WorldWideScience

Sample records for aberration yield

  1. The effect of x-ray induced mitotic delay on chromosome aberration yields in human lymphocytes

    The extent to which X-ray induced mitotic delay at 150 and 400 rad influences chromosome aberration yields was examined in human peripheral blood lymphocytes. The dicentric was used as a marker and aberration yields were obtained for mixed cultures prepared from equal numbers of normal and irradiated cells. The cultures were terminated following incubation times of 36-120 h. Greater mitotic delay of the order of a few hours was observed at the higher dose. However most reduction in the numbers of lymphocytes arriving at metaphase by 48 h may be ascribed to interphase death of failure to transform. Analysis of the dicentric distributions which were expected to follow Poisson statistics indicated that cells containing dicentrics were delayed relative to irradiated but aberration-free cells. Cells with one dicentric moved more easily through the first cell cycle than cells containing two dicentrics. Following accidental partial body irradiation, selection in culture favouring the unirradiated lymphocytes does not distort the aberration yield sufficiently to warrant incubation times in excess of the standard 48-52 h

  2. Chromosome aberration yields in human lymphocytes induced by fractionated doses of x-radiation

    Unstimulated (G0) human peripheral blood lymphocytes were exposed at 37degC to doses of 200 or 500 rad of X-rays delivered in two equal fractions. The dose fractions were separated by intervals of up to 7 h in the 200 rad study and up to 48 h for 500 rad. In both studies the mean levels of dicentrics and total unstable aberrations began to decline when fractions were delivered with intervals of greater than 2 h. With 200 rad the yield had decreased to an additive baseline (i.e. equal to only twice the yield of a single 100-rad fraction) by an interval of 4 h. Following 500 rad the yield declined until 8 h and then remained 20% above the expected additive baseline even when 48 h separated the fractions. Possible explanations for this discrepancy are discussed. In a second experiment PHA stimulated lymphocyte cultures were exposed to 2 doses of 125 rad of X-rays up to 7 h apart in an attempt to demonstrate the late peak in aberration yield originally reported by Lane. Control cultures received unsplit doses of 250 rad at the time of the corresponding second 125-rad fraction. No evidence of a late peak in dicentric yield was observed. The yield remained approximately the same irrespective of the time interval between fractions but these split dose yields were significantly different from the accompanying unsplit controls

  3. Dose-dependence of the chromosome aberration yield in a human lymphocyte culture after. gamma. -irradiation with high doses

    Sevan' kaev, A.V. (Akademiya Meditsinskikh Nauk SSSR, Obninsk. Nauchno-Issledovatel' skij Inst. Meditsinskoj Radiologii)

    A study was made of the yield of chromosome aberrations in a human lymphocyte culture at the G/sub 0/ stage after /sup 60/Co-..gamma..-irradiation with doses of 5-12 Gy. It was shown that a linear-quadratic dependence of the aberration frequency observed with median doses became purely linear at high doses.

  4. Dose-dependence of the yield of chromosomal aberrations in human lymphocytes after irradiation of peripheral blood with monoenergetic neutrons of 2, 4 and 6 MeV

    Sevan' kaev, A.V.; Obaturov, G.M.; Nasonova, V.A.; Izmajlova, N.N. (Akademiya Meditsinskikh Nauk SSSR, Obninsk. Nauchno-Issledovatel' skij Inst. Meditsinskoj Radiologii)

    A study was made of the dose-dependence of the yield of chromosome aberrations in human lymphocyte culture irradiated at the G/sub 0/ stage with monoenergetic neutrons of 2, 4 and 6 MeV. The dose dependence was found to be linear all types of aberrations. The RBE of neutrons under study increased with the decrease in their energy.

  5. Influence of diagnostic roentgen doses on human chromosomes and influence of age on the aberration yield

    Urography was performed in 2 groups of patients (one comprising patients aged 7-18 years, the other patients aged 8-32 months) under constant conditions. The skin dose ranged between 1 and 4 R. Blood samples were taken before, immediately after and 24 hours after the irradiation. A significantly increased number of aberrant cells was found only in the blood samples taken 24 hours after irradiation. No age-dependent influence on the radiation sensitivity in vivo was found. (author)

  6. Chromosomal aberration

    Chromosomal aberrations are classified into two types, chromosome-type and chromatid-type. Chromosom-type aberrations include terminal deletion, dicentric, ring and interstitial deletion, and chromatid-type aberrations include achromatic lesion, chromatid deletion, isochromatid deletion and chromatid exchange. Clastogens which induce chromosomal aberration are divided into ''S-dependent'' agents and ''S-independent''. It might mean whether they can induce double strand breaks independent of the S phase or not. Double strand breaks may be the ultimate lesions to induce chromosomal aberrations. Caffeine added even in the G2 phase appeared to modify the frequency of chromatid aberrations induced by X-rays and mitomycin C. Those might suggest that the G2 phase involves in the chromatid aberration formation. The double strand breaks might be repaired by ''G2 repair system'', the error of which might yield breakage types of chromatid aberrations and the by-pass of which might yield chromatid exchanges. Chromosome-type aberrations might be formed in the G1 phase. (author)

  7. Effect of cysteamine on chromosomal aberrations yield in gamma irradiated lymphocytes from human blood

    Cytogenetic analysis is made of lymphocyte cultures following in vitro gamma-irradiation of human whole venous blood with 93, 188, 372 and 448 rad from ''Rocos'' gamma-therapeutic apparatus, with or without chemical protection. The radioprotector - cysteamine - is added to the blood 15 minutes before irradiation in a dose of 200 micrograms per milliliter of blood. Lymphocyte cultures are fixed 52 hours after stimulation. No quantitative differences are found between the patterns of chromosomal anomalies induced in nonprotected and in protected lymphocyte cultures. There are less chromosomal fragments, dicentrics, interstitial deletions, rings and chromosomal interchanges, aberrant cells and breaks after irradiation in the presence of cysteamine. The protective effect varied depending on the radiation dose: very weak (18.4 per cent) after irradiation with 93 rad, increasing to 75.7 per cent after exposure to 448 rad. (A.B.)

  8. Influence of duration of fixation on the yield of chromosome aberrations in human lumphocyte culture exposed to γ-radiation at different mitotic cycle stages

    A comparative study was made of the yield of chromosome aberrations in human lymphocyte culture exposed to 60Co- γ-rays (2 Gy) at different mitotic cycle stages the cells being fixed after 52 and 60 hr. It was shown that with the latter fixation time (60 hr) the frequency of chromosome aberrations after irradiation in G1 stage was substantially lower than that with the former one (52 hr) and, vice versa, it was higher after irradiation in S and G2 stages. The authors discuss the probable causes of the distinctions observed

  9. Influence of duration of fixation on the yield of chromosome aberrations in human lumphocyte culture exposed to. gamma. -radiation at different mitotic cycle stages

    Sevan' kaev, A.V.; Bogatykh, B.A.; Lychev, V.A. (Akademiya Meditsinskikh Nauk SSSR, Obninsk. Nauchno-Issledovatel' skij Inst. Meditsinskoj Radiologii)

    A comparative study was made of the yield of chromosome aberrations in human lymphocyte culture exposed to /sup 60/Co- ..gamma..-rays (2 Gy) at different mitotic cycle stages the cells being fixed after 52 and 60 hr. It was shown that with the latter fixation time (60 hr) the frequency of chromosome aberrations after irradiation in G/sub 1/ stage was substantially lower than that with the former one (52 hr) and, vice versa, it was higher after irradiation in S and G/sub 2/ stages. The authors discuss the probable causes of the distinctions observed.

  10. Chromosome aberrations induced in human lymphocytes by U-235 fission neutrons. Pt. 3. Evaluation of the effect of the induced α and β activity on the chromosomal aberration yield

    Aim: Further experiments were performed to explain a difference in chromosomal aberration yield found between samples cultivated immediately after fission neutron irradiation and samples which were cultivated with 96 h delay after irradiation. Material and Method: Human peripheral blood samples were irradiated in mixed fission neutron/gamma field (1800 s) and biological effect assessed in the mean of analysis of unstable chromosome aberrations with a time delay in culturing cells of 12, 24, 48 and 96 h. Additional measurements were performed on irradiated and blank blood samples with the aim to detect any increase in α and β activity after fission neutron irradiation. No difference was found. Results were compared to theoretically calculated values of the α and β activity released from natural radioactive isotopes. Result and Conclusion: As a conclusion it is shown that in our experimental conditions the secondary effects resulting from nuclear transformations of natural or induced radioactive isotopes, recoil reactions and accompanying α, β, and γ radiation are not the reason for the increase observed in chromosomal aberration yield in blood samples cultured with a time delay of at least 24 hours. (orig.)

  11. Effect of blood storage and nutrient medium on the yield of chromosome aberrations under subsequent X-irradiation

    Conducted are cytogenetic investigations on studing of chromosomal aberrations frequency depending on storage time (0, 24, 48, 72 h) of nonirradiated and X-irradiated blood and nutrient medium in glass and plastic vessels at the temperature of 20 deg C. It is established that it is not advisable to store blood in plastic vessels for biological dosimetry purposes. It is recommended to use either fresh blood or blood stored in vessels from neutral glass

  12. Ozone-Induced Rice Grain Yield Loss Is Triggered via a Change in Panicle Morphology That Is Controlled by ABERRANT PANICLE ORGANIZATION 1 Gene.

    Keita Tsukahara

    Full Text Available Rice grain yield is predicted to decrease in the future because of an increase in tropospheric ozone concentration. However, the underlying mechanisms are unclear. Here, we investigated the responses to ozone of two rice (Oryza Sativa L. cultivars, Sasanishiki and Habataki. Sasanishiki showed ozone-induced leaf injury, but no grain yield loss. By contrast, Habataki showed grain yield loss with minimal leaf injury. A QTL associated with grain yield loss caused by ozone was identified in Sasanishiki/Habataki chromosome segment substitution lines and included the ABERRANT PANICLE ORGANIZATION 1 (APO1 gene. The Habataki allele of the APO1 locus in a near-isogenic line also resulted in grain yield loss upon ozone exposure, suggesting APO1 involvement in ozone-induced yield loss. Only a few differences in the APO1 amino acid sequences were detected between the cultivars, but the APO1 transcript level was oppositely regulated by ozone exposure: i.e., it increased in Sasanishiki and decreased in Habataki. Interestingly, the levels of some phytohormones (jasmonic acid, jasmonoyl-L-isoleucine, and abscisic acid known to be involved in attenuation of ozone-induced leaf injury tended to decrease in Sasanishiki but to increase in Habataki upon ozone exposure. These data indicate that ozone-induced grain yield loss in Habataki is caused by a reduction in the APO1 transcript level through an increase in the levels of phytohormones that reduce leaf damage.

  13. Simulations of DSB Yields and Radiation-induced Chromosomal Aberrations in Human Cells Based on the Stochastic Track Structure iIduced by HZE Particles

    Ponomarev, Artem; Plante, Ianik; George, Kerry; Wu, Honglu

    2014-01-01

    The formation of double-strand breaks (DSBs) and chromosomal aberrations (CAs) is of great importance in radiation research and, specifically, in space applications. We are presenting a new particle track and DNA damage model, in which the particle stochastic track structure is combined with the random walk (RW) structure of chromosomes in a cell nucleus. The motivation for this effort stems from the fact that the model with the RW chromosomes, NASARTI (NASA radiation track image) previously relied on amorphous track structure, while the stochastic track structure model RITRACKS (Relativistic Ion Tracks) was focused on more microscopic targets than the entire genome. We have combined chromosomes simulated by RWs with stochastic track structure, which uses nanoscopic dose calculations performed with the Monte-Carlo simulation by RITRACKS in a voxelized space. The new simulations produce the number of DSBs as function of dose and particle fluence for high-energy particles, including iron, carbon and protons, using voxels of 20 nm dimension. The combined model also calculates yields of radiation-induced CAs and unrejoined chromosome breaks in normal and repair deficient cells. The joined computational model is calibrated using the relative frequencies and distributions of chromosomal aberrations reported in the literature. The model considers fractionated deposition of energy to approximate dose rates of the space flight environment. The joined model also predicts of the yields and sizes of translocations, dicentrics, rings, and more complex-type aberrations formed in the G0/G1 cell cycle phase during the first cell division after irradiation. We found that the main advantage of the joined model is our ability to simulate small doses: 0.05-0.5 Gy. At such low doses, the stochastic track structure proved to be indispensable, as the action of individual delta-rays becomes more important.

  14. The study of chromosome aberration yield in human lymphocytes as an indicator of radiation dose. 6. A review of cases investigated: 1975

    Results from cytogenetic investigations into 37 cases of suspected over-exposure to radiation during 1975 are reviewed. This report is the fifth in an annual series which together contain data on 206 studies. Results from all 206 investigations have been pooled for general analysis. Brief accounts are given in an appendix of the circumstances behind the past year's 37 investigations and where possible physical estimates of dose have been included for comparison. A short review is given of recently completed experiments to determine the effects of dose rate and dose fractionation on the aberration yield, and the importance of these variables for chromosome dosimetry is discussed. A brief outline is also given of those aspects of the current research programme which are aimed at improving the techniques of cytogenetic dosimetry. (author)

  15. PARP inhibitor 3-aminobenzamide does not increase the yields of chromosomal aberrant cells induced by boron neutron capture reaction in V79 Chinese hamster cells

    Full text: Mechanistic knowledge on DNA and cell damage induced by alpha-particles remains limited. It is well known that high-LET radiation induces both DNA single (ssb) and double strand breaks (dsb), being the latter frequently associated with cell death. The repair of these DNA lesions and specially dsb are thus fundamental for the understanding of high-LET radiation effects. Poly (ADP-ribose) polymerase is a nuclear enzyme, which detects and signals DNA strand breaks (ssb and dsb). The important role of this enzyme in the maintenance of DNA integrity has been extensively studied for genotoxic chemicals and low-LET ionizing radiation. Nevertheless, sparse information concerning the role of PARP in high-LET radiation effects is available. The purpose of this work is to examine whether the PARP inhibitor 3-aminobenzamide (3-AB) enhances the yields of chromosomal aberrations induced by the boron neutron capture (BNC) reaction in V79 Chinese hamster cells. Wild-type V79 cells were pre-incubated for 48 hours with different concentrations (0.48-2.4 mM) of the boron delivery agent 4-borono-L-phenylalanine (BPA) and then irradiated for different periods of time with thermal neutrons. In the 3-AB treated cultures, four hours before the irradiation the cells were incubated with different concentrations of this inhibitor (1.5-10 mM) which remained in culture until colchicine was added. The chromosomal aberrations assay was performed according to standard protocol. A clear dose-response in the frequencies of chromosomal aberrant cells excluding gaps (%CAEG) induced by the BNC reaction was observed for both BPA concentration and thermal neutron fluence. There was no evidence of an increase in the % CAEG induced after incubation with 3-AB. Some cytoxicity was observed (mitotic index) after 3-AB incubation in BPA irradiated cells. In conclusion, the clastogenic potential of the alpha-particles generated through the BNC reaction was not affected by using a classic PARP

  16. The study of chromosome aberration yield in human lymphocytes as an indicator of radiation dose. 3. A review of cases investigated: 1971-72

    Results from cytogenetic investigations into 54 cases of suspected overexposure to radiation are reviewed. This report is a sequel to NRPB-R5 which contained data from the first 41 studies; results from all 95 investigations have been pooled for general analysis. Brief accounts are given of the circumstances behind the 54 later investigations and where possible physical estimates of dose have been included for comparison. From data on lymphocyte half-life obtained in the first series of cases, an attempt has been made to allow for the loss of damaged cells where the exposure occurred some years previously. The presence of incomplete chromosome damage appears to be characteristic of exposures which occurred some years ago. The ratio of dicentrics to acentrics observed in the accident investigation has been compared with that obtained in recent research studies. The problem of interpreting aberration yield in cases of exposure to kV non-penetrating radiation and to partial body doses, such as to fingers, has been discussed. In addition the problem of selective irradiation of lymphocytes by internally incorporated radionuclides in, for example, lymph nodes and highly vascular tissue, has been examined. Difficulties have been encountered in culturing leukaemic lymphocytes. These and other areas of research which would benefit cytogenetic dosimetry are discussed. (author)

  17. Yield of chromosomal aberrations and recoil particle range in Chineses hamster fibroblasts exposed to 8.5 to 500 keV neutrons

    Induction of chromatid aberrations in S-phase Chinese hamster fibroblasts has been studied for irradiation by 60Co gamma rays and neutrons of average energy 8.5, 45, 83, 200 and 500 keV. At 10 per cent aberration level the relative biological afficiency varied between 2.2 +- 0.6 (at 8.5 keV) and a maximum of 47 +- 9 (at 200 keV). The neutron generated recoils have short range in comparison to chromosomal dimensions. The strong variation with neutron energy is therefore not necessarily reflecting variations in the average linear energy transfer. Good agreement between experimental and predicted response was obtained when effects ascribed to range were considered. A critical volume within which primary lesions should occur in order to make chromosomal aberrations probable was derived. The corresponding site radius was estimated to be 1-3 μm. (author)

  18. Optical Aberrations and Wavefront

    Nihat Polat

    2014-08-01

    Full Text Available The deviation of light to create normal retinal image in the optical system is called aberration. Aberrations are divided two subgroup: low-order aberrations (defocus: spherical and cylindrical refractive errors and high-order aberrations (coma, spherical, trefoil, tetrafoil, quadrifoil, pentafoil, secondary astigmatism. Aberrations increase with aging. Spherical aberrations are compensated by positive corneal and negative lenticular spherical aberrations in youth. Total aberrations are elevated by positive corneal and positive lenticular spherical aberrations in elderly. In this study, we aimed to analyze the basic terms regarding optic aberrations which have gained significance recently. (Turk J Ophthalmol 2014; 44: 306-11

  19. The yield of radiation-induced chromosomal aberrations in Lymphocytes as related to the time of arrival at first post-stimulation mitosis

    Blood from 3 donors of each species, man, rabbit and pig, was irradiated with a dose of 2.5 Gy 60Co γ-rays. Micro-cultures of lymphocytes, established in presence of BrdUrd, were harvested at 6 different times after stimulation by PHA. The preparations containing meaphase figures were stained according to Perry and Wolff to permit differentiation of the cells in first and later mitoses. In all individuals and species studied there was a highly significant negative correlation between dicentric yield and time from stimulation to harvest. The develine of the yield with time of harvest varied in 3 species between 1.0 and 3.6% per hour. Implications for biological dosimetry are discussed. (orig.)

  20. Activin Decoy Receptor ActRIIB:Fc Lowers FSH and Therapeutically Restores Oocyte Yield, Prevents Oocyte Chromosome Misalignments and Spindle Aberrations, and Increases Fertility in Midlife Female SAMP8 Mice.

    Bernstein, Lori R; Mackenzie, Amelia C L; Lee, Se-Jin; Chaffin, Charles L; Merchenthaler, István

    2016-03-01

    Women of advanced maternal age (AMA) (age ≥ 35) have increased rates of infertility, miscarriages, and trisomic pregnancies. Collectively these conditions are called "egg infertility." A root cause of egg infertility is increased rates of oocyte aneuploidy with age. AMA women often have elevated endogenous FSH. Female senescence-accelerated mouse-prone-8 (SAMP8) has increased rates of oocyte spindle aberrations, diminished fertility, and rising endogenous FSH with age. We hypothesize that elevated FSH during the oocyte's FSH-responsive growth period is a cause of abnormalities in the meiotic spindle. We report that eggs from SAMP8 mice treated with equine chorionic gonadotropin (eCG) for the period of oocyte growth have increased chromosome and spindle misalignments. Activin is a molecule that raises FSH, and ActRIIB:Fc is an activin decoy receptor that binds and sequesters activin. We report that ActRIIB:Fc treatment of midlife SAMP8 mice for the duration of oocyte growth lowers FSH, prevents egg chromosome and spindle misalignments, and increases litter sizes. AMA patients can also have poor responsiveness to FSH stimulation. We report that although eCG lowers yields of viable oocytes, ActRIIB:Fc increases yields of viable oocytes. ActRIIB:Fc and eCG cotreatment markedly reduces yields of viable oocytes. These data are consistent with the hypothesis that elevated FSH contributes to egg aneuploidy, declining fertility, and poor ovarian response and that ActRIIB:Fc can prevent egg aneuploidy, increase fertility, and improve ovarian response. Future studies will continue to examine whether ActRIIB:Fc works via FSH and/or other pathways and whether ActRIIB:Fc can prevent aneuploidy, increase fertility, and improve stimulation responsiveness in AMA women. PMID:26713784

  1. Lymphocyte chromosome aberrations in partial-body fractionated radiation therapy

    a relationship between lymphocyte chromosome aberration yields which occur in partial-body fractionated radiation therapy and those yields measured in vitro is derived. These calculations are applied to the case of patients undergoing radiation therapy for mammary carcinoma. (author)

  2. Lymphocyte chromosome aberrations in partial-body fractionated radiation therapy

    Ekstrand, K.E.; Dixon, R.L. (Wake Forest Univ., Winston-Salem, NC (USA))

    1982-03-01

    a relationship between lymphocyte chromosome aberration yields which occur in partial-body fractionated radiation therapy and those yields measured in vitro is derived. These calculations are applied to the case of patients undergoing radiation therapy for mammary carcinoma.

  3. Aberration Corrected Emittance Exchange

    Nanni, Emilio A

    2015-01-01

    Full exploitation of emittance exchange (EEX) requires aberration-free performance of a complex imaging system including active radio-frequency (RF) elements which can add temporal distortions. We investigate the performance of an EEX line where the exchange occurs between two dimensions with normalized emittances which differ by orders of magnitude. The transverse emittance is exchanged into the longitudinal dimension using a double dog-leg emittance exchange setup with a 5 cell RF deflector cavity. Aberration correction is performed on the four most dominant aberrations. These include temporal aberrations that are corrected with higher order magnetic optical elements located where longitudinal and transverse emittance are coupled. We demonstrate aberration-free performance of emittances differing by 4 orders of magnitude, i.e. an initial transverse emittance of $\\epsilon_x=1$ pm-rad is exchanged with a longitudinal emittance of $\\epsilon_z=10$ nm-rad.

  4. Aberrations in asymmetrical electron lenses

    Starting from well established knowledge in light-optics we explore the question if electron-optical aberration can be improved in asymmetrical electron lenses. We show that spherical as well as chromatic aberration coefficients are reduced in asymmetric electrostatic einzel lenses when the center electrode is moved away from the center position towards the entrance electrode. Relative improvements up to 40% for both the chromatic and the spherical aberration coefficients can be obtained. We use analytical and numerical calculations to confirm this result for exemplary cases of a lens with fixed length and working distance. The agreement of the two calculation methods is very good. We then derive an estimate for the electron-optical aberration coefficients from light-optics. The derived expressions for chromatic and spherical aberrations are somewhat simpler than the ones derived from electron-optics as they involve integrals only over the electrostatic potential, not over the electron paths. The estimated formulas still agree well with the electron optical calculations. Overall, we are tempted to suggest that the enormous knowledge base of light optics can provide considerable guidance for electron-optical applications. -- Highlights: ► Develops the analogy between light and electron optics in aberration calculations. ► Optimized spherical and chromatic aberrations for an electrostatic einzel lens. ► Comparison between analytic and numerical aberration calculations.

  5. DNA Repair Defects and Chromosomal Aberrations

    Hada, Megumi; George, K. A.; Huff, J. L.; Pluth, J. M.; Cucinotta, F. A.

    2009-01-01

    Yields of chromosome aberrations were assessed in cells deficient in DNA doublestrand break (DSB) repair, after exposure to acute or to low-dose-rate (0.018 Gy/hr) gamma rays or acute high LET iron nuclei. We studied several cell lines including fibroblasts deficient in ATM (ataxia telangiectasia mutated; product of the gene that is mutated in ataxia telangiectasia patients) or NBS (nibrin; product of the gene mutated in the Nijmegen breakage syndrome), and gliomablastoma cells that are proficient or lacking in DNA-dependent protein kinase (DNA-PK) activity. Chromosomes were analyzed using the fluorescence in situ hybridization (FISH) chromosome painting method in cells at the first division post irradiation, and chromosome aberrations were identified as either simple exchanges (translocations and dicentrics) or complex exchanges (involving >2 breaks in 2 or more chromosomes). Gamma irradiation induced greater yields of both simple and complex exchanges in the DSB repair-defective cells than in the normal cells. The quadratic dose-response terms for both simple and complex chromosome exchanges were significantly higher for the ATM- and NBS-deficient lines than for normal fibroblasts. However, in the NBS cells the linear dose-response term was significantly higher only for simple exchanges. The large increases in the quadratic dose-response terms in these repair-defective cell lines points the importance of the functions of ATM and NBS in chromatin modifications to facilitate correct DSB repair and minimize the formation of aberrations. The differences found between ATM- and NBS-deficient cells at low doses suggest that important questions should with regard to applying observations of radiation sensitivity at high dose to low-dose exposures. For aberrations induced by iron nuclei, regression models preferred purely linear dose responses for simple exchanges and quadratic dose responses for complex exchanges. Relative biological effectiveness (RBE) factors of all of

  6. Assessing the construct validity of aberrant salience

    Kristin Schmidt

    2009-12-01

    Full Text Available We sought to validate the psychometric properties of a recently developed paradigm that aims to measure salience attribution processes proposed to contribute to positive psychotic symptoms, the Salience Attribution Test (SAT. The “aberrant salience” measure from the SAT showed good face validity in previous results, with elevated scores both in high-schizotypy individuals, and in patients with schizophrenia suffering from delusions. Exploring the construct validity of salience attribution variables derived from the SAT is important, since other factors, including latent inhibition/learned irrelevance, attention, probabilistic reward learning, sensitivity to probability, general cognitive ability and working memory could influence these measures. Fifty healthy participants completed schizotypy scales, the SAT, a learned irrelevance task, and a number of other cognitive tasks tapping into potentially confounding processes. Behavioural measures of interest from each task were entered into a principal components analysis, which yielded a five-factor structure accounting for ~75% percent of the variance in behaviour. Implicit aberrant salience was found to load onto its own factor, which was associated with elevated “Introvertive Anhedonia” schizotypy, replicating our previous finding. Learned irrelevance loaded onto a separate factor, which also included implicit adaptive salience, but was not associated with schizotypy. Explicit adaptive and aberrant salience, along with a measure of probabilistic learning, loaded onto a further factor, though this also did not correlate with schizotypy. These results suggest that the measures of learned irrelevance and implicit adaptive salience might be based on similar underlying processes, which are dissociable both from implicit aberrant salience and explicit measures of salience.

  7. On the spontaneous frequency of the structural chromosome aberrations (anomalies) in lymphocytes from human blood

    Chromosomal aberrations are observed both in irradiated cells and in cells which have not been irradiated but submitted to the action of the natural radioactive background. The reasons for these ''spontaneous chromosomal aberrations'' are both the natural radioactivity and a complex of physical, chemical and biological factors. A cytogenetic analysis of 6000 lymphocytes metaphases from the peripheral blood of 47 people indicates that the overall amount of the spontaneous aberrations is 2% with a ratio of chromosomal type aberrations to chromatide type aberrations of 1:5. Chromatide type aberrations are seen as the result of purely mechanical factors acting during slides preparation but yet another unknown moments cannot be excluded. They are more one hit type aberrations - chromatide and chromosomal fragments, wereas the two hit aberrations are very rare - one dicentric per 3000 cells. The chromosome type aberrations are proposed for comparison with radiation induced aberrations in human lymphocytes. They have a frequency of 0.0035 per cell or 0.0040 breakages per cell. Ionizing radiation does not induce qualitatively specific type of aberrations but increases many times the yield of anomalies, which are spontaneously observed. (A.B.)

  8. Use of chromosome aberrations for predicting genetic hazards to man

    The question of the use of chromosome aberrations for predicting genetic hazards to man is discussed under the following headings: interspecific comparisons of dicentric and deletion production in peripheral leukocytes; comparison of dicentric yields in leukocytes to reciprocal translocation yield in spermatogonia; recovery of spermatogonia induced translocations in the sons of irradiated males; cytologically and genetically detected deletions; and current gaps in our knowledge and problems of future interest

  9. Chromosome aberrations in somatic and germ cells following exposure to 300 R X-ray to rabbits

    A comparison is made of the chromosome aberrations yield in peripheral blood lymphocytes and spermatogonia of rabbits following exposure to 300 R X-rays. Cytogenetic analysis of lymphocytes immediately after irradiation revealed 28,0 per cent aberrant cells, including 0,17 dicentrics per cell. 120 days later less aberrations in primary spermatocytes at diakinesis - metaphasis I - 0,025 translocations per cell - were found. 60 days after irradiation the aberration rate in lymphocytes drops to the spontaneous level - 0,16 per cent aberrant cells - but analysis of karyotyped metaphases show anomalies which are unidentifiable after simple microscopic scoring. (A.B.)

  10. A study on optical aberrations in parabolic neutron guides

    Wang, Yu; Wang, Hongli; Liu, Yuntao [Neutron Scattering Laboratory, China Institute of Atomic Energy, Beijing 102413 (China); Zu, Yong [China International Engineering Consulting Corporation, Beijing 100048 (China); He, Linfeng; Wei, Guohai; Sun, Kai [Neutron Scattering Laboratory, China Institute of Atomic Energy, Beijing 102413 (China); Han, Songbai, E-mail: hansb@ciae.ac.cn [Neutron Scattering Laboratory, China Institute of Atomic Energy, Beijing 102413 (China); Chen, Dongfeng, E-mail: dongfeng@ciae.ac.cn [Neutron Scattering Laboratory, China Institute of Atomic Energy, Beijing 102413 (China)

    2015-06-21

    It is widely believed that a neutron beam can be focused to a small spot using a parabolic guide, which will significantly improve the flux. However, researchers have also noted challenges for the neutron inhomogeneous phase space distribution in parabolic focusing guide systems. In this paper, the sources of most prominent optical aberrations, such as an inhomogeneous phase space distribution and irregular divergence distribution, are discussed, and an optimization solution is also proposed. We indicate that optimizing the parabolic guide geometrical configuration removes almost all of the aberrations and yields a considerable intensity gain factor.

  11. Optical imaging and aberrations, p.2 wave diffraction optics

    Mahajan, Virendra N

    2011-01-01

    Ten years have passed since the publication of the first edition of this classic text in April 2001. Considerable new material amounting to 100 pages has been added in this second edition. Each chapter now contains a Summary section at the end. The new material in Chapter 4 consists of a detailed comparison of Gaussian apodization with a corresponding beam, determination of the optimum value of the Gaussian radius relative to that of the pupil to yield maximum focal-point irradiance, detailed discussion of standard deviation, aberration balancing, and Strehl ratio for primary aberrations, deri

  12. Aberrations in asymmetrical electron lenses.

    Fitzgerald, J P S; Word, R C; Könenkamp, R

    2012-08-01

    Starting from well established knowledge in light-optics we explore the question if electron-optical aberration can be improved in asymmetrical electron lenses. We show that spherical as well as chromatic aberration coefficients are reduced in asymmetric electrostatic einzel lenses when the center electrode is moved away from the center position towards the entrance electrode. Relative improvements up to 40% for both the chromatic and the spherical aberration coefficients can be obtained. We use analytical and numerical calculations to confirm this result for exemplary cases of a lens with fixed length and working distance. The agreement of the two calculation methods is very good. We then derive an estimate for the electron-optical aberration coefficients from light-optics. The derived expressions for chromatic and spherical aberrations are somewhat simpler than the ones derived from electron-optics as they involve integrals only over the electrostatic potential, not over the electron paths. The estimated formulas still agree well with the electron optical calculations. Overall, we are tempted to suggest that the enormous knowledge base of light optics can provide considerable guidance for electron-optical applications. PMID:22206603

  13. Aberrations of diffracted wave fields.

    Harvey, J E; Shack, R V

    1978-09-15

    This paper is an attempt to provide new insight into the behavior of near-field scalar diffraction phenomena by showing that the Rayleigh-Sommerfeld diffraction integral is equivalent to the Fourier transform integral of a generalized pupil function which includes a term that represents phase errors in the aperture. This term can be interpreted as describing a conventional wavefront aberration function. The resulting aberration coefficients are calculated and expressed in terms of the aperture diameter, observation distance, and appropriate field parameter for several different geometrical configurations of incident beam and observation space. These aberrations, which are inherently associated with the diffraction process, are precisely the effects ignored when making the usual Fresnel and Fraunhofer approximations. PMID:20203910

  14. Subwavelength-grating-induced wavefront aberrations: a case study

    Crabtree, Karlton; Chipman, Russell A.

    2007-07-01

    The on-axis wavefront aberrations of a one-dimensional subwavelength-grating antireflection coating on an f/1.7 lens surface are shown to be small with noticeable contributions of defocus, astigmatism, and piston. The astigmatism is 0.02 wave, and the magnitude of the piston approaches one wave peak-to-valley. The difference in aberrations between orthogonally polarized wavefronts, or the retardance aberration, shows 0.01 wave of astigmatismlike variation and more than 0.01 wave of retardance-induced defocuslike variation. A small coupling between polarization states occurs in the form of the familiar Maltese cross, yielding a maximum of 3% coupling in the four diagonal edges of the pupil.

  15. Chromosome Aberrations by Heavy Ions

    Ballarini, Francesca; Ottolenghi, Andrea

    It is well known that mammalian cells exposed to ionizing radiation can show different types of chromosome aberrations (CAs) including dicentrics, translocations, rings, deletions and complex exchanges. Chromosome aberrations are a particularly relevant endpoint in radiobiology, because they play a fundamental role in the pathways leading either to cell death, or to cell conversion to malignancy. In particular, reciprocal translocations involving pairs of specific genes are strongly correlated (and probably also causally-related) with specific tumour types; a typical example is the BCR-ABL translocation for Chronic Myeloid Leukaemia. Furthermore, aberrations can be used for applications in biodosimetry and more generally as biomarkers of exposure and risk, that is the case for cancer patients monitored during Carbon-ion therapy and astronauts exposed to space radiation. Indeed hadron therapy and astronauts' exposure to space radiation represent two of the few scenarios where human beings can be exposed to heavy ions. After a brief introduction on the main general features of chromosome aberrations, in this work we will address key aspects of the current knowledge on chromosome aberration induction, both from an experimental and from a theoretical point of view. More specifically, in vitro data will be summarized and discussed, outlining important issues such as the role of interphase death/mitotic delay and that of complex-exchange scoring. Some available in vivo data on cancer patients and astronauts will be also reported, together with possible interpretation problems. Finally, two of the few available models of chromosome aberration induction by ionizing radiation (including heavy ions) will be described and compared, focusing on the different assumptions adopted by the authors and on how these models can deal with heavy ions.

  16. Chromosome aberrations induced in human lymphocytes by neutron irradiation

    In vitro dose-response curves of unstable chromosome aberrations in human lymphocytes have been obtained for neutron spectra of mean energies 0.7, 0.9, 7.6 and 14.7 MeV. The aberration yields have been fitted to the quadratic function Y = αD + βD2, which is consistent with the single-track and two-track model of aberration formation. However with high-LET radiation, the linear component of yield, corresponding to damage caused by single tracks, predominates, and this term becomes more dominant with increasing LET, so that for fission spectrum neutrons the relationship is linear, Y = αD. At low doses, such as those received by radiation workers, limiting r.b.e. values between 13 and 47 were obtained relative to 60Co γ-radiation. At higher doses, as used in radiotherapy, the values were much lower; ranging from 2.7 to 8 at 200 rad of equivalent γ-radiation. Both sets of r.b.e. values correlated well with track-averaged LET but not with dose-averaged LET. When the numbers of cells without aberrations were plotted against radiation dose, curves were obtained which are similar in shape to those for conventional cell-survival experiments with comparable neutron spectra. The D0 values obtained in the present study are close to those from other cell systems. (author)

  17. Distortion of ultrashort pulses caused by aberrations

    Horváth, Z. L.; Kovács, A. P.; Bor, Zs.

    The effect of the primary wave aberrations (spherical aberration, astigmatism and coma) on ultrashort pulses is studied by the Nijboer-Zernike theory. The results of the geometrical and the wave optical treatments are compared.

  18. Use of Chromosome Aberration Frequencies for Biological Dosimetry in Man

    The vast amount of work on chromosome aberrations induced by radiation exposure under defined biological and physical conditions, has shown that there exist strict relationships between aberration frequencies, radiation quality and absorbed dose in a variety of cell systems. These relationships are such that in many irradiated plant and animal systems the frequency of induced chromosome aberrations has been used to give reliable estimates of the radiation dose to which the system was exposed. A similar extrapolation from induced aberration frequency to absorbed dose can be made with human peripheral blood lymphocytes, if such cells are exposed and cultured in vitro under well defined conditions. Moreover, since aberrations induced in lymphocytes following an in vivo exposure can be detected in the cells when subsequently cultured in vitro, the peripheral blood leucocyte system has been utilized for biological dosimetry in cases where individuals have been accidentally exposed to radiations. In the case of uniform whole-body exposure of an individual, and under defined conditions of in vitro culture, the system may be expected to fulfil most of the requirements for a sensitive and accurate biological measure of absorbed dose. In this context biological variations between individuals may be of importance and the influence of such factors as age and genotype on the radiation response are considered. In cases of partial body exposure, there are a variety of biological factors that may have a considerable influence on the yields of aberrations measured in cells removed from the body shortly after exposure. Factors that are important include: the proportions of lymphocytes located in or passing through the radiation field at the time of exposure; the distribution and mobility of lymphocytes between peripheral blood and the lymphoid systems; differences in the radiation response of lymphocytes of differing types, and differences in the capacities of irradiated and non

  19. Chromosomal aberration analysis of persons occupationally exposed to radiation in Iran (2)

    The results of chromosome aberration analysis on lymphocytes from 333 persons suspected of being overexposed to X and gamma rays in recent years at Iran is presented. 91 persons were associated with industrial radiography, 124 with radiology and 118 with medical research and therapy centers. The total yields of chromosome aberration per 100 cells were respectively 3.76, 2.92 and 2.96. The frequencies of dicentrics which are important in biological dosimetry were respectively 0.18, 0.17 and 0.21. In this investigation, 50 subjects were also examined as control with a mean aberration of 1.14 per 100 cells. With regard to incidence of chromosome aberrations as mentioned, the rate of chromosome aberrations in industrial radiographers was the most significant

  20. Baseline chromosome aberrations in children

    Merlo, D.F.; Ceppi, M.; Stagi, E.; Bocchini, V.; Šrám, Radim; Rössner st., Pavel

    2007-01-01

    Roč. 172, - (2007), s. 60-67. ISSN 0378-4274 Grant ostatní: EU(EU) 2002-02198; EU(EU) 2005-016320 Institutional research plan: CEZ:AV0Z50390512 Source of funding: R - rámcový projekt EK ; R - rámcový projekt EK Keywords : chromosome aberrations * children * molecular epidemiology Subject RIV: DN - Health Impact of the Environment Quality Impact factor: 2.826, year: 2007

  1. Aberrant methylation patterns in cancer

    Hudler, Petra; Videtič, Alja

    2016-01-01

    Epigenetic mechanisms, such as DNA methylation, DNA hydroxymethylation, post-translational modifications (PTMs) of histone proteins affecting nucleosome remodelling, and regulation by small and large non-coding RNAs (ncRNAs) work in concert with cis and trans acting elements to drive appropriate gene expression. Advances in detection methods and development of dedicated platforms and methylation arrays resulted in an explo - sion of information on aberrantly methylated sequences linking devia...

  2. Antipain-mediated suppression of X-ray-induced chromosomal aberrations in human lymphocytes

    The protease inhibitor antipain is known to modulate the number of chromosomal aberrations induced by the S-phase-dependent alkylating agent N-methyl-N'-nitro-N-nitrosoguanidine. Experiments have now been carried out to see if antipain might also affect the yield of aberrations induced by X-rays, which are S-independent and thus produce chromosomal aberrations by a different mechanism. The results show that human lymphocytes exposed to 0.4 or 1.5 Gy of X-rays at 48 h of culture and fixed at 3, 6, 8, 10 or 12 h thereafter contain 27-52% fewer chromatid breaks if the cells are also treated with antipain before irradiation. Because previous studies postulated that antipain could affect the induction of of chromosomal aberrations by suppressing free radical reactions within cells, we also tested whether antipain affects X-ray-induced aberrations when present only during the time of irradiation, as is the case for free radical scavengers, such as L-cysteine. The results indicate that, in contrast to L-cysteine, antipain can suppress the induction of X-ray-induced aberrations even when administered as late as 2 h after irradiation, suggesting that the effects of antipain on aberrations are not attributable to its interference with short-lived radicals within the cells. These data indicate that the formation of chromosome aberrations by S-independent agents can involve an antipain-sensitive process. (author)

  3. Aberration Corrected Photoemission Electron Microscopy with Photonics Applications

    Fitzgerald, Joseph P. S.

    Photoemission electron microscopy (PEEM) uses photoelectrons excited from material surfaces by incident photons to probe the interaction of light with surfaces with nanometer-scale resolution. The point resolution of PEEM images is strongly limited by spherical and chromatic aberration. Image aberrations primarily originate from the acceleration of photoelectrons and imaging with the objective lens and vary strongly in magnitude with specimen emission characteristics. Spherical and chromatic aberration can be corrected with an electrostatic mirror, and here I develop a triode mirror with hyperbolic geometry that has two adjacent, field-adjustable regions. I present analytic and numerical models of the mirror and show that the optical properties agree to within a few percent. When this mirror is coupled with an electron lens, it can provide a large dynamic range of correction and the coefficients of spherical and chromatic aberration can be varied independently. I report on efforts to realize a triode mirror corrector, including design, characterization, and alignment in our microscope at Portland State University (PSU). PEEM may be used to investigate optically active nanostructures, and we show that photoelectron emission yields can be identified with diffraction, surface plasmons, and dielectric waveguiding. Furthermore, we find that photoelectron micrographs of nanostructured metal and dielectric structures correlate with electromagnetic field calculations. We conclude that photoemission is highly spatially sensitive to the electromagnetic field intensity, allowing the direct visualization of the interaction of light with material surfaces at nanometer scales and over a wide range of incident light frequencies.

  4. Radiation induced chromosomal aberrations after cardiac catheterization and angiocardiography

    The relationship between the radiation doses and the chromosomal aberrations of peripheral lymphocytes was studied in patients under-going catheterization with or without angiocardiography. The radiation doses were estimated and chromosomal aberration analyses were carried out in 17 cases. They consisted of 10 males and 7 females at the age of 4 to 26 years with an average of 14 years. Doses in the chest and gonadal regions were measured with calibrated thermoluminescent dosimeters. Peripheral blood samples were taken immediately before and after the diagnostic procedure for chromosome analyses. Results showed that the average doses in the gonad region during cardiac catheterization with and without angiocardiography were 2.4 and 0.83 kC/kg respectively, while those in the chest region were as high as 0.93 and 0.54 kC/kg respectively. The chromosome aberration rate in both groups were significantly higher (2.75-3.33%) than the control value (0.22-0.75%) which was determined before X ray examination. No statistically significant difference of chromosome aberration yield was found between the two groups with and without angiocardiography

  5. A survey of chromosomal aberrations in lymphocytes of Chernobyl liquidators

    Sevan`kaev, A.V.; Moiseenko, V.V.; Zhloba, A.A. [Medical Radiological Research Centre, Obninsk (Russian Federation); Lloyd, D.C.; Edwards, A.A. [National Radiological Protection Board, Chilton (United Kingdom); Braselmann, H. [G.S.F. Institut fuer Strahlenbiologie (Germany)

    1995-04-01

    Chromosomal aberrations in lymphocytes of 875 Chernobyl liquidators have been scored and by comparison with control subjects the dicentric plus ring and excess acentric fragment frequencies are higher for persons who worked in the exclusion zone in 1986-1988 but not in 1989. Aberration yields are too low for individual biological dosimetry but, after taking account of the time interval between irradiation and blood sampling, the dicentric plus ring frequencies indicate average doses for 1986, 1987 and 1989 in good agreement with the annual averages in the Obninsk Registry. For 1988 the cytogenetic data indicate a significant higher average dose than the Registry. Liquidators who were not issued with a personal film badge tend to have higher aberration yields than those for whom badge data are recorded. This is particularly evident for those persons who worked in the first three months after the accident where physical dosimetry data are less complete or reliable. The persons probably experienced the highest exposures of all liquidators and the chromosomal data suggest an average value of about 300 mGy. (author).

  6. Chromosomal aberrations and bone marrow toxicity.

    Heddle, J A; Salamone, M F

    1981-01-01

    The importance of chromosomal aberrations as a proximate cause of bone marrow toxicity is discussed. Since chemicals that can cause nondisjunction are rare, numerical aberrations (aneuploidy, polyploidy) are not ordinarily important. Many structural aberrations, however, can lead directly to cell death and so are proximate causes of toxicity when they occur. The micronucleus test which utilizes the polychromatic erythrocyte is capable of detecting agents (clastogens) that can cause such struc...

  7. Chromosomal aberrations in ore miners of Slovakia

    A pilot study was performed in which the incidence of chromosomal aberrations in lymphocytes of miners in ore mines located in Central Slovakia was monitored and related to lifetime underground radon exposure and to lifetime smoking. The conclusions drawn from the results of the study were as follows: the counts of chromosomal aberrations in lymphocytes of miners were significantly higher than in an age matched control group of white-collar staff; the higher counts of chromosomal aberrations could be ascribed to underground exposure of miners and to smoking; a dependence of chromosomal aberration counts on the exposure to radon could not be assessed. (A.K.)

  8. Calculation of aberration coefficients by ray tracing

    Oral, Martin; Lencová, Bohumila

    2009-01-01

    Roč. 109, č. 11 (2009), s. 1365-1373. ISSN 0304-3991 R&D Projects: GA AV ČR IAA100650805 Institutional research plan: CEZ:AV0Z20650511 Keywords : Aberrations * Aberration coefficients * Ray tracing * Regression * Fitting Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 2.067, year: 2009

  9. Nodal aberration theory applied to freeform surfaces

    Fuerschbach, Kyle; Rolland, Jannick P.; Thompson, Kevin P.

    2014-12-01

    When new three-dimensional packages are developed for imaging optical systems, the rotational symmetry of the optical system is often broken, changing its imaging behavior and making the optical performance worse. A method to restore the performance is to use freeform optical surfaces that compensate directly the aberrations introduced from tilting and decentering the optical surfaces. In order to effectively optimize the shape of a freeform surface to restore optical functionality, it is helpful to understand the aberration effect the surface may induce. Using nodal aberration theory the aberration fields induced by a freeform surface in an optical system are explored. These theoretical predications are experimentally validated with the design and implementation of an aberration generating telescope.

  10. Aberration compensation in charged particle projection lithography

    Projection systems offer the opportunity to increase the throughput for charged particle lithography, because such systems image a large area of a mask directly on to a wafer as a single shot. Shots have to be imaged over a certain range of off-axis distances at the wafer to increase the writing speed, because shot sizes are limited to about 0.25x0.25 mm2 due to aberrations. In a projection system with only lenses, however, the aberrations for off-axis shots are still very large, and some aberration compensation elements need to be introduced. In this paper, three aberration compensation elements (deflectors, stigmators and dynamic focus lenses) are first discussed, a suite of newly developed software, called PROJECTION, based on this principle and our unified aberration theory is then described, and an illustrative example computed with the software is finally given

  11. Higher-Order Aberrations in Myopic Eyes

    Farid Karimian

    2010-01-01

    Full Text Available Purpose: To evaluate the correlation between refractive error and higher-order aberrations (HOAs in patients with myopic astigmatism. Methods: HOAs were measured using the Zywave II aberrometer over a 6 mm pupil. Correlations between HOAs and myopia, astigmatism, and age were analyzed. Results: One hundred and twenty-six eyes of 63 subjects with mean age of 26.4±5.9 years were studied. Mean spherical equivalent refractive error and refractive astigmatism were -4.94±1.63 D and 0.96±1.06 D, respectively. The most common higher-order aberration was primary horizontal trefoil with mean value of 0.069±0.152 μm followed by spherical aberration (-0.064±0.130 μm and primary vertical coma (-0.038±0.148 μm. As the order of aberration increased from third to fifth, its contribution to total HOA decreased: 53.9% for third order, 31.9% for fourth order, and 14.2% for fifth order aberrations. Significant correlations were observed between spherical equivalent refractive error and primary horizontal coma (R=0.231, P=0.022, and root mean square (RMS of spherical aberration (R=0.213, P=0.031; between astigmatism and RMS of total HOA (R=0.251, P=0.032, RMS of fourth order aberration (R=0.35, P<0.001, and primary horizontal coma (R=0.314, P=0.004. Spherical aberration (R=0.214, P=0.034 and secondary vertical coma (R=0.203, P=0.031 significantly increased with age. Conclusion: Primary horizontal trefoil, spherical aberration and primary vertical coma are the predominant higher-order aberrations in eyes with myopic astigmatism.

  12. Chromosome aberration assays in Allium

    Grant, W.F.

    1982-01-01

    The common onion (Allium cepa) is an excellent plant for the assay of chromosome aberrations after chemical treatment. Other species of Allium (A. cepa var. proliferum, A. carinatum, A. fistulosum and A. sativum) have also been used but to a much lesser extent. Protocols have been given for using root tips from either bulbs or seeds of Allium cepa to study the cytological end-points, such as chromosome breaks and exchanges, which follow the testing of chemicals in somatic cells. It is considered that both mitotic and meiotic end-points should be used to a greater extent in assaying the cytogenetic effects of a chemical. From a literature survey, 148 chemicals are tabulated that have been assayed in 164 Allium tests for their clastogenic effect. Of the 164 assays which have been carried out, 75 are reported as giving a positive reaction, 49 positive and with a dose response, 1 positive and temperature-related, 9 borderline positive, and 30 negative; 76% of the chemicals gave a definite positive response. It is proposed that the Allium test be included among those tests routinely used for assessing chromosomal damage induced by chemicals.

  13. Effect of aberrations in vortex spatial filtering

    Sharma, Manoj Kumar; Joseph, Joby; Senthilkumaran, P.

    2012-11-01

    Edge enhancement is a very important operation in image processing and a spiral phase plate can be used as a radial Hilbert mask for isotropic edge enhancement. In this paper we analyze the effect of various Seidel aberrations on the performance of radial Hilbert mask or the vortex phase mask. The aberrated vortex phase mask is implemented optically with the help of a high resolution, spatial light modulator (SLM). It has also been shown that out of various aberrations astigmatism can introduce anisotropy in the Hilbert mask which causes selective edge enhancement.

  14. Role of DNA polymerase α in chromosomal aberration production by ionizing radiation

    The authors have shown that aphidicolin, like other inhibitors of DNA synthesis, both induces chromosomal aberrations in human peripheral lymphocytes and, as a post-treatment, interacts synergistically with X rays to produce greatly enhanced aberration yields. Because DNA polymerase α is the only DNA-synthetic or repair enzyme known to be affected by aphidicolin, the authors infer that this enzyme is directly involved in the repair of DNA lesions which, if unrepaired, can result in visible chromosomal aberrations. The present experiments were undertaken to further explore the effects of aphidicolin in human lymphocytes in the post-DNA-synthetic G2 phase of the cell cycle. Earlier experiments in which cells were simply fixed at times after treatment when the frequency of metaphases in the DNA-synthetic S phase of the cell cycle is zero in typical percentage labeled mitoses curves for human lymphocytes did not completely rule out the possibility that the aberrations induced by aphidicolin actually arose in a small subpopulation of cells actually in the S phase, and not in G2 cells. Furthermore, the yield of X-ray-induced aberrations in G2 cells falls rapidly as a function of increasing irradiation-fixation interval, so comparisons of yields at particular fixation times can be misleading if the cells in each group do not progress through G2 at the same rate. The experiments reported here utilized labeling with tritiated thymidine to positively identify cells in the S phase at the time of treatment and serial Colcemid collections and fixations to determine aberration yields over as much of the G2 phase as feasible

  15. Aberration corrected Lorentz scanning transmission electron microscopy

    We present results from an aberration corrected scanning transmission electron microscope which has been customised for high resolution quantitative Lorentz microscopy with the sample located in a magnetic field free or low field environment. We discuss the innovations in microscope instrumentation and additional hardware that underpin the imaging improvements in resolution and detection with a focus on developments in differential phase contrast microscopy. Examples from materials possessing nanometre scale variations in magnetisation illustrate the potential for aberration corrected Lorentz imaging as a tool to further our understanding of magnetism on this lengthscale. - Highlights: • Demonstration of nanometre scale resolution in magnetic field free environment using aberration correction in the scanning transmission electron microscope (STEM). • Implementation of differential phase contrast mode of Lorentz microscopy in aberration corrected STEM with improved sensitivity. • Quantitative imaging of magnetic induction of nanostructures in amorphous and cross-section samples

  16. Aberration features in directional dark matter detection

    Bozorgnia, Nassim; Gondolo, Paolo

    2012-01-01

    The motion of the Earth around the Sun causes an annual change in the magnitude and direction of the arrival velocity of dark matter particles on Earth, in a way analogous to aberration of stellar light. In directional detectors, aberration of weakly interacting massive particles (WIMPs) modulates the pattern of nuclear recoil directions in a way that depends on the orbital velocity of the Earth and the local galactic distribution of WIMP velocities. Knowing the former, WIMP aberration can give information on the latter, besides being a curious way of confirming the revolution of the Earth and the extraterrestrial provenance of WIMPs. While observing the full aberration pattern requires extremely large exposures, we claim that the annual variation of the mean recoil direction or of the event counts over specific solid angles may be detectable with moderately large exposures. For example, integrated counts over galactic hemispheres separated by planes perpendicular to Earth's orbit would modulate annually, res...

  17. Catadioptric aberration correction in cathode lens microscopy

    Tromp, R.M. [IBM T.J. Watson Research Center, PO Box 218, Yorktown Heights, NY 10598 (United States); Kamerlingh Onnes Laboratory, Leiden Institute of Physics, Niels Bohrweg 2, 2333 CA Leiden (Netherlands)

    2015-04-15

    In this paper I briefly review the use of electrostatic electron mirrors to correct the aberrations of the cathode lens objective lens in low energy electron microscope (LEEM) and photo electron emission microscope (PEEM) instruments. These catadioptric systems, combining electrostatic lens elements with a reflecting mirror, offer a compact solution, allowing simultaneous and independent correction of both spherical and chromatic aberrations. A comparison with catadioptric systems in light optics informs our understanding of the working principles behind aberration correction with electron mirrors, and may point the way to further improvements in the latter. With additional developments in detector technology, 1 nm spatial resolution in LEEM appears to be within reach. - Highlights: • The use of electron mirrors for aberration correction in LEEM/PEEM is reviewed. • A comparison is made with similar systems in light optics. • Conditions for 1 nm spatial resolution are discussed.

  18. Catadioptric aberration correction in cathode lens microscopy

    In this paper I briefly review the use of electrostatic electron mirrors to correct the aberrations of the cathode lens objective lens in low energy electron microscope (LEEM) and photo electron emission microscope (PEEM) instruments. These catadioptric systems, combining electrostatic lens elements with a reflecting mirror, offer a compact solution, allowing simultaneous and independent correction of both spherical and chromatic aberrations. A comparison with catadioptric systems in light optics informs our understanding of the working principles behind aberration correction with electron mirrors, and may point the way to further improvements in the latter. With additional developments in detector technology, 1 nm spatial resolution in LEEM appears to be within reach. - Highlights: • The use of electron mirrors for aberration correction in LEEM/PEEM is reviewed. • A comparison is made with similar systems in light optics. • Conditions for 1 nm spatial resolution are discussed

  19. Sensing Phase Aberrations behind Lyot Coronagraphs

    Sivaramakrishnan, Anand; Soummer, Rémi; Pueyo, Laurent; Wallace, J. Kent; Shao, Michael

    2008-11-01

    Direct detection of young extrasolar planets orbiting nearby stars can be accomplished from the ground with extreme adaptive optics and coronagraphy in the near-infrared, as long as this combination can provide an image with a dynamic range of 107 after the data are processed. Slowly varying speckles due to residual phase aberrations that are not measured by the primary wave-front sensor are the primary obstacle to achieving such a dynamic range. In particular, non-common optical path aberrations occurring between the wave-front sensor and the coronagraphic occulting spot degrade performance the most. We analyze the passage of both low and high spatial frequency phase ripples, as well as low-order Zernike aberrations, through an apodized pupil Lyot coronagraph in order to demonstrate the way coronagraphic filtering affects various aberrations. We derive the coronagraphically induced cutoff frequency of the filtering and estimate coronagraphic contrast losses due to low-order Zernike aberrations: tilt, astigmatism, defocus, coma, and spherical aberration. Such slowly varying path errors can be measured behind a coronagraph and corrected by a slowly updated optical path delay precompensation or offset asserted on the wave front by the adaptive optics (AO) system. We suggest ways of measuring and correcting all but the lowest spatial frequency aberrations using Lyot plane wave-front data, in spite of the complex interaction between the coronagraph and those mid-spatial frequency aberrations that cause image plane speckles near the coronagraphic focal plane mask occulter's edge. This investigation provides guidance for next-generation coronagraphic instruments currently under construction.

  20. Aberrant right hepatic artery; A case report

    We present a rare case of aberrant hepatic artery in a 40-year-old male with a history of chronic cholecystitis. During laparoscopic surgery, the artery found to pass anterior to the body the gallbladder and bifurcating anterior to the gallbladder body. The surgery was un eventful. We present this anomaly of the rare condition of aberrant right hepatic artery which should be in mind during laparoscopic cholecystectomy, because inadverant injury could lead to massive bleeding and increase co morbidities. (author)

  1. The Level and Distribution of Chromosomal Aberration of Tomato Seeds at Different Penetration Depths of Carbon Ions

    WANG Jufang; LI Wenjian; ZHANG Ying

    2008-01-01

    The relationship between the penetration depth and the level and distribution of chromosomal aberration of the root tip cells were investigated by exposure of the superposed tomato seeds to 80 MeV/u carbon ions. The results showed that on the entrance of the beam the chromosomal aberration level was low. Damage such as breaks and gaps were dominant. At the Bragg peak, the chromosomal aberration level was high. The yields of dicentrics, rings and disintegrated small chromosomes increased but the yields of breaks and gaps decreased. These results are consistent with the distribution of the physical depth dose profile of carbon ions. It is effective to deposit the Bragg peak on the seeds to induce hereditary aberration in the mutation breeding with heavy ions.

  2. Some thoughts on the nature of chromosomal aberrations and their use as a quantitative end-point for radiobiological studies

    A vital condition when chromosomal aberrations are to be used as a quantitative end-point (e.g. for constructing a dose response curve) is that a specific dose must produce a specific yield of aberrations under a given set of experimental conditions. In practice, there are very few cell systems where this condition is met. The majority show significant variations in observed yield with time between irradiation and sampling, indicative of variable radiosensitivity within the cell population. The profile of this yield time curve is determined by the cell-cycle kinetics and therefore is itself subject to modification by radiation through mitotic delay and perturbation. Thus in such heterogeneous populations, each increment of dose not only induces more aberrations, but at the same time modifies the recovered yield per cell. This has an obvious bearing upon the interpretation of the shape of any dose-response curve obtained

  3. Chromosome aberrations in workers of beach sand mineral industries

    Beach Sand Mining (BSM) is a profitable industry earning a sizable income for the country by way of foreign exchange. The Indian coast is rich in rare earths such as ilmenite, rutile, leucoxene, zircon, garnet and sillimanite, and is invariably associated with radioactive monazite. Due to the nature of the separation processes involved and the manual handling, workers in these factories are continuously being exposed to suspended particles containing naturally occurring radioactive materials. An attempt was made to estimate DNA damage using a chromosome aberration assay to monitor radiation effects in workers of BSM industries in India. The study group comprised 27 BSM workers and 20 controls. Percentage yields of dicentrics, acentric fragments and chromatid breaks observed in the control group were 0.058 ± 0.017, 0.073 ± 0.03 and 0.22 ± 0.112, respectively. Percentage yields of dicentrics + centric rings, acentric fragments and chromatid breaks observed in the BSM group were 0.029 ± 0.01 (P value 0.19), 0.24 ± 0.06 (P value 0.006) and 0.455 ± 0.06 (P value 0.0004), respectively. Elevated levels of fragments and chromatid aberrations are suggestive of low-dose radiation effects and also chemically-induced DNA damage. (authors)

  4. Lymphocyte chromosome aberrations in patients undergoing radiation therapy for mammary carcinoma

    Leonard, A.; Fabry, L.; Lemaire, M. (Centre d' Etude de l' Energie Nucleaire, Mol (Belgium)); Gerber, G.B. (Liege Univ. (Belgium))

    1983-01-01

    Patients undergoing radiation therapy for mammary carcinoma have been cytologically examined for the presence of polycentric chromosomes in their peripheral blood lymphocytes. The mean values of the observed yields can be fitted to a quadratic function. Due probably to a lower number of lymphocytes exposed the curve now obtained gives a smaller aberration yield than the dose effect curves published earlier for patients given telecobalt therapy.

  5. Lymphocyte chromosome aberrations in patients undergoing radiation therapy for mammary carcinoma

    Patients undergoing radiation therapy for mammary carcinoma have been cytologically examined for the presence of polycentric chromosomes in their peripheral blood lymphocytes. The mean values of the observed yields can be fitted to a quadratic function. Due probably to a lower number of lymphocytes exposed the curve now obtained gives a smaller aberration yield than the dose effect curves published earlier for patients given telecobalt therapy. (Auth.)

  6. mBAND Analysis of Late Chromosome Aberrations in Human Lymphocytes Induced by Gamma Rays and Fe Ions

    Sunagawa, Mayumi; Zhang, Ye; Yeshitla, Samrawit; Kadhim, Munira; Wilson, Bobby; Wu, Honglu

    2014-01-01

    Chromosomal translocations and inversions are considered stable, and cells containing these types of chromosome aberrations can survive multiple cell divisions. An efficient method to detect an inversion is multi-color banding fluorescent in situ hybridization (mBAND) which allows identification of both inter- and intrachromosome aberrations simultaneously. Post irradiation, chromosome aberrations may also arise after multiple cell divisions as a result of genomic instability. To investigate the stable or late-arising chromosome aberrations induced after radiation exposure, we exposed human lymphocytes to gamma rays and Fe ions ex vivo, and cultured the cells for multiple generations. Chromosome aberrations were analyzed in cells collected at first mitosis and at several time intervals during the culture period post irradiation. With gamma irradiation, about half of the damages observed at first mitosis remained after 7 day- and 14 day- culture, suggesting the transmissibility of damages to the surviving progeny. Detailed analysis of chromosome break ends participating in exchanges revealed a greater fraction of break ends involved in intrachromosome aberrations in the 7- and 14-day samples in comparison to the fraction at first mitosis. In particular, simple inversions were found at 7 and 14 days, but not at the first mitosis, suggesting that some of the aberrations might be formed days post irradiation. In contrast, at the doses that produced similar frequencies of gamma-induced chromosome aberrations as observed at first mitosis, a significantly lower yield of aberrations remained at the same population doublings after Fe ion exposure. At these equitoxic doses, more complex type aberrations were observed for Fe ions, indicating that Fe ion-induced initial chromosome damages are more severe and may lead to cell death. Comparison between low and high doses of Fe ion irradiation in the induction of late damages will also be discussed.

  7. Modelling the formation of polycentric chromosome aberrations

    Sachs, R.K.; Tarver, J. (California Univ., Berkeley, CA (United States). Dept. of Mathematics); Yates, B.L.; Morgan, W.F. (California Univ., San Francisco, CA (United States))

    1992-10-01

    Exchange-type chromosome aberrations produced by ionizing radiation or restriction enzymes are believed to result from pairwise interaction of DNA double-strand breaks (dsb). In addition to dicentrics, such aberrations may include higher-order polycentries (tricentries, tetracentrics, etc.). The authors have developed computer programs that calculate the probability of the various polycentrics for a given average number of pairwise interactions. Two models are used. Model I incorporates kinetic competition between restitution, complete exchanges (illegitimate recombination events), and incomplete exchanges. Model II allows unrestituted breaks even if there is no recombination. The models were applied to experimental observations of aberrations produced in G[sub 1] Chinese hamster ovary cells after electroporation with the restriction enzyme PvuII, which produces blunt-end dsb. (author).

  8. Modelling the formation of polycentric chromosome aberrations

    Exchange-type chromosome aberrations produced by ionizing radiation or restriction enzymes are believed to result from pairwise interaction of DNA double-strand breaks (dsb). In addition to dicentrics, such aberrations may include higher-order polycentries (tricentries, tetracentrics, etc.). The authors have developed computer programs that calculate the probability of the various polycentrics for a given average number of pairwise interactions. Two models are used. Model I incorporates kinetic competition between restitution, complete exchanges (illegitimate recombination events), and incomplete exchanges. Model II allows unrestituted breaks even if there is no recombination. The models were applied to experimental observations of aberrations produced in G1 Chinese hamster ovary cells after electroporation with the restriction enzyme PvuII, which produces blunt-end dsb. (author)

  9. Chromosomal aberrations induced by alpha particles

    The chromosomal aberrations produced by the ionizing radiation are commonly used when it is necessary to establish the exposure dose of an individual, it is a study that is used like complement of the traditional physical systems and its application is only in cases in that there is doubt about what indicates the conventional dosimetry. The biological dosimetry is based on the frequency of aberrations in the chromosomes of the lymphocytes of the individual in study and the dose is calculated taking like reference to the dose-response curves previously generated In vitro. A case of apparent over-exposure to alpha particles to which is practiced analysis of chromosomal aberrations to settle down if in fact there was exposure and as much as possible, to determine the presumed dose is presented. (Author)

  10. Estimation of dose from chromosome aberration rate

    The methods and skills of evaluating dose from correctly scored shromsome aberration rate are presented, and supplemented with corresponding BASIC computer code. The possibility and preventive measures of excessive probability of missing score of the aberrations in some of the current routine score methods are discussed. The use of dose-effect relationship with exposure time correction factor G in evaluating doses and their confidence intervals, dose estimation in mixed n-γ exposure, and identification of high by nonuniform acute exposure to low LET radiation and its dose estimation are discussed in more detail. The difference of estimated dose due to whether the interaction between subleisoms produced by n and γ have been taken into account is examined. In fitting the standard dose-aberration rate curve, proper weighing of experiment points and comparison with commonly accepted values are emphasised, and the coefficient of variation σy√y of the aberration rate y as a function of dose and exposure time is given. In appendix I and II, the dose-aberration rate formula is derived from dual action theory, and the time variation of subleisom is illustrated and in appendix III, the estimation of dose from scores of two different types of aberrations (of other related score) is illustrated. Two computer codes are given in appendix IV, one is a simple code, the other a complete code, including the fitting of standard curve. the skills of using compressed data storage, and the production of simulated 'data ' for testing the curve fitting procedure are also given

  11. The role of DNA cluster damage and chromosome aberrations in radiation-induced cell killing: a theoretical approach

    The role played by DNA cluster damage and chromosome aberrations in radiation-induced cell killing was investigated, assuming that certain chromosome aberrations (dicentrics, rings and large deletions, or 'lethal aberrations') lead to clonogenic inactivation and that chromosome aberrations are due to micrometre-scale rejoining of chromosome fragments derived from DNA cluster lesions (CLs). The CL yield and the threshold distance governing fragment rejoining were left as model parameters. The model, implemented as a Monte Carlo code called BIANCA (Biophysical Analysis of Cell death and chromosome Aberrations), provided simulated survival curves that were compared with survival data on AG1522 and V79 cells exposed to different radiation types, including heavy ions. The agreement between simulation outcomes and experimental data suggests that lethal aberrations are likely to play an important role in cell killing not only for AG1522 cells exposed to X rays, as already reported by others, but also for other radiation types and other cells. Furthermore, the results are consistent with the hypothesis that the critical DNA lesions leading to cell death and chromosome aberrations are double-strand break clusters ( possibly involving the ∼1000- 10 000 bp scale) and that the effects of such clusters are modulated by micrometre-scale proximity effects during DNA damage processing. (authors)

  12. Biological radiation dose estimation by chromosomal aberrations analysis in human peripheral blood (dose-effect curve)

    In order to draw a dose-effect curve, experimentally gamma ray induced chromosomal aberrations in human peripheral lymphocytes from eight healthy people were studied. Samples from 4 males and 4 females were irradiated in tubes with 0.15, 0.25, 0.5, 1, 1.5, 2, 2.5 gray of gamma ray (Co60 at dose rate 0.3 Gy/min). Irradiated and control samples were incubated in 37 centigrade for 48 hours cell cultures. Cell cultures then were stopped and metaphases spread, Giemsa stained to score the induced chromosomal aberrations. Chromosomal aberrations from 67888 metaphases were scored. Curves from the total number of dicentrics, dicentrics + rings and total numbers of breaks in cell for each individual or for all people were drawn. An increase of all chromosomal aberrations types with the elevation of the doses was observed. The yield of chromosome aberrations is related to the dose used. These curves give a quick useful estimation of the accidentally radiation exposure. (author)

  13. Combining Chromosomal Arm Status and Significantly Aberrant Genomic Locations Reveals New Cancer Subtypes

    Tal Shay

    2009-01-01

    Full Text Available Many types of tumors exhibit characteristic chromosomal losses or gains, as well as local amplifications and deletions. Within any given tumor type, sample specific amplifications and deletions are also observed. Typically, a region that is aberrant in more tumors, or whose copy number change is stronger, would be considered as a more promising candidate to be biologically relevant to cancer. We sought for an intuitive method to define such aberrations and prioritize them. We define V, the “volume” associated with an aberration, as the product of three factors: (a fraction of patients with the aberration, (b the aberration’s length and (c its amplitude. Our algorithm compares the values of V derived from the real data to a null distribution obtained by permutations, and yields the statistical significance (p-value of the measured value of V. We detected genetic locations that were significantly aberrant, and combine them with chromosomal arm status (gain/loss to create a succinct fingerprint of the tumor genome. This genomic fingerprint is used to visualize the tumors, highlighting events that are co-occurring or mutually exclusive. We apply the method on three different public array CGH datasets of Medulloblastoma and Neuroblastoma, and demonstrate its ability to detect chromosomal regions that were known to be altered in the tested cancer types, as well as to suggest new genomic locations to be tested. We identified a potential new subtype of Medulloblastoma, which is analogous to Neuroblastoma type 1.

  14. The correction of electron lens aberrations

    Hawkes, P.W., E-mail: peter.hawkes@cemes.fr

    2015-09-15

    The progress of electron lens aberration correction from about 1990 onwards is chronicled. Reasonably complete lists of publications on this and related topics are appended. A present for Max Haider and Ondrej Krivanek in the year of their 65th birthdays. By a happy coincidence, this review was completed in the year that both Max Haider and Ondrej Krivanek reached the age of 65. It is a pleasure to dedicate it to the two leading actors in the saga of aberration corrector design and construction. They would both wish to associate their colleagues with such a tribute but it is the names of Haider and Krivanek (not forgetting Joachim Zach) that will remain in the annals of electron optics, next to that of Harald Rose. I am proud to know that both regard me as a friend as well as a colleague. - Highlights: • Geometrical aberration correction. • Chromatic aberration correction. • 50 pm resolution. • High-resolution electron energy-loss spectroscopy. • Extensive bibliographies.

  15. Aberration features in directional dark matter detection

    The motion of the Earth around the Sun causes an annual change in the magnitude and direction of the arrival velocity of dark matter particles on Earth, in a way analogous to aberration of stellar light. In directional detectors, aberration of weakly interacting massive particles (WIMPs) modulates the pattern of nuclear recoil directions in a way that depends on the orbital velocity of the Earth and the local galactic distribution of WIMP velocities. Knowing the former, WIMP aberration can give information on the latter, besides being a curious way of confirming the revolution of the Earth and the extraterrestrial provenance of WIMPs. While observing the full aberration pattern requires extremely large exposures, we claim that the annual variation of the mean recoil direction or of the event counts over specific solid angles may be detectable with moderately large exposures. For example, integrated counts over Galactic hemispheres separated by planes perpendicular to Earth's orbit would modulate annually, resulting in Galactic Hemisphere Annual Modulations (GHAM) with amplitudes larger than the usual non-directional annual modulation

  16. Prenatal hydronephrosis caused by aberrant renal vessels

    Lenz, K; Thorup, Jørgen Mogens; Rabol, A;

    1996-01-01

    With routine use of obstetric ultrasonography, fetal low-grade hydronephrosis is commonly detected, but may resolve spontaneously after birth. Two cases are presented to illustrate that in some cases such findings can express intermittent hydronephrosis caused by aberrant renal vessels. Renal det...

  17. The correction of electron lens aberrations

    The progress of electron lens aberration correction from about 1990 onwards is chronicled. Reasonably complete lists of publications on this and related topics are appended. A present for Max Haider and Ondrej Krivanek in the year of their 65th birthdays. By a happy coincidence, this review was completed in the year that both Max Haider and Ondrej Krivanek reached the age of 65. It is a pleasure to dedicate it to the two leading actors in the saga of aberration corrector design and construction. They would both wish to associate their colleagues with such a tribute but it is the names of Haider and Krivanek (not forgetting Joachim Zach) that will remain in the annals of electron optics, next to that of Harald Rose. I am proud to know that both regard me as a friend as well as a colleague. - Highlights: • Geometrical aberration correction. • Chromatic aberration correction. • 50 pm resolution. • High-resolution electron energy-loss spectroscopy. • Extensive bibliographies

  18. Optical advantages of astigmatic aberration corrected heliostats

    van Rooyen, De Wet; Schöttl, Peter; Bern, Gregor; Heimsath, Anna; Nitz, Peter

    2016-05-01

    Astigmatic aberration corrected heliostats adapt their shape in dependence of the incidence angle of the sun on the heliostat. Simulations show that this optical correction leads to a higher concentration ratio at the target and thus in a decrease in required receiver aperture in particular for smaller heliostat fields.

  19. Anti-forensics of chromatic aberration

    Mayer, Owen; Stamm, Matthew C.

    2015-03-01

    Over the past decade, a number of information forensic techniques have been developed to identify digital image manipulation and falsification. Recent research has shown, however, that an intelligent forger can use anti-forensic countermeasures to disguise their forgeries. In this paper, an anti-forensic technique is proposed to falsify the lateral chromatic aberration present in a digital image. Lateral chromatic aberration corresponds to the relative contraction or expansion between an image's color channels that occurs due to a lens's inability to focus all wavelengths of light on the same point. Previous work has used localized inconsistencies in an image's chromatic aberration to expose cut-and-paste image forgeries. The anti-forensic technique presented in this paper operates by estimating the expected lateral chromatic aberration at an image location, then removing deviations from this estimate caused by tampering or falsification. Experimental results are presented that demonstrate that our anti-forensic technique can be used to effectively disguise evidence of an image forgery.

  20. Cosmological parameter estimation: impact of CMB aberration

    The peculiar motion of an observer with respect to the CMB rest frame induces an apparent deflection of the observed CMB photons, i.e. aberration, and a shift in their frequency, i.e. Doppler effect. Both effects distort the temperature multipoles alm's via a mixing matrix at any l. The common lore when performing a CMB based cosmological parameter estimation is to consider that Doppler affects only the l = 1 multipole, and neglect any other corrections. In this paper we reconsider the validity of this assumption, showing that it is actually not robust when sky cuts are included to model CMB foreground contaminations. Assuming a simple fiducial cosmological model with five parameters, we simulated CMB temperature maps of the sky in a WMAP-like and in a Planck-like experiment and added aberration and Doppler effects to the maps. We then analyzed with a MCMC in a Bayesian framework the maps with and without aberration and Doppler effects in order to assess the ability of reconstructing the parameters of the fiducial model. We find that, depending on the specific realization of the simulated data, the parameters can be biased up to one standard deviation for WMAP and almost two standard deviations for Planck. Therefore we conclude that in general it is not a solid assumption to neglect aberration in a CMB based cosmological parameter estimation

  1. Adaptive and aberrant reward prediction signals in the human brain.

    Roiser, J.P.; Stephan, K.E.; Ouden, H.E.M. den; Friston, K.J.; Joyce, E.M.

    2010-01-01

    Theories of the positive symptoms of schizophrenia hypothesize a role for aberrant reinforcement signaling driven by dysregulated dopamine transmission. Recently, we provided evidence of aberrant reward learning in symptomatic, but not asymptomatic patients with schizophrenia, using a novel paradigm

  2. Primary aberrations in focused radially polarized vortex beams

    Biss, David P.; Brown, T. G.

    2004-02-01

    We study the effect of primary aberrations on the 3-D polarization of the electric field in a focused lowest order radially polarized beam. A full vector diffraction treatment of the focused beams is used. Attention is given to the effects of primary spherical, astigmatic, and comatic aberrations on the local polarization, Strehl ratio, and aberration induced degradation of the longitudinal field at focus

  3. The correction of electron lens aberrations.

    Hawkes, P W

    2015-09-01

    The progress of electron lens aberration correction from about 1990 onwards is chronicled. Reasonably complete lists of publications on this and related topics are appended. A present for Max Haider and Ondrej Krivanek in the year of their 65th birthdays. By a happy coincidence, this review was completed in the year that both Max Haider and Ondrej Krivanek reached the age of 65. It is a pleasure to dedicate it to the two leading actors in the saga of aberration corrector design and construction. They would both wish to associate their colleagues with such a tribute but it is the names of Haider and Krivanek (not forgetting Joachim Zach) that will remain in the annals of electron optics, next to that of Harald Rose. I am proud to know that both regard me as a friend as well as a colleague. PMID:26025209

  4. Do patients with schizophrenia exhibit aberrant salience?

    Roiser, J. P.; Stephan, K E; den Ouden, H. E. M.; Barnes, T. R. E.; Friston, K.J.; Joyce, E. M.

    2009-01-01

    BACKGROUND: It has been suggested that some psychotic symptoms reflect ‘aberrant salience’, related to dysfunctional reward learning. To test this hypothesis we investigated whether patients with schizophrenia showed impaired learning of task-relevant stimulusreinforcement associations in the presence of distracting task-irrelevant cues. METHODS: We tested 20 medicated patients with schizophrenia and 17 controls on a reaction time game, the Salience Attribution Test. In this game, ...

  5. Tailored displays to compensate for visual aberrations

    Pamplona, Vitor F.; Oliveira, Manuel M.; Aliaga, Daniel G.; Raskar, Ramesh

    2012-01-01

    We introduce tailored displays that enhance visual acuity by decomposing virtual objects and placing the resulting anisotropic pieces into the subject's focal range. The goal is to free the viewer from needing wearable optical corrections when looking at displays. Our tailoring process uses aberration and scattering maps to account for refractive errors and cataracts. It splits an object's light field into multiple instances that are each in-focus for a given eye sub-aperture. Their integrati...

  6. Chromosome aberrations in workers of ignalina nuclear power plant

    individual for the presence of chromosome aberrations. Chromosome aberration analysis revealed no differences between the two groups of radiation workers, or between the radiation workers and controls. The mean total chromosome aberration frequencies were: 1,32 ± 0,27 CA/100 cells (group A), 1,56±0,39 CA/100 cells (group B), and 1,65±0,15 CA/100 cells (group C). The average yield of dicentric chromosomes per 100 cells in A and B radiation groups was 0,10±0.06 and 0,05±0,04, respectively, and 0,08±0,02 in controls. Thus, the results of the present study indicate no increase in chromosome aberration frequencies in I.N.P.P. workers exposed to doses close to permissible annual dose limits. The next blood sampling of I.N.P.P. workers will be performed in October 2005. The Lithuanian Bio ethics Committee approved the study. (authors)

  7. Radiotherapeutical chromosomal aberrations in laryngeal cancer patients

    Stošić-Divjak Svetlana L.

    2009-01-01

    Full Text Available Introduction. The authors present the results of cytogenetic analysis of 21 patients with laryngeal carcinomas diagnosed and treated in the period 1995-2000 at the Institute of Otorhinolaryngology and Maxillofacial Surgery, Clinical Center of Serbia and Clinical Center of Novi Sad. Material and methods. The patients were specially monitored and the material was analyzed at the Institute of Human Genetics of the School of Medicine in Belgrade as well as in the Laboratory for Radiological Protection of the Institute of Occupational and Radiological Health 'Dr Dragomir Karajovic' in Belgrade. Results. The incidence of chromosomal aberrations and incidence of exchange of material between sister chromatids were observed in the preparation of the metaphasic lymphocyte chromosomes of the peripheral blood obtained in the culture. Structural aberrations were found on the chromosomes in the form of breakups, rings, translocations and dicentrics as early as after a single exposure of patients to tumor radiation dose of 2 Gy in the field sized 5x7. Out of the total number of 35 cultivated blood samples obtained from 13 patients, 21 were successfully cultivated and they were proved to contain chromosomal aberrations. Some of the peripheral blood samples failed to show cell growth in vitro due to the lethal cell damages in vivo. Discussion.. We have consluded that the number of structural aberrations cannot be used as a biological measure of the absorbed ionizing radiation dose. The presence of aberrations per se is indicative of the mutagenic effect of the ionizing radiation, which was also confirmed in our series on the original model by cultivation of the peripheral blood lymphocytes in the culture of the cells of the volunteer donors upon in vitro radiation. Using the method of bromdeoxyuridylreductase, the increased incidence of SCE as a mutagenic effect was registered. Conclusion. It has been concluded that the increase of absorbed radiation dose in

  8. Chromatic variation of aberration: the role of induced aberrations and raytrace direction

    Berner, A.; Nobis, T.; Shafer, D.; Gross, H.

    2015-09-01

    The design and optimization process of an optical system contains several first order steps. The definition of the appropriate lens type and the fixation of the raytrace direction are some of them. The latter can be understood as a hidden assumption rather than an aware design step. This is usually followed by the determination of the paraxial lens layout calculated for the primary wavelength. It is obvious, that for this primary wavelength the paraxial calculations are independent of raytrace direction. Today, most of the lens designs are specified not to work only for one wavelength, but in a certain wavelength range. Considering such rays of other wavelengths, one can observe that depending on the direction there will already occur differences in the first order chromatic aberrations and additionally in the chromatic variation of the third-order aberrations. The reason for this effect are induced aberrations emerging from one surface to the following surfaces by perturbed ray heights and ray angles. It can be shown, that the total amount of surface-resolved first order chromatic aberrations and the chromatic variation of the five primary aberrations can be split into an intrinsic part and an induced part. The intrinsic part is independent of the raytrace direction whereas the induced part is not.

  9. Simulation of the Formation of DNA Double Strand Breaks and Chromosome Aberrations in Irradiated Cells

    Plante, Ianik; Ponomarev, Artem L.; Wu, Honglu; Blattnig, Steve; George, Kerry

    2014-01-01

    The formation of DNA double-strand breaks (DSBs) and chromosome aberrations is an important consequence of ionizing radiation. To simulate DNA double-strand breaks and the formation of chromosome aberrations, we have recently merged the codes RITRACKS (Relativistic Ion Tracks) and NASARTI (NASA Radiation Track Image). The program RITRACKS is a stochastic code developed to simulate detailed event-by-event radiation track structure: [1] This code is used to calculate the dose in voxels of 20 nm, in a volume containing simulated chromosomes, [2] The number of tracks in the volume is calculated for each simulation by sampling a Poisson distribution, with the distribution parameter obtained from the irradiation dose, ion type and energy. The program NASARTI generates the chromosomes present in a cell nucleus by random walks of 20 nm, corresponding to the size of the dose voxels, [3] The generated chromosomes are located within domains which may intertwine, and [4] Each segment of the random walks corresponds to approx. 2,000 DNA base pairs. NASARTI uses pre-calculated dose at each voxel to calculate the probability of DNA damage at each random walk segment. Using the location of double-strand breaks, possible rejoining between damaged segments is evaluated. This yields various types of chromosomes aberrations, including deletions, inversions, exchanges, etc. By performing the calculations using various types of radiations, it will be possible to obtain relative biological effectiveness (RBE) values for several types of chromosome aberrations.

  10. Effect of smoking on the chromosome aberrations induced by environmental mutagens

    Chromosome aberration frequencies have increasingly been used for the study of various occupational and environmental exposures. Factors related to environmental in mutagens influence translocation yield. Smoking has impact on the translocation yield and is the most influential factor among the environmental mutagens to increase cancer incidence. In order to know how environmental mutagens affect the induction of translocations caused by smoking we analyzed translocations in the lymphocytes of smokers and nonsmokers in a large city, Beijing, a high natural background radiation area (HBRA) and in its control area (CA), remote villages in the south of China. The results of our analyses are reviewed in this presentation

  11. Chromosomal aberrations in ISS crew members

    Johannes, Christian; Goedecke, Wolfgang; Antonopoulos, Alexandra

    2012-07-01

    High energy radiation is a major risk factor in manned space missions. Astronauts and cosmonauts are exposed to ionising radiations of cosmic and solar origin, while on the Earth's surface people are well protected by the atmosphere and a deflecting magnetic field. There are now data available describing the dose and the quality of ionising radiation on-board of the International Space Station (ISS). Nonetheless, the effect of increased radiation dose on mutation rates of ISS crew members are hard to predict. Therefore, direct measurements of mutation rates are required in order to better estimate the radiation risk for longer duration missions. The analysis of chromosomal aberrations in peripheral blood lymphocytes is a well established method to measure radiation-induced mutations. We present data of chromosome aberration analyses from lymphocyte metaphase spreads of ISS crew members participating in short term (10-14 days) or long term (around 6 months) missions. From each subject we received two blood samples. The first sample was drawn about 10 days before launch and a second one within 3 days after return from flight. From lymphocyte cultures metaphase plates were prepared on glass slides. Giemsa stained and in situ hybridised metaphases were scored for chromosome changes in pre-flight and post-flight blood samples and the mutation rates were compared. Results obtained in chromosomal studies on long-term flight crew members showed pronounced inter-individual differences in the response to elevated radiation levels. Overall slight but significant elevations of typical radiation induced aberrations, i.e., dicentric chromosomes and reciprocal translocations have been observed. Our data indicate no elevation of mutation rates due to short term stays on-board the ISS.

  12. Aberrant splicing and drug resistance in AML.

    de Necochea-Campion, Rosalia; Shouse, Geoffrey P; Zhou, Qi; Mirshahidi, Saied; Chen, Chien-Shing

    2016-01-01

    The advent of next-generation sequencing technologies has unveiled a new window into the heterogeneity of acute myeloid leukemia (AML). In particular, recurrent mutations in spliceosome machinery and genome-wide aberrant splicing events have been recognized as a prominent component of this disease. This review will focus on how these factors influence drug resistance through altered splicing of tumor suppressor and oncogenes and dysregulation of the apoptotic signaling network. A better understanding of these factors in disease progression is necessary to design appropriate therapeutic strategies recognizing specific alternatively spliced or mutated oncogenic targets. PMID:27613060

  13. Aberrations in Fresnel Lenses and Mirrors

    Gregory, Don

    1999-01-01

    The NASA/MSFC Shooting Star program revealed a number of technical problems that must be solved before solar thermal propulsion can become a reality. The fundamental problem of interest here is the collection of solar energy. This is the first step in the propulsion process and indeed the most important. Everything else depends on the efficiency and focusing ability of the collection lens or mirror. An initial model of Fresnel lens behavior using a wave optics approach has been completed and the results were encouraging enough to warrant an experimental investigation. This experimental investigation confirmed some of the effects predicted and produced invaluable photographic evidence of coherence based diffraction and aberration.

  14. The effect of caffeine posttreatment on X-ray-induced chromosomal aberrations in human blood lymphocytes in vitro

    The potentiating effect of caffeine on X-ray-induced chromosomal aberrations in human blood lymphocytes has been investigated, with special reference to cell cycle stages (G0 and G2). Both quantitative and qualitative differences in the yield of chromosomal aberrations were detected in caffeine-posttreated cells, depending on the cell stage irradiated. The studies on caffeine potentiating effects on X-irradiated G0 lymphocytes from normal adults, newborns, Down syndrome patients, and an ataxia telangiectasia patient pointed to interindividual variations in the response to caffeine potentiation among normal probands and a very profound effect in ataxia cells. (orig.)

  15. Sensitivity of singular beams in the presence of Zernike aberrations

    Dixit, Awakash; Mishra, Sanjay Kumar; Gupta, Arun Kumar

    2015-08-01

    Singular beams in the presence of Zernike aberrations create an opportunity for various applications such as trapping and manipulation of micro-particles, atomic optics and atmospheric optics. In the milieu of importance of the role of aberrations, sensitivity of singular beams with Zernike aberrations is studied. In this paper, the effect of various Zernike aberrations on a singular beam is reported in terms of its Point Spread Function (PSF) deformations. The intensity distributions around the focal plane, i.e. PSF, of the singular beam of various topological charges and in the presence of different strengths of Zernike aberrations are theoretically estimated by the Huygens-Fresnel diffraction integral. Experimentally, the singular beams have been generated and known strengths of Zernike aberration introduced in the beam by a phase-only Spatial Light Modulator. Metric Ensquared Energy is used to analyze the PSF of the corresponding intensity distributions of the singular beams. The experimental results have been validated with numerical simulation.

  16. Calculation of aberration of electron gun in color picture tubes

    In a color picture tube, aberration is an important factor influencing the electron beam spot on the screen. This paper discusses a new method which is used to calculate the aberration of an electron gun in a CPT. In this method, electron trajectories are simulated directly in the cathode and the pre-focus lens. In the main lens, the asymptotic aberration is calculated to decide the size of the image. Some results of the calculation are shown in this paper. (orig.)

  17. Monitoring of chromosomal aberrations in natural populations of Pinus pallasiana

    V. P. Koba

    2012-01-01

    This paper presents the results of monitoring research of the chromosome aberrations at the stage of anaphase-telophase. The statistical characteristics of dynamics of chromosomal aberrations in populations of Pinus pallasiana D. Don across the high-altitude zones of the Mountain Crimea is given. It is established that on the southern macroslope of the Crimean Main Ridge the frequency of chromosomal aberrations in the P. pallasiana stands is higher in the lower zone in comparison with the mid...

  18. Aberrations caused by mechanical misalignments in electrostatic quadrupole lens systems

    Baranova, L. A.; Read, F. H.

    Image aberrations resulting from small misalignments in quadrupole lenses multiplets have been analysed. Analytical formulas for the coefficients of the beam displacement, astigmatism and coma associated with misalignments in a general quadrupole lens system have been derived. Numerical computations of systems of three and four quadrupole lenses have also been carried out. The aberration figures obtained for systems with and without a mechanical defect are compared. The aberration coefficients that have been obtained can be used for estimating tolerance limits for lens misalignments.

  19. Chromosomal aberrations in children exposed to diagnostic x-rays

    Among children who have received high x-ray doses congenital dislocation of the hip joint is the predominating diagnosis. In a series of 9 children who had received high x-ray doses (8 with luxation of the hip joint and one with achondroplasia) a significant increase of chromosomal aberrations was found. The increase concerned mainly chromosome type aberrations. The shorter the time since the last x-ray investigation the higher was the frequency of chromosome type aberrations. (author)

  20. Hydronephrosis by an Aberrant Renal Artery: A Case Report

    Park, Byoung Seok; Jeong, Taek Kyun; Ma, Seong Kwon; Kim, Soo Wan; Kim, Nam Ho; Choi, Ki Chul; Jeong, Yong Yeon

    2003-01-01

    Ureteropelvic junction obstruction is usually intrinsic and is most common in children. Aberrant renal arteries are present in about 30% of individuals. Aberrant renal arteries to the inferior pole cross anteriorly to the ureter and may cause hydronephrosis. To the best of our knowledge, although there are some papers about aberrant renal arteries producing ureteropelvic junction obstruction, there is no report of a case which is diagnosed by the new modalities, such as computed tomography an...

  1. Pattern of Chromosomal Aberrations in Patients from North East Iran

    Saeedeh Ghazaey; Farzaneh Mirzaei; Mitra Ahadian; Fatemeh Keifi; Semiramis Tootian; Mohammad Reza Abbaszadegan

    2013-01-01

    Objective: Chromosomal aberrations are common causes of multiple anomaly syndromes. Recurrent chromosomal aberrations have been identified by conventional cytogenetic methods used widely as one of the most important clinical diagnostic techniques. Materials and Methods: In this retrospective study, the incidences of chromosomal aberrations were evaluated in a six year period from 2005 to 2011 in Pardis Clinical and Genetics Laboratory on patients referred to from Mashhad and other cities in K...

  2. Chromosome aberration analysis for biological dosimetry: a review

    Among various biological dosimetry techniques, dicentric chromosome aberration method appears to be the method of choice in analysing accidental radiation exposure in most of the laboratories. The major advantage of this method is its sensitivity as the number of dicentric chromosomes present in control population is too small and more importantly radiation induces mainly dicentric chromosome aberration among unstable aberration. This report brings out the historical development of various cytogenetic methods, the basic structure of DNA, chromosomes and different forms of chromosome aberrations. It also highlights the construction of dose-response curve for dicentric chromosome and its use in the estimation of radiation dose. (author)

  3. Cellular origin of prognostic chromosomal aberrations in AML patients

    Mora-Jensen, H.; Jendholm, J.; Rapin, N.;

    2015-01-01

    these aberrations occur in normal hematopoietic stem and progenitor cells (HSCs/HPCs) before definitive leukemic transformation through additional acquisition of a few (that is, mostly 1 or 2) leukemia-promoting driver aberrations. NGS studies on sorted bone marrow (BM) populations of AML patients with...... molecular aberrations that were present in the fully transformed committed HPCs together with the prognostic driver aberration. Adding to this vast heterogeneity and complexity of AML genomes and their clonal evolution, a recent study of a murine AML model demonstrated that t(9;11) AML originating from HSCs...

  4. Chromosomal aberrations in the bone marrow cells of mice induced by accelerated {sup 12}C{sup 6+} ions

    Ma Xiaofei [Department of Heavy Ion Radiation Biology and Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000 (China); Key Laboratory of Heavy Ion Radiation Medicine of Chinese Academy of Sciences, Lanzhou 730000 (China); Key Laboratory of Heavy Ion Radiation Medicine of Gansu Province, Lanzhou 730000 (China); Graduate University of Chinese Academy of Sciences, Beijing 100049 (China); Zhang Hong, E-mail: zhangh@impac.ac.cn [Department of Heavy Ion Radiation Biology and Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Key Laboratory of Heavy Ion Radiation Medicine of Chinese Academy of Sciences, Lanzhou 730000 (China); Key Laboratory of Heavy Ion Radiation Medicine of Gansu Province, Lanzhou 730000 (China); Wang Zhenhua; Min Xianhua; Liu Yang; Wu Zhenhua [Department of Heavy Ion Radiation Biology and Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Key Laboratory of Heavy Ion Radiation Medicine of Chinese Academy of Sciences, Lanzhou 730000 (China); Key Laboratory of Heavy Ion Radiation Medicine of Gansu Province, Lanzhou 730000 (China); Sun Chao [Department of Heavy Ion Radiation Biology and Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Key Laboratory of Heavy Ion Radiation Medicine of Chinese Academy of Sciences, Lanzhou 730000 (China); Key Laboratory of Heavy Ion Radiation Medicine of Gansu Province, Lanzhou 730000 (China); Graduate University of Chinese Academy of Sciences, Beijing 100049 (China); Hu Bitao [School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000 (China)

    2011-11-01

    Highlights: {yields} 220 MeV/u {sup 12}C{sup 6+} ions is 1.5 times more effective than X-rays in inducing chromosomal aberration in bone marrow cell. {yields} The ratio of dose averaged liner energy transfer is approach the RBE. {yields} {sup 12}C{sup 6+} ions could induce severe mitosis delay. {yields} The cell cycle is not recovered 72 h following irradiation. - Abstract: The whole bodies of 6-week-old male Kun-Ming mice were exposed to different doses of {sup 12}C{sup 6+} ions or X-rays. Chromosomal aberrations of the bone marrow (gaps, terminal deletions and breaks, fragments, inter-chromosomal fusions and sister-chromatid union) were scored in metaphase 9 h after exposure, corresponding to cells exposed in the G{sub 2}-phase of the first mitosis cycle. Dose-response relationships for the frequency of chromosomal aberrations were plotted both by linear and linear-quadratic equations. The data showed that there was a dose-related increase in the frequency of chromosomal aberrations in all treated groups compared to controls. Linear-quadratic equations were a good fit for both radiation types. The compound theory of dual radiation action was applied to decipher the bigger curvature (D{sup 2}) of the dose-response curves of X-rays compared to those of {sup 12}C{sup 6+} ions. Different distributions of the five types of aberrations and different degrees of homogeneity were found between {sup 12}C{sup 6+} ion and X-ray irradiation and the possible underlying mechanism for these phenomena were analyzed according to the differences in the spatial energy deposition of both types of radiation.

  5. Track structure based modelling of chromosome aberrations after photon and alpha-particle irradiation.

    Friedland, Werner; Kundrát, Pavel

    2013-08-30

    A computational model of radiation-induced chromosome aberrations in human cells within the PARTRAC Monte Carlo simulation framework is presented. The model starts from radiation-induced DNA damage assessed by overlapping radiation track structures with multi-scale DNA and chromatin models, ranging from DNA double-helix in atomic resolution to chromatin fibre loops, heterochromatic and euchromatic regions, and chromosome territories. The repair of DNA double-strand breaks via non-homologous end-joining is followed. Initial spatial distribution and complexity, diffusive motion, enzymatic processing, synapsis and ligation of individual DNA ends from the breaks are simulated. To enable scoring of different chromosome aberration types resulting from improper joining of DNA fragments, the repair module has been complemented by tracking the chromosome origin of the ligated fragments and the positions of centromeres. The modelled motion of DNA ends has sub-diffusive characteristics and corresponds to measured chromatin mobility within time-scales of a few hours. The calculated formation of dicentrics after photon and α-particle irradiation in human fibroblasts is compared to experimental data (Cornforth et al., 2002, Radiat Res 158, 43). The predicted yields of dicentrics overestimate the measurements by factors of five for γ-rays and two for α-particle irradiation. Nevertheless, the observed relative dependence on radiation dose is correctly reproduced. Calculated yields and size distributions of other aberration types are discussed. The present work represents a first mechanistic approach to chromosome aberrations and their kinetics, combining full track structure simulations with detailed models of chromatin and accounting for the kinetics of DNA repair. PMID:23811166

  6. Aberrant angiogenesis: The gateway to diabetic complications

    Sunil K Kota

    2012-01-01

    Full Text Available Diabetes Mellitus is a metabolic cum vascular syndrome with resultant abnormalities in both micro- and macrovasculature. The adverse long-term effects of diabetes mellitus have been described to involve many organ systems. Apart from hyperglycemia, abnormalities of angiogenesis may cause or contribute toward many of the clinical manifestations of diabetes. These are implicated in the pathogenesis of vascular abnormalities of the retina, kidneys, and fetus, impaired wound healing, increased risk of rejection of transplanted organs, and impaired formation of coronary collaterals. A perplexing feature of the aberrant angiogenesis is that excessive and insufficient angiogenesis can occur in different organs in the same individual. The current article hereby reviews the molecular mechanisms including abnormalities in growth factors, cytokines, and metabolic derangements, clinical implications, and therapeutic options of dealing with abnormal angiogenesis in diabetes.

  7. In vivo transcostal histotripsy therapy without aberration correction

    This study investigates the in vivo therapeutic capabilities of transcostal histotripsy without using aberration correction mechanisms and its thermal impact on overlying tissues. Non-invasive liver treatments were conducted in eight pigs, with four lesions generated through transcostal windows with full ribcage obstruction and four lesions created through transabdominal windows without rib coverage. Treatments were performed by a 750 kHz focused transducer using 5 cycle pulses at 200 Hz PRF, with estimated in situ peak negative pressures of 13–17 MPa. Temperatures on overlying tissues including the ribs were measured with needle thermocouples inserted superficially beneath the skin. Treatments of approximately 40 min were applied, allowing overlying tissue temperatures to reach saturation. Lesions yielded statistically comparable ablation volumes of 3.6 ± 1.7 cm3 and 4.5 ± 2.0 cm3 in transcostal and transabdominal treatments, respectively. The average temperature increase observed in transcostal treatments was 3.9 ± 2.1 °C, while transabdominal treatments showed an increase of 1.7 ± 1.3 °C. No damage was seen on the ribcage or other overlying tissues. These results indicate that histotripsy can achieve effective treatment through the ribcage in vivo without requiring correction mechanisms, while inducing no substantial thermal effects or damage to overlying tissues. Such capabilities could benefit several non-invasive therapy applications involving transcostal treatment windows. (paper)

  8. Using nodal aberration theory to understand the aberrations of multiple unobscured three mirror anastigmatic (TMA) telescopes

    Thompson, Kevin P.; Fuerschbach, Kyle; Schmid, Tobias; Rolland, Jannick P.

    2009-08-01

    The alignment of three mirror anastigmatic (TMA) telescopes has been studied since their invention in the 60s. Recently, Thompson et al.1 reported that other than the conventional uniform coma over the field caused by misalignment, TMA telescopes display only one other misalignment induced aberration, field-asymmetric, field-linear astigmatism. Currently, an instrument with three TMAs is under development as the primary spectrometer on the James Webb Space Telescope. This paper will report on the application of Nodal Aberration Theory (NAT) to understanding the optical design of an optical system with multiple TMAs as a first step towards investigating and potentially independently analyzing the sensitivities to alignment of this key instrument.

  9. Expressions for third-order aberration theory for holographic images

    S K Tripathy; S Ananda Rao

    2003-01-01

    Expressions for third-order aberration in the reconstructed wave front of point objects are established by Meier. But Smith, Neil Mohon, Sweatt independently reported that their results differ from that of Meier. We found that coefficients for spherical aberration, astigmatism, tally with Meier’s while coefficients for distortion and coma differ.

  10. Fifth-order aberrations in magnetic quadrupole-octupole systems

    Explicit integral expressions are given for the fifth-order geometrical aberration coefficients in rectilinear magnetic quadrupole-octupole systems used for the transport of nonrelativistic charged particle beams. The numerical values of the fifth-order geometrical aberration coefficients for a rare earth cobalt (REC) quadrupole doublet are given as an example. 26 refs., 5 figs., 4 tabs

  11. Aberration analysis calculations for synchrotron radiation beamline design

    The application of ray deviation calculations based on aberration coefficients for a single optical surface for the design of beamline optical systems is reviewed. A systematic development is presented which allows insight into which aberration may be causing the rays to deviate from perfect focus. A new development allowing analytical calculation of line shape is presented

  12. Statistical virtual eye model based on wavefront aberration

    Wang, Jie-Mei; Liu, Chun-Ling; Luo, Yi-Ning; Liu, Yi-Guang; Hu, Bing-Jie

    2012-01-01

    Wavefront aberration affects the quality of retinal image directly. This paper reviews the representation and reconstruction of wavefront aberration, as well as the construction of virtual eye model based on Zernike polynomial coefficients. In addition, the promising prospect of virtual eye model is emphasized.

  13. Exact solutions in the scalar diffraction theory of aberrations.

    Budgor, A B

    1980-05-15

    A simple exact method is presented for evaluating the circularly symmetric Fresnel-Kirchhoff diffraction integral in the presence of Seidel aberrations, all orders of spherical aberration, and all orders of linear coma. The resultant formulas involve a simple quadrature over a single special function of mathematics. PMID:20221084

  14. Exact solutions in the scalar diffraction theory of aberrations

    A simple exact method is presented for evaluating the circularly symmetric Fresnel-Kirchhoff diffraction integral in the presence of Seidel aberrations, all orders of spherical aberration, and all orders of linear coma. The resultant formulas involve a simple quadrature over a single special function of mathematics

  15. Brown's transport up to third order aberration by artificial intelligence

    Brown's TRANSPORT is a first and second order matrix multiplication computer program intended for the design of accelerator beam transport systems, neglecting the third order aberration. Recently a new method was developed to derive analytically any order aberration coefficients of general charged particle optic system, applicable to any practical systems, such as accelerators, electron microscopes, lithographs, including those unknown systems yet to be invented. An artificial intelligence program in Turbo Prolog was implemented on IBM-PC 286 or 386 machine to generate automatically the analytical expression of any order aberration coefficients of general charged particle optic system. Based on this new method and technique, Brown's TRANSPORT is extended beyond the second order aberration effect by artificial intelligence, outputting automatically all the analytical expressions up to the third order aberration coefficients

  16. Chromosome aberration analysis based on a beta-binomial distribution

    Analyses carried out here generalized on earlier studies of chromosomal aberrations in the populations of Hiroshima and Nagasaki, by allowing extra-binomial variation in aberrant cell counts corresponding to within-subject correlations in cell aberrations. Strong within-subject correlations were detected with corresponding standard errors for the average number of aberrant cells that were often substantially larger than was previously assumed. The extra-binomial variation is accomodated in the analysis in the present report, as described in the section on dose-response models, by using a beta-binomial (B-B) variance structure. It is emphasized that we have generally satisfactory agreement between the observed and the B-B fitted frequencies by city-dose category. The chromosomal aberration data considered here are not extensive enough to allow a precise discrimination between competing dose-response models. A quadratic gamma ray and linear neutron model, however, most closely fits the chromosome data. (author)

  17. Brown's TRANSPORT up to third order aberration by artificial intelligence

    Brown's TRANSPORT is a first and second order matrix multiplication computer program intended for the design of accelerator beam transport systems, neglecting the third order aberration. Recently a new method was developed to derive analytically any order aberration coefficients of general charged particle optic system, applicable to any practical systems, such as accelerators, electron microscopes, lithographs, etc., including those unknown systems yet to be invented. An artificial intelligence program in Turbo Prolog was implemented on IBM-PC 286 or 386 machine to generate automatically the analytical expression of any order aberration coefficients of general charged particle optic system. Based on this new method and technique, Brown's TRANSPORT is extended beyond the second order aberration effects by artificial intelligence, outputing automatically all the analytical expressions up to the third order aberration coefficients

  18. Aberrations of the cathode objective lens up to fifth order.

    Tromp, R M; Wan, W; Schramm, S M

    2012-08-01

    In this paper we discuss a topic that was close to Prof. Gertrude Rempfer s interests for many years. On this occasion of her 100th birthday, we remember and honor Gertrude for her many outstanding contributions, and for the inspiring example that she set. We derive theoretical expressions for the aberration coefficients of the uniform electrostatic field up to 5th order and compare these with raytracing calculations for the cathode lens used in Low Energy Electron Microscopy and Photo Electron Emission Microscopy experiments. These higher order aberration coefficients are of interest for aberration corrected experiments in which chromatic (C(c)) and spherical (C₃) aberrations of the microscope are set to zero. The theoretical predictions are in good agreement with the results of raytracing. Calculations of image resolution using the Contrast Transfer Function method show that sub-nanometer resolution is achievable in an aberration corrected LEEM system. PMID:22188906

  19. Comparison of effects of six tritiated compounds on chromosomal aberrations in human lymphocytes in vitro and dose-response relationships

    The effects of six tritiated compounds on chromosomal aberrations were compared in cultured human lymphocytes, and dose-response relationships were analysed. According to the efficiency of inducing aberrations, these compounds could be arranged in decreasing order as follows: 3H-TdR > 3H-UdR > 3H-lysine > 3H-thymine > 3H-leucine > HTO, when the dose-response relationship was expressed in radioactivity/ml of the medium. This order is determined mainly by the radioactivities incorporated into the nuclei or the cells. However, when compared in terms of the dose absorbed by the nuclei or the cells, the differences among various compounds would be much more reduced. The data of aberration yields for different tritium activities (or absorbed dsoes) were fitted satisfactorily to the linear-quadratic dose-response equation Y = A + BX + CX2. The yields of chromatid-type and chromosometype aberrations induced by various tritiated compounds were quite different. These differences are related to the metabolism of the compounds

  20. I. THE THEORY OF ABERRATIONS OF QUADRUPOLE FOCUSING ARRAYS. II. ION OPTICAL DESIGN OF HIGH QUALITY EXTRACTED SYNCHROTRON BEAMS WITH APPLICATION TO THE BEVATRON

    Meads Jr., Philip Francis

    1963-05-15

    In Part One they formulate in a general way the problem of analyzing and evaluating the aberrations of quadrupole magnet beam systems, and of characterizing the shapes and other properties of the beam envelopes in the neighborhood of foci. They consider all aberrations, including those due to misalignments and faulty construction, through third order in small parameters, for quadrupole beam systems. One result of this study is the development of analytic and numerical techniques for treating these aberrations, yielding useful expressions for the comparison of the aberrations of different beam systems. A second result of this study is a comprehensive digital computer program that determines the magnitude and nature of the aberrations of such beam systems. The code, using linear programming techniques, will adjust the parameters of a beam system to obtain specified optical properties and to reduce the magnitude of aberrations that limit the performance of that system. They examine numerically, in detail, the aberrations of two typical beam systems. In Part Two, they examine the problem of extracting the proton beam from a synchrotron of 'H' type magnet construction. They describe the optical studies that resulted in the design of an external beam from the Bevatron that is optimized with respect to linear, dispersive, and aberration properties and that uses beam elements of conservative design. The design of the beam is the result of the collaboration of many people representing several disciplines. They describe the digital computer programs developed to carry out detailed orbit studies which were required because of the existence of large second order aberrations in the beam.

  1. Quantitative study of unstable chromosome aberrations following life time exposure of high background radiation in China

    Objective: To obtain a quantitative data regarding high background radiation-induced human chromosome aberrations by using advanced techniques. Methods: Environmental exposure dose for each individual was carefully measured. The estimated life-time doses ranged 25.2-244.8 and 5.4-51.7 mGy for individuals from the high background radiation area (HBRA) and the control area, respectively. Peripheral blood specimens were taken from 28 family members of three different generations in both areas. Purified lymphocyte culture technique for chromosome preparation was adopted and a total number of 70000 metaphases were scored. Results: In the case of HBRA, the frequencies of Dic + Rc increased with age, but no age-dependency was observed in subjects from the control area. The mean aberration yields significantly in excess of control value were seen in two older age groups. The aberration frequencies increased in proportion to the cumulative dose of the individuals living in HBRA. The estimated rate of increase per mGy was 1.5 x 10-5 per cell. Conclusion: It seems that Dic can continuously accumulated over life-time chronic low dose exposure and can serve as a reliable biological indicator. When the dose reduces to about 50 mGy, however, it becomes difficult to use to current method for quantitative analysis

  2. Studies on chromosome aberrations induced in human lymphocytes by very low-dose exposure to tritium

    Assessment of potential hazard from environmental tritium to man becomes very important with increasing the development of nuclear-power industry. However, little data are available as to the determination on the genetic effect of tritium especially at the low levels. The object of the present study is to obtain quantitative data for chromosome aberrations in human lymphocytes, as an indicator for genetic risk estimation, induced by tritium at very low dose levels. Leukocyte cultures of human peripheral blood were chronically exposed for 48h to tritiated water and 3H-thymidine using a wide range of tritium doses, and aberrations in lymphocyte chromosomes at the first metaphases were examined. In the experimental conditions, the types of aberrations induced by radiation emitted from both tritiated water and 3H-thymidine were mostly chromatid types, such as chromatid gaps and deletions. The dose-response relations for chromatid breaks per cell exhibited unusual dose-dependency in both cases. It was demonstrated that at higher dose range the yields of chromatid breaks increased linearly with dose, while those at lower dose range were significantly higher than would be expected by a downward extraporation from the linear relation. Partial-hit or partial-target kinetics events appeared at very low dose exposure. (author)

  3. Determination of first-order derivative matrix of wavefront aberration with respect to system variables.

    Lin, Psang Dain

    2012-02-01

    The first-order derivative matrix of a function with respect to a variable vector is referred to as the Jacobian matrix in mathematics. Current commercial software packages for the analysis and design of optical systems use a finite difference (FD) approximation methodology to estimate the Jacobian matrix of the wavefront aberration with respect to all of the independent system variables in a single raytracing pass such that the change of the wavefront aberration can be determined simply by computing the product of the developed Jacobian matrix and the corresponding changes in the system variables. The proposed method provides an ideal basis for automatic optical system design applications in which the merit function is defined in terms of wavefront aberration. The validity of the proposed approach is demonstrated by means of two illustrative examples. It is shown that the proposed method requires fewer iterations than the traditional FD approach and yields a more reliable and precise optimization performance. However, the proposed method incurs an additional CPU overhead in computing the Jacobian matrix of the merit function. As a result, the CPU time required to complete the optimization process is longer than that required by the FD method. PMID:22307119

  4. Use of FISH-translocations analyses for retrospective biological dosimetry: How stable are stable chromosome aberrations?

    Chromosome aberrations, in particular dicentrics, in peripheral blood lymphocytes are used to estimate the absorbed dose immediately following a radiation accident. However, difficulties for dose estimation arise with old exposures, due to a decline of cells containing unstable dicentric aberrations. The fluorescence in situ hybridisation (FISH) technique employing chromosome specific DNA libraries to 'paint' individual human chromosomes has opened new perspectives for rapid and reliable detection of stable chromosome aberrations such as translocations. The inherent stability of translocations over cell generations has enabled them to be used as a biodosemeter. However, due to the limited life of circulating T-lymphocytes, a level of uncertainty exists on the long-term persistence of stable translocations. The objectives of the present work are to present the current state of knowledge on the stability of translocations detected by FISH. The following aspects have been considered; (1) experience so far of retrospective biological dosimetry in humans following accidental and occupational over-exposure, (2) animal studies using mice and monkeys, (3) the influence of subsequent cell divisions on the yield and persistence of translocations following in vitro irradiation of human lymphocytes, and (4) the needs for further work to standardise and validate the use of FISH as a biological dosemeter, and to investigate the influence of various parameters such as radiation quality, dose rate and the discrimination of sub-types of translocations on persistence. (author)

  5. Reaction kinetics for the development of radiation-induced chromosome aberrations

    The formation of chromosome aberrations from DNA double-strand breaks (dsb) following ionizing irradiation of cells is analysed using a stochastic, continuous-time Markov chain formalism. A restitution/complete exchange model is proposed which incorporates kinetic competition between dsb restitution and chromosome exchange; it applies primarily to those dsb whose broken ends are held in close proximity by proteins. Some additional pathways for damage evolution are also considered. The calculations are compared in detail to the experiments on dicentric yield and variance in human lymphocytes following acute low-LET irradiation summarized by Lloyd and Edwards (1983) and Lloyd et al. (1987). (author)

  6. Aberrations of the cathode objective lens up to fifth order

    Tromp, R.M., E-mail: rtromp@us.ibm.com [Thomas J. Watson Research Center, IBM Research Division, 1101 Kitchawan Road, P.O. Box 218, Yorktown Heights, NY 10598 (United States); Leiden University, Kamerlingh Onnes Laboratorium, P.O. Box 9504, NL-2300 RA Leiden (Netherlands); Wan, W. [Ernest Orlando Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Mailstop 80R0114, Berkeley, CA 94720 (United States); Schramm, S.M. [Leiden University, Kamerlingh Onnes Laboratorium, P.O. Box 9504, NL-2300 RA Leiden (Netherlands)

    2012-08-15

    In this paper we discuss a topic that was close to Prof. Gertrude Rempfer s interests for many years. On this occasion of her 100th birthday, we remember and honor Gertrude for her many outstanding contributions, and for the inspiring example that she set. We derive theoretical expressions for the aberration coefficients of the uniform electrostatic field up to 5th order and compare these with raytracing calculations for the cathode lens used in Low Energy Electron Microscopy and Photo Electron Emission Microscopy experiments. These higher order aberration coefficients are of interest for aberration corrected experiments in which chromatic (C{sub c}) and spherical (C{sub 3}) aberrations of the microscope are set to zero. The theoretical predictions are in good agreement with the results of raytracing. Calculations of image resolution using the Contrast Transfer Function method show that sub-nanometer resolution is achievable in an aberration corrected LEEM system. -- Highlights: Black-Right-Pointing-Pointer A theory is presented for the aberrations of the uniform electrostatic field up to fifth order. Black-Right-Pointing-Pointer Such aberrations are important for advanced LEEM and PEEM instruments. Black-Right-Pointing-Pointer Good agreement between theory and raytracing results for a full cathode objective lens. Black-Right-Pointing-Pointer Contrast Transfer Function calculations predict that spatial resolution below 1 nm is achievable.

  7. Chromosome aberrations in solid tumors have a stochastic nature

    Castro, Mauro A.A. [Departamento de Bioquimica, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos 2600-anexo, Porto Alegre 90035-003 (Brazil) and Departamento de Medicina Interna, Hospital de Clinicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos 2350, Porto Alegre 90035-903 (Brazil) and Instituto de Fisica, Universidade Federal do Rio Grande do Sul, Av. Bento Goncalves 9500, Porto Alegre 91501-970 (Brazil) and Universidade Luterana do Brasil, Rua Miguel Tostes 101, Canoas 92420-280 (Brazil)]. E-mail: mauro@ufrgs.br; Onsten, Tor G.H. [Departamento de Medicina Interna, Hospital de Clinicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos 2350, Porto Alegre 90035-903 (Brazil); Universidade Luterana do Brasil, Rua Miguel Tostes 101, Canoas 92420-280 (Brazil); Moreira, Jose C.F. [Departamento de Bioquimica, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos 2600-anexo, Porto Alegre 90035-003 (Brazil); Almeida, Rita M.C. de [Instituto de Fisica, Universidade Federal do Rio Grande do Sul, Av. Bento Goncalves 9500, Porto Alegre 91501-970 (Brazil)

    2006-08-30

    An important question nowadays is whether chromosome aberrations are random events or arise from an internal deterministic mechanism, which leads to the delicate task of quantifying the degree of randomness. For this purpose, we have defined several Shannon information functions to evaluate disorder inside a tumor and between tumors of the same kind. We have considered 79 different kinds of solid tumors with 30 or more karyotypes retrieved from the Mitelman Database of Chromosome Aberrations in Cancer. The Kaplan-Meier cumulative survival was also obtained for each solid tumor type in order to correlate data with tumor malignance. The results here show that aberration spread is specific for each tumor type, with high degree of diversity for those tumor types with worst survival indices. Those tumor types with preferential variants (e.g. high proportion of a given karyotype) have shown better survival statistics, indicating that aberration recurrence is a good prognosis. Indeed, global spread of both numerical and structural abnormalities demonstrates the stochastic nature of chromosome aberrations by setting a signature of randomness associated to the production of disorder. These results also indicate that tumor malignancy correlates not only with karyotypic diversity taken from different tumor types but also taken from single tumors. Therefore, by quantifying aberration spread, we could confront diverse models and verify which of them points to the most likely outcome. Our results suggest that the generating process of chromosome aberrations is neither deterministic nor totally random, but produces variations that are distributed between these two boundaries.

  8. Aberrant DNA methylation in cloned ovine embryos

    LIU Lei; HOU Jian; LEI TingHua; BAI JiaHua; GUAN Hong; AN XiaoRong

    2008-01-01

    By using the approach of immunofluorescence staining with an antibody against 5-methylcytosine (5MeC), the present study detected the DNA methylation patterns of cloned ovine embryos. The em-bryos derived from in vitro fertilization were also examined for reference purpose. The results showed that: (1) during the pre-implantation development, cloned embryos displayed a similar demethylation profile to the fertilized embryos; that is, the methylation level decreased to the lowest at 8-cell stage, and then increased again at morulae stage. However, methylation level was obviously higher in cloned embryos than in stage-matched fertilized embryos, especially at 8-cell stage and afterwards; (2) at blastocyst stage, the methylation pattern in cloned embryos was different from that in fertilized em-bryos. In cloned blastocyst, inner cell mass (ICM) exhibited a comparable level to trophectoderm cells (TE), while in in-vitro fertilized blastocyst the methylation level of ICM was lower than that of TE, which is not consistent with that reported by other authors. These results indicate that DNA methylation is abnormally reprogrammed in cloned embryos, implying that aberrant DNA methylation reprogramming may be one of the factors causing cloned embryos developmental failure.

  9. Aberrant glycosylation associated with enzymes as cancer biomarkers

    Meany Danni L

    2011-06-01

    Full Text Available Abstract Background One of the new roles for enzymes in personalized medicine builds on a rational approach to cancer biomarker discovery using enzyme-associated aberrant glycosylation. A hallmark of cancer, aberrant glycosylation is associated with differential expressions of enzymes such as glycosyltransferase and glycosidases. The aberrant expressions of the enzymes in turn cause cancer cells to produce glycoproteins with specific cancer-associated aberrations in glycan structures. Content In this review we provide examples of cancer biomarker discovery using aberrant glycosylation in three areas. First, changes in glycosylation machinery such as glycosyltransferases/glycosidases could be used as cancer biomarkers. Second, most of the clinically useful cancer biomarkers are glycoproteins. Discovery of specific cancer-associated aberrations in glycan structures of these existing biomarkers could improve their cancer specificity, such as the discovery of AFP-L3, fucosylated glycoforms of AFP. Third, cancer-associated aberrations in glycan structures provide a compelling rationale for discovering new biomarkers using glycomic and glycoproteomic technologies. Summary As a hallmark of cancer, aberrant glycosylation allows for the rational design of biomarker discovery efforts. But more important, we need to translate these biomarkers from discovery to clinical diagnostics using good strategies, such as the lessons learned from translating the biomarkers discovered using proteomic technologies to OVA 1, the first FDA-cleared In Vitro Diagnostic Multivariate Index Assay (IVDMIA. These lessons, providing important guidance in current efforts in biomarker discovery and translation, are applicable to the discovery of aberrant glycosylation associated with enzymes as cancer biomarkers as well.

  10. Stable chromosome aberrations in the reconstruction of radiation doses

    ionizing radiation in Estonia in 1994. Dose estimation applying solid-stained dicentrics from 18 persons analysed shortly after the accident revealed considerable doses, both protracted and partial-body, to five of the subjects. In FISH analysis, equal yields of translocations and dicentrics were seen in the first sample. During a two-year postexposure period of repeated sampling, translocations remained relatively stable, supporting their use in dose assessment of past exposures. Dicentrics, on the other hand, declined rapidly during this time. A decrease in translocations was, however, observed in one subject who had been exposed to a high-dose g-radiation with a heterogeneous exposure pattern of both protracted and partial-body exposure that led to severe aplasia. This finding implies that retrospective dosimetry using the FISH technique may not be informative in cases of nonuniform distribution of dose. Follow-up of the accident victims is continuing to determine the long-term persistence of translocations. In a study comprising 84 individuals living in dwellings with low, medium and high concentrations of radon, no relationship between chronic exposure to high radon levels and chromosomal aberrations in FISH chromosome painting analysis was obtained. The result was valid for both translocations and unstable aberrations. The findings implied that even at high concentrations, the dose from chronic exposure to radon-derived alpha-particles was too low to induce chromosomal damage that could be detected from peripheral blood lymphocytes using this technique. The capability of the FISH technique for revealing chronic exposure to low-LET radiation was evaluated by comparing twenty nuclear power plant workers with a mean cumulative dose of about 100 mSv with twenty matched controls. Regression analysis showed significant association between documented cumulative dose and translocation frequency. However, workers with similar recorded doses displayed large interindividual

  11. Differential algebraic method for aberration analysis of typical electrostatic lenses

    In this paper up to fifth-order geometric and third-order chromatic aberration coefficients of typical electrostatic lenses are calculated by means of the charged particle optics code, COSY INFINITY, based on the differential algebraic (DA) method. A two-tube immersion lens and a symmetric einzel lens have been chosen as two examples, whose axial potential distributions are numerically calculated by a FORTRAN program using the finite difference method. The DA results are in good agreement with those evaluated by the aberration integrals in electron optics. The DA method presented here can easily be extended to aberration analysis of other numerically computed electron lenses, including magnetic lenses

  12. Aberrations of Genetic Material as Biomarkers of Ionizing Radiation Effects

    Milacic, S.

    2004-07-01

    Ionizing radiation is the most powerful mutagen in environmental and working conditions. The result of genotoxic effect of radiation is the development of chromosome aberrations. The structural chromosome aberrations in peripheral blood lymphocytes are dicentric, ring, acentric fragment. The observation of chromosome aberration frequency in lymphocyte karyotype is the conclusive method to assess the absorbed dose of ionizing radiation. Our study compared the incidence of chromosome aberrations in occupationally exposed healthy medical workers and in non-exposed healthy population. We analyzed the effect of working place, dose by thermo luminescence personal dosimeter (TLD), duration of occupational exposure (DOE) and age to the sum of aberrant cells and aberrations. four-year study included 462 subjects, mean-aged 42.3 years, who were occupational exposed to ionizing radiation and 95 subjects, mean-aged 35,2 years, who were not exposed to ionizing radiation, during the same time period and from the same territory. All of them possess thermo luminescence personal dosimeter (TLD) which is read by scanner for thermo luminescence dosimeters. Modified Moorheard's micro method for peripheral blood lymphocytes and conventional cytogenetic technique of chromosome aberration analysis were used for analysis of chromosome aberrations. Stained preparations (Giemsa) are observed in immersion by light microscope. The karyotype of 200 lymphocytes in metaphase is analyzed the most characteristic aberration: dicentric, then the ring and acentric fragments. The increased incidence of chromosome aberrations was found to tbe 21.6% in the exposed group and 2.1% in the controls, while the findings within the limits (non-specific chromosome lesions-gaps breaks, elongations, and exchanges) were equal in both groups (22%). Among occupationally exposed medical workers, the highest incidence was found in nuclear medicine workers (42.6%), then in orthopedists (27.08%). There is highly

  13. High order aberration and straylight evaluation after cataract surgery with implantation of an aspheric,aberration correcting monofocal intraocular lens

    Florian; T; A; Kretz; Tamer; Tandogan; Ramin; Khoramnia; Gerd; U; Auffarth

    2015-01-01

    ·AIM: To evaluate the quality of vision in respect to high order aberrations and straylight perception after implantation of an aspheric, aberration correcting,monofocal intraocular lens(IOL).·METHODS: Twenty-one patients(34 eyes) aged 50 to83 y underwent cataract surgery with implantation of an aspheric, aberration correcting IOL(Tecnis ZCB00,Abbott Medical Optics). Three months after surgery they were examined for uncorrected(UDVA) and corrected distance visual acuity(CDVA), contrast sensitivity(CS)under photopic and mesopic conditions with and without glare source, ocular high order aberrations(HOA, Zywave II) and retinal straylight(C-Quant).· RESULTS: Postoperatively, patients achieved a postoperative CDVA of 0.0 log MAR or better in 97.1% of eyes. Mean values of high order abberations were +0.02±0.27(primary coma components) and-0.04 ±0.16(spherical aberration term). Straylight values of the C-Quant were 1.35±0.44 log which is within normal range of age matched phakic patients. The CS measurements under mesopic and photopic conditions in combination with and without glare did not show any statistical significance in the patient group observed(P ≥0.28).· CONCLUSION: The implantation of an aspherical aberration correcting monofocal IOL after cataractsurgery resulted in very low residual higher order aberration(HOA) and normal straylight.

  14. Routine laboratory diagnosis of chromosome aberrations in multiple myeloma

    Yuet-Meng Chin

    2014-08-01

    Full Text Available Multiple Myeloma (MM is a Plasma Cell (PC malignancy characterized by proliferation of differentiated B cells mainly in the bone marrow. Genetic abnormalities are powerful prognostic factors in MM for risk stratification and therapeutic strategies. The standard diagnostic tests to detect genetic abnormalities in MM include Conventional Cytogenetic Analysis (CCA and Interphase Fluorescence In Situ Hybridization (FISH. Due to the low proliferative activity of the abnormal clone, only 30-50% of newly diagnosed MM demonstrate an abnormal karyotype by CCA. CCA is a biological test which requires dividing cells for analysis. The t(4;14 translocation which carries a poor prognosis is cryptic and cannot be detected by CCA. These limitations were overcome partly by the incorporation of interphase FISH as a routine diagnostic test in MM. There is an international consensus that FISH should be performed in all newly diagnosed MM to detect high-risk genetic abnormalities. FISH testing must be done on purified PCs or by simultaneous labeling of cytoplasmic immunoglobulin light chain to allow identification of PCs. The minimum essential abnormalities to test for are t(4;14, t(14;16 and del(17(p13. However, there is no consensus on the optimal protocol for CCA and interphase FISH. We review here the types of chromosomal aberrations found in MM, the prognostic significance of these abnormalities, methodologies in CCA to improve on the low yield of abnormal karyotypes, and protocols in interphase FISH. [Int J Res Med Sci 2014; 2(4.000: 1241-1247

  15. Chromosome aberrations in pesticide-exposed greenhouse workers

    Lander, B F; Knudsen, Lisbeth E.; Gamborg, M O;

    2000-01-01

    OBJECTIVES: The aim of this study was to investigate the possibility of subtoxic exposure to pesticides causing chromosome aberrations in greenhouse workers. METHODS: In a cross-sectional and prospective study design chromosome aberration frequencies in cultured lymphocytes were examined for 116...... greenhouse workers exposed to a complex mixture of almost 50 insecticides, fungicides, and growth regulators and also for 29 nonsmoking, nonpesticide-exposed referents. RESULTS: The preseason frequencies of chromosome aberrations were slightly but not statistically significantly elevated for the greenhouse...... workers when they were compared with the referents. After a summer season of pesticide spraying in the greenhouses, the total frequencies of cells with chromosome aberrations were significantly higher than in the preseason samples (P=0.02) and also higher than for the referents (P=0.05). This finding was...

  16. Electron Optics for Biologists: Physical Origins of Spherical Aberrations

    Geissler, Peter; Zadunaisky, Jose

    1974-01-01

    Reports on the physical origins of spherical aberrations in axially symmetric electrostatic lenses to convey the essentials of electon optics to those who must think critically about the resolution of the electron microscope. (GS)

  17. CT of ruptured aneurysm of aberrant right subclavian artery.

    Vega, A; Ortíz, A; Longo, J M; Pagola, M A

    1987-01-01

    This paper presents the first description of a ruptured aneurysm of an aberrant right subclavian artery. CT clearly demonstrated the vascular malformation as well as the existence of a bilateral hemothorax. PMID:3102065

  18. Lens aberration measurement and analysis using a novel pattern

    Nam, Byung-Ho; Cho, Byeong-Ho; Park, Jong O.; Kim, Dong-Seok; Baek, SungJin; Jeong, JongHo; Nam, ByungSub; Hwang, Young J.; Song, Young Jin

    2001-09-01

    Lens aberration of the exposure tool causes pattern deformation and position shift. As design rule shrinks, the ratio of printed feature size to applied wavelength for optical lithography is driven inexorably toward resolution limit. In this study, we devised an efficient method to evaluate lens aberration using multi-ring pattern on an attenuated phase-shift mask. Adoption of multi-ring pattern can cut down measurement time and improve measurement repeatability. These patterns are uniformly distributed through entire field in 7 by 7 manner. Lens aberration was evaluated by multi-ring pattern array under conventional or off-axis illumination with KrF stepper of NA 0.65. Multi-ring critical dimension (CD) data was discussed together with the issue of lens aberration such as coma, astigmatism, field curvature, etc. We can apply this new measurement technique to select better lens system efficiently. multi-ring, field size, pattern deformation

  19. Optimizing chromatic aberration calibration using a novel genetic algorithm

    Fang, Yi-Chin; Liu, Tung-Kuan; MacDonald, John; Chou, Jyh-Horng; Wu, Bo-Wen; Tsai, Hsien-Lin; Chang, En-Hao

    2006-10-01

    Advances in digitalized image optics has increased the importance of chromatic aberration. The axial and lateral chromatic aberrations of an optical lens depends on the choice of optical glass. Based on statistics from glass companies worldwide, more than 300 optical glasses have been developed for commercial purposes. However, the complexity of optical systems makes it extremely difficult to obtain the right solution to eliminate small chromatic aberration. Even the damped least-squares technique, which is a ray-tracing-based method, is limited owing to its inability to identify an enhanced optical system configuration. Alternatively, this study instead attempts to eliminate even negligible axial and lateral colour aberration by using algorithms involving the theories of geometric optics in triplet lens, binary and real encoding, multiple dynamic crossover and random gene mutation techniques.

  20. Aberrant internal carotid artery in the middle ear

    The knowledge about the aberrant internal carotid artery (ICA) in the middle ear is essential for clinicians, because a misdiagnosis of the aberrant ICA could have serious consequences such as excessive aural bleeding during a middle ear surgery. A 38-year-old woman presented with tinnitus and hearing difficulties of the left ear that had started 5 years ago. During otoscopy, an anteroinferior bluish mass was seen in the tympanic space. Computed tomography and magnetic resonance imaging demonstrated a left-side aberrant ICA with bony dehiscence of the carotid canal in the middle ear and a reduced diameter of the tympanic ICA. Herein we report a case of an aberrant ICA in the middle ear. We also review the literature regarding this important vascular anomaly of the temporal bone which may lead to disastrous surgical complications.

  1. Aberrant internal carotid artery in the middle ear

    Roh, Keun Tak; Kang, Hyun Koo [Dept. of Radiology, Seoul Veterans Hospital, Seoul (Korea, Republic of)

    2014-10-15

    The knowledge about the aberrant internal carotid artery (ICA) in the middle ear is essential for clinicians, because a misdiagnosis of the aberrant ICA could have serious consequences such as excessive aural bleeding during a middle ear surgery. A 38-year-old woman presented with tinnitus and hearing difficulties of the left ear that had started 5 years ago. During otoscopy, an anteroinferior bluish mass was seen in the tympanic space. Computed tomography and magnetic resonance imaging demonstrated a left-side aberrant ICA with bony dehiscence of the carotid canal in the middle ear and a reduced diameter of the tympanic ICA. Herein we report a case of an aberrant ICA in the middle ear. We also review the literature regarding this important vascular anomaly of the temporal bone which may lead to disastrous surgical complications.

  2. Isoplanatic patch size for aberration correction in ultrasonic imaging

    Pilkington, Wayne C.

    Methods and experimental results are described for determination of the region size in an aberrating medium over which a single set of aberration estimates can achieve satisfactory b-scan resolution ( i.e., the isoplanatic patch) using time-shift compensation for aberration correction of ultrasonic transmit and receive beams. Based on twenty percent allowable increases in the -12 dB width of the receive or transmit beam focus using cross-correction compared to self-correction, the isoplanatic patch sizes were found to between 3 and 5 millimeters laterally for a linearly-scanned transducer, and at least 12 millimeters axially for a target distance of 55 millimeters and aberration comparable to human abdominal wall. These sizes depend on the aberration severity, reference site axial position, and allowable resolution degradation with cross-correction. The lateral isoplanatic patch size of a linearly scanned image can be more than doubled to match that of a beam-steered acquisition using aberration estimate position matching relative to the tissue surface. Further expansion of the lateral isoplanatic patch size by an additional 50 to 100 percent for both scanning methods is also shown through propagation path matched cross-correction mapping of aberration estimates. The specific mapping required to achieve the best propagation path match depends on the axial distribution of the aberrating structures, the focal depth being imaged, and the cross-correction distance. The effectiveness of alternate methods to derive propagation path matching maps with and without a priori knowledge of aberrator spatial distribution are contrasted; and a means to dynamically adjust correction maps to maximize isoplanatic patch sizes is proposed and verified. Lateral cross-correction mapping and the map changes required for each cross-correction distance can all be implemented with simple shifting of aberration estimates within the transducer aperture. Therefore, use of optimally mapped

  3. Moment aberrations in magneto-electrostatic plasma lenses (computer simulation)

    Butenko, V I

    2001-01-01

    In this work moment aberrations in the plasma magneto-electrostatic lenses are considered in more detail with the use of the computer modeling. For solution of the problem we have developed a special computer code - the model of plasma optical focusing device, allowing to display the main parameters and operations of experimental sample of a lens, to simulate the moment and geometrical aberrations and give recommendations on their elimination.

  4. Study of the wavefront aberrations in children with amblyopia

    ZHAO Peng-fei; ZHOU Yue-hua; WANG Ning-li; ZHANG Jing

    2010-01-01

    Background Amblyopia is a common ophthalmological condition and the wavefront aberrometer is a relatively new diagnostic tool used globally to measure optical characteristics of human eyes as well as to study refractive errors in amblyopic eyes. We studied the wavefront aberration of the amblyopic children's eyes and analyzed the mechanism of the wavefront aberration in the formation of the amblyopia, try to investigate the new evidence of the treatment of the amblyopia, especially in the refractory amblyopia.Methods The WaveScan Wavefront System (VISX, USA) aberrometer was used to investigate four groups of children under dark accommodation and cilliary muscle paralysis. There were 45 cases in the metropic group, 87 in the amblyopic group, 92 in the corrected-amblyopic group and 38 in the refractory amblyopic group. One-way analysis of variance (ANOVA), t-test and multivariate linear regression were used to analyze all the data.Results Third order to 6th order aberrations showed a decreasing trend whereas in the higher order aberrations the main ones were 3rd order coma (Z3-1-Z31), trefoil (Z3-3-Z33) and 4th order aberration (Z40); and 3rd order coma represented the highest percentage of all three main aberrations. Within 3rd order coma, vertical coma (Z3-1) accounted for a greater percentage than horizontal coma (Z31). Significant differences of vertical coma were found among all clinical groups of children: vertical coma in the amblyopic group (0.17±0.15) was significantly higher than in the metropic group (0.11±0.13, P0.05).Conclusions Although lower order aberrations such as defocus (myopia and hyperopia) and astigmatism are major factors determining the quality of the retinal image, higher order aberrations also need to be considered in amblyopic eyes as their effects are significant.

  5. Minimum $G_2$-aberration for nonregular fractional factorial designs

    Tang, Boxin; Deng, Lih-Yuan

    1999-01-01

    Deng and Tang proposed generalized resolution and minimum aberration criteria for comparing and assessing nonregular fractional factorials, of which Plackett–Burman designs are special cases.A relaxed variant of generalized aberration is proposed and studied in this paper.We show that a best design according to this criterion minimizes the contamination of nonnegligible interactions on the estimation of main effects in the order of importance given by the hierarchical assump...

  6. Photothermal Lens Aberration Effects in Two Laser Thermal Lens Spectrometry

    Bialkowski, Stephen E.

    1985-01-01

    A comparison of theories describing two laser photothermal lens signals is given. The aberrant nature of this lens is accounted for in a theory which treats the propagation of a monitor laser in terms of a phase shift in this laser beam wave front. The difference between theories are discussed in terms of the predicted signal strengths and temporal behavior. The aberrant theory results in smaller theoretical signal strengths and different functional relationships between signal and analyte le...

  7. Sharpness changes of gaussian beams induced by spherically aberrated lenses

    Piquero, G.; Mejías, P. M.; Martínez-Herrero, R.

    1994-04-01

    Sharpness changes of the spatial profile of a gaussian beam induced by spherically aberrated lenses are investigated in terms of the so-called kurtosis parameter. It is shown both theoretically and experimentally that, after a single aberrated lens, it is possible to get flatter and sharper beam intensity distributions than the input gaussian beam depending on the plane where the field is observed. Agreement between analytical and experimental results is discussed.

  8. Pattern of Chromosomal Aberrations in Patients from North East Iran

    Saeedeh Ghazaey

    2013-01-01

    Full Text Available Objective: Chromosomal aberrations are common causes of multiple anomaly syndromes. Recurrent chromosomal aberrations have been identified by conventional cytogenetic methods used widely as one of the most important clinical diagnostic techniques.Materials and Methods: In this retrospective study, the incidences of chromosomal aberrations were evaluated in a six year period from 2005 to 2011 in Pardis Clinical and Genetics Laboratory on patients referred to from Mashhad and other cities in Khorasan province. Karyotyping was performed on 3728 patients suspected of having chromosomal abnormalities.Results: The frequencies of the different types of chromosomal abnormalities were determined, and the relative frequencies were calculated in each group. Among these patients, 83.3% had normal karyotypes with no aberrations. The overall incidences of chromosomal abnormalities were 16.7% including sex and autosomal chromosomal anomalies. Of those, 75.1 % showed autosomal chromosomal aberrations. Down syndrome (DS was the most prevalent autosomal aberration in the patients (77.1%. Pericentric inversion of chromosome 9 was seen in 5% of patients. This inversion was prevalent in patients with recurrent spontaneous abortion (RSA. Sex chromosomal aberrations were observed in 24.9% of abnormal patients of which 61% had Turner’s syndrome and 33.5% had Klinefelter’s syndrome.Conclusion: According to the current study, the pattern of chromosomal aberrations in North East of Iran demonstrates the importance of cytogenetic evaluation in patients who show clinical abnormalities. These findings provide a reason for preparing a local cytogenetic data bank to enhance genetic counseling of families who require this service.

  9. Lens customization method to minimize aberration in integral imaging

    Miranda, Matheus; Kim, Jonghyun; Hong, Keehoon; Lee, Byoungho

    2015-10-01

    Conventionally the elemental lenses of the lens-array used in integral imaging have spherical surface profiles, thus they suffer from intrinsic lens aberrations such as spherical aberration and astigmatism. Aberrations affect the ability of the lens to focus light in a single point, or to collimate light from a point source. In integral imaging, this results in a loss of image quality of the reconstructed image due to distortions. The viewing characteristics of the integral imaging system, such as viewing angle and image resolution, are also affected by aberrations. We propose the use of a custom made aspherical lens-array which was specifically designed to minimize distortions due to aberrations and hence improve the reconstructed image quality. Ray optics calculations are used in order to analyze the aberrations and find the initial lens surface profile. Lens optimization is performed with the aid of numerical simulation software. The designed lens-array is compared to a conventional spherical lens-array of same properties. The design, optimization, and fabrication processes are described and the experiments are presented and compared with the computer simulations.

  10. Ocular aberrations after wavefront optimized LASIK for myopia

    Padmanabhan Prema

    2010-01-01

    Full Text Available Purpose: To study the change in ocular aberrations after wavefront optimized (WFO laser in situ keratomileusis ( Lasik for correction of myopia and to analyze causative factors that may influence them. Materials and Methods: This was a prospective case series. WFO Lasik was performed for the correction of myopia, using the hansatome (Bausch and Lomb microkeratome to create the flap and the Allegretto laser (Wavelight Technologie to perform the ablation. The Allegretto wave analyser (Tscherning-type measured the ocular aberrations prior to Lasik , one month and six months postoperatively. Results: The mean age of the 59 patients included in the study was 25±5.64 years and the mean spherical equivalent of the 117 eyes that underwent Lasik0 was -5.33±1.22 preoperatively and -0.21±0.38 postoperatively. Hundred and two eyes of 117 (87% achieved uncorrected visual acuity (UCVA of 20/20 or better after WFO Lasik and 104 of 117 eyes (89% were within ±0.5D of the attempted refractive correction. There was a 1.96-fold increase in total root-mean-square of higher order aberrations. Induced changes in seven of the 22 higher order Zernike terms showed a significant linear correlation with the refractive correction attempted. Larger ablation zones induced less spherical aberration. Conclusion: In spite of an excellent visual outcome, WFO Lasik induces significant higher order aberrations. Large ablation zones reduce the induction of spherical aberration.

  11. Aberrant expression of interferon regulatory factor 3 in human lung cancer

    Tokunaga, Takayuki [Division of Cytokine Signaling, Department of Molecular Microbiology and Immunology, Nagasaki University Graduate School of Biomedical Science, 1-12-4 Sakamoto, Nagasaki 852-8523 (Japan); Division of Surgical Oncology, Department of Translational Medical Science, Nagasaki University Graduate School of Biomedical Science, 1-12-4 Sakamoto, Nagasaki 852-8523 (Japan); Naruke, Yuki; Shigematsu, Sayuri; Kohno, Tomoko; Yasui, Kiyoshi; Ma, Yuhua; Chua, Koon Jiew [Division of Cytokine Signaling, Department of Molecular Microbiology and Immunology, Nagasaki University Graduate School of Biomedical Science, 1-12-4 Sakamoto, Nagasaki 852-8523 (Japan); Katayama, Ikuo; Nakamura, Takashi [Department of Radiology and Cancer Biology, Nagasaki University Graduate School of Biomedical Science, 1-12-4 Sakamoto, Nagasaki 852-8523 (Japan); Hishikawa, Yoshitaka; Koji, Takehiko [Department of Developmental and Reconstructive Medicine, Nagasaki University Graduate School of Biomedical Science, 1-12-4 Sakamoto, Nagasaki 852-8523 (Japan); Yatabe, Yasushi [Department of Pathology and Clinical Oncology, Aichi Cancer Research Institute, Nagoya 464-8681 (Japan); Nagayasu, Takeshi [Division of Surgical Oncology, Department of Translational Medical Science, Nagasaki University Graduate School of Biomedical Science, 1-12-4 Sakamoto, Nagasaki 852-8523 (Japan); Fujita, Takashi [Laboratory of Molecular Genetics, Institute for Virus Research, Kyoto University, Kyoto 606-8507 (Japan); Matsuyama, Toshifumi, E-mail: tosim@nagasaki-u.ac.jp [Division of Cytokine Signaling, Department of Molecular Microbiology and Immunology, Nagasaki University Graduate School of Biomedical Science, 1-12-4 Sakamoto, Nagasaki 852-8523 (Japan); The Global Center of Excellence Program at Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523 (Japan); and others

    2010-06-25

    We analyzed the subcellular distributions and gene structures of interferon regulatory factor 3 (IRF3) transcription factor in 50 cases of human primary lung cancer. The immunohistochemical analyses revealed substantially aberrant IRF3 expression specific to the cancer lesions (2 and 6 tumors with nuclear staining, and 4 and 5 tumors with negative staining, in adenocarcinoma and squamous cell carcinoma, respectively), while the morphologically normal region around the tumors exhibited only cytoplasmic staining. In addition, we determined the sequence of the entire IRF3 coding region, and found two novel variants with the amino acid changes (S{sup 175}(AGC) {yields} R{sup 175}(CGC) and A{sup 208}(GCC) {yields} D{sup 208}(GAC)). The R{sup 175} variant was also detected in a morphologically normal region around the nuclear staining squamous cell carcinoma, and exhibited almost the same functions as the wild type IRF3. On the other hand, the D{sup 208} variant, found in the negative staining squamous cell carcinoma cases, reduced the nuclear translocation in response to I{kappa}B kinase {epsilon} stimulation, as compared to the wild type IRF3, but the same variant was detected in the surrounding morphologically normal region. The aberrant expression of IRF3 and the novel D{sup 208} variant may provide clues to elucidate the etiology of primary lung cancer.

  12. Effects of colcemid concentration on chromosome aberration analysis in human lymphocytes

    Kanda, Reiko; Hayata, Isamu; Kobayashi, Sadayoshi (National Inst. of Radiological Sciences, Chiba (Japan)); Jiang, Tao

    1994-03-01

    As a part of technical improvements of chromosome aberration analysis on human peripheral lymphocytes for biological radiation dosimetry, we examined the optimal conditions for the use of colcemid in chromosome preparation in order to obtain enough number of cells at metaphase in the first cell division. When treated with colcemid at concentrations below 0.01 [mu]g/ml from the beginning of culture, cultures harvested at 48 hours had low mitotic indices. Colcemid treatment at 0.025 to 0.05 [mu]g/ml during 48 hours resulted in high mitotic indices (8 to 15%) and almost of the mitotic cells remaining in the 1st cell division, suggesting that this range of colcemid concentration was appropriate for continuous treatment with colcemid. We further examined the effect of colcemid concentration on the quantitative consistency of the yields of radiation-induced chromosome aberration. Repeated experiments showed that the yield of dicentrics and centric rings in the culture having colcemid at 0.025 [mu]g/ml concentration were larger than that at 0.05 [mu]g/ml. These data indicate the importance of assuring the accuracy of colcemid concentration in the lymphocyte culture for cytogenetic radiation dosimetry. (author).

  13. Role of fertilized eggs in the formation of chromosome aberrations in mutagen-treated germ cells of male mice

    The processes in somatic cells that lead to the formation and transmission of aberrations are not necessarily the same as in germ cells. This point is illustrated by demonstrating two phenomena in mice that are unique in certain germ cell stages. Information to date strongly indicates the presence of two different processes in fertilized eggs that affect the yield of aberrations, qualitatively and quantitatively, following chemical treatment of meiotic and postmeiotic male germ cells. First, if the reaction products are intact in the male chromosomes at the time of sperm entry, they may be repaired in fertilized eggs. If repair is not affected and the lesions persist to the time of pronuclear chromosome replication, they are expected to lead to chromatid-type aberrations and eventually to dominant-lethality. Second, if the reaction products are transformed into suitable intermediate lesions, before the sperm enters the egg, the fertilized egg can affect chromosome exchange. These two processes in fertilized eggs to not affect aberration formation in chemically treated male premeiotic stages. While the repair process does not seem to affect x-ray-induced lesions present in the fertilizing sperm, no information is yet available in the mouse on whether or not the exchange process following exposure of male meiotic and postmeiotic germ cells also takes place after sperm entry

  14. Vineyard yield predicting

    Lopes, António José de Oliveira

    2009-01-01

    Foretelling the annual wine yield is crucial as it enables preliminary planning and management of the available resources and to assess whether the expected yield satisfies the needs while ensuring quality. Based on 2009 records in Syrah variety pertaining to three different stages, elements of productivity were gathered to select variables in order to estimate the final yield as accurately as possible, and to reduce the berry counting task, usually associated with yield estimation methods.

  15. Transcranial phase aberration correction using beam simulations and MR-ARFI

    Purpose: Transcranial magnetic resonance-guided focused ultrasound surgery is a noninvasive technique for causing selective tissue necrosis. Variations in density, thickness, and shape of the skull cause aberrations in the location and shape of the focal zone. In this paper, the authors propose a hybrid simulation-MR-ARFI technique to achieve aberration correction for transcranial MR-guided focused ultrasound surgery. The technique uses ultrasound beam propagation simulations with MR Acoustic Radiation Force Imaging (MR-ARFI) to correct skull-caused phase aberrations. Methods: Skull-based numerical aberrations were obtained from a MR-guided focused ultrasound patient treatment and were added to all elements of the InSightec conformal bone focused ultrasound surgery transducer during transmission. In the first experiment, the 1024 aberrations derived from a human skull were condensed into 16 aberrations by averaging over the transducer area of 64 elements. In the second experiment, all 1024 aberrations were applied to the transducer. The aberrated MR-ARFI images were used in the hybrid simulation-MR-ARFI technique to find 16 estimated aberrations. These estimated aberrations were subtracted from the original aberrations to result in the corrected images. Each aberration experiment (16-aberration and 1024-aberration) was repeated three times. Results: The corrected MR-ARFI image was compared to the aberrated image and the ideal image (image with zero aberrations) for each experiment. The hybrid simulation-MR-ARFI technique resulted in an average increase in focal MR-ARFI phase of 44% for the 16-aberration case and 52% for the 1024-aberration case, and recovered 83% and 39% of the ideal MR-ARFI phase for the 16-aberrations and 1024-aberration case, respectively. Conclusions: Using one MR-ARFI image and noa priori information about the applied phase aberrations, the hybrid simulation-MR-ARFI technique improved the maximum MR-ARFI phase of the beam's focus

  16. Transcranial phase aberration correction using beam simulations and MR-ARFI

    Vyas, Urvi, E-mail: urvi.vyas@gmail.com; Kaye, Elena; Pauly, Kim Butts [Department of Radiology, Stanford University, Stanford, California 94305 (United States)

    2014-03-15

    Purpose: Transcranial magnetic resonance-guided focused ultrasound surgery is a noninvasive technique for causing selective tissue necrosis. Variations in density, thickness, and shape of the skull cause aberrations in the location and shape of the focal zone. In this paper, the authors propose a hybrid simulation-MR-ARFI technique to achieve aberration correction for transcranial MR-guided focused ultrasound surgery. The technique uses ultrasound beam propagation simulations with MR Acoustic Radiation Force Imaging (MR-ARFI) to correct skull-caused phase aberrations. Methods: Skull-based numerical aberrations were obtained from a MR-guided focused ultrasound patient treatment and were added to all elements of the InSightec conformal bone focused ultrasound surgery transducer during transmission. In the first experiment, the 1024 aberrations derived from a human skull were condensed into 16 aberrations by averaging over the transducer area of 64 elements. In the second experiment, all 1024 aberrations were applied to the transducer. The aberrated MR-ARFI images were used in the hybrid simulation-MR-ARFI technique to find 16 estimated aberrations. These estimated aberrations were subtracted from the original aberrations to result in the corrected images. Each aberration experiment (16-aberration and 1024-aberration) was repeated three times. Results: The corrected MR-ARFI image was compared to the aberrated image and the ideal image (image with zero aberrations) for each experiment. The hybrid simulation-MR-ARFI technique resulted in an average increase in focal MR-ARFI phase of 44% for the 16-aberration case and 52% for the 1024-aberration case, and recovered 83% and 39% of the ideal MR-ARFI phase for the 16-aberrations and 1024-aberration case, respectively. Conclusions: Using one MR-ARFI image and noa priori information about the applied phase aberrations, the hybrid simulation-MR-ARFI technique improved the maximum MR-ARFI phase of the beam's focus.

  17. Modelling of multi-conjugate adaptive optics for spatially variant aberrations in microscopy

    Adaptive optics has been implemented in a range of high-resolution microscopes in order to overcome the problems of specimen-induced aberrations. Most implementations have used a single aberration correction across the imaged field. It is known, however, that aberrations often vary across the field of view, so a single correction setting cannot compensate all aberrations. Multi-conjugate adaptive optics (MCAO) has been suggested as a possible method for correction of these spatially variant aberrations. MCAO is modelled to simulate the correction of aberrations, both for simple model specimens and using real aberration data from a biological specimen. (special issue article)

  18. Induction of chromosomal aberrations in human lymphocytes by fission neutrons

    Chromosome aberrations induced by sparsely ionizing radiation (low-LET) are well known and cytogenetic analyses of irradiated human lymphocytes have been widely applied to biological dosimetry. However, much less is known about chromosome aberrations induced by densely ionizing radiation (high LET), such as that of alpha particles or neutrons. Such particles induce DNA strand breaks, as well as chromosome breakage and rearrangements of high complexity. This damage is more localized and less efficiently repaired than after X- or γ-ray irradiation. This preferential production of complex aberrations by densely ionizing radiation is related to the unique energy deposition patterns, which produces highly localized multiple DNA damage at the chromosomal level. A better knowledge of the interactions between different types of radiation and cellular DNA is of importance, not only from the radiobiological viewpoint but also for dosimetric and therapeutic purposes. The objective of the present study was to analyse the cytogenetic effects of fission neutrons on peripheral blood lymphocytes in order to evaluate structural and numerical aberrations and number of cells in the different mitotic cycles. So, blood samples from five healthy donors, 22-25 years old, of both sexes, were irradiated in the Research Reactor IEA-R1 of our Institute (IPEN/CNEN-SP) with thermal and fast neutrons at doses of 0.2; 0.3; 0.5 and 1.0 Gy. The γ contribution to the total absorbed dose was about 30%. These doses were monitored by thermoluminescent dosemeters: LiF-600 (for neutrons) and LiF-700 (for γ-rays). The data concerning structural aberrations were evaluated with regard to three parameters: percentage of cells with aberrations, number of aberrations/cell and number of dicentric/cell. The cytogenetic results showed an increase in the three parameters after irradiation with neutrons, as a function of radiation dose. Apparently, there was no influence of neutrons on the kinetics of cellular

  19. Chromosomal Aberrations in DNA Repair Defective Cell Lines: Comparisons of Dose Rate and Radiation Quality

    George, K. A.; Hada, M.; Patel, Z.; Huff, J.; Pluth, J. M.; Cucinotta, F. A.

    2009-01-01

    Chromosome aberration yields were assessed in DNA double-strand break repair (DSB) deficient cells after acute doses of gamma-rays or high-LET iron nuclei, or low dose-rate (0.018 Gy/hr) gamma-rays. We studied several cell lines including fibroblasts deficient in ATM (product of the gene that is mutated in ataxia telangiectasia patients) or NBS (product of the gene mutated in the Nijmegen breakage syndrome), and gliomablastoma cells that are proficient or lacking in DNA-dependent protein kinase, DNA-PK activity. Chromosomes were analyzed using the fluorescence in-situ hybridization (FISH) chromosome painting method in cells at the first division post-irradiation and chromosome aberrations were identified as either simple exchanges (translocations and dicentrics) or complex exchanges (involving >2 breaks in 2 or more chromosomes). Gamma radiation induced higher yields of both simple and complex exchanges in the DSB repair defective cells than in the normal cells. The quadratic dose-response terms for both chromosome exchange types were significantly higher for the ATM and NBS defective lines than for normal fibroblasts. However, the linear dose-response term was significantly higher only for simple exchanges in the NBS cells. Large increases in the quadratic dose response terms indicate the important roles of ATM and NBS in chromatin modifications that facilitate correct DSB repair and minimize aberration formation. Differences in the response of AT and NBS deficient cells at lower doses suggests important questions about the applicability of observations of radiation sensitivity at high dose to low dose exposures. For all iron nuclei irradiated cells, regression models preferred purely linear and quadratic dose responses for simple and complex exchanges, respectively. All the DNA repair defective cell lines had lower Relative biological effectiveness (RBE) values than normal cells, the lowest being for the DNA-PK-deficient cells, which was near unity. To further

  20. Chromosomal Aberrations in Normal and AT Cells Exposed to High Dose of Low Dose Rate Irradiation

    Kawata, T.; Shigematsu, N.; Kawaguchi, O.; Liu, C.; Furusawa, Y.; Hirayama, R.; George, K.; Cucinotta, F.

    2011-01-01

    Ataxia telangiectasia (A-T) is a human autosomally recessive syndrome characterized by cerebellar ataxia, telangiectases, immune dysfunction, and genomic instability, and high rate of cancer incidence. A-T cell lines are abnormally sensitive to agents that induce DNA double strand breaks, including ionizing radiation. The diverse clinical features in individuals affected by A-T and the complex cellular phenotypes are all linked to the functional inactivation of a single gene (AT mutated). It is well known that cells deficient in ATM show increased yields of both simple and complex chromosomal aberrations after high-dose-rate irradiation, but, less is known on how cells respond to low-dose-rate irradiation. It has been shown that AT cells contain a large number of unrejoined breaks after both low-dose-rate irradiation and high-dose-rate irradiation, however sensitivity for chromosomal aberrations at low-dose-rate are less often studied. To study how AT cells respond to low-dose-rate irradiation, we exposed confluent normal and AT fibroblast cells to up to 3 Gy of gamma-irradiation at a dose rate of 0.5 Gy/day and analyzed chromosomal aberrations in G0 using fusion PCC (Premature Chromosomal Condensation) technique. Giemsa staining showed that 1 Gy induces around 0.36 unrejoined fragments per cell in normal cells and around 1.35 fragments in AT cells, whereas 3Gy induces around 0.65 fragments in normal cells and around 3.3 fragments in AT cells. This result indicates that AT cells can rejoin breaks less effectively in G0 phase of the cell cycle? compared to normal cells. We also analyzed chromosomal exchanges in normal and AT cells after exposure to 3 Gy of low-dose-rate rays using a combination of G0 PCC and FISH techniques. Misrejoining was detected in the AT cells only? When cells irradiated with 3 Gy were subcultured and G2 chromosomal aberrations were analyzed using calyculin-A induced PCC technique, the yield of unrejoined breaks decreased in both normal and AT

  1. Chromosome Aberrations Induced in Human Peripheral Blood by 2-MeV X-Irradiation to the Whole Body and In Vitro

    In recent years it has proved possible to correlate the incidence of ring and dicentric chromosomes in cultured human peripheral blood lymphocytes with given radiation doses both in vitro and following partial or whole body irradiation exposure in vivo In the present study a comparison is made between the yield of aberrations in six men with advanced cancer who received whole body irradiation in doses varying between 36 and 50 rads and the yield of aberrations in samples of their blood drawn before exposure and irradiated in vitro simultaneously to the same dose A comparison is also made between the yield of aberrations following in vitro irradiation to much higher doses of blood derived from these same cancer patients and blood from non cancer controls The significance of these findings is discussed with reference to biological dosimetry using chromosome aberrations as the parameter for both external and internal irradiation Apart from such a practical application it also appears possible to develop this technique to study the sensitivity of cells to chromosome breakage by radiation in selected populations such as mongols or persons with Fancom s anaemia where there is a higher than normal incidence of malignant disease. (author)

  2. Antimutagenic potential of curcumin on chromosomal aberrations in Allium cepa

    RAGUNATHAN Irulappan; PANNEERSELVAM Natarajan

    2007-01-01

    Turmeric has long been used as a spice and food colouring agent in Asia. In the present investigation, the antimutagenic potential of curcumin was evaluated in Allium cepa root meristem cells. So far there is no report on the biological properties of curcumin in plant test systems. The root tip cells were treated with sodium azide at 200 and 300 μg/ml for 3 h and curcumin was given at 5, 10 and 20 μg/ml for 16 h, prior to sodium azide treatment. The tips were squashed after colchicine treatment and the cells were analyzed for chromosome aberration and mitotic index. Curcumin induces chromosomal aberration in Allium cepa root tip cells in an insignificant manner, when compared with untreated control. Sodium azide alone induces chromosomal aberrations significantly with increasing concentrations. The total number of aberrations was significantly reduced in root tip cells pretreated with curcumin. The study reveals that curcumin has antimutagenic potential against sodium azide induced chromosomal aberrations in Allium cepa root meristem cells. In addition, it showed mild cytotoxicity by reducing the percentage of mitotic index in all curcumin treated groups, but the mechanism of action remains unknown. The antimutagenic potential of curcumin is effective at 5 μg/ml in Allium cepa root meristem cells.

  3. Metaphase chromosome aberrations as markers of radiation exposure and dose

    Chromosome aberration frequency provides the most reliable biological marker of dose for detecting acute accidental radiation exposure. Significant radiation-induced changes in the frequency of chromosome aberrations can be detected at very low doses. Our paper provides information on using molecular chromosome probes ''paints'' to score chromosome damage and illustrates how technical advances make it possible to understand mechanisms involved during formation of chromosome aberrations. In animal studies chromosome aberrations provide a method to relate cellular damage to cellular dose. Using an In vivo/In vitro approach aberrations provided a biological marker of dose from radon progeny exposure which was used to convert WLM to dose in rat tracheal epithelial cells. Injection of Chinese hamsters with 144Ce which produced a low dose rate exposure of bone marrow to either low-LET radiation increased the sensitivity of the cells to subsequent external exposure to 60Co. These studies demonstrated the usefulness of chromosome damage as a biological marker of dose and cellular responsiveness

  4. Yield Improvement in Steel Casting (Yield II)

    Richard A. Hardin; Christoph Beckermann; Tim Hays

    2002-02-18

    This report presents work conducted on the following main projects tasks undertaken in the Yield Improvement in Steel Casting research program: Improvement of Conventional Feeding and Risering Methods, Use of Unconventional Yield Improvement Techniques, and Case Studies in Yield Improvement. Casting trials were conducted and then simulated using the precise casting conditions as recorded by the participating SFSA foundries. These results present a statistically meaningful set of experimental data on soundness versus feeding length. Comparisons between these casting trials and casting trials performed more than forty years ago by Pellini and the SFSA are quite good and appear reasonable. Comparisons between the current SFSA feeding rules and feeding rules based on the minimum Niyama criterion reveal that the Niyama-based rules are generally less conservative. The niyama-based rules also agree better with both the trials presented here, and the casting trails performed by Pellini an d the SFSA years ago. Furthermore, the use of the Niyama criterion to predict centerline shrinkage for horizontally fed plate sections has a theoretical basis according to the casting literature reviewed here. These results strongly support the use of improved feeding rules for horizontal plate sections based on the Niyama criterion, which can be tailored to the casting conditions for a given alloy and to a desired level of soundness. The reliability and repeatability of ASTM shrinkage x-ray ratings was investigated in a statistical study performed on 128 x-rays, each of which were rated seven different times. A manual ''Feeding and Risering Guidelines for Steel Castings' is given in this final report. Results of casting trials performed to test unconventional techniques for improving casting yield are presented. These use a stacked arrangement of castings and riser pressurization to increase the casting yield. Riser pressurization was demonstrated to feed a casting up to

  5. Fission product yields

    Data are summed up necessary for determining the yields of individual fission products from different fissionable nuclides. Fractional independent yields, cumulative and isobaric yields are presented here for the thermal fission of 235U, 239Pu, 241Pu and for fast fission (approximately 1 MeV) of 235U, 238U, 239Pu, 241Pu; these values are included into the 5th version of the YIELDS library, supplementing the BIBFP library. A comparison is made of experimental data and possible improvements of calculational methods are suggested. (author)

  6. Split-plot fractional designs: Is minimum aberration enough?

    Kulahci, Murat; Ramirez, Jose; Tobias, Randy

    2006-01-01

    Split-plot experiments are commonly used in industry for product and process improvement. Recent articles on designing split-plot experiments concentrate on minimum aberration as the design criterion. Minimum aberration has been criticized as a design criterion for completely randomized fractional...... factorial design and alternative criteria, such as the maximum number of clear two-factor interactions, are suggested (Wu and Hamada (2000)). The need for alternatives to minimum aberration is even more acute for split-plot designs. In a standard split-plot design, there are several types of two...... completely randomized designs. Consequently, we provide a modified version of the maximum number of clear two-factor interactions design criterion to be used for split-plot designs....

  7. Biological dosimetry: chromosomal aberration analysis for dose assessment

    In view of the growing importance of chromosomal aberration analysis as a biological dosimeter, the present report provides a concise summary of the scientific background of the subject and a comprehensive source of information at the technical level. After a review of the basic principles of radiation dosimetry and radiation biology basic information on the biology of lymphocytes, the structure of chromosomes and the classification of chromosomal aberrations are presented. This is followed by a presentation of techniques for collecting blood, storing, transporting, culturing, making chromosomal preparations and scaring of aberrations. The physical and statistical parameters involved in dose assessment are discussed and examples of actual dose assessments taken from the scientific literature are given

  8. Measurement of the atmospheric primary aberrations by 4-aperture DIMM

    Shomali, Ramin; Darudi, Ahmad

    2011-01-01

    The present paper investigates and discusses the ability of the Hartmann test with 4-aperture DIMM to measure the atmospheric primary aberrations which, in turn, can be used for calculation of the atmospheric coherence time. Through performing numerical simulations, we show that the 4-aperture DIMM is able to measure the defocus and astigmatism terms correctly while its results are not reliable for the coma. The most important limitation in the measurement of the primary aberrations by 4-aperture DIMM is the centroid displacements of the spots which are caused by the higher order aberrations. This effect is negligible in calculating of the defocus and astigmatisms, while, it cannot be ignored in the calculation of the coma.

  9. Correcting the Chromatic Aberration in Barrel Distortion of Endoscopic Images

    Y. M. Harry Ng

    2003-04-01

    Full Text Available Modern endoscopes offer physicians a wide-angle field of view (FOV for minimally invasive therapies. However, the high level of barrel distortion may prevent accurate perception of image. Fortunately, this kind of distortion may be corrected by digital image processing. In this paper we investigate the chromatic aberrations in the barrel distortion of endoscopic images. In the past, chromatic aberration in endoscopes is corrected by achromatic lenses or active lens control. In contrast, we take a computational approach by modifying the concept of image warping and the existing barrel distortion correction algorithm to tackle the chromatic aberration problem. In addition, an error function for the determination of the level of centroid coincidence is proposed. Simulation and experimental results confirm the effectiveness of our method.

  10. Screening for aberrant behavior in the nuclear industry

    This paper attempts to promote a fuller understanding of how psychological assessment procedures can be used to reduce the threat from aberrant behavior in the nuclear industry. It begins with a discussion of the scientifically based methods that are used by psychologists in constructing, scoring, and interpreting these procedures. This discussion includes an emphasis on the concepts of validity and reliability and their central importance when one is choosing specific psychological screening tools. Criteria for selecting and using psychological assessment procedures when screening for aberrant behavior are also provided. Some commonly used assessment procedures that satisfy these criteria are discussed. A number a psychological assessment procedures specifically recommended for use in screening for aberrant behavior in the nuclear industry are described

  11. On-line correction of aberrations in particle spectrographs

    A new method is presented that allows the reconstruction of trajectories and the on-line correction of residual aberrations that limit the resolution of particle spectrographs. Using a computed or fitted high order transfer map that describes the uncorrected aberrations of the spectrograph under consideration, it is possible to determine a pseudo transfer map that allows the computation of the corrected data of interest as well as the reconstructed trajectories in terms of position measurements in two planes near the focal plane. The technique is only limited by the accuracy of the position measurements and the accuracy of the transfer map. In practice the method can be expressed as an inversion of a pseudo transfer map and implemented in the differential algebraic framework. The method will be used to correct residual high aberrations in the S800 spectrograph which is under construction at the National Superconducting Cyclotron Laboratory at Michigan State University

  12. Non-Gaussianity and CMB aberration and Doppler

    Catena, Riccardo; Notari, Alessio; Renzi, Alessandro

    2013-01-01

    The peculiar motion of an observer with respect to the CMB rest frame induces a deflection in the arrival direction of the observed photons (also known as CMB aberration) and a Doppler shift in the measured photon frequencies. As a consequence, aberration and Doppler effects induce non trivial correlations between the harmonic coefficients of the observed CMB temperature maps. In this paper we investigate whether these correlations generate a bias on Non-Gaussianity estimators $f_{NL}$. We perform this analysis simulating a large number of temperature maps with Planck-like resolution (lmax $= 2000$) as different realizations of the same cosmological fiducial model (WMAP7yr). We then add to these maps aberration and Doppler effects employing a modified version of the HEALPix code. We finally evaluate a generalization of the Komatsu, Spergel and Wandelt Non-Gaussianity estimator for all the simulated maps, both when peculiar velocity effects have been considered and when these phenomena have been neglected. Usi...

  13. Radiation-induced chromosome aberrations in human lymphocytes

    Dose-response relationships for unstable chromosome exchange aberrations were obtained after irradiation with 200 kV X-rays and 60Co gamma rays, the doses ranging within 0.05-3.0 Gy. The data points were fitted to the linear quadratic model Y = C + αD + βD2, and after the chromosome hits leading to two-break unstable aberrations were estimated, to the model average x = C +kD. The results fitted the latter model particularly well, the index of determination being 0.988 for gamma rays and 0.997 for X-rays. The RBE of 200 kV X-rays as compared with 60Co gamma radiation was 1.6, when primary chromosome breaks leading to dicentric and centric ring aberrations were used as the biological endpoint. (author)

  14. Split-plot fractional designs: Is minimum aberration enough?

    Kulahci, Murat; Ramirez, Jose; Tobias, Randy

    2006-01-01

    Split-plot experiments are commonly used in industry for product and process improvement. Recent articles on designing split-plot experiments concentrate on minimum aberration as the design criterion. Minimum aberration has been criticized as a design criterion for completely randomized fractional...... factorial design and alternative criteria, such as the maximum number of clear two-factor interactions, are suggested (Wu and Hamada (2000)). The need for alternatives to minimum aberration is even more acute for split-plot designs. In a standard split-plot design, there are several types of two...... for completely randomized designs. Consequently, we provide a modified version of the maximum number of clear two-factor interactions design criterion to be used for split-plot designs....

  15. Functionally aberrant electrophysiological cortical connectivities in first episode medication-naive schizophrenics from three psychiatry centers

    Dietrich Lehmann‡

    2014-08-01

    Full Text Available Functional dissociation between brain processes is widely hypothesized to account for aberrations of thought and emotions in schizophrenic patients. The typically small groups of analyzed schizophrenic patients yielded different neurophysiological findings, probably because small patient groups are likely to comprise different schizophrenia subtypes. We analyzed multichannel eyes-closed resting EEG from three small groups of acutely ill, first episode productive schizophrenic patients before start of medication (from three centers: Bern N=9; Osaka N=9; Berlin N=12 and their controls. Low resolution brain electromagnetic tomography (LORETA was used to compute intracortical source model-based lagged functional connectivity not biased by volume conduction effects between 19 cortical regions of interest (ROIs. The connectivities were compared between controls and patients of each group. Conjunction analysis determined six aberrant cortical functional connectivities that were the same in the three patient groups. Four of these six concerned the facilitating EEG alpha 1 frequency activity; they were decreased in the patients. Another two of these six connectivities concerned the inhibiting EEG delta frequency activity; they were increased in the patients. The principal orientation of the six aberrant cortical functional connectivities was sagittal; five of them involved both hemispheres. In sum, activity in the posterior brain areas of preprocessing functions and the anterior brain areas of evaluation and behavior control functions were compromised by either decreased coupled activation or increased coupled inhibition, common across schizophrenia subtypes in the three patient groups. These results of the analyzed three independent groups of schizophrenics support the concept of functional dissociation.

  16. Stability of chromosome aberrations with post-irradiation time. Implications in retrospective biodosimetry. Chromosome aberration analysis in retrospective biodosimetry

    The aim of the present study was to evaluate the persistence chromosome aberrations induced by three doses of X-rays. For this purpose fluorescence in situ hybridisation (FISH) painting and multiplex FISH (mFISH) techniques have been applied to a long-term culture of irradiated cells. By painting, at 2 Gy the frequency of apparently simple translocations remained almost invariable during all the culture, whereas at 4 Gy a rapid decline was observed between the first and the second sample, followed by a slight decrease until the end of the culture. Apparently simple dicentrics and complex aberrations disappeared after the first sample at 2 and 4 Gy. When simple aberrations analysed by mFISH are considered, at 2 Gy the frequency of complete plus one-way translocations remained invariable between the first and last sample, but at 4 Gy a 60% decline was observed. True incomplete simple translocations disappeared at 2 and 4 Gy. The analysis by mFISH showed that the frequency of complex aberrations and their complexity increased with dose and tends to disappear in the last sample. Our results indicate that the dose influence on the decrease of the frequency of simple translocations with post-irradiation time cannot be fully explained by the disappearance of true incomplete translocations and complex aberrations. (author)

  17. Fission Mass Yield Studies

    Mass yields from fission induced by a span of neutron energies up to 18 MeV have been measured for Th232, U235 and U238 target nuclei. Particular attention has been given to the dependence of symmetric fission yields on energy. To study the effect of angular momentum, fission yields from the U236 compound nucleus formed by alpha-particle irradiations of Th232 were also studied over the same span of excitation energies. A standard set of Pd109, Ag111, Pd112 and Ag113 symmetric fission yields was generally measured for all irradiations. In addition, yields of Eu156, Cs136 and 2.3-d Cd115 were measured for some selected combinations of projectile, energy and target nucleus. Assays for Zr97 and sometimes also Ba139 served as fission monitors. Altogether 150 fission yields were measured for these combinations of target nucleus, projectile and incident energy. About one-third of these were checked by replicated irradiations. At highest energies for the U236 compound nucleus the symmetric fission yield from alpha-particle-induced fission is about 13% higher than for neutron-induced fission. Dips in symmetric fission yield were observed at the energy onset of third-chance fission for each target and projectile. Some indication of a small central peak in the mass distribution was observed in the yields from U236 compound nucleus fission, but not from the Th233 compound nucleus fission. Detailed mathematical methods have been developed to separate the effects of fissions preceding and following neutron emission. These methods were used to remove the effects of second- and third-chance fissions from the measured symmetric fission yields. These calculated yields for first-chance fission show no dips with energy. The calculations also show that perhaps half the difference between symmetric yields for alpha- particle-induced fission of Th232 and neutron-induced fission of U235 is attributable to angular momentum effects. Both calculated first-chance yields and measured yields

  18. Influence of the shielding on the induction of chromosomal aberrations in human lymphocytes exposed to high-energy iron ions

    Computer code calculations based on biophysical models are commonly used to evaluate the effectiveness of shielding in reducing the biological damage caused by cosmic radiation in space flights. Biological measurements are urgently needed to benchmark the codes. We have measured the induction of chromosomal aberrations in human peripheral blood lymphocytes exposed in vitro to 56Fe-ion beams accelerated at the Heavy for Medical Accelerator in Chiba (HIMAC) synchrotron in Chiba. Isolated lymphocytes were exposed to the 500 MeV/n iron beam (dose range 0.1-1 Gy)after traversal of 0 to 8 g/cm2 of either polymethylmethacrylate (PMMA) (lucite, a common plastic material) or aluminum. Three PMMA shield thickness and one Al shield thickness were used. For comparison, cells were exposed to 200 MeV/n iron ions and to X-rays. Chromosomes were prematurely condensed by a phosphatase inhibitor (calyculin A) to avoid cell-cycle selection produced by the exposure to high-linear energy transfer (LET) heavy ion beams. Aberrations were scored in chromosomes 1, 2,and 4 following fluorescence in situ hybridization. The yield of chromosomal aberrations per unit dose at the sample position was poorly dependent on the shield thickness and material. However, the yield of aberrations per unit ion incident on the shield was increased by the shielding. This increase is associated to the increased dose-rate measured behind the shield as compared to the direct beam. These preliminary results prove that shielding can increase the effectiveness of heavy ions, and the damage is dependent upon shield thickness and material. (author)

  19. Aberrations of the point spread function of a multimode fiber

    Descloux, Adrien; Pinkse, Pepijn W H

    2016-01-01

    We investigate the point spread function of a multimode fiber. The distortion of the focal spot created on the fiber output facet is studied for a variety of the parameters. We develop a theoretical model of wavefront shaping through a multimode fiber and use it to confirm our experimental results and analyze the nature of the focal distortions. We show that aberration-free imaging with a large field of view can be achieved by using an appropriate number of segments on the spatial light modulator during the wavefront-shaping procedure. The results describe aberration limits for imaging with multimode fibers as in, e.g., microendoscopy.

  20. Investigation of spherical aberration effects on coherent lidar performance

    Hu, Qi; Rodrigo, Peter John; Iversen, Theis Faber Quist;

    2013-01-01

    different telescope configurations using a hard target. It is experimentally and numerically proven that the SA has a significant impact on lidar antenna efficiency and optimal beam truncation ratio. Furthermore, we demonstrate that both effective probing range and spatial resolution of the system are......In this paper we demonstrate experimentally the performance of a monostatic coherent lidar system under the influence of phase aberrations, especially the typically predominant spherical aberration (SA). The performance is evaluated by probing the spatial weighting function of the lidar system with...

  1. Human peripheral blood lymphocytes for the analysis of chromosome aberrations in mutagen tests

    Studies on exposed individuals, and on cultured cells, have shown that the human peripheral blood lymphocyte is an extremely sensitive indicator of both in vivo and in vitro induced chromosome structural change. These changes in chromosome structure offer readily scored morphological evidence of damage to the genetic material. Although problems exist in the extrapolation from in vitro results to the in vivo situation, the lymphocyte offers several advantages as a test system. The types of chromosome damage which can be cytologically distinguished at metaphase can be divided into two main groups: chromosome type and chromatid type. The circulating lymphocyte is in the G/sub 0/ or G/sub 1/ phase of mitosis and exposure to ionising radiations and certain other mutagenic agents during this stage produces chromosome-type damage where the unit of breakage and reunion is the whole chromosome (i.e. both chromatids at the same locus). However, cells exposed to these agents while in the S or G/sub 2/ stages of the cell cycle, after the chromosome has divided into two sister chromatids, yield chromatid-type aberrations and only the single chromatid is involved in breakage or exchange. Other agents (e.g. some of the alkylating agents) will usually produce only chromatid-type aberrations in cells in cycle although the cells are exposed to the mutagen whilst in G/sub 1/

  2. Management of ISOLDE yields

    Turrión, M.; Eller, M.; Catherall, R.; Fraile, L. M.; Herman-Izycka, U.; Köster, U.; Lettry, J.; Riisager, K.; Stora, Th.

    2008-10-01

    Isotope yields at ISOLDE are regularly measured online (with dedicated gamma and beta detectors) and off line by implantation and subsequent alpha-, beta- or gamma spectroscopy. The Java based measurement software, dedicated to tape station measurements, has been updated in order to automate yield measurements and provide possibilities to repeat existing measurements. A procedure supported by dedicated programs was established to analyze data. The results are centrally stored and provide an interface to the existing ISOLDE yield database. The present ISOLDE yield database has been recently created and updated with a large number of yields compiled from published data. The database developed on ORACLE guarantees reliability and security and provides a simple way of compiling new information. A user oriented interface has been programmed allowing accessing the information via a web browser. Several levels in the database structure provide selective access to different layers of technical information for advanced users and for technical R&D. The improvements in the yield measurement procedure, the data storage and accessibility, as well as the new database structure, the web application and the access interfaces, enhance the communication between technical information like yields and the users of the ISOLDE facility.

  3. Aberration of a negative ion beam caused by space charge effect

    Aberrations are inevitable when the charged particle beams are extracted, accelerated, transmitted, and focused with electrostatic and magnetic fields. In this study, we investigate the aberration of a negative ion accelerator for a neutral beam injector theoretically, especially the spherical aberration caused by the negative ion beam expansion due to the space charge effect. The negative ion current density profiles with the spherical aberration are compared with those without the spherical aberration. It is found that the negative ion current density profiles in a log scale are tailed due to the spherical aberration.

  4. Effect of Coma Aberration on Orbital Angular Momentum Spectrum of Vortex Beams

    CHEN Zi-Yang; PU Ji-Xiong

    2009-01-01

    Spiral spectra of vortex beams with coma aberration are studied.It is shown that the orbital angular momentum (OAM) states of vortex beams with coma aberration are different from those aberration-free vortex beams.Spiral spectra of beams with coma aberration are spreading.It is found that in the presence of coma aberration,the vortex beams contain not only the original OAM component but also other components.A larger coma aberration coefficient and/or a larger beam waist will lead to a wider spreading of the spiral spectrum. The results may have potential applications in information encoding and transmittance.

  5. Relationship between wave aberrations and histological features in ex vivo porcine crystalline lenses

    Acosta, Eva; Bueno, Juan M.; Schwarz, Christina; Artal, Pablo

    2010-09-01

    Wave aberrations of isolated ex vivo porcine crystalline lenses were measured by using a point-diffraction interferometer. This method allowed us to gain greater insight into the detailed aberration structure of eye lenses showing systematic presence of some dominant aberrations. In order of significance, astigmatism together with spherical aberration, coma, and trefoil are the main aberrations present in all lenses. We found a high correlation between the axis of both astigmatism and trefoil with the Y-shaped suture planes of the lens, revealing a subtle relationship between the induced aberrations and the histological features.

  6. Chromosomal aberrations and SCEs as biomarkers of cancer risk

    Norppa, H.; Bonassi, S.; Hansteen, I. L.; Hagmar, L.; Strömberg, U.; Rössner st., Pavel; Boffetta, P.; Lindholm, C.; Gundy, S.; Lazutka, J.; Cebulska-Wasilewska, A.; Fabiánová, E.; Šrám, Radim; Knudsen, L. E.; Barale, R.; Fucic, A.

    2006-01-01

    Roč. 600, - (2006), s. 37-45. ISSN 0027-5107 Institutional research plan: CEZ:AV0Z50390512 Keywords : biomarkers * chromosomal aberration * sister chromatid exchange Subject RIV: DN - Health Impact of the Environment Quality Impact factor: 4.111, year: 2006

  7. Consequences of Aberrant Hedgehog Signaling During Zebrafish Development

    Koudijs, M.J.

    2007-01-01

    The Hedgehog signaling pathway is controlling proliferation, patterning and differentiation during development of vertebrates and invertebrates. Aberrant Hedgehog activity has been shown to be one of the underlying causes of a number of congenital disorders and multiple types of cancer. We investiga

  8. Geometric aberrations in final focussing for heavy ion fusion

    A general formulation is developed to estimate third-order distortions of ion beams without detailed calculations. Several candidate heavy ion fusion (HIF) beams are discussed in detail as examples. Some general ideas on constraints which third-order aberrations place on HIF parameters are developed

  9. Impact of primary aberrations on coherent lidar performance

    Hu, Qi; Rodrigo, Peter John; Iversen, Theis Faber Quist;

    2014-01-01

    demonstration of these tendencies. Furthermore, our numerical and experimental results show good agreement. We also demonstrate how the truncation of the transmit beam affects the system performance. It is both experimentally and numerically proven that aberration effects have profound impact on the antenna...

  10. Chromosomal aberration frequency in lymphocytes predicts the risk of cancer

    Bonassi, Stefano; Norppa, Hannu; Ceppi, Marcello;

    2008-01-01

    Mechanistic evidence linking chromosomal aberration (CA) to early stages of cancer has been recently supported by the results of epidemiological studies that associated CA frequency in peripheral lymphocytes of healthy individuals to future cancer incidence. To overcome the limitations of single...

  11. Frequency and distribution studies of asymmetrical versus symmetrical chromosome aberrations

    Two aspects of the relationship between Asymmetrical (A) and Symmetrical (S) radiation-induced chromosomal aberrations are considered in this paper. (1) Are A and S truly alternative modes of lesion interaction. Relative frequencies for chromatid-type and chromosome-type are examined, and new lymphocyte data using banding is used to look at this, and also for parallelism in chromosome participation of the two forms for various aberration categories. All the tests applied suggest that A and S are alternative interaction modes. (2) The long-term survival characteristics of A and S are discussed, and the differences in expected frequencies of derived S per surviving cell from chromosome-type and chromatid-types are stressed. Since many in vivo tissues have varying mixtures of potential chromatid and chromosome aberration-bearing target cells, ultimate cell survival and derived S frequencies may differ between tissues for the same absorbed dose. An Appendix gives Relative Corrected Lengths (RCL) for chromosomes of the human karyotype which should be used when testing the various exchange aberration categories for random chromosome participation. (orig.)

  12. Telomere Length in Circulating Lymphocytes: Association with Chromosomal Aberrations

    Hemminki, K.; Rachakonda, S.; Musak, L.; Vymetálková, Veronika; Halasová, E.; Forsti,, A.; Vodičková, Ludmila; Buchancová, J.; Vodička, Pavel; Kumar, R.

    2015-01-01

    Roč. 54, č. 3 (2015), s. 194-196. ISSN 1045-2257 Institutional support: RVO:68378041 Keywords : structural chromosome aberrations * healthy subjects * relative telomere length * genotoxicity * telomere biology Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.041, year: 2014

  13. Chromosomal aberrations in tire plant workers and interaction with

    Musak, L.; Souček, P.; Vodičková, Ludmila; Naccarati, Alessio; Halasová, E.; Poláková, Veronika; Slyšková, Jana; Susová, S.; Buchancová, J.; Šmerhovský, Z.; Sediková, J.; Klimentová, G.; Osina, O.; Hemminki, K.; Vodička, Pavel

    2008-01-01

    Roč. 641, 1-2 (2008), s. 36-42. ISSN 0027-5107 R&D Projects: GA MZd NR8563 Institutional research plan: CEZ:AV0Z50390512 Keywords : Chromosomal aberrations * Genetic polymorphisms * DNA repair genes Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.198, year: 2008

  14. Frequency of primary amenorrhea due to chromosomal aberration

    Objective: To find out the frequency of primary amenorrhea due to chromosomal aberration and the different options available for management. Subjects and Methods: All patients with primary amenorrhea due to chromosomal aberrations were included in study. Patient's detailed history, general physical examination, presence or absence of secondary sexual characteristics, abdominal and pelvic examination finding were noted. Targeted investigations, including ultrasound, hormonal assay, buccal smear and karyotyping results were recorded. The management options were individually tailored with focus n psychological management. Results: Eighteen patients out of 30,000 patients were diagnosed as having primary amenorrhea. Six had primary amenorrhea due to chromosomal aberrations with the frequency of 0.02%. The age at presentation was 20 years and above in 50%. The most common cause was Turner's syndrome seen in 4 out of 6. The presenting symptoms were delay in onset of menstruation in 05 patients and primary infertility in 01 patient. Conclusion: Primary amenorrhea due to chromosomal aberration is an uncommon condition requiring an early and accurate diagnosis. Turner's syndrome is a relatively common cause of this condition. Management should be multi-disciplinary and individualized according to the patient's age and symptom at presentation. Psychological management is very important and counselling throughout treatment is recommended. (author)

  15. Oxidative stress and chromosomal aberrations in an environmentally exposed population

    Rössner ml., Pavel; Rössnerová, Andrea; Šrám, Radim

    2011-01-01

    Roč. 707, 1-2 (2011), s. 34-41. ISSN 0027-5107 R&D Projects: GA MŽP(CZ) SP/1B3/8/08 Institutional research plan: CEZ:AV0Z50390512 Keywords : air pollution * oxidative stress * chromosomal aberrations Subject RIV: DN - Health Impact of the Environment Quality Impact factor: 2.850, year: 2011

  16. Active Optical Control of Quasi-Static Aberrations for ATST

    Johnson, L. C.; Upton, R.; Rimmele, T. R.; Hubbard, R.; Barden, S. C.

    2012-12-01

    The Advanced Technology Solar Telescope (ATST) requires active control of quasi-static telescope aberrations in order to achieve the image quality set by its science requirements. Four active mirrors will be used to compensate for optical misalignments induced by changing gravitational forces and thermal gradients. These misalignments manifest themselves primarily as low-order wavefront aberrations that will be measured by a Shack-Hartmann wavefront sensor. When operating in closed-loop with the wavefront sensor, the active optics control algorithm uses a linear least-squares reconstructor incorporating force constraints to limit force applied to the primary mirror while also incorporating a neutral-point constraint on the secondary mirror to limit pointing errors. The resulting system compensates for astigmatism and defocus with rigid-body motion of the secondary mirror and higher-order aberrations with primary mirror bending modes. We demonstrate this reconstruction method and present simulation results that apply the active optics correction to aberrations generated by finite-element modeling of thermal and gravitational effects over a typical day of ATST operation. Quasi-static wavefront errors are corrected to within limits set by wavefront sensor noise in all cases with very little force applied to the primary mirror surface and minimal pointing correction needed.

  17. Frequency of chromosomal aberrations in Prague mothers and their newborns.

    Rössnerová, Andrea; Balascak, I.; Rössner ml., Pavel; Šrám, Radim

    2010-01-01

    Roč. 699, 1-2 (2010), s. 29-34. ISSN 1383-5718 R&D Projects: GA MŠk 2B06088 Institutional research plan: CEZ:AV0Z50390512 Keywords : Carcinogenic polycyclic aromatic hydrocarbons * Chromosomal aberrations * Fluorescence in situ hybridization Subject RIV: DN - Health Impact of the Environment Quality Impact factor: 2.938, year: 2010

  18. Effect of Aberration of Light in X-ray Free Electron Lasers

    Geloni, Gianluca; Saldin, Evgeni

    2015-01-01

    We discuss the physics of a microbunched electron beam kicked by the dipole field of a corrector magnet by describing the kinematics of coherent undulator radiation after the kick. Particle tracking shows that the electron beam direction changes after the kick, while the orientation of the microbunching wavefront stays unvaried. Therefore, electrons motion and wavefront normal have different directions. Coherent radiation emission in a downstream undulator is expected to be dramatically suppressed as soon as the kick angle becomes larger than the divergence of the output radiation. In fact, according to conventional treatments, coherent radiation is emitted along the normal to the microbunching wavefront. Here we show that kinematics predicts a surprising effect. Namely, a description of coherent undulator radiation in the laboratory frame yields the radical notion that, due light aberration, strong coherent radiation is produced along the direction of the kick. We hold a recent FEL study made at the LCLS as ...

  19. On isogeometric yield envelopes.

    Coombs, W.M.

    2015-01-01

    In numerical analysis the failure of engineering materials is controlled through specifying yield envelopes (or surfaces) that bound the allowable stress in the material. Simple examples include the prismatic von Mises (circle) and Tresca (hexagon) yield surfaces. However, each surface is distinct and requires a specific equation describing the shape of the surface to be formulated in each case. These equations impact on the numerical implementation (specifically relating to st...

  20. Long-term persistence of chromosome aberrations in uranium miners.

    Mészáros, Gabriella; Bognár, Gabriella; Köteles, G J

    2004-07-01

    Chromosome aberration analyses were performed on blood samples from 165 active underground uranium miners between 1981 and 1985. After decommissioning the mine in 1997 chromosome aberration analyses were also included in the medical laboratory investigations of health conditions of 141 subjects between 1998 and 2002 within the framework of a follow-up-study. The numerical data are presented as functions of the exposure categories expressed in working level month up to 600. In the active groups the dicentric level was 7 to 12 times higher than in the unexposed population, the acentrics also higher with more than an order of magnitude, the frequency of total aberrations--including dicentrics, acentrics, rings, deletions, minits and numerical aberrations, i.e. both chromatid and chromosome type of aberrations were also well above the control level. In the group of former uranium miners although there were slight decreases in the dicentrics after 8 to 25 yr, the values were not significantly different from the values of active miners. The frequency of deletions was also maintained in the post-mining period. The frequency of acentrics, however, decreased significantly, but even the lowest values remained 2-3 times higher than the values in the unexposed population.The possibility is suggested that for the long-term persistence of cytogenetic alterations the permanent production and presence of clastogenic factors might be responsible. The comparison of the two datasets suggest a long-term persistence of cytogenetic alterations above the population average values in a large fraction of persons investigated. PMID:15308832

  1. Chromatin structure and ionizing-radiation-induced chromosome aberrations

    The possible influence of chromatic structure or activity on chromosomal radiosensitivity was studied. A cell line was isolated which contained some 105 copies of an amplified plasmid in a single large mosquito artificial chromosome (MAC). This chromosome was hypersensitive to DNase I. Its radiosensitivity was some three fold greater than normal mosquito chromosomes in the same cell. In cultured human cells irradiated during G0, the initial breakage frequency in chromosome 4, 19 and the euchromatic and heterochromatic portions of the Y chromosome were measured over a wide range of doses by inducing Premature Chromosome Condensation (PCC) immediately after irradiation with Cs-137 gamma rays. No evidence was seen that Y heterochromatin or large fragments of it remained unbroken. The only significant deviation from the expected initial breakage frequency per Gy per unit length of chromosome was that observed for the euchromatic portion of the Y chromosome, with breakage nearly twice that expected. The development of aberrations involving X and Y chromosomes at the first mitosis after irradation was also studied. Normal female cells sustained about twice the frequency of aberrations involving X chromosomes for a dose of 7.3 Gy than the corresponding male cells. Fibroblasts from individuals with supernumerary X chromosomes did not show any further increase in X aberrations for this dos. The frequency of aberrations involving the heterochromatic portion of the long arm of the Y chromosome was about what would be expected for a similar length of autosome, but the euchromatic portion of the Y was about 3 times more radiosensitive per unit length. 5-Azacytidine treatment of cultured human female fibroblasts or fibroblasts from a 49,XXXXY individual, reduced the methylation of cytosine residues in DNA, and resulted in an increased chromosomal radiosensitivity in general, but it did not increase the frequency of aberrations involving the X chromosomes

  2. Non-Gaussianity and CMB aberration and Doppler

    The peculiar motion of an observer with respect to the CMB rest frame induces a deflection in the arrival direction of the observed photons (also known as CMB aberration) and a Doppler shift in the measured photon frequencies. As a consequence, aberration and Doppler effects induce non trivial correlations between the harmonic coefficients of the observed CMB temperature maps. In this paper we investigate whether these correlations generate a bias on non-Gaussianity estimators fNL. We perform this analysis simulating a large number of temperature maps with Planck-like resolution (lmax = 2000) as different realizations of the same cosmological fiducial model (WMAP7yr). We then add to these maps aberration and Doppler effects employing a modified version of the HEALPix code. We finally evaluate a generalization of the Komatsu, Spergel and Wandelt non-Gaussianity estimator for all the simulated maps, both when peculiar velocity effects have been considered and when these phenomena have been neglected. Using the value v/c = 1.23 × 10−3 for our peculiar velocity, we found that the aberration/Doppler induced non-Gaussian signal is at most of about half of the cosmic variance σ for fNL both in a full-sky and in a cut-sky experimental configuration, for local, equilateral and orthogonal estimators. We conclude therefore that when estimating fNL it is safe to ignore aberration and Doppler effects if the primordial map is already Gaussian. More work is necessary however to assess whether a map which contains non-Gaussianity can be significantly distorted by a peculiar velocity

  3. REPRINT OF: Aberration measurement in HRTEM: Implementation and diagnostic use of numerical procedures for the highly precise recognition of diffractogram patterns

    Barthel, J. [Institute of Solid State Research and Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons (ER-C), Forschungszentrum Juelich GmbH, D-52425 Juelich (Germany); Thust, A., E-mail: a.thust@fz-juelich.de [Institute of Solid State Research and Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons (ER-C), Forschungszentrum Juelich GmbH, D-52425 Juelich (Germany)

    2011-06-15

    The precise characterisation of the instrumental imaging properties in the form of aberration parameters constitutes an almost universal necessity in quantitative HRTEM, and is underlying most hardware and software techniques established in this field. We focus in this paper on the numerical analysis of individual diffractograms as a first preparatory step for further publications on HRTEM aberration measurement. The extraction of the defocus and the 2-fold astigmatism from a diffractogram is a classical pattern recognition problem, which we believe to have solved in a near-optimum way concerning precision, speed, and robustness. The newly gained measurement precision allows us to resolve fluctuations of the defocus and the 2-fold astigmatism and to assess thereby the optical stability of electron microscopes. Quantitative stability criteria are elaborated, which may serve as helpful guidelines for daily work as well as for microscope acceptance tests. -- Research Highlights: {yields} Algorithms for the highly precise diffractogram analysis in HRTEM are introduced. {yields} AMADEUS procedure measures defocus and astigmatism with a few Angstrom precision. {yields} Aberration measurement meets the precision requirements of 0.5 A microscopy. {yields} Quantitative criteria for the optical stability of HRTEMs are introduced.

  4. Comparative studies of radiation-induced chromosome aberrations in several mammalian species

    The dose-response relationship for inducing chromosome aberrations in peripheral lymphocytes of five mammalian species - man, cynomolgus monkey, rabbit, domestic cat and beagle dog - were studied comparatively by whole-blood microculture technique following in-vitro exposures at various doses with 200-kVp X rays. The yields of induced chromosome aberrations were dependent on exposure doses between 48 and 480 rads in all the species examined. The relationship between exposure dose (D in rads) and frequency of induced dicentrics per cell (Y) was expressed by: Ysub((man)) = 14.38x10-6 Dsup(1.94); Ysub((monkey)) = 18.12x10-6 Dsup(1.86); Ysub((rabbit)) = 1.88x10-6 Dsup(2.06); Ysub((cat)) = 78.66x10-6 Dsup(1.35); Ysub((dog)) = 46.13x10-6 Dsup(1.37). Taking the frequency of dicentrics in man as 1.00, the relative frequency in each species was estimated as 0.79, 0.24, 0.22 and 0.16 in monkey, rabbit, cat and dog, respectively. From these results the consistent relationship could not be discovered between X-ray doses and the dicentric yield based on the arm number effect proposed by Brewen et al., whereas the nuclear DNA contents and the arm number in all the species used are roughly similar to those in man. The authors considered that such interspecies differences may be derived from the cellular and/or physiological features of PHA-responsible lymphocytes (T-cells) in each species, and that may be due to the level of development of each species on the phylogenetic or evolutionary scale. (author)

  5. Subjective face recognition difficulties, aberrant sensibility, sleeping disturbances and aberrant eating habits in families with Asperger syndrome

    Källman Tiia

    2005-04-01

    Full Text Available Abstract Background The present study was undertaken in order to determine whether a set of clinical features, which are not included in the DSM-IV or ICD-10 for Asperger Syndrome (AS, are associated with AS in particular or whether they are merely a familial trait that is not related to the diagnosis. Methods Ten large families, a total of 138 persons, of whom 58 individuals fulfilled the diagnostic criteria for AS and another 56 did not to fulfill these criteria, were studied using a structured interview focusing on the possible presence of face recognition difficulties, aberrant sensibility and eating habits and sleeping disturbances. Results The prevalence for face recognition difficulties was 46.6% in individuals with AS compared with 10.7% in the control group. The corresponding figures for subjectively reported presence of aberrant sensibilities were 91.4% and 46.6%, for sleeping disturbances 48.3% and 23.2% and for aberrant eating habits 60.3% and 14.3%, respectively. Conclusion An aberrant processing of sensory information appears to be a common feature in AS. The impact of these and other clinical features that are not incorporated in the ICD-10 and DSM-IV on our understanding of AS may hitherto have been underestimated. These associated clinical traits may well be reflected by the behavioural characteristics of these individuals.

  6. Numerical and structural chromosome aberrations in cauliflower (Brassica oleracea var. botrytis) and Arabidopsis thaliana

    Ji, X.

    2014-01-01

    Numerical and structural chromosome aberrations in cauliflower (Brassica oleracea var. botrytis) and Arabidopsis thaliana. I studied numerical and structural chromosome aberrations in cauliflower (Brassica oleracea var. botrytis) and Arabidopsis thaliana. The large genomic changes are important for

  7. Image transfer with spatial coherence for aberration corrected transmission electron microscopes.

    Hosokawa, Fumio; Sawada, Hidetaka; Shinkawa, Takao; Sannomiya, Takumi

    2016-08-01

    The formula of spatial coherence involving an aberration up to six-fold astigmatism is derived for aberration-corrected transmission electron microscopy. Transfer functions for linear imaging are calculated using the newly derived formula with several residual aberrations. Depending on the symmetry and origin of an aberration, the calculated transfer function shows characteristic symmetries. The aberrations that originate from the field's components, having uniformity along the z direction, namely, the n-fold astigmatism, show rotational symmetric damping of the coherence. The aberrations that originate from the field's derivatives with respect to z, such as coma, star, and three lobe, show non-rotational symmetric damping. It is confirmed that the odd-symmetric wave aberrations have influences on the attenuation of an image via spatial coherence. Examples of image simulations of haemoglobin and Si [211] are shown by using the spatial coherence for an aberration-corrected electron microscope. PMID:27155359

  8. Influence of misalignment and aberrations on antenna received power in free-space laser communications

    Tan, Liying; Yang, Yuqiang; Ma, Jing; Zheng, Guoxian

    2009-04-01

    To evaluate the influence of wavefront aberrations on antenna received power in free-space laser communications, an aberration attenuation factor is proposed, based on which the power penalty at the receiver due to misalignment and primary aberrations is investigated. It is shown that antenna received power decreases gradually with increasing misalignment and aberrations. A comparison shows that tilt (misalignment) has greater influence than other primary aberrations. When the rms aberration value is 0.1λ, the received power penalties caused by tilt, astigmatism, coma, curvature, and spherical aberrations are about 40%, 36%, 35%, 24%, and 23%, respectively. In addition, the obscuration ratio of the transmitter antenna has a noticeable but relatively minor influence on the aberration attenuation factor.

  9. The Effect of the Asphericity of Myopic Laser Ablation Profiles on the Induction of Wavefront Aberrations

    Bühren, Jens; Nagy, Lana; Yoon, Geunyoung; MacRae, Scott; Kohnen, Thomas; Huxlin, Krystel R.

    2010-01-01

    A PMMA model study showed that spherical aberration induction in laser refractive surgery is due to loss of ablation efficiency in the corneal periphery. Aspheric ablation induced less spherical aberration and provided better theoretical image quality.

  10. The effects of oxygen and hypoxic cell sensitizers on chromosome aberration induction in human lymphocytes

    Normal human blood was exposed at 370C to 250 kVp X-rays under conditions of anoxia and of equilibration with oxygen. The numbers of observed dicentric aberrations were fitted to the expression Y = αD + βD2 and from these curves an OER estimate of 2.8 at 5.0 Gy was obtained. The dicentric yield was also measured after blood held at various oxygen tensions was exposed to 3.0 Gy or 0.75 Gy X-rays. No difference was observed between the values at the lowest oxygen concentration of less than 2 ppm and at 250 ppm. Above 250 ppm there was a steep rise in the number of dicentrics observed but at oxygen levels above 1% the dicentric yield was again much less dependent on the oxygen concentration. The experiments were repeated using different concentrations of 'Flagyl' and Ro 07 0582 which both showed a maximum effect at 4 to 8 mM. Dose response data obtained in the presence of 8 mM sensitizer were again fitted to the quadratic expression and enhancement ratios of 2.2 and 1.4 estimated for Ro 07 0582 and 'Flagyl' respectively. Blood irradiated at venous oxygen tension in the presence of each of these chemicals showed an unchanged dicentric yield in the case of 'Flagyl' and a slight increase with Ro 07 0582 at a dose of 1.0 Gy. (Auth.)

  11. Analysis of Chromosomal Aberrations after Low and High Dose Rate Gamma Irradiation in ATM or NBS Suppressed Human Fibroblast Cells

    Hada, M.; Huff, J. L.; Patel, Z.; Pluth, J. M.; George, K. A.; Cucinotta, F. A.

    2009-01-01

    A detailed understanding of the biological effects of heavy nuclei is needed for space radiation protection and for cancer therapy. High-LET radiation produces more complex DNA lesions that may be non-repairable or that may require additional processing steps compared to endogenous DSBs, increasing the possibility of misrepair. Interplay between radiation sensitivity, dose, and radiation quality has not been studied extensively. Previously we studied chromosome aberrations induced by low- and high- LET radiation in several cell lines deficient in ATM (ataxia telangactasia mutated; product of the gene that is mutated in ataxia telangiectasia patients) or NBS (nibrin; product of the gene mutated in the Nijmegen breakage syndrome), and gliomablastoma cells that are proficient or lacking in DNA-dependent protein kinase (DNA-PK) activity. We found that the yields of both simple and complex chromosomal aberrations were significantly increased in the DSB repair defective cells compared to normal cells. The increased aberrations observed for the ATM and NBS defective lines was due to a significantly larger quadratic dose-response term compared to normal fibroblasts for both simple and complex aberrations, while the linear dose-response term was significantly higher in NBS cells only for simple exchanges. These results point to the importance of the functions of ATM and NBS in chromatin modifications that function to facilitate correct DSB repair and minimize aberration formation. To further understand the sensitivity differences that were observed in ATM and NBS deficient cells, in this study, chromosomal aberration analysis was performed in normal lung fibroblast cells treated with KU-55933, a specific ATM kinase inhibitor, or Mirin, an MRN complex inhibitor involved in activation of ATM. We are also testing siRNA knockdown of these proteins. Normal and ATM or NBS suppressed cells were irradiated with gamma-rays and chromosomes were collected with a premature chromosome

  12. Yields of the bombs

    The calculations reported in later chapters require knowing how many fissions took place in each bomb. The literature gives the average energy released per fission; so an equivalent quantity is the energy released by each bomb. The energy released is called the 'yield'. The yield is given in kilotons. Here 'kiloton' is used as a unit of energy, not of mass. It is defined as 1012 calories or approximately the energy released in the explosion of one kiloton (kt) of TNT. The bomb exploded over Hiroshima was a gun-type device using enriched uranium and was the only detonation ever made of this type of device. The bomb exploded over Nagasaki was an implosion device using plutonium and was the same type as the bombs tested at Trinity in New Mexico and at the Able and Baker tests of Operation Crossroads at Bikini Atoll in 1946. These test data were the primary source of information used in determining the yield of the Nagasaki bomb. The yield of the Hiroshima bomb was determined by comparison with effects observed in the two cities and by some of the other methods listed below. Because of the importance of the yields to the reassessment program, they have been studied many times

  13. Ecosystem Viable Yields

    De Lara, Michel; Oliveros-Ramos, Ricardo; Tam, Jorge

    2011-01-01

    The World Summit on Sustainable Development (Johannesburg, 2002) encouraged the application of the ecosystem approach by 2010. However, at the same Summit, the signatory States undertook to restore and exploit their stocks at maximum sustainable yield (MSY), a concept and practice without ecosystemic dimension, since MSY is computed species by species, on the basis of a monospecific model. Acknowledging this gap, we propose a definition of "ecosystem viable yields" (EVY) as yields compatible i) with biological viability levels for all time and ii) with an ecosystem dynamics. To the difference of MSY, this notion is not based on equilibrium, but on viability theory, which offers advantages for robustness. For a generic class of multispecies models with harvesting, we provide explicit expressions for the EVY. We apply our approach to the anchovy--hake couple in the Peruvian upwelling ecosystem between the years 1971 and 1981.

  14. Identification of radiation-induced chromosome aberrations by G-band staining

    A comparative study was made concerning chromosome aberration, especially symmetrical aberration in 23 serious A-bomb survivors (exposed with more than 100 rad) based upon the observations by using an ordinary staining method (O-method) and a G-band staining method (G-method). By both staining methods, 548 cells of 896 which could be analyzed were identified as normal. Aberration was detected in remaining 348 cells by either method. The number of cells in which aberration was observed by G-method but not by O-method was 55. Cells where aberration was observed by O-method but not by G-method were only 6 in number. Concerning overall aberrations, there were 197 cells in which the number detected kind of aberration by both methods was inconsistent. Also there were 31 cells, aberration of which could not be identified by G-method. The number of cells identified as abnormal by G-method was 342 and 293 by O-method, namely identification of aberration by O-method was 86% of that by G-method. The kinds of aberration are now studying. Results obtained from this study were summarized as follows; aberration which could not be detected by O-method are frequently identified by G-method and most of these aberration are symmetrical. (Kanao, N.)

  15. A model and code for the simulation of radiation-induced chromosome aberrations detectable with Giemsa or FISH

    Full text: A mechanistic model and a Monte Carlo code simulating the induction of chromosome aberrations by ionising radiation were developed. The model can predict dose-response curves for various types of aberrations (dicentrics, translocations, rings, complex exchanges and deletions) induced in human lymphocytes by gamma rays, protons and alpha particles of different energies. The model relies on the assumption that only clustered - and thus severe - DNA damage ('Complex Lesions', CL) can evolve into aberrations, and that only free-ends in neighbouring chromosomes can interact and form exchanges. The yields of CL induced by the various radiation types were taken from previous works; such lesions were distributed in the sphere representing the cell nucleus according to the radiation track structure. Interphase chromosome territories were explicitly simulated, allowing us to obtain final configurations in which each chromosome occupies an intra-nuclear domain with volume proportional to its DNA content. Accidental eurejoining was allowed. In order to reproduce experimental conditions as closely as possible, fragments smaller than 15 Mbp (Giemsa) or 11 Mbp (FISH) were neglected since they can hardly be detected in experiments. The presence of a background level of aberrations was also taken into account. Very good agreement was found with experimental dose-response curves taken from the literature, for both simple and complex exchanges. This provided a validation of the model both in terms of the adopted assumptions and in terms of the simulation techniques. The ratio of centric rings to dicentrics and of complex to simple exchanges was calculated as a function of the radiation type and energy. Such ratios were found to increase with the radiation LET, supporting the hypothesis that they can be good candidates as biomarkers of the radiation quality

  16. Retrospective chromosome aberration analysis of former uranium miners

    In this paper we present our data collected in the period of 1981-1985 on 165 persons exposed by different radon concentrations expressed in working level month (WLM) units from 100 up to 600. Following the decommissioning of the uranium mine in Hungary in 1997 cytogenetic status of 131 persons were within a follow-up-study of their health conditions initiated by the Hungarian Academy of Science. The persons have terminated their underground activities 5 to 20 years before testing. The comparison of the two datasets suggest a long-term persistence of cytogenetic alterations above the population average values in large percentages of persons investigated. The frequency of chromosome aberrations of uranium miners was found increased in function of their exposure to radon. The comparison of the miner's categories 20 years ago and in the recent years demonstrated the long-term existence of aberrations for many years after completion of underground mining activities. (authors)

  17. Relationships between DNA double-strand breaks and chromosomal aberrations

    Evidence suggests that double strand breaks are induced linearly with radiation dose at frequencies of 30-40 DSB/cell/Gy. It seems possible that there is a fast component not normally related to the induction of chromosomal aberrations, and a second slower component underlying the observed joining of chromosome and chromatid breaks. Radiation induces a mixture of blunt and cohesive-ended DSB probably with a preponderance of the latter which are much less effective at inducing aberrations. Visible chromatid breaks are also induced linearly with dose at much lower frequency than DSB and rejoin with a half-time reminiscent of slowly repairing DSB. It is possible that this slow rejoining reflects underlying repair of biologically important DSB. Rejoining of chromatid breaks and misjoining giving rise to exchanges are thought to be determined by different mechanisms. (UK)

  18. Studies on chromosome aberrations in workers occupationally exposed to radiation

    Cytogenetic assays for unstable chromosomes were performed on 54 medical radiation workers who are occupationally exposed to radiation and 42 controls. A total of 15,577 metaphase cells were scored. The frequencies of dicentrics and acentric chromosomes on controls were 0.52*10-3 and 0.82*10-2, respectively. On radiation workers those were 2.28*10-3 and 1.34*10-2, respectively. Though the frequencies of all types of chromosome aberrations in the workers were higher than those in the controls, the only significant difference was found in the case of dicentrics (P 0.05) except exposure dose of recent one year (P < 0.05). These results could indicate that low level exposure to ionizing radiation can induce unstable chromosome aberrations in blood lymphocytes

  19. Chromosome aberrations in A-bomb survivors, Hiroshima and Nagasaki

    Radiation-induced chromosome rearrangements are known to have persisted in the peripheral blood lymphocytes of atomic bomb survivors in Hiroshima and Nagasaki. A dose-response relationship for chromosome aberration frequencies has been observed in both cities. A preliminary analysis of cytogenetic data indicates that the inter-city difference observed with the T65D dose estimate becomes less pronounced with the new DS86 dosimetry system. The regression coefficient of the dose-response curves is nevertheless higher in Hiroshima than in Nagasaki. The majority of chromosome aberrations detectable to date are of the stable type, such as translocations and inversions, and they have formed the dose-response relationship. (author)

  20. Mathematical Modeling of Carcinogenesis Based on Chromosome Aberration Data

    Xiao-bo Li

    2009-01-01

    Objective: The progression of human cancer is characterized by the accumulation of genetic instability. An increasing number of experimental genetic molecular techniques have been used to detect chromosome aberrations. Previous studies on chromosome abnormalities often focused on identifying the frequent loci of chromosome alterations, but rarely addressed the issue of interrelationship of chromosomal abnormalities. In the last few years, several mathematical models have been employed to construct models of carcinogenesis, in an attempt to identify the time order and cause-and-effect relationship of chromosome aberrations. The principles and applications of these models are reviewed and compared in this paper. Mathematical modeling of carcinogenesis can contribute to our understanding of the molecular genetics of tumor development, and identification of cancer related genes, thus leading to improved clinical practice of cancer.

  1. Chromosome Aberrations in Human Lymphocytes Irradiated with Ionizing Radiation

    The purpose of the present experiment was to provide data on the dose-dependent production of chromosome aberrations such as dicentrics, centric rings, and excess acentrics. Radiation is one of the more dangerous clastogens in the environment. Ionizing radiation causes chromosome breakages and various cytogenetic aberrations in exposed cells. In an investigation into radiation emergencies, it is important to estimate the dose to exposed persons for several reasons. Physical dosimeters (e. g., film badges) may misrepresent the actual radiation dose and may not be available in a radiological accident or terrorism incident. Biological dosimetry is suitable for estimating the radiation dose during such accidents. The dicentric chromosome assay is very sensitive and a reliable bio-indicator in cases of accidental overexposure

  2. Aberrant Phenotype in Iranian Patients with Acute Myeloid Leukemia

    Mehdi Jahedi

    2014-03-01

    Full Text Available Purpose: The aim of this study was to evaluate the incidence of aberrant phenotypes and possible prognostic value in peripheral and bone marrow blood mononuclear cells of Iranian patients with AML. Methods: 56 cases of de novo AML (2010-2012 diagnosed by using an acute panel of monoclonal antibodies by multiparametric flowcytometry. Immunophenotyping was done on fresh bone marrow aspirate and/or peripheral blood samples using the acute panel of MoAbs is stained with Phycoerythrin (PE /fluorescein isothiocyanate (FITC, Allophycocyanin (APC and Peridinin-chlorophyll protein complex (perCP. We investigated Co-expression of lymphoid-associated markers CD2, CD3, CD7, CD 10, CD19, CD20 and CD22 in myeloblasts. Results: Out of the 56 cases, 32 (57.1% showed AP. CD7 was positive in 72.7% of cases in M1 and 28.5% in M2 but M3 and M4 cases lacked this marker. We detected CD2 in 58.35 of M1cases, 21.40% of M2 cases, 33.3 of M3 and 20% of M5; but M4 patients lacked this marker. The CBC analysis demonstrated a wide range of haemoglobin concentration, Platelet and WBC count which varied from normal to anaemia, thrombocytopenia to thrombocytosis and leukopenia to hyper leukocytosis. Conclusions: Our findings showed that CD7 and CD2 were the most common aberrant marker in Iranian patients with AML. However, we are not find any significant correlation between aberrant phenotype changing and MRD in our population. Taken together, this findings help to provide new insights in to the investigation of other aberrant phenotypes that may play roles in diagnosis and therapeutic of AML.

  3. Aberrant left pulmonary artery associated with right pulmonary hypoplasia

    Aberrant left pulmonary artery (ALPA), or pulmonary artery sling, is an uncommon vascular malformation that is frequently associated with obstructive disorders of the tracheobronquial tree. In newborns, it produces severe respiratory problems. In contrast, in adults, it is usually discovered by change. ALPA has been associated with right pulmonary hypoplasia (RPH) in a small number of cases. We present a new case of ALP associated with right pulmonary hypoplasia in an adult woman, diagnosed by CT and MR. 12 refs

  4. Aberrant functional brain connectome in people with antisocial personality disorder

    Yan Tang; Jun Long; Wei Wang(College of William and Mary); Jian Liao; Hua Xie; Guihu Zhao; Hao Zhang

    2016-01-01

    Antisocial personality disorder (ASPD) is characterised by a disregard for social obligations and callous unconcern for the feelings of others. Studies have demonstrated that ASPD is associated with abnormalities in brain regions and aberrant functional connectivity. In this paper, topological organisation was examined in resting-state fMRI data obtained from 32 ASPD patients and 32 non-ASPD controls. The frequency-dependent functional networks were constructed using wavelet-based correlation...

  5. Antimutagenic effects of garlic extract on chromosomal aberrations.

    Shukla, Yogeshwer; Taneja, Pankaj

    2002-02-01

    Garlic (Allium sativum) has been used since ancient times, as a spice and also for its medicinal properties. In present set of investigations antimutagenic effect of garlic extract (GE) has been evaluated using 'in vivo chromosomal aberration assay' in Swiss albino mice. Cyclophosphamide (CP), a well-known mutagen, was given at a single dose of 25 mg/kg b.w. intraperitoneally. Pretreatment with 1, 2.5 and 5% of freshly prepared GE was given through oral intubation for 5 days prior to CP administration. Animals from all the groups were sacrificed at sampling times of 24 and 48 h and their bone marrow tissue was analyzed for chromosomal damage. The animals of the positive control group (CP alone) shows a significant increase in chromosomal aberrations both at 24 and 48 h sampling time. GE, alone did not significantly induced aberrations at either sampling time, confirming its non-mutagenicity. However in the GE pre-treated and CP post-treated groups, a dose dependent decrease in cytogenetic damage was recorded. A significant suppression in the chromosomal aberrations was recorded following pretreatment with 2.5 and 5% GE administration. The anticytotoxic effects of GE were also evident, as observed by significant increase in mitotic index, when compared to positive control group. Reduction in CP induced clastogenicity by GE was evident at 24 h and to a much greater extent at 48 h of cell cycle. Thus results of the present investigations revealed that GE has chemopreventive potential against CP induced chromosomal mutations in Swiss albino mice. PMID:11790451

  6. An integrative characterization of recurrent molecular aberrations in glioblastoma genomes

    Sintupisut, Nardnisa; Liu, Pei-Ling; Yeang, Chen-Hsiang

    2013-01-01

    Glioblastoma multiforme (GBM) is the most common and malignant primary brain tumor in adults. Decades of investigations and the recent effort of the Cancer Genome Atlas (TCGA) project have mapped many molecular alterations in GBM cells. Alterations on DNAs may dysregulate gene expressions and drive malignancy of tumors. It is thus important to uncover causal and statistical dependency between ‘effector’ molecular aberrations and ‘target’ gene expressions in GBMs. A rich collection of prior st...

  7. Ocular aberrations after wavefront optimized LASIK for myopia

    Padmanabhan Prema; Basuthkar Subam; Joseph Roy

    2010-01-01

    Purpose: To study the change in ocular aberrations after wavefront optimized (WFO) laser in situ keratomileusis ( Lasik ) for correction of myopia and to analyze causative factors that may influence them. Materials and Methods: This was a prospective case series. WFO Lasik was performed for the correction of myopia, using the hansatome (Bausch and Lomb) microkeratome to create the flap and the Allegretto laser (Wavelight Technologie) to perform the ablation. The Allegretto wave analyser ...

  8. On the prediction of optical aberrations by personalized eye models

    Navarro, Rafael; González, Luis M; Hernández-Matamoros, José Luis

    2006-01-01

    Purpose. The purpose of this study is to develop and analyze a method to obtain optical schematic models of individual eyes. Each model should be able to reproduce the measured monochromatic wave aberration with high fidelity. Methods. First, we choose a generic eye model as the input guess and then apply a two-stage customization procedure. Stage 1 consists of replacing, in the initial generic model, those anatomic and optical parameters with experimental data measured on the eye under analy...

  9. Aberrant Gene Promoter Methylation Associated with Sporadic Multiple Colorectal Cancer

    Victoria Gonzalo; Juan José Lozano; Jenifer Muñoz; Francesc Balaguer; Maria Pellisé; Cristina Rodríguez de Miguel; Montserrat Andreu; Rodrigo Jover; Xavier Llor; M Dolores Giráldez; Teresa Ocaña; Anna Serradesanferm; Virginia Alonso-Espinaco; Mireya Jimeno; Miriam Cuatrecasas

    2010-01-01

    BACKGROUND: Colorectal cancer (CRC) multiplicity has been mainly related to polyposis and non-polyposis hereditary syndromes. In sporadic CRC, aberrant gene promoter methylation has been shown to play a key role in carcinogenesis, although little is known about its involvement in multiplicity. To assess the effect of methylation in tumor multiplicity in sporadic CRC, hypermethylation of key tumor suppressor genes was evaluated in patients with both multiple and solitary tumors, as a proof-of-...

  10. An aberrant right lateral branch from right internal thoracic artery

    Salve VM; Ratnaprabha C

    2010-01-01

    The internal thoracic artery is the largest artery of the thoracic wall. The internal thoracic artery is often mobilized for coronary artery bypass grafting. During routine dissection (MBBS Batch 2009-2010) of a middle aged male cadaver at Dr. Pinnamaneni Siddhartha Institute of Medical Sciences & Research Foundation, Gannavaram, (INDIA); an aberrant right lateral branch from right internal thoracic artery was found. It arose from right internal thoracic artery behind right first rib. It ran ...

  11. Perceptual aberrations impair mental own-body transformations

    Mohr, C.; Blanke, O.; Brugger, P

    2006-01-01

    Dysfunctional self and bodily processing have been reported from the schizophrenia spectrum. Here, the authors tested 72 students (40 women) to determine whether performance in a mental own-body transformation task relates to self-rated frequency of spontaneously experienced schizotypal body schema alterations (perceptual aberration). Participants provided speeded left-right decisions concerning the body of a visually depicted human figure (front view vs. back view). For men, reaction times t...

  12. Evaluation of corneal higher order aberrations in normal topographic patterns

    Mirzajani, Ali; Aghataheri, Sattar; Ghoreishi, Mohammad; Jafarzadepour, Ebrahim; Mohammadinia, Mohadese

    2016-01-01

    Purpose This study reports the characteristics of corneal higher order aberrations (HOAs) in eyes with normal topographic pattern using the Pentacam scheimpflug system. Methods In this prospective, observational, comparative study, 165 eyes of 97 patients separated into five groups based on corneal topographic patterns were enrolled. All eyes received a comprehensive ophthalmologic examination including corneal tomographic analysis with the Pentacam system. Keratometry, corneal cylinder, and ...

  13. Electron Vortex Production and Control Using Aberration Induced Diffraction Catastrophes

    Petersen, T. C.; Weyland, M.; Paganin, D. M.; Simula, T. P.; Eastwood, S. A.; Morgan, M. J.

    2013-01-01

    An aberration corrected electron microscope is used to create electron diffraction catastrophes, containing arrays of intensity zeros threading vortex cores. Vortices are ascribed to these arrays using catastrophe theory, scalar diffraction integrals, and experimentally retrieved phase maps. From measured wave function phases, obtained using focal-series phase retrieval, the orbital angular momentum density is mapped for highly astigmatic electron probes. We observe vortex rings and topological reconnections of nodal lines by tracking the vortex cores using the retrieved phases.

  14. Aberration analysis and efficiency improvement of a bidirectional optical subassembly

    Wu, Hao; Huang, Zhangdi; Yu, Ziyan; Qian, Xiaoshi; Xu, Fei; Chen, Beckham; Lu, Yanqing

    2009-10-01

    An approach to improve the coupling efficiency of bidirectional optical subassembly (BOSA) modules is proposed and experimentally demonstrated. We analyzed the wavefront aberration coefficients of a typical BOSA. It was found that the 45-deg wavelength filter induces coma and astigmatism, and then it further deteriorates the laser diode to fiber coupling. We measured the BOSA efficiencies based on a series of different filters. For a typical 0.5-mm filter, 25% coupling efficiency improvement was achieved by optimizing the filter parameters.

  15. Chromosome aberrations and environmental exposures in acute leukemia

    Lindquist, Ragnhild Rosengren

    2009-01-01

    The aims of this thesis are to evaluate the role of environmental exposures, especially professional exposure to organic solvents and petroleum products in the etiology of acute leukemia and to investigate if there is a correlation between the exposure to a specific leukemogen factor and a clonal chromosome aberration of the leukemic cells. Papers I and II present results of a case-control study of environmental exposures, in all occupations during life-time, medical treatm...

  16. Low Order Aberrations in Band-Limited Lyot Coronagraphs

    Sivaramakrishnan, A; Sivaramakrishnan, A V; Lloyd, J P; Oppenheimer, B R; Makidon, R B; Sivaramakrishnan, Anand; Soummer, Remi; Sivaramakrishnan, Allic V.; Lloyd, James P.; Oppenheimer, Ben R.

    2005-01-01

    We study the way Lyot coronagraphs with unapodized entrance pupils respond to small, low order phase aberrations. This study is applicable to ground-based adaptive optics coronagraphs operating at 90% and higher Strehl ratios, as well as to some space-based coronagraphs with intrinsically higher Strehl ratio imaging. We utilize a second order expansion of the monochromatic point-spread function (written as a power spectrum of a power series in the phase aberration over clear aperture) to derive analytical expressions for the response of a `band-limited' Lyot coronagraph (BLC) to small, low order, phase aberrations. The BLC possesses a focal plane mask with an occulting spot whose opacity profile is a spatially band-limited function rather than a hard-edged, opaque disk. The BLC is, to first order, insensitive to tilt and astigmatism. Undersizing the stop in the re-imaged pupil plane (the Lyot plane) following the focal plane mask can alleviate second order effects of astigmatism, at the expense of system thro...

  17. Membrane based Deformable Mirror: Intrinsic aberrations and alignment issues

    Bayanna, A Raja; Chatterjee, S; Mathew, Shibu K; Venkatakrishnan, P

    2015-01-01

    A Deformable Mirror (DM) is an important component of an Adaptive Optics system. It is known that an on-axis spherical/parabolic optical component, placed at an angle to the incident beam introduces defocus as well as astigmatism in the image plane. Although the former can be compensated by changing the focal plane position, the latter cannot be removed by mere optical re-alignment. Since the DM is to be used to compensate a turbulence-induced curvature term in addition to other aberrations, it is necessary to determine the aberrations induced by such (curved DM surface) an optical element when placed at an angle (other than 0 degree) of incidence in the optical path. To this effect, we estimate to a first order, the aberrations introduced by a DM as a function of the incidence angle and deformation of the DM surface. We record images using a simple setup in which the incident beam is reflected by a 37 channel Micro-machined Membrane Deformable Mirror for various angles of incidence. It is observed that astig...

  18. Aberrant behavior and cognitive ability in preschool children

    Bala Gustav

    2007-01-01

    Full Text Available The sample included 712 preschool boys and girls at the age of 4 to 7 years (mean 5.96 decimal years and standard deviation .96 from preschool institutions in Novi Sad, Sombor, Sremska Mitrovica and Bačka Palanka. Information concerning 36 indicators of aberrant behavior of the children were supplied by their parents, whereas their cognitive ability was tested by Raven’s progressive colored matrices. Based on factor analysis (promax method, four factors i.e. generators of aberrant behavior in children were singled out: aggression, anxiousness, dissociation, and hysteria, whose relations with cognitive functioning and age were also analyzed by factor analysis. Aberrant behavior and cognitive abilities show significant interrelatedness. Owing to orderly developed cognitive abilities, a child understands essence and reality of problems, realizes possibilities and manners of solving them, and succeeds in realizing successful psycho-social functioning. Developed cognitive abilities enable a child to recognize and understand her/his own reactions in different situations and develop manners of reacting, which leads to strengthening psycho-social safety and adapting behavior in accordance with her/his age and abilities.

  19. Chromosome aberrations in ataxia telangiectasia cells exposed to heavy ions

    Kawata, T.; Cucinotta, F.; George, K.; Wu, H.; Shigematsu, N.; Furusawa, Y.; Uno, T.; Isobe, K.; Ito, H.

    Understanding of biological effects of heavy ions is important to assess healt h risk in space. One of the most important issues may be to take into account individual susceptibility. Ataxia telangiectasia (A-T) cells are known to exhibit abnormal responses to radiations but the mechanism of hyper radiosensitivity of A-T still remains unknown. We report chromosome aberrations in normal human fibroblasts and AT fibroblasts exposed to low- and high-LET radiations. A chemical-induced premature chromosome condensation (PCC) technique combined with chromosome- painting technique was applied to score chromosome aberrations in G2/M-phase cells. Following gamma irradiation, GM02052 cells were approximately 5 times more sensitive to g-rays than AG1522 cells. GM02052 cells had a much higher frequency of deletions and misrejoining than AG1522 cells. When the frequency of complex type aberrations was compared, GM02052 cells showed more than 10 times higher frequency than AG1522 cells. The results will be compared with those obtained from high-LET irradiations.

  20. Molecular mechanisms in the induction of chromosome aberrations

    In more recent years there have been attempts to understand the mechanisms giving rise to aberrations on a more molecular basis. This was initially stimulated by the demonstrations of enzyme repair systems in bacteria which repair mutagen-damaged DNA and the obvious suggestion that similar kinds of repair processes in eukaryotes could be responsible for spontaneous and mutagen-induced exchanges in somatic cells, and for recombinational exchanges in meiotic cells. This impetus has been maintained largely by discovery and the acquisition of information on five fronts: (i) increasing knowledge of the and organisation of the eukaryotic chromosome; (ii) a better understanding of the types of lesions induced in DNA by a wide variety of mutagens; (iii) the demonstrations of a variety of repair systems that restore damaged DNA in eukaryotes including man; (iv) the identification and characterisation of mutants defective in DNA repair and which give unusual reponses to aberration induction by specific mutagens; (v) the development of new techniques to visulise sister chromatid exchange and other facets of chromosome substructure. In this presentation some developments are considered and a picture is sketched of our current notions on how recent chromosomal aberrations are formed, by posing a number of questions and attempting to answer them. (Auth.)

  1. Polarization Aberrations in Astronomical Telescopes: The Point Spread Function

    Breckinridge, James B.; Lam, Wai Sze T.; Chipman, Russell A.

    2015-05-01

    Detailed knowledge of the image of the point spread function (PSF) is necessary to optimize astronomical coronagraph masks and to understand potential sources of errors in astrometric measurements. The PSF for astronomical telescopes and instruments depends not only on geometric aberrations and scalar wave diffraction but also on those wavefront errors introduced by the physical optics and the polarization properties of reflecting and transmitting surfaces within the optical system. These vector wave aberrations, called polarization aberrations, result from two sources: (1) the mirror coatings necessary to make the highly reflecting mirror surfaces, and (2) the optical prescription with its inevitable non-normal incidence of rays on reflecting surfaces. The purpose of this article is to characterize the importance of polarization aberrations, to describe the analytical tools to calculate the PSF image, and to provide the background to understand how astronomical image data may be affected. To show the order of magnitude of the effects of polarization aberrations on astronomical images, a generic astronomical telescope configuration is analyzed here by modeling a fast Cassegrain telescope followed by a single 90° deviation fold mirror. All mirrors in this example use bare aluminum reflective coatings and the illumination wavelength is 800 nm. Our findings for this example telescope are: (1) The image plane irradiance distribution is the linear superposition of four PSF images: one for each of the two orthogonal polarizations and one for each of two cross-coupled polarization terms. (2) The PSF image is brighter by 9% for one polarization component compared to its orthogonal state. (3) The PSF images for two orthogonal linearly polarization components are shifted with respect to each other, causing the PSF image for unpolarized point sources to become slightly elongated (elliptical) with a centroid separation of about 0.6 mas. This is important for both astrometry

  2. Analysis of chromosome aberration data by hybrid-scale models

    This paper presents a new methodology for analyzing data of chromosome aberrations, which is useful to understand the characteristics of dose-response relationships and to construct the calibration curves for the biological dosimetry. The hybrid scale of linear and logarithmic scales brings a particular plotting paper, where the normal section paper, two types of semi-log papers and the log-log paper are continuously connected. The hybrid-hybrid plotting paper may contain nine kinds of linear relationships, and these are conveniently called hybrid scale models. One can systematically select the best-fit model among the nine models by among the conditions for a straight line of data points. A biological interpretation is possible with some hybrid-scale models. In this report, the hybrid scale models were applied to separately reported data on chromosome aberrations in human lymphocytes as well as on chromosome breaks in Tradescantia. The results proved that the proposed models fit the data better than the linear-quadratic model, despite the demerit of the increased number of model parameters. We showed that the hybrid-hybrid model (both variables of dose and response using the hybrid scale) provides the best-fit straight lines to be used as the reliable and readable calibration curves of chromosome aberrations. (author)

  3. Alignment induced aberration fields of next generation telescopes

    Schmid, Tobias; Thompson, Kevin; Rolland, Jannick

    2008-08-01

    There is a long list of new ground-based optical telescopes being considered around the world. While many are conventional Cassegrain and Ritchey-Chretien designs, some are from a family of three mirror anastigmatic (TMA) telescopes that are configured with an offset field (but still obscured) that trace back to designs developed in the 1970s for military applications. The nodal theory of aberrations, developed in the late 1970s, provides valuable insights into the response of TMA telescopes to alignment errors. Here it is shown for the first time that the alignment limiting aberration in any TMA telescope is a 3rd order astigmatism term with a new field dependence, termed field-asymmetric, field-linear 3rd order astigmatism. It is also shown that a TMA telescope under assembly that is only measured to have excellent/perfect performance onaxis is not aligned in any significant way. This is because the new astigmatic term is always zero on-axis, even though it is large over the field of view. Knowledge of this intrinsic misalignment aberration field for any TMA telescope aids greatly in ensuring it can be aligned successfully. The James Webb Space Telescope (JWST), is used an example of a relevant TMA system.

  4. Effect of therapeutic hypothermia on chromosomal aberration in perinatal asphyxia

    Bahubali D Gane

    2016-01-01

    Full Text Available Introduction: Perinatal asphyxia is a major cause for neonatal mortality and morbidity around the world. The reduction of O2results in the generation of reactive oxygen species which interact with nucleic acid and make alteration in the structure and functioning of the genome. We studied the effect of therapeutic hypothermia on chromosomes with karyotyping. Subjects and Methods: Babies in the hypothermia group were cooled for the first 72 h, using gel packs. Rectal temperature of 33–34°C was maintained. Blood sample was collected after completion of therapeutic hypothermia for Chromosomal analysis. It was done with IKAROS Karyotyping system, Metasystems, based on recommendations of International system of human cytogenetic nomenclature. Results: The median chromosomal aberration was lower in hypothermia [2(0-5] than control group [4(1-7] and chromatid breakage was commonest aberration seen. Chromosomal aberration was significantly higher in severe encephalopathy group than moderate encephalopathy group. Conclusion: We conclude that the TH significantly reduces DNA damage in perinatal asphyxia.

  5. Use of the frequencies of micronuclei as quantitative indicators of X-ray-induced chromosomal aberrations in human peripheral blood lymphocytes: comparison of two methods

    The yield of radiation-induced micronuclei in human lymphocytes was assessed by two methods, i.e., by incorporating bromodeoxyuridine or by inhibiting cytokinesis by cytochalasin for identification of cells which have undergone one cell division. The cytochalasin block method was found to be more efficient with a capacity to detect between 60 and 90% of the induced fragments. Dose-response characteristics and the results of fractionation experiments indicate that the yield of micronuclei reflects both classes of acentric fragments, i.e., those associated and independent of exchange type of aberrations. 8 refs.; 2 figs.; 5 tabs

  6. Aberration-Coreected Electron Microscopy at Brookhaven National Laboratory

    Zhu,Y.; Wall, J.

    2008-04-01

    The last decade witnessed the rapid development and implementation of aberration correction in electron optics, realizing a more-than-70-year-old dream of aberration-free electron microscopy with a spatial resolution below one angstrom [1-9]. With sophisticated aberration correctors, modern electron microscopes now can reveal local structural information unavailable with neutrons and x-rays, such as the local arrangement of atoms, order/disorder, electronic inhomogeneity, bonding states, spin configuration, quantum confinement, and symmetry breaking [10-17]. Aberration correction through multipole-based correctors, as well as the associated improved stability in accelerating voltage, lens supplies, and goniometers in electron microscopes now enables medium-voltage (200-300kV) microscopes to achieve image resolution at or below 0.1nm. Aberration correction not only improves the instrument's spatial resolution but, equally importantly, allows larger objective lens pole-piece gaps to be employed thus realizing the potential of the instrument as a nanoscale property-measurement tool. That is, while retaining high spatial resolution, we can use various sample stages to observe the materials response under various temperature, electric- and magnetic- fields, and atmospheric environments. Such capabilities afford tremendous opportunities to tackle challenging science and technology issues in physics, chemistry, materials science, and biology. The research goal of the electron microscopy group at the Dept. of Condensed Matter Physics and Materials Science and the Center for Functional Nanomaterials, as well as the Institute for Advanced Electron Microscopy, Brookhaven National Laboratory (BNL), is to elucidate the microscopic origin of the physical- and chemical-behavior of materials, and the role of individual, or groups of atoms, especially in their native functional environments. We plan to accomplish this by developing and implementing various quantitative

  7. Optimal incision sites to reduce corneal aberration variations after small incision phacoemulsification cataract surgery

    Chu, Ling; Zhao, Jiang-Yue; Zhang, Jin-Song; Meng, Jie; Wang, Ming-Wu; Yang, Ya-Jing; Yu, Jia-Ming

    2016-01-01

    AIM To analyze the effect of steep meridian small incision phacoemulsification cataract surgery on anterior, posterior and total corneal wavefront aberration. METHODS Steep meridian small incision phacoemulsification cataract surgery was performed in age-related cataract patients which were divided into three groups according to the incision site: 12 o'clock, 9 o'clock and between 9 and 12 o'clock (BENT) incision groups. The preoperative and 3-month postoperative root mean square (RMS) values of anterior, posterior and total corneal wavefront aberration including coma, spherical aberration, and total higher-order aberrations (HOAs), were measured by Pentacam scheimpflug imaging. The mean preoperative and postoperative corneal wavefront aberrations were documented. RESULTS Total corneal aberration and total lower-order aberrations decreased significantly in three groups after operation. RMS value of total HOAs decreased significantly postoperatively in the 12 o'clock incision group (Pastigmatism changes in all three corneal incision location. CONCLUSION Corneal incision of phacoemulsification cataract surgery can affect corneal wavefront aberration. The 12 o'clock corneal incision eliminated more HOAs and the spherical aberrations decreased in BENT incision group obviously when we selected steep meridian small incision. Cataract lens replacement using wavefront-corrected intraocular lens combined with optimized corneal incision site would improve ocular aberration results. PMID:27162725

  8. The fluctuation of high-order aberration's sensitivity in ArF immersion lithography

    Zhang, Fei; Li, Yanqui

    2006-01-01

    To achieve smaller and smaller feature sizes in the semiconductor industry, extreme demands are placed on the lithographic optics, specifically the projection lens. Higher numerical aperture (NA) is adopted to obtain higher resolution. However, higher NA scales the impact of geometrical aberrations on lithography performance. Thus, a detailed understanding of the effect of geometrical aberrations on the lithographic process is indispensable. In this paper, we consider some of the surprising phenomena that occur at such high NA. We discuss the impact of flare, polarization state and MSD on higher-order aberration's sensitivity using ArF immersion lithography to print elbow pattern exposed features in photo resist on 65nm node. The higher-order aberration's sensitivity is analyzed when the annular illumination (NA=1.2, sigma out=0.76, sigma in=0.52) is employed. The 3rd, 5th, 7th, 9th geometrical aberrations according to the Fringe convention are discussed. The sensitivities to individual geometrical aberrations are calculated by introducing a fixed amount of aberration for each Zernike coefficient with all other aberrations being zero. On 65nm node, with annular illumination, the high-order aberration's sensitivity is calculated respectively according to the variation of flare, polarization state, and MSD. The results show that flare, polarization state, and MSD can contribute to the high-order aberration's sensitivity. The aberration sensitivities are increasing with the MSD and flare's value rising. The aberration sensitivities can be decreased when the horizontal linear polarized light is adopted. The merits of adjusting polarization state to choke back the aberration sensitivities are presented.

  9. Chromosomal aberrations in Sigmodon hispidus from a Superfund site

    Cotton rats (Sigmodon hispidus) were collected from an EPA Superfund site located on an abandoned oil refinery. Three trapping grids were located on the refinery and three similar grids were located at uncontaminated localities which served as reference sites. Bone marrow metaphase chromosome preparations were examined for chromosomal damage. For each individual, 50 cells were scored for six classes of chromosomal lesions. For the fall 1991 trapping period, mean number of aberrant cells per individual was 2.33, 0.85, and 1.50 for the three Superfund grids., Mean number of aberrant cells per individual was 2.55, 2.55, and 2.12 from the reference grids. Mean number of lesions per cell was 2.77, 0.86, and 1.9 from the Superfund grids, and 3.55, 2.77, and 2.50 from the reference grids. For the spring 1992 trapping period, more damage was observed in animals from both Superfund and reference sites; however, animals from Superfund grids had more damage than animals from reference grids. Mean number of aberrant cells per individual was 3.50, 3.25, and 3.70 from the Superfund grids, and 2.40, 2.11, and 1.40 from the reference grids. Mean number of lesions per cell was 4.80, 4.25, and 5.50 from the Superfund grids, and 2.60, 2.33, and 1.50 from the reference grids. These data suggest animals may be more susceptible to chromosomal damage during winter months, and animals from the Superfund grids appear to be more severely affected than animals from reference grids

  10. Breast tumor copy number aberration phenotypes and genomic instability

    Genomic DNA copy number aberrations are frequent in solid tumors, although the underlying causes of chromosomal instability in tumors remain obscure. Genes likely to have genomic instability phenotypes when mutated (e.g. those involved in mitosis, replication, repair, and telomeres) are rarely mutated in chromosomally unstable sporadic tumors, even though such mutations are associated with some heritable cancer prone syndromes. We applied array comparative genomic hybridization (CGH) to the analysis of breast tumors. The variation in the levels of genomic instability amongst tumors prompted us to investigate whether alterations in processes/genes involved in maintenance and/or manipulation of the genome were associated with particular types of genomic instability. We discriminated three breast tumor subtypes based on genomic DNA copy number alterations. The subtypes varied with respect to level of genomic instability. We find that shorter telomeres and altered telomere related gene expression are associated with amplification, implicating telomere attrition as a promoter of this type of aberration in breast cancer. On the other hand, the numbers of chromosomal alterations, particularly low level changes, are associated with altered expression of genes in other functional classes (mitosis, cell cycle, DNA replication and repair). Further, although loss of function instability phenotypes have been demonstrated for many of the genes in model systems, we observed enhanced expression of most genes in tumors, indicating that over expression, rather than deficiency underlies instability. Many of the genes associated with higher frequency of copy number aberrations are direct targets of E2F, supporting the hypothesis that deregulation of the Rb pathway is a major contributor to chromosomal instability in breast tumors. These observations are consistent with failure to find mutations in sporadic tumors in genes that have roles in maintenance or manipulation of the genome

  11. Precision Farming Tools. Yield Monitor

    Grisso, Robert D. (Robert Dwight), 1956-; Alley, Mark M.; McClellan, Phil

    2005-01-01

    Using yield monitors is the first step many producers take in precision farming. A yield monitor, combined with Global Positioning System (GPS) technology, is an electronic tool that collects data on crop performance for a given year. To have accurate data for yield map interpretation, the yield monitor must be properly operated and calibrated.

  12. Status of fission yield measurements

    Fission yield measurement and yield compilation activities in the major laboratories of the world are reviewed. In addition to a general review of the effort of each laboratory, a brief summary of yield measurement activities by fissioning nuclide is presented. A new fast reactor fission yield measurement program being conducted in the US is described

  13. Genome-wide identification of significant aberrations in cancer genome

    Yuan Xiguo

    2012-07-01

    Full Text Available Abstract Background Somatic Copy Number Alterations (CNAs in human genomes are present in almost all human cancers. Systematic efforts to characterize such structural variants must effectively distinguish significant consensus events from random background aberrations. Here we introduce Significant Aberration in Cancer (SAIC, a new method for characterizing and assessing the statistical significance of recurrent CNA units. Three main features of SAIC include: (1 exploiting the intrinsic correlation among consecutive probes to assign a score to each CNA unit instead of single probes; (2 performing permutations on CNA units that preserve correlations inherent in the copy number data; and (3 iteratively detecting Significant Copy Number Aberrations (SCAs and estimating an unbiased null distribution by applying an SCA-exclusive permutation scheme. Results We test and compare the performance of SAIC against four peer methods (GISTIC, STAC, KC-SMART, CMDS on a large number of simulation datasets. Experimental results show that SAIC outperforms peer methods in terms of larger area under the Receiver Operating Characteristics curve and increased detection power. We then apply SAIC to analyze structural genomic aberrations acquired in four real cancer genome-wide copy number data sets (ovarian cancer, metastatic prostate cancer, lung adenocarcinoma, glioblastoma. When compared with previously reported results, SAIC successfully identifies most SCAs known to be of biological significance and associated with oncogenes (e.g., KRAS, CCNE1, and MYC or tumor suppressor genes (e.g., CDKN2A/B. Furthermore, SAIC identifies a number of novel SCAs in these copy number data that encompass tumor related genes and may warrant further studies. Conclusions Supported by a well-grounded theoretical framework, SAIC has been developed and used to identify SCAs in various cancer copy number data sets, providing useful information to study the landscape of cancer genomes

  14. Higher Order Aberration and Astigmatism in Children with Hyperopic Amblyopia

    Choi, Seung Kwon; Chang, Ji Woong

    2016-01-01

    Purpose To investigate the changes in corneal higher-order aberration (HOA) during amblyopia treatment and the correlation between HOA and astigmatism in hyperopic amblyopia children. Methods In this retrospective study, a total of 72 eyes from 72 patients ranging in age from 38 to 161 months were included. Patients were divided into two groups based on the degree of astigmatism. Corneal HOA was measured using a KR-1W aberrometer at the initial visit and at 3-, 6-, and 12-month follow-ups. Co...

  15. Exploiting lens aberrations to create electron vortex beams

    Clark, L; Guzzinati, G; Lubk, A; Mazilu, M; Van Boxem, R; Verbeeck, J

    2013-01-01

    A model for a new electron vortex beam production method is proposed and experimentally demonstrated. The technique calls on the controlled manipulation of the degrees of freedom of the lens aberrations to achieve a helical phase front. These degrees of freedom are accessible by using the corrector lenses of a transmission electron microscope. The vortex beam is produced through a particular alignment of these lenses into a specifically designed astigmatic state and applying an annular aperture in the condensor plane. Experimental results are found to be in good agreement with simulations.

  16. Modeling aberrations in the Advanced Camera for Surveys

    Houairi, K.; Casertano, S.; Lallo, M.; Makidon, R. B.

    2006-10-01

    We present an analysis of the optical model for HST and ACS that shows the possible impact of misalignments of various optical elements on apparent image aberrations. The analysis was aimed at identifying possible causes for apparent variations in coma and astigmatism seen on orbital time scales in HST images. Results indicate that any combinations of mirrors and motions that reproduce the observed coma and astigmatism changes, also predict either large shifts in the image, which is not observed, or require unrealistically large movements of the elements.

  17. Construction of minimum generalized aberration two-level orthogonal arrays

    Evangelaras, Haralambos

    2015-01-01

    In this paper we explore the problem of constructing two-level Minimum Generalized Aberration (MGA) orthogonal arrays with strength $t$, $n$ runs and $q>t$ columns, using a method that employs the $J$-characteristics of a two-level design. General results for the construction of MGA orthogonal arrays with $t+1$, $t+2$ and $t+3$ columns are given, while all MGA designs with strength $t\\ge 2$, $n \\equiv$ 0 mod 4 runs and $q\\le 6$ are constructed. Results are also given for two-level orthogonal ...

  18. Spatially incoherent illumination interferometry: a PSF almost insensitive to aberrations

    Xiao, Peng; Boccara, A Claude

    2016-01-01

    We show that with spatially incoherent illumination, the point spread function width of an imaging interferometer like that used in full-field optical coherence tomography (FFOCT) is almost insensitive to aberrations that mostly induce a reduction of the signal level without broadening. This is demonstrated by comparison with traditional scanning OCT and wide-field OCT with spatially coherent illuminations. Theoretical analysis, numerical calculation as well as experimental results are provided to show this specific merit of incoherent illumination in full-field OCT. To the best of our knowledge, this is the first time that such result has been demonstrated.

  19. Intrinsic Instability of Aberration-Corrected Electron Microscopes

    Schramm, S M; Tromp, R M

    2012-01-01

    Aberration-corrected microscopes with sub-atomic resolution will impact broad areas of science and technology. However, the experimentally observed lifetime of the corrected state is just a few minutes. Here we show that the corrected state is intrinsically unstable; the higher its quality, the more unstable it is. Analyzing the Contrast Transfer Function near optimum correction, we define an 'instability budget' which allows a rational trade-off between resolution and stability. Unless control systems are developed to overcome these challenges, intrinsic instability poses a fundamental limit to the resolution practically achievable in the electron microscope.

  20. Membrane based Deformable Mirror: Intrinsic aberrations and alignment issues

    Bayanna, A. Raja; Louis, Rohan E.; Chatterjee, S; Mathew, Shibu K.; Venkatakrishnan, P

    2015-01-01

    A Deformable Mirror (DM) is an important component of an Adaptive Optics system. It is known that an on-axis spherical/parabolic optical component, placed at an angle to the incident beam introduces defocus as well as astigmatism in the image plane. Although the former can be compensated by changing the focal plane position, the latter cannot be removed by mere optical re-alignment. Since the DM is to be used to compensate a turbulence-induced curvature term in addition to other aberrations, ...

  1. Sunflower yield and climatic variables

    González J.; Mancuso N.; Ludueña P.

    2013-01-01

    A group of hybrids with higher oil yield was selected from the comparative yield trials carried out in the EEA Pergamino, during seasons 2004-2005, 2005-2006 and 2006-07. The objective was to study the associations between seed yield, oil content, oil yield and climatic variables obtained from two methods: stepwise and principal component analysis. Both methods arrived at similar results confirming the associations between yield and climatic variables. Posi...

  2. Explanation of test and assessment of chromosomal aberrations on occupational health examinations for radiation workers

    Test and Assessment of Chromosomal Aberrations on Occupational Health Examinations for Radiation Workers was formulated for standardizing analysis and outcome assessment of chromosomal aberrations on occupational health examinations for radiation workers. In order to provide experimental and theoretical basis for implementation and extension of this standard, this paper interpreted the standard comprehensively, including some existed problems that methods on detection and outcome assessment of chromosomal aberrations is not unified in different laboratories in China, and related criteria,laws and regulations at home and abroad are not fit for the detection of chromosomal aberrations for radiation workers very well; some introduction on methods of chromosomal slide preparation, discriminant analysis and outcome assessment of chromosomal aberration; and some influencing factors in the quality of chromosomal aberration detection. (authors)

  3. Effects of Turbulent Aberrations on Probability Distribution of Orbital Angular Momentum for Optical Communication

    ZHANG Yi-Xin; CANG Ji

    2009-01-01

    Effects of atmospheric turbulence tilt, defocus, astigmatism and coma aberrations on the orbital angular mo-mentum measurement probability of photons propagating in weak turbulent regime are modeled with Rytov approximation. By considering the resulting wave as a superposition of angular momentum eigenstates, the or-bital angular momentum measurement probabilities of the transmitted digit axe presented. Our results show that the effect of turbulent tilt aberration on the orbital angular momentum measurement probabilities of photons is the maximum among these four kinds of aberrations. As the aberration order increases, the effects of turbulence aberrations on the measurement probabilities of orbital angular momentum generally decrease, whereas the effect of turbulence defoens can be ignored. For tilt aberration, as the difference between the measured orbital angular momentum and the original orbital angular momentum increases, the orbital angular momentum measurement probabifity decreases.

  4. Effects of Turbulent Aberrations on Probability Distribution of Orbital Angular Momentum for Optical Communication

    Effects of atmospheric turbulence tilt, defocus, astigmatism and coma aberrations on the orbital angular momentum measurement probability of photons propagating in weak turbulent regime are modeled with Rytov approximation. By considering the resulting wave as a superposition of angular momentum eigenstates, the orbital angular momentum measurement probabilities of the transmitted digit are presented. Our results show that the effect of turbulent tilt aberration on the orbital angular momentum measurement probabilities of photons is the maximum among these four kinds of aberrations. As the aberration order increases, the effects of turbulence aberrations on the measurement probabilities of orbital angular momentum generally decrease, whereas the effect of turbulence defocus can be ignored. For tilt aberration, as the difference between the measured orbital angular momentum and the original orbital angular momentum increases, the orbital angular momentum measurement probability decreases. (fundamental areas of phenomenology (including applications))

  5. Fifth-order canonical geometric aberration analysis of electrostatic round lenses

    Liu Zhi Xiong

    2002-01-01

    In this paper the fifth-order canonical geometric aberration patterns are analyzed and a numerical example is given on the basis of the analytical expressions of fifth-order aberration coefficients derived in the present work. The fifth-order spherical aberration, astigmatism and field curvature, and distortion are similar to the third-order ones and the fifth-order coma is slightly different. Besides, there are two more aberrations which do not exist in the third-order aberration: they are peanut aberration and elliptical coma in accordance with their shapes. In the numerical example, by using a cross-check of the calculated coefficients with those computed through the differential algebraic method, it has been verified that all the expressions are correct and the computational results are reliable with high precision.

  6. The impact of aberrations on object reconstruction with interferometric synthetic aperture microscopy

    Adie, Steven G.; Graf, Benedikt W.; Ahmad, Adeel; Darbarsyah, Budiman; Boppart, Stephen A.; Carney, P. Scott

    2011-03-01

    Interferometric synthetic aperture microscopy (ISAM) reconstructs the scattering potential of a sample with spatially invariant resolution, based on the incident beam profile, the beam scan pattern, the physical model of light sample interaction, and subsequent light collection by the system. In practice, aberrations may influence the beam profile, particularly at higher NA, when ISAM is expected to provide maximum benefit over optical coherence microscopy. Thus it is of interest to determine the effects of aberrations on ISAM reconstructions. In this paper we present the forward model incorporating the effects of aberrations, which forms the basis for aberration correction in ISAM. Simulations and experimental results show that when operating far from focus, modest amounts of spherical aberration can introduce artifacts to the point-spread function, even at relatively low NA ~ 0.1-0.2. Further work will investigate computational methods to correct the effects of aberrations, i.e. to perform virtual adaptive optics.

  7. Correction of optical aberrations in elliptic neutron guides

    Bentley, Phillip M., E-mail: phillip.bentley@esss.se [Australian Nuclear Science and Technology Organisation (ANSTO), Locked Bag 2001, Kirrawee DC, NSW 2232 (Australia); European Spallation Source ESS AB, Box 176, 221 00 Lund (Sweden); Kennedy, Shane J. [Australian Nuclear Science and Technology Organisation (ANSTO), Locked Bag 2001, Kirrawee DC, NSW 2232 (Australia); Andersen, Ken H. [European Spallation Source ESS AB, Box 176, 221 00 Lund (Sweden); Martin Rodriguez, Damian [Juelich Centre for Neutron Science, Forschungszentrum Juelich GmbH, 52425 Juelich (Germany); Mildner, David F.R. [National Institute of Standards and Technology, Gaithersburg, MD 20899 (United States)

    2012-11-21

    Modern, nonlinear ballistic neutron guides are an attractive concept in neutron beam delivery and instrumentation because they offer increased performance over straight or linearly tapered guides. However, like other ballistic geometries they have the potential to create significantly non-trivial instrumental resolution functions. We address the source of the most prominent optical aberration, namely coma, and we show that for extended sources the off-axis rays have a different focal length from on-axis rays, leading to multiple reflections in the guide system. We illustrate how the interplay between coma, sources of finite size, and mirrors with non-perfect reflectivity can therefore conspire to produce uneven distributions in the neutron beam divergence, a source of complicated resolution functions. To solve these problems, we propose a hybrid elliptic-parabolic guide geometry. Using this new kind of neutron guide shape, it is possible to condition the neutron beam and remove almost all of the aberrations, whilst providing the same performance in beam current as a standard elliptic neutron guide. We highlight the positive implications for neutron scattering instruments that this new shape can bring.

  8. Robustness of BW Aberrance Indices Against Test Length

    Tsai-Wei Huang

    2011-09-01

    Full Text Available Many research had shown person fit indices might be influenced by the factor of test length on their detection rates of aberrant responses. The purpose of this study was to examine test length effects on the BW aberrance indices. Three conditions were designed in this study: test length (K, including 25, 50,100, and 200 items, ability ratio (T/K, defined as the total person score divided by test length K, and error ratio (E/K, defined as the number of errors within ability level divided by test length. Four 100-person times varying-item data matrices (100x25, 100x50, 100x100, and 100x200 were randomly generated and permuted 500 times for each data matrix through 20 repeats. Results showed that after partialling out the factors of E/K and T/K, the effect of test length on the association between the two indices was very slight. In nonlinear regression analyses, E/K and T/K can predict more than 76 and 73 percent of the variances of the B index and that of the W index, respectively, but test length with both very slight contributions on them. Furthermore, a very good model fit generated from SEM analyses also showed the effect of test length on the B and W indices were very tiny. All these pieces of evidence endorsed the B and W indices were robust with test length.

  9. New Views of Materials through Aberration-Corrected STEM

    Pennycook, Stephen J [ORNL; Chisholm, Matthew F [ORNL; Lupini, Andrew R [ORNL; Varela del Arco, Maria [ORNL; Borisevich, Albina Y [ORNL; Pantelides, Sokrates T. [Vanderbilt University; van Benthem, Klaus [ORNL; Shibata, Naoya [University of Tokyo, Tokyo, Japan; Molina Rubio, Sergio I [ORNL; Rashkeev, Sergey [ORNL

    2009-01-01

    The successful correction of lens aberrations in scanning transmission electron microscopy has allowed an improvement in resolution by a factor of two in just a few years. The benefits for materials research are far greater than a factor of two might imply, because enhanced resolution also brings enhanced image contrast, and therefore a vast increase in sensitivity to single atoms, both for imaging and electron energy loss spectroscopy. In addition, aberration correction enables simultaneous, aberrationcorrected, Z-contrast and phase contrast imaging, and brings a depth resolution at the nanometer level. It becomes possible to focus directly on features at different depths in the specimen thickness, and three-dimensional information can be extracted with single atom sensitivity. In conjunction with density functional and elasticity theory, these advances provide a new level of insight into the atomistic origins of materials properties. Several examples are discussed that illustrate the potential for applications, including the segregation of rare earth elements to grain boundaries in Si3N4 ceramics, the quantitative analysis of strain-induced growth phenomena in semiconductor quantum wells, the explanation of the enhanced thermal stability of La-doped -alumina as a catalyst support, and the origin of the remarkable catalytic activity of Au nanoparticles.

  10. Aberrant activity in degenerated retinas revealed by electrical imaging

    Günther eZeck

    2016-02-01

    Full Text Available In this review I present and discuss the current understanding of aberrant electrical activity found in the ganglion cell layer (GCL of rod-degenerated (rd mouse retinas. The reported electrophysiological properties revealed by electrical imaging using high-density microelectrode arrays can be subdivided between spiking activity originating from retinal ganglion cells (RGCs and local field potentials reflecting strong trans-membrane currents within the GCL. RGCs in rod-degenerated retinas show increased and rhythmic spiking compared to age-matched wild-type retinas. Fundamental spiking frequencies range from 5 to 15 Hz in various mouse models. The rhythmic RGC spiking is driven by a presynaptic network comprising AII amacrine and bipolar cells. In the healthy retina this rhythm-generating circuit is inhibited by photoreceptor input. A unique physiological feature of rd retinas is rhythmic local field potentials (LFP manifested as spatially-restricted low-frequency (5–15 Hz voltage changes. Their spatiotemporal characterization revealed propagation and correlation with RGC spiking. LFPs rely on gap-junctional coupling and are shaped by glycinergic and by GABAergic transmission. The aberrant RGC spiking and LFPs provide a simple readout of the functionality of the remaining retinal circuitry which can be used in the development of improved vision restoration strategies.

  11. Generic Misalignment Aberration Patterns in Wide-Field Telescopes

    Schechter, Paul L

    2010-01-01

    Axially symmetric telescopes produce well known "Seidel" off-axis third-order aberration patterns: coma, astigmatism, curvature of field and distortion. When axial symmetry is broken by the small misalignments of optical elements, additional third-order aberration patterns arise: one each for coma, astigmatism and curvature of field and two for distortion. Each of these misalignment patterns is characterized by an associated two-dimensional vector, each of which in turn is a linear combination of the tilt and decenter vectors of the individual optical elements. For an N-mirror telescope, 2(N - 1) patterns must be measured to keep the telescope aligned. For N = 3, as in a three mirror anastigmat, there is a two-dimensional "subspace of benign misalignment" over which the misalignment patterns for third-order coma, astigmatism and curvature of field are identically zero. One would need to measure at least one of the two distortion patterns to keep the telescope aligned. Alternatively, one might measure one of t...

  12. Correction for polychromatic aberration in computed tomography images

    A method and apparatus for correcting a computed tomography image for polychromatic aberration caused by the non-linear interaction (i.e. the energy dependent attenuation characteristics) of different body constituents, such as bone and soft tissue, with a polychromatic X-ray beam are described in detail. An initial image is conventionally computed from path measurements made as source and detector assembly scan a body section. In the improvement, each image element of the initial computed image representing attenuation is recorded in a store and is compared with two thresholds, one representing bone and the other soft tissue. Depending on the element value relative to the thresholds, a proportion of the respective constituent is allocated to that element location and corresponding bone and soft tissue projections are determined and stored. An error projection generator calculates projections of polychromatic aberration errors in the raw image data from recalled bone and tissue projections using a multidimensional polynomial function which approximates the non-linear interaction involved. After filtering, these are supplied to an image reconstruction computer to compute image element correction values which are subtracted from raw image element values to provide a corrected reconstructed image for display. (author)

  13. Mechanistic modeling of aberrant energy metabolism in human disease

    Vineet eSangar

    2012-10-01

    Full Text Available Dysfunction in energy metabolism—including in pathways localized to the mitochondria—has been implicated in the pathogenesis of a wide array of disorders, ranging from cancer to neurodegenerative diseases to type II diabetes. The inherent complexities of energy and mitochondrial metabolism present a significant obstacle in the effort to understand the role that these molecular processes play in the development of disease. To help unravel these complexities, systems biology methods have been applied to develop an array of computational metabolic models, ranging from mitochondria-specific processes to genome-scale cellular networks. These constraint-based models can efficiently simulate aspects of normal and aberrant metabolism in various genetic and environmental conditions. Development of these models leverages—and also provides a powerful means to integrate and interpret—information from a wide range of sources including genomics, proteomics, metabolomics, and enzyme kinetics. Here, we review a variety of mechanistic modeling studies that explore metabolic functions, deficiency disorders, and aberrant biochemical pathways in mitochondria and related regions in the cell.

  14. Correction of optical aberrations in elliptic neutron guides

    Modern, nonlinear ballistic neutron guides are an attractive concept in neutron beam delivery and instrumentation because they offer increased performance over straight or linearly tapered guides. However, like other ballistic geometries they have the potential to create significantly non-trivial instrumental resolution functions. We address the source of the most prominent optical aberration, namely coma, and we show that for extended sources the off-axis rays have a different focal length from on-axis rays, leading to multiple reflections in the guide system. We illustrate how the interplay between coma, sources of finite size, and mirrors with non-perfect reflectivity can therefore conspire to produce uneven distributions in the neutron beam divergence, a source of complicated resolution functions. To solve these problems, we propose a hybrid elliptic–parabolic guide geometry. Using this new kind of neutron guide shape, it is possible to condition the neutron beam and remove almost all of the aberrations, whilst providing the same performance in beam current as a standard elliptic neutron guide. We highlight the positive implications for neutron scattering instruments that this new shape can bring.

  15. Chromosomal aberrations as etiological factors of intrauterine growth retardation

    Petrović Bojana

    2008-01-01

    Full Text Available Background/Aim. Intrauterine growth retardation (IUGR is a pathological condition of pregnancy characterised by birth weight below the 10th centile. A number of fetal, placental and maternal causes can lead to IUGR; although, in most cases no specific causes can be identified. The aim of this study was to determine the part of chromosomal abnormalities in IUGR etiology. Methods. Fetal blood karyotype taken by cordocentesis from 168 fetuses with diagnosed IUGR was analyzed. Results. Chromosomal rearrangements both numerical and structural were detected in 14 cases (12.2%. Two cases were triploid. Patau syndrome, Edwards syndrome and Down syndrome were found in two cases each. There was one case of trisomy 7 (47, XY, +7 and one case of trisomy 16 (47, XX, +16; one translocation, 46, XY, t (2; 14(q23; q32 and a deletion 46, XYdel (12 (p12 as well as two cases of sex chromosomes abnormalities, 45, X (Turner syndrome and 47, XYY. Conclusion. These findings suggest that a consistent number of symmetrical IUGR cases (about 12% can be associated with chromosomal rearrangements. Chromosomal aberrations that cause IUGR are heterogeneous, aberration of autosomes, mostly autosomal trisomies, being the most common.

  16. X-ray induction of mitotic and meiotic chromosome aberrations

    In 1964 six pairs of rat kangaroo (Potorous tridactylis) were obtained from Australia. The tissues of these animals were used to initiate cell lines. Since this species has a low chromosome number of six pairs, each pair with its own distinctive morphology, it is particularly favorable for cytogenetic research. In cell cultures derived from the corneal endothelial tissues of one animal there emerged a number of haploid cells. The number of haploid cells in the cultures reached as high as 20% of the total mitotic configurations. The in vitro diploid and haploid mixture cell cultures could be a resemblance or a coincidence to the mixture existence of the diploid primary spermatocytes and the haploid secondary spermatocytes (gametes) in the in vivo testicular tissues of the male animals. It would be interesting to compare reactions of the haploid and diploid cell mixture, either in the cultures or in the testes, to x-ray exposure. Two other studies involving x-ray effects on Chinese hamster oocyte maturation and meiotic chromosomes and the x-ray induction of Chinese hamster spermatocyte meiotic chromosome aberrations have been done in this laboratory. A review of these three studies involving diploid and haploid chromosomes may lead to further research in the x-ray induction of chromosome aberrations

  17. Aberrant WNT/β-catenin signaling in parathyroid carcinoma

    Åkerström Göran

    2010-11-01

    Full Text Available Abstract Background Parathyroid carcinoma (PC is a very rare malignancy with a high tendency to recur locally, and recurrent disease is difficult to eradicate. In most western European countries and United States, these malignant neoplasms cause less than 1% of the cases with primary hyperparathyroidism, whereas incidence as high as 5% have been reported from Italy, Japan, and India. The molecular etiology of PC is poorly understood. Results The APC (adenomatous polyposis coli tumor suppressor gene was inactivated by DNA methylation in five analyzed PCs, as determined by RT-PCR, Western blotting, and quantitative bisulfite pyrosequencing analyses. This was accompanied by accumulation of stabilized active nonphosphorylated β-catenin, strongly suggesting aberrant activation of the WNT/β-catenin signaling pathway in these tumors. Treatment of a primary PC cell culture with the DNA hypomethylating agent 5-aza-2'-deoxycytidine (decitabine, Dacogen(r induced APC expression, reduced active nonphosphorylated β-catenin, inhibited cell growth, and caused apoptosis. Conclusion Aberrant WNT/β-catenin signaling by lost expression and DNA methylation of APC, and accumulation of active nonphosphorylated β-catenin was observed in the analyzed PCs. We suggest that adjuvant epigenetic therapy should be considered as an additional option in the treatment of patients with recurrent or metastatic parathyroid carcinoma.

  18. Aberrant functional brain connectome in people with antisocial personality disorder

    Tang, Yan; Long, Jun; Wang, Wei; Liao, Jian; Xie, Hua; Zhao, Guihu; Zhang, Hao

    2016-01-01

    Antisocial personality disorder (ASPD) is characterised by a disregard for social obligations and callous unconcern for the feelings of others. Studies have demonstrated that ASPD is associated with abnormalities in brain regions and aberrant functional connectivity. In this paper, topological organisation was examined in resting-state fMRI data obtained from 32 ASPD patients and 32 non-ASPD controls. The frequency-dependent functional networks were constructed using wavelet-based correlations over 90 brain regions. The topology of the functional networks of ASPD subjects was analysed via graph theoretical analysis. Furthermore, the abnormal functional connectivity was determined with a network-based statistic (NBS) approach. Our results revealed that, compared with the controls, the ASPD patients exhibited altered topological configuration of the functional connectome in the frequency interval of 0.016–0.031 Hz, as indicated by the increased clustering coefficient and decreased betweenness centrality in the medial superior frontal gyrus, precentral gyrus, Rolandic operculum, superior parietal gyrus, angular gyrus, and middle temporal pole. In addition, the ASPD patients showed increased functional connectivity mainly located in the default-mode network. The present study reveals an aberrant topological organisation of the functional brain network in individuals with ASPD. Our findings provide novel insight into the neuropathological mechanisms of ASPD. PMID:27257047

  19. Aberrant functional brain connectome in people with antisocial personality disorder.

    Tang, Yan; Long, Jun; Wang, Wei; Liao, Jian; Xie, Hua; Zhao, Guihu; Zhang, Hao

    2016-01-01

    Antisocial personality disorder (ASPD) is characterised by a disregard for social obligations and callous unconcern for the feelings of others. Studies have demonstrated that ASPD is associated with abnormalities in brain regions and aberrant functional connectivity. In this paper, topological organisation was examined in resting-state fMRI data obtained from 32 ASPD patients and 32 non-ASPD controls. The frequency-dependent functional networks were constructed using wavelet-based correlations over 90 brain regions. The topology of the functional networks of ASPD subjects was analysed via graph theoretical analysis. Furthermore, the abnormal functional connectivity was determined with a network-based statistic (NBS) approach. Our results revealed that, compared with the controls, the ASPD patients exhibited altered topological configuration of the functional connectome in the frequency interval of 0.016-0.031 Hz, as indicated by the increased clustering coefficient and decreased betweenness centrality in the medial superior frontal gyrus, precentral gyrus, Rolandic operculum, superior parietal gyrus, angular gyrus, and middle temporal pole. In addition, the ASPD patients showed increased functional connectivity mainly located in the default-mode network. The present study reveals an aberrant topological organisation of the functional brain network in individuals with ASPD. Our findings provide novel insight into the neuropathological mechanisms of ASPD. PMID:27257047

  20. Mirror-based broadband scanner with minimized aberration

    Yu, Jiun-Yann; Tzeng, Yu-Yi; Huang, Chen-Han; Chui, Hsiang-Chen; Chu, Shi-Wei

    2009-02-01

    To obtain specific biochemical information in optical scanning microscopy, labeling technique is routinely required. Instead of the complex and invasive sample preparation procedures, incorporating spectral acquisition, which commonly requires a broadband light source, provides another mechanism to enhance molecular contrast. But most current optical scanning system is lens-based and thus the spectral bandwidth is limited to several hundred nanometers due to anti-reflection coating and chromatic aberration. The spectral range of interest in biological research covers ultraviolet to infrared. For example, the absorption peak of water falls around 3 μm, while most proteins exhibit absorption in the UV-visible regime. For imaging purpose, the transmission window of skin and cerebral tissues fall around 1300 and 1800 nm, respectively. Therefore, to extend the spectral bandwidth of an optical scanning system from visible to mid-infrared, we propose a system composed of metallic coated mirrors. A common issue in such a mirror-based system is aberrations induced by oblique incidence. We propose to compensate astigmatism by exchanging the sagittal and tangential planes of the converging spherical mirrors in the scanning system. With the aid of an optical design software, we build a diffraction-limited broadband scanning system with wavefront flatness better than λ/4 at focal plane. Combined with a mirror-based objective this microscopic system will exhibit full spectral capability and will be useful in microscopic imaging and therapeutic applications.

  1. MULTISCALE GUIDED DEBLURRING: CHROMATIC ABERRATION CORRECTION IN COLOR AND NEAR-INFRARED IMAGING

    Sadeghipoor Kermani, Zahra; Lu, Yue; Mendez, Erick; Süsstrunk, Sabine

    2015-01-01

    Chromatic aberration, caused by photographic lens imperfections, results in the image of only one spectral channel being sharp, while the other channels are blurred depending on their wavelengths difference with the sharp channel. We study chromatic aberration for a system that jointly records color and near-infrared (NIR) images on a single sensor. Chromatic aberration in such a system leads to a blurred NIR image when the color image is in-focus and sharp. We propose an algorithm that deblu...

  2. Method for measuring ocular aberrations induced by thermal lensing in vivo

    Vincelette, Rebecca; Oliver, Jeff; Noojin, Gary; Schuster, Kurt; Shingledecker, Aurora; Welch, Ashley J.

    2010-02-01

    An adaptive optics imaging system was used to qualitatively observe the types of aberrations induced by an infrared laser in a rhesus eye. Thermal lensing was induced with an infrared laser radiation wavelength of 1150-nm. The adaptive optics system tracked the temporal response of the aberrations at a frequency of 30 Hz for continuous-wave exposures. Results are compared against thermal lensing aberrations induced in an artificial eye.

  3. ABERRATIONS MINIMIZATION FOR IMPROVING CHARACTERISTICS OF COMPACT HIGH-APERTURE DISPERSIVE SPECTROMETERS

    E. S. Voropay

    2015-04-01

    Full Text Available Schemes of high-aperture and compact optical spectrometers and giperspectrometer with minimized aberrations are presented. In the first scheme usage of inclined plane-parallel plate allows decreasing of astigmatism. In the second scheme off-axis aberrations are practically removed due to axial propagation of light. For giperspectrometer narrowing of light propagation angle through the object lens and turning the light out of dispersion plane lead to minimizing of picture aberrations.

  4. Correction of cell-induced optical aberrations in a fluorescence fluctuation microscope.

    Leroux, Charles-Edouard; Grichine, Alexei; Wang, Irène; Delon, Antoine

    2013-01-01

    International audience We describe the effect of optical aberrations on fluorescence fluctuations microscopy (FFM), when focusing through a single living cell. FFM measurements are performed in an aqueous fluorescent solution and prove to be a highly sensitive tool to assess the optical aberrations introduced by the cell. We demonstrate an adaptive optics (AO) system to remove the aberration-related bias in the FFM measurements. Our data show that AO is not only useful when imaging deep in...

  5. Early aberrant DNA methylation events in a mouse model of acute myeloid leukemia

    Sonnet, Miriam; Claus, Rainer; Becker, Natalia; Zucknick, Manuela; Petersen, Jana; Lipka, Daniel B.; Oakes, Christopher C.; Andrulis, Mindaugas; Lier, Amelie; Milsom, Michael D.; Witte, Tania; Gu, Lei; Kim-Wanner, Soo-Zin; Schirmacher, Peter; Wulfert, Michael

    2014-01-01

    Background Aberrant DNA methylation is frequently found in human malignancies including acute myeloid leukemia (AML). While most studies focus on later disease stages, the onset of aberrant DNA methylation events and their dynamics during leukemic progression are largely unknown. Methods We screened genome-wide for aberrant CpG island methylation in three disease stages of a murine AML model that is driven by hypomorphic expression of the hematopoietic transcription factor PU.1. DNA methylati...

  6. ANALYSES OF CHROMOSOME ABERRATIONS IN LYMPHOCYTES AND BONE MARROW CELLS INDUCED BY RADIATION OR BENZENE

    张鸿源; 王兰金; 等

    1995-01-01

    The chromosomoe and chromatid type aberration can be induced by benzene and the dicentric and ring ones were not observed in vitro experiment but observed in vivo one.In vitro experiment a good linear reression can be given between benzene concentrations and total aberration cells while power regression for radiation dose.The chromosome aberrations induced by benzene combined with radiation in rabbit blood lymphocytes are higher than in bone marryow cells.

  7. Relationship of DNA lesions and their repair to chromosomal aberration production

    Recent work on the roles of specific kinds of DNA lesions and their enzymatic repair systems in the production of chromosomal aberrations seems consistent with a simple molecular model of chromosomal aberrations formation. Evidence from experiments with the human repair-deficient genetic diseases xeroderma pigmentosom, ataxia telangiectasia, and Fanconi's anemia is reviewed in the light of the contributions to aberration production of single and double polynucleotide strand breaks, base damage, polynucleotide strand crosslinks, and pyrimidine cyclobutane dimers

  8. Optimization of holographic data storage system based on Seidel aberrations reduction

    Liu, Ren-Chung; Lin, Shiuan-Huei; Hsu, Ken-Yuh

    2015-08-01

    In this research, we investigate the influence of Seidel aberrations on the point spread function and the probability density function of holographic data storage systems, and thus the storage capacity and bit error rate of storage system can be obtained. The aberrations tolerances of storage systems with different numerical aperture are obtained. Optimization on BER and SC of holographic data storage systems by reducing Seidel aberrations will be demonstrated numerically.

  9. EVALUATION OF CORRECTION METHODS OF CHROMATIC ABERRATION IN DIGITAL CAMERA IMAGES

    Matsuoka, R; Asonuma, K.; Takahashi, G; Danjo, T.; Hirana, K.

    2012-01-01

    This paper reports an experiment conducted to evaluate correction methods of chromatic aberrations in images acquired by a nonmetric digital camera. The chromatic aberration correction methods evaluated in the experiment are classified into two kinds. One is the method to correct image coordinates by using camera calibration results of color-separated images. The other is the method based on the assumption that the magnitude of chromatic aberrations can be expressed by a function of ...

  10. A double pole-gap design for low spherical aberration in thin solenoids

    Chandran, Sona, E-mail: sona@rrcat.gov.in; Biswas, Bhaskar

    2015-10-21

    We here report a new design of a double air-slot or pole-gap type, axially thin, shielded solenoid with lower spherical aberration than conventional single pole-gap type solenoids. The net on-axis field from two optimally distanced pole gaps reduces the spherical aberration. The working principle of the model is also given by a pair of coaxial, in-air, identical current loops which can have lower spherical aberration than a single current loop. The new design is useful to achieve low spherical aberration in axially thin shielded solenoids.

  11. A double pole-gap design for low spherical aberration in thin solenoids

    We here report a new design of a double air-slot or pole-gap type, axially thin, shielded solenoid with lower spherical aberration than conventional single pole-gap type solenoids. The net on-axis field from two optimally distanced pole gaps reduces the spherical aberration. The working principle of the model is also given by a pair of coaxial, in-air, identical current loops which can have lower spherical aberration than a single current loop. The new design is useful to achieve low spherical aberration in axially thin shielded solenoids

  12. Spherical aberration from trajectories in real and hard-edge solenoid fields

    BISWAS B

    2016-06-01

    For analytical, real and hard-edge solenoidal axial magnetic fields, the low-energy electron trajectories are obtained using the third-order paraxial ray equation. Using the particle trajectories, it is shown that the spherical aberration in the hard-edge model is high and it increases monotonously with hard edginess, although the focal length converges, in agreement with a recentfield and spherical aberration model. The model paved the way for a hard-edge approximation that gives correct focal length and spherical aberration, which is verified here by the trajectory method. In essence, we show that exact hard-edge fields give infinite spherical aberrations.

  13. X-ray-induced chromosome aberrations in Down lymphocytes: an explanation of their increased sensitivity

    Unstimulated lymphocytes from individuals with Down Syndrome (trisomy 21) are more sensitive to the induction of dicentric and ring aberrations by X rays than normal lymphocytes. Several explanations involving the more rapid rejoining of X-ray-induced lesions in Down cells have been offered. It is shown here that the repair of the DNA damage converted into chromosome aberrations is more rapid in Down cells than normal cells. This more rapid repair results in a higher probability of producing chromosome aberrations, and hence higher aberration frequencies in Down than normal cells

  14. X-ray-induced chromosome aberrations in Down lymphocytes: an explanation of their increased sensitivity

    Unstimulated lymphocytes from individuals with Down Syndrome (trisomy 21) are more sensitive to the induction of dicentric and ring aberrations by X rays than normal lymphocytes. Several explanations involving the more rapid rejoining of X-ray--induced lesions in Down cells have been offered. It is shown here that the repair of the DNA damage converted into chromosome aberrations is more rapid in Down cells than normal cells. This more rapid repair results in a higher probability of producing chromosomes aberrations, and hence higher aberration frequencies in Down than normal cells

  15. Yield enhancement with DFM

    Paek, Seung Weon; Kang, Jae Hyun; Ha, Naya; Kim, Byung-Moo; Jang, Dae-Hyun; Jeon, Junsu; Kim, DaeWook; Chung, Kun Young; Yu, Sung-eun; Park, Joo Hyun; Bae, SangMin; Song, DongSup; Noh, WooYoung; Kim, YoungDuck; Song, HyunSeok; Choi, HungBok; Kim, Kee Sup; Choi, Kyu-Myung; Choi, Woonhyuk; Jeon, JoongWon; Lee, JinWoo; Kim, Ki-Su; Park, SeongHo; Chung, No-Young; Lee, KangDuck; Hong, YoungKi; Kim, BongSeok

    2012-03-01

    A set of design for manufacturing (DFM) techniques have been developed and applied to 45nm, 32nm and 28nm logic process technologies. A noble technology combined a number of potential confliction of DFM techniques into a comprehensive solution. These techniques work in three phases for design optimization and one phase for silicon diagnostics. In the DFM prevention phase, foundation IP such as standard cells, IO, and memory and P&R tech file are optimized. In the DFM solution phase, which happens during ECO step, auto fixing of process weak patterns and advanced RC extraction are performed. In the DFM polishing phase, post-layout tuning is done to improve manufacturability. DFM analysis enables prioritization of random and systematic failures. The DFM technique presented in this paper has been silicon-proven with three successful tape-outs in Samsung 32nm processes; about 5% improvement in yield was achieved without any notable side effects. Visual inspection of silicon also confirmed the positive effect of the DFM techniques.

  16. Broadband Focal Plane Wavefront Control of Amplitude and Phase Aberrations

    Groff, Tyler D; Carlotti, Alexis; Riggs, A J Eldorado

    2012-01-01

    The Stroke Minimization algorithm developed at the Princeton High Contrast Imaging Laboratory has proven symmetric dark hole generation using minimal stroke on two deformable mirrors (DM) in series. The windowed approach to Stroke Minimization has proven symmetric dark holes over small bandwidths by using three wavelengths to define the bandwidth of correction in the optimization problem. We address the relationship of amplitude and phase aberrations with wavelength, how this changes with multiple DMs, and the implications for simultaneously correcting both to achieve symmetric dark holes. Operating Stroke Minimization in the windowed configuration requires multiple wavelength estimates. To save on exposures, a single estimate is extrapolated to bounding wavelengths using the established relationship in wavelength to produce multiple estimates of the image plane electric field. Here we demonstrate better performance by improving this extrapolation of the estimate to other wavelengths. The accuracy of the func...

  17. Propagation of Aberrations through Phase Induced Amplitude Apodization coronagraph

    Pueyo, Laurent; Shaklan, Stuart; 10.1364/JOSAA.28.000189

    2011-01-01

    The specification of polishing requirements for the optics in coronagraphs dedicated to exo-planet detection requires careful and accurate optical modelling. Numerical representations of the propagation of aberrations through the system as well as simulations of the broadband wavefront compensation system using multiple DMs are critical when one devises an error budget for such a class of instruments. In this communication we introduce an analytical tool that serves this purpose for Phase Induced Amplitude Apodisation (PIAA) coronagraphs. We first start by deriving the analytical form of the propagation of a harmonic ripple through a PIAA unit. Using this result we derive the chromaticity of the field at any plane in the optical train of a telescope equipped with such a coronagraph. Finally we study the chromatic response of a sequential DM wavefront actuator correcting such a corrugated field and thus quantify the requirements on the manufacturing of PIAA mirrors

  18. Biological dosimetry of ionizing radiation by chromosomal aberration analysis

    Biological dosimetry consists of estimating absorbed doses for people exposed to radiation by mean biological methods. Several indicators used are based in haematological, biochemical, and cytogenetic data, although nowadays without doubt, the cytogenetic method is considered to be the most reliable. In this case, the study ol chromosomal aberrations, normally dicentric chromosomes, in peripheral lymphocytes can be related to absorbed dose through an experimental calibration curve. An experimental dose-response curve, using dicentric chromosomes analysis, X-rays at 300 kVp, 114 rad/min and temperature 37 degree celsius has been produced. Experimental data is fitted to model Y =α + β1D + β2D 2 , where Y is the number of dicentrics per cell and D the dose. The curve is compared with those produced elsewhere. (Author) 14 refs

  19. Cytogenetic effects of radiotherapy. Breakpoint distribution in induced chromosome aberrations

    A total of 660 breakpoints were identified in the chromosome aberrations detected in lymphocytes from cancer patients after radiotherapy. The results show that chromosomes 1, 3, and 7 were significantly more affected than other chromosomes by ionizing radiation in vivo. Chromosome arms 1p, 1q, 7q, and 11p were also significantly more affected. Some bands also showed a special sensitivity to radiation, and band 1q32 was the most affected. This band is proposed as a hot point for the clastogenic effect of ionizing radiation. A significant clustering of breakpoints in G bands was also found, especially at the telomeres, as previously described by other authors. Clustering of breakpoints was also observed in bands where fragile sites, protooncogenes, breakpoints involved in chromosomal cancer rearrangements, and breakpoints involved in chromosomal evolution of the Hominoidea are located

  20. Chromosomal aberrations and SCEs as biomarkers of cancer risk

    Norppa, H; Bonassi, S; Hansteen, I-L; Hagmar, L; Strömberg, U; Rössner, P; Boffetta, P; Lindholm, C; Gundy, S; Lazutka, J; Cebulska-Wasilewska, A; Fabiánová, E; Srám, R J; Knudsen, Lisbeth E.; Barale, R; Fucic, A

    Previous studies have suggested that the frequency of chromosomal aberrations (CAs), but not of sister chromatid exchanges (SCEs), predicts cancer risk. We have further examined this relationship in European cohorts comprising altogether almost 22,000 subjects, in the framework of a European...... collaborative project (CancerRiskBiomarkers). The present paper gives an overview of some of the results of the project, especially as regards CAs and SCEs. The results confirm that a high level of CAs is associated with an increased risk of cancer and indicate that this association does not depend on the time...... between CA analysis and cancer detection, i.e., is obviously not explained by undetected cancer. The present evidence indicates that both chromatid-type and chromosome-type CAs predict cancer, even though some data suggest that chromosome-type CAs may have a more pronounced predictive value than chromatid...

  1. Aberrantly methylated DNA as a biomarker in breast cancer

    Kristiansen, Søren; Jørgensen, Lars Mønster; Guldberg, Per;

    2013-01-01

    hypermethylation events, their use as tumor biomarkers is usually not hampered by analytical signals from normal cells, which is a general problem for existing protein tumor markers used for clinical assessment of breast cancer. There is accumulating evidence that DNA-methylation changes in breast cancer patients......Aberrant DNA hypermethylation at gene promoters is a frequent event in human breast cancer. Recent genome-wide studies have identified hundreds of genes that exhibit differential methylation between breast cancer cells and normal breast tissue. Due to the tumor-specific nature of DNA...... occur early during tumorigenesis. This may open up for effective screening, and analysis of blood or nipple aspirate may later help in diagnosing breast cancer. As a more detailed molecular characterization of different types of breast cancer becomes available, the ability to divide patients into...

  2. Sphere-cone-polynomial special window with good aberration characteristic

    Optical windows with external surfaces shaped to satisfy operational environment needs are known as special windows. A novel special window, a sphere-cone-polynomial (SCP) window, is proposed. The formulas of this window shape are given. An SCP MgF2 window with a fineness ratio of 1.33 is designed as an example. The field-of-regard (FOR) angle is ±75°. From the window system simulation results obtained with the calculated fluid dynamics (CFD) and optical design software, we find that compared to the conventional window forms, the SCP shape can not only introduce relatively less drag in the airflow, but also have the minimal effect on imaging. So the SCP window optical system can achieve a high image quality across a super wide FOR without adding extra aberration correctors. The tolerance analysis results show that the optical performance can be maintained with a reasonable fabricating tolerance to manufacturing errors

  3. Synaptic signaling and aberrant RNA splicing in autism spectrum disorders

    Ryan M Smith

    2011-01-01

    Full Text Available Interactions between presynaptic and postsynaptic cellular adhesion molecules drive synapse maturation during development. These trans-synaptic interactions are regulated by alternative splicing of cellular adhesion molecule RNAs, which ultimately determines neurotransmitter phenotype. The diverse assortment of RNAs produced by alternative splicing generates countless protein isoforms necessary for guiding specialized cell-to-cell connectivity. Failure to generate the appropriate synaptic adhesion proteins is associated with disrupted glutamatergic and gamma-aminobutyric acid signaling, resulting in loss of activity-dependent neuronal plasticity, and risk for developmental disorders, including autism. While the majority of genetic mutations currently linked to autism are rare variants that change the protein coding sequence of synaptic candidate genes, regulatory polymorphisms affecting constitutive and alternative splicing have emerged as risk factors in numerous other diseases, accounting for an estimated 40-60% of general disease risk. Here, we review the relationship between aberrant RNA splicing of synapse-related genes and autism spectrum disorders.

  4. Analysis of a low-aberration holographic scanner.

    Shiozawa, T; Iwaoka, H

    1988-05-15

    Low-aberration holographic scanners that eliminate the need tor lenses or mirrors promise to greatly reduce the cost of laser printers and image scanners. This paper describes how the spot profile of such a scanner can be predicted using the Fresnel-Kirchhoff diffraction integral, and the diffraction efficiency of the scanner can be predicted using Kogelnik's coupled-wave theory. Experimental results verity the accuracy of these design methods. For a prototype scanner used in a high-resolution He-Ne laser printer, the measured linearity error was under +/- 100 microm, and the spot size (half-intensity beamwidth) was under 60 microm for a span (scan width) of 280 mm. PMID:20531695

  5. The induction by ionizing radiation of chromosomal aberrations in rhesus monkey pre-meiotic germ cells

    The induction of reciprocal translocations in rhesus monkey stem-cell spermatogonia was studied using multivalent analysis at metaphase of primary spermatocytes. Animals were exposed to 1 Gy γ-rays at dose rates of 140 and 0.2 mGy/min or to 0.25 Gy acute 2 MeV neutrons. Reduction of the dose from 140 mGy/min to 0.2 mGy/min did not result in a lowering of the frequencies of recovered translocations of 0.43 %. The neutron data indicated an RBE (neutrons vs. X-rays) of 2.1, which is clearly lower than the value of 4 obtained in the mouse. It is made plausible that in general mammalian species with high sensitivities for the cytotoxic effects of ionizing radiation, such as the rhesus monkey, will exhibit relatively high threshold dose rates below which no further reduction in aberration yield occurs, whereas in more resistant species, such as the mouse, the threshold dose rate will be at a very low level. Similarly, resistant species will show relatively high RBNE values for neutron irradiation and sensitive species low ones. (author). 36 refs.; 2 tabs

  6. Chromosome aberrations produced by radiation: The relationship between excess acentric fragments and dicentrics

    Most chromosome aberrations produced by ionizing radiation develop from DNA double-strand breaks (DSBs). Published date on the yield and variance of excess acentric fragments after in vitro irradiation of human lymphocytes were compared with corresponding data on dicentrics. At low LET the number of excess acentric fragments is about 60% of the number of dicentrics, independent of dose and perhaps of dose rate, suggesting that dicentrics and excess acentric fragments arise from similar kinetics rather than from fundamentally different reactions. Only a weak dependence of the ratio on LET is observed. These results are quantified using generalizations of models for pairwise DSB interactions suggested by Brewen and Brock based on data for marsupial cells. By allowing singly incomplete and some open-quotes doubly incompleteclose quotes exchanges, the models can also account for the experimental observation that the dispersion for excess acentric fragments, a measure of cell-to-cell variance, is systematically larger than the dispersion for dicentrics. Numerical estimates of an incompleteness parameter are derived. 47 refs., 8 figs., 4 tabs

  7. Effect of aberration of light in X-ray free electron lasers

    Geloni, Gianluca [European XFEL GmbH, Hamburg (Germany); Kocharyan, Vitali; Saldin, Evgeni [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2015-11-15

    We discuss the physics of a microbunched electron beam kicked by the dipole field of a corrector magnet by describing the kinematics of coherent undulator radiation after the kick. Particle tracking shows that the electron beam direction changes after the kick, while the orientation of the microbunching wavefront stays unvaried. Therefore, electrons motion and wavefront normal have different directions. Coherent radiation emission in a downstream undulator is expected to be dramatically suppressed as soon as the kick angle becomes larger than the divergence of the output radiation. In fact, according to conventional treatments, coherent radiation is emitted along the normal to the microbunching wavefront. Here we show that kinematics predicts a surprising effect. Namely, a description of coherent undulator radiation in the laboratory frame yields the radical notion that, due light aberration, strong coherent radiation is produced along the direction of the kick. We hold a recent FEL study made at the LCLS as a direct experimental evidence that coherent undulator radiation can be kicked by an angle of about five times the rms radiation divergence without suppression. We put forward our kinematical description of this experiment.

  8. Fishing for radiation quality: chromosome aberrations and the role of radiation track structure

    The yield of chromosome aberrations is not only dependent on dose but also on radiation quality, with high linear energy transfer (LET) typically having a greater biological effectiveness per unit dose than those of low-LET radiation. Differences in radiation track structure and cell morphology can also lead to quantitative differences in the spectra of the resulting chromosomal rearrangements, especially at low doses associated with typical human exposures. The development of combinatorial fluorescent labelling techniques (such as mFISH and mBAND) has helped to reveal the complexity of rearrangements, showing increasing complexity of observed rearrangements with increasing LET but has a resolution limited to ∼10 MBp. High-LET particles have not only been shown to produce clustered sites of DNA damage but also produce multiple correlated breaks along its path resulting in DNA fragments smaller than the resolution of these techniques. Additionally, studies have shown that the vast majority of radiation-induced HPRT mutations were also not detectable using fluorescent in situ hybridisation (FISH) techniques, with correlation of breaks along the track being reflected in the complexity of mutations, with intra- and inter-chromosomal insertions, and inversions occurring at the sites of some of the deletions. Therefore, the analysis of visible chromosomal rearrangements observed using current FISH techniques is likely to represent just the tip of the iceberg, considerably underestimating the extent and complexity of radiation induced rearrangements. (author)

  9. Clinicopathological significance of aberrant Notch receptors in intrahepatic cholangiocarcinoma

    Wu, Wen-Rui; Shi, Xiang-De; Zhang, Rui; Zhu, Man-Sheng; Xu, Lei-Bo; Yu, Xian-Huan; Zeng, Hong; Wang, Jie; Liu, Chao

    2014-01-01

    Notch signaling has been reported to be activated to promote biliary epithelial cell differentiation and tubulogenesis during bile duct development. In this study, clinicopathological significance of aberrant expression of Notch receptors in intrahepatic cholangiocarcinoma (ICC) was investigated. Thus, forty-one ICC specimens were examined by immunohistochemistry using anti-Notch1-4 antibodies, respectively. Expression of Notch receptors was scored by percentage of positive tumor cells and intensity of immunostaining. Clinicopathological parameters and survival data were compared with the expression of Notch receptors, respectively. Expression of Notch receptors was identified in cancer cells, as well as in non-neoplastic cells. Compared with adjacent non-tumor liver tissues, Notch1 and 4 were up regulated, and Notch2 and 3 were relatively weaker. Positive immunostaining of Notch1 in ICC cells was detected in 34 cases (82.9%), Notch2 in 23 (56.1%), Notch3 in 16 (39.0%) and Notch4 in 14 (34.1%). Notch1 was overexpressed in cases with tumor size > 5 cm (P = 0.036). Expression of Notch2 was correlated inversely with histological grade (P = 0.016). Overexpression of Notch4 was more common in cases with serum CA125 > 35 U/ml than cases with CA125 ≤ 35 U/ml (P = 0.048). Expression of Notch3 was not correlated with any other clinicopathological parameters. Moreover, Notch4 was related to poor survival (P < 0.001). To conclude, this study reveals that aberrant expression of Notch receptors 1 and 4 might play important roles during ICC progression. PMID:25031748

  10. Aberrant meiotic behavior in Agave tequilana Weber var. azul

    Rodríguez-Garay Benjamin

    2002-10-01

    Full Text Available Abstract Background Agave tequilana Weber var. azul, is the only one variety permitted by federal law in México to be used for tequila production which is the most popular contemporary alcoholic beverage made from agave and recognized worldwide. Despite the economic, genetic, and ornamental value of the plant, it has not been subjected to detailed cytogenetic research, which could lead to a better understanding of its reproduction for future genetic improvement. The objective of this work was to study the meiotic behavior in pollen mother cells and its implications on the pollen viability in Agave tequilana Weber var. azul. Results The analysis of Pollen Mother Cells in anaphase I (A-I showed 82.56% of cells with a normal anaphase and, 17.44% with an irregular anaphase. In which 5.28% corresponded to cells with side arm bridges (SAB; 3.68% cells with one bridge and one fragment; 2.58% of irregular anaphase showed cells with one or two lagging chromosomes and 2.95% showed one acentric fragment; cells with two bridges and cells with two bridges and one acentric fragment were observed in frequencies of 1.60% and 1.35% respectively. In anaphase II some cells showed bridges and fragments too. Aberrant A-I cells had many shrunken or empty pollen grains (42.00% and 58.00 % viable pollen. Conclusion The observed meiotic irregularities suggest that structural chromosome aberrations have occurred, such as heterozygous inversions, sister chromatid exchanges, deletions and duplications which in turn are reflected in a low pollen viability.

  11. Aberrant laryngeal location of Onchocerca lupi in a dog.

    Alho, Ana Margarida; Cruz, Luís; Coelho, Ana; Martinho, Filipe; Mansinho, Mário; Annoscia, Giada; Lia, Riccardo P; Giannelli, Alessio; Otranto, Domenico; de Carvalho, Luís Madeira

    2016-06-01

    Onchocerca lupi (Spirurida, Onchocercidae) is an emerging vector-borne helminth that causes nodular lesions associated with acute or chronic ocular disease in dogs and cats. Since its first description in dogs in 1991, this zoonotic filarioid has been increasingly reported in Europe and the United States. An 8-year-old outdoor mixed-breed female dog from the Algarve (southern Portugal) was presented with a history of severe dyspnoea. Cervical and thoracic radiographs revealed a slight reduction in the diameter of the cervical trachea and a moderate increase in radiopacity of the laryngeal soft tissue. An exploratory laryngoscopy was performed, revealing filiform worms associated with stenosis of the thyroid cartilage and a purulent necrotic tissue in the larynx lumen. A single sessile nodule, protruding from the dorsal wall of the laryngeal lumen caused a severe reduction of the glottis and tracheal diameter. Fragments of the worms were morphologically and molecularly identified as O. lupi. Histological examination of the nodule showed a granulomatous reaction with sections of coiled gravid female nematodes. Following laryngoscopy, a tracheostomy tube was inserted to relieve dyspnoea and ivermectin (300μg/kg, once a week, for 8weeks) combined with prednisolone was prescribed. The dog showed a complete recovery. Although O. lupi has been isolated in human patients from the spinal cord, this is the first report of an aberrant migration of O. lupi in a dog. The veterinary medical community should pay attention to aberrant location of O. lupi and consider onchocercosis as a differential diagnosis for airway obstruction in dogs. PMID:26732654

  12. Anti-topoisomerase drugs as potent inducers of chromosomal aberrations

    Loredana Bassi

    2000-12-01

    Full Text Available DNA topoisomerases catalyze topological changes in DNA that are essential for normal cell cycle progression and therefore they are a preferential target for the development of anticancer drugs. Anti-topoisomerase drugs can be divided into two main classes: "cleavable complex" poisons and catalytic inhibitors. The "cleavable complex" poisons are very effective as anticancer drugs but are also potent inducers of chromosome aberrations so they can cause secondary malignancies. Catalytic inhibitors are cytotoxic but they do not induce chromosome aberrations. Knowledge about the mechanism of action of topoisomerase inhibitors is important to determine the best anti-topoisomerase combinations, with a reduced risk of induction of secondary malignancies.As topoisomerases de DNA catalisam alterações topológicas no DNA que são essenciais para a progressão do ciclo celular normal e, portanto, são um alvo preferencial para o desenvolvimento de drogas anticâncer. Drogas anti-topoisomerases podem ser divididas em duas classes principais: drogas anti-"complexos cliváveis" e inibidores catalíticos. As drogas anti-"complexos cliváveis" são muito eficazes como drogas anticancerígenas, mas são também potentes indutores de aberrações cromossômicas, podendo causar neoplasias malignas secundárias. Inibidores catalíticos são citotóxicos mas não induzem aberrações cromossômicas. Conhecimento a respeito do mecanismo de ação de inibidores de topoisomerases é importante para determinar as melhores combinações anti-topoisomerases, com um reduzido risco de indução de neoplasias malignas secundárias.

  13. Genomic aberrations frequently alter chromatin regulatory genes in chordoma.

    Wang, Lu; Zehir, Ahmet; Nafa, Khedoudja; Zhou, Nengyi; Berger, Michael F; Casanova, Jacklyn; Sadowska, Justyna; Lu, Chao; Allis, C David; Gounder, Mrinal; Chandhanayingyong, Chandhanarat; Ladanyi, Marc; Boland, Patrick J; Hameed, Meera

    2016-07-01

    Chordoma is a rare primary bone neoplasm that is resistant to standard chemotherapies. Despite aggressive surgical management, local recurrence and metastasis is not uncommon. To identify the specific genetic aberrations that play key roles in chordoma pathogenesis, we utilized a genome-wide high-resolution SNP-array and next generation sequencing (NGS)-based molecular profiling platform to study 24 patient samples with typical histopathologic features of chordoma. Matching normal tissues were available for 16 samples. SNP-array analysis revealed nonrandom copy number losses across the genome, frequently involving 3, 9p, 1p, 14, 10, and 13. In contrast, copy number gain is uncommon in chordomas. Two minimum deleted regions were observed on 3p within a ∼8 Mb segment at 3p21.1-p21.31, which overlaps SETD2, BAP1 and PBRM1. The minimum deleted region on 9p was mapped to CDKN2A locus at 9p21.3, and homozygous deletion of CDKN2A was detected in 5/22 chordomas (∼23%). NGS-based molecular profiling demonstrated an extremely low level of mutation rate in chordomas, with an average of 0.5 mutations per sample for the 16 cases with matched normal. When the mutated genes were grouped based on molecular functions, many of the mutation events (∼40%) were found in chromatin regulatory genes. The combined copy number and mutation profiling revealed that SETD2 is the single gene affected most frequently in chordomas, either by deletion or by mutations. Our study demonstrated that chordoma belongs to the C-class (copy number changes) tumors whose oncogenic signature is non-random multiple copy number losses across the genome and genomic aberrations frequently alter chromatin regulatory genes. © 2016 Wiley Periodicals, Inc. PMID:27072194

  14. Molecular Confirmation that Fasciola gigantica Can Undertake Aberrant Migrations in Human Hosts▿

    Le, Thanh Hoa; Van, Nguyen; Agatsuma, Takeshi; Blair, David; Vercruysse, Jozef; Dorny, Pierre; Nguyen, Thanh Giang Thi; McManus, Donald P.

    2006-01-01

    Two cases of aberrant migration by the liver fluke Fasciola gigantica in humans are reported. In both cases, subadult worms emerged through the skin. The identity of the worms was confirmed from their DNA sequences. This uncommon human pathogen might be more likely than F. hepatica to undertake aberrant migrations in humans.

  15. Chromosomal Aberrations Associated with Clonal Evolution and Leukemic Transformation in Fanconi Anemia: Clinical and Biological Implications

    Stefan Meyer; Heidemarie Neitzel; Holger Tönnies

    2012-01-01

    Fanconi anaemia (FA) is an inherited disease with congenital and developmental abnormalities, bone marrow failure, and extreme risk of leukemic transformation. Bone marrow surveillance is an important part of the clinical management of FA and often reveals cytogenetic aberrations. Here, we review bone marrow findings in FA and discuss the clinical and biological implications of chromosomal aberrations associated with leukemic transformation.

  16. Criteria for admissible values of smooth aberrations for nondiffractive laser beams

    Malashko, Ya I; Khabibulin, V M [JSC ' Concern PVO ' Almaz-Antey' , Moscow (Russian Federation)

    2014-04-28

    We have derived analytical expressions, verified by the methods of numerical simulation, to evaluate the angular divergence of nondiffractive laser beams containing smooth aberrations, i.e., spherical defocusing, astigmatism and toroid. Using these expressions we have formulated the criteria for admissible values of smooth aberrations. (laser applications and other topics in quantum electronics)

  17. Numerical and structural chromosome aberrations in cauliflower (Brassica oleracea var. botrytis) and Arabidopsis thaliana

    Ji, X.

    2014-01-01

    Numerical and structural chromosome aberrations in cauliflower (Brassica oleracea var. botrytis) and Arabidopsis thaliana. I studied numerical and structural chromosome aberrations in cauliflower (Brassica oleracea var. botrytis) and Arabidopsis thaliana. The large genomic changes are important for gene balance control, gene expression and regulation, and may affect the plant’s phenotype. Moreover, chromosome changes, in particular polyploidy, inversions and translocations play a signif...

  18. Aberrant ovarian artery arising from the common Iliac artery: Case report

    Kim, Won Kyung [Dept. of Radiology, Soonchunhyang University Bucheon Hospital, Soonchunhyang University College of Medicine, Bucheon (Korea, Republic of); Yang, Seung Boo; Lee, Jae Myeong [Dept. of Radiology, Soonchunhyang University Gumi Hospital, Soonchunhyang University College of Medicine, Gumi (Korea, Republic of); Goo, Dong Erk; Kim, Yong Jae; Chang, Yun Woo [Dept. of Radiology, Soonchunhyang University Seoul Hospital, Soonchunhyang University College of Medicine, Seoul (Korea, Republic of)

    2013-01-15

    A 46-year-old Vietnamese woman received embolization therapy in order to control postpartum hemorrhage. Angiography revealed an aberrant ovarian artery arising from the right common iliac artery. Superselective catheterization and subsequent embolization of the aberrant ovarian artery and bilateral uterine arteries were performed. Precise knowledge of the anatomic variations of the ovarian artery is important for successful embolization.

  19. Effects of residual aberrations explored on single-walled carbon nanotubes

    The effects of geometric residual aberrations such as coma B2 and two-fold astigmatism A1 on the contrast in aberration corrected high resolution transmission electron microscopy (HRTEM) images are investigated on single-walled carbon nanotubes (SWNT). The individual aberrations are adjusted and set up manually using an imaging CS-corrector. We demonstrate how coma B2 can be recognized by an experienced user directly in the image and how it blurs the contrast. Even with uncorrected (resolution limiting) spherical aberration CS the coma B2 has to be considered and must be minimized. Limits for a tolerable coma are given. The experiments are confirmed by image simulations. -- Highlights: ► Individual effects of residual aberrations such as B2, A1, and CS are demonstrated. ► Experimental HRTEM and simulated images of carbon nanotubes are compared. ► A detection limit of 50 nm B2 in a single HRTEM image is determined.

  20. Non-linear character of dose dependences of chromosome aberration frequency in radiation-damaged root

    The dose dependences of the aberrant anaphases in the root meristem in 48 hours after the irradiation have non-linear character and a plateau in the region about 6-8 Gy. The plateau indicates the activation of recovery processes. In the plateau range, the level of damages for this genotype is 33% for aberrant anaphases (FAA), 2.3 aberrations per aberrant anaphase (A/AC), and 0.74 aberrations for the total number of anaphases. At 10 Gy, the dose curve forms the exponential region caused by the involvement of the large number of new cells with unrepaired damages in the mutation process. The increase of A/AC to 1.1 indicate the ''criticality'' of the meristem radiation damage.

  1. Correlation between Post-LASIK Starburst Symptom and Ocular Wavefront Aberrations

    LIU Yong-Ji; MU Guo-Guang; WANG Zhao-Qi; WANG Yan

    2006-01-01

    Monochromatic aberrations in post laser in-situ keratomileusis (LASIK) eyes are measured. The data are categorized into reference group and starburst group according to the visual symptoms. Statistic analysis has been made to find the correJation between the ocular wavefront aberrations and the starburst symptom. The rms aberrations of the 3rd and 4th orders for the starburst group are significantly larger than those for the reference group. The starburst symptom shows a strong correlation with vertical coma, total coma, spherical aberrations. For 3-mm pupil size and 5.8-mm pupil size, the modulation transfer function (MTF) of the starburst group are lower than those of the reference group, but their visual acuities are close. MTF and PSF analyses are made for two groups, and the results are consistent with the statistical analysis, which means the difference between the two groups is mainly due to the third- and fourth-order Zernike aberrations.

  2. Influence of wave-front aberrations on bit error rate in inter-satellite laser communications

    Yang, Yuqiang; Han, Qiqi; Tan, Liying; Ma, Jing; Yu, Siyuan; Yan, Zhibin; Yu, Jianjie; Zhao, Sheng

    2011-06-01

    We derive the bit error rate (BER) of inter-satellite laser communication (lasercom) links with on-off-keying systems in the presence of both wave-front aberrations and pointing error, but without considering the noise of the detector. Wave-front aberrations induced by receiver terminal have no influence on the BER, while wave-front aberrations induced by transmitter terminal will increase the BER. The BER depends on the area S which is truncated out by the threshold intensity of the detector (such as APD) on the intensity function in the receiver plane, and changes with root mean square (RMS) of wave-front aberrations. Numerical results show that the BER rises with the increasing of RMS value. The influences of Astigmatism, Coma, Curvature and Spherical aberration on the BER are compared. This work can benefit the design of lasercom system.

  3. Transitionality in addiction: A "temporal continuum" hypotheses involving the aberrant motivation, the hedonic dysregulation, and the aberrant learning.

    Patrono, Enrico; Gasbarri, Antonella; Tomaz, Carlos; Nishijo, Hisao

    2016-08-01

    Addiction is a chronic compulsion and relapsing disorder. It involves several brain areas and circuits, which encode vary functions such as reward, motivation, and memory. Drug addiction is defined as a "pathological pattern of use of a substance", characterized by the loss of control on drug-taking-related behaviors, the pursuance of those behaviors even in the presence of negative consequences, and a strong motivated activity to assume substances. Three different theories guide experimental research on drug addiction. Each of these theories consider singles features, such as an aberrant motivation, a hedonic dysregulation, and an aberrant habit learning as the main actor to explain the entire process of the addictive behaviors. The major goal of this study is to present a new hypotheses of transitionality from a controlled use to abuse of addictive substances trough the overview of the three different theories, considering all the single features of each single theory together on the same "temporal continuum" from use to abuse of addictive substances. Recently, it has been suggested that common neural systems may be activated by natural and pharmacological stimuli, raising the hypotheses that binge-eating disorders could be considered as addictive behaviors. The second goal of this study is to present evidences in order to highlight a possible psycho-bio-physiological superimposition between drug and "food addiction". Finally, interesting questions are brought up starting from last findings about a theoretical/psycho-bio-physiological superimposition between drug and "food addiction" and their possibly same transitionality along the same "temporal continuum" from use to abuse of addictive substances in order to investigate new therapeutic strategies based on new therapeutic strategies based on the individual moments characterizing the transition from the voluntary intake of substances to the maladaptive addictive behavior. PMID:27372858

  4. Test of radiation damage enhancement due to incorporation of BrUdR into DNA using chromatid aberrations

    Monte Carlo track structure calculations, leading to an estimation of the magnitude of enhancement of radiation damage due to the incorporation of the halogenated pyrimidine, bromodeoxyuridine (BrUdR) a thymine analog, into DNA have been made. The increase in the yield of double strand breaks for various degrees of substitution in one (monofilarly) or both strands (bifilarly) have been calculated. To test these calculations, quantitative selected radiation-induced aberrations have been obtained in Chinese hamster (V79) fibroblast chromosomes having various patterns of BrUdR substitution following irradiation with 250 kV X rays. Free ''breaks'' and achromatic lesions ''gaps'' show no appreciable sensitizations, but breaks involved in chromatid interchanges show significant enhancement though of lower magnitude than theoretical predictions

  5. Xanthium strumarium L. impact on corn yield and yield components

    Hussain, Zahid; MARWAT, Khan Bahadar; CARDINA, John; KHAN, Ijaz Ahmad

    2014-01-01

    Xanthium strumarium L. is a major weed affecting flour corn in Khyber Pakhtunkhwa Province of Pakistan. Studies conducted in 2006 and 2007 evaluated corn yield and yield component responses to competition from X. strumarium over a range of corn populations (5, 7.5, 10, and 12.5 plants m-2) and X. strumarium densities (0, 2, 4, 6, 8, 10, and 12 plants m-2). Flour corn yield and yield components (grains ear-1, 1000-grain weight, harvest index, and days to silking) were significantly correlated ...

  6. Radiation-induced chromosome aberrations in lymphocytes from man and crab-eating monkey. The dose-response relationships at low doses

    Takahashi, E.; Hirai, M.; Tobari, I.; Utsugi, T.; Nakai, S. (National Inst. of Radiological Sciences, Chiba (Japan). Div. of Genetics)

    1982-01-01

    To obtain information on the relation between yield of chromosome aberrations and dose at low-dose levels, experiments were conducted with 5, 10, 20, 30 and 50 rad of /sup 137/Cs ..gamma..-rays, on lymphocytes from man and crab-eating monkey (Macaca fascicularis). The dose-response relationship for dicentrics was obtained from the combined data of these low-dose experiments with those of our previous ones at high doses (100-400 rad). When the difference between observed yields and those expected from the linear-quadratic model were computed, the dose-response curve had a good fit for man, but not for the monkey. The linear regression lines between 0 and 30 rad were calculated, because the expected values of ..cap alpha../..beta.. for man and monkey would be about 100 and 60 rad. The human data gave a satisfactory fit to a linear model, i.e., a linear increase in aberration frequency with dose, whereas this was not so for those of the monkey. Furthermore, there was some suggestive evidence for the existence of a plateau in dicentric yields between 10 and 30 rad for the monkey and between 20 and 30 rad for human lymphocytes, but more data would be needed to verify this suggestion, particularly for human lymphocytes.

  7. Systematics in delayed neutron yields

    Ohsawa, Takaaki [Kinki Univ., Higashi-Osaka, Osaka (Japan). Atomic Energy Research Inst.

    1998-03-01

    An attempt was made to reproduce the systematic trend observed in the delayed neutron yields for actinides on the basis of the five-Gaussian representation of the fission yield together with available data sets for delayed neutron emission probability. It was found that systematic decrease in DNY for heavier actinides is mainly due to decrease of fission yields of precursors in the lighter side of the light fragment region. (author)

  8. Dicentric chromosome aberration analysis using giemsa and centromere specific fluorescence in-situ hybridization for biological dosimetry: An inter- and intra-laboratory comparison in Indian laboratories

    To facilitate efficient handling of large samples, an attempt towards networking of laboratories in India for biological dosimetry was carried out. Human peripheral blood samples were exposed to 60Co γ-radiation for ten different doses (0–5 Gy) at a dose rate of 0.7 and 2 Gy/min. The chromosomal aberrations (CA) were scored in Giemsa-stained and fluorescence in-situ hybridization with centromere-specific probes. No significant difference (p>0.05) was observed in the CA yield for given doses except 4 and 5 Gy, between the laboratories, among the scorers and also staining methods adapted suggest the reliability and validates the inter-lab comparisons exercise for triage applications. - Highlights: • This is the first report from India on Networking for Biological Dosimetry preparedness using dicentric chromosomal (DC) aberration assay. • There is no significant difference in the in vitro dose response curve (Slope, Intercept, Curvature) constructed among the two labs. • No significant variation in the scoring of DC aberrations between the scorers irrespective of labs. • The DC results obtained by the labs from the Giemsa stained metaphase preparations were confirmed with centromere specific-FISH for further reliability and validity

  9. In-line-focus monitoring technique using lens aberration effect

    Yamamoto, Tomohiko; Sawano, Toshio; Yao, Teruyoshi; Kobayashi, Katsuyoshi; Asai, Satoru

    2005-05-01

    Process windows have become narrower as nano-processing technology has advanced. The semiconductor industry, faced with this situation, has had to impose extremely severe tool controls. Above all, with the advent of 90-nm device production, demand has arisen for strict levels of control that exceed the machine specifications of ArF exposure systems. Consequently, high-accuracy focus control and focus monitoring techniques for production wafers will be necessary in order for this to be achieved for practical use. Focus monitoring techniques that measure pattern placement errors and resist features using special reticle and mark have recently been proposed. Unfortunately, these techniques have several disadvantages. They are unable to identify the direction of a focus error, and there are limits on the illumination conditions. Furthermore, they require the use of a reticle that is more expensive than normal and they suffer from a low level of measurement accuracy. To solve these problems, the authors examined methods of focus control and focus error measurement for production wafers that utilize the lens aberration of the exposure tool system. The authors call this method FMLA (focus monitoring using lens aberration). In general, astigmatism causes a difference in the optimum focal point between the horizontal and vertical patterns in the same image plane. If a focus error occurs, regardless of the reason, a critical dimension (CD) difference arises between the sparse horizontal and vertical lines. In addition, this CD difference decreases or increases monotonously with the defocus value. That is to say, it is possible to estimate the focus errors to measure the vertical and horizontal line CD formed by exposure tool with astigmatism. In this paper, the authors examined the FMLA technique using astigmatism. First, focus monitoring accuracy was investigated. Using normal scholar type simulation, FMLA was able to detect a 32.3-nm focus error when 10-mλ astigmatism was

  10. Micronuclei versus Chromosomal Aberrations Induced by X-Ray in Radiosensitive Mammalian Cells.

    Cristina Plamadeala

    2015-03-01

    Full Text Available An experimental study was accomplished to compare estimation methods of ionizing radiations genotoxicity in mammalian cell cultures by means of two cytogenetic parameters with focus on aberrant cells characterized by multiple chromosomal damages.In vitro study was carried out on the genotoxicity of low-medium doses of 190 kV X-rays absorbed in Chinese hamster ovary cell cultures. Micronuclei and ten types of chromosomal aberrations were identified with Giemsa dying and optical microscope screening.The first parameter consisting in micronuclei relative frequency has led to higher linear correlation coefficient than the second one consistent with chromosomal aberrations relative frequency. However, the latter parameter estimated as the sum of all chromosomal aberrations appeared to be more sensitive to radiation dose increasing in the studied dose range, from 0 to 3 Gy. The number of micronuclei occurring simultaneously in a single cell was not higher than 3, while the number of chromosomal aberrations observed in the same cell reached the value of 5 for doses over 1 Gy.Polynomial dose-response curves were evidenced for cells with Ni micronuclei (i=1,3 while non-monotonic curves were evidenced through detailed analysis of aberrant cells with Ni chromosomal changes [Formula: see text] - in concordance with in vitro studies from literature. The investigation could be important for public health issues where micronucleus screening is routinely applied but also for research purposes where various chromosomal aberrations could be of particular interest.

  11. Intra- and interindividual variability in lymphocyte chromosomal aberrations: implications for cancer risk assessment.

    Peters, Susan; Portengen, Lützen; Bonassi, Stefano; Sram, Radim; Vermeulen, Roel

    2011-08-15

    Chromosomal aberration frequency in peripheral lymphocytes of healthy individuals has been found to be predictive of future cancer risk. The variability of chromosomal aberrations over time, which is largely unknown, should be clarified to interpret the strength of this association and to determine its use in cancer prediction. Intra- and interindividual variability in chromosomal aberration frequency was therefore determined. From a pooled database comprising 11 national cohorts (1965-2002), the authors included 9,433 blood samples from 3,550 subjects with at least one repeated chromosomal aberration measurement. The generalized concordance correlation coefficient of 0.19 was low, indicating high intraindividual variability compared with interindividual variability, resulting in a high likelihood of misclassification. The relation between chromosomal aberration frequency and future cancer risk has probably been underestimated in previous studies. A single chromosomal aberration measurement seems not to be representative of the whole lifespan level of chromosome instability and greatly limits the use of chromosomal aberration frequency-as measured with Giemsa staining-for individual risk assessment. PMID:21652601

  12. Related research on corneal higher-order aberrations after different ways refractive surgery

    Shu-Xi He

    2015-08-01

    Full Text Available AIM:To evaluate the changes of corneal high-order aberration(including Coma, Spab, RMShafter laser in situ keratomileusis(LASIKwith femtosecond laser, sub-Bowman keratomileusis(SBKand laser epithelial keratomileusis(LASEK.METHODS: Of 82 myopic patients(164 eyes, 31 patients(62 eyeswere treated by FS-LASIK, 31 patients(62 eyeswere treated by SBK, 20 patients(40 eyeswere treated by LASEK. Sirius system was used for measuring the coma aberration, spherical aberration, and high order aberration at 1, 15d,1, 3mo after surgery.RESULTS: 1Vision: The uncorrected visual acuity of the three groups had no differences(P>0.05. 2Corneal aberrations: Three kinds of surgical procedure for patients with corneal aberration had significant impact. The C7, C8, C12 and RMSh of three groups were increased significantly(P0.05. The C7, C8, C12 and RMSh were not recovered to preoperative levels after 3mo. But the increase of patients after FS-LASIK was smaller than the other two groups, with statistical significance(P0.05.CONCLUSION: Compared with SBK and LASEK,FS-LASIK has better visual acuity in the early postoperative and corneal higher-order aberrations increase is relatively small.

  13. Chromosome aberrations in relation to radiation dose following partial-body exposures in three populations

    Structural chromosome aberrations were evaluated in peripheral blood samples obtained from three populations exposed to partial-body irradiation. These included 143 persons who received radiotherapy for enlarged thymus glands during infancy and 50 sibling controls; 79 persons irradiated for enlarged tonsils and 81 persons surgically treated for the same condition during childhood; and 77 women frequently exposed as young adults to fluoroscopic chest X rays during lung collapse treatment for tuberculosis (TB) and 66 women of similar ages treated for TB with other therapies. Radiation exposures occurred 30 and more years before blood was drawn. Doses to active bone marrow averaged over the entire body were 21, 6, and 14 cGy for the exposed thymic, tonsil, and TB subjects, respectively. Two hundred metaphases were scored for each subject, and the frequencies of symmetrical (stable) and asymmetrical (unstable) chromosome aberrations were quantified in 97,200 metaphases. Cells with stable aberrations were detected with greater frequency in the irradiated subjects compared with nonirradiated subjects in all three populations, and an overall test for an association between stable aberrations and partial-body ionizing radiation was highly significant (P less than 0.001). We found no evidence that radiation-induced aberrations varied by age at exposure. These data show that exposure of children or young adults to partial-body fractionated radiation can result in detectable increased frequencies of stable chromosome aberrations in circulating lymphocytes 30 years later, and that these aberrations appear to be informative as biological markers of population exposure

  14. The nonlinear relationship of radiation dose to chromosome aberrations among atomic bomb survivors, Hiroshima and Nagasaki

    The quantitative relationship of the frequency of cells with radiation-induced chromosome aberrations in peripheral leukocytes in atomic bomb survivors has been evaluated as a function of gamma and neutron doses. Three different models have been examined; each assumes a nonlinear-response to gamma rays and a linear-response to neutrons. From the standpoint of the goodness of fit of these models, the model which ''best'' fits the data of radiation-induced chromosome aberrations is the exponit model, where the frequency of aberrant cells increases exponentially with dose. It is of radiobiological interest that the goodness of fit for this model shows the frequencies of cells with any chromosome aberration or an exchange aberration to be dependent cubically on the gamma ray dose and linearly on the neutron dose. The relative biological effectiveness (RBE) of neutrons is calculated to be 129Dn sup(-2/3) (95% confidence intervals: (121 -- 137)Dn sup(-2/3)) for frequency of cells with any chromosome aberration, and 125Dn sup(-2/3) (95% confidence intervals: (117 -- 132)Dn sup(-2/3)) for the frequency of cells with an exchange aberration where Dn is the neutron dose. (author)

  15. Influence of wavefront aberration on the imaging performance of the solar grating spectrometer.

    Zheng, L H; Rao, C H; Gu, N T; Huang, L H; Qiu, Q

    2016-01-11

    The solar grating spectrometer is an important tool to study the thermodynamic properties of the solar atmosphere with different height distribution, but its imaging performance will be degraded by the wavefront aberration. On the other hand, narrow slit of the grating spectrometer will filter the wavefront aberration to a certain extent. In this paper, the mathematical relation between the wavefront aberration and the imaging performance of the grating spectrometer is derived. The numerical simulation is performed and is validated by the experiment. The results demonstrate that: The influence of the wavefront aberration with the different types and magnitudes on the spectral resolution and the energy utilization is different. The influence of the different slits on the wavefront aberrations is different. Generally, the smaller the slit is, the better the spectral resolution is. However, this is not true for the low-frequency dominated aberration, e.g. the defocus, since its low frequency will also be blocked by the narrow slit. If the influence of the filter slit on the wavefront aberration cannot be taken into account, it will lead to adaptive optics over-compensation. PMID:26832247

  16. Impact of astigmatism and high-order aberrations on subjective best focus.

    Marcos, Susana; Velasco-Ocana, Miriam; Dorronsoro, Carlos; Sawides, Lucie; Hernandez, Martha; Marin, Gildas

    2015-08-01

    We studied the role of native astigmatism and ocular aberrations on best-focus setting and its shift upon induction of astigmatism in 42 subjects (emmetropes, myopes, hyperopes, with-the-rule [WTR] and against-the-rule [ATR] myopic astigmats). Stimuli were presented in a custom-developed adaptive optics simulator, allowing correction for native aberrations and astigmatism induction (+1 D; 6-mm pupil). Best-focus search consisted on randomized-step interleaved staircase method. Each subject searched best focus for four different images, and four different conditions (with/without aberration correction, with/without astigmatism induction). The presence of aberrations induced a significant shift in subjective best focus (0.4 D; p astigmatism produced a statistically significant shift of the best-focus setting in all groups under natural aberrations (p = 0.001), and in emmetropes and in WTR astigmats under corrected aberrations (p induced astigmatism was significantly different across groups, both for natural aberrations and AO-correction (p astigmats upon induction of astigmatism, symmetrically with respect to the best-focus shift in nonastigmatic myopes. The shifts are consistent with a bias towards vertical and horizontal retinal blur in WTR and ATR astigmats, respectively, indicating adaptation to native astigmatism. PMID:26237300

  17. Aberration-corrected STEM and EELS of semiconducting nanostructures

    We review some applications of aberration–corrected electron microscopy for the detailed characterization of semiconducting nanostructures using a combination of high-angle annular dark-field scanning transmission electron microscopy and electron energy loss spectroscopy. The study of self-assembled quantum wires shows that it is possible to determine the composition of the nanostructures with better than 1 nm resolution down to the atomic level while the contrast in the high-angle annular dark-field images is used to determine the presence of wetting layers separating quantum wires and the strain field arising from the local compositional changes. The local measurements of energy loss spectra demonstrate the shift of plasmon peaks consistent with the changes in lattice parameters. High-angle annular dark-field images are also used to study the contrast in GaSb thin films deposited and study the presence of anti-phase domain boundaries. These examples show that aberration-corrected microscopy combined with electron energy loss spectroscopy provide not only enhanced resolution but also increased sensitivity to atomic site compositional changes.

  18. Aberrant repair and fibrosis development in skeletal muscle

    Mann Christopher J

    2011-05-01

    Full Text Available Abstract The repair process of damaged tissue involves the coordinated activities of several cell types in response to local and systemic signals. Following acute tissue injury, infiltrating inflammatory cells and resident stem cells orchestrate their activities to restore tissue homeostasis. However, during chronic tissue damage, such as in muscular dystrophies, the inflammatory-cell infiltration and fibroblast activation persists, while the reparative capacity of stem cells (satellite cells is attenuated. Abnormal dystrophic muscle repair and its end stage, fibrosis, represent the final common pathway of virtually all chronic neurodegenerative muscular diseases. As our understanding of the pathogenesis of muscle fibrosis has progressed, it has become evident that the muscle provides a useful model for the regulation of tissue repair by the local microenvironment, showing interplay among muscle-specific stem cells, inflammatory cells, fibroblasts and extracellular matrix components of the mammalian wound-healing response. This article reviews the emerging findings of the mechanisms that underlie normal versus aberrant muscle-tissue repair.

  19. Astrocyte Reactivity Following Blast Exposure Involves Aberrant Histone Acetylation

    Bailey, Zachary S.; Grinter, Michael B.; VandeVord, Pamela J.

    2016-01-01

    Blast induced neurotrauma (BINT) is a prevalent injury within military and civilian populations. The injury is characterized by persistent inflammation at the cellular level which manifests as a multitude of cognitive and functional impairments. Epigenetic regulation of transcription offers an important control mechanism for gene expression and cellular function which may underlie chronic inflammation and result in neurodegeneration. We hypothesize that altered histone acetylation patterns may be involved in blast induced inflammation and the chronic activation of glial cells. This study aimed to elucidate changes to histone acetylation occurring following injury and the roles these changes may have within the pathology. Sprague Dawley rats were subjected to either a 10 or 17 psi blast overpressure within an Advanced Blast Simulator (ABS). Sham animals underwent the same procedures without blast exposure. Memory impairments were measured using the Novel Object Recognition (NOR) test at 2 and 7 days post-injury. Tissues were collected at 7 days for Western blot and immunohistochemistry (IHC) analysis. Sham animals showed intact memory at each time point. The novel object discrimination decreased significantly between two and 7 days for each injury group (p processes. We have shown aberrant histone acetylation patterns involved in blast induced astrogliosis and cognitive impairments. Further understanding of their role in the injury progression may lead to novel therapeutic targets. PMID:27551260

  20. Sphere-cone-polynomial special window with good aberration characteristic

    Wang Chao; Zhang Xin; Qu He-Meng; Wang Ling-Jie; Wang Yu

    2013-01-01

    Optical windows with external surfaces shaped to satisfy operational environment needs are known as special windows.A novel special window,a sphere-cone-polynomial (SCP) window,is proposed.The formulas of this window shape are given.An SCP MgF2 window with a fineness ratio of 1.33 is designed as an example.The field-of-regard (FOR) angle is ±75°.From the window system simulation results obtained with the calculated fluid dynamics (CFD) and optical design software,we find that compared to the conventional window forms,the SCP shape can not only introduce relatively less drag in the airflow,but also have the minimal effect on imaging.So the SCP window optical system can achieve a high image quality across a super wide FOR without adding extra aberration correctors.The tolerance analysis results show that the optical performance can be maintained with a reasonable fabricating tolerance to manufacturing errors.

  1. Aberrations and focusability in large solid-state-laser systems

    Simmons, W.W.

    1981-01-01

    Solid state lasers for fusion experiments must reliably deliver maximum power to small (approximately .5 mm) targets from stand-off focal distances of 1 m or more. This requirement places stringent limits upon the optical quality of the several major components - amplifiers, Faraday isolators, spatial filters - in each amplifier train. Residual static aberrations in optical components are transferred to the beam as it traverses the optical amplifier chain. Although individual components are typically less than lambda/20 for components less than 10 cm clear aperture; and less than lambda/10 for components less than 20 cm clear aperture; the large number of such components in optical series results in a wavefront error that may exceed one wave for modern solid state lasers. For pulse operation, the focal spot is additionally broadened by intensity dependent nonlinearities. Specific examples of the performance of large aperture components will be presented within the context of the Argus and Shiva laser systems, which are presently operational at Lawrence Livermore National Laboratory. Design requirements upon the larger aperture Nova laser components, up to 74 cm in clear aperture, will also be discussed; these pose a significant challenge to the optical industry.

  2. Aberrations and focusability in large solid-state-laser systems

    Solid state lasers for fusion experiments must reliably deliver maximum power to small (approximately .5 mm) targets from stand-off focal distances of 1 m or more. This requirement places stringent limits upon the optical quality of the several major components - amplifiers, Faraday isolators, spatial filters - in each amplifier train. Residual static aberrations in optical components are transferred to the beam as it traverses the optical amplifier chain. Although individual components are typically less than lambda/20 for components less than 10 cm clear aperture; and less than lambda/10 for components less than 20 cm clear aperture; the large number of such components in optical series results in a wavefront error that may exceed one wave for modern solid state lasers. For pulse operation, the focal spot is additionally broadened by intensity dependent nonlinearities. Specific examples of the performance of large aperture components will be presented within the context of the Argus and Shiva laser systems, which are presently operational at Lawrence Livermore National Laboratory. Design requirements upon the larger aperture Nova laser components, up to 74 cm in clear aperture, will also be discussed; these pose a significant challenge to the optical industry

  3. Holographic Adaptive Laser Optics System (HALOS): Fast, Autonomous Aberration Correction

    Andersen, G.; MacDonald, K.; Gelsinger-Austin, P.

    2013-09-01

    We present an adaptive optics system which uses a multiplexed hologram to deconvolve the phase aberrations in an input beam. This wavefront characterization is extremely fast as it is based on simple measurements of the intensity of focal spots and does not require any computations. Furthermore, the system does not require a computer in the loop and is thus much cheaper, less complex and more robust as well. A fully functional, closed-loop prototype incorporating a 32-element MEMS mirror has been constructed. The unit has a footprint no larger than a laptop but runs at a bandwidth of 100kHz over an order of magnitude faster than comparable, conventional systems occupying a significantly larger volume. Additionally, since the sensing is based on parallel, all-optical processing, the speed is independent of actuator number running at the same bandwidth for one actuator as for a million. We are developing the HALOS technology with a view towards next-generation surveillance systems for extreme adaptive optics applications. These include imaging, lidar and free-space optical communications for unmanned aerial vehicles and SSA. The small volume is ideal for UAVs, while the high speed and high resolution will be of great benefit to the ground-based observation of space-based objects.

  4. Antimetastatic therapy targeting aberrant sialylation profiles in cancer cells

    Da Yong Lu

    2011-09-01

    Full Text Available Neoplasm metastases involve a fixed cascade of pathological processes, and are responsible for more than 60% cancer deaths worldwide and can only be controlled or inhibited by drugs now. Antimetastatic drugs targeting aberrantly sialylated in tumors have involved about a quarter of a century and might be a future therapeutic option apart from currently utilized antimetastatic drugs, such as antivascular and matrix metalloproteinase (MMP inhibitors. Since neoplasm tissues often manifest high levels of sialic acids and sialyl antigens or glycoligands, and some types of sialic acid analogue, such as N-glycolylneuraminic acid (Nau5Gc occurred in most tumor tissues, is absent in common humans, more attentions are needed to work with new therapeutic approaches to target these changes. Previously preliminary data have shown some compounds that inhibit some pathways of sialic acids can inhibit the tumor metastasis in vitro and tumor metastasis in experimental animal models. This type of pharmacological work can be helped by glycome investigations in order to deep understanding their mechanisms. As the central dogma of glycobiology is still unknown, some fundamental questions related to carbohydrate itself are even more welcoming and decisive to our understanding to nature of cancer. These types of work also need mathematical analysis of data. In this review, we will document and discuss the latest experimental therapeutic data and their clinical significance between cancer pathological profiles and therapeutics benefits.

  5. Aberrant driving behaviors: a study of drivers in Beijing.

    Shi, Jing; Bai, Yun; Ying, Xiwen; Atchley, Paul

    2010-07-01

    The addition of massive numbers of new drivers with varied driving experience to roads in China suggests it is important to understand the nature of aberrant driving behaviors for this new set of drivers. A paper-based and an Internet survey were administered. Factor analysis produced a five-factor structure for each survey. The distinction between violations and errors indicated in previous studies was confirmed. The violations included emotional violations, risky violations and self-willed violations, and the errors included inexperience errors and distraction errors. In contrast to previous work, age was not found to be a good predictor of violations though driving experience was. Contrary to expectations, non-automotive (bicycle) roadway experience or level of driving training failed to predict poor driving behavior. On-road experience is the key to risk for China's drivers. Good agreement between the paper-based and Internet surveys indicate online surveys to be a feasible way to conduct research of driving behavior at low cost. PMID:20441810

  6. Chromosomal aberrations in mobile phone users in Tamilnadu, southern India

    Complete text of publication follows. Radiofrequency (RF) waves have long been used for different types of information exchange via the airwaves-wireless Morse code, radio, television, and wireless telephony. Increasingly larger numbers of people rely on mobile telephone technology, and health concerns about the associated RF exposure have been raised, particularly because the mobile phone handset operates in close proximity to the human body, and also because large numbers of base station antennas are required to provide widespread availability of service to large populations. In the present study chromosomal damage investigations were carried out on the peripheral blood lymphocytes of individuals using mobile phones, being exposed to MW frequency ranging from 800 to 2000 MHz. The aim of this study is to establish whether mobile phone use (n = 27) increases the frequency of chromosome aberrations (CA) in peripheral blood lymphocytes compared with controls (n = 27) in Tamilnadu, India. After signing a consent form, volunteers provided blood samples (5 ml) to establish cell cultures at 52 hrs. For CA analysis, 100 complete metaphase cells from each subject were evaluated. In the present study, in mobile phone users highly significant results were obtained when compared to control groups. These results highlight a correlation between mobile phone use (exposure to RFR) and genetic damage and require interim public health actions in the wake of widespread use of mobile telephony.

  7. Refractive and diffractive neutron optics with reduced chromatic aberration

    Poulsen, S.O., E-mail: stefan.poulsen@northwestern.edu [NEXMAP, Department of Physics, Technical University of Denmark, Anker Engelunds Vej 1, 2800 Kgs. Lyngby (Denmark); Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208 (United States); Poulsen, H.F. [NEXMAP, Department of Physics, Technical University of Denmark, Anker Engelunds Vej 1, 2800 Kgs. Lyngby (Denmark); Bentley, P.M. [European Spallation Source ESS AB, Box 176, 221 00 Lund (Sweden)

    2014-12-11

    Thermal neutron beams are an indispensable tool in physics research. The spatial and the temporal resolution attainable in experiments are dependent on the flux and collimation of the neutron beam which remain relatively poor, even for modern neutron sources. These difficulties may be mitigated by the use of optics for focusing and imaging. Refractive and diffractive optical elements, e.g. compound refractive lenses and Fresnel zone plates, are attractive due to their low cost, and simple alignment. These optical elements, however, suffer from chromatic aberration, which limit their effectiveness to highly monochromatic beams. This paper presents two novel concepts for focusing and imaging non-monochromatic thermal neutron beams with well-known optical elements: (1) a fast mechanical transfocator based on a compound refractive lens, which actively varies the number of individual lenses in the beam path to focus and image a time-of-flight beam, and (2) a passive optical element consisting of a compound refractive lens, and a Fresnel zone plate, which may focus and image both continuous and pulsed neutron beams.

  8. Refractive and diffractive neutron optics with reduced chromatic aberration

    Thermal neutron beams are an indispensable tool in physics research. The spatial and the temporal resolution attainable in experiments are dependent on the flux and collimation of the neutron beam which remain relatively poor, even for modern neutron sources. These difficulties may be mitigated by the use of optics for focusing and imaging. Refractive and diffractive optical elements, e.g. compound refractive lenses and Fresnel zone plates, are attractive due to their low cost, and simple alignment. These optical elements, however, suffer from chromatic aberration, which limit their effectiveness to highly monochromatic beams. This paper presents two novel concepts for focusing and imaging non-monochromatic thermal neutron beams with well-known optical elements: (1) a fast mechanical transfocator based on a compound refractive lens, which actively varies the number of individual lenses in the beam path to focus and image a time-of-flight beam, and (2) a passive optical element consisting of a compound refractive lens, and a Fresnel zone plate, which may focus and image both continuous and pulsed neutron beams

  9. Aberrant water homeostasis detected by stable isotope analysis.

    Shannon P O'Grady

    Full Text Available While isotopes are frequently used as tracers in investigations of disease physiology (i.e., 14C labeled glucose, few studies have examined the impact that disease, and disease-related alterations in metabolism, may have on stable isotope ratios at natural abundance levels. The isotopic composition of body water is heavily influenced by water metabolism and dietary patterns and may provide a platform for disease detection. By utilizing a model of streptozotocin (STZ-induced diabetes as an index case of aberrant water homeostasis, we demonstrate that untreated diabetes mellitus results in distinct combinations, or signatures, of the hydrogen (delta2H and oxygen (delta18O isotope ratios in body water. Additionally, we show that the delta2H and delta18O values of body water are correlated with increased water flux, suggesting altered blood osmolality, due to hyperglycemia, as the mechanism behind this correlation. Further, we present a mathematical model describing the impact of water flux on the isotopic composition of body water and compare model predicted values with actual values. These data highlight the importance of factors such as water flux and energy expenditure on predictive models of body water and additionally provide a framework for using naturally occurring stable isotope ratios to monitor diseases that impact water homeostasis.

  10. Aberrant methylation of candidate tumor suppressor genes in neuroblastoma.

    Hoebeeck, Jasmien; Michels, Evi; Pattyn, Filip; Combaret, Valérie; Vermeulen, Joëlle; Yigit, Nurten; Hoyoux, Claire; Laureys, Geneviève; De Paepe, Anne; Speleman, Frank; Vandesompele, Jo

    2009-01-18

    CpG island hypermethylation has been recognized as an alternative mechanism for tumor suppressor gene inactivation. In this study, we performed methylation-specific PCR (MSP) to investigate the methylation status of 10 selected tumor suppressor genes in neuroblastoma. Seven of the investigated genes (CD44, RASSF1A, CASP8, PTEN, ZMYND10, CDH1, PRDM2) showed high frequencies (> or =30%) of methylation in 33 neuroblastoma cell lines. In 42 primary neuroblastoma tumors, the frequencies of methylation were 69%, CD44; 71%, RASSF1A; 56%, CASP8; 25%, PTEN; 15%, ZMYND10; 8%, CDH1; and 0%, PRDM2. Furthermore, CASP8 and CDH1 hypermethylation was significantly associated with poor event-free survival. Meta-analysis of 115 neuroblastoma tumors demonstrated a significant correlation between CASP8 methylation and MYCN amplification. In addition, there was a correlation between ZMYND10 methylation and MYCN amplification. The MSP data, together with optimized mRNA re-expression experiments (in terms of concentration and time of treatment and use of proper reference genes) further strengthen the notion that epigenetic alterations could play a significant role in NB oncogenesis. This study thus warrants the need for a global profiling of gene promoter hypermethylation to identify genome-wide aberrantly methylated genes in order to further understand neuroblastoma pathogenesis and to identify prognostic methylation markers. PMID:18819746

  11. AN ABERRANT MUSCLE IN THE NECK – A CASE REPORT

    Anil

    2013-05-01

    Full Text Available ABSTRACT: During routine dissection of a 65 year old male cad aver, an unusual muscle was found on the right side of the neck. The aberrant muscle had a common origin with sternothyroid. Its distal end was a fleshy belly attached to the posterior as pects of manubrium sternum and medial end of first costal cartilage. The muscle ascended in supe ro-lateral direction crossing anterior to the common carotid artery and ascended as a slender ten don along the anterior wall of carotid sheath. In the middle third of the neck, it was accompanied by descendens hypoglossi. The tendon merged with the anterior wall of the carotid sheath in the uppe r part of the neck and was not discernible as a separate entity. Along with the carotid sheath, it was inserted to the base of the skull. Developmentally, the muscle appears to be the separ ated fibres from stylohyoid and sternohyoid line (supra- and infra- hyoid muscles that has lost its intermittent attachment to hyoid bone. Based on its attachments, the muscle can assi st sternocleidomastoid in ipsilateral tilting of th e head. As the muscle was found to be crossing in fro nt of the common carotid artery, the contraction of this muscle could compress the artery resulting in clinical symptoms. The opposite side of the neck did not show similar muscle. We did not find s imilar case reported in the literature

  12. Aberrant left brachiocephalic vein: CT imaging findings and embryologic correlation

    Computed tomography was utilized to evaluate aberrant left brachiocephalic vein (ALBCV), an infrequently discussed congenital vascular anomaly among Chinese people. Associated vascular variation and possible embryonic correlation are discussed. Since 1990, a total of 14 cases of ALBCV have been reported in patients receiving CT scan of chest, and was mainly an incidental diagnosis. One case was confirmed angiographically and two others were confirmed by magnetic resonance imaging. Emphasis was placed on the entry of the azygos vein into the superior vena cava (SVC), the length of the SVC, and the presence of other cardiovascular abnormalities. Of the 14 cases of ALBCV, the level of azygos vein entry was higher than the origin of the SVC in 7 cases: 4 were approximately the same level and 3 were lower. The average length of the SVC was approximately 5.6 cm shorter than that of the general population, which is approximately 7.0 cm. Three cases had associated vascular anomaly. Most cases of ALBCV had azygos vein drainage level higher than or equal to the origin of the SVC. Right-sided aorta is one of the causes giving rise to the ALBCV during embryonic development. The CT scan remains a definitive diagnostic modality for ALBCV. (orig.)

  13. Aberrant Effective Connectivity in Schizophrenia Patients During Appetitive Conditioning

    Andreea Oliviana Diaconescu

    2011-01-01

    Full Text Available It has recently been suggested that schizophrenia involves dysfunction in brain connectivity at a neural level, and a dysfunction in reward processing at a behavioural level. The purpose of the present study was to link these two levels of analyses by examining effective connectivity patterns between brain regions mediating reward learning in patients with schizophrenia and healthy, age-matched controls. To this aim, we used functional magnetic resonance imaging (fMRI and galvanic skin recordings (GSR while patients and controls performed an appetitive conditioning experiment with visual cues as the conditioned (CS stimuli, and monetary reward as the appetitive unconditioned stimulus (US. Based on explicit stimulus contingency ratings, conditioning occurred in both groups; however, based on implicit, physiological GSR measures, patients failed to show differences between CS+ and CS- conditions. Healthy controls exhibited increased blood-oxygen-level dependent (BOLD activity across striatal, hippocampal and prefrontal regions and increased effective connectivity from the ventral striatum (VS to the orbitofrontal cortex (OFC BA 11 in the CS+ compared to the CS- condition. Compared to controls, patients showed increased BOLD activity across a similar network of brain regions, and increased effective connectivity from the striatum to hippocampus and prefrontal regions in the CS- compared to the CS+ condition. The findings of increased BOLD activity and effective connectivity in response to the CS- in patients with schizophrenia offer insight into the aberrant assignment of motivational salience to non-reinforced stimuli during conditioning that is thought to accompany schizophrenia.

  14. Phenotypic aberrations during micropropagation of Soymida febrifuga (Roxb. Adr. Juss

    Kishore Kumar CHIRUVELLA

    2014-03-01

    Full Text Available Like most of the medicinal plants Soymida febrifuga (Meliaceae possess significance for its valuable secondary metabolites. Multiplication of this endemic plant is limited by difficulty in rooting of stem cuttings, high seedling mortality rates and low seed viability period. Hence efficient protocols for in vitro mass propagation has been established from field grown and aseptic seedlings explants. Strikingly, we observed aberrant structures such as vitrified shoots, faciated shoots, albino shoots as well shoot necrosis during its micropropagation. These phenotypic maladies were observed during organogenesis and rooting. Compared to other abnormalities, shoot necrosis nonetheless was frequent and pronounced leading to plant death. Shoots when subjected to rooting also displayed necrosis which was controlled by transferring to MS medium containing various concentrations and combinations of calcium levels, activated charcoal, glucose, fructose and auxins. Microshoots initiated roots on half strength MS medium with IBA and IAA individually or in combination within two weeks. MS half strength solid medium supplemented with CAN (556 mg l–1, CAP (1.0 mg l–1, IAA (2.0 mg l–1 and IBA (2.0 mg l–1 in combination was found to be more efficient in showing high frequency (95% of root regeneration. Rooted plantlets were successfully hardened and 70-85% of regenerated plants were successfully acclimatized to natural environment. In vitro derived plantlets were morphologically similar to in vivo plants.

  15. mBAND analysis of chromosome aberrations in human epithelial cells induced by gamma-rays and secondary neutrons of low dose rate.

    Hada, M; Gersey, B; Saganti, P B; Wilkins, R; Cucinotta, F A; Wu, H

    2010-08-14

    Human risks from chronic exposures to both low- and high-LET radiation are of intensive research interest in recent years. In the present study, human epithelial cells were exposed in vitro to gamma-rays at a dose rate of 17 mGy/h or secondary neutrons of 25 mGy/h. The secondary neutrons have a broad energy spectrum that simulates the Earth's atmosphere at high altitude, as well as the environment inside spacecrafts like the Russian MIR station and the International Space Station (ISS). Chromosome aberrations in the exposed cells were analyzed using the multicolor banding in situ hybridization (mBAND) technique with chromosome 3 painted in 23 colored bands that allows identification of both inter- and intrachromosome exchanges including inversions. Comparison of present dose responses between gamma-rays and neutron irradiations for the fraction of cells with damaged chromosome 3 yielded a relative biological effectiveness (RBE) value of 26+/-4 for the secondary neutrons. Our results also revealed that secondary neutrons of low dose rate induced a higher fraction of intrachromosome exchanges than gamma-rays, but the fractions of inversions observed between these two radiation types were indistinguishable. Similar to the previous findings after acute radiation exposures, most of the inversions observed in the present study were accompanied by other aberrations. The fractions of complex type aberrations and of unrejoined chromosomal breakages were also found to be higher in the neutron-exposed cells than after gamma-rays. We further analyzed the location of the breaks involved in chromosome aberrations along chromosome 3, and observed hot spots after gamma-ray, but not neutron, exposures. PMID:20338263

  16. Aberration-corrected STEM/TEM imaging at 15 kV

    Sasaki, Takeo, E-mail: tasasaki@jeol.co.jp [EM Business Unit, JEOL Ltd., 3-1-2 Musashino, Akishima, Tokyo 196-8558 (Japan); Sawada, Hidetaka; Hosokawa, Fumio [EM Business Unit, JEOL Ltd., 3-1-2 Musashino, Akishima, Tokyo 196-8558 (Japan); Sato, Yuta; Suenaga, Kazu [Nanotube Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, Higashi 1-1-1, Tsukuba, Ibaraki 305-8565 (Japan)

    2014-10-15

    The performance of aberration-corrected (scanning) transmission electron microscopy (S/TEM) at an accelerating voltage of 15 kV was evaluated in a low-voltage microscope equipped with a cold-field emission gun and a higher-order aberration corrector. Aberrations up to the fifth order were corrected by the aberration measurement and auto-correction system using the diffractogram tableau method in TEM and Ronchigram analysis in STEM. TEM observation of nanometer-sized particles demonstrated that aberrations up to an angle of 50 mrad were compensated. A TEM image of Si[110] exhibited lattice fringes with a spacing of 0.192 nm, and the power spectrum of the image showed spots corresponding to distances of 0.111 nm. An annular dark-field STEM image of Si[110] showed lattice fringes of (111) and (22¯0) planes corresponding to lattice distances of 0.314 nm and 0.192 nm, respectively. At an accelerating voltage of 15 kV, the developed low-voltage microscope achieved atomic-resolution imaging with a small chromatic aberration and a large uniform phase. - Highlights: • Aberration-corrected STEM/TEM imaging at 15 kV demonstrated lattice fringes of Si[110] single crystal with a spacing of 0.192 nm. • To achieve this performance at a lower accelerating voltage, uniform phase area over 50 mrad is mandatory in Ronchigram and Diffractogram tableau. • This means a higher-order aberration of six-fold astigmatism should be compensated. • In addition, decreasing the effect of chromatic aberration plays an important role for improving the performance of linear scattering component at 15 kV TEM.

  17. Correcting the wavefront aberration of membrane mirror based on liquid crystal spatial light modulator

    Yang, Bin; Wei, Yin; Chen, Xinhua; Tang, Minxue

    2014-11-01

    Membrane mirror with flexible polymer film substrate is a new-concept ultra lightweight mirror for space applications. Compared with traditional mirrors, membrane mirror has the advantages of lightweight, folding and deployable, low cost and etc. Due to the surface shape of flexible membrane mirror is easy to deviate from the design surface shape, it will bring wavefront aberration to the optical system. In order to solve this problem, a method of membrane mirror wavefront aberration correction based on the liquid crystal spatial light modulator (LCSLM) will be studied in this paper. The wavefront aberration correction principle of LCSLM is described and the phase modulation property of a LCSLM is measured and analyzed firstly. Then the membrane mirror wavefront aberration correction system is designed and established according to the optical properties of a membrane mirror. The LCSLM and a Hartmann-Shack sensor are used as a wavefront corrector and a wavefront detector, respectively. The detected wavefront aberration is calculated and converted into voltage value on LCSLM for the mirror wavefront aberration correction by programming in Matlab. When in experiment, the wavefront aberration of a glass plane mirror with a diameter of 70 mm is measured and corrected for verifying the feasibility of the experiment system and the correctness of the program. The PV value and RMS value of distorted wavefront are reduced and near diffraction limited optical performance is achieved. On this basis, the wavefront aberration of the aperture center Φ25 mm in a membrane mirror with a diameter of 200 mm is corrected and the errors are analyzed. It provides a means of correcting the wavefront aberration of membrane mirror.

  18. Rx for low cash yields.

    Tobe, Chris

    2003-10-01

    Certain strategies can offer not-for-profit hospitals potentially greater investment yields while maintaining stability and principal safety. Treasury inflation-indexed securities can offer good returns, low volatility, and inflation protection. "Enhanced cash" strategies offer liquidity and help to preserve capital. Stable value "wrappers" allow hospitals to pursue higher-yielding fixed-income securities without an increase in volatility. PMID:14560584

  19. Breeding for Grass Seed Yield

    Boelt, Birte; Studer, Bruno

    2010-01-01

    Seed yield is a trait of major interest for many fodder and amenity grass species and has received increasing attention since seed multiplication is economically relevant for novel grass cultivars to compete in the commercial market. Although seed yield is a complex trait and affected by...... agricultural practices as well as environmental factors, traits related to seed production reveal considerable genetic variation, prerequisite for improvement by direct or indirect selection. This chapter first reports on the biological and physiological basics of the grass reproduction system, then highlights...... important aspects and components affecting the seed yield potential and the agronomic and environmental aspects affecting the utilization and realization of the seed yield potential. Finally, it discusses the potential of plant breeding to sustainably improve total seed yield in fodder and amenity grasses....

  20. Study on the design and Zernike aberrations of a segmented mirror telescope

    Jiang Zhen-Yu; Li Lin; Huang Yi-Fan

    2009-01-01

    The segmented mirror telescope is widely used. The aberrations of segmented mirror systems are different from single mirror systems. This paper uses the Fourier optics theory to analyse the Zernike aberrations of segmented mirror systems. It concludes that the Zernike aberrations of segmented mirror systems obey the linearity theorem. The design of a segmented space telescope and segmented schemes are discussed, and its optical model is constructed. The computer simulation experiment is performed with this optical model to verify the suppositions. The experimental results confirm the correctness of the model.

  1. Artificial neural network for the determination of Hubble Space Telescope aberration from stellar images

    Barrett, Todd K.; Sandler, David G.

    1993-01-01

    An artificial-neural-network method, first developed for the measurement and control of atmospheric phase distortion, using stellar images, was used to estimate the optical aberration of the Hubble Space Telescope. A total of 26 estimates of distortion was obtained from 23 stellar images acquired at several secondary-mirror axial positions. The results were expressed as coefficients of eight orthogonal Zernike polynomials: focus through third-order spherical. For all modes other than spherical the measured aberration was small. The average spherical aberration of the estimates was -0.299 micron rms, which is in good agreement with predictions obtained when iterative phase-retrieval algorithms were used.

  2. Correction of monochromatic aberrations in human eyes - report on work in progress

    In the excimer laser photorefractive keratectomy the laser removes tissues across the anterior corneal surface. The result is a change in the anterior corneal curvature which is used to correct ocular image errors such as myopia and astigmatism. Unfortunately, there are additional aberrations as higher order coma-like and spherical aberration-like image errors limiting the visual acuity. Actually we are investigating how to fit the excimer laser photorefractive ablation profiles for correction of myopia and astigmatism to those for minimizing higher order coma and spherical aberration. Our approach is an aberrometry-guided corneal refractive surgery using a scanning spot ArF excimer laser. (author)

  3. Aberrant internal carotid artery in the middle ear : a case report

    Aberrant internal carotid artery in the middle ear is a rare disease which, if unrecognized on raiological studies, can lead to serious complications during tissue biopsy. We report the imaging features of a case with aberrant internal carotid artery in the middle ear. A 60-year-old woman visited our hospital because of hearing difficulty on the right side. Temporal bone CT showed a well-defined mass of the right middle ear and lateral bony defect in the carotid canal adjacent to the mass. After arterial phase temporal bone CT with spiral CT and angiography, the mass could be diagnosed as aberrant internal carotid artery in the middle ear

  4. Study on Differential Algebraic Method of Aberrations up to Arbitrary Order for Combined Electromagnetic Focusing Systems

    CHENG Min; TANG Tiantong; YAO Zhenhua; ZHU Jingping

    2001-01-01

    Differential algebraic method is apowerful technique in computer numerical analysisbased on nonstandard analysis and formal series the-ory. It can compute arbitrary high order derivativeswith excellent accuracy. The principle of differentialalgebraic method is applied to calculate high orderaberrations of combined electromagnetic focusing sys-tems. As an example, third-order geometric aberra-tion coefficients of an actual combined electromagneticfocusing system were calculated. The arbitrary highorder aberrations are conveniently calculated by dif-ferential algebraic method and the fifth-order aberra-tion diagrams are given.

  5. Deletion of 1p36 as a primary chromosomal aberration in intestinal tumorigenesis

    Bardi, G; Pandis, N; Fenger, C;

    1993-01-01

    Cytogenetic analysis of short-term cultures from benign intestinal tumors revealed clonal chromosome aberrations in five colorectal adenomas, one adenoma of the papilla Vateri, and one hyperplastic polyp of the rectum. One adenoma had numerical aberrations only, but in all other tumors structural...... hyperplastic polyp. Both adenomas that had additional aberrations beyond the 1p loss showed severe dysplasia. We conclude that cytogenetically detectable loss of genetic information from 1p36 is an early, seemingly primary, premalignant event in intestinal tumorigenesis. The fact that the adenomas with 1p- as...

  6. Correction of cell-induced optical aberrations in a fluorescence fluctuation microscope

    Leroux, Charles-Edouard; Wang, Irène; Delon, Antoine

    2014-01-01

    We describe the effect of optical aberrations on fluorescence fluctuations microscopy (FFM), when focusing through a single living cell. FFM measurements are performed in an aqueous fluorescent solution and prove to be a highly sensitive tool to assess the optical aberrations introduced by the cell. We demonstrate an adaptive optics (AO) system to remove the aberration-related bias in the FFM measurements. Our data show that AO is not only useful when imaging deep in tissues but also when performing FFM measurements through a single cellular layer. This work paves the way for the application of FFM to complex three-dimensional multicellular samples.

  7. Heavy ion-induced chromosomal aberrations analyzed by fluorescence in situ hybridization

    Durante, M.; Gialanella, G.; Grossi, G.; Pugliese, M. [Univ. ``Federico II``, Naples (Italy). Dept. of Physics]|[INFN, Naples (Italy); Cella, L.; Greco, O. [Univ. ``Federico II``, Naples (Italy). Dept. of Physics; Furusawa, Y. [NIRS, Chiba (Japan); George, K.; Yang, T.C. [NASA Lyndon B. Johnson Space Center, Houston, TX (United States)

    1997-09-01

    We have investigated the effectiveness of heavy ions in the induction of chromosomal aberrations in mammalian cells by the recent technique of fluorescence in situ hybridization (FISH) with whole-chromosome probes. FISH-painting was used both in metaphase and interphase (prematurely condensed) chromosomes. The purpose of our experiments was to address the following problems: (a) the ratio of different types of aberrations as a function of radiation quality (search for biomarkers); (b) the ratio between aberrations scored in interphase and metaphase as a function of radiation quality (role of apoptosis); (c) differences between cytogenetic effects produced by different ions at the same LET (role of track structure). (orig./MG)

  8. Phase and group velocity of focused, pulsed Gaussian beams in the presence and absence of primary aberrations

    This work presents a study on the phase- and group-velocity variations of focused, pulsed Gaussian beams during the propagation through the focal region along the optical axis. In the aberration-free case, it is discussed how the wavelength dependence of beam properties alters the group velocity, and how a chromatic aberration-like effect can arise even when focusing is performed with an element that does not have chromatic aberration. It is also examined what effects primary spherical aberration, astigmatism, coma, curvature of field and distortion, along with chromatic aberration, have on the phase- and group-velocity changes occurring during propagation through focus. (paper)

  9. Decomposing global crop yield variability

    Recent food crises have highlighted the need to better understand the between-year variability of agricultural production. Although increasing future production seems necessary, the globalization of commodity markets suggests that the food system would also benefit from enhanced supplies stability through a reduction in the year-to-year variability. Here, we develop an analytical expression decomposing global crop yield interannual variability into three informative components that quantify how evenly are croplands distributed in the world, the proportion of cultivated areas allocated to regions of above or below average variability and the covariation between yields in distinct world regions. This decomposition is used to identify drivers of interannual yield variations for four major crops (i.e., maize, rice, soybean and wheat) over the period 1961–2012. We show that maize production is fairly spread but marked by one prominent region with high levels of crop yield interannual variability (which encompasses the North American corn belt in the USA, and Canada). In contrast, global rice yields have a small variability because, although spatially concentrated, much of the production is located in regions of below-average variability (i.e., South, Eastern and South Eastern Asia). Because of these contrasted land use allocations, an even cultivated land distribution across regions would reduce global maize yield variance, but increase the variance of global yield rice. Intermediate results are obtained for soybean and wheat for which croplands are mainly located in regions with close-to-average variability. At the scale of large world regions, we find that covariances of regional yields have a negligible contribution to global yield variance. The proposed decomposition could be applied at any spatial and time scales, including the yearly time step. By addressing global crop production stability (or lack thereof) our results contribute to the understanding of a key

  10. Epidemiology of colonic aberrant crypt foci: review and analysis of existing studies.

    Stevens, Richard G; Swede, Helen; Rosenberg, Daniel W

    2007-07-18

    Since first described in a rodent model in 1987, aberrant crypt foci (ACF) in the colon have been shown to exhibit many of the molecular features of the more advanced colonic neoplasms including cancer. Therefore, they may be early lesions with potential for progression, and be valuable biomarkers for reduction of risk of colorectal cancer (CRC). For this review, we searched PubMed, and reference lists of recent publications, for studies which reported on associations of features of ACF in humans, such as number or size, with subject characteristics, such as age or family history of CRC. Over 150 papers have reported on ACF in humans. However, the vast majority of these publications are concerned with molecular and morphological features of biopsied lesions, and not their epidemiology. None of the epidemiological studies were of optimum design, primarily due to their absence of a well-defined subject sampling frame or method. Given their 'first-generation' nature, consistent findings were of increased ACF number with age and with synchronous advanced colonic neoplasia. One study reported a higher mean number of ACF in subjects with a family history of CRC than in those without. The strongest evidence on the ability of ACF to predict a diagnosis of CRC will be from prospective studies with baseline ACF assessment in a large sample of disease-free persons (many thousands) who are followed carefully for many years. In the interim, because ACF are asymptomatic, well-designed cross-sectional studies are feasible and will yield valuable information on the relation of ACF to the known risk factors for CRC. This information can then be used to improve the design of prospective studies, and of clinical intervention trials that use ACF as an intermediate endpoint. PMID:17182176

  11. Aberrant Behaviors and Road Accidents among Iranian Truck Drivers, 2010

    Amir Houshang Mehrparvar

    2011-12-01

    Full Text Available structural dimensions of which as well as technologic failures such as road quality, and tech-nical faults of automobiles, need to be assessed in detail. Iran has the first order in the world for deadly road accidents. This study was designed to assess the association between aberrant behaviors of truck drivers and the incidence of road accidents in Yazd, center of Iran, in 2010.Methods: This cross-sectional descriptive-analytic study was conducted on 300 truck drivers in Yazd. We used 3 questionnaires, including one for demographic data, Driver Behavior Questionnaire (DBQ, and one for drivers' self-evaluation of the of their driving.Results: Five types of the behavior had the highest frequency: Misjudge speed of oncoming vehicle when overtaking.; Deliberately disregard the speed limits late at night or very early in the morning.; Ignore 'give way' signs, and narrowly avoid colliding with traffic having right of way.; Stuck behind a slow-moving vehicle on a two-lane highway, you are driven by frustration to try to overtake in risky circumstances.; Drive with only 'half-an-eye' on the road while looking at a map, changing a cassette or radio channel, etc. The more the driver's driv-ing was influenced by emotional and mental states the more deliberate violations and slips.Conclusion: Among truck drivers, safety has not developed sufficiently, and because of the dangers of road accidents both for the drivers and other people and its economic losses, the importance of the presenting some solutions is completely obvious.

  12. Third-order aberration-free ion-optical system for an electromagnetic isotope separator

    The essential qualities required of a production isotope separator are high output and high enrichment factor. For this purpose, the imaging system should have as little geometric aberration as possible. In the proposed system, consisting of a homogeneous sector-type analyzing magnet, the beam is crossed in the axial direction at the entrance boundary of the magnetic field and the incidence to this boundary is normal. It is shown that for this case all radial aberrations to the ''practical'' third order can be eliminated provided four optical conditions are satisfied: two related to heterogeneous aberration terms in addition to the two conditions related to the second and third order homogeneous aperture aberration terms. The resulting equations take into account the magnetic fringe-field effects to the third order. (author)

  13. The ability of two cooked food mutagens to induce aberrant crypt foci in mice

    Kristiansen, E.; Meyer, Otto A.; Thorup, I.

    1997-01-01

    azoxymethane (AOM) (5 mg/kg body weight) and 1,2-dimethylhydrazine dihydrochloride (DMH-2HCI) (20 mg/kg body weight), respectively, one dose a week for two weeks, Animals were killed after four and 10 weeks, After four weeks only the mice dosed with IQ and PhIP had aberrant crypt foci, A much higher number of...... induced a higher percentage of medium or large sized aberrant crypt foci than PhIP or IQ, The interpretation of the aberrant crypt foci as precursor lesions for colon cancer in the PhIP and IQ mice is difficult because PhIP and IQ have not been reported to be colonic carcinogens, If cooked food mutagens...... such as IQ or PhIP are to be used as initiators in the aberrant crypt foci test, the use of rats may be preferable....

  14. Combining real and reciprocal space information for aberration free coherent electron diffractive imaging

    Information from imaging and diffraction planes, or real and reciprocal spaces, of transmission electron microscopes (TEM) can be combined using iterative transformation algorithms to reconstruct the complex wave function, to improve image resolution and to remove residual aberrations in the case of aberration corrected TEM. Here, we describe the experimental and computation techniques needed for combining real and reciprocal space information. We demonstrate these techniques by reconstructing the complex wave function of quantum dots and carbon nanotubes beyond the microscope's resolution limit. -- Research Highlights: → An aberration free imaging method is described here for high resolution electron imaging. → The method uses diffraction information to improve the resolution and to remove residual aberrations in electron images. → The phase problem is solved using iterative phase retrieval and oversampling. → Examples are shown for imaging quantum dots and carbon nanotubes.

  15. Stable and unstable chromosomal aberrations in workers at nuclear waste repository

    A cytogenetic analysis of chromosomal aberrations was performed on 15 workers from final nuclear waste repository 'Novi Han'. The frequency of chromosomal aberrations were estimated in peripheral blood lymphocytes by conventional staining with Giemza and fluorescent in situ hybridization staining (FISH) using DNA specific probes. The results are compared with a control group from the administrative staff of the radioactive storage. All persons were interviewed by a special questionnaire list for professional, medical, and social status. The comparison of the results does not show increase of the frequency of unstable chromosomal aberrations detected by conventional staining. The frequency of stable chromosomal aberrations detected by FISH were significantly higher in workers group than in controls, although the statistical significance is low. The results show that FISH test is found to be more sensitive than conventional chromosomal analysis as a cytogenetic monitor test of the occupationally exposed subjects. (authors)

  16. Correction of chromatic aberrations at television registration of image through protective viewing systems

    Kulyas, Oleg L.; Nikitin, Konstantin A.

    2016-03-01

    Ways of chromatic aberration in images are examined and analyzed which are generated at television supervision through protective glasses of a considerable thickness. The results of experimental check up of the given method of correction is introduced and described.

  17. Segmented Vortex Telescope and its Tolerance to Diffraction Effects and Primary Aberrations

    Treviño, Juan P; Chávez-Cerda, Sabino

    2013-01-01

    We propose the segmented Large Millimeter Telescope (LMT/GTM),as the largest spatial light modulator capable of producing vortex beams of integer topological charge. This observing mode could be applied for direct exoplanet searches in the millimeter or submillimeter regimes. We studied the stability of the vortex structure against aberrations and diffraction effects inherent to the size and segmented nature of the collector mirror. In the presence of low order aberrations the focal distribution of the system remains stable. Our results show that these effects depend on the topological charge of the vortex and the relative orientation of the aberration with respect to the antenna axis. Coma and defocus show no large effects in the image at the focal plane, nevertheless the system is very sensitive to astigmatism. Heat turbulence, simulated by random aberrations, shows that the system behaves in a similar way as astigmatism dissociating the vortices. We propose the Segmented Vortex Telescope as a novel approac...

  18. Actively compensation of low order aberrations by refractive shaping system for high power slab lasers

    Xue, Zheng-wei; Guo, Ya-ding; Chen, Zhong-zheng; Li, Shuai; Xu, Yi-ting; Xu, Jian; Wang, Bao-shan; Gong, Ke-ling; Gao, Hong-wei; Bo, Yong; Peng, Qin-jun; Cui, Da-fu; Xu, Zu-yan

    2015-12-01

    We present a compact refractive shaping system for actively compensating low order aberrations of high power slab lasers. The shaping system includes three spherical lenses and two cylindrical lenses. Both theoretical and experimental investigations were performed to evaluate the compensation capability of the refractive shaping system. For a typical input beam with large low order aberrations of peak-to-valley (PV)=66.10λ and root-mean-square (RMS)=16.05λ, adjusting the distance between lenses, the wavefront aberrations are reduced to PV=0.48λ, RMS=0.10λ for the theoretical simulation and PV=0.50λ, RMS=0.11λ for the experimental result, respectively. It indicates that the main low order aberrations of defocus and 0° astigmatism can be significantly compensated by actively adjusting the distance between lenses and the experimental result agree well with the theoretical simulation.

  19. Gametocidal chromosomes enhancing chromosome aberration in common wheat induced by 5-azacytidine.

    Su, W-Y; Cong, W-W; Shu, Y-J; Wang, D; Xu, G-H; Guo, C-H

    2013-01-01

    The gametocidal (Gc) chromosome from Aegilops spp induces chromosome mutation, which is introduced into common wheat as a tool of chromosome manipulation for genetic improvement. The Gc chromosome functions similar to a restriction-modification system in bacteria, in which DNA methylation is an important regulator. We treated root tips of wheat carrying Gc chromosomes with the hypomethylation agent 5-azacytidine; chromosome breakage and micronuclei were observed in these root tips. The frequency of aberrations differed in wheat containing different Gc chromosomes, suggesting different functions inducing chromosome breakage. Gc chromosome 3C caused the greatest degree of chromosome aberration, while Gc chromosome 3C(SAT) and 2C caused only slight chromosome aberration. Gc chromosome 3C induced different degrees of chromosome aberration in wheat varieties Triticum aestivum var. Chinese Spring and Norin 26, demonstrating an inhibition function in common wheat. PMID:23884766

  20. Cyclin D1 splice site variant triggers chromosomal aberrations in healthy humans

    Hemminki, K.; Mušák, L.; Vymetálková, Veronika; Šmerhovský, Z.; Halásová, E.; Osina, O.; Letková, L.; Försti, A.; Vodičková, Ludmila; Buchancová, J.; Vodička, Pavel

    2014-01-01

    Roč. 28, č. 3 (2014), s. 721-722. ISSN 0887-6924 Institutional support: RVO:68378041 Keywords : chromosomal aberrations * DNA repair Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 10.431, year: 2014

  1. Aberration corrected and monochromated environmental transmission electron microscopy: challenges and prospects for materials science

    Hansen, Thomas Willum; Wagner, Jakob Birkedal; Dunin-Borkowski, Rafal E.

    2010-01-01

    The latest generation of environmental transmission electron microscopes incorporates aberration correctors and monochromators, allowing studies of chemical reactions and growth processes with improved spatial resolution and spectral sensitivity. Here, we describe the performance of such an instr...

  2. Induction of chromosome aberrations in two lines of cultured cells using different types of radiation

    The induction of chromosome aberrations has been investigated in two lines of cultured cells for different types of radiation. The obtained results are compared with information on induction of cell reproductive death and malignant transformation. (Auth.)

  3. Brief history of the Cambridge STEM aberration correction project and its progeny

    We provide a brief history of the project to correct the spherical aberration of the scanning transmission electron microscope (STEM) that started in Cambridge (UK) and continued in Kirkland (WA, USA), Yorktown Heights (NY, USA), and other places. We describe the project in the full context of other aberration correction research and related work, partly in response to the incomplete context presented in the paper “In quest of perfection in electron optics: A biographical sketch of Harald Rose on the occasion of his 80th birthday”, recently published in Ultramicroscopy. - Highlights: • We provide a brief history of the Cambridge project to correct the spherical aberration of the scanning transmission electron microscope (STEM). • We describe the project in the full context of other aberration correction work and related research. • We summarize our corrector development work that followed the Cambridge project, and which was the first to reach higher spatial resolution than any non-corrected electron microscope

  4. Brief history of the Cambridge STEM aberration correction project and its progeny

    Brown, L. Michael [Cavendish Laboratory, University of Cambridge, J.J. Thomson Avenue, Cambridge CB3 0HE (United Kingdom); Batson, Philip E. [Institute for Advanced Materials, Devices and Nanotechnology, Rutgers University, Piscataway, NJ 08854 (United States); Department of Physics, Rutgers University, Piscataway, NJ 08854 (United States); Department of Materials Science, Rutgers University, Piscataway, NJ 08854 (United States); Dellby, Niklas [Nion Company, 11515 NE 118th Street, Kirkland, WA 98034 (United States); Krivanek, Ondrej L. [Nion Company, 11515 NE 118th Street, Kirkland, WA 98034 (United States); Department of Physics, Arizona State University, Tempe, AZ 85287 (United States)

    2015-10-15

    We provide a brief history of the project to correct the spherical aberration of the scanning transmission electron microscope (STEM) that started in Cambridge (UK) and continued in Kirkland (WA, USA), Yorktown Heights (NY, USA), and other places. We describe the project in the full context of other aberration correction research and related work, partly in response to the incomplete context presented in the paper “In quest of perfection in electron optics: A biographical sketch of Harald Rose on the occasion of his 80th birthday”, recently published in Ultramicroscopy. - Highlights: • We provide a brief history of the Cambridge project to correct the spherical aberration of the scanning transmission electron microscope (STEM). • We describe the project in the full context of other aberration correction work and related research. • We summarize our corrector development work that followed the Cambridge project, and which was the first to reach higher spatial resolution than any non-corrected electron microscope.

  5. Aberration measurement of projection optics in lithographic tools by use of an alternating phase-shifting mask

    As a critical dimension shrinks, the degradation in image quality caused by wavefront aberrations of projection optics in lithographic tools becomes a serious problem. It is necessary to establish a technique for a fast and accurate in situ aberration measurement. We introduce what we believe to be a novel technique for characterizing the aberrations of projection optics by using an alternating phase-shifting mask. The even aberrations, such as spherical aberration and astigmatism, and the odd aberrations, such as coma, are extracted from focus shifts and image displacements of the phase-shifted pattern, respectively. The focus shifts and the image displacements are measured by a transmission image sensor. The simulation results show that, compared with the accuracy of the previous straightforward measurement technique, the accuracy of the coma measurement increases by more than 30% and the accuracy of the spherical-aberration measurement increases by approximately 20%

  6. Aberration measurement of projection optics in lithographic tools by use of an alternating phase-shifting mask

    Wang, Fan; Wang, Xiangzhao; Ma, Mingying; Zhang, Dongqing; Shi, Weijie; Hu, Jianming

    2006-01-01

    As a critical dimension shrinks, the degradation in image quality caused by wavefront aberrations of projection optics in lithographic tools becomes a serious problem. It is necessary to establish a technique for a fast and accurate in situ aberration measurement. We introduce what we believe to be a novel technique for characterizing the aberrations of projection optics by using an alternating phase-shifting mask. The even aberrations, such as spherical aberration and astigmatism, and the odd aberrations, such as coma, are extracted from focus shifts and image displacements of the phase-shifted pattern, respectively. The focus shifts and the image displacements are measured by a transmission image sensor. The simulation results show that, compared with the accuracy of the previous straightforward measurement technique, the accuracy of the coma measurement increases by more than 30% and the accuracy of the spherical-aberration measurement increases by approximately 20%.

  7. Visual performance and aberration associated with contact lens wear in patients with keratoconus: a pilot study

    Abdu M

    2014-08-01

    Full Text Available Mustafa Abdu, Norhani Mohidin, Bariah Mohd-Ali Optometry and Vision Science Program, School of Healthcare Sciences, Faculty of Health Science, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur, Malaysia Background: Rigid gas permeable (RGP and silicone hydrogel (SH contact lenses with specific designs are currently being used to improve visual function in patients with keratoconus. However, there are minimal data available comparing the effects of these lenses on visual function in patients with keratoconus. The objectives of this study were to compare visual acuity and contrast sensitivity using spectacles, RGP lenses, and SH lenses, and to evaluate the effects of RGP and SH lenses on higher-order aberrations and visual quality in eyes with keratoconus. The relationship between visual outcomes, aberration, and visual quality were also examined. Methods: This was a pilot study involving 13 eyes from nine subjects with keratoconus. Subjects were fitted with RGP and SH contact lenses. Visual acuity and contrast sensitivity were measured using Snellen and Pelli-Robson charts, respectively. Ocular aberrations and visual quality were measured using an OPD-Scan II device. All measurements were conducted before and after contact lens wear. Results: Significantly better visual acuity was obtained with RGP lenses than with spectacles or SH lenses (P<0.001. No significant difference in contrast sensitivity values was detected between RGP and SH lenses (P=0.06. Both SH and RGP lenses significantly reduced total ocular and higher-order aberrations (P<0.001 when compared with spectacles, but RGP lenses reduced trefoil, coma, and spherical aberrations more than SH lenses. No significant difference in astigmatic aberrations was found between RGP and SH lenses (P=0.12. Negative correlations were found between visual acuity and coma aberration and contrast sensitivity with higher-order aberrations and coma, trefoil, and astigmatic

  8. Specific yield, High Plains aquifer

    U.S. Geological Survey, Department of the Interior — This raster data set represents specific-yield ranges in the High Plains aquifer of the United States. The High Plains aquifer underlies 112.6 million acres...

  9. Multiaxial yield behaviour of polypropylene

    Lang R.

    2010-06-01

    Full Text Available In order to characterize the yield behavior of polypropylene as a function of pressure and to verify the applicability of the Drucker-Prager yield function, various tests were conducted to cover a wide range of stress states from uniaxial tension and compression to multiaxial tension and confined compression. Tests were performed below and above the glass transition temperature, to study the combined effect of pressure and temperature. The pressure sensitivity coefficient as an intrinsic material parameter was determined as a function of temperature. Increasing pressure sensitivity values were found with increasing temperature, which can be related to the change in the free volume and thus, to the enhanced molecular mobility. A best-fit Drucker-Prager yield function was applied to the experimental yield stresses and an average error between the predictions and the measurements of 7 % was obtained.

  10. Effect of biofertilizers on yield and yield components of cucumber

    Faranak Moshabaki Isfahani

    2012-01-01

    Full Text Available Biofertilizer is defined as a substance which contains living organisms which, when applied to seed, plant surface, or soil, colonize the rhizosphere or interior of the plant and promote growth by increasing the supply or availability of primary nutrients to the host plant. Biofertilizers are well recognized as an important component of integrated plant nutrient management for sustainable agriculture and hold a great promise improve crop yield. The present study for the sake of evaluating the use of plant growth promoting rhizobacteria produced by Pseudomonas sp. and phosphate bio fertilizers produced by Pseudomonas putida strain P13 and Pantoea agglomerans strain P5 and chemical fertilizers in the separate treatments on yield and yield components of cucumber by using a factorial experiment in completely randomized block design with three repetition were performed in the field. The symbol of P represents chemical fertilizer by amount of respectively (0, 25%, 50%, 75%, 100%, B1 shows plant growth promoting rhizobacteria (PGPR and B2 indicates bio fertilizer-2. The results showed that P1B0 has the most yield, and control treatments has the least yield. P100B1 has the most length of plant and P100B0 has the least length of plant, P25B1 has the most amount of chlorophyll and P75B2 has the least chlorophyll. P75B2 has the most shoots dry weight and P100B0 has the least shoots dry weight. B1P50 has the most shoots fresh weight and P25B2 has the least shoots fresh weight. B1P50 has the most roots dry weight and P100B0 has the least roots dry weight. B1P50 has the most roots fresh weight and P25B2 has the least roots fresh weight. So the results indicate that use of biological fertilizers have caused increase yield and components yield of cucumber.

  11. Adaptive optics full-field OCT: a resolution almost insensitive to aberrations (Conference Presentation)

    Xiao, Peng; Fink, Mathias; Boccara, A. Claude

    2016-03-01

    A Full-Field OCT (FFOCT) setup coupled to a compact transmissive liquid crystal spatial light modulator (LCSLM) is used to induce or correct aberrations and simulate eye examinations. To reduce the system complexity, strict pupil conjugation was abandoned. During our work on quantifying the effect of geometrical aberrations on FFOCT images, we found that the image resolution is almost insensitive to aberrations. Indeed if the object channel PSF is distorted, its interference with the reference channel conserves the main feature of an unperturbed PSF with only a reduction of the signal level. This unique behavior is specific to the use of a spatially incoherent illumination. Based on this, the FFOCT image intensity was used as the metric for our wavefront sensorless correction. Aberration correction was first conducted on an USAF resolution target with the LSCLM as both aberration generator and corrector. A random aberration mask was induced, and the low-order Zernike Modes were corrected sequentially according to the intensity metric function optimization. A Ficus leaf and a fixed mouse brain tissue slice were also imaged to demonstrate the correction of sample self-induced wavefront distortions. After optimization, more structured information appears for the leaf imaging. And the high-signal fiber-like myelin fiber structures were resolved much more clearly after the whole correction process for mouse brain imaging. Our experiment shows the potential of this compact AO-FFOCT system for aberration correction imaging. This preliminary approach that simulates eyes aberrations correction also opens the path to a simple implementation of FFOCT adaptive optics for retinal examinations.

  12. Clinicopathologic Study of Chromosomal Aberrations in Ocular Adnexal Lymphomas of Korean Patients

    Choung, Hokyung; Kim, Young A; Kim, Namju; Lee, Min Joung; Khwarg, Sang In

    2015-01-01

    Purpose The incidence and clinical correlation of MALT1 translocation and chromosomal numerical aberrations in Korean patients with ocular adnexal mucosa associated lymphoid tissue (MALT) lymphoma have not yet been reported. We investigated the incidence and clinicopathologic relationship of these chromosomal aberrations in ocular adnexal MALT lymphomas in a Korean population. Methods Thirty ocular adnexal MALT lymphomas were investigated for the t(11;18) API2-MALT1, t(14;18) IgH-MALT1 transl...

  13. EFFECT OF SPHERICAL ABERRATION INTRODUCED BY WATER SOLUTION ON TRAPPING FORCE

    YAO XIN-CHENG; LI ZHAO-LIN; GUO HONG-LIAN; CHENG BING-YING; ZHANG DAO-ZHONG; HAN XUE-HAI

    2000-01-01

    Trapping force of an optical tweezers system with an oil immersion objective is calculated with a ray-optics model.Results indicate that the trapping force will be decreased as a result of the introduction of spherical aberration,which is caused by the refractive mismatch between objective oil and water,when the sample manipulated is suspended in a water solution.The effect of spherical aberration will be serious when the detection depth of the optical tweezers is enhanced.

  14. Aberrant Innervation of the Sternocleidomastoid Muscle By the Transverse Cervical Nerve: A Case Report

    Paraskevas, George; Lazaridis, Nikolaos; Spyridakis, Ioannis; Koutsouflianiotis, Konstantinos; Kitsoulis, Panagiotis

    2015-01-01

    Two aberrant rami originating from the right transverse cervical nerve and innervated the midportion of the sternocleidomastoid muscle (SM) were detected during routine cadaver dissection. Although SM is commonly innervated by the accessory nerve, as well as by cervical nerves, it is likely to be innervated additionally by other nerves such as hypoglossal nerve, ansa cervicalis, facial or external laryngeal nerve. Some considerations as regards the possible composition of the aberrant rami of...

  15. Dynamics of chromosomal aberrations in bone marrow cells of monkeys following prolonged irradiation

    The effect of prolonged gamma-irradiation with doses of low intensity (3.87 μA/kg) was studied in the bone marrow cells of monkeys (Macaca rhesus). The cumulative dose was 214.14-221.88 mC/kg. Statistically significant differences in the frequency of chromosome aberrations and the percentage of polyploid bone marrow cells, as compared to the level of spontaneous aberrations, were observed during 42 months following the exrosure

  16. Chromosomal aberrations detected by comparative genomic hybridization technique (CGH in invasive ductal carcinoma of breast

    Nooshiravanpour P

    2007-10-01

    Full Text Available Background: Nonlethal genetic damage is the basis for carcinogenesis. As various gene aberrations accumulate, malignant tumors are formed, regardless of whether the genetic damage is subtle or large enough to be distinguished in a karyotype. The study of chromosomal changes in tumor cells is important in the identification of oncogenes and tumor suppressor genes by molecular cloning of genes in the vicinity of chromosomal aberrations. Furthermore, some specific aberrations can be of great diagnostic and prognostic value. Comparative genomic hybridization (CGH is used to screen the entire genome for the detection and/or location chromosomal copy number changes.Methods: In this study, frozen sections of 20 primary breast tumors diagnosed as invasive ductal carcinoma from the Cancer Institute of Imam Khomeini Hospital, Tehran, Iran, were studied by CGH to detect chromosomal aberrations. We compared histopathological and immunohistochemical findings.Results: Hybridization in four of the cases was not optimal for CGH analysis and they were excluded from the study. DNA copy number changes were detected in 12 (75% of the remaining 16 cases. Twenty-one instances of chromosomal aberrations were detected in total, including: +1q, +17q, +8q, +20q, -13q, -11q, -22q, -1p, -16q, -8p. The most frequent were +1q, +17q, +8q, -13q, similar to other studies. In three cases, we detected -13q, which is associated with axillary lymph node metastasis and was reported in one previous study. The mean numbers of chromosomal aberrations per tumor in metastatic and nonmetastatic tumors was 1.5 and 1, respectively. No other association between detected chromosomal aberrations and histopathological and immunohistochemical findings were seen.Conclusion: Since intermediately to widely invasive carcinomas are more likely to have chromosomal aberrations, CGH can be a valuable prognostic tool. Furthermore, CGH can be used to detect targeting molecules within novel amplifications

  17. Identical splicing of aberrant epidermal growth factor receptor transcripts from amplified rearranged genes in human glioblastomas.

    Sugawa, N; Ekstrand, A J; James, C D; Collins, V P

    1990-01-01

    The epidermal growth factor receptor gene has been found to be amplified and rearranged in human glioblastomas in vivo. Here we present the sequence across a splice junction of aberrant epidermal growth factor receptor transcripts derived from corresponding and uniquely rearranged genes that are coamplified and coexpressed with non-rearranged epidermal growth factor receptor genes in six primary human glioblastomas. Each of these six tumors contains aberrant transcripts derived from identical...

  18. Using Kinematics and a Dynamical Systems Approach to Enhance Understanding of Clinically Observed Aberrant Movement Patterns

    Spinelli, Bryan A.; Wattananon, Peemongkon; Silfies, Sheri; Talaty, Mukul; Ebaugh, David

    2014-01-01

    The objective of this technical paper is to demonstrate how graphing kinematic data to represent body segment coordination and control can assist clinicians and researchers in understanding typical and aberrant human movement patterns. Aberrant movements are believed to be associated with musculoskeletal pain and dysfunction. A dynamical systems approach to analyzing movement provides a useful way to study movement control and coordination. Continuous motion angle-angle and coupling angle-mov...

  19. Retrieval of wave aberration of human eyes from actual point-spread-function data.

    Artal, Pablo; Santamaría, J.; Bescós, J.

    1988-01-01

    The wave aberration of human eyes is retrieved from actual point-spread-function (PSF) data and the modulus of the pupil function. The PSF had been obtained previously by application of a hybrid optical-digital method developed recently. The retrieval is done by using a bidimensional Gerchberg-Saxton phase-retrieval algorithm joined to an iterative phase-unwrapping algorithm. To obtain an adequate convergence, the initial wave aberration for starting the retrieval-unwrapping algorithm is esti...

  20. Studies on chromosomal aberrations and inherited sterility in Asian corn borer, Ostrinia furnacalis (Guenee)

    F1 sterility and chromosomal aberrations in the Asian corn borer, Ostrinia furnacalis (Guenee), were induced by different doses of gamma radiation. The chromosome number of the Asian corn borer is n = 31 pairs. The results showed that chromosomal aberrations in spermatocytes of the F1 generation were directly related to high F1 sterility; however, the sterility was observed for only one generation and fertility was recovered in the next generation. (author). 6 refs, 2 figs, 4 tabs

  1. Schizotypal Perceptual Aberrations of Time: Correlation between Score, Behavior and Brain Activity

    Shahar Arzy; Christine Mohr; Istvan Molnar-Szakacs; Olaf Blanke

    2011-01-01

    A fundamental trait of the human self is its continuum experience of space and time. Perceptual aberrations of this spatial and temporal continuity is a major characteristic of schizophrenia spectrum disturbances – including schizophrenia, schizotypal personality disorder and schizotypy. We have previously found the classical Perceptual Aberration Scale (PAS) scores, related to body and space, to be positively correlated with both behavior and temporo-parietal activation in healthy participan...

  2. Submicroscopic subtelomeric aberrations in Chinese patients with unexplained developmental delay/mental retardation

    Wang Liwen; Cai Bin; Yang Yanling; Gao Zhijie; Li Jie; Wang Huifang; Xiao Jing; Wang Jingmin; Ji Taoyun; Wu Ye; Zhou Zhongshu; Tian Lili; Wang Xiaozhu; Zhong Nan; Qin Jiong

    2010-01-01

    Abstract Background Subtelomeric imbalance is widely accepted as related to developmental delay/mental retardation (DD/MR). Fine mapping of aberrations in gene-enriched subtelomeric regions provides essential clues for localizing critical regions, and provides a strategy for identifying new candidate genes. To date, no large-scale study has been conducted on subtelomeric aberrations in DD/MR patients in mainland China. Methods This study included 451 Chinese children with moderate to severe c...

  3. The computation and statistical analysis of aberrational diffraction patterns in holographic optical elements

    Carretero López, Luis; Fimia Gil, Antonio; Beléndez Vázquez, Augusto

    1994-01-01

    Three numerical methods for calculating the point spread function for holographic optical elements in the presence of aberrations are analyzed. The starting point for the analytical formulation of the diffraction theory of aberrations for holographic optical elements is the Fresnel-Kirchhoff diffraction integral. To calculate the diffraction integral, the exit pupil of the element is broken up into subdomains each with the same area, using both cartesian and polar coordinates. A statistical a...

  4. Focusing of a singular beam in the presence of spherical aberration and defocusing

    Singh, Rakesh Kumar; Senthilkumaran, P.; Singh, Kehar

    2008-08-01

    Focusing of a singular beam by a lens in the presence of spherical aberration and defocusing is studied by using Fresnel-Kirchhoff diffraction integral for two different values of topological charge. Results of intensity distribution and encircled energy are plotted for defocused observation planes. Spherical aberration spreads the dark core and reduces the intensity at maxima. The results have been verified by the optical transfer function (OTF) approach.

  5. The Effect of Aberrations and Scatter on Image Resolution Assessed by Adaptive Optics Retinal Section Imaging

    Wanek, Justin; Mori, Marek; Shahidi, Mahnaz

    2007-01-01

    The effect of increased high order wavefront aberrations on image resolution was investigated and the performance of adaptive optics (AO) for correcting wavefront error in the presence of increased light scatter was assessed in a model eye. An AO section imaging system provided an oblique view of a simulated model eye retina and incorporated a wavefront sensor and deformable mirror for measurement and compensation of wavefront aberrations. Image resolution was quantified by the width of a Lor...

  6. Radiation-induced chromosome aberrations and sister chromatid exchanges in lymphocytes from patients with tuberous sclerosis

    Lymphocytes from four patients with tuberous sclerosis (TS) and four normal controls were studied for sister chromatid exchanges (SCEs) and chromosome aberrations in gamma-ray irradiated cultures. There was no significant difference between SCE frequencies of TS lymphocytes and those of control lymphocytes at all doses examined (1, 2, and 4 Gy). However, chromosome aberrations in TS lymphocytes were significantly higher than those in the normal controls at the highest dose (4 Gy) (p < 0.05). (author)

  7. Riding the Canadian yield curve

    Jin, Yan; Yang, Xue

    2007-01-01

    Riding the yield curve, a trading strategy of buying long-term bills and sell them before maturity, has been a popular means to achieve excess returns over the buying-and-holding strategy. This paper looks at historic excess returns of Treasury Bill and Bond markets in Canada. Our empirical results indicate that, the riding yield curve strategy does offer very small excess returns, but these excess returns show that neither strategy stochastically dominates the other. Furthermore, these exces...

  8. Fission yield measurements at IGISOL

    Lantz M.

    2016-01-01

    Full Text Available The fission product yields are an important characteristic of the fission process. In fundamental physics, knowledge of the yield distributions is needed to better understand the fission process. For nuclear energy applications good knowledge of neutroninduced fission-product yields is important for the safe and efficient operation of nuclear power plants. With the Ion Guide Isotope Separator On-Line (IGISOL technique, products of nuclear reactions are stopped in a buffer gas and then extracted and separated by mass. Thanks to the high resolving power of the JYFLTRAP Penning trap, at University of Jyväskylä, fission products can be isobarically separated, making it possible to measure relative independent fission yields. In some cases it is even possible to resolve isomeric states from the ground state, permitting measurements of isomeric yield ratios. So far the reactions U(p,f and Th(p,f have been studied using the IGISOL-JYFLTRAP facility. Recently, a neutron converter target has been developed utilizing the Be(p,xn reaction. We here present the IGISOL-technique for fission yield measurements and some of the results from the measurements on proton induced fission. We also present the development of the neutron converter target, the characterization of the neutron field and the first tests with neutron-induced fission.

  9. Fission yield measurements at IGISOL

    Lantz, M.; Al-Adili, A.; Gorelov, D.; Jokinen, A.; Kolhinen, V. S.; Mattera, A.; Moore, I.; Penttilä, H.; Pomp, S.; Prokofiev, A. V.; Rakopoulos, V.; Rinta-Antila, S.; Simutkin, V.; Solders, A.

    2016-06-01

    The fission product yields are an important characteristic of the fission process. In fundamental physics, knowledge of the yield distributions is needed to better understand the fission process. For nuclear energy applications good knowledge of neutroninduced fission-product yields is important for the safe and efficient operation of nuclear power plants. With the Ion Guide Isotope Separator On-Line (IGISOL) technique, products of nuclear reactions are stopped in a buffer gas and then extracted and separated by mass. Thanks to the high resolving power of the JYFLTRAP Penning trap, at University of Jyväskylä, fission products can be isobarically separated, making it possible to measure relative independent fission yields. In some cases it is even possible to resolve isomeric states from the ground state, permitting measurements of isomeric yield ratios. So far the reactions U(p,f) and Th(p,f) have been studied using the IGISOL-JYFLTRAP facility. Recently, a neutron converter target has been developed utilizing the Be(p,xn) reaction. We here present the IGISOL-technique for fission yield measurements and some of the results from the measurements on proton induced fission. We also present the development of the neutron converter target, the characterization of the neutron field and the first tests with neutron-induced fission.

  10. Effects of long-term radiation exposure on chromosomal aberrations in radiological technologists

    Chromosomal aberrations in the lymphocytes of radiation technologists (RT) were analyzed by the trypsin G-banding method to study the late effects of long-term exposure to low doses of radiation. Structural aberrations were identified in 384 (2.5%) of 15442 cells analyzed from 53 RT as compared to 177 (1.6%) of 11136 cells from 36 healthy controls. Stable aberrations were the most frequent in both groups and were either translocations or deletions. Unstable aberrations were mainly acentric fragments in both groups. The frequency of translocations and acentric fragments was significantly higher in the RT than in the controls and was highest in the RT over 50 years. The highest frequency observed in the >50 age group was attributed to the unknown for cumulative dose prior to introduction of film badges. Frequency of chromosomal aberrations correlated with the estimated dose from the film badges and years of experience of each RT based on the equation y=0.22+0.37D+4.35D2, where y is overall frequency of chromosomal aberrations and D is the estimated radiation dose in Sv. (author)

  11. Observation of lens aberrations for high resolution electron microscopy II: Simple expressions for optimal estimates

    This paper lists simple closed-form expressions estimating aberration coefficients (defocus, astigmatism, three-fold astigmatism, coma / misalignment, spherical aberration) on the basis of image shift or diffractogram shape measurements as a function of injected beam tilt. Simple estimators are given for a large number of injected tilt configurations, optimal in the sense of least-squares fitting of all the measurements, and so better than most reported previously. Standard errors are given for most, allowing different approaches to be compared. Special attention is given to the measurement of the spherical aberration, for which several simple procedures are given, and the effect of foreknowledge of this on other aberration estimates is noted. Details and optimal expressions are also given for a new and simple method of analysis, requiring measurements of the diffractogram mirror axis direction only, which are simpler to make than the focus and astigmatism measurements otherwise required. - Highlights: • Optimal estimators for CTEM lens aberrations are more accurate and/or use fewer observations. • Estimators have been found for defocus, astigmatism, three-fold astigmatism, coma and spherical aberration. • Estimators have been found relying on diffractogram shape, image shift and diffractogram orientation only, for a variety of beam tilts. • The standard error for each estimator has been found

  12. Characterisation of the effects of optical aberrations in single molecule techniques.

    Coles, Benjamin C; Webb, Stephen E D; Schwartz, Noah; Rolfe, Daniel J; Martin-Fernandez, Marisa; Lo Schiavo, Valentina

    2016-05-01

    Optical aberrations degrade image quality in fluorescence microscopy, including for single-molecule based techniques. These depend on post-processing to localize individual molecules in an image series. Using simulated data, we show the impact of optical aberrations on localization success, accuracy and precision. The peak intensity and the proportion of successful localizations strongly reduces when the aberration strength is greater than 1.0 rad RMS, while the precision of each of those localisations is halved. The number of false-positive localisations exceeded 10% of the number of true-positive localisations at an aberration strength of only ~0.6 rad RMS when using the ThunderSTORM package, but at greater than 1.0 rad RMS with the Radial Symmetry package. In the presence of coma, the localization error reaches 100 nm at ~0.6 rad RMS of aberration strength. The impact of noise and of astigmatism for axial resolution are also considered. Understanding the effect of aberrations is crucial when deciding whether the addition of adaptive optics to a single-molecule microscope could significantly increase the information obtainable from an image series. PMID:27231619

  13. Compensation of aberrations of deflected electron probe by means of dynamical focusing with stigmator

    Electron beam passing through a deflecting field is in general, subjected to aberrations such as distortion, astigmatism and coma in accordance with the deflecting angle. Accordingly the aberration defect of deflected beam is the most serious limiting factor in the performances of micromachining, microminiaturization and high resolution scanning electron microscopes. From many investigators' results, it is obvious that three important compensation methods to aberrations exist in principle, i.e., double deflection system, dynamical focusing, and the dynamical correction using a stigmator. In this paper, based on the aberration formula derived from the eikonal or the path method, the practical data of the aberration constants of deflected electron beam for the sequential deflection system with parallel plates are calculated, and using its result, the distorted spot patterns of an electron probe deflected in two-dimensional directions for various defocusings are graphically displayed by the aid of a computer. Further, by means of the dynamical focusing with a stigmator, the conditions to completely compensate the second order astigmatic aberration are derived, and spot patterns and the electron density distributions within the spots in the case when the compensating conditions are satisfied are also graphically displayed. (Wakatsuki, Y.)

  14. Chromatic aberration elimination for digital rear projection television L-type lens by genetic algorithms

    Fang, Yi-Chin; Liu, Tung-Kuan; Wu, Bo-Wen; Chou, Jyh-Horng; MacDonald, John

    2008-05-01

    Following the development of a digitalized image optics system, chromatic aberration has become increasingly important especially in lateral color aberration. For rear projection television L-type lens, chromatic aberration plays the significant role because it is easily seen when facing bright screen. Basically, the elimination of axial chromatic and lateral color aberration for an optical lens depends on the choice of optical glass. DLS (damped least squares), a Ray-tracing-based method, is limited, owing to its inability to identify an enhanced optical system configuration. Genetic algorithms were applied to so-called global optimization but unfortunately so far the results show little success. Additionally, L-type optics with aspherical surface might complicate optimization due to being nonlinear response during optimization. As an alternative, this research proposes a new feasible chromatic aberration optimization process by using algorithms involving theories of geometric optics in a lens, real encoding, multiple dynamic crossover and random gene mutation techniques. In this research, rear projection television lens with aspherical surface and L-type lens are mainly discussed. Results and conclusions show that attempts to eliminate difficult axial and lateral color aberration are successful.

  15. Observation of lens aberrations for high resolution electron microscopy II: Simple expressions for optimal estimates

    Saxton, W. Owen, E-mail: wos1@cam.ac.uk

    2015-04-15

    This paper lists simple closed-form expressions estimating aberration coefficients (defocus, astigmatism, three-fold astigmatism, coma / misalignment, spherical aberration) on the basis of image shift or diffractogram shape measurements as a function of injected beam tilt. Simple estimators are given for a large number of injected tilt configurations, optimal in the sense of least-squares fitting of all the measurements, and so better than most reported previously. Standard errors are given for most, allowing different approaches to be compared. Special attention is given to the measurement of the spherical aberration, for which several simple procedures are given, and the effect of foreknowledge of this on other aberration estimates is noted. Details and optimal expressions are also given for a new and simple method of analysis, requiring measurements of the diffractogram mirror axis direction only, which are simpler to make than the focus and astigmatism measurements otherwise required. - Highlights: • Optimal estimators for CTEM lens aberrations are more accurate and/or use fewer observations. • Estimators have been found for defocus, astigmatism, three-fold astigmatism, coma and spherical aberration. • Estimators have been found relying on diffractogram shape, image shift and diffractogram orientation only, for a variety of beam tilts. • The standard error for each estimator has been found.

  16. [Revision of th distribution of chromosome aberrations induced by chemical mutagens using the BUDR label].

    Chebotarev, A N; Chernyshova, N A

    1990-08-01

    Cell distribution was analysed with the help of the BrDU label for the number of chromosome aberrations and breaks induced by one-center (thiophosphamide and phosphamide) and two-center (dipine and fotrine) mutagens at the stage G0 in the Ist mitosis of human lymphocytes harvested at different times of culturing (from 56 to 96 h). The comparison was made between the type of aberration distribution in cells and the dependence of their frequency on the harvesting point for various mutagens. Poisson aberration distribution in cells for two-center mutagens was found to correspond to their constant frequency observed at different times of harvesting. On the other hand, for one-center mutagens, a geometrical distribution of chromosome breaks corresponded to an exponential decrease in their frequency in time. It is suggested that two-center chemical mutagens and ionizing radiation cause largely short-live damages which are realized into chromosome aberrations rather quickly (during one cell cycle). One-center mutagens, however, cause such damages that the probability of their transformation into chromosome aberrations is decreasing rather slowly in time, under the exponential law, and their realization into chromosome aberrations can occur in subsequent cell cycle. PMID:2258036

  17. EFFECT OF SHORT-TERM SOFT CONTACT LENS WEAR ON HUMAN OCULAR ABERRATIONS

    YU Jing; CHEN Yi-hui; CHEN Hui; SHENG Min-jie

    2009-01-01

    Objective To evaluate the effect of short-term soft contact lens (SCLs) wearing on human ocular aberrations (HOA).Methods This prospective study included 50 eyes of 50 young volunteers wearing SCLs for 1month. The ocular aberrations were measured by Allegretto Wavefront Analyzer. The root-mean-square (RMS) values of the general (RMSG), higher-order (RMSH), first to sixth order (RMS1 to RMS6) and aberration coefficients were analyzed.Results There were no significant differences in the mean values of RMSG, RMSH, RMS1 to RMS6 (P>0.05) and changes of absolute values of aberration coefficients between baseline and various visits after SCLs discontinuation. However, at d1 after the discontinuation of SCLs, changes in coefficient values of the third-order aberrations (C6 to C9) were slightly higher than others, and C7 was the highest. The increase factors of RMS values were higher at 1 week and lower at the 2 week visit after SCLs discontinuation. The uniformity of dominating type in HOA and the corneal topography form was both about 60% after discontinuation of SCLs. The corneal thickness increased after SCLs wear and gradually decreased to baseline until 1month discontinuation of SCLs.Conclusion The effect of short-term SCLs wear on human ocular aberrations is slight but profound. A month or more wait should be allowed before the short-term SCLs wearers are scheduled for wavefronted-guided LASIK.

  18. Fluorescence in situ hybridisation in chromosome aberration detection in subjects occupationally exposed to ionising radiation

    For more than two decades, chromosomal aberration analysis has been used to detect structural chromosomal aberrations as sensitive biodosimeters of occupational exposure to ionising radiation. Its use is also recommended by the World Health Organisation. Changes in chromosome structure detected by that method are considered to be early biomarkers of a possible malignant disease. Aberrations detected by the method are unstable and can be found in the lymphocytes of irradiated personnel only within a limited time after exposure. To detect stable chromosomal aberrations, which persist after exposure, multicolour fluorescent in situ hybridisation has to be used. Using DNA probes labelled with different fluorochromes, it dyes each pair of chromosomes with different colour. Due to the dynamic of unstable aberration formation, chromosomal aberration analysis is more suitable in genome damage assessment of recent exposures. On the other hand, fluorescence in situ hybridisation gives the information on chromosome instability caused by long-term occupational exposure to ionising radiation. Considering the high costs of fluorescence in situ hybridisation and the uncertainty of the result, it should be used in biodosimetry only when it is absolutely necessary.(author)

  19. Use of field aberrations in the alignment of the Large Binocular Telescope optics

    Rakich, A.; Hill, J. M.; Biddick, C. J.; Miller, D. L.; Leibold, T.

    2008-07-01

    It is now well-known that measurement of field-aberration, and in particular the asymmetric field-astigmatism, is required to break the degeneracy of tip-induced and de-centre-induced aberration that exists when only on-axis misalignment aberrations are considered. This paper discusses the application of the measurement of field-aberrations to the alignment of LBT optics. This application ranges from the use of wide field out-of-focus images to determine corrector tip for the red and blue prime-focus correctors, to the use of data acquired by off-axis Shack-Hartman wavefront sensors to actively reposition the hexapod-mounted primary and secondary mirrors so as to simultaneously remove both de-centre and tip/tilt such that the only remaining field-astigmatism has rotational symmetry about the centre of the detector. Also introduced is a novel method to calculate the misalignment aberrations based on an extension of the plate-diagram analysis. It is shown that this method is readily applicable to the calculation of misalignment aberrations for systems of three-or-more powered mirrors, with almost no more computational difficulty than that of the two-mirror case. Results are discussed, as well as work in progress in this area.

  20. Do aberrant crypt foci have predictive value for the occurrence of colorectal tumours? Potential of gene expression profiling in tumours.

    Wijnands, M V W; van Erk, M J; Doornbos, R P; Krul, C A M; Woutersen, R A

    2004-10-01

    The effects of different dietary compounds on the formation of aberrant crypt foci (ACF) and colorectal tumours and on the expression of a selection of genes were studied in rats. Azoxymethane-treated male F344 rats were fed either a control diet or a diet containing 10% wheat bran (WB), 0.2% curcumin (CUR), 4% rutin (RUT) or 0.04% benzyl isothiocyanate (BIT) for 8 months. ACF were counted after 7, 15 and 26 weeks. Tumours were scored after 26 weeks and 8 months. We found that the WB and CUR diets inhibited the development of colorectal tumours. In contrast, the RUT and BIT diets rather enhanced (although not statistically significantly) colorectal carcinogenesis. In addition, the various compounds caused different effects on the development of ACF. In most cases the number or size of ACF was not predictive for the ultimate tumour yield. The expression of some tumour-related genes was significantly different in tumours from the control group as compared to tumours from the treated groups. It was concluded that WB and CUR, as opposed to RUT and BIT, protects against colorectal cancer and that ACF are unsuitable as biomarker for colorectal cancer. Effects of the different dietary compounds on metalloproteinase 1 (TIMP-1) expression correlated well with the effects of the dietary compounds on the ultimate tumour yield. PMID:15304309

  1. Aberrant gene promoter methylation associated with sporadic multiple colorectal cancer.

    Victoria Gonzalo

    Full Text Available BACKGROUND: Colorectal cancer (CRC multiplicity has been mainly related to polyposis and non-polyposis hereditary syndromes. In sporadic CRC, aberrant gene promoter methylation has been shown to play a key role in carcinogenesis, although little is known about its involvement in multiplicity. To assess the effect of methylation in tumor multiplicity in sporadic CRC, hypermethylation of key tumor suppressor genes was evaluated in patients with both multiple and solitary tumors, as a proof-of-concept of an underlying epigenetic defect. METHODOLOGY/PRINCIPAL FINDINGS: We examined a total of 47 synchronous/metachronous primary CRC from 41 patients, and 41 gender, age (5-year intervals and tumor location-paired patients with solitary tumors. Exclusion criteria were polyposis syndromes, Lynch syndrome and inflammatory bowel disease. DNA methylation at the promoter region of the MGMT, CDKN2A, SFRP1, TMEFF2, HS3ST2 (3OST2, RASSF1A and GATA4 genes was evaluated by quantitative methylation specific PCR in both tumor and corresponding normal appearing colorectal mucosa samples. Overall, patients with multiple lesions exhibited a higher degree of methylation in tumor samples than those with solitary tumors regarding all evaluated genes. After adjusting for age and gender, binomial logistic regression analysis identified methylation of MGMT2 (OR, 1.48; 95% CI, 1.10 to 1.97; p = 0.008 and RASSF1A (OR, 2.04; 95% CI, 1.01 to 4.13; p = 0.047 as variables independently associated with tumor multiplicity, being the risk related to methylation of any of these two genes 4.57 (95% CI, 1.53 to 13.61; p = 0.006. Moreover, in six patients in whom both tumors were available, we found a correlation in the methylation levels of MGMT2 (r = 0.64, p = 0.17, SFRP1 (r = 0.83, 0.06, HPP1 (r = 0.64, p = 0.17, 3OST2 (r = 0.83, p = 0.06 and GATA4 (r = 0.6, p = 0.24. Methylation in normal appearing colorectal mucosa from patients with multiple and solitary CRC showed no relevant

  2. Aberrant innate immune activation following tissue injury impairs pancreatic regeneration.

    Alexandra E Folias

    development of chronic inflammation arises from aberrant activation of the innate inflammatory response. Collectively these studies identify targetable inflammatory factors that can be used to influence the development of non-resolving inflammation and pancreatic regeneration following injury.

  3. Comparison of RBE values of high- LET α-particles for the induction of DNA-DSBs, chromosome aberrations and cell reproductive death

    . These results indicate that RBE values for IRIF (DNA-DSB) induction provide little valid information on other biologically-relevant end points in cells exposed to high-LET radiations. Furthermore, the RBE values for the induction of the two types of chromosome aberrations are similar to those established for cell reproductive death. This suggests that assays of these aberrations might yield relevant information on the biological effectiveness in high-LET radiotherapy

  4. Comparison of RBE values of high- LET α-particles for the induction of DNA-DSBs, chromosome aberrations and cell reproductive death

    Aten Jacob

    2011-06-01

    .7 ± 5.1, 15.3 ± 5.9 and 13.3 ± 6.0 respectively. Conclusions These results indicate that RBE values for IRIF (DNA-DSB induction provide little valid information on other biologically-relevant end points in cells exposed to high-LET radiations. Furthermore, the RBE values for the induction of the two types of chromosome aberrations are similar to those established for cell reproductive death. This suggests that assays of these aberrations might yield relevant information on the biological effectiveness in high-LET radiotherapy.

  5. Weak minimum aberration and maximum number of clear two-factor interactions in 2

    YANG; Guijun

    2005-01-01

    [1]Wu, C. F. J., Chen, Y., A graph-aided method for planning two-level experiments when certain interactions are important, Technometrics, 1992, 34: 162-175.[2]Fries, A., Hunter, W, G., Minimum aberration 2к-p designs, Technometrics, 1980, 22: 601-608.[3]Chen, H., Hedayat, A. S., 2n-l designs with weak minimum aberration, Ann. Statist., 1996, 24: 2536-2548.[4]Chen, J., Some results on 2n-к fractional factorial designs and search for minimum aberration designs, Ann.Statist., 1992, 20: 2124-2141.[5]Chen, J., Intelligent search for 213-6 and 214-7 minimum aberration designs, Statist. Sinica, 1998, 8: 1265-1270.[6]Chen, J., Sun, D. X., Wu, C. F. J., A catalogue of two-level and three-level fractional factorial designs with small runs, Internat. Statist. Rev., 1993, 61: 131-145.[7]Chen, J., Wu, C. F. J., Some results on 2n-к fractional factorial designs with minimum aberration or optimal moments, Ann. Statist., 1991, 19: 1028-1041.[8]Cheng, C. S., Mukerjee, R., Regular fractional factorial designs with minimum aberration and maximum estimation capacity, Ann. Statist., 1998, 26: 2289-2300.[9]Cheng, C. S., Steinberg, D. M., Sun, D. X., Minimum aberration and model robustness for two-level fractional factorial designs, J. Roy. Statist. Soc. Ser. B, 1999, 61: 85-93.[10]Draper, N. R., Lin, D. K. J., Capacity consideration for two-level fractional factorial designs, J. Statist. Plann.Inference, 1990, 24: 25-35.[11]Fang, K. T., Mukerjee, R., A connection between uniformity and aberration in regular fractions of two-level factorial, Biometrika, 2000, 87: 193-198.[12]Tang, B., Wu, C. F. J., Characterization of minimum aberration 2n-к designs in terms of their complementary designs, Ann. Statist., 1996, 24: 2549-2559.[13]Chen, H., Hedayat, A. S., 2n-m designs with resolution Ⅲ or Ⅳ containing clear two-factor interactions, J.Statist. Plann. Inference, 1998, 75: 147-158.[14]Tang, B., Ma, F., Ingram, D., Wang, H., Bounds on the maximum numbers of clear two factor

  6. Status of fission yield evaluations

    Very few yield compilations are also evaluations, and very few contain an extensive global library of measured data and extensive models for unmeasured data. The earlier U.K. evaluations and US evaluations were comparable up to the retirements of the primary evaluators. Only the effort in the US has been continued and expanded. The previous U.K. evaluations have been published. In this paper we summarize the current status of the US evaluation, philosophy, and various integral yield tests for 34 fissioning nuclides at one or more neutron incident energies and/or for spontaneous fission. Currently there are 50 yield sets and for each we have independent and cumulative yields and uncertainties for approximately 1100 fission products. When finalized, the recommended data will become part of the next version of the US Evaluated Nuclear Data File (ENDF/B-VI). The complete set of data, including the basic input of measured yields, will be issued as a sequel to the General Electric evaluation reports (better known by the authors' names: Rider - or earlier - Meek and Rider). 16 references

  7. Defining and managing sustainable yield.

    Maimone, Mark

    2004-01-01

    Ground water resource management programs are paying increasing attention to the integration of ground water and surface water in the planning process. Many plans, however, show a sophistication in approach and presentation that masks a fundamental weakness in the overall analysis. The plans usually discuss issues of demand and yield, yet never directly address a fundamental issue behind the plan--how to define sustainable yield of an aquifer system. This paper points out a number of considerations that must be addressed in defining sustainable yield in order to make the definition more useful in practical water resource planning studies. These include consideration for the spatial and temporal aspects of the problem, the development of a conceptual water balance, the influence of boundaries and changes in technology on the definition, the need to examine water demand as well as available supply, the need for stakeholder involvement, and the issue of uncertainty in our understanding of the components of the hydrologic system. PMID:15584295

  8. Status of fission yield data

    In this paper we summarize the current status of the recent US evaluation for 34 fissioning nuclides at one or more neutron incident energies and for spontaneous fission. Currently there are 50 yields sets, and for each we have independent and cumulative yields and uncertainties for approximately 1100 fission products. When finalized the recommended data will become part of Version VI of the US ENDF/B. Other major evaluations in progress that are included in a recently formed IAEA Coordinated Research Program are also summarized. In a second part we review two empirical models in use to estimate independent yields. Comparison of model estimates with measured data is presented, including a comparison with some recent data obtained from Lohengrin (Cf-249 T). 18 refs., 13 figs., 3 tabs

  9. Transmissive liquid-crystal device correcting primary coma aberration and astigmatism in laser scanning microscopy

    Tanabe, Ayano; Hibi, Terumasa; Ipponjima, Sari; Matsumoto, Kenji; Yokoyama, Masafumi; Kurihara, Makoto; Hashimoto, Nobuyuki; Nemoto, Tomomi

    2016-03-01

    Laser scanning microscopy allows 3D cross-sectional imaging inside biospecimens. However, certain aberrations produced can degrade the quality of the resulting images. We previously reported a transmissive liquid-crystal device that could compensate for the predominant spherical aberrations during the observations, particularly in deep regions of the samples. The device, inserted between the objective lens and the microscope revolver, improved the image quality of fixed-mouse-brain slices that were observed using two-photon excitation laser scanning microscopy, which was originally degraded by spherical aberration. In this study, we developed a transmissive device that corrects primary coma aberration and astigmatism, motivated by the fact that these asymmetric aberrations can also often considerably deteriorate image quality, even near the sample surface. The device's performance was evaluated by observing fluorescent beads using single-photon excitation laser scanning microscopy. The fluorescence intensity in the image of the bead under a cover slip tilted in the y-direction was increased by 1.5 times after correction by the device. Furthermore, the y- and z-widths of the imaged bead were reduced to 66% and 65%, respectively. On the other hand, for the imaged bead sucked into a glass capillary in the longitudinal x-direction, correction with the device increased the fluorescence intensity by 2.2 times compared to that of the aberrated image. In addition, the x-, y-, and z-widths of the bead image were reduced to 75%, 53%, and 40%, respectively. Our device successfully corrected several asymmetric aberrations to improve the fluorescent signal and spatial resolution, and might be useful for observing various biospecimens.

  10. Harmonic imaging with fresnel beamforming in the presence of phase aberration.

    Nguyen, Man Minh; Shin, Junseob; Yen, Jesse

    2014-10-01

    Fresnel beamforming is a beamforming method with a delay profile similar in shape to a physical Fresnel lens. The advantage of Fresnel beamforming is the reduced channel count, which consists of four to eight transmit and two analog-to-digital receive channels. Fresnel beamforming was found to perform comparably to conventional delay-and-sum beamforming. However, the performance of Fresnel beamforming is highly dependent on focal errors. These focal errors result in high side-lobe levels and further reduce the performance of Fresnel beamforming in the presence of phase aberration. With the advantages of lower side-lobe levels and suppression of aberration effects, harmonic imaging offers an effective solution to the limitations of Fresnel beamforming. We describe the implementation of tissue harmonic imaging and pulse inversion harmonic imaging in Fresnel beamforming, followed by dual apodization with cross-correlation, to improve image quality. Compared with conventional delay-and-sum beamforming, experimental results indicated contrast-to-noise ratio improvements of 10%, 49% and 264% for Fresnel beamforming using tissue harmonic imaging in the cases of no aberrator, 5-mm pork aberrator and 12-mm pork aberrator, respectively. These improvements were 22%, 57% and 352% for Fresnel beamforming using pulse inversion harmonic imaging. Moreover, dual apodization with cross-correlation was found to further improve the contrast-to-noise ratios in all cases. Harmonic imaging was also found to narrow the lateral beamwidth and shorten the axial pulse length by at least 25% and 21%, respectively, for Fresnel beamforming at different aberration levels. These results suggest the effectiveness of harmonic imaging in improving image quality for Fresnel beamforming, especially in the presence of phase aberration. Even though this combination of Fresnel beamforming and harmonic imaging does not outperform delay-and-sum beamforming combined with harmonic imaging, it provides the

  11. Changes in Monkey Crystalline Lens Spherical Aberration During Simulated Accommodation in a Lens Stretcher

    Maceo Heilman, Bianca; Manns, Fabrice; de Castro, Alberto; Durkee, Heather; Arrieta, Esdras; Marcos, Susana; Parel, Jean-Marie

    2015-01-01

    Purpose. The purpose of this study was to quantify accommodation-induced changes in the spherical aberration of cynomolgus monkey lenses. Methods. Twenty-four lenses from 20 cynomolgus monkeys (Macaca fascicularis; 4.4–16.0 years of age; postmortem time 13.5 ± 13.0 hours) were mounted in a lens stretcher. Lens spherical aberration was measured in the unstretched (accommodated) and stretched (relaxed) states with a laser ray tracing system that delivered 51 equally spaced parallel rays along 1 meridian of the lens over the central 6-mm optical zone. A camera mounted below the lens was used to measure the ray height at multiple positions along the optical axis. For each entrance ray, the change in ray height with axial position was fitted with a third-order polynomial. The effective paraxial focal length and Zernike spherical aberration coefficients corresponding to a 6-mm pupil diameter were extracted from the fitted values. Results. The unstretched lens power decreased with age from 59.3 ± 4.0 diopters (D) for young lenses to 45.7 ± 3.1 D for older lenses. The unstretched lens shifted toward less negative spherical aberration with age, from −6.3 ± 0.7 μm for young lenses to −5.0 ± 0.5 μm for older lenses. The power and spherical aberration of lenses in the stretched state were independent of age, with values of 33.5 ± 3.4 D and −2.6 ± 0.5 μm, respectively. Conclusions. Spherical aberration is negative in cynomolgus monkey lenses and becomes more negative with accommodation. These results are in good agreement with the predicted values using computational ray tracing in a lens model with a reconstructed gradient refractive index. The spherical aberration of the unstretched lens becomes less negative with age. PMID:25670492

  12. On calculation of photoneutron yields

    A simple analytical expression has been obtained for the photon track lengths in the region of nuclei giant resonance by summing the cross-sections of the bremsstrahlung from thin layers. The photoneutron yields from thick Cu and Pb targets calculated for verifying this expression are in a good agreement with the experimental results obtained by other authors

  13. Correlations among alfalfa yield components

    Ilić Olivera

    2006-01-01

    Full Text Available Presented in this paper are the results of our study of correlations among yield components in ten alfalfa genotypes under open pollination (polycross conditions. The study was conducted between 2000 and 2002 at the Rimski Sancevi Experiment Field of the Institute of Field and Vegetable Crops in Novi Sad. Highly significant correlations were found between pod number per inflorescence and seed number per inflorescence (r= 0.645 as well as between seed number per pod and seed number per inflorescence (r= 0.685. Similarly, the correlation between inflorescence number per stem and seed yield was significant and positive (r= 0.589. Negative correlations existed between ovule number per ovary on the one hand and seed yield and inflorescence number per stem on the other (r= -0.617 and r= -0.598, respectively. The highest seed yield was achieved with the cultivar Europe (651.4 kg ha-1 and the lowest with the genotype Le-6 (426.25 kg ha-1. The difference was highly significant (CV= 14,93%.

  14. A monochromatic, aberration-corrected, dual-beam low energy electron microscope

    The monochromatic, aberration-corrected, dual-beam low energy electron microscope (MAD-LEEM) is a novel instrument aimed at imaging of nanostructures and surfaces at sub-nanometer resolution that includes a monochromator, aberration corrector and dual beam illumination. The monochromator reduces the energy spread of the illuminating electron beam, which significantly improves spectroscopic and spatial resolution. The aberration corrector utilizes an electron mirror with negative aberrations that can be used to compensate the aberrations of the LEEM objective lens for a range of electron energies. Dual flood illumination eliminates charging generated when a conventional LEEM is used to image insulating specimens. MAD-LEEM is designed for the purpose of imaging biological and insulating specimens, which are difficult to image with conventional LEEM, Low-Voltage SEM, and TEM instruments. The MAD-LEEM instrument can also be used as a general purpose LEEM with significantly improved resolution. The low impact energy of the electrons is critical for avoiding beam damage, as high energy electrons with keV kinetic energies used in SEMs and TEMs cause irreversible change to many specimens, in particular biological materials. A potential application for MAD-LEEM is in DNA sequencing, which demands imaging techniques that enable DNA sequencing at high resolution and speed, and at low cost. The key advantages of the MAD-LEEM approach for this application are the low electron impact energies, the long read lengths, and the absence of heavy-atom DNA labeling. Image contrast simulations of the detectability of individual nucleotides in a DNA strand have been developed in order to refine the optics blur and DNA base contrast requirements for this application. - Highlights: • We present a LEEM with a monochromator, aberration corrector, and two electron beams. • We analyze objective lens aberrations up to 5th order with aberration correction. • Tetrode and pentode mirror

  15. Influence of DMSO on Carbon K ultrasoft X-rays induced chromosome aberrations in V79 Chinese hamster cells

    Ultrasoft X-rays have been shown to be very efficient in inducing chromosomal aberrations in mammalian cells. The present study was aimed to evaluate the modifying effects of DMSO (a potent scavenger of free radicals) on the frequencies of chromosome aberrations induced by soft X-rays. Confluent held G1 Chinese hamster cells (V79) were irradiated with Carbon K ultrasoft X-rays in the presence and absence of 1 M DMSO and frequencies of chromosome aberrations in the first division cells were determined. DMSO reduced the frequencies of exchange types of aberrations (dicentrics and centric rings) by a factor of 2.1-3.5. The results indicate that free radicals induced by ultrasoft X-rays contribute to a great extent to the induction of chromosome aberrations. The possible implications of these results in interpreting the mechanisms involved in the high efficiency of ultrasoft X-rays in the induction of chromosome aberrations are discussed.

  16. Numerical correction of anti-symmetric aberrations in single HRTEM images of weakly scattering 2D-objects

    Lehtinen, Ossi, E-mail: ossi.lehtinen@gmail.com [Central Facility for Electron Microscopy, Group of Electron Microscopy of Materials Science, University of Ulm, 89081 Ulm (Germany); Geiger, Dorin; Lee, Zhongbo [Central Facility for Electron Microscopy, Group of Electron Microscopy of Materials Science, University of Ulm, 89081 Ulm (Germany); Whitwick, Michael Brian; Chen, Ming-Wei; Kis, Andras [Electrical Engineering Institute, Ecole Polytechnique Federale de Lausanne (EPFL), CH-1015 Lausanne (Switzerland); Kaiser, Ute [Central Facility for Electron Microscopy, Group of Electron Microscopy of Materials Science, University of Ulm, 89081 Ulm (Germany)

    2015-04-15

    Here, we present a numerical post-processing method for removing the effect of anti-symmetric residual aberrations in high-resolution transmission electron microscopy (HRTEM) images of weakly scattering 2D-objects. The method is based on applying the same aberrations with the opposite phase to the Fourier transform of the recorded image intensity and subsequently inverting the Fourier transform. We present the theoretical justification of the method, and its verification based on simulated images in the case of low-order anti-symmetric aberrations. Ultimately the method is applied to experimental hardware aberration-corrected HRTEM images of single-layer graphene and MoSe{sub 2} resulting in images with strongly reduced residual low-order aberrations, and consequently improved interpretability. Alternatively, this method can be used to estimate by trial and error the residual anti-symmetric aberrations in HRTEM images of weakly scattering objects.

  17. Simultaneous and independent adaptive correction of spherical and chromatic aberration using an electron mirror and lens combination

    We present a theoretical analysis of an electrostatic triode mirror combined with an einzel lens for the correction of spherical and chromatic aberration. We show that this device adaptively corrects spherical and chromatic aberration simultaneously and independently. Chromatic aberration can be compensated over a relative range of −38% to +100%, and spherical aberration over ±100% range. We compare the analytic calculation with a numerical simulation and show that the two descriptions agree to within 5% in the relevant operating regime of the device. -- Highlights: ► Analytic model of three-electrode electrostatic mirror and lens. ► Wide-range, dynamic correction of spherical and chromatic aberration in electron optics. ► Optimized model for aberration correction. ► Comparison between analytic expression and numerical simulation.

  18. New type of chromosomal aberrations in microspores of Tradescancia Paludosa in flight experiments on board of space satelites

    A new type of chromosomal aberrations - complex nonreciprocal translocations accompanied by spherical fragments, is opened. The results of 30 variants of tests are investigated to establish what factor particularly causes new type of chromosomal aberrations. The experiments have been carried out on boards the space satelites: ''Vostok 3, 4, 5, 6'', ''Voskhod'', ''Kosmos 110'', ''Zond 6, 7'', ''Kosmos 368''. All type of aberrations have been recorded. It is supposed that a new type of aberrations depends on the effect of the sum of dynamic factors. At the same time these aberrations are not the background and escape it by separate bright bursts being independent on the effect of take-off, landing and time of an object staying in weightlessness. There is a type of irradiation causing a special type of aberrations

  19. Influence of DMSO on Carbon K ultrasoft X-rays induced chromosome aberrations in V79 Chinese hamster cells

    Natarajan, Adayapalam T., E-mail: natarajan@live.nl [University of Tuscia, Viterbo (Italy); Palitti, Fabrizio [University of Tuscia, Viterbo (Italy); Hill, Mark A. [CRUK/MRC Gray Institute for Radiation Oncology and Biology, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ (United Kingdom); MRC Radiation and Genome Stability Unit, Harwell, Oxfordshire OX11 0RD (United Kingdom); Stevens, David L. [MRC Radiation and Genome Stability Unit, Harwell, Oxfordshire OX11 0RD (United Kingdom); Ahnstroem, Gunnar [Department of Microbiology and Genetic Toxicology, Stockholm University, Stockholm (Sweden)

    2010-09-10

    Ultrasoft X-rays have been shown to be very efficient in inducing chromosomal aberrations in mammalian cells. The present study was aimed to evaluate the modifying effects of DMSO (a potent scavenger of free radicals) on the frequencies of chromosome aberrations induced by soft X-rays. Confluent held G1 Chinese hamster cells (V79) were irradiated with Carbon K ultrasoft X-rays in the presence and absence of 1 M DMSO and frequencies of chromosome aberrations in the first division cells were determined. DMSO reduced the frequencies of exchange types of aberrations (dicentrics and centric rings) by a factor of 2.1-3.5. The results indicate that free radicals induced by ultrasoft X-rays contribute to a great extent to the induction of chromosome aberrations. The possible implications of these results in interpreting the mechanisms involved in the high efficiency of ultrasoft X-rays in the induction of chromosome aberrations are discussed.

  20. The prevalence of chromosomal aberrations associated with myelodysplastic syndromes in China.

    Hu, Qinyong; Chu, Yuxin; Song, Qibin; Yao, Yi; Yang, Weihong; Huang, Shiang

    2016-08-01

    This study aims to investigate the prevalence and distribution of diverse chromosomal aberrations associated with myelodysplastic syndromes (MDS) in China. Bone marrow samples were collected from multiple cities in China. Metaphase cytogenetic (MC) analysis and fluorescence in situ hybridization (FISH) were initially used to test chromosomal lesions. Affymetrix CytoScan 750 K genechip platform performed a genome-wide detection of chromosomal aberrations. Chromosomal gain was identified in 76 patients; the most prevalent was trisomy 8(17.9 %). New chromosomal gain was detected on chromosome 9, 19p, and X. Chromosomal loss was detected in 101 patients. The most frequent was loss 5q (21.0 %). Some loss and gain were not identified by MC or FISH but identified by genechip. UPD was solely identified by genechip in 51 patients; the most prevalent were UPD 7q (4.94 %) and UPD 17p (4.32 %). Furthermore, complex chromosomal aberrations were detected in 56 patients. In conclusion, Affymetrix CytoScan 750 K genechip was more precise than MC and FISH in detection of cryptic chromosomal aberrations relevant to MDS. Analysis of the prevalence and distribution of diverse chromosomal aberrations in China may improve strategies for MDS diagnosis and therapies. PMID:27225263

  1. Effects of residual aberrations explored on single-walled carbon nanotubes

    Biskupek, Johannes, E-mail: johannes.biskupek@uni-ulm.de [Central Facility of Electron Microscopy, Ulm University, Albert-Einstein-Allee 11, D-89081 Ulm (Germany); Hartel, Peter; Haider, Maximilian [CEOS GmbH, Englerstrasse 28, D-69126 Heidelberg (Germany); Kaiser, Ute [Central Facility of Electron Microscopy, Ulm University, Albert-Einstein-Allee 11, D-89081 Ulm (Germany)

    2012-05-15

    The effects of geometric residual aberrations such as coma B{sub 2} and two-fold astigmatism A{sub 1} on the contrast in aberration corrected high resolution transmission electron microscopy (HRTEM) images are investigated on single-walled carbon nanotubes (SWNT). The individual aberrations are adjusted and set up manually using an imaging C{sub S}-corrector. We demonstrate how coma B{sub 2} can be recognized by an experienced user directly in the image and how it blurs the contrast. Even with uncorrected (resolution limiting) spherical aberration C{sub S} the coma B{sub 2} has to be considered and must be minimized. Limits for a tolerable coma are given. The experiments are confirmed by image simulations. -- Highlights: Black-Right-Pointing-Pointer Individual effects of residual aberrations such as B{sub 2}, A{sub 1}, and C{sub S} are demonstrated. Black-Right-Pointing-Pointer Experimental HRTEM and simulated images of carbon nanotubes are compared. Black-Right-Pointing-Pointer A detection limit of 50 nm B{sub 2} in a single HRTEM image is determined.

  2. Aberrant histone H4 acetylation in dead somatic cell-cloned calves

    Lei Zhang; Shaohua Wang; Qiang Li; Xiangdong Ding; Yunping Dai; Ning Li

    2008-01-01

    In somatic cell-cloned animals, inefficient epigenetic reprogramming can result in an inappropriate gene expression and histone H4 acetylation is one of the key epigenetic modifications regulating gene expression. In this study, we investigated the levels of histone H4 acetylation of 11 development-related genes and expression levels of 19 genes in lungs of three normal control calves and nine aber-rant somatic cell-cloned calves. The results showed that nine studied genes had decreased acetylation levels in aberrant clones (p 0.05). Whereas 13 genes had significantly decreased expression (p 0.05), and only one gene had higher expression level in clones (p < 0.05). Furthermore, FGFR, GHR, HGFR and IGF1 genes showed lowered levels of both histone H4 acetylation and expression in aberrant clones than in controls, and the level of histone H4 acetylation was even more lowered in aberrant clones than those in controls. It was suggested that the lower levels of histone H4 acetylation in aberrant clones caused by the previous memory of cell differentiation might not support enough chromatin reprogramming, thus affecting appropriate gene expressions, and growth and development of the cloned calves. To our knowledge, this is the first study on how histone H4 acetylation affects gene expression in organs of somatic cell-cloned calves.

  3. A method for evaluating aberration in the crossover image in mask irradiation optics of electron beam

    Sohda, Yasunari; Ohta, Hiroya; Saitou, Norio

    2002-02-01

    A method for evaluating aberration in the crossover image in a cell projection lithography system has been developed. In an electron-beam lithography system of projection-type such as a cell projection lithography system, the aberration in the crossover image causes the electron beam to pass off-axis in the electron optics. Optical simulation has quantitatively shown that the aberration in the crossover image causes an electron-beam blur and a positioning error on a writing sample. The evaluating method consists of four square apertures and a mark-detection function in a cell projection system. By measuring each position of the images of the four square apertures on the writing sample at difference focuses, the aberration can be calculated. The field curvature and the astigmatism in a cell projection system were evaluated by using this method. The field curvature agrees with the simulation. In addition, the measurement of the effect of beam alignment is also demonstrated. It is thus concluded that the method can effectively evaluate the aberration in the crossover image. This method is also useful for other projection-type lithographies of charged particles—like ion and electron beams.

  4. The use of unstable chromosome aberrations and micronuclei in the individual biomonitoring: a comparative study

    Biodosimetry is based on the investigation of radioinduced biological effects in order to correlate them with the absorbed dose. The quantification of unstable chromosome aberrations and micronuclei, in peripheral blood lymphocytes, are two methods commonly used in biodosimetry. In this context, the aim of this research was to compare these methods in the biomonitoring of health care professionals occupationally exposed to ionizing radiation. In parallel, the technique of C-banding was evaluated for quality control of unstable chromosome aberrations analyses. Thus, samples of peripheral blood from health care professionals of three hospitals from Recife (Brazil) were collected, and the lymphocytes cultures were carried out based on the cytogenetic classical technique. It was pointed out that analysis of micronuclei is faster than the unstable chromosome aberrations ones, which suggests the use of the former in preliminary evaluation in cases of suspected accidental exposure. C-banding technique was efficient, as confirmatory test, in the identification of dicentrics and rings during the analyses of unstable chromosome aberrations, being able to be applied in the quality control in biodosimetry. The comparison between the individual work conditions with the frequencies of unstable aberrations and micronuclei obtained from cytogenetic analysis, resulted in the change of behavior of the professionals involved in this research, with a better observance of the radioprotection standards. (author)

  5. Mechanisms of induction of chromosomal aberrations and their detection by fluorescence in situ hybridization

    Recently introduced fluorescence in situ hybridization (FISH) technique employing chromosome specific DNA libraries as well as region specific DNA probes (e.g., centromere, telomere) have helped to analyse chromosomal aberrations in great detail and thus have given some new insights into the mechanisms of induction of chromosomal aberrations. The relative proportion of induction of translocations and dicentrics by ionising radiation was studied in human, mice and Chinese hamster cells. Many of the studies point to the differences between the mechanisms of induction of dicentrics and translocations. Preliminary results obtained in our laboratory using arm specific probes for human chromosomes 1 and 3 indicate that the aberrations between the arms appear to be more than expected on a random basis. By employing telomeric probes the frequencies of interstitial deletions were found to be high and similar to the frequencies of dicentrics both in human and mouse lymphocytes. A recent study with human chromosome specific probes clearly shows variation of sensitivity of chromosomes for the induction of exchange aberrations. Radiation response studies with Chinese hamster cells using telomeric probes, suggest that telomeric sequences, especially interstitial ones appear to be an important factor in the origin of both spontaneous and induced chromosomal aberrations

  6. Comparison between two different methods to obtain the wavefront aberration function

    Cruz Félix, Angel S.; Ibarra, Jorge; López, Estela; Rosales, Marco A.; Tepichín, Eduardo

    2010-08-01

    The analysis and measurement of the wavefront aberration function are very important tools that allow us to evaluate the performance of any specified optical system. This technology has been adopted in visual optics for the analysis of optical aberrations in the human eye, before and after being subjected to laser refractive surgery. We have been working in the characterization and evaluation of the objective performance of human eyes that have been subjected to two different surface ablation techniques known as ASA and PASA1. However, optical aberrations in the human eye are time-dependent2 and, hence, difficult to analyze. In order to obtain a static profile from the post-operatory wavefront aberration function we applied these ablation techniques directly over hard contact lenses. In this work we show the comparison between two different methods to obtain the wavefront aberration function from a reference refractive surface, in order to generalize this method and being able to fully characterize hard contact lenses which have been subjected to different ablation techniques typically used in refractive surgery for vision correction. For the first method we used a Shack-Hartmann wavefront sensor, and in the second method we used a Mach-Zehnder type interferometer. We show the preliminary results of this characterization.

  7. High-resolution adaptive optics scanning laser ophthalmoscope with dual deformable mirrors for large aberration correction

    Chen, D; Jones, S M; Silva, D A; Olivier, S S

    2007-01-25

    Scanning laser ophthalmoscopes with adaptive optics (AOSLO) have been shown previously to provide a noninvasive, cellular-scale view of the living human retina. However, the clinical utility of these systems has been limited by the available deformable mirror technology. In this paper, we demonstrate that the use of dual deformable mirrors can effectively compensate large aberrations in the human retina, making the AOSLO system a viable, non-invasive, high-resolution imaging tool for clinical diagnostics. We used a bimorph deformable mirror to correct low-order aberrations with relatively large amplitudes. The bimorph mirror is manufactured by Aoptix, Inc. with 37 elements and 18 {micro}m stroke in a 10 mm aperture. We used a MEMS deformable mirror to correct high-order aberrations with lower amplitudes. The MEMS mirror is manufactured by Boston Micromachine, Inc with 144 elements and 1.5 {micro}m stroke in a 3 mm aperture. We have achieved near diffraction-limited retina images using the dual deformable mirrors to correct large aberrations up to {+-} 3D of defocus and {+-} 3D of cylindrical aberrations with test subjects. This increases the range of spectacle corrections by the AO systems by a factor of 10, which is crucial for use in the clinical environment. This ability for large phase compensation can eliminate accurate refractive error fitting for the patients, which greatly improves the system ease of use and efficiency in the clinical environment.

  8. Types of structural chromosome aberrations and their incidences in human spermatozoa X-irradiated in vitro

    The authors studied the effects of in vitro X-irradiation on human sperm chromosomes, using our interspecific in vitro fertilization system between human spermatozoa and zona-free hamster oocytes. 28 semen samples from 5 healthy men were exposed to 0.23, 0.45, 0.91 and 1.82 Gy of X-rays. Totals of 2098 and 2862 spermatozoa were karyotyped in the control and the irradiated groups, respectively. The indicence of spermatozoa with X-ray-induced structural chromosome aberrations (Y) increased linearly with increasing dosage (D), being best expressed by the equation, Y = 0.08 + 34.52 D. The incidence of breakage-type aberrations was moe than 9 times higher than that of exchange-type aberrations. Both of them showed linear dose-dependent increases, which were expressed by the regression lines, Y = -0.014 + 0.478 D and Y -0.010 + 0.057 D, respectively. The incidence of chromosome-ltype aberrations was about 6 times higher than that of chromatid-type aberrations. Their dose-dependent increases were expressed by the regression lines, Y = -0.015 + 0.462 D and Y = -0.006 + 0.079 D, respectively. These results are discussed in relation to the previous data obtained with γ-rays. The repair mechanism of X-ray-induced sperm DNA lesions is also discussed. (author). 21 refs.; 4 figs.; 4 tabs

  9. Six years of cytogenetic follow-up of unstable chromosome aberrations in Goiania patients

    Following the radiological accident which occurred in the city of Goiania (Brazil), in September of 1987, a cytogenetic follow-up of 16 exposed patients was started, aiming to observe the mean life time of lymphocytes containing dicentric and ring aberrations. The results suggest that for the highly exposed individuals (doses above 1 Gy) the disappearance rate of unstable aberrations follows a two-term exponential function. Up to 470 days after exposure, there is a rapid fall in the aberration frequency. After 470 days, the disappearance rate is very slow. These results may reflect different subpopulations of human lymphocytes, with different life spans. The estimated average half-time of elimination of dicentrics and rings among the highly exposed group (doses above 1 Gy) was 140 days for the initial period after the exposure (up to 470 days). This value is significantly shorter than the usually accepted value of 3 years reported in the literature. For the individuals who had received less than 1 Gy the disappearance of aberrations seems to have occurred in a slower way. Mean disappearance functions of unstable chromosome aberrations were inferred, to be applied in accident situations in which there is a blood sampling delay. (author)

  10. Effect of biofertilizers on yield and yield components of cucumber

    Faranak Moshabaki Isfahani; Hossein Besharati

    2012-01-01

    Biofertilizer is defined as a substance which contains living organisms which, when applied to seed, plant surface, or soil, colonize the rhizosphere or interior of the plant and promote growth by increasing the supply or availability of primary nutrients to the host plant. Biofertilizers are well recognized as an important component of integrated plant nutrient management for sustainable agriculture and hold a great promise improve crop yield. The present study for the sake of evaluating the...

  11. Assessment of refractive astigmatism and simulated therapeutic refractive surgery strategies in coma-like-aberrations-dominant corneal optics

    Zhou, Wen; Stojanovic, Aleksandar; Utheim, Tor Paaske

    2016-01-01

    Background The aim of the study is to raise the awareness of the influence of coma-like higher-order aberrations (HOAs) on power and orientation of refractive astigmatism (RA) and to explore how to account for that influence in the planning of topography-guided refractive surgery in eyes with coma-like-aberrations-dominant corneal optics. Methods Eleven eyes with coma-like-aberrations-dominant corneal optics and with low lenticular astigmatism (LA) were selected for astigmatism analysis and f...

  12. Simultaneous and independent adaptive correction of spherical and chromatic aberration using an electron mirror and lens combination.

    Fitzgerald, J P S; Word, R C; Könenkamp, R

    2012-04-01

    We present a theoretical analysis of an electrostatic triode mirror combined with an einzel lens for the correction of spherical and chromatic aberration. We show that this device adaptively corrects spherical and chromatic aberration simultaneously and independently. Chromatic aberration can be compensated over a relative range of -38% to +100%, and spherical aberration over ±100% range. We compare the analytic calculation with a numerical simulation and show that the two descriptions agree to within 5% in the relevant operating regime of the device. PMID:22459116

  13. The enemy within: propagation of aberrant corticostriatal learning to cortical function in Parkinson's disease

    Jeff A Beeler

    2013-09-01

    Full Text Available Motor dysfunction in Parkinson’s disease is believed to arise primarily from pathophysiology in the dorsal striatum and its related corticostriatal and thalamostriatal circuits during progressive dopamine denervation. One function of these circuits is to provide a filter that selectively facilitates or inhibits cortical activity to optimize cortical processing, making motor responses rapid and efficient. Corticostriatal synaptic plasticity mediates the learning that underlies this performance-optimizing filter. Under dopamine denervation, corticostriatal plasticity is altered, resulting in aberrant learning that induces inappropriate basal ganglia filtering that impedes rather than optimizes cortical processing. Human imaging suggests that increased cortical activity may compensate for striatal dysfunction in PD patients. In this Perspective article, we consider how aberrant learning at corticostriatal synapses may impair cortical processing and learning and undermine potential cortical compensatory mechanisms. Blocking or remediating aberrant corticostriatal plasticity may protect cortical function and support cortical compensatory mechanisms mitigating the functional decline associated with progressive dopamine denervation.

  14. Proton and Fe Ion-Induced Early and Late Chromosome Aberrations in Different Cell Types

    Lu, Tao; Zhang, Ye; Yeshitla, Samrawit; Bowler, Deborah; Kadhim, Munira; Wilson, Bobby; Wu, Honglu

    2016-01-01

    Genomic instability, induced by various metabolic, genetic, and environmental factors, is the driving force of tumorigenesis. Radiation exposure from different types of radiation sources induces different types of DNA damages, increases mutation and chromosome aberration rates, and increases cellular transformation in vitro and in vivo experiments. The cell survival rates and frequency of chromosome aberrations depend on the genetic background and radiation sources. To further understand genomic instability induced by charged particles, we exposed human lymphocytes ex vivo, human fibroblast cells, human mammary epithelial cells, and bone marrow cells isolated from CBA/CaH and C57BL/6 mice to high energy protons and Fe ions, and collected chromosomes at different generations after exposure. Chromosome aberrations were analyzed with fluorescent in situ hybridization with whole chromosome specific probes.

  15. SURF imaging beams in an aberrative medium: generation and post-processing enhancement

    Nasholm, Sven Peter; 10.1109/TUFFC.2012.2494

    2013-01-01

    This paper presents numerical simulations of dual-frequency second-order ultrasound field (SURF) reverberation suppression transmit-pulse complexes. Such propagation was previously studied in a homogeneous medium. Here instead the propagation path includes a strongly aberrating body-wall modeled by a sequence of delay-screens. The applied SURF transmit pulse complexes each consist of a high-frequency imaging 3.5 MHz pulse combined with a low-frequency 0.5 MHz sound speed manipulation pulse. Furthermore, the feasibility of two signal post-processing methods are investigated using the aberrated transmit SURF beams. These methods are previously shown to adjust the depth of maximum SURF reverberation suppression within a homogeneous medium. The request of the study arises because imaging situations where reverberation suppression is useful are also likely to produce pulse wave-front distortion (aberration). Such distortions could potentially produce time-delays that cancel the accumulated propagation time-delay n...

  16. Zero-inflated regression models for radiation-induced chromosome aberration data: A comparative study.

    Oliveira, María; Einbeck, Jochen; Higueras, Manuel; Ainsbury, Elizabeth; Puig, Pedro; Rothkamm, Kai

    2016-03-01

    Within the field of cytogenetic biodosimetry, Poisson regression is the classical approach for modeling the number of chromosome aberrations as a function of radiation dose. However, it is common to find data that exhibit overdispersion. In practice, the assumption of equidispersion may be violated due to unobserved heterogeneity in the cell population, which will render the variance of observed aberration counts larger than their mean, and/or the frequency of zero counts greater than expected for the Poisson distribution. This phenomenon is observable for both full- and partial-body exposure, but more pronounced for the latter. In this work, different methodologies for analyzing cytogenetic chromosomal aberrations datasets are compared, with special focus on zero-inflated Poisson and zero-inflated negative binomial models. A score test for testing for zero inflation in Poisson regression models under the identity link is also developed. PMID:26461836

  17. Adaptive, spatially-varying aberration correction for real-time holographic projectors.

    Kaczorowski, Andrzej; Gordon, George S D; Wilkinson, Timothy D

    2016-07-11

    A method of generating an aberration- and distortion-free wide-angle holographically projected image in real time is presented. The target projector is first calibrated using an automated adaptive-optical mechanism. The calibration parameters are then fed into the hologram generation program, which applies a novel piece-wise aberration correction algorithm. The method is found to offer hologram generation times up to three orders of magnitude faster than the standard method. A projection of an aberration- and distortion-free image with a field of view of 90x45 degrees is demonstrated. The implementation on a mid-range GPU achieves high resolution at a frame rate up to 12fps. The presented methods are automated and can be performed on any holographic projector. PMID:27410846

  18. Measurement of the atmospheric primary aberrations by a 4-aperture differential image motion monitor

    Shomali, Ramin; Nasiri, Sadollah; Darudi, Ahmad

    2011-05-01

    The present paper investigates and discusses the ability of the Hartmann test with a 4-aperture differential image motion monitor (DIMM) to measure the atmospheric primary aberrations which, in turn, can be used for the calculation of the atmospheric coherence time. Through performing numerical simulations, we show that the 4-aperture DIMM is able to measure the defocus and astigmatism terms correctly whereas its results are not reliable for the coma. The most important limitations in the measurement of the primary aberrations by the 4-aperture DIMM are the centroid displacements of the spots which are caused by the higher order aberrations. This effect is negligible in the calculation of the defocus and astigmatisms, whereas it cannot be ignored in the calculation of the coma.

  19. Low-Order Aberration Sensitivity of Eighth-Order Coronagraph Masks

    Shaklan, Stuart B.; Green, Joseph J.

    2005-07-01

    In a recent paper, Kuchner, Crepp, and Ge describe new image-plane coronagraph mask designs that reject to eighth order the leakage of starlight caused by image motion at the mask, resulting in a substantial relaxation of image centroiding requirements compared to previous fourth-order and second-order masks. They also suggest that the new masks are effective at rejecting leakage caused by low-order aberrations (e.g., focus, coma, and astigmatism). In this paper, we derive the sensitivity of eighth-order masks to aberrations of any order and provide simulations of coronagraph behavior in the presence of optical aberrations. We find that the masks leak light as the fourth power of focus, astigmatism, coma, and trefoil. This has tremendous performance advantages for the Terrestrial Planet Finder Coronagraph.

  20. Measurement of the atmospheric primary aberrations by a 4-aperture differential image motion monitor

    The present paper investigates and discusses the ability of the Hartmann test with a 4-aperture differential image motion monitor (DIMM) to measure the atmospheric primary aberrations which, in turn, can be used for the calculation of the atmospheric coherence time. Through performing numerical simulations, we show that the 4-aperture DIMM is able to measure the defocus and astigmatism terms correctly whereas its results are not reliable for the coma. The most important limitations in the measurement of the primary aberrations by the 4-aperture DIMM are the centroid displacements of the spots which are caused by the higher order aberrations. This effect is negligible in the calculation of the defocus and astigmatisms, whereas it cannot be ignored in the calculation of the coma

  1. Left common carotid artery arising from brachiocephalic trunk and their aberrant course displacing trachea

    Pratiksha Yadav

    2016-09-01

    Full Text Available Bovine arch commonly refer a group of congenital variations in the branches of arch of aorta, in which there is aberrant origin of left common carotid artery. These are usually detected incidentally, however rarely they can cause dysphagia lusoria. We report a case of bovine arch and aberrant left common carotid artery in a 62 years old female who had come with complaint of mild dyspnea. On radiograph there was superior mediastinal widening and shift of trachea to right side. CT scan was advised for further evaluation. On CECT there was only two main branches arised from arch of aorta, brachiocephalic trunk and right subclavian artery. There was aberrant origin of left common carotid artery seen from brachiocephalic trunk. The brachiocephalic trunk was very tortuous and displacing trachea to right side. [Int J Res Med Sci 2016; 4(9.000: 4220-4222

  2. Cell survival and chromosomal aberrations in CHO-K1 cells irradiated by carbon ions

    Czub, J. [Institute of Physics, Swietokrzyska Academy, ul. Swietokrzyska 15, 25-406 Kielce (Poland); Banas, D. [Institute of Physics, Swietokrzyska Academy, ul. Swietokrzyska 15, 25-406 Kielce (Poland); Holycross Cancer Center, ul. Swietokrzyska 15, 25-406 Kielce (Poland); Blaszczyk, A. [Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziadzka 5, 87-100 Torun (Poland); Braziewicz, J. [Institute of Physics, Swietokrzyska Academy, ul. Swietokrzyska 15, 25-406 Kielce (Poland); Holycross Cancer Center, ul. Swietokrzyska 15, 25-406 Kielce (Poland); Buraczewska, I. [Institute of Nuclear Chemistry and Technology, ul. Dorodna 16, 03-195 Warsaw (Poland); Choinski, J. [Heavy Ion Laboratory, Warsaw University, ul. Pasteura 5A, 02-093 Warsaw (Poland); Gorak, U. [Institute of Experimental Physics, Warsaw University, ul. Hoza 69, 00-681 Warsaw (Poland); Jaskola, M.; Korman, A. [Andrzej Soltan Institute for Nuclear Studies, 05-400 Otwock-Swierk (Poland); Lankoff, A.; Lisowska, H. [Institute of Biology, Swietokrzyska Academy, ul. Swietokrzyska 15, 25-406 Kielce (Poland); Lukaszek, A. [Institute of Experimental Physics, Warsaw University, ul. Hoza 69, 00-681 Warsaw (Poland); Main School of Fire Service, ul. Slowackiego 52/54, 01-629 Warsaw (Poland); Szeflinski, Z. [Institute of Experimental Physics, Warsaw University, ul. Hoza 69, 00-681 Warsaw (Poland)], E-mail: szef@fuw.edu.pl; Wojcik, A. [Institute of Nuclear Chemistry and Technology, ul. Dorodna 16, 03-195 Warsaw (Poland); Institute of Biology, Swietokrzyska Academy, ul. Swietokrzyska 15, 25-406 Kielce (Poland)

    2009-03-15

    Chinese hamster ovary CHO-K1 cells were exposed to high LET {sup 12}C-beam (LET: 830 keV/{mu}m) in the dose range of 0-6 Gy and to {sup 60}Co irradiation and the RBE value was obtained. Effects of {sup 12}C-beam exposure on cell survival and chromosomal aberrations were calculated. The chromosomal aberration data were fitted with linear equation. The distribution of aberration in cells was examined with a standard u-test and used to evaluate the data according to Poisson probabilities. The variance to the mean ratio {sigma}{sup 2}/Y and the dispersion index (u) were determined. Overdispersion was significant (p<0.05) when the value of u exceeded 1.96.

  3. Chromosomal aberrations induced by alpha particles; Aberraciones cromosomicas inducidas por particulas {alpha}

    Guerrero C, C.; Brena V, M. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)]. e-mail: cgc@nuclear.inin.mx

    2005-07-01

    The chromosomal aberrations produced by the ionizing radiation are commonly used when it is necessary to establish the exposure dose of an individual, it is a study that is used like complement of the traditional physical systems and its application is only in cases in that there is doubt about what indicates the conventional dosimetry. The biological dosimetry is based on the frequency of aberrations in the chromosomes of the lymphocytes of the individual in study and the dose is calculated taking like reference to the dose-response curves previously generated In vitro. A case of apparent over-exposure to alpha particles to which is practiced analysis of chromosomal aberrations to settle down if in fact there was exposure and as much as possible, to determine the presumed dose is presented. (Author)

  4. Automatic Compensation of Total Phase Aberrations in Digital Holographic Biological Imaging

    Digital holographic microscopy has been a powerful metrological technique for phase-contrast imaging. However inherent phase aberrations always exist and degrade the quality of the phase-contrast images. A surface fitting method based on an improved mathematic model is proposed, which can be used to remove the phase aberrations without any pre-knowledge of the setup or manual operation. The improved mathematic model includes not only the usual terms but also the cross terms and the high order terms to describe the phase aberrations with high accuracy. Meanwhile, a non-iterative algorithm is used to solve the parametersand thus less computational load is imposed. The proposed method is applied to the live imaging of cells. The experimental results verify its validity. (fundamental areas of phenomenology(including applications))

  5. A magnetic liquid deformable mirror for high stroke and low order axially symmetrical aberrations

    Brousseau, D; Parent, J; Ruel, H J; Borra, Ermanno F.; Brousseau, Denis; Parent, Jocelyn; Ruel, Hubert-Jean

    2006-01-01

    We present a new class of magnetically shaped deformable liquid mirrors made of a magnetic liquid (ferrofluid). Deformable liquid mirrors offer advantages with respect to deformable solid mirrors: large deformations, low costs and the possibility of very large mirrors with added aberration control. They have some disadvantages (e.g. slower response time). We made and tested a deformable mirror, producing axially symmetrical wavefront aberrations by applying electric currents to 5 concentric coils made of copper wire wound on aluminum cylinders. Each of these coils generates a magnetic field which combines to deform the surface of a ferrofluid to the desired shape. We have carried out laboratory tests on a 5 cm diameter prototype mirror and demonstrated defocus as well as Seidel and Zernike spherical aberrations having amplitudes up to 20 microns, which was the limiting measurable amplitude of our equipment

  6. An Aberration Corrected Photoemission Electron Microscope at the Advanced Light Source

    Design of a new aberration corrected Photoemission electron microscope PEEM3 at the Advanced Light Source is outlined. PEEM3 will be installed on an elliptically polarized undulator beamline and will be used for the study of complex materials at high spatial and spectral resolution. The critical components of PEEM3 are the electron mirror aberration corrector and aberration-free magnetic beam separator. The models to calculate the optical properties of the electron mirror are discussed. The goal of the PEEM3 project is to achieve the highest possible transmission of the system at resolutions comparable to our present PEEM2 system (50 nm) and to enable significantly higher resolution, albeit at the sacrifice of intensity. We have left open the possibility to add an energy filter at a later date, if it becomes necessary driven by scientific need to improve the resolution further

  7. Aberration-Free Imaging Based on Parity-Time Symmetric Nonlocal Metasurfaces

    Monticone, Francesco; Alu, Andrea

    2015-01-01

    Lens design for focusing and imaging has been optimized through centuries of developments; however, conventional lenses, even in their most ideal realizations, still suffer from fundamental limitations, such as limits in resolution and the presence of optical aberrations, which are inherent to the laws of refraction. Although some of these limitations have been at least theoretically relaxed with the advent of metamaterials, several challenges still stand in the path toward ideal aberration-free imaging. Here, we show that the concept of parity-time symmetry, combined with tailored nonlocal response, allows overcoming some of these challenges, and we demonstrate the design of a loss-immune, linear, transversely invariant, aberration-free planarized metamaterial lens.

  8. Aberrant Promoter Hypomethylation in CLL: Does It Matter for Disease Development?

    Upchurch, Garland Michael; Haney, Staci L.; Opavsky, Rene

    2016-01-01

    Over the last 30 years, studies of aberrant DNA methylation in hematologic malignancies have been dominated by the primary focus of understanding promoter hypermethylation. These efforts not only resulted in a better understanding of the basis of epigenetic silencing of tumor suppressor genes but also resulted in approval of hypomethylating agents for the treatment of several malignancies, such as myelodysplastic syndrome and acute myeloid leukemia. Recent advances in global methylation profiling coupled with the use of mouse models suggest that aberrant promoter hypomethylation is also a frequent event in hematologic malignancies, particularly in chronic lymphocytic leukemia (CLL). Promoter hypomethylation affects gene expression and, therefore, may play an important role in disease pathogenesis. Here, we review recent findings and discuss the potential involvement of aberrant promoter hypomethylation in CLL. PMID:27563627

  9. Investigating the influence of chromatic aberration and optical illumination bandwidth on fundus imaging in rats

    Li, Hao; Liu, Wenzhong; Zhang, Hao F.

    2015-10-01

    Rodent models are indispensable in studying various retinal diseases. Noninvasive, high-resolution retinal imaging of rodent models is highly desired for longitudinally investigating the pathogenesis and therapeutic strategies. However, due to severe aberrations, the retinal image quality in rodents can be much worse than that in humans. We numerically and experimentally investigated the influence of chromatic aberration and optical illumination bandwidth on retinal imaging. We confirmed that the rat retinal image quality decreased with increasing illumination bandwidth. We achieved the retinal image resolution of 10 μm using a 19 nm illumination bandwidth centered at 580 nm in a home-built fundus camera. Furthermore, we observed higher chromatic aberration in albino rat eyes than in pigmented rat eyes. This study provides a design guide for high-resolution fundus camera for rodents. Our method is also beneficial to dispersion compensation in multiwavelength retinal imaging applications.

  10. Cytogenetic biological dosimetry in radiological protection: chromosome aberration analysis in human lymphocyties

    The effects of ionizing radiation on chromosomes have been know for several decades and dose effect relationships are also fairly well established for several doses and dose rates. Apart from its biological significance, the interpretation of chromosome aberration frequency associated with human exposure to radiation plays an important role in dose assessment, particularly in cases where exposure is though to have occurred but no physical dose monitoring system was present. Based on the cytogenetic data obtained from seven cases of exposure to radiation the aberration frequency have been fitted to the quadratic function Y= αD + βD2 as the dose response curves from literature. The dose equivalent estimate by frequency of chromosomic aberration found here was compared with 60Co and 192Ir already published curves obtained at almost similar dose rate together with some hematological data. (author)

  11. Protective Effect of Curcumin on γ - radiation Induced Chromosome Aberrations in Human Blood Lymphocytes

    The present work is aimed at evaluating the radioprotective effect of curcumin on γ radiation induced genetic toxicity. The DNA damage was analyzed by the frequencies of chromosome aberrations assay. Human lymphocytes were treated in vitro with 5.0 γg/ml of curcumin for 30 min at 37 degree C then exposed to 1, 2 and 4 Gy gamma-radiation. The lymphocytes which were pre-treated with curcumin exhibited a significant decrease in the frequency of chromosome aberration at 1 and 2 Gy radiation-induced chromosome damage as compared with the irradiated cells which did not receive the curcumin pretreatment. Thus, pretreatment with curcumin gives protection to lymphocytes against γ-radiation induced chromosome aberration at certain doses. (author)

  12. Chromosome aberrations induced in human lymphocytes by U-235 fission neutrons. Pt. 2

    Blood samples were spiked with Na-24 to study the separate effect of this nuclide on the incidence of chromosomal aberrations in neutron irradiated blood samples. A delay of 96 h was allowed before cultivation, so the results of chromosomal aberration analysis could be compared with the results obtained by direct irradiation of blood samples with U-235 fission neutrons. The absorbed dose was calculated using a simple conservative model. From the results obtained we can conclude that Na-24 alone was not the reason for the difference in the incidence of chromosomal aberrations between blood samples cultivated immediately after 'in vitro' irradiation by U-235 fission neutrons and samples which were cultivated after 96 h storage. (orig.)

  13. Measuring chromatic aberrations in imaging systems using plasmonic nano-particles

    Gennaro, Sylvain D; Maier, Stefan A; Oulton, Rupert F

    2015-01-01

    Chromatic aberration in optical systems arises from the wavelength dependence of a glass's refractive index. Polychromatic rays incident upon an optical surface are refracted at slightly different angles and in traversing an optical system follow distinct paths creating images displaced according to color. Although arising from dispersion, it manifests as a spatial distortion correctable only with compound lenses with multiple glasses and accumulates in complicated imaging systems. While chromatic aberration is measured with interferometry, simple methods are attractive for their ease of use and low cost. In this letter we retrieve the longitudinal chromatic focal shift of high numerical aperture (NA) microscope objectives from the extinction spectra of metallic nanoparticles within the focal plane. The method is accurate for high NA objectives with apochromatic correction, and enables rapid assessment of the chromatic aberration of any complete microscopy systems, since it is straightforward to implement

  14. Wavefront aberration function in terms of R. V. Shack's vector product and Zernike polynomial vectors.

    Gray, Robert W; Rolland, Jannick P

    2015-10-01

    Previous papers have shown how, for rotationally symmetric optical imaging systems, nodes in the field dependence of the wavefront aberration function develop when a rotationally symmetric optical surface within an imaging optical system is decentered and/or tilted. In this paper, we show how Shack's vector product (SVP) can be used to express the wavefront aberration function and to define vectors in terms of the Zernike polynomials. The wavefront aberration function is then expressed in terms of the Zernike vectors. It is further shown that SVP fits within the framework of two-dimensional geometric algebra (GA). Within the GA framework, an equation for the third-order node locations for the binodal astigmatism term that emerge in the presence of tilts and decenters is then demonstrated. A computer model of a three-mirror telescope system is used to demonstrate the validity of the mathematical development. PMID:26479937

  15. Correcting for color crosstalk and chromatic aberration in multicolor particle shadow velocimetry

    Color crosstalk and chromatic aberration can bias estimates of fluid velocity measured by color particle shadow velocimetry (CPSV), using multicolor illumination and a color camera. This article describes corrections to remove these bias errors, and their evaluation. Color crosstalk removal is demonstrated with linear unmixing. It is also shown that chromatic aberrations may be removed using either scale calibration, or by processing an image illuminated by all colors simultaneously. CPSV measurements of a fully developed turbulent pipe flow of glycerin were conducted. Corrected velocity statistics from these measurements were compared to both single-color PSV and LDV measurements and showed excellent agreement to fourth-order, to well into the viscous sublayer. Recommendations for practical assessment and correction of color aberration and color crosstalk are discussed. (paper)

  16. Effect of epithalon on the incidence of chromosome aberrations in senescence-accelerated mice.

    Rosenfeld, S V; Togo, E F; Mikheev, V S; Popovich, I G; Khavinson, V Kh; Anisimov, V N

    2002-03-01

    The incidence of chromosome aberrations in bone marrow cells of 12-month-old SAMP-1 female mice characterized by accelerated aging was 1.8 times higher than in wild-type SAMR-1 females and 2.2 times higher than in SHR females of the same age. Treatment with Epithalon (Ala-Glu-Asp-Gly) starting from the age of 2 months decreased the incidence of chromosome aberrations in SAMP-1, SAMR-1, and SHR mice by 20%, 30.1%, and 17.9%, respectively, compared to age-matched controls (p<0.05). Treatment with melatonin (given with drinking water in a dose of 20 mg/liter in night hours) had no effect on the incidence of chromosome aberrations in SHR mice. These data indicate antimutagenic effect of Epithalon, which probably underlies the geroprotective effect of this peptide. PMID:12360351

  17. Chromatin dynamics during cell cycle mediate conversion of DNA damage into chromatid breaks and affect formation of chromosomal aberrations: Biological and clinical significance

    Terzoudi, Georgia I.; Hatzi, Vasiliki I. [Institute of Radioisotopes and Radiodiagnostic Products, National Centre for Scientific Research ' Demokritos' , 15310 Ag. Paraskevi Attikis, Athens (Greece); Donta-Bakoyianni, Catherine [Oral Diagnosis and Radiology, University of Athens Dental School, Athens (Greece); Pantelias, Gabriel E., E-mail: gabriel@ipta.demokritos.gr [Institute of Radioisotopes and Radiodiagnostic Products, National Centre for Scientific Research ' Demokritos' , 15310 Ag. Paraskevi Attikis, Athens (Greece)

    2011-06-03

    The formation of diverse chromosomal aberrations following irradiation and the variability in radiosensitivity at different cell-cycle stages remain a long standing controversy, probably because most of the studies have focused on elucidating the enzymatic mechanisms involved using simple DNA substrates. Yet, recognition, processing and repair of DNA damage occur within the nucleoprotein complex of chromatin which is dynamic in nature, capable of rapid unfolding, disassembling, assembling and refolding. The present work reviews experimental work designed to investigate the impact of chromatin dynamics and chromosome conformation changes during cell-cycle in the formation of chromosomal aberrations. Using conventional cytogenetics and premature chromosome condensation to visualize interphase chromatin, the data presented support the hypothesis that chromatin dynamic changes during cell-cycle are important determinants in the conversion of sub-microscopic DNA lesions into chromatid breaks. Consequently, the type and yield of radiation-induced chromosomal aberrations at a given cell-cycle-stage depends on the combined effect of DNA repair processes and chromatin dynamics, which is cell-cycle-regulated and subject to up- or down-regulation following radiation exposure or genetic alterations. This new hypothesis is used to explain the variability in radiosensitivity observed at various cell-cycle-stages, among mutant cells and cells of different origin, or among different individuals, and to revisit unresolved issues and unanswered questions. In addition, it is used to better understand hypersensitivity of AT cells and to provide an improved predictive G2-assay for evaluating radiosensitivity at individual level. Finally, experimental data at single cell level obtained using hybrid cells suggest that the proposed hypothesis applies only to the irradiated component of the hybrid.

  18. Present status of fission yield data

    Fission yield data of minor actinides are needed for transmutation of nuclear waste by an ADS system. The yield data, however, are not enough for the application. The present status of the yield data is presented in this report. (author)

  19. Stellar Yields and Chemical Evolution

    Gibson, Brad K.

    1997-01-01

    Several speakers at IAU Symposium #187 (Cosmic Chemical Evolution) alluded to the zeroth-order agreement between Type II supernovae (SNe) stellar yield compilations, as predicted by the models of those most responsible for driving progress in the field - i.e., Arnett (1991,1996); Maeder (1992); Woosley & Weaver (1995); Langer & Henkel (1995); Thielemann et al. (1996). It is important though for those entering (or indeed, already involved in!) the chemical evolution field to be cognizant of th...

  20. Chromosome painting analysis of radiation-induced aberrant cell clones in the mouse

    In a study of the persistence of radiation-induced translocations over the life span of the mouse, we observed a number of clonal cells in peripheral blood lymphocytes. The presence of clones caused the mean frequency of aberrations at various time points to be elevated which interfered with biodosimetry. For this reason, we have corrected our data for the presence of clones. Mice were given an acute dose of 0, 1, 2, 3 or 4 Gy 137Cs at 8 weeks of age. Aberrations were measured by painting chromosomes 2 and 8 and cells were examined for clones at 3 months and every 3 months thereafter until 21 months. Clones were identified by comparing the color photographic slides of all abnormal cells from each animal. Determination of clonality was made on the basis of similar breakpoint locations or the presence of other identifying characteristics such as unusual aberrations. To correct the frequency of translocations for the presence of clones, each clone, regardless of how many cells it contained, was counted only once. This reflects the original aberration frequency since each clone originated as only one cell. Among mice exposed to 4 Gy, the mean frequencies of aberrant cell clones ranged from 3-29% of the total number of metaphase cells scored with the highest frequency being 1 year post exposure. 32-70% of reciprocal and 19-92% of non-reciprocal translocations were clonal. A dose response relationship for clones was evident until 21 months when the unexposed animals exhibited a mean frequency of aberrant cell clones >10% of the total number of cells scored. Almost 75% of reciprocal and 95% of non-reciprocal translocations in these unexposed control animals were of clonal origin. Correction for clonal expansion greatly reduced the means and their standard errors at most time points where clonal expansion was prevalent. The biodosimetry was much improved suggesting that correction is beneficial in long-term studies

  1. Using kinematics and a dynamical systems approach to enhance understanding of clinically observed aberrant movement patterns.

    Spinelli, Bryan A; Wattananon, Peemongkon; Silfies, Sheri; Talaty, Mukul; Ebaugh, David

    2015-02-01

    The objective of this technical paper is to demonstrate how graphing kinematic data to represent body segment coordination and control can assist clinicians and researchers in understanding typical and aberrant human movement patterns. Aberrant movements are believed to be associated with musculoskeletal pain and dysfunction. A dynamical systems approach to analysing movement provides a useful way to study movement control and coordination. Continuous motion angle-angle and coupling angle-movement cycle graphs provide information about coordinated movement between body segments, whereas phase-plane graphs provide information about neuromuscular control of a body segment. Examples demonstrate how a dynamical systems approach can be used to represent (1) typical movement patterns of the lumbopelvic and shoulder regions; (2) aberrant coordination in an individual with low back pain who presented with altered lumbopelvic rhythm; and (3) aberrant control of shoulder movement in an individual with observed scapular dysrhythmia. Angle-angle and coupling angle-movement cycle graphs were consistent with clinical operational definitions of typical and altered lumbopelvic rhythm. Phase-plane graphs illustrated differences in scapular control between individuals having typical scapular motion and an individual with scapular dysrhythmia. Angle-angle, coupling angle-movement cycle, and phase-plane graphs provide information about the amount and timing of segmental motion, which clinicians assess when they observe movements. These approaches have the potential to (1) enhance understanding of typical and aberrant movement patterns; (2) assist with identifying underlying movement impairments that contribute to aberrant movements: and (3) improve clinicians' ability to visually assess and categorize functional movements. PMID:25116648

  2. Gaussian formula and spherical aberration of the static and moving curved mirrors from Fermat's principle

    Sutanto, Sylvia H

    2009-01-01

    The Gaussian formula and spherical aberration of the static and moving curved mirrors are analyzed using the construction of optical path length (OPL) and the application of the Fermat's principle to the OPL. The mirrors formed by geometrical figures generated by the rotation of conic sections about their symmetry axes are considered. By comparing the results in static and moving cases, it is shown that the focal lengths of the moving mirrors get shorter by the factor of $1 - \\frac{v^2}{c^2}$, and spherical aberrations depends on the movement of the mirrors.

  3. Disruption of Maternal DNA Repair Increases Sperm-DerivedChromosomal Aberrations

    Marchetti, Francesco; Essers, Jeroun; Kanaar, Roland; Wyrobek,Andrew J.

    2007-02-07

    The final weeks of male germ cell differentiation occur in aDNA repair-deficient environment and normal development depends on theability of the egg to repair DNA damage in the fertilizing sperm. Geneticdisruption of maternal DNA double-strand break repair pathways in micesignificantly increased the frequency of zygotes with chromosomalstructural aberrations after paternal exposure to ionizing radiation.These findings demonstrate that radiation-induced DNA sperm lesions arerepaired after fertilization by maternal factors and suggest that geneticvariation in maternal DNA repair can modulate the risk of early pregnancylosses and of children with chromosomal aberrations of paternalorigin.

  4. Display depth analyses with the wave aberration for the auto-stereoscopic 3D display

    Gao, Xin; Sang, Xinzhu; Yu, Xunbo; Chen, Duo; Chen, Zhidong; Zhang, Wanlu; Yan, Binbin; Yuan, Jinhui; Wang, Kuiru; Yu, Chongxiu; Dou, Wenhua; Xiao, Liquan

    2016-07-01

    Because the aberration severely affects the display performances of the auto-stereoscopic 3D display, the diffraction theory is used to analyze the diffraction field distribution and the display depth through aberration analysis. Based on the proposed method, the display depth of central and marginal reconstructed images is discussed. The experimental results agree with the theoretical analyses. Increasing the viewing distance or decreasing the lens aperture can improve the display depth. Different viewing distances and the LCD with two lens-arrays are used to verify the conclusion.

  5. Chromosome aberrations in human lymphocytes, chronically exposed to different doses of gamma radiation in vitro

    Man's blood, not stimulated with phytohemagglutinin has been subjected to a chronic gamma irradiation from the 226Ra(99 mg) source at the temperature of 37 deg C. The obtained metaphase plates have been used to carry out the quantitative analysis of separate types of structural chromosomal aberrations. Quantitative results on aberrant cells have been statistically processed. It is established, that the increase of dose rate lends to the increase in the share of those dicentrics, that appeared as a result of one-trail process, while that output of two-trail dicentrics remains constant

  6. Effects of spherical aberration on the laser beam of a bar code scanner

    Tang, Hong

    1998-08-01

    The modulation transfer function of bar code scanning is a useful tool for evaluating the performance of the scanning laser beam. Understanding the behavior of the scanning laser system near the end of its depth of focus is of particular interest because it may lead to the development of techniques that could effective extend the depth of focus. In the article the MTF at focus and the two extremes of the depth of focus are presented. The presence of spherical aberration in the scanning laser beam generally reduces the depth of focus. The effects of the spherical aberration to the MTF is presented and discussed.

  7. A molecular mechanism for aberrantCFTR-dependent HCO3– transport in cystic fibrosis

    Ko, Shigeru B. H.; Shcheynikov, Nikolay; Choi, Joo Young; Luo, Xiang; Ishibashi, Kenichi; Thomas, Philip J.; Kim, Joo Young; Kim, Kyung Hwan; Lee, Min Goo; Naruse, Satoru; Muallem, Shmuel

    2002-01-01

    Aberrant HCO3– transport is a hallmark of cystic fibrosis (CF) and is associated with aberrant Cl–-dependent HCO3– transport by the cystic fibrosis transmembrane conductance regulator (CFTR). We show here that HCO3– current by CFTR cannot account for CFTR-activated HCO3– transport and that CFTR does not activate AE1–AE4. In contrast, CFTR markedly activates Cl– and OH–/HCO3– transport by members of the SLC26 family DRA, SLC26A6 and pendrin. Most notably, the SLC26s are electrogenic transporte...

  8. Induction of chromosome aberrations in rabbit lymphocytes by low doses of X-rays and neutrons

    The induction of dicentric aberrations has been studied in rabbit lymphocytes after exposure to low doses of X-rays or d(50)+Be neutrons. The aberrations have been analysed in first division cells collected after a 32 h culture time. In both cases, the dose response relationship is best fitted to a linear-quadratic model. Rabbit lymphocytes are less radiosensitive than human lymphocytes and RBE is lower in rabbit than in human cells. These discrepancies could be due to differences in the repair capacities for the lesions induced by X-rays and neutrons in rabbit and human lymphocytes

  9. Aberrant thermoluminescence dates obtained from primary volcanic quartz

    This study deals with the dating by thermoluminescence (TL) of quartz from six volcanic formations of the Saint Lucia Island (Lesser Antilles Arc). Quartz microcrystals up to one millimetre in size were extracted from dacites and pumice flows and prepared in a way similar to the well-known inclusion technique. The TL properties of these quartz were used to estimate apparent palaeodoses using the multi-aliquot protocol. The quartz TL was studied in three different spectral domains: red, green and ultraviolet/blue. The calculated annual dose-rates yielded a set of 18 age-estimates. For some samples complementary dates were obtained using high temperature TL (HTTL) of plagioclase feldspars. These latter dates combined with previously determined radiocarbon and unspiked K-Ar dates were used to explore the validity of ages computed from the TL of quartz. Individual values for quartz appear to be scattered and do not match ages deduced from 14C, unspiked K-Ar or HTTL on plagioclase dates. These results indicate that when conventional TL methodologies derived from the inclusion method are applied to volcanic quartz major dating problems are to be expected

  10. Concerning the evidence for the formation of dicentric chromosomal aberrations by single tracks of very short-ranged radiations

    A recent communication by Thacker et al. reported yields of chromosomal exchange aberrations in V79 hamster cells after irradiation by either 250-kVp x rays or carbon characteristic K x rays of energy 270 eV. These latter produce photoelectrons with ranges of less than 10 nm. Such a distance makes it prima facie unlikely that two chromosomes could be damaged by a single track with a significant frequency. Thacker et al., however, discuss the observed effective linear component of induction of chromosome exchanges by ultrasoft carbon x-rays, and are thus led to consider the possibility that only one chromosome needs to be damaged by radiation to lead to an exchange event. In this paper, the authors analyze the data of Thacker et al. using a simple model. For carbon x rays they take advantage of the fact that the cell nuclei are not subject to a distribution of specific energies, but will each undergo essentially the same number of photon absorption events (each consisting of an energy deposition of 270 eV) for a given dose. They define the probability that a given chromosome will be broken as a result of an energy deposition event. They further define the probability that two chromosomes will be broken as a result of a single energy deposition event

  11. Science Yield Modeling with EXOSIMS

    Garrett, Daniel; Savransky, Dmitry

    2016-01-01

    Accurately modeling science yield of an exoplanet direct imaging mission to build confidence in the achievement of science goals can be almost as complicated as designing the mission itself. It is challenging to compare science simulation results and systematically test the effects of changing instrument or mission designs. EXOSIMS (Exoplanet Open-Source Imaging Mission Simulator) addresses this by generating ensembles of mission simulations for exoplanet direct imaging missions to estimate distributions of science yield. EXOSIMS consists of stand-alone modules written in Python which may be individually modified without requiring modifications to the code elsewhere. This structure allows for user driven systemic exploration of the effects of changing designs on the estimated science yield.The modules of EXOSIMS are classified as either input or simulation modules. Input modules contain specific mission design parameters and functions. These include Planet Population, Star Catalog, Optical System, Zodiacal Light, Planet Physical Model, Observatory, Time Keeping, and Post-Processing. Simulation modules perform tasks requiring input from one or more input modules as well as calling functions from other simulation modules. These include Completeness, Target List, Simulated Universe, Survey Simulation, and Survey Ensemble. The required parameters and functionality of each of these modules is defined in the documentation for EXOSIMS.EXOSIMS is available to the public at https://github.com/dsavransky/EXOSIMS. Included in the documentation is an interface control document which defines the required inputs and outputs to each input and simulation module. Future development of EXOSIMS is intended to be community-driven. Mission planners and instrument designers may quickly write their own modules, following the guidelines in the interface control document, and drop them directly into the code without making additional modifications elsewhere. It is expected that EXOSIMS

  12. Use of the 5-bromodeoxyuridine-labelling technique for exploring mechanisms involved in the formation of chromosomal aberrations. Pt. 2

    Synchronized G1 CHO cells with chromosomes of TB or TT constitution were irradiated with X-rays, short-wave UV and long-wave UV. The types and frequencies of chromosomal aberrations observed in the ensuing mitosis were studied. X-Rays induced predominantly chromosome types of aberration in chromosomes of TT constitution, whereas both chromosome- and chromatid-types of aberration were induced in cells with chromosomes of TB constitution. Short-wave UV induced only chromatid types of aberration in cells containing chromosomes of TT constitution, but both chromosome and chromatid types of aberration in cells with chromosomes of TB constitution. Long-wave UV induced chromosome and chromatid types of aberration in cells with chromosomes of TB constitution and no aberrations in cells containing chromosomes of TT constitution. Long-wave UV-irradiation of cells containing chromosomes of TB constitution increases the frequencies of SCEs. The relationship between chromosome constitution (TT or TB), the type of lesions induced by the 3 different agents employed, and the types chromosomal aberration induced are discussed. (orig.)

  13. Development of a combined chemical and enzymatic approach for the mass spectrometric identification and quantification of aberrant N-glycosylation.

    Chen, Rui; Wang, Fangjun; Tan, Yexiong; Sun, Zhen; Song, Chunxia; Ye, Mingliang; Wang, Hongyang; Zou, Hanfa

    2012-02-16

    Direct mass spectrometric analysis of aberrant protein glycosylation is a challenge to the current analytical techniques. Except lectin affinity chromatography, no other glycosylation enrichment techniques are available for analysis of aberrant glycosylation. In this study, we developed a combined chemical and enzymatic strategy as an alternative for the mass spectrometric analysis of aberrant glycosylation. Sialylated glycopeptides were enriched with reverse glycoblotting, cleaved by endoglycosidase F3 and analyzed by mass spectrometry with both neutral loss triggered MS(3) in collision induced dissociation (CID) and electron transfer dissociation (ETD). Interestingly, a great part of resulted glycopeptides were found with fucose attached to the N-acetylglucosamine (N-GlcNAc), which indicated that the aberrant glycosylation that is carrying both terminal sialylation and core fucosylation was identified. Totally, 69 aberrant N-glycosylation sites were identified in sera samples from hepatocellular carcinoma (HCC) patients. Following the identification, quantification of the level of this aberrant glycosylation was also carried out using stable isotope dimethyl labeling and pooled sera sample from liver cirrhosis and HCC was compared. Six glycosylation sites demonstrated elevated level of aberrancy, which demonstrated that our developed strategy was effective in both qualitative and quantitative studies of aberrant glycosylation. PMID:22202184

  14. Aberrant O-glycosylation and anti-glycan antibodies in an autoimmune disease IgA nephropathy and breast adenocarcinoma

    Stuchlová Horynová, Milada; Raška, Milan; Clausen, Henrik;

    2013-01-01

    Glycosylation abnormalities have been observed in autoimmune diseases and cancer. Here, we compare mechanisms of aberrant O-glycosylation, i.e., formation of Tn and sialyl-Tn structures, on MUC1 in breast cancer, and on IgA1 in an autoimmune disease, IgA nephropathy. The pathways of aberrant O...

  15. Does the yield curve signal recession?

    Haubrich, Joseph G.

    2006-01-01

    Experience has taught economic forecasters to expect a recession when the yield on short-term Treasury securities rises above the yield on longer-term securities—a situation known as a yield-curve inversion. But some economists suspect the yield curve might not be as reliable a predictor of output growth as it used to be.

  16. The minimum yield in channeling

    A first estimate of the minimum yield was obtained from Lindhard's theory, with the assumption of a statistical equilibrium in the transverse phase-space of channeled particles guided by a continuum axial potential. However, computer simulations have shown that this estimate should be corrected by a fairly large factor, C (approximately equal to 2.5), called the Barrett factor. We have shown earlier that the concept of a statistical equilibrium can be applied to understand this result, with the introduction of a constraint in phase-space due to planar channeling of axially channeled particles. Here we present an extended test of these ideas on the basis of computer simulation of the trajectories of 2 MeV α particles in Si. In particular, the gradual trend towards a full statistical equilibrium is studied. We also discuss the introduction of this modification of standard channeling theory into descriptions of the multiple scattering of channeled particles (dechanneling) by a master equation and show that the calculated minimum yields are in very good agreement with the results of a full computer simulation

  17. Nonhomologous DNA end joining and chromosome aberrations in human embryonic lung fibroblasts treated with environmental pollutants

    Rössner ml., Pavel; Rössnerová, Andrea; Beskid, Olena; Tabashidze, Nana; Líbalová, Helena; Uhlířová, Kateřina; Topinka, Jan; Šrám, Radim

    763-764, MAY-JUN 2014 (2014), s. 28-38. ISSN 0027-5107 R&D Projects: GA ČR GAP503/11/0084 Institutional support: RVO:68378041 Keywords : benzo[a]pyrene * chromosome aberrations * double-strand DNA breaks Subject RIV: DN - Health Impact of the Environment Quality Impact factor: 3.680, year: 2014

  18. Low Dose-Rate Effects on Chromosomal Aberrations in Workers Occupationally Exposed to Ionising Radiation

    Full text: Occupational exposure to ionising radiation can be assessed by chromosomal aberrations detected in peripheral blood lymphocytes. Blood samples were collected from 47 occupationally exposed individuals (X-ray diagnostic machines and industrial gamma defectoscopy). The chromosomal aberrations were analysed from at least 500 metaphases per person and their frequencies were compared with those obtained from 110 control individuals. It has been noticed the higher frequency of chromosomal aberrations in the exposed group related to the control. The increase was analysed according to the age groups (31-40, 41-50, and 51-60), sex and duration of employment. The higher frequency of dicentrics was not directly correlated with the age or duration of employment in the exposed group. The acentric fragments were encountered with much higher frequency in the exposed group. The chromosomal aberrations induced by low dose-rate in occupationally exposed people revealed the degree of individual sensitivity and the severity of the initial damage depending on the biological-pathological conditions. (author)

  19. Induction of chromosome aberrations in Chinese hamster cells after heavy ion irradiation

    The induction of structural chromosome changes in V 79-Chinese hamster cells following heavy ion irradiation is studied. Asynchronous exponentially growing cells are exposed to the heavy ion beams at the Unilac, Darmstadt and the Ganil, Caen. The induction of chromosome aberrations was measured as a function of time after exposure. (orig./MG)

  20. Effects of LET, fluence and particle energy on inactivation, chromosomal aberrations and DNA strand breaks

    Experiments are described studying the inactivation and the induction of chromosomal aberrations in mammalian cells. In addition, experiments of the induction of single and double strand breaks of DNA in mammalian cells will be compared to the induction of single and double strand breaks of DNA in solution. (orig./MG)