern of sensitivity to stress, the GM variety maintains the same expression level for the transgene.

  14. The 6-phosphogluconate Dehydrogenase Genes Are Responsive to Abiotic Stresses in Rice

    Fu-Yun Hou; Ji Huang; Shan-Lin Yu; Hong-Sheng Zhang

    2007-01-01

    Glucose-6-phosphate dehydrogenase (G6PDH, E.C. 1.1.1.49) and 6-phosphogluconate dehydrogenase (6PGDH, EC 1.1.1.44) are both key enzymes of the pentose phosphate pathway (PPP). The OsG6PDH1 and Os6PGDH1 genes encoding cytosolic G6PDH and cytosolic 6PGDH were isoiated from rice (Oryza satlva L.). We have shown that Os6PGDH1 gene was up-regulated by salt stress. Here we reported the isolation and characterization of Os6PGDH2 from rice, which encode the plastidic counterpart of 6PGDH. Genomic organization analysis indicated that OsG6PDH1 and OsG6PDH2 genes contain multiple introns, whereas two Os6PGDH1 and Os6PGDH2 genes have no introns in their translated regions. In a step towards understanding the functions of the pentose phosphate pathway in plants in response to various abiotic stresses, the expressions of four genes in the rice seedlings treated by drought, cold, high salinity and abscisic acid (ABA) were investigated. The results show that OsG6PDH1 and OsG6PDH2 are not markedly regulated by the abiotic stresses detected. However, the transcript levels of both Os6PGDH1 and Os6PGDH2 are up-regulated in rice seedlings under drought, cold, high salinity and ABA treatments. Meanwhile,the enzyme activities of G6PDH and 6PGDH in the rice seedlings treated by various ablotlc stresses were investigated.Like the mRNA expression patterns, G6PDH activity remains constant but the 6PGDH increases steadily during the treatments. Taken together, we suggest that the pentose phosphate pathway may play an important role in rice responses to abiotlc stresses and the second key enzyme of PPP, 6PGDH, may function as a regulator controlling the efficiency of the pathway under abiotic stresses.

  15. A KH Domain-Containing Putative RNA-Binding Protein Is Critical for Heat Stress-Responsive Gene Regulation and Thermotolerance in Arabidopsis

    Qingmei Guan; Changlong Wen; Haitao Zeng; Jianhua Zhu

    2013-01-01

    Heat stress is a severe environmental factor that significantly reduces plant growth and delays development.Heat stress factors (HSFs) are a class of transcription factors that are synthesized rapidly in response to elevations in temperature and are responsible for the transcription of many heat stress-responsive genes including those encoding heat shock proteins (HSPs).There are 21 HSFs in Arabidopsis,and recent studies have established that the HSFA1 family members are master regulators for the remaining HSFs.However,very little is known about upstream molecular factors that control the expression of HSFA1 genes and other HSF genes under heat stress.Through a forward genetic analysis,we identified RCF3,a K homology (KH) domain-containing nuclear-localized putative RNA-binding protein.RCF3 is a negative regulator of most HSFs,including HSFAla,HSFAlb,and HSFAld.In contrast,RCF3 positively controls the expression of HSFAle,HSFA3,HSFA9,HSFB3,and DREB2C.Consistently with the overall increased accumulation of heat-responsive genes,the rcf3 mutant plants are more tolerant than the wild-type to heat stress.Together,our results suggest that a KH domain-containing putative RNA-binding protein RCF3 is an important upstream regulator for heat stress-responsive gene expression and thermotolerance in Arabidopsis.

  16. Genome-wide analysis of the general stress response network in Escherichia coli: sigmaS-dependent genes, promoters, and sigma factor selectivity.

    Weber, Harald; Polen, Tino; Heuveling, Johanna; Wendisch, Volker F; Hengge, Regine

    2005-03-01

    The sigmaS (or RpoS) subunit of RNA polymerase is the master regulator of the general stress response in Escherichia coli. While nearly absent in rapidly growing cells, sigmaS is strongly induced during entry into stationary phase and/or many other stress conditions and is essential for the expression of multiple stress resistances. Genome-wide expression profiling data presented here indicate that up to 10% of the E. coli genes are under direct or indirect control of sigmaS and that sigmaS should be considered a second vegetative sigma factor with a major impact not only on stress tolerance but on the entire cell physiology under nonoptimal growth conditions. This large data set allowed us to unequivocally identify a sigmaS consensus promoter in silico. Moreover, our results suggest that sigmaS-dependent genes represent a regulatory network with complex internal control (as exemplified by the acid resistance genes). This network also exhibits extensive regulatory overlaps with other global regulons (e.g., the cyclic AMP receptor protein regulon). In addition, the global regulatory protein Lrp was found to affect sigmaS and/or sigma70 selectivity of many promoters. These observations indicate that certain modules of the sigmaS-dependent general stress response can be temporarily recruited by stress-specific regulons, which are controlled by other stress-responsive regulators that act together with sigma70 RNA polymerase. Thus, not only the expression of genes within a regulatory network but also the architecture of the network itself can be subject to regulation. PMID:15716429

  17. A hormone-responsive C1-domain-containing protein At5g17960 mediates stress response in Arabidopsis thaliana.

    Ravindran Vijay Bhaskar

    Full Text Available Phytohormones play a critical role in mediating plant stress response. They employ a variety of proteins for coordinating such processes. In Arabidopsis thaliana, some members of a Cys-rich protein family known as C1-clan proteins were involved in stress response, but the actual function of the protein family is largely unknown. We studied At5g17960, a C1-clan protein member that possesses three unique C1 signature domains viz. C1_2, C1_3 and ZZ/PHD type. Additionally, we identified 72 other proteins in A. thaliana that contain all three unique signature domains. Subsequently, the 73 proteins were phylogenetically classified into IX subgroups. Promoter motif analysis of the 73 genes identified the presence of hormone-responsive and stress-responsive putative cis-regulatory elements. Furthermore, we observed that transcript levels of At5g17960 were induced in response to different hormones and stress treatments. At1g35610 and At3g13760, two other members of subgroup IV, also showed upregulation upon GA3, biotic and abiotic stress treatments. Moreover, seedlings of independent transgenic A. thaliana lines ectopically expressing or suppressing At5g17960 also showed differential regulation of several abiotic stress-responsive marker genes. Thus, our data suggest that C1-domain-containing proteins have a role to play in plant hormone-mediated stress responses, thereby assigning a putative function for the C1-clan protein family.

  18. Identification of bovine leukemia virus tax function associated with host cell transcription, signaling, stress response and immune response pathway by microarray-based gene expression analysis

    Arainga Mariluz

    2012-03-01

    Full Text Available Abstract Background Bovine leukemia virus (BLV is associated with enzootic bovine leukosis and is closely related to human T-cell leukemia virus type I. The Tax protein of BLV is a transcriptional activator of viral replication and a key contributor to oncogenic potential. We previously identified interesting mutant forms of Tax with elevated (TaxD247G or reduced (TaxS240P transactivation effects on BLV replication and propagation. However, the effects of these mutations on functions other than transcriptional activation are unknown. In this study, to identify genes that play a role in the cascade of signal events regulated by wild-type and mutant Tax proteins, we used a large-scale host cell gene-profiling approach. Results Using a microarray containing approximately 18,400 human mRNA transcripts, we found several alterations after the expression of Tax proteins in genes involved in many cellular functions such as transcription, signal transduction, cell growth, apoptosis, stress response, and immune response, indicating that Tax protein has multiple biological effects on various cellular environments. We also found that TaxD247G strongly regulated more genes involved in transcription, signal transduction, and cell growth functions, contrary to TaxS240P, which regulated fewer genes. In addition, the expression of genes related to stress response significantly increased in the presence of TaxS240P as compared to wild-type Tax and TaxD247G. By contrast, the largest group of downregulated genes was related to immune response, and the majority of these genes belonged to the interferon family. However, no significant difference in the expression level of downregulated genes was observed among the Tax proteins. Finally, the expression of important cellular factors obtained from the human microarray results were validated at the RNA and protein levels by real-time quantitative reverse transcription-polymerase chain reaction and western blotting

  19. Genome-wide analysis of the general stress response network in Escherichia coli: {sigma}S-dependent genes, promoters and sigma factor selectivity

    Weber, T. A.; T. POLEN; Heuveling, J.; Wendisch, V. F.; HENGGE R

    2005-01-01

    The sigmaS (or RpoS) subunit of RNA polymerase is the master regulator of the general stress response in Escherichia coli. While nearly absent in rapidly growing cells, sigmaS is strongly induced during entry into stationary phase and/or many other stress conditions and is essential for the expression of multiple stress resistances. Genome-wide expression profiling data presented here indicate that up to 10% of the E. coli genes are under direct or indirect control of sigmaS and that sigmaS s...

  20. Virus-induced gene silencing of Arabidopsis thaliana gene homologues in wheat identifies genes conferring improved drought tolerance

    Manmathan, Harish; Shaner, Dale; Snelling, Jacob; Tisserat, Ned; Lapitan, Nora

    2013-01-01

    In a non-model staple crop like wheat (Triticum aestivumI L.), functional validation of potential drought stress responsive genes identified in Arabidopsis could provide gene targets for breeding. Virus-induced gene silencing (VIGS) of genes of interest can overcome the inherent problems of polyploidy and limited transformation potential that hamper functional validation studies in wheat. In this study, three potential candidate genes shown to be involved in abiotic stress response pathways i...

  1. Nitric Oxide Signaling in Plant Responses to Abiotic Stresses

    Weihua Qiao; LiuMin Fan

    2008-01-01

    Nitric oxide (NO) plays important roles in diverse physiological processes In plants. NO can provoke both beneficial and harmful effects, which depend on the concentration and location of NO in plant cells. This review is focused on NO synthesis and the functions of NO in plant responses to abiotic environmental stresses. Abiotic stresses mostly induce NO production in plants. NO alleviates the harmfulness of reactive oxygen species, and reacts with other target molecules, and regulates the expression of stress responsive genes under various stress conditions.

  2. Genetically engineered Rice with transcription factor DREB genes for abiotic stress tolerance(abstract)

    Water stress (drought and Salinity) is the most severe limitation to rice productivity. Several breeding approaches (MAS, QTL) applied to suitable genotypes are in place at IRRI and elsewhere. Phenotyping of water stress tolerance is in progress with potential predictability. Dr. Shinozaki's group has cloned a number of transcription factor genes, which have been shown to work in Arabidopsis to achieve drought, cold, and salinity tolerant plants. None of these genes have as yet displayed their potential functioning in rice. Genetic engineering aims at cross talk between different stress signaling pathways leading to stress tolerance. Osmotic Adjustment (OA) is an effective component of abiotic stress (drought and salinity) tolerance in many plants including rice. When plant experiences water stress, OA contributes to turgor maintenance of both shoots and roots. Conventional breeding could not achieve the OA in rice excepting a few rice cultivars, which are partially adapted to water-stress conditions. Several stress-related genes have now been cloned and transferred in to enhance the osmolytes and some transgenic lines showed increased tolerance to osmotic stress. A few strategies could be effectively deployed for a better understanding of water-stress tolerance in rice and to develop transgenic rice, which can survive for a critical period of water-stress conditions: 1) Switching on of transcription factor regulating the expression of several genes related to abiotic stress, 2) Use of a suitable stress inducible promoter driving the target gene for an efficient and directed expression in plants, 3) Understanding of phenotyping and GxE in a given environment, 4) Selection of a few adaptive rice cultivars suitable in drought/salinity prone areas, 5) Microarray, proteomics, QTL and MAS may expedite the cloning and characterizing the stress induced genes, and 6) Finally, the efficient transformation system for generating a large number of transgenic rice of different

  3. AtHsfA2 modulates expression of stress responsive genes and enhances tolerance to heat and oxidative stress in Arabidopsis

    LI Chunguang; CHEN Qijun; GAO Xinqi; QI Bishu; CHEN Naizhi; XU Shouming; CHEN Jia; WANG Xuechen

    2005-01-01

    There is increasing evidence for considerable interlinking between the responses to heat stress and oxidative stress, and recent researches suggest heat shock transcription factors (Hsfs) play an important role in linking heat shock with oxidative stress signals. In this paper, we present evidence that AtHsfA2 modulated expression of stress responsive genes and enhanced tolerance to heat and oxidative stress in Arabidopsis. Using Northern blot and quantitative RT-PCR analysis, we demonstrated that the expression of AtHsfA2 was induced by not only HS but also oxidative stress. By functional analysis of AtHsfA2 knockout mutants and AtHsfA2 overexpressing transgenic plants, we also demonstrated that the mutants displayed reduced the basal and acquired thermotolerance as well as oxidative stress tolerance but the overexpression lines displayed increased tolerance to these stress. The phenotypes correlated with the expression of some Hsps and APX1, ion leakage, H2O2 level and degree of oxidative injuries. These results showed that, by modulated expression of stress responsive genes, AtHsfA2 enhanced tolerance to heat and oxidative stress in Arabidopsis. So we suggest that AtHsfA2 plays an important role in linking heat shock with oxidative stress signals.

  4. Transcriptome Analysis of High-Temperature Stress in Developing Barley Caryopses :Early Stress Responses and Effects on Storage Compound Biosynthesis

    Elke Mangelsen; Joachim Kilian; Klaus Harter; Christer Jansson; Dierk Wanke; Eva Sundberg

    2011-01-01

    High-temperature stress,like any abiotic stress,impairs the physiology and development of plants,including the stages of seed setting and ripening.We used the Aflymetrix 22K Barley1 GeneChip microarray to investigate the response of developing barley(Hordeum vulgare)seeds,termed caryopses,after 0.5,3,and 6 h of heat stress exposure;958 induced and 1122 repressed genes exhibited spatial and temporal expression patterns that provide a detailed insight into the caryopses'early heat stress responses.Down-regulation of genes related to storage compound biosynthesis and cell growth provides evidence for a rapid impairment of the caryopsis' development.Increased levels of sugars and amino acids were indicative for both production of compatible solutes and feedback-induced accumulation of substrates for storage compound biosynthesis.Metadata analysis identified embryo and endosperm as primary locations of heat stress responses,indicating a strong impact of short-term heat stress on central developmental functions of the caryopsis.A comparison with heat stress responses in Arabidopsis shoots and drought stress responses in barley caryopses identified both conserved and presumably heat-and caryopsis-specific stress-responsive genes.Summarized,our data provide an important basis for further investigation of gene functions in order to aid an improved heat tolerance and reduced losses of yield in barley as a model for cereal crops.

  5. Barley Genes as Tools to Confer Abiotic Stress Tolerance in Crops.

    Gürel, Filiz; Öztürk, Zahide N; Uçarlı, Cüneyt; Rosellini, Daniele

    2016-01-01

    Barley is one of the oldest cultivated crops in the world with a high adaptive capacity. The natural tolerance of barley to stress has led to increasing interest in identification of stress responsive genes through small/large-scale omics studies, comparative genomics, and overexpression of some of these genes by genetic transformation. Two major categories of proteins involved in stress tolerance are transcription factors (TFs) responsible from the re-programming of the metabolism in stress environment, and genes encoding Late Embryogenesis Abundant (LEA) proteins, antioxidant enzymes, osmolytes, and transporters. Constitutive overexpression of several barley TFs, such as C-repeat binding factors (HvCBF4), dehydration-responsive element-binding factors (HvDREB1), and WRKYs (HvWRKY38), in transgenic plants resulted in higher tolerance to drought and salinity, possibly by effectively altering the expression levels of stress tolerance genes due to their higher DNA binding affinity. Na(+)/H(+) antiporters, channel proteins, and lipid transporters can also be the strong candidates for engineering plants for tolerance to salinity and low temperatures. PMID:27536305

  6. Alfalfa Cellulose synthase gene expression under abiotic stress: a Hitchhiker's guide to RT-qPCR normalization.

    Gea Guerriero

    Full Text Available Abiotic stress represents a serious threat affecting both plant fitness and productivity. One of the promptest responses that plants trigger following abiotic stress is the differential expression of key genes, which enable to face the adverse conditions. It is accepted and shown that the cell wall senses and broadcasts the stress signal to the interior of the cell, by triggering a cascade of reactions leading to resistance. Therefore the study of wall-related genes is particularly relevant to understand the metabolic remodeling triggered by plants in response to exogenous stresses. Despite the agricultural and economical relevance of alfalfa (Medicago sativa L., no study, to our knowledge, has addressed specifically the wall-related gene expression changes in response to exogenous stresses in this important crop, by monitoring the dynamics of wall biosynthetic gene expression. We here identify and analyze the expression profiles of nine cellulose synthases, together with other wall-related genes, in stems of alfalfa plants subjected to different abiotic stresses (cold, heat, salt stress at various time points (e.g. 0, 24, 72 and 96 h. We identify 2 main responses for specific groups of genes, i.e. a salt/heat-induced and a cold/heat-repressed group of genes. Prior to this analysis we identified appropriate reference genes for expression analyses in alfalfa, by evaluating the stability of 10 candidates across different tissues (namely leaves, stems, roots, under the different abiotic stresses and time points chosen. The results obtained confirm an active role played by the cell wall in response to exogenous stimuli and constitute a step forward in delineating the complex pathways regulating the response of plants to abiotic stresses.

  7. Use of Maximum Likelihood-Mixed Models to select stable reference genes: a case of heat stress response in sheep

    Salces Judit

    2011-08-01

    Full Text Available Abstract Background Reference genes with stable expression are required to normalize expression differences of target genes in qPCR experiments. Several procedures and companion software have been proposed to find the most stable genes. Model based procedures are attractive because they provide a solid statistical framework. NormFinder, a widely used software, uses a model based method. The pairwise comparison procedure implemented in GeNorm is a simpler procedure but one of the most extensively used. In the present work a statistical approach based in Maximum Likelihood estimation under mixed models was tested and compared with NormFinder and geNorm softwares. Sixteen candidate genes were tested in whole blood samples from control and heat stressed sheep. Results A model including gene and treatment as fixed effects, sample (animal, gene by treatment, gene by sample and treatment by sample interactions as random effects with heteroskedastic residual variance in gene by treatment levels was selected using goodness of fit and predictive ability criteria among a variety of models. Mean Square Error obtained under the selected model was used as indicator of gene expression stability. Genes top and bottom ranked by the three approaches were similar; however, notable differences for the best pair of genes selected for each method and the remaining genes of the rankings were shown. Differences among the expression values of normalized targets for each statistical approach were also found. Conclusions Optimal statistical properties of Maximum Likelihood estimation joined to mixed model flexibility allow for more accurate estimation of expression stability of genes under many different situations. Accurate selection of reference genes has a direct impact over the normalized expression values of a given target gene. This may be critical when the aim of the study is to compare expression rate differences among samples under different environmental

  8. Betacyanin biosynthetic genes and enzymes are differentially induced by (abiotic stress in Amaranthus hypochondriacus.

    Gabriela Casique-Arroyo

    Full Text Available An analysis of key genes and enzymes of the betacyanin biosynthetic pathway in Amaranthus hypochondriacus (Ah was performed. Complete cDNA sequence of Ah genes coding for cyclo-DOPA 5-O glucosyltransferase (AhcDOPA5-GT, two 4, 5-DOPA-extradiol-dioxygenase isoforms (AhDODA-1 and AhDODA-2, respectively, and a betanidin 5-O-glucosyltransferase (AhB5-GT, plus the partial sequence of an orthologue of the cytochrome P-450 R gene (CYP76AD1 were obtained. With the exception AhDODA-2, which had a closer phylogenetic relationship to DODA-like genes in anthocyanin-synthesizing plants, all genes analyzed closely resembled those reported in related Caryophyllales species. The measurement of basal gene expression levels, in addition to the DOPA oxidase tyrosinase (DOT activity, in different tissues of three Ah genotypes having contrasting pigmentation levels (green to red-purple was determined. Additional analyses were performed in Ah plants subjected to salt and drought stress and to two different insect herbivory regimes. Basal pigmentation accumulation in leaves, stems and roots of betacyanic plants correlated with higher expression levels of AhDODA-1 and AhB5-GT, whereas DOT activity levels coincided with pigment accumulation in stems and roots and with the acyanic nature of green plants, respectively, but not with pigmentation in leaves. Although the abiotic stress treatments tested produced changes in pigment levels in different tissues, pigment accumulation was the highest in leaves and stems of drought stressed betacyanic plants, respectively. However, tissue pigment accumulation in stressed Ah plants did not always correlate with betacyanin biosynthetic gene expression levels and/or DOT activity. This effect was tissue- and genotype-dependent, and further suggested that other unexamined factors were influencing pigment content in stressed Ah. The results obtained from the insect herbivory assays, particularly in acyanic plants, also support the

  9. Differential effects of metal contamination on the transcript expression of immune- and stress-response genes in the Sydney Rock oyster, Saccostrea glomerata

    Environmental contamination by metals is a serious threat to the biological sustainability of coastal ecosystems. Our current understanding of the potential biological effects of metals in these ecosystems is limited. This study tested the transcriptional expression of immune- and stress-response genes in Sydney Rock oysters (Saccostrea glomerata). Oysters were exposed to four metals (cadmium, copper, lead and zinc) commonly associated with anthropogenic pollution in coastal waterways. Seven target genes (superoxide dismutase, ferritin, ficolin, defensin, HSP70, HSP90 and metallothionein) were selected. Quantitative (real-time) PCR analyses of the transcript expression of these genes showed that each of the different metals elicited unique transcriptional profiles. Significant changes in transcription were found for 18 of the 28 combinations tested (4 metals × 7 genes). Of these, 16 reflected down-regulation of gene transcription. HSP90 was the only gene significantly up-regulated by metal contamination (cadmium and zinc only), while defensin expression was significantly down-regulated by exposure to all four metals. This inhibition could have a significant negative effect on the oyster immune system, promoting susceptibility to opportunistic infections and disease. -- Highlights: ► Oysters were exposed to Cd, Cu, Pb or Zn, all commonly associated with coastal pollution. ► qPCR identified significant down-regulation in stress- and immune-response genes in oysters exposed to these metals. ► qPCR showed that each of the different metals elicited unique transcriptional profiles. ► The genes identified have the potential to lead to increased disease susceptibility in oysters. -- qPCR identified significant down-regulation in stress- and immune-response genes in oysters exposed to metals, which could lead to increased disease susceptibility

  10. Roles of catalase (CAT) and ascorbate peroxidase (APX) genes in stress response of eggplant (Solanum melongena L.) against Cu(+2) and Zn(+2) heavy metal stresses.

    Soydam-Aydın, Semra; Büyük, İlker; Cansaran-Duman, Demet; Aras, Sümer

    2015-12-01

    Eggplant (Solanum melongena L.) is a good source of minerals and vitamins and this feature makes its value comparable with tomato which is economically the most important vegetable worldwide. Due to its common usage as food and in medicines, eggplant cultivation has a growing reputation worldwide. But genetic yield potential of an eggplant variety is not always attained, and it is limited by some factors such as heavy metal contaminated soils in today's world. Today, one of the main objectives of plant stress biology and agricultural biotechnology areas is to find the genes involved in antioxidant stress response and engineering the key genes to improve the plant resistance mechanisms. In this regard, the current study was conducted to gain an idea on the roles of catalase (CAT) and ascorbate peroxidase (APX) genes in defense mechanism of eggplant (S. melongena L., Pala-49 (Turkish cultivar)) treated with different concentrations of Cu(+2) and Zn(+2). For this aim, the steady-state messenger RNA (mRNA) levels of CAT and APX genes were determined by quantitative real-time PCR (qRT-PCR) in stressed eggplants. The results of the current study showed that different concentrations of Cu(+2) and Zn(+2) stresses altered the mRNA levels of CAT and APX genes in eggplants compared to the untreated control samples. When the mRNA levels of both genes were compared, it was observed that CAT gene was more active than APX gene in eggplant samples subjected to Cu(+2) contamination. The current study highlights the importance of CAT and APX genes in response to Cu(+2) and Zn(+2) heavy metal stresses in eggplant and gives an important knowledge about this complex interaction. PMID:26530238

  11. A Cyanobacterium Synechocystis sp. PCC 6803 Glutaredoxin Gene (slr1562 Protects Escherichia coli against Abiotic Stresses

    Ahmed Gaber

    2012-01-01

    Full Text Available Problem statement: Glutaredoxins (GRXs are ubiquitous small heat stable glutathione-dependent oxidoreductase enzymes that play a crucial role in plant development and response to oxidative stress. Approach: Cyanobacterium Synechocystis strain PCC 6803 contains two genes (slr1562 and ssr2061 encoding glutaredoxins. In the present investigation the slr1562 gene (grxC was isolated and characterized. Results: The results revealed that the amino acid sequence deduced from GrxC protein share high identity with those of GRXs from other organisms and contain the consensus GRX family domain with a CPFC active site. Northern blotting analysis revealed that the expression of slr1562 gene could be induced by oxidative and salt stresses. Moreover, the protein GrxC was successfully overexpressed as a soluble fraction in Escherichia coli JM109. The over-expression of GrxC in Escherichia coli cells significantly increased resistance of cells to oxidative, drought and salt stresses. Conclusion/Recommendations: These results suggest that the slr1562 gene could play an important role in regulating abiotic tolerance against oxidative, drought and salt stresses in different organisms.

  12. Molecular cloning, characterization, and stress-responsive expression of genes encoding glycine-rich RNA-binding proteins in Camelina sativa L.

    Kwak, Kyung Jin; Kang, Hunseung; Han, Kyung-Hwan; Ahn, Sung-Ju

    2013-07-01

    Camelina sativa L. is an oil-seed crop that has potential for biofuel applications. Although the importance of C. sativa as a biofuel crop has increased in recent years, reports demonstrating the stress responsiveness of C. sativa and characterizing the genes involved in stress response of C. sativa have never been published. Here, we isolated and characterized three genes encoding glycine-rich RNA-binding proteins (GRPs) from camelina: CsGRP2a, CsGRP2b, and CsGRP2c. The three CsGRP2 proteins were very similar in amino acid sequence and contained a well-conserved RNA-recognition motif at the N-terminal region and glycine-rich domain at the C-terminal region. To understand the functional roles of CsGRP2s under stress conditions, we investigated the expression patterns of CsGRP2s under various environmental stress conditions. The expressions of the three CsGRP2s were highly up-regulated under cold stress. The expression of CsGRP2a was up-regulated under salt or dehydration stress, whereas the transcript levels of CsGRP2b and CsGRP2c were decreased under salt or dehydration stress conditions. The three CsGRP2s had the ability to complement cold-sensitive Escherichia coli mutants at low temperatures and harbored transcription anti-termination and nucleic acid-melting activities, indicating that the CsGRP2s possess RNA chaperone activity. The CsGRP2a protein was localized to both the nucleus and the cytoplasm. Expression of CsGRP2a in cold-sensitive Arabidopsis grp7 mutant plants resulted in decreased electrolyte leakage at freezing temperatures. Collectively, these results suggest that the stress-responsive CsGRP2s play a role as an RNA chaperone during the stress adaptation process in camelina. PMID:23628924

  13. Generation and analysis of expressed sequence tags (ESTs) of Camelina sativa to mine drought stress-responsive genes.

    Kanth, Bashistha Kumar; Kumari, Shipra; Choi, Seo Hee; Ha, Hye-Jeong; Lee, Geung-Joo

    2015-11-01

    Camelina sativa is an oil-producing crop belonging to the family of Brassicaceae. Due to exceptionally high content of omega fatty acid, it is commercially grown around the world as edible oil, biofuel, and animal feed. A commonly referred 'false flax' or gold-of-pleasure Camelina sativa has been interested as one of biofuel feedstocks. The species can grow on marginal land due to its superior drought tolerance with low requirement of agricultural inputs. This crop has been unexploited due to very limited transcriptomic and genomic data. Use of gene-specific molecular markers is an important strategy for new cultivar development in breeding program. In this study, Illumina paired-end sequencing technology and bioinformatics tools were used to obtain expression profiling of genes responding to drought stress in Camelina sativa BN14. A total of more than 60,000 loci were assembled, corresponding to approximately 275 K transcripts. When the species was exposed to 10 kPa drought stress, 100 kPa drought stress, and rehydrated conditions, a total of 107, 2,989, and 982 genes, respectively, were up-regulated, while 146, 3,659, and 1189 genes, respectively, were down-regulated compared to control condition. Some unknown genes were found to be highly expressed under drought conditions, together with some already reported gene families such as senescence-associated genes, CAP160, and LEA under 100 kPa soil water condition, cysteine protease, 2OG, Fe(II)-dependent oxygenase, and RAD-like 1 under rehydrated condition. These genes will be further validated and mapped to determine their function and loci. This EST library will be favorably applied to develop gene-specific molecular markers and discover genes responsible for drought tolerance in Camelina species. PMID:26410535

  14. The strong selective sweep candidate gene ADRA2C does not explain domestication related changes in the stress response of chickens.

    Magnus Elfwing

    Full Text Available Analysis of selective sweeps to pinpoint causative genomic regions involved in chicken domestication has revealed a strong selective sweep on chromosome 4 in layer chickens. The autoregulatory α-adrenergic receptor 2C (ADRA2C gene is the closest to the selective sweep and was proposed as an important gene in the domestication of layer chickens. The ADRA2C promoter region was also hypermethylated in comparison to the non-selected ancestor of all domesticated chicken breeds, the Red Junglefowl, further supporting its relevance. In mice the receptor is involved in the fight-or-flight response as it modulates epinephrine release from the adrenals. To investigate the involvement of ADRA2C in chicken domestication, we measured gene expression in the adrenals and radiolabeled receptor ligand in three brain regions comparing the domestic White Leghorn strain with the wild ancestor Red Junglefowl. In adrenals ADRA2C was twofold greater expressed than the related receptor gene ADRA2A, indicating that ADRA2C is the predominant modulator of epinephrine release but no strain differences were measured. In hypothalamus and amygdala, regions associated with the stress response, and in striatum, receptor binding pIC50 values ranged between 8.1-8.4, and the level was not influenced by the genotyped allele. Because chicken strains differ in morphology, physiology and behavior, differences attributed to a single gene may be lost in the noise caused by the heterogeneous genetic background. Therefore an F10 advanced intercross strain between White Leghorn and Red Junglefowl was used to investigate effects of ADRA2C alleles on fear related behaviors and fecundity. We did not find compelling genotype effects in open field, tonic immobility, aerial predator, associative learning or fecundity. Therefore we conclude that ADRA2C is probably not involved in the domestication of the stress response in chicken, and the strong selective sweep is probably caused by selection

  15. A transcriptional analysis of carotenoid, chlorophyll and plastidial isoprenoid biosynthesis genes during development and osmotic stress responses in Arabidopsis thaliana

    Meier, Stuart

    2011-05-19

    Background: The carotenoids are pure isoprenoids that are essential components of the photosynthetic apparatus and are coordinately synthesized with chlorophylls in chloroplasts. However, little is known about the mechanisms that regulate carotenoid biosynthesis or the mechanisms that coordinate this synthesis with that of chlorophylls and other plastidial synthesized isoprenoid-derived compounds, including quinones, gibberellic acid and abscisic acid. Here, a comprehensive transcriptional analysis of individual carotenoid and isoprenoid-related biosynthesis pathway genes was performed in order to elucidate the role of transcriptional regulation in the coordinated synthesis of these compounds and to identify regulatory components that may mediate this process in Arabidopsis thaliana.Results: A global microarray expression correlation analysis revealed that the phytoene synthase gene, which encodes the first dedicated and rate-limiting enzyme of carotenogenesis, is highly co-expressed with many photosynthesis-related genes including many isoprenoid-related biosynthesis pathway genes. Chemical and mutant analysis revealed that induction of the co-expressed genes following germination was dependent on gibberellic acid and brassinosteroids (BR) but was inhibited by abscisic acid (ABA). Mutant analyses further revealed that expression of many of the genes is suppressed in dark grown plants by Phytochrome Interacting transcription Factors (PIFs) and activated by photoactivated phytochromes, which in turn degrade PIFs and mediate a coordinated induction of the genes. The promoters of PSY and the co-expressed genes were found to contain an enrichment in putative BR-auxin response elements and G-boxes, which bind PIFs, further supporting a role for BRs and PIFs in regulating expression of the genes. In osmotically stressed root tissue, transcription of Calvin cycle, methylerythritol 4-phosphate pathway and carotenoid biosynthesis genes is induced and uncoupled from that of

  16. Transcriptome analysis of genes regulated by cholesterol loading in two strains of mouse macrophages associates lysosome pathway and ER stress response with atherosclerosis susceptibility.

    Berisha, Stela Z; Hsu, Jeffrey; Robinet, Peggy; Smith, Jonathan D

    2013-01-01

    Cholesterol loaded macrophages in the arterial intima are the earliest histological evidence of atherosclerosis. Studies of mouse models of atherosclerosis have shown that the strain background can have a significant effect on lesion development. We have previously shown that DBA/2 ApoE(-/-) mice have aortic root lesions 10-fold larger than AKR ApoE(-/-) mice. The current study analyzes the response to cholesterol loading of macrophages from these two strains. Macrophages from the atherosclerosis susceptible DBA/2 strain had significantly higher levels of total and esterified cholesterol compared to atherosclerosis resistant AKR macrophages, while free cholesterol levels were higher in AKR cells. Gene expression profiles were obtained and data were analyzed for strain, cholesterol loading, and strain-cholesterol loading interaction effects by a fitted linear model. Pathway and transcriptional motif enrichment were identified by gene set enrichment analysis. In addition to observed strain differences in basal gene expression, we identified many transcripts whose expression was significantly altered in response to cholesterol loading, including P2ry13 and P2ry14, Trib3, Hyal1, Vegfa, Ccr5, Ly6a, and Ifit3. Eight pathways were significantly enriched in transcripts regulated by cholesterol loading, among which the lysosome and cytokine-cytokine receptor interaction pathways had the highest number of significantly regulated transcripts. Of the differentially regulated transcripts with a strain-cholesterol loading interaction effect, we identified three genes known to participate in the endoplasmic reticulum (ER) stress response, Ddit3, Trib3 and Atf4. These three transcripts were highly up-regulated by cholesterol in AKR and either down-regulated or unchanged in loaded DBA/2 macrophages, thus associating a robust ER stress response with atherosclerosis resistance. We identified significant transcripts with strain, loading, or strain-loading interaction effect that

  17. Comprehensive expression profiling of rice tetraspanin genes reveals diverse roles during development and abiotic stress

    Balaji eM

    2015-12-01

    Full Text Available Tetraspanin family is comprised of evolutionarily conserved integral membrane proteins. The incredible ability of tetraspanins to form ‘micro domain complexes’ and their preferential targeting to membranes emphasizes their active association with signal recognition and communication with neighboring cells, thus acting as key modulators of signaling cascades. In animals, tetraspanins are associated with multitude of cellular processes. Unlike animals, the biological relevance of tetraspanins in plants has not been well investigated. In Arabidopsis tetraspanins are known to contribute in important plant development processes such as leaf morphogenesis, root and floral organ formation. In the present study we investigated the genomic organization, chromosomal distribution, phylogeny and domain structure of 15 rice tetraspanin proteins (OsTETs. OsTET proteins had similar domain structure and signature ‘GCCK/R’ motif as reported in Arabidopsis. Comprehensive expression profiling of OsTET genes suggested their possible involvement during rice development. While OsTET9 and 10 accumulated predominantly in flowers, OsTET5, 8 and 12 were preferentially expressed in root tissues. Noticeably, seven OsTETs exhibited more than 2-fold up regulation at early stages of flag leaf senescence in rice. Furthermore, several OsTETs were differentially regulated in rice seedlings exposed to abiotic stresses, exogenous treatment of hormones and nutrient deprivation. Transient subcellular localization studies of eight OsTET proteins in tobacco epidermal cells showed that these proteins localized in plasma membrane. The present study provides valuable insights into the possible roles of tetraspanins in regulating development and defining response to abiotic stresses in rice. Targeted proteomic studies would be useful in identification of their interacting partners under different conditions and ultimately their biological function in plants

  18. Transcriptome analysis of skeletal muscle tissue to identify genes involved in pre-slaughter stress response in pigs

    Vincenzo Russo

    2010-01-01

    Full Text Available The knowledge of genes and molecular processes controlling stress reactions and involved in the genetic system determining resistance to stress in pigs could be important for the improvement of meat quality. This research aimed to compare the expression profiles of skeletal muscle between physically stressed and not stressed pigs of different breeds immediately before slaughter. DNA microarray analysis showed that different functional categories of genes are up-regulated in stressed compared to not stressed pigs and relevant differences among breeds were found.

  19. Validation of potential reference genes for qPCR in maize across abiotic stresses, hormone treatments, and tissue types.

    Yueai Lin

    Full Text Available The reverse transcription quantitative polymerase chain reaction (RT-qPCR is a powerful and widely used technique for the measurement of gene expression. Reference genes, which serve as endogenous controls ensure that the results are accurate and reproducible, are vital for data normalization. To bolster the literature on reference gene selection in maize, ten candidate reference genes, including eight traditionally used internal control genes and two potential candidate genes from our microarray datasets, were evaluated for expression level in maize across abiotic stresses (cold, heat, salinity, and PEG, phytohormone treatments (abscisic acid, salicylic acid, jasmonic acid, ethylene, and gibberellins, and different tissue types. Three analytical software packages, geNorm, NormFinder, and Bestkeeper, were used to assess the stability of reference gene expression. The results revealed that elongation factor 1 alpha (EF1α, tubulin beta (β-TUB, cyclophilin (CYP, and eukaryotic initiation factor 4A (EIF4A were the most reliable reference genes for overall gene expression normalization in maize, while GRP (Glycine-rich RNA-binding protein, GLU1(beta-glucosidase, and UBQ9 (ubiquitin 9 were the least stable and most unsuitable genes. In addition, the suitability of EF1α, β-TUB, and their combination as reference genes was confirmed by validating the expression of WRKY50 in various samples. The current study indicates the appropriate reference genes for the urgent requirement of gene expression normalization in maize across certain abiotic stresses, hormones, and tissue types.

  20. ChIP-Seq Analysis of the σE Regulon of Salmonella enterica Serovar Typhimurium Reveals New Genes Implicated in Heat Shock and Oxidative Stress Response.

    Jie Li

    Full Text Available The alternative sigma factor σE functions to maintain bacterial homeostasis and membrane integrity in response to extracytoplasmic stress by regulating thousands of genes both directly and indirectly. The transcriptional regulatory network governed by σE in Salmonella and E. coli has been examined using microarray, however a genome-wide analysis of σE-binding sites in Salmonella has not yet been reported. We infected macrophages with Salmonella Typhimurium over a select time course. Using chromatin immunoprecipitation followed by high-throughput DNA sequencing (ChIP-seq, 31 σE-binding sites were identified. Seventeen sites were new, which included outer membrane proteins, a quorum-sensing protein, a cell division factor, and a signal transduction modulator. The consensus sequence identified for σE in vivo binding was similar to the one previously reported, except for a conserved G and A between the -35 and -10 regions. One third of the σE-binding sites did not contain the consensus sequence, suggesting there may be alternative mechanisms by which σE modulates transcription. By dissecting direct and indirect modes of σE-mediated regulation, we found that σE activates gene expression through recognition of both canonical and reversed consensus sequence. New σE regulated genes (greA, luxS, ompA and ompX are shown to be involved in heat shock and oxidative stress responses.

  1. The mitogen-activated protein kinase gene, VdHog1, regulates osmotic stress response, microsclerotia formation and virulence in Verticillium dahliae.

    Wang, Yonglin; Tian, Longyan; Xiong, Dianguang; Klosterman, Steven J; Xiao, Shuxiao; Tian, Chengming

    2016-03-01

    The fungus Verticillium dahliae has gained worldwide notoriety as a destructive plant pathogen, causing vascular wilt diseases on diverse plant species. V. dahliae produces melanized resting bodies, known as microsclerotia, which can survive for 15years in the soil, and are thus critically important in its disease cycle. However, the molecular mechanisms that underpin microsclerotia formation, survival, and germination remain poorly understood. In this study, we observed that deletion of VdHog1 (ΔVdHog1), encoding a homolog of a high-osmolarity glycerol (HOG) response mitogen-activated protein kinase, displayed decreased numbers of melanized microsclerotia in culture, heightened sensitivity to hyperosmotic stress, and increased resistance to the fungicide fludioxonil. Through RNA-Seq analysis, we identified 221 genes differentially expressed in the ΔVdHog1 strain. Interestingly, the expression levels of genes involved in melanin biosynthesis, as well as the hydrophobin gene VDH1, involved in the early stage of microsclerotia formation, were significantly decreased in the ΔVdHog1 strains relative to the wild-type expression levels. The ΔVdHog1 strains exhibited decreased virulence relative to the wild type strain on smoke tree seedlings. These results indicate that VdHog1 regulates hyperosmotic stress responses in V. dahliae, and establishes the Hog1-mediated pathway as a target to further probe the up- and downstream processes that regulate asexual development in this fungus. PMID:26812120

  2. Detoxification and stress response genes expressed in a western North American bumble bee, Bombus huntii (Hymenoptera: Apidae)

    Bumble bees are generalist floral visitors, meaning they pollinate a wide variety of plants. Their pollination activities expose them to both plant toxins and pesticides, yet little is known about what detoxification pathways are active in bumble bees, how the expression of detoxification genes chan...

  3. The regulation of copper stress response genes in the polychaete Nereis diversicolor during prolonged extreme copper contamination.

    McQuillan, Jonathan S; Kille, Peter; Powell, Kate; Galloway, Tamara S

    2014-11-18

    Polychaetes are frequented in toxicological studies, one reason being that some members occupy shallow burrows in sediments and are maximally exposed to the contaminants that accumulate within them. We have been studying one population of the polychaete Nereis (Hediste) diversicolor exhibiting inheritable tolerance to extreme copper contamination in estuarine sediment. Using transcriptome sequencing data we have identified a suite of genes with putative roles in metal detoxification and tolerance, and measured their regulation. Copper tolerant individuals display significantly different gene expression profiles compared to animals from a nearby population living without remarkable copper levels. Gene transcripts encoding principle copper homeostasis proteins including membrane copper ion transporters, copper ion chaperones and putative metallothionein-like proteins were significantly more abundant in tolerant animals occupying contaminated sediment. In contrast, those encoding antioxidants and cellular repair pathways were unchanged. Nontolerant animals living in contaminated sediment showed no difference in copper homeostasis-related gene expression but did have significantly elevated levels of mRNAs encoding Glutathione Peroxidase enzymes. This study represents the first use of functional genomics to investigate the copper tolerance trait in this species and provides insight into the mechanism used by these individuals to survive and flourish in conditions which are lethal to their conspecifics. PMID:25337783

  4. Rice husks and their hydrochars cause unexpected stress response in the nematode Caenorhabditis elegans: reduced transcription of stress-related genes.

    Chakrabarti, Shumon; Dicke, Christiane; Kalderis, Dimitrios; Kern, Jürgen

    2015-08-01

    Currently, char substrates gain a lot of interest since soils amended with such substrates are being discussed to increase in fertility and productivity, water retention, and mitigation of greenhouse gases. Char substrates can be produced by carbonization of organic matter. Among different process conditions, temperature is the main factor controlling the occurrence of organic and inorganic contaminants such as phenols and furfurals, which may affect target and non-target organisms. The hydrochar produced at 200 °C contained both furfural and phenol with concentrations of 282 and 324 mg kg(-1) in contrast to the 300 °C hydrochar, which contained only phenol with a concentration of 666 mg kg(-1). By washing with acetone and water, these concentrations were significantly reduced. In this study, the potential toxic effects of hydrochars on the free-living nematode Caenorhabditis elegans were investigated via gene transcription studies using the following four matrices: (i) raw rice husk, (ii) unwashed rice char, (iii) acetone/water washed rice char, and (iv) the wash water of the two rice chars produced at 200 and 300 °C via hydrothermal carbonization (HTC). Furthermore, genetically modified strains, where the green fluorescent protein (GFP) gene sequence is linked to a reporter gene central in specific anti-stress regulations, were also exposed to these matrices. Transgenic worms exposed to hydrochars showed very weak, if any, fluorescence, and expression of the associated RNAs related to stress response and biotransformation genes was surprisingly downregulated. Similar patterns were also found for the raw rice husk. It is hypothesized that an unidentified chemical trigger exists in the rice husk, which is not destroyed during the HTC process. Therefore, the use of GFP transgenic nematode strains cannot be recommended as a general rapid monitoring tool for farmers treating their fields with artificial char. However, it is hypothesized that the observed reduced

  5. SSHscreen and SSHdb, generic software for microarray based gene discovery: application to the stress response in cowpea

    Oelofse Dean

    2010-04-01

    Full Text Available Abstract Background Suppression subtractive hybridization is a popular technique for gene discovery from non-model organisms without an annotated genome sequence, such as cowpea (Vigna unguiculata (L. Walp. We aimed to use this method to enrich for genes expressed during drought stress in a drought tolerant cowpea line. However, current methods were inefficient in screening libraries and management of the sequence data, and thus there was a need to develop software tools to facilitate the process. Results Forward and reverse cDNA libraries enriched for cowpea drought response genes were screened on microarrays, and the R software package SSHscreen 2.0.1 was developed (i to normalize the data effectively using spike-in control spot normalization, and (ii to select clones for sequencing based on the calculation of enrichment ratios with associated statistics. Enrichment ratio 3 values for each clone showed that 62% of the forward library and 34% of the reverse library clones were significantly differentially expressed by drought stress (adjusted p value 88% of the clones in both libraries were derived from rare transcripts in the original tester samples, thus supporting the notion that suppression subtractive hybridization enriches for rare transcripts. A set of 118 clones were chosen for sequencing, and drought-induced cowpea genes were identified, the most interesting encoding a late embryogenesis abundant Lea5 protein, a glutathione S-transferase, a thaumatin, a universal stress protein, and a wound induced protein. A lipid transfer protein and several components of photosynthesis were down-regulated by the drought stress. Reverse transcriptase quantitative PCR confirmed the enrichment ratio values for the selected cowpea genes. SSHdb, a web-accessible database, was developed to manage the clone sequences and combine the SSHscreen data with sequence annotations derived from BLAST and Blast2GO. The self-BLAST function within SSHdb grouped

  6. The Juvenile Phase of Maize Sees Upregulation of Stress-Response Genes and Is Extended by Exogenous Jasmonic Acid.

    Beydler, Benjamin; Osadchuk, Krista; Cheng, Chi-Lien; Manak, J Robert; Irish, Erin E

    2016-08-01

    As maize (Zea mays) plants undergo vegetative phase change from juvenile to adult, they both exhibit heteroblasty, an abrupt change in patterns of leaf morphogenesis, and gain the ability to produce flowers. Both processes are under the control of microRNA156 (miR156), whose levels decline at the end of the juvenile phase. Gain of the ability to flower is conferred by the expression of miR156 targets that encode SQUAMOSA PROMOTER-BINDING transcription factors, which, when derepressed in the adult phase, induce the expression of MADS box transcription factors that promote maturation and flowering. How gene expression, including targets of those microRNAs, differs between the two phases remains an open question. Here, we compare transcript levels in primordia that will develop into juvenile or adult leaves to identify genes that define these two developmental states and may influence vegetative phase change. In comparisons among successive leaves at the same developmental stage, plastochron 6, three-fourths of approximately 1,100 differentially expressed genes were more highly expressed in primordia of juvenile leaves. This juvenile set was enriched in photosynthetic genes, particularly those associated with cyclic electron flow at photosystem I, and in genes involved in oxidative stress and retrograde redox signaling. Pathogen- and herbivory-responsive pathways including salicylic acid and jasmonic acid also were up-regulated in juvenile primordia; indeed, exogenous application of jasmonic acid delayed both the appearance of adult traits and the decline in the expression of miR156-encoding loci in maize seedlings. We hypothesize that the stresses associated with germination promote juvenile patterns of differentiation in maize. PMID:27307257

  7. Systems analysis of ATF3 in stress response and cancer reveals opposing effects on pro-apoptotic genes in p53 pathway.

    Yujiro Tanaka

    Full Text Available Stress-inducible transcription factors play a pivotal role in cellular adaptation to environment to maintain homeostasis and integrity of the genome. Activating transcription factor 3 (ATF3 is induced by a variety of stress and inflammatory conditions and is over-expressed in many kinds of cancer cells. However, molecular mechanisms underlying pleiotropic functions of ATF3 have remained elusive. Here we employed systems analysis to identify genome-wide targets of ATF3 that is either induced by an alkylating agent methyl methanesulfonate (MMS or over-expressed in a prostate tumour cell line LNCaP. We show that stress-induced and cancer-associated ATF3 is recruited to 5,984 and 1,423 targets, respectively, in the human genome, 89% of which are common. Notably, ATF3 targets are highly enriched for not only ATF/CRE motifs but also binding sites of several other stress-inducible transcription factors indicating an extensive network of stress response factors in transcriptional regulation of target genes. Further analysis of effects of ATF3 knockdown on these targets revealed that stress-induced ATF3 regulates genes in metabolic pathways, cell cycle, apoptosis, cell adhesion, and signalling including insulin, p53, Wnt, and VEGF pathways. Cancer-associated ATF3 is involved in regulation of distinct sets of genes in processes such as calcium signalling, Wnt, p53 and diabetes pathways. Notably, stress-induced ATF3 binds to 40% of p53 targets and activates pro-apoptotic genes such as TNFRSF10B/DR5 and BBC3/PUMA. Cancer-associated ATF3, by contrast, represses these pro-apoptotic genes in addition to CDKN1A/p21. Taken together, our data reveal an extensive network of stress-inducible transcription factors and demonstrate that ATF3 has opposing, cell context-dependent effects on p53 target genes in DNA damage response and cancer development.

  8. Nicotine mediates expression of genes related to antioxidant capacity and oxidative stress response in HIV-1 transgenic rat brain.

    Song, Guohua; Nesil, Tanseli; Cao, Junran; Yang, Zhongli; Chang, Sulie L; Li, Ming D

    2016-02-01

    Oxidative stress plays an important role in the progression of HIV-1 infection. Nicotine can either protect neurons from neurodegeneration or induce oxidative stress, depending on its dose and degree of oxidative stress impairment. However, the relationship between nicotine and oxidative stress in the HIV-1-infected individuals remains largely unknown. The purpose of this study was to determine the effect of nicotine on expression of genes related to the glutathione (GSH)-centered antioxidant system and oxidative stress in the nucleus accumbens (NAc) and ventral tegmental area (VTA) of HIV-1 transgenic (HIV-1Tg) and F344 control rats. Adult HIV-1Tg and F344 rats received nicotine (0.4 mg/kg, base, s.c.) or saline injections once per day for 27 days. At the end of treatment, various brain regions including the NAc and VTA were collected from each rat. Following total RNA extraction and complementary DNA (cDNA) synthesis of each sample, quantitative reverse transcription PCR (RT-PCR) analysis was performed for 43 oxidative-stress-related genes. Compared with F344 control rats, HIV-1Tg rats showed a significant downregulation of genes involved in ATPase and cyctochrome oxidase at the messenger RNA (mRNA) level in both regions. Further, we found a significant downregulation of Gstm5 in the NAc and upregulation of Cox1, Cox3, and Gsta6 in the VTA of HIV-1Tg rats. HIV-1Tg rats showed brain-region-specific responses to chronic nicotine treatment. This response resulted in a change in the expression of genes involved in antioxidant mechanisms including the downregulation of genes such as Atp5h, Calml1, Gpx7, Gstm5, Gsr, and Gsta6 and upregulation of Sod1 in the NAc, as well as downregulation of genes like Cox5a, Gpx4, Gpx6, Gpx7, Gstm5, and Sod1 in the VTA of HIV-1Tg rats. Together, we conclude that chronic nicotine treatment has a dual effect on the antioxidant defense system and oxidative-stress-induced apoptosis signaling in HIV-1Tg rats. These findings suggest that

  9. The regulation of copper stress response genes in the Polychaete Nereis diversicolor during prolonged extreme copper contamination

    McQuillan, Jonathan S.; Kille, Peter; Powell, Kate; Galloway, Tamara S.

    2014-01-01

    Polychaetes are frequented in toxicological studies, one reason being that some members occupy shallow burrows in sediments and are maximally exposed to the contaminants that accumulate within them. We have been studying one population of the polychaete Nereis (Hediste) diversicolor exhibiting inheritable tolerance to extreme copper contamination in estuarine sediment. Using transcriptome sequencing data we have identified a suite of genes with putative roles in metal detoxification and toler...

  10. Effects of Low Doses of Ionizing Radiation Exposures on Stress-Responsive Gene Expression in Human Embryonic Stem Cells

    Mykyta Sokolov

    2014-01-01

    Full Text Available There is a great deal of uncertainty on how low (≤0.1 Gy doses of ionizing radiation (IR affect human cells, partly due to a lack of suitable experimental model systems for such studies. The uncertainties arising from low-dose IR human data undermine practical societal needs to predict health risks emerging from diagnostic medical tests’ radiation, natural background radiation, and environmental radiological accidents. To eliminate a variability associated with remarkable differences in radioresponses of hundreds of differentiated cell types, we established a novel, human embryonic stem cell (hESC-based model to examine the radiobiological effects in human cells. Our aim is to comprehensively elucidate the gene expression changes in a panel of various hESC lines following low IR doses of 0.01; 0.05; 0.1 Gy; and, as a reference, relatively high dose of 1 Gy of IR. Here, we examined the dynamics of transcriptional changes of well-established IR-responsive set of genes, including CDKN1A, GADD45A, etc. at 2 and 16 h post-IR, representing “early” and “late” radioresponses of hESCs. Our findings suggest the temporal- and hESC line-dependence of stress gene radioresponses with no statistically significant evidence for a linear dose-response relationship within the lowest doses of IR exposures.

  11. Stress responsive gene CIPK14 is involved in phytochrome A-mediated far-red light inhibition of greening in Arabidopsis

    2010-01-01

    In this study, we show that CIPK14,a stress responsive CBL-interacting protein kinase gene,is involved in phytochrome A-mediated far-red light inhibition of greening in Arabidopsis seedlings. The CIPK14-impairment mutant cipk14 grown in continuous far-red (FR) light did not show greening when exposed to white light illumination for 15 h. By contrast, the FR-grown phytochrome A null mutant phyA greened within 0.5 h of exposure to white light. Although greening of Col-4 (wild-type) was not completely abolished by FR, it exhibited a significantly decreased greening capacity compared with that of phyA. Further analyses demonstrated that the expression of protochlorophyllide reductase (POR) genes was correlated with the greening ability of the genotypes. In addition, CIPK14 appeared to be regulated by both the circadian clock and PhyA. Taken together, these results suggest that CIPK14 plays a role in PhyA-mediated FR inhibition of seedling greening, and that a Ca-related kinase may be involved in a previously undefined branch point in the phytochrome A signaling pathway.

  12. Genome wide analysis of stress responsive WRKY transcription factors in Arabidopsis thaliana

    Shaiq Sultan

    2016-04-01

    Full Text Available WRKY transcription factors are a class of DNA-binding proteins that bind with a specific sequence C/TTGACT/C known as W-Box found in promoters of genes which are regulated by these WRKYs. From previous studies, 43 different stress responsive WRKY transcription factors in Arabidopsis thaliana, identified and then categorized in three groups viz., abiotic, biotic and both of these stresses. A comprehensive genome wide analysis including chromosomal localization, gene structure analysis, multiple sequence alignment, phylogenetic analysis and promoter analysis of these WRKY genes was carried out in this study to determine the functional homology in Arabidopsis. This analysis led to the classification of these WRKY family members into 3 major groups and subgroups and showed evolutionary relationship among these groups on the base of their functional WRKY domain, chromosomal localization and intron/exon structure. The proposed groups of these stress responsive WRKY genes and annotation based on their position on chromosomes can also be explored to determine their functional homology in other plant species in relation to different stresses. The result of the present study provides indispensable genomic information for the stress responsive WRKY transcription factors in Arabidopsis and will pave the way to explain the precise role of various AtWRKYs in plant growth and development under stressed conditions.

  13. A functional polymorphism in the 5HTR2C gene associated with stress responses also predicts incident cardiovascular events.

    Beverly H Brummett

    Full Text Available Previously we have shown that a functional nonsynonymous single nucleotide polymorphism (rs6318 of the 5HTR2C gene located on the X-chromosome is associated with hypothalamic-pituitary-adrenal axis response to a stress recall task, and with endophenotypes associated with cardiovascular disease (CVD. These findings suggest that individuals carrying the rs6318 Ser23 C allele will be at higher risk for CVD compared to Cys23 G allele carriers. The present study examined allelic variation in rs6318 as a predictor of coronary artery disease (CAD severity and a composite endpoint of all-cause mortality or myocardial infarction (MI among Caucasian participants consecutively recruited through the cardiac catheterization laboratory at Duke University Hospital (Durham, NC as part of the CATHGEN biorepository. Study population consisted of 6,126 Caucasian participants (4,036 [65.9%] males and 2,090 [34.1%] females. A total of 1,769 events occurred (1,544 deaths and 225 MIs; median follow-up time = 5.3 years, interquartile range = 3.3-8.2. Unadjusted Cox time-to-event regression models showed, compared to Cys23 G carriers, males hemizygous for Ser23 C and females homozygous for Ser23C were at increased risk for the composite endpoint of all-cause death or MI: Hazard Ratio (HR = 1.47, 95% confidence interval (CI = 1.17, 1.84, p = .0008. Adjusting for age, rs6318 genotype was not related to body mass index, diabetes, hypertension, dyslipidemia, smoking history, number of diseased coronary arteries, or left ventricular ejection fraction in either males or females. After adjustment for these covariates the estimate for the two Ser23 C groups was modestly attenuated, but remained statistically significant: HR = 1.38, 95% CI = 1.10, 1.73, p = .005. These findings suggest that this functional polymorphism of the 5HTR2C gene is associated with increased risk for CVD mortality and morbidity, but this association is apparently not explained by the association of rs

  14. The intrinsic cephalosporin resistome of Listeria monocytogenes in the context of stress response, gene regulation, pathogenesis and therapeutics.

    Krawczyk-Balska, A; Markiewicz, Z

    2016-02-01

    Intrinsic resistance to antibiotics is a serious therapeutic problem in the case of many bacterial species. The Gram-positive human pathogen Listeria monocytogenes is intrinsically resistant to broad spectrum cephalosporin antibiotics, which are commonly used in therapy of bacterial infections. Besides three penicillin-binding proteins the intrinsic cephalosporin resistome of L. monocytogenes includes multidrug resistance transporter transporters, proteins involved in peptidoglycan biosynthesis and modification, cell envelope proteins with structural or general detoxification function, cytoplasmic proteins with unknown function and regulatory proteins. Analysis of the regulation of the expression of genes involved in the intrinsic resistance of L. monocytogenes to cephalosporins highlights the high complexity of control of the intrinsic resistance phenotype. The regulation of the transcription of the intrinsic resistome determinants involves the activity of eight regulators, namely LisR, CesR, LiaR, VirR, σ(B) , σ(H) , σ(L) and PrfA, of which the most prominent role play LisR, CesR and σ(B) . Furthermore, the vast majority of the intrinsic resistome determinants contribute to the tolerance of different stress conditions and virulence. A study indicates that O-acetyltransferase OatA is the most promising candidate for co-drug development since an agent targeting OatA should sensitize L. monocytogenes to certain antibiotics, therefore improving the efficacy of listeriosis treatment as well as food preservation measures. PMID:26509460

  15. Molecular characterization and oxidative stress response of a cytochrome P450 gene (CYP4G11) from Apis cerana cerana.

    Shi, Weina; Sun, Jing; Xu, Baohua; Li, Han

    2013-01-01

    Cytochrome P450 proteins, widely distributed multifunctional enzymes, are mainly involved in biosynthetic and degradative pathways of endogenous compounds and the detoxification of xenobiotics in insects. Moreover, these enzymes exhibit peroxidase-like activity, therefore they may be involved in protecting organisms against the toxicity of reactive oxygen species (ROS). In the present study, we cloned a CYP4G11 gene--AccCYP4G11--from the Chinese honey-bee (Apis cerana cerana). The open reading frame of the cDNA was 1656 bp long and encoded a 551 amino acids polypeptide, which shared high sequence identity with homologous cytochrome P450 proteins. In the genomic DNA sequence, a 5'-flanking region consisting of 1168 bp was obtained, and some putative transcription factor binding sites were predicted. Quantitative polymerase chain reaction (Q-PCR) revealed that the level of AccCYP4G11 was higher in the epidermis than in other tissues, and AccCYP4G11 was expressed in all stages with the highest level in two-week-old adult worker honey-bees. Moreover, the expression patterns under oxidative stress indicated that AccCYP4G11 transcription was significantly influenced by external factors, such as temperature challenges, ultraviolet (UV) light, and insecticide treatment. AccCYP4G11 was regulated differentially in response to oxidative stress and may be involved in protecting honey-bees from oxidative injury. PMID:24601089

  16. Involvement of the osrR gene in the hydrogen peroxide-mediated stress response of Corynebacterium glutamicum.

    Hong, Eun-Ji; Kim, Pil; Kim, Eung-Soo; Kim, Younhee; Lee, Heung-Shick

    2016-01-01

    A transcriptional profile of the H2O2-adapted Corynebacterium glutamicum HA strain reveals a list of upregulated regulatory genes. Among them, we selected ORF NCgl2298, designated osrR and analyzed its role in H2O2 adaptation. The osrR-deleted (ΔosrR) mutant had defective growth in minimal medium, which was even more pronounced in an osrR deletion mutant of an HA strain. The ΔosrR strain displayed increased sensitivity to H2O2. In addition to H2O2 sensitivity, the ΔosrR strain was found to be temperature-sensitive at 37 °C. 2D-PAGE analysis of the ΔosrR mutant found that MetE and several other proteins involved in redox metabolism were affected by the mutation. Accordingly, the NADPH/NADP(+) ratio of the ΔosrR strain (0.85) was much lower than that of the wild-type strain (2.01). In contrast, the NADH/NAD(+) ratio of the mutant (0.54) was considerably higher than that of the wild-type (0.21). Based on these findings, we propose that H2O2-detoxifying metabolic systems, excluding those involving catalase, are present in C. glutamicum and are regulated, in part, by osrR. PMID:26433092

  17. Transcriptome analysis in different rice cultivars provides novel insights into desiccation and salinity stress responses.

    Shankar, Rama; Bhattacharjee, Annapurna; Jain, Mukesh

    2016-01-01

    Drought and salinity are the major environmental factors that affect rice productivity. Comparative transcriptome analysis between tolerant and sensitive rice cultivars can provide insights into the regulatory mechanisms involved in these stress responses. In this study, the comparison of transcriptomes of a drought-tolerant [Nagina 22 (N22)] and a salinity-tolerant (Pokkali) rice cultivar with IR64 (susceptible cultivar) revealed variable transcriptional responses under control and stress conditions. A total of 801 and 507 transcripts were exclusively differentially expressed in N22 and Pokkali rice cultivars, respectively, under stress conditions. Gene ontology analysis suggested the enrichment of transcripts involved in response to abiotic stress and regulation of gene expression in stress-tolerant rice cultivars. A larger number of transcripts encoding for members of NAC and DBP transcription factor (TF) families in N22 and members of bHLH and C2H2 TF families in Pokkali exhibited differential regulation under desiccation and salinity stresses, respectively. Transcripts encoding for thioredoxin and involved in phenylpropanoid metabolism were up-regulated in N22, whereas transcripts involved in wax and terpenoid metabolism were up-regulated in Pokkali. Overall, common and cultivar-specific stress-responsive transcripts identified in this study can serve as a helpful resource to explore novel candidate genes for abiotic stress tolerance in rice. PMID:27029818

  18. Cloning of four DREB genes from Tibetan Sophora moorcroftiana and analysis of their expression during abiotic stress

    Weijie Yao; Yaru Fu; Yanfu Zhang; Hui-e Li

    2016-01-01

    Sophora moorcroftiana is an endemic, drought-resistant shrub that grows in Tibet and has some degree of resistance to salt, cold, heat, and drought. In the present study, four dehydration responsive element-binding (DREB) genes (SmDREB1, SmDREB2, SmDREB and SmDREB1) were isolated from S. moorcroftiana for the first time and their expression and proline content under abiotic stress were analyzed. Proline accumulated in seedlings under drought, salt, cold, and heat stress treat-ments. The four genes were variously expressed in response to the four abiotic stresses. SmDREB1 was induced by drought, cold, and heat stresses;SmDREB2 and SmDREB4 were both induced by salt, cold, and heat stresses, whereas SmDREB3 was induced by drought and heat stresses. Thus, these four genes may participate in conferring tolerance to these four abiotic stresses and are candidate genes for genetic engineering in the future.

  19. D-Serine exposure resulted in gene expression changes indicative of activation of fibrogenic pathways and down-regulation of energy metabolism and oxidative stress response

    , metabolism and transport, inflammatory response, proteasome-mediated degradation of oxidatively damaged cytosolic proteins, Ras protein signal transduction, TGF-beta signaling pathway and mRNA transcription, processing, splicing and transport. On the other hand, major metabolic pathways, which include carbohydrate metabolism, TCA cycle, oxidative phosphorylation, ATP synthesis coupled electron transport, amino acid metabolism and transport, lipid metabolism, nucleotide metabolism, and vitamin metabolism, and oxidative stress response including induction of antioxidant genes and glutathione metabolism are down-regulated. As tubular epithelia have strong energy demand for normal functions, down-regulation of energy metabolism after D-serine treatment may be related to the mechanism of its nephrotoxicity. In addition, hydrogen peroxide, a reactive oxygen species, is produced as a byproduct of the metabolism of D-serine by D-amino acid oxidase in the peroxisomes of the tubular epithelia. Down-regulation of pathways for antioxidant genes induction and glutathione metabolism will likely exacerbate the cytotoxicity of this reactive oxygen species. The observation that the genes involved in apoptosis, DNA repair, proteasome pathway for the degradation of oxidatively damaged cytosolic proteins were up-regulated lends some supports to this premise. Up-regulation of pathways of cell proliferation cycle, DNA replication and gene expression process, including mRNA transcription, processing, splicing, transport, translation initiation, and protein transport along with protein complex assembly, suggests ongoing tissue repair and regeneration. Consistent with the fibrogenic function of the TGF-beta signaling pathway in various experimental renal diseases, genes encoding major extracellular matrix components such as collagens, laminins, fibronectin 1 and tenascins are also strongly up-regulated. Taken together, the results of this study provide important insights into the molecular mechanism

  20. Abiotic Stresses: Insight into Gene Regulation and Protein Expression in Photosynthetic Pathways of Plants

    Mohammad-Zaman Nouri; Ali Moumeni; Setsuko Komatsu

    2015-01-01

    Global warming and climate change intensified the occurrence and severity of abiotic stresses that seriously affect the growth and development of plants, especially, plant photosynthesis. The direct impact of abiotic stress on the activity of photosynthesis is disruption of all photosynthesis components such as photosystem I and II, electron transport, carbon fixation, ATP generating system and stomatal conductance. The photosynthetic system of plants reacts to the stress differently, accordi...

  1. HyPRP1 Gene Suppressed by Multiple Stresses Plays a Negative Role in Abiotic Stress Tolerance in Tomato.

    Li, Jinhua; Ouyang, Bo; Wang, Taotao; Luo, Zhidan; Yang, Changxian; Li, Hanxia; Sima, Wei; Zhang, Junhong; Ye, Zhibiao

    2016-01-01

    Many hybrid proline-rich protein (HyPRP) genes respond to biotic and abiotic stresses in plants, but little is known about their roles other than as putative cell-wall structural proteins. A HyPRP1 gene encodes a protein with proline-rich domain, and an eight-cysteine motif was identified from our previous microarray experiments on drought-tolerant tomato. In this study, the expression of the HyPRP1 gene in tomato was suppressed under various abiotic stresses, such as drought, high salinity, cold, heat, and oxidative stress. Transgenic functional analysis showed no obvious changes in phenotypes, but enhanced tolerance to various abiotic stresses (e.g., oxidative stress, dehydration, and salinity) was observed in RNAi transgenic plants. Interestingly, several SO2 detoxification-related enzymes, including sulfite oxidase, ferredoxins (Fds), and methionine sulfoxide reductase A (Msr A), were revealed in HyPRP1-interacting proteins identified by Yeast Two-Hybrid screening. More sulfates and transcripts of Msr A and Fds were accumulated in HyPRP1 knockdown lines when wild-type plants were exposed to SO2 gas. Our findings illustrate that the tomato HyPRP1 is a negative regulator of salt and oxidative stresses and is probably involved in sulfite metabolism. PMID:27446190

  2. Comprehensive genomic analysis and expression profiling of phospholipase C gene family during abiotic stresses and development in rice.

    Amarjeet Singh

    Full Text Available BACKGROUND: Phospholipase C (PLC is one of the major lipid hydrolysing enzymes, implicated in lipid mediated signaling. PLCs have been found to play a significant role in abiotic stress triggered signaling and developmental processes in various plant species. Genome wide identification and expression analysis have been carried out for this gene family in Arabidopsis, yet not much has been accomplished in crop plant rice. METHODOLOGY/PRINCIPAL FINDINGS: An exhaustive in-silico exploration of rice genome using various online databases and tools resulted in the identification of nine PLC encoding genes. Based on sequence, motif and phylogenetic analysis rice PLC gene family could be divided into phosphatidylinositol-specific PLCs (PI-PLCs and phosphatidylcholine- PLCs (PC-PLC or NPC classes with four and five members, respectively. A comparative analysis revealed that PLCs are conserved in Arabidopsis (dicots and rice (monocot at gene structure and protein level but they might have evolved through a separate evolutionary path. Transcript profiling using gene chip microarray and quantitative RT-PCR showed that most of the PLC members expressed significantly and differentially under abiotic stresses (salt, cold and drought and during various developmental stages with condition/stage specific and overlapping expression. This finding suggested an important role of different rice PLC members in abiotic stress triggered signaling and plant development, which was also supported by the presence of relevant cis-regulatory elements in their promoters. Sub-cellular localization of few selected PLC members in Nicotiana benthamiana and onion epidermal cells has provided a clue about their site of action and functional behaviour. CONCLUSION/SIGNIFICANCE: The genome wide identification, structural and expression analysis and knowledge of sub-cellular localization of PLC gene family envisage the functional characterization of these genes in crop plants in near

  3. CsSAD: a fatty acid desaturase gene involved in abiotic resistance in Camellia sinensis (L.).

    Ding, Z T; Shen, J Z; Pan, L L; Wang, Y U; Li, Y S; Wang, Y; Sun, H W

    2016-01-01

    Tea (Camellia sinensis L.) is a thermophilic evergreen woody plant that has poor cold tolerance. The SAD gene plays a key role in regulating fatty acid synthesis and membrane lipid fluidity in response to temperature change. In this study, full-length SAD cDNA was cloned from tea leaves using rapid amplification of cDNA ends and polymerase chain reaction (PCR)-based methods. Sequence analysis demonstrated that CsSAD had a high similarity to other corresponding cDNAs. At 25°C, the CsSAD transcriptional level was highest in the leaf and lowest in the stem, but there was no obvious difference between the root and stem organs. CsSAD expression was investigated by reverse transcription-PCR, which showed that CsSAD was upregulated at 4° and -5°C. At 25°C, CsSAD was induced by polyethylene glycol, abscisic acid, and wounding, and a similar trend was observed at 4°C, but the mean expression level at 4°C was lower than that at 25°C. Under natural cold acclimation, the 'CsCr05' variety's CsSAD expression level increased before decreasing. The CsSAD expression level in variety 'CsCr06' showed no obvious change at first, but rapidly increased to a maximum when the temperature was very low. Our study demonstrates that CsSAD is upregulated in response to different abiotic conditions, and that it is important to study the stress resistance of the tea plant, particularly in response to low temperature, drought, and wounding. PMID:26985937

  4. The surgically induced stress response.

    Finnerty, Celeste C; Mabvuure, Nigel Tapiwa; Ali, Arham; Kozar, Rosemary A; Herndon, David N

    2013-09-01

    The stress response to surgery, critical illness, trauma, and burns encompasses derangements of metabolic and physiological processes that induce perturbations in the inflammatory, acute phase, hormonal, and genomic responses. Hypermetabolism and hypercatabolism result, leading to muscle wasting, impaired immune function and wound healing, organ failure, and death. The surgery-induced stress response is largely similar to that triggered by traumatic injuries; the duration of the stress response, however, varies according to the severity of injury (surgical or traumatic). This spectrum of injuries and insults ranges from small lacerations to severe insults such as large poly-traumatic and burn injuries. Burn injuries provide an extreme model of trauma induced stress responses that can be used to study the long-term effects of a prolonged stress response. Although the stress response to acute trauma evolved to confer improved chances of survival following injury, in modern surgical practice the stress response can be detrimental. PMID:24009246

  5. Molecular cloning and characterization of drought stress responsive abscisic acid-stress-ripening (Asr 1) gene from wild jujube, Ziziphus nummularia (Burm.f.) Wight & Arn.

    Padaria, Jasdeep Chatrath; Yadav, Radha; Tarafdar, Avijit; Lone, Showkat Ahmad; Kumar, Kanika; Sivalingam, Palaiyur Nanjappan

    2016-08-01

    Drought is a calamitous abiotic stress hampering agricultural productivity all over the world and its severity is likely to increase further. Abscisic acid-stress-ripening proteins (ASR), are a group of small hydrophilic proteins which are induced by abscisic acid, stress and ripening in many plants. In the present study, ZnAsr 1 gene was fully characterized for the first time from Ziziphus nummularia, which is one of the most low water forbearing plant. Full length ZnAsr 1 gene was characterised and in silico analysis of ZnASR1 protein was done for predicting its phylogeny and physiochemical properties. To validate transcriptional pattern of ZnAsr 1 in response to drought stress, expression profiling in polyethylene glycol (PEG) induced Z. nummularia seedlings was studied by RT-qPCR analysis and heterologous expression of the recombinant ZnAsr1 in Escherichia coli. The nucleotide sequence analysis revealed that the complete open reading frame of ZnAsr 1 is 819 bp long encoding a protein of 273 amino acid residues, consisting of a histidine rich N terminus with an abscisic acid/water deficit stress domain and a nuclear targeting signal at the C terminus. In expression studies, ZnAsr 1 gene was found to be highly upregulated under drought stress and recombinant clones of E. coli cells expressing ZnASR1 protein showed better survival in PEG containing media. ZnAsr1 was proven to enhance drought stress tolerance in the recombinant E.coli cells expressing ZnASR1. The cloned ZnAsr1 after proper validation in a plant system, can be used to develop drought tolerant transgenic crops. PMID:27209581

  6. Interactions between Polyamines and Abiotic Stress Pathway Responses Unraveled by Transcriptome Analysis of Polyamine Overproducers

    Marco, Francisco; Alcázar, Rubén; Tiburcio, Antonio F; Carrasco, Pedro

    2011-01-01

    Plant development and productivity are negatively regulated by adverse environmental conditions. The identification of stress-regulatory genes, networks, and signaling molecules should allow the development of novel strategies to obtain tolerant plants. Polyamines (PAs) are polycationic compounds with a recognized role in plant growth and development, as well as in abiotic and biotic stress responses. During the last years, knowledge on PA functions has been achieved using genetically modifie...

  7. Differential expression of seven conserved microRNAs in response to abiotic stress and their regulatory network in Helianthus annuus

    Ebrahimi Khaksefidi, Reyhaneh; Mirlohi, Shirin; Khalaji, Fahimeh; Fakhari, Zahra; Shiran, Behrouz; Fallahi, Hossein; Rafiei, Fariba; Budak, Hikmet; Ebrahimie, Esmaeil

    2015-01-01

    Biotic and abiotic stresses affect plant development and production through alternation of the gene expression pattern. Gene expression itself is under the control of different regulators such as miRNAs and transcription factors (TFs). MiRNAs are known to play important roles in regulation of stress responses via interacting with their target mRNAs. Here, for the first time, seven conserved miRNAs, associated with drought, heat, salt and cadmium stresses were characterized in sunflower. The e...

  8. A Wheat WRKY Transcription Factor TaWRKY10 Confers Tolerance to Multiple Abiotic Stresses in Transgenic Tobacco

    Wang, Chen; Deng, Pengyi; Chen, Liulin; Wang, Xiatian; Ma, Hui; Hu, Wei; Yao, Ningcong; Feng, Ying; Chai, Ruihong; Yang, Guangxiao; He, Guangyuan

    2013-01-01

    WRKY transcription factors are reported to be involved in defense regulation, stress response and plant growth and development. However, the precise role of WRKY transcription factors in abiotic stress tolerance is not completely understood, especially in crops. In this study, we identified and cloned 10 WRKY genes from genome of wheat (Triticum aestivum L.). TaWRKY10, a gene induced by multiple stresses, was selected for further investigation. TaWRKY10 was upregulated by treatment with polye...

  9. Drought stress responses in crops.

    Shanker, Arun K; Maheswari, M; Yadav, S K; Desai, S; Bhanu, Divya; Attal, Neha Bajaj; Venkateswarlu, B

    2014-03-01

    Among the effects of impending climate change, drought will have a profound impact on crop productivity in the future. Response to drought stress has been studied widely, and the model plant Arabidopsis has guided the studies on crop plants with genome sequence information viz., rice, wheat, maize and sorghum. Since the value of functions of genes, dynamics of pathways and interaction of networks for drought tolerance in plants can only be judged by evidence from field performance, this mini-review provides a research update focussing on the current developments on the response to drought in crop plants. Studies in Arabidopsis provide the basis for interpreting the available information in a systems biology perspective. In particular, the elucidation of the mechanism of drought stress response in crops is considered from evidence-based outputs emerging from recent omic studies in crops. PMID:24408129

  10. Plant natriuretic peptides are apoplastic and paracrine stress response molecules

    Wang, Yuhua

    2011-04-07

    Higher plants contain biologically active proteins that are recognized by antibodies against human atrial natriuretic peptide (ANP). We identified and isolated two Arabidopsis thaliana immunoreactive plant natriuretic peptide (PNP)-encoding genes, AtPNP-A and AtPNP-B, which are distantly related members of the expansin superfamily and have a role in the regulation of homeostasis in abiotic and biotic stresses, and have shown that AtPNP-A modulates the effects of ABA on stomata. Arabidopsis PNP (PNP-A) is mainly expressed in leaf mesophyll cells, and in protoplast assays we demonstrate that it is secreted using AtPNP-A:green fluorescent protein (GFP) reporter constructs and flow cytometry. Transient reporter assays provide evidence that AtPNP-A expression is enhanced by heat, osmotica and salt, and that AtPNP-A itself can enhance its own expression, thereby generating a response signature diagnostic for paracrine action and potentially also autocrine effects. Expression of native AtPNP-A is enhanced by osmotica and transiently by salt. Although AtPNP-A expression is induced by salt and osmotica, ABA does not significantly modulate AtPNP-A levels nor does recombinant AtPNP-A affect reporter expression of the ABA-responsive RD29A gene. Together, these results provide experimental evidence that AtPNP-A is stress responsive, secreted into the apoplastic space and can enhance its own expression. Furthermore, our findings support the idea that AtPNP-A, together with ABA, is an important component in complex plant stress responses and that, much like in animals, peptide signaling molecules can create diverse and modular signals essential for growth, development and defense under rapidly changing environmental conditions. © 2011 The Author.

  11. Evaluation of candidate reference genes for normalization of quantitative RT-PCR in soybean tissues under various abiotic stress conditions.

    Dung Tien Le

    Full Text Available Quantitative RT-PCR can be a very sensitive and powerful technique for measuring differential gene expression. Changes in gene expression induced by abiotic stresses are complex and multifaceted, which make determining stably expressed genes for data normalization difficult. To identify the most suitable reference genes for abiotic stress studies in soybean, 13 candidate genes collected from literature were evaluated for stability of expression under dehydration, high salinity, cold and ABA (abscisic acid treatments using delta CT and geNorm approaches. Validation of reference genes indicated that the best reference genes are tissue- and stress-dependent. With respect to dehydration treatment, the Fbox/ABC, Fbox/60s gene pairs were found to have the highest expression stability in the root and shoot tissues of soybean seedlings, respectively. Fbox and 60s genes are the most suitable reference genes across dehydrated root and shoot tissues. Under salt stress the ELF1b/IDE and Fbox/ELF1b are the most stably expressed gene pairs in roots and shoots, respectively, while 60s/Fbox is the best gene pair in both tissues. For studying cold stress in roots or shoots, IDE/60s and Fbox/Act27 are good reference gene pairs, respectively. With regard to gene expression analysis under ABA treatment in either roots, shoots or across these tissues, 60s/ELF1b, ELF1b/Fbox and 60s/ELF1b are the most suitable reference genes, respectively. The expression of ELF1b/60s, 60s/Fbox and 60s/Fbox genes was most stable in roots, shoots and both tissues, respectively, under various stresses studied. Among the genes tested, 60s was found to be the best reference gene in different tissues and under various stress conditions. The highly ranked reference genes identified from this study were proved to be capable of detecting subtle differences in expression rates that otherwise would be missed if a less stable reference gene was used.

  12. Expression of TaWRKY44, a wheat WRKY gene, in transgenic tobacco confers multiple abiotic stress tolerances.

    Wang, Xiatian; Zeng, Jian; Li, Ying; Rong, Xiaoli; Sun, Jiutong; Sun, Tao; Li, Miao; Wang, Lianzhe; Feng, Ying; Chai, Ruihong; Chen, Mingjie; Chang, Junli; Li, Kexiu; Yang, Guangxiao; He, Guangyuan

    2015-01-01

    The WRKY transcription factors have been reported to be involved in various plant physiological and biochemical processes. In this study, we successfully assembled 10 unigenes from expressed sequence tags (ESTs) of wheat and designated them as TaWRKY44-TaWRKY53, respectively. Among these genes, a subgroup I gene, TaWRKY44, was found to be upregulated by treatments with PEG6000, NaCl, 4°C, abscisic acid (ABA), H2O2 and gibberellin (GA). The TaWRKY44-GFP fusion protein was localized to the nucleus of onion epidermal cells, and TaWRKY44 was able to bind to the core DNA sequences of TTGACC and TTAACC in yeast. The N-terminal of TaWRKY44 showed transcriptional activation activity. Expression of TaWRKY44 in tobacco plants conferred drought and salt tolerance and transgenic tobacco exhibited a higher survival rate, relative water content (RWC), soluble sugar, proline and superoxide dismutase (SOD) content, as well as higher activities of catalase (CAT) and peroxidase (POD), but less ion leakage (IL), lower contents of malondialdehyde (MDA), and H2O2. In addition, expression of TaWRKY44 also increased the seed germination rate in the transgenic lines under osmotic stress conditions while exhibiting a lower H2O2 content and higher SOD, CAT, and POD activities. Expression of TaWRKY44 upregulated the expression of some reactive oxygen species (ROS)-related genes and stress-responsive genes in tobacco under osmotic stresses. These data demonstrate that TaWRKY44 may act as a positive regulator in drought/salt/osmotic stress responses by either efficient ROS elimination through direct or indirect activation of the cellular antioxidant systems or activation of stress-associated gene expression. PMID:26322057

  13. Expression of TaWRKY44, a wheat WRKY gene, in transgenic tobacco confers multiple abiotic stress tolerances

    Xiatian eWang

    2015-08-01

    Full Text Available The WRKY transcription factors have been reported to be involved in various plant physiological and biochemical processes. In this study, we successfully assembled ten unigenes from expressed sequence tags (ESTs of wheat and designated them as TaWRKY44–TaWRKY53, respectively. Among these genes, a subgroup I gene, TaWRKY44, was found to be upregulated by treatments with PEG6000, NaCl, 4°C, abscisic acid (ABA, H2O2 and gibberellin (GA. The TaWRKY44-GFP fusion protein was localized to the nucleus of onion epidermal cells, and TaWRKY44 was able to bind to the core DNA sequences of TTGACC and TTAACC in yeast. The N-terminal of TaWRKY44 showed transcriptional activation activity. Expression of TaWRKY44 in tobacco plants conferred drought and salt tolerance and transgenic tobacco exhibited a higher survival rate, relative water content (RWC, soluble sugar, proline and superoxide dismutase (SOD content, as well as higher activities of catalase (CAT and peroxidase (POD, but less ion leakage (IL, lower contents of malondialdehyde (MDA, and H2O2. In addition, expression of TaWRKY44 also increased the seed germination rate in the transgenic lines under osmotic stress conditions while exhibiting a lower H2O2 content and higher SOD, CAT and POD activities. Expression of TaWRKY44 upregulated the expression of some reactive oxygen species (ROS-related genes and stress-responsive genes in tobacco under osmotic stresses. These data demonstrate that TaWRKY44 may act as a positive regulator in drought/salt/osmotic stress responses by either efficient ROS elimination through direct or indirect activation of the cellular antioxidant systems or activation of stress-associated gene expression.

  14. Genome-wide analysis of the fasciclin-like arabinogalactan protein gene family reveals differential expression patterns, localization and salt stress response in Populus

    Lina eZang

    2015-12-01

    Full Text Available Fasciclin-like arabinogalactan proteins (FLAs are a subclass of arabinogalactan proteins (AGPs involved in plant growth, development and response to abiotic stress. Although many studies have been performed to identify molecular functions of individual family members, little information is available on genome-wide identification and characterization of FLAs in the genus Populus. Based on genome-wide analysis, we have identified 35 Populus FLAs which were distributed on 16 chromosomes and phylogenetically clustered into four major groups. Gene structure and motif composition were relatively conserved in each group. All the members contained N-terminal signal peptide, 23 of which included predicted glycosylphosphatidylinositol (GPI modification sites and were anchored to plasma membranes. Subcellular localization analysis showed that PtrFLA2/20/26 were localized in cell membrane and cytoplasm of protoplasts from Populus stem-differentiating xylem. The Ka/Ks ratios showed that purifying selection has played a leading role in the long-term evolutionary period which greatly maintained the function of this family. The expression profiles showed that 32 PtrFLAs were differentially expressed in four tissues at four seasons based on publicly available microarray data. 18 FLAs were further verified with qRT-PCR in different tissues, which indicated that PtrFLA1/2/3/7/11/12/20/21/22/24/26/30 were significantly expressed in male and female flowers, suggesting close correlations with the reproductive development. In addition, PtrFLA1/9/10/11/17/21/23/24/26/28 were highly expressed in the stems and differentiating xylem, which may be involved in stem development. To determine salt response of FLAs, qRT-PCR was performed to analyze the expression of 18 genes under salinity stress across two time points. Results demonstrated that all the 18 FLAs were expressed in root tissues; especially, PtrFLA2/12/20/21/24/30 were significantly induced at different time

  15. ABI-like transcription factor gene TaABL1 from wheat improves multiple abiotic stress tolerances in transgenic plants.

    Xu, Dong-Bei; Gao, Shi-Qing; Ma, You-Zhi; Xu, Zhao-Shi; Zhao, Chang-Ping; Tang, Yi-Miao; Li, Xue-Yin; Li, Lian-Cheng; Chen, Yao-Feng; Chen, Ming

    2014-12-01

    The phytohormone abscisic acid (ABA) plays crucial roles in adaptive responses of plants to abiotic stresses. ABA-responsive element binding proteins (AREBs) are basic leucine zipper transcription factors that regulate the expression of downstream genes containing ABA-responsive elements (ABREs) in promoter regions. A novel ABI-like (ABA-insensitive) transcription factor gene, named TaABL1, containing a conserved basic leucine zipper (bZIP) domain was cloned from wheat. Southern blotting showed that three copies were present in the wheat genome. Phylogenetic analyses indicated that TaABL1 belonged to the AREB subfamily of the bZIP transcription factor family and was most closely related to ZmABI5 in maize and OsAREB2 in rice. Expression of TaABL1 was highly induced in wheat roots, stems, and leaves by ABA, drought, high salt, and low temperature stresses. TaABL1 was localized inside the nuclei of transformed wheat mesophyll protoplast. Overexpression of TaABL1 enhanced responses of transgenic plants to ABA and hastened stomatal closure under stress, thereby improving tolerance to multiple abiotic stresses. Furthermore, overexpression of TaABL1 upregulated or downregulated the expression of some stress-related genes controlling stomatal closure in transgenic plants under ABA and drought stress conditions, suggesting that TaABL1 might be a valuable genetic resource for transgenic molecular breeding. PMID:25344442

  16. Abiotic stresses affect differently the intron splicing and expression of chloroplast genes in coffee plants (Coffea arabica) and rice (Oryza sativa).

    Nguyen Dinh, Sy; Sai, Than Zaw Tun; Nawaz, Ghazala; Lee, Kwanuk; Kang, Hunseung

    2016-08-20

    Despite the increasing understanding of the regulation of chloroplast gene expression in plants, the importance of intron splicing and processing of chloroplast RNA transcripts under stress conditions is largely unknown. Here, to understand how abiotic stresses affect the intron splicing and expression patterns of chloroplast genes in dicots and monocots, we carried out a comprehensive analysis of the intron splicing and expression patterns of chloroplast genes in the coffee plant (Coffea arabica) as a dicot and rice (Oryza sativa) as a monocot under abiotic stresses, including drought, cold, or combined drought and heat stresses. The photosynthetic activity of both coffee plants and rice seedlings was significantly reduced under all stress conditions tested. Analysis of the transcript levels of chloroplast genes revealed that the splicing of tRNAs and mRNAs in coffee plants and rice seedlings were significantly affected by abiotic stresses. Notably, abiotic stresses affected differently the splicing of chloroplast tRNAs and mRNAs in coffee plants and rice seedlings. The transcript levels of most chloroplast genes were markedly downregulated in both coffee plants and rice seedlings upon stress treatment. Taken together, these results suggest that coffee and rice plants respond to abiotic stresses via regulating the intron splicing and expression of different sets of chloroplast genes. PMID:27448724

  17. The Surgically Induced Stress Response

    Finnerty, Celeste C.; Mabvuure, Nigel Tapiwa; Ali, Arham; Kozar, Rosemary A.; Herndon, David N.

    2013-01-01

    The stress response to surgery, critical illness, trauma, and burns encompasses derangements of metabolic and physiological processes which induce perturbations in the inflammatory, acute phase, hormonal, and genomic responses. Hypermetabolism and hypercatabolism result, leading to muscle wasting, impaired immune function and wound healing, organ failure, and death. The surgery-induced stress response is largely similar to that triggered by traumatic injuries; the duration of the stress response, however, varies according to the severity of injury (surgical or traumatic). This spectrum of injuries and insults ranges from small lacerations to severe insults such as large poly-traumatic and burn injuries. Although the stress response to acute trauma evolved to improve chances of survival following injury, in modern surgical practice the stress response can be detrimental. PMID:24009246

  18. Genome-wide identification, expression analysis of auxin-responsive GH3 family genes in maize (Zea mays L.) under abiotic stresses

    Shangguo Feng; Runqing Yue; Sun Tao Yanjun Yang; Lei Zhang; Mingfeng Xu; Huizhong Wang; Chenjia Shen

    2015-01-01

    Auxin is involved in different aspects of plant growth and development by regulating the expression of auxin-responsive family genes. As one of the three major auxin-responsive families, GH3 (Gretchen Hagen3) genes participate in auxin homeostasis by catalyzing auxin conjugation and bounding free indole-3-acetic acid (IAA) to amino acids. However, how GH3 genes function in responses to abiotic stresses and various hormones in maize is largely unknown. Here, the latest updated maize (Zea mays L.) reference genome sequence was used to characterize and analyze the ZmGH3 family genes from maize. The results showed that 13 ZmGH3 genes were mapped on five maize chromosomes (total 10 chromosomes). Highly diversified gene structures and tissue-specific expression patterns suggested the possibility of function diversification for these genes in response to environmental stresses and hormone stimuli. The expression patterns of ZmGH3 genes are responsive to several abiotic stresses (salt, drought and cadmium) and major stress-related hormones (abscisic acid, salicylic acid and jasmonic acid). Various environmental factors suppress auxin free IAA contents in maize roots suggesting that these abiotic stresses and hormones might alter GH3-mediated auxin levels. The respon-siveness of ZmGH3 genes to a wide range of abiotic stresses and stress-related hormones suggested that ZmGH3s are involved in maize tolerance to environmental stresses.

  19. Melatonin induces the transcripts of CBF/DREB1s and their involvement in both abiotic and biotic stresses in Arabidopsis.

    Shi, Haitao; Qian, Yongqiang; Tan, Dun-Xian; Reiter, Russel J; He, Chaozu

    2015-10-01

    Melatonin (N-acetyl-5-methoxytryptamine) is a naturally occurring small molecule that acts as an important secondary messenger in plant stress responses. However, the mechanism underlying the melatonin-mediated signaling pathway in plant stress responses has not been established. C-repeat-binding factors (CBFs)/Drought response element Binding 1 factors (DREB1s) encode transcription factors that play important roles in plant stress responses. This study has determined that endogenous melatonin and transcripts level of CBFs (AtCBF1, AtCBF2, and AtCBF3) in Arabidopsis leaves were significantly induced by salt, drought, and cold stresses and by pathogen Pseudomonas syringe pv. tomato (Pst) DC3000 infection. Moreover, both exogenous melatonin treatment and overexpression of CBFs conferred enhanced resistance to both abiotic and biotic stresses in Arabidopsis. Notably, AtCBFs and exogenous melatonin treatment positively regulated the mRNA expression of several stress-responsive genes (COR15A, RD22, and KIN1) and accumulation of soluble sugars content such as sucrose in Arabidopsis under control and stress conditions. Additionally, exogenous sucrose also conferred improved resistance to both abiotic and biotic stresses in Arabidopsis. Taken together, this study indicates that AtCBFs confer enhanced resistance to both abiotic and biotic stresses, and AtCBF-mediated signaling pathway and sugar accumulation may be involved in melatonin-mediated stress response in Arabidopsis, at least partially. PMID:26182834

  20. Pathways to decoding the clinical potential of stress response FOXO-interaction networks for Huntington’s disease: of gene prioritization and context dependence

    Christian Neri

    2013-01-01

    The FOXO family of transcription factors is central to the regulation of organismal longevity and cellular survival. Several studies have indicated that FOXO factors lie at the center of a complex network of upstream pathways, cofactors and downstream targets (FOXO-interaction networks), which may have developmental and post-developmental roles in the regulation of chronic-stress response in normal and diseased cells. Noticeably, FOXO factors are important for the regulation of proteotoxicity...

  1. Reference gene selection for quantitative real-time reverse-transcriptase PCR in orchardgrass subjected to various abiotic stresses.

    Huang, Linkai; Yan, Haidong; Jiang, Xiaomei; Zhang, Yu; Zhang, Xinquan; Ji, Yang; Zeng, Bing; Xu, Bin; Yin, Guohua; Lee, Samantha; Yan, Yanhong; Ma, Xiao; Peng, Yan

    2014-12-15

    Quantitative real-time reverse-transcriptase PCR (qRT-PCR) is a powerful tool for the measurement of gene expression; however, the accuracy of this approach depends on the stability of reference genes. The objective of the present study was to identify the stable reference genes in orchardgrass (Dactylis glomerata L.), a principal cool-season forage grass in the world. Ten candidate reference genes were selected in this study including ATP-binding [ABC], actin [ACTIN], cyclophilin [CYP2], glyceraldehyde 3-phosphate dehydrogenase [GAPDH], beta-amylase 4 [BAM4], zeitlupe [ZTL], MAP Kinase 4 [MPK4], ubiquitin-conjugating enzyme [UBC], S-adenosylmethionine decarboxylase [SAMDC], and translationally controlled tumor protein [TCTP]. The candidate genes were assessed in orchardgrass leaves and roots under conditions of drought, high salinity, heat, waterlogging, and abscisic acid (ABA) treatments. We used GeNorm, BestKeeper, NormFinder, and RefFinder for qRT-PCR normalization and validation to determine that the expression of these reference genes was stress-dependent. ACTIN, CYP2, and ABC were found to be the most stably expressed genes for drought stress while ACTIN, TCTP, and ABC were the most stable under salt stress. ACTIN, CYP2, and ABC were all found to be good reference genes for studying heat stress. Likewise, CYP2, MPK4, and ABC were most suitable to study waterlogging, and ACTIN, CYP2, and MPK4 were determined as the three best reference genes for ABA studies. Our study identified and validated the possible reference genes in orchardgrass that may be used for quantification of target gene expression under various abiotic stresses. PMID:25307767

  2. Genome-Wide Identification and Expression Profiling of Tomato Hsp20 Gene Family in Response to Biotic and Abiotic Stresses.

    Yu, Jiahong; Cheng, Yuan; Feng, Kun; Ruan, Meiying; Ye, Qingjing; Wang, Rongqing; Li, Zhimiao; Zhou, Guozhi; Yao, Zhuping; Yang, Yuejian; Wan, Hongjian

    2016-01-01

    genes could be induced profusely by abiotic and biotic stresses such as heat, drought, salt, Botrytis cinerea, and Tomato Spotted Wilt Virus (TSWV), indicating their potential roles in mediating the response of tomato plants to environment stresses. In conclusion, these results provide valuable information for elucidating the evolutionary relationship of Hsp20 gene family and functional characterization of the SlHsp20 gene family in the future. PMID:27582749

  3. The Surgically Induced Stress Response

    Finnerty, Celeste C.; Mabvuure, Nigel Tapiwa; Ali, Arham; Kozar, Rosemary A.; Herndon, David N

    2013-01-01

    The stress response to surgery, critical illness, trauma, and burns encompasses derangements of metabolic and physiological processes which induce perturbations in the inflammatory, acute phase, hormonal, and genomic responses. Hypermetabolism and hypercatabolism result, leading to muscle wasting, impaired immune function and wound healing, organ failure, and death. The surgery-induced stress response is largely similar to that triggered by traumatic injuries; the duration of the stress respo...

  4. DREB1/CBF transcription factors: their structure, function and role in abiotic stress tolerance in plants

    M. Akhtar; A. Jaiswal; G. Taj; J. P. Jaiswal; M. I. Qureshi; N. K. Singh

    2012-12-01

    Drought, high salinity and low temperature are major abiotic stresses that influence survival, productivity and geographical distribution of many important crops across the globe. Plants respond to these environmental challenges via physiological, cellular and molecular processes, which results in adjusted metabolic and structural alterations. The dehydration-responsive-element-binding (DREB) protein / C-repeat binding factors (CBFs) belong to APETALA2 (AP2) family transcription factors that bind to DRE/CRT cis-element and regulate the expression of stress-responsive genes. DREB1/CBF genes, therefore, play an important role in increasing stress tolerance in plants and their deployment using transgenic technology seems to be a potential alternative in management of abiotic stresses in crop plants. This review is mainly focussed on the structural characteristics as well as transcriptional regulation of gene expression in response to various abiotic stresses, with particular emphasis on the role of DREB1/CBF regulon in stress-responsive gene expression. The recent progress related to genetic engineering of DREB1/CBF transcription factors in various crops and model plants is also summarized.

  5. Mutation of the NADH Oxidase Gene (nox) Reveals an Overlap of the Oxygen- and Acid-Mediated Stress Responses in Streptococcus mutans

    Derr, Adam M.; Faustoferri, Roberta C.; Betzenhauser, Matthew J.; Gonzalez, Kaisha; Marquis, Robert E.; Quivey, Robert G.

    2012-01-01

    NADH oxidase (Nox) is a flavin-containing enzyme used by Streptococcus mutans to reduce dissolved oxygen encountered during growth in the oral cavity. In this study, we characterized the role of the NADH oxidase in the oxidative and acid stress responses of S. mutans. A nox-defective mutant strain of S. mutans and its parental strain, the genomic type strain UA159, were exposed to various oxygen concentrations at pH values of 5 and 7 to better understand the adaptive mechanisms used by the or...

  6. Novel NAC transcription factor TaNAC67 confers enhanced multi-abiotic stress tolerances in Arabidopsis.

    Xinguo Mao

    Full Text Available Abiotic stresses are major environmental factors that affect agricultural productivity worldwide. NAC transcription factors play pivotal roles in abiotic stress signaling in plants. As a staple crop, wheat production is severely constrained by abiotic stresses whereas only a few NAC transcription factors have been characterized functionally. To promote the application of NAC genes in wheat improvement by biotechnology, a novel NAC gene designated TaNAC67 was characterized in common wheat. To determine its role, transgenic Arabidopsis overexpressing TaNAC67-GFP controlled by the CaMV-35S promoter was generated and subjected to various abiotic stresses for morphological and physiological assays. Gene expression showed that TaNAC67 was involved in response to drought, salt, cold and ABA treatments. Localization assays revealed that TaNAC67 localized in the nucleus. Morphological analysis indicated the transgenics had enhanced tolerances to drought, salt and freezing stresses, simultaneously supported by enhanced expression of multiple abiotic stress responsive genes and improved physiological traits, including strengthened cell membrane stability, retention of higher chlorophyll contents and Na(+ efflux rates, improved photosynthetic potential, and enhanced water retention capability. Overexpression of TaNAC67 resulted in pronounced enhanced tolerances to drought, salt and freezing stresses, therefore it has potential for utilization in transgenic breeding to improve abiotic stress tolerance in crops.

  7. Microarray Analysis of Rice d1 (RGA1) Mutant Reveals the Potential Role of G-Protein Alpha Subunit in Regulating Multiple Abiotic Stresses Such as Drought, Salinity, Heat, and Cold.

    Jangam, Annie P; Pathak, Ravi R; Raghuram, Nandula

    2016-01-01

    The genome-wide role of heterotrimeric G-proteins in abiotic stress response in rice has not been examined from a functional genomics perspective, despite the availability of mutants and evidences involving individual genes/processes/stresses. Our rice whole transcriptome microarray analysis (GSE 20925 at NCBI GEO) using the G-alpha subunit (RGA1) null mutant (Daikoku 1 or d1) and its corresponding wild type (Oryza sativa Japonica Nipponbare) identified 2270 unique differentially expressed genes (DEGs). Out of them, we mined for all the potentially abiotic stress-responsive genes using Gene Ontology terms, STIFDB2.0 and Rice DB. The first two approaches produced smaller subsets of the 1886 genes found at Rice DB. The GO approach revealed similar regulation of several families of stress-responsive genes in RGA1 mutant. The Genevestigator analysis of the stress-responsive subset of the RGA1-regulated genes from STIFDB revealed cold and drought-responsive clusters. Meta data analysis at Rice DB revealed large stress-response categories such as cold (878 up/810 down), drought (882 up/837 down), heat (913 up/777 down), and salt stress (889 up/841 down). One thousand four hundred ninety-eight of them are common to all the four abiotic stresses, followed by fewer genes common to smaller groups of stresses. The RGA1-regulated genes that uniquely respond to individual stresses include 111 in heat stress, eight each in cold only and drought only stresses, and two genes in salt stress only. The common DEGs (1498) belong to pathways such as the synthesis of polyamine, glycine-betaine, proline, and trehalose. Some of the common DEGs belong to abiotic stress signaling pathways such as calcium-dependent pathway, ABA independent and dependent pathway, and MAP kinase pathway in the RGA1 mutant. Gene ontology of the common stress responsive DEGs revealed 62 unique molecular functions such as transporters, enzyme regulators, transferases, hydrolases, carbon and protein metabolism

  8. Microarray Analysis of Rice d1 (RGA1) Mutant Reveals the Potential Role of G-Protein Alpha Subunit in Regulating Multiple Abiotic Stresses Such as Drought, Salinity, Heat, and Cold

    Jangam, Annie P.; Pathak, Ravi R.; Raghuram, Nandula

    2016-01-01

    The genome-wide role of heterotrimeric G-proteins in abiotic stress response in rice has not been examined from a functional genomics perspective, despite the availability of mutants and evidences involving individual genes/processes/stresses. Our rice whole transcriptome microarray analysis (GSE 20925 at NCBI GEO) using the G-alpha subunit (RGA1) null mutant (Daikoku 1 or d1) and its corresponding wild type (Oryza sativa Japonica Nipponbare) identified 2270 unique differentially expressed genes (DEGs). Out of them, we mined for all the potentially abiotic stress-responsive genes using Gene Ontology terms, STIFDB2.0 and Rice DB. The first two approaches produced smaller subsets of the 1886 genes found at Rice DB. The GO approach revealed similar regulation of several families of stress-responsive genes in RGA1 mutant. The Genevestigator analysis of the stress-responsive subset of the RGA1-regulated genes from STIFDB revealed cold and drought-responsive clusters. Meta data analysis at Rice DB revealed large stress-response categories such as cold (878 up/810 down), drought (882 up/837 down), heat (913 up/777 down), and salt stress (889 up/841 down). One thousand four hundred ninety-eight of them are common to all the four abiotic stresses, followed by fewer genes common to smaller groups of stresses. The RGA1-regulated genes that uniquely respond to individual stresses include 111 in heat stress, eight each in cold only and drought only stresses, and two genes in salt stress only. The common DEGs (1498) belong to pathways such as the synthesis of polyamine, glycine-betaine, proline, and trehalose. Some of the common DEGs belong to abiotic stress signaling pathways such as calcium-dependent pathway, ABA independent and dependent pathway, and MAP kinase pathway in the RGA1 mutant. Gene ontology of the common stress responsive DEGs revealed 62 unique molecular functions such as transporters, enzyme regulators, transferases, hydrolases, carbon and protein metabolism

  9. Genome-wide identification of BURP domain-containing genes in rice reveals a gene family with diverse structures and responses to abiotic stresses.

    Ding, Xipeng; Hou, Xin; Xie, Kabin; Xiong, Lizhong

    2009-06-01

    Increasing evidence suggests that a gene family encoding proteins containing BURP domains have diverse functions in plants, but systematic characterization of this gene family have not been reported. In this study, 17 BURP family genes (OsBURP01-17) were identified and analyzed in rice (Oryza sativa L.). These genes have diverse exon-intron structures and distinct organization of putative motifs. Based on the phylogenetic analysis of BURP protein sequences from rice and other plant species, the BURP family was classified into seven subfamilies, including two subfamilies (BURP V and BURP VI) with members from rice only and one subfamily (BURP VII) with members from monocotyledons only. Two BURP gene clusters, belonging to BURP V and BURP VI, were located in the duplicated region on chromosome 5 and 6 of rice, respectively. Transcript level analysis of BURP genes of rice in various tissues and organs revealed different tempo-spatial expression patterns, suggesting that these genes may function at different stages of plant growth and development. Interestingly, all the genes of the BURP VII subfamily were predominantly expressed in flower organs. We also investigated the expression patterns of BURP genes of rice under different stress conditions. The results suggested that, except for two genes (OsBURP01 and OsBURP13), all other members were induced by at least one of the stresses including drought, salt, cold, and abscisic acid treatment. Two genes (OsBURP05 and OsBURP16) were responsive to all the stress treatments and most of the OsBURP genes were responsive to salt stress. Promoter sequence analysis revealed an over-abundance of stress-related cis-elements in the stress-responsive genes. The data presented here provide important clues for elucidating the functions of genes of this family. PMID:19363683

  10. Machine learning-based differential network analysis: a study of stress-responsive transcriptomes in Arabidopsis.

    Ma, Chuang; Xin, Mingming; Feldmann, Kenneth A; Wang, Xiangfeng

    2014-02-01

    Machine learning (ML) is an intelligent data mining technique that builds a prediction model based on the learning of prior knowledge to recognize patterns in large-scale data sets. We present an ML-based methodology for transcriptome analysis via comparison of gene coexpression networks, implemented as an R package called machine learning-based differential network analysis (mlDNA) and apply this method to reanalyze a set of abiotic stress expression data in Arabidopsis thaliana. The mlDNA first used a ML-based filtering process to remove nonexpressed, constitutively expressed, or non-stress-responsive "noninformative" genes prior to network construction, through learning the patterns of 32 expression characteristics of known stress-related genes. The retained "informative" genes were subsequently analyzed by ML-based network comparison to predict candidate stress-related genes showing expression and network differences between control and stress networks, based on 33 network topological characteristics. Comparative evaluation of the network-centric and gene-centric analytic methods showed that mlDNA substantially outperformed traditional statistical testing-based differential expression analysis at identifying stress-related genes, with markedly improved prediction accuracy. To experimentally validate the mlDNA predictions, we selected 89 candidates out of the 1784 predicted salt stress-related genes with available SALK T-DNA mutagenesis lines for phenotypic screening and identified two previously unreported genes, mutants of which showed salt-sensitive phenotypes. PMID:24520154

  11. Comprehensive Genomic Analysis and Expression Profiling of the NOX Gene Families under Abiotic Stresses and Hormones in Plants.

    Chang, Yan-Li; Li, Wen-Yan; Miao, Hai; Yang, Shuai-Qi; Li, Ri; Wang, Xiang; Li, Wen-Qiang; Chen, Kun-Ming

    2016-01-01

    Plasma membrane NADPH oxidases (NOXs) are key producers of reactive oxygen species under both normal and stress conditions in plants and they form functional subfamilies. Studies of these subfamilies indicated that they show considerable evolutionary selection. We performed a comparative genomic analysis that identified 50 ferric reduction oxidases (FRO) and 77 NOX gene homologs from 20 species representing the eight major plant lineages within the supergroup Plantae: glaucophytes, rhodophytes, chlorophytes, bryophytes, lycophytes, gymnosperms, monocots, and eudicots. Phylogenetic and structural analysis classified these FRO and NOX genes into four well-conserved groups represented as NOX, FRO I, FRO II, and FRO III. Further analysis of NOXs of phylogenetic and exon/intron structures showed that single intron loss and gain had occurred, yielding the diversified gene structures during the evolution of NOXs family genes and which were classified into four conserved subfamilies which are represented as Sub.I, Sub.II, Sub.III, and Sub.IV. Additionally, both available global microarray data analysis and quantitative real-time PCR experiments revealed that the NOX genes in Arabidopsis and rice (Oryza sativa) have different expression patterns in different developmental stages, various abiotic stresses and hormone treatments. Finally, coexpression network analysis of NOX genes in Arabidopsis and rice revealed that NOXs have significantly correlated expression profiles with genes which are involved in plants metabolic and resistance progresses. All these results suggest that NOX family underscores the functional diversity and divergence in plants. This finding will facilitate further studies of the NOX family and provide valuable information for functional validation of this family in plants. PMID:26907500

  12. Verification of the resistance of a LEA gene from Tamarix expression in Saccharomyces cerevisiae to abiotic stresses

    WANG Bing-feng; WANG Yu-cheng; ZHANG Da-wei; LI Hong-yan; YANG Chuan-ping

    2008-01-01

    The role of late embryogenesis abundant (LEA) proteins in stress tolerance was examined by using a yeast expression system. LEA protein tolerance to the abotic stresses in plants involved in salt, drought and freezing stresses and additional tolerance to heat, NaHCO3 (salt-alkali) and ultraviolet radiation was also investigated. The transgenic yeast harboring the Tamarix LEA gene (DQ663481) was generated under the control of inducible GAL promoter (pYES2 vector), yeast cells transformed with pYES2 empty vector were also generated as a control. Stress tolerance tests showed that LEA yeast transformants exhibited a higher survival rates than the control transformants under high temperature, NaHCO3, ultraviolet radiation, salt (NaCl), drought and freezing, indicating that the LEA gene is tolerant to these abiotic stresses. These results suggest that the LEA gene is resistant to a wider repertoire of stresses and may play a common role in plant acclimation to the examined stress conditions.

  13. Characterization and subcellular localization of two 14-3-3 genes and their response to abiotic stress in wheat.

    Meng, Xiaodan; Chen, Xin; Wang, Yaying; Xiao, Ruixia; Liu, Hailun; Wang, Xinguo; Ren, Jiangping; Li, Yongchun; Niu, Hongbin; Wang, Xiang; Yin, Jun

    2014-02-01

    In order to investigate biological functions of the 14-3-3 genes and their response to abiotic stress, two cDNAs (designated as Ta14R1 and Ta14R2) encoding putative 14-3-3 proteins were isolated from wheat by PCR and rapid amplification of cDNA end (RACE) technique. The cDNA of Ta14R1 is 999bp and encodes a protein of 262 amino acids, while the cDNA of Ta14R2 is 897bp in length and encodes a protein of 261 amino acids. Transient expression assays using Ta14R1/Ta14R2-GFP fusion constructs indicated that Ta14R1 and Ta14R2 were located in cytoplasm and cell membrane but not in chloroplasts. Real-time quantitative (RT-PCR) analysis revealed that Ta14R1 and Ta14R2 were differentially expressed in wheat tissues and significantly up-regulated in roots and shoots 1d after germination, indicating they may play a role in process of seed germination. The expression of the two genes in roots and leaves were significantly induced by plant hormone ABA, as well as heat, cold and drought treatments, suggesting that the two 14-3-3 genes in wheat may be involved in ABA dependent stress-responding pathway and response to heat, cold and drought stress. PMID:24941745

  14. Transcriptional Downregulation of Rice rpL32 Gene under Abiotic Stress Is Associated with Removal of Transcription Factors within the Promoter Region

    Pradipto Mukhopadhyay; Reddy, Malireddy K.; Sneh Lata Singla-Pareek; Sopory, Sudhir K.

    2011-01-01

    BACKGROUND: The regulation of ribosomal proteins in plants under stress conditions has not been well studied. Although a few reports have shown stress-specific post-transcriptional and translational mechanisms involved in downregulation of ribosomal proteins yet stress-responsive transcriptional regulation of ribosomal proteins is largely unknown in plants. METHODOLOGY/PRINCIPAL FINDINGS: In the present work, transcriptional regulation of genes encoding rice 60S ribosomal protein L32 (rpL32) ...

  15. Comprehensive analysis of SET domain gene family in foxtail millet identifies the putative role of SiSET14 in abiotic stress tolerance

    Yadav, Chandra Bhan; Muthamilarasan, Mehanathan; Dangi, Anand; Shweta, Shweta; Prasad, Manoj

    2016-01-01

    SET domain-containing genes catalyse histone lysine methylation, which alters chromatin structure and regulates the transcription of genes that are involved in various developmental and physiological processes. The present study identified 53 SET domain-containing genes in C4 panicoid model, foxtail millet (Setaria italica) and the genes were physically mapped onto nine chromosomes. Phylogenetic and structural analyses classified SiSET proteins into five classes (I–V). RNA-seq derived expression profiling showed that SiSET genes were differentially expressed in four tissues namely, leaf, root, stem and spica. Expression analyses using qRT-PCR was performed for 21 SiSET genes under different abiotic stress and hormonal treatments, which showed differential expression of these genes during late phase of stress and hormonal treatments. Significant upregulation of SiSET gene was observed during cold stress, which has been confirmed by over-expressing a candidate gene, SiSET14 in yeast. Interestingly, hypermethylation was observed in gene body of highly differentially expressed genes, whereas methylation event was completely absent in their transcription start sites. This suggested the occurrence of demethylation events during various abiotic stresses, which enhance the gene expression. Altogether, the present study would serve as a base for further functional characterization of SiSET genes towards understanding their molecular roles in conferring stress tolerance. PMID:27585852

  16. Heavy-metal responsive genes in maize: identification and comparison of their expression upon various forms of abiotic stress

    To identify genes involved in defense against heavy-metal stresses, a cDNA library originating from mercuric chloride-treated maize (Zea mays L. cv. INRA 258) leaves was constructed and analysed by differential screening using cDNAs derived from treated and untreated plants. Transcriptionally activated cDNA clones, designated CHEM (chemically-activated), were isolated and characterized. They represent various known proteins, such as glycine-rich proteins, pathogenesis-related proteins, chaperones and membrane proteins. The expression of the genes encoding these proteins was studied in maize subjected to other forms of abiotic stress. Expression of glycine-rich proteins was greatly enhanced by heat stress, and also stimulated by NaCl, polluted rainwater, wounding and cold stress. Pathogenesis-related proteins were strongly induced by ultraviolet light and to a lesser extent by NaCl, polluted rainwater and wounding. Heat-shock protein was mainly induced by heat and cold, and ubiquitin by wounding. Expression of the membrane channel protein was stimulated by heat stress, NaCl, polluted rainwater and ultraviolet-light irradiation. (author)

  17. Isolation of a WRKY30 gene from Muscadinia rotundifolia (Michx) and validation of its function under biotic and abiotic stresses.

    Jiang, Wenming; Wu, Jiao; Zhang, Yali; Yin, Ling; Lu, Jiang

    2015-09-01

    WRKY transcription factors (TFs) play important roles in many plant processes, including responses to biotic and abiotic stresses. In the present study, Muscadinia rotundifolia MrWRKY30 dramatically accumulated in grapevine leaves in response to inoculation of Plasmopara viticola, a pathogen causing grapevine downy mildew disease. Similar responses were also found on grapevines treated with exogenous SA/JA/ET. Ectopic expression of MrWRKY30 in Arabidopsis thaliana "COL0" enhanced its resistance to downy mildew pathogen Peronospora parasitica. Pathogenesis-related (PR) genes, including AtPR1, AtPR4, AtPR5, and AtPDF1.2, were significantly upregulated in transgenic A. thaliana after P. parasitica inoculation. In the mean time, two critical genes in SA and JA signaling pathways, AtEDS5 and AtJAR1, were abundantly expressed as well, indicating that MrWRKY30 may enhance disease resistance of A. thaliana through SA and JA defense system. The transgenic A. thaliana plants also enhanced tolerance to cold stress accompanied with upregulation of AtCBF1, AtCBF3, AtICE1, and AtCOR47. MrWRKY30 might protect A. thaliana from cold damage by activating the AtCBF-mediated signaling pathway to induce the downstream AtCOR47 gene. Interestingly, the transgenic seedlings had a negative effect on salt tolerance. Reverse transcription PCR (RT-PCR) analysis revealed that antioxidant enzyme genes AtAPX (ascorbate peroxidase), AtCAT (catalase), and AtGST (glutathione-S-transferase) were suppressed in transgenic plants, which may lead to reactive oxygen species (ROS)-mediated sensitivity to salt stress. PMID:25643917

  18. Transcriptional profiling of chickpea genes differentially regulated in response to high-salinity, cold and drought

    Pang Edwin CK

    2007-09-01

    Full Text Available Abstract Background Cultivated chickpea (Cicer arietinum has a narrow genetic base making it difficult for breeders to produce new elite cultivars with durable resistance to major biotic and abiotic stresses. As an alternative to genome mapping, microarrays have recently been applied in crop species to identify and assess the function of putative genes thought to be involved in plant abiotic stress and defence responses. In the present study, a cDNA microarray approach was taken in order to determine if the transcription of genes, from a set of previously identified putative stress-responsive genes from chickpea and its close relative Lathyrus sativus, were altered in chickpea by the three abiotic stresses; drought, cold and high-salinity. For this, chickpea genotypes known to be tolerant and susceptible to each abiotic stress were challenged and gene expression in the leaf, root and/or flower tissues was studied. The transcripts that were differentially expressed among stressed and unstressed plants in response to the particular stress were analysed in the context of tolerant/susceptible genotypes. Results The transcriptional change of more than two fold was observed for 109, 210 and 386 genes after drought, cold and high-salinity treatments, respectively. Among these, two, 15 and 30 genes were consensually differentially expressed (DE between tolerant and susceptible genotypes studied for drought, cold and high-salinity, respectively. The genes that were DE in tolerant and susceptible genotypes under abiotic stresses code for various functional and regulatory proteins. Significant differences in stress responses were observed within and between tolerant and susceptible genotypes highlighting the multiple gene control and complexity of abiotic stress response mechanism in chickpea. Conclusion The annotation of these genes suggests that they may have a role in abiotic stress response and are potential candidates for tolerance/susceptibility.

  19. Characterization of reference genes for RT-qPCR in the desert moss Syntrichia caninervis in response to abiotic stress and desiccation/rehydration

    Li, Xiaoshuang; Zhang, Daoyuan; Li, Haiyan; Gao, Bei; Yang, Honglan; Zhang, Yuanming; Wood, Andrew J.

    2015-01-01

    Syntrichia caninervis is the dominant bryophyte of the biological soil crusts found in the Gurbantunggut desert. The extreme desert environment is characterized by prolonged drought, temperature extremes, high radiation and frequent cycles of hydration and dehydration. S. caninervis is an ideal organism for the identification and characterization of genes related to abiotic stress tolerance. Reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR) expression analysis is a powerful analytical technique that requires the use of stable reference genes. Using available S. caninervis transcriptome data, we selected 15 candidate reference genes and analyzed their relative expression stabilities in S. caninervis gametophores exposed to a range of abiotic stresses or a hydration-desiccation-rehydration cycle. The programs geNorm, NormFinder, and RefFinder were used to assess and rank the expression stability of the 15 candidate genes. The stability ranking results of reference genes under each specific experimental condition showed high consistency using different algorithms. For abiotic stress treatments, the combination of two genes (α-TUB2 and CDPK) were sufficient for accurate normalization. For the hydration-desiccation-rehydration process, the combination of two genes (α-TUB1 and CDPK) were sufficient for accurate normalization. 18S was among the least stable genes in all of the experimental sets and was unsuitable as reference gene in S. caninervis. This is the first systematic investigation and comparison of reference gene selection for RT-qPCR work in S. caninervis. This research will facilitate gene expression studies in S. caninervis, related moss species from the Syntrichia complex and other mosses. PMID:25699066

  20. Evolution and Adaptation of Wild Emmer Wheat Populations to Biotic and Abiotic Stresses.

    Huang, Lin; Raats, Dina; Sela, Hanan; Klymiuk, Valentina; Lidzbarsky, Gabriel; Feng, Lihua; Krugman, Tamar; Fahima, Tzion

    2016-08-01

    The genetic bottlenecks associated with plant domestication and subsequent selection in man-made agroecosystems have limited the genetic diversity of modern crops and increased their vulnerability to environmental stresses. Wild emmer wheat, the tetraploid progenitor of domesticated wheat, distributed along a wide range of ecogeographical conditions in the Fertile Crescent, has valuable "left behind" adaptive diversity to multiple diseases and environmental stresses. The biotic and abiotic stress responses are conferred by series of genes and quantitative trait loci (QTLs) that control complex resistance pathways. The study of genetic diversity, genomic organization, expression profiles, protein structure and function of biotic and abiotic stress-resistance genes, and QTLs could shed light on the evolutionary history and adaptation mechanisms of wild emmer populations for their natural habitats. The continuous evolution and adaptation of wild emmer to the changing environment provide novel solutions that can contribute to safeguarding food for the rapidly growing human population. PMID:27296141

  1. Evaluation of suitable reference genes for quantitative RT-PCR during development and abiotic stress in Panonychus citri (McGregor) (Acari: Tetranychidae).

    Niu, Jin-Zhi; Dou, Wei; Ding, Tian-Bo; Yang, Li-Hong; Shen, Guang-Mao; Wang, Jin-Jun

    2012-05-01

    Quantitative real time reverse transcriptase polymerase chain reaction (RT-qPCR) is preferred for gene expression analysis in living organisms. Currently, it is a valuable tool for biological and ecological studies as it provides a relatively straightforward way to assess the relevance of transcriptional regulation under developmental and stress tolerance conditions. However, studies have shown that some commonly used reference genes varied among different experimental treatments, thus, systematic evaluation of reference genes is critical for gene expression profiling, which is often neglected in gene expression studies of arthropods. The aim of this study is to identify the suitable reference genes for RT-qPCR experiments involving various developmental stages and/or under abiotic stresses in citrus red mite Panonychus citri, a key pest in citrus orchards worldwide. GeNorm, NormFinder, and Bestkeeper software analysis indicates that elongation factor-1 alpha (ELF1A), RNA polymerase II largest subunit, alpha tublin, and glyceraldhyde-3-phosphate dehydrogenase (GAPDH) are the most stable reference genes in various developmental stages, meanwhile, ELF1A and GAPDH were the most stable reference genes under various abiotic stresses. Furthermore, this study will serve as a resource to screen reference genes for gene expression studies in any other spider mite species. PMID:22203483

  2. The SbMT-2 gene from a halophyte confers abiotic stress tolerance and modulates ROS scavenging in transgenic tobacco.

    Amit Kumar Chaturvedi

    Full Text Available Heavy metals are common pollutants of the coastal saline area and Salicornia brachiata an extreme halophyte is frequently exposed to various abiotic stresses including heavy metals. The SbMT-2 gene was cloned and transformed to tobacco for the functional validation. Transgenic tobacco lines (L2, L4, L6 and L13 showed significantly enhanced salt (NaCl, osmotic (PEG and metals (Zn++, Cu++ and Cd++ tolerance compared to WT plants. Transgenic lines did not show any morphological variation and had enhanced growth parameters viz. shoot length, root length, fresh weight and dry weight. High seed germination percentage, chlorophyll content, relative water content, electrolytic leakage and membrane stability index confirmed that transgenic lines performed better under salt (NaCl, osmotic (PEG and metals (Zn++, Cu++ and Cd++ stress conditions compared to WT plants. Proline, H2O2 and lipid peroxidation (MDA analyses suggested the role of SbMT-2 in cellular homeostasis and H2O2 detoxification. Furthermore in vivo localization of H2O2 and O2-; and elevated expression of key antioxidant enzyme encoding genes, SOD, POD and APX evident the possible role of SbMT-2 in ROS scavenging/detoxification mechanism. Transgenic lines showed accumulation of Cu++ and Cd++ in root while Zn++ in stem under stress condition. Under control (unstressed condition, Zn++ was accumulated more in root but accumulation of Zn++ in stem under stress condition suggested that SbMT-2 may involve in the selective translocation of Zn++ from root to stem. This observation was further supported by the up-regulation of zinc transporter encoding genes NtZIP1 and NtHMA-A under metal ion stress condition. The study suggested that SbMT-2 modulates ROS scavenging and is a potential candidate to be used for phytoremediation and imparting stress tolerance.

  3. Brassica napus L. Homeodomain Leucine-Zipper Gene BnHB6 Responds to Abiotic and Biotic Stresses

    Shun-Wu YU; Li-Da ZHANG; Kai-Jing ZUO; Dong-Qin TANG; Xiao-Fen SUN; Ke-Xuan TANG

    2005-01-01

    Ahomeodomain leucine-zipper(HD-Zip) gene BnHB6 (GenBank accession No. AY336103) was isolated from oilseed rape (Brassica napus L.) following drought treatment through rapid amplification of cDNA ends (RACE). The full-length cDNA of BnHB6 was 1 611 bp and contained a 936-bp open reading frame encoding 311 amino acids. Sequence analysis indicated that BnHB6 belonged to the HD-Zip I subfamily.High-stringency Southern boltting analysis showed that BnHB6 appeared in rape as a single copy but had homologous genes. Semi-quantitative reverse transcription-polymerase chain reaction (RT-PCR) analysis revealed that BnHB6 was expressed in several tissues tested under control conditions, but that expression was significantly upregulated in shoots by mannitol, NaCl, cold treatment, anaerobic culture, wounding, H2O2, abscisic acid (ABA), and salicylic acid (SA) treatments, but not by ultraviolet treatment. Further RTPCR analysis revealed that BnHB6 was a late-responsive gene, the expression of which was not activated by NaCl, cold treatment, H2O2, ABA, and SA at an early time point (20 min) of treatment in the shoot. However, after a certain period of treatment, the induced expression culminated and then declined until the next peak occurred. Tissue-specific analysis revealed that BnHB6 was expressed at certain levels in the roots, shoots, and flowers, and the roots were found to respond to the osmotic stimuli more rapidly than shoots to increase the expression of BnHB6. The present study implies that BnHB6 plays a positive role as a regulator of biotic and abiotic stresses on growth during seedling establishment.

  4. In planta transformation of sorghum (Sorghum bicolor (L.) Moench) using TPS1 gene for enhancing tolerance to abiotic stresses

    Varalaxmi Yellisetty; L. A. Reddy; Maheswari Mandapaka

    2015-09-01

    An in planta transformation protocol for sorghum (Sorghum bicolor (L.) Moench) using shoot apical meristem of germinating seedlings is reported in this study. Agrobacterium tumefaciens strain, LBA4404 with pCAMBIA1303 vector and construct pCAMBIA1303TPS1 were individually used for transformation. Since, the transgene is integrated into the cells of already differentiated tissues, the T0 plants were chimeric and stable integration was observed in T1 generation. -Glucuronidase (GUS) expression in the seedlings and spikelets of emerging cob was the first indication of transformability in T0 generation which was further confirmed by PCR analysis using hpt and TPS1 gene-specific primers. Screening on 25 mg/L hygromycin combined with PCR analysis was used for selection of transformants in the T1 generation. Transformation efficiencies ranged between 34–38% and 26–34% using pCAMBIA1303 vector and construct pCAMBIA1303TPS1, respectively. Molecular characterization of the T2 transgenics using PCR, RT-PCR and Southern blot analyses further revealed the integration, expression and inheritance of the transgene. These results indicate the feasibility of the method to generate transgenics with pCAM-BIA1303 vector and construct pCAMBIA1303TPS1. The abiotic stress tolerance of TPS1 transgenics developed in the present study was evident by the ability of the transformants to tolerate 200 mM NaCl as well as higher root growth and biomass.

  5. Overexpression of MuHSP70 gene from Macrotyloma uniflorum confers multiple abiotic stress tolerance in transgenic Arabidopsis thaliana.

    Masand, Shikha; Yadav, Sudesh Kumar

    2016-02-01

    A 70-KD heat shock protein (HSP70) is one of the most conserved chaperones. It is involved in de novo protein folding and prevents the aggregation of unfolded proteins under lethal environmental factors. The purpose of this study is to characterise a MuHSP70 from horsegram (Macrotyloma uniflorum) and elucidating its role in stress tolerance of plants. A MuHSP70 was cloned and characterised from a natural drought stress tolerant HPK4 variety of horsegram (M. uniflorum). For functional characterization, MuHSP70 was overexpressed in transgenic Arabidopsis. Overexpression of MuHSP70 was found to provide tolerance to the transgenic Arabidopsis against various stresses such as heat, cold, drought, salinity and oxidative stress. MuHSP70 transgenics were observed to maintain the shoot biomass, root length, relative water content, and chlorophyll content during exposure to multi-stresses relative to non-transgenic control. Transgenic lines have further shown the reduced levels of MDA, H2O2, and proteolytic activity. Together, these findings suggest that overexpression of MuHSP70 plays an important role in improving abiotic stress tolerance and could be a crucial candidate gene for exploration in crop improvement program. PMID:26694324

  6. In planta transformation of sorghum (Sorghum bicolor (L.) Moench) using TPS1 gene for enhancing tolerance to abiotic stresses.

    Yellisetty, Varalaxmi; Reddy, L A; Mandapaka, Maheswari

    2015-09-01

    An in planta transformation protocol for sorghum (Sorghum bicolor (L.) Moench) using shoot apical meristem of germinating seedlings is reported in this study. Agrobacterium tumefaciens strain, LBA4404 with pCAMBIA1303 vector and construct pCAMBIA1303TPS1 were individually used for transformation. Since, the transgene is integrated into the cells of already differentiated tissues, the T 0 plants were chimeric and stable integration was observed in T1 generation. β-Glucuronidase (GUS) expression in the seedlings and spikelets of emerging cob was the first indication of transformability in T0 generation which was further confirmed by PCR analysis using hpt and TPS1 gene-specific primers. Screening on 25 mg/L hygromycin combined with PCR analysis was used for selection of transformants in the T1 generation. Transformation efficiencies ranged between 34-38% and 26-34% using pCAMBIA1303 vector and construct pCAMBIA1303TPS1, respectively. Molecular characterization of the T2 transgenics using PCR, RT-PCR and Southern blot analyses further revealed the integration, expression and inheritance of the transgene. These results indicate the feasibility of the method to generate transgenics with pCAM-BIA1303 vector and construct pCAMBIA1303TPS1. The abiotic stress tolerance of TPS1 transgenics developed in the present study was evident by the ability of the transformants to tolerate 200 mM NaCl as well as higher root growth and biomass. PMID:26440081

  7. Effect of Abiotic Stresses on Histidine kinases Gene Expression in Zea mays L. cv. SC. 704

    Javadmanesh, Susan

    2013-02-01

    Full Text Available UV-B radiation and osmotic stress (like drought and salinity have a significant effect on physiology, morphology, biochemistry and molecular biology. To cope with such stimuli, plants must be able to effectively sense, respond to and adapt to changes in their biological activities. Hence, signal transduction pathways play important role in response to environmental stimuli. In this study, the expression of three Histidine Kinases including ZmHK1, ZmHK2 and ZmHK3a was studied in maize plants exposed to 8 days drought, salinity and UV-B stresses applying transcript approach. The semi-quantitative RT-PCR analyses of ZmHKs showed up-regulation of ZmHK1 and ZmHK3 agenes after 8 days exposure to applied stresses except salinity in leaves, although, their regulation was more prominent during drought stress. Astonishingly, exposure to these stresses showed down-regulation of all genes in maize roots. However, the ZmHK1 behavior was quite different from two other homologues and showed up-regulation in combined stresses. We suggest that ZmHK1 and ZmHK3a, as cytokinin transmembrane receptors, sense osmolarity changes in cells caused by dehydration. Our data supports the involvement of ZmHK homologues under these stresses in maize and provides a gene expression dynamics during the stress which will be valuable for further studies of the molecular mechanisms of stress tolerance in maize.

  8. OsTCP19 influences developmental and abiotic stress signaling by modulating ABI4-mediated pathways

    Mukhopadhyay, Pradipto; Tyagi, Akhilesh Kumar

    2015-01-01

    Class-I TCP transcription factors are plant-specific developmental regulators. In this study, the role of one such rice gene, OsTCP19, in water-deficit and salt stress response was explored. Besides a general upregulation by abiotic stresses, this transcript was more abundant in tolerant than sensitive rice genotypes during early hours of stress. Stress, tissue and genotype-dependent retention of a small in-frame intron in this transcript was also observed. Overexpression of OsTCP19 in Arabid...

  9. ZmNAC55, a maize stress-responsive NAC transcription factor, confers drought resistance in transgenic Arabidopsis.

    Mao, Hude; Yu, Lijuan; Han, Ran; Li, Zhanjie; Liu, Hui

    2016-08-01

    Abiotic stress has been shown to significantly limit the growth and productivity of crops. NAC transcription factors play essential roles in response to various abiotic stresses. However, only little information regarding stress-related NAC genes is available in maize. Here, we cloned a maize NAC transcription factor ZmNAC55 and identified its function in drought stress. Transient expression and transactivation assay demonstrated that ZmNAC55 was localized in the nucleus and had transactivation activity. Expression analysis of ZmNAC55 in maize showed that this gene was induced by drought, high salinity and cold stresses and by abscisic acid (ABA). Promoter analysis demonstrated that multiple stress-related cis-acting elements exist in promoter region of ZmNAC55. Overexpression of ZmNAC55 in Arabidopsis led to hypersensitivity to ABA at the germination stage, but enhanced drought resistence compared to wild-type seedlings. Transcriptome analysis identified a number of differentially expressed genes between 35S::ZmNAC55 transgenic and wild-type plants, and many of which are involved in stress response, including twelve qRT-PCR confirmed well-known drought-responsive genes. These results highlight the important role of ZmNAC55 in positive regulates of drought resistence, and may have potential applications in transgenic breeding of drought-tolerant crops. PMID:27085597

  10. Characterization of reference genes for RT-qPCR in the desert moss Syntrichia caninervis in response to abiotic stress and desiccation/rehydration

    Li, Xiaoshuang; Zhang, Daoyuan; Li, Haiyan; Gao, Bei; Yang, Honglan; Zhang, Yuanming; Wood, Andrew J.

    2015-01-01

    Syntrichia caninervis is the dominant bryophyte of the biological soil crusts found in the Gurbantunggut desert. The extreme desert environment is characterized by prolonged drought, temperature extremes, high radiation and frequent cycles of hydration and dehydration. S. caninervis is an ideal organism for the identification and characterization of genes related to abiotic stress tolerance. Reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR) expression analysis i...

  11. Overexpression of OsSAP16 Regulates Photosynthesis and the Expression of a Broad Range of Stress Response Genes in Rice (Oryza sativa L..

    Fei Wang

    Full Text Available This study set out to identify and characterize transcription factors regulating photosynthesis in rice. Screening populations of rice T-DNA activation lines led to the identification of a T-DNA mutant with an increase in intrinsic water use efficiency (iWUE under well-watered conditions. Flanking sequence analysis showed that the T-DNA construct was located upstream of LOC_Os07g38240 (OsSAP16 encoding for a stress-associated protein (SAP. A second mutant identified with activation in the same gene exhibited the same phenotype; expression of OsSAP16 was shown to be enhanced in both lines. There were no differences in stomatal development or morphology in either of these mutants, although overexpression of OsSAP16 reduced stomatal conductance. This phenotype limited CO2 uptake and the rate of photosynthesis, which resulted in the accumulation of less biomass in the two mutants. Whole transcriptome analysis showed that overexpression of OsSAP16 led to global changes in gene expression consistent with the function of zinc-finger transcription factors. These results show that the gene is involved in modulating the response of rice to drought stress through regulation of the expression of a set of stress-associated genes.

  12. Overexpression of OsSAP16 Regulates Photosynthesis and the Expression of a Broad Range of Stress Response Genes in Rice (Oryza sativa L.).

    Wang, Fei; Coe, Robert A; Karki, Shanta; Wanchana, Samart; Thakur, Vivek; Henry, Amelia; Lin, Hsiang-Chun; Huang, Jianliang; Peng, Shaobing; Quick, William Paul

    2016-01-01

    This study set out to identify and characterize transcription factors regulating photosynthesis in rice. Screening populations of rice T-DNA activation lines led to the identification of a T-DNA mutant with an increase in intrinsic water use efficiency (iWUE) under well-watered conditions. Flanking sequence analysis showed that the T-DNA construct was located upstream of LOC_Os07g38240 (OsSAP16) encoding for a stress-associated protein (SAP). A second mutant identified with activation in the same gene exhibited the same phenotype; expression of OsSAP16 was shown to be enhanced in both lines. There were no differences in stomatal development or morphology in either of these mutants, although overexpression of OsSAP16 reduced stomatal conductance. This phenotype limited CO2 uptake and the rate of photosynthesis, which resulted in the accumulation of less biomass in the two mutants. Whole transcriptome analysis showed that overexpression of OsSAP16 led to global changes in gene expression consistent with the function of zinc-finger transcription factors. These results show that the gene is involved in modulating the response of rice to drought stress through regulation of the expression of a set of stress-associated genes. PMID:27303811

  13. A Genotoxic Stress-Responsive miRNA, miR-574-3p, Delays Cell Growth by Suppressing the Enhancer of Rudimentary Homolog Gene in Vitro

    Ken-ichi Ishikawa

    2014-02-01

    Full Text Available MicroRNA (miRNA is a type of non-coding RNA that regulates the expression of its target genes by interacting with the complementary sequence of the target mRNA molecules. Recent evidence has shown that genotoxic stress induces miRNA expression, but the target genes involved and role in cellular responses remain unclear. We examined the role of miRNA in the cellular response to X-ray irradiation by studying the expression profiles of radio-responsive miRNAs and their target genes in cultured human cell lines. We found that expression of miR-574-3p was induced in the lung cancer cell line A549 by X-ray irradiation. Overexpression of miR-574-3p caused delayed growth in A549 cells. A predicted target site was detected in the 3'-untranslated region of the enhancer of the rudimentary homolog (ERH gene, and transfected cells showed an interaction between the luciferase reporter containing the target sequences and miR-574-3p. Overexpression of miR-574-3p suppressed ERH protein production and delayed cell growth. This delay was confirmed by knockdown of ERH expression. Our study suggests that miR-574-3p may contribute to the regulation of the cell cycle in response to X-ray irradiation via suppression of ERH protein production.

  14. clpP of Streptococcus salivarius Is a Novel Member of the Dually Regulated Class of Stress Response Genes in Gram-Positive Bacteria

    Chastanet, Arnaud; Msadek, Tarek

    2003-01-01

    Nucleotide sequence analysis of the Streptococcus salivarius clpP locus revealed potential binding sites for both the CtsR and HrcA repressors. Dual regulation by HrcA and CtsR was demonstrated by using Bacillus subtilis as a heterologous host, and CtsR was shown to bind directly to the clpP promoter sequence. This is the first example of a clpP gene under the control of HrcA. PMID:12511518

  15. Isolation and molecular characterization of ERF1, an ethylene response factor gene from durum wheat (Triticum turgidum L. subsp. durum), potentially involved in salt-stress responses

    Makhloufi, Emna; Yousfi, Fatma-Ezzahra; Marande, William; Mila, Isabelle; Hanana, Mohsen; Berges, Hélène; Mzid, Rim; Bouzayen, Mondher

    2014-01-01

    As food crop, wheat is of prime importance for human society. Nevertheless, our understanding of the genetic and molecular mechanisms controlling wheat productivity conditions has been, so far, hampered by the lack of sufficient genomic resources. The present work describes the isolation and characterization of TdERF1, an ERF gene from durum wheat (Triticum turgidum L. subsp. durum). The structural features of TdERF1 supported the hypothesis that it is a novel member of the ERF family in duru...

  16. DroughtDB: an expert-curated compilation of plant drought stress genes and their homologs in nine species

    Alter, Svenja; Bader, Kai C.; Spannagl, Manuel; Wang, Yu; Bauer, Eva; Schön, Chris-Carolin; Mayer, Klaus F. X.

    2015-01-01

    Plants are sessile and therefore exposed to a number of biotic and abiotic stresses. Drought is the major abiotic stress restricting plant growth worldwide. A number of genes involved in drought stress response have already been characterized, mainly in the model species Arabidopsis thaliana and Oryza sativa. However, with the aim to produce drought tolerant crop varieties, it is of importance to identify the respective orthologs for each species. We have developed DroughtDB, a manually curat...

  17. Genome-wide analysis of the maize (Zea may L.) CPP-like gene family and expression profiling under abiotic stress.

    Song, X Y; Zhang, Y Y; Wu, F C; Zhang, L

    2016-01-01

    Cysteine-rich polycomb-like (CPP) proteins are members of a small family of transcription factors, which have been identified and characterized in Arabidopsis, rice, and soybean. In this study, we investigated CPP-like genes in the maize genome. The results revealed 13 putative CPP-like genes, which were found to encode 17 distinct transcripts and were distributed unequally on 7 of 10 maize chromosomes. Analysis of phylogenetic relationships showed that Arabidopsis, rice, and maize CPP-like transcription factors can be grouped into two subfamilies. We also used real-time RT-PCR to evaluate changes in the transcript levels of ZmCPP genes in response to abiotic stresses (heat, cold, salt, and drought stresses). These findings provide an overview of the evolution of the ZmCPP gene family, which will aid in the functional characterization of CPP-like genes in maize growth and development. PMID:27525875

  18. An ATL78-Like RING-H2 Finger Protein Confers Abiotic Stress Tolerance through Interacting with RAV2 and CSN5B in Tomato.

    Song, Jianwen; Xing, Yali; Munir, Shoaib; Yu, Chuying; Song, Lulu; Li, Hanxia; Wang, Taotao; Ye, Zhibiao

    2016-01-01

    RING finger proteins play an important role in plant adaptation to abiotic stresses. In the present study, a wild tomato (Solanum habrochaites) cold-induced RING-H2 finger gene, ShATL78L, was isolated, which has been identified as an abiotic stress responsive gene in tomato. The results showed that ShATL78L was constitutively expressed in various tissues such as root, leaf, petiole, stem, flower, and fruit. Cold stress up-regulated ShATL78L in the cold-tolerant S. habrochaites compared to the susceptible cultivated tomato (S. lycopersicum). Furthermore, ShATL78L expression was also regulated under different stresses such as drought, salt, heat, wound, osmotic stress, and exogenous hormones. Functional characterization showed that cultivated tomato overexpressing ShATL78L had improved tolerance to cold, drought and oxidative stresses compared to the wild-type and the knockdown lines. To understand the underlying molecular mechanism of ShATL78L regulating abiotic stress responses, we performed yeast one-hybrid and two-hybrid assays and found that RAV2 could bind to the promoter of ShATL78L and activates/alters its transcription, and CSN5B could interact with ShATL78L to regulate abiotic stress responses. Taken together, these results show that ShATL78L plays an important role in regulating plant adaptation to abiotic stresses through bound by RAV2 and interacting with CSN5B. Highlight: RAV2 binds to the promoter of ShATL78L to activates/alters its transcription to adapt the environmental conditions; furthermore, ShATL78L interacts with CSN5B to regulate the stress tolerance. PMID:27621744

  19. Harnessing Next Generation Sequencing in Climate Change: RNA-Seq Analysis of Heat Stress-Responsive Genes in Wheat (Triticum aestivum L.).

    Kumar, Ranjeet R; Goswami, Suneha; Sharma, Sushil K; Kala, Yugal K; Rai, Gyanendra K; Mishra, Dwijesh C; Grover, Monendra; Singh, Gyanendra P; Pathak, Himanshu; Rai, Anil; Chinnusamy, Viswanathan; Rai, Raj D

    2015-10-01

    Wheat is a staple food worldwide and provides 40% of the calories in the diet. Climate change and global warming pose a threat to wheat production, however, and demand a deeper understanding of how heat stress might impact wheat production and wheat biology. However, it is difficult to identify novel heat stress associated genes when the genomic information is not available. Wheat has a very large and complex genome that is about 37 times the size of the rice genome. The present study sequenced the whole transcriptome of the wheat cv. HD2329 at the flowering stage, under control (22°±3°C) and heat stress (42°C, 2 h) conditions using Illumina HiSeq and Roche GS-FLX 454 platforms. We assembled more than 26.3 and 25.6 million high-quality reads from the control and HS-treated tissues transcriptome sequences respectively. About 76,556 (control) and 54,033 (HS-treated) contigs were assembled and annotated de novo using different assemblers and a total of 21,529 unigenes were obtained. Gene expression profile showed significant differential expression of 1525 transcripts under heat stress, of which 27 transcripts showed very high (>10) fold upregulation. Cellular processes such as metabolic processes, protein phosphorylation, oxidations-reductions, among others were highly influenced by heat stress. In summary, these observations significantly enrich the transcript dataset of wheat available on public domain and show a de novo approach to discover the heat-responsive transcripts of wheat, which can accelerate the progress of wheat stress-genomics as well as the course of wheat breeding programs in the era of climate change. PMID:26406536

  20. Characterization of an Apis cerana cerana cytochrome P450 gene (AccCYP336A1) and its roles in oxidative stresses responses.

    Zhu, Ming; Zhang, Weixing; Liu, Feng; Chen, Xiaobo; Li, Han; Xu, Baohua

    2016-06-15

    Cytochrome P450 monooxygenases (P450), widely distributed multifunctional enzymes, that play an important role in the oxidative metabolism of endogenous compounds and xenobiotics. Studies have found that these enzymes show peroxidase-like activity and may thus be involved in protecting organisms against reactive oxygen species (ROS). In this work, Apis cerana cerana was used to investigate the molecular mechanisms of P450 family genes in resisting ROS damage. A cytochrome P450 gene was isolated, AccCYP336A1. The open reading frame (ORF) of AccCYP336A1 is 1491bp in length and encodes a predicted protein of 496 amino acids. The obtained amino acid sequence of AccCYP336A1 shared a high sequence identity with homologous proteins and contained the highly conserved features of this protein family. Quantitative real-time PCR (qRT-PCR) analysis showed that AccCYP336A1 was present in some fast developmental stages and had a higher expression in the epidermis than in other tissues. Additionally, the expression levels of AccCYP336A1 were up-regulated by cold (4°C), heat (42°C), ultraviolet (UV) radiation, H2O2 and pesticide (thiamethoxam, deltamethrin, methomyl and phoxim) treatments. These results were confirmed by the western blot assays. Furthermore, the recombinant AccCYP336A1 protein acted as an antioxidant that resisted paraquat-induced oxidative stress. Taken together, these results suggest that AccCYP336A1 may play a very significant role in antioxidant defense against ROS damage. PMID:26877110

  1. A robust and reliable non-invasive test for stress responsivity in mice

    Zimprich, Annemarie; Garrett, Lillian; Deussing, Jan M.; Carsten T. Wotjak; Fuchs, Helmut; Gailus-Durner, Valerie; de Angelis, Martin Hrabě; Wurst, Wolfgang; Hölter, Sabine M.

    2014-01-01

    Stress and an altered stress response have been associated with many multifactorial diseases, such as psychiatric disorders or neurodegenerative diseases. As currently mouse mutants for each single gene are generated and phenotyped in a large-scale manner, it seems advisable also to test these mutants for alterations in their stress responses. Here we present the determinants of a robust and reliable non-invasive test for stress-responsivity in mice. Stress is applied through restraining the ...

  2. Biological Networks Underlying Abiotic Stress Tolerance in Temperate Crops—A Proteomic Perspective

    Klára Kosová; Pavel Vítámvás; Milan Oldřich Urban; Miroslav Klíma; Amitava Roy; Ilja Tom Prášil

    2015-01-01

    Abiotic stress factors, especially low temperatures, drought, and salinity, represent the major constraints limiting agricultural production in temperate climate. Under the conditions of global climate change, the risk of damaging effects of abiotic stresses on crop production increases. Plant stress response represents an active process aimed at an establishment of novel homeostasis under altered environmental conditions. Proteins play a crucial role in plant stress response since they are d...

  3. Application of a Nonlinear Model to Transcript Levels of Upregulated Stress Response Gene ibpA in Stationary-Phase Salmonella enterica Subjected to Sublethal Heat Stress.

    Carroll, Laura M; Bergholz, Teresa M; Hildebrandt, Ian M; Marks, Bradley P

    2016-07-01

    Sublethal heating, which can occur during slow cooking of meat products, is known to induce increased thermal resistance in Salmonella. However, very few studies have addressed the kinetics of this response. Although several recent studies have reported improved thermal inactivation models that include the effect of prior sublethal history on subsequent thermal resistance, none of these models were based on cellular-level responses to sublethal thermal stress. The goal of this study was to determine whether a nonlinear model could accurately portray the response of Salmonella to heat stress induced by prolonged exposure to sublethal temperatures. To accomplish this, stationary-phase Salmonella Montevideo cultures were subjected to various heating profiles (held at either 40 or 45°C for 0, 5, 10, 15, 30, 60, 90, 180, or 240 min) using a PCR thermal cycler. Differential plating on selective and nonselective media was used to confirm the presence of cellular injury. Reverse transcription quantitative PCR was used to screen the transcript levels of six heat stress-related genes to find candidate genes for nonlinear modeling. Injury was detected in populations of Salmonella held at 45°C for 30, 60, and 90 min and at 40°C for 0, 5, and 90 min (P 0.05). The transcript levels of ibpA, which codes for a small heat shock protein associated with the ClpB and DnaK-DnaJ-GrpE chaperone systems, showed the greatest increase relative to the transcript levels at 0 min, which was significant at 5, 10, 15, 30, 60, 90, and 180 min at 45°C and at 5, 10, 15, 30, 60, and 90 min at 40°C (P < 0.05). Using ibpA transcript levels as an indicator of adaptation to thermal stress, a nonlinear model for sublethal injury is proposed. The use of variables indicating the physiological state of the pathogen during stress has the potential to increase the accuracy of thermal inactivation models that must account for prolonged exposure to sublethal temperatures. PMID:27357027

  4. Overexpression of Arabidopsis AnnAt8 Alleviates Abiotic Stress in Transgenic Arabidopsis and Tobacco

    Yadav, Deepanker; Ahmed, Israr; Shukla, Pawan; Boyidi, Prasanna; Kirti, Pulugurtha Bharadwaja

    2016-01-01

    Abiotic stress results in massive loss of crop productivity throughout the world. Because of our limited knowledge of the plant defense mechanisms, it is very difficult to exploit the plant genetic resources for manipulation of traits that could benefit multiple stress tolerance in plants. To achieve this, we need a deeper understanding of the plant gene regulatory mechanisms involved in stress responses. Understanding the roles of different members of plant gene families involved in different stress responses, would be a step in this direction. Arabidopsis, which served as a model system for the plant research, is also the most suitable system for the functional characterization of plant gene families. Annexin family in Arabidopsis also is one gene family which has not been fully explored. Eight annexin genes have been reported in the genome of Arabidopsis thaliana. Expression studies of different Arabidopsis annexins revealed their differential regulation under various abiotic stress conditions. AnnAt8 (At5g12380), a member of this family has been shown to exhibit ~433 and ~175 fold increase in transcript levels under NaCl and dehydration stress respectively. To characterize Annexin8 (AnnAt8) further, we have generated transgenic Arabidopsis and tobacco plants constitutively expressing AnnAt8, which were evaluated under different abiotic stress conditions. AnnAt8 overexpressing transgenic plants exhibited higher seed germination rates, better plant growth, and higher chlorophyll retention when compared to wild type plants under abiotic stress treatments. Under stress conditions transgenic plants showed comparatively higher levels of proline and lower levels of malondialdehyde compared to the wild-type plants. Real-Time PCR analyses revealed that the expression of several stress-regulated genes was altered in AnnAt8 over-expressing transgenic tobacco plants, and the enhanced tolerance exhibited by the transgenic plants can be correlated with altered expressions of

  5. Expression Levels of the Oxidative Stress Response Gene ALDH3A2 in Granulosa-Lutein Cells Are Related to Female Age and Infertility Diagnosis.

    González-Fernández, Rebeca; Hernández, Jairo; Martín-Vasallo, Pablo; Puopolo, Maria; Palumbo, Angela; Ávila, Julio

    2016-05-01

    Oxidative stress (OS) plays an important role in all physiological processes. The effect of OS on cellular processes is modulated by the ability of the cell to express genes implicated in the reversal of lipid, protein, and DNA injury. Aldehyde dehydrogenase 3, member A2 (ALDH3A2) is a ubiquitous enzyme involved in lipid detoxification. The objective of this study was to investigate the expression ofALDH3A2in human granulosa-lutein (GL) cells of women undergoing in vitro fertilization (IVF) and its relationship with age, infertility diagnosis, and IVF outcome variables. Relative expression levels ofALDH3A2were determined by quantitative reverse transcription-polymerase chain reaction. To investigate the effect of age onALDH3A2expression, 72 women between 18 and 44 years of age with no ovarian factor (NOF) were analyzed. To evaluate the effect of infertility diagnosis onALDH3A2expression, the following groups were analyzed: 22 oocyte donors (ODs), 24 women >40 years old (yo) with tubal or male factor and no ovarian pathology, 18 poor responders (PRs), 19 cases with endometriosis (EM), and 18 patients with polycystic ovarian syndrome (PCOS). In NOF,ALDH3A2expression correlated positively with age and with the doses of follicle-stimulating hormone and luteinizing hormone administered and negatively with the number of total and mature oocytes. When different groups were analyzed,ALDH3A2expression levels were higher in patients >40 yo and in PR compared to OD. On the contrary, EM and PCOS levels were lower than expected for age. These data suggest that GL cellALDH3A2expression levels correlate with age, cause of infertility, and ovarian response to stimulation. PMID:26449735

  6. Differential expression of seven conserved microRNAs in response to abiotic stress and their regulatory network in Helianthus annuus.

    Ebrahimi Khaksefidi, Reyhaneh; Mirlohi, Shirin; Khalaji, Fahimeh; Fakhari, Zahra; Shiran, Behrouz; Fallahi, Hossein; Rafiei, Fariba; Budak, Hikmet; Ebrahimie, Esmaeil

    2015-01-01

    Biotic and abiotic stresses affect plant development and production through alternation of the gene expression pattern. Gene expression itself is under the control of different regulators such as miRNAs and transcription factors (TFs). MiRNAs are known to play important roles in regulation of stress responses via interacting with their target mRNAs. Here, for the first time, seven conserved miRNAs, associated with drought, heat, salt and cadmium stresses were characterized in sunflower. The expression profiles of miRNAs and their targets were comparatively analyzed between leaves and roots of plants grown under the mentioned stress conditions. Gene ontology analysis of target genes revealed that they are involved in several important pathways such as auxin and ethylene signaling, RNA mediated silencing and DNA methylation processes. Gene regulatory network highlighted the existence of cross-talks between these stress-responsive miRNAs and the other stress responsive genes in sunflower. Based on network analysis, we suggest that some of these miRNAs in sunflower such as miR172 and miR403 may play critical roles in epigenetic responses to stress. It seems that depending on the stress type, theses miRNAs target several pathways and cellular processes to help sunflower to cope with drought, heat, salt and cadmium stress conditions in a tissue-associated manner. PMID:26442054

  7. Salt stress response triggers activation of the jasmonate signaling pathway leading to inhibition of cell elongation in Arabidopsis primary root.

    Valenzuela, Camilo E; Acevedo-Acevedo, Orlando; Miranda, Giovanna S; Vergara-Barros, Pablo; Holuigue, Loreto; Figueroa, Carlos R; Figueroa, Pablo M

    2016-07-01

    Salinity is a severe abiotic stress that affects irrigated croplands. Jasmonate (JA) is an essential hormone involved in plant defense against herbivory and in responses to abiotic stress. However, the relationship between the salt stress response and the JA pathway in Arabidopsis thaliana is not well understood at molecular and cellular levels. In this work we investigated the activation of JA signaling by NaCl and its effect on primary root growth. We found that JA-responsive JAZ genes were up-regulated by salt stress in a COI1-dependent manner in the roots. Using a JA-Ile sensor we demonstrated that activation of JA signaling by salt stress occurs in the meristematic zone and stele of the differentiation zone and that this activation was dependent on JAR1 and proteasome functions. Another finding is that the elongation zone (EZ) and its cortical cells were significantly longer in JA-related mutants (AOS, COI1, JAZ3 and MYC2/3/4 genes) compared with wild-type plants under salt stress, revealing the participation of the canonical JA signaling pathway. Noteworthy, osmotic stress - a component of salt stress - inhibited cell elongation in the EZ in a COI1-dependent manner. We propose that salt stress triggers activation of the JA signaling pathway followed by inhibition of cell elongation in the EZ. We have shown that salt-inhibited root growth partially involves the jasmonate signaling pathway in Arabidopsis. PMID:27217545

  8. Agreeableness, Extraversion, Stressor and Physiological Stress Response

    Xiaoyuan Chu; Zhentao Ma; Yuan Li; Jing Han

    2015-01-01

    Based on the theoretical analysis, with first-hand data collection and using multiple regression models, this study explored the relationship between agreeableness, extraversion, stressor and stress response and figured out interactive effect of agreeableness, extraversion, and stressor on stress response. We draw on the following conclusions: (1) the interaction term of stressor (work) and agreeableness can negatively predict physiological stress response; (2) the interaction term of stresso...

  9. Novel DREB A-5 subgroup transcription factors from desert moss (Syntrichia caninervis) confers multiple abiotic stress tolerance to yeast.

    Li, Haiyan; Zhang, Daoyuan; Li, Xiaoshuang; Guan, Kaiyun; Yang, Honglan

    2016-05-01

    Syntrichia caninervis Mitt. is a typical desiccation tolerant moss from a temperate desert which has been a good resource for stress tolerant gene isolation. Dehydration responsive element binding proteins (DREBs) was proven to play an important role in responding to abiotic stress, which has been identified in many plants, and were rarely reported in moss. In this study, we cloned ten DREB genes from S. caninervis, and investigated their abiotic stress response and stress tolerance. The results showed that ten ScDREB proteins belonged to the A-5 sub-group of the DREB sub-family. Six genes, ScDREB1, ScDREB2, ScDREB4, ScDREB6, ScDREB7, and ScDREB8 were involved in the ABA-dependent signal pathway and the desiccation, salt, and cold stress response. ScDREB3 also responded to desiccation, salt, and cold stresses, but was insensitive to ABA treatment. Another gene, ScDREB5, was involved in an ABA-independent cold stress-responsive signal pathway. Two genes, ScDREB9 and ScDREB10, responded slightly or had no response to neither stress factor or ABA treatment. We transformed four typical genes into yeast cells and the stress tolerance ability of transgenic yeast was evaluated. The results showed that ScDREB3 and ScDREB5 enhanced the yeast's cold and salt tolerance. ScDREB8 and ScDREB10 conferred the osmotic, salt, cold, and high temperature stresses tolerance, especially for osmotic and salt stresses. Our results indicated that A-5 sub-group DREB genes in S. caninervis played important roles in abiotic stresses response and enhanced stress tolerance to transgenic yeast. To our knowledge, this is the first report on DREB genes characterization from desiccation tolerant moss, and this study will not only provide insight into the molecular mechanisms of S. caninervis adaptation to environmental stresses, but also provides valuable gene candidates for plant molecular breeding. PMID:27016184

  10. Expression of Rice CYP450-Like Gene (Os08g01480 in Arabidopsis Modulates Regulatory Network Leading to Heavy Metal and Other Abiotic Stress Tolerance.

    Arti Rai

    Full Text Available Heavy metal (HM toxicity has become a grave problem in the world since it leads to hazardous effects on living organisms. Transcriptomic/proteomic studies in plants have identified a large number of metal-responsive gene families. Of these, cytochrome-P450 (CYPs family members are composed of enzymes carrying out detoxification of exogenous molecules. Here, we report a CYP-like protein encoded by Os08g01480 locus in rice that helps the plant to combat HM and other abiotic stresses. To functionally characterize CYP-like gene, cDNA and promoter were isolated from rice to develop Arabidopsis transgenic lines. Heterologous expression of Os08g01480 in Arabidopsis provided significant tolerance towards abiotic stresses. In silico analysis reveals that Os08g01480 might help plants to combat environmental stress via modulating auxin metabolism. Transgenic lines expressing reporter gene under control of Os08g01480 promoter demonstrated differential promoter activity in different tissues during environmental stresses. These studies indicated that differential expression of Os08g01480 might be modulating response of plants towards environmental stresses as well as in different developmental stages.

  11. The α-Crystallin Domain Containing Genes: Identification, Phylogeny and Expression Profiling in Abiotic Stress, Phytohormone Response and Development in Tomato (Solanum lycopersicum

    Asosii Paul

    2016-03-01

    Full Text Available The α-crystallin domain (ACD is an ancient domain conserved among all kingdoms. Plant ACD proteins have roles in abiotic stresses, transcriptional regulation, inhibiting virus movement and DNA demethylation. An exhaustive in-silico analysis using Hidden Markof Model-based conserved motif search of the tomato proteome yielded a total of 50 ACD proteins that belonged to 4 groups, sub-divided further into18 classes. One of these groups belongs to the small heat shock protein (sHSP class of proteins, molecular chaperones implicated in heat tolerance. Both tandem and segmental duplication events appear to have shaped the expansion of this gene family with purifying selection being the primary driving force for evolution. The expression profiling of the Acd genes in two different heat stress regimes suggested that their transcripts are differentially regulated with roles in acclimation and adaptive response during recovery. The co-expression of various genes in response to different abiotic stresses (heat, low temperature, dehydration, salinity and oxidative stress and phytohormones (abscisic acid and salicylic acid suggested possible cross-talk between various members to combat a myriad of stresses. Further, several genes were highly expressed in fruit, root and flower tissues as compared to leaf signifying their importance in plant development too. Evaluation of the expression of this gene family in field grown tissues highlighted the prominent role they have in providing thermo-tolerance during daily temperature variations. The function of three putative sHSPs was established as holdase chaperones as evidenced by protection to malate-dehydrogenase against heat induced protein-aggregation. This study provides insights into the characterization of the Acd genes in tomato and forms the basis for further functional validation in-planta.

  12. The Miscanthus NAC transcription factor MlNAC9 enhances abiotic stress tolerance in transgenic Arabidopsis.

    Zhao, Xun; Yang, Xuanwen; Pei, Shengqiang; He, Guo; Wang, Xiaoyu; Tang, Qi; Jia, Chunlin; Lu, Ying; Hu, Ruibo; Zhou, Gongke

    2016-07-15

    NAC (NAM, ATAF1/2, and CUC2) transcription factors are known to play important roles in responses to abiotic stresses in plants. Currently, little information regarding the functional roles of NAC genes in stress tolerance is available in Miscanthus lutarioriparius, a promising bioenergy plant for cellulosic ethanol production. In this study, we carried out the functional characterization of MlNAC9 in abiotic stresses. MlNAC9 was shown to act as a nuclear localized transcription activator with the activation domain in its C-terminus. The overexpression of MlNAC9 in Arabidopsis conferred hypersensitivity to abscisic acid (ABA) at seed germination and root elongation stages. In addition, the overexpression of MlNAC9 led to increased seed germination rate and root growth under salt (NaCl) treatment. Meanwhile, the transgenic Arabidopsis overexpressing MlNAC9 showed enhanced tolerance to drought and cold stresses. The expression of stress-responsive marker genes was significantly increased in MlNAC9 overexpression lines compared to that of WT under ABA, drought, salt, and cold stresses. Correspondingly, the activities of antioxidant enzymes superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) were significantly increased and the malondialdehyde (MDA) content was lower accumulated in MlNAC9 overexpression lines under drought and salt treatments. These results indicated that the overexpression of MlNAC9 improved the tolerance to abiotic stresses via an ABA-dependent pathway, and the enhanced tolerance of transgenic plants was mainly attributed to the increased expression of stress-responsive genes and the enhanced scavenging capability of reactive oxygen species (ROS). PMID:27085481

  13. Expression of a finger millet transcription factor, EcNAC1, in tobacco confers abiotic stress-tolerance.

    Venkategowda Ramegowda

    Full Text Available NAC (NAM, ATAF1-2, and CUC2 proteins constitute one of the largest families of plant-specific transcription factors and have been shown to be involved in diverse plant processes including plant growth, development, and stress-tolerance. In this study, a stress-responsive NAC gene, EcNAC1, was isolated from the subtracted stress cDNA library generated from a drought adapted crop, finger millet, and characterized for its role in stress-tolerance. The expression analysis showed that EcNAC1 was highly induced during water-deficit and salt stress. EcNAC1 shares high amino acid similarity with rice genes that have been phylogenetically classified into stress-related NAC genes. Our results demonstrated that tobacco transgenic plants expressing EcNAC1 exhibit tolerance to various abiotic stresses like simulated osmotic stress, by polyethylene glycol (PEG and mannitol, and salinity stress. The transgenic plants also showed enhanced tolerance to methyl-viologen (MV induced oxidative stress. Reduced levels of reactive oxygen species (ROS and ROS-induced damage were noticed in pot grown transgenic lines under water-deficit and natural high light conditions. Root growth under stress and recovery growth after stress alleviation was more in transgenic plants. Many stress-responsive genes were found to be up-regulated in transgenic lines expressing EcNAC1. Our results suggest that EcNAC1 overexpression confers tolerance against abiotic stress in susceptible species, tobacco.

  14. Screening and Validation of Housekeeping Genes of the Root and Cotyledon of Cunninghamia lanceolata under Abiotic Stresses by Using Quantitative Real-Time PCR

    Bao, Wenlong; Qu, Yanli; Shan, Xiaoyi; Wan, Yinglang

    2016-01-01

    Cunninghamia lanceolata (Chinese fir) is a fast-growing and commercially important conifer of the Cupressaceae family. Due to the unavailability of complete genome sequences and relatively poor genetic background information of the Chinese fir, it is necessary to identify and analyze the expression levels of suitable housekeeping genes (HKGs) as internal reference for precise analysis. Based on the results of database analysis and transcriptome sequencing, we have chosen five candidate HKGs (Actin, GAPDH, EF1a, 18S rRNA, and UBQ) with conservative sequences in the Chinese fir and related species for quantitative analysis. The expression levels of these HKGs in roots and cotyledons under five different abiotic stresses in different time intervals were measured by qRT-PCR. The data were statistically analyzed using the following algorithms: NormFinder, BestKeeper, and geNorm. Finally, RankAggreg was applied to merge the sequences generated from three programs and rank these according to consensus sequences. The expression levels of these HKGs showed variable stabilities under different abiotic stresses. Among these, Actin was the most stable internal control in root, and GAPDH was the most stable housekeeping gene in cotyledon. We have also described an experimental procedure for selecting HKGs based on the de novo sequencing database of other non-model plants. PMID:27483238

  15. Heterologous expression of Anabaena PCC 7120 all3940 (a Dps family gene) protects Escherichia coli from nutrient limitation and abiotic stresses

    This study presents first hand data on the cloning and heterologous expression of Anabaena PCC 7120 all3940 (a dps family gene) in combating nutrients limitation and multiple abiotic stresses. The Escherichia coli transformed with pGEX-5X-2-all3940 construct when subjected to iron, carbon, nitrogen, phosphorus limitation and carbofuron, copper, UV-B, heat, salt and cadmium stress registered significant increase in growth over the cells transformed with empty vector under iron (0%), carbon (0.05%), nitrogen (3.7 mM) and phosphorus (2 mM) limitation and carbofuron (0.025 mg ml-1), CuCl2 (1 mM), UV-B (10 min), heat (47 oC), NaCl (6% w/v) and CdCl2 (4 mM) stress. Enhanced expression of all3940 gene measured by semi-quantitative RT-PCR at different time points under above mentioned treatments clearly demonstrates its role in tolerance against aforesaid abiotic stresses. This study opens the gate for developing transgenic cyanobacteria capable of growing successfully under above mentioned stresses.

  16. Screening and Validation of Housekeeping Genes of the Root and Cotyledon of Cunninghamia lanceolata under Abiotic Stresses by Using Quantitative Real-Time PCR

    Wenlong Bao

    2016-07-01

    Full Text Available Cunninghamia lanceolata (Chinese fir is a fast-growing and commercially important conifer of the Cupressaceae family. Due to the unavailability of complete genome sequences and relatively poor genetic background information of the Chinese fir, it is necessary to identify and analyze the expression levels of suitable housekeeping genes (HKGs as internal reference for precise analysis. Based on the results of database analysis and transcriptome sequencing, we have chosen five candidate HKGs (Actin, GAPDH, EF1a, 18S rRNA, and UBQ with conservative sequences in the Chinese fir and related species for quantitative analysis. The expression levels of these HKGs in roots and cotyledons under five different abiotic stresses in different time intervals were measured by qRT-PCR. The data were statistically analyzed using the following algorithms: NormFinder, BestKeeper, and geNorm. Finally, RankAggreg was applied to merge the sequences generated from three programs and rank these according to consensus sequences. The expression levels of these HKGs showed variable stabilities under different abiotic stresses. Among these, Actin was the most stable internal control in root, and GAPDH was the most stable housekeeping gene in cotyledon. We have also described an experimental procedure for selecting HKGs based on the de novo sequencing database of other non-model plants.

  17. Serum levels of RBP4 and adipose tissue levels of PTP1B are increased in obese men resident in northeast Scotland without associated changes in ER stress response genes

    Hoggard N

    2012-05-01

    Full Text Available Nigel Hoggard1, Abdelali Agouni2, Nimesh Mody2, Mirela Delibegovic21Rowett Institute of Nutrition and Health, 2Integrative Physiology, University of Aberdeen, Aberdeen, UKBackground: Retinol-binding protein 4 (RBP4 is an adipokine identified as a marker of insulin resistance in mice and humans. Protein tyrosine phosphatase 1B (PTP1B expression levels as well as other genes involved in the endoplasmic reticulum (ER stress response are increased in adipose tissue of obese, high-fat-diet-fed mice. In this study we investigated if serum and/or adipose tissue RBP4 protein levels and expression levels of PTP1B and other ER stress-response genes are altered in obese and obese/diabetic men resident in northeast Scotland.Methods: We studied three groups of male volunteers: (1 normal/overweight (body mass index [BMI] < 30, (2 obese (BMI > 30, and (3 obese/diabetic (BMI > 30 controlling their diabetes either by diet or the antidiabetic drug metformin. We analyzed their serum and adipose tissue RBP4 protein levels as well as adipose tissue mRNA expression of PTP1B, binding immunoglobulin protein (BIP, activated transcription factor 4 (ATF4, and glucose-regulated protein 94 (GRP94 alongside other markers of adiposity (percentage body fat, leptin, cholesterol, triglycerides and insulin resistance (oral glucose tolerance tests, insulin, homeostatic model assessment–insulin resistance, C-reactive protein, and adiponectin.Results: We found that obese Scottish subjects had significantly higher serum RBP4 protein levels in comparison to the normal/overweight subjects (P < 0.01. Serum RBP4 levels were normalized in obese/diabetic subjects treated with diet or metformin (P < 0.05. Adipose tissue RBP4 protein levels were comparable between all three groups of subjects as were serum and adipose transthyretin levels. Adipose tissue PTP1B mRNA levels were increased in obese subjects in comparison to normal/overweight subjects (P < 0.05; however diet and/or metformin

  18. A novel gene SbSI-2 encoding nuclear protein from a halophyte confers abiotic stress tolerance in E. coli and tobacco.

    Narendra Singh Yadav

    Full Text Available Salicornia brachiata is an extreme halophyte that grows luxuriantly in coastal marshes. Previously, we have reported isolation and characterization of ESTs from Salicornia with large number of novel/unknown salt-responsive gene sequences. In this study, we have selected a novel salt-inducible gene SbSI-2 (Salicornia brachiata salt-inducible-2 for functional characterization. Bioinformatics analysis revealed that SbSI-2 protein has predicted nuclear localization signals and a strong protein-protein interaction domain. Transient expression of the RFP:SbSI2 fusion protein confirmed that SbSI-2 is a nuclear-localized protein. Genomic organization study showed that SbSI-2 is intronless and has a single copy in Salicornia genome. Quantitative RT-PCR analysis revealed higher SbSI-2 expression under salt stress and desiccation conditions. The SbSI-2 gene was transformed in E. coli and tobacco for functional characterization. pET28a-SbSI-2 recombinant E. coli cells showed higher tolerance to desiccation and salinity compared to vector alone. Transgenic tobacco plants overexpressing SbSI-2 have improved salt- and osmotic tolerance, accompanied by better growth parameters, higher relative water content, elevated accumulation of compatible osmolytes, lower Na+ and ROS accumulation and lesser electrolyte leakage than the wild-type. Overexpression of the SbSI-2 also enhanced transcript levels of ROS-scavenging genes and some stress-related transcription factors under salt and osmotic stresses. Taken together, these results demonstrate that SbSI-2 might play an important positive modulation role in abiotic stress tolerance. This identifies SbSI-2 as a novel determinant of salt/osmotic tolerance and suggests that it could be a potential bioresource for engineering abiotic stress tolerance in crop plants.

  19. Metabolomics as a Tool to Investigate Abiotic Stress Tolerance in Plants

    Aurelio Gómez-Cadenas

    2013-03-01

    Full Text Available Metabolites reflect the integration of gene expression, protein interaction and other different regulatory processes and are therefore closer to the phenotype than mRNA transcripts or proteins alone. Amongst all –omics technologies, metabolomics is the most transversal and can be applied to different organisms with little or no modifications. It has been successfully applied to the study of molecular phenotypes of plants in response to abiotic stress in order to find particular patterns associated to stress tolerance. These studies have highlighted the essential involvement of primary metabolites: sugars, amino acids and Krebs cycle intermediates as direct markers of photosynthetic dysfunction as well as effectors of osmotic readjustment. On the contrary, secondary metabolites are more specific of genera and species and respond to particular stress conditions as antioxidants, Reactive Oxygen Species (ROS scavengers, coenzymes, UV and excess radiation screen and also as regulatory molecules. In addition, the induction of secondary metabolites by several abiotic stress conditions could also be an effective mechanism of cross-protection against biotic threats, providing a link between abiotic and biotic stress responses. Moreover, the presence/absence and relative accumulation of certain metabolites along with gene expression data provides accurate markers (mQTL or MWAS for tolerant crop selection in breeding programs.

  20. Rubisco Activase Is Also a Multiple Responder to Abiotic Stresses in Rice.

    Yue Chen

    Full Text Available Ribulose-1,5-bisphosphate carboxylase/oxygenase activase (RCA is a nuclear gene that encodes a chloroplast protein that plays an important role in photosynthesis. Some reports have indicated that it may play a role in acclimation to different abiotic stresses. In this paper, we analyzed the stress-responsive elements in the 2.0 kb 5'-upstream regions of the RCA gene promoter and the primary, secondary and tertiary structure of the protein. We identified some cis-elements of multiple stress-related components in the RCA promoter. Amino acid and evolution analyses showed that the RCA protein had conserved regions between different species; however, the size and type varied. The secondary structures, binding sites and tertiary structures of the RCA proteins were also different. This might reflect the differences in the transcription and translation levels of the two RCA isoforms during adaptation to different abiotic stresses. Although both the transcription and translation levels of RCA isoforms in the rice leaves increased under various stresses, the large isoform was increased more significantly in the chloroplast stroma and thylakoid. It can be concluded that RCA, especially RCAL, is also a multiple responder to abiotic stresses in rice, which provides new insights into RCA functions.

  1. Enterovirus Control of Translation and RNA Granule Stress Responses.

    Lloyd, Richard E

    2016-01-01

    Enteroviruses such as poliovirus (PV) and coxsackievirus B3 (CVB3) have evolved several parallel strategies to regulate cellular gene expression and stress responses to ensure efficient expression of the viral genome. Enteroviruses utilize their encoded proteinases to take over the cellular translation apparatus and direct ribosomes to viral mRNAs. In addition, viral proteinases are used to control and repress the two main types of cytoplasmic RNA granules, stress granules (SGs) and processing bodies (P-bodies, PBs), which are stress-responsive dynamic structures involved in repression of gene expression. This review discusses these processes and the current understanding of the underlying mechanisms with respect to enterovirus infections. In addition, the review discusses accumulating data suggesting linkage exists between RNA granule formation and innate immune sensing and activation. PMID:27043612

  2. Stress responses in probiotic Lactobacillus casei.

    Hosseini Nezhad, Marzieh; Hussain, Malik Altaf; Britz, Margaret Lorraine

    2015-01-01

    Survival in harsh environments is critical to both the industrial performance of lactic acid bacteria (LAB) and their competitiveness in complex microbial ecologies. Among the LAB, members of the Lactobacillus casei group have industrial applications as acid-producing starter cultures for milk fermentations and as specialty cultures for the intensification and acceleration of flavor development in certain bacterial-ripened cheese varieties. They are amongst the most common organisms in the gastrointestinal (GI) tract of humans and other animals, and have the potential to function as probiotics. Whether used in industrial or probiotic applications, environmental stresses will affect the physiological status and properties of cells, including altering their functionality and biochemistry. Understanding the mechanisms of how LAB cope with different environments is of great biotechnological importance, from both a fundamental and applied perspective: hence, interaction between these strains and their environment has gained increased interest in recent years. This paper presents an overview of the important features of stress responses in Lb. casei, and related proteomic or gene expression patterns that may improve their use as starter cultures and probiotics. PMID:24915363

  3. OsLEA3-2, an abiotic stress induced gene of rice plays a key role in salt and drought tolerance.

    Jianli Duan

    Full Text Available Late embryogenesis abundant (LEA proteins are involved in tolerance to drought, cold and high salinity in many different organisms. In this report, a LEA protein producing full-length gene OsLEA3-2 was identified in rice (Oryza sativa using the Rapid Amplification of cDNA Ends (RACE method. OsLEA3-2 was found to be only expressed in the embryo and can be induced by abiotic stresses. The coding protein localizes to the nucleus and overexpression of OsLEA3-2 in yeast improved growth performance compared with control under salt- and osmotic-stress conditions. OsLEA3-2 was also inserted into pHB vector and overexpressed in Arabidopsis and rice. The transgenic Arabidopsis seedlings showed better growth on MS media supplemented with 150 mM mannitol or 100 mM NaCl as compared with wild type plants. The transgenic rice also showed significantly stronger growth performance than control under salinity or osmotic stress conditions and were able to recover after 20 days of drought stress. In vitro analysis showed that OsLEA3-2 was able to protect LDH from aggregation on freezing and inactivation on desiccation. These results indicated that OsLEA3-2 plays an important role in tolerance to abiotic stresses.

  4. Transplastomic Nicotiana benthamiana plants expressing multiple defence genes encoding protease inhibitors and chitinase display broad-spectrum resistance against insects, pathogens and abiotic stresses.

    Chen, Peng-Jen; Senthilkumar, Rajendran; Jane, Wann-Neng; He, Yong; Tian, Zhihong; Yeh, Kai-Wun

    2014-05-01

    Plastid engineering provides several advantages for the next generation of transgenic technology, including the convenient use of transgene stacking and the generation of high expression levels of foreign proteins. With the goal of generating transplastomic plants with multiresistance against both phytopathogens and insects, a construct containing a monocistronic patterned gene stack was transformed into Nicotiana benthamiana plastids harbouring sweet potato sporamin, taro cystatin and chitinase from Paecilomyces javanicus. Transplastomic lines were screened and characterized by Southern/Northern/Western blot analysis for the confirmation of transgene integration and respective expression level. Immunogold localization analyses confirmed the high level of accumulation proteins that were specifically expressed in leaf and root plastids. Subsequent functional bioassays confirmed that the gene stacks conferred a high level of resistance against both insects and phytopathogens. Specifically, larva of Spodoptera litura and Spodoptera exigua either died or exhibited growth retardation after ingesting transplastomic plant leaves. In addition, the inhibitory effects on both leaf spot diseases caused by Alternaria alternata and soft rot disease caused by Pectobacterium carotovorum subsp. carotovorum were markedly observed. Moreover, tolerance to abiotic stresses such as salt/osmotic stress was highly enhanced. The results confirmed that the simultaneous expression of sporamin, cystatin and chitinase conferred a broad spectrum of resistance. Conversely, the expression of single transgenes was not capable of conferring such resistance. To the best of our knowledge, this is the first study to demonstrate an efficacious stacked combination of plastid-expressed defence genes which resulted in an engineered tolerance to various abiotic and biotic stresses. PMID:24479648

  5. The upregulation of thiamine (vitamin B1 biosynthesis in Arabidopsis thaliana seedlings under salt and osmotic stress conditions is mediated by abscisic acid at the early stages of this stress response

    Rapala-Kozik Maria

    2012-01-01

    Full Text Available Abstract Background Recent reports suggest that vitamin B1 (thiamine participates in the processes underlying plant adaptations to certain types of abiotic and biotic stress, mainly oxidative stress. Most of the genes coding for enzymes involved in thiamine biosynthesis in Arabidopsis thaliana have been identified. In our present study, we examined the expression of thiamine biosynthetic genes, of genes encoding thiamine diphosphate-dependent enzymes and the levels of thiamine compounds during the early (sensing and late (adaptation responses of Arabidopsis seedlings to oxidative, salinity and osmotic stress. The possible roles of plant hormones in the regulation of the thiamine contribution to stress responses were also explored. Results The expression of Arabidopsis genes involved in the thiamine diphosphate biosynthesis pathway, including that of THI1, THIC, TH1 and TPK, was analyzed for 48 h in seedlings subjected to NaCl or sorbitol treatment. These genes were found to be predominantly up-regulated in the early phase (2-6 h of the stress response. The changes in these gene transcript levels were further found to correlate with increases in thiamine and its diphosphate ester content in seedlings, as well as with the enhancement of gene expression for enzymes which require thiamine diphosphate as a cofactor, mainly α-ketoglutarate dehydrogenase, pyruvate dehydrogenase and transketolase. In the case of the phytohormones including the salicylic, jasmonic and abscisic acids which are known to be involved in plant stress responses, only abscisic acid was found to significantly influence the expression of thiamine biosynthetic genes, the thiamine diphosphate levels, as well as the expression of genes coding for main thiamine diphosphate-dependent enzymes. Using Arabidopsis mutant plants defective in abscisic acid production, we demonstrate that this phytohormone is important in the regulation of THI1 and THIC gene expression during salt stress

  6. Comprehensive Analysis and Expression Profiling of the OsLAX and OsABCB Auxin Transporter Gene Families in Rice (Oryza sativa under Phytohormone Stimuli and Abiotic Stresses

    Chenglin eChai

    2016-05-01

    Full Text Available The plant hormone auxin regulates many aspects of plant growth and developmental processes. Auxin gradient is formed in plant as a result of polar auxin transportation by three types of auxin transporters such as OsLAX, OsPIN, and OsABCB. We report here the analysis of two rice auxin transporter gene families, OsLAX and OsABCB, using bioinformatics tools, publicly accessible microarray data, and quantitative RT-PCR. There are 5 putative OsLAXs and 22 putative OsABCBs in rice genome, which were mapped on 8 chromosomes. The exon-intron structure of OsLAX genes and properties of deduced proteins were relatively conserved within grass family, while that of OsABCB genes varied greatly. Both constitutive and organ/tissue specific expression patterns were observed in OsLAXs and OsABCBs. Analysis of evolutionarily closely related gene pairs together with organ/tissue specific expression revealed possible function gaining and function losing events during rice evolution. Most OsLAX and OsABCB genes were regulated by drought and salt stress, as well as hormonal stimuli [auxin and Abscisic Acid (ABA], which suggests extensive crosstalk between abiotic stresses and hormone signaling pathways. The existence of large number of auxin and stress related cis-regulatory elements in promoter regions might account for their massive responsiveness of these genes to these environmental stimuli, indicating complexity of regulatory networks involved in various developmental and physiological processes. The comprehensive analysis of OsLAX and OsABCB auxin transporter genes in this study would be helpful for understanding the biological significance of these gene families in hormone signaling and adaptation of rice plants to unfavorable environments.

  7. Comprehensive Analysis and Expression Profiling of the OsLAX and OsABCB Auxin Transporter Gene Families in Rice (Oryza sativa) under Phytohormone Stimuli and Abiotic Stresses.

    Chai, Chenglin; Subudhi, Prasanta K

    2016-01-01

    The plant hormone auxin regulates many aspects of plant growth and developmental processes. Auxin gradient is formed in plant as a result of polar auxin transportation by three types of auxin transporters such as OsLAX, OsPIN, and OsABCB. We report here the analysis of two rice auxin transporter gene families, OsLAX and OsABCB, using bioinformatics tools, publicly accessible microarray data, and quantitative RT-PCR. There are 5 putative OsLAXs and 22 putative OsABCBs in rice genome, which were mapped on 8 chromosomes. The exon-intron structure of OsLAX genes and properties of deduced proteins were relatively conserved within grass family, while that of OsABCB genes varied greatly. Both constitutive and organ/tissue specific expression patterns were observed in OsLAXs and OsABCBs. Analysis of evolutionarily closely related "gene pairs" together with organ/tissue specific expression revealed possible "function gaining" and "function losing" events during rice evolution. Most OsLAX and OsABCB genes were regulated by drought and salt stress, as well as hormonal stimuli [auxin and Abscisic Acid (ABA)], which suggests extensive crosstalk between abiotic stresses and hormone signaling pathways. The existence of large number of auxin and stress related cis-regulatory elements in promoter regions might account for their massive responsiveness of these genes to these environmental stimuli, indicating complexity of regulatory networks involved in various developmental and physiological processes. The comprehensive analysis of OsLAX and OsABCB auxin transporter genes in this study would be helpful for understanding the biological significance of these gene families in hormone signaling and adaptation of rice plants to unfavorable environments. PMID:27200061

  8. Interactions between polyamines and abiotic stress pathway responses unraveled by transcriptome analysis of polyamine overproducers.

    Marco, Francisco; Alcázar, Rubén; Tiburcio, Antonio F; Carrasco, Pedro

    2011-11-01

    Plant development and productivity are negatively regulated by adverse environmental conditions. The identification of stress-regulatory genes, networks, and signaling molecules should allow the development of novel strategies to obtain tolerant plants. Polyamines (PAs) are polycationic compounds with a recognized role in plant growth and development, as well as in abiotic and biotic stress responses. During the last years, knowledge on PA functions has been achieved using genetically modified plants with altered PA levels. In this review, we combine the information obtained from global transcriptome analyses in transgenic Arabidopsis plants with altered putrescine or spermine levels. Comparison of common and specific gene networks affected by elevation of endogenous PAs, support the view that these compounds actively participate in stress signaling through intricate crosstalks with abscisic acid (ABA), Ca(2+) signaling and other hormonal pathways in plant defense and development. PMID:22011340

  9. Diverse expression pattern of wheat transcription factors against abiotic stresses in wheat species.

    Baloglu, Mehmet Cengiz; Inal, Behcet; Kavas, Musa; Unver, Turgay

    2014-10-15

    Abiotic stress including drought and salinity affects quality and yield of wheat varieties used for the production of both bread and pasta flour. bZIP, MBF1, WRKY, MYB and NAC transcription factor (TF) genes are the largest transcriptional regulators which are involved in growth, development, physiological processes, and biotic/abiotic stress responses in plants. Identification of expression profiling of these TFs plays a crucial role to understand the response of different wheat species against severe environmental changes. In the current study, expression analysis of TaWLIP19 (wheat version of bZIP), TaMBF1, TaWRKY10, TaMYB33 and TaNAC69 genes was examined under drought and salinity stress conditions in Triticum aestivum cv. (Yuregir-89), Triticum turgidum cv. (Kiziltan-91), and Triticum monococcum (Siyez). After drought stress application, all five selected genes in Kiziltan-91 were induced. However, TaMBF1 and TaWLIP19 were the only downregulated genes in Yuregir-89 and Siyez, respectively. Except TaMYB33 in Siyez, expression level of the remaining genes increased under salt stress condition in all Triticum species. For determination of drought response to selected TF members, publicly available RNA-seq data were also analyzed in this study. TaMBF1, TaWLIP19 and TaNAC69 transcripts were detected through in silico analysis. This comprehensive gene expression analysis provides valuable information for understanding the roles of these TFs under abiotic stresses in modern wheat cultivars and ancient einkorn wheat. In addition, selected TFs might be used for determination of drought or salinity-tolerant and susceptible cultivars for molecular breeding studies. PMID:25130909

  10. Accumulation of Flavonols over Hydroxycinnamic Acids Favors Oxidative Damage Protection under Abiotic Stress

    Martinez, Vicente; Mestre, Teresa C.; Rubio, Francisco; Girones-Vilaplana, Amadeo; Moreno, Diego A.; Mittler, Ron; Rivero, Rosa M.

    2016-01-01

    Efficient detoxification of reactive oxygen species (ROS) is thought to play a key role in enhancing the tolerance of plants to abiotic stresses. Although multiple pathways, enzymes, and antioxidants are present in plants, their exact roles during different stress responses remain unclear. Here, we report on the characterization of the different antioxidant mechanisms of tomato plants subjected to heat stress, salinity stress, or a combination of both stresses. All the treatments applied induced an increase of oxidative stress, with the salinity treatment being the most aggressive, resulting in plants with the lowest biomass, and the highest levels of H2O2 accumulation, lipid peroxidation, and protein oxidation. However, the results obtained from the transcript expression study and enzymatic activities related to the ascorbate-glutathione pathway did not fully explain the differences in the oxidative damage observed between salinity and the combination of salinity and heat. An exhaustive metabolomics study revealed the differential accumulation of phenolic compounds depending on the type of abiotic stress applied. An analysis at gene and enzyme levels of the phenylpropanoid metabolism concluded that under conditions where flavonols accumulated to a greater degree as compared to hydroxycinnamic acids, the oxidative damage was lower, highlighting the importance of flavonols as powerful antioxidants, and their role in abiotic stress tolerance. PMID:27379130

  11. Calcineurin B-like interacting protein kinase OsCIPK23 functions in pollination and drought stress responses in rice(Oryza sativa L.)

    2008-01-01

    Droughtis very harmful to grain yield due to its adverse effect on reproduction,especially on pollination proeess in rice.However,the molecular basis of such an effect still remains largely unknown.Here,wereport the role of amember of CBL(Calcineurin B-Like)Interacting Protein Kinase(CIPK)family,OsCIPK23,in pollination and stress responses in dee.Molecular analyses revealed that it is mainly expressed in pistil and anther but up-regulated by pollination,as well as by treatments of various abiotic stresses and phytohormones.RNA interference-mediated suppression of OsCIPK23 expression significantly reduced seed set and conferred a hypersensitive response to drought stress,indicating its possible roles in pollination and drought stress.In consistent,overexpression of OsCIPK23 induced the expression of seVeral drought tolerance related genes.Taken together,these results indicate that OsCIPK23 is a multistress induced gene and likely mediatesa signaling pathway commonly shared by both pollination and drought stress responses in rice.

  12. Multiple abiotic stress tolerance in Vigna mungo is altered by overexpression of ALDRXV4 gene via reactive carbonyl detoxification.

    Singh, Preeti; Kumar, Deepak; Sarin, Neera Bhalla

    2016-06-01

    Vigna mungo (blackgram) is an important leguminous pulse crop, which is grown for its protein rich edible seeds. Drought and salinity are the major abiotic stresses which adversely affect the growth and productivity of crop plants including blackgram. The ALDRXV4 belongs to the aldo-keto reductase superfamily of enzymes that catalyze the reduction of carbonyl metabolites in the cells and plays an important role in the osmoprotection and detoxification of the reactive carbonyl species. In the present study, we developed transgenic plants of V. mungo using Agrobacterium mediated transformation. The transgene integration was confirmed by Southern blot analysis whereas the expression was confirmed by RT-PCR, Western blot and enzyme activity. The T1 generation transgenic plants displayed improved tolerance to various environmental stresses, including drought, salt, methyl viologen and H2O2 induced oxidative stress. The increased aldose reductase activity, higher sorbitol content and less accumulation of the toxic metabolite, methylglyoxal in the transgenic lines under non-stress and stress (drought and salinity) conditions resulted in increased protection through maintenance of better photosynthetic efficiency, higher relative water content and less photooxidative damage. The accumulation of reactive oxygen species was remarkably decreased in the transgenic lines as compared with the wild type plants. This study of engineering multiple stress tolerance in blackgram, is the first report to date and this strategy for trait improvement is proposed to provide a novel germplasm for blackgram production on marginal lands. PMID:26956699

  13. Identification of the dehydrin gene family from grapevine species and analysis of their responsiveness to various forms of abiotic and biotic stress

    Yang Yazhou

    2012-08-01

    gene was positively correlated with their expression profiles. Conclusions The grapevine DHN family comprises four divergent members. While it is likely that their functions overlap to some extent, it seems that DHN1 provides the main stress-responsive function. In addition, our results suggest a close relationship between expression patterns, physicochemical properties, and cis-regulatory elements in the promoter regions of the DHN genes.

  14. Process Control Minitoring by Stress Response

    Hazen, Terry C.; Stahl, David A.

    2006-04-17

    Environmental contamination with a variety of pollutants hasprompted the development of effective bioremediation strategies. But howcan these processes be best monitored and controlled? One avenue underinvestigation is the development of stress response systems as tools foreffective and general process control. Although the microbial stressresponse has been the subject of intensive laboratory investigation, theenvironmental reflection of the laboratory response to specific stresseshas been little explored. However, it is only within an environmentalcontext, in which microorganisms are constantly exposed to multiplechanging environmental stresses, that there will be full understanding ofmicrobial adaptive resiliency. Knowledge of the stress response in theenvironment will facilitate the control of bioremediation and otherprocesses mediated by complex microbial communities.

  15. Identification of novel and salt-responsive miRNAs to explore miRNA-mediated regulatory network of salt stress response in radish (Raphanus sativus L.)

    Sun, Xiaochuan; Xu, Liang; Wang, Yan; Yu, Rugang; Zhu, Xianwen; Luo, Xiaobo; Gong, Yiqin; Wang, Ronghua; Limera, Cecilia; Zhang, Keyun; Liu, Liwang

    2015-01-01

    Background Salt stress is one of the most representative abiotic stresses that severely affect plant growth and development. MicroRNAs (miRNAs) are well known for their significant involvement in plant responses to abiotic stresses. Although miRNAs implicated in salt stress response have been widely reported in numerous plant species, their regulatory roles in the adaptive response to salt stress in radish (Raphanus sativus L.), an important root vegetable crop worldwide, remain largely unkno...

  16. Three TaFAR genes function in the biosynthesis of primary alcohols and the response to abiotic stresses in Triticum aestivum.

    Wang, Meiling; Wang, Yong; Wu, Hongqi; Xu, Jing; Li, Tingting; Hegebarth, Daniela; Jetter, Reinhard; Chen, Letian; Wang, Zhonghua

    2016-01-01

    Cuticular waxes play crucial roles in protecting plants against biotic and abiotic stresses. They are complex mixtures of very-long-chain fatty acids and their derivatives, including C20-C32 fatty alcohols. Here, we report the identification of 32 FAR-like genes and the detailed characterization of TaFAR2, TaFAR3 and TaFAR4, wax biosynthetic genes encoding fatty acyl-coenzyme A reductase (FAR) in wheat leaf cuticle. Heterologous expression of the three TaFARs in wild-type yeast and mutated yeast showed that TaFAR2, TaFAR3 and TaFAR4 were predominantly responsible for the accumulation of C18:0, C28:0 and C24:0 primary alcohols, respectively. Transgenic expression of the three TaFARs in tomato fruit and Arabidopsis cer4 mutant led to increased production of C22:0-C30:0 primary alcohols. GFP-fusion protein injection assay showed that the three encoded TaFAR proteins were localized to the endoplasmic reticulum (ER), the site of wax biosynthesis. The transcriptional expression of the three TaFAR genes was induced by cold, salt, drought and ABA. Low air humidity led to increased expression of TaFAR genes and elevated wax accumulation in wheat leaves. Collectively, these data suggest that TaFAR2, TaFAR3 and TaFAR4 encode active alcohol-forming FARs involved in the synthesis of primary alcohol in wheat leaf and the response to environmental stresses. PMID:27112792

  17. Chloroplast Retrograde Regulation of Heat Stress Responses in Plants.

    Sun, Ai-Zhen; Guo, Fang-Qing

    2016-01-01

    It is well known that intracellular signaling from chloroplast to nucleus plays a vital role in stress responses to survive environmental perturbations. The chloroplasts were proposed as sensors to heat stress since components of the photosynthetic apparatus housed in the chloroplast are the major targets of thermal damage in plants. Thus, communicating subcellular perturbations to the nucleus is critical during exposure to extreme environmental conditions such as heat stress. By coordinating expression of stress specific nuclear genes essential for adaptive responses to hostile environment, plants optimize different cell functions and activate acclimation responses through retrograde signaling pathways. The efficient communication between plastids and the nucleus is highly required for such diverse metabolic and biosynthetic functions during adaptation processes to environmental stresses. In recent years, several putative retrograde signals released from plastids that regulate nuclear genes have been identified and signaling pathways have been proposed. In this review, we provide an update on retrograde signals derived from tetrapyrroles, carotenoids, reactive oxygen species (ROS) and organellar gene expression (OGE) in the context of heat stress responses and address their roles in retrograde regulation of heat-responsive gene expression, systemic acquired acclimation, and cellular coordination in plants. PMID:27066042

  18. Genome-Wide Analysis and Expression Profiling of the Phospholipase C Gene Family in Soybean (Glycine max)

    Wang, Fawei; Deng, Yu; Zhou, Yonggang; Dong, Jinye; Chen, Huan; Dong, Yuanyuan; Wang, Nan; Li, Xiaowei; Li, Haiyan

    2015-01-01

    Phosphatidylinositol-specific phospholipase C (PI-PLC) hydrolyses phosphatidylinositol-4,5-bisphosphate to produce diacylglycerol and inositol 1,4,5-trisphosphate. It plays an important role in plant development and abiotic stress responses. However, systematic analysis and expression profiling of the phospholipase C (PLC) gene family in soybean have not been reported. In this study, 12 putative PLC genes were identified in the soybean genome. Soybean PLCs were found on chromosomes 2, 11, 14 ...

  19. MATH-domain family shows response towards abiotic stress in Arabidopsis and rice

    Hemant Ritturaj Kushwaha

    2016-06-01

    Full Text Available Response to stress represents a highly complex mechanism in plants involving a plethora of genes and gene families. It has been established that plants use some common set of genes and gene families for both biotic and abiotic stress responses leading to cross-talk phenomena. One such family, Meprin And TRAF Homology (MATH domain containing protein (MDCP, has been known to be involved in biotic stress response. In this study, we present genome-wide identification of various members of MDCP family from both Arabidopsis and rice. A large number of members identified in Arabidopsis and rice show the expansion and diversification of family in both the species. Localization of MDCP genes on the chromosomes of both Arabidopsis and rice show their presence in a few specific clusters on various chromosomes such as chromosome III in Arabidopsis and chromosome X in rice. For the functional analysis of MDCP genes, we used publicly available data for plant growth and development as well as biotic stresses and found differential expression of various members of the family. Further, we narrowed down 11 potential candidate genes in rice which showed high expression in various tissues and development stages as well biotic stress conditions. The expression analysis of these 11 genes in rice using qRT-PCR under drought and salinity stress identified OsM4 and OsMB11 to be highly expressed in both the stress conditions. Taken together, these data indicate that OsM4 and OsMB11 can be used as the potential candidates for generating stress resilient crops.

  20. Abiotic and biotic stress tolerance in Arabidopsis overexpressing the multiprotein bridging factor 1a (MBF1a) transcriptional coactivator gene.

    Kim, Min-Jung; Lim, Gah-Hyun; Kim, Eun-Seon; Ko, Chang-Beom; Yang, Kwang-Yeol; Jeong, Jin-An; Lee, Myung-Chul; Kim, Cheol Soo

    2007-03-01

    We conducted a genetic yeast screen to identify salt tolerance (SAT) genes in a maize kernel cDNA library. During the screening, we identified a maize clone (SAT41) that seemed to confer elevated salt tolerance in comparison to control cells. SAT41 cDNA encodes a 16-kDa protein which is 82.4% identical to the Arabidopsis Multiprotein bridging factor 1a (MBF1a) transcriptional coactivator gene. To further examine salinity tolerance in Arabidopsis, we functionally characterized the MBF1a gene and found that dehydration as well as heightened glucose (Glc) induced MBF1a expression. Constitutive expression of MBF1a in Arabidopsis led to elevated salt tolerance in transgenic lines. Interestingly, plants overexpressing MBF1a exhibited insensitivity to Glc and resistance to fungal disease. Our results suggest that MBF1a is involved in stress tolerance as well as in ethylene and Glc signaling in Arabidopsis. PMID:17234157

  1. Expression profiles of 12 late embryogenesis abundant protein genes from Tamarix hispida in response to abiotic stress.

    Gao, Caiqiu; Liu, Yali; Wang, Chao; Zhang, Kaimin; Wang, Yucheng

    2014-01-01

    Twelve embryogenesis abundant protein (LEA) genes (named ThLEA-1 to -12) were cloned from Tamarix hispida. The expression profiles of these genes in response to NaCl, PEG, and abscisic acid (ABA) in roots, stems, and leaves of T. hispida were assessed using real-time reverse transcriptase-polymerase chain reaction (RT-PCR). These ThLEAs all showed tissue-specific expression patterns in roots, stems, and leaves under normal growth conditions. However, they shared a high similar expression patterns in the roots, stems, and leaves when exposed to NaCl and PEG stress. Furthermore, ThLEA-1, -2, -3, -4, and -11 were induced by NaCl and PEG, but ThLEA-5, -6, -8, -10, and -12 were downregulated by salt and drought stresses. Under ABA treatment, some ThLEA genes, such as ThLEA-1, -2, and -3, were only slightly differentially expressed in roots, stems, and leaves, indicating that they may be involved in the ABA-independent signaling pathway. These findings provide a basis for the elucidation of the function of LEA genes in future work. PMID:25133264

  2. Composition of the SAGA complex in plants and its role in controlling gene expression in response to abiotic stresses.

    Felipe eMoraga

    2015-10-01

    Full Text Available Protein complexes involved in epigenetic regulation of transcription have evolved as molecular strategies to face environmental stress in plants. SAGA (Spt–Ada–Gcn5 Acetyltransferase is a transcriptional co-activator complex that regulates numerous cellular processes through the coordination of multiple post-translational histone modifications, including acetylation, deubiquitination, and chromatin recognition. The diverse functions of the SAGA complex involve distinct modules that are highly conserved between yeast, flies, and mammals. In this review, the composition of the SAGA complex in plants is described and its role in gene expression regulation under stress conditions summarized. Some of these proteins are likely involved in the regulation of the inducible expression of genes under light, cold, drought, salt, and iron stress, although the functions of several of its components remain unknown.

  3. PR gene families of citrus: their organ specific-biotic and abiotic inducible expression profiles based on ESTs approach

    Magnólia A. Campos; Daniel D. Rosa; Juliana Érika C. Teixeira; Maria Luisa P.N. Targon; De Souza, Alessandra A.; Paiva, Luciano V.; Dagmar R. Stach-Machado; Machado, Marcos A

    2007-01-01

    In silico expression profiles, of the discovered 3,103 citrus ESTs putatively encoding for PR protein families (PR-1 to PR-17), were evaluated using the Brazil citrus genome EST CitEST/database. Hierarchical clustering was displayed to identify similarities in expression patterns among citrus PR-like gene families (PRlgf) in 33 selected cDNA libraries. In this way, PRlgf preferentially expressed by organ and citrus species, and library conditions were highlighted. Changes in expression profil...

  4. PR gene families of citrus: their organ specific-biotic and abiotic inducible expression profiles based on ESTs approach

    Magnólia A. Campos

    2007-01-01

    Full Text Available In silico expression profiles, of the discovered 3,103 citrus ESTs putatively encoding for PR protein families (PR-1 to PR-17, were evaluated using the Brazil citrus genome EST CitEST/database. Hierarchical clustering was displayed to identify similarities in expression patterns among citrus PR-like gene families (PRlgf in 33 selected cDNA libraries. In this way, PRlgf preferentially expressed by organ and citrus species, and library conditions were highlighted. Changes in expression profiles of clusters for each of the 17 PRlgf expressed in organs infected by pathogens or drought-stressed citrus species were displayed for relative suppression or induction gene expression in relation to the counterpart control. Overall, few PRlgf showed expression 2-fold higher in pathogen-infected than in uninfected organs, even though the differential expression profiles displayed have been quite diverse among studied species and organs. Furthermore, an insight into some contigs from four PRlgf pointed out putative members of multigene families. They appear to be evolutionarily conserved within citrus species and/or organ- or stress-specifically expressed. Our results represent a starting point regarding the extent of expression pattern differences underlying PRlgf expression and reveal genes that may prove to be useful in studies regarding biotechnological approaches or citrus resistance markers.

  5. Crosstalk in Plant Responses to Biotic and Abiotic Stresses

    Keceli, Mehmet Ali

    2015-01-01

    In order to protect themselves against several biotic and abiotic stresses, plants are equipped with an array of defense mechanisms. Induced defenses and stress responses play a major role in plant disease resistance and are regulated by a network of interconnected signal transduction pathways with the plant hormones ethylene (ET), jasmonic acid (JA) and salicylic acid (SA) as the crucial mediators. These specific hormone-mediated signaling cascades trigger the expression of distinct sets of ...

  6. Genetic Factors That Regulate the Attenuation of the General Stress Response of Yeast

    Bose, Sohini; DUTKO, JAMES A.; Zitomer, Richard S.

    2005-01-01

    The general stress response of yeast involves the induction of ∼200 genes in response to any one of several stresses. These genes are activated by Msn2 and repressed by the Srb10 kinase, a member of the mediator complex. Normally, Msn2 is exported from the nucleus, and Srb10 represses STRE gene expression. Under stress, Msn2 relocalizes to the nucleus and, with the relief of Srb10 repression, activates transcription. The stress response is rapid, but quickly attenuated. We show here that this...

  7. Sumo and the cellular stress response

    Enserink, Jorrit M.

    2015-01-01

    The ubiquitin family member Sumo has important functions in many cellular processes including DNA repair, transcription and cell division. Numerous studies have shown that Sumo is essential for maintaining cell homeostasis when the cell encounters endogenous or environmental stress, such as osmotic stress, hypoxia, heat shock, genotoxic stress, and nutrient stress. Regulation of transcription is a key component of the Sumo stress response, and multiple mechanisms have been described by which ...

  8. Neuroendocrine Stress Response after Burn Trauma

    Lindahl, Andreas

    2013-01-01

    Some aspects of the stress response during acute intensive care for severe burns are described and quantified by measuring hormonal and neuroendocrine patterns and relating these to organ function in the short term. This includes an assessment of whether there are markers for the severity of stress that are better than conventional descriptors of the severity of a burn in predicting failing organ function. P-CgA after a major burn injury is an independent and better predictor of organ dysfunc...

  9. General Stress Responses in the Honey Bee

    Naïla Even

    2012-12-01

    Full Text Available The biological concept of stress originated in mammals, where a “General Adaptation Syndrome” describes a set of common integrated physiological responses to diverse noxious agents. Physiological mechanisms of stress in mammals have been extensively investigated through diverse behavioral and physiological studies. One of the main elements of the stress response pathway is the endocrine hypothalamo-pituitary-adrenal (HPA axis, which underlies the “fight-or-flight” response via a hormonal cascade of catecholamines and corticoid hormones. Physiological responses to stress have been studied more recently in insects: they involve biogenic amines (octopamine, dopamine, neuropeptides (allatostatin, corazonin and metabolic hormones (adipokinetic hormone, diuretic hormone. Here, we review elements of the physiological stress response that are or may be specific to honey bees, given the economical and ecological impact of this species. This review proposes a hypothetical integrated honey bee stress pathway somewhat analogous to the mammalian HPA, involving the brain and, particularly, the neurohemal organ corpora cardiaca and peripheral targets, including energy storage organs (fat body and crop. We discuss how this system can organize rapid coordinated changes in metabolic activity and arousal, in response to adverse environmental stimuli. We highlight physiological elements of the general stress responses that are specific to honey bees, and the areas in which we lack information to stimulate more research into how this fascinating and vital insect responds to stress.

  10. Effects of abiotic stress on gene transcription in European beech: ozone affects ethylene biosynthesis in saplings of Fagus sylvatica L.

    Betz GA

    2009-06-01

    Full Text Available The influence of ozone (150-190 nl L-1; 8h/d on transcription levels of genes involved in the biosynthesis of the stress hormone ethylene, and its precursor 1-aminocyclopropane-1-carboxylate (ACC, was analysed in leaves of European beech saplings. Ozone-induced leaf lesions appeared 7 weeks after onset of ozone exposure. Cell lesion formation was preceded by persistent increases in ethylene emission, in the level of its malonylated precursor ACC, and in the transcript levels of specific ACC synthase 1 (ACS1, ACS2, ACC oxidase 1 (ACO1, and ACO2. Our results demonstrate that mechanisms similar to those operating in herbaceous plants may determine beech saplings responses to ozone exposure.

  11. Molecular cloning and expression analyses of RPS3a gene from mulberry under abiotic stresses and among different mulberry varieties.

    Qian, J; Zhou, H; Zhao, M D; Wang, H; Li, F; Wang, Y H; Fang, R J; Zhao, W G; Kim, H J

    2016-01-01

    A full-length cDNA sequence coding ribosomal protein S3a of mulberry tree, which we designated MmRPS3a (GenBank accession No. KR610331), was cloned based on mulberry expressed sequence tags. Sequence analysis showed that the MmRPS3a is 1089 bp long and contains a 80-bp 5'-UTR (untranslated region) and a 220-bp 3'-UTR. Its open reading frame consists of a 789-bp encoding 262 amino acids with a predicted molecular weight of 30.053 kDa and an isoelectric point of 9.84. Homology analysis revealed that MmRPS3a gene is highly conservative in mulberry and other species including Morus notabilis, Theobroma cacao, and Ricinus communis. Phylogenetic analysis based on MmRPS3a of other species showed that mulberry had a closer relationship with Prunus persica, Arabidopsis thaliana, Solanum tuberosum, Solanum lycopersicum, and Vitis vinifera. The results of quantitative PCR analysis showed that the transcriptional level of MmRPS3a mRNA changed significantly under the conditions of hypothermia, aridity, salt stress, and varieties of differing resistances. PMID:27173298

  12. Genomics of abiotic stress responses and adaptation in sorghum (Sorghum bicolor (L.) Moench)

    Bekele, Wubishet Abebe

    2013-01-01

    The major goal of plant production is finding the right crop that can meet our demand for food, feed and fuel without damaging the environment. Maize, the world´s most successful multi-purpose crop, is the number one summer crop in many European countries including Germany. The high increase of the maize production area is a leading current topic dominating environmental and agricultural-political discussions in Germany. Sorghum production can readily substitute maize and potentially mitigate...

  13. Optimization of CRISPR/Cas9 genome editing to modify abiotic stress responses in plants

    Osakabe, Yuriko; Watanabe, Takahito; Sugano, Shigeo S; Ueta, Risa; Ishihara, Ryosuke; Shinozaki, Kazuo; Osakabe, Keishi

    2016-01-01

    Genome editing using the CRISPR/Cas9 system can be used to modify plant genomes, however, improvements in specificity and applicability are still needed in order for the editing technique to be useful in various plant species. Here, using genome editing mediated by a truncated gRNA (tru-gRNA)/Cas9 combination, we generated new alleles for OST2, a proton pump in Arabidopsis, with no off-target effects. By following expression of Cas9 and the tru-gRNAs, newly generated mutations in CRIPSR/Cas9 transgenic plants were detected with high average mutation rates of up to 32.8% and no off-target effects using constitutive promoter. Reducing nuclear localization signals in Cas9 decreased the mutation rate. In contrast, tru-gRNA Cas9 cassettes driven by meristematic- and reproductive-tissue-specific promoters increased the heritable mutation rate in Arabidopsis, showing that high expression in the germ line can produce bi-allelic mutations. Finally, the new mutant alleles obtained for OST2 exhibited altered stomatal closing in response to environmental conditions. These results suggest further applications in molecular breeding to improve plant function using optimized plant CRISPR/Cas9 systems. PMID:27226176

  14. Optimization of CRISPR/Cas9 genome editing to modify abiotic stress responses in plants.

    Osakabe, Yuriko; Watanabe, Takahito; Sugano, Shigeo S; Ueta, Risa; Ishihara, Ryosuke; Shinozaki, Kazuo; Osakabe, Keishi

    2016-01-01

    Genome editing using the CRISPR/Cas9 system can be used to modify plant genomes, however, improvements in specificity and applicability are still needed in order for the editing technique to be useful in various plant species. Here, using genome editing mediated by a truncated gRNA (tru-gRNA)/Cas9 combination, we generated new alleles for OST2, a proton pump in Arabidopsis, with no off-target effects. By following expression of Cas9 and the tru-gRNAs, newly generated mutations in CRIPSR/Cas9 transgenic plants were detected with high average mutation rates of up to 32.8% and no off-target effects using constitutive promoter. Reducing nuclear localization signals in Cas9 decreased the mutation rate. In contrast, tru-gRNA Cas9 cassettes driven by meristematic- and reproductive-tissue-specific promoters increased the heritable mutation rate in Arabidopsis, showing that high expression in the germ line can produce bi-allelic mutations. Finally, the new mutant alleles obtained for OST2 exhibited altered stomatal closing in response to environmental conditions. These results suggest further applications in molecular breeding to improve plant function using optimized plant CRISPR/Cas9 systems. PMID:27226176

  15. Genome-wide identification and expression profiling analysis of ZmPIN, ZmPILS, ZmLAX and ZmABCB auxin transporter gene families in maize (Zea mays L. under various abiotic stresses.

    Runqing Yue

    Full Text Available The auxin influx carriers auxin resistant 1/like aux 1 (AUX/LAX, efflux carriers pin-formed (PIN (together with PIN-like proteins and efflux/conditional P-glycoprotein (ABCB are major protein families involved in auxin polar transport. However, how they function in responses to exogenous auxin and abiotic stresses in maize is largely unknown. In this work, the latest updated maize (Zea mays L. reference genome sequence was used to characterize and analyze the ZmLAX, ZmPIN, ZmPILS and ZmABCB family genes from maize. The results showed that five ZmLAXs, fifteen ZmPINs, nine ZmPILSs and thirty-five ZmABCBs were mapped on all ten maize chromosomes. Highly diversified gene structures, nonconservative transmembrane helices and tissue-specific expression patterns suggested the possibility of function diversification for these genes. Quantitative real-time polymerase chain reaction (qRT-PCR was used to analyze the expression patterns of ZmLAX, ZmPIN, ZmPILS and ZmABCB genes under exogenous auxin and different environmental stresses. The expression levels of most ZmPIN, ZmPILS, ZmLAX and ZmABCB genes were induced in shoots and were reduced in roots by various abiotic stresses (drought, salt and cold stresses. The opposite expression response patterns indicated the dynamic auxin transport between shoots and roots under abiotic stresses. Analysis of the expression patterns of ZmPIN, ZmPILS, ZmLAX and ZmABCB genes under drought, salt and cold treatment may help us to understand the possible roles of maize auxin transporter genes in responses and tolerance to environmental stresses.

  16. EgRBP42 encoding an hnRNP-like RNA-binding protein from Elaeis guineensis Jacq. is responsive to abiotic stresses.

    Yeap, Wan-Chin; Ooi, Tony Eng Keong; Namasivayam, Parameswari; Kulaveerasingam, Harikrishna; Ho, Chai-Ling

    2012-10-01

    RNA-binding proteins (RBPs) have been implicated as regulatory proteins involved in the post-transcriptional processes of gene expression in plants under various stress conditions. In this study, we report the cloning and characterization of a gene, designated as EgRBP42, encoding a member of the plant heterogeneous nuclear ribonucleoprotein (hnRNP)-like RBP family from oil palm (Elaeis guineensis Jacq.). EgRBP42 consists of two N-terminal RNA recognition motifs and a glycine-rich domain at the C-terminus. The upstream region of EgRBP42 has multiple light-responsive, stress-responsive regulatory elements and regulatory elements associated with flower development. Real-time RT-PCR analysis of EgRBP42 showed that EgRBP42 was expressed in oil palm tissues tested, including leaf, shoot apical meristem, root, female inflorescence, male inflorescence and mesocarp with the lowest transcript level in the roots. EgRBP42 protein interacted with transcripts associated with transcription, translation and stress responses using pull-down assay and electrophoretic mobility shift assay. The accumulation of EgRBP42 and its interacting transcripts were induced by abiotic stresses, including salinity, drought, submergence, cold and heat stresses in leaf discs. Collectively, the data suggested that EgRBP42 is a RBP, which responds to various abiotic stresses and could be advantageous for oil palm under stress conditions. Key message EgRBP42 may be involved in the post-transcriptional regulation of stress-related genes important for plant stress response and adaptation. PMID:22699852

  17. Contribution of the drought tolerance-related stress-responsive NAC1 transcription factor to resistance of barley to Ramularia leaf spot.

    McGrann, Graham R D; Steed, Andrew; Burt, Christopher; Goddard, Rachel; Lachaux, Clea; Bansal, Anuradha; Corbitt, Margaret; Gorniak, Kalina; Nicholson, Paul; Brown, James K M

    2015-02-01

    NAC proteins are plant transcription factors that are involved in tolerance to abiotic and biotic stresses, as well as in many developmental processes. Stress-responsive NAC1 (SNAC1) transcription factor is involved in drought tolerance in barley and rice, but has not been shown previously to have a role in disease resistance. Transgenic over-expression of HvSNAC1 in barley cv. Golden Promise reduced the severity of Ramularia leaf spot (RLS), caused by the fungus Ramularia collo-cygni, but had no effect on disease symptoms caused by Fusarium culmorum, Oculimacula yallundae (eyespot), Blumeria graminis f. sp. hordei (powdery mildew) or Magnaporthe oryzae (blast). The HvSNAC1 transcript was weakly induced in the RLS-susceptible cv. Golden Promise during the latter stages of R. collo-cygni symptom development when infected leaves were senescing. Potential mechanisms controlling HvSNAC1-mediated resistance to RLS were investigated. Gene expression analysis revealed no difference in the constitutive levels of antioxidant transcripts in either of the over-expression lines compared with cv. Golden Promise, nor was any difference in stomatal conductance or sensitivity to reactive oxygen species-induced cell death observed. Over-expression of HvSNAC1 delayed dark-induced leaf senescence. It is proposed that mechanisms controlled by HvSNAC1 that are involved in tolerance to abiotic stress and that inhibit senescence also confer resistance to R. collo-cygni and suppress RLS symptoms. This provides further evidence for an association between abiotic stress and senescence in barley and the development of RLS. PMID:25040333

  18. Cloning and characterization of HbMT2a, a metallothionein gene from Hevea brasiliensis Muell. Arg differently responds to abiotic stress and heavy metals

    Li, Yan; Chen, Yue Yi; Yang, Shu Guang; Tian, Wei Min, E-mail: wmtian9110@126.com

    2015-05-22

    Metallothioneins (MTs) are of low molecular mass, cysteine-rich proteins. They play an important role in the detoxification of heavy metals and homeostasis of intracellular metal ions, and protecting against intracellular oxidative damages. In this study a full-length cDNA of type 2 plant metallothioneins, HbMT2a, was isolated from 25 mM Polyethyleneglycol (PEG) stressed leaves of Hevea brasiliensis by RACE. The HbMT2a was 372 bp in length and had a 237 bp open reading frame (ORF) encoding for a protein of 78 amino acid residues with molecular mass of 7.772 kDa. The expression of HbMT2a in the detached leaves of rubber tree clone RY7-33-97 was up-regulated by Me-JA, ABA, PEG, H{sub 2}O{sub 2}, Cu{sup 2+} and Zn{sup 2+}, but down-regulated by water. The role of HbMT2a protein in protecting against metal toxicity was demonstrated in vitro. PET-28a-HbMT2-beared Escherichia coli. Differential expression of HbMT2a upon treatment with 10 °C was observed in the detached leaves of rubber tree clone 93-114 which is cold-resistant and Reken501 which is cold-sensitive. The expression patterns of HbMT2a in the two rubber tree clones may be ascribed to a change in the level of endogenous H{sub 2}O{sub 2}. - Highlights: • Cloning an HbMT2a gene from rubber tree. • Analyzing expression patterns of HbMT2a upon abiotic stress and heavy metal stress. • Finding different expression patterns of HbMT2a among two Hevea germplasm. • The expressed protein of HbMT2a enhances copper and zinc tolerance in Escherichia coli.

  19. Cloning and characterization of HbMT2a, a metallothionein gene from Hevea brasiliensis Muell. Arg differently responds to abiotic stress and heavy metals

    Metallothioneins (MTs) are of low molecular mass, cysteine-rich proteins. They play an important role in the detoxification of heavy metals and homeostasis of intracellular metal ions, and protecting against intracellular oxidative damages. In this study a full-length cDNA of type 2 plant metallothioneins, HbMT2a, was isolated from 25 mM Polyethyleneglycol (PEG) stressed leaves of Hevea brasiliensis by RACE. The HbMT2a was 372 bp in length and had a 237 bp open reading frame (ORF) encoding for a protein of 78 amino acid residues with molecular mass of 7.772 kDa. The expression of HbMT2a in the detached leaves of rubber tree clone RY7-33-97 was up-regulated by Me-JA, ABA, PEG, H2O2, Cu2+ and Zn2+, but down-regulated by water. The role of HbMT2a protein in protecting against metal toxicity was demonstrated in vitro. PET-28a-HbMT2-beared Escherichia coli. Differential expression of HbMT2a upon treatment with 10 °C was observed in the detached leaves of rubber tree clone 93-114 which is cold-resistant and Reken501 which is cold-sensitive. The expression patterns of HbMT2a in the two rubber tree clones may be ascribed to a change in the level of endogenous H2O2. - Highlights: • Cloning an HbMT2a gene from rubber tree. • Analyzing expression patterns of HbMT2a upon abiotic stress and heavy metal stress. • Finding different expression patterns of HbMT2a among two Hevea germplasm. • The expressed protein of HbMT2a enhances copper and zinc tolerance in Escherichia coli

  20. A seed preferential heat shock transcription factor from wheat provides abiotic stress tolerance and yield enhancement in transgenic Arabidopsis under heat stress environment.

    Harsh Chauhan

    Full Text Available Reduction in crop yield and quality due to various abiotic stresses is a worldwide phenomenon. In the present investigation, a heat shock factor (HSF gene expressing preferentially in developing seed tissues of wheat grown under high temperatures was cloned. This newly identified heat shock factor possesses the characteristic domains of class A type plant HSFs and shows high similarity to rice OsHsfA2d, hence named as TaHsfA2d. The transcription factor activity of TaHsfA2d was confirmed through transactivation assay in yeast. Transgenic Arabidopsis plants overexpressing TaHsfA2d not only possess higher tolerance towards high temperature but also showed considerable tolerance to salinity and drought stresses, they also showed higher yield and biomass accumulation under constant heat stress conditions. Analysis of putative target genes of AtHSFA2 through quantitative RT-PCR showed higher and constitutive expression of several abiotic stress responsive genes in transgenic Arabidopsis plants over-expressing TaHsfA2d. Under stress conditions, TaHsfA2d can also functionally complement the T-DNA insertion mutants of AtHsfA2, although partially. These observations suggest that TaHsfA2d may be useful in molecular breeding of crop plants, especially wheat, to improve yield under abiotic stress conditions.

  1. Silver nanoparticles induce endoplasmatic reticulum stress response in zebrafish

    Christen, Verena [University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences, Gründenstrasse 40, CH-4132 Muttenz (Switzerland); Capelle, Martinus [Crucell, P.O. Box 2048, NL-2301 Leiden (Netherlands); Fent, Karl, E-mail: karl.fent@fhnw.ch [University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences, Gründenstrasse 40, CH-4132 Muttenz (Switzerland); Swiss Federal Institute of Technology Zürich, Department of Environmental Systems Science, CH-8092 Zürich (Switzerland)

    2013-10-15

    Silver nanoparticles (AgNPs) find increasing applications, and therefore humans and the environment are increasingly exposed to them. However, potential toxicological implications are not sufficiently known. Here we investigate effects of AgNPs (average size 120 nm) on zebrafish in vitro and in vivo, and compare them to human hepatoma cells (Huh7). AgNPs are incorporated in zebrafish liver cells (ZFL) and Huh7, and in zebrafish embryos. In ZFL cells AgNPs lead to induction of reactive oxygen species (ROS), endoplasmatic reticulum (ER) stress response, and TNF-α. Transcriptional alterations also occur in pro-apoptotic genes p53 and Bax. The transcriptional profile differed in ZFL and Huh7 cells. In ZFL cells, the ER stress marker BiP is induced, concomitant with the ER stress marker ATF-6 and spliced XBP-1 after 6 h and 24 h exposure to 0.5 g/L and 0.05 g/L AgNPs, respectively. This indicates the induction of different pathways of the ER stress response. Moreover, AgNPs induce TNF-α. In zebrafish embryos exposed to 0.01, 0.1, 1 and 5 mg/L AgNPs hatching was affected and morphological defects occurred at high concentrations. ER stress related gene transcripts BiP and Synv are significantly up-regulated after 24 h at 0.1 and 5 mg/L AgNPs. Furthermore, transcriptional alterations occurred in the pro-apoptotic genes Noxa and p21. The ER stress response was strong in ZFL cells and occurred in zebrafish embryos as well. Our data demonstrate for the first time that AgNPs lead to induction of ER stress in zebrafish. The induction of ER stress can have several consequences including the activation of apoptotic and inflammatory pathways. - Highlights: • Effects of silver nanoparticles (120 nm AgNPs) are investigated in zebrafish. • AgNPs induce all ER stress reponses in vitro in zebrafish liver cells. • AgNPs induce weak ER stress in zebrafish embryos. • AgNPs induce oxidative stress and transcripts of pro-apoptosis genes.

  2. Mitochondrial Composition,Function and Stress Response in Plants

    Richard P.Jacoby; Lei Li; Shaobai Huang; Chun Pong Lee; A.Harvey Millar; Nicolas L.Taylor

    2012-01-01

    The primary function of mitochondria is respiration,where catabolism of substrates is coupled to ATP synthesis via oxidative phosphorylation.In plants,mitochondrial composition is relatively complex and flexible and has specific pathways to support photosynthetic processes in illuminated leaves.This review begins with outlining current models of mitochondrial composition in plant cells,with an emphasis upon the assembly of the complexes of the classical electron transport chain (ETC).Next,we focus upon the comparative analysis of mitochondrial function from different tissue types.A prominent theme in the plant mitochondrial literature involves linking mitochondrial composition to environmental stress responses,and this review then gives a detailed outline of how oxidative stress impacts upon the plant mitochondrial proteome with particular attention to the role of transition metals.This is followed by an analysis of the signaling capacity of mitochondrial reactive oxygen species,which studies the transcriptional changes of stress responsive genes as a framework to define specific signals emanating from the mitochondrion.Finally,specific mitochondrial roles during exposure to harsh environments are outlined,with attention paid to mitochondrial delivery of energy and intermediates,mitochondrial support for photosynthesis,and mitochondrial processes operating within root cells that mediate tolerance to anoxia and unfavorable soil chemistries.

  3. Arabidopsis cysteine-rich receptor-like kinase 45 functions in the responses to abscisic acid and abiotic stresses

    Zhang, Xiujuan

    2013-06-01

    The phytohormone abscisic acid (ABA) regulates seed germination, plant growth and development, and response to abiotic stresses such as drought and salt stresses. Receptor-like kinases are well known signaling components that mediate plant responses to developmental and environmental stimuli. Here, we characterized the biological function of an ABA and stress-inducible cysteine-rich receptor-like protein kinase, CRK45, in ABA signaling in Arabidopsis thaliana. The crk45 mutant was less sensitive to ABA than the wild type during seed germination and early seedling development, whereas CRK45 overexpression plants were more sensitive to ABA compared to the wild type. Furthermore, overexpression of CRK45 led to hypersensitivity to salt and glucose inhibition of seed germination, whereas the crk45 mutant showed the opposite phenotypes. In addition, CRK45 overexpression plants had enhanced tolerance to drought. Gene expression analyses revealed that the expression of representative stress-responsive genes was significantly enhanced in CRK45 overexpression plants in response to salt stress. ABA biosynthetic genes such as NCED3,. 22NCED3, 9-Cis-Epoxycarotenoid Dioxygenase 3.NCED5,. 33NCED5, 9-Cis-Epoxycarotenoid Dioxygenase 5.ABA2,. 44ABA2, Abscisic Acid Deficient 2. and AAO355AAO3, Abscisic Aldehyde Oxidase 3. were also constitutively elevated in the CRK45 overexpression plants. We concluded that CRK45 plays an important role in ABA signaling that regulates Arabidopsis seeds germination, early seedling development and abiotic stresses response, by positively regulating ABA responses in these processes. © 2013 Elsevier Masson SAS.

  4. Cannibalism stress response in Bacillus subtilis.

    Höfler, Carolin; Heckmann, Judith; Fritsch, Anne; Popp, Philipp; Gebhard, Susanne; Fritz, Georg; Mascher, Thorsten

    2016-01-01

    When faced with carbon source limitation, the Gram-positive soil organism Bacillus subtilis initiates a survival strategy called sporulation, which leads to the formation of highly resistant endospores that allow B. subtilis to survive even long periods of starvation. In order to avoid commitment to this energy-demanding and irreversible process, B. subtilis employs another strategy called 'cannibalism' to delay sporulation as long as possible. Cannibalism involves the production and secretion of two cannibalism toxins, sporulation delaying protein (SDP) and sporulation killing factor (SKF), which are able to lyse sensitive siblings. The lysed cells are thought to then provide nutrients for the cannibals to slow down or even prevent them from entering sporulation. In this study, we uncovered the role of the cell envelope stress response (CESR), especially the Bce-like antimicrobial peptide detoxification modules, in the cannibalism stress response during the stationary phase. SDP and SKF specifically induce Bce-like systems and some extracytoplasmic function σ factors in stationary-phase cultures, but only the latter provide some degree of protection. A full Bce response is only triggered by mature toxins, and not by toxin precursors. Our study provides insights into the close relationship between stationary-phase survival and the CESR of B. subtilis. PMID:26364265

  5. AtMYB12 regulates flavonoids accumulation and abiotic stress tolerance in transgenic Arabidopsis thaliana.

    Wang, Feibing; Kong, Weili; Wong, Gary; Fu, Lifeng; Peng, Rihe; Li, Zhenjun; Yao, Quanhong

    2016-08-01

    In plants, transcriptional regulation is the most important tool for modulating flavonoid biosynthesis. The AtMYB12 gene from Arabidopsis thaliana has been shown to regulate the expression of key enzyme genes involved in flavonoid biosynthesis, leading to the increased accumulation of flavonoids. In this study, the codon-optimized AtMYB12 gene was chemically synthesized. Subcellular localization analysis in onion epidermal cells indicated that AtMYB12 was localized to the nucleus. Its overexpression significantly increased accumulation of flavonoids and enhanced salt and drought tolerance in transgenic Arabidopsis plants. Real-time quantitative PCR (qRT-PCR) analysis showed that overexpression of AtMYB12 resulted in the up-regulation of genes involved in flavonoid biosynthesis, abscisic acid (ABA) biosynthesis, proline biosynthesis, stress responses and ROS scavenging under salt and drought stresses. Further analyses under salt and drought stresses showed significant increases of ABA, proline content, superoxide dismutase (SOD) and peroxidase (POD) activities, as well as significant reduction of H2O2 and malonaldehyde (MDA) content. The results demonstrate the explicit role of AtMYB12 in conferring salt and drought tolerance by increasing the levels of flavonoids and ABA in transgenic Arabidopsis. The AtMYB12 gene has the potential to be used to enhance tolerance to abiotic stresses in plants. PMID:27033553

  6. Osmotic stress at the barley root affects expression of circadian clock genes in the shoot.

    Habte, Ermias; Müller, Lukas M; Shtaya, Munqez; Davis, Seth J; von Korff, Maria

    2014-06-01

    The circadian clock is an important timing system that controls physiological responses to abiotic stresses in plants. However, there is little information on the effects of the clock on stress adaptation in important crops, like barley. In addition, we do not know how osmotic stress perceived at the roots affect the shoot circadian clock. Barley genotypes, carrying natural variation at the photoperiod response and clock genes Ppd-H1 and HvELF3, were grown under control and osmotic stress conditions to record changes in the diurnal expression of clock and stress-response genes and in physiological traits. Variation at HvELF3 affected the expression phase and shape of clock and stress-response genes, while variation at Ppd-H1 only affected the expression levels of stress genes. Osmotic stress up-regulated expression of clock and stress-response genes and advanced their expression peaks. Clock genes controlled the expression of stress-response genes, but had minor effects on gas exchange and leaf transpiration. This study demonstrated that osmotic stress at the barley root altered clock gene expression in the shoot and acted as a spatial input signal into the clock. Unlike in Arabidopsis, barley primary assimilation was less controlled by the clock and more responsive to environmental perturbations, such as osmotic stress. PMID:24895755

  7. Temporal evolution of the Arabidopsis oxidative stress response.

    Mahalingam, Ramamurthy; Shah, Nigam; Scrymgeour, Alexandra; Fedoroff, Nina

    2005-03-01

    We have carried out a detailed analysis of the changes in gene expression levels in Arabidopsis thaliana ecotype Columbia (Col-0) plants during and for 6 h after exposure to ozone (O3) at 350 parts per billion (ppb) for 6 h. This O3 exposure is sufficient to induce a marked transcriptional response and an oxidative burst, but not to cause substantial tissue damage in Col-0 wild-type plants and is within the range encountered in some major metropolitan areas. We have developed analytical and visualization tools to automate the identification of expression profile groups with common gene ontology (GO) annotations based on the sub-cellular localization and function of the proteins encoded by the genes, as well as to automate promoter analysis for such gene groups. We describe application of these methods to identify stress-induced genes whose transcript abundance is likely to be controlled by common regulatory mechanisms and summarized our findings in a temporal model of the stress response. PMID:15988565

  8. Genome-wide analysis of heat shock proteins in C4 model, foxtail millet identifies potential candidates for crop improvement under abiotic stress.

    Singh, Roshan Kumar; Jaishankar, Jananee; Muthamilarasan, Mehanathan; Shweta, Shweta; Dangi, Anand; Prasad, Manoj

    2016-01-01

    Heat shock proteins (HSPs) perform significant roles in conferring abiotic stress tolerance to crop plants. In view of this, HSPs and their encoding genes were extensively characterized in several plant species; however, understanding their structure, organization, evolution and expression profiling in a naturally stress tolerant crop is necessary to delineate their precise roles in stress-responsive molecular machinery. In this context, the present study has been performed in C4 panicoid model, foxtail millet, which resulted in identification of 20, 9, 27, 20 and 37 genes belonging to SiHSP100, SiHSP90, SiHSP70, SiHSP60 and SisHSP families, respectively. Comprehensive in silico characterization of these genes followed by their expression profiling in response to dehydration, heat, salinity and cold stresses in foxtail millet cultivars contrastingly differing in stress tolerance revealed significant upregulation of several genes in tolerant cultivar. SisHSP-27 showed substantial higher expression in response to heat stress in tolerant cultivar, and its over-expression in yeast system conferred tolerance to several abiotic stresses. Methylation analysis of SiHSP genes suggested that, in susceptible cultivar, higher levels of methylation might be the reason for reduced expression of these genes during stress. Altogether, the study provides novel clues on the role of HSPs in conferring stress tolerance. PMID:27586959

  9. Genome-wide analysis of heat shock proteins in C4 model, foxtail millet identifies potential candidates for crop improvement under abiotic stress

    Singh, Roshan Kumar; Jaishankar, Jananee; Muthamilarasan, Mehanathan; Shweta, Shweta; Dangi, Anand; Prasad, Manoj

    2016-01-01

    Heat shock proteins (HSPs) perform significant roles in conferring abiotic stress tolerance to crop plants. In view of this, HSPs and their encoding genes were extensively characterized in several plant species; however, understanding their structure, organization, evolution and expression profiling in a naturally stress tolerant crop is necessary to delineate their precise roles in stress-responsive molecular machinery. In this context, the present study has been performed in C4 panicoid model, foxtail millet, which resulted in identification of 20, 9, 27, 20 and 37 genes belonging to SiHSP100, SiHSP90, SiHSP70, SiHSP60 and SisHSP families, respectively. Comprehensive in silico characterization of these genes followed by their expression profiling in response to dehydration, heat, salinity and cold stresses in foxtail millet cultivars contrastingly differing in stress tolerance revealed significant upregulation of several genes in tolerant cultivar. SisHSP-27 showed substantial higher expression in response to heat stress in tolerant cultivar, and its over-expression in yeast system conferred tolerance to several abiotic stresses. Methylation analysis of SiHSP genes suggested that, in susceptible cultivar, higher levels of methylation might be the reason for reduced expression of these genes during stress. Altogether, the study provides novel clues on the role of HSPs in conferring stress tolerance. PMID:27586959

  10. The pepper late embryogenesis abundant protein CaLEA1 acts in regulating abscisic acid signaling, drought and salt stress response.

    Lim, Chae Woo; Lim, Sohee; Baek, Woonhee; Lee, Sung Chul

    2015-08-01

    As sessile organisms, plants are constantly challenged by environmental stresses, including drought and high salinity. Among the various abiotic stresses, osmotic stress is one of the most important factors for growth and significantly reduces crop productivity in agriculture. Here, we report a function of the CaLEA1 protein in the defense responses of plants to osmotic stress. Our analyses showed that the CaLEA1 gene was strongly induced in pepper leaves exposed to drought and increased salinity. Furthermore, we determined that the CaLEA1 protein has a late embryogenesis abundant (LEA)_3 homolog domain highly conserved among other known group 5 LEA proteins and is localized in the processing body. We generated CaLEA1-silenced peppers and CaLEA1-overexpressing (OX) transgenic Arabidopsis plants to evaluate their responses to dehydration and high salinity. Virus-induced gene silencing of CaLEA1 in pepper plants conferred enhanced sensitivity to drought and salt stresses, which was accompanied by high levels of lipid peroxidation in dehydrated and NaCl-treated leaves. CaLEA1-OX plants exhibited enhanced sensitivity to abscisic acid (ABA) during seed germination and in the seedling stage; furthermore, these plants were more tolerant to drought and salt stress than the wild-type plants because of enhanced stomatal closure and increased expression of stress-responsive genes. Collectively, our data suggest that CaLEA1 positively regulates drought and salinity tolerance through ABA-mediated cell signaling. PMID:25302464

  11. Sch9 regulates intracellular protein ubiquitination by controlling stress responses

    Beibei Qie

    2015-08-01

    Full Text Available Protein ubiquitination and the subsequent degradation are important means by which aberrant proteins are removed from cells, a key requirement for long-term survival. In this study, we found that the overall level of ubiquitinated proteins dramatically decreased as yeast cell grew from log to stationary phase. Deletion of SCH9, a gene encoding a key protein kinase for longevity control, decreased the level of ubiquitinated proteins in log phase and this effect could be reversed by restoring Sch9 function. We demonstrate here that the decrease of ubiquitinated proteins in sch9Δ cells in log phase is not caused by changes in ubiquitin expression, proteasome activity, or autophagy, but by enhanced expression of stress response factors and a decreased level of oxidative stress. Our results revealed for the first time how Sch9 regulates the level of ubiquitinated proteins and provides new insight into how Sch9 controls longevity.

  12. Evaluation of expression stability of candidate references genes among green and yellow pea cultivars (Pisum sativum L.) subjected to abiotic and biotic stress

    Dry pea (Pisum sativum) is grown as human and animal feed throughout the world. Large yield losses in pea due to biotic and abiotic stresses compel an improved understanding of mechanisms of stress tolerance and genetic determinants conditioning these tolerances. The availability of stably expressed...

  13. Targeting the oxidative stress response system of fungi with safe, redox-potent chemosensitizing agents

    One mode of action of the antimycotics amphotericin B (AMB) or itraconazole (ITZ) against filamentous fungi involves cellular oxidative stress response. Aspergillus fumigatus sakA', a mitogen-activated protein kinase (MAPK) gene deletion mutant in the antioxidation system, was more sensitive to AMB ...

  14. Dysfunctional stress responses in chronic pain.

    Woda, Alain; Picard, Pascale; Dutheil, Frédéric

    2016-09-01

    Many dysfunctional and chronic pain conditions overlap. This review describes the different modes of chronic deregulation of the adaptive response to stress which may be a common factor for these conditions. Several types of dysfunction can be identified within the hypothalamo-pituitary-adrenal axis: basal hypercortisolism, hyper-reactivity, basal hypocortisolism and hypo-reactivity. Neuroactive steroid synthesis is another component of the adaptive response to stress. Dehydroepiandrosterone (DHEA) and its sulfated form DHEA-S, and progesterone and its derivatives are synthetized in cutaneous, nervous, and adipose cells. They are neuroactive factors that act locally. They may have a role in the localization of the symptoms and their levels can vary both in the central nervous system and in the periphery. Persistent changes in neuroactive steroid levels or precursors can induce localized neurodegeneration. The autonomic nervous system is another component of the stress response. Its dysfunction in chronic stress responses can be expressed by decreased basal parasympathethic activity, increased basal sympathetic activity or sympathetic hyporeactivity to a stressful stimulus. The immune and genetic systems also participate. The helper-T cells Th1 secrete pro-inflammatory cytokines such as IL-1-β, IL-2, IL-6, IL-8, IL-12, IFN-γ, and TNF-α, whereas Th2 secrete anti-inflammatory cytokines: IL-4, IL-10, IGF-10, IL-13. Chronic deregulation of the Th1/Th2 balance can occur in favor of anti- or pro-inflammatory direction, locally or systemically. Individual vulnerability to stress can be due to environmental factors but can also be genetically influenced. Genetic polymorphisms and epigenetics are the main keys to understanding the influence of genetics on the response of individuals to constraints. PMID:27262345

  15. 2012 MICROBIAL STRESS RESPONSE GORDON RESEARCH CONFERENCE, JULY 20-25, 2012

    Timothy Donohue

    2012-07-25

    The Gordon Research Conference on MICROBIAL STRESS RESPONSE was held at Mount Holyoke College, South Hadley, Massachusetts, July 15-20, 2012. The Conference was well-attended with 180 participants. The 2012 Microbial Stress Responses Gordon Research Conference will provide a forum for the open reporting of recent discoveries on the diverse mechanisms employed by microbes to respond to stress. Approaches range from analysis at the molecular level (how are signals perceived and transmitted to change gene expression or function) to cellular and microbial community responses. Gordon Research Conferences does not permit publication of meeting proceedings.

  16. Proceedings of DAE-BRNS life sciences symposium 2011 on advances in molecular and cell biology of stress response

    is being elucidated. Chromatin remodelling is another emerging area in the context of differential gene expression following exposure to stressors in plants as well as mammalian systems. Its role in the development of functional dichotomy in helper T cells has been recently established. It will be interesting to look at changes in the methylation or acetylation of histones following continuous low level radiation exposure. Bacteria have provided intriguing model systems to investigate stress response, Deinococcus radiodurans being a challenging example. In plants the intensive basic research effort may provide mechanistic answers to the efficacy of biotic and abiotic stress tolerant varieties of crop plants that are or will be developed through plant breeding techniques. This symposium will bring together several leading lights in the field of molecular and cell biology of response to stress in different living organisms. Papers relevant to INIS are indexed separately

  17. Divergent DNA Methylation Patterns Associated with Abiotic Stress in Hevea brasiliensis

    Thomas K. Uthup; Mlnlmol Ravindran; K. Bini; Saha Thakurdas

    2011-01-01

    Cytosine methylation is a fundamental epigenetic mechanism for gene-expression regulation and development in plants.Here,we report for the first time the identification of DNA methylation patterns and their putative relationship with abiotic stress in the tree crop Hevea brasiliensis (source of 99% of natural rubber in the world).Regulatory sequences of four major genes involved in the mevalonate pathway (rubber biosynthesis pathway) and one general defense-related gene of three high-yielding popular rubber clones grown at two different agroclimatic conditions were analyzed for the presence of methylation.We found several significant variations in the methylation pattern at core DNA binding motifs within all the five genes.Several consistent clone-specific and location-specific methylation patterns were identified.The differences in methylation pattern observed at certain pivotal cis-regulatory sites indicate the direct impact of stress on the genome and support the hypothesis of site-specific stress-induced DNA methylation.It is assumed that some of the methylation patterns observed may be involved in the stress-responsive mechanism in plants by which they adapt to extreme conditions.The study also provide clues towards the existence of highly divergent phenotypic characters among Hevea clones despite their very similar genetic make-up.Altogether,the observations from this study prove beyond doubt that there exist epigenetic variations in Hevea and environmental factors play a significant role in the induction of site-specific epigenetic mutations in its genome.

  18. Genome-Wide Survey and Expression Profile Analysis of the Mitogen-Activated Protein Kinase (MAPK) Gene Family in Brassica rapa

    Lu, Kun; Guo, Wenjin; Lu, Junxing; Yu, Hao; Qu, Cunmin; Tang, Zhanglin; Li, Jiana; Chai, Yourong; Liang, Ying

    2015-01-01

    Mitogen-activated protein kinase (MAPK) cascades are fundamental signal transduction modules in plants, controlling cell division, development, hormone signaling, and biotic and abiotic stress responses. Although MAPKs have been investigated in several plant species, a comprehensive analysis of the MAPK gene family has hitherto not been performed in Brassica rapa. In this study, we identified 32 MAPKs in the B. rapa genome by conducting BLASTP and syntenic block analyses, and screening for th...

  19. The rice RCN11 gene encodes β1,2-xylosyltransferase and is required for plant responses to abiotic stresses and phytohormones.

    Takano, Sho; Matsuda, Shuichi; Funabiki, Atsushi; Furukawa, Jun-ichi; Yamauchi, Takaki; Tokuji, Yoshihiko; Nakazono, Mikio; Shinohara, Yasuro; Takamure, Itsuro; Kato, Kiyoaki

    2015-07-01

    Seed germination rates and plant development and growth under abiotic stress are important aspects of crop productivity. Here, our characterization of the rice (Oryza sativa L.) mutant reduced culm number11 (rcn11) showed that RCN11 controls growth of plants exposed to abnormal temperature, salinity and drought conditions. RCN11 also mediates root aerenchyma formation under oxygen-deficient conditions and ABA sensitivity during seed germination. Molecular studies showed that the rcn11 mutation resulted from a 966-bp deletion that caused loss of function of β1,2-xylosyltransferase (OsXylT). This enzyme is located in the Golgi apparatus where it catalyzes the transfer of xylose from UDP-xylose to the core β-linked mannose of N-glycans. RCN11/OsXylT promoter activity was observed in the basal part of the shoot containing the shoot and axillary meristems and in the base of crown roots. The level of RCN11/OsXylT expression was regulated by multiple phytohormones and various abiotic stresses suggesting that plant specific N-glycosylation is regulated by multiple signals in rice plants. The present study is the first to demonstrate that rice β1,2-linked xylose residues on N-glycans are critical for seed germination and plant development and growth under conditions of abiotic stress. PMID:26025522

  20. Drug Addiction and Stress-Response Genetic Variability: Association Study in African Americans

    Levran, Orna; Randesi, Matthew; Li, Yi; Rotrosen, John; Ott, Jurg; Adelson, Miriam; Kreek, Mary Jeanne

    2014-01-01

    Stress is a significant risk factor in the development of drug addictions and in addiction relapse susceptibility. This hypothesis-driven study was designed to determine if specific SNPs in genes related to stress response are associated with heroin and/or cocaine addiction in African Americans. The analysis included 27 genes (124 SNPs) and was performed independently for each addiction. The sample consisted of former heroin addicts in methadone maintenance treatment (n = 314), cocaine addict...

  1. Cloning and Expression Analysis of Wheat Stress-responsive Transcription Factor Gene TaSNA C1%小麦胁迫响应转录因子基因TaSNAC1的克隆与表达分析

    单丽伟; 宋鹏; 刘夏燕; 张超; 卫晓彬; 韩兆雪; 郭蔼光; 范三红

    2012-01-01

    Stress responsive NAC transcription factors involve in plant abiotic stress tolerance. Overexpression of SNAC1 significantly enhances drought, cold and salinity resistance in transgenic rice(Oryza saliva). In this study, TaSNA Cl was obtained from common wheat (Triticum aestivum) by homology-based cloning, its sub-celluar localization was analyzed, and its expression patterns in different tissues and under PEG or salt stress were investigated by quantitative RT-PCR. The cDNA of amplified TaSNA Cl including complete CDS was 1 076 bp in size, and the gDNA was 1 222 bp including a 146 bp intron (GenBank accession No. JN621240). TaSNACl encoded a protein with 329 amino acids, which showed 97.3%, 86.3%, 81.1%, 79.1% and 79.2% identity with SNAC1 of barley (Hordeum vulgare), false brome (Brachupodium distachyon), rice, maize (Zea mays) and sorghum (Sorghum bicolor), respectively. Results of phylogenetic analysis showed that TaSNACl was different from other wheat NAC transcription factors, it was clustered into a separate clade with other grass stress-responsive NAC. Structure prediction showed that TaSNACl might form a dimer, including a untypical nuclear localization signal (NLS) and a typical no apical meristem (NAM) domain. The core motif "WKATGXDK100-107" was located in a p sheet, which formed a concave surface and confered the ability of DNA binding. Based on transient expression assay using A rabidopsis thaliana mesophyll protoplasts, we found TaSNACl localized in the nucleus specifically. The expression levels of TaSNACl in both leaf and root were increased significantly in similar pattern during the application of high salt, and the increase in root was more dramatic (upto -60 folds in root and ~10 folds in leaf). Under PEG stress, the transcripts of TaSNA Cl were elevated quickly and sharply in root, but the change in leaf was delayed and the amplitude was decreased (about 15 folds in root and 6 folds in leaf). These data suggest that TaSNA Cl plays a vital role

  2. The early stress responses in fish larvae.

    Pederzoli, Aurora; Mola, Lucrezia

    2016-05-01

    During the life cycle of fish the larval stages are the most interesting and variable. Teleost larvae undergo a daily increase in adaptability and many organs differentiate and become active. These processes are concerted and require an early neuro-immune-endocrine integration. In larvae communication among the nervous, endocrine and immune systems utilizes several known signal molecule families which could be different from those of the adult fish. The immune-neuroendocrine system was studied in several fish species, among which in particular the sea bass (Dicentrarchus labrax), that is a species of great commercial interest, very important in aquaculture and thus highly studied. Indeed the immune system of this species is the best known among marine teleosts. In this review the data on main signal molecules of stress carried out on larvae of fish are considered and discussed. For sea bass active roles in the early immunological responses of some well-known molecules involved in the stress, such as ACTH, nitric oxide, CRF, HSP-70 and cortisol have been proposed. These molecules and/or their receptors are biologically active mainly in the gut before complete differentiation of gut-associated lymphoid tissue (GALT), probably acting in an autocrine/paracrine way. An intriguing idea emerges from all results of these researches; the molecules involved in stress responses, expressed in the adult cells of the hypothalamic-pituitary axis, during the larval life of fish are present in several other localizations, where they perform probably the same role. It may be hypothesized that the functions performed by hypothalamic-pituitary system are particularly important for the survival of the larva and therefore they comprises several other localizations of body. Indeed the larval stages of fish are very crucial phases that include many physiological changes and several possible stress both internal and environmental. PMID:26968620

  3. P53 family and cellular stress responses in cancer

    Johanna ePflaum

    2014-10-01

    Full Text Available p53 is an important tumor suppressor gene, which is stimulated by cellular stress like ionizing radiation, hypoxia, carcinogens and oxidative stress. Upon activation p53 leads to cell cycle arrest and promotes DNA repair or induces apoptosis via several pathways. p63 and p73 are structural homologs of p53 that can act similarly to the protein but also hold functions distinct from p53. Today more than forty different isoforms of the p53 family members are known. They result from transcription via different promoters and alternative splicing. Some isoforms have carcinogenic properties and mediate resistance to chemotherapy. Therefore, expression patterns of the p53 family genes can offer prognostic information in several malignant tumors. Furthermore, the p53 family constitutes a potential target for cancer therapy. Small molecules (e.g. Nutlins, RITA, PRIMA-1, and MIRA-1 among others have been objects of intense research interest in recent years. They restore pro-apoptotic wild-type p53 function and were shown to break chemotherapeutic resistance. Due to p53 family interactions small molecules also influence p63 and p73 activity. Thus, the members of the p53 family are key players in the cellular stress response in cancer and are expected to grow in importance as therapeutic targets.

  4. Are solar UV-B- and UV-A-dependent gene expression and metabolite accumulation in Arabidopsis mediated by the stress response regulator RADICAL-INDUCED CELL DEATH1?

    Morales, Luis O; Brosché, Mikael; Vainonen, Julia P; Sipari, Nina; Lindfors, Anders V; Strid, Åke; Aphalo, Pedro J

    2015-05-01

    Wavelengths in the ultraviolet (UV) region of the solar spectrum, UV-B (280-315 nm) and UV-A (315-400 nm), are key environmental signals modifying several aspects of plant physiology. Despite significant advances in the understanding of plant responses to UV-B and the identification of signalling components involved, there is limited information on the molecular mechanisms that control UV-B signalling in plants under natural sunlight. Here, we aimed to corroborate the previous suggested role for RADICAL-INDUCED CELL DEATH1 (RCD1) in UV-B signalling under full spectrum sunlight. Wild-type Arabidopsis thaliana and the rcd1-1 mutant were used in an experimental design outdoors where UV-B and UV-A irradiances were manipulated using plastic films, and gene expression, PYRIDOXINE BIOSYNTHESIS1 (PDX1) accumulation and metabolite profiles were analysed in the leaves. At the level of transcription, RCD1 was not directly involved in the solar UV-B regulation of genes with functions in UV acclimation, hormone signalling and stress-related markers. Furthermore, RCD1 had no role on PDX1 accumulation but modulated the UV-B induction of flavonoid accumulation in leaves of Arabidopsis exposed to solar UV. We conclude that RCD1 does not play an active role in UV-B signalling but rather modulates UV-B responses under full spectrum sunlight. PMID:24689869

  5. Roles of Hsp70s in Stress Responses of Microorganisms, Plants, and Animals

    Anmin Yu

    2015-01-01

    Full Text Available Hsp70s (heat shock protein 70s are a class of molecular chaperones that are highly conserved and ubiquitous in organisms ranging from microorganisms to plants and humans. Most research on Hsp70s has focused on the mechanisms of their functions as molecular chaperones, but recently, studies on stress responses are coming to the forefront. Hsp70s play key roles in cellular development and protecting living organisms from environmental stresses such as heat, drought, salinity, acidity, and cold. Moreover, functions of human Hsp70s are related to diseases including neurological disorders, cancer, and virus infection. In this review, we provide an overview of the specific roles of Hsp70s in response to stress, particularly abiotic stress, in all living organisms.

  6. A thaumatin-like protein of Ocimum basilicum confers tolerance to fungal pathogen and abiotic stress in transgenic Arabidopsis

    Misra, Rajesh Chandra; Sandeep; Kamthan, Mohan; Kumar, Santosh; Ghosh, Sumit

    2016-01-01

    Plant often responds to fungal pathogens by expressing a group of proteins known as pathogenesis-related proteins (PRs). The expression of PR is mediated through pathogen-induced signal-transduction pathways that are fine-tuned by phytohormones such as methyl jasmonate (MeJA). Here, we report functional characterization of an Ocimum basilicum PR5 family member (ObTLP1) that was identified from a MeJA-responsive expression sequence tag collection. ObTLP1 encodes a 226 amino acid polypeptide that showed sequence and structural similarities with a sweet-tasting protein thaumatin of Thaumatococcus danielli and also with a stress-responsive protein osmotin of Nicotiana tabacum. The expression of ObTLP1 in O. basilicum was found to be organ-preferential under unstressed condition, and responsive to biotic and abiotic stresses, and multiple phytohormone elicitations. Bacterially-expressed recombinant ObTLP1 inhibited mycelial growth of the phytopathogenic fungi, Scleretonia sclerotiorum and Botrytis cinerea; thereby, suggesting its antifungal activity. Ectopic expression of ObTLP1 in Arabidopsis led to enhanced tolerance to S. sclerotiorum and B. cinerea infections, and also to dehydration and salt stress. Moreover, induced expression of the defense marker genes suggested up-regulation of the defense-response pathways in ObTLP1-expressing Arabidopsis upon fungal challenge. Thus, ObTLP1 might be useful for providing tolerance to the fungal pathogens and abiotic stresses in crops. PMID:27150014

  7. G-protein signalling components GCR1 and GPA1 mediate responses to multiple abiotic stresses in Arabidopsis

    Navjyoti eChakraborty

    2015-11-01

    Full Text Available G-protein signalling components have been implicated in some individual stress responses in Arabidopsis, but have not been comprehensively evaluated at the genetic and biochemical level. Stress emerged as the largest functional category in our whole transcriptome analyses of knock-out mutants of GCR1 and/or GPA1 in Arabidopsis (Chakraborty et al., 2015a, PloS one 10, e0117819 and Chakraborty et al., 2015b, Plant Mol. Biol., doi: 10.1007/s11103-015-0374-2. This led us to ask whether G-protein signalling components offer converging points in the plant’s response to multiple abiotic stresses. In order to test this hypothesis, we carried out detailed analysis of the stress category in the present study, which revealed 144 differentially expressed genes (DEGs, spanning a wide range of abiotic stresses, including heat, cold, salt, light stress etc. Only 10 of these DEGs are shared by all the three mutants, while the single mutants (GCR1/GPA1 shared more DEGs between themselves than with the double mutant (GCR1-GPA1. RT-qPCR validation of 28 of these genes spanning different stresses revealed identical regulation of the DEGs shared between the mutants. We also validated the effects of cold, heat and salt stresses in all the 3 mutants and WT on % germination, root and shoot length, relative water content, proline content, lipid peroxidation and activities of catalase, ascorbate peroxidase and superoxide dismutase. All the 3 mutants showed evidence of stress tolerance, especially to cold, followed by heat and salt, in terms of all the above parameters. This clearly shows the role of GCR1 and GPA1 in mediating the plant’s response to multiple abiotic stresses for the first time, especially cold, heat and salt stresses. This also implies a role for classical G-protein signalling pathways in stress sensitivity in the normal plants of Arabidopsis. This is also the first genetic and biochemical evidence of abiotic stress tolerance rendered by knock

  8. Genetic analysis of drought stress response in Arabidopsis thaliana and Brassica rapa

    El-Soda, M.

    2013-01-01

    Drought is the major abiotic stress affecting plant growth and limiting crop productivity worldwide. Plants have evolved three adaptive strategies, drought escape, drought avoidance and drought tolerance, to cope with drought. Knowledge on  how Quantitative Trait Loci (QTL), or genes underlying

  9. The Critical Role of Potassium in Plant Stress Response

    Min Wang; Qingsong Zheng; Qirong Shen; Shiwei Guo

    2013-01-01

    Agricultural production continues to be constrained by a number of biotic and abiotic factors that can reduce crop yield quantity and quality. Potassium (K) is an essential nutrient that affects most of the biochemical and physiological processes that influence plant growth and metabolism. It also contributes to the survival of plants exposed to various biotic and abiotic stresses. The following review focuses on the emerging role of K in defending against a number of biotic and abiotic stres...

  10. The stress response and the hypothalamic-pituitary-adrenal axis: from molecule to melancholia.

    O'Connor, T M

    2012-02-03

    Organisms survive by maintaining equilibrium with their environment. The stress system is critical to this homeostasis. Glucocorticoids modulate the stress response at a molecular level by altering gene expression, transcription, and translation, among other pathways. The effect is the inhibition of the functions of inflammatory cells, predominantly mediated through inhibition of cytokines, such as IL-1, IL-6, and TNF-alpha. The central effectors of the stress response are the corticotrophin-releasing hormone (CRH) and locus coeruleus-norepinephrine (LC-NE)\\/sympathetic systems. The CRH system activates the stress response and is subject to modulation by cytokines, hormones, and neurotransmitters. Glucocorticoids also modulate the growth, reproductive and thyroid axes. Abnormalities of stress system activation have been shown in inflammatory diseases such as rheumatoid arthritis, as well as behavioural syndromes such as melancholic depression. These disorders are comparable to those seen in rats whose CRH system is genetically abnormal. Thus, the stress response is central to resistance to inflammatory and behavioural syndromes. In this review, we describe the response to stress at molecular, cellular, neuroendocrine and behavioural levels, and discuss the disease processes that result from a dysregulation of this response, as well as recent developments in their treatment.

  11. Profiling of the toxicity mechanisms of coated and uncoated silver nanoparticles to yeast Saccharomyces cerevisiae BY4741 using a set of its 9 single-gene deletion mutants defective in oxidative stress response, cell wall or membrane integrity and endocytosis.

    Käosaar, Sandra; Kahru, Anne; Mantecca, Paride; Kasemets, Kaja

    2016-09-01

    The widespread use of nanosilver in various antibacterial, antifungal, and antiviral products warrants the studies of the toxicity pathways of nanosilver-enabled materials toward microbes and viruses. We profiled the toxicity mechanisms of uncoated, casein-coated, and polyvinylpyrrolidone-coated silver nanoparticles (AgNPs) using Saccharomyces cerevisiae wild-type (wt) and its 9 single-gene deletion mutants defective in oxidative stress (OS) defense, cell wall/membrane integrity, and endocytosis. The 48-h growth inhibition assay in organic-rich growth medium and 24-h cell viability assay in deionized (DI) water were applied whereas AgNO3, H2O2, and SDS served as positive controls. Both coated AgNPs (primary size 8-12nm) were significantly more toxic than the uncoated (~85nm) AgNPs. All studied AgNPs were ~30 times more toxic if exposed to yeast cells in DI water than in the rich growth medium: the IC50 based on nominal concentration of AgNPs in the growth inhibition test ranged from 77 to 576mg Ag/L and in the cell viability test from 2.7 to 18.7mg Ag/L, respectively. Confocal microscopy showed that wt but not endocytosis mutant (end3Δ) internalized AgNPs. Comparison of toxicity patterns of wt and mutant strains defective in OS defense and membrane integrity revealed that the toxicity of the studied AgNPs to S. cerevisiae was not caused by the OS or cell wall/membrane permeabilization. PMID:27260961

  12. 利用RNA-Seq鉴定甘蓝型油菜叶片干旱胁迫应答基因%Identification of Drought Stress-Responsive Genes in Leaves of Brassica napus by RNA Sequencing

    卢坤; 张琳; 曲存民; 梁颖; 唐章林; 李加纳

    2015-01-01

    [目的]利用RNA Sequencing (RNA-Seq)技术比较2种不同生长条件下甘蓝型油菜苗期叶片转录组,鉴定油菜叶片干旱胁迫应答相关基因,从转录组水平揭示油菜适应干旱胁迫环境的分子机制.[方法]提取正常生长(ZY)和自然失水处理(ZY8D)的六叶期甘蓝型油菜中油821的叶片总RNA,以Illumina Hiseq 2000平台进行RNA-Seq分析.利用NGSQCTookit v2.3.3去除低质量和包含模糊碱基的reads.以甘蓝型油菜亲本物种白菜染色体v1.5和甘蓝Scaffold v1.0为参考序列,采用TopHat2-Cufflinks-Cuffmerge-Cuffdiff标准流程进行差异表达基因(differential expressed genes,DEGs)筛选.对上调和下调DEGs分别采用Cytoscape v3.1.0中的BiNGO和KOBAS2.0进行基因本体(gene ontology,GO)和京都基因与基因组百科全书(Kyoto Encyclopedia of Genes and Genomes,KEGG)代谢途径富集分析.选择上调和下调DEGs各3个,以实时荧光定量PCR(quantitative real-time PCR,qRT-PCR)验证RNA-Seq结果的可靠性.[结果]过滤低质量reads后,ZY和ZY8D分别保留了26 192 312和28 378 899对高质量reads用于DEGs筛选,其中86.6%和85.8%的reads能准确比对到参考序列上,说明RNA-Seq结果和参考序列可靠.DEGs鉴定结果表明3 657个基因受干旱胁迫诱导差异表达,其中上调表达基因1 431个,下调表达基因2 226个.GO富集分析发现上调表达基因主要与非生物胁迫响应和化学刺激响应相关,其中,参与水分胁迫响应和脱落酸(abscisic acid,ABA)刺激响应的基因分别有127和141个,而下调表达基因与植物病原菌防御、蛋白激酶活性和水杨酸(salicylic acid,SA)刺激相关.KEGG富集分析表明上调表达基因主要富集于苯丙烷和类胡萝卜素的生物合成及淀粉与蔗糖代谢途径,而下调表达基因主要富集于植物-病原菌互作和植物激素ABA、SA和茉莉酸(jasmonic acid,JA)信号转导途径.qRT-PCR检测6个DEGs的表达模式与RNA-Seq分析结果一致,

  13. Epigenetic regulation of stress responses in plants

    Chinnusamy, Viswanathan; Zhu, Jian-Kang

    2009-01-01

    Gene expression driven by developmental and stress cues often depends on nucleosome histone post-translational modifications and sometimes on DNA methylation. A number of studies have shown that these DNA and histone modifications play a key role in gene expression and plant development under stress. Most of these stress-induced modifications are reset to the basal level once the stress is relieved, while some of the modifications may be stable, that is, may be carried forward as ‘stress memo...

  14. Extracytoplasmic Stress Responses Induced by Antimicrobial Cationic Polyethylenimines

    Lander, Blaine A.; Checchi, Kyle D.; Koplin, Stephen A.; Smith, Virginia F.; Domanski, Tammy L.; Isaac, Daniel D.; Lin, Shirley

    2012-01-01

    The ability of an antimicrobial, cationic polyethylenimine (PEI+) to induce the three known extracytoplasmic stress responses of Escherichia coli was quantified. Exposure of E. coli to PEI+ in solution revealed specific, concentration-dependent induction of the Cpx extracytoplasmic cellular stress response, ~2.0-2.5 fold at 320 μg/mL after 1.5 hours without significant induction of the σE or Bae stress responses. In comparison, exposure of E. coli to a non-antimicrobial polymer, polyethylene ...

  15. Regulation of the major vacuolar Ca²⁺ transporter genes, by intercellular Ca²⁺ concentration and abiotic stresses, in tip-burn resistant Brassica oleracea.

    Lee, Jeongyeo; Park, Inkyu; Lee, Zee-Won; Kim, Suk Weon; Baek, Namkwon; Park, Hong-Seok; Park, Sang Un; Kwon, Seokyoon; Kim, Hyeran

    2013-01-01

    Calcium is an essential plant macronutrient that has unique structural and signaling roles related to tip-burn disorder in Brassica spp. crops. For two types of cabbage inbred lines, tip-burn susceptible and resistant, we measured and compared major macronutrient cations, including Ca(2+), in leaves. In both lines, Ca(2+), Mg(2+), Na(+), and K(+), accumulated more in leaf base than in leaf apex. Ca(2+) and K(+) were >2 times more abundant in the tip-burn resistant line, while Na(+) was higher in the susceptible line. Ca(2+) differences between the two lines resulted from differential accumulation of calcium into cell vacuoles. We profiled major vacuolar Ca(2+) transporters, in both cabbage lines, by growth time and intercellular Ca(2+) concentration. Expression pattern of several Ca(2+) transporter genes differed between tip-burn susceptible and resistant lines by growth time points. We also identified promoter regions of the major Ca(2+) vacuole transporter genes, CAX1, ACA4, and ACA11, which displayed hormonal, light and defense-related cis-acting regulatory elements. Finally, transporter genes in the two cabbage lines responded differently to abiotic stresses, demonstrating diversity in gene regulation among orthologous genes. PMID:23138186

  16. Recent Molecular Advances on Downstream Plant Responses to Abiotic Stress

    Cláudia Regina Batista de Souza

    2012-07-01

    Full Text Available Abiotic stresses such as extremes of temperature and pH, high salinity and drought, comprise some of the major factors causing extensive losses to crop production worldwide. Understanding how plants respond and adapt at cellular and molecular levels to continuous environmental changes is a pre-requisite for the generation of resistant or tolerant plants to abiotic stresses. In this review we aimed to present the recent advances on mechanisms of downstream plant responses to abiotic stresses and the use of stress-related genes in the development of genetically engineered crops.

  17. How plants handle multiple stresses: hormonal interactions underlying responses to abiotic stress and insect herbivory.

    Nguyen, Duy; Rieu, Ivo; Mariani, Celestina; van Dam, Nicole M

    2016-08-01

    Adaptive plant responses to specific abiotic stresses or biotic agents are fine-tuned by a network of hormonal signaling cascades, including abscisic acid (ABA), ethylene, jasmonic acid (JA) and salicylic acid. Moreover, hormonal cross-talk modulates plant responses to abiotic stresses and defenses against insect herbivores when they occur simultaneously. How such interactions affect plant responses under multiple stresses, however, is less understood, even though this may frequently occur in natural environments. Here, we review our current knowledge on how hormonal signaling regulates abiotic stress responses and defenses against insects, and discuss the few recent studies that attempted to dissect hormonal interactions occurring under simultaneous abiotic stress and herbivory. Based on this we hypothesize that drought stress enhances insect resistance due to synergistic interactions between JA and ABA signaling. Responses to flooding or waterlogging involve ethylene signaling, which likely reduces plant resistance to chewing herbivores due to its negative cross-talk with JA. However, the outcome of interactions between biotic and abiotic stress signaling is often plant and/or insect species-dependent and cannot simply be predicted based on general knowledge on the involvement of signaling pathways in single stress responses. More experimental data on non-model plant and insect species are needed to reveal general patterns and better understand the molecular mechanisms allowing plants to optimize their responses in complex environments. PMID:27095445

  18. Canonical Modeling of the Multi-Scale Regulation of the Heat Stress Response in Yeast

    Fonseca, Luis L.; Po-Wei Chen; Voit, Eberhard O.

    2012-01-01

    Heat is one of the most fundamental and ancient environmental stresses, and response mechanisms are found in prokaryotes and shared among most eukaryotes. In the budding yeast Saccharomyces cerevisiae, the heat stress response involves coordinated changes at all biological levels, from gene expression to protein and metabolite abundances, and to temporary adjustments in physiology. Due to its integrative multi-level-multi-scale nature, heat adaptation constitutes a complex dynamic process, wh...

  19. Basal transcription machinery: role in regulation of stress response in eukaryotes

    Sadhale, Parag; Verma, Jiyoti; Naorem, Aruna

    2007-01-01

    The holoenzyme of prokaryotic RNA polymerase consists of the core enzyme, made of two alpha, beta, beta' and omega subunits, which lacks promoter selectivity and a sigma (sigma) subunit which enables the core enzyme to initiate transcription in a promoter dependent fashion. A stress sigma factor sigma(s), in prokaryotes seems to regulate several stress response genes in conjunction with other stress specific regulators. Since the basic principles of transcription are conserved from simple bac...

  20. Transcriptome analyses of a salt-tolerant cytokinin-deficient mutant reveal differential regulation of salt stress response by cytokinin deficiency.

    Rie Nishiyama

    Full Text Available Soil destruction by abiotic environmental conditions, such as high salinity, has resulted in dramatic losses of arable land, giving rise to the need of studying mechanisms of plant adaptation to salt stress aimed at creating salt-tolerant plants. Recently, it has been reported that cytokinins (CKs regulate plant environmental stress responses through two-component systems. A decrease in endogenous CK levels could enhance salt and drought stress tolerance. Here, we have investigated the global transcriptional change caused by a reduction in endogenous CK content under both normal and salt stress conditions. Ten-day-old Arabidopsis thaliana wild-type (WT and CK-deficient ipt1,3,5,7 plants were transferred to agar plates containing either 0 mM (control or 200 mM NaCl and maintained at normal growth conditions for 24 h. Our experimental design allowed us to compare transcriptome changes under four conditions: WT-200 mM vs. WT-0 mM, ipt1,3,5,7-0 mM vs. WT-0 mM, ipt1,3,5,7-200 mM vs. ipt1,3,5,7-0 mM and ipt1,3,5,7-200 mM vs. WT-200 mM NaCl. Our results indicated that the expression of more than 10% of all of the annotated Arabidopsis genes was altered by CK deficiency under either normal or salt stress conditions when compared to WT. We found that upregulated expression of many genes encoding either regulatory proteins, such as NAC, DREB and ZFHD transcription factors and the calcium sensor SOS3, or functional proteins, such as late embryogenesis-abundant proteins, xyloglucan endo-transglycosylases, glycosyltransferases, glycoside hydrolases, defensins and glyoxalase I family proteins, may contribute to improved salt tolerance of CK-deficient plants. We also demonstrated that the downregulation of photosynthesis-related genes and the upregulation of several NAC genes may cause the altered morphological phenotype of CK-deficient plants. This study highlights the impact of CK regulation on the well-known stress-responsive signaling pathways, which

  1. Hypothesis: NDL Proteins Function in Stress Responses by Regulating Microtubule Organization

    Nisha eKhatri

    2015-10-01

    Full Text Available N-MYC DOWNREGULATED-LIKE proteins (NDL, members of the alpha/beta hydrolase superfamily were recently rediscovered as interactors of G-protein signaling in Arabidopsis thaliana. Although the precise molecular function of NDL proteins is still elusive, in animals these proteins play protective role in hypoxia and expression is induced by hypoxia and nickel, indicating role in stress. Homology of NDL1 with animal counterpart NDRG suggests similar functions in animals and plants. It is well established that stress responses leads to the microtubule depolymerization and reorganization which is crucial for stress tolerance. NDRG is a microtubule-associated protein (MAP which mediates the microtubule organization in animals by causing acetylation and increases the stability of α-tubulin. As NDL1 is highly homologous to NDRG, involvement of NDL1 in the microtubule organization during plant stress can also be expected. Discovery of interaction of NDL with protein kinesin light chain- related 1, enodomembrane family protein 70, syntaxin-23, tubulin alpha-2 chain, as a part of G protein interactome initiative encourages us to postulate microtubule stabilizing functions for NDL family in plants. Our search for NDL interactors in G protein interactome also predicts the role of NDL proteins in abiotic stress tolerance management. Based on published report in animals and predicted interacting partners for NDL in G protein interactome lead us to hypothesize involvement of NDL in the microtubule organization during abiotic stress management in plants.

  2. Simultaneous determination of shikimic acid, salicylic acid and jasmonic acid in wild and transgenic Nicotiana langsdorffii plants exposed to abiotic stresses.

    Scalabrin, Elisa; Radaelli, Marta; Capodaglio, Gabriele

    2016-06-01

    The presence and relative concentration of phytohormones may be regarded as a good indicator of an organism's physiological state. The integration of the rolC gene from Agrobacterium rhizogenes and of the rat glucocorticoid receptor (gr) in Nicotiana langsdorffii Weinmann plants has shown to determine various physiological and metabolic effects. The analysis of wild and transgenic N. langsdorffii plants, exposed to different abiotic stresses (high temperature, water deficit, and high chromium concentrations) was conducted, in order to investigate the metabolic effects of the inserted genes in response to the applied stresses. The development of a new analytical procedure was necessary, in order to assure the simultaneous determination of analytes and to obtain an adequately low limit of quantification. For the first time, a sensitive HPLC-HRMS quantitative method for the simultaneous determination of salicylic acid, jasmonic acid and shikimic acid was developed and validated. The method was applied to 80 plant samples, permitting the evaluation of plant stress responses and highlighting some metabolic mechanisms. Salicylic, jasmonic and shikimic acids proved to be suitable for the comprehension of plant stress responses. Chemical and heat stresses showed to induce the highest changes in plant hormonal status, differently affecting plant response. The potential of each genetic modification toward the applied stresses was marked and particularly the resistance of the gr modified plants was evidenced. This work provides new information in the study of N. langsdorffii and transgenic organisms, which could be useful for the further application of these transgenes. PMID:26966898

  3. Genetic improvement of rice for biotic and abiotic stress tolerance

    ANSARI, MAHMOOD UR RAHMAN; Shaheen, Tayyaba; BUKHARI, SHAZAI; Husnain, Tayyab

    2015-01-01

    Rice (Oryza sativa L.) is among the most important food crops that provide a staple food for nearly half of the world's population. Rice crops are prone to various types of stresses, both biotic and abiotic. Biotic stresses include insect pests, fungus, bacteria, viruses, and herbicide toxicity. Among abiotic stresses, drought, cold, and salinity are also well studied in rice. Various genes have been identified, cloned, and characterized to combat these stresses and protect rice crops. T...

  4. Expression of an engineered heterologous antimicrobial peptide in potato alters plant development and mitigates normal abiotic and biotic responses.

    Ravinder K Goyal

    Full Text Available Antimicrobial cationic peptides (AMPs are ubiquitous small proteins used by living cells to defend against a wide spectrum of pathogens. Their amphipathic property helps their interaction with negatively charged cellular membrane of the pathogen causing cell lysis and death. AMPs also modulate signaling pathway(s and cellular processes in animal models; however, little is known of cellular processes other than the pathogen-lysis phenomenon modulated by AMPs in plants. An engineered heterologous AMP, msrA3, expressed in potato was previously shown to cause resistance of the transgenic plants against selected fungal and bacterial pathogens. These lines together with the wild type were studied for growth habits, and for inducible defense responses during challenge with biotic (necrotroph Fusarium solani and abiotic stressors (dark-induced senescence, wounding and temperature stress. msrA3-expression not only conferred protection against F. solani but also delayed development of floral buds and prolonged vegetative phase. Analysis of select gene transcript profiles showed that the transgenic potato plants were suppressed in the hypersensitive (HR and reactive oxygen species (ROS responses to both biotic and abiotic stressors. Also, the transgenic leaves accumulated lesser amounts of the defense hormone jasmonic acid upon wounding with only a slight change in salicylic acid as compared to the wild type. Thus, normal host defense responses to the pathogen and abiotic stressors were mitigated by msrA3 expression suggesting MSRA3 regulates a common step(s of these response pathways. The stemming of the pathogen growth and mitigating stress response pathways likely contributes to resource reallocation for higher tuber yield.

  5. Selection for intrinsic endurance modifies endocrine stress responsiveness

    Waters, R Parrish; Renner, Kenneth J.; Summers, Cliff H.; Watt, Michael L; Forster, Gina L.; Koch, Lauren G.; Britton, Steven L.; Swallow, John G.

    2010-01-01

    Physical exercise dampens an individual’s stress response and decreases symptoms of anxiety and depression disorders. While the extrinsic relationship of exercise and psychological state are established, their intrinsic relationship is unresolved. We investigated the potential intrinsic relationship of exercise with stress responsiveness using NIH rats bidirectionally selected for intrinsic endurance capacity. Selection resulted in two populations, one with high intrinsic endurance (high capa...

  6. Plasma transcortin influences endocrine and behavioral stress responses in mice

    Richard, Elodie M.; Helbling, Jean-Christophe; Tridon, Claudine; Desmedt, Aline; Minni, Amandine; Cador, Martine; Pourtau, Line; Konsman, Jan Peter; Mormède, Pierre; Moisan, Marie-Pierre

    2010-01-01

    Glucocorticoids are released after hypothalamus-pituitary-adrenal axis stimulation by stress and act both in the periphery and in the brain to bring about adaptive responses that are essential for life. Dysregulation of the stress response can precipitate psychiatric diseases, in particular depression. Recent genetic studies have suggested that the glucocorticoid carrier transcortin, also called corticosteroid-binding globulin (CBG), may have an important role in stress response. We have inve...

  7. A wheat WRKY transcription factor TaWRKY10 confers tolerance to multiple abiotic stresses in transgenic tobacco.

    Chen Wang

    Full Text Available WRKY transcription factors are reported to be involved in defense regulation, stress response and plant growth and development. However, the precise role of WRKY transcription factors in abiotic stress tolerance is not completely understood, especially in crops. In this study, we identified and cloned 10 WRKY genes from genome of wheat (Triticum aestivum L.. TaWRKY10, a gene induced by multiple stresses, was selected for further investigation. TaWRKY10 was upregulated by treatment with polyethylene glycol, NaCl, cold and H2O2. Result of Southern blot indicates that the wheat genome contains three copies of TaWRKY10. The TaWRKY10 protein is localized in the nucleus and functions as a transcriptional activator. Overexpression of TaWRKY10 in tobacco (Nicotiana tabacum L. resulted in enhanced drought and salt stress tolerance, mainly demonstrated by the transgenic plants exhibiting of increased germination rate, root length, survival rate, and relative water content under these stress conditions. Further investigation showed that transgenic plants also retained higher proline and soluble sugar contents, and lower reactive oxygen species and malonaldehyde contents. Moreover, overexpression of the TaWRKY10 regulated the expression of a series of stress related genes. Taken together, our results indicate that TaWRKY10 functions as a positive factor under drought and salt stresses by regulating the osmotic balance, ROS scavenging and transcription of stress related genes.

  8. A wheat WRKY transcription factor TaWRKY10 confers tolerance to multiple abiotic stresses in transgenic tobacco.

    Wang, Chen; Deng, Pengyi; Chen, Liulin; Wang, Xiatian; Ma, Hui; Hu, Wei; Yao, Ningcong; Feng, Ying; Chai, Ruihong; Yang, Guangxiao; He, Guangyuan

    2013-01-01

    WRKY transcription factors are reported to be involved in defense regulation, stress response and plant growth and development. However, the precise role of WRKY transcription factors in abiotic stress tolerance is not completely understood, especially in crops. In this study, we identified and cloned 10 WRKY genes from genome of wheat (Triticum aestivum L.). TaWRKY10, a gene induced by multiple stresses, was selected for further investigation. TaWRKY10 was upregulated by treatment with polyethylene glycol, NaCl, cold and H2O2. Result of Southern blot indicates that the wheat genome contains three copies of TaWRKY10. The TaWRKY10 protein is localized in the nucleus and functions as a transcriptional activator. Overexpression of TaWRKY10 in tobacco (Nicotiana tabacum L.) resulted in enhanced drought and salt stress tolerance, mainly demonstrated by the transgenic plants exhibiting of increased germination rate, root length, survival rate, and relative water content under these stress conditions. Further investigation showed that transgenic plants also retained higher proline and soluble sugar contents, and lower reactive oxygen species and malonaldehyde contents. Moreover, overexpression of the TaWRKY10 regulated the expression of a series of stress related genes. Taken together, our results indicate that TaWRKY10 functions as a positive factor under drought and salt stresses by regulating the osmotic balance, ROS scavenging and transcription of stress related genes. PMID:23762295

  9. Heat Stress Related Gene Expression in Gossypium hirsutum L.

    DEMIREL Ufuk; G(U)R M Atilla; KARAKU Mehmet; MEMON Abdul Rezaque

    2008-01-01

    @@ Abiotic stress is a major limiting factor to crop productivity,and heat stress is one of the important elements for reduced crop production.Plants respond to heat stress at molecular and cellular levels as well as physiological level.Heat stress alters expression patterns of numerous genes in plants.At the molecular level,most of the information for heat stress response was obtained from model plants such as Arabidopsis thaliana,Medicago trancatula,and ,Oryza sativa,but little molecular research has focused on heat stress respones in cotton.

  10. The Stress Response Regulator AflSkn7 Influences Morphological Development, Stress Response, and Pathogenicity in the Fungus Aspergillus flavus

    Zhang, Feng; Xu, Gaopo; Geng, Longpo; Lu, Xiaoyan; Yang, Kunlong; Yuan, Jun; Nie, Xinyi; Zhuang, Zhenhong; Wang, Shihua

    2016-01-01

    This study focused on AflSkn7, which is a stress response regulator in the aflatoxin-producing Aspergillus flavus. The ΔAflSkn7 mutants exhibited partially defective conidial formation and a complete inability to generate sclerotia, indicating AflSkn7 affects A. flavus asexual and sexual development. The mutants tolerated osmotic stress but were partially susceptible to the effects of cell wall stress. Additionally, the ΔAflSkn7 mutants were especially sensitive to oxidative stress. These observations confirmed that AflSkn7 influences oxidative stress responses rather than osmotic stress responses. Additionally, AflSkn7 was observed to increase aflatoxin biosynthesis and seed infection rates. These results indicate AflSkn7 affects A. flavus morphological development, stress response, aflatoxin production, and pathogenicity. The results of this study may facilitate the development of new methods to manage A. flavus infections. PMID:27399770

  11. Functional characterization of an E3 ubiquitin ligase involved in plant response to abiotic stress

    Guerra, Davide

    2010-01-01

    Protein ubiquitination is a post-translational modification that targets protein substrates for 26S proteasome-mediated degradation. It is based on the covalent attachment of the 76-amino acid eukaryotic molecule, ubiquitin, to substrate proteins. Protein ubiquitination plays a key role in a wide variety of cellular processes such as hormone signaling, DNA repair, biotic and abiotic stress response, cell cycle regulation. Ubiquitin conjugation is a multistep reaction, sequentially involvin...

  12. Membrane regulation of the stress response from prokaryotic models to mammalian cells.

    Vigh, Laszlo; Nakamoto, Hitoshi; Landry, Jacques; Gomez-Munoz, Antonio; Harwood, John L; Horvath, Ibolya

    2007-10-01

    "Membrane regulation" of stress responses in various systems is widely studied. In poikilotherms, membrane rigidification could be the first reaction to cold perception: reducing membrane fluidity of membranes at physiological temperatures is coupled with enhanced cold inducibility of a number of genes, including desaturases (see J.L. Harwood's article in this Proceedings volume). A similar role of changes in membrane physical state in heat (oxidative stress, etc.) sensing- and signaling gained support recently from prokaryotes to mammalian cells. Stress-induced remodeling of membrane lipids could influence generation, transduction, and deactivation of stress signals, either through global effects on the fluidity of the membrane matrix, or by specific interactions of boundary (or raft) lipids with receptor proteins, lipases, ion channels, etc. Our data point to membranes not only as targets of stress, but also as sensors in activating a stress response. PMID:17656573

  13. Studying stress responses in the post-genomic era: its ecological and evolutionary role

    Jesper G Sørensen; Volker Loeschcke

    2007-04-01

    Most investigations on the effects of and responses to stress exposures have been performed on a limited number of model organisms in the laboratory. Here much progress has been made in terms of identifying and describing beneficial and detrimental effects of stress, responses to stress and the mechanisms behind stress tolerance. However, to gain further understanding of which genes are involved in stress resistance and how the responses are regulated from an ecological and evolutionary perspective there is a need to combine studies on multiple levels of biological organization from DNA to phenotypes. Furthermore, we emphasize the importance of studying ecologically relevant traits and natural or semi-natural conditions to verify whether the results obtained are representative of the ecological and evolutionary processes in the field. Here, we will review what we currently know about thermal adaptation and the role of different stress responses to thermal challenges in insects, particularly Drosophila. Furthermore, we address some key questions that require future attention.

  14. Systems biology analysis of Zymomonas mobilis ZM4 ethanol stress responses

    Yang, Shihui [ORNL; Pan, Chongle [ORNL; Tschaplinski, Timothy J [ORNL; Hurst, Gregory {Greg} B [ORNL; Engle, Nancy L [ORNL; Zhou, Wen [University of Georgia, Athens, GA; Dam, Phuongan [ORNL; Xu, Ying [University of Georgia, Athens, GA; Dice, Lezlee T [ORNL; Davison, Brian H [ORNL; Brown, Steven D [ORNL

    2013-01-01

    Zymomonas mobilis ZM4 is a capable ethanogenic bacterium with high ethanol productivity and high level of ethanol tolerance. Previous studies indicated that several stress-related proteins and changes in the ZM4 membrane lipid composition may contribute to ethanol tolerance. However, the molecular mechanisms of ethanol stress response have not been elucidated fully. In this study, ethanol stress responses were investigated using systems biology tools. Medium supplementation with an initial 47.3 g/L (6% v/v) ethanol reduced Z. mobilis ZM4 glucose consumption, growth rate and ethanol productivity compared to that of untreated controls. Metabolomic profiling showed that ethanol-treated ZM4 cells accumulated greater amounts of glycerol during the entire fermentation process, which may indicate an important role for this metabolite. A proteomic analysis of early exponential growth identified about one thousand proteins, or approximately 56% of the predicted ZM4 proteome. Proteins related to metabolism and stress response such as chaperones and key regulators were more abundant in the early ethanol stress condition. Transcriptomic studies indicated the response of ZM4 to ethanol is dynamic, complex and involves many genes from all the different functional categories. There were fewer genes significantly differentially expressed in the exponential phase compared to that of stationary phase and early stationary phase. Most down-regulated genes were related to translation and ribosome biogenesis, while the ethanol-upregulated genes were mostly related to cellular processes and metabolism. Correlations among the transcriptomics, proteomics and metabolism were examined and among significantly expressed genes or proteins, we observe higher correlation coefficients when fold-change values are higher. This systems biology study elucidates key Z. mobilis ZM4 metabolites, genes and proteins that form the foundation of its distinctive physiology and its multifaceted response to

  15. Multiple Reaction Monitoring Mode Based Liquid Chromatography-Mass Spectrometry Method for Simultaneous Quantification of Brassinolide and Other Plant Hormones Involved in Abiotic Stresses

    Deepak M. Kasote; Ritesh Ghosh; Jun Young Chung; Jonggeun Kim; Inhwan Bae; Hanhong Bae

    2016-01-01

    Plant hormones are the key regulators of adaptive stress response. Abiotic stresses such as drought and salt are known to affect the growth and productivity of plants. It is well known that the levels of plant hormones such as zeatin (ZA), abscisic acid (ABA), salicylic acid (SA), jasmonic acid (JA), and brassinolide (BR) fluctuate upon abiotic stress exposure. At present, there is not any single suitable liquid chromatography-mass spectrometry (LC-MS) method for simultaneous analysis of BR a...

  16. Cross-tolerance to biotic and abiotic stresses in plants: a focus on resistance to aphid infestation.

    Foyer, Christine H; Rasool, Brwa; Davey, Jack W; Hancock, Robert D

    2016-03-01

    Plants co-evolved with an enormous variety of microbial pathogens and insect herbivores under daily and seasonal variations in abiotic environmental conditions. Hence, plant cells display a high capacity to respond to diverse stresses through a flexible and finely balanced response network that involves components such as reduction-oxidation (redox) signalling pathways, stress hormones and growth regulators, as well as calcium and protein kinase cascades. Biotic and abiotic stress responses use common signals, pathways and triggers leading to cross-tolerance phenomena, whereby exposure to one type of stress can activate plant responses that facilitate tolerance to several different types of stress. While the acclimation mechanisms and adaptive responses that facilitate responses to single biotic and abiotic stresses have been extensively characterized, relatively little information is available on the dynamic aspects of combined biotic/abiotic stress response. In this review, we consider how the abiotic environment influences plant responses to attack by phloem-feeding aphids. Unravelling the signalling cascades that underpin cross-tolerance to biotic and abiotic stresses will allow the identification of new targets for increasing environmental resilience in crops. PMID:26936830

  17. Saccharomyces cerevisiae Tti2 Regulates PIKK Proteins and Stress Response

    Hoffman, Kyle S.; Duennwald, Martin L.; Karagiannis, Jim; Genereaux, Julie; McCarton, Alexander S.; Brandl, Christopher J.

    2016-01-01

    The TTT complex is composed of the three essential proteins Tel2, Tti1, and Tti2. The complex is required to maintain steady state levels of phosphatidylinositol 3-kinase-related kinase (PIKK) proteins, including mTOR, ATM/Tel1, ATR/Mec1, and TRRAP/Tra1, all of which serve as regulators of critical cell signaling pathways. Due to their association with heat shock proteins, and with newly synthesized PIKK peptides, components of the TTT complex may act as cochaperones. Here, we analyze the consequences of depleting the cellular level of Tti2 in Saccharomyces cerevisiae. We show that yeast expressing low levels of Tti2 are viable under optimal growth conditions, but the cells are sensitive to a number of stress conditions that involve PIKK pathways. In agreement with this, depleting Tti2 levels decreased expression of Tra1, Mec1, and Tor1, affected their localization and inhibited the stress responses in which these molecules are involved. Tti2 expression was not increased during heat shock, implying that it does not play a general role in the heat shock response. However, steady state levels of Hsp42 increase when Tti2 is depleted, and tti2L187P has a synthetic interaction with exon 1 of the human Huntingtin gene containing a 103 residue polyQ sequence, suggesting a general role in protein quality control. We also find that overexpressing Hsp90 or its cochaperones is synthetic lethal when Tti2 is depleted, an effect possibly due to imbalanced stoichiometry of a complex required for PIKK assembly. These results indicate that Tti2 does not act as a general chaperone, but may have a specialized function in PIKK folding and/or complex assembly. PMID:27172216

  18. The SsDREB Transcription Factor from the Succulent Halophyte Suaeda salsa Enhances Abiotic Stress Tolerance in Transgenic Tobacco

    Xu Zhang

    2015-01-01

    Full Text Available Dehydration-responsive element-binding (DREB transcription factor (TF plays a key role for abiotic stress tolerance in plants. In this study, a novel cDNA encoding DREB transcription factor, designated SsDREB, was isolated from succulent halophyte Suaeda salsa. This protein was classified in the A-6 group of DREB subfamily based on multiple sequence alignments and phylogenetic characterization. Yeast one-hybrid assays showed that SsDREB protein specifically binds to the DRE sequence and could activate the expression of reporter genes in yeast, suggesting that the SsDREB protein was a CBF/DREB transcription factor. Real-time RT-PCR showed that SsDREB was significantly induced under salinity and drought stress. Overexpression of SsDREB cDNA in transgenic tobacco plants exhibited an improved salt and drought stress tolerance in comparison to the nontransformed controls. The transgenic plants revealed better growth, higher chlorophyll content, and net photosynthesis rate, as well as higher level of proline and soluble sugars. The semiquantitative PCR of transgenics showed higher expression of stress-responsive genes. These data suggest that the SsDREB transcription factor is involved in the regulation of salt stress tolerance in tobacco by the activation of different downstream gene expression.

  19. The surgical stress response: should it be prevented?

    Kehlet, H

    1991-01-01

    suppress the detrimental components of the stress response so as to improve postoperative outcome. Of the various techniques to reduce the surgical stress response, afferent neural blockade with regional anesthesia to relieve pain is the most effective, although not optimal. Data from numerous controlled......Postoperative complications such as myocardial infarction, pulmonary infection, thromboembolism and fatigue are probably related to increased demands, hypermetabolism, catabolism and other physiologic changes included in the global "surgical stress response." Strategies have been developed to...... clinical trials have demonstrated a reduction in various aspects of postoperative morbidity by such a nociceptive blockade. Although a causal relationship has still to be demonstrated, these findings strongly argue the concept of "stress-free anesthesia and surgery" as an important instrument in improving...

  20. Computations of uncertainty mediate acute stress responses in humans.

    de Berker, Archy O; Rutledge, Robb B; Mathys, Christoph; Marshall, Louise; Cross, Gemma F; Dolan, Raymond J; Bestmann, Sven

    2016-01-01

    The effects of stress are frequently studied, yet its proximal causes remain unclear. Here we demonstrate that subjective estimates of uncertainty predict the dynamics of subjective and physiological stress responses. Subjects learned a probabilistic mapping between visual stimuli and electric shocks. Salivary cortisol confirmed that our stressor elicited changes in endocrine activity. Using a hierarchical Bayesian learning model, we quantified the relationship between the different forms of subjective task uncertainty and acute stress responses. Subjective stress, pupil diameter and skin conductance all tracked the evolution of irreducible uncertainty. We observed a coupling between emotional and somatic state, with subjective and physiological tuning to uncertainty tightly correlated. Furthermore, the uncertainty tuning of subjective and physiological stress predicted individual task performance, consistent with an adaptive role for stress in learning under uncertain threat. Our finding that stress responses are tuned to environmental uncertainty provides new insight into their generation and likely adaptive function. PMID:27020312

  1. Pharmacological modification of the perioperative stress response in noncardiac surgery.

    Priebe, Hans-Joachim

    2016-06-01

    The perioperative period is associated with alterations in the neuroendocrine, metabolic, and immune systems, referred to as "stress response." The resultant increased sympathetic activity and elevated serum concentrations of catecholamines may adversely affect the cardiovascular system, resulting in cardiovascular instability (hypertension, tachycardia, and arrhythmia), morbidity (myocardial ischemia, myocardial infarction, and stroke), and mortality (cardiac death and fatal stroke), particularly in patients at an elevated cardiovascular risk and with reduced cardiovascular reserve. Various strategies have been used to ameliorate the adverse perioperative cardiovascular sequelae of the perioperative stress response. Effective pharmacologic blunting of the stress response plays a crucial role in perioperative cardiac risk reduction strategies. In this context, the role of beta-adrenoceptor blockers, alpha2-adrenoceptor agonists, and statins has been extensively examined. This chapter evaluates the available evidence with respect to treatment efficacy of these commonly prescribed drugs in patients undergoing noncardiac surgery. PMID:27396805

  2. Proteomic studies of drought stress response in Fabaceae

    Tanja ZADRAŽNIK

    2015-11-01

    Full Text Available Drought stress is a serious threat to crop production that influences plant growth and development and subsequently causes reduced quantity and quality of the yield. Plant stress induces changes in cell metabolism, which includes differential expression of proteins. Proteomics offer a powerful approach to analyse proteins involved in drought stress response of plants. Analyses of changes in protein abundance of legumes under drought stress are very important, as legumes play an important role in human and animal diet and are often exposed to drought. The presented results of proteomic studies of selected legumes enable better understanding of molecular mechanisms of drought stress response. The study of drought stress response of plants with proteomic approach may contribute to the development of potential drought-response markers and to the development of drought-tolerant cultivars of different legume crop species.

  3. [The effect of stressor experiences and optimism upon stress responses].

    Tonan, K; Sonoda, A

    1994-10-01

    The present studies investigated whether or not optimism/pessimism is a cognitive mediator of future depression for people who have experienced many negative life events. Subjects were administered optimism scales, stress response scales at Time 1. They then completed the stressor scale and stress response scales at Time 2, about six weeks later. The results showed the interaction of stressor experiences and optimistic diathesis: Subjects who have higher stressor experiences and higher stable and global explanatory style for negative events showed higher depressive responses. Other indices of optimistic diathesis--Life Orientation, Cognitive Style, and Internality dimension of Attributional Style--did not produce this interaction effect. Moreover, this interaction did not appear in the psychological stress response other than depression. These results were consistent with diathesis-stress model of depression. PMID:7861687

  4. Plant hormone-mediated regulation of stress responses

    Verma, Vivek; Ravindran, Pratibha; Kumar, Prakash P.

    2016-01-01

    Background Being sessile organisms, plants are often exposed to a wide array of abiotic and biotic stresses. Abiotic stress conditions include drought, heat, cold and salinity, whereas biotic stress arises mainly from bacteria, fungi, viruses, nematodes and insects. To adapt to such adverse situations, plants have evolved well-developed mechanisms that help to perceive the stress signal and enable optimal growth response. Phytohormones play critical roles in helping the plants to adapt to adv...

  5. Overexpression of Rice Sphingosine-1-Phoshpate Lyase Gene OsSPL1 in Transgenic Tobacco Reduces Salt and Oxidative Stress Tolerance

    Huijuan Zhang; Jing Zhai; Jibo Mo; Dayong Li; Fengming Song

    2012-01-01

    Sphingolipids,including sphingosine-1-phosphate (S1P),have been shown to function as signaling mediators to regulate diverse aspects of plant growth,development,and stress response.In this study,we performed functional analysis of a rice (Oryza sativa) S1P lyase gene OsSPL1 in transgenic tobacco plants and explored its possible involvement in abiotic stress response.Overexpression of OsSPL1 in transgenic tobacco resulted in enhanced sensitivity to exogenous abscisic acid (ABA),and decreased tolerance to salt and oxidative stress,when compared with the wild type.Furthermore,the expression levels of some selected stress-related genes in OsSPL1-overexpressing plants were reduced after application of salt or oxidative stress,indicating that the altered responsiveness of stress-related genes may be responsible for the reduced tolerance in OsSPL1-overexpressing tobacco plants under salt and oxidative stress.Our results suggest that rice OsSPL1 plays an important role in abiotic stress responses.

  6. Transcriptome Analysis of Salt Stress Responsiveness in the Seedlings of Dongxiang Wild Rice (Oryza rufipogon Griff.).

    Zhou, Yi; Yang, Ping; Cui, Fenglei; Zhang, Fantao; Luo, Xiangdong; Xie, Jiankun

    2016-01-01

    Dongxiang wild rice (Oryza rufipogon Griff.) is the progenitor of cultivated rice (Oryza sativa L.), and is well known for its superior level of tolerance against cold, drought and diseases. To date, however, little is known about the salt-tolerant character of Dongxiang wild rice. To elucidate the molecular genetic mechanisms of salt-stress tolerance in Dongxiang wild rice, the Illumina HiSeq 2000 platform was used to analyze the transcriptome profiles of the leaves and roots at the seedling stage under salt stress compared with those under normal conditions. The analysis results for the sequencing data showed that 6,867 transcripts were differentially expressed in the leaves (2,216 up-regulated and 4,651 down-regulated) and 4,988 transcripts in the roots (3,105 up-regulated and 1,883 down-regulated). Among these differentially expressed genes, the detection of many transcription factor genes demonstrated that multiple regulatory pathways were involved in salt stress tolerance. In addition, the differentially expressed genes were compared with the previous RNA-Seq analysis of salt-stress responses in cultivated rice Nipponbare, indicating the possible specific molecular mechanisms of salt-stress responses for Dongxiang wild rice. A large number of the salt-inducible genes identified in this study were co-localized onto fine-mapped salt-tolerance-related quantitative trait loci, providing candidates for gene cloning and elucidation of molecular mechanisms responsible for salt-stress tolerance in rice. PMID:26752408

  7. Effects of regional analgesia on stress responses to pediatric surgery.

    Wolf, Andrew R

    2012-01-01

    Invasive surgery induces a combination of local response to tissue injury and generalized activation of systemic metabolic and hormonal pathways via afferent nerve pathways and the central nervous system. The local inflammatory responses and the parallel neurohumoral responses are not isolated but linked through complex signaling networks, some of which remain poorly understood. The magnitude of the response is broadly related to the site of injury (greater in regions with visceral pain afferents such as abdomen and thorax) and the extent of the trauma. The changes include alterations in metabolic, hormonal, inflammatory, and immune systems that can be collectively termed the stress response. Integral to the stress responses are the effects of nociceptive afferent stimuli on systemic and pulmonary vascular resistance, heart rate, and blood pressure, which are a combination of efferent autonomic response and catecholamine release via the adrenal medulla. Therefore, pain responses, cardiovascular responses, and stress responses need to be considered as different aspects of a combined bodily reaction to surgery and trauma. It is important at the outset to understand that not all components of the stress response are suppressed together and that this is important when discussing different analgesic modalities (i.e. opioids vs regional anesthesia). For example, in terms of the use of fentanyl in the infant, the dose required to provide analgesia (1-5 mcg·kg(-1)) is less than that required for hemodynamic stability in response to stimuli (5-10 mcg·kg(-1)) (1) and that this in turn is less than that required to suppress most aspects of the stress response (25-50 mcg·kg(-1)) (2). In contrast to this considerable dose dependency, central local anesthetic blocks allow blockade of the afferent and efferent sympathetic pathways at relatively low doses resulting in profound suppression of hemodynamic and stress responses to surgery. PMID:21999144

  8. Role of shame and body esteem in cortisol stress responses.

    Lupis, Sarah B; Sabik, Natalie J; Wolf, Jutta M

    2016-04-01

    Studies assessing the role of shame in HPA axis reactivity report mixed findings. Discrepancies may be due to methodological difficulties and inter-individual differences in the propensity to experience shame in a stressful situation. Hence, the current study combined self-report of shame and facial coding of shame expressions and assessed the role of body esteem as a moderator of the shame-stress link. For this, 44 healthy students (24F, age 20.5 ± 2.1 years) were exposed to an acute psychosocial stress paradigm (Trier Social Stress Test: TSST). Salivary cortisol levels were measured throughout the protocol. Trait shame was measured before the stress test, and state shame immediately afterwards. Video recordings of the TSST were coded to determine emotion expressions. State shame was neither associated with cortisol stress responses nor with body esteem (self-report: all ps ≥ .24; expression: all ps ≥ .31). In contrast, higher trait shame was associated with both negative body esteem (p = .049) and stronger cortisol stress responses (p = .013). Lastly, having lower body esteem predicted stronger cortisol stress responses (p = .022); however, it did not significantly moderate the association between shame indices and cortisol stress responses (all ps ≥ .94). These findings suggest that body esteem and trait shame independently contribute to strength of cortisol stress responses. Thus, in addition to trait shame, body esteem emerged as an important predictor of cortisol stress responses and as such, a potential contributor to stress-related negative health outcomes. PMID:26577952

  9. A Novel Gene SbSI-2 Encoding Nuclear Protein from a Halophyte Confers Abiotic Stress Tolerance in E. coli and Tobacco

    Yadav, Narendra Singh; Singh, Vijay Kumar; Singh, Dinkar; Jha, Bhavanath

    2014-01-01

    Salicornia brachiata is an extreme halophyte that grows luxuriantly in coastal marshes. Previously, we have reported isolation and characterization of ESTs from Salicornia with large number of novel/unknown salt-responsive gene sequences. In this study, we have selected a novel salt-inducible gene SbSI-2 ( Salicornia brachiata salt-inducible-2) for functional characterization. Bioinformatics analysis revealed that SbSI-2 protein has predicted nuclear localization signals and a strong protein-...

  10. ANTHOCYANIN PIGMENTATION IN TRITICUM AESTIVUM L.: GENETIC BASIS AND ROLE UNDER ABIOTIC STRESS CONDITIONS

    Tereshchenko O.Yu.

    2012-08-01

    Full Text Available Anthocyanins are secondary metabolites of plants. They have a wide range of biological activity such as antioxidant, photoprotection, osmoregulation, heavy metal ions chelation, antimicrobial and antifungal activities, which help plants to survive under different stress conditions. Bread wheat (T. aestivum L. can have purple pigmentation provided by anthocyanin compounds in different organs, such as grain pericarp, coleoptile, culm, leaf blades, leaf sheaths, glumes and anthers. However, the genetic mechanisms underlying formation of these traits as well as contribution of the pigmentation to stress tolerance have not been widely studied in wheat. The aim of the current study was to investigate molecular-genetic mechanisms underlying anthocyanin pigmentation in different wheat organs and to estimate the role of the pigmentation under different abiotic stress conditions in wheat seedlings. In the current study, near-isogenic lines (NILs: cv. ‘Saratovskaya 29’ (‘S29’ and lines i:S29Pp1Pp2PF and i:S29Pp1Pp3P developed on the ‘S29’ background but having grain pericarp coloration (genes Pp and more intense coleoptile (Rc, culm (Pc, leaf blade (Plb, leaf sheath (Pls pigmentation in comparison with ‘S29’, were used. Comparative transcriptional analysis of the five structural genes Chs, Chi, F3h, Dfr, Ans, encoding enzymes participating in the anthocyanin biosynthesis, was performed in different organs of NILs. It was shown that the presence of the Rc, Pc, Plb, Pls and Pp alleles conferring strong anthocyanin pigmentation induced more intense transcription of the structural genes, suggesting the genes Rc, Pc, Plb, Pls and Pp to play a regulatory role in anthocyanin biosynthesis network. To evaluate the role of anthocyanins in stress response at the seedling stage, growth ability of the NILs and anthocyanin content in their coleoptiles were assessed after treatments with NaCl (100 and 200 mM, CdCl2 (25 and 50 μM and 15% PEG 6000

  11. Abiotic and prebiotic phosphorus chemistry

    Micheletti, Gabriele

    2011-01-01

    The chief obstacle to understand the metabolic origin of life or RNA-based life is to identify a plausible mechanism for overcoming the clutter wrought by abiotic chemistry. Probably trough simple abiotic and then prebiotic reactions we could arrive to simple pre-RNA molecules. Here we report a possible preibiotic synthesis for heterocyclic compounds, and a self-assembling process of adenosine phosphates a constituent of RNA. In these processes we use a simple and prebiotic phosphorus cyc...

  12. Natural variation for lifespan and stress response in the nematode Caenorhabditis remanei.

    Reynolds, Rose M; Phillips, Patrick C

    2013-01-01

    Genetic approaches (e.g. mutation, RNA interference) in model organisms, particularly the nematode Caenorhabditis elegans, have yielded a wealth of information on cellular processes that can influence lifespan. Although longevity mutants discovered in the lab are instructive of cellular physiology, lab studies might miss important genes that influence health and longevity in the wild. C. elegans has relatively low natural genetic variation and high levels of linkage disequilibrium, and thus is not optimal for studying natural variation in longevity. In contrast, its close relative C. remanei possesses very high levels of molecular genetic variation and low levels of linkage disequilibrium. To determine whether C. remanei may be a good model system for the study of natural genetic variation in aging, we evaluated levels of quantitative genetic variation for longevity and resistance to oxidative, heat and UV stress. Heritability (and the coefficient of additive genetic variation) was high for oxidative and heat stress resistance, low (but significant) for longevity, and essentially zero for UV stress response. Our results suggest that C. remanei may be a powerful system for studying natural genetic variation for longevity and oxidative and heat stress response, as well as an informative model for the study of functional relationships between longevity and stress response. PMID:23658604

  13. Fluorescent cDNA microarray hybridization reveals complexity and heterogeneity of cellular genotoxic stress responses.

    Amundson, S A; Bittner, M; Chen, Y; Trent, J; Meltzer, P; Fornace, A J

    1999-06-17

    The fate of cells exposed to ionizing radiation (IR) may depend greatly on changes in gene expression, so that an improved view of gene induction profiles is important for understanding mechanisms of checkpoint control, repair and cell death following such exposures. We have used a quantitative fluorescent cDNA microarray hybridization approach to identify genes regulated in response to 7-irradiation in the p53 wild-type ML-1 human myeloid cell line. Hybridization of the array to fluorescently-labeled RNA from treated and untreated cells was followed by computer analysis to derive relative changes in expression levels of the genes present in the array, which agreed well with actual quantitative changes in expression. Forty-eight sequences, 30 not previously identified as IR-responsive, were significantly regulated by IR. Induction by IR and other stresses of a subset of these genes, including the previously characterized CIP1/ WAF1, MDM2 and BAX genes, as well as nine genes not previously reported to be IR-responsive, was examined in a panel of 12 human cell lines. Responses varied widely in cell lines with different tissues of origin and different genetic backgrounds, highlighting the importance of cellular context to genotoxic stress responses. Two of the newly identified IR-responsive genes, FRA-1 and ATF3, showed a p53-associated component to their IR-induction, and this was confirmed both in isogenic human cell lines and in mouse thymus. The majority of the IR-responsive genes, however, showed no indication of p53-dependent regulation, representing a potentially important class of stress-responsive genes in leukemic cells. PMID:10380890

  14. Stress response to cadmium and manganese in Paracentrotus lividus developing embryos is mediated by nitric oxide

    Migliaccio, Oriana; Castellano, Immacolata [Laboratory of Cellular and Developmental Biology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples (Italy); Romano, Giovanna [Laboratory of Functional and Evolutionary Ecology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples (Italy); Palumbo, Anna, E-mail: anna.palumbo@szn.it [Laboratory of Cellular and Developmental Biology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples (Italy)

    2014-11-15

    Highlights: • NO is produced in sea urchin embryos in response to cadmium and manganese. • Cadmium and manganese affect the expression of specific genes. • NO levels regulate directly or indirectly the expression of some metal-induced genes. • NO is proposed as a sensor of different stress agents in sea urchin embryos. - Abstract: Increasing concentrations of contaminants, often resulting from anthropogenic activities, have been reported to occur in the marine environment and affect marine organisms. Among these, the metal ions cadmium and manganese have been shown to induce developmental delay and abnormalities, mainly reflecting skeleton elongation perturbation, in the sea urchin Paracentrotus lividus, an established model for toxicological studies. Here, we provide evidence that the physiological messenger nitric oxide (NO), formed by L-arginine oxidation by NO synthase (NOS), mediates the stress response induced by cadmium and manganese in sea urchins. When NO levels were lowered by inhibiting NOS, the proportion of abnormal plutei increased. Quantitative expression of a panel of 19 genes involved in stress response, skeletogenesis, detoxification and multidrug efflux processes was followed at different developmental stages and under different conditions: metals alone, metals in the presence of NOS inhibitor, NO donor and NOS inhibitor alone. These data allowed the identification of different classes of genes whose metal-induced transcriptional expression was directly or indirectly mediated by NO. These results open new perspectives on the role of NO as a sensor of different stress agents in sea urchin developing embryos.

  15. Stress response to cadmium and manganese in Paracentrotus lividus developing embryos is mediated by nitric oxide

    Highlights: • NO is produced in sea urchin embryos in response to cadmium and manganese. • Cadmium and manganese affect the expression of specific genes. • NO levels regulate directly or indirectly the expression of some metal-induced genes. • NO is proposed as a sensor of different stress agents in sea urchin embryos. - Abstract: Increasing concentrations of contaminants, often resulting from anthropogenic activities, have been reported to occur in the marine environment and affect marine organisms. Among these, the metal ions cadmium and manganese have been shown to induce developmental delay and abnormalities, mainly reflecting skeleton elongation perturbation, in the sea urchin Paracentrotus lividus, an established model for toxicological studies. Here, we provide evidence that the physiological messenger nitric oxide (NO), formed by L-arginine oxidation by NO synthase (NOS), mediates the stress response induced by cadmium and manganese in sea urchins. When NO levels were lowered by inhibiting NOS, the proportion of abnormal plutei increased. Quantitative expression of a panel of 19 genes involved in stress response, skeletogenesis, detoxification and multidrug efflux processes was followed at different developmental stages and under different conditions: metals alone, metals in the presence of NOS inhibitor, NO donor and NOS inhibitor alone. These data allowed the identification of different classes of genes whose metal-induced transcriptional expression was directly or indirectly mediated by NO. These results open new perspectives on the role of NO as a sensor of different stress agents in sea urchin developing embryos

  16. Molecular mechanisms of the plant heat stress response

    Qu, Ai-Li; Ding, Yan-Fei; Jiang, Qiong [China Jiliang University, Xueyuan Road 258, Hangzhou 310018 (China); Zhu, Cheng, E-mail: pzhch@cjlu.edu.cn [China Jiliang University, Xueyuan Road 258, Hangzhou 310018 (China)

    2013-03-08

    Highlights: ► This review elaborates the response networks of heat stress in plants. ► It elaborates proteins responding to heat stress in special physiological period. ► The proteins and pathways have formed a basic network of the heat stress response. ► Achievements of the various technologies are also combined. -- Abstract: High temperature has become a global concern, which seriously affects the growth and production of plants, particularly crops. Thus, the molecular mechanism of the heat stress response and breeding of heat-tolerant plants is necessary to protect food production and ensure crop safety. This review elaborates on the response networks of heat stress in plants, including the Hsf and Hsp response pathways, the response of ROS and the network of the hormones. In addition, the production of heat stress response elements during particular physiological periods of the plant is described. We also discuss the existing problems and future prospects concerning the molecular mechanisms of the heat stress response in plants.

  17. Cellular stress responses for monitoring and modulating ageing

    Demirovic, Dino; Schnebert, Sylvianne; Nizard, Carine;

    2013-01-01

    protectors and stimulators of homeodynamics, and create a kind of “gold-standard” for monitoring the efficacy of other potential antiageing and pro-survival natural and synthetic compounds. We have so far standardised an effective method for detecting all seven stress response pathways, by several...

  18. Quorum Sensing Enhances the Stress Response in Vibrio cholerae▿

    Joelsson, Adam; Kan, Biao; Jun ZHU

    2007-01-01

    Vibrio cholerae lives in aquatic environments and causes cholera. Here, we show that quorum sensing enhances V. cholerae viability under certain stress conditions by upregulating the expression of RpoS, and this regulation acts through HapR, suggesting that a quorum-sensing-enhanced stress response plays a role in V. cholerae environmental survival.

  19. Adaptive Patterns of Stress Responsivity: A Preliminary Investigation

    Del Giudice, Marco; Hinnant, J. Benjamin; Ellis, Bruce J.; El-Sheikh, Mona

    2012-01-01

    The adaptive calibration model (ACM) is an evolutionary-developmental theory of individual differences in stress responsivity. In this article, we tested some key predictions of the ACM in a middle childhood sample (N = 256). Measures of autonomic nervous system activity across the sympathetic and parasympathetic branches validated the 4-pattern…

  20. Inhibiting influence of testosterone on stress responsiveness during adolescence.

    Lürzel, Stephanie; Kaiser, Sylvia; Krüger, Christine; Sachser, Norbert

    2011-11-01

    The maturation of the hypothalamo-pituitary-adrenal (HPA) axis is a key-component of the changes that occur during adolescence. In guinea pigs, HPA responsiveness during late adolescence depends strongly on the quantity and quality of social interactions: Males that lived in a large mixed-sex colony over the course of adolescence exhibit a lower stress response than males that were kept in pairs (one male/one female). Since colony-housed males have higher testosterone (T) levels than pair-housed males, and inhibiting effects of T on HPA function are well known, we tested the hypothesis that the decrease in stress responsiveness found in colony-housed males is due to their high T concentrations. We manipulated T levels in two experiments: 1) gonadectomy/sham-gonadectomy of colony-housed males (which usually have high T levels), 2) application of T undecanoate/vehicle to pair-housed males (which usually have low T levels). As expected, gonadectomized males showed a significantly increased stress response in comparison with sham-gonadectomized males, and T-injected males had a significantly lower stress response than vehicle-injected males. Both experiments thus confirm an inhibiting effect of T on HPA responsiveness during adolescence, which can mediate the influence of social interactions. The reduction in stress responsiveness is hypothesized to have a biologically adaptive value: A sudden increase in glucocorticoid concentrations can enhance aggressive behavior. Thus, pair-housed males might be adapted to aggressively defend their female ('resource defense strategy'), whereas colony-housed males display little aggressive behavior and are capable of integrating themselves into a colony ('queuing strategy'). PMID:21983230

  1. Mono-2-ethylhexyl phthalate induces oxidative stress responses in human placental cells in vitro

    Di-2-ethylhexyl phthalate (DEHP) is an environmental contaminant commonly used as a plasticizer in polyvinyl chloride products. Exposure to DEHP has been linked to adverse pregnancy outcomes in humans including preterm birth, low birth-weight, and pregnancy loss. Although oxidative stress is linked to the pathology of adverse pregnancy outcomes, effects of DEHP metabolites, including the active metabolite, mono-2-ethylhexyl phthalate (MEHP), on oxidative stress responses in placental cells have not been previously evaluated. The objective of the current study is to identify MEHP-stimulated oxidative stress responses in human placental cells. We treated a human placental cell line, HTR-8/SVneo, with MEHP and then measured reactive oxygen species (ROS) generation using the dichlorofluorescein assay, oxidized thymine with mass-spectrometry, redox-sensitive gene expression with qRT-PCR, and apoptosis using a luminescence assay for caspase 3/7 activity. Treatment of HTR-8 cells with 180 μM MEHP increased ROS generation, oxidative DNA damage, and caspase 3/7 activity, and resulted in differential expression of redox-sensitive genes. Notably, 90 and 180 μM MEHP significantly induced mRNA expression of prostaglandin-endoperoxide synthase 2 (PTGS2), an enzyme important for synthesis of prostaglandins implicated in initiation of labor. The results from the present study are the first to demonstrate that MEHP stimulates oxidative stress responses in placental cells. Furthermore, the MEHP concentrations used were within an order of magnitude of the highest concentrations measured previously in human umbilical cord or maternal serum. The findings from the current study warrant future mechanistic studies of oxidative stress, apoptosis, and prostaglandins as molecular mediators of DEHP/MEHP-associated adverse pregnancy outcomes. - Highlights: ► MEHP increased reactive oxygen species, oxidative DNA damage, and caspase activity. ► MEHP induced expression of PTGS2, a gene

  2. Mono-2-ethylhexyl phthalate induces oxidative stress responses in human placental cells in vitro

    Tetz, Lauren M., E-mail: ltetz@umich.edu [Department of Environmental Health Sciences, University of Michigan, 1415 Washington Heights, Ann Arbor, MI 48109-2029 (United States); Cheng, Adrienne A.; Korte, Cassandra S. [Department of Environmental Health Sciences, University of Michigan, 1415 Washington Heights, Ann Arbor, MI 48109-2029 (United States); Giese, Roger W.; Wang, Poguang [Department of Pharmaceutical Sciences, Northeastern University, 360 Huntingon Ave, Boston, MA 02115 (United States); Harris, Craig; Meeker, John D.; Loch-Caruso, Rita [Department of Environmental Health Sciences, University of Michigan, 1415 Washington Heights, Ann Arbor, MI 48109-2029 (United States)

    2013-04-01

    Di-2-ethylhexyl phthalate (DEHP) is an environmental contaminant commonly used as a plasticizer in polyvinyl chloride products. Exposure to DEHP has been linked to adverse pregnancy outcomes in humans including preterm birth, low birth-weight, and pregnancy loss. Although oxidative stress is linked to the pathology of adverse pregnancy outcomes, effects of DEHP metabolites, including the active metabolite, mono-2-ethylhexyl phthalate (MEHP), on oxidative stress responses in placental cells have not been previously evaluated. The objective of the current study is to identify MEHP-stimulated oxidative stress responses in human placental cells. We treated a human placental cell line, HTR-8/SVneo, with MEHP and then measured reactive oxygen species (ROS) generation using the dichlorofluorescein assay, oxidized thymine with mass-spectrometry, redox-sensitive gene expression with qRT-PCR, and apoptosis using a luminescence assay for caspase 3/7 activity. Treatment of HTR-8 cells with 180 μM MEHP increased ROS generation, oxidative DNA damage, and caspase 3/7 activity, and resulted in differential expression of redox-sensitive genes. Notably, 90 and 180 μM MEHP significantly induced mRNA expression of prostaglandin-endoperoxide synthase 2 (PTGS2), an enzyme important for synthesis of prostaglandins implicated in initiation of labor. The results from the present study are the first to demonstrate that MEHP stimulates oxidative stress responses in placental cells. Furthermore, the MEHP concentrations used were within an order of magnitude of the highest concentrations measured previously in human umbilical cord or maternal serum. The findings from the current study warrant future mechanistic studies of oxidative stress, apoptosis, and prostaglandins as molecular mediators of DEHP/MEHP-associated adverse pregnancy outcomes. - Highlights: ► MEHP increased reactive oxygen species, oxidative DNA damage, and caspase activity. ► MEHP induced expression of PTGS2, a gene

  3. Expression of Selected Ginkgo biloba Heat Shock Protein Genes After Cold Treatment Could Be Induced by Other Abiotic Stress

    Feng Xu

    2012-05-01

    Full Text Available Heat shock proteins (HSPs play various stress-protective roles in plants. In this study, three HSP genes were isolated from a suppression subtractive hybridization (SSH cDNA library of Ginkgo biloba leaves treated with cold stress. Based on the molecular weight, the three genes were designated GbHSP16.8, GbHSP17 and GbHSP70. The full length of the three genes were predicted to encode three polypeptide chains containing 149 amino acids (Aa, 152 Aa, and 657 Aa, and their corresponding molecular weights were predicted as follows: 16.67 kDa, 17.39 kDa, and 71.81 kDa respectively. The three genes exhibited distinctive expression patterns in different organs or development stages. GbHSP16.8 and GbHSP70 showed high expression levels in leaves and a low level in gynoecia, GbHSP17 showed a higher transcription in stamens and lower level in fruit. This result indicates that GbHSP16.8 and GbHSP70 may play important roles in Ginkgo leaf development and photosynthesis, and GbHSP17 may play a positive role in pollen maturation. All three GbHSPs were up-regulated under cold stress, whereas extreme heat stress only caused up-regulation of GbHSP70, UV-B treatment resulted in up-regulation of GbHSP16.8 and GbHSP17, wounding treatment resulted in up-regulation of GbHSP16.8 and GbHSP70, and abscisic acid (ABA treatment caused up-regulation of GbHSP70 primarily.

  4. Biological Networks Underlying Abiotic Stress Tolerance in Temperate Crops—A Proteomic Perspective

    Klára Kosová

    2015-09-01

    Full Text Available Abiotic stress factors, especially low temperatures, drought, and salinity, represent the major constraints limiting agricultural production in temperate climate. Under the conditions of global climate change, the risk of damaging effects of abiotic stresses on crop production increases. Plant stress response represents an active process aimed at an establishment of novel homeostasis under altered environmental conditions. Proteins play a crucial role in plant stress response since they are directly involved in shaping the final phenotype. In the review, results of proteomic studies focused on stress response of major crops grown in temperate climate including cereals: common wheat (Triticum aestivum, durum wheat (Triticum durum, barley (Hordeum vulgare, maize (Zea mays; leguminous plants: alfalfa (Medicago sativa, soybean (Glycine max, common bean (Phaseolus vulgaris, pea (Pisum sativum; oilseed rape (Brassica napus; potato (Solanum tuberosum; tobacco (Nicotiana tabaccum; tomato (Lycopersicon esculentum; and others, to a wide range of abiotic stresses (cold, drought, salinity, heat, imbalances in mineral nutrition and heavy metals are summarized. The dynamics of changes in various protein functional groups including signaling and regulatory proteins, transcription factors, proteins involved in protein metabolism, amino acid metabolism, metabolism of several stress-related compounds, proteins with chaperone and protective functions as well as structural proteins (cell wall components, cytoskeleton are briefly overviewed. Attention is paid to the differences found between differentially tolerant genotypes. In addition, proteomic studies aimed at proteomic investigation of multiple stress factors are discussed. In conclusion, contribution of proteomic studies to understanding the complexity of crop response to abiotic stresses as well as possibilities to identify and utilize protein markers in crop breeding processes are discussed.

  5. Distinctive Oxidative Stress Responses to Hydrogen Peroxide in Sulfate Reducing Bacteria Desulfovibrio vulgaris Hildenborough

    Zhou, Aifen; He, Zhili; Redding, A.M.; Mukhopadhyay, Aindrila; Hemme, Christopher L.; Joachimiak, Marcin P.; Bender, Kelly S.; Keasling, Jay D.; Stahl, David A.; Fields, Matthew W.; Hazen, Terry C.; Arkin, Adam P.; Wall, Judy D.; Zhou, Jizhong

    2009-01-01

    Response of Desulfovibrio vulgaris Hildenborough to hydrogen peroxide (H2O2, 1 mM) was investigated with transcriptomic, proteomic and genetic approaches. Microarray data demonstrated that gene expression was extensively affected by H2O2 with the response peaking at 120 min after H2O2 treatment. Genes affected include those involved with energy production, sulfate reduction, ribosomal structure and translation, H2O2 scavenging, posttranslational modification and DNA repair as evidenced by gene coexpression networks generated via a random matrix-theory based approach. Data from this study support the hypothesis that both PerR and Fur play important roles in H2O2-induced oxidative stress response. First, both PerR and Fur regulon genes were significantly up-regulated. Second, predicted PerR regulon genes ahpC and rbr2 were derepressedin Delta PerR and Delta Fur mutants and induction of neither gene was observed in both Delta PerR and Delta Fur when challenged with peroxide, suggesting possible overlap of these regulons. Third, both Delta PerR and Delta Fur appeared to be more tolerant of H2O2 as measured by optical density. Forth, proteomics data suggested de-repression of Fur during the oxidative stress response. In terms of the intracellular enzymatic H2O2 scavenging, gene expression data suggested that Rdl and Rbr2 may play major roles in the detoxification of H2O2. In addition, induction of thioredoxin reductase and thioredoxin appeared to be independent of PerR and Fur. Considering all data together, D. vulgaris employed a distinctive stress resistance mechanism to defend against increased cellular H2O2, and the temporal gene expression changes were consistent with the slowdown of cell growth at the onset of oxidative stress.

  6. Genome-wide analysis and expression patterns of ZF-HD transcription factors under different developmental tissues and abiotic stresses in Chinese cabbage.

    Wang, Wenli; Wu, Peng; Li, Ying; Hou, XiLin

    2016-06-01

    The ZF-HD gene family plays an important role in plant developmental processes and stress responses. However, the function of the ZF-HD genes in Chinese cabbage remains largely unknown. Chinese cabbage (Brassica rapa ssp. pekinensis) is a member of one of the most important leaf vegetables grown worldwide. The entire Chinese cabbage genome sequence has been determined, and more than forty thousand proteins have been identified to date. In this study, 31 ZF-HD genes were identified in Chinese cabbage. We show here that the BraZF-HD genes could be categorized into ZHD and MIF subfamilies. Among them, ZHD genes are plant-specific, nearly all intronless, and related to MINI ZINC FINGER genes that possess only the zinc finger. Phylogenetic analysis suggested that ZHDs have expanded considerably during angiosperm evolution. In addition, the ZHD group has 24 members, which is twice as much as the Arabidopsis ZHD group, indicating that the Chinese cabbage ZHD genes have been retained more frequently than other group genes. Real-time PCR analysis showed that most of BraZF-HD genes are preferentially expressed in flower. Furthermore, most of these genes are significantly induced under photoperiod or vernalization conditions, as well as abiotic stresses. Thereby implying that they may play important roles in these processes. This study provides insight into the evolution of ZF-HD genes in Chinese cabbage genome and may aid efforts to further characterize the function of these predicted ZF-HD genes in flowering and resistance. PMID:26546019

  7. Role of the Stringent Stress Response in the Antibiotic Resistance Phenotype of Methicillin-Resistant Staphylococcus aureus.

    Aedo, Sandra; Tomasz, Alexander

    2016-04-01

    Resistance to beta-lactam antibiotics in methicillin-resistantStaphylococcus aureus(MRSA) requires the presence of an acquired genetic determinant,mecAormecC, which encode penicillin-binding protein PBP2A or PBP2A', respectively. Although all MRSA strains share a mechanism of resistance, the phenotypic expression of beta-lactam resistance shows considerable strain-to-strain variation. The stringent stress response, a stress response that results from nutrient limitation, was shown to play a key role in determining the resistance level of an MRSA strain. In the present study, we validated the impact of the stringent stress response on transcription and translation ofmecAin the MRSA clinical isolate strain N315, which also carries known regulatory genes (mecI/mecR1/mecR2andblaI/blaR1) formecAtranscription. We showed that the impact of the stringent stress response on the resistance level may be restricted to beta-lactam resistance based on a "foreign" determinant such asmecA, as opposed to resistance based on mutations in the nativeS. aureusdeterminantpbpB(encoding PBP2). Our observations demonstrate that high-level resistance mediated by the stringent stress response follows the current model of beta-lactam resistance in which the native PBP2 protein is also essential for expression of the resistance phenotype. We also show that theStaphylococcus sciuri pbpDgene (also calledmecAI), the putative evolutionary precursor ofmecA, confers oxacillin resistance in anS. aureusstrain, generating a heterogeneous phenotype that can be converted to high and homogenous resistance by induction of the stringent stress response in the bacteria. PMID:26833147

  8. The Critical Role of Potassium in Plant Stress Response

    Min Wang

    2013-04-01

    Full Text Available Agricultural production continues to be constrained by a number of biotic and abiotic factors that can reduce crop yield quantity and quality. Potassium (K is an essential nutrient that affects most of the biochemical and physiological processes that influence plant growth and metabolism. It also contributes to the survival of plants exposed to various biotic and abiotic stresses. The following review focuses on the emerging role of K in defending against a number of biotic and abiotic stresses, including diseases, pests, drought, salinity, cold and frost and waterlogging. The availability of K and its effects on plant growth, anatomy, morphology and plant metabolism are discussed. The physiological and molecular mechanisms of K function in plant stress resistance are reviewed. This article also evaluates the potential for improving plant stress resistance by modifying K fertilizer inputs and highlights the future needs for research about the role of K in agriculture.

  9. Global analysis of WRKY transcription factor superfamily in Setaria identifies potential candidates involved in abiotic stress signalling

    Mehanathan eMuthamilarasan

    2015-10-01

    Full Text Available Transcription factors (TFs are major players in stress signalling and constitute an integral part of signalling networks. Among the major TFs, WRKY proteins play pivotal roles in regulation of transcriptional reprogramming associated with stress responses. In view of this, genome- and transcriptome-wide identification of WRKY TF family was performed in the C4 model plants, Setaria italica (SiWRKY and S. viridis (SvWRKY, respectively. The study identified 105 SiWRKY and 44 SvWRKY proteins that were computationally analysed for their physicochemical properties. Sequence alignment and phylogenetic analysis classified these proteins into three major groups, namely I, II and III with majority of WRKY proteins belonging to group II (53 SiWRKY and 23 SvWRKY, followed by group III (39 SiWRKY and 11 SvWRKY and group I (10 SiWRKY and 6 SvWRKY. Group II proteins were further classified into 5 subgroups (IIa to IIe based on their phylogeny. Domain analysis showed the presence of WRKY motif and zinc finger-like structures in these proteins along with additional domains in a few proteins. All SiWRKY genes were physically mapped on the S. italica genome and their duplication analysis revealed that 10 and 8 gene pairs underwent tandem and segmental duplications, respectively. Comparative mapping of SiWRKY and SvWRKY genes in related C4 panicoid genomes demonstrated the orthologous relationships between these genomes. In silico expression analysis of SiWRKY and SvWRKY genes showed their differential expression patterns in different tissues and stress conditions. Expression profiling of candidate SiWRKY genes in response to stress (dehydration and salinity and hormone treatments (abscisic acid, salicylic acid and methyl jasmonate suggested the putative involvement of SiWRKY066 and SiWRKY082 in stress and hormone signalling. These genes could be potential candidates for further characterization to delineate their functional roles in abiotic stress signalling.

  10. Cyclic nucleotide-gated ion channel gene family in rice, identification, characterization and experimental analysis of expression response to plant hormones, biotic and abiotic stresses

    Nawaz, Zarqa; Kakar, Kaleem Ullah; Saand, Mumtaz A.; Shu, Qing-yao

    2014-01-01

    Background Cyclic nucleotide-gated channels (CNGCs) are Ca2+-permeable cation transport channels, which are present in both animal and plant systems. They have been implicated in the uptake of both essential and toxic cations, Ca2+ signaling, pathogen defense, and thermotolerance in plants. To date there has not been a genome-wide overview of the CNGC gene family in any economically important crop, including rice (Oryza sativa L.). There is an urgent need for a thorough genome-wide analysis a...

  11. Basal transcription machinery: role in regulation of stress response in eukaryotes

    Parag Sadhale; Jiyoti Verma; Aruna Naorem

    2007-04-01

    The holoenzyme of prokaryotic RNA polymerase consists of the core enzyme, made of two , , ’ and subunits, which lacks promoter selectivity and a sigma () subunit which enables the core enzyme to initiate transcription in a promoter dependent fashion. A stress sigma factor s, in prokaryotes seems to regulate several stress response genes in conjunction with other stress specific regulators. Since the basic principles of transcription are conserved from simple bacteria to multicellular complex organisms, an obvious question is: what is the identity of a counterpart of s, that is closest to the core polymerase and that dictates transcription of stress regulated genes in general? In this review, we discuss the logic behind the suggestion that like in prokaryotes, eukaryotes also have a common functional unit in the transcription machinery through which the stress specific transcription factors regulate rapid and highly controlled induction of gene expression associated with generalized stress response and point to some candidates that would fit the bill of the eukaryotic s.

  12. The Plant Cell Wall: A Complex and Dynamic Structure As Revealed by the Responses of Genes under Stress Conditions

    Houston, Kelly; Tucker, Matthew R.; Chowdhury, Jamil; Shirley, Neil; Little, Alan

    2016-01-01

    The plant cell wall has a diversity of functions. It provides a structural framework to support plant growth and acts as the first line of defense when the plant encounters pathogens. The cell wall must also retain some flexibility, such that when subjected to developmental, biotic, or abiotic stimuli it can be rapidly remodeled in response. Genes encoding enzymes capable of synthesizing or hydrolyzing components of the plant cell wall show differential expression when subjected to different stresses, suggesting they may facilitate stress tolerance through changes in cell wall composition. In this review we summarize recent genetic and transcriptomic data from the literature supporting a role for specific cell wall-related genes in stress responses, in both dicot and monocot systems. These studies highlight that the molecular signatures of cell wall modification are often complex and dynamic, with multiple genes appearing to respond to a given stimulus. Despite this, comparisons between publically available datasets indicate that in many instances cell wall-related genes respond similarly to different pathogens and abiotic stresses, even across the monocot-dicot boundary. We propose that the emerging picture of cell wall remodeling during stress is one that utilizes a common toolkit of cell wall-related genes, multiple modifications to cell wall structure, and a defined set of stress-responsive transcription factors that regulate them. PMID:27559336

  13. Jasmonates: signal transduction components and their roles in environmental stress responses.

    Goossens, Jonas; Fernández-Calvo, Patricia; Schweizer, Fabian; Goossens, Alain

    2016-08-01

    Jasmonates, oxylipin-type plant hormones, are implicated in diverse aspects of plant growth development and interaction with the environment. Following diverse developmental and environmental cues, jasmonate is produced, conjugated to the amino acid isoleucine and perceived by a co-receptor complex composed of the Jasmonate ZIM-domain (JAZ) repressor proteins and an E3 ubiquitin ligase complex containing the F-box CORONATINE INSENSITIVE 1 (COI1). This event triggers the degradation of the JAZ proteins and the release of numerous transcription factors, including MYC2 and its homologues, which are otherwise bound and inhibited by the JAZ repressors. Here, we will review the role of the COI1, JAZ and MYC2 proteins in the interaction of the plant with its environment, illustrating the significance of jasmonate signalling, and of the proteins involved, for responses to both biotic stresses caused by insects and numerous microbial pathogens and abiotic stresses caused by adverse climatic conditions. It has also become evident that crosstalk with other hormone signals, as well as light and clock signals, plays an important role in the control and fine-tuning of these stress responses. Finally, we will discuss how several pathogens exploit the jasmonate perception and early signalling machinery to decoy the plants defence systems. PMID:27086135

  14. A proteomic analysis of storage stress responses in Ipomoea batatas (L.) Lam. tuberous root.

    Jiang, Yusong; Chen, Cheng; Tao, Xiang; Wang, Jianxi; Zhang, Yizheng

    2012-08-01

    During post-harvest storage, tuberous roots of sweet potato (Ipomoea batatas L. Lam.) usually undergo a biotic and abiotic stress influencing protein expression pattern and substance contents. This research compared the change of total proteins and carbohydrate content in tuberous roots of sweet potato during the storage period. The result of the two-dimensional electrophoresis analysis demonstrated that there were 25 differentially expressed proteins between day 0 and day 75 during the storage. Among these proteins, 11 proteins were down-regulated and the other 14 were up-regulated. The results from MALDI-TOF-TOF/MS analyses and mascot database searching showed that 11 of the 25 differentially expressed proteins were identified as store-stress regulated proteins. It was also found that the proteins involved in the energy metabolism and the stress-response were drastically up-regulated, whereas those in biomacromolecule synthesis were markedly down-regulated. Meanwhile, under the experimental conditions, the content of the starch and the cellulose was decreased by more than a quarter and the amylase activity was increased moderately. PMID:22547271

  15. Genome wide identification of C1-2i zinc finger proteins and their response to abiotic stress in hexaploid wheat.

    Cheuk, Arnaud; Houde, Mario

    2016-04-01

    The C1-2i wheat Q-type C2H2 zinc finger protein (ZFP) transcription factor subclass has been reported to play important roles in plant stress responses. This subclass of ZFPs has not been studied in hexaploid wheat (Triticum aestivum) and we aimed to identify all members of this subclass and evaluate their responses to different abiotic stresses causing oxidative stress. Exploiting the recently published wheat draft genome sequence, we identified 53 members (including homoeologs from A, B and D genomes) of the C1-2i wheat Q-type C2H2 ZFPs (TaZFPs) representing 21 genes. Evolution analysis revealed that 9 TaZFPs members are directly inherited from the parents Triticum urartu and Aegilops tauschii, while 15 diverged through neoploidization events. This TaZFP subclass is responsive to the oxidative stress generator H2O2 and to high light, drought stress and flooding. Most TaZFPs are responsive to H2O2 (37/53), high light (44/53), flooding (31/53) or drought (37/53); 32 TaZFPs were up-regulated by at least 3 stresses and 16 were responsive to all stresses tested. A large number of these TaZFPs were physically mapped on different wheat draft genome sequences with known markers useful for QTL mapping. Our results show that the C1-2i subclass of TaZFPs is associated with responses to different abiotic stresses and that most TaZFPs (30/53 or 57 %) are located on group 5 chromosomes known to be involved in environment adaptation. Detailed characterization of these novel wheat TaZFPs and their association to QTL or eQTL may help to design wheat cultivars with improved tolerance to abiotic stress. PMID:26638714

  16. Role of adipokinetic hormone and adenosine in the anti-stress response in Drosophila melanogaster.

    Zemanová, Milada; Stašková, Tereza; Kodrík, Dalibor

    2016-01-01

    The role of adipokinetic hormone (AKH) and adenosine in the anti-stress response was studied in Drosophila melanogaster larvae and adults carrying a mutation in the Akh gene (Akh(1)), the adenosine receptor gene (AdoR(1)), or in both of these genes (Akh(1) AdoR(1) double mutant). Stress was induced by starvation or by the addition of an oxidative stressor paraquat (PQ) to food. Mortality tests revealed that the Akh(1) mutant was the most resistant to starvation, while the AdoR(1) mutant was the most sensitive. Conversely, the Akh(1) AdoR(1) double mutant was more sensitive to PQ toxicity than either of the single mutants. Administration of PQ significantly increased the Drome-AKH level in w(1118) and AdoR(1) larvae; however, this was not accompanied by a simultaneous increase in Akh gene expression. In contrast, PQ significantly increased the expression of the glutathione S-transferase D1 (GstD1) gene. The presence of both a functional adenosine receptor and AKH seem to be important for the proper control of GstD1 gene expression under oxidative stress, however, the latter appears to play more dominant role. On the other hand, differences in glutathione S-transferase (GST) activity among the strains, and between untreated and PQ-treated groups were minimal. In addition, the glutathione level was significantly lower in all untreated AKH- or AdoR-deficient mutant flies as compared with the untreated control w(1118) flies and further declined following treatment with PQ. All oxidative stress characteristics modified by mutations in Akh gene were restored or even improved by 'rescue' mutation in flies which ectopically express Akh. Thus, the results of the present study demonstrate the important roles of AKH and adenosine in the anti-stress response elicited by PQ in a D. melanogaster model, and provide the first evidence for the involvement of adenosine in the anti-oxidative stress response in insects. PMID:27374982

  17. Oxidative stress response after laparoscopic versus conventional sigmoid resection

    Madsen, Michael Tvilling; Kücükakin, Bülent; Lykkesfeldt, Jens; Rosenberg, Jacob; Gögenur, Ismail

    2012-01-01

    Surgery is accompanied by a surgical stress response, which results in increased morbidity and mortality. Oxidative stress is a part of the surgical stress response. Minimally invasive laparoscopic surgery may result in reduced oxidative stress compared with open surgery. Nineteen patients......, 1 h, 6 h, 24 h, 48 h, and 72 h postoperatively). There were no statistical significant differences between laparoscopic and open surgery for any of the 3 oxidative stress parameters. Malondialdehyde was reduced 1 hour postoperatively (P...... scheduled for sigmoid resection were randomly allocated to open or laparoscopic sigmoid resection in a double-blind, prospective clinical trial. Three biochemical markers of oxidative stress (malondialdehyde, ascorbic acid, and dehydroascorbic acid) were measured at 6 different time points (preoperatively...

  18. Physiological roles of plastid terminal oxidase in plant stress responses

    Xin Sun; Tao Wen

    2011-12-01

    The plastid terminal oxidase (PTOX) is a plastoquinol oxidase localized in the plastids of plants. It is able to transfer electrons from plastoquinone (PQ) to molecular oxygen with the formation of water. Recent studies have suggested that PTOX is beneficial for plants under environmental stresses, since it is involved in the synthesis of photoprotective carotenoids and chlororespiration, which could potentially protect the chloroplast electron transport chain (ETC) from over-reduction. The absence of PTOX in plants usually results in photo-bleached variegated leaves and impaired adaptation to environment alteration. Although PTOX level and activity has been found to increase under a wide range of stress conditions, the functions of plant PTOX in stress responses are still disputed now. In this paper, the possible physiological roles of PTOX in plant stress responses are discussed based on the recent progress.

  19. Contribution of the drought tolerance-related Stress-responsive NAC1 transcription factor to resistance of barley to Ramularia leaf spot

    McGrann, Graham R. D.; STEED, ANDREW; BURT, CHRISTOPHER; Goddard, Rachel; LACHAUX, CLEA; Bansal, Anuradha; CORBITT, MARGARET; GORNIAK, KALINA; Nicholson, Paul; James K.M. Brown

    2014-01-01

    NAC proteins are plant transcription factors that are involved in tolerance to abiotic and biotic stresses, as well as in many developmental processes. Stress-responsive NAC1 (SNAC1) transcription factor is involved in drought tolerance in barley and rice, but has not been shown previously to have a role in disease resistance. Transgenic over-expression of HvSNAC1 in barley cv. Golden Promise reduced the severity of Ramularia leaf spot (RLS), caused by the fungus Ramularia collo-cygni, but ha...

  20. Stress Generation and Adolescent Depression: Contribution of Interpersonal Stress Responses

    Flynn, Megan; Rudolph, Karen D.

    2011-01-01

    This research examined the proposal that ineffective responses to common interpersonal problems disrupt youths’ relationships, which, in turn, contributes to depression during adolescence. Youth (86 girls, 81 boys; M age = 12.41, SD = 1.19) and their primary female caregivers participated in a three-wave longitudinal study. Youth completed a measure assessing interpersonal stress responses; youth and caregivers completed semi-structured interviews assessing youths’ life stress and psychopatho...

  1. An overview of stress response proteomes in Listeria monocytogenes

    Soni, K A; Nannapaneni, R; Tasara, T

    2011-01-01

    Listeria monocytogenes adapts to diverse stress conditions including cold, osmotic, heat, acid, and alkali stresses encountered during food processing and preservation which is a serious food safety threat. In this review, we have presented the major findings on this bacterium’s stress response proteomes to date along with the different approaches used for its proteomic analysis. The key proteome findings on cold, heat shock, salt, acid, alkaline and HHP stresses illustrate that the cellular ...

  2. Proteomic studies of drought stress response in Fabaceae

    Zadražnik, Tanja; Jelka ŠUŠTAR-VOZLIČ

    2015-01-01

    Drought stress is a serious threat to crop production that influences plant growth and development and subsequently causes reduced quantity and quality of the yield. Plant stress induces changes in cell metabolism, which includes differential expression of proteins. Proteomics offer a powerful approach to analyse proteins involved in drought stress response of plants. Analyses of changes in protein abundance of legumes under drought stress are very important, as legumes play an important role...

  3. Boolean modeling and fault diagnosis in oxidative stress response

    Sridharan Sriram; Layek Ritwik; Datta Aniruddha; Venkatraj Jijayanagaram

    2012-01-01

    Abstract Background Oxidative stress is a consequence of normal and abnormal cellular metabolism and is linked to the development of human diseases. The effective functioning of the pathway responding to oxidative stress protects the cellular DNA against oxidative damage; conversely the failure of the oxidative stress response mechanism can induce aberrant cellular behavior leading to diseases such as neurodegenerative disorders and cancer. Thus, understanding the normal signaling present in ...

  4. Nitrosative and oxidative stress responses in fungal pathogenicity

    Brown, Alistair JP; Haynes, Ken; Quinn, Janet

    2009-01-01

    Fungal pathogenicity has arisen in polyphyletic manner during evolution, yielding fungal pathogens with diverse infection strategies and with differing degrees of evolutionary adaptation to their human host. Not surprisingly, these fungal pathogens display differing degrees of resistance to the reactive oxygen and nitrogen species used by human cells to counteract infection. Furthermore, whilst evolutionarily conserved regulators, such as Hog1, are central to such stress responses in many fun...

  5. Stress response and mode of ventilation in preterm infants

    Quinn, M.; de Boer, R C; Ansari, N.; Baumer, J

    1998-01-01

    AIM—To assess the change in stress response in preterm babies changed from patient triggered ventilation (PTV) to conventional mandatory ventilation (CMV) and vice versa; to determine outcome in relation to stress hormone concentrations.
METHODS—A randomised controlled study was conducted in two district general hospital neonatal intensive care units. Thirty babies, treated initially with CMV, were randomly assigned to remain on CMV or to change to PTV. A second group of 29 ...

  6. The cytochrome c oxidase biogenesis factor AtCOX17 modulates stress responses in Arabidopsis.

    Garcia, Lucila; Welchen, Elina; Gey, Uta; Arce, Agustín L; Steinebrunner, Iris; Gonzalez, Daniel H

    2016-03-01

    COX17 is a soluble protein from the mitochondrial intermembrane space that participates in the transfer of copper for cytochrome c oxidase (COX) assembly in eukaryotic organisms. In this work, we studied the function of both Arabidopsis thaliana AtCOX17 genes using plants with altered expression levels of these genes. Silencing of AtCOX17-1 in a cox17-2 knockout background generates plants with smaller rosettes and decreased expression of genes involved in the response of plants to different stress conditions, including several genes that are induced by mitochondrial dysfunctions. Silencing of either of the AtCOX17 genes does not affect plant development or COX activity but causes a decrease in the response of genes to salt stress. In addition, these plants contain higher reactive oxygen and lipid peroxidation levels after irrigation with high NaCl concentrations and are less sensitive to abscisic acid. In agreement with a role of AtCOX17 in stress and abscisic acid responses, both AtCOX17 genes are induced by several stress conditions, abscisic acid and mutation of the transcription factor ABI4. The results indicate that AtCOX17 is required for optimal expression of a group of stress-responsive genes, probably as a component of signalling pathways that link stress conditions to gene expression responses. PMID:26436309

  7. Deduction and Analysis of the Interacting Stress Response Pathways of Metal/Radionuclide-reducing Bacteria

    Zhou, Jizhong [University of Oklahoma; He, Zhili [University of Oklahoma

    2010-02-28

    Project Title: Deduction and Analysis of the Interacting Stress Response Pathways of Metal/Radionuclide-reducing Bacteria DOE Grant Number: DE-FG02-06ER64205 Principal Investigator: Jizhong (Joe) Zhou (University of Oklahoma) Key members: Zhili He, Aifen Zhou, Christopher Hemme, Joy Van Nostrand, Ye Deng, and Qichao Tu Collaborators: Terry Hazen, Judy Wall, Adam Arkin, Matthew Fields, Aindrila Mukhopadhyay, and David Stahl Summary Three major objectives have been conducted in the Zhou group at the University of Oklahoma (OU): (i) understanding of gene function, regulation, network and evolution of Desulfovibrio vugaris Hildenborough in response to environmental stresses, (ii) development of metagenomics technologies for microbial community analysis, and (iii) functional characterization of microbial communities with metagenomic approaches. In the past a few years, we characterized four CRP/FNR regulators, sequenced ancestor and evolved D. vulgaris strains, and functionally analyzed those mutated genes identified in salt-adapted strains. Also, a new version of GeoChip 4.0 has been developed, which also includes stress response genes (StressChip), and a random matrix theory-based conceptual framework for identifying functional molecular ecological networks has been developed with the high throughput functional gene array hybridization data as well as pyrosequencing data from 16S rRNA genes. In addition, GeoChip and sequencing technologies as well as network analysis approaches have been used to analyze microbial communities from different habitats. Those studies provide a comprehensive understanding of gene function, regulation, network, and evolution in D. vulgaris, and microbial community diversity, composition and structure as well as their linkages with environmental factors and ecosystem functioning, which has resulted in more than 60 publications.

  8. Stress Response and Perinatal Reprogramming: Unraveling (Mal)adaptive Strategies.

    Musazzi, Laura; Marrocco, Jordan

    2016-01-01

    Environmental stressors induce coping strategies in the majority of individuals. The stress response, involving the activation of the hypothalamic-pituitary-adrenocortical axis and the consequent release of corticosteroid hormones, is indeed aimed at promoting metabolic, functional, and behavioral adaptations. However, behavioral stress is also associated with fast and long-lasting neurochemical, structural, and behavioral changes, leading to long-term remodeling of glutamate transmission, and increased susceptibility to neuropsychiatric disorders. Of note, early-life events, both in utero and during the early postnatal life, trigger reprogramming of the stress response, which is often associated with loss of stress resilience and ensuing neurobehavioral (mal)adaptations. Indeed, adverse experiences in early life are known to induce long-term stress-related neuropsychiatric disorders in vulnerable individuals. Here, we discuss recent findings about stress remodeling of excitatory neurotransmission and brain morphology in animal models of behavioral stress. These changes are likely driven by epigenetic factors that lie at the core of the stress-response reprogramming in individuals with a history of perinatal stress. We propose that reprogramming mechanisms may underlie the reorganization of excitatory neurotransmission in the short- and long-term response to stressful stimuli. PMID:27057367

  9. A wheat PI4K gene whose product possesses threonine autophophorylation activity confers tolerance to drought and salt in Arabidopsis

    Liu, Pei; Xu, Zhao-Shi; Pan-Pan, Lu; Hu, Di; Chen, Ming; Li, Lian-Cheng; Ma, You-Zhi

    2013-01-01

    Phosphoinositides are involved in regulation of recruitment and activity of signalling proteins in cell membranes. Phosphatidylinositol (PI) 4-kinases (PI4Ks) generate PI4-phosphate the precursor of regulatory phosphoinositides. No type II PI4K research on the abiotic stress response has previously been reported in plants. A stress-inducible type II PI4K gene, named TaPI4KIIγ, was obtained by de novo transcriptome sequencing of drought-treated wheat (Triticum aestivum). TaPI4KIIγ, localized o...

  10. Canonical Modeling of the Multi-Scale Regulation of the Heat Stress Response in Yeast

    Luis L. Fonseca

    2012-02-01

    Full Text Available Heat is one of the most fundamental and ancient environmental stresses, and response mechanisms are found in prokaryotes and shared among most eukaryotes. In the budding yeast Saccharomyces cerevisiae, the heat stress response involves coordinated changes at all biological levels, from gene expression to protein and metabolite abundances, and to temporary adjustments in physiology. Due to its integrative multi-level-multi-scale nature, heat adaptation constitutes a complex dynamic process, which has forced most experimental and modeling analyses in the past to focus on just one or a few of its aspects. Here we review the basic components of the heat stress response in yeast and outline what has been done, and what needs to be done, to merge the available information into computational structures that permit comprehensive diagnostics, interrogation, and interpretation. We illustrate the process in particular with the coordination of two metabolic responses, namely the dramatic accumulation of the protective disaccharide trehalose and the substantial change in the profile of sphingolipids, which in turn affect gene expression. The proposed methods primarily use differential equations in the canonical modeling framework of Biochemical Systems Theory (BST, which permits the relatively easy construction of coarse, initial models even in systems that are incompletely characterized.

  11. Genome-wide identification and expression analysis of the polyamine oxidase gene family in sweet orange (Citrus sinensis).

    Wang, Wei; Liu, Ji-Hong

    2015-01-25

    Polyamine oxidases (PAOs) are FAD-dependent enzymes associated with polyamine catabolism. In plants, increasing evidences support that PAO genes play essential roles in abiotic and biotic stresses response. In this study, six putative PAO genes (CsPAO1-CsPAO6) were unraveled in sweet orange (Citrus sinensis) using the released citrus genome sequences. A total of 203 putative cis-regulatory elements involved in hormone and stress response were predicted in 1.5-kb promoter regions at the upstream of CsPAOs. The CsPAOs can be divided into four major groups, with similar organizations with their counterparts of Arabidopsis thaliana. Transcripts of CsPAOs were detected in leaf, stem, cotyledon, and root, with the highest levels detected in the roots. The CsPAOs displayed various responses to exogenous treatments with polyamines and ABA and were differentially altered by abiotic stresses, including cold, salt, and mannitol. Overexpression of CsPAO3 in tobacco demonstrated that spermidine and spermine were decreased in the transgenic line, while putrescine was significantly enhanced, implying a potential role of this gene in polyamine back conversion. These data provide valuable knowledge for understanding the roles of the PAO genes in the future. PMID:25445392

  12. Transcriptome Analysis of Salt Stress Responsiveness in the Seedlings of Dongxiang Wild Rice (Oryza rufipogon Griff..

    Yi Zhou

    Full Text Available Dongxiang wild rice (Oryza rufipogon Griff. is the progenitor of cultivated rice (Oryza sativa L., and is well known for its superior level of tolerance against cold, drought and diseases. To date, however, little is known about the salt-tolerant character of Dongxiang wild rice. To elucidate the molecular genetic mechanisms of salt-stress tolerance in Dongxiang wild rice, the Illumina HiSeq 2000 platform was used to analyze the transcriptome profiles of the leaves and roots at the seedling stage under salt stress compared with those under normal conditions. The analysis results for the sequencing data showed that 6,867 transcripts were differentially expressed in the leaves (2,216 up-regulated and 4,651 down-regulated and 4,988 transcripts in the roots (3,105 up-regulated and 1,883 down-regulated. Among these differentially expressed genes, the detection of many transcription factor genes demonstrated that multiple regulatory pathways were involved in salt stress tolerance. In addition, the differentially expressed genes were compared with the previous RNA-Seq analysis of salt-stress responses in cultivated rice Nipponbare, indicating the possible specific molecular mechanisms of salt-stress responses for Dongxiang wild rice. A large number of the salt-inducible genes identified in this study were co-localized onto fine-mapped salt-tolerance-related quantitative trait loci, providing candidates for gene cloning and elucidation of molecular mechanisms responsible for salt-stress tolerance in rice.

  13. The behavioural effects of predator-induced stress responses in the cricket (Gryllus texensis): the upside of the stress response.

    Adamo, Shelley A; Kovalko, Ilya; Mosher, Brianna

    2013-12-15

    Predator-induced stress responses are thought to reduce an animal's risk of being eaten. Therefore, these stress responses should enhance anti-predator behaviour. We found that individual insects (the cricket Gryllus texensis) show reliable behavioural responses (i.e. behavioural types) in a plus-shaped maze. An individual's behaviour in the plus maze remained consistent for at least 1/2 of its adult life. However, after exposure to a model predator, both male and female crickets showed a reduced period of immobility and an increased amount of time spent under shelter compared with controls. These changes could be mimicked by injections of the insect stress neurohormone octopamine. These behavioural changes probably aid crickets in evading predators. Exposure to a model predator increased the ability of crickets to escape a live predator (a bearded dragon, Pogona vitticeps). An injection of octopamine had the same effect, showing that stress hormones can reduce predation. Using crickets to study the fitness consequences of predator-induced stress responses will help integrate ecological and biomedical concepts of 'stress'. PMID:24307711

  14. Arabidopsis thaliana glyoxalase 2-1 is required during abiotic stress but is not essential under normal plant growth.

    Sriram Devanathan

    Full Text Available The glyoxalase pathway, which consists of the two enzymes, GLYOXALASE 1 (GLX 1 (E.C.: 4.4.1.5 and 2 (E.C.3.1.2.6, has a vital role in chemical detoxification. In Arabidopsis thaliana there are at least four different isoforms of glyoxalase 2, two of which, GLX2-1 and GLX2-4 have not been characterized in detail. Here, the functional role of Arabidopsis thaliana GLX2-1 is investigated. Glx2-1 loss-of-function mutants and plants that constitutively over-express GLX2-1 resemble wild-type plants under normal growth conditions. Insilico analysis of publicly available microarray datasets with ATTEDII, Mapman and Genevestigator indicate potential role(s in stress response and acclimation. Results presented here demonstrate that GLX2-1 gene expression is up-regulated in wild type Arabidopsis thaliana by salt and anoxia stress, and by excess L-Threonine. Additionally, a mutation in GLX2-1 inhibits growth and survival during abiotic stresses. Metabolic profiling studies show alterations in the levels of sugars and amino acids during threonine stress in the plants. Elevated levels of polyamines, which are known stress markers, are also observed. Overall our results suggest that Arabidopsis thaliana GLX2-1 is not essential during normal plant life, but is required during specific stress conditions.

  15. Ectopic Expression of an Atypical Hydrophobic Group 5 LEA Protein from Wild Peanut, Arachis diogoi Confers Abiotic Stress Tolerance in Tobacco.

    Akanksha Sharma

    Full Text Available Late embryogenesis abundant (LEA proteins are a group of hydrophilic proteins, which accumulate in plants under varied stress conditions like drought, salinity, extreme temperatures and oxidative stress suggesting their role in the protection of plants against these stresses. A transcript derived fragment (TDF corresponding to LEA gene, which got differentially expressed in wild peanut, Arachis diogoi against the late leaf spot pathogen, Phaeoisariopsis personata was used in this study. We have cloned its full length cDNA by RACE-PCR, which was designated as AdLEA. AdLEA belongs to the atypical Group 5C of LEA protein family as confirmed by sequence analysis. Group 5C LEA protein subfamily contains Pfam LEA_2 domain and is highly hydrophobic. In native conditions, expression of AdLEA was upregulated considerably upon hormonal and abiotic stress treatments emphasizing its role in abiotic stress tolerance. Subcellular localization studies showed that AdLEA protein is distributed in both nucleus and cytosol. Ectopic expression of AdLEA in tobacco resulted in enhanced tolerance of plants to dehydration, salinity and oxidative stress with the transgenic plants showing higher chlorophyll content and reduced lipid peroxidation as compared to wild type plants. Overexpressed AdLEA tobacco plants maintained better photosynthetic efficiency under drought conditions as demonstrated by chlorophyll fluorescence measurements. These plants showed enhanced transcript accumulation of some stress-responsive genes. Our study also elucidates that ROS levels were significantly reduced in leaves and stomatal guard cells of transgenic plants upon stress treatments. These results suggest that AdLEA confers multiple stress tolerance to plants, which make it a potential gene for genetic modification in plants.

  16. Ectopic Expression of an Atypical Hydrophobic Group 5 LEA Protein from Wild Peanut, Arachis diogoi Confers Abiotic Stress Tolerance in Tobacco.

    Sharma, Akanksha; Kumar, Dilip; Kumar, Sumit; Rampuria, Sakshi; Reddy, Attipalli R; Kirti, Pulugurtha Bharadwaja

    2016-01-01

    Late embryogenesis abundant (LEA) proteins are a group of hydrophilic proteins, which accumulate in plants under varied stress conditions like drought, salinity, extreme temperatures and oxidative stress suggesting their role in the protection of plants against these stresses. A transcript derived fragment (TDF) corresponding to LEA gene, which got differentially expressed in wild peanut, Arachis diogoi against the late leaf spot pathogen, Phaeoisariopsis personata was used in this study. We have cloned its full length cDNA by RACE-PCR, which was designated as AdLEA. AdLEA belongs to the atypical Group 5C of LEA protein family as confirmed by sequence analysis. Group 5C LEA protein subfamily contains Pfam LEA_2 domain and is highly hydrophobic. In native conditions, expression of AdLEA was upregulated considerably upon hormonal and abiotic stress treatments emphasizing its role in abiotic stress tolerance. Subcellular localization studies showed that AdLEA protein is distributed in both nucleus and cytosol. Ectopic expression of AdLEA in tobacco resulted in enhanced tolerance of plants to dehydration, salinity and oxidative stress with the transgenic plants showing higher chlorophyll content and reduced lipid peroxidation as compared to wild type plants. Overexpressed AdLEA tobacco plants maintained better photosynthetic efficiency under drought conditions as demonstrated by chlorophyll fluorescence measurements. These plants showed enhanced transcript accumulation of some stress-responsive genes. Our study also elucidates that ROS levels were significantly reduced in leaves and stomatal guard cells of transgenic plants upon stress treatments. These results suggest that AdLEA confers multiple stress tolerance to plants, which make it a potential gene for genetic modification in plants. PMID:26938884

  17. Modulation of NADH Levels by Arabidopsis Nudix Hydrolases, AtNUDX6 and 7, and the Respective Proteins Themselves Play Distinct Roles in the Regulation of Various Cellular Responses Involved in Biotic/Abiotic Stresses.

    Ogawa, Takahisa; Muramoto, Kohei; Takada, Risa; Nakagawa, Shouya; Shigeoka, Shigeru; Yoshimura, Kazuya

    2016-06-01

    Arabidopsis Nudix hydrolases, AtNUDX6 and 7, exhibit pyrophosphohydrolase activities toward NADH and contribute to the modulation of various defense responses, such as the poly(ADP-ribosyl)ation (PAR) reaction and salicylic acid (SA)-induced Nonexpresser of Pathogenesis-Related genes 1 (NPR1)-dependent defense pathway, against biotic and abiotic stresses. However, the mechanisms by which these enzymes regulate such cellular responses remain unclear. To clarify the functional role(s) of AtNUDX6 and 7 and NADH metabolism, we examined the effects of the transient expression of the active and inactive forms of AtNUDX6 and 7 under the control of an estrogen (ES)-inducible system on various stress responses. The transient expression of active AtNUDX6 and 7 proteins suppressed NADH levels and induced PAR activity, whereas that of their inactive forms did not, indicating the involvement of NADH metabolism in the regulation of the PAR reaction. A transcriptome analysis using KO-nudx6, KO-nudx7 and double KO-nudx6/7 plants, in which intracellular NADH levels increased, identified genes (NADH-responsive genes, NRGs) whose expression levels positively and negatively correlated with NADH levels. Many NRGs did not overlap with the genes whose expression was reported to be responsive to various types of oxidants and reductants, suggesting a novel role for intracellular NADH levels as a redox signaling cue. The active and inactive AtNUDX6 proteins induced the expression of thioredoxin-h5, the activator of NPR1 and SA-induced NPR1-dependent defense genes, while the active and inactive AtNUDX7 proteins suppressed the accumulation of SA and subsequent gene expression, indicating that AtNUDX6 and 7 proteins themselves play distinct roles in stress responses. PMID:27095738

  18. Abiotic stresses affect Trichoderma harzianum T39-induced resistance to downy mildew in grapevine.

    Roatti, Benedetta; Perazzolli, Michele; Gessler, Cesare; Pertot, Ilaria

    2013-12-01

    Enhancement of plant defense through the application of resistance inducers seems a promising alternative to chemical fungicides for controlling crop diseases but the efficacy can be affected by abiotic factors in the field. Plants respond to abiotic stresses with hormonal signals that may interfere with the mechanisms of induced systemic resistance (ISR) to pathogens. In this study, we exposed grapevines to heat, drought, or both to investigate the effects of abiotic stresses on grapevine resistance induced by Trichoderma harzianum T39 (T39) to downy mildew. Whereas the efficacy of T39-induced resistance was not affected by exposure to heat or drought, it was significantly reduced by combined abiotic stresses. Decrease of leaf water potential and upregulation of heat-stress markers confirmed that plants reacted to abiotic stresses. Basal expression of defense-related genes and their upregulation during T39-induced resistance were attenuated by abiotic stresses, in agreement with the reduced efficacy of T39. The evidence reported here suggests that exposure of crops to abiotic stress should be carefully considered to optimize the use of resistance inducers, especially in view of future global climate changes. Expression analysis of ISR marker genes could be helpful to identify when plants are responding to abiotic stresses, in order to optimize treatments with resistance inducers in field. PMID:23841621

  19. Comparative transcriptional analysis of clinically relevant heat stress response in Clostridium difficile strain 630.

    Nigel G Ternan

    Full Text Available Clostridium difficile is considered to be one of the most important causes of health care-associated infections worldwide. In order to understand more fully the adaptive response of the organism to stressful conditions, we examined transcriptional changes resulting from a clinically relevant heat stress (41 °C versus 37 °C in C. difficile strain 630 and identified 341 differentially expressed genes encompassing multiple cellular functional categories. While the transcriptome was relatively resilient to the applied heat stress, we noted upregulation of classical heat shock genes including the groEL and dnaK operons in addition to other stress-responsive genes. Interestingly, the flagellin gene (fliC was downregulated, yet genes encoding the cell-wall associated flagellar components were upregulated suggesting that while motility may be reduced, adherence--to mucus or epithelial cells--could be enhanced during infection. We also observed that a number of phage associated genes were downregulated, as were genes associated with the conjugative transposon Tn5397 including a group II intron, thus highlighting a potential decrease in retromobility during heat stress. These data suggest that maintenance of lysogeny and genome wide stabilisation of mobile elements could be a global response to heat stress in this pathogen.

  20. ABI3 mediates dehydration stress recovery response in Arabidopsis thaliana by regulating expression of downstream genes.

    Bedi, Sonia; Sengupta, Sourabh; Ray, Anagh; Nag Chaudhuri, Ronita

    2016-09-01

    ABI3, originally discovered as a seed-specific transcription factor is now implicated to act beyond seed physiology, especially during abiotic stress. In non-seed plants, ABI3 is known to act in desiccation stress signaling. Here we show that ABI3 plays a role in dehydration stress response in Arabidopsis. ABI3 gene was upregulated during dehydration stress and its expression was maintained during subsequent stress recovery phases. Comparative gene expression studies in response to dehydration stress and stress recovery were done with genes which had potential ABI3 binding sites in their upstream regulatory regions. Such studies showed that several genes including known seed-specific factors like CRUCIFERIN1, CRUCIFERIN3 and LEA-group of genes like LEA76, LEA6, DEHYDRIN LEA and LEA-LIKE got upregulated in an ABI3-dependent manner, especially during the stress recovery phase. ABI3 got recruited to regions upstream to the transcription start site of these genes during dehydration stress response through direct or indirect DNA binding. Interestingly, ABI3 also binds to its own promoter region during such stress signaling. Nucleosomes covering potential ABI3 binding sites in the upstream sequences of the above-mentioned genes alter positions, and show increased H3 K9 acetylation during stress-induced transcription. ABI3 thus mediates dehydration stress signaling in Arabidopsis through regulation of a group of genes that play a role primarily during stress recovery phase. PMID:27457990

  1. Identification and characterization of the RCI2 gene family in maize (Zea mays)

    Yang Zhao; Haiqing Tong; Ronghao Cai; Xiaojian Peng; Xiaoyu Li; Defang Gan; Suwen Zhu

    2014-12-01

    Rare-cold-inducible (RCI2) genes are structurally conserved members that encode small, highly hydrophobic proteins involved in response to various abiotic stresses. Phylogenetic and functional analyses of these genes have been conducted in Arabidopsis, but an extensive investigation of the RCI2 gene family has not yet been carried out in maize. In the present study, 10 RCI2 genes were identified in a fully sequenced maize genome. Structural characterization and expression pattern analysis of 10 ZmRCI2s (Zea mays RCI2 genes) were subsequently determined. Sequence and phylogenetic analyses indicated that ZmRCI2s are highly conserved, and most of them could be grouped with their orthologues from other organisms. Chromosomal location analysis indicated that ZmRCI2s were distributed unevenly on seven chromosomes with two segmental duplication events, suggesting that maize RCI2 gene family is an evolutionarily conserved family. Putative stress-responsive cis-elements were detected in the 2-kb promoter regions of the 10 ZmRCI2s. In addition, the 10 ZmRCI2s showed different expression patterns in maize development based on transcriptome analysis. Further, microarray and quantitative real-time PCR (qRT-PCR) analysis showed that each maize RCI2 genes were responsive to drought stress, suggesting their important roles in drought stress response. The results of this work provide a basis for future cloning and application studies of maize RCI2 genes.

  2. Longevity and the stress response in Drosophila

    Vermeulen, Corneel J.; Loeschcke, Volker

    2007-01-01

    substances. Do these same changes in patterns of expression have the ability to mitigate ageing and prolong lifespan? It appears that parts of this response indeed are also associated with extended longevity, whereas some elements are not, due to their high cost or long-term deleterious consequences. Here we...... briefly review the state of the art of research on ageing and longevity in the model organism Drosophila, with focus on the role of the general stress response. We will conclude by contemplating some of the implications of the findings in this research and will suggest several directions for future...

  3. Monitoring the Expression of Maize Genes in Developing Kernels under Drought Stress using Oligo-microarray

    Meng Luo; Jia Liu; R. Dewey Lee; Brian T. Scully; Baozhu Guo

    2010-01-01

    Preharvest aflatoxin contamination of grain grown on the US southeastern Coast Plain is provoked and aggravated by abiotic stress. The primary abiotic stress is drought along with high temperatures. The objectives of the present study were to monitor gene expression in developing kernels in response to drought stress and to identify drought-responsive genes for possible use in germplasm assessment. The maize breeding line Tex6 was used, and gene expression profiles were analyzed in developing kernels under drought stress verses well-watered conditions at the stages of 25, 30, 35, 40, 45 d after pollination (DAP) using the 70 mer maize oligo-arrays. A total of 9 573 positive array spots were detected with unique gene IDs, and 7 988 were common in both stressed and well-watered samples. Expression patterns of some genes in several stress response-associated pathways, including abscisic acid, jasmonic acid and phenylalanine ammonia-lyase, were examined, and these specific genes were responsive to drought stress positively. Real-time quantitative polymerase chain reaction validated microarray expression data.The comparison between Tex6 and B73 revealed that there were significant differences in specific gene expression, patterns and levels. Several defense-related genes had been downregulated, even though some defense-related or drought responsive genes were upregulated at the later stages.

  4. Genome-Wide Analysis of the NAC Gene Family in Physic Nut (Jatropha curcas L.).

    Wu, Zhenying; Xu, Xueqin; Xiong, Wangdan; Wu, Pingzhi; Chen, Yaping; Li, Meiru; Wu, Guojiang; Jiang, Huawu

    2015-01-01

    The NAC proteins (NAM, ATAF1/2 and CUC2) are plant-specific transcriptional regulators that have a conserved NAM domain in the N-terminus. They are involved in various biological processes, including both biotic and abiotic stress responses. In the present study, a total of 100 NAC genes (JcNAC) were identified in physic nut (Jatropha curcas L.). Based on phylogenetic analysis and gene structures, 83 JcNAC genes were classified as members of, or proposed to be diverged from, 39 previously predicted orthologous groups (OGs) of NAC sequences. Physic nut has a single intron-containing NAC gene subfamily that has been lost in many plants. The JcNAC genes are non-randomly distributed across the 11 linkage groups of the physic nut genome, and appear to be preferentially retained duplicates that arose from both ancient and recent duplication events. Digital gene expression analysis indicates that some of the JcNAC genes have tissue-specific expression profiles (e.g. in leaves, roots, stem cortex or seeds), and 29 genes differentially respond to abiotic stresses (drought, salinity, phosphorus deficiency and nitrogen deficiency). Our results will be helpful for further functional analysis of the NAC genes in physic nut. PMID:26125188

  5. FoxO and Stress Responses in the Cnidarian Hydra vulgaris

    Bridge, Diane; Theofiles, Alexander G.; Holler, Rebecca L.; Marcinkevicius, Emily; Steele, Robert E.; Martínez, Daniel E.

    2010-01-01

    Background In the face of changing environmental conditions, the mechanisms underlying stress responses in diverse organisms are of increasing interest. In vertebrates, Drosophila, and Caenorhabditis elegans, FoxO transcription factors mediate cellular responses to stress, including oxidative stress and dietary restriction. Although FoxO genes have been identified in early-arising animal lineages including sponges and cnidarians, little is known about their roles in these organisms. Methods/Principal Findings We have examined the regulation of FoxO activity in members of the well-studied cnidarian genus Hydra. We find that Hydra FoxO is expressed at high levels in cells of the interstitial lineage, a cell lineage that includes multipotent stem cells that give rise to neurons, stinging cells, secretory cells and gametes. Using transgenic Hydra that express a FoxO-GFP fusion protein in cells of the interstitial lineage, we have determined that heat shock causes localization of the fusion protein to the nucleus. Our results also provide evidence that, as in bilaterian animals, Hydra FoxO activity is regulated by both Akt and JNK kinases. Conclusions These findings imply that basic mechanisms of FoxO regulation arose before the evolution of bilaterians and raise the possibility that FoxO is involved in stress responses of other cnidarian species, including corals. PMID:20657733

  6. Genome-Wide Analysis and Expression Profiling of the Phospholipase C Gene Family in Soybean (Glycine max.

    Fawei Wang

    Full Text Available Phosphatidylinositol-specific phospholipase C (PI-PLC hydrolyses phosphatidylinositol-4,5-bisphosphate to produce diacylglycerol and inositol 1,4,5-trisphosphate. It plays an important role in plant development and abiotic stress responses. However, systematic analysis and expression profiling of the phospholipase C (PLC gene family in soybean have not been reported. In this study, 12 putative PLC genes were identified in the soybean genome. Soybean PLCs were found on chromosomes 2, 11, 14 and 18 and encoded 58.8-70.06 kD proteins. Expression pattern analysis by RT-PCR demonstrated that expression of the GmPLCs was induced by PEG, NaCl and saline-alkali treatments in roots and leaves. GmPLC transcripts accumulated specifically in roots after ABA treatment. Furthermore, GmPLC transcripts were analyzed in various tissues. The results showed that GmPLC7 was highly expressed in most tissues, whereas GmPLC12 was expressed in early pods specifically. In addition, subcellular localization analysis was carried out and confirmed that GmPLC10 was localized in the plasma membrane in Nicotiana benthamiana. Our genomic analysis of the soybean PLC family provides an insight into the regulation of abiotic stress responses and development. It also provides a solid foundation for the functional characterization of the soybean PLC gene family.

  7. Genome-wide identification and expression analysis of the WRKY gene family in cassava

    Yunxie eWei

    2016-02-01

    Full Text Available The WRKY family, a large family of transcription factors (TFs found in higher plants, plays central roles in many aspects of physiological processes and adaption to environment. However, little information is available regarding the WRKY family in cassava (Manihot esculenta. In the present study, 85 WRKY genes were identified from the cassava genome and classified into three groups according to conserved WRKY domains and zinc-finger structure. Conserved motif analysis showed that all of the identified MeWRKYs had the conserved WRKY domain. Gene structure analysis suggested that the number of introns in MeWRKY genes varied from 1 to 5, with the majority of MeWRKY genes containing 3 exons. Expression profiles of MeWRKY genes in different tissues and in response to drought stress were analyzed using the RNA-seq technique. The results showed that 72 MeWRKY genes had differential expression in their transcript abundance and 78 MeWRKY genes were differentially expressed in response to drought stresses in different accessions, indicating their contribution to plant developmental processes and drought stress resistance in cassava. Finally, the expression of 9 WRKY genes was analyzed by qRT-PCR under osmotic, salt, ABA, H2O2, and cold treatments, indicating that MeWRKYs may be involved in different signaling pathways. Taken together, this systematic analysis identifies some tissue-specific and abiotic stress-responsive candidate MeWRKY genes for further functional assays in planta, and provides a solid foundation for understanding of abiotic stress responses and signal transduction mediated by WRKYs in cassava.

  8. Keratins Are Altered in Intestinal Disease-Related Stress Responses.

    Helenius, Terhi O; Antman, Cecilia A; Asghar, Muhammad Nadeem; Nyström, Joel H; Toivola, Diana M

    2016-01-01

    Keratin (K) intermediate filaments can be divided into type I/type II proteins, which form obligate heteropolymers. Epithelial cells express type I-type II keratin pairs, and K7, K8 (type II) and K18, K19 and K20 (type I) are the primary keratins found in the single-layered intestinal epithelium. Keratins are upregulated during stress in liver, pancreas, lung, kidney and skin, however, little is known about their dynamics in the intestinal stress response. Here, keratin mRNA, protein and phosphorylation levels were studied in response to murine colonic stresses modeling human conditions, and in colorectal cancer HT29 cells. Dextran sulphate sodium (DSS)-colitis was used as a model for intestinal inflammatory stress, which elicited a strong upregulation and widened crypt distribution of K7 and K20. K8 levels were slightly downregulated in acute DSS, while stress-responsive K8 serine-74 phosphorylation (K8 pS74) was increased. By eliminating colonic microflora using antibiotics, K8 pS74 in proliferating cells was significantly increased, together with an upregulation of K8 and K19. In the aging mouse colon, most colonic keratins were upregulated. In vitro, K8, K19 and K8 pS74 levels were increased in response to lipopolysaccharide (LPS)-induced inflammation in HT29 cells. In conclusion, intestinal keratins are differentially and dynamically upregulated and post-translationally modified during stress and recovery. PMID:27626448

  9. Oxidative Stress Responses in the Human Fungal Pathogen, Candida albicans

    Alessandra da Silva Dantas

    2015-02-01

    Full Text Available Candida albicans is a major fungal pathogen of humans, causing approximately 400,000 life-threatening systemic infections world-wide each year in severely immunocompromised patients. An important fungicidal mechanism employed by innate immune cells involves the generation of toxic reactive oxygen species (ROS, such as superoxide and hydrogen peroxide. Consequently, there is much interest in the strategies employed by C. albicans to evade the oxidative killing by macrophages and neutrophils. Our understanding of how C. albicans senses and responds to ROS has significantly increased in recent years. Key findings include the observations that hydrogen peroxide triggers the filamentation of this polymorphic fungus and that a superoxide dismutase enzyme with a novel mode of action is expressed at the cell surface of C. albicans. Furthermore, recent studies have indicated that combinations of the chemical stresses generated by phagocytes can actively prevent C. albicans oxidative stress responses through a mechanism termed the stress pathway interference. In this review, we present an up-date of our current understanding of the role and regulation of oxidative stress responses in this important human fungal pathogen.

  10. Cloning and expression of putative ethylene receptor genes in soybean plant

    2007-01-01

    Ethylene plays important roles in plant growth, development, and stress responses, and ethylene receptors have been identified and studied extensively in various plant species. Here we report the cloning of four ethylene receptor genes from soybean, i.e.GmETR1, GmERS1, GmETR2 and GmEIN4. Construction of the phylogenic tree showed that GmETR1 and GmERS1 belong to subfamily Ⅰ whereas GmETR2 and GmEIN4 belong to subfamily Ⅱ. The four ethylene receptor genes showed different tissue-specific expression patterns in roots, stems, leaves, cotyledons, flowers, pods and seeds of soybean. These genes were differentially regulated by various abiotic stresses and plant hormones. The possible roles of the four genes in soybean plant were also discussed.

  11. Midgut Transcriptome of the Cockroach Periplaneta americana and Its Microbiota: Digestion, Detoxification and Oxidative Stress Response

    Zhang, Jianhua; Zhang, Yixi; Li, Jingjing; Liu, Meiling; Liu, Zewen

    2016-01-01

    The cockroach, Periplaneta americana, is an obnoxious and notorious pest of the world, with a strong ability to adapt to a variety of complex environments. However, the molecular mechanism of this adaptability is mostly unknown. In this study, the genes and microbiota composition associated with the adaptation mechanism were studied by analyzing the transcriptome and 16S rDNA pyrosequencing of the P. americana midgut, respectively. Midgut transcriptome analysis identified 82,905 unigenes, among which 64 genes putatively involved in digestion (11 genes), detoxification (37 genes) and oxidative stress response (16 genes) were found. Evaluation of gene expression following treatment with cycloxaprid further revealed that the selected genes (CYP6J1, CYP4C1, CYP6K1, Delta GST, alpha-amylase, beta-glucosidase and aminopeptidase) were upregulated at least 2.0-fold at the transcriptional level, and four genes were upregulated more than 10.0-fold. An interesting finding was that three digestive enzymes positively responded to cycloxaprid application. Tissue expression profiles further showed that most of the selected genes were midgut-biased, with the exception of CYP6K1. The midgut microbiota composition was obtained via 16S rDNA pyrosequencing and was found to be mainly dominated by organisms from the Firmicutes phylum, among which Clostridiales, Lactobacillales and Burkholderiales were the main orders which might assist the host in the food digestion or detoxification of noxious compounds. The preponderant species, Clostridium cellulovorans, was previously reported to degrade lignocellulose efficiently in insects. The abundance of genes involved in digestion, detoxification and response to oxidative stress, and the diversity of microbiota in the midgut might provide P. americana high capacity to adapt to complex environments. PMID:27153200

  12. Identification of genes responsive to the application of ethanol on sugarcane leaves.

    Camargo, Sandra R; Cançado, Geraldo M A; Ulian, Eugênio C; Menossi, Marcelo

    2007-12-01

    The control of gene expression in precise time and space is a desirable attribute of chemically inducible systems. Ethanol is a chemical inducer with favourable features, such as being inexpensive and easy to apply. The aim of this study was to identify ethanol-responsive genes in sugarcane. The cDNA macroarray technique was adopted to identify transcript changes in sugarcane leaves (Saccharum spp. cv SP80-3280) exposed to ethanol. The expression profiles of sugarcane genes were analysed using nylon filters containing 3,575 cDNA clones from the leaf roll library of the SUCEST project. Seventy expressed sequence tags (ESTs) presented altered expression patterns, including ESTs corresponding to genes related to transcriptional and translational processes, abiotic stress and others. Several genes of unknown function were also identified. Among the 48 ESTs up-regulated by ethanol, an abiotic stress-responsive protein and an unknown function gene presented rapid induction by ethanol. The macroarray data of selected ethanol-responsive EST were confirmed by RNA-blot hybridisation. The expression profile of the 48 up-regulated genes was compared in two other cultivars: SP89-1115 and SP90-3414. Surprisingly, no gene showed a similar expression profile in the three cultivars. This result suggests that sugarcane plants have a high diversity in their responses to ethanol. PMID:17701412

  13. Cloning and expression profiles of 15 genes encoding WRKY transcription factor in wheat (Triticum aestivem L.)

    Hualing Wu; Zhongfu Ni; Yingyin Yao; Ganggang Guo; Qixin Sun

    2008-01-01

    WRKY proteins are involved in various physiological processes, including biotic and abiotic stress responses, hormone responses and development. However, no systematic identification, expression and function analysis of WRKY genes in wheat were reported. In this study, we isolated 15 wheat cDNAs with complete open reading frame (ORF) encoding putative WRKY proteins using in silico cloning. Phylogenetic analysis indicated that the 15 wheat WRKY genes belonged to three major WRKY groups. Expression analysis revealed that most genes expressed drastically in leaf, except TaWRKY10 which expressed in crown intensively. Four genes were strongly up-regulated with the senescence of leaves. Eight genes were responsive to low temperature, high temperature, NaCl or PEG treatment. Moreover, differential expression patterns were also observed between wheat hybrid and its parents, and some genes were more responsive to PEG treatment in the hybrid. These results demonstrated that wheat WRKY genes are involved in leaf senescing and abiotic stresses. And the changed expression of these WRKY genes in hybrid might contribute to the heterosis by improving the stress tolerance in hybrids.

  14. Drug addiction and stress-response genetic variability: association study in African Americans.

    Levran, Orna; Randesi, Matthew; Li, Yi; Rotrosen, John; Ott, Jurg; Adelson, Miriam; Kreek, Mary Jeanne

    2014-07-01

    Stress is a significant risk factor in the development of drug addictions and in addiction relapse susceptibility. This hypothesis-driven study was designed to determine if specific SNPs in genes related to stress response are associated with heroin and/or cocaine addiction in African Americans. The analysis included 27 genes (124 SNPs) and was performed independently for each addiction. The sample consisted of former heroin addicts in methadone maintenance treatment (n = 314), cocaine addicts (n = 281), and controls (n = 208). Fourteen SNPs showed nominally significant association with heroin addiction (p gene (GALR1) and the functional FKBP5 intronic SNP rs1360780. Thirteen SNPs showed association with cocaine addiction, including the synonymous SNPs rs237902, in the oxytocin receptor gene (OXTR), and rs5374 in GALR1. No signal remained significant after correction for multiple testing. Four additional SNPs (GALR1 rs2717162, AVP rs2282018, CRHBP rs1875999, and NR3C2 rs1040288) were associated with both addictions and may indicate common liability. The study provides preliminary evidence for novel association of variants in several stress-related genes with heroin and/or cocaine addictions and may enhance the understanding of the interaction between stress and addictions. PMID:24766650

  15. Global gene expression analysis using RNA-seq uncovered a new role for SR1/CAMTA3 transcription factor in salt stress.

    Prasad, Kasavajhala V S K; Abdel-Hameed, Amira A E; Xing, Denghui; Reddy, Anireddy S N

    2016-01-01

    Abiotic and biotic stresses cause significant yield losses in all crops. Acquisition of stress tolerance in plants requires rapid reprogramming of gene expression. SR1/CAMTA3, a member of signal responsive transcription factors (TFs), functions both as a positive and a negative regulator of biotic stress responses and as a positive regulator of cold stress-induced gene expression. Using high throughput RNA-seq, we identified ~3000 SR1-regulated genes. Promoters of about 60% of the differentially expressed genes have a known DNA binding site for SR1, suggesting that they are likely direct targets. Gene ontology analysis of SR1-regulated genes confirmed previously known functions of SR1 and uncovered a potential role for this TF in salt stress. Our results showed that SR1 mutant is more tolerant to salt stress than the wild type and complemented line. Improved tolerance of sr1 seedlings to salt is accompanied with the induction of salt-responsive genes. Furthermore, ChIP-PCR results showed that SR1 binds to promoters of several salt-responsive genes. These results suggest that SR1 acts as a negative regulator of salt tolerance by directly repressing the expression of salt-responsive genes. Overall, this study identified SR1-regulated genes globally and uncovered a previously uncharacterized role for SR1 in salt stress response. PMID:27251464

  16. Compartment specific importance of glutathione during abiotic and biotic stress

    Bernd eZechmann

    2014-10-01

    Full Text Available The tripeptide thiol glutathione (γ-L-glutamyl-L-cysteinyl-glycine is the most important sulfur containing antioxidant in plants and essential for plant defense against abiotic and biotic stress conditions. It is involved in the detoxification of reactive oxygen species, redox signaling, the modulation of defense gene expression and important for the regulation of enzymatic activities. Even though changes in glutathione contents are well documented in plants and its roles in plant defense are well established, still too little is known about its compartment specific importance during abiotic and biotic stress conditions. Due to technical advances in the visualization of glutathione and the redox state of plants through microscopical methods some progress was made in the last few years in studying the importance of subcellular glutathione contents during stress conditions in plants. This review summarizes the data available on compartment specific importance of glutathione in the protection against abiotic and biotic stress conditions such as high light stress, exposure to cadmium, drought, and pathogen attack (Pseudomonas, Botrytis, Tobacco Mosaic Virus. The data will be discussed in connection with the subcellular accumulation of ROS during these conditions and glutathione synthesis which are both highly compartment specific (e.g. glutathione synthesis takes place in chloroplasts and the cytosol. Thus this review will reveal the compartment specific importance of glutathione during abiotic and biotic stress conditions.

  17. EFFECT OF DEXMEDETOMIDINE ON STRESS RESPONSE TO ENDOTRACHEAL INTUBATION

    Sathee Devi

    2015-03-01

    Full Text Available Laryngoscopy as well as tracheal intubation cause changes in the hemodynamics of the patients. A similar set of hemodynamic events have been noticed by various studies during tracheal extubation also. These responses may produce myocardial ischemia or infarction in susceptible patients. Various agents like lignocaine, e smolol, sodium nitropruside, nitroglycerine etc . have been proved to be effective in attenuating these response. Dexmedetomidine, an alpha 2 agonist have been successfully used for attenuating the sympathetic response during endotracheal extubation. We conducted an observational study to examine the rol e of dexmedetomidine on hemodynamic response during endotracheal intubation. A bolus dose of Dexmedetomidine 0.7 - 1 mcg /kg over 10mts prior to endotracheal intubation provided hemodynamic stability than inj. lignocaine hydrochloride ( G old standard .This c an prove beneficial for patients where the stress response to intubation is highly undesirable.

  18. Stress Response and Translation Control in Rotavirus Infection

    López, Susana; Oceguera, Alfonso; Sandoval-Jaime, Carlos

    2016-01-01

    The general stress and innate immune responses are closely linked and overlap at many levels. The outcomes of these responses serve to reprogram host expression patterns to prevent viral invasions. In turn, viruses counter attack these cell responses to ensure their replication. The mechanisms by which viruses attempt to control host cell responses are as varied as the number of different virus families. One of the most recurrent strategies used by viruses to control the antiviral response of the cell is to hijack the translation machinery of the host, such that viral proteins are preferentially synthesized, while the expression of the stress and antiviral responses of the cell are blocked at the translation level. Here, we will review how rotaviruses, an important agent of acute severe gastroenteritis in children, overcome the stress responses of the cell to establish a productive infectious cycle. PMID:27338442

  19. Stress Response and Translation Control in Rotavirus Infection

    Susana López

    2016-06-01

    Full Text Available The general stress and innate immune responses are closely linked and overlap at many levels. The outcomes of these responses serve to reprogram host expression patterns to prevent viral invasions. In turn, viruses counter attack these cell responses to ensure their replication. The mechanisms by which viruses attempt to control host cell responses are as varied as the number of different virus families. One of the most recurrent strategies used by viruses to control the antiviral response of the cell is to hijack the translation machinery of the host, such that viral proteins are preferentially synthesized, while the expression of the stress and antiviral responses of the cell are blocked at the translation level. Here, we will review how rotaviruses, an important agent of acute severe gastroenteritis in children, overcome the stress responses of the cell to establish a productive infectious cycle.

  20. Stress Response and Translation Control in Rotavirus Infection.

    López, Susana; Oceguera, Alfonso; Sandoval-Jaime, Carlos

    2016-01-01

    The general stress and innate immune responses are closely linked and overlap at many levels. The outcomes of these responses serve to reprogram host expression patterns to prevent viral invasions. In turn, viruses counter attack these cell responses to ensure their replication. The mechanisms by which viruses attempt to control host cell responses are as varied as the number of different virus families. One of the most recurrent strategies used by viruses to control the antiviral response of the cell is to hijack the translation machinery of the host, such that viral proteins are preferentially synthesized, while the expression of the stress and antiviral responses of the cell are blocked at the translation level. Here, we will review how rotaviruses, an important agent of acute severe gastroenteritis in children, overcome the stress responses of the cell to establish a productive infectious cycle. PMID:27338442

  1. Microbial modulation of behavior and stress responses in zebrafish larvae.

    Davis, Daniel J; Bryda, Elizabeth C; Gillespie, Catherine H; Ericsson, Aaron C

    2016-09-15

    The influence of the microbiota on behavior and stress responses is poorly understood. Zebrafish larvae have unique characteristics that are advantageous for neuroimmune research, however, they are currently underutilized for such studies. Here, we used germ-free zebrafish to determine the effects of the microbiota on behavior and stress testing. The absence of a microbiota dramatically altered locomotor and anxiety-related behavior. Additionally, characteristic responses to an acute stressor were also obliterated in larvae lacking exposure to microbes. Lastly, treatment with the probiotic Lactobacillus plantarum was sufficient to attenuate anxiety-related behavior in conventionally-raised zebrafish larvae. These results underscore the importance of the microbiota in communicating to the CNS via the microbiome-gut-brain axis and set a foundation for using zebrafish larvae for neuroimmune research. PMID:27217102

  2. The behavioral and endocrinological development of stress response in dogs.

    Nagasawa, Miho; Shibata, Yoh; Yonezawa, Akiko; Morita, Tomoko; Kanai, Masanori; Mogi, Kazutaka; Kikusui, Takefumi

    2014-05-01

    Endocrinological stress response has been shown to be absent in a specific period of the early life of rodents; this is named the stress-hyporesponsive period (SHRP). The SHRP is a significant period for the appropriate development of infants. In this study, the presence of SHRP in dogs was identified by conducting a 5-min separation test in 142 Labrador retriever puppies in their early socialization period and measuring the changes in urinary cortisol levels. An increase in cortisol after separation was found after 5 weeks of age, suggesting that the SHRP persists until 4 weeks of age in dogs. The distress vocalization during separation changed and the lactating behavior decreased rapidly around 5 weeks of age, suggesting that the endocrinological and emotional aspects of development change at approximately 5 weeks of age and maternal inhibition of cortisol might occur in dogs as well as rodents. PMID:24019027

  3. Behaviour and stress responses in horses with gastric ulceration

    Malmkvist, Jens; Poulsen, Janne Møller; Luthersson, Nanna;

    2012-01-01

    Only little is known about behaviour and stress responses in horses with gastric ulceration, despite the high prevalence of this condition. Our objectives in the present study was to (i) describe the severity of gastric ulceration in horses, housed under relatively standardised conditions, and (ii......) to investigate whether horses with severe glandular gastric ulceration have increased baseline and response concentration of stress hormones and behave differently than control horses. We investigated stomachs of 96 horses at one stud, and compared an ulcer group (n = 30; with severe lesions in the glandular.......2% and non-glandular lesions in 40.6% of the horses. The amount of starch in the feed (P = 0.006) and paternal stallion (P = 0.031) influenced ulceration in the non-glandular region only; it should be noted that our study does not allow for separating hereditary from environmental influences, as offspring...

  4. Wheat EST resources for functional genomics of abiotic stress

    Links Matthew G

    2006-06-01

    Full Text Available Abstract Background Wheat is an excellent species to study freezing tolerance and other abiotic stresses. However, the sequence of the wheat genome has not been completely characterized due to its complexity and large size. To circumvent this obstacle and identify genes involved in cold acclimation and associated stresses, a large scale EST sequencing approach was undertaken by the Functional Genomics of Abiotic Stress (FGAS project. Results We generated 73,521 quality-filtered ESTs from eleven cDNA libraries constructed from wheat plants exposed to various abiotic stresses and at different developmental stages. In addition, 196,041 ESTs for which tracefiles were available from the National Science Foundation wheat EST sequencing program and DuPont were also quality-filtered and used in the analysis. Clustering of the combined ESTs with d2_cluster and TGICL yielded a few large clusters containing several thousand ESTs that were refractory to routine clustering techniques. To resolve this problem, the sequence proximity and "bridges" were identified by an e-value distance graph to manually break clusters into smaller groups. Assembly of the resolved ESTs generated a 75,488 unique sequence set (31,580 contigs and 43,908 singletons/singlets. Digital expression analyses indicated that the FGAS dataset is enriched in stress-regulated genes compared to the other public datasets. Over 43% of the unique sequence set was annotated and classified into functional categories according to Gene Ontology. Conclusion We have annotated 29,556 different sequences, an almost 5-fold increase in annotated sequences compared to the available wheat public databases. Digital expression analysis combined with gene annotation helped in the identification of several pathways associated with abiotic stress. The genomic resources and knowledge developed by this project will contribute to a better understanding of the different mechanisms that govern stress tolerance in

  5. Dissection of Ire1 functions reveals stress response mechanisms uniquely evolved in Candida glabrata.

    Taiga Miyazaki

    2013-01-01

    Full Text Available Proper protein folding in the endoplasmic reticulum (ER is vital in all eukaryotes. When misfolded proteins accumulate in the ER lumen, the transmembrane kinase/endoribonuclease Ire1 initiates splicing of HAC1 mRNA to generate the bZIP transcription factor Hac1, which subsequently activates its target genes to increase the protein-folding capacity of the ER. This cellular machinery, called the unfolded protein response (UPR, is believed to be an evolutionarily conserved mechanism in eukaryotes. In this study, we comprehensively characterized mutant phenotypes of IRE1 and other related genes in the human fungal pathogen Candida glabrata. Unexpectedly, Ire1 was required for the ER stress response independently of Hac1 in this fungus. C. glabrata Ire1 did not cleave mRNAs encoding Hac1 and other bZIP transcription factors identified in the C. glabrata genome. Microarray analysis revealed that the transcriptional response to ER stress is not mediated by Ire1, but instead is dependent largely on calcineurin signaling and partially on the Slt2 MAPK pathway. The loss of Ire1 alone did not confer increased antifungal susceptibility in C. glabrata contrary to UPR-defective mutants in other fungi. Taken together, our results suggest that the canonical Ire1-Hac1 UPR is not conserved in C. glabrata. It is known in metazoans that active Ire1 nonspecifically cleaves and degrades a subset of ER-localized mRNAs to reduce the ER load. Intriguingly, this cellular response could occur in an Ire1 nuclease-dependent fashion in C. glabrata. We also uncovered the attenuated virulence of the C. glabrata Δire1 mutant in a mouse model of disseminated candidiasis. This study has unveiled the unique evolution of ER stress response mechanisms in C. glabrata.

  6. Stress responses of the industrial workhorse Bacillus licheniformis to osmotic challenges.

    Rebecca Schroeter

    Full Text Available The Gram-positive endospore-forming bacterium Bacillus licheniformis can be found widely in nature and it is exploited in industrial processes for the manufacturing of antibiotics, specialty chemicals, and enzymes. Both in its varied natural habitats and in industrial settings, B. licheniformis cells will be exposed to increases in the external osmolarity, conditions that trigger water efflux, impair turgor, cause the cessation of growth, and negatively affect the productivity of cell factories in biotechnological processes. We have taken here both systems-wide and targeted physiological approaches to unravel the core of the osmostress responses of B. licheniformis. Cells were suddenly subjected to an osmotic upshift of considerable magnitude (with 1 M NaCl, and their transcriptional profile was then recorded in a time-resolved fashion on a genome-wide scale. A bioinformatics cluster analysis was used to group the osmotically up-regulated genes into categories that are functionally associated with the synthesis and import of osmostress-relieving compounds (compatible solutes, the SigB-controlled general stress response, and genes whose functional annotation suggests that salt stress triggers secondary oxidative stress responses in B. licheniformis. The data set focusing on the transcriptional profile of B. licheniformis was enriched by proteomics aimed at identifying those proteins that were accumulated by the cells through increased biosynthesis in response to osmotic stress. Furthermore, these global approaches were augmented by a set of experiments that addressed the synthesis of the compatible solutes proline and glycine betaine and assessed the growth-enhancing effects of various osmoprotectants. Combined, our data provide a blueprint of the cellular adjustment processes of B. licheniformis to both sudden and sustained osmotic stress.

  7. The Early Endocrine Stress Response in Experimental Subarachnoid Hemorrhage.

    Christoffer Nyberg

    Full Text Available In patients with severe illness, such as aneurysmal subarachnoid hemorrhage (SAH, a physiologic stress response is triggered. This includes activation of the hypothalamic-pituitary-adrenal (HPA axis and the sympathetic nervous system. The aim of this study was to investigate the very early responses of these systems.A porcine animal model of aneurysmal SAH was used. In this model, blood is injected slowly to the basal cisterns above the anterior skull base until the cerebral perfusion pressure is 0 mm Hg. Sampling was done from blood and urine at -10, +15, +75 and +135 minutes from time of induction of SAH. Analyses of adrenocorticotropic hormone (ACTH, cortisol, aldosterone, catecholamines and chromogranin-A were performed.Plasma ACTH, serum cortisol and plasma aldosterone increased in the samples following induction of SAH, and started to decline after 75 minutes. Urine cortisol also increased after SAH. Urine catecholamines and their metabolites were found to increase after SAH. Many samples were however below detection level, not allowing for statistical analysis. Plasma chromogranin-A peaked at 15 minutes after SAH, and thereafter decreased.The endocrine stress response after aneurysmal SAH was found to start within 15 minutes in the HPA axis with early peak values of ACTH, cortisol and aldosterone. The fact that the concentrations of the HPA axis hormones decreased 135 minutes after SAH may suggest that a similar pattern exists in SAH patients, thus making it difficult to catch these early peak values. There were also indications of early activation of the sympathetic nervous system, but the small number of valid samples made interpretation difficult.

  8. Role and Regulation of Autophagy in Heat Stress Responses of Tomato Plants

    Jie eZhou

    2014-04-01

    Full Text Available As sessile organisms, plants are constantly exposed to a wide spectrum of stress conditions such as high temperature, which causes protein misfolding. Misfolded proteins are highly toxic and must be efficiently removed to reduce cellular proteotoxic stress if restoration of native conformations is unsuccessful. Although selective autophagy is known to function in protein quality control by targeting degradation of misfolded and potentially toxic proteins, its role and regulation in heat stress responses have not been analyzed in crop plants. In the present study, we found that heat stress induced expression of autophagy-related (ATG genes and accumulation of autophagosomes in tomato plants. Virus-induced gene silencing of tomato ATG5 and ATG7 genes resulted in increased sensitivity of tomato plants to heat stress based on both increased development of heat stress symptoms and compromised photosynthetic parameters of heat-stressed leaf tissues. Silencing of tomato homologs for the selective autophagy receptor NBR1, which targets ubiquitinated protein aggregates, also compromised tomato heat tolerance. To better understand the regulation of heat-induced autophagy, we found that silencing of tomato ATG5, ATG7 or NBR1 compromised heat-induced expression of not only the targeted genes but also other autophagy-related genes. Furthermore, we identified two tomato genes encoding proteins highly homologous to Arabidopsis WRKY33 transcription factor, which has been previously shown to interact physically with an autophagy protein. Silencing of tomato WRKY33 genes compromised tomato heat tolerance and reduced heat-induced ATG gene expression and autophagosome accumulation. Based on these results, we propose that heat-induced autophagy in tomato is subject to cooperative regulation by both WRKY33 and ATG proteins and plays a critical role in tomato heat tolerance, mostly likely through selective removal of heat-induced protein aggregates.

  9. Overexpression of a Triticum aestivum Calreticulin gene (TaCRT1 Improves Salinity Tolerance in Tobacco.

    Yang Xiang

    Full Text Available Calreticulin (CRT is a highly conserved and abundant multifunctional protein that is encoded by a small gene family and is often associated with abiotic/biotic stress responses in plants. However, the roles played by this protein in salt stress responses in wheat (Triticum aestivum remain obscure. In this study, three TaCRT genes were identified in wheat and named TaCRT1, TaCRT2 and TaCRT3-1 based on their sequence characteristics and their high homology to other known CRT genes. Quantitative real-time PCR expression data revealed that these three genes exhibit different expression patterns in different tissues and are strongly induced under salt stress in wheat. The calcium-binding properties of the purified recombinant TaCRT1 protein were determined using a PIPES/Arsenazo III analysis. TaCRT1 gene overexpression in Nicotiana tabacum decreased salt stress damage in transgenic tobacco plants. Physiological measurements indicated that transgenic tobacco plants showed higher activities of superoxide dismutase (SOD, peroxidase (POD and catalase (CAT than non-transgenic tobacco under normal growth conditions. Interestingly, overexpression of the entire TaCRT1 gene or of partial TaCRT1 segments resulted in significantly higher tolerance to salt stress in transgenic plants compared with their WT counterparts, thus revealing the essential role of the C-domain of TaCRT1 in countering salt stress in plants.

  10. Transcriptome profiling of the salt-stress response in Triticum aestivum cv. Kharchia Local.

    Goyal, Etika; Amit, Singh K; Singh, Ravi S; Mahato, Ajay K; Chand, Suresh; Kanika, Kumar

    2016-01-01

    Kharchia Local wheat variety is an Indian salt tolerant land race known for its tolerance to salinity. However, there is a lack of detailed information regarding molecular mechanism imparting tolerance to high salinity in this bread wheat. In the present study, differential root transcriptome analysis identifying salt stress responsive gene networks and functional annotation under salt stress in Kharchia Local was performed. A total of 453,882 reads were obtained after quality filtering, using Roche 454-GS FLX Titanium sequencing technology. From these reads 22,241 ESTs were generated out of which, 17,911 unigenes were obtained. A total of 14,898 unigenes were annotated against nr protein database. Seventy seven transcription factors families in 826 unigenes and 11,002 SSRs in 6,939 unigenes were identified. Kyoto Encyclopedia of Genes and Genomes database identified 310 metabolic pathways. The expression pattern of few selected genes was compared during the time course of salt stress treatment between salt-tolerant (Kharchia Local) and susceptible (HD2687). The transcriptome data is the first report, which offers an insight into the mechanisms and genes involved in salt tolerance. This information can be used to improve salt tolerance in elite wheat cultivars and to develop tolerant germplasm for other cereal crops. PMID:27293111

  11. Family-wide survey of miR169s and NF-YAs and their expression profiles response to abiotic stress in maize roots.

    Luan, Mingda; Xu, Miaoyun; Lu, Yunming; Zhang, Qiuxue; Zhang, Lan; Zhang, Chunyi; Fan, Yunliu; Lang, Zhihong; Wang, Lei

    2014-01-01

    Previous studies have identified miR169/NF-YA modules are important regulators of plant development and stress responses. Currently, reported genome sequence data offers an opportunity for global characterization of miR169 and NF-YA genes, which may provide insights into the molecular mechanisms of the miR169/NF-YA modules in maize. In our study, fourteen NF-YA transcription factors with conserved domains were identified based on maize genome loci. The miR169 gene family has 18 members that generate 10 mature products, and 8 of these mature miR169 members could target 7 of 14 ZmNF-YA genes in maize. The seven ZmNF-YA proteins were localized to the nucleus while lacked transcriptional activity. We investigated the expression patterns of the zma-miR169 members and their targeted ZmNF-YA genes in maize roots treated by drought stress (polyethylene glycol, PEG), hormone stress (abscisic acid, ABA), and salt stress (NaCl). The zma-miR169 family members were downregulated in short term (0 ∼ 48 h) and generally upregulated over the long term (15 days) in response to the three abiotic stress conditions. Most of the targeted ZmNF-YA genes exhibited a reverse correlation with zma-miR169 gene expression over both the short term and long term. Maize root elongation was promoted by PEG and ABA but repressed by NaCl over the long term. Apparently, ZmNF-YA14 expression perfectly matched the zma-miR169 expression and corresponded to root growth reversely. PMID:24633051

  12. Expression of Echmr gene from Eichhornia offers multiple stress tolerance to Cd sensitive Escherichia coli Δgsh mutants.

    Thapa, G; Das, D; Gunupuru, L R

    2016-09-01

    The detoxification of heavy metals frequently involves conjugation to glutathione prior to compartmentalization and eflux in higher plants. We have expressed a heavy metal stress responsive (Echmr) gene from water hyacinth, which conferred tolerance to Cd sensitive Escherichia coli Δgsh mutants against heavy metals and abiotic stresses. The recombinant E. coli Δgsh mutant cells showed better growth recovery and survival than control cells under Cd (200 μM), Pb(200 μM), heat shock (50 °C), cold stress at 4 °C for 4 h, and UV-B (20 min) exposure. The enhanced expression of Echmr gene revealed by northern analysis during above stresses further advocates its role in multi-stress tolerance. Heterologous expression of EcHMR from Eichhornia rescued Cd(2+) sensitive E. coli mutants from Cd(2+) toxicity and induced better recovery post abiotic stresses. This may suggests a possible role of Echmr in Cd(II) and desiccation tolerance in plants for enhanced stress response. PMID:27457806

  13. Molecular characterization and expression profiling of the protein disulfide isomerase gene family in Brachypodium distachyon L.

    Chong Zhu

    Full Text Available Protein disulfide isomerases (PDI are involved in catalyzing protein disulfide bonding and isomerization in the endoplasmic reticulum and functions as a chaperone to inhibit the aggregation of misfolded proteins. Brachypodium distachyon is a widely used model plant for temperate grass species such as wheat and barley. In this work, we report the first molecular characterization, phylogenies, and expression profiles of PDI and PDI-like (PDIL genes in B. distachyon in different tissues under various abiotic stresses. Eleven PDI and PDIL genes in the B. distachyon genome by in silico identification were evenly distributed across all five chromosomes. The plant PDI family has three conserved motifs that are involved in catalyzing protein disulfide bonding and isomerization, but a different exon/intron structural organization showed a high degree of structural differentiation. Two pairs of genes (BdPDIL4-1 and BdPDIL4-2; BdPDIL7-1 and BdPDIL7-2 contained segmental duplications, indicating each pair originated from one progenitor. Promoter analysis showed that Brachypodium PDI family members contained important cis-acting regulatory elements involved in seed storage protein synthesis and diverse stress response. All Brachypodium PDI genes investigated were ubiquitously expressed in different organs, but differentiation in expression levels among different genes and organs was clear. BdPDIL1-1 and BdPDIL5-1 were expressed abundantly in developing grains, suggesting that they have important roles in synthesis and accumulation of seed storage proteins. Diverse treatments (drought, salt, ABA, and H2O2 induced up- and down-regulated expression of Brachypodium PDI genes in seedling leaves. Interestingly, BdPDIL1-1 displayed significantly up-regulated expression following all abiotic stress treatments, indicating that it could be involved in multiple stress responses. Our results provide new insights into the structural and functional characteristics of the

  14. Roles of Forkhead-box Transcription Factors in Controlling Development, Pathogenicity, and Stress Response in Magnaporthe oryzae

    Jaejin Park

    2014-06-01

    Full Text Available Although multiple transcription factors (TFs have been characterized via mutagenesis to understand their roles in controlling pathogenicity and infection-related development in Magnaporthe oryzae, the causal agent of rice blast, if and how forkhead-box (FOX TFs contribute to these processes remain to be characterized. Four putative FOX TF genes were identified in the genome of M. oryzae, and phylogenetic analysis suggested that two of them (MoFKH1 and MoHCM1 correspond to Ascomycota-specific members of the FOX TF family while the others (MoFOX1 and MoFOX2 are Pezizomycotina-specific members. Deletion of MoFKH1 (ΔMofkh1 resulted in reduced mycelial growth and conidial germination, abnormal septation and stress response, and reduced virulence. Similarly, ΔMohcm1 exhibited reduced mycelial growth and conidial germination. Conidia of ΔMofkh1 and ΔMohcm1 were more sensitive to one or both of the cell cycle inhibitors hydroxyurea and benomyl, suggesting their role in cell cycle control. On the other hand, loss of MoFOX1 (ΔMofox1 did not show any noticeable changes in development, pathogenicity, and stress response. Deletion of MoFOX2 was not successful even after repeated attempts. Taken together, these results suggested that MoFKH1 and Mo-HCM1 are important in fungal development and that MoFKH1 is further implicated in pathogenicity and stress response in M. oryzae.

  15. Genome-Wide Survey and Expression Profile Analysis of the Mitogen-Activated Protein Kinase (MAPK Gene Family in Brassica rapa.

    Kun Lu

    Full Text Available Mitogen-activated protein kinase (MAPK cascades are fundamental signal transduction modules in plants, controlling cell division, development, hormone signaling, and biotic and abiotic stress responses. Although MAPKs have been investigated in several plant species, a comprehensive analysis of the MAPK gene family has hitherto not been performed in Brassica rapa. In this study, we identified 32 MAPKs in the B. rapa genome by conducting BLASTP and syntenic block analyses, and screening for the essential signature motif (TDY or TEY of plant MAPK proteins. Of the 32 BraMAPK genes retrieved from the Brassica Database, 13 exhibited exon splicing errors, excessive splicing of the 5' sequence, excessive retention of the 5' sequence, and sequencing errors of the 3' end. Phylogenetic trees of the 32 corrected MAPKs from B. rapa and of MAPKs from other plants generated by the neighbor-joining and maximum likelihood methods suggested that BraMAPKs could be divided into four groups (groups A, B, C, and D. Gene number expansion was observed for BraMAPK genes in groups A and D, which may have been caused by the tandem duplication and genome triplication of the ancestral genome of the Brassica progenitor. Except for five members of the BraMAPK10 subfamily, the identified BraMAPKs were expressed in most of the tissues examined, including callus, root, stem, leaf, flower, and silique. Quantitative real-time PCR demonstrated that at least six and five BraMAPKs were induced or repressed by various abiotic stresses and hormone treatments, respectively, suggesting their potential roles in the abiotic stress response and various hormone signal transduction pathways in B. rapa. This study provides valuable insight into the putative physiological and biochemical functions of MAPK genes in B. rapa.

  16. Hydrogen-peroxide-induced oxidative stress responses in Desulfovibrio vulgaris Hildenborough

    Zhou, A.; He, Z.; Redding-Johanson, A.M.; Mukhopadhyay, A.; Hemme, C.L.; Joachimiak, M.P.; Bender, K.S.; Keasling, J.D.; Stahl, D.A.; Fields, M.W.; Hazen, T.C.; Arkin, A.P.; Wall, J.D.; Zhou, J.; Luo, F.; Deng, Y.; He, Q.

    2010-07-01

    To understand how sulphate-reducing bacteria respond to oxidative stresses, the responses of Desulfovibrio vulgaris Hildenborough to H{sub 2}O{sub 2}-induced stresses were investigated with transcriptomic, proteomic and genetic approaches. H{sub 2}O{sub 2} and induced chemical species (e.g. polysulfide, ROS) and redox potential shift increased the expressions of the genes involved in detoxification, thioredoxin-dependent reduction system, protein and DNA repair, and decreased those involved in sulfate reduction, lactate oxidation and protein synthesis. A gene coexpression network analysis revealed complicated network interactions among differentially expressed genes, and suggested possible importance of several hypothetical genes in H{sub 2}O{sub 2} stress. Also, most of the genes in PerR and Fur regulons were highly induced, and the abundance of a Fur regulon protein increased. Mutant analysis suggested that PerR and Fur are functionally overlapped in response to stresses induced by H{sub 2}O{sub 2} and reaction products, and the upregulation of thioredoxin-dependent reduction genes was independent of PerR or Fur. It appears that induction of those stress response genes could contribute to the increased resistance of deletion mutants to H{sub 2}O{sub 2}-induced stresses. In addition, a conceptual cellular model of D. vulgaris responses to H{sub 2}O{sub 2} stress was constructed to illustrate that this bacterium may employ a complicated molecular mechanism to defend against the H{sub 2}O{sub 2}-induced stresses.

  17. Grapevine NAC1 transcription factor as a convergent node in developmental processes, abiotic stresses, and necrotrophic/biotrophic pathogen tolerance.

    Le Hénanff, Gaëlle; Profizi, Camille; Courteaux, Barbara; Rabenoelina, Fanja; Gérard, Clémentine; Clément, Christophe; Baillieul, Fabienne; Cordelier, Sylvain; Dhondt-Cordelier, Sandrine

    2013-11-01

    Transcription factors of the NAC family are known to be involved in various developmental processes and in response to environmental stresses. Whereas NAC genes have been widely studied in response to abiotic stresses, little is known about their role in response to biotic stresses, especially in crops. Here, the first characterization of a Vitis vinifera L. NAC member, named VvNAC1, and involved in organ development and defence towards pathogens is reported. Expression profile analysis of VvNAC1 showed that its expression is closely associated with later stages of leaf, flower, and berry development, suggesting a role in plant senescence. Moreover, VvNAC1 expression is stimulated in Botrytis cinerea- or microbe-associated molecular pattern (MAMP)-infected berries or leaves. Furthermore, cold, wounding, and defence-related hormones such as salicylic acid, methyl jasmonate, ethylene, and abscisic acid are all able to induce VvNAC1 expression in grapevine leaves. VvNAC1-overexpressing Arabidopsis plants exhibit enhanced tolerance to osmotic, salt, and cold stresses and to B. cinerea and Hyaloperonospora arabidopsidis pathogens. These plants present a modified pattern of defence gene markers (AtPR-1, AtPDF1.2, and AtVSP1) after stress application, suggesting that VvNAC1 is an important regulatory component of the plant signalling defence cascade. Collectively, these results provide evidence that VvNAC1 could represent a node of convergence regulating grapevine development and stress responses, including defence against necrotrophic and biotrophic pathogens. PMID:24043850

  18. Genome-Wide Identification and Expression Analysis of the Mitogen-Activated Protein Kinase Gene Family in Cassava.

    Yan, Yan; Wang, Lianzhe; Ding, Zehong; Tie, Weiwei; Ding, Xupo; Zeng, Changying; Wei, Yunxie; Zhao, Hongliang; Peng, Ming; Hu, Wei

    2016-01-01

    Mitogen-activated protein kinases (MAPKs) play central roles in plant developmental processes, hormone signaling transduction, and responses to abiotic stress. However, no data are currently available about the MAPK family in cassava, an important tropical crop. Herein, 21 MeMAPK genes were identified from cassava. Phylogenetic analysis indicated that MeMAPKs could be classified into four subfamilies. Gene structure analysis demonstrated that the number of introns in MeMAPK genes ranged from 1 to 10, suggesting large variation among cassava MAPK genes. Conserved motif analysis indicated that all MeMAPKs had typical protein kinase domains. Transcriptomic analysis suggested that MeMAPK genes showed differential expression patterns in distinct tissues and in response to drought stress between wild subspecies and cultivated varieties. Interaction networks and co-expression analyses revealed that crucial pathways controlled by MeMAPK networks may be involved in the differential response to drought stress in different accessions of cassava. Expression of nine selected MAPK genes showed that these genes could comprehensively respond to osmotic, salt, cold, oxidative stressors, and abscisic acid (ABA) signaling. These findings yield new insights into the transcriptional control of MAPK gene expression, provide an improved understanding of abiotic stress responses and signaling transduction in cassava, and lead to potential applications in the genetic improvement of cassava cultivars. PMID:27625666

  19. Stressors, Resources, and Stress Responses in Pregnant African American Women: A Mixed-Methods Pilot Study

    Giurgescu, Carmen; Kavanaugh, Karen; Norr, Kathleen F.; Dancy, Barbara L.; Twigg, Naomi; McFarlin, Barbara L.; Engeland, Christopher G.; Hennessy, Mary Dawn; White-Traut, Rosemary C.

    2013-01-01

    This research aimed to develop an initial understanding of the stressors, stress responses, and personal resources that impact African American women during pregnancy, potentially leading to preterm birth. Guided by the ecological model, a prospective, mixed-methods, complementarity design was used with 11 pregnant women and 8 of their significant others. Our integrated analysis of quantitative and qualitative data revealed 2 types of stress responses: high stress responses (7 women) and low ...

  20. UvHOG1 is important for hyphal growth and stress responses in the rice false smut fungus Ustilaginoidea virens.

    Zheng, Dawei; Wang, Yi; Han, Yu; Xu, Jin-Rong; Wang, Chenfang

    2016-01-01

    Rice false smut caused by Ustilaginoidea virens is one of the most important diseases of rice worldwide. Although its genome has been sequenced, to date there is no report on targeted gene deletion in U. virens and no molecular studies on genetic mechanisms regulating the infection processes of this destructive pathogen. In this study, we attempted to generate knockout mutants of the ortholog of yeast HOG1 MAP kinase gene in U. virens. One Uvhog1 deletion mutant was identified after screening over 600 hygromycin-resistant transformants generated by Agrobacterium tumefaciens mediated transformation. The Uvhog1 mutant was reduced in growth rate and conidiation but had increased sensitivities to SDS, Congo red, and hyperosmotic stress. Deletion of UvHOG1 resulted in reduced expression of the stress response-related genes UvATF1 and UvSKN7. In the Uvhog1 mutant, NaCl treatment failed to stimulate the accumulation of sorbitol and glycerol. In addition, the Uvhog1 mutant had reduced toxicity on shoot growth in rice seed germination assays. Overall, as the first report of targeted gene deletion mutant in U. virens, our results showed that UvHOG1 likely has conserved roles in regulating stress responses, hyphal growth, and possibly secondary metabolism. PMID:27095476

  1. Overexpression of the brassinosteroid biosynthetic gene DWF4 in Brassica napus simultaneously increases seed yield and stress tolerance.

    Sahni, Sangita; Prasad, Bishun D; Liu, Qing; Grbic, Vojislava; Sharpe, Andrew; Singh, Surinder P; Krishna, Priti

    2016-01-01

    As a resource allocation strategy, plant growth and defense responses are generally mutually antagonistic. Brassinosteroid (BR) regulates many aspects of plant development and stress responses, however, genetic evidence of its integrated effects on plant growth and stress tolerance is lacking. We overexpressed the Arabidopsis BR biosynthetic gene AtDWF4 in the oilseed plant Brassica napus and scored growth and stress response phenotypes. The transgenic B. napus plants, in comparison to wild type, displayed increased seed yield leading to increased overall oil content per plant, higher root biomass and root length, significantly better tolerance to dehydration and heat stress, and enhanced resistance to necrotrophic fungal pathogens Leptosphaeria maculans and Sclerotinia sclerotiorum. Transcriptome analysis supported the integrated effects of BR on growth and stress responses; in addition to BR responses associated with growth, a predominant plant defense signature, likely mediated by BES1/BZR1, was evident in the transgenic plants. These results establish that BR can interactively and simultaneously enhance abiotic and biotic stress tolerance and plant productivity. The ability to confer pleiotropic beneficial effects that are associated with different agronomic traits suggests that BR-related genes may be important targets for simultaneously increasing plant productivity and performance under stress conditions. PMID:27324083

  2. The involvement of SMILE/TMTC3 in endoplasmic reticulum stress response.

    Maud Racapé

    Full Text Available BACKGROUND: The state of operational tolerance has been detected sporadically in some renal transplanted patients that stopped immunosuppressive drugs, demonstrating that allograft tolerance might exist in humans. Several years ago, a study by Brouard et al. identified a molecular signature of several genes that were significantly differentially expressed in the blood of such patients compared with patients with other clinical situations. The aim of the present study is to analyze the role of one of these molecules over-expressed in the blood of operationally tolerant patients, SMILE or TMTC3, a protein whose function is still unknown. METHODOLOGY/PRINCIPAL FINDINGS: We first confirmed that SMILE mRNA is differentially expressed in the blood of operationally tolerant patients with drug-free long term graft function compared to stable and rejecting patients. Using a yeast two-hybrid approach and a colocalization study by confocal microscopy we furthermore report an interaction of SMILE with PDIA3, a molecule resident in the endoplasmic reticulum (ER. In accordance with this observation, SMILE silencing in HeLa cells correlated with the modulation of several transcripts involved in proteolysis and a decrease in proteasome activity. Finally, SMILE silencing increased HeLa cell sensitivity to the proteasome inhibitor Bortezomib, a drug that induces ER stress via protein overload, and increased transcript expression of a stress response protein, XBP-1, in HeLa cells and keratinocytes. CONCLUSION/SIGNIFICANCE: In this study we showed that SMILE is involved in the endoplasmic reticulum stress response, by modulating proteasome activity and XBP-1 transcript expression. This function of SMILE may influence immune cell behavior in the context of transplantation, and the analysis of endoplasmic reticulum stress in transplantation may reveal new pathways of regulation in long-term graft acceptance thereby increasing our understanding of tolerance.

  3. Conditioned stress prevents cue-primed cocaine reinstatement only in stress-responsive rats.

    Hadad, Natalie A; Wu, Lizhen; Hiller, Helmut; Krause, Eric G; Schwendt, Marek; Knackstedt, Lori A

    2016-07-01

    Neurobiological mechanisms underlying comorbid posttraumatic stress disorder (PTSD) and cocaine use disorder (CUD) are unknown. We aimed to develop an animal model of PTSD + CUD to examine the neurobiology underlying cocaine-seeking in the presence of PTSD comorbidity. Rats were exposed to cat urine once for 10-minutes and tested for anxiety-like behaviors one week later. Subsequently, rats underwent long-access (LgA) cocaine self-administration and extinction training. Rats were re-exposed to the trauma context and then immediately tested for cue-primed reinstatement of cocaine-seeking. Plasma and brains were collected afterwards for corticosterone assays and real-time qPCR analysis. Urine-exposed (UE; n = 23) and controls not exposed to urine (Ctrl; n = 11) did not differ in elevated plus maze behavior, but UE rats displayed significantly reduced habituation of the acoustic startle response (ASR) relative to Ctrl rats. A median split of ASR habituation scores was used to classify stress-responsive rats. UE rats (n = 10) self-administered more cocaine on Day 1 of LgA than control rats (Ctrl + Coc; n = 8). Re-exposure to the trauma context prevented cocaine reinstatement only in stress-responsive rats. Ctrl + Coc rats had lower plasma corticosterone concentrations than Ctrls, and decreased gene expression of corticotropin releasing hormone (CRH) and Glcci1 in the hippocampus. Rats that self-administered cocaine displayed greater CRH expression in the amygdala that was independent of urine exposure. While we did not find that cat urine exposure induced a PTSD-like phenotype in our rats, the present study underscores the need to separate stressed rats into cohorts based on anxiety-like behavior in order to study individual vulnerability to PTSD + CUD. PMID:27181613

  4. EFFECT OF MC4R POLYMORPHISM ON PHYSIOLOGICAL STRESS RESPONSE IN PIGS

    Krešimir Salajpal

    2007-06-01

    Full Text Available Melanocortin-4 receptor (MC4R is a G-protein coupled receptor predominantly expressed in hypothalamic regions which are known for their roles in feeding behavior, energy homeostasis and HPA axis regulation. In this study, we analyzed the effect of a missense mutation (Asp298Asn in the porcine MC4R gene on physiological stress response and carcass composition in pigs of two crosses: A ( ♀Duroc x ♂Swedish Landrace x ♂Pietrain (n=25 and B (♀Swedish Landrace x ♂Large White x ♂Pietrain (n=21. All pigs included in this study were heterozygous (Nn for the stress syndrome gen. Blood samples were collected before loading and at exsanguinations to measure cortisol, lactate, glucose, serum enzymes activity and some haematological parameters. Because only one pig with AA genotype was observed, there was no indicatedeffect of this genotype on investigated parameters. The heterozygous (AG pigs showed a lower increase(P<0.05 in CK and AST activity after exsanguinations as well as trend towards lower increase (P<0.10 in cortisol and lactate levels and higher increase (P<0.10 in RBC and haemoglobin content. Higher increase(P<0.05 in LDH activity was observed in GG homozygous pigs from group B, but not in pigs from group A. In addition, the heterozygous (AG pigs had a higher backfat thickness and lower estimated lean (P<0.05 than homozygous (GG pigs. These results may support a possible role of the MC4R Asp298Asn polymorphism in the genetic basis of stress response and economically important traits in pigs.

  5. Global transcriptome analysis of hexavalent chromium stress responses in Staphylococcus aureus LZ-01.

    Zhang, Xiaowei; Wu, Wenyang; Virgo, Nolan; Zou, Luming; Liu, Pu; Li, Xiangkai

    2014-10-01

    Staphylococcus aureus strain LZ-01, isolated from the Lanzhou reaches of the Yellow River, is capable of reducing Cr(VI) to Cr(III) aerobically. We employed transcriptome sequencing analysis to identify genes involved in Cr(VI) stress responses in S. aureus LZ-01. Our results showed that 512 of the 2,370 predicted genes displayed up-regulation (>2-fold), and 49 genes were down-regulated (128 genes were annotated to encode proteins involved in cellular processes; 68 were categorized to transport and binding proteins; 26 were involved in DNA repair and 32 were associated with regulatory functions. To further elucidate the Cr(VI) resistance and reduction mechanism, we carried out physiological tests and quantitative PCR analysis. Both RNA-seq and qRT-PCR data showed genes encoding a thioredoxin reductase and main subunits of cytochrome c oxidase complex were up-regulated upon Cr(VI) treatment. Either cadmium or NaN3 treatment could inhibit Cr(VI) reduction which indicates that thioredoxin and cytochrome are involved in Cr(VI) reduction strain LZ-01. 29 ABC-type metal/multidrug transporters and efflux pumps were up-regulated, suggesting that they are involved in Cr(VI) resistance by pumping chromium ions out of cells. The up-regulation of 26 DNA repair genes demonstrate that Cr(VI) is toxic to DNA and those DNA protection proteins need to be responded for Cr(VI) stress. Based on these results, the mechanism of strain LZ-01 resists and reduces Cr(VI) is revealed. PMID:25086489

  6. Stress responses of spring rape plants to soil flooding

    Balakhnina, T.; Bennicelli, R.; Stêpniewska, Z.; Stêpniewski, W.; Borkowska, A.; Fomina, I.

    2012-10-01

    Stress responses of spring rape to soil hypoxia were investigated during 8-days flooding. Soil air-filled porosity decreased from 25-30% to 0%, oxygen diffusion rate - from 2.6-3.5 to 0.34 μmol O2 m-2 s-1, and redox potential - from 460 to 150mVwithin few hours. Alcohol dehydrogenase activity in roots increased up to 7-fold after one day of flooding and then decreased to 170% of control. Superoxide dismutase activity in roots increased by 27% during first 3 days and then dropped to 60% of control; in the leaves superoxide dismutase activity increased in average by 44%. Ascorbate peroxidase activity in leaves increased by 37% during first 3 days and then decreased to control value. Glutathione reductase activity increased by 45% in roots of flooded plants but did not change in leaves. Proline concentration in leaves increased up to 4-fold on the 3d day of flooding and then decreased to control value. Thus soil flooding induces increase of alcohol dehydrogenase activity and subsequent increase of superoxide dismutase and glutathione reductase activities in roots while the leaves display a few days increase of free proline concentration and ascorbate peroxidase activity, and a long-term increase of superoxide dismutase activity.

  7. Sex differences in the stress response in SD rats.

    Lu, Jing; Wu, Xue-Yan; Zhu, Qiong-Bin; Li, Jia; Shi, Li-Gen; Wu, Juan-Li; Zhang, Qi-Jun; Huang, Man-Li; Bao, Ai-Min

    2015-05-01

    Sex differences play an important role in depression, the basis of which is an excessive stress response. We aimed at revealing the neurobiological sex differences in the same study in acute- and chronically-stressed rats. Female Sprague-Dawley (SD) rats were randomly divided into 6 groups: chronic unpredictable mild stress (CUMS), acute foot shock (FS) and controls, animals in all 3 groups were sacrificed in proestrus or diestrus. Male SD rats were randomly divided into 3 groups: CUMS, FS and controls. Comparisons were made of behavioral changes in CUMS and control rats, plasma levels of corticosterone (CORT), testosterone (T) and estradiol (E2), and of the hypothalamic mRNA-expression of stress-related molecules, i.e. estrogen receptor α and β, androgen receptor, aromatase, mineralocorticoid receptor, glucocorticoid receptor, corticotropin-releasing hormone, arginine vasopressin and oxytocin. CUMS resulted in disordered estrus cycles, more behavioral and hypothalamic stress-related molecules changes and a stronger CORT response in female rats compared with male rats. Female rats also showed decreased E2 and T levels after FS and CUMS, while male FS rats showed increased E2 and male CUMS rats showed decreased T levels. Stress affects the behavioral, endocrine and the molecular response of the stress systems in the hypothalamus of SD rats in a clear sexual dimorphic way, which has parallels in human data on stress and depression. PMID:25687843

  8. Scolopendin 2 leads to cellular stress response in Candida albicans.

    Lee, Heejeong; Hwang, Jae-Sam; Lee, Dong Gun

    2016-07-01

    Centipedes, a kind of arthropod, have been reported to produce antimicrobial peptides as part of an innate immune response. Scolopendin 2 (AGLQFPVGRIGRLLRK) is a novel antimicrobial peptide derived from the body of the centipede Scolopendra subspinipes mutilans by using RNA sequencing. To investigate the intracellular responses induced by scolopendin 2, reactive oxygen species (ROS) and glutathione accumulation and lipid peroxidation were monitored over sublethal and lethal doses. Intracellular ROS and antioxidant molecule levels were elevated and lipids were peroxidized at sublethal concentrations. Moreover, the Ca(2+) released from the endoplasmic reticulum accumulated in the cytosol and mitochondria. These stress responses were considered to be associated with yeast apoptosis. Candida albicans cells exposed to scolopendin 2 were identified using diagnostic markers of apoptotic response. Various responses such as phosphatidylserine externalization, chromatin condensation, and nuclear fragmentation were exhibited. Scolopendin 2 disrupted the mitochondrial membrane potential and activated metacaspase, which was mediated by cytochrome c release. In conclusion, treatment of C. albicans with scolopendin 2 induced the apoptotic response at sublethal doses, which in turn led to mitochondrial dysfunction, metacaspase activation, and cell death. The cationic antimicrobial peptide scolopendin 2 from the centipede is a potential antifungal peptide, triggering the apoptotic response. PMID:27207682

  9. Polyamines in response to abiotic stress tolerance through transgenic approaches.

    Pathak, Malabika Roy; Teixeira da Silva, Jaime A; Wani, Shabir H

    2014-01-01

    The distribution, growth, development and productivity of crop plants are greatly affected by various abiotic stresses. Worldwide, sustainable crop productivity is facing major challenges caused by abiotic stresses by reducing the potential yield in crop plants by as much as 70%. Plants can generally adapt to one or more environmental stresses to some extent. Physiological and molecular studies at transcriptional, translational, and transgenic plant levels have shown the pronounced involvement of naturally occurring plant polyamines (PAs), in controlling, conferring, and modulating abiotic stress tolerance in plants. PAs are small, low molecular weight, non-protein polycations at physiological pH, that are present in all living organisms, and that have strong binding capacity to negatively charged DNA, RNA, and different protein molecules. They play an important role in plant growth and development by controlling the cell cycle, acting as cell signaling molecules in modulating plant tolerance to a variety of abiotic stresses. The commonly known PAs, putrescine, spermidine, and spermine tend to accumulate together accompanied by an increase in the activities of their biosynthetic enzymes under a range of environmental stresses. PAs help plants to combat stresses either directly or by mediating a signal transduction pathway, as shown by molecular cloning and expression studies of PA biosynthesis-related genes, knowledge of the functions of PAs, as demonstrated by developmental studies, and through the analysis of transgenic plants carrying PA genes. This review highlights how PAs in higher plants act during environmental stress and how transgenic strategies have improved our understanding of the molecular mechanisms at play. PMID:24710064

  10. Comparative Transcriptomic Profiling of Vitis vinifera Under High Light Using a Custom-Made Array and the Affymetrix GeneChip

    Luisa C. Carvalho; Belmiro J. Vilela; Phil M. Mullineaux; Sara Am(a)ncio

    2011-01-01

    Understanding abiotic stress responses is one of the most important issues in plant research nowadays.Abiotic stress,including excess light,can promote the onset of oxidative stress through the accumulation of reactive oxygen species.Oxidative stress also arises when in vitro propagated plants are exposed to high light upon transfer to ex vitro.To determine whether the underlying pathways activated at the transfer of in vitro grapevine to ex vitro conditions reflect the processes occurring upon light stress,we used Vitis vinifera Affymetrix GeneChip (VvGA) and a custom array of genes responsive to light stress (LSCA) detected by real-time reverse transcriptase PCR (qRT-PCR).When gene-expression profiles were compared,‘protein metabolism and modification',‘signaling',and ‘anti-oxidative' genes were more represented in LSCA,while,in VvGA,‘cell wall metabolism' and ‘secondary metabolism' were the categories in which gene expression varied more significantly.The above functional categories confirm previous studies involving other types of abiotic stresses,enhancing the common attributes of abiotic stress defense pathways.The LSCA analysis of our experimental system detected strong response of heat shock genes,particularly the protein rescuing mechanism involving the cooperation of two ATP-dependent chaperone systems,Hsp100 and Hsp70,which showed an unusually late response during the recovery period,of extreme relevance to remove non-functional,potentially harmful polypeptides arising from misfolding,denaturation,or aggregation brought about by stress.The success of LSCA also proves the feasibility of a custommade qRT-PCR approach,particularly for species for which no GeneChip is available and for researchers dealing with a specific and focused problem.

  11. Application of Selected Reaction Monitoring Mass Spectrometry to Field Grown Crop Plants To Allow Dissection of the Molecular Mechanisms of Abiotic Stress Tolerance.

    Richard P. Jacoby

    2013-02-01

    Full Text Available One major constraint upon the application of molecular crop breeding approaches is the small number of genes linked to agronomically desirable traits through defined biochemical mechanisms. Proteomic investigations of crop plants under abiotic stress treatments have identified many proteins that differ in control versus stress comparisons, however this broad profiling of cell physiology is poorly suited to ranking the effects and identifying the specific proteins that are causative in agronomically relevant traits. Here we will reason that insights into a protein’s function, its biochemical process and links to stress tolerance are more likely to arise through approaches that evaluate these differential abundances of proteins and include varietal comparisons, precise discrimination of protein isoforms, enrichment of functionally related proteins and integration of proteomic datasets with physiological measurements of both lab and field grown plants. We will briefly explain how applying the emerging proteomic technology of multiplexed selective reaction monitoring mass spectrometry with its accuracy and throughput can facilitate and enhance these approaches and provide a clear means to rank the growing cohort of stress responsive proteins. We will also highlight the benefit of integrating proteomic analyses with cultivar-specific genetic databases and physiological assessments of cultivar performance in relevant field environments for revealing deeper insights into molecular crop improvement.

  12. Molecular biology of the stress response in the early embryo and its stem cells.

    Puscheck, Elizabeth E; Awonuga, Awoniyi O; Yang, Yu; Jiang, Zhongliang; Rappolee, Daniel A

    2015-01-01

    to zygotic genome activation, the large mRNA program initiated at compaction, ion pumping required for cavitation, the differentiation of the first lineages, integration with the uterine environment at implantation, rapid proliferation of stem cells, and production of certain lineages which require the highest energy and are most sensitive to mitochondrial inhibition. Stress response mechanisms insure that stem cells for the early embryo and placenta survive at lower stress exposures, and that the organism survives through compensatory and prioritized stem cell differentiation, at higher stress exposures. These servomechanisms include a small set of stress enzymes from the 500 protein kinases in the kinome; the part of the genome coding for protein kinases that hierarchically regulate the activity of other proteins and enzymes. Important protein kinases that mediate the stress response of embryos and their stem cells are SAPK, p38MAPK, AMPK, PI3K, Akt, MEK1/2, MEKK4, PKA, IRE1 and PERK. These stress enzymes have cytosolic function in cell survival at low stress exposures and nuclear function in modifying transcription factor activity at higher stress exposures. Some of the transcription factors (TFs) that are most important in the stress response are JunC, JunB, MAPKAPs, ATF4, XBP1, Oct1, Oct4, HIFs, Nrf2/KEAP, NFKB, MT1, Nfat5, HSF1/2 and potency-maintaining factors Id2, Cdx2, Eomes, Sox2, Nanog, Rex1, and Oct4. Clearly the stress enzymes have a large number of cytosolic and nuclear substrates and the TFs regulate large numbers of genes. The interaction of stress enzymes and TFs in the early embryo and its stem cells are a continuing central focus of research. In vitro regulation of TFs by stress enzymes leads to reprogramming of the stem cell when stress diminishes stem cell accumulation. Since more differentiated product is produced by fewer cells, the process compensates for fewer cells. Coupled with stress-induced compensatory differentiation of stem cells is a

  13. Transcriptomic analysis of grain amaranth (Amaranthus hypochondriacus using 454 pyrosequencing: comparison with A. tuberculatus, expression profiling in stems and in response to biotic and abiotic stress

    Vargas-Ortiz Erandi

    2011-07-01

    Full Text Available Abstract Background Amaranthus hypochondriacus, a grain amaranth, is a C4 plant noted by its ability to tolerate stressful conditions and produce highly nutritious seeds. These possess an optimal amino acid balance and constitute a rich source of health-promoting peptides. Although several recent studies, mostly involving subtractive hybridization strategies, have contributed to increase the relatively low number of grain amaranth expressed sequence tags (ESTs, transcriptomic information of this species remains limited, particularly regarding tissue-specific and biotic stress-related genes. Thus, a large scale transcriptome analysis was performed to generate stem- and (abiotic stress-responsive gene expression profiles in grain amaranth. Results A total of 2,700,168 raw reads were obtained from six 454 pyrosequencing runs, which were assembled into 21,207 high quality sequences (20,408 isotigs + 799 contigs. The average sequence length was 1,064 bp and 930 bp for isotigs and contigs, respectively. Only 5,113 singletons were recovered after quality control. Contigs/isotigs were further incorporated into 15,667 isogroups. All unique sequences were queried against the nr, TAIR, UniRef100, UniRef50 and Amaranthaceae EST databases for annotation. Functional GO annotation was performed with all contigs/isotigs that produced significant hits with the TAIR database. Only 8,260 sequences were found to be homologous when the transcriptomes of A. tuberculatus and A. hypochondriacus were compared, most of which were associated with basic house-keeping processes. Digital expression analysis identified 1,971 differentially expressed genes in response to at least one of four stress treatments tested. These included several multiple-stress-inducible genes that could represent potential candidates for use in the engineering of stress-resistant plants. The transcriptomic data generated from pigmented stems shared similarity with findings reported in developing

  14. Stress response symptoms in adolescent and young adult children of parents diagnosed with cancer

    Huizinga, G.A.; Visser, A.; van der Graaf, W.T.; Hoekstra, H.J.; Klip, E.C.; Pras, E.; Hoekstra-Weebers, J.E.

    2005-01-01

    The aim of this study was to assess stress response symptoms in children of parents diagnosed with cancer 1-5 year prior to study entry. The impact of event scale was used to measure stress response symptoms in terms of intrusion and avoidance; the youth self-report assessed emotional and behavioura

  15. Role of c-Abl in the DNA damage stress response

    Yosef SHAUL; Merav BEN-YEHOYADA

    2005-01-01

    c-Abl has been implicated in many cellular processes including differentiation, division, adhesion, death, and stress response. c-Abl is a latent tyrosine kinase that becomes activated in response to numerous extra- and intra-cellular stimuli. Here we briefly review the current knowledge about c-Abl involvement in the DNA-damage stress response and its implication on cell physiology.

  16. Infants, Mothers, and Dyadic Contributions to Stability and Prediction of Social Stress Response at 6 Months

    Provenzi, Livio; Olson, Karen L.; Montirosso, Rosario; Tronick, Ed

    2016-01-01

    The study of infants' interactive style and social stress response to repeated stress exposures is of great interest for developmental and clinical psychologists. Stable maternal and dyadic behavior is critical to sustain infants' development of an adaptive social stress response, but the association between infants' interactive style and social…

  17. Diurnal oscillations of soybean circadian clock and drought responsive genes.

    Juliana Marcolino-Gomes

    Full Text Available Rhythms produced by the endogenous circadian clock play a critical role in allowing plants to respond and adapt to the environment. While there is a well-established regulatory link between the circadian clock and responses to abiotic stress in model plants, little is known of the circadian system in crop species like soybean. This study examines how drought impacts diurnal oscillation of both drought responsive and circadian clock genes in soybean. Drought stress induced marked changes in gene expression of several circadian clock-like components, such as LCL1-, GmELF4- and PRR-like genes, which had reduced expression in stressed plants. The same conditions produced a phase advance of expression for the GmTOC1-like, GmLUX-like and GmPRR7-like genes. Similarly, the rhythmic expression pattern of the soybean drought-responsive genes DREB-, bZIP-, GOLS-, RAB18- and Remorin-like changed significantly after plant exposure to drought. In silico analysis of promoter regions of these genes revealed the presence of cis-elements associated both with stress and circadian clock regulation. Furthermore, some soybean genes with upstream ABRE elements were responsive to abscisic acid treatment. Our results indicate that some connection between the drought response and the circadian clock may exist in soybean since (i drought stress affects gene expression of circadian clock components and (ii several stress responsive genes display diurnal oscillation in soybeans.

  18. Neuronatin is a stress-responsive protein of rod photoreceptors.

    Shinde, Vishal; Pitale, Priyamvada M; Howse, Wayne; Gorbatyuk, Oleg; Gorbatyuk, Marina

    2016-07-22

    Neuronatin (NNAT) is a small transmembrane proteolipid that is highly expressed in the embryonic developing brain and several other peripheral tissues. This study is the first to provide evidence that NNAT is detected in the adult retina of various adult rod-dominant mammals, including wild-type (WT) rodents, transgenic rodents expressing mutant S334ter, P23H, or T17M rhodopsin, non-human primates, humans, and cone-dominant tree shrews. Immunohistochemical and quantitative real time polymerase chain reaction (qRT-PCR) analyses were applied to detect NNAT. Confocal microscopy analysis revealed that NNAT immunofluorescence is restricted to the outer segments (OSs) of photoreceptors without evidence of staining in other retinal cell types across all mammalian species. Moreover, in tree shrew retinas, we found NNAT to be co-localized with rhodopsin, indicating its predominant expression in rods. The rod-derived expression of NNAT was further confirmed by qRT-PCR in isolated rod photoreceptor cells. We also used these cells to mimic cellular stress in transgenic retinas by treating them with the endoplasmic reticulum stress inducer, tunicamycin. Thus, our data revealed accumulation of NNAT around the nucleus as compared to dispersed localization of NNAT within control cells. This distribution coincided with the parti