WorldWideScience

Sample records for abietic acid inhibits

  1. The conifer biomarkers dehydroabietic and abietic acids are widespread in Cyanobacteria

    Costa, Maria Sofia; Rego, Adriana; Ramos, Vitor; Afonso, Tiago B.; Freitas, Sara; Preto, Marco; Lopes, Viviana; Vasconcelos, Vitor; Magalhães, Catarina; Leão, Pedro N.

    2016-03-01

    Terpenes, a large family of natural products with important applications, are commonly associated with plants and fungi. The diterpenoids dehydroabietic and abietic acids are defense metabolites abundant in resin, and are used as biomarkers for conifer plants. We report here for the first time that the two diterpenoid acids are produced by members of several genera of cyanobacteria. Dehydroabietic acid was isolated from two cyanobacterial strains and its identity was confirmed spectroscopically. One or both of the diterpenoids were detected in the cells of phylogenetically diverse cyanobacteria belonging to four cyanobacterial ‘botanical orders’, from marine, estuarine and inland environments. Dehydroabietic acid was additionally found in culture supernatants. We investigated the natural role of the two resin acids in cyanobacteria using ecologically-relevant bioassays and found that the compounds inhibited the growth of a small coccoid cyanobacterium. The unexpected discovery of dehydroabietic and abietic acids in a wide range of cyanobacteria has implications for their use as plant biomarkers.

  2. Hepatoprotective and cytotoxic activities of abietic acid from Isodon wightii (bentham H. hara

    Madhusudhanan Gogul Ramnath

    2016-01-01

    Abbreviation Used: ABA: Abietic acid; LPS: Lipopolysacharride; PBS: Phosphate buffer saline; PI: Propidium iodide; NMR: Nuclear magnetic resonance; COSY: Correlation spectroscopy; HSQC: Heteronuclear single quantum correlation; HMBC: Heteronuclear multi - bond correlation; MTT: 3-(4,5-dimethylthiazol-2yl-2,5-diphenyltetrazolium bromide

  3. Effect of abietic acid addition on anodic dissolution of zinc- cadmium- and thallium amalgams in sodium sulfate solution

    The method of inversion voltametry with a stationary mercury drop electrode has been applied to investigate the effect of abietic acid (AA) on anodic oxidation of cadmium, zinc, thallium from their amalgams as well as from mixed cadmium-thallium and zinc-thallium amalgams against the background of 0.5 M sodium sulfate at 298 K. Constants of peak of analgam anodic oxidation in the background solution and with additions of different AA concentrations are calculated. It is established that AA has the inhibiting effect on the processes of oxidation of cadmium- and zinc amalgams and does not produce the inhibiting effect on the oxidation of thallium amalgam

  4. Abietic acid attenuates allergic airway inflammation in a mouse allergic asthma model.

    Gao, Yi; Zhaoyu, Liu; Xiangming, Fang; Chunyi, Lin; Jiayu, Pan; Lu, Shen; Jitao, Chen; Liangcai, Chen; Jifang, Liu

    2016-09-01

    Abietic acid (AA), one of the terpenoids isolated from Pimenta racemosa var. grissea, has been reported to have anti-inflammatory and immunomodulatory effects. However, the anti-allergic effects of AA remain unclear. The aim of this study was to investigate the anti-allergic effects of AA in an ovalbumin (OVA)-induced asthma murine model. The model of mouse asthma was established by induction of OVA. AA (10, 20, 40mg/kg) was administered by oral gavage 1h after the OVA treatment on days 21 to 23. At 24h after the last challenge, bronchoalveolar lavage fluid (BALF) and lung tissues were collected to assess pathological changes, cytokines production, and NF-κB expression. The results showed that AA attenuated lung histopathologic changes, inflammatory cells infiltration, and bronchial hyper-responsiveness. AA also inhibited OVA-induced the nitric oxide (NO), IL-4, IL-5, IL-13, and OVA-specific IgE production, as well as NF-κB activation. In conclusion, the current study demonstrated that AA exhibited protective effects against OVA-induced allergic asthma in mice and the possible mechanism was involved in inhibiting NF-κB activation. PMID:27318791

  5. Terpenoid biotransformation in mammals. IV Biotransformation of (+)-longifolene, (-)-caryophyllene, (-)-caryophyllene oxide, (-)-cyclocolorenone, (+)-nootkatone, (-)-elemol, (-)-abietic acid and (+)-dehydroabietic acid in rabbits.

    Asakawa, Y; Ishida, T; Toyota, M; Takemoto, T

    1986-08-01

    The metabolism of (+)-longifolene, (-)-caryophyllene, (-)-caryophyllene oxide, (-)-cyclocolorenone, (+)-nootkatone, (-)-elemol, (-)-abietic acid and (+)-dehydroabietic acid was studied in rabbits. Each of these sesquiterpenoids was converted to primary, secondary or tertiary alcohols, among which the primary alcohol was predominant. A vinylic methyl group and an exomethylene group were easily hydroxylated and converted to a glycol via an epoxide in many cases. Eight new metabolites were determined by chemical and spectroscopic methods. PMID:3765656

  6. Flotation separation of gadolinium, terbium and dysprosium ions collected by means of potassium abietate

    The possibility of the flotation separation of gadolinium, terbium and dysprosium ions collected by means of potassium abietate from solutions has been shown. Flotation separation of gadolinium, terbium and dysprosium ions, collected by means of potassium abietate mostly occurs from solutions when pH value is equal to 7.0 in the presence of the collector twofold excess. The kinetics of the flotation separation of gadolinium, terbium and dysprosium ions is limited by the rate of diffusion of sublate colloid particles to the air bubble surface

  7. Phytic Acid Inhibits Lipid Peroxidation In Vitro

    Alicja Zajdel; Adam Wilczok; Ludmiła Węglarz; Zofia Dzierżewicz

    2013-01-01

    Phytic acid (PA) has been recognized as a potent antioxidant and inhibitor of iron-catalyzed hydroxyl radical formation under in vitro and in vivo conditions. Therefore, the aim of the present study was to investigate, with the use of HPLC/MS/MS, whether PA is capable of inhibiting linoleic acid autoxidation and Fe(II)/ascorbate-induced peroxidation, as well as Fe(II)/ascorbate-induced lipid peroxidation in human colonic epithelial cells. PA at 100 μM and 500 μM effectively inhibited the deca...

  8. Phytic Acid Inhibits Lipid Peroxidation In Vitro

    Alicja Zajdel

    2013-01-01

    Full Text Available Phytic acid (PA has been recognized as a potent antioxidant and inhibitor of iron-catalyzed hydroxyl radical formation under in vitro and in vivo conditions. Therefore, the aim of the present study was to investigate, with the use of HPLC/MS/MS, whether PA is capable of inhibiting linoleic acid autoxidation and Fe(II/ascorbate-induced peroxidation, as well as Fe(II/ascorbate-induced lipid peroxidation in human colonic epithelial cells. PA at 100 μM and 500 μM effectively inhibited the decay of linoleic acid, both in the absence and presence of Fe(II/ascorbate. The observed inhibitory effect of PA on Fe(II/ascorbate-induced lipid peroxidation was lower (10–20% compared to that of autoxidation. PA did not change linoleic acid hydroperoxides concentration levels after 24 hours of Fe(II/ascorbate-induced peroxidation. In the absence of Fe(II/ascorbate, PA at 100 μM and 500 μM significantly suppressed decomposition of linoleic acid hydroperoxides. Moreover, PA at the tested nontoxic concentrations (100 μM and 500 μM significantly decreased 4-hydroxyalkenal levels in Caco-2 cells which structurally and functionally resemble the small intestinal epithelium. It is concluded that PA inhibits linoleic acid oxidation and reduces the formation of 4-hydroxyalkenals. Acting as an antioxidant it may help to prevent intestinal diseases induced by oxygen radicals and lipid peroxidation products.

  9. Boswellic acid inhibits expression of acid sphingomyelinase in intestinal cells

    Duan Rui-Dong

    2009-12-01

    Full Text Available Abstract Background Boswellic acid is a type of triterpenoids with antiinflammatory and antiproliferative properties. Sphingomyelin metabolism generates multiple lipid signals affecting cell proliferation, inflammation, and apoptosis. Upregulation of acid sphingomyelinase (SMase has been found in several inflammation-related diseases such as inflammatory bowel diseases, atherosclerosis, and diabetes. Methods The present study is to examine the effect of 3-acetyl-11-keto-β-boswellic acids (AKBA, a potent boswellic acid, on acid SMase activity and expression in intestinal cells. Both transformed Caco-2 cells and non-transformed Int407 cells were incubated with AKBA. After incubation, the change of acid SMase activity was assayed biochemically, the enzyme protein was examined by Western blot, and acid SMase mRNA was quantified by qPCR. Results We found that AKBA decreased acid SMase activity in both intestinal cell lines in dose and time dependent manners without affecting the secretion of the enzyme to the cell culture medium. The effect of AKBA was more effective in the fetal bovine serum-free culture medium. Among different types of boswellic acid, AKBA was the most potent one. The inhibitory effect on acid SMase activity occurred only in the intact cells but not in cell-free extract in the test tubes. At low concentration, AKBA only decreased the acid SMase activity but not the quantity of the enzyme protein. However, at high concentration, AKBA decreased both the mass of acid SMase protein and the mRNA levels of acid SMase in the cells, as demonstrated by Western blot and qPCR, respectively. Under the concentrations decreasing acid SMase activity, AKBA significantly inhibited cell proliferation. Conclusion We identified a novel inhibitory effect of boswellic acids on acid SMase expression, which may have implications in human diseases and health.

  10. Phosphonoacetic Acid Inhibition of Frog Virus 3 Replication

    Elliott, R. M.; Bateson, A.; Kelly, D C

    1980-01-01

    Phosphonoacetic acid at concentrations above 200 μg/ml inhibited the replication of frog virus 3 in BHK cells. The inhibition of viral DNA replication observed in these cells was reversible and correlated with the inhibition of the virus-induced DNA polymerase activity in an in vitro assay. The synthesis of frog virus 3-induced late or γ polypeptides was also inhibited by phosphonoacetic acid, although the early (α and β) polypeptides were unaffected.

  11. Inhibition of deoxyribonucleic acid replication in Bacillus brevis by ribonucleic acid polymerase inhibitors.

    Bhattacharya, S.; Sarkar, N.

    1981-01-01

    The incorporation of [3H]thymidine into deoxyribonucleic acid by exponentially growing cells of Bacillus brevis was inhibited by streptolydigin and rifampin in the same concentration range in which these drugs inhibit ribonucleic acid synthesis. Complete inhibition occurred within one-third generation time after drug addition, suggesting an effect on deoxyribonucleic acid chain elongation.

  12. Inhibition of osteoblast activity by zoledronic acid

    Fernanda Gonçalves Basso

    2013-10-01

    Full Text Available INTRODUCTION: Patients treated with nitrogen-containing bisphosphonates, such as zoledronic acid (ZA, have frequently shown oral bone exposure areas, termed osteonecrosis. In addition, these patients may also present low repair and regeneration potential, mainly after tooth extractions. These side-effects caused by bisphosphonates may be due to their inhibitory effects on oral mucosa and local bone cells. OBJECTIVE: To evaluate the effects of ZA on the mineralization capacity of cultured osteoblasts. MATERIALS AND METHODS: Human immortalized osteoblasts (SaOs-2 were grown in plain culture medium (Dulbecco's Modified Eagle Medium [DMEM] + 10% fetal bovine serum [FBS] in wells of 24-well plates. After 48-hour incubation, the plain DMEM was replaced by a solution with ZA at 5 µM which was maintained in contact with cells for seven, 14 or 21 days. After these periods, cells were evaluated regarding alkaline phosphatase (ALP activity and mineral nodule formation (alizarin red. Data were statistically analyzed by Mann-Whitney test, at 5% of significance level. RESULTS: ZA caused significant reduction on ALP activity and mineral nodules formation by cultured osteoblasts in all evaluated periods (p < 0.05. CONCLUSION: These data indicate that ZA causes inhibition on the osteogenic phenotype of cultured human osteoblasts, which, in turn, may reduce bone repair in patients subjected to ZA therapy.

  13. Calcite crystal growth rate inhibition by polycarboxylic acids

    Reddy, M.M.; Hoch, A.R.

    2001-01-01

    Calcite crystal growth rates measured in the presence of several polycarboxyclic acids show that tetrahydrofurantetracarboxylic acid (THFTCA) and cyclopentanetetracarboxylic acid (CPTCA) are effective growth rate inhibitors at low solution concentrations (0.01 to 1 mg/L). In contrast, linear polycarbocylic acids (citric acid and tricarballylic acid) had no inhibiting effect on calcite growth rates at concentrations up to 10 mg/L. Calcite crystal growth rate inhibition by cyclic polycarboxyclic acids appears to involve blockage of crystal growth sites on the mineral surface by several carboxylate groups. Growth morphology varied for growth in the absence and in the presence of both THFTCA and CPTCA. More effective growth rate reduction by CPTCA relative to THFTCA suggests that inhibitor carboxylate stereochemical orientation controls calcite surface interaction with carboxylate inhibitors. ?? 20O1 Academic Press.

  14. Hyaluronic Acid Inhibits Polycation Induced Cellular Responses

    lalenti, A.; Lanaro, A.; Brignola, G.; Marotta, P; Di Rosa, M.

    1994-01-01

    Positively charged macromolecules cause a variety of pathological events through their electrostatic interaction with anionic sites present on the membrane of target cells. In the present study we have investigated the effect of hyaluronic acid, a negatively charged molecule, on rat paw oedema induced by poly-L-lysine as well as on histamine release from rat mast cells and nitric oxide formation from rabbit aorta, both induced by this polycation. The results indicate that hyaluronic acid is a...

  15. Thyroid peroxidase activity is inhibited by amino acids

    D.P. Carvalho

    2000-03-01

    Full Text Available Normal in vitro thyroid peroxidase (TPO iodide oxidation activity was completely inhibited by a hydrolyzed TPO preparation (0.15 mg/ml or hydrolyzed bovine serum albumin (BSA, 0.2 mg/ml. A pancreatic hydrolysate of casein (trypticase peptone, 0.1 mg/ml and some amino acids (cysteine, tryptophan and methionine, 50 µM each also inhibited the TPO iodide oxidation reaction completely, whereas casamino acids (0.1 mg/ml, and tyrosine, phenylalanine and histidine (50 µM each inhibited the TPO reaction by 54% or less. A pancreatic digest of gelatin (0.1 mg/ml or any other amino acid (50 µM tested did not significantly decrease TPO activity. The amino acids that impair iodide oxidation also inhibit the TPO albumin iodination activity. The inhibitory amino acids contain side chains with either sulfur atoms (cysteine and methionine or aromatic rings (tyrosine, tryptophan, histidine and phenylalanine. Among the amino acids tested, only cysteine affected the TPO guaiacol oxidation reaction, producing a transient inhibition at 25 or 50 µM. The iodide oxidation inhibitory activity of cysteine, methionine and tryptophan was reversed by increasing iodide concentrations from 12 to 18 mM, while no such effect was observed when the cofactor (H2O2 concentration was increased. The inhibitory substances might interfere with the enzyme activity by competing with its normal substrates for their binding sites, binding to the free substrates or reducing their oxidized form.

  16. Cinnamic Acid Increases Lignin Production and Inhibits Soybean Root Growth

    Victor Hugo Salvador; Rogério Barbosa Lima; Wanderley Dantas dos Santos; Anderson Ricardo Soares; Paulo Alfredo Feitoza Böhm; Rogério Marchiosi; Maria de Lourdes Lucio Ferrarese; Osvaldo Ferrarese-Filho

    2013-01-01

    Cinnamic acid is a known allelochemical that affects seed germination and plant root growth and therefore influences several metabolic processes. In the present work, we evaluated its effects on growth, indole-3-acetic acid (IAA) oxidase and cinnamate 4-hydroxylase (C4H) activities and lignin monomer composition in soybean ( Glycine max ) roots. The results revealed that exogenously applied cinnamic acid inhibited root growth and increased IAA oxidase and C4H activities. The allelochemical in...

  17. Inhibiting Effect of Nicotinic Acid Hydrazide on Corrosion of Aluminum and Mild Steel in Acidic Medium

    Bhat, J. Ishwara [Mangalore Univ., Karnataka (India); Alva, Vijaya D. P. [Shree Devi Institute of Technology, Karnataka (India)

    2014-02-15

    The corrosion behavior of aluminum and mild steel in hydrochloric acid medium was studied using a nicotinic acid hydrazide as inhibitor by potentiodynamic polarization, electrochemical impedance spectroscopy technique and gravimetric methods. The effects of inhibitor concentration and temperature were investigated. The experimental results suggested, nicotinic acid hydrazide is a good corrosion inhibitor for both aluminum and mild steel in hydrochloric acid medium and the inhibition efficiency increased with increase in the inhibitor concentration. The polarization studies revealed that nicotinic acid hydrazide exhibits mixed type of inhibition. The inhibition was assumed to occur via adsorption of the inhibitor molecules on the aluminum and mild steel surface and inhibits corrosion by blocking the reaction sites on the surface of aluminum.

  18. Inhibiting Effect of Nicotinic Acid Hydrazide on Corrosion of Aluminum and Mild Steel in Acidic Medium

    The corrosion behavior of aluminum and mild steel in hydrochloric acid medium was studied using a nicotinic acid hydrazide as inhibitor by potentiodynamic polarization, electrochemical impedance spectroscopy technique and gravimetric methods. The effects of inhibitor concentration and temperature were investigated. The experimental results suggested, nicotinic acid hydrazide is a good corrosion inhibitor for both aluminum and mild steel in hydrochloric acid medium and the inhibition efficiency increased with increase in the inhibitor concentration. The polarization studies revealed that nicotinic acid hydrazide exhibits mixed type of inhibition. The inhibition was assumed to occur via adsorption of the inhibitor molecules on the aluminum and mild steel surface and inhibits corrosion by blocking the reaction sites on the surface of aluminum

  19. Uric Acid Inhibits Placental System A Amino Acid Uptake☆

    Bainbridge, S.A.; von Versen-Höynck, F.; Roberts, J M

    2008-01-01

    Hyperuricemia, a common clinical characteristic of preeclamptic pregnancies, has historically been considered a marker of reduced renal function in preeclamptic women. More recently it has been suggested that uric acid may directly contribute to pathological cell signaling events involved in disease progression as well as maternal and fetal pregnancy outcomes including fetal growth restriction. We hypothesize that the increased frequency of restricted fetal growth seen in relation to increasi...

  20. Catalytic Deoxygenation of Fatty Acids: Elucidation of the Inhibition Process

    Hollak, S.A.W.; Jong, de K.P.; Es, van D.S.

    2014-01-01

    Catalytic deoxygenation of unsaturated fatty acids in the absence of H2 is known to suffer from significant catalyst inhibition. Thus far, no conclusive results have been reported on the cause of deactivation. Here we show that CC double bonds present in the feed or the products dramatically reduce

  1. Inhibition of citrus fungal pathogens by using lactic acid bacteria.

    Gerez, C L; Carbajo, M S; Rollán, G; Torres Leal, G; Font de Valdez, G

    2010-08-01

    The effect of lactic acid bacteria (LAB) on pathogenic fungi was evaluated and the metabolites involved in the antifungal effect were characterized. Penicillium digitatum (INTA 1 to INTA 7) and Geotrichum citri-aurantii (INTA 8) isolated from decayed lemon from commercial packinghouses were treated with imazalil and guazatine to obtain strains resistant to these fungicides. The most resistant strains (4 fungal strains) were selected for evaluating the antifungal activity of 33 LAB strains, among which only 8 strains gave positive results. The antifungal activity of these LAB strains was related to the production of lactic acid, acetic acid, and phenyllactic acid (PLA). A central composite design and the response surface methodology were used to evaluate the inhibitory effect of the organic acids produced by the LAB cultures. The antifungal activity of lactic acid was directly related to its concentration; however, acetic acid and PLA showed a peak of activity at 52.5 and 0.8 mM, respectively, with inhibition rates similar to those obtained with Serenade((R)) (3.0 ppm) imazalil (50 ppm) and guazatine (50 ppm). Beyond the peak of activity, a reduction in effectiveness of both acetic acid and PLA was observed. Comparing the inhibition rate of the organic acids, PLA was about 66- and 600-fold more effective than acetic acid and lactic acid, respectively. This study presents evidences on the antifungal effect of selected LAB strains and their end products. Studies are currently being undertaken to evaluate the effectiveness in preventing postharvest diseases on citrus fruits. PMID:20722936

  2. Corrosion Inhibition of a Green Scale Inhibitor Polyepoxysuccinic Acid

    Rong Chun XIONG; Qing ZHOU; Gang WEI

    2003-01-01

    The corrosion inhibition of a green scale inhibitor, polyepoxysuccinic acid (PESA) wasstudied based on dynamic tests. It is found that when PESA is used alone, it had good corrosioninhibition. So, PESA should be included in the category of corrosion inhibitors. It is not only akind of green scale inhibitor, but also a green corrosion inhibitor. The synergistic effect betweenPESA and Zn2+ or sodium gluconate is poor. However, the synergistic effect among PESA, Zn2+and sodium gluconate is excellent, and the corrosion inhibition efficiency for carbon steel is higherthan 99%. Further study of corrosion inhibition mechanism reveals that corrosion inhibition ofPESA is not affected by carboxyl group, but by the oxygen atom inserted The existence ofoxygen atom in PESA molecular structure makes it easy to form stable chelate with pentacyclicstructure.

  3. Inhibition of fatty acid metabolism reduces human myeloma cells proliferation.

    José Manuel Tirado-Vélez

    Full Text Available Multiple myeloma is a haematological malignancy characterized by the clonal proliferation of plasma cells. It has been proposed that targeting cancer cell metabolism would provide a new selective anticancer therapeutic strategy. In this work, we tested the hypothesis that inhibition of β-oxidation and de novo fatty acid synthesis would reduce cell proliferation in human myeloma cells. We evaluated the effect of etomoxir and orlistat on fatty acid metabolism, glucose metabolism, cell cycle distribution, proliferation, cell death and expression of G1/S phase regulatory proteins in myeloma cells. Etomoxir and orlistat inhibited β-oxidation and de novo fatty acid synthesis respectively in myeloma cells, without altering significantly glucose metabolism. These effects were associated with reduced cell viability and cell cycle arrest in G0/G1. Specifically, etomoxir and orlistat reduced by 40-70% myeloma cells proliferation. The combination of etomoxir and orlistat resulted in an additive inhibitory effect on cell proliferation. Orlistat induced apoptosis and sensitized RPMI-8226 cells to apoptosis induction by bortezomib, whereas apoptosis was not altered by etomoxir. Finally, the inhibitory effect of both drugs on cell proliferation was associated with reduced p21 protein levels and phosphorylation levels of retinoblastoma protein. In conclusion, inhibition of fatty acid metabolism represents a potential therapeutic approach to treat human multiple myeloma.

  4. Muricholic acids inhibit Clostridium difficile spore germination and growth.

    Michael B Francis

    Full Text Available Infections caused by Clostridium difficile have increased steadily over the past several years. While studies on C. difficile virulence and physiology have been hindered, in the past, by lack of genetic approaches and suitable animal models, newly developed technologies and animal models allow these processes to be studied in detail. One such advance is the generation of a mouse-model of C. difficile infection. The development of this system is a major step forward in analyzing the genetic requirements for colonization and infection. While important, it is equally as important in understanding what differences exist between mice and humans. One of these differences is the natural bile acid composition. Bile acid-mediated spore germination is an important step in C. difficile colonization. Mice produce several different bile acids that are not found in humans. These muricholic acids have the potential to impact C. difficile spore germination. Here we find that the three muricholic acids (α-muricholic acid, β-muricholic acid and ω-muricholic acid inhibit C. difficile spore germination and can impact the growth of vegetative cells. These results highlight an important difference between humans and mice and may have an impact on C. difficile virulence in the mouse-model of C. difficile infection.

  5. Retinoic Acid Inhibits Airway Smooth Muscle Cell Migration

    Day, Regina M.; Lee, Young H.; Park, Ah-Mee; Suzuki, Yuichiro J.

    2006-01-01

    Airway remodeling in chronic asthma is characterized by increased smooth muscle mass that is associated with the reduction of the bronchial lumen as well as airway hyperresponsiveness. The development of agents that inhibit smooth muscle growth is therefore of interest for therapy to prevent asthma-associated airway remodeling. All-trans retinoic acid (ATRA) suppresses growth of vascular smooth muscle cells (SMCs) from the systemic and pulmonary circulation. The present study investigated the...

  6. Cinnamic acid increases lignin production and inhibits soybean root growth.

    Victor Hugo Salvador

    Full Text Available Cinnamic acid is a known allelochemical that affects seed germination and plant root growth and therefore influences several metabolic processes. In the present work, we evaluated its effects on growth, indole-3-acetic acid (IAA oxidase and cinnamate 4-hydroxylase (C4H activities and lignin monomer composition in soybean (Glycine max roots. The results revealed that exogenously applied cinnamic acid inhibited root growth and increased IAA oxidase and C4H activities. The allelochemical increased the total lignin content, thus altering the sum and ratios of the p-hydroxyphenyl (H, guaiacyl (G, and syringyl (S lignin monomers. When applied alone or with cinnamic acid, piperonylic acid (PIP, a quasi-irreversible inhibitor of C4H reduced C4H activity, lignin and the H, G, S monomer content compared to the cinnamic acid treatment. Taken together, these results indicate that exogenously applied cinnamic acid can be channeled into the phenylpropanoid pathway via the C4H reaction, resulting in an increase in H lignin. In conjunction with enhanced IAA oxidase activity, these metabolic responses lead to the stiffening of the cell wall and are followed by a reduction in soybean root growth.

  7. Shigella toxin inhibition of binding and translation of polyuridylic acid by Escherichia coli ribosomes.

    Olenick, J G; Wolfe, A D

    1980-01-01

    Shigella toxin inhibits polyuridylic acid-directed polymerization of phenylalanine in ribosome-enzyme systems obtained from Escherichia coli or from Shigella dysenteriae. The inhibition is the result of toxin acting on ribosomes to prevent polyuridylic acid attachment.

  8. Cadmium inhibits acid secretion in stimulated frog gastric mucosa

    Cadmium, a toxic environmental pollutant, affects the function of different organs such as lungs, liver and kidney. Less is known about its toxic effects on the gastric mucosa. The aim of this study was to investigate the mechanisms by which cadmium impacts on the physiology of gastric mucosa. To this end, intact amphibian mucosae were mounted in Ussing chambers and the rate of acid secretion, short circuit current (Isc), transepithelial potential (Vt) and resistance (Rt) were recorded in the continuous presence of cadmium. Addition of cadmium (20 μM to 1 mM) on the serosal but not luminal side of the mucosae resulted in inhibition of acid secretion and increase in NPPB-sensitive, chloride-dependent short circuit current. Remarkably, cadmium exerted its effects only on histamine-stimulated tissues. Experiments with TPEN, a cell-permeant chelator for heavy metals, showed that cadmium acts from the intracellular side of the acid secreting cells. Furthermore, cadmium-induced inhibition of acid secretion and increase in Isc cannot be explained by an action on: 1) H2 histamine receptor, 2) Ca2+ signalling 3) adenylyl cyclase or 4) carbonic anhydrase. Conversely, cadmium was ineffective in the presence of the H+/K+-ATPase blocker omeprazole suggesting that the two compounds likely act on the same target. Our findings suggest that cadmium affects the functionality of histamine-stimulated gastric mucosa by inhibiting the H+/K+-ATPase from the intracellular side. These data shed new light on the toxic effect of this dangerous environmental pollutant and may result in new avenues for therapeutic intervention in acute and chronic intoxication.

  9. Inhibition of Escherichia coli growth and diaminopimelic acid epimerase by 3-chlorodiaminopimelic acid.

    Baumann, R J; Bohme, E H; Wiseman, J. S.; Vaal, M; Nichols, J.S.

    1988-01-01

    The diaminopimelic acid (DAP) analog, 3-chloro-DAP, was synthesized and tested as the racemic acid for antibacterial activity and for inhibition of DAP epimerase. 3-Chloro-DAP was a potent inhibitor of DAP epimerase purified from Escherichia coli (Ki = 200 nM), and it is argued that 3-chloro-DAP is converted to a tight-binding transition state analog at the active site of this enzyme. Furthermore, 3-chloro-DAP inhibited growth of two E. coli mutants. In one of the mutants known for supersusce...

  10. Corrosion Inhibition of Mild Steel in Hydrochloric Acid Solution by Amino Acid Complexes

    K. Kiruthikajothi; G. Chandramohan

    2015-01-01

    Using the amino acids methionine and serine reduced Schiff base and their copper(II) complexes were synthesized. The inhibition effect of these copper (II) complexes on the corrosion of mild steel in 1 M HCl solution was investigated. The corrosion inhibition action is studied through weight loss method. Among the tested complexes [CuCl(SMet)PPh3.H2O] exhibited better corrosion inhibition at 3 mmol concentration. The adsorption of the complexes on the metal surface obeys Langmuir’s adsorption...

  11. Ferrous iron oxidation by Thiobacillus ferrooxidans: inhibition with benzoic acid, sorbic acid and sodium lauryl sulfate

    Onysko, S.J.

    1984-07-01

    Acid mine drainage is formed by the weathering or oxidation of pyritic material exposed during coal mining. The rate of pyritic material oxidation can be greatly accelerated by certain acidophilic bacteria such as Thiobacillus ferrooxidans which catalyse the oxidation of ferrous to ferric iron. A number of organic compounds, under laboratory conditions, can apparently inhibit both the oxidation of ferrous to ferric iron by T. ferrooxidans and the weathering of pyritic material by mixed cultures of acid mine drainage micro-organisms. Sodium lauryl sulphate (SLS), an anionic surfactant has proved effective in this respect. Benzoic acid, sorbic acid and SLS at low concentrations, each effectively inhibited bacterial oxidation of ferrous iron in batch cultures of T. ferrooxidans. The rate of chemical oxidation of ferrous iron in low pH, sterile, batch reactors was not substantially affected at the tested concentrations of any of the compounds.

  12. Gymnemic acids inhibit hyphal growth and virulence in Candida albicans.

    Vediyappan, Govindsamy; Dumontet, Vincent; Pelissier, Franck; d'Enfert, Christophe

    2013-01-01

    Candida albicans is an opportunistic and polymorphic fungal pathogen that causes mucosal, disseminated and invasive infections in humans. Transition from the yeast form to the hyphal form is one of the key virulence factors in C. albicans contributing to macrophage evasion, tissue invasion and biofilm formation. Nontoxic small molecules that inhibit C. albicans yeast-to-hypha conversion and hyphal growth could represent a valuable source for understanding pathogenic fungal morphogenesis, identifying drug targets and serving as templates for the development of novel antifungal agents. Here, we have identified the triterpenoid saponin family of gymnemic acids (GAs) as inhibitor of C. albicans morphogenesis. GAs were isolated and purified from Gymnema sylvestre leaves, the Ayurvedic traditional medicinal plant used to treat diabetes. Purified GAs had no effect on the growth and viability of C. albicans yeast cells but inhibited its yeast-to-hypha conversion under several hypha-inducing conditions, including the presence of serum. Moreover, GAs promoted the conversion of C. albicans hyphae into yeast cells under hypha inducing conditions. They also inhibited conidial germination and hyphal growth of Aspergillus sp. Finally, GAs inhibited the formation of invasive hyphae from C. albicans-infected Caenorhabditis elegans worms and rescued them from killing by C. albicans. Hence, GAs could be useful for various antifungal applications due to their traditional use in herbal medicine. PMID:24040201

  13. Acid Sphingomyelinase Inhibition Prevents Hemolysis During Erythrocyte Storage

    Richard S. Hoehn

    2016-06-01

    Full Text Available Background/Aims: During storage, units of human red blood cells (pRBCs experience membrane destabilization and hemolysis which may cause harm to transfusion recipients. This study investigates whether inhibition of acid sphingomyelinase could stabilize erythrocyte membranes and prevent hemolysis during storage. Methods: Human and murine pRBCs were stored under standard blood banking conditions with and without the addition of amitriptyline, a known acid sphingomyelinase inhibitor. Hemoglobin was measured with an electronic hematology analyzer and flow cytometry was used to measure erythrocyte size, complexity, phosphatidylserine externalization, and band 3 protein expression. Results: Cell-free hemoglobin, a marker of hemolysis, increased during pRBC storage. Amitriptyline treatment decreased hemolysis in a dose-dependent manner. Standard pRBC storage led to loss of erythrocyte size and membrane complexity, increased phosphatidylserine externalization, and decreased band 3 protein integrity as determined by flow cytometry. Each of these changes was reduced by treatment with amitriptyline. Transfusion of amitriptyline-treated pRBCs resulted in decreased circulating free hemoglobin. Conclusion: Erythrocyte storage is associated with changes in cell size, complexity, membrane molecular composition, and increased hemolysis. Acid sphingomyelinase inhibition reduced these changes in a dose-dependent manner. Our data suggest a novel mechanism to attenuate the harmful effects after transfusion of aged blood products.

  14. Nucleic acid-based approaches to STAT inhibition.

    Sen, Malabika; Grandis, Jennifer R

    2012-10-01

    Silencing of abnormally activated genes can be accomplished in a highly specific manner using nucleic acid based approaches. The focus of this review includes the different nucleic acid based inhibition strategies such as antisense oligodeoxynucleotides, small interfering RNA (siRNA), dominant-negative constructs, G-quartet oligonucleotides and decoy oligonucleotides, their mechanism of action and the effectiveness of these approaches to targeting the STAT (signal transducer and activator of transcription) proteins in cancer. Among the STAT proteins, especially STAT3, followed by STAT5, are the most frequently activated oncogenic STATs, which have emerged as plausible therapeutic cancer targets. Both STAT3 and STAT5 have been shown to regulate numerous oncogenic signaling pathways including proliferation, survival, angiogenesis and migration/invasion. PMID:24058785

  15. Ferrous iron oxidation by Thiobacillus ferrooxidans: inhibition with benzoic acid, sorbic acid, and sodium lauryl sulfate

    Onysko, S.J.; Kleinmann, R.L.P.; Erickson, P.M.

    1984-07-01

    Thiobacillus ferrooxidans promote indirect oxidation of pyrite through the catalysis of the oxidation of ferrous iron to ferric iron, which is an effective oxidant of pyrite. These bacteria also may catalyze direct oxidation of pyrite by oxygen. A number of organic compounds, under laboratory conditions, can apparently inhibit both the oxidation of ferrous iron to ferric iron by T. ferrooxidans and the weathering of pyritic material by mixed cultures of acid mine drainage microorganisms. In this study, benzoic acid, sorbic acid, and sodium lauryl sulfate at low concentrations (5 to 10 mg/liter) each effectively inhibited bacterial oxidation of ferrous iron in batch cultures of Thiobacillus ferrooxidans. The rate of chemical oxidation of ferrous iron in low-pH, sterile batch reactors was not substantially affected at the tested concentrations (5 to 50 mg/liter) of any of the compounds.

  16. Inhibition of acid sphingomyelinase by tricyclic antidepressants and analogons

    Nadine eBeckmann

    2014-09-01

    Full Text Available Amitriptyline, a tricyclic antidepressant, has been used in the clinic to treat a number of disorders, in particular major depression and neuropathic pain. In the 1970s the ability of tricyclic antidepressants to inhibit acid sphingomyelinase (ASM was discovered. The enzyme ASM catalyzes the hydrolysis of sphingomyelin to ceramide. ASM and ceramide were shown to play a crucial role in a wide range of diseases, including cancer, cystic fibrosis, diabetes, Alzheimer’s disease and major depression, as well as viral (e.g. measles virus and bacterial (e.g. Staphylococcus aureus, Pseudomonas aeruginosa infections. Ceramide molecules may act in these diseases by the alteration of membrane biophysics, the self-association of ceramide molecules within the cell membrane and the ultimate formation of larger ceramide-enriched membrane domains/platforms. These domains were shown to serve the clustering of certain receptors such as CD95 and may also act in the above named diseases. The potential to block the generation of ceramide by inhibiting the ASM has opened up new therapeutic approaches for the treatment of these conditions. Since amitriptyline is one of the longest used clinical drugs and side effects are well studied, it could potentially become a cheap and easily accessible medication for patients suffering from these diseases. In this review, we aim to provide an overview of current in vitro and in vivo studies and clinical trials utilizing amitriptyline to inhibit ASM and contemplate possible future applications of the drug.

  17. Choline inhibition of amino acid transport in preimplantation mouse blastocysts

    Addition of 70 mM choline chloride to Brinster's medium (140 mM Na+) inhibited uptake of ∼ 1 μM [3H]glycine, leucine, lysine and alanine in blastocysts by about 50% each during a five-minute incubation period at 370C, whereas 70 mM LiCl, sodium acetate and NaCl or 140 mM mannitol had no effect. They attribute the apparent linear relationship between Gly transport in blastocysts and the square of the [Na+], observed when choline was substituted for Na+ in Brinster's medium, to concomitant, concentration-dependent enhancement and inhibition of transport by Na+ and choline, respectively. As expected, Gly uptake and the [Na+] were linearly related up to 116 mM Na+, when Na+ was replaced with Li+. The rates of Na+-independent Gly and Ala uptake were + or choline replaced Na+. Therefore, neither Li+ nor choline appears to substitute for Na+ in supporting Na+-dependent transport in blastocysts. Na+-independent Leu uptake was 20 times faster than Gly or Ala uptake and appeared to be inhibited by choline in blastocysts since it was about 37% slower when choline instead of Li+ was substituted for Na+. In contrast to blastocysts, choline had no effect on amino acid transport in cleavage-stage mouse embryos. The unexpected sensitivity of transport to choline in blastocysts underscores the importance of testing the effects of this substance when it is used to replace Na+ in new transport studies

  18. Inhibition of Large Neutral Amino Acid Transporters Suppresses Kynurenic Acid Production Via Inhibition of Kynurenine Uptake in Rodent Brain.

    Sekine, Airi; Kuroki, Yusuke; Urata, Tomomi; Mori, Noriyuki; Fukuwatari, Tsutomu

    2016-09-01

    The tryptophan metabolite, kynurenic acid (KYNA), is a preferential antagonist of the α7 nicotinic acetylcholine receptor and N-methyl-D-aspartic acid receptor at endogenous brain concentrations. Recent studies have suggested that increases of brain KYNA levels are involved in psychiatric disorders such as schizophrenia and depression, and regulation of KYNA production has become a new target for treatment of these diseases. Kynurenine (KYN), the immediate precursor of KYNA, is transported into astrocytes via large neutral amino acid transporters (LATs). In the present study, the effect of LATs regulation on KYN uptake and KYNA production was investigated in vitro and in vivo using an LATs inhibitor, 2-aminobicyclo-(2,2,1)-heptane-2-carboxylic acid (BCH). In the in vitro study, cortical slices of rat brain were incubated with a physiological concentration of KYN and 3 µmol/L-3 mmol/L BCH. BCH inhibited KYNA production and KYN uptake in a dose-dependent manner, and their IC50 values were 90.7 and 97.4 µmol/L, respectively. In the in vivo study, mice were administered KYN (50 mg/kg BW) orally and BCH (200 mg/kg BW) intravenously. Administration of KYN increased brain KYN and KYNA levels compared with the mice treated with vehicle, whereas additional administration of BCH suppressed KYN-induced elevations in KYN and KYNA levels to 50 and 70 % in the brain. These results suggest that inhibition of LATs prevented the increase of KYNA production via blockade of KYN uptake in the brain in vitro and in vivo. LATs can be a target to modulate brain function by regulation of KYNA production in the brain. PMID:27161376

  19. Boric acid inhibits embryonic histone deacetylases: A suggested mechanism to explain boric acid-related teratogenicity

    Histone deacetylases (HDAC) control gene expression by changing histonic as well as non histonic protein conformation. HDAC inhibitors (HDACi) are considered to be among the most promising drugs for epigenetic treatment for cancer. Recently a strict relationship between histone hyperacetylation in specific tissues of mouse embryos exposed to two HDACi (valproic acid and trichostatin A) and specific axial skeleton malformations has been demonstrated. The aim of this study is to verify if boric acid (BA), that induces in rodents malformations similar to those valproic acid and trichostatin A-related, acts through similar mechanisms: HDAC inhibition and histone hyperacetylation. Pregnant mice were treated intraperitoneally with a teratogenic dose of BA (1000 mg/kg, day 8 of gestation). Western blot analysis and immunostaining were performed with anti hyperacetylated histone 4 (H4) antibody on embryos explanted 1, 3 or 4 h after treatment and revealed H4 hyperacetylation at the level of somites. HDAC enzyme assay was performed on embryonic nuclear extracts. A significant HDAC inhibition activity (compatible with a mixed type partial inhibition mechanism) was evident with BA. Kinetic analyses indicate that BA modifies substrate affinity by a factor α = 0.51 and maximum velocity by a factor β = 0.70. This work provides the first evidence for HDAC inhibition by BA and suggests such a molecular mechanism for the induction of BA-related malformations

  20. Monomethylarsonous acid inhibited endogenous cholesterol biosynthesis in human skin fibroblasts

    Guo, Lei [Environmental Toxicology Graduate Program, University of California, Riverside, CA 92521-0403 (United States); Xiao, Yongsheng [Department of Chemistry, University of California, Riverside, CA 92521-0403 (United States); Wang, Yinsheng, E-mail: yinsheng.wang@ucr.edu [Environmental Toxicology Graduate Program, University of California, Riverside, CA 92521-0403 (United States); Department of Chemistry, University of California, Riverside, CA 92521-0403 (United States)

    2014-05-15

    Human exposure to arsenic in drinking water is a widespread public health concern, and such exposure is known to be associated with many human diseases. The detailed molecular mechanisms about how arsenic species contribute to the adverse human health effects, however, remain incompletely understood. Monomethylarsonous acid [MMA(III)] is a highly toxic and stable metabolite of inorganic arsenic. To exploit the mechanisms through which MMA(III) exerts its cytotoxic effect, we adopted a quantitative proteomic approach, by coupling stable isotope labeling by amino acids in cell culture (SILAC) with LC-MS/MS analysis, to examine the variation in the entire proteome of GM00637 human skin fibroblasts following acute MMA(III) exposure. Among the ∼ 6500 unique proteins quantified, ∼ 300 displayed significant changes in expression after exposure with 2 μM MMA(III) for 24 h. Subsequent analysis revealed the perturbation of de novo cholesterol biosynthesis, selenoprotein synthesis and Nrf2 pathways evoked by MMA(III) exposure. Particularly, MMA(III) treatment resulted in considerable down-regulation of several enzymes involved in cholesterol biosynthesis. In addition, real-time PCR analysis showed reduced mRNA levels of select genes in this pathway. Furthermore, MMA(III) exposure contributed to a distinct decline in cellular cholesterol content and significant growth inhibition of multiple cell lines, both of which could be restored by supplementation of cholesterol to the culture media. Collectively, the present study demonstrated that the cytotoxicity of MMA(III) may arise, at least in part, from the down-regulation of cholesterol biosynthesis enzymes and the resultant decrease of cellular cholesterol content. - Highlights: • MMA(III)-induced perturbation of the entire proteome of GM00637 cells is studied. • Quantitative proteomic approach revealed alterations of multiple cellular pathways. • MMA(III) inhibits de novo cholesterol biosynthesis. • MMA

  1. Monomethylarsonous acid inhibited endogenous cholesterol biosynthesis in human skin fibroblasts

    Human exposure to arsenic in drinking water is a widespread public health concern, and such exposure is known to be associated with many human diseases. The detailed molecular mechanisms about how arsenic species contribute to the adverse human health effects, however, remain incompletely understood. Monomethylarsonous acid [MMA(III)] is a highly toxic and stable metabolite of inorganic arsenic. To exploit the mechanisms through which MMA(III) exerts its cytotoxic effect, we adopted a quantitative proteomic approach, by coupling stable isotope labeling by amino acids in cell culture (SILAC) with LC-MS/MS analysis, to examine the variation in the entire proteome of GM00637 human skin fibroblasts following acute MMA(III) exposure. Among the ∼ 6500 unique proteins quantified, ∼ 300 displayed significant changes in expression after exposure with 2 μM MMA(III) for 24 h. Subsequent analysis revealed the perturbation of de novo cholesterol biosynthesis, selenoprotein synthesis and Nrf2 pathways evoked by MMA(III) exposure. Particularly, MMA(III) treatment resulted in considerable down-regulation of several enzymes involved in cholesterol biosynthesis. In addition, real-time PCR analysis showed reduced mRNA levels of select genes in this pathway. Furthermore, MMA(III) exposure contributed to a distinct decline in cellular cholesterol content and significant growth inhibition of multiple cell lines, both of which could be restored by supplementation of cholesterol to the culture media. Collectively, the present study demonstrated that the cytotoxicity of MMA(III) may arise, at least in part, from the down-regulation of cholesterol biosynthesis enzymes and the resultant decrease of cellular cholesterol content. - Highlights: • MMA(III)-induced perturbation of the entire proteome of GM00637 cells is studied. • Quantitative proteomic approach revealed alterations of multiple cellular pathways. • MMA(III) inhibits de novo cholesterol biosynthesis. • MMA

  2. 18β-glycyrrhetinic acid inhibits rotavirus replication in culture

    Hardy Michele E

    2012-05-01

    Full Text Available Abstract Background Glycyrrhizin (GA and primary metabolite 18β-glycyrrhetinic acid (GRA are pharmacologically active components of the medicinal licorice root, and both have been shown to have antiviral and immunomodulatory properties. Although these properties are well established, the mechanisms of action are not completely understood. In this study, GA and GRA were tested for the ability to inhibit rotavirus replication in cell culture, toward a long term goal of discovering natural compounds that may complement existing vaccines. Methods Epithelial cells were treated with GA or GRA various times pre- or post-infection and virus yields were measured by immunofluorescent focus assay. Levels of viral proteins VP2, VP6, and NSP2 in GRA treated cells were measured by immunoblot to determine if there was an effect of GRA treatment on the accumulation of viral protein. Results GRA treatment reduced rotavirus yields by 99% when added to infected cultures post-- virus adsorption, whereas virus yields in GA treated cultures were similar to mock treated controls. Time of addition experiments indicated that GRA-mediated replication inhibition likely occurs at a step or steps subsequent to virus entry. The amounts of VP2, VP6 and NSP2 were substantially reduced when GRA was added to cultures up to two hours post-entry. Conclusions GRA, but not GA, has significant antiviral activity against rotavirus replication in vitro, and studies to determine whether GRA attenuates rotavirus replication in vivo are underway.

  3. Salicylic acid antagonizes abscisic acid inhibition of shoot growth and cell cycle progression in rice

    Meguro, Ayano; Sato, Yutaka

    2014-04-01

    We analysed effects of abscisic acid (ABA, a negative regulatory hormone), alone and in combination with positive or neutral hormones, including salicylic acid (SA), on rice growth and expression of cell cycle-related genes. ABA significantly inhibited shoot growth and induced expression of OsKRP4, OsKRP5, and OsKRP6. A yeast two-hybrid assay showed that OsKRP4, OsKRP5, and OsKRP6 interacted with OsCDKA;1 and/or OsCDKA;2. When SA was simultaneously supplied with ABA, the antagonistic effect of SA completely blocked ABA inhibition. SA also blocked ABA inhibition of DNA replication and thymidine incorporation in the shoot apical meristem. These results suggest that ABA arrests cell cycle progression by inducing expression of OsKRP4, OsKRP5, and OsKRP6, which inhibit the G1/S transition, and that SA antagonizes ABA by blocking expression of OsKRP genes.

  4. Growth inhibition of Streptococcus mutans by cellular extracts of human intestinal lactic acid bacteria.

    Ishihara, K; Miyakawa, H; Hasegawa, A.; Takazoe, I; Kawai, Y.

    1985-01-01

    The in vitro growth of Streptococcus mutans was completely inhibited by water-soluble extracts from cells of various intestinal lactic acid bacteria identified as Streptococcus faecium, Streptococcus equinus, Lactobacillus fermentum, and Lactobacillus salivarius. The growth inhibition was dependent on the concentrations of the extracts. In contrast, the extracts did not inhibit the growth of the major indigenous intestinal lactic acid bacteria isolated from humans. These lactic acid bacteria ...

  5. Corrosion inhibition of steel in sulphuric acid by pyrrolidine derivatives

    Novel corrosion inhibitors, namely 1-{2-[(2-hydroxyethyl)thio]ethyl}pyrrolidin-2-one (P5) and {[2-(2-oxopyrrolidin-1-yl)ethyl]thio}acetic acid (P4), were synthesised and tested as corrosion inhibitors for steel in 0.5 M H2SO4. The effects of P4 and P5 are also compared to their initial reactants 1-vinylpyrrolidin-2-one (P1), 2-mercaptoethanol (P2) and mercaptoacetic acid (P3). The study was carried out by weight loss measurements, potentiodynamic polarisation, linear polarisation resistance (R p) and electrochemical impedance spectroscopy (EIS) methods. The inhibition efficiency increases with the concentration of P5 to attain 89% at 5 x 10-3 M. We note good agreement between the various methods explored. Polarisation measurements show also that the pyrrolidones act essentially as cathodic inhibitors. The cathodic curves indicate that the reduction of proton at the steel surface is an activating mechanism. P4 and P5 adsorb on the steel surface according to Langmuir adsorption model. Effect of temperature is also studied in the 298-353 K range. Efficiency is explained by the theoretical studies

  6. Salvianolic acid B inhibits autophagy and protects starving cardiac myocytes

    Xiao HAN; Jian-xun LIU; Xin-zhi LI

    2011-01-01

    Aim: To investigate the protective or lethal role of autophagy and the effects of Salvianolic acid B (Sal B) on autophagy in starving myocytes.Methods: Cardiac myocytes were incubated under starvation conditions (GD) for O, 1, 2, 3, and 6 h. Autophagic flux in starving cells was measured via chloroquine (3 μmol/L). After myocytes were treated with Sat B (50 μmol/L) in the presence or absence of chloro-quine (3 μmol/L) under GD 3 h, the amount of LC3-11, the abundance of LC3-positive fluorescent dots in cells, cell viability and cellular ATP levels were determined using immunoblotting, immunofluorescence microscopy, MTT assay and luminometer, respectively. More-over, electron microscopy (EM) and immunofluorescent duel labeling of LC3 and Caspase-8 were used to examine the characteristics of autophagy and apoptosis.Results: Immunoblot analysis showed that the amount of LC3-11 in starving cells increased in a time-dependent manner accompanied by increased LC3-positive fluorescence and decreased cell viability and ATP content. Sal B (50 μmol/L) inhibited the increase in LC3-11, reduced the abundance of LC3 immunofluorescence and intensity of Caspase-8 fluorescence, and enhanced cellular viability and ATP levels in myocytes under GD 3 h, regardless of whether chloroquine was present.Conclusion: Autophagy induced by starvation for 3 h led to cell injury. Sal B protected starving cells by blocking the early stage of autophagic flux and inhibiting apoptosis that occurred during autophagy.

  7. Inhibition of carbon steel corrosion by 11-aminoundecanoic acid

    Saad Ghareba

    2015-12-01

    Full Text Available The current study reports results on the investigation of the possibility of using 11-aminoundecanoic acid (AA as an inhibitor of general corrosion of carbon steel (CS in HCl under a range of experimental conditions: inhibitor concentration, exposure time, electrolyte temperature and pH and CS surface roughness. It was found that AA acts as a mixed-type inhibitor, yielding maximum inhibition efficiency of 97 %. The adsorption of AA onto the CS surface was described by the Langmuir adsorption isotherm. The corresponding apparent Gibbs free energy of AA adsorption on CS at 295 K was calculated to be −30.2 kJ mol–1. The adsorption process was found to be driven by a positive change in entropy of the system. PM-IRRAS measurements revealed that the adsorbed AA layer is amorphous, which can be attributed to the repulsion between the neighboring positively charged amine groups and a high heterogeneity of the CS surface. It was also found that the AA provides very good corrosion protection of CS of various surface roughness, and over a prolonged time.

  8. Inhibition of fatty acid synthase prevents preadipocyte differentiation

    Inhibition of fatty acid synthase (FAS) reduces food intake in rodents. As adipose tissue expresses FAS, we sought to investigate the effect of reduced FAS activity on adipocyte differentiation. FAS activity was suppressed either pharmacologically or by siRNA during differentiation of 3T3-L1 cells. Cerulenin (10 μM), triclosan (50 μM), and C75 (50 μM) reduced dramatically visible lipid droplet accumulation, while incorporation of [1-14C]acetate into lipids was reduced by 75%, 70%, and 90%, respectively. Additionally, the substances reduced FAS, CEBPα, and PPARγ mRNA by up to 85% compared to that of control differentiated cells. Transient transfection with FAS siRNA suppressed FAS mRNA and FAS activity, and this was accompanied by reduction of CEBPα and PPARγ mRNA levels, and complete prevention of lipid accumulation. CD36, a late marker of differentiation, was also reduced. Together, these results suggest that FAS generated signals may be essential to support preadipocyte differentiation

  9. Failure of Amino Acid Homeostasis Causes Cell Death following Proteasome Inhibition

    Suraweera, Amila; Münch, Christian; Hanssum, Ariane; Bertolotti, Anne

    2012-01-01

    Summary The ubiquitin-proteasome system targets many cellular proteins for degradation and thereby controls most cellular processes. Although it is well established that proteasome inhibition is lethal, the underlying mechanism is unknown. Here, we show that proteasome inhibition results in a lethal amino acid shortage. In yeast, mammalian cells, and flies, the deleterious consequences of proteasome inhibition are rescued by amino acid supplementation. In all three systems, this rescuing effe...

  10. INHIBITION OF CORROSION OF ZINC IN (HNO3 + HCl) ACID MIXTURE BY ANILINE

    R. T. Vashi; M. H. Bhajiwala; K. N. Rathod

    2015-01-01

    Corrosion of Zinc metal in (HNO3 + HCl) binary acid mixture and inhibition efficiency of aniline has been studied by weight loss method and polarization technique. Corrosion rate increases with the concentration of acid mixture and the temperature. Inhibition efficiency (I.E.) of aniline increases with the concentration of   inhibitor while decreases with the increase in concentration of acid. As temperature increases corrosion rate increases while percentage of I.E. decreases. A plot of log ...

  11. Substrate channeling: alpha-ketobutyrate inhibition of acetohydroxy acid synthase in Salmonella typhimurium.

    Shaw, K J; Berg, C M

    1980-01-01

    Excess alpha-ketobutyrate inhibited the growth of Salmonella typhimurium LT2 by inhibiting the acetohydroxy acid synthase-catalyzed synthesis of alpha-acetolactate (a valine precursor). As a result, cells were starved for valine, and both ilvB (encoding acetohydroxy acid synthase I) and ilvGEDA (ilvG encodes acetohydroxy acid synthase II) were derepressed. The addition of valine reversed the effects of alpha-ketobutyrate.

  12. Inhibition of deoxyribonucleic acid gyrase: effects on nucleic acid synthesis and cell division in Escherichia coli K-12.

    Fairweather, N F; Orr, E; Holland, I B

    1980-01-01

    Mutants of Escherichia coli resistant to the antibiotic clorobiocin are also coumermycin resistant, and the mutation to resistance in at least one mutant was mapped near gyrB. We conclude, therefore, that clorobiocin inhibits deoxyribonucleic acid gyrase, and the drug was used to probe the role of this enzyme in vivo. Deozyribonucleic acid synthesis was preferentially inhibited but not completely blocked by the antibiotic. Transcription and cell division were also markedly affected. However, ...

  13. The inhibition of low carbon steel corrosion in hydrochloric acid solutions by succinic acid

    The effect of succinic acid (SA) on the corrosion inhibition of a low carbon steel (LCS) electrode has been investigated in aerated non-stirred 1.0 M HCl solutions in the pH range (2-8) at 25 oC. Weight loss, potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) techniques were applied to study the metal corrosion behaviour in the absence and presence of different concentrations of SA under the influence of various experimental conditions. Measurements of open circuit potential (OCP) as a function of time till steady-state potentials (E st) were also established. Surface analysis using energy dispersive X-ray (EDX) and scanning electron microscope (SEM) allowed us to clarify the mechanistic aspects and evaluate the relative inhibition efficiency. Results obtained showed that SA is a good 'green' inhibitor for LCS in HCl solutions. The polarization curves showed that SA behaves mainly as an anodic-type inhibitor. EDX and SEM observations of the electrode surface confirmed existence of a protective adsorbed film of the inhibitor on the electrode surface. The inhibition efficiency increases with increase in SA concentration, pH of solution and time of immersion. Maximum inhibition efficiency (∼97.5%) is obtained at SA concentrations >0.01 M at pH 8. The effect of SA concentration and pH on the potential of zero charge (PZC) of the LCS electrode in 1.0 M HCl solutions has been studied and the mechanism of adsorption is discussed. Results obtained from weight loss, polarization and impedance measurements are in good agreements

  14. Humic Acid-Like and Fulvic Acid-Like Inhibition on the Hydrolysis of Cellulose and Tributyrin

    Fernandes, T.V.; Lier, van J.B.; Zeeman, Grietje

    2015-01-01

    Enzymatic hydrolysis of complex wastes is a critical step for efficient biogas production in anaerobic digesters. Inhibition of this hydrolytic step was studied by addition of humic acid-like (HAL) and fulvic acid-like (FAL) substances, extracted from maize silage and fresh cow manure, to batch t

  15. A Comparative Study on Corrosion Inhibition of Mild Steel Using Piper Nigrum L. in Different Acid Medium

    Anand, B; Balasubramanian, V.

    2010-01-01

    The inhibition of corrosion of mild steel using Piper nigrum L in different acid medium by weight loss method was investigated. The corrosion inhibition was studied in hydrochloric acid and sulphuric acid by weight loss method at different time interval at room temperature. The result showed that the corrosion inhibition efficiency of this compound was found to vary with different time interval and different acid concentration. Also, it was found that the corrosion inhibition behavior of Pipe...

  16. Hydroxyquinolines inhibit ribonucleic acid-dependent deoxyribonucleic acid polymerase and inactivate Rous sarcoma virus and herpes simplex virus.

    Rohde, W; Mikelens, P; Jackson, J; Blackman, J; Whitcher, J; Levinson, W

    1976-08-01

    8-Hydroxyquinoline and several of its derivatives inactivate the transforming ability of Rous sarcoma virus and inhibit its ribonucleic acid-dependent deoxyribonucleic acid polymerase activity. The copper complex of these metal-binding ligands is as active as the free ligand. The activity of the 8-hydroxyquinolines is approximately 50-fold more effective than another group of metal-binding compounds that we have tested, the thiosemicarbazones. In contrast to the potency of the 8-hydroxyquinolines to inactivate Rous sarcoma virus, no intracellular inhibition of transformation could be demonstrated at a concentration that did not affect the growth and appearance of the cells. Cellular deoxyribonucleic acid synthesis was inhibited to a greater extent than was ribonucleic acid or protein synthesis. The phenomenon of "concentration quenching" was observed with high concentrations of drug, causing less inhibition of deoxyribonucleic acid synthesis than was observed with lower concentrations. Herpes simplex virus type 1 was inactivated also by the 8-hydroxyquinolines and their copper complexes. No intracellular inhibition of plaque formation was observed. Treatment with 8-hydroxyquinoline sulfate had no effect on the resolution of herpetic keratitis in rabbits. Some 8-hydroxyquinolines bind to deoxyribonucleic acid in the presence of copper, a phenomenon that may be important in their antiviral activity. PMID:185949

  17. Inhibition of Copper Corrosion by Flavonoids in Nitric Acid

    Mahmoud A. Al-Qudah

    2011-01-01

    A study has been made to investigate the effect of some substituted flavonoids on copper dissolution in 2.0 M HNO3 for 4.0 hours at different temperatures by the weight loss method. Percentage of inhibition increases as concentration of the flavonoids increases and reaches a maximum value, due to the formation of a monolayer film on the surface of the metal. 92% Inhibition was observed in some of these flavonoids. As temperature increases, percentage of inhibition decreases. Energy of activat...

  18. Research Advances in the Inhibition of Long Chain Fatty Acid to Methanogenic Activity in Anaeroic Digestion System

    2012-01-01

    This article reviewed the inhibition mechanism of long chain fatty acid on the formation of anaerobic system, then thoroughly analyzed the inhibition factors of long chain fatty acid, and summarized the remission method to its inhibition, finally proposed some suggestions to further study on the influence of long chain fatty acid on anaerobic digestion system.

  19. Glycochenodeoxycholic acid inhibits calcium phosphate precipitation in vitro by preventing the transformation of amorphous calcium phosphate to calcium hydroxyapatite.

    Qiu, S M; Wen, G.; Hirakawa, N; Soloway, R D; Hong, N K; Crowther, R S

    1991-01-01

    Calcium hydroxyapatite can be a significant component of black pigment gallstones. Diverse molecules that bind calcium phosphate inhibit hydroxyapatite precipitation. Because glycine-conjugated bile acids, but not their taurine counterparts, bind calcium phosphate, we studied whether glycochenodeoxycholic acid inhibits calcium hydroxyapatite formation. Glycochenodeoxycholic acid (2 mM) totally inhibited transformation of amorphous calcium phosphate microprecipitates to macroscopic crystalline...

  20. Cinnamic Acid and Its Derivatives Inhibit Fructose-Mediated Protein Glycation

    Sirintorn Yibchok-anun; Sirichai Adisakwattana; Weerachat Sompong; Sathaporn Ngamukote; Aramsri Meeprom

    2012-01-01

    Cinnamic acid and its derivatives have shown a variety of pharmacologic properties. However, little is known about the antiglycation properties of cinnamic acid and its derivatives. The present study sought to characterize the protein glycation inhibitory activity of cinnamic acid and its derivatives in a bovine serum albumin (BSA)/fructose system. The results demonstrated that cinnamic acid and its derivatives significantly inhibited the formation of advanced glycation end products (AGEs) by...

  1. Selective inhibition of type 2 fatty acid synthetase by the antibiotic thiolactomycin

    Nishida, Ikuo; Kawaguchi, Akihiko; Yamada, Mitsuhiro (Tokyo Univ. (Japan). Faculty of Science)

    1984-03-01

    The antibiotic thiolactomycin inhibits the fatty acid synthesis from both (1-/sup 14/C)-acetate and (2/sup 14/C) malonyl-CoA of spinach leaves, developing castor bean endosperms and avocado mesocarp. On the other hand, fatty acid synthetases of Brevibacterium ammoniagenes and Corynebacterium glutamicum are much less sensitive to this antibiotic. As Hayashi et al. have indicated in their paper that thiolactomycin inhibits fatty acid synthetase of Escherichia coli but has little effect on the synthetases of yeast and rat liver, thiolactomycin is suggested to be a selective inhibitor of type 2 fatty acid synthetases.

  2. Selective inhibition of type 2 fatty acid synthetase by the antibiotic thiolactomycin

    The antibiotic thiolactomycin inhibits the fatty acid synthesis from both [1-14C]-acetate and [214C] malonyl-CoA of spinach leaves, developing castor bean endosperms and avocado mesocarp. On the other hand, fatty acid synthetases of Brevibacterium ammoniagenes and Corynebacterium glutamicum are much less sensitive to this antibiotic. As Hayashi et al. have indicated in their paper that thiolactomycin inhibits fatty acid synthetase of Escherichia coli but has little effect on the synthetases of yeast and rat liver, thiolactomycin is suggested to be a selective inhibitor of type 2 fatty acid synthetases. (author)

  3. Corrosion Inhibition of Aluminum in Acidic Solution by Aqueous Extract of Ajowan Plant as Green Inhibitor

    Aisha M. Al-Turkustani; Mona M. Al-Solmi

    2011-01-01

    The inhibition of aluminum corrosion in 0.5 M hydrochloric acid by Ajowan plant was studied using chemical (weight loss) and ectrochemical (impedance and polarization) methods. The Ajowan plant extract was found to be good inhibitor for aluminum corrosion in 0.5 M hydrochloric acid in the studied concentration range of inhibitor. Corrosion inhibition could be explained by considering an interaction between metal surface and the inhibitor molecules. Electrochemical measurements showed that Ajo...

  4. A role for AMPK in the inhibition of glucose-6-phosphate dehydrogenase by polyunsaturated fatty acids

    Kohan, Alison B.; Talukdar, Indrani; Walsh, Callee M. [Department of Biochemistry, West Virginia University, Morgantown, WV (United States); Salati, Lisa M., E-mail: lsalati@hsc.wvu.edu [Department of Biochemistry, West Virginia University, Morgantown, WV (United States)

    2009-10-09

    Both polyunsaturated fatty acids and AMPK promote energy partitioning away from energy consuming processes, such as fatty acid synthesis, towards energy generating processes, such as {beta}-oxidation. In this report, we demonstrate that arachidonic acid activates AMPK in primary rat hepatocytes, and that this effect is p38 MAPK-dependent. Activation of AMPK mimics the inhibition by arachidonic acid of the insulin-mediated induction of G6PD. Similar to intracellular signaling by arachidonic acid, AMPK decreases insulin signal transduction, increasing Ser{sup 307} phosphorylation of IRS-1 and a subsequent decrease in AKT phosphorylation. Overexpression of dominant-negative AMPK abolishes the effect of arachidonic acid on G6PD expression. These data suggest a role for AMPK in the inhibition of G6PD by polyunsaturated fatty acids.

  5. Nucleoside phosphonic acids in thymidine phosphorylase inhibition: Structure - activity relationship

    Panova, Natalya; Kóšiová, Ivana; Petrová, Magdalena; Vaněk, Václav; Liboska, Radek; Kovačková, Soňa; Kočalka, Petr; Králíková, Šárka; Točík, Zdeněk; Páv, Ondřej; Pačes, Ondřej; Rejman, Dominik; Rosenberg, Ivan

    -, č. 52 (2008), s. 665-666. ISSN 0261-3166. [Joint Symposium of the International Roundtable on Nucleosides, Nucleotides and Nucleic Acids /18./ and the International Symposium on Nucleic Acid Chemistry /35./. Kyoto, 08.09.2008-12.09.2008] R&D Projects: GA MŠk(CZ) LC06061; GA MŠk(CZ) LC06077; GA MŠk LC512 Institutional research plan: CEZ:AV0Z40550506 Keywords : thymidine phosphorylase * inhibitors * phosphonic acids Subject RIV: CC - Organic Chemistry

  6. Retinoic acid. Inhibition of the clonal growth of human myeloid leukemia cells.

    Douer, D; Koeffler, H P

    1982-01-01

    Vitamin A and its analogues (retinoids) affect normal and malignant hematopoietic cells. We examined the effect of retinoids on the clonal growth in vitro of myeloid leukemia cells. Retinoic acid inhibited the clonal growth of the KG-1, acute myeloblastic leukemia, and the HL-60, acute promyelocytic leukemia, human cell lines. The KG-1 cells were extremely sensitive to retinoic acid, with 50% of the colonies inhibited by 2.4-nM concentrations of the drug. A 50% growth inhibition of HL-60 was ...

  7. Fast online determination of surfactant inhibition in acidic phase bioreactors.

    Feitkenhauer, H

    2004-01-01

    Surfactants have been shown to inhibit the anaerobic digestion process severely, with the methanogenic microorganisms being the most affected. The diverse nature of surfactants used even in one (e.g. textile finishing) plant makes an online determination of surfactants sometimes very difficult and expensive. Therefore a fast online determination of inhibitory effects on the acidogenic microorganisms (first step of the degradation cascade) can help to give an early warning signal or to calculate a "pseudo"-surfactant concentration. In a two-phase system this information can be used to protect the methanogenic reactor against surfactant overloading and its long term negative effects. In this paper it is shown that the inhibition is a consequence of microbial inhibition and is not caused by an inactivation of extracellular hydrolytic enzymes (released by the cells for biopolymer cleavage). A titration technique was successfully employed to measure the surfactant inhibition in a laboratory-scale acidification reactor. Additional experiments demonstrate (using sodium dodecyl sulfate as the model substance) how inhibitory effects (and strategies to overcome inhibitory effects) can be investigated efficiently. PMID:14979534

  8. Hypothiocyanous acid oxidation of tubulin cysteines inhibits microtubule polymerization

    Clark, Hillary M; Hagedorn, Tara D.; Landino, Lisa M.

    2013-01-01

    Thiol oxidation is a probable outcome of cellular oxidative stress and is linked to degenerative disease progression. In addition, protein thiol redox reactions are increasingly identified as a mechanism to regulate protein structure and function. We assessed the effect of hypothiocyanous acid on the cytoskeletal protein tubulin. Total cysteine oxidation by hypothiocyanous and hypochlorous acids was monitored by labeling tubulin with 5-iodoacetamidofluorescein and by detecting higher molecula...

  9. D-amino acids indirectly inhibit biofilm formation in Bacillus subtilis by interfering with protein synthesis.

    Leiman, Sara A; May, Janine M; Lebar, Matthew D; Kahne, Daniel; Kolter, Roberto; Losick, Richard

    2013-12-01

    The soil bacterium Bacillus subtilis forms biofilms on surfaces and at air-liquid interfaces. It was previously reported that these biofilms disassemble late in their life cycle and that conditioned medium from late-stage biofilms inhibits biofilm formation. Such medium contained a mixture of D-leucine, D-methionine, D-tryptophan, and D-tyrosine and was reported to inhibit biofilm formation via the incorporation of these D-amino acids into the cell wall. Here, we show that L-amino acids were able to specifically reverse the inhibitory effects of their cognate D-amino acids. We also show that D-amino acids inhibited growth and the expression of biofilm matrix genes at concentrations that inhibit biofilm formation. Finally, we report that the strain routinely used to study biofilm formation has a mutation in the gene (dtd) encoding D-tyrosyl-tRNA deacylase, an enzyme that prevents the misincorporation of D-amino acids into protein in B. subtilis. When we repaired the dtd gene, B. subtilis became resistant to the biofilm-inhibitory effects of D-amino acids without losing the ability to incorporate at least one noncanonical D-amino acid, D-tryptophan, into the peptidoglycan peptide side chain. We conclude that the susceptibility of B. subtilis to the biofilm-inhibitory effects of D-amino acids is largely, if not entirely, due to their toxic effects on protein synthesis. PMID:24097941

  10. Vanadate inhibition of fungal phyA and bacterial appA2 histidine acid phosphatases

    The fungal PhyA protein, which was first identified as an acid optimum phosphomonoesterase (EC 3.1.3.8), could also serve as a vanadate haloperoxidase (EC 1.11.1.10) provided the acid phosphatase activity is shutdown by vanadate. To understand how vanadate inhibits both phytate and pNPP degrading ac...

  11. recA gene product is responsible for inhibition of deoxyribonucleic acid synthesis after ultraviolet irradiation.

    Trgovcević, Z; Petranović, D; Petranović, M; Salaj-Smic, E

    1980-01-01

    Deoxyribonucleic acid synthesis after ultraviolet irradiation was studied in wild-type, uvrA, recB, recA recB, and recA Escherichia coli strains. Inhibition of deoxyribonucleic acid synthesis, which occurs almost immediately after exposing the cells to ultraviolet radiation, depends on the functional gene recA.

  12. recA gene product is responsible for inhibition of deoxyribonucleic acid synthesis after ultraviolet irradiation

    Deoxyribonucleic acid synthesis after ultraviolet irradiation was studied in wild-type, uvrA, recB, recA, recB, and recA Escherichia coli strains. Inhibition of deoxyribonucleic acid synthesis, which occurs almost immediately after exposing the cells to ultraviolet radiation, depends on the functional gene recA

  13. Vanillic Acid Inhibits Inflammatory Pain by Inhibiting Neutrophil Recruitment, Oxidative Stress, Cytokine Production, and NFκB Activation in Mice.

    Calixto-Campos, Cássia; Carvalho, Thacyana T; Hohmann, Miriam S N; Pinho-Ribeiro, Felipe A; Fattori, Victor; Manchope, Marília F; Zarpelon, Ana C; Baracat, Marcela M; Georgetti, Sandra R; Casagrande, Rubia; Verri, Waldiceu A

    2015-08-28

    Vanillic acid (1) is a flavoring agent found in edible plants and fruits. It is an oxidized form of vanillin. Phenolic compounds form a substantial part of plant foods used as antioxidants with beneficial biological activities. These compounds have received considerable attention because of their role in preventing human diseases. Especially, 1 presents antibacterial, antimicrobial, and chemopreventive effects. However, the mechanisms by which 1 exerts its anti-inflammatory effects in vivo are incompletely understood. Thus, the effect of 1 was evaluated in murine models of inflammatory pain. Treatment with 1 inhibited the overt pain-like behavior induced by acetic acid, phenyl-p-benzoquinone, the second phase of the formalin test, and complete Freund's adjuvant (CFA). Treatment with 1 also inhibited carrageenan- and CFA-induced mechanical hyperalgesia, paw edema, myeloperoxidase activity, and N-acetyl-β-D-glucosaminidase activity. The anti-inflammatory mechanisms of 1 involved the inhibition of oxidative stress, pro-inflammatory cytokine production, and NFκB activation in the carrageenan model. The present study demonstrated 1 presents analgesic and anti-inflammatory effects in a wide range of murine inflammation models, and its mechanisms of action involves antioxidant effects and NFκB-related inhibition of pro-inflammatory cytokine production. PMID:26192250

  14. Triterpenic Acids Present in Hawthorn Lower Plasma Cholesterol by Inhibiting Intestinal ACAT Activity in Hamsters

    Yuguang Lin; Vermeer, Mario A.; Trautwein, Elke A.

    2010-01-01

    Hawthorn (Crataegus pinnatifida) is an edible fruit used in traditional Chinese medicine to lower plasma lipids. This study explored lipid-lowering compounds and underlying mechanisms of action of hawthorn. Hawthorn powder extracts inhibited acylCoA:cholesterol acyltransferase (ACAT) activity in Caco-2 cells. The inhibitory activity was positively associated with triterpenic acid (i.e., oleanolic acid (OA) and ursolic acid (UA)) contents in the extracts. Cholesterol lowering effects of hawtho...

  15. Inhibition Behaviour of Some Isonicotinic Acid Hydrazides on the Corrosion of Mild Steel in Hydrochloric Acid Solution

    Chakravarthy, M. P.; Mohana, K. N.

    2013-01-01

    New corrosion inhibitors, namely, isonicotinic acid (1H-indol-3-yl-methylene)hydrazide (INIMH) and isonicotinic acid (1H-pyrrol-2-yl-methylene)hydrazide (INPMH), have been synthesized, and their inhibitive characteristics for the corrosion of mild steel in 0.5 M HCl were investigated by mass loss and electrochemical techniques. The structures of the synthesized compounds were confirmed using spectral studies. Potentiodynamic polarization studies revealed that the investigated inhibitors are o...

  16. Punicic acid a conjugated linolenic acid inhibits TNFalpha-induced neutrophil hyperactivation and protects from experimental colon inflammation in rats.

    Tarek Boussetta

    Full Text Available BACKGROUND: Neutrophils play a major role in inflammation by releasing large amounts of ROS produced by NADPH-oxidase and myeloperoxidase (MPO. The proinflammatory cytokine TNFalpha primes ROS production through phosphorylation of the NADPH-oxidase subunit p47phox on Ser345. Conventional anti-inflammatory therapies remain partially successful and may have side effects. Therefore, regulation of neutrophil activation by natural dietary components represents an alternative therapeutic strategy in inflammatory diseases such as inflammatory bowel diseases. The aim of this study was to assess the effect of punicic acid, a conjugated linolenic fatty acid from pomegranate seed oil on TNFalpha-induced neutrophil hyperactivation in vitro and on colon inflammation in vivo. METHODOLOGY AND PRINCIPAL FINDINGS: We analyzed the effect of punicic acid on TNFalpha-induced neutrophil upregulation of ROS production in vitro and on TNBS-induced rat colon inflammation. Results show that punicic acid inhibited TNFalpha-induced priming of ROS production in vitro while preserving formyl-methionyl-leucyl-phenylalanine (fMLP-induced response. This effect was mediated by the inhibition of Ser345-p47phox phosphorylation and upstream kinase p38MAPK. Punicic acid also inhibited fMLP- and TNFalpha+fMLP-induced MPO extracellular release from neutrophils. In vivo experiments showed that punicic acid and pomegranate seed oil intake decreased neutrophil-activation and ROS/MPO-mediated tissue damage as measured by F2-isoprostane release and protected rats from TNBS-induced colon inflammation. CONCLUSIONS/SIGNIFICANCE: These data show that punicic acid exerts a potent anti-inflammatory effect through inhibition of TNFalpha-induced priming of NADPH oxidase by targeting the p38MAPKinase/Ser345-p47phox-axis and MPO release. This natural dietary compound may provide a novel alternative therapeutic strategy in inflammatory diseases such as inflammatory bowel diseases.

  17. Mechanism of cinnamic acid-induced trypsin inhibition: A multi-technique approach

    Zhang, Hongmei; Zhou, Qiuhua; Cao, Jian; Wang, Yanqing

    2013-12-01

    In order to investigate the association of the protease trypsin with cinnamic acid, the interaction was characterized by using fluorescence, UV-vis absorption spectroscopy, molecular modeling and an enzymatic inhibition assay. The binding process may be outlined as follows: cinnamic acid can interact with trypsin with one binding site to form cinnamic acid-trypsin complex, resulting in inhibition of trypsin activity; the spectroscopic data show that the interaction is a spontaneous process with the estimated enthalpy and entropy changes being -8.95 kJ mol-1 and 50.70 J mol-1 K-1, respectively. Noncovalent interactions make the main contribution to stabilize the trypsin-cinnamic acid complex; cinnamic acid can enter into the primary substrate-binding pocket and alter the environment around Trp and Tyr residues.

  18. Inhibition of tubulin polymerization by hypochlorous acid and chloramines

    Landino, Lisa M.; Hagedorn, Tara D.; Kim, Shannon B.; Hogan, Katherine M.

    2011-01-01

    Protein thiol oxidation and modification by nitric oxide and glutathione are emerging as common mechanisms to regulate protein function and to modify protein structure. Also, thiol oxidation is a probable outcome of cellular oxidative stress and is linked to degenerative disease progression. We assessed the effect of the oxidants hypochlorous acid and chloramines on the cytoskeletal protein tubulin. Total cysteine oxidation by the oxidants was monitored by labeling tubulin with the thiol-sele...

  19. Diterpene resin acids: Major active principles in tall oil against Variegated cutworm,Peridroma saucia (Lepidoptera: Noctuidae).

    Xie, Y; Isman, M B; Feng, Y; Wong, A

    1993-06-01

    Tall oil, a by-product of the kraft process for pulping softwood, has been shown to have insecticidal properties. In the present study, the active principles in tall oil against the variegated cutworm,Peridroma saucia Hübner, were investigated. GC-MS analysis showed that abietic, dehydroabietic, and isopimaric acids were major resin acid components of crude tall oil and depitched tall oil. When crude tall oil samples of differing resin acid composition were incorporated into artificial diet at a concentration of 2.0% fresh weight, they suppressed larval growth by 45-60% compared to controls. This suppression was significantly (P≤0.05) correlated with the equivalent contents of abietic, dehydroabietic, isopimaric, and total resin acids. These results were also evident from a diet choice test, showing that the second-instar larvae obviously selected diets with low levels of resin acids when different diets were randomly arranged in a Petri dish. Bioassays with pure resin acids (abietic, dehydroabietic, and isopimaric acids) demonstrated that all individual chemicals have similar bioactivity against this insect. Comparison of the bioactivities of depitched tall oil and an equivalent mixture of pure resin acids in thePeridroma chronic growth bioassay indicated that pure resin acids and depitched tall oil share a common mode of action to this insect. This study confirms that resin acids are major active principles in tall oil against the variegated cutworm, but other chemicals likely also contribute to the bioactivity of tall oil. PMID:24249127

  20. Experimental and quantum chemical studies on corrosion inhibition performance of fluconazole in hydrochloric acid solution

    P Malekmohammadi Nouri; M M Attar

    2015-04-01

    The corrosion inhibition effect of fluconazole (FLU) was investigated on steel in 1 M hydrochloric acid solution. Weight loss measurements and atomic force microscope analysis were utilized to investigate the corrosion inhibition properties and film formation behaviour of FLU. Quantum chemical approach was also used to calculate some electronic properties of the molecule in neutral and protonated form in order to find any correlation between the inhibition effect and molecular structure of FLU molecule. The results showed that FLU can act as a good corrosion inhibitor for steel in hydrochloric acid solution at different temperatures and it can inhibit steel corrosion up to 95%. The adsorption followed the Langmuir isotherm and the thermodynamic parameters were also determined and discussed. Quantum chemical studies showed that in adsorption process of FLU molecules, nitrogen and oxygen atoms and benzene ring act as active centres.

  1. Lipid Peroxidation Inhibitation Activity of Maillard Reaction Products Derived from Sugar-amino Acid Model Systems

    Nanjing Zhong

    2015-08-01

    Full Text Available The present study aimed to evaluate the lipid peroxidation inhibitation activity of Maillard Reaction Products (MRPs derived from sugar (glucose, fructose, lactose and maltose and 18 amino acid model systems in soybean oil. MRPs were produced by heating at 130°C for 2 h. Of the 18 amino acids-fructose model systems studied, MRPs derived from fructose-leucine, fructose-methionine, fructose-phenylalanine and fructose-isoleucine model sytems showed high lipid peroxidation inhibitation activity and best performance was observed from fructose-phenylalanine MRPs. Interestingly, glucose-phenylalanine MRPs also exhibited high inhibitation activity and inhibitation activity of both glucose-phenylalanine and fructose-phenylalanine MRPs exceeded 87% even with concentration at 1.1 wt % after 8 days storage.

  2. Zoledronic acid inhibits macrophage/microglia-assisted breast cancer cell invasion

    Rietkötter, Eva; Menck, Kerstin; Bleckmann, Annalen; Farhat, Katja; Schaffrinski, Meike; Schulz, Matthias; Hanisch, Uwe-Karsten; Binder, Claudia; Pukrop, Tobias

    2013-01-01

    The bisphosphonate zoledronic acid (ZA) significantly reduces complications of bone metastasis by inhibiting resident macrophages, the osteoclasts. Recent clinical trials indicate additional anti-metastatic effects of ZA outside the bone. However, which step of metastasis is influenced and whether this is due to direct toxicity on cancer cells or inhibition of the tumor promoting microenvironment, is unknown. In particular, tumor-associated and resident macrophages support each step of organ ...

  3. Inhibition Effect of Miconazole Nitrate on the Corrosion of Mild Steel in Hydrochloric Acid Medium

    J. Ishwara Bhat; Alva, Vijaya D. P.

    2011-01-01

    The corrosion inhibition of mild steel by miconazole nitrate, an antifungal drug has been investigated using potentiodynamic polarization, electrochemical impedance spectroscopy technique, and weight loss methods. The experimental results suggested miconazole nitrate is a good corrosion inhibitor for mild steel in 1 M hydrochloric acid medium. The inhibition efficiency increased with increase in inhibitor concentration. The thermodynamic parameters were determined and discussed. The inhibitio...

  4. INHIBITIVE EFFECT OF WRIGHTIA TINCTORIA LEAVES AS GREEN INHIBITOR FOR MILD STEEL IN ACID MEDIUM

    P. Deivanayagam*; I. Malarvizhi; Selvaraj, S

    2016-01-01

    The inhibition efficacy of Wrightia tinctoria leaves (WTL) extract on mild steel in 1.0N hydrochloric acid with various exposure time (24 to 360hrs) and temperature (313 to 333K) are investigated by mass loss measurements. The value of inhibition efficiency is increased with increase of inhibitor concentration and gradually decreased with rise in temperature is suggestive of physisorption. The adsorption of WTL onto the mild steel surface is found to follow the Langmuir adsorption isotherm. B...

  5. Quinic acid derivatives inhibit dengue virus replication in vitro

    Zanello, Paula Rodrigues; Koishi, Andrea Cristine; Rezende Júnior, Celso de Oliveira; Oliveira, Larissa Albuquerque; Pereira, Adriane Antonia; de Almeida, Mauro Vieira; Duarte dos Santos, Claudia Nunes; Bordignon, Juliano

    2015-01-01

    Background Dengue is the most prevalent arboviral disease in tropical and sub-tropical areas of the world. The incidence of infection is estimated to be 390 million cases and 25,000 deaths per year. Despite these numbers, neither a specific treatment nor a preventive vaccine is available to protect people living in areas of high risk. Results With the aim of seeking a treatment that can mitigate dengue infection, we demonstrated that the quinic acid derivatives known as compound 2 and compoun...

  6. Corrosion Inhibition and Adsorption Properties of Ethanolic Extract of Calotropis for Corrosion of Aluminium in Acidic Media

    Sudesh Kumar; Suraj Prakash Mathur

    2013-01-01

    The corrosion inhibition of aluminium in sulfuric acid solution in the presence of different plant parts, namely, leaves, latex, and fruit was studied using weight loss method and thermometric method. The ethanolic extracts of Calotropis procera and Calotropis gigantea act as an inhibitor in the acid environment. The inhibition efficiency increases with increase in inhibitor concentration. The plant parts inhibit aluminium, and inhibition is attributed, due to the adsorption of the plant part...

  7. Sphingoid bases inhibit acid-induced demineralization of hydroxyapatite.

    Valentijn-Benz, Marianne; van 't Hof, Wim; Bikker, Floris J; Nazmi, Kamran; Brand, Henk S; Sotres, Javier; Lindh, Liselott; Arnebrant, Thomas; Veerman, Enno C I

    2015-01-01

    Calcium hydroxyapatite (HAp), the main constituent of dental enamel, is inherently susceptible to the etching and dissolving action of acids, resulting in tooth decay such as dental caries and dental erosion. Since the prevalence of erosive wear is gradually increasing, there is urgent need for agents that protect the enamel against erosive attacks. In the present study we studied in vitro the anti-erosive effects of a number of sphingolipids and sphingoid bases, which form the backbone of sphingolipids. Pretreatment of HAp discs with sphingosine, phytosphingosine (PHS), PHS phosphate and sphinganine significantly protected these against acid-induced demineralization by 80 ± 17%, 78 ± 17%, 78 ± 7% and 81 ± 8%, respectively (p < 0.001). On the other hand, sphingomyelin, acetyl PHS, octanoyl PHS and stearoyl PHS had no anti-erosive effects. Atomic force measurement revealed that HAp discs treated with PHS were almost completely and homogeneously covered by patches of PHS. This suggests that PHS and other sphingoid bases form layers on the surface of HAp, which act as diffusion barriers against H(+) ions. In principle, these anti-erosive properties make PHS and related sphingosines promising and attractive candidates as ingredients in oral care products. PMID:25300299

  8. Effects of Solution Hydrodynamics on Corrosion Inhibition of Steel by Citric Acid in Cooling Water

    Ashassi-Sorkhabi, H.; Asghari, E.; Mohammadi, M.

    2014-08-01

    Corrosion is a major problem in cooling water systems, which is often controlled using corrosion inhibitors. Solution hydrodynamics is one of the factors affecting corrosion inhibition of metals in these systems. The present work focuses on the study of the combined effects of citric acid concentration (as a green corrosion inhibitor) and fluid flow on corrosion of steel in simulated cooling water. Electrochemical techniques including Tafel polarization and electrochemical impedance spectroscopy were used for corrosion studies. Laminar flow was simulated using a rotating disk electrode. The effects of solution hydrodynamics on inhibition performance of citric acid were discussed. The citric acid showed low inhibition performance in quiescent solution; however, when the electrode rotated at 200 rpm, inhibition efficiency increased remarkably. It was attributed mainly to the acceleration of inhibitor mass transport toward metal surface. The efficiencies were then decreased at higher rotation speeds due to enhanced wall shear stresses on metal surface and separation of adsorbed inhibitor molecules. This article is first part of authors' attempts in designing green inhibitor formulations for industrial cooling water. Citric acid showed acceptable corrosion inhibition in low rotation rates; thus, it can be used as a green additive to the corrosion inhibitor formulations.

  9. Inhibition of meal stimulated gastric acid secretion by an octapeptide somatostatin analogue SMS 201-995.

    Olsen, J A; Loud, F B; Christiansen, J

    1987-01-01

    A dose response study of the effect of an octapeptide somatostatin analogue, SMS 201-995, on meal stimulated gastric acid secretion was carried out in 12 healthy volunteers. Infusion of SMS 201-995 in a dose of 50 pmol/kg/h almost completely abolished the acid response to the meal. Pl-gastrin was significantly decreased during infusion of 10 pmol/kg/h of SMS 201-995 and insulin was significantly inhibited during infusion of 50 pmol/kg/h. SMS 201-995 in a dose of 50 pmol/kg/h inhibited basal a...

  10. d-Amino Acids Indirectly Inhibit Biofilm Formation in Bacillus subtilis by Interfering with Protein Synthesis

    Leiman, Sara A.; May, Janine M.; Lebar, Matthew D.; Kahne, Daniel; Kolter, Roberto; Losick, Richard

    2013-01-01

    The soil bacterium Bacillus subtilis forms biofilms on surfaces and at air-liquid interfaces. It was previously reported that these biofilms disassemble late in their life cycle and that conditioned medium from late-stage biofilms inhibits biofilm formation. Such medium contained a mixture of d-leucine, d-methionine, d-tryptophan, and d-tyrosine and was reported to inhibit biofilm formation via the incorporation of these d-amino acids into the cell wall. Here, we show that l-amino acids were ...

  11. Investigation on inhibition behavior of S-triazole-triazole derivatives in acidic solution

    Four main methods, such as weight loss test, EIS, adsorption isotherm and quantum chemical calculation were employed to study the inhibition efficiency and mechanism of three derivatives on mild steel in acid solution, whose inhibition efficiency were proved to follow the order of DMTT > NMTT > PMTT. The adsorption model of DMTT was established at different temperature according to the fitted results. The quantum chemical results indicated that the adsorption sites of the derivatives were strongly centralized on benzene ring, triazole ring, etc. QSAR was set up to explain the relationship of molecular structure and the inhibition effect of the derivatives

  12. Evaluation of functional groups on amino acids in cyclic tetrapeptides in histone deacetylase inhibition.

    Islam, Md Shahidul; Bhuiyan, Mohammed P I; Islam, Md Nurul; Nsiama, Tienabe Kipassa; Oishi, Naoto; Kato, Tamaki; Nishino, Norikazu; Ito, Akihiro; Yoshida, Minoru

    2012-06-01

    The naturally occurring cyclic tetrapeptide, chlamydocin, originally isolated from fungus Diheterospora chlamydosphoria, consists of α-aminoisobutyric acid, L-phenylalanine, D-proline and an unusual amino acid (S)-2-amino-8-((S)-oxiran-2-yl)-8-oxooctanoic acid (Aoe) and inhibits the histone deacetylases (HDACs), a class of regulatory enzymes. The epoxyketone moiety of Aoe is the key functional group for inhibition. The cyclic tetrapeptide scaffold is supposed to play important role for effective binding to the surface of enzymes. In place of the epoxyketone group, hydroxamic acid and sulfhydryl group have been applied to design inhibitor ligands to zinc atom in catalytic site of HDACs. In the research for more potent HDAC inhibitors, we replaced the epoxyketone moiety of Aoe with different functional groups and synthesized a series of chlamydocin analogs as HDAC inhibitors. Among the functional groups, methoxymethylketone moiety showed as potent inhibition as the hydroxamic acid. On the contrary, we confirmed that borate, trifruoromethylketone, and 2-aminoanilide are almost inactive in HDAC inhibition. PMID:21638021

  13. Inhibition of hypochlorous acid-induced cellular toxicity by nitrite

    Whiteman, Matthew; Hooper, D. Craig; Scott, Gwen S.; Koprowski, Hilary; Halliwell, Barry

    2002-09-01

    Chronic inflammation results in increased nitrogen monoxide (NO) formation and the accumulation of nitrite (NO). Neutrophils stimulated by various inflammatory mediators release myeloperoxidase to produce the cytotoxic agent hypochlorous acid (HOCl). Exposure of chondrocytic SW1353 cells to HOCl resulted in a concentration- and time-dependent loss in viability, ATP, and glutathione levels. Treatment of cells with NO but not nitrate (NO) substantially decreased HOCl-dependent cellular toxicity even when NO was added at low (μM) concentrations. In contrast, NO alone (even at 1 mM concentrations) did not affect cell viability or ATP and glutathione levels. These data suggest that NO accumulation at chronic inflammatory sites, where both HOCl and NO are overproduced, may be cytoprotective against damage caused by HOCl. We propose that this is because HOCl is removed by reacting with NO to give nitryl chloride (NO2Cl), which is less damaging in our cell system. inflammation | cell toxicity | nitryl chloride | nitric oxide | arthritis

  14. Identification of self-growth-inhibiting compounds lauric acid and 7-(Z)-tetradecenoic acid from Helicobacter pylori.

    Yamashita, Shinpei; Igarashi, Masayuki; Hayashi, Chigusa; Shitara, Tetsuo; Nomoto, Akio; Mizote, Tomoko; Shibasaki, Masakatsu

    2015-06-01

    Helicobacter pylori growth medium is usually supplemented with horse serum (HS) or FCS. However, cyclodextrin derivatives or activated charcoal can replace serum. In this study, we purified self-growth-inhibiting (SGI) compounds from H. pylori growth medium. The compounds were recovered from porous resin, Diaion HP-20, which was added to the H. pylori growth medium instead of known supplements. These SGI compounds were also identified from 2,6-di-O-methyl-β-cyclodextrin, which was supplemented in a pleuropneumonia-like organisms broth. The growth-inhibiting compounds were identified as lauric acid (LA) and 7-(Z)-tetradecenoic acid [7-(Z)-TDA]. Although several fatty acids had been identified in H. pylori, these specific compounds were not previously found in this species. However, we confirmed that these fatty acids were universally present in the cultivation medium of the H. pylori strains examined in this study. A live/dead assay carried out without HS indicated that these compounds were bacteriostatic; however, no significant growth-inhibiting effect was observed against other tested bacterial species that constituted the indigenous bacterial flora. These findings suggested that LA and 7-(Z)-TDA might play important roles in the survival of H. pylori in human stomach epithelial cells. PMID:25767109

  15. Caffeic Acid Inhibits NFkappaB Activation of Osteoclastogenesis Signaling Pathway

    Ferry Sandra

    2011-12-01

    Full Text Available BACKGROUND: Caffeic acid (3,4-dihydroxycinnamic acids is involved in various green plants. Based on our previous report, a major component of sweet potato extracts, possibly caffeic acid, was shown as a promising inhibitor of osteoclastogenesis. However, the effect of caffeic acid in inhibiting osteoclastogenesis needs to be confirmed. The underlying mechanism needs to be disclosed as well. METHODS: Caffeic acid in various concentrations was added to in vitro osteoclastogenesis of receptor activator nuclear factor kB ligand (RANKL-tumor necrosis factor alpha (TNF-α-macrophage colony stimulating factor (M-CSF-induced bone marrow-derived monocyte/macrophage precursor cells (BMMs and RANKL-TNF-α-induced RAW264 cells D-Clone (RAW-D cells. Tartrate resistant acid phosphatase (TRAP staining was performed and TRAP-positive polynucleated cells (PNCs were counted. For apoptosis analysis, caffeic acid-treated BMMs, RAW-D cells and osteoclast-like PNCs were subjected to Sub-G1 Apoptosis and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL assays. To measure NFkB activity, RAW-D cells were transfected with pNFkB-TA-Luc and subjected to Dual Luciferase Reporter Assay System. RESULTS: Caffeic acid inhibited osteoclastogenesis of RANKL-TNF-α-M-CSF-induced BMMs as well as RANKL-TNF-α-induced RAW-D cells in a dose dependent manner. Caffeic acid did not induce apoptosis in BMMs, RAW-D cells and osteoclast-like PNCs. RANKL-TNF-α-induced NFkB activity in RAW-D was diminished by caffeic acid in a dose dependent manner. Significant NFkB activity inhibtion was observed starting from 1µg/mL caffeic acid. CONCLUSIONS: Caffeic acid could be a potent osteoclastogenesis inhibitor through inhibition of NFkB activity. Our present study should be further followed up to disclose caffeic acid's possible overlying signaling pathways in inhibiting osteoclastogenesis. KEYWORDS: caffeic acid, osteoclastogenesis, NFkB, RANKL, TNF-α.

  16. Anacardic acid inhibits the catalytic activity of matrix metalloproteinase-2 and matrix metalloproteinase-9.

    Omanakuttan, Athira; Nambiar, Jyotsna; Harris, Rodney M; Bose, Chinchu; Pandurangan, Nanjan; Varghese, Rebu K; Kumar, Geetha B; Tainer, John A; Banerji, Asoke; Perry, J Jefferson P; Nair, Bipin G

    2012-10-01

    Cashew nut shell liquid (CNSL) has been used in traditional medicine for the treatment of a wide variety of pathophysiological conditions. To further define the mechanism of CNSL action, we investigated the effect of cashew nut shell extract (CNSE) on two matrix metalloproteinases, MMP-2/gelatinase A and MMP-9/gelatinase B, which are known to have critical roles in several disease states. We observed that the major constituent of CNSE, anacardic acid, markedly inhibited the gelatinase activity of 3T3-L1 cells. Our gelatin zymography studies on these two secreted gelatinases, present in the conditioned media from 3T3-L1 cells, established that anacardic acid directly inhibited the catalytic activities of both MMP-2 and MMP-9. Our docking studies suggested that anacardic acid binds into the MMP-2/9 active site, with the carboxylate group of anacardic acid chelating the catalytic zinc ion and forming a hydrogen bond to a key catalytic glutamate side chain and the C15 aliphatic group being accommodated within the relatively large S1' pocket of these gelatinases. In agreement with the docking results, our fluorescence-based studies on the recombinant MMP-2 catalytic core domain demonstrated that anacardic acid directly inhibits substrate peptide cleavage in a dose-dependent manner, with an IC₅₀ of 11.11 μM. In addition, our gelatinase zymography and fluorescence data confirmed that the cardol-cardanol mixture, salicylic acid, and aspirin, all of which lack key functional groups present in anacardic acid, are much weaker MMP-2/MMP-9 inhibitors. Our results provide the first evidence for inhibition of gelatinase catalytic activity by anacardic acid, providing a novel template for drug discovery and a molecular mechanism potentially involved in CNSL therapeutic action. PMID:22745359

  17. Mitigation of Humic Acid Inhibition in Anaerobic Digestion of Cellulose by Addition of Various Salts

    Samet Azman; Ahmad F. Khadem; Grietje Zeeman; van Lier, Jules B.; Plugge, Caroline M.

    2015-01-01

    Humic compounds are inhibitory to the anaerobic hydrolysis of cellulosic biomass. In this study, the impact of salt addition to mitigate the inhibitory effects of humic compounds was investigated. The experiment was conducted using batch tests to monitor the anaerobic hydrolysis of cellulose in the presence of humic acid. Sodium, potassium, calcium, magnesium and iron salts were tested separately for their efficiency to mitigate humic acid inhibition. All experiments were done under mesophili...

  18. Metabolic induction of experimental ulcerative colitis by inhibition of fatty acid oxidation.

    Roediger, W E; Nance, S.

    1986-01-01

    There is some evidence that failure of fatty acid or beta-oxidation in the epithelium of the colonic mucosa is associated with the development of ulcerative colitis. We tested the hypothesis that inhibition of fatty acid oxidation in the colonic mucosa of the rat reproduces the histological, clinical and biochemical lesions of acute ulcerative colitis of man. A specific inhibitor of beta-oxidation, sodium 2-bromo-octanoate, was instilled rectally for 5 days or exposed to isolated colonic epit...

  19. Afferent signalling from the acid-challenged rat stomach is inhibited and gastric acid elimination is enhanced by lafutidine

    Holzer Peter

    2009-06-01

    Full Text Available Abstract Background Lafutidine is a histamine H2 receptor antagonist, the gastroprotective effect of which is related to its antisecretory activity and its ability to activate a sensory neuron-dependent mechanism of defence. The present study investigated whether intragastric administration of lafutidine (10 and 30 mg/kg modifies vagal afferent signalling, mucosal injury, intragastric acidity and gastric emptying after gastric acid challenge. Methods Adult rats were treated with vehicle, lafutidine (10 – 30 mg/kg or cimetidine (10 mg/kg, and 30 min later their stomachs were exposed to exogenous HCl (0.25 M. During the period of 2 h post-HCl, intragastric pH, gastric volume, gastric acidity and extent of macroscopic gastric mucosal injury were determined and the activation of neurons in the brainstem was visualized by c-Fos immunocytochemistry. Results Gastric acid challenge enhanced the expression of c-Fos in the nucleus tractus solitarii but caused only minimal damage to the gastric mucosa. Lafutidine reduced the HCl-evoked expression of c-Fos in the NTS and elevated the intragastric pH following intragastric administration of excess HCl. Further analysis showed that the gastroprotective effect of lafutidine against excess acid was delayed and went in parallel with facilitation of gastric emptying, measured indirectly via gastric volume changes, and a reduction of gastric acidity. The H2 receptor antagonist cimetidine had similar but weaker effects. Conclusion These observations indicate that lafutidine inhibits the vagal afferent signalling of a gastric acid insult, which may reflect an inhibitory action on acid-induced gastric pain. The ability of lafutidine to decrease intragastric acidity following exposure to excess HCl cannot be explained by its antisecretory activity but appears to reflect dilution and/or emptying of the acid load into the duodenum. This profile of actions emphasizes the notion that H2 receptor antagonists can protect

  20. Calcite crystal growth inhibition by humic substances with emphasis on hydrophobic acids from the Florida Everglades

    Hoch, A.R.; Reddy, M.M.; Aiken, G.R.

    2000-01-01

    The crystallization of calcium carbonate minerals plays an integral role in the water chemistry of terrestrial ecosystems. Humic substances, which are ubiquitous in natural waters, have been shown to reduce or inhibit calcite crystal growth in experiments. The purpose of this study is to quantify and understand the kinetic effects of hydrophobic organic acids isolated from the Florida Everglades and a fulvic acid from Lake Fryxell, Antarctica, on the crystal growth of calcite (CaCO3). Highly reproducible calcite growth experiments were performed in a sealed reactor at constant pH, temperature, supersaturation (?? = 4.5), P(CO2) (10-3.5atm), and ionic strength (0.1 M) with various concentrations of organic acids. Higher plant-derived aquatic hydrophobic acids from the Everglades were more effective growth inhibitors than microbially derived fulvic acid from Lake Fryxell. Organic acid aromaticity correlated strongly with growth inhibition. Molecular weight and heteroatom content correlated well with growth inhibition, whereas carboxyl content and aliphatic nature did not. Copyright (C) 1999 Elsevier Science Ltd.

  1. Mitigation of Humic Acid Inhibition in Anaerobic Digestion of Cellulose by Addition of Various Salts

    Samet Azman

    2015-03-01

    Full Text Available Humic compounds are inhibitory to the anaerobic hydrolysis of cellulosic biomass. In this study, the impact of salt addition to mitigate the inhibitory effects of humic compounds was investigated. The experiment was conducted using batch tests to monitor the anaerobic hydrolysis of cellulose in the presence of humic acid. Sodium, potassium, calcium, magnesium and iron salts were tested separately for their efficiency to mitigate humic acid inhibition. All experiments were done under mesophilic conditions (30 °C and at pH 7. Methane production was monitored online, using the Automatic Methane Potential Test System. Methane production, soluble chemical oxygen demand and volatile fatty acid content of the samples were measured to calculate the hydrolysis efficiencies. Addition of magnesium, calcium and iron salts clearly mitigated the inhibitory effects of humic acid and hydrolysis efficiencies reached up to 75%, 65% and 72%, respectively, which were similar to control experiments. Conversely, potassium and sodium salts addition did not mitigate the inhibition and hydrolysis efficiencies were found to be less than 40%. Mitigation of humic acid inhibition via salt addition was also validated by inductively coupled plasma atomic emission spectroscopy analyses, which showed the binding capacity of different cations to humic acid.

  2. Antibiotics influence on lactic acid bacteria inhibiting gastrointestinal tract

    Andreja Čanžek Majhenič

    2001-04-01

    Full Text Available Lactic acid bacteria (LAB are common inhabitants of the gastrointestinal (GI tract and have important role in maintaining the equilibrium of GI flora, which can be influenced by various factors like diets, antimicrobials and stress. Minimal inhibitory concentrations (MIC and minimal bactericidal concentrations (MBC of 6 antibiotics, commonly used in human medicine for 8 selected lactobacilli strains were determined by macrodilution and microdilution methods in liquid media and by diffusion method on agar plates. The effects of Penicillin G and Ampicillin on intestinal LAB were tested in vivoon mice as well. Lactobacilli were sensitive to Penicillin G, (penicillines and their derivatives and Erythromycin (macrolides by in vitro testing. Clyndamycin (pyranosid showed moderate inhibitory effect. All lactobacilli strains were resistant to Kanamycin and Neomycin (aminoglycosides, while L. salivarius IM 124 has shown extra resistance to Erythromycin and Clyndamycin. The influence of orally administered Ampicillin showed no significant influence on LAB count in mice faeces. The effect of Penicillin G on mice LAB total count was significant, while no effect of orally administered lactobacilli was determined.

  3. Spectrophotometric reaction rate method for determination of barbituric acid by inhibition of the hydrochloric acid-bromate reaction

    Ensafi, Ali A.; Movahedinia, H.

    2003-11-01

    A new kinetic-spectrophotometric method was developed for the determination of barbituric acid. The method is based on its inhibition effect on the reaction between hydrochloric acid and bromate. The decolorization of methyl orange by the reaction products was used to monitor the reaction spectrophotometrically at 510 nm. The variable affecting the rate of the reaction was investigated. The method is simple, rapid, relatively sensitive and precise. The limit of detection is 7.9×10 -7 M and calibration rang is 1×10 -6-6.0×10 -4 M barbituric acid. The linearity range of the calibration graph is depends on bromate concentration. The relative standard deviation of seven replication determination of 5.6×10 -6 M barbituric acid was 1.8%. The influence of potential interfering substance was studied.

  4. Corrosion inhibition of iron in hydrochloric acid by polyacrylamide

    DRAGICA CHAMOVSKA

    2007-07-01

    Full Text Available The corrosion protection and/or adsorption of polyacrylamide (PAA of number average molecular weight, , between 15,000 – 1,350,000 g mol-1 on mild steel and iron (99.99 % Fe in 3 M HCl at room temperature was studied using spectrophotometry (the phenanthroline method, the weight loss method and EIS (Electrochemical Impedance Spectroscopy. It was found that the corrosion protect­tion efficiency of the PAA – adsorbed layers strongly depends on both the molar concentration of PAA in the solution and its molecular weight, reaching limiting values between 85 and 96 %. Simultaneously, it was also concluded that a relatively high surface coverage could be obtained with very low PAA concentrations (0.5 – 2 ppm, indicating the good adsorption characteristics of PAA on mild steel and iron in hydrochloride acid. The experimentally obtained results follow a Lan­gmuir adsorption isotherm. According to the best fitting parameters, the adsorption coef­f­i­cient B ranged between 2×107 and 4×108 mol-1 and depended strongly on the mole­cular weight of the PAA: B = k (for a ≈ 0.67 and k = 2.95×104 or the size of the polymer coil. As was found by EIS, the thickness of the adsorbed PAA layer was approx. 1.1 nm (for er = 15 and corresponded only to the polymer segments attached to the metal surface. On the other hand, as was found by ellipsometry, the limiting layer of the adsorbed PAA molecules was highly voluminous and relatively thick (100 – 200 nm, containing entangled polymer coils.

  5. Kaurenoic Acid from Aralia continentalis Inhibits Biofilm Formation of Streptococcus mutans

    Seung-Il Jeong

    2013-01-01

    Full Text Available We isolated a single chemical compound from A. continentalis and identified it to be kaurenoic acid (KA and investigated the influence of anticariogenic properties. Inhibitory effects of KA on cariogenic properties such as growth, acid production, biofilm formation, and the adherence of S. mutans were evaluated. Furthermore, real-time PCR analysis was performed to evaluate the influence of KA on the genetic expression of virulence factors. KA significantly inhibited the growth and acid production of S. mutans at 2–4 μg/mL and 4 μg/mL of KA, respectively. Furthermore, the adherence onto S-HAs was inhibited at 3-4 μg/mL of KA and biofilm formation was significantly inhibited when treated with 3 μg/mL KA and completely inhibited at 4 μg/mL. Also, the inhibitory effect of KA on biofilm formation was confirmed by SEM. In confocal laser scanning microscopy, bacterial viability gradually decreased by KA in a dose dependent manner. Real-time PCR analysis showed that the expressions of gtfB, gtfC, gbpB, spaP, brpA, relA, and vicR were significantly decreased in S. mutans when it was treated with KA. These results suggest that KA from A. continentalis may be a useful agent for inhibiting the cariogenic properties of S. mutans.

  6. Nalidixic acid inhibition of post-ultraviolet recovery by nalidixic acid sensitive and resistant strains of Candida albicans

    Nalidixic acid (Nal) can kill Candida albicans directly or suppress the organism's recovery from ultraviolet irradiation. Mutants selected for resistance to inactivation by Nal alone have generally enhanced DNA repair proficiencies evidenced by their coincident increased resistances to ultraviolet radiation, ethylmethane sulfonate, and nitrous acid. The effects of Nal, erythromycin, and inhibitors of oxidative phosphorylation on survivals of mutant and wild type strains following ultraviolet exposure indicate that different mechanisms underly the direct lethality of Nal and its ability to inhibit post-irradiation recovery. (author)

  7. Zoledronic acid inhibits macrophage/microglia-assisted breast cancer cell invasion

    Rietkoetter, Eva; Menck, Kerstin; Bleckmann, Annalen; Farhat, Katja; Schaffrinski, Meike; Schulz, Matthias; Hanisch, Uwe-Karsten; Binder, Claudia; Pukrop, Tobias

    2013-01-01

    The bisphosphonate zoledronic acid (ZA) significantly reduces complications of bone metastasis by inhibiting resident macrophages, the osteoclasts. Recent clinical trials indicate additional anti-metastatic effects of ZA outside the bone. However, which step of metastasis is influenced and whether t

  8. Inhibition of the Corrosion of Mild Steel in Acid Media by Naturally Occurring Acacia Senegal

    Urvija Garg; Tak, R. K.

    2010-01-01

    The inhibition of corrosion of mild steel in HCl solution by naturally occurring Acacia Senegal has been studied in relation to the concentration of inhibitor and concentration of corrosive medium. It has been observed that the Acacia Senegal alcoholic extract acts as a good corrosion inhibitor in hydrochloric acid solution and the adsorption of the extract provides a good protection against mild steel corrosion.

  9. Inhibition of the Anaerobic Growth of Brochothrix thermosphacta by Lactic Acid

    Grau, Frederick H.

    1980-01-01

    Brochothrix thermosphacta can grow aerobically in the presence of 210 mM l-lactate and anaerobically in its absence at pH values down to at least 5.5. Anaerobic growth is, however, inhibited by l-lactate, the concentration of undissociated lactic acid being the governing factor. Postrigor meat usually contains sufficient lactic acid to select against the anaerobic growth of B. thermosphacta. At least some Lactobacillaceae strains are more resistant to lactic acid and so their growth is favore...

  10. Inhibition of lysophospholipase D activity by unsaturated lysophosphatidic acids or seed extracts containing 1-linoleoyl and 1-oleoyl lysophosphatidic acid.

    Liu, Xi-Wen; Sok, Dai-Eun; Yook, Hong-Sun; Sohn, Cheon-Bae; Chung, Young-Jin; Kim, Mee Ree

    2007-10-17

    Lysophospholipase D (lysoPLD), generating lipid mediator lysophosphatidic acid (LPA) from lysophosphatidyclcholine (LPC), is known to be inhibited by lysophosphatidic acids. Meanwhile, some plant lipids are known to contain lysophospholipids as minor components. Therefore, it is interesting to test whether edible seed samples, rich in phospholipids, may contain lysophospholipids, which express a strong inhibition of lysoPLD activity. First, the structural importance of fatty acyl group in LPAs was examined by determining the inhibitory effect of various LPAs on bovine lysoPLD activity. The most potent in the inhibition of lysoPLD activity was linoleoyl-LPA ( K i, 0.21 microM), followed by arachidonoyl-LPA ( K i, 0.55 microM), oleoyl-LPA ( K i, 1.2 microM), and palmitoyl-LPA ( K i, 1.4 microM), based on the fluoresecent assay. The same order of inhibitory potency among LPA analogs with different acyl chains was also found in the spectrophotometric assay. Subsequently, the extracts of 12 edible seeds were screened for the inhibition of lysoPLD activity using both spectrophotometric and fluorescent assays. Among seed extracts tested, the extract from soybean seed, sesame seed, or sunflower seed (30 mg seed weight/mL) was found to exhibit a potent inhibition (>80%) of lysoPLD activity. In further study employing ESI-MS/MS analysis, major LPA components in seed extracts were identified to be 1-linoleoyl LPA, 1-oleoyl LPA, and 1-palmitoyl LPA with 1-linoleoyl LPA being more predominant. Thus, the potent inhibition of lysoPLD activity by seed extracts might be ascribed to the presence of LPA with linoleoyl group rather than other acyl chains. PMID:17887800

  11. Sialic Acid Is Required for Neuronal Inhibition by Soluble MAG but not for Membrane Bound MAG.

    Al-Bashir, Najat; Mellado, Wilfredo; Filbin, Marie T

    2016-01-01

    Myelin-Associated Glycoprotein (MAG), a major inhibitor of axonal growth, is a member of the immunoglobulin (Ig) super-family. Importantly, MAG (also known as Siglec-4) is a member of the Siglec family of proteins (sialic acid-binding, immunoglobulin-like lectins), MAG binds to complex gangliosides, specifically GD1a and/or GT1b. Therefore, it has been proposed as neuronal receptors for MAG inhibitory effect of axonal growth. Previously, we showed that MAG binds sialic acid through domain 1 at Arg118 and is able to inhibit axonal growth through domain 5. We developed a neurite outgrowth (NOG) assay, in which both wild type MAG and mutated MAG (MAG Arg118) are expressed on cells. In addition we also developed a soluble form NOG in which we utilized soluble MAG-Fc and mutated MAG (Arg118-Fc). Only MAG-Fc is able to inhibit NOG, but not mutated MAG (Arg118)-Fc that has been mutated at its sialic acid binding site. However, both forms of membrane bound MAG- and MAG (Arg118)- expressing cells still inhibit NOG. Here, we review various results from different groups regarding MAG's inhibition of axonal growth. Also, we propose a model in which the sialic acid binding is not necessary for the inhibition induced by the membrane form of MAG, but it is necessary for the soluble form of MAG. This finding highlights the importance of understanding the different mechanisms by which MAG inhibits NOG in both the soluble fragmented form and the membrane-bound form in myelin debris following CNS damage. PMID:27065798

  12. Comparison of inhibition effects of some benzoic acid derivatives on sheep heart carbonic anhydrase

    Kiliç, Deryanur; Yildiz, Melike; Şentürk, Murat; Erdoǧan, Orhan; Küfrevioǧlu, Ömer Irfan

    2016-04-01

    Carbonic anhydrase (CA) is a family of metalloenzymes that requires Zn as a cofactor and catalyze the quick conversion of CO2 to HCO3- and H+. Inhibitors of the carbonic anhydrases (CAs) have medical usage of significant diseases such as glaucoma, epilepsy, gastroduodenal ulcers, acid-base disequilibria and neurological disorders. In the present study, inhibition of CA with some benzoic derivatives (1-6) were investigated. Sheep heart CA (shCA) enzyme was isolated by means of designed affinity chromatography gel (cellulose-benzyl-sulfanylamide) 42.45-fold in a yield of 44 % with 564.65 EU/mg. Purified shCA enzyme was used in vitro studies. In the studies, IC50 values were calculated for 3-aminobenzoic acid (1), 4-aminobenzoic acid (2), 2-hydroxybenzoic acid (3), 2-benzoylbenzoic acid (4), 2,3-dimethoxybenzoic acid (5), and 3,4,5-trimethoxybenzoic acid (6), showing the inhibition effects on the purified enzyme. Such molecules can be used as pioneer for discovery of novel effective CA inhibitors for medicinal chemistry applications.

  13. Neuraminidase inhibition of Dietary chlorogenic acids and derivatives - potential antivirals from dietary sources.

    Gamaleldin Elsadig Karar, Mohamed; Matei, Marius-Febi; Jaiswal, Rakesh; Illenberger, Susanne; Kuhnert, Nikolai

    2016-04-20

    Plants rich in chlorogenic acids (CGAs), caffeic acids and their derivatives have been found to exert antiviral effects against influenza virus neuroaminidase. In this study several dietary naturally occurring chlorogenic acids, phenolic acids and derivatives were screened for their inhibitory activity against neuroaminidases (NAs) from C. perfringens, H5N1 and recombinant H5N1 (N-His)-Tag using a fluorometric assay. There was no significant difference in inhibition between the different NA enzymes. The enzyme inhibition results indicated that chlorogenic acids and selected derivatives, exhibited high activities against NAs. It seems that the catechol group from caffeic acid was important for the activity. Dietary CGA therefore show promise as potential antiviral agents. However, caffeoyl quinic acids show low bioavailibility and are intensly metabolized by the gut micro flora, only low nM concentrations are observed in plasma and urine, therefore a systemic antiviral effect of these compounds is unlikely. Nevertheless, gut floral metabolites with a catechol moiety or structurally related dietary phenolics with a catechol moiety might serve as interesting compounds for future investigations. PMID:27010419

  14. Time dependent inhibition of xanthine oxidase in irradiated solutions of folic acid, aminopterin and methotrexate

    The xanthine oxidase catalyzed oxidation of hypoxanthine was followed by monitoring the formation of uric acid at 290 nm. Inhibition of xanthine oxidase occurs in aqueous solutions of folic acid methotrexate and aminopterin. These compounds are known to dissociate upon exposure to ultraviolet light resulting in the formation of their respective 6-formylpteridine derivatives. The relative rates of dissociation were monitored spectrophotometrically by determining the absorbance of their 2,4-dinitrophenylhydrazine derivatives at 500 nm. When aqueous solutions of folic acid, aminopterin and methotrexate were exposed to uv light, a direct correlation was observed between the concentrations of the 6-formylpteridine derivatives existing in solution and the ability of these solutions to inhibit xanthine oxidase. The relative potency of the respective photolysis products were estimated

  15. INHIBITION OF CORROSION OF ZINC IN (HNO3 + HCl ACID MIXTURE BY ANILINE

    R.T. Vashi

    2015-05-01

    Full Text Available Corrosion of Zinc metal in (HNO3 + HCl binary acid mixture and inhibition efficiency of aniline has been studied by weight loss method and polarization technique. Corrosion rate increases with the concentration of acid mixture and the temperature. Inhibition efficiency (I.E. of aniline increases with the concentration of inhibitor while decreases with the increase in concentration of acid. As temperature increases corrosion rate increases while percentage of I.E. decreases. A plot of log (θ/1-θ versus log C results in a straight line suggest that the inhibitor cover both the anodic and cathodic regions through general adsorption following Longmuir isotherm. Galvenostatic polarization curves show polarization of both anodes as well as cathodes.

  16. INHIBITION OF CORROSION OF ZINC IN (HNO3 + HCl ACID MIXTURE BY ANILINE

    R. T. Vashi

    2015-05-01

    Full Text Available Corrosion of Zinc metal in (HNO3 + HCl binary acid mixture and inhibition efficiency of aniline has been studied by weight loss method and polarization technique. Corrosion rate increases with the concentration of acid mixture and the temperature. Inhibition efficiency (I.E. of aniline increases with the concentration of   inhibitor while decreases with the increase in concentration of acid. As temperature increases corrosion rate increases while percentage of I.E. decreases. A plot of log (θ/1-θ versus log C results in a straight line suggest that the inhibitor cover both the anodic and cathodic regions through general adsorption following Longmuir isotherm. Galvenostatic polarization curves show polarization of both anodes as well as cathodes.

  17. Use of jasmonic acid and salicylic acid to inhibit growth of sugarbeet storage rot pathogens

    Jasmonic acid (JA) and salicylic acid (SA) are endogenous plant hormones that induce native plant defense responses and provide protection against a wide range of diseases. Previously, JA, applied after harvest, was shown to protect sugarbeet roots against the storage pathogens, Botrytis cinerea, P...

  18. Evaluation of the inhibitive effect of some plant extracts on the acid corrosion of mild steel

    Oguzie, Emeka E. [Electrochemistry and Materials Science Research Laboratory, Department of Chemistry, Federal University of Technology, PMB 1526, Owerri (Nigeria)], E-mail: oguziemeka@yahoo.com

    2008-11-15

    Corrosion inhibition of mild steel in 2 M HCl and 1 M H{sub 2}SO{sub 4} by extracts of selected plants was investigated using a gasometric technique at temperatures of 30 and 60 deg. C. The studied plants materials include leaf extracts Occimum viridis (OV), Telferia occidentalis (TO), Azadirachta indica (AI) and Hibiscus sabdariffa (HS) as well as extracts from the seeds of Garcinia kola (GK). The results indicate that all the extracts inhibited the corrosion process in both acid media by virtue of adsorption and inhibition efficiency improved with concentration. Synergistic effects increased the inhibition efficiency in the presence of halide additives. Inhibition mechanisms were deduced from the temperature dependence of the inhibition efficiency as well as from assessment of kinetic and activation parameters that govern the processes. Comparative analysis of the inhibitor adsorption behaviour in 2 M HCl and 1 M H{sub 2}SO{sub 4} as well as the effects of temperature and halide additives suggest that both protonated and molecular species could be responsible for the inhibiting action of the extracts.

  19. Evaluation of the inhibitive effect of some plant extracts on the acid corrosion of mild steel

    Corrosion inhibition of mild steel in 2 M HCl and 1 M H2SO4 by extracts of selected plants was investigated using a gasometric technique at temperatures of 30 and 60 deg. C. The studied plants materials include leaf extracts Occimum viridis (OV), Telferia occidentalis (TO), Azadirachta indica (AI) and Hibiscus sabdariffa (HS) as well as extracts from the seeds of Garcinia kola (GK). The results indicate that all the extracts inhibited the corrosion process in both acid media by virtue of adsorption and inhibition efficiency improved with concentration. Synergistic effects increased the inhibition efficiency in the presence of halide additives. Inhibition mechanisms were deduced from the temperature dependence of the inhibition efficiency as well as from assessment of kinetic and activation parameters that govern the processes. Comparative analysis of the inhibitor adsorption behaviour in 2 M HCl and 1 M H2SO4 as well as the effects of temperature and halide additives suggest that both protonated and molecular species could be responsible for the inhibiting action of the extracts

  20. Interfacial (o/w) properties of naphthetic acids and metal naphthenates, naphtenic acid characterization and metal naphthenate inhibition

    Brandal, Oeystein

    2005-07-01

    Deposition of metal naphthenates in process facilities is becoming a huge problem for petroleum companies producing highly acidic crudes. In this thesis, the main focus has been towards the oil-water (o/w) interfacial properties of naphthenic acids and their ability to react with different divalent cations across the interface to form metal naphthenates. The pendant drop technique was utilized to determine dynamic interfacial tensions (IFT) between model oil containing naphthenic acid, synthetic as well as indigenous acid mixtures, and pH adjusted water upon addition of different divalent cations. Changes in IFT caused by the divalent cations were correlated to reaction mechanisms by considering two reaction steps with subsequent binding of acid monomers to the divalent cation. The results were discussed in light of degree of cation hydration and naphthenic acid conformation, which affect the interfacial conditions and thus the rate of formation of 2:1 complexes of acid and cations. Moreover, addition of non-ionic oil-soluble surfactants used as basis compounds in naphthenate inhibitors was found to hinder a completion of the reaction through interfacial dilution of the acid monomers. Formation and stability of metal naphthenate films at o/w interfaces were studied by means of Langmuir technique with a trough designed for liquid-liquid systems. The effects of different naphthenic acids, divalent cations, and pH of the subphase were investigated. The results were correlated to acid structure, cation hydration, and degree of dissociation, which all affect the film stability against compression. Naphthenic acids acquired from a metal naphthenate deposit were characterized by different spectroscopic techniques. The sample was found to consist of a narrow family of 4-protic naphthenic acids with molecular weights around 1230 g/mol. These acids were found to be very o/w interfacially active compared to normal crude acids, and to form Langmuir monolayers with stability

  1. Growth inhibition of Erwinia amylovora and related Erwinia species by neutralized short‑chain fatty acids.

    Konecki, Katrin; Gernold, Marina; Wensing, Annette; Geider, Klaus

    2013-11-01

    Short-chain fatty acids (SCFAs) are used to preserve food and could be a tool for control of fire blight caused by Erwinia amylovora on apple, pear and related rosaceous plants. Neutralized acids were added to buffered growth media at 0.5–75 mM and tested at pHs ranging from 6.8 to 5.5. Particularly at low pH, SCFAs with a chain length exceeding that of acetic acid such as propionic acid were effective growth inhibitors of E. amylovora possibly due to uptake of free acid and its intracellular accumulation. We also observed high inhibition with monochloroacetic acid. An E. billingiae strain was as sensitive to the acids as E. amylovora or E. tasmaniensis. Fire blight symptoms on pear slices were reduced when the slices were pretreated with neutralized propionic acid. Propionic acid is well water soluble and could be applied in orchards as a control agent for fire blight. PMID:24077735

  2. Effect of antimony(III) on carbon steel corrosion inhibition by molybdate in citric acid solution

    Molybdate is known as a good corrosion inhibitor of carbon steel (CS). But it cannot inhibit CS corrosion in citric acid solution at 85 °C. It has been observed that the presence of small concentration of Sb(III) along with MoO42- inhibits CS corrosion efficiently. The corrosion inhibition by MoO42- have been studied extensively by varying the concentration of Sb(III) and MoO42-. A critical concentration of MoO42- is required to passivate CS in acid medium in the presence of Sb(III). The study shows that molybdate forms a thin protective layer on CS surface in presence of Sb(III) which provides the corrosion inhibition. Inhibition property and the layer composition on CS surface have been studied by electrochemical and surface analytical techniques. The protective layer is found to be composed of both Mo and Sb and appears to be formed due to cathodic reduction of Mo6+ to Mo5+ and Mo4+ and anodic oxidation of Fe and Sb. (author)

  3. Cinnamic acid amides from Tribulus terrestris displaying uncompetitive α-glucosidase inhibition.

    Song, Yeong Hun; Kim, Dae Wook; Curtis-Long, Marcus J; Park, Chanin; Son, Minky; Kim, Jeong Yoon; Yuk, Heung Joo; Lee, Keun Woo; Park, Ki Hun

    2016-05-23

    The α-glucosidase inhibitory potential of Tribulus terrestris extracts has been reported but as yet the active ingredients are unknown. This study attempted to isolate the responsible metabolites and elucidate their inhibition mechanism of α-glucosidase. By fractionating T. terristris extracts, three cinnamic acid amide derivatives (1-3) were ascertained to be active components against α-glucosidase. The lead structure, N-trans-coumaroyltyramine 1, showed significant inhibition of α-glucosidase (IC50 = 0.42 μM). Moreover, all active compounds displayed uncompetitive inhibition mechanisms that have rarely been reported for α-glucosidase inhibitors. This kinetic behavior was fully demonstrated by showing a decrease of both Km and Vmax, and Kik/Kiv ratio ranging between 1.029 and 1.053. We progressed to study how chemical modifications to the lead structure 1 may impact inhibition. An α, β-unsaturation carbonyl group and hydroxyl group in A-ring of cinnamic acid amide emerged to be critical functionalities for α-glucosidase inhibition. The molecular modeling study revealed that the inhibitory activities are tightly related to π-π interaction as well as hydrogen bond interaction between enzyme and inhibitors. PMID:26974386

  4. Adsorption and corrosion inhibiting effect of riboflavin on Q235 mild steel corrosion in acidic environments

    Chidiebere, Maduabuchi A. [Institute of Metal Research, Chinese Academy of Sciences, 62 Wencui Rd, Shenyang 110016 (China); Electrochemistry and Materials Science Research Laboratory, Department of Chemistry, Federal University of Technology Owerri, PMB 1526 Owerri (Nigeria); Oguzie, Emeka E. [Electrochemistry and Materials Science Research Laboratory, Department of Chemistry, Federal University of Technology Owerri, PMB 1526 Owerri (Nigeria); Liu, Li [Institute of Metal Research, Chinese Academy of Sciences, 62 Wencui Rd, Shenyang 110016 (China); Li, Ying, E-mail: liying@imr.ac.cn [Institute of Metal Research, Chinese Academy of Sciences, 62 Wencui Rd, Shenyang 110016 (China); Wang, Fuhui [Institute of Metal Research, Chinese Academy of Sciences, 62 Wencui Rd, Shenyang 110016 (China)

    2015-04-15

    The inhibiting effect of Riboflavin (RF) on Q235 mild steel corrosion in 1 M HCl and 0.5 M H{sub 2}SO{sub 4} at 30 °C temperature was investigated using electrochemical techniques (electrochemical impedance spectroscopy and potentiodynamic polarization). The obtained results revealed that RF inhibited the corrosion reaction in both acidic solutions. Maximum inhibition efficiency values in 1 M HCl and 0.5 M H{sub 2}SO{sub 4} were 83.9% and 71.4%, respectively, obtained for 0.0012 M RF. Polarization data showed RF to be a mixed-type inhibitor, while EIS results revealed that the RF species adsorbed on the metal surface. The adsorption of RF followed Langmuir adsorption isotherm. Atomic force microscopy (AFM), Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM) studies confirmed the formation of a protective layer adsorbed on the steel surface. Quantum chemical calculations were used to correlate the inhibition ability of RF with its electronic structural parameters. - Highlights: • The inhibitory mechanism was influenced by the nature of acid anions. • RF has reasonable inhibition effect especially in 1 M HCl solution. • Polarization studies showed that RF functioned as a mixed type inhibitor. • Improved surface morphology was observed in the presence of RF.

  5. Adsorption and corrosion inhibiting effect of riboflavin on Q235 mild steel corrosion in acidic environments

    The inhibiting effect of Riboflavin (RF) on Q235 mild steel corrosion in 1 M HCl and 0.5 M H2SO4 at 30 °C temperature was investigated using electrochemical techniques (electrochemical impedance spectroscopy and potentiodynamic polarization). The obtained results revealed that RF inhibited the corrosion reaction in both acidic solutions. Maximum inhibition efficiency values in 1 M HCl and 0.5 M H2SO4 were 83.9% and 71.4%, respectively, obtained for 0.0012 M RF. Polarization data showed RF to be a mixed-type inhibitor, while EIS results revealed that the RF species adsorbed on the metal surface. The adsorption of RF followed Langmuir adsorption isotherm. Atomic force microscopy (AFM), Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM) studies confirmed the formation of a protective layer adsorbed on the steel surface. Quantum chemical calculations were used to correlate the inhibition ability of RF with its electronic structural parameters. - Highlights: • The inhibitory mechanism was influenced by the nature of acid anions. • RF has reasonable inhibition effect especially in 1 M HCl solution. • Polarization studies showed that RF functioned as a mixed type inhibitor. • Improved surface morphology was observed in the presence of RF

  6. Bile acids activate fibroblast growth factor 19 signaling in human hepatocytes to inhibit cholesterol 7α-hydroxylase gene expression

    Song, Kwang-Hoon; Li, Tiangang; Owsley, Erika; Strom, Stephen; Chiang, John Y. L.

    2009-01-01

    Mouse fibroblast growth factor 15 (FGF15) and human ortholog FGF19 have been identified as the bile acid-induced intestinal factors that mediate bile acid feedback inhibition of cholesterol 7α-hydroxylase gene transcription in mouse liver. The mechanism underlying FGF15/FGF19 inhibition of bile acid synthesis in hepatocytes remains unclear. Chenodeoxycholic acid (CDCA) and a farnesoid X receptor (FXR)-specific agonist GW4064 strongly induced FGF19 but inhibited CYP7A1 mRNA levels in primary h...

  7. Fat transforms ascorbic acid from inhibiting to promoting acid-catalysed N-nitrosation

    Combet, E; Paterson, S; Iijima, K; Winter, J; Mullen, W.; Crozier, A.; Preston, T; McColl, K E L

    2007-01-01

    Background: The major potential site of acid nitrosation is the proximal stomach, an anatomical site prone to a rising incidence of metaplasia and adenocarcinoma. Nitrite, a pre-carcinogen present in saliva, can be converted to nitrosating species and N-nitroso compounds by acidification at low gastric pH in the presence of thiocyanate. Aims: To assess the effect of lipid and ascorbic acid on the nitrosative chemistry under conditions simulating the human proximal stomach. M...

  8. Inhibition of matrix metalloproteinases expression in human dental pulp cells by all-trans retinoic acid

    Kim, Jin Man; Kang, Sang Wook; Shin, Su-Mi; Su Kim, Duck; Choi, Kyong-Kyu; Kim, Eun-Cheol; Kim, Sun-Young

    2013-01-01

    All-trans retinoic acid (ATRA) inhibits matrix metalloproteinase (MMP)-2 and MMP-9 in synovial fibroblasts, skin fibroblasts, bronchoalveolar lavage cells and cancer cells, but activates MMP-9 in neuroblast and leukemia cells. Very little is known regarding whether ATRA can activate or inhibit MMPs in human dental pulp cells (HDPCs). The purpose of this study was to determine the effects of ATRA on the production and secretion of MMP-2 and -9 in HDPCs. The productions and messenger RNA (mRNA)...

  9. Dipeptidyl peptidase IV inhibition potentiates amino acid- and bile acid-induced bicarbonate secretion in rat duodenum.

    Inoue, Takuya; Wang, Joon-Ho; Higashiyama, Masaaki; Rudenkyy, Sergiy; Higuchi, Kazuhide; Guth, Paul H; Engel, Eli; Kaunitz, Jonathan D; Akiba, Yasutada

    2012-10-01

    Intestinal endocrine cells release gut hormones, including glucagon-like peptides (GLPs), in response to luminal nutrients. Luminal L-glutamate (L-Glu) and 5'-inosine monophosphate (IMP) synergistically increases duodenal HCO3- secretion via GLP-2 release. Since L cells express the bile acid receptor TGR5 and dipeptidyl peptidase (DPP) IV rapidly degrades GLPs, we hypothesized that luminal amino acids or bile acids stimulate duodenal HCO3- secretion via GLP-2 release, which is enhanced by DPPIV inhibition. We measured HCO3- secretion with pH and CO2 electrodes using a perfused rat duodenal loop under isoflurane anesthesia. L-Glu (10 mM) and IMP (0.1 mM) were luminally coperfused with or without luminal perfusion (0.1 mM) or intravenous (iv) injection (3 μmol/kg) of the DPPIV inhibitor NVP728. The loop was also perfused with a selective TGR5 agonist betulinic acid (BTA, 10 μM) or the non-bile acid type TGR5 agonist 3-(2-chlorophenyl)-N-(4-chlorophenyl)-N,5-dimethylisoxazole-4-carboxamide (CCDC; 10 μM). DPPIV activity visualized by use of the fluorogenic substrate was present on the duodenal brush border and submucosal layer, both abolished by the incubation with NVP728 (0.1 mM). An iv injection of NVP728 enhanced L-Glu/IMP-induced HCO3- secretion, whereas luminal perfusion of NVP728 had no effect. BTA or CCDC had little effect on HCO3- secretion, whereas NVP728 iv markedly enhanced BTA- or CCDC-induced HCO3- secretion, the effects inhibited by a GLP-2 receptor antagonist. Coperfusion of the TGR5 agonist enhanced L-Glu/IMP-induced HCO3- secretion with the enhanced GLP-2 release, suggesting that TGR5 activation amplifies nutrient sensing signals. DPPIV inhibition potentiated luminal L-Glu/IMP-induced and TGR5 agonist-induced HCO3- secretion via a GLP-2 pathway, suggesting that the modulation of the local concentration of the endogenous secretagogue GLP-2 by luminal compounds and DPPIV inhibition helps regulate protective duodenal HCO3- secretion. PMID:22821947

  10. Use of Cassette Dosing in Sandwich-Cultured Rat and Human Hepatocytes to Identify Drugs that Inhibit Bile Acid Transport

    Kristina K Wolf; Vora, Sapana; Webster, Lindsey O.; Generaux, Grant T.; Polli, Joseph W; Brouwer, Kim L.R.

    2009-01-01

    Hepatocellular accumulation of bile acids due to inhibition of the canalicular bile salt export pump (BSEP/ABCB11) is one proposed mechanism of drug-induced liver injury (DILI). Some hepatotoxic compounds also are potent inhibitors of bile acid uptake by Na+-dependent taurocholate cotransporting polypeptide (NTCP/SLC10A1). This study used a cassette dosing approach in rat and human sandwich-cultured hepatocytes (SCH) to determine whether known or suspected hepatotoxic drugs inhibit bile acid ...

  11. Free Fatty Acids Inhibit Protein Tyrosine Phosphatase 1B and Activate Akt

    Eisuke Shibata

    2013-09-01

    Full Text Available Background/Aims: Accumulating evidence has suggested that free fatty acids (FFAs interact with protein kinases and protein phosphatases. The present study examined the effect of FFAs on protein phosphatases and Akt. Methods: Activities of protein phosphatase 1 (PP1, protein phosphatase 2A (PP2A, and protein tyrosine phosphatase 1B (PTP1B were assayed under the cell-free conditions. Phosphorylation of Akt was monitored in MSTO-211H human malignant pleural mesothelioma cells without and with knocking-down phosphatidylinositol 3 kinase (PI3K or 3-phosphoinositide-dependent protein kinase-1 (PDK1. Results: In the cell-free assay, unsaturated FFAs (uFFAs such as oleic, linoleic and linolenic acid and saturated FFAs (sFFAs such as stearic, palmitic, myristic, and behenic acid markedly reduced PTP1B activity, with the potential for uFFAs greater than that for sFFAs. All the investigated sFFAs inhibited PP2A activity, but otherwise no inhibition was obtained with uFFAs. Both uFFAs and sFFAs had no effect on PP1 activity. Oleic acid phosphorylated Akt both on Thr308 and Ser473, while stearic acid phosphorylated Akt on Thr308 alone. The effects of oleic and stearic acid on Akt phosphorylation were abrogated by the PI3K inhibitor wortmannin or the PDK1 inhibitor BX912 and also by knocking-down PI3K or PDK1. Conclusion: The results of the present study indicate that uFFAs and sFFAs could activate Akt through a pathway along a PI3K/PDK1/Akt axis in association with PTP1B inhibition.

  12. Inhibitive Effect of Hydrofluoric Acid Doped Poly Aniline (HFPANI on Corrosion of Iron in 1N Phosphoric Acid Solution

    G.Maheswari

    2015-03-01

    Full Text Available The inhibition effect of Hydrofluoric acid doped poly aniline HF-PANI on mild steel corrosion in 1N phosphoric acid has been studied by mass loss and polarization techniques and AC impedance measurements methods between 303 K and 333K.The inhibition efficiency increased with increase in concentration of HF PANI. The corrosion rate increased with increase in temperature and decreased with increase in concentration of inhibitor compared to blank. Potentiostatic polarization results revealed that HF-PANI act as mixed type inhibitor. The inhibitor of HF-PANI was chemically adsorbed and spontaneous adsorption on the mild steel surface .The values of activation energy (Ea, free energy of adsorption (ΔGads, heat of adsorption (Qads, enthalpy of adsorption (ΔH and entropy of adsorption (ΔS were calculated. The adsorption of inhibitor on mild steel surface has been found to obey Temkin’s adsorption isotherm. SEM analysis was agreed to establish the mechanism of corrosion inhibitor on mild steel corrosion in phosphoric acid medium.

  13. Organochlorines inhibit acetaminophen glucuronidation by redirecting UDP-glucuronic acid towards the D-glucuronate pathway

    Industry-derived organochlorines are persistent environmental pollutants that are a continuing health concern. The effects of these compounds on drug metabolism are not well understood. In the current study we present evidence that the inhibition of acetaminophen (APAP) glucuronidation by minute concentrations of organochlorines correlates well with their ability to stimulate the D-glucuronate pathway leading to ascorbate synthesis. A set of 6 arylated organochlorines, including 5 PCB (polychlorinated biphenyl) congeners, were assessed for their effects on APAP glucuronidation in isolated hepatocytes from male Sprague-Dawley rats. The capacity of each organochlorine to inhibit APAP glucuronidation was found to be directly proportional to its capacity to stimulate ascorbate synthesis. PCB153, PCB28 and bis-(4-chlorophenyl sulfone) (BCPS) in increasing order were the most effective organochlorines for inhibiting APAP glucuronidation and stimulating the D-glucuronate pathway. None of the 3 inhibitors of APAP glucuronidation were able to alter the expression of UGT1A6, UGT1A7 and UGT1A8 (the major isoforms responsible for APAP glucuronidation in the rat), however, their efficacy at inhibiting APAP glucuronidation was proportional to their capacity to deplete UDP-glucuronic acid (UDPGA). BCPS-mediated inhibition of APAP glucuronidation in isolated hepatocytes had non-competitive characteristics and was insensitive to the inactivation of cytochrome P450. The effective organochlorines were also able to selectively stimulate the hydrolysis of UDPGA to UDP and glucuronate in isolated microsomes, but could not inhibit APAP glucuronidation in microsomes when UDPGA was in excess. We conclude that organochlorines are able to inhibit APAP glucuronidation in hepatocytes by depleting UDPGA via redirecting UDPGA towards the D-glucuronate pathway. Because the inhibition is non-competitive, low concentrations of these compounds could have long term inhibitory effects on the

  14. Theoretical study of inhibition efficiencies of some amino acids on corrosion of carbon steel in acidic media: green corrosion inhibitors.

    Dehdab, Maryam; Shahraki, Mehdi; Habibi-Khorassani, Sayyed Mostafa

    2016-01-01

    Inhibition efficiencies of three amino acids [tryptophan (B), tyrosine (c), and serine (A)] have been studied as green corrosion inhibitors on corrosion of carbon steel using density functional theory (DFT) method in gas and aqueous phases. Quantum chemical parameters such as EH OMO (highest occupied molecular orbital energy), E LUMO (lowest unoccupied molecular orbital energy), hardness (η), polarizability ([Formula: see text]), total negative charges on atoms (TNC), molecular volume (MV) and total energy (TE) have been calculated at the B3LYP level of theory with 6-311++G** basis set. Consistent with experimental data, theoretical results showed that the order of inhibition efficiency is tryptophan (B) > tyrosine (C) > serine (A). In order to determine the possible sites of nucleophilic and electrophilic attacks, local reactivity has been evaluated through Fukui indices. PMID:26347374

  15. Inhibition of Listeria monocytogenes in Fresh Cheese Using Chitosan-Grafted Lactic Acid Packaging

    Laura N. Sandoval

    2016-04-01

    Full Text Available A chitosan from biologically obtained chitin was successfully grafted with d,l-lactic acid (LA in aqueous media using p-toluenesulfonic acid as catalyst to obtain a non-toxic, biodegradable packaging material that was characterized using scanning electron microscopy, water vapor permeability, and relative humidity (RH losses. Additionally, the grafting in chitosan with LA produced films with improved mechanical properties. This material successfully extended the shelf life of fresh cheese and inhibited the growth of Listeria monocytogenes during 14 days at 4 °C and 22% RH, whereby inoculated samples with chitosan-g-LA packaging presented full bacterial inhibition. The results were compared to control samples and commercial low-density polyethylene packaging.

  16. Complete inhibition of food-stimulated gastric acid secretion by combined application of pirenzepine and ranitidine.

    Londong, W; Londong, V; Ruthe, C; Weizert, P

    1981-07-01

    In a double-blind, placebo controlled and randomised secretory study the effectiveness of pirenzepine, ranitidine, and their combination was compared intraindividually in eight healthy subjects receiving intravenous bolus injections. Pirenzepine (0.15 mg/kg) plus ranitidine (0.6 mg/kg) suppressed peptone-stimulated gastric acid secretion from 69 +/- 11 to 2 +/- 0.4 mmol H+/3 h; the mean percentage inhibition was 97%. Postprandial gastrin was unaffected. There were only minor side-effects in a few experiments (reduction of salivation, brief blurring of vision), but no prolactin stimulation after ranitidine or ranitidine plus pirenzepine. The combined application of ranitidine and pirenzepine inhibited meal-stimulated acid secretion more effectively and produced fewer side-effects than the combination of cimetidine plus pirenzepine studied previously. PMID:6114900

  17. Corrosion Inhibition of Carbon Steel In Sulfuric Acid by Sodium Caprylate

    Saad Ghareba

    2016-01-01

    Full Text Available The interaction of a sodium salt of octanoic acid, sodium caprylate (SC, with a carbon steel (CS surface was investigated, using range of experimental techniques. It was shown that SC acts as a good CS general corrosion inhibitor, yielding a maximum corrosion inhibition efficiency of 77%. This high inhibition efficiency is maintained even at higher temperatures. It was determined that SC inhibits both partial corrosion reactions, and can thus be considered to be a mixed-type inhibitor. The adsorption of SC on the CS surface was described by the Langmuir adsorption isotherm. It was found that this process is spontaneous, irreversible and driven by the entropy gain. The CS surface morphology was studied by SEM and it was demonstrated that SC is a very effective general corrosion inhibitor of CS. This also was confirmed by contact angle measurements which showed that the CS surface became more hydrophobic when the SC was added to the solution.

  18. Inhibition of mycotoxin-producing Aspergillus nomius vsc 23 by lactic acid bacteria and Saccharomyces cerevisiae

    R Muñoz

    2010-12-01

    Full Text Available The effect of different fermenting microorganisms on growth of a mycotoxin- producing Aspergillus nomius was assayed. Two lactic acid bacteria, Lactobacillus fermentum and Lactobacillus rhamnosus, and Saccharomyces cerevisiae, all of which are widely used in fermentation and preservation of food, were assayed on their fungus inhibitory properties. Assays were carried out by simultaneous inoculation of one of the possible inhibiting microorganisms and the fungus or subsequent inoculation of one of the microorganisms followed by the fungus. All three microorganisms assayed showed growth inhibition of the mycotoxin-producing Aspergillus strain. L. rhamnosus O236, isolated from sheep milk and selected for its technological properties, showed highest fungal inhibition of the microorganisms assayed. The use of antifungal LAB with excellent technological properties rather than chemical preservatives would enable the food industry to produce organic food without addition of chemical substances.

  19. Inhibition of mycotoxin-producing Aspergillus nomius vsc 23 by lactic acid bacteria and Saccharomyces cerevisiae.

    Muñoz, R; Arena, M E; Silva, J; González, S N

    2010-10-01

    The effect of different fermenting microorganisms on growth of a mycotoxin- producing Aspergillus nomius was assayed. Two lactic acid bacteria, Lactobacillus fermentum and Lactobacillus rhamnosus, and Saccharomyces cerevisiae, all of which are widely used in fermentation and preservation of food, were assayed on their fungus inhibitory properties. Assays were carried out by simultaneous inoculation of one of the possible inhibiting microorganisms and the fungus or subsequent inoculation of one of the microorganisms followed by the fungus. All three microorganisms assayed showed growth inhibition of the mycotoxin-producing Aspergillus strain. L. rhamnosus O236, isolated from sheep milk and selected for its technological properties, showed highest fungal inhibition of the microorganisms assayed. The use of antifungal LAB with excellent technological properties rather than chemical preservatives would enable the food industry to produce organic food without addition of chemical substances. PMID:24031582

  20. Agents that increase phosphatidic acid inhibit the LH-induced testosterone production

    Lauritzen, L.; Nielsen, L.-L.A.; Vinggaard, Anne Marie;

    1994-01-01

    for cytochrome P-450 side chain cleavage enzyme. Thus, the inhibition appears to be exerted at a point distal to cAMP-generation but before the first enzyme in the testosterone synthetic pathway. Treatment with other agents (4ß-phorbol 12-myristate 13-acetate (PMA), A23187, and sphingosine) giving rise......The results of the present study point to phosphatidic acid (PtdOH) as a possible intracellular messenger, which might be involved in local modulation of testicular testosterone production in vivo. Propranolol (27-266 µM) induced an increased level of [H]PtdOH in isolated rat Leydig cells......, prelabeled with [H]myristate, and at the same time a strong dose-dependent inhibition of the acute testosterone production stimulated by luteinizing hormone (LH). The inhibition was not bypassed by the addition of dibutyryl-cAMP but was overcome, when 22(R)-hydroxycholesterol was added as a direct substrate...

  1. The inhibition of anti-DNA binding to DNA by nucleic acid binding polymers.

    Nancy A Stearns

    Full Text Available Antibodies to DNA (anti-DNA are the serological hallmark of systemic lupus erythematosus (SLE and can mediate disease pathogenesis by the formation of immune complexes. Since blocking immune complex formation can attenuate disease manifestations, the effects of nucleic acid binding polymers (NABPs on anti-DNA binding in vitro were investigated. The compounds tested included polyamidoamine dendrimer, 1,4-diaminobutane core, generation 3.0 (PAMAM-G3, hexadimethrine bromide, and a β-cylodextrin-containing polycation. As shown with plasma from patients with SLE, NABPs can inhibit anti-DNA antibody binding in ELISA assays. The inhibition was specific since the NABPs did not affect binding to tetanus toxoid or the Sm protein, another lupus autoantigen. Furthermore, the polymers could displace antibody from preformed complexes. Together, these results indicate that NABPs can inhibit the formation of immune complexes and may represent a new approach to treatment.

  2. Strategies for recovering inhibition caused by long chain fatty acids on anaerobic thermophilic biogas reactors

    Palatsi, J.; Laureni, M.; Andres, M.V.;

    2009-01-01

    Long chain fatty acids (LCFA) concentrations over 1.0 g L1 were inhibiting manure thermophilic digestion, in batch and semi-continuous experiments, resulting in a temporary cease of the biogas production. The aim of the work was to test and evaluate several recovery actions, such as reactor feeding...... patterns, dilution and addition of adsorbents, in order to determine the most appropriate strategy for fast recovery of the reactor activity in manure based plants inhibited by LCFA. Dilution with active inoculum for increasing the biomass/LCFA ratio, or addition of adsorbents for adsorbing the LCFA...... and reducing the bioavailable LCFA concentration, were found to be the best recovery strategies, improving the recovery time from 10 to 2 days, in semi-continuously fed systems. Moreover, acclimatization was introduced by repeated inhibition and process recovery. The subsequent exposure of the anaerobic...

  3. Locked nucleic acid inhibits amplification of contaminating DNA in real-time PCR

    Hummelshoj, Lone; Ryder, Lars P; Madsen, Hans O;

    2005-01-01

    both PCR and real-time PCR, the addition of LNA showed blocking of the amplification of genomic XBP1 but not cDNA XBP1. To test the effect of melting temperature (Tm) on the LNA, we investigated the number of LNA nucleotides that could be replaced with DNA nucleotides and still retain the blocking......Locked nucleic acid (LNA) is a modified DNA with increased binding affinityfor complementary DNA sequences. Our strategy was to use this property of LNA to inhibit undesired PCR amplification (e.g.,from contaminating genomic DNA) in a cDNA-based assay. By placing a short complementary LNA sequence...... activity. More than three DNA nucleotides reduced the LNA inhibition ability. The sequence specificity of the LNA was tested by investigating the number of LNA nucleotide mismatches permitted. The introduction of one mismatch maintained the inhibition of genomic amplification whereas two mismatches reduced...

  4. Inhibition of mycotoxin-producing Aspergillus nomius vsc 23 by lactic acid bacteria and Saccharomyces cerevisiae

    Muñoz, R; Arena, M.E.; Silva, J.; S.N. González

    2010-01-01

    The effect of different fermenting microorganisms on growth of a mycotoxin- producing Aspergillus nomius was assayed. Two lactic acid bacteria, Lactobacillus fermentum and Lactobacillus rhamnosus, and Saccharomyces cerevisiae, all of which are widely used in fermentation and preservation of food, were assayed on their fungus inhibitory properties. Assays were carried out by simultaneous inoculation of one of the possible inhibiting microorganisms and the fungus or subsequent inoculation of on...

  5. Inhibited insulin signaling in mouse hepatocytes is associated with increased phosphatidic acid but not diacylglycerol

    Zhang, Chongben; Hwarng, Gwen; Cooper, Daniel E; Grevengoed, Trisha J; Eaton, James M; Natarajan, Viswanathan; Harris, Thurl E; Coleman, Rosalind A

    2015-01-01

    cause insulin resistance in liver by activating PKCϵ, and phosphatidic acid (PA), which inhibits insulin action in hepatocytes by disrupting the assembly of mTOR and rictor. To determine whether increases in DAG and PA impair insulin signaling when produced by pathways other than that of de novo...... itself was unaltered. These data suggest that PA, but not DAG, is associated with impaired insulin action in mouse hepatocytes....

  6. Corrosion Inhibition and Adsorption Behavior of Clove Oil on Iron in Acidic Medium

    Saxena, Archana; Sharma, Anurag; Saxena, Deepti; Jain, Praveen

    2012-01-01

    Corrosion behavior of iron in hydrochloric acid solution was studied using weight loss as well Scanning electron microscopy study without and with clove oil. The percentage inhibition efficiency increases with increasing clove oil concentration. All the data revel that the oil acts as an excellent inhibitor for the corrosion of iron in HCl solution. Thermodynamic, kinetic parameters and equilibrium constant for adsorption process were calculated from the experimental data. The adsorption of c...

  7. Anacardic Acid Inhibits the Catalytic Activity of Matrix Metalloproteinase-2 and Matrix Metalloproteinase-9

    Omanakuttan, Athira; Nambiar, Jyotsna; Harris, Rodney M.; Bose, Chinchu; Pandurangan, Nanjan; Varghese, Rebu K.; Kumar, Geetha B.; Tainer, John A; Banerji, Asoke; Perry, J. Jefferson P.; Nair, Bipin G

    2012-01-01

    Cashew nut shell liquid (CNSL) has been used in traditional medicine for the treatment of a wide variety of pathophysiological conditions. To further define the mechanism of CNSL action, we investigated the effect of cashew nut shell extract (CNSE) on two matrix metalloproteinases, MMP-2/gelatinase A and MMP-9/gelatinase B, which are known to have critical roles in several disease states. We observed that the major constituent of CNSE, anacardic acid, markedly inhibited the gelatinase activit...

  8. Synthesis and Corrosion Inhibition Study of Benzothiazepine Derivatives on Mild Steel In Acid Medium

    T. Sasikala; Parameswari, K.; Chitra, S

    2016-01-01

    2-ethoxy-4-(4-phenyl-2, 3-dihydro-1, 5-benzothiazepin-2-yl) phenol (EPBTZ) and 2-(4-methoxyphenyl)-4-phenyl-2, 3-dihydro-1, 5-benzothiazepine (MPPBTZ) were synthesized by the condensation reaction between o-aminothiophenol and chalcone. The synthesized benzothiazepines were characterized by FTIR spectra. Their corrosion inhibition property on mild steel in sulphuric acid medium was investigated by weight loss and electrochemical techniques. Scanning electron microscopic studies were employed ...

  9. Inhibition of fatty acid metabolism ameliorates disease activity in an animal model of multiple sclerosis

    Shriver, Leah P.; Manchester, Marianne

    2011-01-01

    Multiple sclerosis is an inflammatory demyelinating disease of the central nervous system and a leading cause of neurological disability. The complex immunopathology and variable disease course of multiple sclerosis have limited effective treatment of all patients. Altering the metabolism of immune cells may be an attractive strategy to modify their function during autoimmunity. We examined the effect of inhibiting fatty acid metabolism in experimental autoimmune encephalomyelitis (EAE), a mo...

  10. Complete inhibition of food-stimulated gastric acid secretion by combined application of pirenzepine and ranitidine.

    Londong, W; Londong, V.; Ruthe, C; Weizert, P

    1981-01-01

    In a double-blind, placebo controlled and randomised secretory study the effectiveness of pirenzepine, ranitidine, and their combination was compared intraindividually in eight healthy subjects receiving intravenous bolus injections. Pirenzepine (0.15 mg/kg) plus ranitidine (0.6 mg/kg) suppressed peptone-stimulated gastric acid secretion from 69 +/- 11 to 2 +/- 0.4 mmol H+/3 h; the mean percentage inhibition was 97%. Postprandial gastrin was unaffected. There were only minor side-effects in a...

  11. Mechanical and acid neutralizing properties and bacteria inhibition of amorphous calcium phosphate dental nanocomposite

    Moreau, Jennifer L.; Sun, Limin; Chow, Laurence C.; Xu, Hockin H. K.

    2011-01-01

    Dental composites do not hinder bacteria colonization and plaque formation. Caries at the restoration margins is a frequent reason for replacement of existing restorations, which accounts for 50 to 70% of all restorations. The objectives of this study were to examine the filler level effect on nanocomposite containing nanoparticles of amorphous calcium phosphate (NACP) and investigate the load-bearing and acid-neutralizing properties and bacteria inhibition. NACP with 116-nm particle size wer...

  12. Inhibition of tumor-stromal interaction through HGF/Met signaling by valproic acid

    Hepatocyte growth factor (HGF), which is produced by surrounding stromal cells, including fibroblasts and endothelial cells, has been shown to be a significant factor responsible for cancer cell invasion mediated by tumor-stromal interactions. We found in this study that the anti-tumor agent valproic acid (VPA), a histone deacetylase (HDAC) inhibitor, strongly inhibited tumor-stromal interaction. VPA inhibited HGF production in fibroblasts induced by epidermal growth factor (EGF), platelet-derived growth factor, basic fibroblast growth factor, phorbol 12-myristate 13-acetate (PMA) and prostaglandin E2 without any appreciable cytotoxic effect. Other HDAC inhibitors, including butyric acid and trichostatin A (TSA), showed similar inhibitory effects on HGF production stimulated by various inducers. Up-regulations of HGF gene expression induced by PMA and EGF were also suppressed by VPA and TSA. Furthermore, VPA significantly inhibited HGF-induced invasion of HepG2 hepatocellular carcinoma cells. VPA, however, did not affect the increases in phosphorylation of MAPK and Akt in HGF-treated HepG2 cells. These results demonstrated that VPA inhibited two critical processes of tumor-stromal interaction, induction of fibroblastic HGF production and HGF-induced invasion of HepG2 cells, and suggest that those activities serve for other anti-tumor mechanisms of VPA besides causing proliferation arrest, differentiation, and/or apoptosis of tumor cells

  13. Metabolism of arachidonic acid in hamster lung microsomes is not completely inhibited by aspirin and indomethacin

    Uotila, P.; Paajanen, H.; Schalin, M.; Simberg, N.

    1983-10-01

    Aspirin (100 microM or 1 mM) or indomethacin (10 microM or 100 microM) was incubated with a microsomal preparation of hamster lungs in the presence of NADPH for 10 min. Then 14C-arachidonic acid (20 microM) was added and the incubation was continued for an additional 20 min. The metabolites were extracted with ethyl acetate first at pH 7.4 and then at pH 3.5 and analysed by thin layer chromatography. Both aspirin and indomethacin inhibited dose dependently the formation of all identified prostaglandins, including PGF2 alpha, 6-keto-PGF1 alpha, PGE2 and PGD2. The rate of formation of some unidentified metabolites extracted at pH 7.4 and 3.5 was, however, not changed by aspirin or indomethacin. We have earlier reported that in isolated perfused hamster lungs the formation of all arachidonate metabolites is inhibited by both aspirin and indomethacin. As the present study indicates that in the microsomes of hamster lungs all metabolic pathways of arachidonic acid are not inhibited by aspirin or indomethacin, it is possible that in isolated tissues and in vivo aspirin-like drugs have some other inhibitory effects on arachidonate metabolism than the inhibition of the cyclo-oxygenase enzyme.

  14. Amino acid residues of heparin cofactor II required for stimulation of thrombin inhibition by sulphated polyanions.

    Colwell, N S; Grupe, M J; Tollefsen, D M

    1999-04-12

    A variety of sulphated polyanions in addition to heparin and dermatan sulphate stimulate the inhibition of thrombin by heparin cofactor II (HCII). Previous investigations indicated that the binding sites on HCII for heparin and dermatan sulphate overlap but are not identical. In this study we determined the concentrations (IC50) of various polyanions required to stimulate thrombin inhibition by native recombinant HCII in comparison with three recombinant HCII variants having decreased affinity for heparin (Lys-173-->Gln), dermatan sulphate (Arg-189-->His), or both heparin and dermatan sulphate (Lys-185-->Asn). Pentosan polysulphate, sulphated bis-lactobionic acid amide, and sulphated bis-maltobionic acid amide resembled dermatan sulphate, since their IC50 values were increased to a much greater degree (>/=8-fold) by the mutations Arg-189-->His and Lys-185-->Asn than by Lys-173-->Gln (Gln and Lys-185-->Asn (>/=6-fold) than by Arg-189-->His (inhibition of thrombin by an N-terminal deletion mutant of HCII (Delta1-74). These results suggest that, like dermatan sulphate and heparin, other polyanions stimulate HCII primarily by an allosteric mechanism requiring the N-terminal acidic domain. PMID:10209287

  15. Inhibition of gastric acid secretion by the aqueous extract and purified extracts of Stachytarpheta cayennensis.

    Vela, S M; Souccar, C; Lima-Landman, M T; Lapa, A J

    1997-02-01

    Stachytarpheta cayennensis Schauer (Verbenaceae) is used in folk medicine to treat gastric and intestinal disturbances. The freeze-dried aqueous extract of the whole plant tested to rodents up to the dose of 2 g kg-1, p.o., did not produce signs of toxicity. The extract (0.5-2 g kg-1, p.o.) increased the intestinal motility and protected mice against ulcers induced by restraintin-cold, ethanol or indomethacin. Injected into the duodenal lumen the extract inhibited the basal acid secretion as well as that induced by histamine and bethanecol in pylorus-ligated mice. Partition of the aqueous extract in organic solvents yielded semipurified fractions whose antiacid activity guided further chemical purification. All the fractions were chromatographically characterized, the main substances in the active extract being flavonoids and amines; some substances were revealed only under UV light. The most purified active fraction obtained presented a specific activity 5-10 times higher than that detected in the original extract. Data from pharmacological studies indicate that the antiulcer activity of S. cayennensis is related to a specific inhibition of gastric acid secretion. Cholinergic and histaminergic stimulation of acid secretion were similarly reduced by the extracts suggesting inhibition of common steps in both pathways, possibly at the level of histamine release/H2 receptor interaction, or at the proton pump. Whatever the mechanisms involved, the present data confirm the plant effectiveness as antiacid/antiulcer and laxative. PMID:9063095

  16. Immobilization of Tyrosinase from Avocado Crude Extract in Polypyrrole Films for Inhibitive Detection of Benzoic Acid

    André Brisolari

    2014-07-01

    Full Text Available Inhibition-based biosensors were developed by immobilizing tyrosinase (Tyr, polyphenol oxidase from the crude extract of avocado fruit on electrochemically prepared polypyrrole (PPy films. The biosensors were prepared during the electropolymerization of pyrrole in a solution containing a fixed volume of the crude extract of avocado. The dependence of the biosensor responses on the volume used from the crude extract, values of pH and temperature was studied, and a substrate, catechol, at different concentrations, was amperometrically detected by these biosensors. Benzoic acid, a competitive inhibitor of Try, was added to the catechol solutions at specific concentrations aimed at obtaining the inhibition constant, K’m, which ranged from 1.7 to 4.6 mmol∙L−1 for 0.0 and 60 µmol∙L−1 of benzoic acid, respectively. Studies on the inhibition caused by benzoic acid by using PPy/Try films, and catechol as a substrate, allowed us propose how to develop, under optimized conditions, simple and low-cost biosensors based on the use of avocado fruit.

  17. Inhibition of arachidonic acid metabolism and its implication on cell proliferation and tumour-angiogenesis.

    Hyde, C A C; Missailidis, S

    2009-06-01

    Arachidonic acid (AA) and its metabolites have recently generated a heightened interest due to growing evidence of their significant role in cancer biology. Thus, inhibitors of the AA cascade, first and foremost COX inhibitors, which have originally been of interest in the treatment of inflammatory conditions and certain types of cardiovascular disease, are now attracting attention as an arsenal against cancer. An increasing number of investigations support their role in cancer chemoprevention, although the precise molecular mechanisms that link levels of AA, and its metabolites, with cancer progression have still to be elucidated. This article provides an overview of the AA cascade and focuses on the roles of its inhibitors and their implication in cancer treatment. In particular, emphasis is placed on the inhibition of cell proliferation and neo-angiogenesis through inhibition of the enzymes COX-2, 5-LOX and CYP450. Downstream effects of inhibition of AA metabolites are analysed and the molecular mechanisms of action of a selected number of inhibitors of catalytic pathways reviewed. Lastly, the benefits of dietary omega-3 fatty acids and their mechanisms of action leading to reduced cancer risk and impeded cancer cell growth are mentioned. Finally, a proposal is put forward, suggesting a novel and integrated approach in viewing the molecular mechanisms and complex interactions responsible for the involvement of AA metabolites in carcinogenesis and the protective effects of omega-3 fatty acids in inflammation and tumour prevention. PMID:19239926

  18. Okadaic acid inhibits cell growth and photosynthetic electron transport in the alga Dunaliella tertiolecta

    Okadaic acid (OA), which is produced by several dinoflagellate species, is a phycotoxin known to induce a decrease of biomass production in phytoplankton. However, the mechanisms of OA cytotoxicity are still unknown in microalgae. In this study, we exposed the green microalga Dunaliella tertiolecta to OA concentrations of 0.05 to 0.5 μM in order to evaluate its effects on cell division, reactive oxygen species production and photosynthetic electron transport. After 72 h of treatment under continuous illumination, OA concentrations higher than 0.10 μM decreased culture cell density, induced oxidative stress and inhibited photosystem II electron transport capacity. OA effect in D. tertiolecta was strongly light dependent since no oxidative stress was observed when D. tertiolecta was exposed to OA in the dark. In the absence of light, the effect of OA on culture cell density and photosystem II activity was also significantly reduced. Therefore, light appears to have a significant role in the toxicity of OA in microalgae. Our results indicate that the site of OA interaction on photosynthetic electron transport is likely to be at the level of the plastoquinone pool, which can lead to photo-oxidative stress when light absorbed by the light-harvesting complex of photosystem II cannot be dissipated via photochemical pathways. These findings allowed for a better understanding of the mechanisms of OA toxicity in microalgae. - Highlights: ► Exposition of Dunaliella tertiolecta to okadaic acid in light conditions results in reactive oxygen species formation. ► Inhibition of photosystem II is dependent on oxidative stress and effects of okadaic acid on the plastoquinone pool. ► Oxidative stress and inhibition of photosynthesis increase okadaic acid effect on cell density in light conditions. ► Okadaic acid induces toxicity in algae via both light-dependent and light-independent mechanisms.

  19. Okadaic acid inhibits cell growth and photosynthetic electron transport in the alga Dunaliella tertiolecta

    Perreault, Francois; Matias, Marcelo Seleme; Oukarroum, Abdallah [Department of Chemistry, Universite du Quebec a Montreal, 2101, Rue Jeanne Mance, Montreal, QC, Canada H2X 2J6 (Canada); Matias, William Gerson [Department of Chemistry, Universite du Quebec a Montreal, 2101, Rue Jeanne Mance, Montreal, QC, Canada H2X 2J6 (Canada); Laboratorio de Toxicologia Ambiental, LABTOX, Depto. de Engenharia Sanitaria e Ambiental, Universidade Federal de Santa Catarina, Campus Universitario, CEP: 88040-970, Florianopolis, SC (Brazil); Popovic, Radovan, E-mail: popovic.radovan@uqam.ca [Department of Chemistry, Universite du Quebec a Montreal, 2101, Rue Jeanne Mance, Montreal, QC, Canada H2X 2J6 (Canada)

    2012-01-01

    Okadaic acid (OA), which is produced by several dinoflagellate species, is a phycotoxin known to induce a decrease of biomass production in phytoplankton. However, the mechanisms of OA cytotoxicity are still unknown in microalgae. In this study, we exposed the green microalga Dunaliella tertiolecta to OA concentrations of 0.05 to 0.5 {mu}M in order to evaluate its effects on cell division, reactive oxygen species production and photosynthetic electron transport. After 72 h of treatment under continuous illumination, OA concentrations higher than 0.10 {mu}M decreased culture cell density, induced oxidative stress and inhibited photosystem II electron transport capacity. OA effect in D. tertiolecta was strongly light dependent since no oxidative stress was observed when D. tertiolecta was exposed to OA in the dark. In the absence of light, the effect of OA on culture cell density and photosystem II activity was also significantly reduced. Therefore, light appears to have a significant role in the toxicity of OA in microalgae. Our results indicate that the site of OA interaction on photosynthetic electron transport is likely to be at the level of the plastoquinone pool, which can lead to photo-oxidative stress when light absorbed by the light-harvesting complex of photosystem II cannot be dissipated via photochemical pathways. These findings allowed for a better understanding of the mechanisms of OA toxicity in microalgae. - Highlights: Black-Right-Pointing-Pointer Exposition of Dunaliella tertiolecta to okadaic acid in light conditions results in reactive oxygen species formation. Black-Right-Pointing-Pointer Inhibition of photosystem II is dependent on oxidative stress and effects of okadaic acid on the plastoquinone pool. Black-Right-Pointing-Pointer Oxidative stress and inhibition of photosynthesis increase okadaic acid effect on cell density in light conditions. Black-Right-Pointing-Pointer Okadaic acid induces toxicity in algae via both light-dependent and light

  20. Inhibition Behaviour of Some Isonicotinic Acid Hydrazides on the Corrosion of Mild Steel in Hydrochloric Acid Solution

    M. P. Chakravarthy

    2013-01-01

    Full Text Available New corrosion inhibitors, namely, isonicotinic acid (1H-indol-3-yl-methylenehydrazide (INIMH and isonicotinic acid (1H-pyrrol-2-yl-methylenehydrazide (INPMH, have been synthesized, and their inhibitive characteristics for the corrosion of mild steel in 0.5 M HCl were investigated by mass loss and electrochemical techniques. The structures of the synthesized compounds were confirmed using spectral studies. Potentiodynamic polarization studies revealed that the investigated inhibitors are of mixed type. Various thermodynamic parameters were evaluated. Langmuir adsorption isotherm was found to be the best description for both inhibitors. FTIR spectra, energy dispersive X-ray spectroscopy (EDX, and scanning electron microscopy (SEM were performed to characterize the passive film on the metal surface.

  1. Alpha-lipoic acid protects cardiomyocytes against hypoxia/reoxygenation injury by inhibiting autophagy

    Highlights: •We observed the cell viability and death subjected to H/R in H9c2 cardiomyocytes. •We observed the degree of autophagy subjected to H/R in H9c2 cardiomyocytes. •LA inhibited the degree of autophagy in parallel to the enhanced cell survival. •LA inhibited the autophagy in parallel to the decreased total cell death. •We concluded that LA protected cardiomyocytes against H/R by inhibiting autophagy. -- Abstract: Hypoxia/reoxygenation (H/R) is an important in vitro model for exploring the molecular mechanisms and functions of autophagy during myocardial ischemia/reperfusion (I/R). Alpha-lipoic acid (LA) plays an important role in the etiology of cardiovascular disease. Autophagy is widely implicated in myocardial I/R injury. We assessed the degree of autophagy by pretreatment with LA exposed to H/R in H9c2 cell based on the expression levels of Beclin-1, LC3II/LC3I, and green fluorescent protein-labeled LC3 fusion proteins. Autophagic vacuoles were confirmed in H9c2 cells exposed to H/R using transmission electron microscopy. Our findings indicated that pretreatment with LA inhibited the degree of autophagy in parallel to the enhanced cell survival and decreased total cell death in H9c2 cells exposed to H/R. We conclude that LA protects cardiomyocytes against H/R injury by inhibiting autophagy

  2. Alpha-lipoic acid protects cardiomyocytes against hypoxia/reoxygenation injury by inhibiting autophagy

    Cao, Xueming; Chen, Aihua, E-mail: aihuachen2012@sina.com; Yang, Pingzhen; Song, Xudong; Liu, Yingfeng; Li, Zhiliang; Wang, Xianbao; Wang, Lizi; Li, Yunpeng

    2013-11-29

    Highlights: •We observed the cell viability and death subjected to H/R in H9c2 cardiomyocytes. •We observed the degree of autophagy subjected to H/R in H9c2 cardiomyocytes. •LA inhibited the degree of autophagy in parallel to the enhanced cell survival. •LA inhibited the autophagy in parallel to the decreased total cell death. •We concluded that LA protected cardiomyocytes against H/R by inhibiting autophagy. -- Abstract: Hypoxia/reoxygenation (H/R) is an important in vitro model for exploring the molecular mechanisms and functions of autophagy during myocardial ischemia/reperfusion (I/R). Alpha-lipoic acid (LA) plays an important role in the etiology of cardiovascular disease. Autophagy is widely implicated in myocardial I/R injury. We assessed the degree of autophagy by pretreatment with LA exposed to H/R in H9c2 cell based on the expression levels of Beclin-1, LC3II/LC3I, and green fluorescent protein-labeled LC3 fusion proteins. Autophagic vacuoles were confirmed in H9c2 cells exposed to H/R using transmission electron microscopy. Our findings indicated that pretreatment with LA inhibited the degree of autophagy in parallel to the enhanced cell survival and decreased total cell death in H9c2 cells exposed to H/R. We conclude that LA protects cardiomyocytes against H/R injury by inhibiting autophagy.

  3. Thiacetazone, an antitubercular drug that inhibits cyclopropanation of cell wall mycolic acids in mycobacteria.

    Anuradha Alahari

    Full Text Available BACKGROUND: Mycolic acids are a complex mixture of branched, long-chain fatty acids, representing key components of the highly hydrophobic mycobacterial cell wall. Pathogenic mycobacteria carry mycolic acid sub-types that contain cyclopropane rings. Double bonds at specific sites on mycolic acid precursors are modified by the action of cyclopropane mycolic acid synthases (CMASs. The latter belong to a family of S-adenosyl-methionine-dependent methyl transferases, of which several have been well studied in Mycobacterium tuberculosis, namely, MmaA1 through A4, PcaA and CmaA2. Cyclopropanated mycolic acids are key factors participating in cell envelope permeability, host immunomodulation and persistence of M. tuberculosis. While several antitubercular agents inhibit mycolic acid synthesis, to date, the CMASs have not been shown to be drug targets. METHODOLOGY/PRINCIPLE FINDINGS: We have employed various complementary approaches to show that the antitubercular drug, thiacetazone (TAC, and its chemical analogues, inhibit mycolic acid cyclopropanation. Dramatic changes in the content and ratio of mycolic acids in the vaccine strain Mycobacterium bovis BCG, as well as in the related pathogenic species Mycobacterium marinum were observed after treatment with the drugs. Combination of thin layer chromatography, mass spectrometry and Nuclear Magnetic Resonance (NMR analyses of mycolic acids purified from drug-treated mycobacteria showed a significant loss of cyclopropanation in both the alpha- and oxygenated mycolate sub-types. Additionally, High-Resolution Magic Angle Spinning (HR-MAS NMR analyses on whole cells was used to detect cell wall-associated mycolates and to quantify the cyclopropanation status of the cell envelope. Further, overexpression of cmaA2, mmaA2 or pcaA in mycobacteria partially reversed the effects of TAC and its analogue on mycolic acid cyclopropanation, suggesting that the drugs act directly on CMASs. CONCLUSIONS/SIGNIFICANCE: This

  4. Carnosic acid inhibits the epithelial-mesenchymal transition in B16F10 melanoma cells: a possible mechanism for the inhibition of cell migration.

    Park, So Young; Song, Hyerim; Sung, Mi-Kyung; Kang, Young-Hee; Lee, Ki Won; Park, Jung Han Yoon

    2014-01-01

    Carnosic acid is a natural benzenediol abietane diterpene found in rosemary and exhibits anti-inflammatory, antioxidant, and anti-carcinogenic activities. In this study, we evaluated the effects of carnosic acid on the metastatic characteristics of B16F10 melanoma cells. When B16F10 cells were cultured in an in vitro Transwell system, carnosic acid inhibited cell migration in a dose-dependent manner. Carnosic acid suppressed the adhesion of B16F10 cells, as well as the secretion of matrix metalloproteinase (MMP)-9, tissue inhibitor of metalloproteinase (TIMP)-1, urokinase plasminogen activator (uPA), and vascular cell adhesion molecule (VCAM)-1. Interestingly, secretion of TIMP-2 increased significantly in B16F10 cells treated with 10 μmol/L carnosic acid. Additionally, carnosic acid suppressed the mesenchymal markers snail, slug, vimentin, and N-cadherin and induced epithelial marker E-cadherin. Furthermore, carnosic acid suppressed phosphorylation of Src, FAK, and AKT. These results indicate that inhibition of the epithelial-mesenchymal transition may be important for the carnosic acid-induced inhibition of B16F10 cell migration. PMID:25036034

  5. Utility of bilirubins and bile acids as endogenous biomarkers for the inhibition of hepatic transporters.

    Watanabe, Tomoko; Miyake, Manami; Shimizu, Toshinobu; Kamezawa, Miho; Masutomi, Naoya; Shimura, Takesada; Ohashi, Rikiya

    2015-04-01

    It is useful to identify endogenous substrates for the evaluation of drug-drug interactions via transporters. In this study, we investigated the utility of bilirubins, substrates of OATPs and MRP2, and bile acids and substrates of NTCP and BSEP, as biomarkers for the inhibition of transporters. In rats administered 20 and 80 mg/kg rifampicin, the plasma levels of bilirubin glucuronides were elevated, gradually decreased, and almost returned to the baseline level at 24 hours after administration without an elevation of alanine aminotransferase (ALT) and aspartate aminotransferase (AST). This result indicates the transient inhibition of rOatps and/or rMrp2. Although the correlation between free plasma concentrations and IC50 values of rOatps depended on the substrates used in the in vitro studies, the inhibition of rOatps by rifampicin was confirmed in the in vivo study using valsartan as a substrate of rOatps. In rats administered 10 and 30 mg/kg cyclosporin A, the plasma levels of bile acids were elevated and persisted for up to 24 hours after administration without an elevation of ALT and AST. This result indicates the continuous inhibition of rNtcp and/or rBsep, although there were differences between the free plasma or liver concentrations and IC50 values of rNtcp or rBsep, respectively. This study suggests that the monitoring of bilirubins and bile acids in plasma is useful in evaluating the inhibitory potential of their corresponding transporters. PMID:25581390

  6. C. butyricum lipoteichoic acid inhibits the inflammatory response and apoptosis in HT-29 cells induced by S. aureus lipoteichoic acid.

    Wang, Jinbo; Qi, Lili; Mei, Lehe; Wu, Zhige; Wang, Hengzheng

    2016-07-01

    Lipoteichoic acid (LTA) is one of microbe-associated molecular pattern (MAMP) molecules of gram-positive bacteria. In this study, we demonstrated that Clostridium butyricum LTA (bLTA) significantly inhibited the inflammatory response and apoptosis induced by Staphylococcus aureus LTA (aLTA) in HT-29 cells. aLTA stimulated the inflammatory responses by activating a strong signal transduction cascade through NF-κB and ERK, but bLTA did not activate the signaling pathway. bLTA pretreatment inhibited the activation of the NF-κB and ERK signaling pathway induced by aLTA. The expression and release of cytokines such as IL-8 and TNF-α were also suppressed by bLTA pretreatment. aLTA treatment induced apoptosis in HT-29 cells, but bLTA did not affect the viability of the cells. Further study indicated that bLTA inhibited apoptosis in HT-29 cells induced by aLTA. These results suggest that bLTA may act as an aLTA antagonist and that an antagonistic bLTA may be a useful agent for suppressing the pro-inflammatory activities of gram-positive pathogenic bacteria. PMID:27020942

  7. Conjugated Linoleic Acid (CLA) inhibits expression of the Spot 14 (THRSP) and fatty acid synthase genes and impairs the growth of human breast cancer and liposarcoma cells

    Donnelly, Christina; Olsen, Arne M.; Lewis, Lionel D; Eisenberg, Burton L.; Eastman, Alan; Kinlaw, William B

    2009-01-01

    Spot 14 (THRSP, S14) is a nuclear protein involved in the regulation of genes required for fatty acid synthesis in normal and malignant mammary epithelial and adipose cells. Havartine and Bauman reported that conjugated linoleic acid (CLA) inhibits S14 gene expression in bovine mammary and mouse adipose tissues, and reduces milk fat production in cows. We hypothesized that CLA inhibits S14 gene expression in human breast cancer and liposarcoma cells, and that this will retard their growth. Ex...

  8. Capric acid secreted by S. boulardii inhibits C. albicans filamentous growth, adhesion and biofilm formation.

    Anna Murzyn

    Full Text Available Candidiasis are life-threatening systemic fungal diseases, especially of gastro intestinal track, skin and mucous membranes lining various body cavities like the nostrils, the mouth, the lips, the eyelids, the ears or the genital area. Due to increasing resistance of candidiasis to existing drugs, it is very important to look for new strategies helping the treatment of such fungal diseases. One promising strategy is the use of the probiotic microorganisms, which when administered in adequate amounts confer a health benefit. Such a probiotic microorganism is yeast Saccharomyces boulardii, a close relative of baker yeast. Saccharomyces boulardii cells and their extract affect the virulence factors of the important human fungal pathogen C. albicans, its hyphae formation, adhesion and biofilm development. Extract prepared from S. boulardii culture filtrate was fractionated and GC-MS analysis showed that the active fraction contained, apart from 2-phenylethanol, caproic, caprylic and capric acid whose presence was confirmed by ESI-MS analysis. Biological activity was tested on C. albicans using extract and pure identified compounds. Our study demonstrated that this probiotic yeast secretes into the medium active compounds reducing candidal virulence factors. The chief compound inhibiting filamentous C. albicans growth comparably to S. boulardii extract was capric acid, which is thus responsible for inhibition of hyphae formation. It also reduced candidal adhesion and biofilm formation, though three times less than the extract, which thus contains other factors suppressing C. albicans adherence. The expression profile of selected genes associated with C. albicans virulence by real-time PCR showed a reduced expression of HWP1, INO1 and CSH1 genes in C. albicans cells treated with capric acid and S. boulardii extract. Hence capric acid secreted by S. boulardii is responsible for inhibition of C. albicans filamentation and partially also adhesion and

  9. Inhibitive action of some plant extracts on the corrosion of steel in acidic media

    The effect of extracts of Chamomile (Chamaemelum mixtum L.), Halfabar (Cymbopogon proximus), Black cumin (Nigella sativa L.), and Kidney bean (Phaseolus vulgaris L.) plants on the corrosion of steel in aqueous 1 M sulphuric acid were investigated by electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization techniques. EIS measurements showed that the dissolution process of steel occurs under activation control. Potentiodynamic polarization curves indicated that the plant extracts behave as mixed-type inhibitors. The corrosion rates of steel and the inhibition efficiencies of the extracts were calculated. The results obtained show that the extract solution of the plant could serve as an effective inhibitor for the corrosion of steel in sulphuric acid media. Inhibition was found to increase with increasing concentration of the plant extract up to a critical concentration. The inhibitive actions of plant extracts are discussed on the basis of adsorption of stable complex at the steel surface. Theoretical fitting of different isotherms, Langmuir, Flory-Huggins, and the kinetic-thermodynamic model, were tested to clarify the nature of adsorption

  10. Inhibition of Collagenase by Mycosporine-like Amino Acids from Marine Sources.

    Hartmann, Anja; Gostner, Johanna; Fuchs, Julian E; Chaita, Eliza; Aligiannis, Nektarios; Skaltsounis, Leandros; Ganzera, Markus

    2015-07-01

    Matrix metalloproteinases play an important role in extracellular matrix remodeling. Excessive activity of these enzymes can be induced by UV light and leads to skin damage, a process known as photoaging. In this study, we investigated the collagenase inhibition potential of mycosporine-like amino acids, compounds that have been isolated from marine organisms and are known photoprotectants against UV-A and UV-B. For this purpose, the commonly used collagenase assay was optimized and for the first time validated in terms of relationships between enzyme-substrate concentrations, temperature, incubation time, and enzyme stability. Three compounds were isolated from the marine red algae Porphyra sp. and Palmaria palmata, and evaluated for their inhibitory properties against Chlostridium histolyticum collagenase. A dose-dependent, but very moderate, inhibition was observed for all substances and IC50 values of 104.0 µM for shinorine, 105.9 µM for porphyra, and 158.9 µM for palythine were determined. Additionally, computer-aided docking models suggested that the mycosporine-like amino acids binding to the active site of the enzyme is a competitive inhibition. PMID:26039265

  11. K-channels inhibited by hydrogen peroxide mediate abscisic acid signaling in Vicia guard cells

    2001-01-01

    A number of studies show that environmental stress conditions increase abscisic acid (ABA) and hydrogen peroxide (H2O2) levels in plant cells. Despite this central role of ABA in altering stomatal aperture by regulating guard cell ion transport, little is known concerning the relationship between ABA and H2O2 in signal transduction leading to stomatal movement. Epidermal strip bioassay illustrated that ABA-inhibited stomatal opening and ABA-induced stomatal closure were abolished partly by externally added catalase (CAT) or diphenylene iodonium (DPI), which are a H2O2 scavenger and a NADPH oxidase inhibitor respectively. In contrast, internally added CAT or DPI nearly completely or partly reversed ABA-induced closure in half-stoma. Consistent with these results, whole-cell patch-clamp analysis showed that intracellular application of CAT or DPI partly abolished ABA-inhibited inward K+ current across the plasma membrane of guard cells. H2O2 mimicked ABA to inhibit inward K+ current, an effect which was reversed by the addition of ascorbic acid (Vc) in patch clamping micropipettes. These results suggested that H2O2 mediated ABA-induced stomatal movement by targeting inward K+ channels at plasma membrane.

  12. Inhibitive action of some plant extracts on the corrosion of steel in acidic media

    Abdel-Gaber, A.M. [Department of Chemistry, Faculty of Science, Alexandria University, Ibrahimia, P.O. Box 426, Alexandria 21321 (Egypt)]. E-mail: ashrafmoustafa@yahoo.com; Abd-El-Nabey, B.A. [Department of Chemistry, Faculty of Science, Alexandria University, Ibrahimia, P.O. Box 426, Alexandria 21321 (Egypt); Sidahmed, I.M. [Department of Chemistry, Faculty of Science, Alexandria University, Ibrahimia, P.O. Box 426, Alexandria 21321 (Egypt); El-Zayady, A.M. [Department of Chemistry, Faculty of Science, Alexandria University, Ibrahimia, P.O. Box 426, Alexandria 21321 (Egypt); Saadawy, M. [Department of Chemistry, Faculty of Science, Alexandria University, Ibrahimia, P.O. Box 426, Alexandria 21321 (Egypt)

    2006-09-15

    The effect of extracts of Chamomile (Chamaemelum mixtum L.), Halfabar (Cymbopogon proximus), Black cumin (Nigella sativa L.), and Kidney bean (Phaseolus vulgaris L.) plants on the corrosion of steel in aqueous 1 M sulphuric acid were investigated by electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization techniques. EIS measurements showed that the dissolution process of steel occurs under activation control. Potentiodynamic polarization curves indicated that the plant extracts behave as mixed-type inhibitors. The corrosion rates of steel and the inhibition efficiencies of the extracts were calculated. The results obtained show that the extract solution of the plant could serve as an effective inhibitor for the corrosion of steel in sulphuric acid media. Inhibition was found to increase with increasing concentration of the plant extract up to a critical concentration. The inhibitive actions of plant extracts are discussed on the basis of adsorption of stable complex at the steel surface. Theoretical fitting of different isotherms, Langmuir, Flory-Huggins, and the kinetic-thermodynamic model, were tested to clarify the nature of adsorption.

  13. Inhibition of Peptidoglycan, Ribonucleic Acid, and Protein Synthesis in Tolerant Strains of Streptococcus mutans

    Mychajlonka, Myron; McDowell, Thomas D.; Shockman, Gerald D.

    1980-01-01

    Exposure of exponentially growing cultures of Streptococcus mutans strains FA-1 and GS-5 to various concentrations of benzylpenicillin (Pen G) resulted in inhibition of turbidity increases at low concentrations (0.02 to 0.04 μg/ml). However, in contrast to some other streptococcal species, growth inhibition was not accompanied by cellular lysis or by a rapid loss of viability. In both strains, synthesis of insoluble cell wall peptidoglycan was very sensitive to Pen G inhibition and responded in a dose-dependent manner to concentrations of about 0.2 and 0.5 μg/ml for strains GS-5 and FA-1, respectively. Higher Pen G concentrations failed to inhibit further either growth or insoluble peptidoglycan assembly. Somewhat surprisingly, Pen G also inhibited both ribonucleic acid (RNA) and protein syntheses, each in a dose-dependent manner. Compared with inhibition of peptidoglycan synthesis, inhibition of RNA and protein syntheses by Pen G was less rapid and less extensive. Maximum amounts of radiolabeled Pen G were specifically bound to intact cells upon exposure to about 0.2 and 0.5 μg/ml of Pen G for strains GS-5 and FA-1, respectively, concentrations consistent with those that resulted in maximum or near-maximum inhibitions of the synthesis of cellular peptidoglycan, RNA, and protein. Five polypeptide bands that had a very high affinity for [14C]Pen G were detected in a crude cell envelope preparation of strain FA-1. After exposure of cultures of strain FA-1 to the effects of saturating concentrations of the drug for up to 3 h, addition of penicillinase was followed by recovery of growth after a lag. The length of the lag before regrowth depended on both Pen G concentration and time of exposure. On the basis of these and other observations, it is proposed that the secondary inhibitions of cellular RNA or protein synthesis, or both, are involved in the tolerance of these organisms to lysis and killing by Pen G and other inhibitors of insoluble peptidoglycan assembly

  14. Salvianolic Acid B Attenuates Experimental Pulmonary Fibrosis through Inhibition of the TGF-β Signaling Pathway.

    Liu, Qingmei; Chu, Haiyan; Ma, Yanyun; Wu, Ting; Qian, Feng; Ren, Xian; Tu, Wenzhen; Zhou, Xiaodong; Jin, Li; Wu, Wenyu; Wang, Jiucun

    2016-01-01

    Pulmonary fibrosis is a progressive and fatal disorder. In our previous study, we found that the Yiqihuoxue formula (YQHX), a prescription of Traditional Chinese Medicine, had a curative effect on scleroderma, a typical fibrotic disease. The aim of this study was to determine the key ingredient mediating the therapeutic effects of YQHX and to examine its effect on pulmonary fibrosis, including its mechanism. Luciferase reporter assays showed that the most important anti-fibrotic component of the YQHX was Salviae miltiorrhiza (SM). Experiments performed using a bleomycin-instilled mouse model of pulmonary fibrosis showed that Salvianolic acid B (SAB), the major ingredient of SM, had strong anti-inflammatory and anti-fibrotic effects through its inhibition of inflammatory cell infiltration, alveolar structure disruption, and collagen deposition. Furthermore, SAB suppressed TGF-β-induced myofibroblastic differentiation of MRC-5 fibroblasts and TGF-β-mediated epithelial-to-mesenchymal transition of A549 cells by inhibiting both Smad-dependent signaling and the Smad-independent MAPK pathway. Taken together, our results suggest that SM is the key anti-fibrotic component of the YQHX and that SAB, the major ingredient of SM, alleviates experimental pulmonary fibrosis both in vivo and in vitro by inhibiting the TGF-β signaling pathway. Together, these results suggest that SAB potently inhibits pulmonary fibrosis. PMID:27278104

  15. Acid Corrosion Inhibition and Adsorption Behaviour of Ethyl Hydroxyethyl Cellulose on Mild Steel Corrosion

    I. O. Arukalam

    2014-01-01

    Full Text Available The corrosion inhibition of mild steel in 1.0 M H2SO4 solution by ethyl hydroxyethyl cellulose has been studied in relation to the concentration of the additive using weight loss measurement, EIS, polarization, and quantum chemical calculation techniques. The results indicate that EHEC inhibited corrosion reaction in the acid medium and inhibition efficiency increased with EHEC concentration. Further increase in inhibition efficiency is observed in the presence of iodide ions, due to synergistic effect. Impedance results reveal that EHEC is adsorbed on the corroding metal surface. Adsorption followed a modified Langmuir isotherm, with very high negative values of the free energy of adsorption (ΔGads. The polarization data indicate that the inhibitor was of mixed type, with predominant effect on the cathodic partial reaction. The frontier molecular orbitals, HOMO (the highest occupied molecular orbital and LUMO (the lowest unoccupied molecular orbital as well as local reactivity of the EHEC molecule, were analyzed theoretically using the density functional theory to explain the adsorption characteristics at a molecular level. The theoretical predictions showed good agreement with experimental results.

  16. Ursolic Acid Inhibits the Proliferation of Gastric Cancer Cells by Targeting miR-133a.

    Xiang, Fenfen; Pan, Chunying; Kong, Qianqian; Wu, Rong; Jiang, Jiemin; Zhan, Yueping; Xu, Jian; Gu, Xingang; Kang, Xiangdong

    2014-01-01

    Ursolic acid (UA), a potential chemotherapeutic agent, has the properties of inhibition of the growth of many human cancer cell lines. Whether UA can inhibit the growth and metastasis of human gastric cancer cells remains unknown. In this study, it was found that UA inhibited the growth and metastasis of human gastric cancer cells in vitro. Our results showed the increase of the percent of apoptotic cells and G1 phase, the inhibition of cell migrations well as the decrease of the expression of Bax, caspase 3 and Bcl-2 in BGC-823 cells after the treatment with UA. Real-time quantitative PCR analysis showed that UA treatment upregulated the level of miR-133a in BGC-823 cells. Overexpression of miR-133a increased the G1 phase of cell cycle and decreased Akt1 expression in BGC-823 cells. These outcomes might be secondary to the increased expression of miR-133a after the treatment with UA. PMID:26629938

  17. Dual effects of acetylsalicylic acid on ERK signaling and Mitf transcription lead to inhibition of melanogenesis.

    Nishio, Takashi; Usami, Mai; Awaji, Mizuki; Shinohara, Sumire; Sato, Kazuomi

    2016-01-01

    Acetylsalicylic acid (ASA) is widely used as an analgesic/antipyretic drug. It exhibits a wide range of biological effects, including preventative effects against heart attack and stroke, and the induction of apoptosis in various cancer cells. We previously found that ASA inhibits melanogenesis in B16 melanoma cells. However, the mechanisms of how ASA down-regulates melanin synthesis remain unclear. Here, we investigated the effect of ASA on melanogenic pathways, such as extracellular signal-regulated kinase (ERK) and microphthalmia-associated transcription factor (Mitf) transcription. ASA significantly inhibited melanin synthesis in a dose-dependent manner without oxidative stress and cell death. Semi-quantitative reverse transcription-polymerase chain reaction analysis showed that the inhibitory effect of ASA might be due to the inhibition of Mitf gene transcription. Interestingly, ASA also induced ERK phosphorylation. Additionally, treatment with PD98059, a specific ERK phosphorylation inhibitor, abolished the anti-melanogenic effect of ASA. These results suggest that the depigmenting effect of ASA results from down-regulation of Mitf, which is induced by both the induction of ERK phosphorylation and the inhibition of Mitf transcription. PMID:26699907

  18. Aminomethylphosphonic acid inhibits growth and metastasis of human prostate cancer in an orthotopic xenograft mouse model

    Parajuli, Keshab Raj; Zhang, Qiuyang; Liu, Sen; You, Zongbing

    2016-01-01

    Aminomethylphosphonic acid (AMPA) has been shown to inhibit prostate cancer cell growth in vitro. The purpose of the present study was to determine if AMPA could inhibit growth and metastasis of prostate cancer in vivo. Human prostate cancer PC-3-LacZ-luciferase cells were implanted into the ventral lateral lobes of the prostate in 39 athymic Nu/Nu nude male mice. Seven days later, mice were randomized into the control group (n = 14, treated intraperitoneally with phosphate buffered saline), low dose group (n = 10, treated intraperitoneally with AMPA at 400 mg/kg body weight/day), and high dose group (n = 15, treated intraperitoneally with AMPA at 800 mg/kg body weight/day). Tumor growth and metastasis were examined every 4-7 days by bioluminescence imaging of live mice. We found that AMPA treatment significantly inhibited growth and metastasis of orthotopic xenograft prostate tumors and prolonged the survival time of the mice. AMPA treatment decreased expression of BIRC2 and activated caspase 3, leading to increased apoptosis in the prostate tumors. AMPA treatment decreased expression of cyclin D1. AMPA treatment also reduced angiogenesis in the prostate tumors. Taken together, these results demonstrate that AMPA can inhibit prostate cancer growth and metastasis, suggesting that AMPA may be developed into a therapeutic agent for the treatment of prostate cancer. PMID:26840261

  19. Salvianolic Acid B Attenuates Experimental Pulmonary Fibrosis through Inhibition of the TGF-β Signaling Pathway

    Liu, Qingmei; Chu, Haiyan; Ma, Yanyun; Wu, Ting; Qian, Feng; Ren, Xian; Tu, Wenzhen; Zhou, Xiaodong; Jin, Li; Wu, Wenyu; Wang, Jiucun

    2016-01-01

    Pulmonary fibrosis is a progressive and fatal disorder. In our previous study, we found that the Yiqihuoxue formula (YQHX), a prescription of Traditional Chinese Medicine, had a curative effect on scleroderma, a typical fibrotic disease. The aim of this study was to determine the key ingredient mediating the therapeutic effects of YQHX and to examine its effect on pulmonary fibrosis, including its mechanism. Luciferase reporter assays showed that the most important anti-fibrotic component of the YQHX was Salviae miltiorrhiza (SM). Experiments performed using a bleomycin-instilled mouse model of pulmonary fibrosis showed that Salvianolic acid B (SAB), the major ingredient of SM, had strong anti-inflammatory and anti-fibrotic effects through its inhibition of inflammatory cell infiltration, alveolar structure disruption, and collagen deposition. Furthermore, SAB suppressed TGF-β-induced myofibroblastic differentiation of MRC-5 fibroblasts and TGF-β-mediated epithelial-to-mesenchymal transition of A549 cells by inhibiting both Smad-dependent signaling and the Smad-independent MAPK pathway. Taken together, our results suggest that SM is the key anti-fibrotic component of the YQHX and that SAB, the major ingredient of SM, alleviates experimental pulmonary fibrosis both in vivo and in vitro by inhibiting the TGF-β signaling pathway. Together, these results suggest that SAB potently inhibits pulmonary fibrosis. PMID:27278104

  20. Hydrophobic bile acids relax rat detrusor contraction via inhibiting the opening of the Na+/Ca2+ exchanger

    Jingzhen Zhu; Xingyou Dong; Qian Liu; Chao Wu; Qingqing Wang; Zhou Long; Longkun Li

    2016-01-01

    Hydrophobic bile acids (BAs) are thought to inhibit smooth muscle contractility in several organs. The present study was undertaken to investigate the effects of hydrophobic BAs on the detrusor contractility of rat bladder and to explore the possible mechanism. Lithocholic acid (LCA) treatment increased the micturition interval and induced a concentration-dependent relaxation of bladder detrusor strips. In addition, LCA reduced the concentration of intracellular free Ca2+([Ca2+]i) and inhibit...

  1. Steel Corrosion Inhibition by Acid Garlic Essential Oil as a Green Corrosion Inhibitor a nd Sorption Behavior

    Afia, L.; Benali, O.; Salghi, R.; Ebenso, Eno E.; Jodeh, S.; Zougagh, M.; Hammouti, B.

    2014-01-01

    The aim of this work was to investigate the inhibition effect of acid garlic essential oil (GO oil) as an inhibitor on the corrosion of carbon steel in a 1M HCl solution at different temperatures by weight loss,electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization methods. The GO oil acts as an effective corrosion inhibitor for carbon steel in a hydrochloric acid medium. The inhibition process is attributed to the formatio...

  2. [Inhibition of oxygen free radicals in potassium channels of cardiac myocytes and the action of salvianolic acid A].

    Bao, G

    1993-10-01

    By using the patch clamp technique, the effect of oxygen free radicals on the single potassium channels of cardiac papillary muscle cells were studied, as well as the action of salvianolic acid A. It was found that xanthane-xanthane oxidase generated oxygen free radicals could apparently inhibited the unitary currents of the single potassium channel activity. This inhibition was reversed by salvianolic acid A, which is an effective component extracted from Salvia miltiorrhiza. PMID:8168213

  3. α 1-acid glycoprotein inhibits lipogenesis in neonatal swine adipose tissue.

    Ramsay, T G; Blomberg, L; Caperna, T J

    2016-05-01

    Serum α1-acid glycoprotein (AGP) is elevated during late gestation and at birth in the pig and rapidly declines postnatally. In contrast, the pig is born with minimal lipid stores in the adipose tissue, but rapidly accumulates lipid during the first week. The present study examined if AGP can affect adipose tissue metabolism in the neonatal pig. Isolated cell cultures or tissue explants were prepared from dorsal subcutaneous adipose tissue of preweaning piglets. Porcine AGP was used at concentrations of 0, 100, 1000 and 5000 ng/ml medium in 24 h incubations. AGP reduced the messenger RNA (mRNA) abundance of the lipogenic enzymes, malic enzyme (ME), fatty acid synthase and acetyl coA carboxylase by at least 40% (Pmetabolism by AGP appears to function through an inhibition in insulin-mediated glucose oxidation and incorporation into fatty acids. This was supported by the analysis of the mRNA abundance for sterol regulatory element-binding protein (SREBP), carbohydrate regulatory element-binding protein (ChREBP) and insulin receptor substrate 1 (IRS1), which all demonstrated reductions of at least 23% in response to AGP treatment (Pmetabolic data and SREBP, ChREBP and IRS1 gene expression analysis suggest is through an inhibition in insulin-mediated events. Second, these data suggest that AGP may contribute to limiting lipogenesis within adipose tissue during the perinatal period, as AGP levels are highest for any serum protein at birth. PMID:26608612

  4. Inhibition of nitrobenzene adsorption by water cluster formation at acidic oxygen functional groups on activated carbon.

    Kato, Yuichi; Machida, Motoi; Tatsumoto, Hideki

    2008-06-15

    The inhibition effect of nitrobenzene adsorption by water clusters formed at the acidic groups on activated carbon was examined in aqueous and n-hexane solution. The activated carbon was oxidized with nitric acid to introduce CO complexes and then outgassed in helium flow at 1273 K to remove them completely without changing the structural properties of the carbon as a reference adsorbent. The amounts of acidic functional groups were determined by applying Boehm titration. A relative humidity of 95% was used to adsorb water onto the carbon surface. Strong adsorption of water onto the oxidized carbon can be observed by thermogravimetric analysis. The adsorption kinetic rate was estimated to be controlled by diffusion from the kinetic analysis. Significant decline in both capacity and kinetic rate for nitrobenzene adsorption onto the oxidized carbon was also observed in n-hexane solution by preadsorption of water to the carbon surface, whereas it was not detected for the outgassed carbons. These results might reveal that water molecules forming clusters at the CO complexes inhibited the entrance of nitrobenzene into the interparticles of the carbon. PMID:18440013

  5. Rosmarinic acid in Argusia argentea inhibits snake venom-induced hemorrhage.

    Aung, Hnin Thanda; Nikai, Toshiaki; Niwa, Masatake; Takaya, Yoshiaki

    2010-10-01

    A methanolic extract of Argusia (or Messerschmidia or Tournefortia) argentea (Boraginaceae) significantly inhibited hemorrhage induced by crude venom of Trimeresurus flavoviridis. The extract was then separated according to antivenom activity by using silica gel column chromatography and HPLC equipped with an octadecylsilanized silica gel (ODS) column to afford rosmarinic acid (RA) (1) as an active principle. RA (1) significantly inhibited the hemorrhagic effect of crude venoms of T. flavoviridis, Crotalus atrox, Gloydius blomhoffii, Bitis arietans as well as snake venom metalloproteinases, HT-b (C. atrox), bilitoxin 2 (Agkistrodon bilineatus), HF (B. arietans), and Ac1-proteinase (Deinagkistrodon acutus). This is the first report of the antihemorrhage activity of RA (1), and RA (1) greatly contributes to the antihemorrhagic efficiency of A. argentea against crude snake venoms and hemorrhagic toxins. PMID:20512530

  6. Synthesis and Corrosion Inhibition Study of Benzothiazepine Derivatives on Mild Steel In Acid Medium

    T. Sasikala

    2016-05-01

    Full Text Available 2-ethoxy-4-(4-phenyl-2, 3-dihydro-1, 5-benzothiazepin-2-yl phenol (EPBTZ and 2-(4-methoxyphenyl-4-phenyl-2, 3-dihydro-1, 5-benzothiazepine (MPPBTZ were synthesized by the condensation reaction between o-aminothiophenol and chalcone. The synthesized benzothiazepines were characterized by FTIR spectra. Their corrosion inhibition property on mild steel in sulphuric acid medium was investigated by weight loss and electrochemical techniques. Scanning electron microscopic studies were employed to examine the surface morphology of the inhibited and uninhibited metal samples. The compound EPBTZ revealed good corrosion protection property than MPPBTZ at all the temperatures studied. Electrochemical studies showed that the inhibitors behave as mixed type inhibitor retarding both cathodic and anodic corrosion reaction by forming an adsorbed protective layer.

  7. Quantum chemical studies on the corrosion inhibition of some sulphonamides on mild steel in acidic medium

    Quantum chemical calculations using the density functional theory (DFT) and some semi-empirical methods were performed on four sulphonamides (sulfaguanidine, sulfamethazine, sulfamethoxazole and sulfadiazine) used as corrosion inhibitors for mild steel in acidic medium to determine the relationship between molecular structure and their inhibition efficiencies. The results of the quantum chemical calculations and experimental %IE were subjected to correlation analysis and indicate that their inhibition effect are closely related to EHOMO, ELUMO, hardness, polarizability, dipole moment and charges. The %IE increased with increase in the EHOMO and decrease in EHOMO - ELUMO. The negative sign of the EHOMO values and other kinetic and thermodynamic parameters indicates that the data obtained support physical adsorption mechanism

  8. Quantum chemical studies on the corrosion inhibition of some sulphonamides on mild steel in acidic medium

    Arslan, Taner [Department of Chemistry, Eskisehir Osmangazi University, 26480 Eskisehir (Turkey)], E-mail: tarslan@ogu.edu.tr; Kandemirli, Fatma [Department of Chemistry, Kocaeli University, 41380 Izmit (Turkey); Ebenso, Eno E. [Department of Chemistry and Chemical Technology, National University of Lesotho, P.O. Roma 180, Lesotho, Southern Africa (Lesotho)], E-mail: eno_ebenso@yahoo.com; Love, Ian; Alemu, Hailemichael [Department of Chemistry and Chemical Technology, National University of Lesotho, P.O. Roma 180, Lesotho, Southern Africa (Lesotho)

    2009-01-15

    Quantum chemical calculations using the density functional theory (DFT) and some semi-empirical methods were performed on four sulphonamides (sulfaguanidine, sulfamethazine, sulfamethoxazole and sulfadiazine) used as corrosion inhibitors for mild steel in acidic medium to determine the relationship between molecular structure and their inhibition efficiencies. The results of the quantum chemical calculations and experimental %IE were subjected to correlation analysis and indicate that their inhibition effect are closely related to E{sub HOMO}, E{sub LUMO}, hardness, polarizability, dipole moment and charges. The %IE increased with increase in the E{sub HOMO} and decrease in E{sub HOMO} - E{sub LUMO}. The negative sign of the E{sub HOMO} values and other kinetic and thermodynamic parameters indicates that the data obtained support physical adsorption mechanism.

  9. The kinetics of process dependent ammonia inhibition of methanogenesis from acetic acid.

    Wilson, Christopher Allen; Novak, John; Takacs, Imre; Wett, Bernhard; Murthy, Sudhir

    2012-12-01

    Advanced anaerobic digestion processes aimed at improving the methanization of sewage sludge may be potentially impaired by the production of inhibitory compounds (e.g. free ammonia). The result of methanogenic inhibition is relatively high effluent concentrations of acetic acid and other soluble organics, as well as reduced methane yields. An extreme example of such an advanced process is the thermal hydrolytic pretreatment of sludge prior to high solids digestion (THD). Compared to a conventional mesophilic anaerobic digestion process (MAD), THD operates in a state of constant inhibition driven by high free ammonia concentrations, and elevated pH values. As such, previous investigations of the kinetics of methanogenesis from acetic acid under uninhibited conditions do not necessarily apply well to the modeling of extreme processes such as THD. By conducting batch ammonia toxicity assays using biomass from THD and MAD reactors, we compared the response of these communities over a broad range of ammonia inhibition. For both processes, increased inhibitor concentrations resulted in a reduction of biomass growth rate (r(max) = μ(max)∙X) and a resulting decrease in the substrate half saturation coefficient (K(S)). These two parameters exhibited a high degree of correlation, suggesting that for a constant transport limited system, the K(S) was mostly a linear function of the growth rate. After correcting for reactor pH and temperature, we found that the THD and MAD biomass were both able to perform methanogenesis from acetate at high free ammonia concentrations (equivalent to 3-5 g/L total ammonia nitrogen), albeit at less than 30% of their respective maximum rates. The reduction in methane production was slightly less pronounced for the THD biomass than for MAD, suggesting that the long term exposure to ammonia had selected for a methanogenic pathway less dependent on those organisms most sensitive to ammonia inhibition (i.e. aceticlastic methanogens). PMID

  10. Alpha lipoic acid inhibits proliferation and epithelial mesenchymal transition of thyroid cancer cells.

    Jeon, Min Ji; Kim, Won Gu; Lim, Seonhee; Choi, Hyun-Jeung; Sim, Soyoung; Kim, Tae Yong; Shong, Young Kee; Kim, Won Bae

    2016-01-01

    The naturally occurring short-chain fatty acid, α-lipoic acid (ALA) is a powerful antioxidant which is clinically used for treatment of diabetic neuropathy. Recent studies suggested the possibility of ALA as a potential anti-cancer agent, because it could activate adenosine monophosphate activated protein kinase (AMPK) and inhibit transforming growth factor-β (TGFβ) pathway. In this study, we evaluate the effects of ALA on thyroid cancer cell proliferation, migration and invasion. We performed in vitro cell proliferation analysis using BCPAP, HTH-83, CAL-62 and FTC-133 cells. ALA suppressed thyroid cancer cell proliferation through activation of AMPK and subsequent down-regulation of mammalian target of rapamycin (mTOR)-S6 signaling pathway. Low-dose ALA, which had minimal effects on cell proliferation, also decreased cell migration and invasion of BCPAP, CAL-62 and HTH-83 cells. ALA inhibited epithelial mesenchymal transition (EMT) evidently by increase of E-cadherin and decreases of activated β-catenin, vimentin, snail, and twist in these cells. ALA suppressed TGFβ production and inhibited induction of p-Smad2 and twist by TGFβ1 or TGFβ2. These findings indicate that ALA reduces cancer cell migration and invasion through suppression of TGFβ production and inhibition of TGFβ signaling pathways in thyroid cancer cells. ALA also significantly suppressed tumor growth in mouse xenograft model using BCPAP and FTC-133 cells. This is the first study to show anti-cancer effect of ALA on thyroid cancer cells. ALA could be a potential therapeutic agent for treatment of advanced thyroid cancer, possibly as an adjuvant therapy with other systemic therapeutic agents. PMID:26463583

  11. Mechanical and acid neutralizing properties and bacteria inhibition of amorphous calcium phosphate dental nanocomposite.

    Moreau, Jennifer L; Sun, Limin; Chow, Laurence C; Xu, Hockin H K

    2011-07-01

    Dental composites do not hinder bacteria colonization and plaque formation. Caries at the restoration margins is a frequent reason for replacement of existing restorations, which accounts for 50 to 70% of all restorations. The objectives of this study were to examine the filler level effect on nanocomposite containing nanoparticles of amorphous calcium phosphate (NACP) and investigate the load-bearing and acid-neutralizing properties and bacteria inhibition. NACP with 116-nm particle size were synthesized via a spray-drying technique and incorporated into a resin. Flexural strength of nanocomposite with 10 to 30% NACP fillers matched the strength of a commercial hybrid composite (p > 0.1). Nanocomposite with 40% NACP matched the strength of a microfill composite, which was 2-fold that of a resin-modified glass ionomer. Nanocomposite with 40% NACP neutralized a lactic acid solution of pH 4 by rapidly increasing the pH to 5.69 in 10 min. In contrast, the commercial controls had pH staying at near 4. Using Streptoccocus mutans, an agar disk-diffusion test showed no inhibition zone for commercial controls. In contrast, the inhibition zone was (2.5 ± 0.7) mm for nanocomposite with 40% NACP. Crystal violet staining showed that S. mutans coverage on nanocomposite was 1/4 that on commercial composite. In conclusion, novel calcium-phosphate nanocomposite matched the mechanical properties of commercial composite and rapidly neutralized lactic acid of pH 4. The nanocomposite appeared to moderately reduce the S. mutans growth, and further study is needed to obtain strong antimicrobial properties. The new nanocomposite may have potential to reduce secondary caries and restoration fracture, two main challenges facing tooth cavity restorations. PMID:21504057

  12. Effect of conjugated linoleic acid on inhibition of prolyl hydroxylase 1 in hearts of mice

    Zhang Jize; Li Defa

    2012-01-01

    Abstract Background Results from different trails have provided evidence of protective effects of cis-9,trans-11-conjugated linoleic acid (CLA) on cardiovascular diseases. But the inhibition of prolyl hydroxylase 1 (PHD1) associated with induction of hypoxia inducible factors (HIFs) by CLA in these protective effects has never been reported before. The objective of this study was to evaluate if the two predominant cis-9,trans-11 (c9, t11), trans-10,cis-12 (t10, c12) CLA isomers and mixture of...

  13. Inhibition Effect of Dodecylamine on Carbon Steel Corrosion in Hydrochloric Acid Solution

    Chen, Zhenyu; Huang, Ling; Qiu, Yubing; Guo, Xingpeng

    2012-12-01

    Dodecylamine spontaneously adsorbs on carbon steel via its polar group (-NH2) in hydrochloric acid solution. Furthermore, it forms a monolayer film on carbon steel surface. The inhibition mechanism of dodecylamine for carbon steel is geometric blocking effect. The adsorption of dodecylamine on carbon steel surface follows Arrhenius equation. The adsorption slightly increases activated energy, but greatly reduces pre-exponential factor value. Atomic force microscopy force curves indicate that at the area without adsorbed dodecylamine, no obvious adhere force occurs. At the area with adsorbed dodecylamine, however, an average 1.3 nN adhere force is observed.

  14. Salicylic acid alleviates cold-induced photosynthesis inhibition and oxidative stress in Jasminum sambac

    CAI, HAN; He, Mengying; Ma, Kun; HUANG, YONGGAO; Wang, Yun

    2015-01-01

    Salicylic acid (SA) is a signal molecule that mediates many biotic and abiotic stress-induced physiological responses in plants. In the current study the protective effects of SA on cold stress-caused oxidative damage and photosynthesis inhibition in jasmine plants (Jasminum sambac) were examined. Jasmine seedlings were pretreated with 100 µM SA for 3 days and then subjected to cold stress (4 °C) for 15 days. The amounts of superoxide radicals (O_2^{-}) and hydrogen peroxide (H_{2}O_{2}) sign...

  15. Influence of poly(aminoquinone) on corrosion inhibition of iron in acid media

    Jeyaprabha, C.; Sathiyanarayanan, S.; Phani, K. L. N.; Venkatachari, G.

    2005-11-01

    The inhibitor performance of chemically synthesized water soluble poly(aminoquinone) (PAQ) on iron corrosion in 0.5 M sulphuric acid was studied in relation to inhibitor concentration using potentiodynamic polarization and electrochemical impedance spectroscopy measurements. On comparing the inhibition performance of PAQ with that of the monomer o-phenylenediamine (OPD), the OPD gave an efficiency of 80% for 1000 ppm while it was 90% for 100 ppm of PAQ. PAQ was found to be a mixed inhibitor. Besides, PAQ was able to improve the passivation tendency of iron in 0.5 M H 2SO 4 markedly.

  16. Ultraviolet induction of prophage lambda during inhibition of deoxyribonucleic acid synthesis by hydroxyurea

    Hydroxyurea inhibited synthesis of certain deoxyribonucleic acid (DNA) precursors and caused the cessation of DNA synthesis. It did not cause induction of lambda. Superinfection of an irradiated lysogen with lambda ind- could prevent induction, but the percentage of cells protected decreased as the time between irradiation and superinfection increased. The presence of hydroxyurea did not increase the time during which cells could be rescued by superinfection. The accumulation of DNA precursors after ultraviolet or ionizing radiation was not necessary for the induction of lambda prophage to occur

  17. Indomethacin inhibits tetrodotoxin-resistant Na(+) channels at acidic pH in rat nociceptive neurons.

    Nakamura, Michiko; Jang, Il-Sung

    2016-06-01

    Non-steroidal anti-inflammatory drugs (NSAIDs) are well-known inhibitors of cyclooxygenases (COXs) and are widely used for the treatment of inflammatory pain; however several NSAIDs display COX-independent analgesic action including the inhibition of voltage-gated Na(+) channels expressed in primary afferent neurons. In the present study, we examined whether NSAIDs modulate tetrodotoxin-resistant (TTX-R) Na(+) channels and if this modulation depends on the extracellular pH. The TTX-R Na(+) currents were recorded from small-sized trigeminal ganglion neurons by using a whole-cell patch clamp technique. Among eight NSAIDs tested in this study, several drugs, including aspirin and ibuprofen, did not affect TTX-R Na(+) channels either at pH 7.4 or at pH 6.0. However, we found that indomethacin, and, to a lesser extent, ibuprofen and naproxen potently inhibited the peak amplitude of TTX-R Na(+) currents at pH 6.0. The indomethacin-induced inhibition of TTX-R Na(+) channels was more potent at depolarized membrane potentials. Indomethacin significantly shifted both the voltage-activation and voltage-inactivation relationships to depolarizing potentials at pH 6.0. Indomethacin accelerated the development of inactivation and retarded the recovery from inactivation of TTX-R Na(+) channels at pH 6.0. Given that indomethacin and several other NSAIDs could further suppress local nociceptive signals by inhibiting TTX-R Na(+) channels at an acidic pH in addition to the classical COX inhibition, these drugs could be particularly useful for the treatment of inflammatory pain. PMID:26898291

  18. The pattern recognition molecule deleted in malignant brain tumors 1 (DMBT1) and synthetic mimics inhibit liposomal nucleic acid delivery

    Lund Hansen, Pernille; Blaich, Stephanie; End, Caroline; Schmidt, Steffen; Møller, Jesper Bonnet; Holmskov, Uffe; Mollenhauer, Jan

    2011-01-01

    Liposomal nucleic acid delivery is a preferred option for therapeutic settings. The cellular pattern recognition molecule DMBT1, secreted at high levels in various diseases, and synthetic mimics efficiently inhibit liposomal nucleic acid delivery to human cells. These findings may have relevance ...

  19. NOVEL HYDROXAMIC ACIDS HAVING HISTONE DEACETYLASE INHIBITING ACTIVITY AND ANTI-CANCER COMPOSITION COMPRISING THE SAME AS AN ACTIVE INGREDIENT

    2013-01-01

    The present invention relates to a pharmaceutical composition for anticancer including novel hydroxamic acid with histone deacetylase inhibiting activity as an active ingredient. Hydroxamic acid compound of the present invention has inhibitory activity of histone deacetylase (HDAC) and shows...... cytotoxicity to a variety of cancer cells, being useful in strong anti-cancer drug....

  20. Inhibition of ice crystallisation in highly viscous aqueous organic acid droplets

    B. J. Murray

    2008-05-01

    Full Text Available Homogeneous nucleation of ice within aqueous solution droplets and their subsequent crystallisation is thought to play a significant role in upper tropospheric ice cloud formation. It is normally assumed that homogeneous nucleation will take place at a threshold supersaturation, irrespective of the identity of the solute, and that rapid growth of ice particles will follow immediately after nucleation. However, it is shown here through laboratory experiments that droplets may not readily freeze in the very cold tropical tropopause layer (TTL, typical temperatures of 186–200 K. In these experiments ice crystal growth in citric acid solution droplets did not occur when ice nucleated below 197±6 K. Citric acid, 2-hydroxypropane-1,2,3-tricarboxyllic acid, is a molecule with similar functionality to oxygenated organic compounds which are ubiquitous to atmospheric aerosol and is therefore thought to be a sensible proxy for atmospheric organic material. Evidence is presented that suggest citric acid solution droplets become ultra-viscous or perhaps even glassy under atmospherically relevant conditions. Diffusion of liquid water molecules to ice nuclei is expected to be very slow in ultra-viscous solution droplets and this most likely provides an explanation for the experimentally observed inhibition of ice crystallisation. The implications of ultra-viscous solution droplets for ice cloud formation and supersaturations in the TTL are discussed.

  1. Inhibition of ice crystallisation in highly viscous aqueous organic acid droplets

    B. J. Murray

    2008-09-01

    Full Text Available Homogeneous nucleation of ice within aqueous solution droplets and their subsequent crystallisation is thought to play a significant role in upper tropospheric ice cloud formation. It is normally assumed that homogeneous nucleation will take place at a threshold supersaturation, irrespective of the identity of the solute, and that rapid growth of ice particles will follow immediately after nucleation. However, it is shown here through laboratory experiments that droplets may not readily freeze in the very cold tropical tropopause layer (TTL, typical temperatures of 186–200 K. In these experiments ice crystal growth in citric acid solution droplets did not occur when ice nucleated below 197±6 K. Citric acid, 2-hydroxypropane-1,2,3-tricarboxyllic acid, is a molecule with similar functionality to oxygenated organic compounds which are ubiquitous in atmospheric aerosol. It is therefore thought to be a sensible proxy for atmospheric organic material. Evidence is presented that suggests citric acid solution droplets become ultra-viscous and form glassy solids under atmospherically relevant conditions. Diffusion of liquid water molecules to ice nuclei is expected to be very slow in ultra-viscous solution droplets and nucleation is negligible in glassy droplets; this most likely provides an explanation for the experimentally observed inhibition of ice crystallisation. The implications of ultra-viscous and glassy solution droplets for ice cloud formation and supersaturations in the TTL are discussed.

  2. Isoniazid inhibition of mycolic acid synthesis by cell extracts of sensitive and resistant strains of Mycobacterium aurum.

    Quémard, A; Lacave, C; Lanéelle, G

    1991-01-01

    Isonicotinic acid hydrazide (isoniazid; INH) inhibition of mycolic acid synthesis was studied by using cell extracts from both INH-sensitive and -resistant strains of Mycobacterium aurum. The cell extract of the INH-sensitive strain was inhibited by INH, while the preparation from the INH-resistant strain was not. This showed that the INH resistance of mycolic acid synthesis was not due to a difference in drug uptake or the level of peroxidase activity (similar in both extracts). As INH did n...

  3. Inhibition of acid, alkaline, and tyrosine (PTP1B) phosphatases by novel vanadium complexes.

    McLauchlan, Craig C; Hooker, Jaqueline D; Jones, Marjorie A; Dymon, Zaneta; Backhus, Emily A; Greiner, Bradley A; Dorner, Nicole A; Youkhana, Mary A; Manus, Lisa M

    2010-03-01

    In the course of our investigations of vanadium-containing complexes for use as insulin-enhancing agents, we have generated a series of novel vanadium coordination complexes with bidentate ligands. Specifically we have focused on two ligands: anthranilate (anc(-)), a natural metabolite of tryptophan, and imidizole-4-carboxylate (imc(-)), meant to mimic naturally occurring N-donor ligands. For each ligand, we have generated a series of complexes containing the V(III), V(IV), and V(V) oxidation states. Each complex was investigated using phosphatase inhibition studies of three different phosphatases (acid, alkaline, and tyrosine (PTP1B) phosphatase) as prima facia evidence for potential use as an insulin-enhancing agent. Using p-nitrophenyl phosphate as an artificial phosphatase substrate, the levels of inhibition were determined by measuring the absorbance of the product at 405nm using UV/vis spectroscopy. Under our experimental conditions, for instance, V(imc)(3) appears to be as potent an inhibitor of alkaline phosphatase as sodium orthovanadate when comparing the K(cat)/K(m) term. VO(anc)(2) is as potent an inhibitor of acid phosphatase and tyrosine phosphatase as the Na(3)VO(4). Thus, use of these complexes can increase our mechanistic understanding of the effects of vanadium in vivo. PMID:20071031

  4. Corrosion inhibition of steel in sulfuric acidic solution by the Chenopodium Ambrosioides Extracts

    L. Bammou

    2014-10-01

    Full Text Available The influence of natural occurring extract of Chenopodium Ambrosioides (CAE on the corrosion inhibition of carbon steel in sulfuric acid solution is studied by the weight loss method, potentiodynamic polarization and impedance spectroscopy (EIS measurements. The experimental results reveal that extract has a good inhibiting effect on the metal tested in 0.5 M H2SO4 solution. The protection efficiency increases with increasing inhibitor concentration to attain 94% at 4 g/l. Potentiodynamic polarization studies clearly reveal that it acts essentially as a cathodic inhibitor. EIS results show that the change in the impedance parameters (Rt and Cdl with concentration of extract of Chenopodium Ambrosioides is indicative of the adsorption of molecules leading to the formation of a protective layer on the surface of carbon steel. The efficiency decreases with temperature. The adsorption of Chenopodium Ambrosioides extract is found to obey the Langmuir adsorption isotherm. The activation energies and enthalpies of the corrosion process of carbon steel in acidic medium were determined.

  5. Identification of organic acids in Cichorium intybus inhibiting virulence-related properties of oral pathogenic bacteria.

    Papetti, Adele; Mascherpa, Dora; Carazzone, Chiara; Stauder, Monica; Spratt, David A; Wilson, Michael; Pratten, Jonathan; Ciric, Lena; Lingström, Peter; Zaura, Egija; Weiss, Ervin; Ofek, Itzak; Signoretto, Caterina; Pruzzo, Carla; Gazzani, Gabriella

    2013-06-01

    The low molecular mass (LMM) extract of Cichorium intybus var. silvestre (red chicory) has been shown to inhibit virulence-linked properties of oral pathogens including Streptococcus mutans, Actinomyces naeslundii and Prevotella intermedia. In the present study HPLC-DAD-ESI/MS(2) was used to investigate the compounds contained in this extract for their anti-virulence activity. The extract contained a number of components, including oxalic, succinic, shikimic and quinic acids, which interfere with the growth and virulence traits (i.e., biofilm formation, adherence to epithelial cells and hydroxyapatite) of oral pathogens involved in gingivitis and tooth decay. Succinic and quinic acid seem to be the most potent, mainly by interfering with the ability of oral pathogens to form biofilms (either through inhibition of their development or promotion of their disruption). Our findings suggest that one or more of these compounds may modulate plaque formation in vivo, which is a prerequisite for the development of both caries and gingivitis. PMID:23411301

  6. Corrosion Inhibition Study of Mild Steel in Acidic Medium by Antibiotic Drugs: A Comparative Study

    Md. A. Aziz

    2014-04-01

    Full Text Available A comparison of the inhibiting efficiency of antibiotic drugs (ciprofloxacin, cloxacillin, and amoxicillin on the corrosion of mild steel in 1 mol·L−1 HCl were studied at room temperature using mass loss measurement. The main reason is probably be due to the formation of protective coverage by the inhibitor as other authors reported previously. Adsorption characteristics of the inhibitor has also been studied using simple equation and it was found that drugs inhibits the corrosion of mild steel by being adsorbed on the surface of mild steel by a physical adsorption mechanism. The adsorption of drugs on the mild steel surface was found to be spontaneous and obey the Langmuir adsorption isotherm model. It was observed that the test drug has a promising inhibitory action in acid medium against corrosion of mild steel. Moreover it was revealed that an inhibition efficiency of 80.1 % can be achieved with 3×10-3M ciprofloxacin drug treatment on mild steel.

  7. Betulinic acid, a bioactive pentacyclic triterpenoid, inhibits skeletal-related events induced by breast cancer bone metastases and treatment

    Many breast cancer patients experience bone metastases and suffer skeletal complications. The present study provides evidence on the protective and therapeutic potential of betulinic acid on cancer-associated bone diseases. Betulinic acid is a naturally occurring triterpenoid with the beneficial activity to limit the progression and severity of cancer, diabetes, cardiovascular diseases, atherosclerosis, and obesity. We first investigated its effect on breast cancer cells, osteoblastic cells, and osteoclasts in the vicious cycle of osteolytic bone metastasis. Betulinic acid reduced cell viability and the production of parathyroid hormone-related protein (PTHrP), a major osteolytic factor, in MDA-MB-231 human metastatic breast cancer cells stimulated with or without tumor growth factor-β. Betulinic acid blocked an increase in the receptor activator of nuclear factor-kappa B ligand (RANKL)/osteoprotegerin ratio by downregulating RANKL protein expression in PTHrP-treated human osteoblastic cells. In addition, betulinic acid inhibited RANKL-induced osteoclastogenesis in murine bone marrow macrophages and decreased the production of resorbed area in plates with a bone biomimetic synthetic surface by suppressing the secretion of matrix metalloproteinase (MMP)-2, MMP-9, and cathepsin K in RANKL-induced osteoclasts. Furthermore, oral administration of betulinic acid inhibited bone loss in mice intra-tibially inoculated with breast cancer cells and in ovariectomized mice causing estrogen deprivation, as supported by the restored bone morphometric parameters and serum bone turnover markers. Taken together, these findings suggest that betulinic acid may have the potential to prevent bone loss in patients with bone metastases and cancer treatment-induced estrogen deficiency. - Highlights: • Betulinic acid reduced PTHrP production in human metastatic breast cancer cells. • Betulinic acid blocked RANKL/OPG ratio in PTHrP-stimulated human osteoblastic cells. • Betulinic

  8. Green tea catechin inhibits fatty acid synthase without stimulating carnitine Palmitoyltransferase-1 or inducing weight loss in experimental animals

    Puig i Miquel, Teresa; Relat Pardo, Joana; Marrero González, Pedro F.; Haro Bautista, Diego; Brunet, Joan; Colomer Bosch, Ramón

    2008-01-01

    Background: The enzyme fatty acid synthase (FASN) is highly expressed in many human carcinomas and its inhibition is cytotoxic to human cancer cells. The use of FASN inhibitors has been limited until now by anorexia and weight loss, which is associated with the stimulation of fatty acid oxidation. Materials and Methods: The in vitro effect of (-)-epigallocatechin-3-gallate (EGCG) on fatty acid metabolism enzymes, on apoptosis and on cell signalling was evaluated. In vivo, the effect of EGCG o...

  9. Betulinic acid, a bioactive pentacyclic triterpenoid, inhibits skeletal-related events induced by breast cancer bone metastases and treatment

    Park, Se Young; Kim, Hyun-Jeong; Kim, Ki Rim; Lee, Sun Kyoung; Lee, Chang Ki; Park, Kwang-Kyun, E-mail: biochelab@yuhs.ac; Chung, Won-Yoon, E-mail: wychung@yuhs.ac

    2014-03-01

    Many breast cancer patients experience bone metastases and suffer skeletal complications. The present study provides evidence on the protective and therapeutic potential of betulinic acid on cancer-associated bone diseases. Betulinic acid is a naturally occurring triterpenoid with the beneficial activity to limit the progression and severity of cancer, diabetes, cardiovascular diseases, atherosclerosis, and obesity. We first investigated its effect on breast cancer cells, osteoblastic cells, and osteoclasts in the vicious cycle of osteolytic bone metastasis. Betulinic acid reduced cell viability and the production of parathyroid hormone-related protein (PTHrP), a major osteolytic factor, in MDA-MB-231 human metastatic breast cancer cells stimulated with or without tumor growth factor-β. Betulinic acid blocked an increase in the receptor activator of nuclear factor-kappa B ligand (RANKL)/osteoprotegerin ratio by downregulating RANKL protein expression in PTHrP-treated human osteoblastic cells. In addition, betulinic acid inhibited RANKL-induced osteoclastogenesis in murine bone marrow macrophages and decreased the production of resorbed area in plates with a bone biomimetic synthetic surface by suppressing the secretion of matrix metalloproteinase (MMP)-2, MMP-9, and cathepsin K in RANKL-induced osteoclasts. Furthermore, oral administration of betulinic acid inhibited bone loss in mice intra-tibially inoculated with breast cancer cells and in ovariectomized mice causing estrogen deprivation, as supported by the restored bone morphometric parameters and serum bone turnover markers. Taken together, these findings suggest that betulinic acid may have the potential to prevent bone loss in patients with bone metastases and cancer treatment-induced estrogen deficiency. - Highlights: • Betulinic acid reduced PTHrP production in human metastatic breast cancer cells. • Betulinic acid blocked RANKL/OPG ratio in PTHrP-stimulated human osteoblastic cells. • Betulinic

  10. Inhibition of Pseudomonas aeruginosa biofilm formation by 2,2’-bipyridyl, lipoic, kojic and picolinic acids

    Kübra Çevik

    2015-08-01

    Full Text Available Objective(s:The inhibitory effects of iron chelators, and FeCl3 chelation on biofilm formation and swarming motility were investigated against an opportunistic human pathogen Pseudomonas aeruginosa. Materials and Methods:The inhibitory activity of 2,2’-bipyridyl, lipoic acid, kojic acid and picolinic acidonbiofilm formation of P. aeruginosa strain PAO1 and three clinical isolates (P. aeruginosa  PAK01,P. aeruginosa PAK02 and P. aeruginosa PAK03 were investigated, based on crystal violet assay, and swarming motility test. Results:The kojic, lipoic and picolinic acid inhibited biofilm formation by 5-33% in all tested P. aeruginosa isolates. When chelated iron was added, biofilm inhibition rates were determined to be 39-57%. Among the tested chelators against P. aeruginosa, lipoic acid (84% and kojic acid (68% presented the highest inhibition of swarming motility. This is the first study to report the inhibitory effect of lipoic acid on biofilm formation and swarming motility of P. aeruginosa. Conclusion: It is considered that lipoic and picolinic acids can serve as alternatives for the treatment of the P. aeruginosa infections by inhibiting biofilm formation.

  11. Gut Microbiota Conversion of Dietary Ellagic Acid into Bioactive Phytoceutical Urolithin A Inhibits Heme Peroxidases

    Saha, Piu; Yeoh, Beng San; Singh, Rajbir; Chandrasekar, Bhargavi; Vemula, Praveen Kumar; Haribabu, Bodduluri; Vijay-Kumar, Matam; Jala, Venkatakrishna R.

    2016-01-01

    Numerous studies signify that diets rich in phytochemicals offer many beneficial functions specifically during pathologic conditions, yet their effects are often not uniform due to inter-individual variation. The host indigenous gut microbiota and their modifications of dietary phytochemicals have emerged as factors that greatly influence the efficacy of phytoceutical-based intervention. Here, we investigated the biological activities of one such active microbial metabolite, Urolithin A (UA or 3,8-dihydroxybenzo[c]chromen-6-one), which is derived from the ellagic acid (EA). Our study demonstrates that UA potently inhibits heme peroxidases i.e. myeloperoxidase (MPO) and lactoperoxidase (LPO) when compared to the parent compound EA. In addition, chrome azurol S (CAS) assay suggests that EA, but not UA, is capable of binding to Fe3+, due to its catechol-like structure, although its modest heme peroxidase inhibitory activity is abrogated upon Fe3+-binding. Interestingly, UA-mediated MPO and LPO inhibition can be prevented by innate immune protein human NGAL or its murine ortholog lipocalin 2 (Lcn2), implying the complex nature of host innate immunity-microbiota interactions. Spectral analysis indicates that UA inhibits heme peroxidase-catalyzed reaction by reverting the peroxidase back to its inactive native state. In support of these in vitro results, UA significantly reduced phorbol myristate acetate (PMA)-induced superoxide generation in neutrophils, however, EA failed to block the superoxide generation. Treatment with UA significantly reduced PMA-induced mouse ear edema and MPO activity compared to EA treated mice. Collectively, our results demonstrate that microbiota-mediated conversion of EA to UA is advantageous to both host and microbiota i.e. UA-mediated inhibition of pro-oxidant enzymes reduce tissue inflammation, mitigate non-specific killing of gut bacteria, and abrogate iron-binding property of EA, thus providing a competitive edge to the microbiota in

  12. Tunicamycin inhibits biosynthesis of acid mucopolysaccharides in cultures of chick embryo fibroblasts

    The time course of the incorporation of 14C-glucosamine into extracellular mucopolysaccharides (MPS) and that of H235SO4 into intracellular and extracellular MPS were experimentally studied. The monolayer cultures of chick embrio fibroblasts in test tubes were prepared with modified Eagle's minimal essential medium supplemented with 5% calf serum. After confluence, the medium was replaced with the prewarmed fresh one containing 0.4 μCi/ml glucosamine-1-14C or 2 μCi/ml H235SO4. Tunicamycin (TM) was added at the same time as the radioactive compounds. At the appropriate time intervals of incubation at 370C, cultured cells were sampled, and the medium was withdrawn. The cell sheets were rinsed twice with 1 ml each of could distilled water. Acid MPS were precipitated with cetylpyridinium chloride. The precipitate was collected by centrifugation. Insoluble matter was collected on glass fiber filter. After drying, the radioactivity retained on the filter was counted with a scintillation counter. This fraction is of extracellular MPS. In the case of H235SO4 incorporation, the step of NaOH treatment was omitted. This fraction is of intracellular MPS. As a result, slight difference was observed in the degree of inhibition by 1.0 μg/ml TM between the two fractions. TM also inhibited the incorporation of H235SO4. The degree of inhibition of H235SO4 incorporation into intracellular MPS was similar to that of 14C-glucosamine. The inhibition of MPS biosynthesis by TM suggests the possibility of participation of lipid-linked intermediate in the biosynthesis of MPS. (Iwakiri, K.)

  13. Labdanolic acid methyl ester (LAME) exerts anti-inflammatory effects through inhibition of TAK-1 activation

    Cuadrado, Irene [Departamento de Farmacología, Facultad de Farmacia, Universidad Complutense, Plaza Ramón y Cajal s/n, 28040 Madrid (Spain); Cidre, Florencia; Herranz, Sandra [Unidad de Inflamación y Cáncer. Área de Biología Celular y Desarrollo. Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid (Spain); Estevez-Braun, Ana [Instituto Universitario de Bio-Orgánica “Antonio González”. Universidad de La Laguna. Avda. Astrofísico Fco. Sánchez 2. 38206. La Laguna, Tenerife (Spain); Instituto Canario de Investigaciones del Cáncer (ICIC) (Spain); Heras, Beatriz de las, E-mail: lasheras@farm.ucm.es [Departamento de Farmacología, Facultad de Farmacia, Universidad Complutense, Plaza Ramón y Cajal s/n, 28040 Madrid (Spain); Hortelano, Sonsoles, E-mail: shortelano@isciii.es [Unidad de Inflamación y Cáncer. Área de Biología Celular y Desarrollo. Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid (Spain)

    2012-01-01

    Labdane derivatives obtained from the diterpenoid labdanediol suppressed NO and PGE{sub 2} production in LPS-stimulated RAW 264.7 macrophages. However, mechanisms involved in these inhibitory effects are not elucidated. In this study, we investigated the signaling pathways involved in the anti-inflammatory effects of labdanolic acid methyl ester (LAME) in peritoneal macrophages and examined its therapeutic effect in a mouse endotoxic shock model. LAME reduced the production of NO and PGE{sub 2} in LPS-activated macrophages. This effect involved the inhibition of NOS-2 and COX-2 gene expression, acting at the transcription level. Examination of the effects of the diterpene on NF-κB signaling showed that LAME inhibits the phosphorylation of IκBα and IκBβ, preventing their degradation and the nuclear translocation of the NF-κB p65 subunit. Moreover, inhibition of MAPK signaling was also observed. A further experiment revealed that LAME inhibited the phosphorylation of transforming growth factor-β (TGF-β)-activated kinase 1 (TAK1), an upstream signaling molecule required for IKK and mitogen-activated protein kinases (MAPKs) activation. Inflammatory cytokines such as IL-6, TNF-α and IP-10 were downregulated in the presence of this compound after stimulation with LPS. Additionally, LAME also improved survival in a mouse model of endotoxemia and reduced the circulatory levels of cytokines (IL-6, TNF-α). In conclusion, these results indicate that labdane diterpene LAME significantly attenuates the pro-inflammatory response induced by LPS both in vivo and in vitro. Highlights: ► LAME reduced the production of NO and PGE{sub 2} in LPS-activated macrophages. ► IL-6, TNF-α and IP-10 were also inhibited by LAME. ► Inhibition of TAK-1 activation is the mechanism involved in this process. ► LAME improved survival in a mouse model of endotoxemia. ► LAME reduced the circulatory levels of cytokines (IL-6, TNF-α).

  14. Labdanolic acid methyl ester (LAME) exerts anti-inflammatory effects through inhibition of TAK-1 activation

    Labdane derivatives obtained from the diterpenoid labdanediol suppressed NO and PGE2 production in LPS-stimulated RAW 264.7 macrophages. However, mechanisms involved in these inhibitory effects are not elucidated. In this study, we investigated the signaling pathways involved in the anti-inflammatory effects of labdanolic acid methyl ester (LAME) in peritoneal macrophages and examined its therapeutic effect in a mouse endotoxic shock model. LAME reduced the production of NO and PGE2 in LPS-activated macrophages. This effect involved the inhibition of NOS-2 and COX-2 gene expression, acting at the transcription level. Examination of the effects of the diterpene on NF-κB signaling showed that LAME inhibits the phosphorylation of IκBα and IκBβ, preventing their degradation and the nuclear translocation of the NF-κB p65 subunit. Moreover, inhibition of MAPK signaling was also observed. A further experiment revealed that LAME inhibited the phosphorylation of transforming growth factor-β (TGF-β)-activated kinase 1 (TAK1), an upstream signaling molecule required for IKK and mitogen-activated protein kinases (MAPKs) activation. Inflammatory cytokines such as IL-6, TNF-α and IP-10 were downregulated in the presence of this compound after stimulation with LPS. Additionally, LAME also improved survival in a mouse model of endotoxemia and reduced the circulatory levels of cytokines (IL-6, TNF-α). In conclusion, these results indicate that labdane diterpene LAME significantly attenuates the pro-inflammatory response induced by LPS both in vivo and in vitro. Highlights: ► LAME reduced the production of NO and PGE2 in LPS-activated macrophages. ► IL-6, TNF-α and IP-10 were also inhibited by LAME. ► Inhibition of TAK-1 activation is the mechanism involved in this process. ► LAME improved survival in a mouse model of endotoxemia. ► LAME reduced the circulatory levels of cytokines (IL-6, TNF-α).

  15. Calcite growth-rate inhibition by fulvic acids isolated from Big Soda Lake, Nevada, USA, The Suwannee River, Georgia, USA and by polycarboxylic acids

    Reddy, Michael M.; Leenheer, Jerry

    2011-01-01

    Calcite crystallization rates are characterized using a constant solution composition at 25°C, pH=8.5, and calcite supersaturation (Ω) of 4.5 in the absence and presence of fulvic acids isolated from Big Soda Lake, Nevada (BSLFA), and a fulvic acid from the Suwannee River, Georgia (SRFA). Rates are also measured in the presence and absence of low-molar mass, aliphatic-alicyclic polycarboxylic acids (PCA). BSLFA inhibits calcite crystal-growth rates with increasing BSLFA concentration, suggesting that BSLFA adsorbs at growth sites on the calcite crystal surface. Calcite growth morphology in the presence of BSLFA differed from growth in its absence, supporting an adsorption mechanism of calcite-growth inhibition by BSLFA. Calcite growth-rate inhibition by BSLFA is consistent with a model indicating that polycarboxylic acid molecules present in BSLFA adsorb at growth sites on the calcite crystal surface. In contrast to published results for an unfractionated SRFA, there is dramatic calcite growth inhibition (at a concentration of 1 mg/L) by a SRFA fraction eluted by pH 5 solution from XAD-8 resin, indicating that calcite growth-rate inhibition is related to specific SRFA component fractions. A cyclic PCA, 1, 2, 3, 4, 5, 6-cyclohexane hexacarboxylic acid (CHXHCA) is a strong calcite growth-rate inhibitor at concentrations less than 0.1 mg/L. Two other cyclic PCAs, 1, 1 cyclopentanedicarboxylic acid (CPDCA) and 1, 1 cyclobutanedicarboxylic acid (CBDCA) with the carboxylic acid groups attached to the same ring carbon atom, have no effect on calcite growth rates up to concentrations of 10 mg/L. Organic matter ad-sorbed from the air onto the seed crystals has no effect on the measured calcite crystal-growth rates.

  16. Crude fatty acid extracts of Streptomyces sps inhibits the biofilm forming Streptococcus pyogenes ATCC 19615

    Rajalakshm Manickam

    2014-01-01

    Full Text Available Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 Crude fatty acid extract of soil Streptomyces sps on the biofilm formation by Streptococcus pyogenes ATCC 19615 was investigated. Totally, 25 Streptomyces sps were isolated identified from the soil samples collected from Nilgiris hill station. All the isolates were subjected to hydrogen peroxide assay, fatty acid extraction and antibiofilm assay. The fatty acid extracts of S8, S9, and S15 inhibited S. pyogenes at MIC 10 µg/ml. The BIC was observed as 84.6% , 96.41%, 80.5% at 50 µg/ml concentration. Streptolysin S assay showed that the crude lipid extracts have the capability of inhibiting the Streptolysin S activity. There were changes in extracellular protein of the pathogen exposed to the S8, S9 and S15 crude fatty acid extracts (50 µg/ml at the range of 100-120 kDa which elucidates that the fatty acid extracts have a significant role in altering the extracellular protein which might be responsible for virulence of the pathogen. /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;}

  17. Curcumin-attenuated trinitrobenzene sulphonic acid induces chronic colitis by inhibiting expression of cyclooxygenase-2

    Hua Jiang; Chang-Sheng Deng; Ming Zhang; Jian Xia

    2006-01-01

    AIM: To explore the possible mechanisms of curcumin in rat colitis induced by trinitrobenzene sulfonic (TNBS) acid. METHODS: Rats with TNBS acid-induced colitis were treated with curcumin (30 mg/kg or 60 mg/kg per day ip). Changes of body weight and histological scores as well as survival rate were evaluated. Leukocyte infiltration was detected by myeloperoxidase (MPO)activity assay. The expression of cyclooxygenase-2(COX-2) was detected by RT-PCR and Western blot.Inflammation cytokines were determined by RT-PCR.Local concentration of prostaglandin E2 (PGE2) in colon mucosa was determined by ELISA.RESULTS: Curcumin improved survival rate and histological image, decreased the macroscopic scores and MPO activity. Also curcumin reduced the expression of COX-2 and inflammation cytokines. In addition,treatment with curcumin increased the PGE2 level.CONCLUSION: Curcumin has therapeutic effects on TNBS acid-induced colitis, the mechanisms seem to be related to COX-2 inhibition and PGE2 improvement.

  18. Evaluation of the inhibitive effect of benzotriazole on archeological bronze in acidic medium

    Hassairi, Hèla; Bousselmi, Latifa; Khosrof, Slim; Triki, Ezzeddine

    2013-12-01

    An archaeological bronze artefact was a Punic coin excavated from the north east of Tunisia in 2001. The composition of the copper alloy revealed a content of 3.5 % of tin and 1.4 % of lead with the presence of some sulphur heterogeneity. The surface presents some roughnesses and cracks and is covered by a corrosion layer of 20-40 μm thickness. The use of benzotriazole (BTA) as an inhibitor has become a standard element for the preservation of cuprous-based metals. In order to investigate the behaviour of BTA in an acidic medium, an Electrochemical Impedance Spectroscopy (EIS) investigation was performed to characterize the electrochemical behaviour of the interface of the archaeological bronze sample/acidic medium without and with BTA addition. Impedance diagrams obtained at different immersion times show that the presence of the inhibitor prevents the diffusional process observed in the absence of BTA. The inhibition of the pre-polarized bronze surface revealed that the mechanism of action of the benzotriazole molecule in an acidic medium is governed by the chemisorption process.

  19. Alpha lipoic acid selectively inhibits proliferation and adhesion to fibronectin of v-H-ras-transformed 3Y1 cells

    Yamasaki, Masao; Iwase, Masahiro; Kawano, Kazuo; Sakakibara, Yoichi; Suiko, Masahito; Nishiyama, Kazuo

    2011-01-01

    Here, we focused on the effects of racemic α-lipoic acid on proliferation and adhesion properties of 3Y1 rat fibroblasts and the v-H-ras-transformed derivative, HR-3Y1-2 cells. Racemic α-lipoic acid inhibited proliferation of HR-3Y1-2 but not 3Y1 cells at 0.3 and 1.0 mM. R-(+)-α-lipoic acid also inhibited proliferation of HR-3Y1-2 cells equivalent to that of racemic α-lipoic acid. In addition, racemic α-lipoic acid decreased intracellular reactive oxygen species levels in HR-3Y1 cells but not...

  20. Eicosapentaenoic acid inhibits TNF-α-induced matrix metalloproteinase-9 expression in human keratinocytes, HaCaT cells

    Eicosapentaenoic acid (EPA) is an omega-3 (ω-3) polyunsaturated fatty acid (PUFA), which has anti-inflammatory and anti-cancer properties. Some reports have demonstrated that EPA inhibits NF-κB activation induced by tumor necrosis factor (TNF)-α or lipopolysaccharide (LPS) in various cells. However, its detailed mode of action is unclear. In this report, we investigated whether EPA inhibits the expression of TNF-α-induced matrix metalloproteinases (MMP)-9 in human immortalized keratinocytes (HaCaT). TNF-α induced MMP-9 expression by NF-κB-dependent pathway. Pretreatment of EPA inhibited TNF-α-induced MMP-9 expression and p65 phosphorylation. However, EPA could not affect IκB-α phosphorylation, nuclear translocation of p65, and DNA binding activity of NF-κB. EPA inhibited TNF-α-induced p65 phosphorylation through p38 and Akt inhibition and this inhibition was IKKα-dependent event. Taken together, we demonstrate that EPA inhibits TNF-α-induced MMP-9 expression through inhibition of p38 and Akt activation

  1. Study of Temperature Effect on the Corrosion Inhibition of C38 Carbon Steel Using Amino-tris(Methylenephosphonic Acid in Hydrochloric Acid Solution

    Najoua Labjar

    2011-01-01

    Full Text Available Tafel polarization method was used to assess the corrosion inhibitive and adsorption behaviours of amino-tris(methylenephosphonic acid (ATMP for C38 carbon steel in 1 M HCl solution in the temperature range from 30 to 60∘C. It was shown that the corrosion inhibition efficiency was found to increase with increase in ATMP concentration but decreased with temperature, which is suggestive of physical adsorption mechanism. The adsorption of the ATMP onto the C38 steel surface was found to follow Langmuir adsorption isotherm model. The corrosion inhibition mechanism was further corroborated by the values of kinetic and thermodynamic parameters obtained from the experimental data.

  2. HDAC Inhibition Modulates Cardiac PPARs and Fatty Acid Metabolism in Diabetic Cardiomyopathy

    Ting-I Lee

    2016-01-01

    Full Text Available Peroxisome proliferator-activated receptors (PPARs regulate cardiac glucose and lipid homeostasis. Histone deacetylase (HDAC inhibitor has anti-inflammatory effects which may play a key role in modulating PPARs and fatty acid metabolism. The aim of this study was to investigate whether HDAC inhibitor, MPT0E014, can modulate myocardial PPARs, inflammation, and fatty acid metabolism in diabetes mellitus (DM cardiomyopathy. Electrocardiography, echocardiography, and western blotting were used to evaluate the electrophysiological activity, cardiac structure, fatty acid metabolism, inflammation, and PPAR isoform expressions in the control and streptozotocin-nicotinamide-induced DM rats with or without MPT0E014. Compared to control, DM and MPT0E014-treated DM rats had elevated blood glucose levels and lower body weights. However, MPT0E014-treated DM and control rats had smaller left ventricular end-diastolic diameter and shorter QT interval than DM rats. The control and MPT0E014-treated DM rats had greater cardiac PPAR-α and PPAR-δ protein expressions, but less cardiac PPAR-γ than DM rats. Moreover, control and MPT0E014-treated DM rats had lower concentrations of 5′ adenosine monophosphate-activated protein kinase 2α, PPAR-γ coactivator 1α, phosphorylated acetyl CoA carboxylase, cluster of differentiation 36, diacylglycerol acyltransferase 1 (DGAT1, DGAT2, tumor necrosis factor-α, and interleukin-6 protein than DM rats. HDAC inhibition significantly attenuated DM cardiomyopathy through modulation of cardiac PPARS, fatty acid metabolism, and proinflammatory cytokines.

  3. Gambogic acid inhibits growth, induces apoptosis, and overcomes drug resistance in human colorectal cancer cells.

    Wen, Chuangyu; Huang, Lanlan; Chen, Junxiong; Lin, Mengmeng; Li, Wen; Lu, Biyan; Rutnam, Zina Jeyapalan; Iwamoto, Aikichi; Wang, Zhongyang; Yang, Xiangling; Liu, Huanliang

    2015-11-01

    The emergence of chemoresistance is a major limitation of colorectal cancer (CRC) therapies and novel biologically based therapies are urgently needed. Natural products represent a novel potential anticancer therapy. Gambogic acid (GA), a small molecule derived from Garcinia hanburyi Hook. f., has been demonstrated to be highly cytotoxic to several types of cancer cells and have low toxicity to the hematopoietic system. However, the potential role of GA in colorectal cancer and its ability to overcome the chemotherapeutic resistance in CRC cells have not been well studied. In the present study, we showed that GA directly inhibited proliferation and induced apoptosis in both 5-fluorouracil (5-FU) sensitive and 5-FU resistant colorectal cancer cells; induced apoptosis via activating JNK signaling pathway. The data, therefore, suggested an alternative strategy to overcome 5-FU resistance in CRC and that GA could be a promising medicinal compound for colorectal cancer therapy. PMID:26397804

  4. Inhibition of norsolorinic acid accumulation to Aspergillus parasiticus by marine actinomycetes

    Yan, Peisheng; Shi, Cuijuan; Shen, Jihong; Wang, Kai; Gao, Xiujun; Li, Ping

    2014-11-01

    Thirty-six strains of marine actinomycetes were isolated from a sample of marine sediment collected from the Yellow Sea and evaluated in terms of their inhibitory activity on the growth of Aspergillus parasiticus and the production of norsolorinic acid using dual culture plate assay and agar diffusion methods. Among them, three strains showed strong antifungal activity and were subsequently identified as Streptomyces sp. by 16S rRNA gene sequencing analysis. The supernatant from the fermentation of the MA01 strain was extracted sequentially with chloroform and ethyl acetate, and the activities of the extracts were determined by tip culture assay. The assay results show that both extracts inhibited mycelium growth and toxin production, and the inhibitory activities of the extracts increased as their concentrations increased. The results of this study suggest that marine actinomycetes are biologically important for the control of mycotoxins, and that these bacteria could be used as novel biopesticides against mycotoxins.

  5. An efficient process for wastewater treatment to mitigate free nitrous acid generation and its inhibition on biological phosphorus removal

    Zhao, Jianwei; Wang, Dongbo; Li, Xiaoming; Yang, Qi; Chen, Hongbo; Zhong, Yu; An, Hongxue; Zeng, Guangming

    2015-01-01

    Free nitrous acid (FNA), which is the protonated form of nitrite and inevitably produced during biological nitrogen removal, has been demonstrated to strongly inhibit the activity of polyphosphate accumulating organisms (PAOs). Herein we reported an efficient process for wastewater treatment, i.e., the oxic/anoxic/oxic/extended-idle process to mitigate the generation of FNA and its inhibition on PAOs. The results showed that this new process enriched more PAOs which thereby achieved higher ph...

  6. Mechanism of fusidic acid inhibition of RRF- and EF-G-dependent splitting of the bacterial post-termination ribosome

    Borg, Anneli; Pavlov, Michael; Ehrenberg, Måns

    2016-01-01

    The antibiotic drug fusidic acid (FA) is commonly used in the clinic against gram-positive bacterial infections. FA targets ribosome-bound elongation factor G (EF-G), a translational GTPase that accelerates both messenger RNA (mRNA) translocation and ribosome recycling. How FA inhibits translocation was recently clarified, but FA inhibition of ribosome recycling by EF-G and ribosome recycling factor (RRF) has remained obscure. Here we use fast kinetics techniques to estimate mean times of rib...

  7. Polyunsaturated fatty acids inhibit stimulated coupling between the ER Ca(2+) sensor STIM1 and the Ca(2+) channel protein Orai1 in a process that correlates with inhibition of stimulated STIM1 oligomerization.

    Holowka, David; Korzeniowski, Marek K; Bryant, Kirsten L; Baird, Barbara

    2014-08-01

    Polyunsaturated fatty acids (PUFAs) have been found to be effective inhibitors of cell signaling in numerous contexts, and we find that acute addition of micromolar PUFAs such as linoleic acid effectively inhibit of Ca(2+) responses in mast cells stimulated by antigen-mediated crosslinking of FcεRI or by the SERCA pump inhibitor, thapsigargin. In contrast, the saturated fatty acid, stearic acid, with the same carbon chain length as linoleic acid does not inhibit these responses. Consistent with this inhibition of store-operated Ca(2+) entry (SOCE), linoleic acid inhibits antigen-stimulated granule exocytosis to a similar extent. Using the fluorescently labeled plasma membrane Ca(2+) channel protein, AcGFP-Orai1, together with the labeled ER Ca(2+) sensor protein, STIM1-mRFP, we monitor stimulated coupling of these proteins that is essential for SOCE with a novel spectrofluorimetric resonance energy transfer method. We find effective inhibition of this stimulated coupling by linoleic acid that accounts for the inhibition of SOCE. Moreover, we find that linoleic acid induces some STIM1-STIM1 association, while inhibiting stimulated STIM1 oligomerization that precedes STIM1-Orai1 coupling. We hypothesize that linoleic acid and related PUFAs inhibit STIM1-Orai1 coupling by a mechanism that involves perturbation of ER membrane structure, possibly by disrupting electrostatic interactions important in STIM1 oligomerization. Thisarticle is part of a Special Issue entitled Tools to study lipid functions. PMID:24769339

  8. The SCFA butyrate stimulates the epithelial production of retinoic acid via inhibition of epithelial HDAC.

    Schilderink, Ronald; Verseijden, Caroline; Seppen, Jurgen; Muncan, Vanesa; van den Brink, Gijs R; Lambers, Tim T; van Tol, Eric A; de Jonge, Wouter J

    2016-06-01

    In the intestinal mucosa, retinoic acid (RA) is a critical signaling molecule. RA is derived from dietary vitamin A (retinol) through conversion by aldehyde dehydrogenases (aldh). Reduced levels of short-chain fatty acids (SCFAs) are associated with pathological microbial dysbiosis, inflammatory disease, and allergy. We hypothesized that SCFAs contribute to mucosal homeostasis by enhancing RA production in intestinal epithelia. With the use of human and mouse epithelial cell lines and primary enteroids, we studied the effect of SCFAs on the production of RA. Functional RA conversion was analyzed by Adlefluor activity assays. Butyrate (0-20 mM), in contrast to other SCFAs, dose dependently induced aldh1a1 or aldh1a3 transcript expression and increased RA conversion in human and mouse epithelial cells. Epithelial cell line data were replicated in intestinal organoids. In these organoids, butyrate (2-5 mM) upregulated aldh1a3 expression (36-fold over control), whereas aldh1a1 was not significantly affected. Butyrate enhanced maturation markers (Mucin-2 and villin) but did not consistently affect stemness markers or other Wnt target genes (lgr5, olfm4, ascl2, cdkn1). In enteroids, the stimulation of RA production by SCFA was mimicked by inhibitors of histone deacetylase 3 (HDAC3) but not by HDAC1/2 inhibitors nor by agonists of butyrate receptors G-protein-coupled receptor (GPR)43 or GPR109A, indicating that butyrate stimulates RA production via HDAC3 inhibition. We conclude that the SCFA butyrate inhibits HDAC3 and thereby supports epithelial RA production. PMID:27151945

  9. Retinoic acid and cAMP inhibit rat hepatocellular carcinoma cell proliferation and enhance cell differentiation

    Hepatocellular carcinoma (HCC) is the third highest cause of cancer death worldwide. In general, the disease is diagnosed at an advanced stage when potentially curative therapies are no longer feasible. For this reason, it is very important to develop new therapeutic approaches. Retinoic acid (RA) is a natural derivative of vitamin A that regulates important biological processes including cell proliferation and differentiation. In vitro studies have shown that RA is effective in inhibiting growth of HCC cells; however, responsiveness to treatment varies among different HCC cell lines. The objective of the present study was to determine if the combined use of RA (0.1 µM) and cAMP (1 mM), an important second messenger, improves the responsiveness of HCC cells to RA treatment. We evaluated the proliferative behavior of an HCC cell line (HTC) and the expression profile of genes related to cancer signaling pathway (ERK and GSK-3β) and liver differentiation [E-cadherin, connexin 26 (Cx26), and connexin 32 (Cx32)]. RA and cAMP were effective in inhibiting the proliferation of HTC cells independently of combined use. However, when a mixture of RA and cAMP was used, the signals concerning the degree of cell differentiation were increased. As demonstrated by Western blot, the treatment increased E-cadherin, Cx26, Cx32 and Ser9-GSK-3β (inactive form) expression while the expression of Cx43, Tyr216-GSK-3β (active form) and phosphorylated ERK decreased. Furthermore, telomerase activity was inhibited along treatment. Taken together, the results showed that the combined use of RA and cAMP is more effective in inducing differentiation of HTC cells

  10. Retinoic acid and cAMP inhibit rat hepatocellular carcinoma cell proliferation and enhance cell differentiation

    Ionta, M. [Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, Alfenas MG (Brazil); Departamento de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo SP (Brazil); Rosa, M.C.; Almeida, R.B.; Freitas, V.M.; Rezende-Teixeira, P.; Machado-Santelli, G.M. [Departamento de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo SP (Brazil)

    2012-05-25

    Hepatocellular carcinoma (HCC) is the third highest cause of cancer death worldwide. In general, the disease is diagnosed at an advanced stage when potentially curative therapies are no longer feasible. For this reason, it is very important to develop new therapeutic approaches. Retinoic acid (RA) is a natural derivative of vitamin A that regulates important biological processes including cell proliferation and differentiation. In vitro studies have shown that RA is effective in inhibiting growth of HCC cells; however, responsiveness to treatment varies among different HCC cell lines. The objective of the present study was to determine if the combined use of RA (0.1 µM) and cAMP (1 mM), an important second messenger, improves the responsiveness of HCC cells to RA treatment. We evaluated the proliferative behavior of an HCC cell line (HTC) and the expression profile of genes related to cancer signaling pathway (ERK and GSK-3β) and liver differentiation [E-cadherin, connexin 26 (Cx26), and connexin 32 (Cx32)]. RA and cAMP were effective in inhibiting the proliferation of HTC cells independently of combined use. However, when a mixture of RA and cAMP was used, the signals concerning the degree of cell differentiation were increased. As demonstrated by Western blot, the treatment increased E-cadherin, Cx26, Cx32 and Ser9-GSK-3β (inactive form) expression while the expression of Cx43, Tyr216-GSK-3β (active form) and phosphorylated ERK decreased. Furthermore, telomerase activity was inhibited along treatment. Taken together, the results showed that the combined use of RA and cAMP is more effective in inducing differentiation of HTC cells.

  11. A newly synthesized sinapic acid derivative inhibits endothelial activation in vitro and in vivo.

    Zeng, Xiaoyun; Zheng, Jinhong; Fu, Chenglai; Su, Hang; Sun, Xiaoli; Zhang, Xuesi; Hou, Yingjian; Zhu, Yi

    2013-05-01

    Inhibition of oxidative stress and inflammation in vascular endothelial cells (ECs) may represent a new therapeutic strategy against endothelial activation. Sinapic acid (SA), a phenylpropanoid compound, is found in natural herbs and high-bran cereals and has moderate antioxidant activity. We aimed to develop new SA agents with the properties of antioxidation and blocking EC activation for possible therapy of cardiovascular disease. We designed and synthesized 10 SA derivatives according to their chemical structures. Preliminary screening of the compounds involved scavenging hydroxyl radicals and 2,2-diphenyl-1-picrylhydrazyl (DPPH(⋅)), croton oil-induced ear edema in mice, and analysis of the mRNA expression of adhesion molecules in ECs. 1-Acetyl-sinapic acyl-4-(3'-chlorine-)benzylpiperazine (SA9) had the strongest antioxidant and anti-inflammatory activities both in vitro and in vivo. Thus, the effect of SA9 was further studied. SA9 inhibited tumor necrosis factor α-induced upregulation of adhesion molecules in ECs at both mRNA and protein levels, as well as the consequent monocyte adhesion to ECs. In vivo, result of face-to-face immunostaining showed that SA9 reduced lipopolysaccharide-induced expression of intercellular adhesion molecule-1 in mouse aortic intima. To study the molecular mechanism, results from luciferase assay, nuclear translocation of NF-κB, and Western blot indicated that the mechanism of the anti-inflammatory effects of SA9 might be suppression of intracellular generation of ROS and inhibition of NF-κB activation in ECs. SA9 is a prototype of a novel class of antioxidant with anti-inflammatory effects in ECs. It may represent a new therapeutic approach for preventing endothelial activation in cardiovascular disorders. PMID:23470287

  12. Essential role for acid sphingomyelinase-inhibited autophagy in melanoma response to cisplatin.

    Cervia, Davide; Assi, Emma; De Palma, Clara; Giovarelli, Matteo; Bizzozero, Laura; Pambianco, Sarah; Di Renzo, Ilaria; Zecchini, Silvia; Moscheni, Claudia; Vantaggiato, Chiara; Procacci, Patrizia; Clementi, Emilio; Perrotta, Cristiana

    2016-05-01

    The sphingolipid metabolising enzyme Acid Sphingomyelinase (A-SMase) has been recently shown to inhibit melanoma progression and correlate inversely to tumour grade. In this study we have investigated the role of A-SMase in the chemo-resistance to anticancer treatmentusing mice with melanoma allografts and melanoma cells differing in terms of expression/activity of A-SMase. Since autophagy is emerging as a key mechanism in tumour growth and chemo-resistance, we have also investigated whether an action of A-SMase in autophagy can explain its role. Melanoma sensitivity to chemotherapeutic agent cisplatin in terms of cell viability/apoptosis, tumour growth, and animal survival depended directly on the A-SMase levels in tumoural cells. A-SMase action was due to inhibition of autophagy through activation of Akt/mammalian target of rapamycin (mTOR) pathway. Treatment of melanoma-bearing mice with the autophagy inhibitor chloroquine restored sensitivity to cisplatin of tumours expressing low levels of A-SMase while no additive effects were observed in tumours characterised by sustained A-SMase levels. The fact that A-SMase in melanomas affects mTOR-regulated autophagy and plays a central role in cisplatin efficacy encourages pre-clinical testing on the modulation of A-SMase levels/activity as possible novel anti-neoplastic strategy. PMID:27107419

  13. Investigations of the inhibition of copper corrosion in nitric acid solutions by ketene dithioacetal derivatives

    Fiala, A.; Chibani, A.; Darchen, A.; Boulkamh, A.; Djebbar, K.

    2007-10-01

    Ketene dithioacetal derivatives, namely 3-[bis(methylthio)methylene] pentane-2,4-dione ( 1), 3-(1,3-dithian-2-ylidene) pentane-2,4-dione ( 2) and 3-(1,3-dithiolan-2-ylidene) pentane-2,4-dione ( 3) were synthesized and their respective capacity to inhibit copper corrosion in 3 M HNO 3 was investigated by means of weight loss, potentiodynamic polarization, scanning electron microscopy (SEM) and energy dispersive X-ray fluorescence (XRF). The obtained results indicate that the addition of these compounds significantly decreases the corrosion rate. Potentiodynamic polarization studies clearly showed that the inhibition efficiency increases with increasing concentration of the investigated compounds at a fixed temperature, but decreases with increasing temperature. These results on the whole showed that the studied substances are good cathodic inhibitors for copper corrosion in nitric acid medium. SEM and energy dispersive X-ray (EDAX) examination of the copper surface revealed that these compounds prevented copper from corrosion by adsorption on its surface to form a protective film, which acts as a barrier to aggressive agents. The presence of these organic compounds adsorbed on the electrode surface was confirmed by XRF investigations.

  14. The inhibited effect of some tetrazolic compounds towards the corrosion of brass in nitric acid solution

    The effect of the addition of some tetrazolic type organic compounds: 1-phenyl-5-mercapto-1,2,3,4-tetrazole (PMT), 1,2,3,4-tetrazole (TTZ), 5-amino-1,2,3,4-tetrazole (AT) and 1-phenyl-1,2,3,4-tetrazole (PT) on the corrosion of brass in nitric acid is studied by weight loss, polarisation and electrochemical impedance spectroscopy (EIS) measurements. The explored methods gave almost similar results. Results obtained reveal that PMT is the best inhibitor and the inhibition efficiency (E%) follows the sequence: PMT > PT > AT > TTZ. Polarization measurements also indicated that tetrazoles acted as mixed-type inhibitors without changing the mechanism of the hydrogen evolution reaction. Partial π-charge on atoms has been calculated. Correlation between the highest occupied molecular orbital energy E HOMO and inhibition efficiencies was sought. The adsorption of PMT on the brass surface followed the Langmuir isotherm. Effect of temperature is also studied in the (25-50 deg. C) range

  15. The inhibited effect of some tetrazolic compounds towards the corrosion of brass in nitric acid solution

    Mihit, M. [Laboratoire de Chimie-Physique, Equipe de Chimie Moleculaire and Corrosion, Faculte des Sciences, Agadir B.P 8106 (Morocco); El Issami, S. [Laboratoire de Chimie-Physique, Equipe de Chimie Moleculaire and Corrosion, Faculte des Sciences, Agadir B.P 8106 (Morocco); Bouklah, M. [Laboratoire de Chimie des Eaux and Corrosion, Faculte des Sciences, Oujda (Morocco); Bazzi, L. [Laboratoire de Chimie-Physique, Equipe de Chimie Moleculaire and Corrosion, Faculte des Sciences, Agadir B.P 8106 (Morocco); Hammouti, B. [Laboratoire de Chimie des Eaux and Corrosion, Faculte des Sciences, Oujda (Morocco)]. E-mail: hammoutib@yahoo.fr; Ait Addi, E. [Laboratoire de Chimie-Physique, Equipe de Chimie Moleculaire and Corrosion, Faculte des Sciences, Agadir B.P 8106 (Morocco); Salghi, R. [Laboratoire de l' Environnement et Science de l' Eau, Ecole Nationale des Sciences Appliquees d' Agadir, B.P. 33/S, Agadir (Morocco); Kertit, S. [Laboratoire de Physico-Chimie des Materiaux, Ecole Normale Superieure-Takaddoum, Rabat (Morocco)

    2006-01-15

    The effect of the addition of some tetrazolic type organic compounds: 1-phenyl-5-mercapto-1,2,3,4-tetrazole (PMT), 1,2,3,4-tetrazole (TTZ), 5-amino-1,2,3,4-tetrazole (AT) and 1-phenyl-1,2,3,4-tetrazole (PT) on the corrosion of brass in nitric acid is studied by weight loss, polarisation and electrochemical impedance spectroscopy (EIS) measurements. The explored methods gave almost similar results. Results obtained reveal that PMT is the best inhibitor and the inhibition efficiency (E%) follows the sequence: PMT > PT > AT > TTZ. Polarization measurements also indicated that tetrazoles acted as mixed-type inhibitors without changing the mechanism of the hydrogen evolution reaction. Partial {pi}-charge on atoms has been calculated. Correlation between the highest occupied molecular orbital energy E {sub HOMO} and inhibition efficiencies was sought. The adsorption of PMT on the brass surface followed the Langmuir isotherm. Effect of temperature is also studied in the (25-50 deg. C) range.

  16. Biochemical and mass spectrometric characterization of human N-acylethanolamine-hydrolyzing acid amidase inhibition.

    Jay M West

    Full Text Available The mechanism of inactivation of human enzyme N-acylethanolamine-hydrolyzing acid amidase (hNAAA, with selected inhibitors identified in a novel fluorescent based assay developed for characterization of both reversible and irreversible inhibitors, was investigated kinetically and using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS. 1-Isothiocyanatopentadecane (AM9023 was found to be a potent, selective and reversible hNAAA inhibitor, while two others, 5-((biphenyl-4-ylmethyl-N,N-dimethyl-2H-tetrazole-2-carboxamide (AM6701 and N-Benzyloxycarbonyl-L-serine β-lactone (N-Cbz-serine β-lactone, inhibited hNAAA in a covalent and irreversible manner. MS analysis of the hNAAA/covalent inhibitor complexes identified modification only of the N-terminal cysteine (Cys126 of the β-subunit, confirming a suggested mechanism of hNAAA inactivation by the β-lactone containing inhibitors. These experiments provide direct evidence of the key role of Cys126 in hNAAA inactivation by different classes of covalent inhibitors, confirming the essential role of cysteine for catalysis and inhibition in this cysteine N-terminal nucleophile hydrolase enzyme. They also provide a methodology for the rapid screening and characterization of large libraries of compounds as potential inhibitors of NAAA, and subsequent characterization or their mechanism through MALDI-TOF MS based bottom up-proteomics.

  17. Isoflurane inhibits embryonic stem cell self-renewal through retinoic acid receptor.

    Liu, Sheng; Zhang, Lei; Liu, Yi; Shen, Xia; Yang, Longqiu

    2015-08-01

    The commonly used inhalation anesthetic isoflurane could permeate rapidly through the placental barrier and induce toxicity to the central nervous system of the developing fetus. However, the effects of isoflurane in utero during early gestation are unknown. We therefore treated pregnant mice with 1.4% isoflurane for 2h per day for three days at day3.5 (E3.5) to day6.5 (E6.5) to investigated the toxicity of isoflurane. Pregnant mice were executed and the fetal mice were weighed and observed. Mouse ESCs (E14) was exposed to 2% isoflurane for 6h. Twenty-four hours later, self-renewal was examined with AP staining. Effects of isoflurane on the expression of RAR-γ were examined using Western blot. As a result, anesthesia with 1.4% isoflurane for 2 hour per day for 3 days reduced fetal growth and development. Isoflurane decreased self-renewal and the expression stemness genes (Nanog, Oct4, Sox2, and Lin28) in mESCs. Vitamin A attenuated the effects of isoflurane inducing self-renewal inhibition. In summary, Anesthesia with 1.4% isoflurane for 2h per day for 3 days reduced fetal growth and development. Moreover, isoflurane inhibits mESCs self-renewal through retinoic acid receptor. PMID:26349971

  18. The inhibitive effect of bipyrazolic derivatives on the corrosion of steel in hydrochloric acid solution

    The effect of two pyrazole-type organic compounds, namely ethyl 5,5'-dimethyl-1'H-1,3'-bipyrazole-3 carboxylate (P1) and 3,5,5'-trimethyl-1'H-1,3'-bipyrazole (P2) on the corrosion behaviour of steel in 1 M hydrochloric acid (HCl) solution is investigated at 308 K by weight loss measurements, potentiodynamic polarisation and impedance spectroscopy (EIS) methods. The inhibition efficiencies obtained from cathodic Tafel plots, gravimetric and EIS methods are in good agreement. Results obtained show that the compound P2 is the best inhibitor and its efficiency reaches 84% at 10-3 M. Potentiodynamic polarisation studies show that pyrazolic derivatives are cathodic-type inhibitors and these compounds act on the cathodic reaction without changing the mechanism of the hydrogen evolution reaction. The inhibition efficiency of P2 is temperature-dependent in the range from 308 to 353 K and the associated activation energy has been determined. P2 adsorbs on the steel surface according to Langmuir adsorption model. The calculation of the total partial charge of inhibitor atoms is computed

  19. Metabolism and metabolic inhibition of gamboglc acid in rat liver microsomes

    Yi-tong LIU; Kun HAO; Xiao-quan LIU; Guang-Ji WANG

    2006-01-01

    Aim: To study the metabolism of gambogic acid (GA) and the effects of selective cytochrome P-450 (CYP450) inhibitors on the metabolism of GA in rat liver microsomes in vitro. Methods: Rat liver micrp,so,rn,e$ were used to perform metabolism studies. Various selective CYP450 inhibitors were used to investigate their effects on the metabolism of GA and the principal CYP450 isoform involved in the formation of major metabolite M1 in rat liver microsomes. Types of inhibition in an enzyme kinetics model were used to model the interaction. Results: GA was rapidly metabolized to two phase Ⅰ metabolites,, M1 and M2, in rat liver microsomes. M1 and M2 were tentatively presumed to be the hydration metabolite and epoxide metabolite of GA, respectively. α-Naphthoflavone uncompetitively inhibited the formation of M1 while ketoconazole, sulfophenazole, diethyl dithiocarbamate and quinidine had little or no inhibitory effects on the formation of M1. Conclusion: GA is rapidly metabolized in rat liver microsomes and M1 is crucial for the elimination of GA. Cytochrome P-450 1A2 is the major rat CYP involved in the metabolism of GA.

  20. Inhibited growth of Pseudomonas aeruginosa by dextran- and polyacrylic acid-coated ceria nanoparticles

    Wang Q

    2013-08-01

    Full Text Available Qi Wang,1 J Manuel Perez,2 Thomas J Webster1,3 1Bioengineering Program, College of Engineering, Northeastern University, Boston, MA, USA; 2Nanoscience Technology Center, University of Central Florida, Orlando, FL, USA; 3Department of Chemical Engineering, College of Engineering, Northeastern University, Boston, MA, USA Abstract: Ceria (CeO2 nanoparticles have been widely studied for numerous applications, but only a few recent studies have investigated their potential applications in medicine. Moreover, there have been almost no studies focusing on their possible antibacterial properties, despite the fact that such nanoparticles may reduce reactive oxygen species. In this study, we coated CeO2 nanoparticles with dextran or polyacrylic acid (PAA because of their enhanced biocompatibility properties, minimized toxicity, and reduced clearance by the immune system. For the first time, the coated CeO2 nanoparticles were tested in bacterial assays involving Pseudomonas aeruginosa, one of the most significant bacteria responsible for infecting numerous medical devices. The results showed that CeO2 nanoparticles with either coating significantly inhibited the growth of Pseudomonas aeruginosa, by up to 55.14%, after 24 hours compared with controls (no particles. The inhibition of bacterial growth was concentration dependent. In summary, this study revealed, for the first time, that the characterized dextran- and PAA-coated CeO2 nanoparticles could be potential novel materials for numerous antibacterial applications. Keywords: antibacterial, biomedical applications

  1. Studies on the Inhibitive Effect of Datura Stramonium Extract on the Acid Corrosion of Mild Steel

    Raja, Pandian Bothi; Sethuraman, Mathur Gopalakrishnan

    The extract of Datura stramonium has been studied as a possible source of green inhibitor for corrosion of mild steel (MS) in HCl and H2SO4 media at different temperatures. The anticorrosion effect was evaluated by conventional weight loss studies, electrochemical studies viz., Tafel polarization, ac impedance, and SEM studies. The studies reveal that the plant extract acts as a good inhibitor in both the acid media and better in H2SO4 medium. Tafel polarization method indicate that the plant extract behaves as a mixed mode inhibitor. Double layer capacitance and charge transfer resistance values derived from Nyquist plots obtained from ac impedance studies give supporting evidence for the anticorrosive effect. The inhibitive effect may be attributed to the adsorption of the inhibitor on the surface of MS, following Temkin adsorption isotherm. Increase of inhibition efficiency with increase of temperature along with Ea values serve as a proof for chemisorption. SEM studies provide the confirmatory evidence for the protection of MS by the green inhibitor. The study reveals the potential of D. stramonium for combating corrosion which may be due to the adsorption of alkaloids and other phytoconstituents.

  2. Inhibition of matrix metalloproteinases expression in human dental pulp cells by all-trans retinoic acid

    Jin Man Kim; Sang Wook Kang; Su-Mi Shin; Duck Su Kim; Kyong-Kyu Choi; Eun-Cheol Kim; Sun-Young Kim

    2014-01-01

    All-trans retinoic acid (ATRA) inhibits matrix metalloproteinase (MMP)-2 and MMP-9 in synovial fibroblasts, skin fibroblasts, bronchoalveolar lavage cells and cancer cells, but activates MMP-9 in neuroblast and leukemia cells. Very little is known regarding whether ATRA can activate or inhibit MMPs in human dental pulp cells (HDPCs). The purpose of this study was to determine the effects of ATRA on the production and secretion of MMP-2 and-9 in HDPCs. The productions and messenger RNA (mRNA) expressions of MMP-2 and-9 were accessed by gelatin zymography and real-time polymerase chain reaction (PCR), respectively. ATRA was found to decrease MMP-2 level in a dose-dependent manner. Significant reduction in MMP-2 mRNA expression was also observed in HDPCs treated with 25 mmol?L21 ATRA. However, HDPCs treated with ATRA had no effect on the pattern of MMP-9 produced or secreted in either cell extracts or conditioned medium fractions. Taken together, ATRA had an inhibitory effect on MMP-2 expression in HDPCs, which suggests that ATRA could be a candidate as a medicament which could control the inflammation of pulp tissue in vital pulp therapy and regenerative endodontics.

  3. Ellagic acid promotes A{beta}42 fibrillization and inhibits A{beta}42-induced neurotoxicity

    Feng, Ying [Department of Histology and Embryology, College of Basic Medical Science, China Medical University, Shenyang 110001 (China); Tsinghua University School of Medicine, Haidian District, Beijing 100084 (China); Yang, Shi-gao; Du, Xue-ting; Zhang, Xi; Sun, Xiao-xia; Zhao, Min [Tsinghua University School of Medicine, Haidian District, Beijing 100084 (China); Sun, Gui-yuan, E-mail: sungy2004@sohu.com [Department of Histology and Embryology, College of Basic Medical Science, China Medical University, Shenyang 110001 (China); Liu, Rui-tian, E-mail: rtliu@tsinghua.edu.cn [Tsinghua University School of Medicine, Haidian District, Beijing 100084 (China)

    2009-12-25

    Smaller, soluble oligomers of {beta}-amyloid (A{beta}) play a critical role in the pathogenesis of Alzheimer's disease (AD). Selective inhibition of A{beta} oligomer formation provides an optimum target for AD therapy. Some polyphenols have potent anti-amyloidogenic activities and protect against A{beta} neurotoxicity. Here, we tested the effects of ellagic acid (EA), a polyphenolic compound, on A{beta}42 aggregation and neurotoxicity in vitro. EA promoted A{beta} fibril formation and significant oligomer loss, contrary to previous results that polyphenols inhibited A{beta} aggregation. The results of transmission electron microscopy (TEM) and Western blot displayed more fibrils in A{beta}42 samples co-incubated with EA in earlier phases of aggregation. Consistent with the hypothesis that plaque formation may represent a protective mechanism in which the body sequesters toxic A{beta} aggregates to render them harmless, our MTT results showed that EA could significantly reduce A{beta}42-induced neurotoxicity toward SH-SY5Y cells. Taken together, our results suggest that EA, an active ingredient in many fruits and nuts, may have therapeutic potential in AD.

  4. Ellagic acid promotes Aβ42 fibrillization and inhibits Aβ42-induced neurotoxicity

    Smaller, soluble oligomers of β-amyloid (Aβ) play a critical role in the pathogenesis of Alzheimer's disease (AD). Selective inhibition of Aβ oligomer formation provides an optimum target for AD therapy. Some polyphenols have potent anti-amyloidogenic activities and protect against Aβ neurotoxicity. Here, we tested the effects of ellagic acid (EA), a polyphenolic compound, on Aβ42 aggregation and neurotoxicity in vitro. EA promoted Aβ fibril formation and significant oligomer loss, contrary to previous results that polyphenols inhibited Aβ aggregation. The results of transmission electron microscopy (TEM) and Western blot displayed more fibrils in Aβ42 samples co-incubated with EA in earlier phases of aggregation. Consistent with the hypothesis that plaque formation may represent a protective mechanism in which the body sequesters toxic Aβ aggregates to render them harmless, our MTT results showed that EA could significantly reduce Aβ42-induced neurotoxicity toward SH-SY5Y cells. Taken together, our results suggest that EA, an active ingredient in many fruits and nuts, may have therapeutic potential in AD.

  5. In vitro gender-dependent inhibition of porcine cytochrome p450 activity by selected flavonoids and phenolic acids.

    Ekstrand, Bo; Rasmussen, Martin Krøyer; Woll, Felicia; Zlabek, Vladimir; Zamaratskaia, Galia

    2015-01-01

    We investigated gender-related differences in the ability of selected flavonoids and phenolic compounds to modify porcine hepatic CYP450-dependent activity. Using pools of microsomes from male and female pigs, the inhibition of the CYP families 1A, 2A, 2E1, and 3A was determined. The specific CYP activities were measured in the presence of the following selected compounds: rutin, myricetin, quercetin, isorhamnetin, p-coumaric acid, gallic acid, and caffeic acid. We determined that myricetin and isorhamnetin competitively inhibited porcine CYP1A activity in the microsomes from both male and female pigs but did not affect the CYP2A and CYP2E1. Additionally, isorhamnetin competitively inhibited CYP3A in both genders. Noncompetitive inhibition of CYP3A activity by myricetin was observed only in the microsomes from male pigs, whereas CYP3A in female pigs was not affected. Quercetin competitively inhibited CYP2E1 and CYP1A activity in the microsomes from male pigs and irreversibly CY3A in female pigs. No effect of quercetin on CYP2E1 was observed in the microsomes from female pigs. Neither phenolic acids nor rutin affected CYP450 activities. Taken together, our results suggest that the flavonoids myricetin, isorhamnetin, and quercetin may affect the activities of porcine CYP1A, CYP3A, and CYP2E1 in a gender-dependent manner. PMID:25685784

  6. Thalidomide inhibition of vascular remodeling and inflammatory reactivity in the quinolinic acid-injected rat striatum.

    Ryu, J K; Jantaratnotai, N; McLarnon, J G

    2009-10-01

    Effects of thalidomide administration on vascular remodeling, gliosis and neuronal viability have been studied in excitotoxin-injected rat striatum. Intrastriatal injection of quinolinic acid (QUIN) caused time-dependent changes (durations of 6 h, 1 and 7 d post-injection) in vascular remodeling. QUIN excitotoxic insult was associated with increased numbers of vessels (laminin or collagen IV markers) demonstrating considerable abnormalities in morphology, including short fragments and vascular loops. Non-lesioned striatum, with injection of phosphate buffer solution (PBS) as a vehicle, showed no evidence for vascular remodeling. A maximal extent of vascular remodeling was measured at 1 d post-QUIN and was correlated with marked increases in microgliosis (ED1 marker) and astrogliosis (glial fibrillary acidic protein [GFAP] marker) relative to control PBS injection. Double staining of laminin with ED1 and GFAP demonstrated areas of close association of glial cells with blood vessels. Treatment of QUIN-injected animals with the anti-inflammatory compound, thalidomide significantly inhibited vascular remodeling (by 43%) and reduced microgliosis (by 33%) but was ineffective in modifying extents of astrogliosis. Intrastriatal QUIN injection was associated with a marked loss of striatal neurons relative to non-lesioned control with thalidomide treatment exhibiting a significant degree of neuroprotection (24% recovery) against QUIN-induced neurotoxicity. These results suggest close links between microglial-mediated inflammatory responses and vascular remodeling, with inflammatory reactivity associated with, and contributing to, neuronal damage in excitotoxically-lesioned striatum. PMID:19591904

  7. Pantethine inhibits cholesterol and fatty acid syntheses and stimulates carbon dioxide formation in isolated rat hepatocytes.

    Cighetti, G; Del Puppo, M; Paroni, R; Fiorica, E; Galli Kienle, M

    1987-02-01

    The effects of pantethine on cholesterol and fatty acid metabolism were investigated in isolated rat hepatocytes. Preincubation of the cells with pantethine induced a concentration-dependent decrease of the radioactivity incorporated into carbon dioxide and lipids in incubations with [2-14C]acetate. When pantethine and the labeled substrate were simultaneously added to the cell suspension, there was an enhancement of carbon dioxide radioactivity at short incubation time (5 min) whereas, at longer incubation time, values were comparable to those of controls; lipid radioactivity, instead, was dramatically reduced by pantethine even at short incubation time and decreased further during the incubation, being 23% of that of controls at 60 min. Analysis of the incubation medium showed that pantethine induced a concentration- and time-dependent release of acetate into the medium. Results of the effect of the acetate concentration on the incorporation of [2-14C]acetate radioactivity into CO2 and lipids in control hepatocytes allowed the conclusion that the above-described modifications induced by pantethine are only partially attributable to the dilution of the labeled substrate, and that catabolism of acetate to carbon dioxide is stimulated by the disulphide pantethine, whereas cholesterol and fatty acid syntheses are inhibited. PMID:3106549

  8. Synergistic inhibition of cancer cell proliferation with a combination of δ-tocotrienol and ferulic acid

    Eitsuka, Takahiro, E-mail: eitsuka@nupals.ac.jp [Faculty of Applied Life Sciences, Niigata University of Pharmacy and Applied Life Sciences, Niigata 956-8603 (Japan); Tatewaki, Naoto; Nishida, Hiroshi; Kurata, Tadao [Faculty of Applied Life Sciences, Niigata University of Pharmacy and Applied Life Sciences, Niigata 956-8603 (Japan); Nakagawa, Kiyotaka; Miyazawa, Teruo [Food and Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555 (Japan)

    2014-10-24

    Highlights: • δ-Tocotrienol (δ-T3) and ferulic acid (FA) synergistically inhibit cancer cell growth. • The combination of δ-T3 and FA induces G1 arrest by up-regulating p21. • The synergy is attributed to an increase in the cellular concentration of δ-T3 by FA. - Abstract: Rice bran consists of many functional compounds and thus much attention has been focused on the health benefits of its components. Here, we investigated the synergistic inhibitory effects of its components, particularly δ-tocotrienol (δ-T3) and ferulic acid (FA), against the proliferation of an array of cancer cells, including DU-145 (prostate cancer), MCF-7 (breast cancer), and PANC-1 (pancreatic cancer) cells. The combination of δ-T3 and FA markedly reduced cell proliferation relative to δ-T3 alone, and FA had no effect when used alone. Although δ-T3 induced G1 arrest by up-regulating p21 in PANC-1 cells, more cells accumulated in G1 phase with the combination of δ-T3 and FA. This synergistic effect was attributed to an increase in the cellular concentration of δ-T3 by FA. Our results suggest that the combination of δ-T3 and FA may present a new strategy for cancer prevention and therapy.

  9. Ginkgolic acid suppresses the development of pancreatic cancer by inhibiting pathways driving lipogenesis.

    Ma, Jiguang; Duan, Wanxing; Han, Suxia; Lei, Jianjun; Xu, Qinhong; Chen, Xin; Jiang, Zhengdong; Nan, Ligang; Li, Jiahui; Chen, Ke; Han, Liang; Wang, Zheng; Li, Xuqi; Wu, Erxi; Huo, Xiongwei

    2015-08-28

    Ginkgolic acid (GA) is a botanical drug extracted from the seed coat of Ginkgo biloba L. with a wide range of bioactive properties, including anti-tumor effect. However, whether GA has antitumor effect on pancreatic cancer cells and the underlying mechanisms have yet to be investigated. In this study, we show that GA suppressed the viability of cancer cells but has little toxicity on normal cells, e.g, HUVEC cells. Furthermore, treatment of GA resulted in impaired colony formation, migration, and invasion ability and increased apoptosis of cancer cells. In addition, GA inhibited the de novo lipogenesis of cancer cells through inducing activation of AMP-activated protein kinase (AMPK) signaling and downregulated the expression of key enzymes (e.g. acetyl-CoA carboxylase [ACC], fatty acid synthase [FASN]) involved in lipogenesis. Moreover, the in vivo experiment showed that GA reduced the expression of the key enzymes involved in lipogenesis and restrained the tumor growth. Taken together, our results suggest that GA may serve as a new candidate against tumor growth of pancreatic cancer partially through targeting pathway driving lipogenesis. PMID:25895130

  10. Inhibition of leukemic cells by valproic acid, an HDAC inhibitor, in xenograft tumors

    Zhang Z

    2013-06-01

    Full Text Available Zhihua Zhang,1 Changlai Hao,1 Lihong Wang,1 Peng Liu,2 Lei Zhao,1 Cuimin Zhu,1 Xia Tian31Hematology Department, Affiliated Hospital of Chengde Medical College, Chengde, Hebei Province, 2Department of Medical Oncology, Shijiazhuang Municipal No 1 Hospital, Hebei Province, 3Department of Medical Oncology, Rizhao Municipal People’s Hospital, Shandong Province, People's Republic of ChinaAbstract: The chimeric fusion protein, AML1-ETO, generated by translocation of t(8;21, abnormally recruits histone deacetylase (HDAC to the promoters of AML1 target genes, resulting in transcriptional repression of the target genes and development of t(8;21 acute myeloid leukemia. Abnormal expression of cyclin-dependent kinase inhibitors, especially p21, is considered a possible mechanism of the arrested maturation and differentiation seen in leukemia cells. A new generation of HDAC inhibitors is becoming an increasing focus of attention for their ability to induce differentiation and apoptosis in tumor cells and to block the cell cycle. Our previous research had demonstrated that valproic acid induces G0/G1 arrest of Kasumi-1 cells in t(8;21 acute myeloid leukemia. In this study, we further confirmed that valproic acid inhibits the growth of Kasumi-1 cells in a murine xenograft tumor model, and that this occurs via upregulation of histone acetylation in the p21 promoter region, enhancement of p21 expression, suppression of phosphorylation of retinoblastoma protein, blocking of transcription activated by E2F, and induction of G0/G1 arrest.Keywords: valproic acid, acute myeloid leukemia, AML1-ETO, p21, E2F

  11. Lipopolysaccharide inhibits or accelerates biomedical titanium corrosion depending on environmental acidity

    Fei Yu; Owen Addison; Stephen J Baker; Alison J Davenport

    2015-01-01

    Titanium and its alloys are routinely used as biomedical implants and are usually considered to be corrosion resistant under physiological conditions. However, during inflammation, chemical modifications of the peri-implant environment including acidification occur. In addition certain biomolecules including lipopolysaccharide (LPS), a component of Gram-negative bacterial cell walls and driver of inflammation have been shown to interact strongly with Ti and modify its corrosion resistance. Gram-negative microbes are abundant in biofilms which form on dental implants. The objective was to investigate the influence of LPS on the corrosion properties of relevant biomedical Ti substrates as a function of environmental acidity. Inductively coupled plasma mass spectrometry was used to quantify Ti dissolution following immersion testing in physiological saline for three common biomedical grades of Ti (ASTM Grade 2, Grade 4 and Grade 5). Complementary electrochemical tests including anodic and cathodic polarisation experiments and potentiostatic measurements were also conducted. All three Ti alloys were observed to behave similarly and ion release was sensitive to pH of the immersion solution. However, LPS significantly inhibited Ti release under the most acidic conditions (pH 2), which may develop in localized corrosion sites, but promoted dissolution at pH 4–7, which would be more commonly encountered physiologically. The observed pattern of sensitivity to environmental acidity of the effect of LPS on Ti corrosion has not previously been reported. LPS is found extensively on the surfaces of skin and mucosal penetrating Ti implants and the findings are therefore relevant when considering the chemical stability of Ti implant surfaces in vivo.

  12. Green approach to corrosion inhibition of mild steel in hydrochloric acid and sulphuric acid solutions by the extract of Murraya koenigii leaves

    The inhibition of the corrosion of mild steel in hydrochloric acid and sulphuric acid solutions by the extract of Murraya koenigii leaves has been studied using weight loss, electrochemical impedance spectroscopy (EIS), linear polarization and potentiodynamic polarization techniques. Inhibition was found to increase with increasing concentration of the leaves extract. The effect of temperature, immersion time and acid concentration on the corrosion behavior of mild steel in 1 M HCl and 0.5 M H2SO4 with addition of extract was also studied. The inhibition was assumed to occur via adsorption of the inhibitor molecules on the metal surface. The adsorption of the extract on the mild steel surface obeys the Langmuir adsorption isotherm. The activation energy as well as other thermodynamic parameters (Q, ΔH*, and ΔS*) for the inhibition process was calculated. These thermodynamic parameters show strong interaction between inhibitor and mild steel surface. The results obtained show that the extract of the leaves of M. koenigii could serve as an effective inhibitor of the corrosion of mild steel in hydrochloric and sulphuric acid media.

  13. A 2,4-dichlorophenoxyacetic acid analog screened using a maize coleoptile system potentially inhibits indole-3-acetic acid influx in Arabidopsis thaliana

    Suzuki, Hiromi; Matano, Naoyuki; Nishimura, Takeshi; Koshiba, Tomokazu

    2014-01-01

    Studies using inhibitors of indole-3-acetic acid (IAA) transport, not only for efflux but influx carriers, provide many aspects of auxin physiology in plants. 1-Naphtoxyacetic acid (1-NOA), an analog of the synthetic auxin 1-N-naphtalene acetic acid (NAA), inhibits the IAA influx carrier AUX1. However, 1-NOA also shows auxin activity because of its structural similarity to NAA. In this study, we have identified another candidate inhibitor of the IAA influx carrier. The compound, “7-B3; ethyl ...

  14. Pimaradienoic Acid Inhibits Carrageenan-Induced Inflammatory Leukocyte Recruitment and Edema in Mice: Inhibition of Oxidative Stress, Nitric Oxide and Cytokine Production.

    Mizokami, Sandra S; Hohmann, Miriam S N; Staurengo-Ferrari, Larissa; Carvalho, Thacyana T; Zarpelon, Ana C; Possebon, Maria I; de Souza, Anderson R; Veneziani, Rodrigo C S; Arakawa, Nilton S; Casagrande, Rubia; Verri, Waldiceu A

    2016-01-01

    Pimaradienoic acid (PA; ent-pimara-8(14),15-dien-19-oic acid) is a pimarane diterpene found in plants such as Vigueira arenaria Baker (Asteraceae) in the Brazilian savannas. Although there is evidence on the analgesic and in vitro inhibition of inflammatory signaling pathways, and paw edema by PA, its anti-inflammatory effect deserves further investigation. Thus, the objective of present study was to investigate the anti-inflammatory effect of PA in carrageenan-induced peritoneal and paw inflammation in mice. Firstly, we assessed the effect of PA in carrageenan-induced leukocyte recruitment in the peritoneal cavity and paw edema and myeloperoxidase activity. Next, we investigated the mechanisms involved in the anti-inflammatory effect of PA. The effect of PA on carrageenan-induced oxidative stress in the paw skin and peritoneal cavity was assessed. We also tested the effect of PA on nitric oxide, superoxide anion, and inflammatory cytokine production in the peritoneal cavity. PA inhibited carrageenan-induced recruitment of total leukocytes and neutrophils to the peritoneal cavity in a dose-dependent manner. PA also inhibited carrageenan-induced paw edema and myeloperoxidase activity in the paw skin. The anti-inflammatory mechanism of PA depended on maintaining paw skin antioxidant activity as observed by the levels of reduced glutathione, ability to scavenge the ABTS cation and reduce iron as well as by the inhibition of superoxide anion and nitric oxide production in the peritoneal cavity. Furthermore, PA inhibited carrageenan-induced peritoneal production of inflammatory cytokines TNF-α and IL-1β. PA presents prominent anti-inflammatory effect in carrageenan-induced inflammation by reducing oxidative stress, nitric oxide, and cytokine production. Therefore, it seems to be a promising anti-inflammatory molecule that merits further investigation. PMID:26895409

  15. Fluorescence properties and sequestration of peripheral anionic site specific ligands in bile acid hosts: Effect on acetylcholinesterase inhibition activity.

    Islam, Mullah Muhaiminul; Aguan, Kripamoy; Mitra, Sivaprasad

    2016-05-01

    The increase in fluorescence intensity of model acetyl cholinesterase (AChE) inhibitors like propidium iodide (PI) and ethidium bromide (EB) is due to sequestration of the probes in primary micellar aggregates of bile acid (BA) host medium with moderate binding affinity of ca. 10(2)-10(3)M(-1). Multiple regression analysis of solvent dependent fluorescence behavior of PI indicates the decrease in total nonradiative decay rate due to partial shielding of the probe from hydrogen bond donation ability of the aqueous medium in bile acid bound fraction. Both PI and EB affects AChE activity through mixed inhibition and consistent with one site binding model; however, PI (IC50=20±1μM) shows greater inhibition in comparison with EB (IC50=40±3μM) possibly due to stronger interaction with enzyme active site. The potency of AChE inhibition for both the compounds is drastically reduced in the presence of bile acid due to the formation of BA-inhibitor complex and subsequent reduction of active inhibitor fraction in the medium. Although the inhibition mechanism still remains the same, the course of catalytic reaction critically depends on equilibrium binding among several species present in the solution; particularly at low inhibitor concentration. All the kinetic parameters for enzyme inhibition reaction are nicely correlated with the association constant for BA-inhibitor complex formation. PMID:26974580

  16. Inhibition of Alcoholic Fermentation of Grape Must by Fatty Acids Produced by Yeasts and Their Elimination by Yeast Ghosts

    Lafon-Lafourcade, S.; Geneix, C.; Ribéreau-Gayon, P.

    1984-01-01

    In a complete nutritive medium rich in sugar, such as grape must, the inhibition of alcoholic fermentation is caused by substances produced by the yeast which, acting synergistically with ethanol, are toxic to the yeasts themselves. Among these are decanoic and octanoic acids and their corresponding ethyl esters. Their adsorption by yeast ghosts permits the prevention and treatment of fermentation stoppages.

  17. Inhibition of proteolytic processing of adenoviral proteins by epsilon-aminocaproic acid and ambenum in adenovirus-infected cells.

    Nosach, Lidiya; Dyachenko, Nataliya; Zhovnovataya, Valentina; Lozinskiy, Miron; Lozitsky, Victor

    2002-01-01

    Maturation of adenovirus particles is markedly affected by proteolytic processing. The possibility for blocking the conversion of precursor structural core protein (preVII) into mature structure protein VII by officinal drugs epsilon-aminocaproic acid and ambenum has been demonstrated in Hep-2 cells infected with adenovirus. Proteolytic processing may be regarded as one of the targets for inhibiting adenovirus reproduction. PMID:12545207

  18. INHIBITION OF GERMINATION AND OUTGROWTH OF CLOSTRIDIUM PERFRINGENS SPORES BY LACTIC ACID SALTS DURING COOLING OF COOKED GROUND TURKEY

    Inhibition of Clostridium perfringens spore germination and outgrowth by lactic acid salts during exponential cooling of cooked ground turkey products was evaluated. Injected turkey containing either calcium lactate, potassium lactate, or sodium lactate (1.0, 2.0, 3.0 or 4.8% w/w) along with a cont...

  19. Inhibition of Aspergillus growth and aflatoxin release by derivatives of benzoic acid.

    Chipley, J. R.; Uraih, N

    1980-01-01

    A study was conducted to determine the effects of o-nitrobenzoate, p-aminobenzoate, benzocaine (ethyl aminobenzoate), ethyl benzoate, methyl benzoate, salicylic acid (o-hydroxybenzoate), trans-cinnamic acid (beta-phenylacrylic acid), trans-cinnamaldehyde (3-phenylpropenal), ferulic acid (p-hydroxy-3-methoxycinnamic acid), aspirin (o-acetoxy benzoic acid), and anthranilic acid (o-aminobenzoic acid) upon growth and aflatoxin release in Aspergillus flavus NRRL 3145 and A. parasiticus NRRL 3240. ...

  20. Acacetin inhibits glutamate release and prevents kainic acid-induced neurotoxicity in rats.

    Tzu-Yu Lin

    Full Text Available An excessive release of glutamate is considered to be a molecular mechanism associated with several neurological diseases that causes neuronal damage. Therefore, searching for compounds that reduce glutamate neurotoxicity is necessary. In this study, the possibility that the natural flavone acacetin derived from the traditional Chinese medicine Clerodendrum inerme (L. Gaertn is a neuroprotective agent was investigated. The effect of acacetin on endogenous glutamate release in rat hippocampal nerve terminals (synaptosomes was also investigated. The results indicated that acacetin inhibited depolarization-evoked glutamate release and cytosolic free Ca(2+ concentration ([Ca(2+]C in the hippocampal nerve terminals. However, acacetin did not alter synaptosomal membrane potential. Furthermore, the inhibitory effect of acacetin on evoked glutamate release was prevented by the Cav2.2 (N-type and Cav2.1 (P/Q-type channel blocker known as ω-conotoxin MVIIC. In a kainic acid (KA rat model, an animal model used for excitotoxic neurodegeneration experiments, acacetin (10 or 50 mg/kg was administrated intraperitoneally to the rats 30 min before the KA (15 mg/kg intraperitoneal injection, and subsequently induced the attenuation of KA-induced neuronal cell death and microglia activation in the CA3 region of the hippocampus. The present study demonstrates that the natural compound, acacetin, inhibits glutamate release from hippocampal synaptosomes by attenuating voltage-dependent Ca(2+ entry and effectively prevents KA-induced in vivo excitotoxicity. Collectively, these data suggest that acacetin has the therapeutic potential for treating neurological diseases associated with excitotoxicity.

  1. Restoration of Brain Acid Soluble Protein 1 Inhibits Proliferation and Migration of Thyroid Cancer Cells

    Guo, Run-Sheng; Yu, Yue; Chen, Jun; Chen, Yue-Yu; Shen, Na; Qiu, Ming

    2016-01-01

    Background: Brain acid soluble protein 1 (BASP1) is identified as a novel potential tumor suppressor in several cancers. However, its role in thyroid cancer has not been investigated yet. In the present study, the antitumor activities of BASP1 against the growth and migration of thyroid cancer cells were evaluated. Methods: BASP1 expression in thyroid cancer tissues and normal tissues were examined by immunohistochemical staining and the association between its expression and prognosis was analyzed. pcDNA-BASP1 carrying full length of BASP1 cDNA was constructed to restore the expression of BASP1 in thyroid cancer cell lines (BHT-101 and KMH-2). The cell proliferation in vitro and in vivo was evaluated by WST-1 assay and xenograft tumor models, respectively. Cell cycle distribution after transfection was analyzed using flow cytometry. Cell apoptosis after transfection was examined by annexin V/propidium iodide assay. The migration was examined using transwell assay. Results: BASP1 expression was abundant in normal tissues while it is significantly decreased in cancer tissues (P = 0.000). pcDNA-BASP1 restored the expression of BASP1 and significantly inhibited the growth of BHT-101 and KMH-2 cells as well as xenograft tumors in nude mice (P = 0.000). pcDNA-BASP1 induced G1 arrest and apoptosis in BHT-101 and KMH-2 cells. In addition, pcDNA-BASP1 significantly inhibited the cell migration. Conclusions: Downregulation of BASP1 expression may play a role in the tumorigenesis of thyroid cancer. Restoration of BASP1 expression exerted extensive antitumor activities against growth and migration of thyroid cancer cells, which suggested that BASP1 gene might act as a potential therapeutic agent for the treatment of thyroid cancer. PMID:27270539

  2. Retinoic acid inhibits calmodulin binding to human erythrocyte membranes and reduces membrane Ca2(+)-adenosine triphosphatase activity.

    Davis, F B; Smith, T. J.; Deziel, M R; Davis, P J; Blas, S D

    1990-01-01

    Ca2(+)-ATPase activity in human red cell membranes is dependent on the presence of calmodulin. All trans-retinoic acid inhibited human red cell membrane Ca2(+)-ATPase activity in vitro in a concentration-dependent manner (10(-8) to 10(-4) M). In contrast, retinol, retinal, 13-cis-retinoic acid and the benzene ring analogue of retinoic acid did not alter enzyme activity. Purified calmodulin (up to 500 ng/ml, 3 X 10(-8) M) added to red cell membranes, in the presence of inhibitory concentration...

  3. Efficient inhibition of heavy metal release from mine tailings against acid rain exposure by triethylenetetramine intercalated montmorillonite (TETA-Mt).

    Gong, Beini; Wu, Pingxiao; Huang, Zhujian; Li, Yuanyuan; Yang, Shanshan; Dang, Zhi; Ruan, Bo; Kang, Chunxi

    2016-11-15

    The potential application of triethylenetetramine intercalated montmorillonite (TETA-Mt) in mine tailings treatment and AMD (acid mine drainage) remediation was investigated with batch experiments. The structural and morphological characteristics of TETA-Mt were analyzed with XRD, FTIR, DTG-TG and SEM. The inhibition efficiencies of TETA-Mt against heavy metal release from mine tailings when exposed to acid rain leaching was examined and compared with that of triethylenetetramine (TETA) and Mt. Results showed that the overall inhibition by TETA-Mt surpassed that by TETA or Mt for various heavy metal ions over an acid rain pH range of 3-5.6 and a temperature range of 25-40°C. When mine tailings were exposed to acid rain of pH 4.8 (the average rain pH of the mining site where the mine tailings were from), TETA-Mt achieved an inhibition efficiency of over 90% for Cu(2+), Zn(2+), Cd(2+) and Mn(2+) release, and 70% for Pb(2+) at 25°C. It was shown that TETA-Mt has a strong buffering capacity. Moreover, TETA-Mt was able to adsorb heavy metal ions and the adsorption process was fast, suggesting that coordination was mainly responsible. These results showed the potential of TETA-Mt in AMD mitigation, especially in acid rain affected mining area. PMID:27450331

  4. Inhibition of methane and natural gas hydrate formation by altering the structure of water with amino acids.

    Sa, Jeong-Hoon; Kwak, Gye-Hoon; Han, Kunwoo; Ahn, Docheon; Cho, Seong Jun; Lee, Ju Dong; Lee, Kun-Hong

    2016-01-01

    Natural gas hydrates are solid hydrogen-bonded water crystals containing small molecular gases. The amount of natural gas stored as hydrates in permafrost and ocean sediments is twice that of all other fossil fuels combined. However, hydrate blockages also hinder oil/gas pipeline transportation, and, despite their huge potential as energy sources, our insufficient understanding of hydrates has limited their extraction. Here, we report how the presence of amino acids in water induces changes in its structure and thus interrupts the formation of methane and natural gas hydrates. The perturbation of the structure of water by amino acids and the resulting selective inhibition of hydrate cage formation were observed directly. A strong correlation was found between the inhibition efficiencies of amino acids and their physicochemical properties, which demonstrates the importance of their direct interactions with water and the resulting dissolution environment. The inhibition of methane and natural gas hydrate formation by amino acids has the potential to be highly beneficial in practical applications such as hydrate exploitation, oil/gas transportation, and flow assurance. Further, the interactions between amino acids and water are essential to the equilibria and dynamics of many physical, chemical, biological, and environmental processes. PMID:27526869

  5. Inhibition of Mycobacterium tuberculosis dihydrodipicolinate synthase by alpha-ketopimelic acid and its other structural analogues.

    Shrivastava, Priyanka; Navratna, Vikas; Silla, Yumnam; Dewangan, Rikeshwer P; Pramanik, Atreyi; Chaudhary, Sarika; Rayasam, GeethaVani; Kumar, Anuradha; Gopal, Balasubramanian; Ramachandran, Srinivasan

    2016-01-01

    The Mycobacterium tuberculosis dihydrodipicolinate synthase (Mtb-dapA) is an essential gene. Mtb-DapA catalyzes the aldol condensation between pyruvate and L-aspartate-beta-semialdehyde (ASA) to yield dihydrodipicolinate. In this work we tested the inhibitory effects of structural analogues of pyruvate on recombinant Mtb-DapA (Mtb-rDapA) using a coupled assay with recombinant dihydrodipicolinate reductase (Mtb-rDapB). Alpha-ketopimelic acid (α-KPA) showed maximum inhibition of 88% and IC50 of 21 μM in the presence of pyruvate (500 μM) and ASA (400 μM). Competition experiments with pyruvate and ASA revealed competition of α-KPA with pyruvate. Liquid chromatography-mass spectrometry (LC-MS) data with multiple reaction monitoring (MRM) showed that the relative abundance peak of final product, 2,3,4,5-tetrahydrodipicolinate, was decreased by 50%. Thermal shift assays showed 1 °C Tm shift of Mtb-rDapA upon binding α-KPA. The 2.4 Å crystal structure of Mtb-rDapA-α-KPA complex showed the interaction of critical residues at the active site with α-KPA. Molecular dynamics simulations over 500 ns of pyruvate docked to Mtb-DapA and of α-KPA-bound Mtb-rDapA revealed formation of hydrogen bonds with pyruvate throughout in contrast to α-KPA. Molecular descriptors analysis showed that ligands with polar surface area of 91.7 Å(2) are likely inhibitors. In summary, α-hydroxypimelic acid and other analogues could be explored further as inhibitors of Mtb-DapA. PMID:27501775

  6. Capric Acid Inhibits NO Production and STAT3 Activation during LPS-Induced Osteoclastogenesis

    Park, Eun-Jung; Kim, Sun A.; Choi, Yong-Min; Kwon, Hyuk-Kwon; Shim, Wooyoung; Lee, Gwang; Choi, Sangdun

    2011-01-01

    Capric acid is a second medium-chain fatty acid, and recent studies have shown that fatty acids are associated with bone density and reduce bone turnover. In this study, we investigated the effects of capric acid on lipopolysaccharide (LPS)-induced osteoclastogenesis in RAW264.7 cells. After treatment with capric acid (1 mM), the number of tartrate resistant acid phosphatase (TRAP)-positive cells decreased significantly. Capric acid reduced LPS-induced TRAP expression, an osteoclast different...

  7. In vivo inhibition of gastric acid secretion by the aqueous extract of Scoparia dulcis L. in rodents.

    Mesía-Vela, Sonia; Bielavsky, Monica; Torres, Luce Maria Brandão; Freire, Sonia Maria; Lima-Landman, Maria Teresa R; Souccar, Caden; Lapa, Antonio José

    2007-05-01

    The freeze-dried aqueous extract (AE) from the aerial parts of Scoparia dulcis was tested for its effects on experimental gastric hypersecretion and ulcer in rodents. Administration of AE to animals with 4h pylorus ligature potently reduced the gastric secretion with ED(50)s of 195 mg/kg (rats) and 306 mg/kg (mice). The AE also inhibited the histamine- or bethanechol-stimulated gastric secretion in pylorus-ligated mice with similar potency suggesting inhibition of the proton pump. Bio-guided purification of the AE yielded a flavonoid-rich fraction (BuF), with a specific activity 4-8 times higher than the AE in the pylorus ligature model. BuF also inhibited the hydrolysis of ATP by H(+),K(+)-ATPase with an IC(50) of 500 microg/ml, indicating that the inhibition of gastric acid secretion of Scoparia dulcis is related to the inhibition of the proton pump. Furthermore, the AE inhibited the establishment of acute gastric lesions induced in rats by indomethacin (ED(50)=313 mg/kg, p.o.) and ethanol (ED(50)=490 mg/kg, p.o.). No influence of the AE on gastrointestinal transit allowed discarding a possible CNS or a cholinergic interaction in the inhibition of gastric secretion by the AE. Collectively, the present data pharmacologically validates the popular use of Scoparia dulcis in gastric disturbances. PMID:17300892

  8. Lactobacillus sakei lipoteichoic acid inhibits MMP-1 induced by UVA in normal dermal fibroblasts of human.

    You, Ga-Eun; Jung, Bong-Jun; Kim, Hye-Rim; Kim, Han-Geun; Kim, Tae-Rahk; Chung, Dae-Kyun

    2013-10-28

    Human skin is continuously exposed to ultraviolet (UV)-induced photoaging. UVA increases the activity of MMP-1 in dermal fibroblasts through mitogen-activated protein kinase (MAPK), p38, signaling. The irradiation of keratinocytes by UVA results in the secretion of the inflammatory cytokine, tumor necrosis factor-α (TNF-α), and the stimulation of MMP-1 in normal human dermal fibroblasts (NHDFs). Lipoteichoic acid (LTA) is a component of the cell wall of gram-positive Lactobacillus spp. of bacteria. LTA is well known as an anti-inflammation molecule. LTA of the bacterium Lactobacillus plantarum has an anti-photoaging effect, but the potential anti-photoaging effect of the other bacteria has not been examined to date. The current study showed that L. sakei LTA (sLTA) has an immune modulating effect in human monocyte cells. Our object was whether inhibitory effects of sLTA on MMP-1 are caused from reducing the MAPK signal in NHDFs. It inhibits MMP-1 and MAPK signaling induced by UVA in NHDFs. We also confirmed effects of sLTA suppressing TNF-α inducing MMP-1 in NHDFs. PMID:23851272

  9. Inhibition of retinoic acid catabolism by minocycline: evidence for a novel mode of action?

    Regen, Francesca; Hildebrand, Martin; Le Bret, Nathalie; Herzog, Irmelin; Heuser, Isabella; Hellmann-Regen, Julian

    2015-06-01

    Retinoic acid (RA) represents an essential and highly potent endogenous retinoid with pronounced anti-inflammatory properties and potent anti-acne activity, and has recently been suggested to share a common anti-inflammatory mode of action with tetracycline antibiotics. We hypothesized that tetracyclines may directly interfere with RA homeostasis via inhibition of its local cytochrome P450 (CYP450)-mediated degradation, an essential component of tightly regulated skin RA homeostasis. To test this hypothesis, we performed controlled in vitro RA metabolism assays using rat skin microsomes and measured RA levels in a RA-synthesizing human keratinocyte cell line, both in the presence and in the absence of minocycline, a tetracycline popular in acne treatment. Interestingly, minocycline potently blocked RA degradation in rat skin microsomes, and strikingly enhanced RA levels in RA-synthesizing cell cultures, in a dose-dependent manner. These findings indicate a potential role for CYP-450-mediated RA metabolism in minocycline's pleiotropic mode of action and anti-acne efficacy and could account for the overlap between minocycline and RA-induced effects at the level of their molecular mode of action, but also clinically at the level of the rare side effect of pseudotumor cerebri, which is observed for both, RA and minocycline treatment. PMID:25810318

  10. Proanthocyanidins Inhibit Seed Germination by Maintaining a High Level of Abscisic Acid in Arabidopsis thaliana

    Liguo Jia; Jianhua Zhang; Qiuyu Wu; Nenghui Ye; Rui Liu; Lu Shi; Weifeng Xu; Hui Zhi; A. N. M. Rubaiyath Bin Rahman; Yiji Xia

    2012-01-01

    Proanthocyanidins (PAs) are the main products of the flavonoid biosynthetic pathway in seeds,but their biological function during seed germination is still unclear.We observed that seed germination is delayed with the increase of exogenous PA concentration in Arabidopsis.A similar inhibitory effect occurred in peeled Brassica napus seeds,which was observed by measuring radicle elongation.Using abscisic acid (ABA),a biosynthetic and metabolic inhibitor,and gene expression analysis by real-time polymerase chain reaction,we found that the inhibitory effect of PAs on seed germination is due to their promotion of ABA via de novo biogenesis,rather than by any inhibition of its degradation.Consistent with the relationship between PA content and ABA accumulation in seeds,PA-deficient mutants maintain a lower level of ABA compared with wild-types during germination.Our data suggest that PA distribution in the seed coat can act as a doorkeeper to seed germination.PA regulation of seed germination is mediated by the ABA signaling pathway.

  11. Protocatechuic acid inhibits human dendritic cell functional activation: role of PPARγ up-modulation.

    Del Cornò, Manuela; Varano, Barbara; Scazzocchio, Beatrice; Filesi, Carmelina; Masella, Roberta; Gessani, Sandra

    2014-06-01

    Polyphenols have been shown to exhibit anti-inflammatory, anti-oxidant and immunomodulatory activities. However, the effects of anthocyanins, flavonoids of great nutritional interest, in particular of their metabolite protocatechuic acid (PCA) on the phenotypic and functional maturation of human dendritic cells (DCs) are still largely unknown. In this study, we report that PCA is efficiently taken up and accumulated in human monocyte-derived DCs (MD-DCs). PCA exposure of MD-DCs markedly impaired the production of proinflammatory cytokines and chemokines (i.e. IL-6, IL-8 and CCL2) in response to bacterial endotoxin and leptin, and down-regulated the lipopolysaccharide (LPS)-induced migratory response of MD-DCs to CCL19. Conversely, the phenotypic profile induced by LPS-mediated activation as well as IL-12 production was not affected. Interestingly, we found that PPARγ is a main factor in the PCA-induced effects as blocking its activity abolish PCA capacity to down-regulate IL-6 and IL-8, but not CCL2, secretion and to inhibit MD-DC migration. In keeping with this observation, cytosol to nucleus translocation and PPARγ activity were found to be directly stimulated by PCA exposure of MD-DCs. These novel findings provide new insight into the immunoregulatory effects of polyphenol metabolites in DCs opening new perspectives on their potential application in the prevention of acute and chronic inflammatory diseases. PMID:24576555

  12. Dimethylarsenic acid damages cellular DNA and inhibits gap junctional intercellular communication between human skin fibroblast cells

    GuoXB; DengFR

    2002-01-01

    Although arsenic is identified as a human carcinogen,there is currently no accepted mechanism for its action or an established animal model for evaluating the carcinogenic activity of arsenic.To elucidate the mechanism of arsenic arcinogenesis,we investigated the effect of dimethylarsenic acid(DMAA),the main metabolite of inorganic arsenic in humans,on the cellular DNA and gap junctional intercellular communication (GJIC) between human skin fibroblast cells.Single-cell gel electrophoresis (SCGE) assay was used to detect the DNA damage in human skin fibroblast cells exposed to DMAA,and the GJIC between cells was detected by the scrape loading/dye transfer assay.DMAA at concentrations of 0.01-1.0 mmol·L-1 induced DNA damage in a dose-dependent manner,and GJIC between human skin fibroblast cells was significantly inhibited by DMAA at 1.0 mmol·L-1.Our results suggest that both genotoxic and nongenotoxic mechanism are involved in the mechanism of DMAA-induced cellular toxicity.

  13. Inhibition Effect of Lactic Acid Bacteria against Food Born Pathogen, Listeria monocytogenes

    Rouha Kasra-Kermanshahi

    2015-09-01

    Full Text Available Disease caused by consuming microbial contaminated food has increased significantly in recent years due to changes in the livelihoods and eating habits of the human populations. Listeria monocytogenes, Escherichia coli O157:H7 and Salmonella enterica are three of the most important foodborne bacterial pathogens and can lead to foodborne diseases. Increased use of antibiotics, has led to development of bacterial resistance to antibiotics. Therefore, there is growing interest in the development of new types of effective and nontoxic antimicrobial compounds. Nowadays, the most extensive research and commercial practices are based on probiotic bacteria. Probiotics, specifically lactic acid bacteria are widely used in the food industry for fermentation but have gained attention from health professionals because of their potential beneficial effects. Now probiotic therapy is thought to be an effective way to improve the gut health and an alternative to antibiotic treatments. They contribute to food safety by their ability to inhibit the growth of several other bacteria. LAB can be used as protective cultures to compete with potential pathogens and other undesired organisms, thereby increasing the safety of the food product.

  14. Synergistic Effects of Linderanolide B Combined with Arbutin, PTU or Kojic Acid on Tyrosinase Inhibition.

    Hseu, You-Cheng; Cheng, Kuo-Chen; Lin, Yi-Chieh; Chen, Chung-Yi; Chou, Hsin-Yu; Ma, Dik-Lung; Leung, Chung-Hang; Wen, Zhi-Hong; Wang, Hui-Min D

    2015-01-01

    Melanin uncontrollable accumulation is a serious social problem to not only women, but also men, and causes pigment over-expression disorders such as freckles, melasma or pigmented acne scars. The synergism is used widely in medication, and the effectiveness makes the drug applications more valuable. Within this experiment, three well-known compounds were chosen: kojic acid, 1-phenyl-2-thiourea (PTU) and arbutin, and they were combined individually with our substance linderanolide B, which is purified from Cinnamomum subavenium. Hence, deciphering the synergistic action of possible whitening agents was the goal of this study. The tyrosinase activity, melanin content, and the combination index (CI) values were observed in B16F10 cells, in addition, the consequences were detected by isobologram analysis. We discovered that certain melanin inhibitors showed synergistic properties when they were combined together to suppress tyrosinase activities. As a result, linderanolide B has a potential synergy on tyrosinase inhibition, and it can be used widely in cosmetic and medication industries. PMID:26343134

  15. Dexamethasone inhibits the maturation of newly formed neurons and glia supplemented with polyunsaturated fatty acids.

    Heberden, Christine; Meffray, Emmanuelle; Goustard-Langelier, Bénédicte; Maximin, Elise; Lavialle, Monique

    2013-11-01

    Stress bears a negative impact on adult neurogenesis. High levels of corticoids have been shown to inhibit neural stem cell proliferation, and are considered responsible for the loss of neural precursors. Their effects on the differentiation of the glial and neuronal lineages have been less studied. We examined the effect of dexamethasone (Dex), a synthetic glucocorticoid, on the differentiation of rat neural stem cells in vitro. Dex had no effect on the differentiation of cells cultured under standard conditions. Since we previously determined that NSC, when cultured under classical conditions, were deprived of polyunsaturated fatty acids (PUFA), and displayed phospholipid compositions very different from the in vivo figures [1], we examined the effect of Dex under PUFA supplementation. Dex impaired neuron and oligodendrocyte maturation in PUFA-supplemented cells, demonstrated by the reduction of neurite lengths and oligodendrocyte sizes. This effect was mediated by the glucocorticoid receptor (GR), since it was eliminated by mifepristone, a GR antagonist, and could be relayed by a reduction of ERK phosphorylation. We determined that GR was associated with PPAR β and α under basal conditions, and that this association was disrupted when PUFA were added in combination with Dex. We assumed that this effect on the receptor status enabled the effect of Dex on PUFA supplemented cells, since we determined that the binding to the glucocorticoid response element was higher in cells incubated with PUFA and Dex. In conclusion, corticoids can impair NSC differentiation, and consequently impact the entire process of neurogenesis. PMID:23907015

  16. Inhibition of Paenibacillus larvae by lactic acid bacteria isolated from fermented materials.

    Yoshiyama, Mikio; Wu, Meihua; Sugimura, Yuya; Takaya, Noriko; Kimoto-Nira, Hiromi; Suzuki, Chise

    2013-01-01

    We evaluated the potential application of lactic acid bacteria (LAB) isolated from fermented feeds and foods for use as probiotics against Paenibacillus larvae, the causal agent of American foulbrood (AFB) in vitro. We also assessed the ability of LAB to induce the expression of antimicrobial peptide genes in vivo. Screening of the 208 LAB isolated from fermented feeds and foods revealed that nine strains inhibited the in vitro growth of P. larvae. The LAB strains were identified by 16S rRNA gene sequencing as Enterococcus sp., Weissella sp. and Lactobacillus sp. These strains were screened for their abilities of immune activation in honeybees by real-time RT-PCR using antimicrobial peptide genes as markers. After oral administration of several of the screened LAB to larvae and adults, the transcription levels of antimicrobial peptide genes, such as abaecin, defensin and hymenoptaecin, were found to increase significantly. These findings suggested that selected LAB stimulate the innate immune response in honeybees, which may be useful for preventing bacterial diseases in honeybees. This is the first report to characterize the probiotic effects of LAB isolated from fermented feeds and foods in honeybees. PMID:23000777

  17. Perlecan Heparan Sulfate Is Required for the Inhibition of Smooth Muscle Cell Proliferation by All-trans-Retinoic Acid.

    Tran-Lundmark, Karin; Tannenberg, Philip; Rauch, Bernhard H; Ekstrand, Johan; Tran, Phan-Kiet; Hedin, Ulf; Kinsella, Michael G

    2015-02-01

    Smooth muscle cell (SMC) proliferation is a key process in stabilization of atherosclerotic plaques, and during restenosis after interventions. A clearer understanding of SMC growth regulation is therefore needed to design specific anti-proliferative therapies. Retinoic acid has been shown to inhibit proliferation of SMCs both in vitro and in vivo and to affect the expression of extracellular matrix molecules. To explore the mechanisms behind the growth inhibitory activity of retinoic acid, we hypothesized that retinoids may induce the expression of perlecan, a large heparan sulfate proteoglycan with anti-proliferative properties. Perlecan expression and accumulation was induced in murine SMC cultures by all-trans-retinoic acid (AtRA). Moreover, the growth inhibitory effect of AtRA on wild-type cells was greatly diminished in SMCs from transgenic mice expressing heparan sulfate-deficient perlecan, indicating that the inhibition is perlecan heparan sulfate-dependent. In addition, AtRA influenced activation and phosphorylation of PTEN and Akt differently in wild-type and mutant SMCs, consistent with previous studies of perlecan-dependent SMC growth inhibition. We demonstrate that AtRA regulates perlecan expression in SMCs and that the inhibition of SMC proliferation by AtRA is, at least in part, secondary to an increased expression of perlecan and dependent upon its heparan sulfate-chains. PMID:25078760

  18. Caffeic acid phenethyl ester downregulates phospholipase D1 via direct binding and inhibition of NFκB transactivation

    Park, Mi Hee; Kang, Dong Woo [Department of Molecular Biology, Pusan National University, Busan 609-735 (Korea, Republic of); Jung, Yunjin [College of Pharmacy, Pusan National University, Busan 609-735 (Korea, Republic of); Choi, Kang-Yell [Translational Research Center for Protein Function Control, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul (Korea, Republic of); Min, Do Sik, E-mail: minds@pusan.ac.kr [Department of Molecular Biology, Pusan National University, Busan 609-735 (Korea, Republic of)

    2013-12-06

    Highlights: •We found CAFÉ, a natural product that suppresses expression and activity of PLD1. •CAPE decreased PLD1 expression by inhibiting NFκB transactivation. •CAPE rapidly inhibited PLD activity via its binding to a Cys837 of PLD1. •PLD1 downregulation by CAPE inhibited invasion and proliferation of glioma cells. -- Abstract: Upregulation of phospholipase D (PLD) is functionally linked with oncogenic signals and tumorigenesis. Caffeic acid phenethyl ester (CAPE) is an active compound of propolis extract that exhibits anti-proliferative, anti-inflammatory, anti-oxidant, and antineoplastic properties. In this study, we demonstrated that CAPE suppressed the expression of PLD1 at the transcriptional level via inhibition of binding of NFκB to PLD1 promoter. Moreover, CAPE, but not its analogs, bound to a Cys837 residue of PLD1 and inhibited enzymatic activity of PLD. CAPE also decreased activation of matrix metalloproteinases-2 induced by phosphatidic acid, a product of PLD activity. Ultimately, CAPE-induced downregulation of PLD1 suppressed invasion and proliferation of glioma cells. Taken together, the results of this study indicate that CAPE might contribute to anti-neoplastic effect by targeting PLD1.

  19. Mechanism of poly(acrylic acid) acceleration of antithrombin inhibition of thrombin: implications for the design of novel heparin mimics.

    Monien, Bernhard H; Cheang, Kai I; Desai, Umesh R

    2005-08-11

    The bridging mechanism of antithrombin inhibition of thrombin is a dominant mechanism contributing a massive approximately 2500-fold acceleration in the reaction rate and is also a key reason for the clinical usage of heparin. Our recent study of the antithrombin-activating properties of a carboxylic acid-based polymer, poly(acrylic acid) (PAA), demonstrated a surprisingly high acceleration in thrombin inhibition (Monien, B. H.; Desai, U. R. J. Med. Chem. 2005, 48, 1269). To better understand this interesting phenomenon, we have studied the mechanism of PAA-dependent acceleration in antithrombin inhibition of thrombin. Competitive binding studies with low-affinity heparin and a heparin tetrasaccharide suggest that PAA binds antithrombin in both the pentasaccharide- and the extended heparin-binding sites, and these results are corroborated by molecular modeling. The salt-dependence of the K(D) of the PAA-antithrombin interaction shows the formation of five ionic interactions. In contrast, the contribution of nonionic forces is miniscule, resulting in an interaction that is significantly weaker than that observed for heparins. A bell-shaped profile of the observed rate constant for antithrombin inhibition of thrombin as a function of PAA concentration was observed, suggesting that inhibition proceeds through the "bridging" mechanism. The knowledge gained in this mechanistic study highlights important rules for the rational design of orally available heparin mimics. PMID:16078853

  20. Ethacrynic acid inhibits pancreatic exocrine secretion%依他尼酸抑制胰腺外分泌

    YU Hong-Gang; KLONOWSKI-STUMPE Hanne

    2001-01-01

    AIM: The effect of ethacrynic acid on pancreatic exocrine secretion function and potential mechanisms of interference with the secretory process in pancreatic acinar cells were investigated. METHODS: After incubation with ethacrynic acid for 30 min, caerulein-stimulated amylase release and cholecystokinin (CCK) receptor binding characteristics were assessed in isolated rat pancreatic acini. The level of thiol groups (glutathione and protein thiols ) and cytosolic free calcium were measured in pancreatic acinar cells. RESULTS:Ethacrynic acid decreased caerulein (0. 1 nmol/L )-stimulated amylase release and the level of pancreatic acinar glutathione in a concentration-dependent fashion without a marked increase in cell damage. Ethacrynic acid also inhibited the caerulein (1 nmol/L)-induced Ca2+ mobilization in pancreatic acinar cells. But neither protein thiol nor CCK-receptor binding characteristics was altered by ethacrynic acid. CONCLUSION: Ethacrynic acid inhibit pancreatic exocrine secretion by depletion of glutathione and down-regulation of caerulein-induced Ca2+ mobilization. Glutathione might play a potential role in the secretory process in pancreatic acinar cells and in the secretory blockade observed in acute pancreatitis.

  1. Synergistic effect of polyaspartic acid and iodide ion on corrosion inhibition of mild steel in H2SO4

    Highlights: •Polyaspartic acid acts as a modest cathodic inhibitor for mild steel in H2SO4. •Results revealed synergistic effect between polyaspartic acid and iodide ion. •Inhibition efficiency depends on the temperature of H2SO4 medium. •XPS analysis revealed co-adsorption of polyaspartic acid and iodide ion. -- Abstract: The inhibition effect of polyaspartic acid (PASP) and its synergistic effect with KI on mild steel corrosion in 0.5 M H2SO4 solution are studied by weight loss and electrochemical methods. The inhibition efficiency increases with the concentration of PASP and increases further with the presence of 1 mM KI. Result of the zero charge potential measurement shows that iodide ion promotes the film formation of PASP greatly. The mild steel surfaces after immersion test were analyzed using scanning electron microscopy and X-ray photoelectron spectroscopy. An adsorption model is proposed to elucidate the synergistic mechanism of synergistic effect

  2. An electrochemical study for corrosion inhibition of iron by some organic phosphonium chloride derivatives in acid media

    The inhibiting action of (chloromethyl) triphenyl phosphonium chloride (CTP), tetraphenyl phosphonum chloride (TP), triphenyl phosphine oxide (TPO), triphenyl (phenylmethyl) phosphonium chloride (TPM) and triphenyl phosphine (TPP) on the corrosion of iron in 1 M HCl solution was studied using potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). Experimental results revealed that CTP, TP, TPO, and TPM act as inhibitors for iron in acid environments, while TPP is an accelerator. These compounds are mixed-type inhibitors and the inhibition efficiency increased with increasing concentrations. Equivalent circuits of the investigated systems are suggested

  3. Inhibition of Hyaluronic Acid Synthesis Suppresses Angiogenesis in Developing Endometriotic Lesions

    Olivares, Carla N.; Alaniz, Laura D.; Menger, Michael D.; Barañao, Rosa I.; Laschke, Matthias W.; Meresman, Gabriela F.

    2016-01-01

    Background The development and long-term survival of endometriotic lesions is crucially dependent on an adequate vascularization. Hyaluronic acid (HA) through its receptor CD44 has been described to be involved in the process of angiogenesis. Objective To study the effect of HA synthesis inhibition using non-toxic doses of 4-methylumbelliferone (4-MU) on endometriosis-related angiogenesis. Materials and Methods The cytotoxicity of different in vitro doses of 4-MU on endothelial cells was firstly tested by means of a lactate dehydrogenase assay. The anti-angiogenic action of non-cytotoxic doses of 4-MU was then assessed by a rat aortic ring assay. In addition, endometriotic lesions were induced in dorsal skinfold chambers of female BALB/c mice, which were daily treated with an intraperitoneal injection of 0.9% NaCl (vehicle group; n = 6), 20mg/kg 4-MU (n = 8) or 80mg/kg 4-MU (n = 7) throughout an observation period of 14 days. The effect of 4-MU on their vascularization, survival and growth were studied by intravital fluorescence microscopy, histology and immunohistochemistry. Main Results Non-cytotoxic doses of 4-MU effectively inhibited vascular sprout formation in the rat aortic ring assay. Endometriotic lesions in dorsal skinfold chambers of 4-MU-treated mice dose-dependently exhibited a significantly smaller vascularized area and lower functional microvessel density when compared to vehicle-treated controls. Histological analyses revealed a downregulation of HA expression in 4-MU-treated lesions. This was associated with a reduced density of CD31-positive microvessels within the lesions. In contrast, numbers of PCNA-positive proliferating and cleaved caspase-3-positive apoptotic cells did not differ between 4-MU-treated and control lesions. Conclusions The present study demonstrates for the first time that targeting the synthesis of HA suppresses angiogenesis in developing endometriotic lesions. Further studies have to clarify now whether in the future this

  4. Inhibition of Hyaluronic Acid Synthesis Suppresses Angiogenesis in Developing Endometriotic Lesions.

    Carla N Olivares

    Full Text Available The development and long-term survival of endometriotic lesions is crucially dependent on an adequate vascularization. Hyaluronic acid (HA through its receptor CD44 has been described to be involved in the process of angiogenesis.To study the effect of HA synthesis inhibition using non-toxic doses of 4-methylumbelliferone (4-MU on endometriosis-related angiogenesis.The cytotoxicity of different in vitro doses of 4-MU on endothelial cells was firstly tested by means of a lactate dehydrogenase assay. The anti-angiogenic action of non-cytotoxic doses of 4-MU was then assessed by a rat aortic ring assay. In addition, endometriotic lesions were induced in dorsal skinfold chambers of female BALB/c mice, which were daily treated with an intraperitoneal injection of 0.9% NaCl (vehicle group; n = 6, 20 mg/kg 4-MU (n = 8 or 80 mg/kg 4-MU (n = 7 throughout an observation period of 14 days. The effect of 4-MU on their vascularization, survival and growth were studied by intravital fluorescence microscopy, histology and immunohistochemistry.Non-cytotoxic doses of 4-MU effectively inhibited vascular sprout formation in the rat aortic ring assay. Endometriotic lesions in dorsal skinfold chambers of 4-MU-treated mice dose-dependently exhibited a significantly smaller vascularized area and lower functional microvessel density when compared to vehicle-treated controls. Histological analyses revealed a downregulation of HA expression in 4-MU-treated lesions. This was associated with a reduced density of CD31-positive microvessels within the lesions. In contrast, numbers of PCNA-positive proliferating and cleaved caspase-3-positive apoptotic cells did not differ between 4-MU-treated and control lesions.The present study demonstrates for the first time that targeting the synthesis of HA suppresses angiogenesis in developing endometriotic lesions. Further studies have to clarify now whether in the future this anti-angiogenic effect can be used beneficially for the

  5. Oleanolic acid acetate inhibits atopic dermatitis and allergic contact dermatitis in a murine model

    Choi, Jin Kyeong [CMRI, Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu 700-422 (Korea, Republic of); Oh, Hyun-Mee [Bio-Materials Research Institute, Korea Research Institute of Bioscience and Biotechnology, Jeongeup 580-185 (Korea, Republic of); Lee, Soyoung [CMRI, Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu 700-422 (Korea, Republic of); Park, Jin-Woo [Department of Periodontology, School of Dentistry, Kyungpook National University, Daegu 700-412 (Korea, Republic of); Khang, Dongwoo [School of Nano and Advanced Materials Science and Engineering, Gyeongsang National University, Jinju 660-701 (Korea, Republic of); Lee, Seung Woong; Lee, Woo Song [Bio-Materials Research Institute, Korea Research Institute of Bioscience and Biotechnology, Jeongeup 580-185 (Korea, Republic of); Rho, Mun-Chual, E-mail: rho-m@kribb.re.kr [Bio-Materials Research Institute, Korea Research Institute of Bioscience and Biotechnology, Jeongeup 580-185 (Korea, Republic of); Kim, Sang-Hyun, E-mail: shkim72@knu.ac.kr [CMRI, Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu 700-422 (Korea, Republic of)

    2013-05-15

    Atopic dermatitis (AD) and allergic contact dermatitis (ACD) are common allergic and inflammatory skin diseases caused by a combination of eczema, scratching, pruritus, and cutaneous sensitization with allergens. This paper examines whether oleanolic acid acetate (OAA) modulates AD and ACD symptoms by using an existing AD model based on the repeated local exposure of mite extract (Dermatophagoides farinae extract, DFE) and 2,4-dinitrochlorobenzene to the ears of BALB/c mice. In addition, the paper uses a 2,4-dinitrofluorobenzene-sensitized local lymph node assay (LLNA) for the ACD model. The oral administration of OAA over a four-week period attenuated AD symptoms in terms of decreased skin lesions, epidermal thickness, the infiltration of immune cells (CD4{sup +} cells, eosinophils, and mast cells), and serum IgE, IgG2a, and histamine levels. The gene expression of Th1, Th2, Th17, and Th22 cytokines was reduced by OAA in the lymph node and ear tissue, and the LLNA verified that OAA suppressed ACD. The oral administration of OAA over a three-day period attenuated ACD symptoms in terms of ear thickness, lymphocyte proliferation, and serum IgG2a levels. The gene expression of Th1, Th2, and Th17 cytokines was reduced by OAA in the thymus and ear tissue. Finally, to define the underlying mechanism, this paper uses a TNF-α/IFN-γ-activated human keratinocyte (HaCaT) model. OAA inhibited the expression of cytokines and chemokines through the downregulation of NF-κB and MAPKs in HaCaT cells. Taken together, the results indicate that OAA inhibited AD and ACD symptoms, suggesting that OAA may be effective in treating allergic skin disorders. - Highlights: • OAA reduced both acute and chronic AD symptoms. • OAA had a controlling effect on the immune reaction for ACD. • The effect of OAA on allergic skin disorders was comparable to the cyclosporine A. • OAA might be a candidate for the treatment of allergic skin disorders.

  6. Fatty Acid Composition of Tissue Cultured Breast Carcinoma and the Effect of Stearoyl-CoA Desaturase 1 Inhibition

    Mohammadzadeh, Fatemeh; Mosayebi, Gholamali; Montazeri, Vahid; Darabi, Maryam; Fayezi, Shabnam; Shaaker, Maghsod; Rahmati, Mohammad; Baradaran, Behzad; Mehdizadeh, Amir

    2014-01-01

    Purpose Stearoyl-CoA desaturase 1 (SCD1) is a novel therapeutic target in various malignancies, including breast cancer. The present study was designed to investigate the effect of the pharmacologic inhibition of SCD1 on fatty acid composition in tissue explant cultures of human breast cancer and to compare these effects with those in adjacent nonneoplastic breast tissue. Methods Paired samples of tumor and adjacent noncancerous tissue were isolated from 12 patients with infiltrating ductal breast cancer. Samples were explant cultured in vitro, exposed to the highly selective SCD1 inhibitor CAY10566, and examined for fatty acid composition by gas liquid chromatography. The cytotoxic and antigrowth effects were evaluated by quantification of lactate dehydrogenase release and by sulforhodamine B (SRB) measurement, respectively. Results Breast cancer tissue samples were found to have higher levels of monounsaturated fatty acids (MUFA) (p<0.001) and arachidonic acid (20:4n-6, p<0.001) and a lower level of linoleic acid (18:2n-6, p=0.02) than the normal-appearing breast tissues. While exhibiting no evident cytotoxicity, treatment with the SCD1 inhibitor, CAY10566 (0.1-1 µM), for 48 hours significantly increased 18:2n-6 levels in both the tumor and adjacent normal-appearing tissue (approximately 1.2 fold, p<0.05). However, the breast cancer tissue samples showed significant increases in the levels of MUFA and 20:4n-6 compared to the normal-appearing breast tissues (p<0.05). The SRB growth assay revealed a higher rate of inhibition with the SCD1 inhibitor in breast cancer tissues than in normal-appearing tissues (p<0.01, 41% vs. 29%). The SCD1 inhibitor also elevated saturated fatty acid (1.46-fold, p=0.001) levels only in the tumor tissue explant. Conclusion The fatty acid composition and response to SCD1 inhibition differed between the explant cultures from breast cancer and the adjacent normal-appearing tissue. Altered fatty acid composition induced by SCD1 inhibition

  7. Application of Factorial Design of Experiment for Optimization of Inhibition Effect of Acid Extract of Gnetum africana on Copper Corrosion

    Ogbonna Chris Nkuzinna; Matthew Chukwudi Menkiti; Okechukwu Dominic Onukwuli; Gordian Onyebuchukwu Mbah; Bernard Ibezim Okolo; Melford Chuka Egbujor; Rabboni Mike Government

    2014-01-01

    The inhibition of copper corrosion by acid extract of Gnetum africana was studied using weight loss method of monitoring corrosion rate. The inhibition of Gnetum africana on copper corrosion was optimized by application of 23 factorial design. While the interactive effects of temperature, inhibition concentration and reaction time were investigated, the input factors and output response were also optimized. Optimum conditions for inhibition of Gnetum africana on copper corrosion were rec...

  8. Punicalagin and Ellagic Acid Demonstrate Antimutagenic Activity and Inhibition of Benzo[a]pyrene Induced DNA Adducts

    Maryam Zahin

    2014-01-01

    Full Text Available Punicalagin (PC is an ellagitannin found in the fruit peel of Punica granatum. We have demonstrated antioxidant and antigenotoxic properties of Punica granatum and showed that PC and ellagic acid (EA are its major constituents. In this study, we demonstrate the antimutagenic potential, inhibition of BP-induced DNA damage, and antiproliferative activity of PC and EA. Incubation of BP with rat liver microsomes, appropriate cofactors, and DNA in the presence of vehicle or PC and EA showed significant inhibition of the resultant DNA adducts, with essentially complete inhibition (97% at 40 μM by PC and 77% inhibition by EA. Antimutagenicity was tested by Ames test. PC and EA dose-dependently and markedly antagonized the effect of tested mutagens, sodium azide, methyl methanesulfonate, benzo[a]pyrene, and 2-aminoflourine, with maximum inhibition of mutagenicity up to 90 percent. Almost all the doses tested (50–500 μM exhibited significant antimutagenicity. A profound antiproliferative effect on human lung cancer cells was also shown with PC and EA. Together, our data show that PC and EA are pomegranate bioactives responsible for inhibition of BP-induced DNA adducts and strong antimutagenic, antiproliferative activities. However, these compounds are to be evaluated in suitable animal model to assess their therapeutic efficacy against cancer.

  9. Mechanism of fusidic acid inhibition of RRF- and EF-G-dependent splitting of the bacterial post-termination ribosome.

    Borg, Anneli; Pavlov, Michael; Ehrenberg, Måns

    2016-04-20

    The antibiotic drug fusidic acid (FA) is commonly used in the clinic against gram-positive bacterial infections. FA targets ribosome-bound elongation factor G (EF-G), a translational GTPase that accelerates both messenger RNA (mRNA) translocation and ribosome recycling. How FA inhibits translocation was recently clarified, but FA inhibition of ribosome recycling by EF-G and ribosome recycling factor (RRF) has remained obscure. Here we use fast kinetics techniques to estimate mean times of ribosome splitting and the stoichiometry of GTP hydrolysis by EF-G at varying concentrations of FA, EF-G and RRF. These mean times together with previous data on uninhibited ribosome recycling were used to clarify the mechanism of FA inhibition of ribosome splitting. The biochemical data on FA inhibition of translocation and recycling were used to model the growth inhibitory effect of FA on bacterial populations. We conclude that FA inhibition of translocation provides the dominant cause of bacterial growth reduction, but that FA inhibition of ribosome recycling may contribute significantly to FA-induced expression of short regulatory open reading frames, like those involved in FA resistance. PMID:27001509

  10. Betulinic acid selectively increases protein degradation and enhances prostate cancer-specific apoptosis: possible role for inhibition of deubiquitinase activity.

    Teresita Reiner

    Full Text Available Inhibition of the ubiquitin-proteasome system (UPS of protein degradation is a valid anti-cancer strategy and has led to the approval of bortezomib for the treatment of multiple myeloma. However, the alternative approach of enhancing the degradation of oncoproteins that are frequently overexpressed in cancers is less developed. Betulinic acid (BA is a plant-derived small molecule that can increase apoptosis specifically in cancer but not in normal cells, making it an attractive anti-cancer agent. Our results in prostate cancer suggested that BA inhibited multiple deubiquitinases (DUBs, which resulted in the accumulation of poly-ubiquitinated proteins, decreased levels of oncoproteins, and increased apoptotic cell death. In normal fibroblasts, however, BA did not inhibit DUB activity nor increased total poly-ubiquitinated proteins, which was associated with a lack of effect on cell death. In the TRAMP transgenic mouse model of prostate cancer, treatment with BA (10 mg/kg inhibited primary tumors, increased apoptosis, decreased angiogenesis and proliferation, and lowered androgen receptor and cyclin D1 protein. BA treatment also inhibited DUB activity and increased ubiquitinated proteins in TRAMP prostate cancer but had no effect on apoptosis or ubiquitination in normal mouse tissues. Overall, our data suggests that BA-mediated inhibition of DUBs and induction of apoptotic cell death specifically in prostate cancer but not in normal cells and tissues may provide an effective non-toxic and clinically selective agent for chemotherapy.

  11. The Inhibitive Effect of para-Amino Benzoic Acid and Its Polymer on Corrosion of Iron in 1 mol/L HCl Solution

    P. Manivel; G. Venkatachari

    2006-01-01

    Poly p-aminobenzoic acid has been synthesized by chemical oxidation method. The inhibitive effect of poly p-aminobenzoic acid on iron in 1 mol/l HCl solution was investigated by polarization and electrochemical impedance spectroscopy and compared with that of monomer p-aminobenzoic acid. The effectiveness of poly p-aminobenzoic acid is very high in comparison with that of monomer. The results show that both cathodic and anodic processes were suppressed by p-aminobenzoic acid and poly p-aminobenzoic acid of iron dissolution in 1 mol/L HCl by their adsorption on the iron surface. The inhibition efficiency of both p-aminobenzoic acid and poly p-aminobenzoic acid were found to increase with the inhibitor concentrations. Ultraviolet (UV)reflectance studies of the iron surface after exposure to inhibitor acid show that poly p-aminobenzoic acid is strongly adsorbed on iron surface.

  12. Inhibition of acid secretion from parietal cells by non-human-infecting Helicobacter species: a factor in colonization of gastric mucosa?

    Vargas, M; Lee, A; Fox, J.G.; Cave, D. R.

    1991-01-01

    Helicobacter pylori has been shown to produce a protein that inhibits acid secretion from parietal cells. We have examined other non-human-infecting Helicobacter species for this property by measuring the uptake of [14C]aminopyrine into rabbit parietal cells as an indirect assessment of acid secretion. Helicobacter felis and an isolate from a rhesus monkey were shown to inhibit acid secretion. Isolates of Helicobacter mustelae gave variable responses. Whole bacteria and cell-free sonicates im...

  13. Cauliflower mosaic virus protein P6 inhibits signaling responses to salicylic acid and regulates innate immunity.

    Andrew J Love

    Full Text Available Cauliflower mosaic virus (CaMV encodes a multifunctional protein P6 that is required for translation of the 35S RNA and also acts as a suppressor of RNA silencing. Here we demonstrate that P6 additionally acts as a pathogenicity effector of an unique and novel type, modifying NPR1 (a key regulator of salicylic acid (SA- and jasmonic acid (JA-dependent signaling and inhibiting SA-dependent defence responses We find that that transgene-mediated expression of P6 in Arabidopsis and transient expression in Nicotiana benthamiana has profound effects on defence signaling, suppressing expression of representative SA-responsive genes and increasing expression of representative JA-responsive genes. Relative to wild-type Arabidopsis P6-expressing transgenics had greatly reduced expression of PR-1 following SA-treatment, infection by CaMV or inoculation with an avirulent bacterial pathogen Pseudomonas syringae pv tomato (Pst. Similarly transient expression in Nicotiana benthamiana of P6 (including a mutant form defective in translational transactivation activity suppressed PR-1a transcript accumulation in response to Agrobacterium infiltration and following SA-treatment. As well as suppressing the expression of representative SA-regulated genes, P6-transgenic Arabidopsis showed greatly enhanced susceptibility to both virulent and avirulent Pst (titres elevated 10 to 30-fold compared to non-transgenic controls but reduced susceptibility to the necrotrophic fungus Botrytis cinerea. Necrosis following SA-treatment or inoculation with avirulent Pst was reduced and delayed in P6-transgenics. NPR1 an important regulator of SA/JA crosstalk, was more highly expressed in the presence of P6 and introduction of the P6 transgene into a transgenic line expressing an NPR1:GFP fusion resulted in greatly increased fluorescence in nuclei even in the absence of SA. Thus in the presence of P6 an inactive form of NPR1 is mislocalized in the nucleus even in uninduced plants

  14. Inhibition of cytochrome P450s enhances (+)-usnic acid cytotoxicity in primary cultured rat hepatocytes.

    Shi, Qiang; Greenhaw, James; Salminen, William F

    2014-08-01

    (+)-Usnic acid (UA) is consumed as a dietary supplement to promote weight loss; however, dietary supplements containing UA have been associated with clinical cases of severe liver injury. UA has been shown to be hepatotoxic in rats and is extensively metabolized by hepatic cytochrome P450s (CYPs); therefore, we examined if UA metabolism results in the formation of cytotoxic metabolites or if metabolism is a detoxification process in primary rat hepatocytes. When CYP activity was suppressed by the non-isoenzyme-selective inhibitor SKF-525A (20 μM), or the CYP1A inhibitor alpha-naphthoflavone (10 μM), or the CYP3A inhibitor ketoconazole (25 μM), the cytotoxicity of UA at 3~6 μM after 3~20 h of exposure was significantly increased as measured by lactate dehydrogenase (LDH) leakage. At 2 h after UA exposure, an earlier time point prior to LDH release, these CYP inhibitors potentiated UA-induced inhibition of cellular respiration as determined by the Clark type oxygen electrode. Cellular adenosine triphosphate (ATP) depletion by UA was also exacerbated by these CYP inhibitors. The CYP2B/2C inhibitor, ticlopidine at 20 μM, showed no effects in parallel experiments. These data demonstrate that UA is bio-transformed to less toxic metabolites in rat primary hepatocytes, probably mainly by CYP1A and 3A, but not 2B/2C. Published 2013. This article is a U.S. Government work and is in the public domain in the USA. PMID:23686521

  15. Inhibition of Hsp27 Radiosensitizes Head-and-Neck Cancer by Modulating Deoxyribonucleic Acid Repair

    Guttmann, David M.; Hart, Lori [Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania (United States); Du, Kevin [Department of Radiation Oncology, New York University School of Medicine, New York, New York (United States); Seletsky, Andrew [Department of Biology, Drexel University, Philadelphia, Pennsylvania (United States); Koumenis, Constantinos, E-mail: koumenis@xrt.upenn.edu [Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania (United States)

    2013-09-01

    Purpose: To present a novel method of tumor radiosensitization through Hsp27 knockdown using locked nucleic acid (LNA) and to investigate the role of Hsp27 in DNA double strand break (DSB) repair. Methods and Materials: Clonogenic survival assays, immunoblotting, the proximity ligation assay, and γH2AX foci analysis were conducted in SQ20B and FaDu human head-and-neck cancer cell lines treated with Hsp27 LNA and Hsp27 short hairpin RNA (shRNA). Additionally, nude mice with FaDu flank tumors were treated with fractionated radiation therapy after pretreatment with Hsp27 LNA and monitored for tumor growth. Results: Hsp27 LNA and Hsp27 shRNA radiosensitized head-and-neck cancer cell lines in an Hsp27-dependent manner. Ataxia-Telangectasia Mutated-mediated DNA repair signaling was impaired in irradiated cells with Hsp27 knockdown. ATM kinase inhibition abrogated the radiosensitizing effect of Hsp27. Furthermore, Hsp27 LNA and shRNA both attenuated DNA repair kinetics after radiation, and Hsp27 was found to colocalize with ATM in both untreated and irradiated cells. Last, combined radiation and Hsp27 LNA treatment in tumor xenografts in nude mice suppressed tumor growth compared with either treatment alone. Conclusions: These results support a radiosensitizing property of Hsp27 LNA in vitro and in vivo, implicate Hsp27 in double strand break repair, and suggest that Hsp27 LNA might eventually serve as an effective clinical agent in the radiotherapy of head-and-neck cancer.

  16. Inhibition of Hsp27 Radiosensitizes Head-and-Neck Cancer by Modulating Deoxyribonucleic Acid Repair

    Purpose: To present a novel method of tumor radiosensitization through Hsp27 knockdown using locked nucleic acid (LNA) and to investigate the role of Hsp27 in DNA double strand break (DSB) repair. Methods and Materials: Clonogenic survival assays, immunoblotting, the proximity ligation assay, and γH2AX foci analysis were conducted in SQ20B and FaDu human head-and-neck cancer cell lines treated with Hsp27 LNA and Hsp27 short hairpin RNA (shRNA). Additionally, nude mice with FaDu flank tumors were treated with fractionated radiation therapy after pretreatment with Hsp27 LNA and monitored for tumor growth. Results: Hsp27 LNA and Hsp27 shRNA radiosensitized head-and-neck cancer cell lines in an Hsp27-dependent manner. Ataxia-Telangectasia Mutated-mediated DNA repair signaling was impaired in irradiated cells with Hsp27 knockdown. ATM kinase inhibition abrogated the radiosensitizing effect of Hsp27. Furthermore, Hsp27 LNA and shRNA both attenuated DNA repair kinetics after radiation, and Hsp27 was found to colocalize with ATM in both untreated and irradiated cells. Last, combined radiation and Hsp27 LNA treatment in tumor xenografts in nude mice suppressed tumor growth compared with either treatment alone. Conclusions: These results support a radiosensitizing property of Hsp27 LNA in vitro and in vivo, implicate Hsp27 in double strand break repair, and suggest that Hsp27 LNA might eventually serve as an effective clinical agent in the radiotherapy of head-and-neck cancer

  17. Cocaine induces a mixed lysosomal lipidosis in cultured fibroblasts, by inactivation of acid sphingomyelinase and inhibition of phospholipase A1

    This paper reports that cocaine may induce a lysosomal storage disorder. Indeed, culture of Rat-1 fibroblasts with 250-500 μM cocaine induced after 2-3 days a major accumulation in lysosomes of electron-dense lamellar structures. By subcellular fractionation, this was reflected by a selective decrease of the buoyant density of several lysosomal enzymes, indicating lysosomal lipid overload. Biochemical analysis confirmed an increased cellular content of major phospholipids and sphingomyelin, but not of cholesterol. Cocaine, a membrane-permeant weak base, is concentrated by acidotropic sequestration, because its accumulation was abrogated by the proton ionophore, monensin and the vacuolar ATPase inhibitor, bafilomycin A1. At its estimated lysosomal concentration, cocaine almost completely inhibited phospholipase A1 activity on liposomes. Cell incubation with cocaine, but not with its inactive metabolite, benzoylecgonine, rapidly inactivated acid sphingomyelinase, as reflected by a 10-fold decrease in Vmax with identical Km. Acid sphingomyelinase inactivation was fully prevented by the thiol proteinases inhibitors, leupeptin and E64, indicating that cocaine induces selective sphingomyelinase proteolysis. Upon cocaine removal, acid sphingomyelinase activity was rapidly restored, pointing to its fast turnover. In contrast, the cellular content of several other lysosomal hydrolases was increased up to 2-fold. Together, these data show that acidotropic accumulation of cocaine in lysosomes rapidly inhibits acid phospholipase A1 and inactivates acid sphingomyelinase, which can explain induction of a mixed lysosomal lipidosis

  18. Inhibition of Human Hepatic Bile Acid Transporters by Tolvaptan and Metabolites: Contributing Factors to Drug-Induced Liver Injury?

    Slizgi, Jason R; Lu, Yang; Brouwer, Kenneth R; St Claire, Robert L; Freeman, Kimberly M; Pan, Maxwell; Brock, William J; Brouwer, Kim L R

    2016-01-01

    Tolvaptan is a vasopressin V(2)-receptor antagonist that has shown promise in treating Autosomal Dominant Polycystic Kidney Disease (ADPKD). Tolvaptan was, however, associated with liver injury in some ADPKD patients. Inhibition of bile acid transporters may be contributing factors to drug-induced liver injury. In this study, the ability of tolvaptan and two metabolites, DM-4103 and DM-4107, to inhibit human hepatic transporters (NTCP, BSEP, MRP2, MRP3, and MRP4) and bile acid transport in sandwich-cultured human hepatocytes (SCHH) was explored. IC(50) values were determined for tolvaptan, DM-4103 and DM-4107 inhibition of NTCP (∼41.5, 16.3, and 95.6 μM, respectively), BSEP (31.6, 4.15, and 119 μM, respectively), MRP2 (>50, ∼51.0, and >200 μM, respectively), MRP3 (>50, ∼44.6, and 61.2 μM, respectively), and MRP4 (>50, 4.26, and 37.9 μM, respectively). At the therapeutic dose of tolvaptan (90 mg), DM-4103 exhibited a C(max)/IC(50) value >0.1 for NTCP, BSEP, MRP2, MRP3, and MRP4. Tolvaptan accumulation in SCHH was extensive and not sodium-dependent; intracellular concentrations were ∼500 μM after a 10-min incubation duration with tolvaptan (15 μM). The biliary clearance of taurocholic acid (TCA) decreased by 43% when SCHH were co-incubated with tolvaptan (15 μM) and TCA (2.5 μM). When tolvaptan (15 μM) was co-incubated with 2.5 μM of chenodeoxycholic acid, taurochenodeoxycholic acid, or glycochenodeoxycholic acid in separate studies, the cellular accumulation of these bile acids increased by 1.30-, 1.68-, and 2.16-fold, respectively. Based on these data, inhibition of hepatic bile acid transport may be one of the biological mechanisms underlying tolvaptan-associated liver injury in patients with ADPKD. PMID:26507107

  19. The inhibition action of N-furfuryl-N'-phenyl thiourea on the corrosion of mild steel in acid media

    H. V. SUDHAKER NAYAK

    2006-10-01

    Full Text Available The inhibiting effect of N-furfuryl-N'-phenyl thiourea (FPTU on the corrosion of mild steel in aqueous solutions of 0.05 and 0.1MHCl, as well as 0.025 and 0.05 M H2SO4 has been demonstrated using the potentiodynamic polarization technique. The polarization data showed that FPTU acts as an efficient anodic inhibitor for mild steel in both acid solutions. Avery high inhibition efficiency was evidenced in both acid solutions and it was found to vary with the concentration of the inhibitor and temperature. The obtained kinetic parameters of adsorption revealed spontaneous adsorption and a strong interaction of FPTU with the mild steel surface.

  20. The Inhibition of Mild Steel Corrosion in Sulphuric Acid Media by Acorus Calamus Extract

    S. Ananth Kumar

    2013-04-01

    Full Text Available The inhibitive action of rhizome extracts of Acoruscalamus on mild steel corrosion in 0.5 N H2SO4 solution was studied using weight loss method, potentiodynamic polarization and EIS measurements. The results obtained indicate that the extracts functioned as good inhibitors in H2SO4 solution. Inhibition efficiency was found to increase with extract concentration. The adsorption of constituents in the plant extract on the surface of the metal is proposed for the inhibition behavior.

  1. Glycyrrhizic acid prevents astrocyte death by neuromyelitis optica-specific IgG via inhibition of C1q binding.

    Kim, Ji-Sun; Cheon, Soyoung; Kim, Seung Woo; Kim, Boram; Kim, Heejaung; Park, Ki Duk; Kim, Sung-Min

    2016-09-16

    Neuromyelitis optica (NMO) is an inflammatory demyelinating disease of the central nervous system and is mediated by complement-dependent cytotoxicity (CDC) of NMO-specific immunoglobulin G (IgG) antibodies (NMO-IgG). Glycyrrhizic acid (GA) has numerous pharmacological effects including inhibition of the complement pathway. We aimed to study the influence of GA on NMO-IgG-induced CDC. NMO-IgG samples from 7 patients with NMO, together with human complement, induced CDC in an aquaporin 4 M23-overexpressing glial cell line, an in vitro NMO model. GA attenuated NMO-IgG-induced CDC in a dose-dependent manner. The mechanism of the GA-related CDC inhibition was sequentially dissected and found to involve inhibition of C1q binding to NMO-IgG. Consequently, GA attenuates NMO-IgG-induced CDC and may be a promising novel therapeutic agent against NMO. PMID:27462020

  2. Kinetics of Corrosion Inhibition of Aluminum in Acidic Media by Water-Soluble Natural Polymeric Pectates as Anionic Polyelectrolyte Inhibitors

    Refat M. Hassan

    2013-06-01

    Full Text Available Corrosion inhibition of aluminum (Al in hydrochloric acid by anionic polyeletrolyte pectates (PEC as a water-soluble natural polymer polysaccharide has been studied using both gasometric and weight loss techniques. The results drawn from these two techniques are comparable and exhibit negligible differences. The inhibition efficiency was found to increase with increasing inhibitor concentration and decrease with increasing temperature. The inhibition action of PEC on Al metal surface was found to obey the Freundlich isotherm. Factors such as the concentration and geometrical structure of the inhibitor, concentration of the corrosive medium, and temperature affecting the corrosion rates were examined. The kinetic parameters were evaluated and a suitable corrosion mechanism consistent with the kinetic results is discussed in the paper.

  3. Quantum chemical and experimental characterization of the effect of ziprasidone on the corrosion inhibition of steel in acid media

    Highlights: → Acid corrosion inhibition. → Effective at very small concentration. → The effect of indole moiety in ziprasidone towards the corrosion inhibition. → Evaluation by quantum chemical and electrochemical methods. → Adsorption sites, planarity and LUMO orbitals of ziprasidone. - Abstract: Ziprasidone is composed of the benzisothiozole-3-piperizine (BITP) and an indole moiety. The inhibition potential of ziprasidone for the corrosion of steel in 1.0 M HCl and 0.5 M H2SO4 was assessed by weight loss, polarisation, electrochemical impedance spectroscopy and quantum methods. The results showed that nearly 10 times lower concentration of ziprasidone showed the same efficiency that was rendered by BITP. This is related to the planarity of ziprasidone molecule, potential adsorption sites and the extensive distribution of LUMO orbitals on indole moiety which cause larger back donation. Ziprasidone follow Langmuir adsorption isotherm.

  4. Inhibition of bleomycin-induced pulmonary fibrosis by nordihydroguaiaretic acid. The role of alveolar macrophage activation and mediator production.

    Phan, S. H.; Kunkel, S L

    1986-01-01

    The role of alveolar macrophage activation and release of mediators remains unclear. In this study, this role is examined with respect to the effects of relatively selective inhibitors of arachidonate metabolism on the pathogenesis of pulmonary fibrosis. CBA/J mice were administered bleomycin (0.037 units) endotracheally to induce pulmonary fibrosis. Daily intraperitoneal injections of a lipoxygenase inhibitor, nordihydroguaiaretic acid (NDGA) inhibited pulmonary fibrosis in a dose-dependent ...

  5. INHIBITION OF STAPHYLOCOCCUS AUREUS BY LACTIC ACID BACTERIA AND / OR BIFIDOBACTERIUM LACTIS DURING MILK FERMENTATION AND STORAGE

    Khalaf S. Al-Delaimy; Yaser M. Hamamdeh

    2013-01-01

    Survival and inhibition of Staphylococcus aureus by the lactic acid bacteria (LAB) starter culture (Sterptococcus thermophillus and Lactobacillus delbrukii subsp. bulgaricus) and/ or probiotic bacteria Bifidobacterium lactis during milk fermentation to yoghurt and storage up to 12 days was studied. Adding S. aureus (initial count log 6.64/ ml) with LAB (initial count log 6.8/ ml) in milk during yoghurt processing and storage resulted in no significant change in the counts of both S. aureus an...

  6. Acetyl salicylic acid inhibits Th17 airway inflammation via blockade of IL-6 and IL-17 positive feedback

    Moon, Hyung-Geun; Kang, Chil Sung; Choi, Jun-Pyo; Choi, Dong Sic; Choi, Hyun Il; Choi, Yong Wook; Jeon, Seong Gyu; Yoo, Joo-Yeon; Jang, Myoung Ho; Gho, Yong Song; Kim, Yoon-Keun

    2013-01-01

    T-helper (Th)17 cell responses are important for the development of neutrophilic inflammatory disease. Recently, we found that acetyl salicylic acid (ASA) inhibited Th17 airway inflammation in an asthma mouse model induced by sensitization with lipopolysaccharide (LPS)-containing allergens. To investigate the mechanism(s) of the inhibitory effect of ASA on the development of Th17 airway inflammation, a neutrophilic asthma mouse model was generated by intranasal sensitization with LPS plus ova...

  7. A Novel Synthetic Mycolic Acid Inhibits Bronchial Hyperresponsiveness and Allergic Inflammation in a Mouse Model of Asthma

    KIM, YOUNG-JOON; Kim, Ha-Jung; Jeong, Se Kyoo; Lee, Seung-Hwa; Kang, Mi-Jin; Yu, Ho-Sung; Jung, Young-Ho; Seo, Ju-Hee; Kim, Byoung-Ju; Yu, Jinho; Park, Seoung-Ju; Lee, Yong-Chul; Hong, Soo-Jong

    2013-01-01

    Purpose Recognition of microbes is important to trigger the innate immune system. Mycolic acid (MA) is a component of the cell walls of mycobacteria such as Mycobacterium bovis Bacillus Calmette-Guerin. MA has immunogenic properties, which may modulate the innate and adaptive immune response. This study aimed to investigate whether a novel synthetic MA (sMA) inhibits allergic inflammatory responses in a mouse model of asthma. Methods BALB/c mice were injected intraperitoneally with sMA follow...

  8. Inhibition of adenosine diphosphate-induced platelet aggregation by alpha-lipoic acid and dihydroquercetin in vitro

    Ivan S Ivanov; Sidehmenova, Anastasia V.; Vera I Smol′yakova; Chernysheva, Galina A.; Plotnikov, Mark B.

    2014-01-01

    Objectives: To investigate the antiplatelet activity of alpha-lipoic acid (α-LA) and dihydroquercetin (DHQ). Materials and Methods: Antiplatelet activity of the α-LA and DHQ was evaluated in rich platelet plasma of rat. The platelet aggregation was induced by adenosine diphosphate (ADP) in concentration of 4 Χ 10 -5 Μ. Results: α-LA and DHQ inhibited platelet aggregation in concentration-dependent manner. The antiplatelet activity of α-LA was more pronounced than DHQ. DHQ also increas...

  9. Mechanism, kinetics and microbiology of inhibition caused by long-chain fatty acids in anaerobic digestion of algal biomass

    Ma, Jingwei; Zhao, Quan-Bao; Laurens, Lieve L. M.; Jarvis, Eric E.; Nagle, Nick J.; Chen, Shulin; Frear, Craig S.

    2015-01-01

    Background Oleaginous microalgae contain a high level of lipids, which can be extracted and converted to biofuel. The lipid-extracted residue can then be further utilized through anaerobic digestion to produce biogas. However, long-chain fatty acids (LCFAs) have been identified as the main inhibitory factor on microbial activity of anaerobic consortium. In this study, the mechanism of LCFA inhibition on anaerobic digestion of whole and lipid-extracted algal biomass was investigated with a ran...

  10. Cyclopropane fatty acid synthase mutants of probiotic human-derived Lactobacillus reuteri are defective in TNF inhibition

    Jones, Sara E.; Whitehead, Kristi; Saulnier, Delphine; Thomas, Carissa M.; Versalovic, James; Britton, Robert A

    2011-01-01

    Although commensal microbes have been shown to modulate host immune responses, many of the bacterial factors that mediate immune regulation remain unidentified. Select strains of human-derived Lactobacillus reuteri synthesize immunomodulins that potently inhibit production of the inflammatory cytokine TNF. In this study, genetic and genomic approaches were used to identify and investigate L. reuteri genes required for human TNF immunomodulatory activity. Analysis of membrane fatty acids from ...

  11. Organic compounds as corrosion inhibitors for mild steel in acidic media: correlation between inhibition efficiency and chemical structure

    Elias, Elizandra C.S.; Chrisman, Erika C.A.N. [Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ (Brazil). Escola de Quimica

    2009-12-19

    The use of inhibitors for mild steels corrosion control which are in contact with aggressive environment is an accepted practice in acid treatment of oil-wells. Organic compounds have been studied to evaluate their corrosion inhibition potential. Film-forming corrosion inhibitors, commonly used to protect oil-field equipment, can be absorbed on the steel surface to give structurally ordered layers. Therefore, the electrons should act as an important role for this adsorption. Studies reveal that organic compounds show significant inhibition efficiency. For this purpose, their molecules should contain N, O and S heteroatoms in various functional groups, long hydrocarbon linear or branched radical and anion and cation active components. However, most of these compounds are not only expensive but also toxic to living beings. According to the 'Green Chemistry' rules, corrosion inhibitors based on organic compounds should be cheap, with low toxicity and have high inhibition efficiency. In this study, the effects of some organic compounds with different groups such as amide, ether, phenyldiamine, anime and aminophenol on the corrosion behavior of mild steel in acidic media have been investigated. The experimental data were obtained by gravimetric measurements. The results show that these compounds reveal a promising corrosion inhibition where phenyldiamine is the most efficient. The effect of molecular structure on the corrosion inhibition efficiency was investigated by semi-empirical quantum chemical calculations. The electronic properties such as highest occupied molecular orbital (HOMO), lowest unoccupied molecular orbital (LUMO) energy levels, and LUMO-HOMO energy gap orbital density were calculated. The relations between the inhibition efficiency and some quantum parameters are discussed and correlations are proposed. The highest values for the HOMO densities were found in the vicinity nitrogen atom, indicating that it is the most probable adsorption center

  12. Hydrophobic bile acids relax rat detrusor contraction via inhibiting the opening of the Na+/Ca2+ exchanger

    Zhu, Jingzhen; Dong, Xingyou; Liu, Qian; Wu, Chao; Wang, Qingqing; Long, Zhou; Li, Longkun

    2016-01-01

    Hydrophobic bile acids (BAs) are thought to inhibit smooth muscle contractility in several organs. The present study was undertaken to investigate the effects of hydrophobic BAs on the detrusor contractility of rat bladder and to explore the possible mechanism. Lithocholic acid (LCA) treatment increased the micturition interval and induced a concentration-dependent relaxation of bladder detrusor strips. In addition, LCA reduced the concentration of intracellular free Ca2+([Ca2+]i) and inhibited both the outward and inward Na+/Ca2+ exchanger (NCX) current (INCX) in primary isolated smooth muscle cells (SMCs). To further investigate the mechanism of action of LCA, several pharmacologic agents were used. We found that the NCX inhibitor 3′,4′-Dichlorobenzamil (DCB) can significantly inhibit the relaxation of detrusor strips and a reduction of the [Ca2+]i induced by LCA, while the antagonist of muscarinic receptor and the agonist of the G protein-coupled bile acid receptor (TGR5) and the farnesoid X receptor (FXR) had no effect. In conclusion, these data suggest that the relaxation of rat detrusor induced by hydrophobic BAs is mediated by NCX. Further research is needed to carry out to demonstrate the possible pathway and provide a potential new strategy to investigation for the treatment of the low urinary tract syndromes. PMID:26892434

  13. Inhibition treatment of the corrosion of lead artefacts in atmospheric conditions and by acetic acid vapour: use of sodium decanoate

    The efficiency of linear sodium decanoate, CH3(CH2)8COONa (noted NaC10), as corrosion inhibitor of lead was determined by electrochemical techniques in two corrosive mediums: ASTM D1384 standard water and acetic acid-enriched solutions. Best results were obtained with 0.05 mol l-1 of NaC10 solution. In these conditions, the inhibition efficiency can be estimated of 99.9%. The corrosion inhibition effect was confirmed by cyclic atmospheric tests in a climatic chamber in two different conditions: water saturated vapour, and acid acetic enriched vapour simulating the atmosphere in the wooden displays in museums. Surface analyses by SEM and X-ray diffraction indicate that the metal protection is due to the formation of a protective layer mainly composed of lead decanoate Pb(C10)2 (metallic soap). This inhibition treatment was applied on objects of metallic cultural heritage: gallo-roman sarcophagus in lead. Electrochemical methods confirm the efficiency of treatment on archaeological materials. In conclusion, this inhibitor treatment seems to be very promising against the atmospheric corrosion and the corrosion by organic acid vapour in museums

  14. Triterpene Acids from Rose Hip Powder Inhibit Self-antigen- and LPS-induced Cytokine Production and CD4(+) T-cell Proliferation in Human Mononuclear Cell Cultures

    Saaby, Lasse; Nielsen, Claus Henrik

    2012-01-01

    A triterpene acid mixture consisting of oleanolic, ursolic and betulinic acid isolated from a standardized rose hip powder (Rosa canina L.) has been shown to inhibit interleukin (IL)-6 release from Mono Mac 6 cells. The present study examined the effects of the triterpene acid mixture on the cyto...

  15. Crystal structure of FAS thioesterase domain with polyunsaturated fatty acyl adduct and inhibition by dihomo-[gamma]-linolenic acid

    Zhang, Wei; Chakravarty, Bornali; Zheng, Fei; Gu, Ziwei; Wu, Hongmei; Mao, Jianqiang; Wakil, Salih J.; Quiocho, Florante A. (Baylor)

    2012-05-29

    Human fatty acid synthase (hFAS) is a homodimeric multidomain enzyme that catalyzes a series of reactions leading to the de novo biosynthesis of long-chain fatty acids, mainly palmitate. The carboxy-terminal thioesterase (TE) domain determines the length of the fatty acyl chain and its ultimate release by hydrolysis. Because of the upregulation of hFAS in a variety of cancers, it is a target for antiproliferative agent development. Dietary long-chain polyunsaturated fatty acids (PUFAs) have been known to confer beneficial effects on many diseases and health conditions, including cancers, inflammations, diabetes, and heart diseases, but the precise molecular mechanisms involved have not been elucidated. We report the crystal structure of the hFAS TE domain covalently modified and inactivated by methyl {gamma}-linolenylfluorophosphonate. Whereas the structure confirmed the phosphorylation by the phosphonate head group of the active site serine, it also unexpectedly revealed the binding of the 18-carbon polyunsaturated {gamma}-linolenyl tail in a long groove-tunnel site, which itself is formed mainly by the emergence of an {alpha} helix (the 'helix flap'). We then found inhibition of the TE domain activity by the PUFA dihomo-{gamma}-linolenic acid; {gamma}- and {alpha}-linolenic acids, two popular dietary PUFAs, were less effective. Dihomo-{gamma}-linolenic acid also inhibited fatty acid biosynthesis in 3T3-L1 preadipocytes and selective human breast cancer cell lines, including SKBR3 and MDAMB231. In addition to revealing a novel mechanism for the molecular recognition of a polyunsaturated fatty acyl chain, our results offer a new framework for developing potent FAS inhibitors as therapeutics against cancers and other diseases.

  16. Inhibition by oxonic acid of gastrointestinal toxicity of 5-fluorouracil without loss of its antitumor activity in rats.

    Shirasaka, T; Shimamoto, Y; Fukushima, M

    1993-09-01

    The possibility of decreasing the gastrointestinal (GI) toxic effects of 5-fluorouracil (5-FU) on the digestive tract such as its injury of cells and induction of diarrhea, without reducing its antitumor activity, was investigated in rats. Oxonic acid was found to inhibit the phosphorylation of 5-FU to 5-fluorouridine-5'-monophosphate catalyzed by pyrimidine phosphoribosyl-transferase in a different manner from allopurinol in cell-free extracts and intact cells in vitro. On p.o. administration of 5-FU (2 mg/kg) and a potent inhibitor of 5-FU degradation to Yoshida sarcoma-bearing rats, oxonic acid (10 mg/kg) was found to inhibit the formation of 5-fluorouridine-5'-monophosphate from 5-FU and its subsequent incorporation into the RNA fractions of small and large intestine but not of tumor and bone marrow tissues. This selective inhibition of 5-FU phosphorylation in the GI tract was due to the much higher concentrations of oxonic acid in GI tissues than in other tissues and the blood. On p.o. administration with the 5-FU derivative, UFT, which is a combined form of 1 M tegafur and 4 M uracil and usually administered p.o. to cancer patients in Japan, oxonic acid (10-50 mg/kg) markedly reduced injury of GI tissues and/or severe diarrhea without influencing the antitumor effect of UFT. These findings suggest that coadministration of oxonic acid suppresses the GI toxicity of 5-FU and its derivatives without affecting their antitumor activity and thus prolongs the life span of cancer-bearing rats. PMID:7689420

  17. Inhibition of hydrogen embrittlement of Ni-Ti superelastic alloy in acid fluoride solution by hydrogen peroxide addition.

    Yokoyama, Ken'ichi; Yazaki, Yushin; Sakai, Jun'ichi

    2011-09-01

    Inhibition of the hydrogen embrittlement of Ni-Ti superelastic alloy in an acidulated phosphate fluoride (APF) solution has been attempted by adding various amounts of H(2)O(2). In a 0.2% APF solution, hydrogen absorption is markedly inhibited by adding H(2)O(2), although corrosion is slightly enhanced by increasing the amount of added H(2)O(2). By adding a small amount of H(2)O(2) (0.001 M), in the early stage of immersion, hydrogen embrittlement is inhibited and corrosion is only slightly enhanced. Upon adding H(2)O(2), it appears that the dominant cathodic reactions change from hydrogen evolution to H(2)O(2) reduction reactions, or the surface conditions of the alloy are changed by H(2)O(2) with a high oxidation capability, thereby inhibiting hydrogen absorption. The present study clearly indicates that infinitesimal addition of H(2)O(2) into acid fluoride solutions is effective for the inhibition of the hydrogen embrittlement of the alloy. PMID:21630433

  18. Inhibition of lactate transport in Ehrlich ascites tumor cells and human erythrocytes by a synthetic anhydride of lactic acid.

    Johnson, J H; Belt, J A; Dubinsky, W P; Zimniak, A; Racker, E

    1980-08-01

    The synthesis and some of the physical and biological characteristics of a new inhibitor of lactate transport are described. The inhibitor is isobutylcarbonyl lactayl anhydride (iBCLA). It is formed by the condensation of lactic acid and isobutylchloroformate. It inhibits lactate transport 50% at 0.5 microgram/mg of protein in both Ehrlich ascites tumor cells and human erythrocytes. In contrast, 15 microgram of iBCLA/mg of protein is required for 50% inhibition of phosphate transport in erythrocytes, and phosphate transport in Ehrlich ascites tumor cells is unaffected at levels as high as 50 microgram of iBCLA/mg of protein. A time-dependent and concentration-dependent reversal of lactate transport inhibition took place on exposure of iBCLA-treated Ehrlich ascites cells to hydroxylamine or dithiothreitol. These data, along with the observed sensitivity of the lactate transporter to sulfhydryl reagents [Spencer, T. L., & Lehninger, A. L. (1976) Biochem. J. 154, 405-414], suggest that iBCLA acylates an essential sulfhydryl group on the transporter. When glycolyzing Ehrlich ascites tumor cells were treated with concentrations of iBCLA sufficient for complete inhibition of lactate transport, intracellular lactate levels increased, intracellular pH and extra-cellular lactate levels decreased, and overall lactate production was inhibited. PMID:7407072

  19. Inhibition of mild steel corrosion in acidic medium using synthetic and naturally occurring polymers and synergistic halide additives

    Umoren, S.A. [Department of Chemistry, Faculty of Science, University of Uyo, P.M.B 1017 Uyo (Nigeria)], E-mail: saviourumoren@yahoo.com; Ogbobe, O.; Igwe, I.O. [Department of Polymer and Textile Engineering, School of Engineering and Engineering Technology, Federal University of Technology, P.M.B. 1526 Owerri (Nigeria); Ebenso, E.E. [Department of Chemistry and Chemical Technology, National University of Lesotho, P. O. Roma180, Lesotho (South Africa)

    2008-07-15

    The corrosion inhibition of mild steel in H{sub 2}SO{sub 4} in the presence of gum arabic (GA) (naturally occurring polymer) and polyethylene glycol (PEG) (synthetic polymer) was studied using weight loss, hydrogen evolution and thermometric methods at 30-60 deg. C. PEG was found to be a better inhibitor for mild steel corrosion in acidic medium than GA. The effect of addition of halides (KCl, KBr and KI) was also studied. Results obtained showed that inhibition efficiency (I%) increased with increase in GA and PEG concentration, addition of halides and with increase in temperature. Increase in inhibition efficiency (I%) and degree of surface coverage ({theta}) was found to follow the trend Cl{sup -} < Br{sup -} < I{sup -} which indicates that the radii and electronegativity of the halide ions play a significant role in the adsorption process. GA and PEG alone and in combination with halides were found to obey Temkin adsorption isotherm. Phenomenon of chemical adsorption is proposed from the trend of inhibition efficiency with temperature and values {delta}G{sub ads}{sup 0} obtained. The synergism parameter, S{sub I} evaluated is found to be greater than unity indicating that the enhanced inhibition efficiency caused by the addition of halides is only due to synergism.

  20. Ascorbic acid and reactive oxygen species are involved in the inhibition of seed germination by abscisic acid in rice seeds

    Ye, Nenghui; Zhu, Guohui; Liu, Yinggao; Zhang, Aying; Li, Yingxuan; Liu, Rui; Shi, Lu; Jia, Liguo; Zhang, Jianhua

    2011-01-01

    The antagonism between abscisic acid (ABA) and gibberellin (GA) plays a key role in controlling seed germination, but the mechanism of antagonism during this process is not known. The possible links among ABA, reactive oxygen species (ROS), ascorbic acid (ASC), and GA during rice seed germination were investigated. Unlike in non-seed tissues where ROS production is increased by ABA, ABA reduced ROS production in imbibed rice seeds, especially in the embryo region. Such reduced ROS also led to...

  1. Chlorogenic acid reduces liver inflammation and fibrosis through inhibition of toll-like receptor 4 signaling pathway

    Highlights: ► Chlorogenic acid decreased serum transaminase level and increased albumin level. ► Chlorogenic acid attenuated CCl4-induced liver collagen deposition. ► Chlorogenic acid ameliorated CCl4-induced inflammatory response. ► Chlorogenic acid inhibited the activation of TLR4/NF-κB signaling in liver. -- Abstract: Chlorogenic acid (CGA) is a type of polyphenol with anti-inflammatory, antioxidant activities. Our previous studies showed CGA could efficiently inhibit carbon tetrachloride (CCl4)-induced liver fibrosis in rats. However, the specific underlying mechanism remains unclear. The aim of this study is to investigate the effects of CGA on liver inflammation and fibrosis induced by CCl4 and whether they are related to inhibition of toll-like receptor 4 (TLR4) signaling pathway. Male Sprague-Dawley (SD) rats were administrated CCl4 together with or without CGA for 8 weeks. Histopathological and biochemical analyses were carried out. The mRNA and protein expression levels of proinflammatory and profibrotic mediators were detected by RT-PCR and Western blot, respectively. The levels of serum proinflammatory cytokines were detected by ELISA. CGA significantly attenuated CCl4-induced liver damage and symptoms of liver fibrosis, accompanied by reduced serum transaminase levels, collagen I and α-smooth muscle actin (α-SMA) expression. As compared with the CCl4-treated group, the expression levels of TLR4, myeloid differentiation factor 88 (MyD88), inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) were reduced in the treatment group of CCl4 and CGA, whereas bone morphogenetic protein and activin membrane-bound inhibitor (Bambi) expression was increased. CGA also suppressed CCl4 induced nuclear factor-κB (NF-κB) activation. Moreover, the hepatic mRNA expression and serum levels of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and interleukin-1β (IL-1β) were significantly increased in CCl4-treated rats and attenuated by co

  2. Synergistic effect between cationic gemini surfactant and chloride ion for the corrosion inhibition of steel in sulphuric acid

    Qiu Lingguang [School of Chemistry and Chemical Engineering, Anhui University, Hefei 230039 (China)], E-mail: lgqiu@ahu.edu.cn; Wu Yun; Wang Yimin; Jiang Xia [School of Chemistry and Chemical Engineering, Anhui University, Hefei 230039 (China)

    2008-02-15

    Corrosion inhibition of cold rolled steel in 0.5 mol L{sup -1} sulphuric acid by a quaternary ammonium gemini surfactant, l,3-propane-bis(dimethyl dodecylammonium bromide) (designated as 12-3-12), in the absence and presence of chloride ions was investigated at different temperatures. The results revealed significant synergistic effect between gemini 12-3-12 and chloride ions for the corrosion protection of cold rolled steel in sulphuric acid, and that the novel composite inhibitor system containing cationic gemini surfactant and chloride ions was efficient and low-cost for steel corrosion inhibition in sulphuric acid medium, even when concentration of 12-3-12 was as low as 1 x 10{sup -6} mol L{sup -1}. By fitting the obtained experimental data with Langmuir adsorption model and Arrhenius equation, some thermodynamic and kinetic parameters such as adsorption free energy, the apparent activation energy, and the pre-exponential factor were estimated. The adsorption mechanism of the gemini surfactant onto steel surface in acid medium in the absence and presence of chloride ions was also discussed, respectively.

  3. Gallic acid-based indanone derivative interacts synergistically with tetracycline by inhibiting efflux pump in multidrug resistant E. coli.

    Dwivedi, Gaurav Raj; Tiwari, Nimisha; Singh, Aastha; Kumar, Akhil; Roy, Sudeep; Negi, Arvind Singh; Pal, Anirban; Chanda, Debabrata; Sharma, Ashok; Darokar, Mahendra P

    2016-03-01

    The purpose of the present study was to study the synergy potential of gallic acid-based derivatives in combination with conventional antibiotics using multidrug resistant cultures of Escherichia coli. Gallic acid-based derivatives significantly reduced the MIC of tetracycline against multidrug resistant clinical isolate of E. coli. The best representative, 3-(3',4,'5'-trimethoxyphenyl)-4,5,6-trimethoxyindanone-1, an indanone derivative of gallic acid, was observed to inhibit ethidium bromide efflux and ATPase which was also supported by in silico docking. This derivative extended the post-antibiotic effect and decreased the mutation prevention concentration of tetracycline. This derivative in combination with TET was able to reduce the concentration of TNFα up to 18-fold in Swiss albino mice. This derivative was nontoxic and well tolerated up to 300 mg/kg dose in subacute oral toxicity study in mice. This is the first report of gallic acid-based indanone derivative as drug resistance reversal agent acting through ATP-dependent efflux pump inhibition. PMID:26658982

  4. 18β-Glycyrrhetinic acid inhibits adipogenic differentiation and stimulates lipolysis

    Highlights: ► 18β-GA inhibits adipogenic differentiation in 3T3-L1 preadipocytes and stimulates lipolysis in differentiated adipocytes. ► Anti-adipogenic effect of 18β-GA is caused by down-regulation of PPARγ and inactivation of Akt signalling. ► Lipolytic effect of 18β-GA is mediated by up-regulation of HSL, ATGL and perilipin and activation of HSL. -- Abstract: 18β-Glycyrrhetinic acid (18β-GA) obtained from the herb liquorice has various pharmacological properties including anti-inflammatory and anti-bacterial activities. However, potential biological anti-obesity activities are unclear. In this study, novel biological activities of 18β-GA in the adipogenesis of 3T3-L1 preadipocytes and in lipolysis of differentiated adipocytes were identified. Mouse 3T3-L1 cells were used as an in vitro model of adipogenesis and lipolysis, using a mixture of insulin/dexamethasone/3-isobutyl-1-methylxanthine (IBMX) to induce differentiation. The amount of lipid droplet accumulation was determined by an AdipoRed assay. The expression of several adipogenic transcription factors and enzymes was investigated using real-time reverse transcriptase-polymerase chain reaction (RT-PCR) and Western blotting. 18β-GA dose-dependently (1–40 μM) significantly decreased lipid accumulation in maturing preadipocytes. In 3T3-L1 preadipocytes, 10 μM of 18β-GA down-regulated the transcriptional levels of the peroxisome proliferator-activated receptor γ, CCAAT/enhancer-binding protein α and adiponectin, which are markers of adipogenic differentiation via Akt phosphorylation. Also, in differentiated adipocytes, 18β-GA increased the level of glycerol release and up-regulated the mRNA of hormone-sensitive lipase, adipose TG lipase and perilipin, as well as the phosphorylation of hormone-sensitive lipase at Serine 563. The results indicate that 18β-GA alters fat mass by directly affecting adipogenesis in maturing preadipocytes and lipolysis in matured adipocytes. Thus, 18β-GA may

  5. 18{beta}-Glycyrrhetinic acid inhibits adipogenic differentiation and stimulates lipolysis

    Moon, Myung-Hee; Jeong, Jae-Kyo; Lee, You-Jin; Seol, Jae-Won; Ahn, Dong-Choon; Kim, In-Shik [Center for Healthcare Technology Development, Biosafety Research Institute, College of Veterinary Medicine, Chonbuk National University, Jeonju, Jeonbuk 561-756 (Korea, Republic of); Park, Sang-Youel, E-mail: sypark@chonbuk.ac.kr [Center for Healthcare Technology Development, Biosafety Research Institute, College of Veterinary Medicine, Chonbuk National University, Jeonju, Jeonbuk 561-756 (Korea, Republic of)

    2012-04-20

    Highlights: Black-Right-Pointing-Pointer 18{beta}-GA inhibits adipogenic differentiation in 3T3-L1 preadipocytes and stimulates lipolysis in differentiated adipocytes. Black-Right-Pointing-Pointer Anti-adipogenic effect of 18{beta}-GA is caused by down-regulation of PPAR{gamma} and inactivation of Akt signalling. Black-Right-Pointing-Pointer Lipolytic effect of 18{beta}-GA is mediated by up-regulation of HSL, ATGL and perilipin and activation of HSL. -- Abstract: 18{beta}-Glycyrrhetinic acid (18{beta}-GA) obtained from the herb liquorice has various pharmacological properties including anti-inflammatory and anti-bacterial activities. However, potential biological anti-obesity activities are unclear. In this study, novel biological activities of 18{beta}-GA in the adipogenesis of 3T3-L1 preadipocytes and in lipolysis of differentiated adipocytes were identified. Mouse 3T3-L1 cells were used as an in vitro model of adipogenesis and lipolysis, using a mixture of insulin/dexamethasone/3-isobutyl-1-methylxanthine (IBMX) to induce differentiation. The amount of lipid droplet accumulation was determined by an AdipoRed assay. The expression of several adipogenic transcription factors and enzymes was investigated using real-time reverse transcriptase-polymerase chain reaction (RT-PCR) and Western blotting. 18{beta}-GA dose-dependently (1-40 {mu}M) significantly decreased lipid accumulation in maturing preadipocytes. In 3T3-L1 preadipocytes, 10 {mu}M of 18{beta}-GA down-regulated the transcriptional levels of the peroxisome proliferator-activated receptor {gamma}, CCAAT/enhancer-binding protein {alpha} and adiponectin, which are markers of adipogenic differentiation via Akt phosphorylation. Also, in differentiated adipocytes, 18{beta}-GA increased the level of glycerol release and up-regulated the mRNA of hormone-sensitive lipase, adipose TG lipase and perilipin, as well as the phosphorylation of hormone-sensitive lipase at Serine 563. The results indicate that 18{beta

  6. Deficit in Prepulse Inhibition in Mice Caused by Dietary n-3 Fatty Acid Deficiency

    Fedorova, Irina; Alvheim, Anita R.; Hussein, Nahed; Salem, Norman

    2009-01-01

    Docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) may be biosynthesized from a precursor α-linolenic acid (LNA) or obtained preformed in the diet. Dams were fed four diets with different levels of the various n-3 fatty acids during pregnancy and lactation, and their offspring were weaned to the same diets: “n-3 Deficient”, containing (as % total fatty acids) 0.07% of LNA; “Low LNA” (0.4%); “High LNA” (4.8%); and a “DHA+EPA” diet, containing 0.4% of LNA, 2% DHA and 2% EPA. Sensorimoto...

  7. Corrosion inhibition of aminated hydroxyl ethyl cellulose on mild steel in acidic condition.

    Sangeetha, Y; Meenakshi, S; Sairam Sundaram, C

    2016-10-01

    Aminated hydroxyethyl cellulose (AHEC) was synthesized, characterized using Fourier Transform Infrared spectroscopy (FTIR) and the corrosion inhibition of AHEC on mild steel in 1M HCl was studied using chemical and electrochemical studies. Results obtained in weight loss method showed that inhibition efficiency increased with increase in concentration of AHEC. The adsorption of the inhibitor on metal surface followed Frumkin isotherm. Polarization studies revealed that the AHEC inhibits through mixed mode. Thermodynamic parameters and activation energy were calculated and discussed. FTIR and X-ray diffraction studies (XRD) confirmed the adsorption of the inhibitor. The surface morphology was studied using Scanning Electron Microscope (SEM) and Atomic Force Microscopy (AFM). PMID:27312608

  8. Inhibition effects of acetyl coumarines and thiazole derivatives on corrosion of zinc in acidic medium

    A V Shanbhag; T V Venkatesha; R A Prabhu; B M Praveen

    2011-06-01

    The corrosion inhibition characteristics of acetyl coumarine (AC), bromo acetyl coumarine (BAC) and thiazole derivatives (BTMQ and BTCQ) on the corrosion of zinc in 0.1 M HCl solution were investigated by weight loss, potentiodynamic polarization and impedance techniques. The inhibition efficiency increased with increase in inhibitor concentration upto 5 × 10-4 M, then gave almost same inhibition efficiency. The polarizationmeasurements indicated the mixed nature of inhibitors. The adsorption of compounds obeyed Langmuir’s adsorption isotherm. The thermodynamic functions for adsorption processes were evaluated.

  9. Ascorbic acid inhibits development of tolerance and dependence to opiates in mice: Possible glutamatergic or dopaminergic modulation

    Kulkarni S

    2008-01-01

    Full Text Available In a recent study, it has been demonstrated that ascorbic acid possessed antidopaminergic activity and modulate the glutamatergic neurotransmission in mice. With this background, the present study was undertaken to study the effect of ascorbic acid on the development of tolerance and dependence to opiate and its mechanism of action. Male Swiss mice weighing 20-25 g were used in the present study. Mice were made physically dependent on opioid by the chronic administration of morphine (10 mg/kg, twice a day, for 9 days intraperitoneally. Ascorbic acid, haloperidol (dopamine antagonist or MK 801 (NMDA receptor antagonist was administered daily for 9 d before challenging the animals with morphine. The development of tolerance was assessed by noting the tail-flick latency on day 1, 3, 9 and 10. On the 10 th day after the measurement of tail-flick latency, animals were challenged with naloxone (2 mg/kg., i.p. and incidence of escape jumps were recorded by placing the animals in 45 cm high plexiglass container. Ascorbic acid (400-1600 mg/kg dose dependently inhibited development of tolerance and dependence to morphine as noted from tail-flick latency. When given along with MK 801 (0.01 mg/kg., i.p or haloperidol (0.1 mg/kg i.p., ascorbic acid (800 mg/kg., i.p. potentiated the response of MK 801 or haloperidol. In conclusion, it is hypothesized that inhibition of development of tolerance and dependence to morphine by ascorbic acid appears to have two components, namely dopaminergic and glutamatergic.

  10. Corrosion inhibition of 6061 Al-15 vol. pct. SiC(p) composite and its base alloy in a mixture of sulphuric acid and hydrochloric acid by 4-(N,N-dimethyl amino) benzaldehyde thiosemicarbazone

    Pinto, Geetha Mable [Department of Chemistry, National Institute of Technology Karnataka, Surathkal, Srinivasnagar 575 025, Mangalore, Karnataka (India); Nayak, Jagannath [Department of Metallurgical and Materials Engineering, National Institute of Technology Karnataka, Surathkal, Srinivasnagar 575 025, Karnataka (India); Shetty, A. Nityananda, E-mail: nityashreya@gmail.com [Department of Chemistry, National Institute of Technology Karnataka, Surathkal, Srinivasnagar 575 025, Mangalore, Karnataka (India)

    2011-02-15

    Research highlights: {yields} Corrosion inhibition of Al-SiC composite. {yields} DMABT as corrosion inhibitor. {yields} Inhibition through physisorption of DMABT. - Abstract: The corrosion inhibition characteristics of 4-(N,N-dimethylamino) benzaldehyde thiosemicarbazone (DMABT) on the corrosion behavior of 6061 Al-15 vol. pct. SiC(p) composite and its base alloy were studied at different temperatures in acid mixture medium containing varying concentrations of hydrochloric acid and sulphuric acid using Tafel extrapolation technique and ac impedance spectroscopy (EIS). The effect of inhibitor concentration, temperature and concentration of the acid mixture media on the inhibitor action was investigated. It was found that inhibition efficiencies increase with the increase in inhibitor concentration, but decrease with the increase in temperature and with the increase in concentration of the acid media. Thermodynamic parameters for dissolution process were determined. The adsorption of DMABT on both the composite and base alloy was found to be through physisorption obeying Freundlich adsorption isotherm.

  11. Salicylhydroxamic acid (SHAM) inhibition of the DIC-pump in unicellular algae

    SHAM at 1 or 2 mM inhibits dissolved inorganic carbon (DIC) concentrating mechanisms in unicellular green algae as measured by photosynthetic oxygen evolution or by 14C-inorganic carbon uptake (using silicone oil centrifugation techniques). This inhibition was reversed by high levels of DIC whereby the cells do not require the concentrating mechanism. SHAM inhibited the DIC-pump, which uses external CO2, in three species of algae, Dunaliella tertiolecta, Chlamydomonas reinhardtii, and Scenedesmus obliquus when adapted to low CO2 and assayed around neutral pH. Scenedesmus adapted to air at pH 9.0 to use external HCO3- were not affected by SHAM. It is important to establish low optimum concentrations of SHAM, which varied with the algal species. The mechanism of SHAM inhibition of the CO2 concentrating process is unknown. SHAM inhibits alternative respiration in these algae, but SHAM may also inhibit other reactions involving H+ gradients or transporters associated with the DIC-pump

  12. Growth Inhibition and Apoptosis Induced by Retinoic Acid Combined with Interferon Alpha-2a on Transitional Cell Carcinoma of Bladder

    QIANLi-xin; LIUXun-liang; ZHOUJian-wei; MonicaLiebert; ZOUChang-chun; ZOUChang-ping

    2004-01-01

    To identify new favorable agents and develop novel approaches for the chemoprevention and treatment of superficial bladder cancer and invesligate the effects of combination of relinoids and interferon α-2a on growth inhibition and apoptosis induction in bladder cancer cell lines. Methods: Four bladder cancer cell lines, grade 1 to 3,and two retinoids, all-trans-retinoic acid(ATRA) ,9.cis retinoic acid(9cRA) ,combined with inteferon α-2a(INF),were used in the study.We compared the competence of these agents to inhibit growth, induce apoptosis, affect the exptession of nuclear retinoid receptors, and modulate STAT1 protein. Resu/ts: Most of the bladder cancer cell lines were resistant to the effect of ATRA and 9cRA on growth inhibition and apoptosis induction, even at higher concentration (10-5M).The effects of ATRA and 9c RA on cell growth and apoptosis were enhanced by INF α-2a.Combination of ATRA and IFNa-2a induced ~ and Slat 1 expression in three bladder cancer cell lines, ~: The results demonstrated that INFw2a synergize with the inhibitory effect of ATRA and 9c RA on the growth intn'bition and apoptosis of bladder cancer cells in vitro, which suggested that it has a potenlJal intexest for the trealment of transitimml cell carcinmna of bladder.

  13. Enterococcus faecalis inhibits superantigen toxic shock syndrome toxin-1-induced interleukin-8 from human vaginal epithelial cells through tetramic acids.

    Brosnahan, Amanda J; Merriman, Joseph A; Salgado-Pabón, Wilmara; Ford, Bradley; Schlievert, Patrick M

    2013-01-01

    The vaginal mucosa can be colonized by many bacteria including commensal organisms and potential pathogens, such as Staphylococcus aureus. Some strains of S. aureus produce the superantigen toxic shock syndrome toxin-1, which can penetrate the vaginal epithelium to cause toxic shock syndrome. We have observed that a female was mono-colonized with Enterococcus faecalis vaginally as tested in aerobic culture, even upon repeated culture for six months, suggesting this organism was negatively influencing colonization by other bacteria. In recent studies, we demonstrated an "outside-in" mechanism of cytokine signaling and consequent inflammation that facilitates the ability of potential pathogens to initiate infection from mucosal surfaces. Thus, we hypothesized that this strain of E. faecalis may make anti-inflammatory factors which block disease progression of more pathogenic organisms. E. faecalis MN1 inhibited interleukin-8 production from human vaginal epithelial cells in response to the vaginal pathogens Candida albicans, Gardnerella vaginalis, and Neisseria gonorrhoeae, as well as to toxic shock syndrome toxin-1. We further demonstrated that this organism secretes two tetramic acid compounds which appear responsible for inhibition of interleukin-8 production, as well as inhibition of T cell proliferation due to toxic shock syndrome toxin-1. Microbicides that include anti-inflammatory molecules, such as these tetramic acid compounds naturally produced by E. faecalis MN1, may be useful in prevention of diseases that develop from vaginal infections. PMID:23613823

  14. Enterococcus faecalis inhibits superantigen toxic shock syndrome toxin-1-induced interleukin-8 from human vaginal epithelial cells through tetramic acids.

    Amanda J Brosnahan

    Full Text Available The vaginal mucosa can be colonized by many bacteria including commensal organisms and potential pathogens, such as Staphylococcus aureus. Some strains of S. aureus produce the superantigen toxic shock syndrome toxin-1, which can penetrate the vaginal epithelium to cause toxic shock syndrome. We have observed that a female was mono-colonized with Enterococcus faecalis vaginally as tested in aerobic culture, even upon repeated culture for six months, suggesting this organism was negatively influencing colonization by other bacteria. In recent studies, we demonstrated an "outside-in" mechanism of cytokine signaling and consequent inflammation that facilitates the ability of potential pathogens to initiate infection from mucosal surfaces. Thus, we hypothesized that this strain of E. faecalis may make anti-inflammatory factors which block disease progression of more pathogenic organisms. E. faecalis MN1 inhibited interleukin-8 production from human vaginal epithelial cells in response to the vaginal pathogens Candida albicans, Gardnerella vaginalis, and Neisseria gonorrhoeae, as well as to toxic shock syndrome toxin-1. We further demonstrated that this organism secretes two tetramic acid compounds which appear responsible for inhibition of interleukin-8 production, as well as inhibition of T cell proliferation due to toxic shock syndrome toxin-1. Microbicides that include anti-inflammatory molecules, such as these tetramic acid compounds naturally produced by E. faecalis MN1, may be useful in prevention of diseases that develop from vaginal infections.

  15. Calcite growth-rate inhibition by fulvic acid and magnesium ion—Possible influence on biogenic calcite formation

    Reddy, Michael M.

    2012-01-01

    Increases in ocean surface water dissolved carbon dioxide (CO2) concentrations retard biocalcification by reducing calcite supersaturation (Ωc). Reduced calcification rates may influence growth-rate dependent magnesium ion (Mg) incorporation into biogenic calcite modifying the use of calcifying organisms as paleoclimate proxies. Fulvic acid (FA) at biocalcification sites may further reduce calcification rates. Calcite growth-rate inhibition by FA and Mg, two common constituents of seawater and soil water involved in the formation of biogenic calcite, was measured separately and in combination under identical, highly reproducible experimental conditions. Calcite growth rates (pH=8.5 and Ωc=4.5) are reduced by FA (0.5 mg/L) to 47% and by Mg (10−4 M) to 38%, compared to control experiments containing no added growth-rate inhibitor. Humic acid (HA) is twice as effective a calcite growth-rate inhibitor as FA. Calcite growth rate in the presence of both FA (0.5 mg/L) and Mg (10−4 M) is reduced to 5% of the control rate. Mg inhibits calcite growth rates by substitution for calcium ion at the growth site. In contrast, FA inhibits calcite growth rates by binding multiple carboxylate groups on the calcite surface. FA and Mg together have an increased affinity for the calcite growth sites reducing calcite growth rates.

  16. Inhibition of carnitine-acyl transferase I by oxfenicine studied in vivo with [{sup 11}C]-labeled fatty acids

    Angsten, Gertrud [Department of Pediatric Surgery, University Children' s Hospital, S-751 85 Uppsala (Sweden)]. E-mail: gertrud.angsten@surgsci.uu.se; Valind, Sven [Uppsala University PET Centre, Uppsala University, S-751 05 Uppsala (Sweden); Department of Clinical Physiology, University Hospital, S-751 85 Uppsala (Sweden); Takalo, Reijo [Uppsala University PET Centre, Uppsala University, S-751 05 Uppsala (Sweden); Department of Clinical Physiology, University Hospital, S-751 85 Uppsala (Sweden); Neu, Henrik [Uppsala University PET Centre, Uppsala University, S-751 05 Uppsala (Sweden); Department of Organic Chemistry, Uppsala University, S-751 24 Uppsala (Sweden); Meurling, Staffan [Department of Pediatric Surgery, University Children' s Hospital, S-751 85 Uppsala (Sweden); Langstroem, Bengt [Uppsala University PET Centre, Uppsala University, S-751 05 Uppsala (Sweden); Department of Organic Chemistry, Uppsala University, S-751 24 Uppsala (Sweden)

    2005-07-01

    Methods: Anesthetized pigs were studied with [{sup 11}C]-labeled fatty acids (FAs) with carbon chain length ranging from 8 to 16 carbon atoms, during control conditions and during inhibition of carnitine-palmitoyl transferase I (CPT I) with oxfenicine. The myocardial uptake of [{sup 11}C]-FAs from blood was measured together with the relative distribution of [{sup 11}C]-acyl-CoA between rapid mitochondrial oxidation and incorporation into slow turnover lipid pools in the heart. Results: During baseline conditions, the fractional oxidative utilization of palmitate was almost as high as that of carnitine-independent short-chain FAs, unless the carnitine shuttle was inhibited by high levels of lactate. Inhibition of CPT I almost completely blocked the oxidative pathway for palmitic acid and reduced the fractional oxidative utilization, while the rate of oxidative metabolism of acyl-CoA was unaffected. Conclusions: [{sup 11}C]-Labeled FAs allow rapid oxidation to be well separated from esterification into slow turnover lipid pools in the heart of anaesthetized pigs. The fractional oxidative utilization of [{sup 11}C]-palmitate serves well to characterize, in vivo, the carnitine-dependent transfer of long-chain FAs.

  17. Inhibition of carnitine-acyl transferase I by oxfenicine studied in vivo with [11C]-labeled fatty acids

    Methods: Anesthetized pigs were studied with [11C]-labeled fatty acids (FAs) with carbon chain length ranging from 8 to 16 carbon atoms, during control conditions and during inhibition of carnitine-palmitoyl transferase I (CPT I) with oxfenicine. The myocardial uptake of [11C]-FAs from blood was measured together with the relative distribution of [11C]-acyl-CoA between rapid mitochondrial oxidation and incorporation into slow turnover lipid pools in the heart. Results: During baseline conditions, the fractional oxidative utilization of palmitate was almost as high as that of carnitine-independent short-chain FAs, unless the carnitine shuttle was inhibited by high levels of lactate. Inhibition of CPT I almost completely blocked the oxidative pathway for palmitic acid and reduced the fractional oxidative utilization, while the rate of oxidative metabolism of acyl-CoA was unaffected. Conclusions: [11C]-Labeled FAs allow rapid oxidation to be well separated from esterification into slow turnover lipid pools in the heart of anaesthetized pigs. The fractional oxidative utilization of [11C]-palmitate serves well to characterize, in vivo, the carnitine-dependent transfer of long-chain FAs

  18. Inhibition of corrosion of mild steel in acid media by N′-benzylidene-3-(quinolin-4-ylthio)propanohydrazide

    V Ramesh Saliyan; Airody Vasudeva Adhikari

    2008-08-01

    In the present investigation a new corrosion inhibitor, N′-(3,4-dihydroxybenzylidene)-3-{[8-(trifluoromethyl) quinolin-4-yl]thio}propanohydrazide(DHBTPH) was synthesized, characterized and tested as a corrosion inhibitor for mild steel in HCl (1 M, 2 M) and H2SO4 (0.5 M, 1 M) solutions using weight-loss method, electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization methods. The corrosion inhibition efficiency measured by all the above three techniques were in good agreement with each other. The results showed that DHBTPH is a very good inhibitor for mild steel in acidic media. The inhibition efficiency in different acid media was found to be in the decreasing order 0.5 M H2SO4 > 1 M HCl > 1 M H2SO4 > 2 M HCl. The inhibition efficiency increases with increasing inhibitor concentration and with increasing temperature. It acts as an anodic inhibitor. Thermodynamic and activation parameters are discussed. Adsorption of DHBTPH was found to follow the Langmuir’s adsorption isotherm. Chemisorption mechanism is proposed. The mild steel samples were also analysed by scanning electron microscopy (SEM).

  19. Inhibition of Tanshinone IIA, Salvianolic Acid A and Salvianolic Acid B on Areca Nut Extract-Induced Oral Submucous Fibrosis in Vitro

    Jian-Ping Dai

    2015-04-01

    Full Text Available Salvia miltiorrhiza Bunge has been reported to possess excellent antifibrotic activity. In this study, we have investigated the effect and mechanism of tanshinone IIA (Tan-IIA, salvianolic acid A (Sal-A and salvianolic acid B (Sal-B, the important active compounds of Salvia miltiorrhiza Bunge, on areca nut extract (ANE-induced oral submucous fibrosis (OSF in vitro. Through human procollagen gene promoter luciferase reporter plasmid assay, hydroxyproline assay, gelatin zymography assay, qRT-PCR, ELISA and Western blot assay, the influence of these three compounds on ANE-stimulated cell viability, collagen accumulation, procollagen gene transcription, MMP-2/-9 activity, MMP-1/-13 and TIMP-1/-2 expression, cytokine secretion and the activation of PI3K/AKT, ERK/JNK/p38 MAPK and TGF-β/Smads pathways were detected. The results showed that Tan-IIA, Sal-A and Sal-B could significantly inhibit the ANE-stimulated abnormal viability and collagen accumulation of mice oral mucosal fibroblasts (MOMFs, inhibit the transcription of procollagen gene COL1A1 and COL3A1, increase MMP-2/-9 activity, decrease TIMP-1/-2 expression and inhibit the transcription and release of CTGF, TGF-β1, IL-6 and TNF-α; Tan-IIA, Sal-A and Sal-B also inhibited the ANE-induced activation of AKT and ERK MAPK pathways in MOMFs and the activation of TGF-β/Smads pathway in HaCaT cells. In conclusion, Tan-IIA, Sal-A and Sal-B possess excellent antifibrotic activity in vitro and can possibly be used to promote the rehabilitation of OSF patients.

  20. Easily denaturing nucleic acids derived from intercalating nucleic acids: thermal stability studies, dual duplex invasion and inhibition of transcription start

    Filichev, Vyacheslav V; Vester, Birte; Hansen, Lykke Haastrup; Pedersen, Erik B

    2005-01-01

    The bulged insertions of (R)-1-O-(pyren-1-ylmethyl)glycerol (monomer P) in two complementary 8mer DNA strands (intercalating nucleic acids) opposite to each other resulted in the formation of an easily denaturing duplex, which had lower thermal stability (21.0 degrees C) than the wild-type double...

  1. Inhibition of erythrocyte lipid peroxidation and hemolysis by the radioprotectant WR-2721, S-2-(3-aminopropylamino)ethylphosphorothioic acid

    Chemical radioprotection is often interpreted in terms of protection or repair of DNA damaged predominantly by reactive oxygen species formed from the radiolysis of water. Radiation injury can also be related to membrane damage as a consequence, e.g., of lipid hydroperoxide formation, but the role of lipid peroxidation in radioprotection has not been studied widely. The authors have used red cell model systems in this regard, which have the advantage of lack of organelles and DNA, and the potential for characterizing factors that influence drug uptake. Cumene hydroperoxide (CHP) was used to mimic radiation-induced hydroperoxides. After 2.5 hr incubation of rat erythrocytes with 1.0 mM CHP, 20% hemolysis was observed, which appeared to be related to glucose depletion in the cells, since the presence of glucose (5mM) inhibited hemolysis. Hemolysis was also totally inhibited by 5 mM WR-2721. Thiobarbituric acid-reactive substances (indicative of lipid peroxidation) were detectable before hemolysis and inhibited by WR-2721. WR-2721 and its free sulfhydryl form (WR-1065) were also capable of inhibiting radiation-induced formation of pentane in erythrocyte ghost preparations. These data indicate that the antioxidant action of WR-2721 is due to its conversion to WR-1065, and this antioxidant effect may contribute to the radioprotective effect of the drug

  2. Salvianolic acid B inhibits platelets as a P2Y12 antagonist and PDE inhibitor: evidence from clinic to laboratory.

    Liu, Lei; Li, Jian; Zhang, Yan; Zhang, Shenghui; Ye, Jianqin; Wen, Zhichao; Ding, Jianping; Kunapuli, Satya P; Luo, Xinping; Ding, Zhongren

    2014-10-01

    Salviae miltiorrhiza (Danshen) has been used for thousands of years in China and some other Asian countries to treat atherothrombotic diseases. Salvianolate which consists of three water-soluble ingredients purified from Salviae miltiorrhiza, has been approved by Chinese SFDA to treat coronary artery disease. So far, there is no evidence clearly showing the clinical efficiency of salvianolate and the underlying mechanism. This study is to evaluate the effects of salvianolate on platelets in patients with acute coronary syndrome and explore the underlying mechanism. We evaluated the effects of salvianolate on platelets in patients with acute coronary syndrome by measuring ADP-induced PAC-1 binding and P-selectin expression on platelets. Salvianolate significantly potentiated the antiplatelet effects of standard dual antiplatelet therapy. We also investigated the antiplatelet effects of salvianolatic acid B (Sal-B), the major component which composes 85% of salvianolate. Sal-B inhibits human platelet activation induced by multiple agonists in vitro by inhibiting phosphodiesterase (PDE) and antagonizing P2Y12 receptor. For the first time, we show the antiplatelet efficiency of salvianolate in ACS patients undergoing treatment with clopidogrel plus aspirin, and demonstrate that Sal-B, the major component of salvianolate inhibits human platelet activation via PDE inhibition and P2Y12 antagonism which may account for the clinical antiplatelet effects of salvianolate. Our results suggest that Sal-B may substitute salvianolate for clinical use. PMID:25077998

  3. S-(−-10,11-Dihydroxyfarnesoic Acid Methyl Ester Inhibits Melanin Synthesis in Murine Melanocyte Cells

    Seung-Hwa Baek

    2014-07-01

    Full Text Available The development of antimelanogenic agents is important for the prevention of serious aesthetic problems such as melasmas, freckles, age spots, and chloasmas. In the course of screening for melanin synthesis inhibitors, we found that the culture broth from an insect morphopathogenic fungus, Beauveria bassiana CS1029, exhibits potent antimelanogenic activity. We isolated and purified an active metabolite and identified it as S-(−-10,11-dihydroxyfarnesoic acid methyl ester (dhFAME, an insect juvenile hormone. To address whether dhFAME inhibits melanin synthesis, we first measured the size of the melanin biosynthesis inhibition zone caused by dhFAME. dhFAME also showed inhibitory activity against mushroom tyrosinase in Melan-a cells. Intracellular, dose-dependent tyrosinase inhibition activity was also confirmed by zymography. In addition, we showed that dhFAME strongly inhibits melanin synthesis in Melan-a cells. Furthermore, we compared levels of TYR, TRP-1, TRP-2, MITF, and MC1R mRNA expression by reverse-transcription polymerase chain reaction and showed that treatment of Melan-a cells with 35 μM dhFAME led to an 11-fold decrease in TYR expression, a 6-fold decrease in TRP-2 expression, and a 5-fold decrease in MITF expression. Together, these results indicate that dhFAME is a potent inhibitor of melanin synthesis that can potentially be used for cosmetic biomaterial(s.

  4. Oleanolic acid inhibits colorectal cancer angiogenesis in vivo and in vitro via suppression of STAT3 and Hedgehog pathways.

    Li, Li; Lin, Jiumao; Sun, Guodong; Wei, Lihui; Shen, Aling; Zhang, Mingyue; Peng, Jun

    2016-06-01

    Angiogenesis is an essential process of cancer progression and is regulated by multiple intracellular signaling pathways, including signal transducer and activator of transcription 3 (STAT3) and sonic hedgehog (SHH). Thus, these pathways have become a promising target for anti‑cancer therapeutic strategies. Oleanolic acid (OA) is an active compound present in various herbal medicines, which have been used historically for the clinical treatment of various types of human malignancies, including colorectal cancer (CRC). The present study used a CRC mouse xenograft model and human umbilical vein endothelial cells (HUVECs) to evaluate the effect of OA on tumor angiogenesis and on the activation of the STAT3 and SHH signaling pathways. It was determined that OA treatment significantly inhibited tumor growth and reduced intratumoral microvessel density (MVD) in CRC mice. In addition, OA treatment inhibited the proliferation, migration and tube formation in HUVECs, in a dose and time-dependent manner. Furthermore, OA markedly suppressed the activation of the STAT3 and SHH signaling pathways and inhibited the expression of the pro‑angiogenic vascular endothelial growth factor A and basic fibroblast growth factor, two important target genes of the aforementioned signaling pathways. Therefore it is suggested that inhibition of tumor angiogenesis via the suppression of multiple signaling pathways may be one of the underlying mechanisms by which OA exerts its anti-cancer effect. PMID:27108756

  5. Betulinic acid inhibits IL-1β-induced inflammation by activating PPAR-γ in human osteoarthritis chondrocytes.

    Jingbo, Wang; Aimin, Chen; Qi, Wu; Xin, Li; Huaining, Li

    2015-12-01

    Betulinic acid (BA), a triterpenoid isolated from birch bark, has been reported to have anti-inflammatory effects. In this study, we investigated the anti-osteoarthritic effects of BA in IL-1β-stimulated human osteoarthritis chondrocytes. Human osteoarthritis chondrocytes were pre-incubated with BA (6, 12, 24μM) for 12h and then treated with IL-1β (10ng/ml). The production of PGE2 and NO were detected by ELISA and Griess reagent. The expression of NF-κB, IκB, and PPAR-γ were detected by Western blotting. The results showed that BA dose-dependently inhibited IL-1β-induced MMP-1, MMP-3, MMP-13, PGE2 and NO productions. BA also inhibited IL-1β-induced NF-κB activation. Furthermore, BA was found to activate PPAR-γ and the inhibition of PGE2 and NO by BA can be reversed by PPAR-γ antagonist GW9662. In conclusion, these results suggested that BA inhibited IL-1β-induced inflammation in osteoarthritis chondrocytes by activating PPAR-γ. PMID:26391061

  6. Risk Factors for Development of Cholestatic Drug-Induced Liver Injury: Inhibition of Hepatic Basolateral Bile Acid Transporters Multidrug Resistance-Associated Proteins 3 and 4

    Köck, Kathleen; Ferslew, Brian C.; Netterberg, Ida; Yang, Kyunghee; Urban, Thomas J.; Swaan, Peter W.; Stewart, Paul W.; Brouwer, Kim L.R.

    2014-01-01

    Impaired hepatic bile acid export may contribute to development of cholestatic drug-induced liver injury (DILI). The multidrug resistance-associated proteins (MRP) 3 and 4 are postulated to be compensatory hepatic basolateral bile acid efflux transporters when biliary excretion by the bile salt export pump (BSEP) is impaired. BSEP inhibition is a risk factor for cholestatic DILI. This study aimed to characterize the relationship between MRP3, MRP4, and BSEP inhibition and cholestatic potentia...

  7. Study on the inhibition of mild steel corrosion by 1,3-bis-(morpholin-4-yl-phenyl-methyl)-thiourea in hydrochloric acid medium

    Devaraj Karthik; Tamilvendan, D.; G. Venkatesa Prabhu

    2014-01-01

    1,3-Bis-(morpholin-4-yl-phenyl-methyl)-thiourea (MBT) was synthesized and their influence on the inhibition of corrosion on mild steel in various hydrochloric acid concentrations has been investigated by weight loss, potentiodynamic polarization, electrochemical impedance (EI), Tafel polarization, scanning electron microscope (SEM) and FT-IR methods. The result of weight loss study shows that the corrosion inhibition efficiency (IE) is directly proportional to the concentration of the inhibit...

  8. Selection of probiotic lactic acid bacteria able to inhibit β-hemolytic Escherichia coli isolated from diarrheal piglets

    Malawach, T.

    2007-05-01

    Full Text Available A total of 306 isolates of lactic acid bacteria were isolated from 250 samples of piglet faeces. The strains were investigated for preliminary probiotic properties based on their stability in bile salts (0.30%and high acidity (pH 3.0. Ability to utilize protein, fat and starch, growth in the absence of vitamin B12 and growth with both aerobic and anaerobic conditions were also considered. As a result of above criteria, 20isolates were selected. Using an agar spot method, all isolates were able to inhibit β-hemolytic Escherichia coli 240/2 under aerobic and anaerobic condition. A further investigation using a co-culture techniqueshowed that only six isolates inhibited β-hemolytic E. coli 240/2, E. coli K88 and E. coli K 99 by more than 90 percent. The selected isolates were resistant to the following antibiotics: amikacin, polymyxin B andnalidixic acid; however the strains were susceptible to erythromycin and chloramphenicol. All six active isolates were identified as Lactobacillus plantarum by API 50 CH system.

  9. Omega-3 free fatty acids suppress macrophage inflammasome activation by inhibiting NF-κB activation and enhancing autophagy.

    Yolanda Williams-Bey

    Full Text Available The omega-3 (ω3 fatty acid docosahexaenoic acid (DHA can suppress inflammation, specifically IL-1β production through poorly understood molecular mechanisms. Here, we show that DHA reduces macrophage IL-1β production by limiting inflammasome activation. Exposure to DHA reduced IL-1β production by ligands that stimulate the NLRP3, AIM2, and NAIP5/NLRC4 inflammasomes. The inhibition required Free Fatty Acid Receptor (FFAR 4 (also known as GPR120, a G-protein coupled receptor (GPR known to bind DHA. The exposure of cells to DHA recruited the adapter protein β-arrestin1/2 to FFAR4, but not to a related lipid receptor. DHA treatment reduced the initial inflammasome priming step by suppressing the nuclear translocation of NF-κB. DHA also reduced IL-1β levels by enhancing autophagy in the cells. As a consequence macrophages derived from mice lacking the essential autophagy protein ATG7 were partially resistant to suppressive effects of DHA. Thus, DHA suppresses inflammasome activation by two distinct mechanisms, inhibiting the initial priming step and by augmenting autophagy, which limits inflammasome activity.

  10. Inhibition of beta-amino acid transport by diamide does not involve the brush border membrane surface

    Diamide (dicarboxylic acid bis-(N,N-dimethylamide) has been shown in previous studies to block the uptake of the beta-amino acid taurine at its high affinity transport site in rat renal cortex slices. Diamide may act by increasing the efflux of taurine from the slice. Studies performed in rat slices again indicate enhanced efflux over 8-12 minutes. The time course of reduced glutathione (GSH) depletion from renal cortex is similar, indicating a potential interaction between GSH depletion and inhibition of taurine accumulation. The effect of 9 mM diamide on the Na+ -dependent accumulation of taurine (10 and 250 microM) by brush border membrane vesicles was examined, and the taurine uptake value both initially and at equilibrium was the same in the presence and absence of diamide. Isolation of the brush border surface and subsequent transport studies of taurine are not influenced by diamide. Thus, diamide inhibition of taurine uptake does not involve physiochemical alteration of the membrane surface where active amino acid transport occurs, despite the thiol-oxidizing properties of this agent. Further, these studies suggest that diamide either acts at the basolateral surface, rather than the brush border surface of rat renal cortex or requires the presence of an intact tubule, capable of metabolism, prior to its inhibitory action

  11. Thiomers: Influence of molecular mass and thiol group content of poly(acrylic acid) on efflux pump inhibition.

    Grabovac, Vjera; Laffleur, Flavia; Bernkop-Schnürch, Andreas

    2015-09-30

    The aim of the present study was to investigate the influence of molecular mass and thiol group content of poly(acrylic acid)-cysteine conjugates on the permeation of sulforhodamine 101 and penicillin G. acting as substrates for multidrug resistance-associated protein 2 efflux pump. Poly(acrylic acids) of 2 kDa, 100 kDa, 250 kDa, 450 kDa and 3000 kDa were conjugated with cysteine. The thiol group content of all these polymers was in the range from 343.3 ± 48.4 μmol/g to 450.3 ± 76.1 μmol/g. Transport studies were performed on rat small intestine mounted in Ussing-type chambers. Since 250 kDa poly(acrylic acid) showed the highest permeation enhancing effect, additionally thiolated 250 kDa polyacrylates displaying 157.2 μmol/g, 223.0 ± 18.1 and 355.9 μmol/g thiol groups were synthesized in order to investigate the influence of thiol group content on the permeation enhancement. The permeation of sulforhodamine was 3.93- and 3.85-fold improved using 250 kDa poly(acrylic acid)-cysteine conjugate exhibiting 355.9 ± 39.5 μmol/g and 223.0 ± 18.1 μmol/g thiol groups. Using the same conjugates the permeation of penicillin G was 1.70- and 1.59-fold improved, respectively. The study demonstrates that thiolated poly(acrylic acid) inhibits Mrp2 mediated transport and that the extent of inhibition depends on the molecular mass and degree of thiolation of the polymer. PMID:26238816

  12. Ascorbic acid inhibition of Candida albicans Hsp90-mediated morphogenesis occurs via the transcriptional regulator Upc2.

    Van Hauwenhuyse, Frédérique; Fiori, Alessandro; Van Dijck, Patrick

    2014-10-01

    Morphogenetic transitions of the opportunistic fungal pathogen Candida albicans are influenced by temperature changes, with induction of filamentation upon a shift from 30 to 37°C. Hsp90 was identified as a major repressor of an elongated cell morphology at low temperatures, as treatment with specific inhibitors of Hsp90 results in elongated growth forms at 30°C. Elongated growth resulting from a compromised Hsp90 is considered neither hyphal nor pseudohyphal growth. It has been reported that ascorbic acid (vitamin C) interferes with the yeast-to-hypha transition in C. albicans. In the present study, we show that ascorbic acid also antagonizes the morphogenetic change caused by hampered Hsp90 function. Further analysis revealed that Upc2, a transcriptional regulator of genes involved in ergosterol biosynthesis, and Erg11, the target of azole antifungals, whose expression is in turn regulated by Upc2, are required for this antagonism. Ergosterol levels correlate with elongated growth and are reduced in cells treated with the Hsp90 inhibitor geldanamycin (GdA) and restored by cotreatment with ascorbic acid. In addition, we show that Upc2 appears to be required for ascorbic acid-mediated inhibition of the antifungal activity of fluconazole. These results identify Upc2 as a major regulator of ascorbic acid-induced effects in C. albicans and suggest an association between ergosterol content and elongated growth upon Hsp90 compromise. PMID:25084864

  13. Human Acid β-Glucosidase Inhibition by Carbohydrate Derived Iminosugars: Towards New Pharmacological Chaperones for Gaucher Disease.

    Parmeggiani, Camilla; Catarzi, Serena; Matassini, Camilla; D'Adamio, Giampiero; Morrone, Amelia; Goti, Andrea; Paoli, Paolo; Cardona, Francesca

    2015-09-21

    A collection of carbohydrate-derived iminosugars belonging to three structurally diversified sub-classes (polyhydroxylated pyrrolidines, piperidines, and pyrrolizidines) was evaluated for inhibition of human acid β-glucosidase (glucocerebrosidase, GCase), the deficient enzyme in Gaucher disease. The synthesis of several new pyrrolidine analogues substituted at the nitrogen or α-carbon atom with alkyl chains of different lengths suggested an interpretation of the inhibition data and led to the discovery of two new GCase inhibitors at sub-micromolar concentration. In the piperidine iminosugar series, two N-alkylated derivatives were found to rescue the residual GCase activity in N370S/RecNcil mutated human fibroblasts (among which one up to 1.5-fold). This study provides the starting point for the identification of new compounds in the treatment of Gaucher disease. PMID:26376302

  14. Physicochemical aspects of inhibition of acid corrosion of metals by unsaturated organic compounds

    Avdeev, Ya G.; Kuznetsov, Yurii I.

    2012-12-01

    The state-of-the-art in the development and improvement of methods for protecting metals from corrosion in mineral acid solutions using unsaturated organic compounds is considered. Characteristic features of the mechanism of their protective action on metal corrosion in acidic media are discussed. The bibliography includes 203 references.

  15. WRINKLED1 Rescues Feedback Inhibition of Fatty Acid Synthesis in Hydroxylase-Expressing Seeds.

    Adhikari, Neil D; Bates, Philip D; Browse, John

    2016-05-01

    Previous attempts at engineering Arabidopsis (Arabidopsis thaliana) to produce seed oils containing hydroxy fatty acids (HFA) have resulted in low yields of HFA compared with the native castor (Ricinus communis) plant and caused undesirable effects, including reduced total oil content. Recent studies have led to an understanding of problems involved in the accumulation of HFA in oils of transgenic plants, which include metabolic bottlenecks and a decrease in the rate of fatty acid synthesis. Focusing on engineering the triacylglycerol assembly mechanisms led to modest increases in the HFA content of seed oil, but much room for improvement still remains. We hypothesized that engineering fatty acid synthesis in the plastids to increase flux would facilitate enhanced total incorporation of fatty acids, including HFA, into seed oil. The transcription factor WRINKLED1 (WRI1) positively regulates the expression of genes involved in fatty acid synthesis and controls seed oil levels. We overexpressed Arabidopsis WRI1 in seeds of a transgenic line expressing the castor fatty acid hydroxylase. The proportion of HFA in the oil, the total HFA per seed, and the total oil content of seeds increased to an average of 20.9%, 1.26 µg, and 32.2%, respectively, across five independent lines, compared with 17.6%, 0.83 µg, and 27.9%, respectively, for isogenic segregants. WRI1 and WRI1-regulated genes involved in fatty acid synthesis were up-regulated, providing for a corresponding increase in the rate of fatty acid synthesis. PMID:27208047

  16. WRINKLED1 Rescues Feedback Inhibition of Fatty Acid Synthesis in Hydroxylase-Expressing Seeds1[OPEN

    Browse, John

    2016-01-01

    Previous attempts at engineering Arabidopsis (Arabidopsis thaliana) to produce seed oils containing hydroxy fatty acids (HFA) have resulted in low yields of HFA compared with the native castor (Ricinus communis) plant and caused undesirable effects, including reduced total oil content. Recent studies have led to an understanding of problems involved in the accumulation of HFA in oils of transgenic plants, which include metabolic bottlenecks and a decrease in the rate of fatty acid synthesis. Focusing on engineering the triacylglycerol assembly mechanisms led to modest increases in the HFA content of seed oil, but much room for improvement still remains. We hypothesized that engineering fatty acid synthesis in the plastids to increase flux would facilitate enhanced total incorporation of fatty acids, including HFA, into seed oil. The transcription factor WRINKLED1 (WRI1) positively regulates the expression of genes involved in fatty acid synthesis and controls seed oil levels. We overexpressed Arabidopsis WRI1 in seeds of a transgenic line expressing the castor fatty acid hydroxylase. The proportion of HFA in the oil, the total HFA per seed, and the total oil content of seeds increased to an average of 20.9%, 1.26 µg, and 32.2%, respectively, across five independent lines, compared with 17.6%, 0.83 µg, and 27.9%, respectively, for isogenic segregants. WRI1 and WRI1-regulated genes involved in fatty acid synthesis were up-regulated, providing for a corresponding increase in the rate of fatty acid synthesis. PMID:27208047

  17. Inhibition of acid hydrolase activity in human granulocytes by PUVA treatment

    The activity of acid hydrolases in peripheral blood granulocytes was determined. No significant differences could be revealed between healthy and psoriatic donors. During PUVA therapy of psoriasis patients the activity of acid hydrolases in granulocytes was moderately decreased in most cases, but the differences were not significant (high individual variability). Isolated granulocytes were treated in vitro with doses of 8-methoxypsoralen and UVA light as can be achieved in situ in the epidermis during PUVA therapy. A reduced acid hydrolases activity was found in the cells after the treatment, which was not due to secretion of the enzyme or cytotoxic damage. The presence of reduced glutathione prevented this effect. Free extracellular acid hydrolases were not inactivated by PUVA. PUVA-treated granulocytes showed an unimpaired superoxide generation after phagocytic stimulation. These results show that an intracellular inactivation of acid hydrolases and possibly other lysosomal enzymes in granulocytes infiltrating the psoriatic epidermis contribute to the antipsoriatic effects of PUVA therapy. (author)

  18. Epoxy fatty acids and inhibition of the soluble epoxide hydrolase selectively modulate GABA mediated neurotransmission to delay onset of seizures.

    Bora Inceoglu

    Full Text Available In the brain, seizures lead to release of large amounts of polyunsaturated fatty acids including arachidonic acid (ARA. ARA is a substrate for three major enzymatic routes of metabolism by cyclooxygenase, lipoxygenase and cytochrome P450 enzymes. These enzymes convert ARA to potent lipid mediators including prostanoids, leukotrienes and epoxyeicosatrienoic acids (EETs. The prostanoids and leukotrienes are largely pro-inflammatory molecules that sensitize neurons whereas EETs are anti-inflammatory and reduce the excitability of neurons. Recent evidence suggests a GABA-related mode of action potentially mediated by neurosteroids. Here we tested this hypothesis using models of chemically induced seizures. The level of EETs in the brain was modulated by inhibiting the soluble epoxide hydrolase (sEH, the major enzyme that metabolizes EETs to inactive molecules, by genetic deletion of sEH and by direct administration of EETs into the brain. All three approaches delayed onset of seizures instigated by GABA antagonists but not seizures through other mechanisms. Inhibition of neurosteroid synthesis by finasteride partially blocked the anticonvulsant effects of sEH inhibitors while the efficacy of an inactive dose of neurosteroid allopregnanolone was enhanced by sEH inhibition. Consistent with earlier findings, levels of prostanoids in the brain were elevated. In contrast, levels of bioactive EpFAs were decreased following seizures. Overall these results demonstrate that EETs are natural molecules which suppress the tonic component of seizure related excitability through modulating the GABA activity and that exploration of the EET mediated signaling in the brain could yield alternative approaches to treat convulsive disorders.

  19. Studies on intracellular transport in the rat exocrine pancreas. I. Inhibition by aromatic amino acids in vitro.

    Bieger, W; Kern, H F

    1975-09-18

    In vitro incubation of rat pancreatic lobules in the presence of 10 mM concentrations of 2 natural (phenylalanine, tryptophane) and 2 modified aromatic amino acids (p-fluorophenylalanine, p-chlorophenylalanine) induces paracrystal formation in the cisternal space of the rough endoplasmic reticulum and in the acinar lumen. Aggregation of secretory material in transitional elements of the rough endoplasmic reticulum suggests tubular connection to the Golgi complex. Paracrystal formation is correlated with a disturbance of the three major phases in the secretory process of the exocrine cell. Incorporation of radioactive amino acids into proteins is inhibited by 10 mM concentrations of phenylalanine and tryptophane by 20 and 50% respectively and by p-chlorophenylalanine at 1 and 10 mM concentrations by 50 and 75%. The inhibition of protein synthesis is not due to a reduced intracellular concentration of radioactive precursor amino acids. Intracellular transport of newly synthesized proteins as studied by a radioassay for zymogen discharge and by cell fractionation is similarly inhibited by phenylalanine, tryptophane and p-chlorophenylalanine at 10 mM concentrarions (20, 30, and 40% respectively). Discharge of zymogens as measured by the secretion of amylase stimulated with 5 X 10(-6) M carbamylcholine is reduced by 20% if 10 mM concentrations of phenylalanine, tryptophane or p-chlorophenylalanine are present in the medium. Paracrystals were isolated by differential centrifugation and their protein content compared with isolated zymogen granules. On sodium dodecylsulfate gel electrophoresis paracrystalline proteins show the same electrophoretic pattern as the content of zymogen granules. PMID:809912

  20. Corrosion Inhibition of Mild Steel by Various Plant Extracts in Acid Media

    Osita Obiukwu; Ignatius Opara; Lawan U. Grema

    2015-01-01

    The aim of this study is to investigate the corrosion inhibition of some plant extracts on mild steel in selected media. The plant extracts investigated are Okazi leaf (Gnetum africanum), Utazi leaf (Gongronema latifolium) and Elizabeth leaf (Chromolena odaratum). The selected media are 1M HCL and H2SO4 and the corrosion rate on the mild steel was investigated using mass loss method. Results were obtained at intervals of 24, 48, 72 and 96 h, respectively. The corrosion rate and inhibition eff...

  1. Improved Inhibition of Telomerase by Short Twisted Intercalating Nucleic Acids under Molecular Crowding Conditions

    Agarwal, Tani; Pradhan, Devranjan; Géci, Imrich;

    2012-01-01

    Human telomeric DNA has the ability to fold into a 4-stranded G-quadruplex structure. Several G-quadruplex ligands are known to stabilize the structure and thereby inhibit telomerase activity. Such ligands have demonstrated efficient telomerase inhibition in dilute conditions, but under molecular......-based telomerase repeat amplification assay (TRAP) assay as well as nondenaturing polyacrylamide gel electrophoresis-based TRAP, we demonstrate remarkable enhancement in their anti-telomerase activity even under molecular crowding conditions. This is the first time in which a G-quadruplex stabilizing agent has...

  2. Mechanistic Toxicokinetic Model for γ-Hydroxybutyric Acid: Inhibition of Active Renal Reabsorption as a Potential Therapeutic Strategy

    Felmlee, Melanie A.; Wang, Qi; Cui, Dapeng; Roiko, Samuel A.; Morris, Marilyn E.

    2010-01-01

    γ-Hydroxybutyric acid (GHB), a drug of abuse, exhibits saturable renal clearance and capacity-limited metabolism. The objectives of this study were to construct a mechanistic toxicokinetic (TK) model describing saturable renal reabsorption and capacity-limited metabolism of GHB and to predict the effects of inhibition of renal reabsorption on GHB TK in the plasma and urine. GHB was administered by iv bolus (200–1,000 mg/kg) to male Sprague-Dawley rats and plasma and urine samples were collect...

  3. Inhibitions of Several Antineoplastic Drugs on Serum Sialic Acid Levels in Mice Bearing Tumors

    Lu, Da-Yong; Xu, Jing; Lu, Ting-Ren; Wu, Hong-Ying; Xu, Bin

    2012-01-01

    Six murine tumors, including ascetic tumors HepA, EC, P388 leukemia, S180 and solid tumor S180, and Lewis lung carcinoma, were employed in this work. The free sialic acid concentrations in both blood and ascites were measured in tumor-bearing mice. The results showed that the content of sialic acids in blood was increased in tumor growth and certain tumor types. Higher sialic acid content was observed in ascites than that present in blood. The influence of antineoplastic agents (vincristine, ...

  4. In vitro growth inhibition of intra root canal pathogenic microorganisms by Lactic Acid Bacteria, an Antibiosis method

    A. Nakhjavani F.

    2008-12-01

    Full Text Available "nBackground and Aim: Elimination of microorganisms and their byproducts from root canal system is one of important aims of root canal therapy. This object is gained by using of many chemomechanical techniques but with noncertain success. A new method is used of nonpathogenic bacteria for growth inhibition of pathogenic bacteria, Antibiosis, in root canal therapy.The aim of this study was in vitro evaluation of antimicrobial effect of probiotics, such as Lactic Acid Bacteria (LAB on the infected root canal bacteria. "nMaterials and Methods: Isolated bacteria from infected root canal were grown and then scattered onto the muller Hinton agar plates which contain wells, LAB, extracted from dairy products, were added into these wells, Inhibition effected of LAB was determined. Furthermore the sample taken from the inhibition zone and possible resistant monoclonal bacteria also were identified, then 6 sensitive and 14 resistant samples were selected and E. faecalis species were added to them; Then antimicrobial effects of LAB on these samples was reevaluated. "nResults: The results showed that 66.7% of the samples were sensitive at least to one type of LAB, and 33% were resistant to all kind of LAB. Meanwhile the outgrowing anaerobic bacteria inside the inhibition zone were from the low frequency oral bacterial flora. Furthermore, adding E. faecalis to the samples caused more sensitivity of them to LAB. Mc-Neamar test recognized the difference significant. "nConclusion: This study showed that the LAB inhibit growth of the pathogenic root canal bacteriae. Furthermore, presence of E. faecalis reinforces the antimicrobial effect of LAB. It seemed that LAB maybe have potential to use in endodontic practice for elimination of root canal infections.

  5. Investigation of inhibition effect of rhodanine-N-acetic acid on mild steel corrosion in HCl solution

    Highlights: ► R-NA inhibits corrosion of mild steel in 0.1 M HCl solution. ► The inhibition efficiency or R-NA is concentration and exposure time dependent. ► The inhibitor molecules form a good protective film on the mild steel surface. - Abstract: Corrosion inhibition effect of rhodanine-N-acetic acid (R-NA) on mild steel (MS) corrosion in 0.1 M HCl solution was investigated. For this purpose, potentiodynamic polarization, electrochemical impedance spectroscopy (EIS), linear polarization resistance (LPR) as well as hydrogen gas evolution (VH2−t) and the change of open circuit potential as a function of immersion time (Eocp − t) were used. The MS surfaces exposed to 0.1 M HCl solution in the absence and presence of inhibitor were examined by scanning electron microscopy (SEM). The thermodynamic parameters of adsorption were calculated and discussed. In order to gain more information about the adsorption mechanism, the EIS technique was used to evaluate the potential of zero charge (PZC) and a mechanism of adsorption process was proposed. It was found that, R-NA is a good corrosion inhibitor for the MS corrosion in 0.1 M HCl solution. The inhibition efficiency increased with increasing inhibitor concentration and reached 98% at 1.0 × 10−2 M R-NA. The high inhibition efficiency was related to adsorption of R-NA on steel surface. Surface SEM images showed a good surface coverage of inhibitor on the metal surface.

  6. Transient Receptor Potential Vanilloid 4 Inhibits γ-Aminobutyric Acid-Activated Current in Hippocampal Pyramidal Neurons

    Hong, Zhiwen; Tian, Yujing; Qi, Mengwen; Li, Yingchun; Du, Yimei; Chen, Lei; Liu, Wentao; Chen, Ling

    2016-01-01

    The balance between excitatory and inhibitory neurotransmitter systems is crucial for the modulation of neuronal excitability in the central nervous system (CNS). The activation of transient receptor potential vanilloid 4 (TRPV4) is reported to enhance the response of hippocampal glutamate receptors, but whether the inhibitory neurotransmitter system can be regulated by TRPV4 remains unknown. γ-aminobutyric acid (GABA) is the major inhibitory neurotransmitter in the CNS. Here, we show that application of transient receptor potential vanilloid 4 (TRPV4) synthetic (GSK1016790A or 4α-PDD) or endogenous agonist (5,6-EET) inhibited GABA-activated current (IGABA) in hippocampal CA1 pyramidal neurons, which was blocked by specific antagonists of TRPV4 and of GABAA receptors. GSK1016790A increased the phosphorylated AMP-activated protein kinase (p-AMPK) and decreased the phosphorylated protein kinase B (p-Akt) protein levels, which was attenuated by removing extracellular calcium or by a calcium/calmodulin-dependent protein kinase kinase-β antagonist. GSK1016790A-induced decrease of p-Akt protein level was sensitive to an AMPK antagonist. GSK1016790A-inhibited IGABA was blocked by an AMPK antagonist or a phosphatidyl inositol 3 kinase (PI3K) agonist. GSK1016790A-induced inhibition of IGABA was also significantly attenuated by a protein kinase C (PKC) antagonist but was unaffected by protein kinase A or calcium/calmodulin-dependent protein kinase II antagonist. We conclude that activation of TRPV4 inhibits GABAA receptor, which may be mediated by activation of AMPK and subsequent down-regulation of PI3K/Akt signaling and activation of PKC signaling. Inhibition of GABAA receptors may account for the neuronal hyperexcitability caused by TRPV4 activation.

  7. Corrosion inhibition of mild steel by some schiff base compounds in hydrochloric acid

    The corrosion inhibition of mild steel in 1 M HCl by benzylidene-pyridine-2-yl-amine (A), (4-benzylidene)-pyridine-2-yl-amine (B) and (4-chloro-benzylidene)-pyridine-2-yl-amine (C) has been studied at 25 deg. C using electrochemical and weight loss measurements. Polarization curves reveal that the used compounds are mixed type inhibitors. Results show that inhibition efficiency increases when the inhibitor concentration increases. The inhibition efficiency changes with the type of functional groups substituted on benzene ring. The experimentally obtained adsorption isotherms follow the Langmuir equation. The effect of temperature on the corrosion behavior in the presence of 10-2 M of inhibitors was studied in the temperature range of 25-43 deg. C. The associated activation energy of corrosion and other thermodynamic parameters have been determined. It has been found that all those schiff base compounds are excellent inhibitors. Obvious correlation was found between corrosion inhibition efficiency and quantum chemical parameters, using the linear and non-linear QSAR models. The obtained theoretical results have been compared with the experimental results

  8. Corrosion inhibition of mild steel by some schiff base compounds in hydrochloric acid

    Ashassi-Sorkhabi, H.; ShAbani, B.; Seifzadeh, D

    2005-01-15

    The corrosion inhibition of mild steel in 1 M HCl by benzylidene-pyridine-2-yl-amine (A), (4-benzylidene)-pyridine-2-yl-amine (B) and (4-chloro-benzylidene)-pyridine-2-yl-amine (C) has been studied at 25 deg. C using electrochemical and weight loss measurements. Polarization curves reveal that the used compounds are mixed type inhibitors. Results show that inhibition efficiency increases when the inhibitor concentration increases. The inhibition efficiency changes with the type of functional groups substituted on benzene ring. The experimentally obtained adsorption isotherms follow the Langmuir equation. The effect of temperature on the corrosion behavior in the presence of 10{sup -2} M of inhibitors was studied in the temperature range of 25-43 deg. C. The associated activation energy of corrosion and other thermodynamic parameters have been determined. It has been found that all those schiff base compounds are excellent inhibitors. Obvious correlation was found between corrosion inhibition efficiency and quantum chemical parameters, using the linear and non-linear QSAR models. The obtained theoretical results have been compared with the experimental results.

  9. Corrosion inhibition properties of pyrazolylindolenine compounds on copper surface in acidic media

    Ebadi Mehdi

    2012-12-01

    Full Text Available Abstract Background The corrosion inhibition performance of pyrazolylindolenine compounds, namely 4-(3,3-dimethyl-3H-indol-2-yl-pyrazole-1-carbothioamide (InPzTAm, 4-(3,3-dimethyl-3H-indol-2-yl-1H-pyrazole-1-carbothiohydrazide (InPzTH and 3,3-dimethyl-2-(1-phenyl-1H-pyrazol-4-yl-3H-indole (InPzPh, on copper in 1M HCl solution is investigated by electrochemical impedance spectroscopy (EIS, open circuit potential (OCP and linear scan voltammetry (LSV techniques. Results The results show that the corrosion rate of copper is diminished by the compounds with the inhibition strength in the order of: InPzTAm> InPzTH > InPzPh. The corrosion inhibition efficiencies for the three inhibitors are 94.0, 91.4 and 79.3, for InPzTAm, InPzTH and InPzPh respectively with the same inhibitor concentration (2 mM. Conclusion From the EIS, OCP and LSV results it was concluded that pyrazolylindolenine compounds with S-atom (with an amine group have illustrated better corrosion inhibition performance compared to hydrazine and phenyl group.

  10. Activation of the constitutive androstane receptor inhibits gluconeogenesis without affecting lipogenesis or fatty acid synthesis in human hepatocytes

    Objective: Accumulating evidence suggests that activation of mouse constitutive androstane receptor (mCAR) alleviates type 2 diabetes and obesity by inhibiting hepatic gluconeogenesis, lipogenesis, and fatty acid synthesis. However, the role of human (h) CAR in energy metabolism is largely unknown. The present study aims to investigate the effects of selective hCAR activators on hepatic energy metabolism in human primary hepatocytes (HPH). Methods: Ligand-based structure–activity models were used for virtual screening of the Specs database ( (www.specs.net)) followed by biological validation in cell-based luciferase assays. The effects of two novel hCAR activators (UM104 and UM145) on hepatic energy metabolism were evaluated in HPH. Results: Real-time PCR and Western blotting analyses reveal that activation of hCAR by UM104 and UM145 significantly repressed the expression of glucose-6-phosphatase and phosphoenolpyruvate carboxykinase, two pivotal gluconeogenic enzymes, while exerting negligible effects on the expression of genes associated with lipogenesis and fatty acid synthesis. Functional experiments show that UM104 and UM145 markedly inhibit hepatic synthesis of glucose but not triglycerides in HPH. In contrast, activation of mCAR by 1,4-bis[2-(3,5-dichloropyridyloxy)]benzene, a selective mCAR activator, repressed the expression of genes associated with gluconeogenesis, lipogenesis, and fatty acid synthesis in mouse primary hepatocytes, which were consistent with previous observations in mouse model in vivo. Conclusion: Our findings uncover an important species difference between hCAR and mCAR in hepatic energy metabolism, where hCAR selectively inhibits gluconeogenesis without suppressing fatty acid synthesis. Implications: Such species selectivity should be considered when exploring CAR as a potential therapeutic target for metabolic disorders. - Highlights: • Novel hCAR activators were identified by computational and biological approaches. • The role

  11. Activation of the constitutive androstane receptor inhibits gluconeogenesis without affecting lipogenesis or fatty acid synthesis in human hepatocytes

    Lynch, Caitlin; Pan, Yongmei; Li, Linhao [Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201 (United States); Heyward, Scott; Moeller, Timothy [Bioreclamation In Vitro Technologies, Baltimore, MD 21227 (United States); Swaan, Peter W. [Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201 (United States); Wang, Hongbing, E-mail: hwang@rx.umaryland.edu [Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201 (United States)

    2014-08-15

    Objective: Accumulating evidence suggests that activation of mouse constitutive androstane receptor (mCAR) alleviates type 2 diabetes and obesity by inhibiting hepatic gluconeogenesis, lipogenesis, and fatty acid synthesis. However, the role of human (h) CAR in energy metabolism is largely unknown. The present study aims to investigate the effects of selective hCAR activators on hepatic energy metabolism in human primary hepatocytes (HPH). Methods: Ligand-based structure–activity models were used for virtual screening of the Specs database ( (www.specs.net)) followed by biological validation in cell-based luciferase assays. The effects of two novel hCAR activators (UM104 and UM145) on hepatic energy metabolism were evaluated in HPH. Results: Real-time PCR and Western blotting analyses reveal that activation of hCAR by UM104 and UM145 significantly repressed the expression of glucose-6-phosphatase and phosphoenolpyruvate carboxykinase, two pivotal gluconeogenic enzymes, while exerting negligible effects on the expression of genes associated with lipogenesis and fatty acid synthesis. Functional experiments show that UM104 and UM145 markedly inhibit hepatic synthesis of glucose but not triglycerides in HPH. In contrast, activation of mCAR by 1,4-bis[2-(3,5-dichloropyridyloxy)]benzene, a selective mCAR activator, repressed the expression of genes associated with gluconeogenesis, lipogenesis, and fatty acid synthesis in mouse primary hepatocytes, which were consistent with previous observations in mouse model in vivo. Conclusion: Our findings uncover an important species difference between hCAR and mCAR in hepatic energy metabolism, where hCAR selectively inhibits gluconeogenesis without suppressing fatty acid synthesis. Implications: Such species selectivity should be considered when exploring CAR as a potential therapeutic target for metabolic disorders. - Highlights: • Novel hCAR activators were identified by computational and biological approaches. • The role

  12. L-histidine inhibits production of lysophosphatidic acid by the tumor-associated cytokine, autotaxin

    Schiffmann Elliott

    2005-02-01

    Full Text Available Abstract Background Autotaxin (ATX, NPP-2, originally purified as a potent tumor cell motility factor, is now known to be the long-sought plasma lysophospholipase D (LPLD. The integrity of the enzymatic active site, including three crucial histidine moieties, is required for motility stimulation, as well as LPLD and 5'nucleotide phosphodiesterase (PDE activities. Except for relatively non-specific chelation agents, there are no known inhibitors of the ATX LPLD activity. Results We show that millimolar concentrations of L-histidine inhibit ATX-stimulated but not LPA-stimulated motility in two tumor cell lines, as well as inhibiting enzymatic activities. Inhibition is reversed by 20-fold lower concentrations of zinc salt. L-histidine has no significant effect on the Km of LPLD, but reduces the Vmax by greater than 50%, acting as a non-competitive inhibitor. Several histidine analogs also inhibit the LPLD activity of ATX; however, none has greater potency than L-histidine and all decrease cell viability or adhesion. Conclusion L-histidine inhibition of LPLD is not a simple stoichiometric chelation of metal ions but is more likely a complex interaction with a variety of moieties, including the metal cation, at or near the active site. The inhibitory effect of L-histidine requires all three major functional groups of histidine: the alpha amino group, the alpha carboxyl group, and the metal-binding imidazole side chain. Because of LPA's involvement in pathological processes, regulation of its formation by ATX may give insight into possible novel therapeutic approaches.

  13. Nitrated Fatty Acids Reverse Cigarette Smoke-Induced Alveolar Macrophage Activation and Inhibit Protease Activity via Electrophilic S-Alkylation

    Reddy, Aravind T.; Lakshmi, Sowmya P.; Muchumarri, Ramamohan R.; Reddy, Raju C.

    2016-01-01

    Nitrated fatty acids (NFAs), endogenous products of nonenzymatic reactions of NO-derived reactive nitrogen species with unsaturated fatty acids, exhibit substantial anti-inflammatory activities. They are both reversible electrophiles and peroxisome proliferator-activated receptor γ (PPARγ) agonists, but the physiological implications of their electrophilic activity are poorly understood. We tested their effects on inflammatory and emphysema-related biomarkers in alveolar macrophages (AMs) of smoke-exposed mice. NFA (10-nitro-oleic acid or 12-nitrolinoleic acid) treatment downregulated expression and activity of the inflammatory transcription factor NF-κB while upregulating those of PPARγ. It also downregulated production of inflammatory cytokines and chemokines and of the protease cathepsin S (Cat S), a key mediator of emphysematous septal destruction. Cat S downregulation was accompanied by decreased AM elastolytic activity, a major mechanism of septal destruction. NFAs downregulated both Cat S expression and activity in AMs of wild-type mice, but only inhibited its activity in AMs of PPARγ knockout mice, pointing to a PPARγ-independent mechanism of enzyme inhibition. We hypothesized that this mechanism was electrophilic S-alkylation of target Cat S cysteines, and found that NFAs bind directly to Cat S following treatment of intact AMs and, as suggested by in silico modeling and calculation of relevant parameters, elicit S-alkylation of Cys25 when incubated with purified Cat S. These results demonstrate that NFAs’ electrophilic activity, in addition to their role as PPARγ agonists, underlies their protective effects in chronic obstructive pulmonary disease (COPD) and support their therapeutic potential in this disease. PMID:27119365

  14. Enhancement of developmental capacity of meiotically inhibited bovine oocytes by retinoic acid

    Duque, Paloma; Díez, C; Royo, L.J. (Luis); Lorenzo, P.L. (Pedro); Carneiro, G.; Hidalgo, C.O. (Carlos); Facal, Nieves; Gómez, E.

    2012-01-01

    BACKGROUND: Although high vitamin A may be teratogenic to the embryo, retinol has been shown to support oocyte developmental potential in vivo. Similarly, addition of retinol metabolite 9-cis-retinoic acid to in-vitro cultured oocytes could promote cytoplasmic maturation and subsequent early embryonic development. The objective of this study was to evaluate the effects of 5 nmol/l retinoic acid during in-vitro pre-maturation and maturation of bovine oocyte-cumulus complexes. METHODS AND...

  15. HDAC Inhibition Modulates Cardiac PPARs and Fatty Acid Metabolism in Diabetic Cardiomyopathy

    Lee, Ting-I; Kao, Yu-Hsun; Tsai, Wen-Chin; Chung, Cheng-Chih; Chen, Yao-Chang; Chen, Yi-Jen

    2016-01-01

    Peroxisome proliferator-activated receptors (PPARs) regulate cardiac glucose and lipid homeostasis. Histone deacetylase (HDAC) inhibitor has anti-inflammatory effects which may play a key role in modulating PPARs and fatty acid metabolism. The aim of this study was to investigate whether HDAC inhibitor, MPT0E014, can modulate myocardial PPARs, inflammation, and fatty acid metabolism in diabetes mellitus (DM) cardiomyopathy. Electrocardiography, echocardiography, and western blotting were used...

  16. Metal complexation inhibits the effect of oxalic acid in aerosols as cloud condensation nuclei (CCN

    T. Furukawa

    2010-11-01

    Full Text Available Atmospheric aerosols have both a direct and an indirect cooling effect that influences the radiative balance at the Earth's surface. It has been estimated that the degree of cooling is large enough to cancel the warming effect of carbon dioxide. Among the cooling factors, secondary organic aerosols (SOA play a key role in the solar radiation balance in the troposphere as SOA can act as cloud condensation nuclei (CCN and extend the lifespan of clouds because of their high hygroscopic and water soluble nature. Oxalic acid is one of the major components of SOA, and is produced via several formation pathways in the atmosphere. However, it is not certain whether oxalic acid exists as free oxalic acid or as metal oxalate complexes in aerosols, although there is a marked difference in their solubility in water and their hygroscopicity. We employed X-ray absorption fine structure spectroscopy to characterize the calcium (Ca and zinc (Zn in aerosols collected at Tsukuba in Japan with fractionation based on particle size using an impactor aerosol sampler. It was shown that 10–60% and 20–100% of the total Ca and Zn in the finer particles (<2.1 μm were present as Ca and Zn oxalate complexes, respectively. Oxalic acid can act as CCN because of its hygroscopic properties, while metal complexes are not hygroscopic, and so cannot be CCN. Based on the concentration of noncomplexed and metal-complexed oxalate species, we found that most of the oxalic acid is present as metal oxalate complexes in the aerosols, suggesting that oxalic acid does not act as CCN in the atmosphere. Similar results are expected for other dicarboxylic acids, such as malonic and succinic acids. Thus, it is possible that the cooling effect of organic aerosols assumed in various climate modeling studies is overestimated because of the lack of information on metal oxalate complexes in aerosols.

  17. Selective Inhibition of Herpesvirus Deoxyribonucleic Acid Synthesis by Acycloguanosine, 2′-Fluoro-5-Iodo-Aracytosine, and (E)-5-(2-Bromovinyl)-2′-Deoxyuridine

    Larsson, A; Öberg, B.

    1981-01-01

    The selectivity of inhibition of herpesvirus deoxyribonucleic acid synthesis by acycloguanosine, 2′-fluoro-5-iodo-aracytosine, and (E)-5-(2-bromovinyl)-2′-deoxyuridine was determined by isopycnic banding of 32P-labeled deoxyribonucleic acid from herpesvirus-infected and uninfected cells.

  18. Erythrocyte membrane modifying agents and the inhibition of Plasmodium falciparum growth: structure-activity relationships for betulinic acid analogues.

    Ziegler, Hanne L; Franzyk, Henrik; Sairafianpour, Majid; Tabatabai, Mehrnoush; Tehrani, Mahboubeh D; Bagherzadeh, Karim; Hägerstrand, Henry; Staerk, Dan; Jaroszewski, Jerzy W

    2004-01-01

    The natural triterpene betulinic acid and its analogues (betulinic aldehyde, lupeol, betulin, methyl betulinate and betulinic acid amide) caused concentration-dependent alterations of erythrocyte membrane shape towards stomatocytes or echinocytes according to their hydrogen bonding properties. Thus, the analogues with a functional group having a capacity of donating a hydrogen bond (COOH, CH(2)OH, CONH(2)) caused formation of echinocytes, whereas those lacking this ability (CH(3), CHO, COOCH(3)) induced formation of stomatocytes. Both kinds of erythrocyte alterations were prohibitive with respect to Plasmodium falciparum invasion and growth; all compounds were inhibitory with IC(50) values in the range 7-28 microM, and the growth inhibition correlated well with the extent of membrane curvature changes assessed by transmission electron microscopy. Erythrocytes pre-loaded with betulinic acid or its analogues and extensively washed in order to remove excess of the chemicals could not serve as hosts for P. falciparum parasites. Betulinic acid and congeners can be responsible for in vitro antiplasmodial activity of plant extracts, as shown for Zataria multiflora Boiss. (Labiatae) and Zizyphus vulgaris Lam. (Rhamnaceae). The activity is evidently due to the incorporation of the compounds into the lipid bilayer of erythrocytes, and may be caused by modifications of cholesterol-rich membrane rafts, recently shown to play an important role in parasite vacuolization. The established link between erythrocyte membrane modifications and antiplasmodial activity may provide a novel target for potential antimalarial drugs. PMID:14697777

  19. Catalytic decomposition of nitrous oxide from nitric acid production tail gases. Investigation of inhibition effects. Executive summary

    Nitric acid production is an important source of nitrous oxide, one of the green-house gases. Catalytic decomposition of N2O in nitric acid tail-gases might be a possibility for emission reduction, but technology is not yet available. As a part of development of suitable catalytic systems, research was performed, aiming at: gaining an improved understanding of catalytic decomposition of N2O and the inhibiting effects of NO, NO2, H2O and O2; and preparing a 'go-no go' decision whether or not to proceed with subsequent re-search and development and if yes, to indicate what technology further development should aim for. Due to the presence of NOx and water in the nitric acid tail gases, catalytic decomposition proves not to be feasible at temperatures below 350C. At higher temperatures possibilities do exist and a number of promising catalysts are identified. These are active (80 - 100 % conversion) in the temperature range of 400 - 500C and under simulated tail gas conditions. Considering process conditions only (temperatures and composition of the tail-gases), the catalysts studied (pref. the Rh/Al2O3 types) could be in principle applied successfully in all Dutch nitric acid plants

  20. Folic acid supplementation inhibits recurrence of colorectal adenomas: A randomized chemoprevention trial

    Richard Jaszewski; Adhip PN Majumdar; Sabeena Misra; Martin Tobi; Nadeem Ullah; Jo Ann Naumoff; Omer Kucuk; Edi Levi; Bradley N Axelrod; Bhaumik B Patel

    2008-01-01

    AIM: To determine whether folic acid supplementation will reduce the recurrence of colorectal adenomas,the precursors of colorectal cancer, we performed a double-blind placebo-controlled trial in patients with adenomatous polyps.METHODS: In the current double-blind, placebo-controlled trial at this VA Medical Center, patients with colorectal adenomas were randomly assigned to receive either a daily 5 mg dose of folic acid or a matched identical placebo for 3 years. All polyps were removed at baseline colonoscopy and each patient had a follow up colonoscopy at 3 years. The primary endpoint was a reduction in the number of recurrent adenomas at 3 years.RESULTS: Of 137 subjects, who were eligible after confirmation of polyp histology and run-in period to conform compliance, 94 completed the study; 49 in folic acid group and 45 in placebo group. Recurrence of adenomas at 3-year was compared between the two groups. The mean number of recurrent polyps at 3-year was 0.36 (SD, 0.69) for folic acid treated patients compared to 0.82 (SD, 1.17) for placebo treated subjects, resulting in a 3-fold increase in polyp recurrence in the placebo group. Patients below 70 years of age and those with left-sided colonic adenomas or advanced adenomas responded better to folic acid supplementation.CONCLUSION: High dose folic acid supplementation is associated with a significant reduction in the recurrence of colonic adenomas suggesting that folic acid may be an effective chemopreventive agent for colorectal neoplasia.

  1. Enhanced Absorption and Growth Inhibition with Amino Acid Monoester Prodrugs of Floxuridine by Targeting hPEPT1 Transporters

    Gordon L. Amidon

    2008-06-01

    Full Text Available A series of amino acid monoester prodrugs of floxuridine was synthesized and evaluated for the improvement of oral bioavailability and the feasibility of target drug delivery via oligopeptide transporters. All floxuridine 5′-amino acid monoester prodrugs exhibited PEPT1 affinity, with inhibition coefficients of Gly-Sar uptake (IC50 ranging from 0.7 – 2.3 mM in Caco-2 and 2.0 – 4.8 mM in AsPC-1 cells, while that of floxuridine was 7.3 mM and 6.3 mM, respectively. Caco-2 membrane permeabilities of floxuridine prodrugs (1.01 – 5.31 x 10-6 cm/sec and floxuridine (0.48 x 10-6 cm/sec were much higher than that of 5-FU (0.038 x 10-6 cm/sec. MDCK cells stably transfected with the human oligopeptide transporter PEPT1 (MDCK/hPEPT1 exhibited enhanced cell growth inhibition in the presence of the prodrugs. This prodrug strategy offers great potential, not only for increased drug absorption but also for improved tumor selectivity and drug efficacy.

  2. D-Amino acid oxidase-induced oxidative stress, 3-bromopyruvate and citrate inhibit angiogenesis, exhibiting potent anticancer effects.

    El Sayed, S M; El-Magd, R M Abou; Shishido, Y; Yorita, K; Chung, S P; Tran, D H; Sakai, T; Watanabe, H; Kagami, S; Fukui, K

    2012-10-01

    Angiogenesis is critical for cancer growth and metastasis. Steps of angiogenesis are energy consuming, while vascular endothelial cells are highly glycolytic. Glioblastoma multiforme (GBM) is a highly vascular tumor and this enhances its aggressiveness. D-amino acid oxidase (DAO) is a promising therapeutic protein that induces oxidative stress upon acting on its substrates. Oxidative stress-energy depletion (OSED) therapy was recently reported (El Sayed et al., Cancer Gene Ther, 19, 1-18, 2012). OSED combines DAO-induced oxidative stress with energy depletion caused by glycolytic inhibitors such as 3-bromopyruvate (3BP), a hexokinase II inhibitor that depleted ATP in cancer cells and induced production of hydrogen peroxide. 3BP disturbs the Warburg effect and antagonizes effects of lactate and pyruvate (El Sayed et al., J Bioenerg Biomembr, 44, 61-79, 2012). Citrate is a natural organic acid capable of inhibiting glycolysis by targeting phosphofructokinase. Here, we report that DAO, 3BP and citrate significantly inhibited angiogenesis, decreased the number of vascular branching points and shortened the length of vascular tubules. OSED delayed the growth of C6/DAO glioma cells. 3BP combined with citrate delayed the growth of C6 glioma cells and decreased significantly the number and size of C6 glioma colonies in soft agar. Human GBM cells (U373MG) were resistant to chemotherapy e.g. cisplatin and cytosine arabinoside, while 3BP was effective in decreasing the viability and disturbing the morphology of U373MG cells. PMID:22802136

  3. Structural elucidation of the hormonal inhibition mechanism of the bile acid cholate on human carbonic anhydrase II

    Boone, Christopher D. [University of Florida, PO Box 100267, Gainesville, FL 32610 (United States); Tu, Chingkuang [University of Florida, PO Box 100245, Gainesville, FL 32610 (United States); McKenna, Robert, E-mail: rmckenna@ufl.edu [University of Florida, PO Box 100267, Gainesville, FL 32610 (United States)

    2014-06-01

    The structure of human carbonic anhydrase II in complex with cholate has been determined to 1.54 Å resolution. Elucidation of the novel inhibition mechanism of cholate will aid in the development of a nonsulfur-containing, isoform-specific therapeutic agent. The carbonic anhydrases (CAs) are a family of mostly zinc metalloenzymes that catalyze the reversible hydration/dehydration of CO{sub 2} into bicarbonate and a proton. Human isoform CA II (HCA II) is abundant in the surface epithelial cells of the gastric mucosa, where it serves an important role in cytoprotection through bicarbonate secretion. Physiological inhibition of HCA II via the bile acids contributes to mucosal injury in ulcerogenic conditions. This study details the weak biophysical interactions associated with the binding of a primary bile acid, cholate, to HCA II. The X-ray crystallographic structure determined to 1.54 Å resolution revealed that cholate does not make any direct hydrogen-bond interactions with HCA II, but instead reconfigures the well ordered water network within the active site to promote indirect binding to the enzyme. Structural knowledge of the binding interactions of this nonsulfur-containing inhibitor with HCA II could provide the template design for high-affinity, isoform-specific therapeutic agents for a variety of diseases/pathological states, including cancer, glaucoma, epilepsy and osteoporosis.

  4. The Inhibition of Aluminum Corrosion in Sulfuric Acid by Poly(1-vinyl-3-alkyl-imidazolium Hexafluorophosphate

    Paulina Arellanes-Lozada

    2014-08-01

    Full Text Available Compounds of poly(ionic liquids (PILs, derived from imidazole with different alkylic chain lengths located in the third position of the imidazolium ring (poly(1-vinyl-3-dodecyl-imidazolium (PImC12, poly(1-vinyl-3-octylimidazolium (PImC8 and poly(1-vinyl-3-butylimidazolium (PImC4 hexafluorophosphate were synthesized. These compounds were tested as corrosion inhibitors on aluminum alloy AA6061 in diluted sulfuric acid (0.1–1 M H2SO4 by weight loss tests, polarization resistance measurements and inductively coupled plasma optical emission spectroscopy. Langmuir’s isotherms suggested film formation on bare alloy while standard free energy indicated inhibition by a physisorption process. However, compound efficiencies as inhibitors ranked low (PImC12 > PImC8 > PImC4 to reach 61% for PImC12 in highly diluted acidic solution. Apparently, the high mobility of sulfates favored their adsorption in comparison to PILs. The surface film displayed general corrosion, and pitting occurred as a consequence of PILs’ partial inhibition along with a continuous dissolution of defective patchy film on formation. A slight improvement in efficiency was displayed by compounds having high molecular weight and a long alkyl chain, as a consequence of steric hindrance and PIL interactions.

  5. Dorsal column inhibition of nociceptive thalamic cells mediated by gamma-aminobutyric acid mechanisms in the cat.

    Olausson, B; Xu, Z Q; Shyu, B C

    1994-11-01

    Cells in posterior parts of the cat thalamus were investigated. Responses in single units excited by electrical stimulation in the lateral funiculus (LF), the dorsal column nucleus (DCN) or the canine tooth pulp (TP) were analysed. All cells had a spontaneous resting activity which could be increased by extracellular iontophoretic application of DL-homocysteic acid (DLH) and decreased by gamma-aminobutyric acid (GABA). No effect on the spontaneous firing rate was observed following iontophoresis of the selective GABA-antagonists, picrotoxin (GABA-A receptor antagonist) or saclofen (GABA-B receptor antagonist). However, the decreased firing following GABA application was partially blocked by picrotoxin but not by saclofen. A phasic inhibition induced by DCN stimulation in nociceptive thalamic cells is indicated since simultaneous administration of picrotoxin increased the evoked response. This type of inhibitory mechanism could not be detected following LF or TP stimulation. The extracellular activity evoked by electrical stimulation of LF or TP was significantly depressed by preceding electrical stimulation in the DCN. This inhibition was reversed by simultaneous administration of picrotoxin, indicating an involvement of GABA-A receptors. The reversal of the DCN-induced depression of the late responses following LF stimulation occurred after application of saclofen. It is suggested that this effect is partly mediated via GABA-B receptors. Results from the present study indicate an interaction in the thalamus between presumed low-threshold (DCN) and presumed nociceptive afferents (LF and TP) similar to that previously described in the spinal cord. PMID:7872001

  6. Molecular mechanism of 9-cis-retinoic acid inhibition of adipogenesis in 3T3-L1 cells

    Sagara, Chiaki; Takahashi, Katsuhiko [Laboratory of Physiological Chemistry, Institute of Medicinal Chemistry, Hoshi University, Shinagawa, Tokyo 142-8501 (Japan); Kagechika, Hiroyuki [School of Biomedical Science, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Chiyoda, Tokyo 101-0062 (Japan); Takahashi, Noriko, E-mail: t-noriko@hoshi.ac.jp [Laboratory of Physiological Chemistry, Institute of Medicinal Chemistry, Hoshi University, Shinagawa, Tokyo 142-8501 (Japan)

    2013-03-29

    Highlights: ► We examined the effects of 9-cis-RA on adipogenesis in mouse preadipocyte 3T3-L1. ► 9-cis-RA inhibited lipid accumulation in adipogenetically-induced 3T3-L1 cells. ► A RXR pan-antagonist suppressed the inhibitory effects of 9-cis-RA on adipogenesis. ► This antagonist had no effects on RXRα and PPARγ levels in 9-cis-RA-treated cells. ► 9-cis-RA-induced decrease in both RXRα and PPARγ was independent of RXR activation. -- Abstract: Retinoic acid (RA) signaling is mediated by specific nuclear hormone receptors. Here we examined the effects of 9-cis-RA on adipogenesis in mouse preadipocyte 3T3-L1 cells. 9-cis-RA inhibits the lipid accumulation of adipogenetically induced 3T3-L1 cells. The complex of retinoid X receptor α (RXRα) with peroxisome proliferator-activated receptor γ (PPARγ) is a major transcription factor in the process of adipogenesis, and the levels of these molecules were decreased by 9-cis-RA treatment. A RXR pan-antagonist suppressed 9-cis-RA’s inhibitory effects on adipogenesis, but not on the intracellular levels of both RXRα and PPARγ. These results suggest that 9-cis-RA could inhibit adipogenesis by activating RXR, and decrease both RXR and PPARγs levels in a RXR activation-independent manner.

  7. Quantum chemical studies on the corrosion inhibition of some hector bases on mild steel in acidic medium

    Majid Khodaei-Tehrani

    2015-03-01

    Full Text Available The density functional theory (DFT at the B3LYP/6-31G (d,p basis set level method were performed on three hector bases used as corrosion inhibitors; namely, 3-anilino-5-imino-4-phenyl-1, 2,4-thiadiazoline (AIPT, 3-anilino-5-imino-4-tolyl-1, 2,4-thiadiazoline (AITT, and 4-(4-chlorophenyl-5-imino-N-phenyl-4,5-dihydro-1,2,4-thiadiazol-3-amine (AICT. They were used as corrosion inhibitors for mild steel in acidic medium in order to determine the relationship between molecular structure and their corresponding inhibition efficiency (%IE. The results of the quantum chemical calculations and experimental %IE were subjected to correlation analysis. This indicates that their inhibition effects are closely related to the highest occupied molecular orbital energy (EHOMO, the lowest unoccupied molecular orbital energy (ELUMO, the energy gap (ΔE, the hardness (η, the softness (σ, the electronegativity (χ, and the fraction of electrons transferred from the inhibitor molecule to the metal surface (ΔN. In addition, the local reactivity has been analyzed through the Fukui function. Two QSAR equations were developed and used to predict the corrosion inhibition efficiency for hector bases.

  8. Experimental and Quantum Studies on Adsorption and Corrosion Inhibition Effect of Imidazole Derivatives on N80 Steel in Hydrochloric Acid

    Yadav, M.; Kumar, Sumit; Sharma, Dipti; Yadav, P. N.

    2013-12-01

    The inhibition effect of synthesized N‧-(phenylmethylidene)-2-(2-methyl-1H-benzimidazol-1-yl)acetohydrazides, N‧-(4-methylphenylmethylidene)-2-(2-methyl-1H-benzimidazol-1-yl)acetohydrazides, and N‧-(4-methoxyphenylmethylidene)-2-(2-methyl-1H-benzimidazol-1-yl)acetohydrazides on the corrosion behaviour of N80 steel in 15% hydrochloric acid solution was investigated using weight loss, potentiostatic polarization and electrochemical impedance spectroscopy methods. The inhibition efficiency increased as the concentration of the inhibitors was increased. The effect of temperature on corrosion inhibition was investigated by weight loss method and thermodynamic parameters were calculated. Potentiodynamic polarization measurements show that all the three studied inhibitors act as mixed inhibitor. The adsorption of inhibitors on N80 steel surface obeys Langmuir adsorption isotherm. The structure of inhibitors was optimized using semiemperical AM1 method. Theoretical parameters such as the highest occupied molecular orbital (EHOMO), lowest unoccupied molecular orbital (ELUMO) energy levels, energy gap (ΔE = ELUMO - EHOMO), dipole moment (μ), global hardness (γ), softness (σ), binding energy, molecular surface area and the fraction of electrons transferred (ΔN) were calculated and the adsorption mechanism was discussed. Scanning electron microscopy was used to characterize the surface marphology of the N80 steel.

  9. Experimental and theoretical study of corrosion inhibition of 3-pyridinecarbozalde thiosemicarbazone for mild steel in hydrochloric acid

    Highlights: •The studied inhibitor contains both pyridine ring and Schiff base structure. •3-PCT shows excellent inhibitive properties for mild steel in HCl solution. •The results of MD simulation reveal that 3-PCT molecules adsorb on the iron surface with a nearby flat orientation. •The PZC measurement showed the mild steel surface was positively charged in HCl. -- Abstract: The corrosion inhibition effect of 3-pyridinecarboxaldehyde thiosemicarbazone (3-PCT) on mild steel was studied in 1 M HCl solution by means of weight loss, potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) measurements. The surface morphology of mild steel was examined with scanning electron microscopy (SEM) and the mechanism of inhibition was determined by the potential of zero charge (PZC) measurement at the metal–solution interface. Then molecular dynamics simulations were also executed for 3-PCT. The results show that 3-PCT is a good corrosion inhibitor, retarding both cathodic and anodic reactions in hydrochloric acid. The adsorption of 3-PCT on the mild steel surface obeys the Langmuir isotherm, and the thermodynamic parameters (Kads,Ea,ΔGads0) were also determined and discussed

  10. Curcumin inhibits intracellular fatty acid synthase and induces apoptosis in human breast cancer MDA-MB-231 cells.

    Fan, Huijin; Liang, Yan; Jiang, Bing; Li, Xiabing; Xun, Hang; Sun, Jia; He, Wei; Lau, Hay Tong; Ma, Xiaofeng

    2016-05-01

    High levels of fatty acid synthase (FAS) expression have been found in many tumors, including prostate, breast, and ovarian cancers, and inhibition of FAS has been reported to obstruct tumor growth in vitro and in vivo. Curcumin is one of the major active ingredients of Curcuma longa, which has been proven to inhibit the growth of cancer cells. In the present study, we investigated the potential activity of curcumin as a FAS inhibitor for chemoprevention of breast cancer. As a result, curcumin induced human breast cancer MDA-MB-231 cell apoptosis with the half-inhibitory concentration value of 3.63 ± 0.26 µg/ml, and blocked FAS activity, expression and mRNA level in a dose-dependent manner. Curcumin also regulated B-cell lymphoma 2 (Bcl-2), Bax and p-Akt protein expression in MDA-MB-231 cells. Moreover, FAS knockdown showed similar effect as curcumin. All these results suggested that curcumin may induce cell apoptosis via inhibiting FAS. PMID:26985864

  11. Inhibition Effect of Alpha-Lipoic Acid on the Propagation of Influenza A Virus in MDCK Cells

    Si-Wei Bai§, Cui-Ying Chen§, Jun Ji, Qing-Mei Xie*, Yun Ma1, Bao-Li Sun, Chun-Yi Xue1, Yong-Chang Cao1, Jing-Yun Ma and Ying-Zuo Bi

    2012-01-01

    Full Text Available Influenza A viruses (IAV still pose a threat to animals and humans. Currently, M2 protein ion channel inhibitors and neuraminidase inhibitors are the two main drugs for treating IAV infections by interrupting virus assembly or release respectively, but the emergence of viral resistance was a concern for their long term uses. In this study, the inhibition effect of alpha-lipoic acid (α-LA on IAV propagation has been evaluated in vitro. The results showed that α-LA inhibited IAV replication in MDCK cells at 2mM, and also reduced nucleus translocation of nuclear factor κB (NF-κB p65 at the concentration above 1mM. Additionally, it was found that caspase-3 activity was remarkably inhibited and type I interferons (IFNs were up-regulated following α-LA treatment. This study indicated that α-LA might be a potential anti-influenza virus agent worthy of further investigations.

  12. An efficient process for wastewater treatment to mitigate free nitrous acid generation and its inhibition on biological phosphorus removal

    Zhao, Jianwei; Wang, Dongbo; Li, Xiaoming; Yang, Qi; Chen, Hongbo; Zhong, Yu; An, Hongxue; Zeng, Guangming

    2015-02-01

    Free nitrous acid (FNA), which is the protonated form of nitrite and inevitably produced during biological nitrogen removal, has been demonstrated to strongly inhibit the activity of polyphosphate accumulating organisms (PAOs). Herein we reported an efficient process for wastewater treatment, i.e., the oxic/anoxic/oxic/extended-idle process to mitigate the generation of FNA and its inhibition on PAOs. The results showed that this new process enriched more PAOs which thereby achieved higher phosphorus removal efficiency than the conventional four-step (i.e., anaerobic/oxic/anoxic/oxic) biological nutrient removal process (41 +/- 7% versus 30 +/- 5% in abundance of PAOs and 97 +/- 0.73% versus 82 +/- 1.2% in efficiency of phosphorus removal). It was found that this new process increased pH value but decreased nitrite accumulation, resulting in the decreased FNA generation. Further experiments showed that the new process could alleviate the inhibition of FNA on the metabolisms of PAOs even under the same FNA concentration.

  13. Inhibition of corrosion of carbon steel by heptane sulphonic acid – Zn2+ system

    C. MARY ANBARAS

    2012-03-01

    Full Text Available Corrosion inhibition of carbon steel in dam water by sodium heptane sulphonate (SHS and zinc ion system was investigated using weight loss and potentiodynamic polarization methods. Results of weight loss method indicated that inhibition efficiency (IE increased as the inhibitor concentration increased. A synergistic effect existed between SHS and Zn2+. The influence of sodium potassium tartrate (SPT on the IE of the SHS-Zn2+ system was evaluated. As the immersion period increased, the IE decreased. Polarization study revealed that SHS-Zn2+ system functioned as a cathodic inhibitor. AC impedance spectra revealed that a protective film was formed on the metal surface. The nature of the metal surface was analyzed by FTIR spectra, SEM and AFM analyses.

  14. Corrosion inhibition of mild steel in 1 M sulfuric acid solution using anionic surfactant

    The anionic surfactant [p-myristyloxy carbonyl methoxy-p'-sodium carboxylate-azobenzene] was prepared. The surface tension at 298 K was measured, the critical micelle concentration (cmc) and some surface active parameters were calculated. The inhibition efficiency (η%) of this surfactant has been studied by both chemical and electrochemical techniques at 25 deg. C. A significant decrease in the corrosion rate was observed in presence of the investigated inhibitor. The galvanostatic polarization curves showed that, the inhibitor behaves as mixed type but the cathodic effect is more pronounced. Tafel slopes are approximately constant and independent on the inhibitor concentration. The observed corrosion data indicate that, the inhibition of mild steel corrosion is due to the adsorption of the inhibitor molecules on the surface, which follow Langmuir adsorption isotherm. The surface morphology of mild steel samples in absence and presence of the inhibitor was examined using scanning electron microscopy

  15. Effect of piperidones on hydrogen permeation and corrosion inhibition of mild steel in acidic solutions

    S Muralidharan; R Chandrasekar; S V K Iyer

    2000-04-01

    The influence of 3-methyl-2,6-diphenyl piperidin-4-one (MDPO) and 2-phenyl decahydroquinoline-4-one (PDQO) synthesised in the laboratory on hydrogen permeation and corrosion inhibition of mild steel in 1N H2SO4 has been studied using weight loss and various electrochemical AC and DC corrosion-monitoring techniques. Both the compounds inhibit the corrosion of mild steel in H2SO4 Potentiodynamic polarisation studies clearly reveal that they behave predominantly as cathodic inhibitors. The extent of decrease in hydrogen permeation current through steel surfaces has been studied by the hydrogen electropermeation technique. Double layer capacitance () and charge transfer resistance () values are derived from Nyquist plots obtained from AC impedance studies. The adsorption of these compounds on mild steel surfaces from H2SO4 obeys Temkin’s adsorption isotherm.

  16. Immobilization of Tyrosinase from Avocado Crude Extract in Polypyrrole Films for Inhibitive Detection of Benzoic Acid

    André Brisolari; Débora Gonçalves

    2014-01-01

    Inhibition-based biosensors were developed by immobilizing tyrosinase (Tyr, polyphenol oxidase) from the crude extract of avocado fruit on electrochemically prepared polypyrrole (PPy) films. The biosensors were prepared during the electropolymerization of pyrrole in a solution containing a fixed volume of the crude extract of avocado. The dependence of the biosensor responses on the volume used from the crude extract, values of pH and temperature was studied, and a substrate, catechol, at dif...

  17. Terminal acidic shock inhibits sour beer bottle conditioning by Saccharomyces cerevisiae.

    Rogers, Cody M; Veatch, Devon; Covey, Adam; Staton, Caleb; Bochman, Matthew L

    2016-08-01

    During beer fermentation, the brewer's yeast Saccharomyces cerevisiae experiences a variety of shifting growth conditions, culminating in a low-oxygen, low-nutrient, high-ethanol, acidic environment. In beers that are bottle conditioned (i.e., carbonated in the bottle by supplying yeast with a small amount of sugar to metabolize into CO2), the S. cerevisiae cells must overcome these stressors to perform the ultimate act in beer production. However, medium shock caused by any of these variables can slow, stall, or even kill the yeast, resulting in production delays and economic losses. Here, we describe a medium shock caused by high lactic acid levels in an American sour beer, which we refer to as "terminal acidic shock". Yeast exposed to this shock failed to bottle condition the beer, though they remained viable. The effects of low pH/high [lactic acid] conditions on the growth of six different brewing strains of S. cerevisiae were characterized, and we developed a method to adapt the yeast to growth in acidic beer, enabling proper bottle conditioning. Our findings will aid in the production of sour-style beers, a trending category in the American craft beer scene. PMID:27052714

  18. Synthesis of bolaamphiphile surfactants and their inhibitive effect on carbon steel corrosion in hydrochloric acid medium

    Corrosion inhibition by surfactant molecules is related to the surfactant's ability to aggregate at interfaces and in solution. In this work some new triazole bolaamphiphiles in the series of 1,n-bis(1,2,4-triazolyl)alkane where n=10, 12 have been synthesized. The purity of surfactants synthesized was checked by rutinary methodologies (IR, 1H NMR, 13C NMR, mass spectra and elemental analysis). The aggregation of 1,n-bis(1,2,4-triazolyl)alkane have been determined by surface tension at the air-HCl 1 M interface. The inhibiting action of these compounds towards the corrosion of carbon steel in 1 M HCl solution was investigated using gravimetric, potentiodynamic and electrochemical impedance spectroscopy measurements. Polarization data indicate that these compounds act as very good cathodic inhibitors for carbon steel in 1 M HCl. The values of the transfer resistance, obtained from impedance plots of carbon steel, increase by increasing product concentration. From all measurements carried out, the variation of the inhibition efficiency versus concentration shows the same trend. The electrochemical study shows that DTC12 is the best inhibitor and its efficiency increases with concentration and the highest value obtained is around 94%

  19. Inhibition-based first-generation electrochemical biosensors: theoretical aspects and application to 2,4-dichlorophenoxy acetic acid detection.

    Bollella, Paolo; Fusco, Giovanni; Tortolini, Cristina; Sanzò, Gabriella; Antiochia, Riccarda; Favero, Gabriele; Mazzei, Franco

    2016-05-01

    In this work, several theoretical aspects involved in the first-generation inhibition-based electrochemical biosensor measurements have been discussed. In particular, we have developed a theoretical-methodological approach for the characterization of the kinetic interaction between alkaline phosphatase (AlP) and 2,4-dichlorophenoxy acetic acid (2,4-D) as representative inhibitor studied by means of cyclic voltammetry and amperometry. Based on these findings, a biosensor for the fast, simple, and inexpensive determination of 2,4-D has been developed. The enzyme has been immobilized on screen-printed electrodes (SPEs). To optimize the biosensor performances, several carbon-based SPEs, namely graphite (G), graphene (GP), and multiwalled carbon nanotubes (MWCNTs), have been evaluated. AlP was immobilized on the electrode surface by means of polyvinyl alcohol with styryl-pyridinium groups (PVA-SbQ) as cross-linking agent. In the presence of ascorbate 2-phosphate (A2P) as substrate, the herbicide has been determined, thanks to its inhibition activity towards the enzyme catalyzing the oxidation of A2P to ascorbic acid (AA). Under optimum experimental conditions, the best performance in terms of catalytic efficiency has been demonstrated by MWCNTs SPE-based biosensor. The inhibition biosensor shows a linearity range towards 2,4-D within 2.1-110 ppb, a LOD of 1 ppb, and acceptable repeatability and stability. This analysis method was applied to fortified lake water samples with recoveries above 90 %. The low cost of this device and its good analytical performances suggest its application for the screening and monitoring of 2,4-D in real matrices. Graphical Abstract ᅟ. PMID:26874693

  20. Sugar beet waste and its component ferulic acid inhibits external mycelium of arbuscular mycorrhizal fungus

    Medina, Almudena; Jakobsen, Iver; Egsgaard, Helge

    2011-01-01

    External arbuscular mycorrhiza (AM) mycelium plays an important role in soil while interacting with a range of biotic and abiotic factors. One example is the soil organic amendment sugar beet waste. The fermented Aspergillus niger–sugar beet waste (ASB) increases growth and P uptake by the AM...... mycelium in soil whereas non-fermented waste (SB) had a strong inhibitory effect. The underlying mechanisms are not understood. We used gas chromatography–mass spectrometry to identify differences in composition of water extracts of ASB and SB. The chromatograms showed that ferulic acid was present in SB...... and absent in ASB. We compared the effects of the water extracts of SB and ASB and ferulic acid upon the growth of Glomus intraradices in in vitro monoxenic cultures. Hyphal growth of the AM fungus G. intraradices was extremely reduced in ferulic acid and SB treatments. Moreover, AM hyphae appeared...

  1. From ligand to complexes: inhibition of HIV-1 Integrase by beta-diketo acid metal complexes

    Sechi, Mario; BACCHI, Alessia; Carcelli, Mauro; Fisicaro, Emilia; Rogolino, Dominga; Gates, Paul; Derudas, Marco; Al-Mawsawi, Laith Q.; Neamati, Nouri

    2006-01-01

    Recently, a class of compounds bearing a β-diketo acid moiety have emerged as the most promising lead in anti-HIV-1 IN drug discovery. It is believed that the β-diketo acid pharmacophoric motif could be involved in a functional sequestration of one or both divalent metal ions, which are critical cofactors at the enzyme catalytic site. This would subsequently block the transition state of the IN-DNA complex. In this scenario, it is of paramount importance to acquire information ...

  2. Sialic Acid Is Required for Neuronal Inhibition by Soluble MAG but not for Membrane Bound MAG

    Al-Bashir, Najat; Mellado, Wilfredo; Filbin, Marie T.

    2016-01-01

    Myelin-Associated Glycoprotein (MAG), a major inhibitor of axonal growth, is a member of the immunoglobulin (Ig) super-family. Importantly, MAG (also known as Siglec-4) is a member of the Siglec family of proteins (sialic acid-binding, immunoglobulin-like lectins), MAG binds to complex gangliosides, specifically GD1a and/or GT1b. Therefore, it has been proposed as neuronal receptors for MAG inhibitory effect of axonal growth. Previously, we showed that MAG binds sialic acid through domain 1 a...

  3. INHIBITION OF STAPHYLOCOCCUS AUREUS BY LACTIC ACID BACTERIA AND / OR BIFIDOBACTERIUM LACTIS DURING MILK FERMENTATION AND STORAGE

    Khalaf S. Al-Delaimy

    2013-02-01

    Full Text Available Survival and inhibition of Staphylococcus aureus by the lactic acid bacteria (LAB starter culture (Sterptococcus thermophillus and Lactobacillus delbrukii subsp. bulgaricus and/ or probiotic bacteria Bifidobacterium lactis during milk fermentation to yoghurt and storage up to 12 days was studied. Adding S. aureus (initial count log 6.64/ ml with LAB (initial count log 6.8/ ml in milk during yoghurt processing and storage resulted in no significant change in the counts of both S. aureus and LAB during fermentation period of 4 hrs at 45° C. A steady decrease in S. aureus count during storage at 25° C and 4° C was observed reaching a complete (100 % inhibition after 9 and 12 days, respectively, with no significant increase in LAB count. Adding S. aureus (initial count log 6.62/ ml with B. lactis (initial count log 6.83/ ml in milk for 4 hr at45° C, no significant changes in the counts of both bacteria were found. After storage at 25° C and at 4° C a sharp decline in the S. aureus count with a 100 % inhibition after 6 and 9 days with approximately two log and one log increase in B. lactis counts consecutively. In general similar result was observed when adding S. aureus together with LAB and B. lactis in milk during fermentation and storage. pH values decreased during milk fermentation and storage from initially 6.55-6.64 to around 4 in most milk samples. The results of this study show that S. aureus was completely inhibited by LAB and/or B. lactis after milk fermentation to yoghurt and storage at room temperature and refrigeration for 6-9 days. It is therefore recommended to add the probiotic B. lactis with LAB to milk for yoghurt processing.

  4. Mechanistic toxicokinetic model for gamma-hydroxybutyric acid: inhibition of active renal reabsorption as a potential therapeutic strategy.

    Felmlee, Melanie A; Wang, Qi; Cui, Dapeng; Roiko, Samuel A; Morris, Marilyn E

    2010-09-01

    gamma-Hydroxybutyric acid (GHB), a drug of abuse, exhibits saturable renal clearance and capacity-limited metabolism. The objectives of this study were to construct a mechanistic toxicokinetic (TK) model describing saturable renal reabsorption and capacity-limited metabolism of GHB and to predict the effects of inhibition of renal reabsorption on GHB TK in the plasma and urine. GHB was administered by iv bolus (200-1,000 mg/kg) to male Sprague-Dawley rats and plasma and urine samples were collected for up to 6 h post-dose. GHB concentrations were determined by LC/MS/MS. GHB plasma concentration and urinary excretion were well-described by a TK model incorporating plasma and kidney compartments, along with two tissue and two ultrafiltrate compartments. The estimate of the Michaelis-Menten constant for renal reabsorption (K (m,R)) was 0.46 mg/ml which is consistent with in vitro estimates of monocarboxylate transporter (MCT)-mediated uptake of GHB (0.48 mg/ml). Simulation studies assessing inhibition of renal reabsorption of GHB demonstrated increased time-averaged renal clearance and GHB plasma AUC, independent of the inhibition mechanism assessed. Co-administration of GHB (600 mg/kg iv) and L: -lactate (330 mg/kg iv bolus plus 121 mg/kg/h iv infusion), a known inhibitor of MCTs, resulted in a significant decrease in GHB plasma AUC and an increase in time-averaged renal clearance, consistent with the model simulations. These results suggest that inhibition of renal reabsorption of GHB is a viable therapeutic strategy for the treatment of GHB overdoses. Furthermore, the mechanistic TK model provides a useful in silico tool for the evaluation of potential therapeutic strategies. PMID:20461486

  5. Carnosic acid inhibits STAT3 signaling and induces apoptosis through generation of ROS in human colon cancer HCT116 cells.

    Kim, Do-Hee; Park, Ki-Woong; Chae, In Gyeong; Kundu, Juthika; Kim, Eun-Hee; Kundu, Joydeb Kumar; Chun, Kyung-Soo

    2016-06-01

    Carnosic acid (CA), the main antioxidant compound of Rosmarinus officinalis L., has been reported to possess anticancer activity. However, the molecular mechanisms underlying the anticancer effects of CA remain poorly understood. Our study revealed that CA treatment significantly reduced the viability of human colon cancer HCT116, SW480, and HT-29 cells. Treatment with CA induced apoptosis, which was associated with the induction of p53 and Bax, inhibition of Mdm2, Bcl-2, and Bcl-xl expression, activation of caspase-9, and -3, and the cleavage of PARP in HCT116 cells. CA inhibited the constitutive phosphorylation, the DNA binding and the reporter gene activity of STAT3 in HCT116 cells by blocking the phosphorylation of upstream JAK2 and Src kinases. Moreover, CA attenuated the expression of STAT3 target gene products, such as survivin, cyclin D1, D2, and D3. In STAT3-overexpressed HCT116 cells, CA inhibited cell viability and the expression of cyclin D1 and survivin. Furthermore, CA treatment induced the generation of ROS in these colon cancer cells. Pretreatment of cells with ROS scavenger N-acetyl cysteine abrogated the inhibitory effect of CA on the JAK2-STAT3/Src-STAT3 signaling and rescued cells from CA-induced apoptosis by blocking the induction of p53 and the cleavage of caspase-3 and PARP in HCT116 cells. However, L-buthionine-sulfoximine, a pharmacological inhibitor of GSH synthesis, increased CA-induced ROS production, thereby potentiating apoptotic effect of CA. In conclusion, our study provides the first report that CA induced apoptosis in HCT116 cells via generation of ROS, induction of p53, activation of caspases, and inhibition of STAT3 signaling pathway. © 2015 Wiley Periodicals, Inc. PMID:26152521

  6. Histone deacetylase inhibitor upregulates peroxisomal fatty acid oxidation and inhibits apoptotic cell death in abcd1-deficient glial cells.

    Jaspreet Singh

    Full Text Available In X-ALD, mutation/deletion of ALD gene (ABCD1 and the resultant very long chain fatty acid (VLCFA derangement has dramatically opposing effects in astrocytes and oligodendrocytes. While loss of Abcd1 in astrocytes produces a robust inflammatory response, the oligodendrocytes undergo cell death leading to demyelination in X-linked adrenoleukodystrophy (X-ALD. The mechanisms of these distinct pathways in the two cell types are not well understood. Here, we investigated the effects of Abcd1-knockdown and the subsequent alteration in VLCFA metabolism in human U87 astrocytes and rat B12 oligodendrocytes. Loss of Abcd1 inhibited peroxisomal β-oxidation activity and increased expression of VLCFA synthesizing enzymes, elongase of very long chain fatty acids (ELOVLs (1 and 3 in both cell types. However, higher induction of ELOVL's in Abcd1-deficient B12 oligodendrocytes than astrocytes suggests that ELOVL pathway may play a prominent role in oligodendrocytes in X-ALD. While astrocytes are able to maintain the cellular homeostasis of anti-apoptotic proteins, Abcd1-deletion in B12 oligodendrocytes downregulated the anti-apototic (Bcl-2 and Bcl-xL and cell survival (phospho-Erk1/2 proteins, and upregulated the pro-apoptotic proteins (Bad, Bim, Bax and Bid leading to cell loss. These observations provide insights into different cellular signaling mechanisms in response to Abcd1-deletion in two different cell types of CNS. The apoptotic responses were accompanied by activation of caspase-3 and caspase-9 suggesting the involvement of mitochondrial-caspase-9-dependent mechanism in Abcd1-deficient oligodendrocytes. Treatment with histone deacetylase (HDAC inhibitor suberoylanilide hydroxamic acid (SAHA corrected the VLCFA derangement both in vitro and in vivo, and inhibited the oligodendrocytes loss. These observations provide a proof-of principle that HDAC inhibitor SAHA may have a therapeutic potential for X-ALD.

  7. Cell motility is inhibited by the antiepileptic compound, valproic acid and its teratogenic analogues

    Walmod, P S; Foley, A; Berezin, A; Ellerbeck, U; Nau, H; Bock, E; Berezin, V

    1998-01-01

    Valproic acid (VPA) is an established human teratogen that causes neural tube defects in 1-2% of human foetuses exposed to the drug during early pregnancy. In this study, individual cell motility was evaluated using short- and long-term time-lapse video-recording and computer assisted image...

  8. Growth inhibition of Aeromonas salmonicida and Yersinia ruckeri by disinfectants containing peracetic acid

    Peracetic acid is a therapeutic agent used for disinfection in aquaculture, but it must be investigated thoroughly in order to mitigate diseases without harmful effects to fish. These agents should not leave dangerous residues in the environment in order to successfully contribute to sustainable aq...

  9. Growth inhibition of Aeromonas salmonicida and Yersinia ruckeri by disinfectants containing peracetic acid

    Peracetic acid is a therapeutic agent used for disinfection, but it must be investigated in order to mitigate diseases without harmful effects to the fish. These agents should not leave dangerous residues in the environment in order to successfully contribute to sustainable aquaculture. The aim of ...

  10. Conjugated linoleic acid inhibiting DNA repair damaged by x-ray

    Non-homologous end-joining is the most effective repair of DNA double strand break. Epidermal growth factor receptor activates DSB repairs. Integration of EGFR inhibitors with radiation or chemotherapy were used in lung cancer treatment. Radiosensitivity effect of conjugated linoleic acid on tumor cells and reduced metastasis are reported

  11. Epoxyeicosatrienoic acid analogue lowers blood pressure through vasodilation and sodium channel inhibition

    Khan, M. A. H.; Pavlov, T. S.; Christain, S. V.; Neckář, Jan; Staruschenko, A.; Gauthier, K. M.; Capdevila, J. H.; Falck, J. R.; Campbell, W. B.; Imig, J. D.

    2014-01-01

    Roč. 127, č. 7 (2014), s. 463-474. ISSN 0143-5221 Institutional support: RVO:67985823 Keywords : angiotensin II * epithelial sodium channel (ENaC) * epoxyeicosatrienoic acid analogue * hypertension Subject RIV: FA - Cardiovascular Diseases incl. Cardiotharic Surgery Impact factor: 5.598, year: 2014

  12. Substitution-Inert Trinuclear Platinum Complexes Efficiently Condense/Aggregate Nucleic Acids and Inhibit Enzymatic Activity

    Malina, Jaroslav; Farrell, N. P.; Brabec, Viktor

    2014-01-01

    Roč. 53, č. 47 (2014), s. 12812-12816. ISSN 1433-7851 R&D Projects: GA ČR(CZ) GA13-08273S Institutional support: RVO:68081707 Keywords : DNA condensation * nucleic acids * platinum Subject RIV: BO - Biophysics Impact factor: 11.261, year: 2014

  13. G Protein-Coupled Bile Acid Receptor TGR5 Activation Inhibits Kidney Disease in Obesity and Diabetes.

    Wang, Xiaoxin X; Edelstein, Michal Herman; Gafter, Uzi; Qiu, Liru; Luo, Yuhuan; Dobrinskikh, Evgenia; Lucia, Scott; Adorini, Luciano; D'Agati, Vivette D; Levi, Jonathan; Rosenberg, Avi; Kopp, Jeffrey B; Gius, David R; Saleem, Moin A; Levi, Moshe

    2016-05-01

    Obesity and diabetes mellitus are the leading causes of renal disease. In this study, we determined the regulation and role of the G protein-coupled bile acid receptor TGR5, previously shown to be regulated by high glucose and/or fatty acids, in obesity-related glomerulopathy (ORG) and diabetic nephropathy (DN). Treatment of diabetic db/db mice with the selective TGR5 agonist INT-777 decreased proteinuria, podocyte injury, mesangial expansion, fibrosis, and CD68 macrophage infiltration in the kidney. INT-777 also induced renal expression of master regulators of mitochondrial biogenesis, inhibitors of oxidative stress, and inducers of fatty acid β-oxidation, including sirtuin 1 (SIRT1), sirtuin 3 (SIRT3), and Nrf-1. Increased activity of SIRT3 was evidenced by normalization of the increased acetylation of mitochondrial superoxide dismutase 2 (SOD2) and isocitrate dehydrogenase 2 (IDH2) observed in untreated db/db mice. Accordingly, INT-777 decreased mitochondrial H2O2 generation and increased the activity of SOD2, which associated with decreased urinary levels of H2O2 and thiobarbituric acid reactive substances. Furthermore, INT-777 decreased renal lipid accumulation. INT-777 also prevented kidney disease in mice with diet-induced obesity. In human podocytes cultured with high glucose, INT-777 induced mitochondrial biogenesis, decreased oxidative stress, and increased fatty acid β-oxidation. Compared with normal kidney biopsy specimens, kidney specimens from patients with established ORG or DN expressed significantly less TGR5 mRNA, and levels inversely correlated with disease progression. Our results indicate that TGR5 activation induces mitochondrial biogenesis and prevents renal oxidative stress and lipid accumulation, establishing a role for TGR5 in inhibiting kidney disease in obesity and diabetes. PMID:26424786

  14. Pyrazinamide Induced Rat Cholestatic Liver Injury through Inhibition of FXR Regulatory Effect on Bile Acid Synthesis and Transport.

    Guo, Hong-Li; Hassan, Hozeifa M; Zhang, Yun; Dong, Si-Zhe; Ding, Ping-Ping; Wang, Tao; Sun, Li-Xin; Zhang, Lu-Yong; Jiang, Zhen-Zhou

    2016-08-01

    Pyrazinamide (PZA) is an indispensable first-line drug used for the treatment of tuberculosis which may cause serious hepatotoxicity; however, the mechanisms underlying these toxicities are poorly understood. Cholestasis plays an important role in drug-induced liver injury. Since there were no previous published works reported cholestasis and PZA hepatotoxicity relationship, this study aimed to identify whether PZA can induce liver injury with characterized evidences of cholestasis and to clarify expression changes of proteins related to both bile acid synthesis and transport in PZA-induced liver injury. PZA (2 g/kg) was administered for 7 consecutive days by oral gavage. Results showed there were 2-fold elevation in both ALT and AST serum levels in PZA-treated rats. In addition, a 10-fold increment in serum total bile acid was observed after PZA administration. The mRNA and protein expressions of bile acid synthesis and transport parameters were markedly altered, in which FXR, Bsep, Mrp2, Mdr2, Ostα/β, Oatp1a1, Oatp1b2, and Cyp8b1 were decreased (P < .05), while Mrp3, Ntcp, Oatp1a4, and Cyp7a1 were increased (P < .05). Moreover, treatment with the FXR agonist obeticholic acid (OCA) generated obvious reductions in serum ALT, AST, and TBA levels in PZA-treated rats. Those effects were due to transcriptional regulation of pre-mentioned target genes by OCA. Taken together, these results suggested that PZA-induced cholestatic liver injury was related to FXR inhibition, leading to the dysfunction in bile acid synthesis and transport. PMID:27255380

  15. Corrosion Inhibition and Adsorption Behavior of Setaria verticillata Leaf Extract in 1M Sulphuric Acid

    Muthukrishnan, P.; Jeyaprabha, B.; Prakash, P.

    2013-12-01

    Setaria verticillata leaf extract (SVLE) as corrosion inhibitor in 1M H2SO4 was investigated by weight loss techniques and electrochemical techniques at 308-328 K. Inhibition efficiency of SVLE was found to increase with increasing concentration but decreased with temperature. Polarization measurements revealed that SVLE acted as mixed-type inhibitor. Impedance diagrams showed that increasing of SVLE concentration increased charge transfer resistance and decreased double layer capacitance. The adsorption of SVLE on the mild surface obeyed the Langmuir adsorption isotherm. Protective film formation against corrosion was confirmed by SEM and FTIR.

  16. Inhibition of acid mine drainage and immobilization of heavy metals from copper flotation tailings using a marble cutting waste

    Gulsen Tozsin

    2016-01-01

    Acid mine drainage (AMD) with high concentrations of sulfates and metals is generated by the oxidation of sulfide bearing wastes. CaCO3-rich marble cutting waste is a residual material produced by the cutting and polishing of marble stone. In this study, the feasibility of using the marble cutting waste as an acid-neutralizing agent to inhibit AMD and immobilize heavy metals from copper flotation tailings (sul-fide-bearing wastes) was investigated. Continuous-stirring shake-flask tests were conducted for 40 d, and the pH value, sulfate content, and dissolved metal content of the leachate were analyzed every 10 d to determine the effectiveness of the marble cutting waste as an acid neu-tralizer. For comparison, CaCO3 was also used as a neutralizing agent. The average pH value of the leachate was 2.1 at the beginning of the experiment (t = 0). In the experiment employing the marble cutting waste, the pH value of the leachate changed from 6.5 to 7.8, and the sul-fate and iron concentrations decreased from 4558 to 838 mg/L and from 536 to 0.01 mg/L, respectively, after 40 d. The marble cutting waste also removed more than 80wt% of heavy metals (Cd, Cr, Cu, Ni, Pb, and Zn) from AMD generated by copper flotation tailings.

  17. Low Protein Diet Inhibits Uric Acid Synthesis and Attenuates Renal Damage in Streptozotocin-Induced Diabetic Rats

    Jianmin Ran

    2014-01-01

    Full Text Available Aim. Several studies indicated that hyperuricemia may link to the worsening of diabetic nephropathy (DN. Meanwhile, low protein diet (LPD retards exacerbation of renal damage in chronic kidney disease. We then assessed whether LPD influences uric acid metabolism and benefits the progression of DN in streptozotocin- (STZ- induced diabetic rats. Methods. STZ-induced and control rats were both fed with LPD (5% and normal protein diet (18%, respectively, for 12 weeks. Vital signs, blood and urinary samples for UA metabolism were taken and analyzed every 3 weeks. Kidneys were removed at the end of the experiment. Results. Diabetic rats developed into constantly high levels of serum UA (SUA, creatinine (SCr and 24 h amounts of urinary albumin excretion (UAE, creatintine (UCr, urea nitrogen (UUN, and uric acid (UUA. LPD significantly decreased SUA, UAE, and blood glucose, yet left SCr, UCr, and UUN unchanged. A stepwise regression showed that high UUA is an independent risk factor for DN. LPD remarkably ameliorated degrees of enlarged glomeruli, proliferated mesangial cells, and hyaline-degenerated tubular epithelial cells in diabetic rats. Expression of TNF-α in tubulointerstitium significantly decreased in LPD-fed diabetic rats. Conclusion. LPD inhibits endogenous uric acid synthesis and might accordingly attenuate renal damage in STZ-induced diabetic rats.

  18. Inhibition of acid mine drainage and immobilization of heavy metals from copper flotation tailings using a marble cutting waste

    Tozsin, Gulsen

    2016-01-01

    Acid mine drainage (AMD) with high concentrations of sulfates and metals is generated by the oxidation of sulfide bearing wastes. CaCO3-rich marble cutting waste is a residual material produced by the cutting and polishing of marble stone. In this study, the feasibility of using the marble cutting waste as an acid-neutralizing agent to inhibit AMD and immobilize heavy metals from copper flotation tailings (sulfide- bearing wastes) was investigated. Continuous-stirring shake-flask tests were conducted for 40 d, and the pH value, sulfate content, and dissolved metal content of the leachate were analyzed every 10 d to determine the effectiveness of the marble cutting waste as an acid neutralizer. For comparison, CaCO3 was also used as a neutralizing agent. The average pH value of the leachate was 2.1 at the beginning of the experiment ( t = 0). In the experiment employing the marble cutting waste, the pH value of the leachate changed from 6.5 to 7.8, and the sulfate and iron concentrations decreased from 4558 to 838 mg/L and from 536 to 0.01 mg/L, respectively, after 40 d. The marble cutting waste also removed more than 80wt% of heavy metals (Cd, Cr, Cu, Ni, Pb, and Zn) from AMD generated by copper flotation tailings.

  19. Inhibition of Mild Steel Corrosion in Hydrochloric Acid Solution by New Coumarin

    Abdul Amir H. Kadhum

    2014-06-01

    Full Text Available A new coumarin derivative, N,N′-((2E,2′E-2,2′-(1,4-phenylenebis (methanylylidenebis(hydrazinecarbonothioylbis(2-oxo-2H-chromene-3-carboxamide PMBH, was synthesized and its chemical structure was elucidated and confirmed using spectroscopic techniques (Infrared spectroscopy IR, Proton nuclear  magnetic resonance, 1H-NMR and carbon-13 nuclear magnetic resonance 13C-NMR. The corrosion inhibition effect of PMBH on mild steel in 1.0 M HCl was investigated using corrosion potential (ECORR, potentiodynamic polarization, electrochemical impedance spectroscopy (EIS, and electrochemical frequency modulation (EFM measurements. The obtained results indicated that PMBH has promising inhibitive effects on the corrosion of mild steel in 1.0 M HCl across all of the conditions examined. Scanning electron microscopy (SEM was used to investigate the morphology of the mild steel before and after immersion in 1.0 M HCl solution containing 0.5 mM of PMBH. Surface analysis revealed improvement of corrosion resistance in presence of PMBH.

  20. Corrosion inhibition of aluminum in hydrochloric acid solution by alkylimidazolium ionic liquids

    Zhang Qibo [Faculty of Materials and Metallurgical Engineering, Kunming University of Science and Technology, Kunming 650093 (China); Hua Yixin, E-mail: huayixin@gmail.com [Faculty of Materials and Metallurgical Engineering, Kunming University of Science and Technology, Kunming 650093 (China)

    2010-01-15

    The effects of newly synthesized three alkylimidazolium ionic liquids-1-butyl-3-methylimidazolium chlorides (BMIC), 1-hexyl-3-methylimidazolium chlorides (HMIC) and 1-octyl-3-methylimidazolium chlorides (OMIC)-on the corrosion of aluminum in 1.0 M HCl were investigated using potentiodynamic polarization, electrochemical impedance spectroscopy and weight loss methods. All measurements showed that the inhibition efficiency increased with increase in the concentration of inhibitor and the effectiveness of these inhibitors was in the order of OMIC > HMIC > BMIC. Polarization curves revealed that the studied inhibitors were mixed type inhibitors. The adsorption of the inhibitors on the aluminum surface obeyed Langmuir adsorption isotherm and had a physical mechanism. The effect of temperature on the corrosion behavior in the presence of 5 x 10{sup -3} M of inhibitors was studied in the temperature range of 303-333 K. The associated activation energy of corrosion and other thermodynamic parameters such as enthalpy of activation ({Delta}H), entropy of activation ({Delta}S), adsorption equilibrium constant (K{sub ads}) and free energy of adsorption ({Delta}G{sub ads}) were calculated to elaborate the mechanism of corrosion inhibition.

  1. Inhibition of Murine Systemic Leishmaniasis by Acetyl Salicylic Acid Via Nitric Oxide Immunomodulation

    M Assmar

    2012-06-01

    Full Text Available Background: The purpose of this study was to evaluate antileishmanial effects of ASA via NO pathway in Leishmania major infected Balb/c mice. Moreover, toxicity and pathological consequences of ASA administration were investigated.Methods: Balb/c mice were infected with L. major and ASA was inoculated orally after lesion appearance for its ability to modulate NO and to modify Leishmania infection in host, in order to evaluate the effects of NO production on size and lesion macroscopy, delay of lesion formation and proliferation of amasti­gotes inside macrophages. Liver, spleen, and lymph nodes were also studied as target organs to detect amastigotes. In addition, plasma was investigated for NO induction using Griess microassay.Results: ASA increased NO production in plasma of both naïve and Leishmania test groups at the ultimate of the experimental period. A decline was observed in proliferation of amastigotes inside macrophages of test group when compared with control one. ASA reduced lesion size, inhibited Leishma­nia visceralisation in spleen, lymph node, and decreased hepato/splenomegaly in ASA treated animals.Conclusions: Some antileishmanial effects of ASA by NO-modulation were indicated during systemic leishmaniasis in mice. Despite slight effects on lesion size, ASA decreased parasite visceralization in target organs and declined their proliferation inside macrophages. Therefore, ASA may be indicated to inhibit systemic leishmaniasis via NO pathway in mice model.

  2. Inhibition of Mild Steel Corrosion in Sulfuric Acid Solution by New Schiff Base

    Ahmed A. Al-Amiery

    2014-01-01

    Full Text Available The efficiency of Schiff base derived from 4-aminoantipyrine, namely 2-(1,5-dimethyl-4-(2-methylbenzylideneamino-2-phenyl-1H-pyrazol-3(2H-ylidene hydrazinecarbothioamide as a corrosion inhibitor on mild steel in 1.0 M H2SO4 was investigated using electrochemical impedance spectroscopy (EIS, potentiodynamic polarization (PD and electrochemical frequently modulation (EFM in addition to the adsorption isotherm, corrosion kinetic parameters and scanning electron microscopy (SEM. The results showed that this inhibitor behaved as a good corrosion inhibitor, even at low concentration, with a mean efficiency of 93% and, also, a reduction of the inhibition efficiency as the solution temperature increases. A polarization technique and EIS were tested for different concentrations and different temperatures to reveal that this compound is adsorbed on the mild steel, therefore blocking the active sites, and the adsorption follows the Langmuir adsorption isotherm model. The excellent inhibition effectiveness of 2-(1,5-dimethyl-4-(2-methylbenzylideneamino-2-phenyl-1H-pyrazol-3(2H-ylidenehydrazinecarbothioamide was also verified by scanning electron microscope (SEM.

  3. Salicylic acid inhibits UV- and Cis-Pt-induced human immunodeficiency virus expression

    Previous studies have shown that exposure of HeLa cells stably transfected with a human immunodeficiency virus-long terminal repeat-chloramphenicol acetyl transferase (HIV-LTR-CAT) construct to UV light-induced expression from the HIV LTR. By culturing the cells with salicylic acid we demonstrated dose-dependent repression of this induced HIV expression. Repression was evident if salicylic acid was administered 2 h before, at the same time as, or up to 6 h after exposure to the DNA-damaging agent. The kinetics were similar for UV- and for cis-Pt-induced HIV expression, and induction was dependent on the UV dose or cis-Pt concentration added to the culture. These results suggest a role for the prostaglandins or the cyclooxygenase pathway or both in HIV induction mediated by DNA-damaging agents

  4. [Properties of a cephalosporinase produced by Proteus penneri inhibited by clavulanic acid].

    Miro, E; Barthelemy, M; Peduzzi, J; Reynaud, A; Morand, A; Prats, G; Labia, R

    1994-05-01

    P. penneri produces an inducible cephalosporinase, as many Enterobacteriaceae. Nevertheless this betalactamase is susceptible to clavulanic acid which is an exception also encountered for P. vulgaris. The authors studied the enzyme produced by P. penneri 14HBC resistant to cefotaxime (MIC 16 mg/l) isolated in Spain in 1992. This betalactamase of isoelectric point 6.65 hydrolyzes first generation cephalosporins, amoxycillin and poorly ticarcillin as it occurs for all cephalosporinases. However, this enzyme hydrolyzes strongly oxyimino-cephalosporins: cefuroxime, cefotaxime, cefepime, cefpirome as it occurs with extended-spectrum betalactamases. Cephamycins and imipenem are not substrates. Clavulanic acid has a very good affinity for this betalactamase which is inactivated progressively. These properties are similar to those of the enzyme of P. vulgaris Ro104 of isoelectric point 8.3 which, contrarily to other cephalosporinases, belongs to the structural Ambler's class A. PMID:7824319

  5. Therapeutic inhibition of fatty acid oxidation in right ventricular hypertrophy: exploiting Randle’s cycle

    Fang, Yong-Hu; Piao, Lin; Hong, Zhigang; Toth, Peter T.; Marsboom, Glenn; Bache-Wiig, Peter; Rehman, Jalees; Archer, Stephen L.

    2011-01-01

    Right ventricular hypertrophy (RVH) and RV failure are major determinants of prognosis in pulmonary hypertension and congenital heart disease. In RVH, there is a metabolic shift from glucose oxidation (GO) to glycolysis. Directly increasing GO improves RV function, demonstrating the susceptibility of RVH to metabolic intervention. However, the effects of RVH on fatty acid oxidation (FAO), the main energy source in adult myocardium, are unknown. We hypothesized that partial inhibitors of FAO (...

  6. Mycophenolic acid inhibits replication of Type 2 Winnipeg, a cerebrospinal fluid-derived reovirus isolate

    Hermann, Laura L.; Coombs, Kevin M.

    2004-01-01

    BACKGROUND: The role of reoviruses in human disease is uncertain. Most identified cases are sporadic and asymptomatic or produce minor upper respiratory or gastrointestinal symptoms. In November 1997, a reovirus was isolated from the cerebrospinal fluid of a severe combined immune deficient infant in Winnipeg, Manitoba. RNA characterization and sequencing studies demonstrated this reovirus isolate to be unique. Thus, the virus was named Type 2 Winnipeg (T2W).OBJECTIVES: Mycophenolic acid (MPA...

  7. Statin Inhibits Kainic Acid-Induced Seizure and Associated Inflammation and Hippocampal Cell Death

    Lee, Jin-Koo; Won, Je-Seong; Singh, Avtar K; Singh, Inderjit

    2008-01-01

    Statins are inhibitors of HMG-CoA reductase that have been recently recognized as anti-inflammatory and neuroprotective drugs. Herein, we investigated anti-excitotoxic and anti-seizure effects of statins by using kainic acid (KA)-rat seizure model, an animal model for temporal lobe epilepsy and excitotoxic neurodegeneration. We observed that pretreatment with Lipitor (atorvastatin) effeiciently reduced KA-induced seizure activities, hippocampal neuron death, monocyte infiltration and proinfla...

  8. PKCzeta protects against UV-C-induced apoptosis by inhibiting acid sphingomyelinase-dependent ceramide production

    Charruyer, Alexandra; Jean, Christine; Colomba, Audrey; Jaffrézou, Jean-Pierre; Quillet-Mary, Anne; Laurent, Guy; Bezombes, Christine

    2007-01-01

    Abstract In a recent study, we described that UV-C irradiation resulted in redox-dependent activation and relocalization of acid sphingomyelinase (A-SMase) to the external surface of raft membrane microdomains, hydrolysis of sphingomyelin (SM) associated to the plasma membrane outer leaflet, ceramide (CER) generation and apoptosis. In the present study, we have investigated the influence of PKC? , an atypical form of PKC on this pathway. This study shows that PKC? overexpression r...

  9. Mitochondrial complex I inhibition in cerebral cortex of immature rats following homocysteic acid-induced seizures

    Folbergrová, Jaroslava; Ješina, Pavel; Drahota, Zdeněk; Lisý, Václav; Haugvicová, Renata; Vojtíšková, Alena; Houštěk, Josef

    2007-01-01

    Roč. 204, č. 2 (2007), s. 597-609. ISSN 0014-4886 R&D Projects: GA ČR(CZ) GA309/05/2015; GA ČR(CZ) GA303/06/1261; GA MŠk 1M0520 Institutional research plan: CEZ:AV0Z50110509; CEZ:AV0Z50200510 Keywords : cerebral cortex * homocysteic acid * free radical scavenger Subject RIV: ED - Physiology Impact factor: 3.982, year: 2007

  10. Nitric oxide secretion in human conjunctival fibroblasts is inhibited by alpha linolenic acid

    Erdinest, Nir; Shohat, Noam; Moallem, Eli; Yahalom, Claudia; Mechoulam, Hadas; Anteby, Irene; Ovadia, Haim; Solomon, Abraham

    2015-01-01

    Purpose It is known that both human conjunctival fibroblasts (HCF) and corneal epithelial (HCE) cells contribute to the inflammatory process in the ocular surface by releasing inflammatory cytokines. In addition, nitric oxide (NO) has an important role in inflammatory responses in the ocular surface. In the present study, we aimed to characterize the capacity of these cells to release nitric oxide in response to cytokines and Lipopolysaccharide (LPS), and show that Alpha-linoleic acid (ALA) i...

  11. Valproic acid inhibits Aβ production, neuritic plaque formation, and behavioral deficits in Alzheimer's disease mouse models

    Qing, Hong; He, Guiqiong; Ly, Philip T. T.; Fox, Christopher J; Staufenbiel, Matthias; Cai, Fang; Zhang, Zhuohua; Wei, Shengcai; Sun, Xiulian; Chen, Chia-Hsiung; Zhou, Weihui; Wang, Ke; Song, Weihong

    2008-01-01

    Neuritic plaques in the brains are one of the pathological hallmarks of Alzheimer's disease (AD). Amyloid β-protein (Aβ), the central component of neuritic plaques, is derived from β-amyloid precursor protein (APP) after β- and γ-secretase cleavage. The molecular mechanism underlying the pathogenesis of AD is not yet well defined, and there has been no effective treatment for AD. Valproic acid (VPA) is one of the most widely used anticonvulsant and mood-stabilizing agents for treating epileps...

  12. Ginkgolic acid suppresses the development of pancreatic cancer by inhibiting pathways driving lipogenesis

    Ma, Jiguang; Duan, Wanxing; Han, Suxia; Lei, Jianjun; Xu, Qinhong; Chen, Xin; Jiang, Zhengdong; Nan, Ligang; Li, Jiahui; Chen, Ke; Han, Liang; Wang, Zheng; Li, Xuqi; Wu, Erxi; HUO, XIONGWEI

    2015-01-01

    Ginkgolic acid (GA) is a botanical drug extracted from the seed coat of Ginkgo biloba L. with a wide range of bioactive properties, including anti-tumor effect. However, whether GA has antitumor effect on pancreatic cancer cells and the underlying mechanisms have yet to be investigated. In this study, we show that GA suppressed the viability of cancer cells but has little toxicity on normal cells, e.g, HUVEC cells. Furthermore, treatment of GA resulted in impaired colony formation, migration,...

  13. Inhibition of Receptor Interacting Protein Kinases Attenuates Cardiomyocyte Hypertrophy Induced by Palmitic Acid

    Mingyue Zhao; Lihui Lu; Song Lei; Hua Chai; Siyuan Wu; Xiaoju Tang; Qinxue Bao; Li Chen; Wenchao Wu; Xiaojing Liu

    2016-01-01

    Palmitic acid (PA) is known to cause cardiomyocyte dysfunction. Cardiac hypertrophy is one of the important pathological features of PA-induced lipotoxicity, but the mechanism by which PA induces cardiomyocyte hypertrophy is still unclear. Therefore, our study was to test whether necroptosis, a receptor interacting protein kinase 1 and 3 (RIPK1 and RIPK3-) dependent programmed necrosis, was involved in the PA-induced cardiomyocyte hypertrophy. We used the PA-treated primary neonatal rat cardi...

  14. The role of fatty acid amide hydrolase inhibition in nicotine reward and dependence

    Muldoon, Pretal P.; Lichtman, Aron H.; Parsons, Loren H.; Damaj, M Imad

    2012-01-01

    The endogenous cannabinoid anandamide (AEA) exerts the majority of its effects at CB1 and CB2 receptors and is degraded by fatty acid amide hydrolase (FAAH). FAAH KO mice and animals treated with FAAH inhibitors are impaired in their ability to hydrolyze AEA and other non-cannabinoid lipid signaling molecules, such as oleoylethanolamide (OEA) and palmitoylethanolamide (PEA). AEA and these other substrates activate non- cannabinoid receptor systems, including TRPV1 and PPAR-α receptors. In thi...

  15. Cellular viability effects of fatty acid amide hydrolase inhibition on cerebellar neurons

    Lueneberg Kathia; Domínguez Guadalupe; Arias-Carrión Oscar; Palomero-Rivero Marcela; Millán-Aldaco Diana; Morán. Julio; Drucker-Colín René; Murillo-Rodríguez Eric

    2011-01-01

    Abstract The endocannabinoid anandamide (ANA) participates in the control of cell death inducing the formation of apoptotic bodies and DNA fragmentation. The aim of this study was to evaluate whether the ANA degrading enzyme, the fatty acid amide hydrolase (FAAH), would induce cellular death. Experiments were performed in cerebellar granule neurons cultured with the FAAH inhibitor, URB597 (25, 50 or 100 nM) as well as endogenous lipids such as oleoylethanolamide (OEA) or palmitoylethanolamide...

  16. Inhibition of arachidonic acid metabolism and its implication on cell proliferation and tumour-angiogenesis

    Hyde, C. A. C.; Missailidis, S

    2009-01-01

    Arachidonic acid (AA) and its metabolites have recently generated a heightened interest due to growing evidence of their significant role in cancer biology. Thus, inhibitors of the AA cascade, first and foremost COX inhibitors, which have originally been of interest in the treatment of inflammatory conditions and certain types of cardiovascular disease, are now attracting attention as an arsenal against cancer. An increasing number of investigations support their role in cancer chemopreventio...

  17. Inhibition of epoxide hydrolase by valproic acid in epileptic patients receiving carbamazepine.

    Robbins, D K; Wedlund, P J; Kuhn, R.; Baumann, R J; Levy, R.H.; Chang, S.L.

    1990-01-01

    The effect of valproic acid (VPA) on the disposition of carbamazepine-10,11-epoxide (epoxide) was studied in five epileptic patients on chronic carbamazepine (CBZ) therapy. The individual pharmacokinetic parameters influencing epoxide disposition were determined in the presence and absence of VPA. VPA significantly decreased the clearance of unbound epoxide (an in vivo index of epoxide hydrolase activity), but did not appear to affect epoxide formation. VPA also increased the free concentrati...

  18. (+-Dehydroabietic Acid, an Abietane-Type Diterpene, Inhibits Staphylococcus aureus Biofilms in Vitro

    Pia Vuorela

    2013-06-01

    Full Text Available Potent drugs are desperately needed to counteract bacterial biofilm infections, especially those caused by gram-positive organisms, such as Staphylococcus aureus. Moreover, anti-biofilm compounds/agents that can be used as chemical tools are also needed for basic in vitro or in vivo studies aimed at exploring biofilms behavior and functionability. In this contribution, a collection of naturally-occurring abietane-type diterpenes and their derivatives was tested against S. aureus biofilms using a platform consisting of two phenotypic assays that have been previously published by our group. Three active compounds were identified: nordehydroabietylamine (1, (+-dehydroabietic acid (2 and (+-dehydroabietylamine (3 that prevented biofilm formation in the low micromolar range, and unlike typical antibiotics, only 2 to 4-fold higher concentrations were needed to significantly reduce viability and biomass of existing biofilms. Compound 2, (+-dehydroabietic acid, was the most selective towards biofilm bacteria, achieving high killing efficacy (based on log Reduction values and it was best tolerated by three different mammalian cell lines. Since (+-dehydroabietic acid is an easily available compound, it holds great potential to be used as a molecular probe in biofilms-related studies as well as to serve as inspirational chemical model for the development of potent drug candidates.

  19. Arachidonic acid drives postnatal neurogenesis and elicits a beneficial effect on prepulse inhibition, a biological trait of psychiatric illnesses.

    Motoko Maekawa

    Full Text Available Prepulse inhibition (PPI is a compelling endophenotype (biological markers for mental disorders including schizophrenia. In a previous study, we identified Fabp7, a fatty acid binding protein 7 as one of the genes controlling PPI in mice and showed that this gene was associated with schizophrenia. We also demonstrated that disrupting Fabp7 dampened hippocampal neurogenesis. In this study, we examined a link between neurogenesis and PPI using different animal models and exploring the possibility of postnatal manipulation of neurogenesis affecting PPI, since gene-deficient mice show biological disturbances from prenatal stages. In parallel, we tested the potential for dietary polyunsaturated fatty acids (PUFAs, arachidonic acid (ARA and/or docosahexaenoic acid (DHA, to promote neurogenesis and improve PPI. PUFAs are ligands for Fabp members and are abundantly expressed in neural stem/progenitor cells in the hippocampus. Our results are: (1 an independent model animal, Pax6 (+/- rats, exhibited PPI deficits along with impaired postnatal neurogenesis; (2 methylazoxymethanol acetate (an anti-proliferative drug elicited decreased neurogenesis even in postnatal period, and PPI defects in young adult rats (10 weeks when the drug was given at the juvenile stage (4-5 weeks; (3 administering ARA for 4 weeks after birth promoted neurogenesis in wild type rats; (4 raising Pax6 (+/- pups on an ARA-containing diet enhanced neurogenesis and partially improved PPI in adult animals. These results suggest the potential benefit of ARA in ameliorating PPI deficits relevant to psychiatric disorders and suggest that the effect may be correlated with augmented postnatal neurogenesis.

  20. Activation of RAS/ERK alone is insufficient to inhibit RXRα function and deplete retinoic acid in hepatocytes

    Wang, Ai-Guo, E-mail: wangaiguotl@hotmail.com; Song, Ya-Nan; Chen, Jun; Li, Hui-Ling; Dong, Jian-Yi; Cui, Hai-Peng; Yao, Liang; Li, Xue-Feng; Gao, Wen-Ting; Qiu, Ze-Wen; Wang, Fu-Jin; Wang, Jing-Yu, E-mail: wangjingyus@163.com

    2014-09-26

    Highlights: • The activation of RAS/ERK is insufficient to inhibit RXRα function and deplete RA. • The retinoid metabolism-related genes are down-regulated by ras oncogene. • The atRA has no effect on preventing hepatic tumorigenesis or curing the developed hepatic nodules. - Abstract: Activation of RAS/ERK signaling pathway, depletion of retinoid, and phosphorylation of retinoid X receptor alpha (RXRα) are frequent events found in liver tumors and thought to play important roles in hepatic tumorigenesis. However, the relationships among them still remained to be elucidated. By exploring the transgenic mouse model of hepatic tumorigenesis induced by liver-specific expression of H-ras12V oncogene, the activation of RAS/ERK, the mRNA expression levels of retinoid metabolism-related genes, the contents of retinoid metabolites, and phosphorylation of RXRα were determined. RAS/ERK signaling pathway was gradually and significantly activated in hepatic tumor adjacent normal liver tissues (P) and hepatic tumor tissues (T) of H-ras12V transgenic mice compared with normal liver tissues (Wt) of wild type mice. On the contrary, the mRNA expression levels of retinoid metabolism-related genes were significantly reduced in P and T compared with Wt. Interestingly, the retinoid metabolites 9-cis-retinoic acid (9cRA) and all-trans-retinoic acid (atRA), the well known ligands for nuclear transcription factor RXR and retinoic acid receptor (RAR), were significantly decreased only in T compared with Wt and P, although the oxidized polar metabolite of atRA, 4-keto-all-trans-retinoic-acid (4-keto-RA) was significantly decreased in both P and T compared with Wt. To our surprise, the functions of RXRα were significantly blocked only in T compared with Wt and P. Namely, the total protein levels of RXRα were significantly reduced and the phosphorylation levels of RXRα were significantly increased only in T compared with Wt and P. Treatment of H-ras12V transgenic mice at 5-week

  1. Activation of RAS/ERK alone is insufficient to inhibit RXRα function and deplete retinoic acid in hepatocytes

    Highlights: • The activation of RAS/ERK is insufficient to inhibit RXRα function and deplete RA. • The retinoid metabolism-related genes are down-regulated by ras oncogene. • The atRA has no effect on preventing hepatic tumorigenesis or curing the developed hepatic nodules. - Abstract: Activation of RAS/ERK signaling pathway, depletion of retinoid, and phosphorylation of retinoid X receptor alpha (RXRα) are frequent events found in liver tumors and thought to play important roles in hepatic tumorigenesis. However, the relationships among them still remained to be elucidated. By exploring the transgenic mouse model of hepatic tumorigenesis induced by liver-specific expression of H-ras12V oncogene, the activation of RAS/ERK, the mRNA expression levels of retinoid metabolism-related genes, the contents of retinoid metabolites, and phosphorylation of RXRα were determined. RAS/ERK signaling pathway was gradually and significantly activated in hepatic tumor adjacent normal liver tissues (P) and hepatic tumor tissues (T) of H-ras12V transgenic mice compared with normal liver tissues (Wt) of wild type mice. On the contrary, the mRNA expression levels of retinoid metabolism-related genes were significantly reduced in P and T compared with Wt. Interestingly, the retinoid metabolites 9-cis-retinoic acid (9cRA) and all-trans-retinoic acid (atRA), the well known ligands for nuclear transcription factor RXR and retinoic acid receptor (RAR), were significantly decreased only in T compared with Wt and P, although the oxidized polar metabolite of atRA, 4-keto-all-trans-retinoic-acid (4-keto-RA) was significantly decreased in both P and T compared with Wt. To our surprise, the functions of RXRα were significantly blocked only in T compared with Wt and P. Namely, the total protein levels of RXRα were significantly reduced and the phosphorylation levels of RXRα were significantly increased only in T compared with Wt and P. Treatment of H-ras12V transgenic mice at 5-week

  2. Corrosion Inhibitive Evaluation of an Environmentally Friendly Water-Base Acrylic Terpolymer on Mild Steel in Hydrochloric Acid Media

    Azghandi, Mojtaba Vakili; Davoodi, Ali; Farzi, Gholam Ali; Kosari, Ali

    2013-12-01

    The corrosion inhibitive performance of an environmentally friendly water-base acrylic terpolymer [methyl methacrylate/Butyl Acrylate/Acrylic acid (ATP)] on mild steel in 1 M HCl was investigated by alternating current and direct current electrochemical techniques and the quantum chemical method. An efficiency of more than 97 pct was obtained with 0.8 mmol/L ATP. The increase in inhibitor concentration and immersion time has a positive effect, while the temperature influence is negligible on the inhibitor efficiency. The present terpolymer obeys the Langmuir isotherm, and thermodynamic calculation reveals a chemisorption type on the surface. Density functional calculations showed that the lone pairs of electrons of oxygen in the structure of three monomers are suitable sites to adsorb onto the metal surface. Finally, in the presence of ATP, a decrease in surface roughness and corrosion attacks was demonstrated by atomic force microscopy and optical microscopy examinations, respectively.

  3. Inhibition of adenosine diphosphate-induced platelet aggregation by alpha-lipoic acid and dihydroquercetin in vitro

    Ivan S Ivanov

    2014-01-01

    Full Text Available Objectives: To investigate the antiplatelet activity of alpha-lipoic acid (α-LA and dihydroquercetin (DHQ. Materials and Methods: Antiplatelet activity of the α-LA and DHQ was evaluated in rich platelet plasma of rat. The platelet aggregation was induced by adenosine diphosphate (ADP in concentration of 4 Χ 10 -5 Μ. Results: α-LA and DHQ inhibited platelet aggregation in concentration-dependent manner. The antiplatelet activity of α-LA was more pronounced than DHQ. DHQ also increased the antiplatelet activity of α-LA by 1.4 times. Conclusion: Combined simultaneous use of α-LA and DHQ possessed the high antiplatelet activity, and DHQ potentiated the activity of α-LA.

  4. Inhibition of deoxyribonucleic acid transcription by ultraviolet irradiation in mammalian cells: determination of the transcriptional linkage of the 18S and 28S ribosomal ribonucleic acid genes

    The inhibition of deoxyribonucleic acid (DNA) transcription in mammalian cells by ultraviolet irradiation has been studied. The reduction in the rates and the amounts of total ribonucleic acid (RNA) synthesis and of 18S, 28S, and 45S ribosomal RNA (rRNA) synthesis, in tissue cultured mouse L cells, were examined as functions of ultraviolet dose and time after ultraviolet irradiation. Total RNA synthesis in the ultraviolet irradiated L cell was found to decrease as a function of ultraviolet dose. The rates of synthesis for the 18S and 28S rRNAs and the 45S precursor RNA decreased exponentially with ultraviolet dose; the respective D37 values were 310 erg/mm2, 130 erg/mm2, and 90 erg/mm2. Ultraviolet inactivation kinetics of rRNA synthesis in HeLa cells indicated that, as in L cells, each 45S rRNA transcriptional unit has its own promotor, and that the 18S rRNA cistron is promotor proximal and the 28S rRNA cistron is promotor distal. All of the above findings support the hypothesis that irradiation of mammalian cells with ultraviolet light causes the formation of lesions on the DNA templates which result in premature termination of transcription. (U.S.)

  5. Study of adsorption properties and inhibition of mild steel corrosion in hydrochloric acid media by water soluble composite poly (vinyl alcohol-o-methoxy aniline)

    R. Karthikaiselvi; S. Subhashini

    2014-01-01

    The efficiency of new water soluble composite namely, poly (vinyl alcohol-o-methoxy aniline) PVAMOA has been studied for corrosion inhibition of mild steel in 1 M hydrochloric acid (HCl). Corrosion inhibition was investigated using weight loss, potentiodynamic polarization and electrochemical impedance studies. The kinetic and thermodynamic parameters for mild steel corrosion and inhibitor adsorption respectively, were determined and discussed. The adsorption of PVAMOA on the mild steel surfa...

  6. DPP-4 inhibition improves early mortality, β cell function, and adipose tissue inflammation in db/db mice fed a diet containing sucrose and linoleic acid

    Shirakawa, Jun; Okuyama, Tomoko; Kyohara, Mayu; Yoshida, Eiko; Togashi, Yu; Tajima, Kazuki; Yamazaki, Shunsuke; Kaji, Mitsuyo; Koganei, Megumi; Sasaki, Hajime; Terauchi, Yasuo

    2016-01-01

    Background Diabetes therapy that not only lowers glucose levels but also lengthens life spans is required. We previously demonstrated that DPP-4 inhibition ameliorated β cell apoptosis and adipose tissue inflammation in β cell-specific glucokinase haploinsufficient mice fed a diet containing a combination of sucrose and linoleic acid (SL). Methods In this study, we investigated the effects of DPP-4 inhibition in obese diabetic db/db mice fed an SL diet or a control diet containing sucrose and...

  7. Isolation of a foot-and-mouth disease polyuridylic acid polymerase and its inhibition by antibody.

    Polatnick, J

    1980-01-01

    A template-dependent polyuridylic acid [poly(U)] polymerase has been isolated from BHK cells infected with foot-and-mouth disease virus (FMDV). Enzyme activity in a 20,000 x g supernatant of a cytoplasmic extract was concentrated by precipitation with 30 to 50% saturated ammonium sulfate. The poly(U) polymerase was freed of membranes by sodium dodecyl sulfate and 1,1,2-trichlorotrifluoroethane extraction, and RNA was removed by precipitation with 2 M LiCl. The solubilized poly(U) polymerase r...

  8. Specific inhibition of bile acid transport alters plasma lipids and GLP-1

    Rudling, Mats; Camilleri, Michael; Graffner, Hans;

    2015-01-01

    BACKGROUND: Elobixibat is a minimally absorbed ileal bile acid (BA) transporter (IBAT) inhibitor in development against chronic constipation (CC) and constipation-predominant Irritable Bowel Syndrome (IBS-C). CC is associated with an increased risk for cardiovascular disease and type2 diabetes....../L; p = 0.03) and the 20 mg group (25.6 ± 4.9 pmol/L; p = 0.02). CONCLUSIONS: Elobixibat reduces LDL cholesterol and LDL/HDL ratio and increase circulating peak GLP-1 levels, the latter in line with increased intestinal BA mediated responses in humans. TRIAL REGISTRATIONS: ClinicalTrial.gov: NCT01069783...

  9. STUDIES ON THE INHIBITIVE EFFECT OF DATURA STRAMONIUM EXTRACT ON THE ACID CORROSION OF MILD STEEL

    PANDIAN BOTHI RAJA; MATHUR GOPALAKRISHNAN SETHURAMAN

    2007-01-01

    The extract of Datura stramonium has been studied as a possible source of green inhibitor for corrosion of mild steel (MS) in HCl and H2SO4 media at different temperatures. The anticorrosion effect was evaluated by conventional weight loss studies, electrochemical studies viz., Tafel polarization, ac impedance, and SEM studies. The studies reveal that the plant extract acts as a good inhibitor in both the acid media and better in H2SO4 medium. Tafel polarization method indicate that the plant...

  10. Docosahexaenoic acid inhibits melanin synthesis in murine melanoma cells in vitro through increasing tyrosinase degradation

    Balcos, Marie Carmel; Kim, Su Yeon; Jeong, Hyo-Soon; Yun, Hye-Young; Baek, Kwang Jin; Kwon, Nyoun Soo; Park, Kyoung-Chan; Kim, Dong-Seok

    2014-01-01

    Aim: To investigate the effects of docosahexaenoic acid (DHA) on melanin synthesis and related regulatory mechanisms. Methods: B16F10 mouse melanoma cells were exposed to DHA for 3 d, and melanin content and tyrosinase activity were measured. Western blot analysis was used to analyze the protein levels in DHA-mediated signal transduction pathways. Results: DHA (1–25 μmol/L) did not affect the viability of B16F10 cells, but decreased α-MSH-induced melanin synthesis in a concentration-dependent...

  11. Metformin reduces lipid accumulation in macrophages by inhibiting FOXO1-mediated transcription of fatty acid-binding protein 4

    Objective: The accumulation of lipids in macrophages contributes to the development of atherosclerosis. Strategies to reduce lipid accumulation in macrophages may have therapeutic potential for preventing and treating atherosclerosis and cardiovascular complications. The antidiabetic drug metformin has been reported to reduce lipid accumulation in adipocytes. In this study, we examined the effects of metformin on lipid accumulation in macrophages and investigated the mechanisms involved. Methods and results: We observed that metformin significantly reduced palmitic acid (PA)-induced intracellular lipid accumulation in macrophages. Metformin promoted the expression of carnitine palmitoyltransferase I (CPT-1), while reduced the expression of fatty acid-binding protein 4 (FABP4) which was involved in PA-induced lipid accumulation. Quantitative real-time PCR showed that metformin regulates FABP4 expression at the transcriptional level. We identified forkhead transcription factor FOXO1 as a positive regulator of FABP4 expression. Inhibiting FOXO1 expression with FOXO1 siRNA significantly reduced basal and PA-induced FABP4 expression. Overexpression of wild-type FOXO1 and constitutively active FOXO1 significantly increased FABP4 expression, whereas dominant negative FOXO1 dramatically decreased FABP4 expression. Metformin reduced FABP4 expression by promoting FOXO1 nuclear exclusion and subsequently inhibiting its activity. Conclusions: Taken together, these results suggest that metformin reduces lipid accumulation in macrophages by repressing FOXO1-mediated FABP4 transcription. Thus, metformin may have a protective effect against lipid accumulation in macrophages and may serve as a therapeutic agent for preventing and treating atherosclerosis in metabolic syndrome.

  12. Metformin reduces lipid accumulation in macrophages by inhibiting FOXO1-mediated transcription of fatty acid-binding protein 4

    Song, Jun [Qilu Hospital, Shandong University, Jinan, Shandong (China); Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX (United States); Texas Heart Institute at St. Luke' s Episcopal Hospital, Houston, TX (United States); Ren, Pingping; Zhang, Lin [Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX (United States); Texas Heart Institute at St. Luke' s Episcopal Hospital, Houston, TX (United States); Wang, Xing Li [Qilu Hospital, Shandong University, Jinan, Shandong (China); Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX (United States); Texas Heart Institute at St. Luke' s Episcopal Hospital, Houston, TX (United States); Chen, Li [Qilu Hospital, Shandong University, Jinan, Shandong (China); Shen, Ying H., E-mail: hyshen@bcm.edu [Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX (United States); Texas Heart Institute at St. Luke' s Episcopal Hospital, Houston, TX (United States)

    2010-02-26

    Objective: The accumulation of lipids in macrophages contributes to the development of atherosclerosis. Strategies to reduce lipid accumulation in macrophages may have therapeutic potential for preventing and treating atherosclerosis and cardiovascular complications. The antidiabetic drug metformin has been reported to reduce lipid accumulation in adipocytes. In this study, we examined the effects of metformin on lipid accumulation in macrophages and investigated the mechanisms involved. Methods and results: We observed that metformin significantly reduced palmitic acid (PA)-induced intracellular lipid accumulation in macrophages. Metformin promoted the expression of carnitine palmitoyltransferase I (CPT-1), while reduced the expression of fatty acid-binding protein 4 (FABP4) which was involved in PA-induced lipid accumulation. Quantitative real-time PCR showed that metformin regulates FABP4 expression at the transcriptional level. We identified forkhead transcription factor FOXO1 as a positive regulator of FABP4 expression. Inhibiting FOXO1 expression with FOXO1 siRNA significantly reduced basal and PA-induced FABP4 expression. Overexpression of wild-type FOXO1 and constitutively active FOXO1 significantly increased FABP4 expression, whereas dominant negative FOXO1 dramatically decreased FABP4 expression. Metformin reduced FABP4 expression by promoting FOXO1 nuclear exclusion and subsequently inhibiting its activity. Conclusions: Taken together, these results suggest that metformin reduces lipid accumulation in macrophages by repressing FOXO1-mediated FABP4 transcription. Thus, metformin may have a protective effect against lipid accumulation in macrophages and may serve as a therapeutic agent for preventing and treating atherosclerosis in metabolic syndrome.

  13. The anti-epileptic drug valproic acid (VPA inhibits steroidogenesis in bovine theca and granulosa cells in vitro.

    Claire Glister

    Full Text Available Valproic acid (VPA is used widely to treat epilepsy and bipolar disorder. Women undergoing VPA treatment reportedly have an increased incidence of polycystic ovarian syndrome (PCOS-like symptoms including hyperandrogenism and oligo- or amenorrhoea. To investigate potential direct effects of VPA on ovarian steroidogenesis we used primary bovine theca (TC and granulosa (GC cells maintained under conditions that preserve their 'follicular' phenotype. Effects of VPA (7.8-500 µg/ml on TC were tested with/without LH. Effects of VPA on GC were tested with/without FSH or IGF analogue. VPA reduced (P99% decrease; P<0.0001 with lesser effects on LHR, STAR, CYP11A1 and HSD3B1 mRNA (<90% decrease; P<0.05. VPA only reduced TC progesterone secretion induced by the highest (luteinizing LH dose tested; TC number was unaffected by VPA. At higher concentrations (125-500 µg/ml VPA inhibited basal, FSH- and IGF-stimulated estradiol secretion (P<0.0001 by GC without affecting progesterone secretion or cell number. VPA reversed FSH-induced upregulation of CYP19A1 and HSD17B1 mRNA abundance (P<0.001. The potent histone deacetylase (HDAC inhibitors trichostatin A and scriptaid also suppressed TC androstenedione secretion and granulosal cell oestrogen secretion suggesting that the action of VPA reflects its HDAC inhibitory properties. In conclusion, these findings refute the hypothesis that VPA has a direct stimulatory action on TC androgen output. On the contrary, VPA inhibits both LH-dependent androgen production and FSH/IGF-dependent estradiol production in this in vitro bovine model, likely by inhibition of HDAC.

  14. Characterization of activity and binding mode of glycyrrhetinic acid derivatives inhibiting 11β-hydroxysteroid dehydrogenase type 2.

    Kratschmar, Denise V; Vuorinen, Anna; Da Cunha, Thierry; Wolber, Gerhard; Classen-Houben, Dirk; Doblhoff, Otto; Schuster, Daniela; Odermatt, Alex

    2011-05-01

    Modulation of intracellular glucocorticoid availability is considered as a promising strategy to treat glucocorticoid-dependent diseases. 18β-Glycyrrhetinic acid (GA), the biologically active triterpenoid metabolite of glycyrrhizin, which is contained in the roots and rhizomes of licorice (Glycyrrhiza spp.), represents a well-known but non-selective inhibitor of 11β-hydroxysteroid dehydrogenases (11β-HSDs). However, to assess the physiological functions of the respective enzymes and for potential therapeutic applications selective inhibitors are needed. In the present study, we applied bioassays and 3D-structure modeling to characterize nine 11β-HSD1 and fifteen 11β-HSD2 inhibiting GA derivatives. Comparison of the GA derivatives in assays using cell lysates revealed that modifications at the 3-hydroxyl and/or the carboxyl led to highly selective and potent 11β-HSD2 inhibitors. The data generated significantly extends our knowledge on structure-activity relationship of GA derivatives as 11β-HSD inhibitors. Using recombinant enzymes we found also potent inhibition of mouse 11β-HSD2, despite significant species-specific differences. The selected GA derivatives potently inhibited 11β-HSD2 in intact SW-620 colon cancer cells, although the rank order of inhibitory potential differed from that obtained in cell lysates. The biological activity of compounds was further demonstrated in glucocorticoid receptor (GR) transactivation assays in cells coexpressing GR and 11β-HSD1 or 11β-HSD2. 3D-structure modeling provides an explanation for the differences in the selectivity and activity of the GA derivatives investigated. The most potent and selective 11β-HSD2 inhibitors should prove useful as mechanistic tools for further anti-inflammatory and anti-cancer in vitro and in vivo studies. Article from the Special issue on Targeted Inhibitors. PMID:21236343

  15. Mitochondrial impairment induced by 3-nitropropionic acid is enhanced by endogenous metalloprotease activity inhibition in cultured rat striatal neurons.

    de Oca Balderas, Pavel Montes; Ospina, Gabriel Gutiérrez; Del Ángel, Abel Santamaría

    2013-06-24

    Metalloproteases from the metzincin family mediate molecule processing at the cell membrane termed ectodomain shedding (ES). This mechanism enables the generation of intracellular and extracellular fragments from cell membrane molecules that exert additional functions involved in cell processes including cell death, beyond those of full length molecules. Micotoxin 3-nitropropionic acid (3-NP) induces striatal neuronal degeneration in vivo and in vitro through mitochondrial complex II inhibition. In this study, we hypothesized that metalloproteases regulate mitochondrial activity in cultured rat striatal neurons undergoing degeneration. To test this idea, striatal neuronal cultures characterized by NeuN and GAD-67 expression were treated with 3-NP together with the metalloprotease inhibitor GM6001 and their mitochondrial activity was evaluated by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay. Our results showed that metalloprotease inhibition potentiated mitochondrial activity impairment induced by 3-NP whereas the inhibitor alone had no effect. These results indicate that metalloproteases regulate and promote mitochondrial functionality in striatal neurons undergoing degeneration induced by 3-NP. Since NMDA receptor is involved in the excitotoxic neuronal death triggered by 3-NP and is known to undergo ES, we analyzed NMDAR subunit NR1 phenotypic distribution by immunofluorescence. 3-NP and GM6001 induced abnormal perinuclear NR1 accumulation that was not observed with 3-NP or GM6001 alone. This observation suggests that metalloproteases are involved in NR1 cellular reorganization induced by 3-NP, and that their inhibition results in abnormal NR1 distribution. Together results indicate that endogenous metalloproteases are activated during striatal neurodegeneration induced by 3-NP eliciting an adaptative or compensatory response that protects mitochondrial functionality. PMID:23643981

  16. Salicylic Acid Inhibits the Replication of Tomato bushy stunt virus by Directly Targeting a Host Component in the Replication Complex.

    Tian, Miaoying; Sasvari, Zsuzsanna; Gonzalez, Paulina Alatriste; Friso, Giulia; Rowland, Elden; Liu, Xiao-Min; van Wijk, Klaas J; Nagy, Peter D; Klessig, Daniel F

    2015-04-01

    Although the plant hormone salicylic acid (SA) plays a central role in signaling resistance to viral infection, the underlying mechanisms are only partially understood. Identification and characterization of SA's direct targets have been shown to be an effective strategy for dissecting the complex SA-mediated defense signaling network. In search of additional SA targets, we previously developed two sensitive approaches that utilize SA analogs in conjunction with either a photoaffinity labeling technique or surface plasmon resonance-based technology to identify and evaluate candidate SA-binding proteins (SABPs) from Arabidopsis. Using these approaches, we have now identified several members of the Arabidopsis glyceraldehyde 3-phosphate dehydrogenase (GAPDH) protein family, including two chloroplast-localized and two cytosolic isoforms, as SABPs. Cytosolic GAPDH is a well-known glycolytic enzyme; it also is an important host factor involved in the replication of Tomato bushy stunt virus (TBSV), a single-stranded RNA virus. Using a yeast cell-free extract, an in vivo yeast replication system, and plant protoplasts, we demonstrate that SA inhibits TBSV replication. SA does so by inhibiting the binding of cytosolic GAPDH to the negative (-)RNA strand of TBSV. Thus, this study reveals a novel molecular mechanism through which SA regulates virus replication. PMID:25584724

  17. Angiogenesis inhibition and cell cycle arrest induced by treatment with Pseudolarix acid B alone or combined with 5-fluorouracil

    Jingtao Liu; Wei Guo; Bo Xu; Fuxiang Ran; Mingming Chu; Hongzheng Fu; Jingrong Cui

    2012-01-01

    Angiogenesis inhibitors combined with chemotherapeutic drugs have significant efficacy in the treatment of a variety of cancers.Pseudolarix acid B (PAB) is a traditional pregnancy-terminating agent,which has previously been shown to reduce tumor growth and angiogenesis.In this study,we used the high content screening assay to examine the effects of PAB on human umbilical vein endothelial cells (HUVECs).Two hepatocarcinoma 22-transplanted mouse models were used to determine PAB efficacy in combination with 5-fluorouracil (5-Fu).Our results suggested that PAB (0.156-1.250 μM) inhibited HUVECs motility in a concentration-dependent manner without obvious cytotoxicity in vitro.In vivo,PAB (25 mg/kg/day) promoted the anti-tumor efficacy of 5-Fu (5 mg/kg/2 days) in combination therapy,resulting in significantly higher tumor inhibition rates,lower microvessel density values,and prolonged survival times.It was also demonstrated that PAB acted by blocking the cell cycle at both the G1/S boundary and M phase,down-regulation of vascular endothelial growth factor,hypoxia-inducible factor 1α and cyclin E expression,and up-regulation of cdc2 expression.These observations provide the first evidence that PAB in combination with 5-Fu may be useful in cancer treatment.

  18. Phenylboronic acid-functionalized polyamidoamine-mediated Bcl-2 siRNA delivery for inhibiting the cell proliferation.

    Wu, Di; Yang, Jiebing; Xing, Zhen; Han, Haobo; Wang, Tingting; Zhang, Aijun; Yang, Yan; Li, Quanshun

    2016-10-01

    In this study, the conjugation of phenylboronic acid (PBA) to amine-terminated polyamidoamine (PAMAM) was successfully conducted to prepare a tumor-targeted gene carrier PBA-functionalized PAMAM (PPP) for Bcl-2 siRNA delivery, using a heterobifunctional crosslinker NHS-PEG5k-Mal. The carrier possessed favorable capacity for siRNA condensation and could protect siRNA from the degradation against RNase and serum. The introduction of PBA could facilitate the cellular uptake and further transfection of Bcl-2 siRNA demonstrated by confocal laser scanning microscopy and flow cytometry. Meanwhile, PPP-mediated transfection of Bcl-2 siRNA could significantly inhibit the expression of Bcl-2 gene at both mRNA and protein levels. Furthermore, owing to the knock-down of Bcl-2, PPP/siRNA could significantly inhibit the cell proliferation by inducing the cell apoptosis, and also enhance the antitumor efficiency of doxorubicin by suppressing the resistance of tumor cells to chemotherapeutics. In conclusion, the PPP-mediated Bcl-2 siRNA delivery could potentially be an effective platform for solving the drug resistance and further achieving the combined chemotherapy and gene therapy in tumor treatment. PMID:27371891

  19. Do tetracyclines and erythromycin exert anti-acne effects by inhibition of P450-mediated degradation of retinoic acid?

    Hellmann-Regen, Julian; Herzog, Irmelin; Fischer, Norina; Heuser, Isabella; Regen, Francesca

    2014-04-01

    For decades, retinoic acid (RA) is known as the most potent therapeutic option in the therapy of acne and altered homeostasis of endogenous retinoids has been discussed in the context of acne pathogenesis. Besides retinoids, antibiotics such as tetracyclines or erythromycin are well established in acne pharmacotherapy. Accumulating evidence points towards common molecular pathways being targeted by both RA and anti-acne antibiotics; however, a precise 'common denominator' connecting these chemically diverse anti-acne agents has not yet been identified. Interestingly, tetracyclines are associated with the occurrence of pseudotumor cerebri, a rare neurological side effect otherwise associated with retinoid intoxication or RA exposure. This association at the clinical level suggests an interaction between tetracyclines and endogenous RA signalling. As erythromycin does not cross the blood brain barrier, CNS side effects are not to be expected, yet not precluding a possible local interaction of erythromycin with endogenous RA metabolism in the skin. We hypothesize tetracyclines and erythromycin to locally inhibit endogenous RA metabolism in the skin and thus mimic therapeutic action of RA. This readily testable hypothesis suggests inhibition of endogenous RA metabolism and amplification of endogenous RA signalling as a mechanism underlying the biochemical actions of antibiotics in acne therapy. Elucidation of such interactions may ultimately enhance our understanding of acne therapy and pathogenesis and may yield a sound, scientific basis for hypothesis-driven development of novel therapeutic compounds. PMID:24690039

  20. Echinocystic Acid Inhibits IL-1β-Induced COX-2 and iNOS Expression in Human Osteoarthritis Chondrocytes.

    Ma, Zhiqiang; Wang, Yanlong; Piao, Taikui; Liu, Jianyu

    2016-04-01

    Echinocystic acid (EA), a pentacyclic triterpene isolated from the fruits of Gleditsia sinensis Lam, displays a range of pharmacological activities including anti-inflammatory and antioxidant effects. However, the effect of EA on IL-1β-stimulated osteoarthritis chondrocyte has not been reported. The purpose of this study was to assess the effects of EA on IL-1β-stimulated human osteoarthritis chondrocyte. Chondrocytes were stimulated with IL-1β in the absence or presence of EA. NO and PGE2 production were measured by Griess reagent and ELISA. The expression of COX-2, iNOS, nuclear factor-κB (NF-κB), inhibitory kappa B (IκBα), c-Jun N-terminal kinase (JNK), p38, and extracellular signal-regulated kinase (ERK) were detected by Western blot analysis. The results showed that EA suppressed IL-1β-induced collagenase-3 (MMP-13), NO, and PGE2 production in a dose-dependent manner. IL-1β up-regulated the expression of COX-2 and iNOS, and the increase was inhibited by EA. Furthermore, IL-1β-induced NF-κB and mitogen-activated protein kinase (MAPK) activation were inhibited by EA. In conclusion, EA effectively attenuated IL-1β-induced inflammatory response in osteoarthritis chondrocyte which suggesting that EA may be a potential agent in the treatment of osteoarthritis. PMID:26499345

  1. Pomolic acid inhibits metastasis of HER2 overexpressing breast cancer cells through inactivation of the ERK pathway.

    Kim, Buyun; Kim, Yu Chul; Park, Byoungduck

    2016-08-01

    Expression of the CXC chemokine receptor-4 (CXCR4), a G protein-coupled receptor, and HER2, a receptor tyrosine kinase, strongly correlates with tumor progression and metastatic potential of breast cancer cells. We report the identification of pomolic acid (PA) as a novel regulator of HER2 and CXCR4 expression. We found that PA downregulated the expression of HER2 and CXCR4 in SKBR3 cells in a dose- and time-dependent manner. When investigated for the molecular mechanism(s), it was found that the downregulation of HER2 and CXCR4 was not due to proteolytic degradation but rather to transcriptional regulation as indicated by downregulation of mRNA expression. Moreover, we show that PA inhibits phosphorylation of ERK and reduces NF-κB activation. Suppression of CXCR4 expression by PA correlated with the inhibition of CXCL12-induced invasion of HER2-overexpressing breast cancer cells. Overall, our results demonstrate for the first time that PA is a novel inhibitor of HER2 and CXCR4 expression via kinase pathways and may play a critical role in determining the metastatic potential of breast cancer cells. PMID:27277173

  2. Activation of Plant Innate Immunity by Extracellular High Mobility Group Box 3 and Its Inhibition by Salicylic Acid.

    Choi, Hyong Woo; Manohar, Murli; Manosalva, Patricia; Tian, Miaoying; Moreau, Magali; Klessig, Daniel F

    2016-03-01

    Damage-associated molecular pattern molecules (DAMPs) signal the presence of tissue damage to induce immune responses in plants and animals. Here, we report that High Mobility Group Box 3 (HMGB3) is a novel plant DAMP. Extracellular HMGB3, through receptor-like kinases BAK1 and BKK1, induced hallmark innate immune responses, including i) MAPK activation, ii) defense-related gene expression, iii) callose deposition, and iv) enhanced resistance to Botrytis cinerea. Infection by necrotrophic B. cinerea released HMGB3 into the extracellular space (apoplast). Silencing HMGBs enhanced susceptibility to B. cinerea, while HMGB3 injection into apoplast restored resistance. Like its human counterpart, HMGB3 binds salicylic acid (SA), which results in inhibition of its DAMP activity. An SA-binding site mutant of HMGB3 retained its DAMP activity, which was no longer inhibited by SA, consistent with its reduced SA-binding activity. These results provide cross-kingdom evidence that HMGB proteins function as DAMPs and that SA is their conserved inhibitor. PMID:27007252

  3. Inhibition of fatty acid oxidation as a therapy for MYC-overexpressing triple-negative breast cancer.

    Camarda, Roman; Zhou, Alicia Y; Kohnz, Rebecca A; Balakrishnan, Sanjeev; Mahieu, Celine; Anderton, Brittany; Eyob, Henok; Kajimura, Shingo; Tward, Aaron; Krings, Gregor; Nomura, Daniel K; Goga, Andrei

    2016-04-01

    Expression of the oncogenic transcription factor MYC is disproportionately elevated in triple-negative breast cancer (TNBC), as compared to estrogen receptor-, progesterone receptor- or human epidermal growth factor 2 receptor-positive (RP) breast cancer. We and others have shown that MYC alters metabolism during tumorigenesis. However, the role of MYC in TNBC metabolism remains mostly unexplored. We hypothesized that MYC-dependent metabolic dysregulation is essential for the growth of MYC-overexpressing TNBC cells and may identify new therapeutic targets for this clinically challenging subset of breast cancer. Using a targeted metabolomics approach, we identified fatty acid oxidation (FAO) intermediates as being dramatically upregulated in a MYC-driven model of TNBC. We also identified a lipid metabolism gene signature in patients with TNBC that were identified from The Cancer Genome Atlas database and from multiple other clinical data sets, implicating FAO as a dysregulated pathway that is critical for TNBC cell metabolism. We found that pharmacologic inhibition of FAO catastrophically decreased energy metabolism in MYC-overexpressing TNBC cells and blocked tumor growth in a MYC-driven transgenic TNBC model and in a MYC-overexpressing TNBC patient-derived xenograft. These findings demonstrate that MYC-overexpressing TNBC shows an increased bioenergetic reliance on FAO and identify the inhibition of FAO as a potential therapeutic strategy for this subset of breast cancer. PMID:26950360

  4. Phenolic acids inhibit the formation of advanced glycation end products in food simulation systems depending on their reducing powers and structures.

    Chen, Hengye; Virk, Muhammad Safiullah; Chen, Fusheng

    2016-06-01

    The concentration of advanced glycation end products (AGEs) in foods, which are formed by Maillard reaction, has demonstrated as risk factors associated with many chronic diseases. The AGEs inhibitory activities of five common phenolic acids (protocatechuic acid, dihydroferulic acid, p-coumaric acid, p-hydroxybenzoic acid and salicylic acid) with different chemical properties had been investigated in two food simulation systems (glucose-bovine serum albumin (BSA) and oleic acid-BSA). The results substantiated that the AGEs inhibitory abilities of phenolic acids in the oleic acid BSA system were much better than the glucose-BSA system for their strong reducing powers and structures. Among them, dihydrogenferulic acid showed strong inhibition of AGEs formation in oleic acid-BSA system at 0.01 mg/mL compared to nonsignificant AGEs inhibitory effect in oleic acid-BSA system at 10-fold higher concentration (0.1 mg/mL). This study suggests that edible plants rich in phenolic acids may be used as AGEs inhibitor during high-fat cooking. PMID:27102241

  5. Inhibition of miR-21 in glioma cells using catalytic nucleic acids.

    Belter, Agnieszka; Rolle, Katarzyna; Piwecka, Monika; Fedoruk-Wyszomirska, Agnieszka; Naskręt-Barciszewska, Mirosława Z; Barciszewski, Jan

    2016-01-01

    Despite tremendous efforts worldwide, glioblastoma multiforme (GBM) remains a deadly disease for which no cure is available and prognosis is very bad. Recently, miR-21 has emerged as a key omnipotent player in carcinogenesis, including brain tumors. It is recognized as an indicator of glioma prognosis and a prosperous target for anti-tumor therapy. Here we show that rationally designed hammerhead ribozymes and DNAzymes can target miR-21 and/or its precursors. They decrease miR-21 level, and thus silence this oncomiR functions. We demonstrated that anti-miRNA catalytic nucleic acids show a novel terrific arsenal for specific and effective combat against diseases with elevated cellular miR-21 content, such as brain tumors. PMID:27079911

  6. Conjugated Linoleic Acid Reduces Cholera Toxin Production In Vitro and In Vivo by Inhibiting Vibrio cholerae ToxT Activity.

    Withey, Jeffrey H; Nag, Drubhajyoti; Plecha, Sarah C; Sinha, Ritam; Koley, Hemanta

    2015-12-01

    The severe diarrheal disease cholera is endemic in over 50 countries. Current therapies for cholera patients involve oral and/or intravenous rehydration, often combined with the use of antibiotics to shorten the duration and intensity of the disease. However, as antibiotic resistance increases, treatment options will become limited. Linoleic acid has been shown to be a potent negative effector of V. cholerae virulence that acts on the major virulence transcription regulator protein, ToxT, to inhibit virulence gene expression. ToxT activates transcription of the two major virulence factors required for disease, cholera toxin (CT) and toxin-coregulated pilus (TCP). A conjugated form of linoleic acid (CLA) is currently sold over the counter as a dietary supplement and is generally recognized as safe by the U.S. Food and Drug Administration. This study examined whether CLA could be used as a new therapy to reduce CT production, which, in turn, would decrease disease duration and intensity in cholera patients. CLA could be used in place of traditional antibiotics and would be very unlikely to generate resistance, as it affects only virulence factor production and not bacterial growth or survival. PMID:26392502

  7. Inhibition of Oxidation of Aqueous Emulsions of Omega-3 Fatty Acids and Fish Oil by Phloretin and Phloridzin

    Afsana Yasmin

    2010-01-01

    Full Text Available The antioxidant properties of two apple dihydrochalcones, namely phloretin and phloridzin, were evaluated and compared with those of α-tocopherol and butylated hydroxytoluene (BHT. The effects were studied in an oil-in-water emulsion system containing methyl linolenate (ML, methyl eicosapentaenoate (MEPA, and methyl docosahexaenoate (MDHA in which oxidation was initiated by the peroxyl radical generator 2,2-azobis(2-amidinopropane dihydrochloride (AAPH and in fish oil where oxidation was initiated thermally. In the emulsion system, phloretin (1 and 5 mM completely inhibited the oxidation of ML tested as evidenced by the thiobarbituric acid reactive substances (TBARS assay. Under the same conditions, phloridzin was less effective than phloretin, but still more effective than α-tocopherol. Both phloretin and phloridzin molecules had a marginal inhibitory effect against oxidation of fish oil induced by heating at 70 °C for 3 hours, when compared to BHT. These results indicate that phloretin and phloridzin have the potential to suppress lipid oxidation in polyunsaturated fatty acid (PUFA containing foods.

  8. A novel triazole-based cationic gemini surfactant: synthesis and effect on corrosion inhibition of carbon steel in hydrochloric acid

    A triazole-based cationic gemini surfactant, 3,5-bis(methylene octadecyl dimethylammonium chloride)-1,2,4-triazole (18-triazole-18) has been synthesized, and its effect on corrosion inhibition of A3 steel in 1 M HCl has been studied using the weight-loss method. The result showed that 18-triazole-18 acted as an excellent inhibitor in 1 M HCl. It was found that the adsorption mechanism of 18-triazole-18 on the steel surface in acid medium was quite different from that of cationic gemini surfactants containing dimethylene as a spacer, as well as that of conventional cationic single-chained surfactants, which is due to unique molecular structure of 18-triazole-18. 18-Triazole-18 may be adsorbed on the steel surface in acid medium through a maximum of four atoms or groups, i.e., the two nitrogen atoms of triazole ring and two quaternary ammonium head groups. Four regions of surfactant concentration could be divided to illustrate the adsorption of 18-triazole-18 on the steel surface, and four different adsorption mechanisms may take place in different regions of surfactant concentration

  9. Inhibition of mild steel corrosion in hydrochloric acid solution by triazole derivatives

    The corrosion behaviour of mild steel in 0.1 M HCl solution without and with 5-amino-1,2,4-triazole (5-ATA), 5-amino-3-mercapto-1,2,4-triazole (5-AMT), 5-amino-3-methylthio-1,2,4-triazole (5-AMeTT) or 1-amino-3-methylthio-1,2,4-triazole (1-AMeTT) was studied as a function of the immersion time and the solution temperature. Potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) techniques were used in this study. Results obtained showed that the inhibition efficiency (IE%) increases with increasing the immersion time reaching its maximum value after 1 h, IE% slightly decreased and subsisted at reasonable values at least during the studied 20 h. The adsorptive behaviour of the investigated inhibitors on the steel surface followed Langmiur-type isotherm. Increasing temperature was found to greatly enhance IE% till arriving plateau at about 80% for 5-ATA and more than 90% for the other compounds between 323 and 348 oK. The polarization and impedance measurements were in good agreement. These results indicate the suitability of the use of the investigated inhibitors in the cooling systems. The plots of lnK versus 1/T for the four studied inhibitors showed non-linear behaviour. The standard enthalpy, ΔHadso, entropy, ΔSadso and free energy changes of adsorption ΔGadso were evaluated using a proposed quadratic equation based on an inverse square dependence of the heat capacity on temperature. The calculated values of ΔGadso were negative while those for ΔHadso and ΔSadso were positive. The values of the three thermodynamic functions of adsorption for the four investigated inhibitors were decreased with increasing the solution temperature. All the above results are suggestive of chemisorption of inhibitor molecules on the steel surface

  10. Maternal Protein Restriction in the Rat Inhibits Placental Insulin, mTOR, and STAT3 Signaling and Down-Regulates Placental Amino Acid Transporters

    Rosario, Fredrick J.; Jansson, Nina; Kanai, Yoshikatsu; Prasad, Puttur D; Powell, Theresa L.; Jansson, Thomas

    2011-01-01

    The mechanisms underlying reduced fetal growth in response to maternal protein restriction are not well established. Maternal levels of insulin, IGF-I, and leptin are decreased in rats fed a low protein (LP) diet. Because these hormones stimulate placental amino acid transporters in vitro, we hypothesized that maternal protein restriction inhibits placental leptin, insulin/IGF-I, and mammalian target of rapamycin signaling and down-regulates the expression and activity of placental amino acid...

  11. Nicotinamide pharmacokinetics in humans: effect of gastric acid inhibition, comparison of rectal vs oral administration and the use of saliva for drug monitoring.

    Stratford, M. R.; Dennis, M.F.; Hoskin, P; Phillips, H.; Hodgkiss, R. J.; A. Rojas

    1996-01-01

    The effect of inhibiting gastric acid secretion on nicotinamide pharmacokinetics was studied in five volunteers with the intent of reducing the large variations observed previously in the time to and magnitude of peak plasma concentrations. Plasma levels were determined using a standard high-performance liquid chromatography (HPLC) method after an oral dose of 3 g of nicotinamide either alone or preceded by pretreatment with omeprazole. Suppression of gastric acid production had no significan...

  12. Redirection of Epithelial Immune Responses by Short-Chain Fatty Acids through Inhibition of Histone Deacetylases.

    Lin, May Young; de Zoete, Marcel R; van Putten, Jos P M; Strijbis, Karin

    2015-01-01

    Short-chain fatty acids (SCFAs) are products of microbial fermentation that are important for intestinal epithelial health. Here, we describe that SCFAs have rapid and reversible effects on toll-like receptor (TLR) responses in epithelial cells. Incubation of HEK293 or HeLa epithelial cells with the SCFAs butyrate or propionate at physiological concentrations enhanced NF-κB activation induced by TLR5, TLR2/1, TLR4, and TLR9 agonists. NF-κB activation in response to tumor necrosis factor α (TNFα) was also increased by SCFAs. Comparative transcript analysis of HT-29 colon epithelial cells revealed that SCFAs enhanced TLR5-induced transcription of TNFα but dampened or even abolished the TLR5-mediated induction of IL-8 and monocyte chemotactic protein 1. SCFAs are known inhibitors of histone deacetylases (HDACs). Butyrate or propionate caused a rapid increase in histone acetylation in epithelial cells, similar to the small molecule HDAC inhibitor trichostatin A (TSA). TSA also mimicked the effects of SCFAs on TLR-NF-κB responses. This study shows that bacterial SCFAs rapidly alter the epigenetic state of host cells resulting in redirection of the innate immune response and selective reprograming of cytokine/chemokine expression. PMID:26579129

  13. Glycyrrhetinic Acid Inhibits Cell Growth and Induces Apoptosis in Ovarian Cancer A2780 Cells

    Venus Haghshenas

    2014-10-01

    Full Text Available Purpose: Accumulating evidence indicates that glycyrrhizin (GZ and its hydrolyzed metabolite 18-β glycyrrhetinic acid (GA exhibit anti-inflammatory and anticancer activities. The objective of this study was to examine the in vitro cytotoxic activity of GA on human ovarian cancer A2780 cells. Methods: A2780 cells were cultured in RPMI1640 containing 10% fetal bovine serum. Cells were treated with different doses of GA and cell viability and proliferation were detected by dye exclusion and 3-bis-(2-methoxy-4-nitro-5-sulfophenyl-2H-tetrazolium-5-carboxanilide (XTT assays. Apoptosis induction and expression of Fas and Fas ligand (FasL were analyzed by flow cytometry. Results: We observed that GA decreases cell viability and suppressed cells proliferation in a dose-dependent manner as detected by dye-exclusion and XTT assayes. In addition, our flow cytometry data show that GA not only induces apoptosis in A2780 cells but also upregulates both Fas and FasL on these cells in a dose-dependent manner. Conclusion: we demonstrate that GA causes cell death in A2780 cells by inducing apoptosis.

  14. Nanoparticles and Ethylene Diamine Tetra Acetic Acid on Growth Inhibition of Standard Strain of Candida albicans

    F Haghighi

    2010-07-01

    Full Text Available Introduction & Objective: In recent years, the incidence of opportunistic fungi has shown a marked increase. Infection caused by common pathogenic fungi is a significant health problem in immune compromised hosts. The present study evaluated antifungal activity of Titanum dioxide nanoparticles and Ethylene Diamine Tetra-acetic Acid against Candida albicans as self-cleaning agent by standard micro dilution test. Materials & Methods: The present study was conducted at the Medical University of Tarbiyat Modares in 2009. TiO2 nanoparticles were obtained through the hydrolysis of TiCl4 (Titanium tetrachloride. Size and type of these nanoparticles were characterized by scanning electron microscopy (SEM and X-Ray-Diffraction (XRD. Afterwards, the Minimum Inhibitory Concentration (MIC and Minimal Fungicide Concentration (MFC test for TiO2 and EDTA were performed. Results: Concentration of synthesised TiO2 was 7.03 mg/ml and 5.63 5.63 ×1020 particles/ml. Evaluation of morphology and diameter of the TiO2 nanoparticles with SEM showed that nanoparticles were spherical with diameter between 40-65 nm. MIC50 of 2.2, 1.24 and 0.125 µg/ml respectively. MIC90 and MFC of TiO2, EDTA and fluconazole were 3.51, 2.48 , 0.5 µg/ml and 4.06, 3.1 ,1 µg/ml respectively. Conclusion: In the present study, using of synthesized TiO2 nanoparticles with chemical method showed a suitable activity against Candida in comparison with Fluconazole. Thus it might represent a good candidates in elimination of Candida in medical from medical devices. Key Words:

  15. Inhibition of gastric acid secretion by a standardized aqueous extract of Cecropia glaziovii Sneth and underlying mechanism.

    Souccar, C; Cysneiros, R M; Tanae, M M; Torres, L M B; Lima-Landman, M T R; Lapa, A J

    2008-06-01

    Cecropia glazioui Sneth (Cecropiaceae) is used in folk medicine in tropical and subtropical Latin America as cardiotonic, diuretic, hypotensive, anti-inflammatory and anti-asthmatic. The hypotensive/antihypertensive activity of the plant aqueous extract (AE) and isolated butanolic fraction (BuF) has been confirmed and putatively related to calcium channels blockade in vascular smooth musculature [Lapa, A.J., Lima-Landman, M.T.R., Cysneiros, R.M, Borges, A.C.R., Souccar, C., Barreta, I.P., Lima, T.C.M., 1999. The Brazilian folk medicine program to validate medicinal plants - a topic in new antihypertensive drug research. In: Hostettman, K., Gupta, M.P., Marston, A. (Eds.), Proceedings Volume, IOCD/CYTED Symposium, Panamá City, Panamá, 23-26 February 1997. Chemistry, Biological and Pharmacological Properties of Medicinal Plants from the Americas. Harwood Academic Publishers, Amsterdam, pp. 185-196; Lima-Landman, M.T., Borges, A.C., Cysneiros, R.M., De Lima, T.C., Souccar, C., Lapa, A.J., 2007. Antihypertensive effect of a standardized aqueous extract of Cecropia glaziovii Sneth in rats: an in vivo approach to the hypotensive mechanism. Phytomedicine 14, 314-320]. Bronchodilation and antidepressant-like activities of both AE and BuF have been also shown [Delarcina, S., Lima-Landman, M.T., Souccar, C., Cysneiros, R.M., Tanae, M.M., Lapa, A.J., 2007. Inhibition of histamine-induced bronchospasm in guinea pigs treated with Cecropia glaziovi Sneth and correlation with the in vitro activity in tracheal muscles. Phytomedicine 14, 328-332; Rocha, F.F., Lima-Landman, M.T., Souccar, C., Tanae, M.M., De Lima, T.C., Lapa, A.J., 2007. Antidepressant-like effect of Cecropia glazioui Sneth and its constituents -in vivo and in vitro characterization of the underlying mechanism. Phytomedicine 14, 396-402]. This study reports the antiulcer and antisecretory gastric acid activities of the plant AE, its BuF and isolated compounds with the possible mechanism involved. Both AE and Bu

  16. Inhibition of basophil histamine release by gangliosides. Further studies on the significance of cell membrane sialic acid in the histamine release process

    Jensen, C; Norn, S; Thastrup, Ole;

    1987-01-01

    Histamine release from human basophils was inhibited by preincubation of the cells with a glucolipid mixture containing sialic acid-containing gangliosides. This was true for histamine release induced by anti-IgE, Concanavalin A and the calcium ionophore A23187, whereas the release induced by S...

  17. Intestinal drug transport via the proton-coupled amino acid transporter PAT1 (SLC36A1) is inhibited by Gly-X(aa) dipeptides

    Frølund, Sidsel; Langthaler, Louise; Kall, Morten A; Holm, René; Nielsen, Carsten Uhd

    2012-01-01

    -Sar as substrates of the amino acid transporter PAT1. The aim of the present study is to investigate if other Gly-containing dipeptides interact with PAT1, and whether they can inhibit PAT1 mediated drug absorption, in vitro and in vivo. The in vitro methods included two-electrode voltage clamp...

  18. Valproic acid attenuates skeletal muscle wasting by inhibiting C/EBPβ-regulated atrogin1 expression in cancer cachexia.

    Sun, Rulin; Zhang, Santao; Hu, Wenjun; Lu, Xing; Lou, Ning; Yang, Zhende; Chen, Shaoyong; Zhang, Xiaoping; Yang, Hongmei

    2016-07-01

    Muscle wasting is the hallmark of cancer cachexia and is associated with poor quality of life and increased mortality. Valproic acid (VPA), a histone deacetylase (HDAC) inhibitor, has important biological effects in the treatment of muscular dystrophy. To verify whether VPA could ameliorate muscle wasting induced by cancer cachexia, we explored the role of VPA in two cancer cachectic mouse models [induced by colon-26 (C26) adenocarcinoma or Lewis lung carcinoma (LLC)] and atrophied C2C12 myotubes [induced by C26 cell conditioned medium (CCM) or LLC cell conditioned medium (LCM)]. Our data demonstrated that treatment with VPA increased the mass and cross-sectional area of skeletal muscles in tumor-bearing mice. Furthermore, treatment with VPA also increased the diameter of myotubes cultured in conditioned medium. The skeletal muscles in cachectic mice or atrophied myotubes treated with VPA exhibited reduced levels of CCAAT/enhancer binding protein beta (C/EBPβ), resulting in atrogin1 downregulation and the eventual alleviation of muscle wasting and myotube atrophy. Moreover, atrogin1 promoter activity in myotubes was stimulated by CCM via activating the C/EBPβ-responsive cis-element and subsequently inhibited by VPA. In contrast to the effect of VPA on the levels of C/EBPβ, the levels of inactivating forkhead box O3 (FoxO3a) were unaffected. In summary, VPA attenuated muscle wasting and myotube atrophy and reduced C/EBPβ binding to atrogin1 promoter locus in the myotubes. Our discoveries indicate that HDAC inhibition by VPA might be a promising new approach for the preservation of skeletal muscle in cancer cachexia. PMID:27122162

  19. Methylseleninic acid restricts tumor growth in nude mice model of metastatic breast cancer probably via inhibiting angiopoietin-2

    Angiopoietin-2 (Ang-2) plays critical roles in vascular morphogenesis and its upregulation is frequently associated with various tumors. Previous studies showed that certain selenium compounds possess anti-tumor effects. However, the underlining mechanism has not been elucidated in detail. Plus, results of research on the anti-tumor effects of selenium compounds remain controversial. We investigated levels of Ang-2 and vascular endothelial growth factor (VEGF) on the estrogen-independent bone metastatic mammary cancer (MDA-MB-231) cells in response to treatment by methylseleninic acid (MSeA), and further examined the effects of MSeA oral administration on xenograft mammary tumors of athymic nude mice by RT-PCR, Western, radioimmuno assay, and Immunohistochemistry. Treatment of MDA-MB-231 cells with MSeA caused significant reduction of Ang-2 mRNA transcripts and secretion of Ang-2 proteins by the cells. Level of VEGF protein was accordingly decreased following the treatment. Compared with the controls, oral administration of MSeA (3 mg/kg/day for 18 days) to the nude mice carrying MDA-MB-231 induced tumors resulted in significant reduction in xenograft tumor volume and weights, significant decrease in microvascular density, and promotion of vascular normalization by increasing pericytes coverage. As expected, level of VEGF was also decreased in MSeA treated tumors. Our results point out that MSeA exerts its anti-tumor effects, at least in part, by inhibiting the Ang-2/Tie2 pathway, probably via inhibiting VEGF

  20. Distribution, ecology and inhibition of Thiobacillus ferrooxidans in relation to acid drainage from Witwatersrand gold mine dumps

    The distribution and ecology of Thiobacillus ferrooxidans in gold mine dumps and possible means for its inhibition were investigated. A literature survey of the micro-ecology of mine waste dumps in various parts of the world was undertaken. A linear alkylbenzene sulphonate (LAS), NANSA 80/S, and a cetyl pyridinium chloride, Ceepryn, were tested as possible inhibitors for mine dump application. The LAS was rejected because it is poorly soluble in water and required higher concentrations than SLS for the inhibition of T.ferrooxidans. Ceepryn was an efficient inhibitor, but its efficiency was dramatically impeded in the presence of mine dump sand making it unsuitable for application on dumps. The SLS and LAS were tested against a mixed population of T.ferrooxidans from gold mine dumps and these bacteria were shown to be marginally more resistant to the inhibitors than the pure T.ferrooxidans culture. Sampling from mine dumps on the Witwatersrand suggested that the major T.ferrooxidans populations occurred in the moist sand of the drainage areas at the base of dumps, with few viable iron-oxidising bacteria located on the surfaces or in the centre of dumps. Sites of low moisture in dumps contained few or no viable bacteria. In the laboratory the bacterial viability decreased rapidly with loss of moisture from the sand. Moisture was shown to be important to bacterial activity and should be considered with respect to acid drainage control. Experimental sand columns showed that iron was leached with water from mine dump sand in the absence and presence of bacteria. In this study substrates, moisture, oxygen and carbon dioxide availability, ph, temperature, microorganisms and metal pollutants of uranium waste dumps are also covered

  1. Self-assembled poly(ethylene glycol)-co-acrylic acid microgels to inhibit bacterial colonization of synthetic surfaces.

    Wang, Qichen; Uzunoglu, Emel; Wu, Yong; Libera, Matthew

    2012-05-01

    We explored the use of self-assembled microgels to inhibit the bacterial colonization of synthetic surfaces both by modulating surface cell adhesiveness at length scales comparable to bacterial dimensions (∼1 μm) and by locally storing/releasing an antimicrobial. Poly(ethylene glycol) [PEG] and poly(ethylene glycol)-co-acrylic acid [PEG-AA] microgels were synthesized by suspension photopolymerization. Consistent with macroscopic gels, a pH dependence of both zeta potential and hydrodynamic diameter was observed in AA-containing microgels but not in pure PEG microgels. The microgels were electrostatically deposited onto poly(l-lysine) (PLL) primed silicon to form submonolayer surface coatings. The microgel surface density could be controlled via the deposition time and the microgel concentration in the parent suspension. In addition to their intrinsic antifouling properties, after deposition, the microgels could be loaded with a cationic antimicrobial peptide (L5) because of favorable electrostatic interactions. Loading was significantly higher in PEG-AA microgels than in pure PEG microgels. The modification of PLL-primed Si by unloaded PEG-AA microgels reduced the short-term (6 h) S. epidermidis surface colonization by a factor of 2, and the degree of inhibition increased when the average spacing between microgels was reduced. Postdeposition L5 peptide loading into microgels further reduced bacterial colonization to the extent that, after 10 h of S. epidermidis culture in tryptic soy broth, the colonization of L5-loaded PEG-AA microgel-modified Si was comparable to the very small level of colonization observed on macroscopic PEG gel controls. The fact that these microgels can be deposited by a nonline-of-sight self-assembly process and hinder bacterial colonization opens the possibility of modifying the surfaces of topographically complex biomedical devices and reduces the rate of biomaterial-associated infection. PMID:22519439

  2. Corrosion inhibition of mild steel in acidic media using newly synthesized heterocyclic organic molecules: Correlation between inhibition efficiency and chemical structure

    Ouici, H. B., E-mail: ouici.houari@yahoo.fr; Guendouzi, A., E-mail: guendouzzi@yahoo.fr [Departement of Chimistry, Faculty of Sciences, University of Saïda (Algeria); Benali, O. [Department of Biology, Faculty of Science, University of Saida (Algeria)

    2015-03-30

    The corrosion inhibition of mild steel in 5% HCl solutions by some new synthesized organic compounds namely 3-(2-methoxyphenyl) 5-mercapto-1. 2. 4-triazole (2-MMT), 3-(3-methoxyphenyl) 5-mercapto-1. 2. 4-triazole (3-MMT) and 3-(2-hydroxyphenyl) 5-mercapto-1. 2. 4-triazole (2-HMT) was investigated using weight loss and potentiostatic polarization techniques. These measurements reveal that the inhibition efficiency obtained by these compounds increased by increasing their concentration. The inhibition efficiency follows the order 2-MMT >3-MMT >2-HMT. Polarization studies show that these compounds are of the mixed type but dominantly act as a cathodic inhibitors for mild steel in 5% HCl solutions. These inhibitors function through adsorption following Langmuir isotherm. Activation energy and Gibbs free energy for adsorption of inhibitors are calculated. Molecular modeling has been conducted to correlate the corrosion inhibition properties with the calculated quantum chemical parameters.

  3. The inhibition of fat cell proliferation by n-3 fatty acids in dietary obese mice

    Kopecky Jan

    2011-08-01

    Full Text Available Abstract Background Long-chain n-3 polyunsaturated fatty acids (LC n-3 PUFA of marine origin exert multiple beneficial effects on health. Our previous study in mice showed that reduction of adiposity by LC n-3 PUFA was associated with both, a shift in adipose tissue metabolism and a decrease in tissue cellularity. The aim of this study was to further characterize the effects of LC n-3 PUFA on fat cell proliferation and differentiation in obese mice. Methods A model of inducible and reversible lipoatrophy (aP2-Cre-ERT2 PPARγL2/L2 mice was used, in which the death of mature adipocytes could be achieved by a selective ablation of peroxisome proliferator-activated receptor γ in response to i.p. injection of tamoxifen. Before the injection, obesity was induced in male mice by 8-week-feeding a corn oil-based high-fat diet (cHF and, subsequently, mice were randomly assigned (day 0 to one of the following groups: (i mice injected by corn-oil-vehicle only, i.e."control" mice, and fed cHF; (ii mice injected by tamoxifen in corn oil, i.e. "mutant" mice, fed cHF; (iii control mice fed cHF diet with15% of dietary lipids replaced by LC n-3 PUFA concentrate (cHF+F; and (iv mutant mice fed cHF+F. Blood and tissue samples were collected at days 14 and 42. Results Mutant mice achieved a maximum weight loss within 10 days post-injection, followed by a compensatory body weight gain, which was significantly faster in the cHF as compared with the cHF+F mutant mice. Also in control mice, body weight gain was depressed in response to dietary LC n-3 PUFA. At day 42, body weights in all groups stabilized, with no significant differences in adipocyte size between the groups, although body weight and adiposity was lower in the cHF+F as compared with the cHF mice, with a stronger effect in the mutant than in control mice. Gene expression analysis documented depression of adipocyte maturation during the reconstitution of adipose tissue in the cHF+F mutant mice. Conclusion

  4. The antagonistic regulation of abscisic acid-inhibited root growth by brassinosteroids is partially mediated via direct suppression of ABSCISIC ACID INSENSITIVE 5 expression by BRASSINAZOLE RESISTANT 1.

    Yang, Xiaorui; Bai, Yang; Shang, Jianxiu; Xin, Ruijiao; Tang, Wenqiang

    2016-09-01

    Brassinosteroids (BRs) and abscisic acid (ABA) are plant hormones that antagonistically regulate many aspects of plant growth and development; however, the mechanisms that regulate the crosstalk of these two hormones are still not well understood. BRs regulate plant growth and development by activating BRASSINAZOLE RESISTANT 1 (BZR1) family transcription factors. Here we show that the crosstalk between BRs and ABA signalling is partially mediated by BZR1 regulated gene expression. bzr1-1D is a dominant mutant with enhanced BR signalling; our results showed that bzr1-1D mutant is less sensitive to ABA-inhibited primary root growth. By RNA sequencing, a subset of BZR1 regulated ABA-responsive root genes were identified. Of these genes, the expression of a major ABA signalling component ABA INSENSITIVE 5 (ABI5) was found to be suppressed by BR and by BZR1. Additional evidences showed that BZR1 could bind strongly with several G-box cis-elements in the promoter of ABI5, suppress the expression of ABI5 and make plants less sensitive to ABA. Our study demonstrated that ABI5 is a direct target gene of BZR1, and modulating the expression of ABI5 by BZR1 plays important roles in regulating the crosstalk between the BR and ABA signalling pathways. PMID:27149247

  5. Dual strategies to improve oral bioavailability of oleanolic acid: Enhancing water-solubility, permeability and inhibiting cytochrome P450 isozymes.

    Jiang, Qikun; Yang, Xiaoxu; Du, Ping; Zhang, Huifen; Zhang, Tianhong

    2016-02-01

    Oleanolic acid (OA) is a typical BCS IV drug with low water-solubility and poor permeability, metabolized by cytochrome P450 (CYP) isozymes in the intestinal tract, such as CYP3A. These are the reasons for the low oral bioavailability of OA which have restricted its wide application. In this study, a solidified phospholipid complex (OPCH) composed of OA-phospholipid complex (OPC) and hydroxyapatite (HA) was prepared by simple solvent evaporation. OPC was used to improve the liposolubility of OA, and HA was used to improve the flowability of OPC. Ketoconazole (KCZ, inhibitor of CYP3A) was co-administrated with OPCH to inhibit the metabolism of OA by CYP3A in the intestine. DSC, PXRD, SEM and IR analysis confirmed the formation of OPC and OPCH. Compared with the water-solubility and n-octanol solubility of OA, that of OPCH was increased nearly 15.3-fold and 3.19-fold, respectively. An in vitro dissolution study showed that the cumulative dissolution rate of OPCH was nearly 2.23-fold and 4.57-fold higher than that of OA and OPC at 2h. Single-pass intestinal perfusion studies showed that the absorption of OA from OPCH was increased nearly 1.6-2.6-fold compared with that of pure OA and this was mainly due to the improved permeability and was further increased by OPCH with KCZ 1.2-2.4-fold compared with that of OPCH because KCZ inhibited metabolism of OA by CYP3A. A pharmacokinetic study of OPCH in rats following co-administration of KCZ was investigated. The Cmax was increased markedly from 59.5 to 78.7 and 131.3ng/mL in case of OA alone, OPCH alone and OPCH with KCZ. In parallel with the Cmax, the AUC0-24h was increased from 259.6 to 306.6 and 707.7ngh/mL, respectively. All the results obtained demonstrated that formulation of OPCH and co-administration of KCZ significantly improved the bioavailability of OA by increasing the solubility and permeability in combination with inhibiting the metabolism of OA. PMID:26625716

  6. Boronic acid-modified lipid nanocapsules: a novel platform for the highly efficient inhibition of hepatitis C viral entry

    Khanal, Manakamana; Barras, Alexandre; Vausselin, Thibaut; Fénéant, Lucie; Boukherroub, Rabah; Siriwardena, Aloysius; Dubuisson, Jean; Szunerits, Sabine

    2015-01-01

    The search for viral entry inhibitors that selectively target viral envelope glycoproteins has attracted increasing interest in recent years. Amongst the handful of molecules reported to show activity as hepatitis C virus (HCV) entry inhibitors are a variety of glycan-binding proteins including the lectins, cyanovirin-N (CV-N) and griffithsin. We recently demonstrated that boronic acid-modified nanoparticles are able to reduce HCV entry through a similar mechanism to that of lectins. A major obstacle to any further development of these nanostructures as viral entry inhibitors is their only moderate maximal inhibition potential. In the present study, we report that lipid nanocapsules (LNCs), surface-functionalized with amphiphilic boronic acid (BA) through their post-insertion into the semi-rigid shell of the LNCs, are indeed far superior as HCV entry inhibitors when compared with previously reported nanostructures. These 2nd generation particles (BA-LNCs) are shown to prevent HCV infection in the micromolar range (IC50 = 5.4 μM of BA moieties), whereas the corresponding BA monomers show no significant effects even at the highest analyzed concentration (20 μM). The new BA-LNCs are the most promising boronolectin-based HCV entry inhibitors reported to date and are thus observed to show great promise in the development of a pseudolectin-based therapeutic agent.The search for viral entry inhibitors that selectively target viral envelope glycoproteins has attracted increasing interest in recent years. Amongst the handful of molecules reported to show activity as hepatitis C virus (HCV) entry inhibitors are a variety of glycan-binding proteins including the lectins, cyanovirin-N (CV-N) and griffithsin. We recently demonstrated that boronic acid-modified nanoparticles are able to reduce HCV entry through a similar mechanism to that of lectins. A major obstacle to any further development of these nanostructures as viral entry inhibitors is their only moderate maximal

  7. [6]-Gingerol inhibits de novo fatty acid synthesis and carnitine palmitoyltransferase-1 activity which triggers apoptosis in HepG2.

    Impheng, Hathaichanok; Richert, Lysiane; Pekthong, Dumrongsak; Scholfield, C Norman; Pongcharoen, Sutatip; Pungpetchara, Ittipon; Srisawang, Piyarat

    2015-01-01

    The de novo fatty acid synthesis catalyzed by key lipogenic enzymes, including fatty acid synthase (FASN) has emerged as one of the novel targets of anti-cancer approaches. The present study explored the possible inhibitory efficacy of [6]-gingerol on de novo fatty acid synthesis associated with mitochondrial-dependent apoptotic induction in HepG2 cells. We observed a dissipation of mitochondrial membrane potential accompanied by a reduction of fatty acid levels. [6]-gingerol administration manifested inhibition of FASN expression, indicating FASN is a major target of [6]-gingerol inducing apoptosis in HepG2 cells. Indeed, we found that increased ROS generation could likely be a mediator of the anti-cancer effect of [6]-gingerol. A reduction of fatty acid levels and induction of apoptosis were restored by inhibition of acetyl-CoA carboxylase (ACC) activity, suggesting an accumulation of malonyl-CoA level could be the major cause of apoptotic induction of [6]-gingerol in HepG2 cells. The present study also showed that depletion of fatty acid following [6]-gingerol treatment caused an inhibitory effect on carnitine palmitoyltransferase-1 activity (CPT-1), whereas C75 augmented CPT-1 activity, indicating that [6]-gingerol exhibits the therapeutic benefit on suppression of fatty acid β-oxidation. PMID:26101700

  8. Carnosic acid nanoparticles suppress liver ischemia/reperfusion injury by inhibition of ROS, Caspases and NF-κB signaling pathway in mice.

    Li, Hui; Sun, Jian-Jun; Chen, Guo-Yong; Wang, Wei-Wei; Xie, Zhan-Tao; Tang, Gao-Feng; Wei, Si-Dong

    2016-08-01

    Living donor liver transplantation (LDLT) requires ischemia/reperfusion (I/R), which can lead to early graft injury. However, the detailed molecular mechanism of I/R injury remains unclear. Carnosic acid, as a phenolic diterpene with function of anti-inflammation, anti-cancer, anti-bacterial, anti-diabetic, as well as neuroprotective properties, is produced by many species from Lamiaceae family. Nanoparticulate drug delivery systems have been known to better the bioavailability of drugs on intranasal administration compared with only drug solutions. Administration of carnosic acid nanoparticles was thought to be sufficient to lead to considerable inhibition of liver injury progression induced by ischemia/reperfusion. In our study, liver ischemia/reperfusion injury was established successfully with C57BL/6 animal model. 10 and 20mg/kg carnosic acid nanoparticles were injected to mice for five days prior to ischemia. After liver ischemia/reperfusion, the levels of serum AST, ALT and APL were increased, which was attenuated by pre-treatment with carnosic acid nanoparticles. In addition, carnosic acid nanoparticles inhibited ROS production via its related signals regulation. And carnosic acid nanoparticles also suppressed the ischemia/reperfusion-induced up-regulation in the pro-apoptotic protein and mRNA levels of Bax, Cyto-c, Apaf-1 and Caspase-9/3 while increased ischemia/reperfusion-induced decrease of anti-apoptotic factor of Bcl-2. Further, ischemia/reperfusion-induced inflammation was also inhibited for carnosic acid nanoparticles administration via inactivating NF-κB signaling pathway, leading to down-regulation of pro-inflammatory cytokines releasing. In conclusion, our study suggested that carnosic acid nanoparticles protected against liver ischemia/reperfusion injury via its role of anti-oxidative, anti-apoptotic and anti-inflammatory bioactivity. PMID:27470360

  9. Inhibition of collagen synthesis by select calcium and sodium channel blockers can be mitigated by ascorbic acid and ascorbyl palmitate.

    Ivanov, Vadim; Ivanova, Svetlana; Kalinovsky, Tatiana; Niedzwiecki, Aleksandra; Rath, Matthias

    2016-01-01

    muscle cells, assayed by measuring intracellular collagen content. We observed increased intracellular levels of ascorbate under supplementation with elevated doses of ascorbic acid, as well as its lipid soluble derivative ascorbyl palmitate. Nifedipine reduced ascorbic acid intracellular influx in cultured aortic smooth muscle cells with nifedipine (50 µM) compared to control. Adverse effects of nifedipine were neutralized either by an increased level of cell supplementation with ascorbic acid or by substituting it with ascorbyl palmitate. These studies suggest that adverse effects of channel blockers could be caused by their weakening the arterial wall integrity by interfering with proper extracellular matrix formation. In conclusion, these studies confirm the adverse effects of channel blockers on collagen type l and lV deposition, the key ECM components essential for maintaining optimal structural integrity of the arterial walls. Ascorbate supplementation reversed channel blocker inhibition of these collagen types synthesis and deposition. The results of this study imply the benefits of ascorbate and ascorbate palmitate supplementation in medical management of cardiovascular disease in order to compensate for adverse effects of channel blockers. PMID:27335688

  10. Inhibition of collagen synthesis by select calcium and sodium channel blockers can be mitigated by ascorbic acid and ascorbyl palmitate

    Ivanov, Vadim; Ivanova, Svetlana; Kalinovsky, Tatiana; Niedzwiecki, Aleksandra; Rath, Matthias

    2016-01-01

    muscle cells, assayed by measuring intracellular collagen content. We observed increased intracellular levels of ascorbate under supplementation with elevated doses of ascorbic acid, as well as its lipid soluble derivative ascorbyl palmitate. Nifedipine reduced ascorbic acid intracellular influx in cultured aortic smooth muscle cells with nifedipine (50 µM) compared to control. Adverse effects of nifedipine were neutralized either by an increased level of cell supplementation with ascorbic acid or by substituting it with ascorbyl palmitate. These studies suggest that adverse effects of channel blockers could be caused by their weakening the arterial wall integrity by interfering with proper extracellular matrix formation. In conclusion, these studies confirm the adverse effects of channel blockers on collagen type l and lV deposition, the key ECM components essential for maintaining optimal structural integrity of the arterial walls. Ascorbate supplementation reversed channel blocker inhibition of these collagen types synthesis and deposition. The results of this study imply the benefits of ascorbate and ascorbate palmitate supplementation in medical management of cardiovascular disease in order to compensate for adverse effects of channel blockers.

  11. Gallic acid inhibits gastric cancer cells metastasis and invasive growth via increased expression of RhoB, downregulation of AKT/small GTPase signals and inhibition of NF-κB activity

    Our previous study demonstrated the therapeutic potential of gallic acid (GA) for controlling tumor metastasis through its inhibitory effect on the motility of AGS cells. A noteworthy finding in our previous experiment was increased RhoB expression in GA-treated cells. The aim of this study was to evaluate the role of RhoB expression on the inhibitory effects of GA on AGS cells. By applying the transfection of RhoB siRNA into AGS cells and an animal model, we tested the effect of GA on inhibition of tumor growth and RhoB expression. The results confirmed that RhoB-siRNA transfection induced GA to inhibit AGS cells’ invasive growth involving blocking the AKT/small GTPase signals pathway and inhibition of NF-κB activity. Finally, we evaluated the effect of GA on AGS cell metastasis by colonization of tumor cells in nude mice. It showed GA inhibited tumor cells growth via the expression of RhoB. These data support the inhibitory effect of GA which was shown to inhibit gastric cancer cell metastasis and invasive growth via increased expression of RhoB, downregulation of AKT/small GTPase signals and inhibition of NF-κB activity. Thus, GA might be a potential agent in treating gastric cancer. Highlights: ► GA could downregulate AKT signal via increased expression of RhoB. ► GA inhibits metastasis in vitro in gastric carcinoma. ► GA inhibits tumor growth in nude mice model.

  12. Enzymatic Depletion of the Polysialic Acid Moiety Associated with the Neural Cell Adhesion Molecule Inhibits Antidepressant Efficacy.

    Wainwright, Steven R; Barha, Cindy K; Hamson, Dwayne K; Epp, Jonathan R; Chow, Carmen; Lieblich, Stephanie E; Rutishauser, Urs; Galea, Liisa Am

    2016-05-01

    Antidepressant drugs are too often ineffective, the exact mechanism of efficacy is still ambiguous, and there has been a paucity of novel targets for pharmacotherapy. In an attempt to understand the pathogenesis of depression and subsequently develop more efficacious antidepressant drugs, multiple theories have been proposed, including the modulation of neurotransmission, the upregulation of neurogenesis and neurotrophic factors, normalizing hypothalamic-pituitary-adrenal reactivity, and the reduction of neuroinflammation; all of which have supporting lines of evidence. Therefore, an ideal molecular target for novel pharmaceutical intervention would function at the confluence of these theories. The polysialylated form of the neural cell adhesion molecule (PSA-NCAM) functions broadly, serving to mediate synaptic plasticity, neurogenesis, neurotrophic factor signaling, and inflammatory signaling throughout the brain; all of which are associated with the pathophysiology and treatment of depression. Moreover, the expression of PSA-NCAM is reduced by depression, and conversely enhanced by antidepressant treatment, particularly within the hippocampus. Here we demonstrate that selectively cleaving the polysialic acid moiety, using the bacteriophage-derived enzyme endoneuraminidase N, completely inhibits the antidepressant efficacy of the selective-serotonin reuptake inhibitor fluoxetine (FLX) in a chronic unpredictable stress model of depression. We also observe a corresponding attenuation of FLX-induced hippocampal neuroplasticity, including decreased hippocampal neurogenesis, synaptic density, and neural activation. These data indicate that PSA-NCAM-mediated neuroplasticity is necessary for antidepressant action; therefore PSA-NCAM represents an interesting, and novel, target for pharmacotherapy. PMID:26530284

  13. EGFR Inhibition Blocks Palmitic Acid-induced inflammation in cardiomyocytes and Prevents Hyperlipidemia-induced Cardiac Injury in Mice.

    Li, Weixin; Fang, Qilu; Zhong, Peng; Chen, Lingfeng; Wang, Lintao; Zhang, Yali; Wang, Jun; Li, Xiaokun; Wang, Yi; Wang, Jingying; Liang, Guang

    2016-01-01

    Obesity is often associated with increased risk of cardiovascular diseases. Previous studies suggest that epidermal growth factor receptor (EGFR) antagonism may be effective for the treatment of angiotensin II-induced cardiac hypertrophy and diabetic cardiomyopathy. This study was performed to demonstrate if EGFR plays a role in the pathogenesis of hyperlipidemia/obesity-related cardiac injuries. The in vivo studies using both wild type (WT) and apolipoprotein E (ApoE) knockout mice fed with high fat diet (HFD) showed the beneficial effects of small-molecule EGFR inhibitors, AG1478 and 542, against obesity-induced myocardial injury. Administration of AG1478 and 542 significantly reduced myocardial inflammation, fibrosis, apoptosis, and dysfunction in both two obese mouse models. In vitro, EGFR signaling was blocked by either siRNA silencing or small-molecule EGFR inhibitors in palmitic acid (PA)-stimulated cardiomyocytes. EGFR inhibition attenuated PA-induced inflammatory response and apoptosis in H9C2 cells. Furthermore, we found that PA-induced EGFR activation was mediated by the upstream TLR4 and c-Src. This study has confirmed the detrimental effect of EGFR activation in the pathogenesis of obesity-induced cardiac inflammatory injuries in experimental mice, and has demonstrated the TLR4/c-Src-mediated mechanisms for PA-induced EGFR activation. Our data suggest that EGFR may be a therapeutic target for obesity-related cardiovascular diseases. PMID:27087279

  14. Mechanism and inhibition of human UDP-GlcNAc 2-epimerase, the key enzyme in sialic acid biosynthesis.

    Chen, Sheng-Chia; Huang, Chi-Hung; Lai, Shu-Jung; Yang, Chia Shin; Hsiao, Tzu-Hung; Lin, Ching-Heng; Fu, Pin-Kuei; Ko, Tzu-Ping; Chen, Yeh

    2016-01-01

    The bifunctional enzyme UDP-GlcNAc 2-epimerase/ManNAc kinase (GNE) plays a key role in sialic acid production. It is different from the non-hydrolyzing enzymes for bacterial cell wall biosynthesis, and it is feed-back inhibited by the downstream product CMP-Neu5Ac. Here the complex crystal structure of the N-terminal epimerase part of human GNE shows a tetramer in which UDP binds to the active site and CMP-Neu5Ac binds to the dimer-dimer interface. The enzyme is locked in a tightly closed conformation. By comparing the UDP-binding modes of the non-hydrolyzing and hydrolyzing UDP-GlcNAc epimerases, we propose a possible explanation for the mechanistic difference. While the epimerization reactions of both enzymes are similar, Arg113 and Ser302 of GNE are likely involved in product hydrolysis. On the other hand, the CMP-Neu5Ac binding mode clearly elucidates why mutations in Arg263 and Arg266 can cause sialuria. Moreover, full-length modelling suggests a channel for ManNAc trafficking within the bifunctional enzyme. PMID:26980148

  15. Salvianolic Acid B Inhibits Aβ Generation by Modulating BACE1 Activity in SH-SY5Y-APPsw Cells

    Ying Tang

    2016-06-01

    Full Text Available Alzheimer’s disease (AD is a neurodegenerative disease in humans. The accumulation of amyloid-β (Aβ plays a critical role in the pathogenesis of AD. Previous studies indicated that Salvianolic acid B (SalB could ameliorate Aβ-induced memory impairment. However, whether SalB could influence the generation of Aβ is unclear. Here, we show that SalB (25, 50, or 100 µM reduces the generation of Aβ40 and Aβ42 in culture media by decreasing the protein expressions of BACE1 and sAPPβ in SH-SY5Y-APPsw cells. Meanwhile, SalB increases the levels of ADAM10 and sAPPα in the cells. However, SalB has no impact on the protein expressions of APP and PS1. Moreover, SalB attenuates oxidative stress and inhibits the activity of GSK3β, which might be related to the suppression of BACE1 expression and amyloidogenesis. Our study suggests that SalB is a promising therapeutic agent for AD by targeting Aβ generation.

  16. 以米糠提取液为主料的气相缓蚀剂的缓蚀性能%Vapor Phase Inhibition Performance and Inhibition Mechanism of Phytic Acid Extracted from Rice Bran

    康笑阳; 付朝阳; 胡胜; 钟飞

    2009-01-01

    Phytic acid was extracted from rice bran by leaching in a dilute acid.The resulting phytic acid was used as a main component to formulate a vapor phase inhibitor.The inhibition performance of the inhibitor for carbon steel in 3 % brine was investigated by conducting weight loss test and measurement of polarization curves and electrochemical impedance spectra.The inhibition mechanism of the inhibitor was also discussed.Results show that the corrosion inhibitor has good inhibition action for carbon steel subjected to vapor phase corrosion,and an inhibition efficiency of as much as 97% is obtained.As a kind of anodic adsorption inhibitor,the vapor phase inhibitor based on phytic acid is able to prohibit anode process and obeys the Langmuir's adsorption equation.%开发环境友好型缓蚀剂是缓蚀剂技术发展的必然趋势,从天然物中提取有效成分作为缓蚀剂就是途径之一,采用气相缓蚀剂可以有效减轻腐蚀,适应可持续发展的要求.用酸化浸取法从米糠中提取植酸,复配成了气相缓蚀剂;采用失重、极化曲线和阻抗测试等评价了该缓蚀剂的气相缓蚀效率,并对其缓蚀机理进行了初步探讨.结果表明:该缓蚀剂对碳钢的气相腐蚀有良好的缓蚀效果,缓蚀率可达97%;该缓蚀剂为阳极吸附型缓蚀剂,符合Langmuir吸附等温式.

  17. Inhibition of mammary tumor promotion by dietary D,L-2-difluoromethylornithine in combination with omega-3 and omega-6 fatty acids

    Bunce, O.R.; Abou-El-Ela, S.H. (Univ. of Georgia, Athens (United States))

    1990-02-26

    The authors laboratory has shown an inhibitor effect on mammary tumor promotion by a 20% corn oil diet when D,L-2-difluoromethylornithine (DFMO), an inhibitor of ornithine decarboxylase (ODC), was fed to female rats with 7,12-dimethylbenz(a)anthracene (DMBA)-induced mammary tumors. Analyses of mammary adenocarcinomas from these rats showed that DFMO not only inhibited ODC but also eicosanoid synthesis. Inhibition of tumor promotion, ODC activity and eicosanoid synthesis was additive when dietary combinations of DFMO and menhaden oil were fed. However, when 0.5% DFMO was fed along with 20% dietary fat, signs of toxicity were seen. The overall objective of this study was to establish the minimal and non-toxic dose of DFMO which can give an additive or synergistic antipromoter effect when fed along with dietary n-3 and/or n-6 fatty acids to female Sprague-Dawley rats with DMBA-induced mammary tumors. Four dietary levels of DFMO (0, 0.125, 0.250, and 0.500%) were fed in diets containing 20% fat as either corn, black currant seed or menhaden oil. Dose response effects on tumorigenicity as well as toxicity were noted. Long chain n-3 fatty acids gave greater inhibition of tumorigenesis than shorter chain fatty acids when combined with DFMO. DFMO (0.25%) inhibited tumorigenesis without toxic effects on weight gain, whereas, 0.125% DFMO did not alter tumorigenesis. Supporting biochemical data are presented.

  18. Inhibitive effect of 3-bromopyruvic acid on human breast cancer MCF-7 cells involves cell cycle arrest and apoptotic induction

    LIU Xiao-hong; ZHENG Xue-fang; WANG Yong-li

    2009-01-01

    Background Breast cancer is one of the most common malignancies in women and is highly resistant to chemotherapy. Due to its high tumour selectivity, 3-bromopyruvic acid (3-BrPA), a well-known inhibitor of energy metabolism has been proposed as a specific anticancer agent. The present study determined the effect of 3-BrPA on proliferation, cell cycle and apoptosis in the human breast cancer MCF-7 cell line and other antitumour mechanisms. Methods MCF-7 cells were treated with various concentrations of 3-BrPA for 1-4 days, and cell growth was measured by 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide assay. Marked morphological changes in MCF-7 cells after treatment with 3-BrPA were observed using transmission electron microscopy. The distributions of the cell cycle and apoptosis were analyzed by flow cytometry. Immunohistochemistry was used to indicate the changes in the expression of Bcl-2, c-Myc, and mutant p53. Results 3-BrPA (25 μg/ml) significantly inhibited the proliferation of MCF-7 cells in a time-dependent manner. The MCF-7 cells exposed to 3-BrPA showed the typical morphological characteristics of apoptosis, including karyopycnosis, nuclear condensation and oversize cytoplasmic particles. In addition, flow cytometric assay also showed more apoptotic cells after 3-BrPA stimulation. The cells at the GO and G1 phases were dramatically decreased while cells at the S and G2/M phases were increased in response to 3-BrPA treatment after 48 hours. Furthermore, 3-BrPA stimulation decreased the expressions of Bcl-2, c-Myc and mutant p53, which were strongly associated with the programmed cell death signal transduction pathway. Conclusion 3-BrPA inhibits proliferation, induces S phase and G2/M phase arrest, and promotes apoptosis in MCF-7 cells, which processes might be mediated by the downregulation of the expressions of Bcl-2, c-Myc and mutant p53.

  19. Activity inhibition and its mitigation in high temperature proton exchange membrane fuel cells: The role of phosphoric acid, ammonium trifluoromethanesulfonate, and polyvinylidene difluoride

    Holst-Olesen, Kaspar; Nesselberger, Markus; Perchthaler, Markus; Hacker, Viktor; Arenz, Matthias

    2014-12-01

    In the presented work we systematically study the influence of phosphoric acid, ammonium trifluoromethanesulfonate (ATFMS), and polyvinylidene difluoride (PVDF) on the oxygen reduction reaction (ORR) activity of carbon supported, Pt based catalysts. The influence of phosphoric acid is investigated in a mixed solution of perchloric acid with small amounts of phosphoric acid added. Thin-film rotating disk electrode (TF-RDE) measurements show that such a mixed electrolyte is advantageous as the oxygen reduction reaction (ORR) is inhibited without influencing the oxygen solubility in the electrolyte. In contrast to previous reports it is seen when investigating additives that ATFMS acts as a catalyst poison; whereas the results provide evidence of a better performance in case of the PVDF incorporated catalysts as compared to reference samples without PVDF. The technological relevance of the PVDF improvements and its stability over prolonged time was validated by membrane electrode assembly (MEA) tests.

  20. The fate of 131I-17-iodoheptadecanoic acid during lactate loading: Its oxidation is strongly inhibited in favor of its esterification

    The influence of lactate loading on fatty acid metabolism (pH = 7.4) by the normal canine heart was investigated radiochemically using the radioiodinated fatty acid 131I-17-iodoheptadecanoic acid (131I-17-HDA). Fatty acid metabolism was studied during control conditions (n = 8) and after lactate loading (n = 7). In the canine heart total myocardial 131I-17-HDA radioactivity (uptake) was not changed during the lactate intervention. The oxidation decreased fivefold (measured as free 131I-iodide ion) from 70% to 14% (p 131I-17-HDA was mainly stored in the triglycerides and phosphoglycerides. These results suggest that lactate inhibits cardiac 131I-HDA oxidation. (orig.)