WorldWideScience

Sample records for aberrant mtorc1 signaling

  1. The impact of cow's milk-mediated mTORC1-signaling in the initiation and progression of prostate cancer

    Melnik Bodo C

    2012-08-01

    Full Text Available Abstract Prostate cancer (PCa is dependent on androgen receptor signaling and aberrations of the PI3K-Akt-mTORC1 pathway mediating excessive and sustained growth signaling. The nutrient-sensitive kinase mTORC1 is upregulated in nearly 100% of advanced human PCas. Oncogenic mTORC1 signaling activates key subsets of mRNAs that cooperate in distinct steps of PCa initiation and progression. Epidemiological evidence points to increased dairy protein consumption as a major dietary risk factor for the development of PCa. mTORC1 is a master regulator of protein synthesis, lipid synthesis and autophagy pathways that couple nutrient sensing to cell growth and cancer. This review provides evidence that PCa initiation and progression are promoted by cow´s milk, but not human milk, stimulation of mTORC1 signaling. Mammalian milk is presented as an endocrine signaling system, which activates mTORC1, promotes cell growth and proliferation and suppresses autophagy. Naturally, milk-mediated mTORC1 signaling is restricted only to the postnatal growth phase of mammals. However, persistent consumption of cow´s milk proteins in humans provide highly insulinotropic branched-chain amino acids (BCAAs provided by milk´s fast hydrolysable whey proteins, which elevate postprandial plasma insulin levels, and increase hepatic IGF-1 plasma concentrations by casein-derived amino acids. BCAAs, insulin and IGF-1 are pivotal activating signals of mTORC1. Increased cow´s milk protein-mediated mTORC1 signaling along with constant exposure to commercial cow´s milk estrogens derived from pregnant cows may explain the observed association between high dairy consumption and increased risk of PCa in Westernized societies. As well-balanced mTORC1-signaling plays an important role in appropriate prostate morphogenesis and differentiation, exaggerated mTORC1-signaling by high cow´s milk consumption predominantly during critical growth phases of prostate development and

  2. The impact of cow's milk-mediated mTORC1-signaling in the initiation and progression of prostate cancer

    Melnik Bodo C; John Swen; Carrera-Bastos Pedro; Cordain Loren

    2012-01-01

    Abstract Prostate cancer (PCa) is dependent on androgen receptor signaling and aberrations of the PI3K-Akt-mTORC1 pathway mediating excessive and sustained growth signaling. The nutrient-sensitive kinase mTORC1 is upregulated in nearly 100% of advanced human PCas. Oncogenic mTORC1 signaling activates key subsets of mRNAs that cooperate in distinct steps of PCa initiation and progression. Epidemiological evidence points to increased dairy protein consumption as a major dietary risk factor for ...

  3. Dietary intervention in acne: Attenuation of increased mTORC1 signaling promoted by Western diet.

    Melnik, Bodo

    2012-01-01

    The purpose of this paper is to highlight the endocrine signaling of Western diet, a fundamental environmental factor involved in the pathogenesis of epidemic acne. Western nutrition is characterized by high calorie uptake, high glycemic load, high fat and meat intake, as well as increased consumption of insulin- and IGF-1-level elevating dairy proteins. Metabolic signals of Western diet are sensed by the nutrient-sensitive kinase, mammalian target of rapamycin complex 1 (mTORC1), which integrates signals of cellular energy, growth factors (insulin, IGF-1) and protein-derived signals, predominantly leucine, provided in high amounts by milk proteins and meat. mTORC1 activates SREBP, the master transcription factor of lipogenesis. Leucine stimulates mTORC1-SREBP signaling and leucine is directly converted by sebocytes into fatty acids and sterols for sebaceous lipid synthesis. Over-activated mTORC1 increases androgen hormone secretion and most likely amplifies androgen-driven mTORC1 signaling of sebaceous follicles. Testosterone directly activates mTORC1. Future research should investigate the effects of isotretinoin on sebocyte mTORC1 activity. It is conceivable that isotretinoin may downregulate mTORC1 in sebocytes by upregulation of nuclear levels of FoxO1. The role of Western diet in acne can only be fully appreciated when all stimulatory inputs for maximal mTORC1 activation, i.e., glucose, insulin, IGF-1 and leucine, are adequately considered. Epidemic acne has to be recognized as an mTORC1-driven disease of civilization like obesity, type 2 diabetes, cancer and neurodegenerative diseases. These new insights into Western diet-mediated mTORC1-hyperactivity provide a rational basis for dietary intervention in acne by attenuating mTORC1 signaling by reducing (1) total energy intake, (2) hyperglycemic carbohydrates, (3) insulinotropic dairy proteins and (4) leucine-rich meat and dairy proteins. The necessary dietary changes are opposed to the evolution of

  4. Intrahippocampal Glutamine Administration Inhibits mTORC1 Signaling and Impairs Long-Term Memory

    Rozas, Natalia S.; Redell, John B.; Pita-Almenar, Juan D.; McKenna, James, III.; Moore, Anthony N.; Gambello, Michael J.; Dash, Pramod K.

    2015-01-01

    The mechanistic Target of Rapamycin Complex 1 (mTORC1), a key regulator of protein synthesis and cellular growth, is also required for long-term memory formation. Stimulation of mTORC1 signaling is known to be dependent on the availability of energy and growth factors, as well as the presence of amino acids. In vitro studies using serum- and amino…

  5. Maternal diabetes promotes mTORC1 downstream signalling in rabbit preimplantation embryos.

    Gürke, Jacqueline; Schindler, Maria; Pendzialek, S Mareike; Thieme, René; Grybel, Katarzyna J; Heller, Regine; Spengler, Katrin; Fleming, Tom P; Fischer, Bernd; Navarrete Santos, Anne

    2016-05-01

    The mammalian target of rapamycin complex 1 (mTORC1) is known to be a central cellular nutrient sensor and master regulator of protein metabolism; therefore, it is indispensable for normal embryonic development. We showed previously in a diabetic pregnancy that embryonic mTORC1 phosphorylation is increased in case of maternal hyperglycaemia and hypoinsulinaemia. Further, the preimplantation embryo is exposed to increased L-leucine levels during a diabetic pregnancy. To understand how mTOR signalling is regulated in preimplantation embryos, we examined consequences of L-leucine and glucose stimulation on mTORC1 signalling and downstream targets in in vitro cultured preimplantation rabbit blastocysts and in vivo. High levels of L-leucine and glucose lead to higher phosphorylation of mTORC1 and its downstream target ribosomal S6 kinase 1 (S6K1) in these embryos. Further, L-leucine supplementation resulted in higher embryonic expression of genes involved in cell cycle (cyclin D1; CCND1), translation initiation (eukaryotic translation initiation factor 4E; EIF4E), amino acid transport (large neutral amino acid transporter 2; Lat2: gene SLC7A8) and proliferation (proliferating cell nuclear antigen; PCNA) in a mTORC1-dependent manner. Phosphorylation of S6K1 and expression patterns of CCND1 and EIF4E were increased in embryos from diabetic rabbits, while the expression of proliferation marker PCNA was decreased. In these embryos, protein synthesis was increased and autophagic activity was decreased. We conclude that mammalian preimplantation embryos sense changes in nutrient supply via mTORC1 signalling. Therefore, mTORC1 may be a decisive mediator of metabolic programming in a diabetic pregnancy. PMID:26836250

  6. Aging impairs contraction-induced human skeletal muscle mTORC1 signaling and protein synthesis

    Fry Christopher S

    2011-03-01

    Full Text Available Abstract Background Sarcopenia, the loss of skeletal muscle mass during aging, increases the risk for falls and dependency. Resistance exercise (RE training is an effective treatment to improve muscle mass and strength in older adults, but aging is associated with a smaller amount of training-induced hypertrophy. This may be due in part to an inability to stimulate muscle-protein synthesis (MPS after an acute bout of RE. We hypothesized that older adults would have impaired mammalian target of rapamycin complex (mTORC1 signaling and MPS response compared with young adults after acute RE. Methods We measured intracellular signaling and MPS in 16 older (mean 70 ± 2 years and 16 younger (27 ± 2 years subjects. Muscle biopsies were sampled at baseline and at 3, 6 and 24 hr after exercise. Phosphorylation of regulatory signaling proteins and MPS were determined on successive muscle biopsies by immunoblotting and stable isotopic tracer techniques, respectively. Results Increased phosphorylation was seen only in the younger group (PP >0.05. After exercise, MPS increased from baseline only in the younger group (PP 0.05. Conclusions We conclude that aging impairs contraction-induced human skeletal muscle mTORC1 signaling and protein synthesis. These age-related differences may contribute to the blunted hypertrophic response seen after resistance-exercise training in older adults, and highlight the mTORC1 pathway as a key therapeutic target to prevent sarcopenia.

  7. Nutritional and contractile regulation of human skeletal muscle protein synthesis and mTORC1 signaling

    Drummond, Micah J.; Dreyer, Hans C.; Fry, Christopher S.; Glynn, Erin L.; Rasmussen, Blake B.

    2009-01-01

    In this review we discuss current findings in the human skeletal muscle literature describing the acute influence of nutrients (leucine-enriched essential amino acids in particular) and resistance exercise on muscle protein synthesis and mammalian target of rapamycin complex 1 (mTORC1) signaling. We show that essential amino acids and an acute bout of resistance exercise independently stimulate human skeletal muscle protein synthesis. It also appears that ingestion of essential amino acids fo...

  8. De novo RRAGC mutation activates mTORC1 signaling in syndromic fetal dilated cardiomyopathy.

    Long, Pamela A; Zimmermann, Michael T; Kim, Maengjo; Evans, Jared M; Xu, Xiaolei; Olson, Timothy M

    2016-08-01

    Idiopathic dilated cardiomyopathy (DCM) is a heritable, genetically heterogeneous disorder with variable age-dependent penetrance. We sought to identify the genetic underpinnings of syndromic, sporadic DCM in a newborn female diagnosed in utero. Postnatal evaluation revealed ventricular dilation and systolic dysfunction, bilateral cataracts, and mild facial dysmorphisms. Comprehensive metabolic and genetic testing, including chromosomal microarray, mitochondrial DNA and targeted RASopathy gene sequencing, and clinical whole exome sequencing for known cardiomyopathy genes was non-diagnostic. Following exclusion of asymptomatic DCM in the parents, trio-based whole exome sequencing was carried out on a research basis, filtering for rare, predicted deleterious de novo and recessive variants. An unreported de novo S75Y mutation was discovered in RRAGC, encoding Ras-related GTP binding C, an essential GTPase in nutrient-activated mechanistic target of rapamycin complex 1 (mTORC1) signaling. In silico protein modeling and molecular dynamics simulation predicted the mutation to disrupt ligand interactions and increase the GDP-bound state. Overexpression of RagC(S75Y) rendered AD293 cells partially insensitive to amino acid deprivation, resulting in increased mTORC1 signaling compared to wild-type RagC. These findings implicate mTORC1 dysregulation through a gain-of-function mutation in RagC as a novel molecular basis for syndromic forms of pediatric heart failure, and expand genotype-phenotype correlation in RASopathy-related syndromes. PMID:27234373

  9. Sestrins Function as Guanine Nucleotide Dissociation Inhibitors for Rag GTPases to Control mTORC1 Signaling

    Peng, Min; Yin, Na; Li, Ming O.

    2014-01-01

    Mechanistic target of rapamycin complex 1 (mTORC1) integrates diverse environmental signals to control cellular growth and organismal homeostasis. In response to nutrients, Rag GTPases recruit mTORC1 to the lysosome to be activated, but how Rags are regulated remains incompletely understood. Here we show that Sestrins bind to the heterodimeric RagA/B-RagC/D GTPases, and function as guanine nucleotide dissociation inhibitors (GDIs) for RagA/B. Sestrin overexpression inhibits amino acid-induced...

  10. Iron depletion suppresses mTORC1-directed signalling in intestinal Caco-2 cells via induction of REDD1

    Watson, Ailsa; Lipina, Christopher; McArdle, Harry J.; Taylor, Peter M.; Hundal, Harinder S.

    2016-01-01

    Iron is an indispensable micronutrient that regulates many aspects of cell function, including growth and proliferation. These processes are critically dependent upon signalling via the mammalian or mechanistic target of rapamycin complex 1 (mTORC1). Herein, we test whether iron depletion induced by cell incubation with the iron chelator, deferoxamine (DFO), mediates its effects on cell growth through mTORC1-directed signalling and protein synthesis. We have used Caco-2 cells, a well-established in vitro model of human intestinal epithelia. Iron depletion increased expression of iron-regulated proteins (TfR, transferrin receptor and DMT1, divalent metal transporter, as predicted, but it also promoted a marked reduction in growth and proliferation of Caco-2 cells. This was strongly associated with suppressed mTORC1 signalling, as judged by reduced phosphorylation of mTOR substrates, S6K1 and 4E-BP1, and diminished protein synthesis. The reduction in mTORC1 signalling was tightly coupled with increased expression and accumulation of REDD1 (regulated in DNA damage and development 1) and reduced phosphorylation of Akt and TSC2. The increase in REDD1 abundance was rapidly reversed upon iron repletion of cells but was also attenuated by inhibitors of gene transcription, protein phosphatase 2A (PP2A) and by REDD1 siRNA — strategies that also antagonised the loss in mTORC1 signalling associated with iron depletion. Our findings implicate REDD1 and PP2A as crucial regulators of mTORC1 activity in iron-depleted cells and indicate that their modulation may help mitigate atrophy of the intestinal mucosa that may occur in response to iron deficiency. PMID:26827808

  11. Regulation of mTORC1 signaling by Src kinase activity is Akt1-independent in RSV-transformed cells

    Vojtěchová, Martina; Turečková, Jolana; Kučerová, Dana; Šloncová, Eva; Vachtenheim, J.; Tuháčková, Zdena

    2008-01-01

    Roč. 10, č. 2 (2008), s. 99-107. ISSN 1522-8002 R&D Projects: GA ČR GA301/04/0550 Institutional research plan: CEZ:AV0Z50520514 Keywords : Akt/PKB * mTORC1 signaling pathway * Src Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 5.191, year: 2008

  12. The cannabinoid CB1 receptor and mTORC1 signalling pathways interact to modulate glucose homeostasis in mice.

    Bermudez-Silva, Francisco J; Romero-Zerbo, Silvana Y; Haissaguerre, Magalie; Ruz-Maldonado, Inmaculada; Lhamyani, Said; El Bekay, Rajaa; Tabarin, Antoine; Marsicano, Giovanni; Cota, Daniela

    2016-01-01

    The endocannabinoid system (ECS) is an intercellular signalling mechanism that is present in the islets of Langerhans and plays a role in the modulation of insulin secretion and expansion of the β-cell mass. The downstream signalling pathways mediating these effects are poorly understood. Mammalian target of rapamycin complex 1 (mTORC1) signalling is a key intracellular pathway involved in energy homeostasis and is known to importantly affect the physiology of pancreatic islets. We investigated the possible relationship between cannabinoid type 1 (CB1) receptor signalling and the mTORC1 pathway in the endocrine pancreas of mice by using pharmacological analysis as well as mice genetically lacking the CB1 receptor or the downstream target of mTORC1, the kinase p70S6K1. In vitro static secretion experiments on islets, western blotting, and in vivo glucose and insulin tolerance tests were performed. The CB1 receptor antagonist rimonabant decreased glucose-stimulated insulin secretion (GSIS) at 0.1 µM while increasing phosphorylation of p70S6K1 and ribosomal protein S6 (rpS6) within the islets. Specific pharmacological blockade of mTORC1 by 3 nM rapamycin, as well as genetic deletion of p70S6K1, impaired the CB1-antagonist-mediated decrease in GSIS. In vivo experiments showed that 3 mg/kg body weight rimonabant decreased insulin levels and induced glucose intolerance in lean mice without altering peripheral insulin sensitivity; this effect was prevented by peripheral administration of low doses of rapamycin (0.1 mg/kg body weight), which increased insulin sensitivity. These findings suggest a functional interaction between the ECS and the mTORC1 pathway within the endocrine pancreas and at the whole-organism level, which could have implications for the development of new therapeutic approaches for pancreatic β-cell diseases. PMID:26563389

  13. The cannabinoid CB1 receptor and mTORC1 signalling pathways interact to modulate glucose homeostasis in mice

    Francisco J. Bermudez-Silva

    2016-01-01

    Full Text Available The endocannabinoid system (ECS is an intercellular signalling mechanism that is present in the islets of Langerhans and plays a role in the modulation of insulin secretion and expansion of the β-cell mass. The downstream signalling pathways mediating these effects are poorly understood. Mammalian target of rapamycin complex 1 (mTORC1 signalling is a key intracellular pathway involved in energy homeostasis and is known to importantly affect the physiology of pancreatic islets. We investigated the possible relationship between cannabinoid type 1 (CB1 receptor signalling and the mTORC1 pathway in the endocrine pancreas of mice by using pharmacological analysis as well as mice genetically lacking the CB1 receptor or the downstream target of mTORC1, the kinase p70S6K1. In vitro static secretion experiments on islets, western blotting, and in vivo glucose and insulin tolerance tests were performed. The CB1 receptor antagonist rimonabant decreased glucose-stimulated insulin secretion (GSIS at 0.1 µM while increasing phosphorylation of p70S6K1 and ribosomal protein S6 (rpS6 within the islets. Specific pharmacological blockade of mTORC1 by 3 nM rapamycin, as well as genetic deletion of p70S6K1, impaired the CB1-antagonist-mediated decrease in GSIS. In vivo experiments showed that 3 mg/kg body weight rimonabant decreased insulin levels and induced glucose intolerance in lean mice without altering peripheral insulin sensitivity; this effect was prevented by peripheral administration of low doses of rapamycin (0.1 mg/kg body weight, which increased insulin sensitivity. These findings suggest a functional interaction between the ECS and the mTORC1 pathway within the endocrine pancreas and at the whole-organism level, which could have implications for the development of new therapeutic approaches for pancreatic β-cell diseases.

  14. Selective Activation of mTORC1 Signaling Recapitulates Microcephaly, Tuberous Sclerosis, and Neurodegenerative Diseases

    Hidetoshi Kassai

    2014-06-01

    Full Text Available Mammalian target of rapamycin (mTOR has been implicated in human neurological diseases such as tuberous sclerosis complex (TSC, neurodegeneration, and autism. However, little is known about when and how mTOR is involved in the pathogenesis of these diseases, due to a lack of animal models that directly increase mTOR activity. Here, we generated transgenic mice expressing a gain-of-function mutant of mTOR in the forebrain in a temporally controlled manner. Selective activation of mTORC1 in embryonic stages induced cortical atrophy caused by prominent apoptosis of neuronal progenitors, associated with upregulation of HIF-1α. In striking contrast, activation of the mTORC1 pathway in adulthood resulted in cortical hypertrophy with fatal epileptic seizures, recapitulating human TSC. Activated mTORC1 in the adult cortex also promoted rapid accumulation of cytoplasmic inclusions and activation of microglial cells, indicative of progressive neurodegeneration. Our findings demonstrate that mTORC1 plays different roles in developmental and adult stages and contributes to human neurological diseases.

  15. The Pathogenic Role of Persistent Milk Signaling in mTORC1- and Milk-MicroRNA-Driven Type 2 Diabetes Mellitus

    Melnik, Bodo C

    2015-01-01

    Milk, the secretory product of the lactation genome, promotes growth of the newborn mammal. Milk delivers insulinotropic amino acids, thus maintains a molecular crosstalk with the pancreatic β-cell of the milk recipient. Homeostasis of β-cells and insulin production depend on the appropriate magnitude of mTORC1 signaling. mTORC1 is activated by branched-chain amino acids (BCAAs), glutamine, and palmitic acid, abundant nutrient signals of cow´s milk. Furthermore, milk delivers bioactive exosom...

  16. Amino Acids Attenuate Insulin Action on Gluconeogenesis and Promote Fatty Acid Biosynthesis via mTORC1 Signaling Pathway in trout Hepatocytes

    Weiwei Dai

    2015-06-01

    Full Text Available Background/Aims: Carnivores exhibit poor utilization of dietary carbohydrates and glucose intolerant phenotypes, yet it remains unclear what are the causal factors and underlying mechanisms. We aimed to evaluate excessive amino acids (AAs-induced effects on insulin signaling, fatty acid biosynthesis and glucose metabolism in rainbow trout and determine the potential involvement of mTORC1 and p38 MAPK pathway. Methods: We stimulated trout primary hepatocytes with different AA levels and employed acute administration of rapamycin to inhibit mTORC1 activation. Results: Increased AA levels enhanced the phosphorylation of ribosomal protein S6 kinase (S6K1, S6, and insulin receptor substrate 1 (IRS-1 on Ser302 but suppressed Akt and p38 phosphorylation; up-regulated the expression of genes related to gluconeogenesis and fatty acid biosynthesis. mTORC1 inhibition not only inhibited the phosphorylation of mTORC1 downstream targets, but also blunted IRS-1 Ser302 phosphorylation and restored excessive AAs-suppressed Akt phosphorylation. Rapamycin also inhibited fatty acid biosynthetic and gluconeogenic gene expression. Conclusion: High levels of AAs up-regulate hepatic fatty acid biosynthetic gene expression through an mTORC1-dependent manner, while attenuate insulin-mediated repression of gluconeogenesis through elevating IRS-1 Ser302 phosphorylation, which in turn impairs Akt activation and thereby weakening insulin action. We propose that p38 MAPK probably also involves in these AAs-induced metabolic changes.

  17. The pathogenic role of persistent milk signaling in mTORC1- and milk-microRNA-driven type 2 diabetes mellitus.

    Melnik, Bodo C

    2015-01-01

    Milk, the secretory product of the lactation genome, promotes growth of the newborn mammal. Milk delivers insulinotropic amino acids, thus maintains a molecular crosstalk with the pancreatic β-cell of the milk recipient. Homeostasis of β-cells and insulin production depend on the appropriate magnitude of mTORC1 signaling. mTORC1 is activated by branched-chain amino acids (BCAAs), glutamine, and palmitic acid, abundant nutrient signals of cow´s milk. Furthermore, milk delivers bioactive exosomal microRNAs. After milk consumption, bovine microRNA-29b, a member of the diabetogenic microRNA-29- family, reaches the systemic circulation and the cells of the milk consumer. MicroRNA-29b downregulates branchedchain α-ketoacid dehydrogenase, a potential explanation for increased BCAA serum levels, the metabolic signature of insulin resistance and type 2 diabetes mellitus (T2DM). In non-obese diabetic mice, microRNA-29b downregulates the antiapoptotic protein Mcl-1, which leads to early β-cell death. In all mammals except Neolithic humans, milk-driven mTORC1 signaling is physiologically restricted to the postnatal period. In contrast, chronic hyperactivated mTORC1 signaling has been associated with the development of age-related diseases of civilization including T2DM. Notably, chronic hyperactivation of mTORC1 enhances endoplasmic reticulum stress that promotes apoptosis. In fact, hyperactivated β-cell mTORC1 signaling induced early β-cell apoptosis in a mouse model. The EPIC-InterAct Study demonstrated an association between milk consumption and T2DM in France, Italy, United Kingdom, Germany, and Sweden. In contrast, fermented milk products and cheese exhibit an inverse correlation. Since the early 1950´s, refrigeration technology allowed widespread consumption of fresh pasteurized milk, which facilitates daily intake of bioactive bovine microRNAs. Persistent uptake of cow´s milk-derived microRNAs apparently transfers an overlooked epigenetic diabetogenic program

  18. mTORC1-Driven Tumor Cells Are Highly Sensitive to Therapeutic Targeting by Antagonists of Oxidative Stress.

    Li, Jing; Shin, Sejeong; Sun, Yang; Yoon, Sang-Oh; Li, Chenggang; Zhang, Erik; Yu, Jane; Zhang, Jianming; Blenis, John

    2016-08-15

    mTORC1 is a central signaling node in controlling cell growth, proliferation, and metabolism that is aberrantly activated in cancers and certain cancer-associated genetic disorders, such as tuberous sclerosis complex (TSC) and sporadic lymphangioleiomyomatosis. However, while mTORC1-inhibitory compounds (rapamycin and rapalogs) attracted interest as candidate therapeutics, clinical trials have not replicated the promising findings in preclinical models, perhaps because these compounds tend to limit cell proliferation without inducing cell death. In seeking to address this issue, we performed a high-throughput screen for small molecules that could heighten the cytotoxicity of mTORC1 inhibitors. Here we report the discovery that combining inhibitors of mTORC1 and glutamate cysteine ligase (GCLC) can selectively and efficiently trigger apoptosis in Tsc2-deficient cells but not wild-type cells. Mechanistic investigations revealed that coinhibition of mTORC1 and GCLC decreased the level of the intracellular thiol antioxidant glutathione (GSH), thereby increasing levels of reactive oxygen species, which we determined to mediate cell death in Tsc2-deficient cells. Our findings offer preclinical proof of concept for a strategy to selectively increase the cytotoxicity of mTORC1 inhibitors as a therapy to eradicate tumor cells marked by high mTORC1 signaling, based on cotargeting a GSH-controlled oxidative stress pathway. Cancer Res; 76(16); 4816-27. ©2016 AACR. PMID:27197195

  19. Amino acids attenuate insulin action on gluconeogenesis and promote fatty acid biosynthesis via mTORC1 signaling pathway in trout hepatocytes

    Dai, Wei Wei; Panserat, Stephane; Plagnes- Juan, Elisabeth; Seiliez, Iban; Skiba-Cassy, Sandrine

    2015-01-01

    Background/Aims: Carnivores exhibit poor utilization of dietary carbohydrates and glucose intolerant phenotypes, yet it remains unclear what are the causal factors and underlying mechanisms. We aimed to evaluate excessive amino acids (AAs)-induced effects on insulin signaling, fatty acid biosynthesis and glucose metabolism in rainbow trout and determine the potential involvement of mTORC1 and p38 MAPK pathway. Methods: We stimulated trout primary hepatocytes with different AA levels and emplo...

  20. Hypercholesterolemia is associated with hyperactive cardiac mTORC1 and mTORC2 signaling

    Glazer, Hilary P.; Osipov, Robert M; Clements, Richard T.; Sellke, Frank W.; Bianchi, Cesario

    2009-01-01

    Nutritional excess and hyperlipidemia increase the heart’s susceptibility to ischemic injury. Mammalian target of rapamycin (mTOR) controls the cellular response to nutritional status and may play a role in ischemic injury. To explore the effect of hypercholesterolemia on cardiac mTOR signaling, we assessed mTOR signaling in hypercholesterolemic swine (HC) that are also susceptible to increased cardiac ischemia-reperfusion injury. Yucatan pigs were fed a high-fat/high-cholesterol diet for 4 w...

  1. Endothelial AMPK activation induces mitochondrial biogenesis and stress adaptation via eNOS-dependent mTORC1 signaling.

    Li, Chunying; Reif, Michaella M; Craige, Siobhan M; Kant, Shashi; Keaney, John F

    2016-05-01

    Metabolic stress sensors like AMP-activated protein kinase (AMPK) are known to confer stress adaptation and promote longevity in lower organisms. This study demonstrates that activating the metabolic stress sensor AMP-activated protein kinase (AMPK) in endothelial cells helps maintain normal cellular function by promoting mitochondrial biogenesis and stress adaptation. To better define the mechanisms whereby AMPK promotes endothelial stress resistance, we used 5-aminoimidazole-4-carboxamide riboside (AICAR) to chronically activate AMPK and observed stimulation of mitochondrial biogenesis in wild type mouse endothelium, but not in endothelium from endothelial nitric oxide synthase knockout (eNOS-null) mice. Interestingly, AICAR-enhanced mitochondrial biogenesis was blocked by pretreatment with the mammalian target of rapamycin complex 1 (mTORC1) inhibitor, rapamycin. Further, AICAR stimulated mTORC1 as determined by phosphorylation of its known downstream effectors in wild type, but not eNOS-null, endothelial cells. Together these data indicate that eNOS is needed to couple AMPK activation to mTORC1 and thus promote mitochondrial biogenesis and stress adaptation in the endothelium. These data suggest a novel mechanism for mTORC1 activation that is significant for investigations in vascular dysfunction. PMID:26989010

  2. The role of amino acid-induced mammalian target of rapamycin complex 1(mTORC1) signaling in insulin resistance.

    Yoon, Mee-Sup; Choi, Cheol Soo

    2016-01-01

    Mammalian target of rapamycin (mTOR) controls cell growth and metabolism in response to nutrients, energy, and growth factors. Recent findings have placed the lysosome at the core of mTOR complex 1 (mTORC1) regulation by amino acids. Two parallel pathways, Rag GTPase-Ragulator and Vps34-phospholipase D1 (PLD1), regulate mTOR activation on the lysosome. This review describes the recent advances in understanding amino acid-induced mTOR signaling with a particular focus on the role of mTOR in insulin resistance. PMID:27534530

  3. n-3 polyunsaturated fatty acids abrogate mTORC1/2 signaling and inhibit adrenocortical carcinoma growth in vitro and in vivo.

    Liu, Jun; Xu, Meinian; Zhao, Yongbin; Ao, Chunping; Wu, Yukun; Chen, Zhenguo; Wang, Bangqi; Bai, Xiaochun; Li, Ming; Hu, Weilie

    2016-06-01

    n-3 polyunsaturated fatty acids (PUFAs) are essential for human health and have been reported to reduce the risk of cancer, inhibit the growth of various types of tumors both in vitro and in vivo, and affect adrenal function. However, their effects on adrenocortical carcinoma (ACC) are not known. In the present study, we demonstrated that docosahexenoic acid (DHA) inhibited ACC cell proliferation, colony formation and cell cycle progression, and promoted apoptosis. In addition, ectopic expression of fat-1, a desaturase that converts n-6 to n-3 PUFAs endogenously, also inhibited ACC cell proliferation. Moreover, supplementing n-3 PUFAs in the diet efficiently prevented ACC cell growth in xenograft models. Notably, implanted ACC cells were unable to grow in fat-1 transgenic severe combined immune deficiency mice. Further study revealed that exogenous and endogenous n-3 PUFAs efficiently suppressed both mTOR complex 1 (mTORC1) and mTORC2 signaling in ACC in vitro and in vivo. Taken together, our findings provide comprehensive preclinical evidence that n-3 PUFAs efficiently prevent ACC growth by inhibiting mTORC1/2, which may have important implications in the treatment of ACC. PMID:27035283

  4. Concurrent exercise incorporating high-intensity interval or continuous training modulates mTORC1 signaling and microRNA expression in human skeletal muscle.

    Fyfe, Jackson J; Bishop, David J; Zacharewicz, Evelyn; Russell, Aaron P; Stepto, Nigel K

    2016-06-01

    We compared the effects of concurrent exercise, incorporating either high-intensity interval training (HIT) or moderate-intensity continuous training (MICT), on mechanistic target of rapamycin complex 1 (mTORC1) signaling and microRNA expression in skeletal muscle, relative to resistance exercise (RE) alone. Eight males (mean ± SD: age, 27 ± 4 yr; V̇o2 peak , 45.7 ± 9 ml·kg(-1)·min(-1)) performed three experimental trials in a randomized order: 1) RE (8 × 5 leg press repetitions at 80% 1-repetition maximum) performed alone and RE preceded by either 2) HIT cycling [10 × 2 min at 120% lactate threshold (LT); HIT + RE] or 3) work-matched MICT cycling (30 min at 80% LT; MICT + RE). Vastus lateralis muscle biopsies were obtained immediately before RE, either without (REST) or with (POST) preceding endurance exercise and +1 h (RE + 1 h) and +3 h (RE + 3 h) after RE. Prior HIT and MICT similarly reduced muscle glycogen content and increased ACC(Ser79) and p70S6K(Thr389) phosphorylation before subsequent RE (i.e., at POST). Compared with MICT, HIT induced greater mTOR(Ser2448) and rps6(Ser235/236) phosphorylation at POST. RE-induced increases in p70S6K and rps6 phosphorylation were not influenced by prior HIT or MICT; however, mTOR phosphorylation was reduced at RE + 1 h for MICT + RE vs. both HIT + RE and RE. Expression of miR-133a, miR-378, and miR-486 was reduced at RE + 1 h for HIT + RE vs. both MICT + RE and RE. Postexercise mTORC1 signaling following RE is therefore not compromised by prior HIT or MICT, and concurrent exercise incorporating HIT, but not MICT, reduces postexercise expression of miRNAs implicated in skeletal muscle adaptation to RE. PMID:27101297

  5. Dopamine- and cAMP-regulated phosphoprotein of 32-kDa (DARPP-32)-dependent activation of extracellular signal-regulated kinase (ERK) and mammalian target of rapamycin complex 1 (mTORC1) signaling in experimental parkinsonism.

    Santini, Emanuela; Feyder, Michael; Gangarossa, Giuseppe; Bateup, Helen S; Greengard, Paul; Fisone, Gilberto

    2012-08-10

    Dyskinesia, a motor complication caused by prolonged administration of the antiparkinsonian drug l-3,4-dihydroxyphenylalanine (l-DOPA), is accompanied by activation of cAMP signaling and hyperphosphorylation of the dopamine- and cAMP-regulated phosphoprotein of 32 kDa (DARPP-32). Here, we show that the abnormal phosphorylation of DARPP-32 occurs specifically in medium spiny neurons (MSNs) expressing dopamine D1 receptors (D1R). Using mice in which DARPP-32 is selectively deleted in D1R-expressing MSNs, we demonstrate that this protein is required for l-DOPA-induced activation of the extracellular signal-regulated protein kinases 1 and 2 and the mammalian target of rapamycin complex 1 (mTORC1) pathways, which are implicated in dyskinesia. We also show that mutation of the phosphorylation site for cAMP-dependent protein kinase on DARPP-32 attenuates l-DOPA-induced dyskinesia and reduces the concomitant activations of ERK and mTORC1 signaling. These studies demonstrate that, in D1R-expressing MSNs, l-DOPA-induced activation of ERK and mTORC1 requires DARPP-32 and indicates the importance of the cAMP/DARPP-32 signaling cascade in dyskinesia. PMID:22753408

  6. Dopamine- and cAMP-regulated Phosphoprotein of 32-kDa (DARPP-32)-dependent Activation of Extracellular Signal-regulated Kinase (ERK) and Mammalian Target of Rapamycin Complex 1 (mTORC1) Signaling in Experimental Parkinsonism*

    Santini, Emanuela; Feyder, Michael; Gangarossa, Giuseppe; Bateup, Helen S.; Greengard, Paul; Fisone, Gilberto

    2012-01-01

    Dyskinesia, a motor complication caused by prolonged administration of the antiparkinsonian drug l-3,4-dihydroxyphenylalanine (l-DOPA), is accompanied by activation of cAMP signaling and hyperphosphorylation of the dopamine- and cAMP-regulated phosphoprotein of 32 kDa (DARPP-32). Here, we show that the abnormal phosphorylation of DARPP-32 occurs specifically in medium spiny neurons (MSNs) expressing dopamine D1 receptors (D1R). Using mice in which DARPP-32 is selectively deleted in D1R-expressing MSNs, we demonstrate that this protein is required for l-DOPA-induced activation of the extracellular signal-regulated protein kinases 1 and 2 and the mammalian target of rapamycin complex 1 (mTORC1) pathways, which are implicated in dyskinesia. We also show that mutation of the phosphorylation site for cAMP-dependent protein kinase on DARPP-32 attenuates l-DOPA-induced dyskinesia and reduces the concomitant activations of ERK and mTORC1 signaling. These studies demonstrate that, in D1R-expressing MSNs, l-DOPA-induced activation of ERK and mTORC1 requires DARPP-32 and indicates the importance of the cAMP/DARPP-32 signaling cascade in dyskinesia. PMID:22753408

  7. Milk is not just food but most likely a genetic transfection system activating mTORC1 signaling for postnatal growth

    Melnik, Bodo C.; John, Swen Malte; Schmitz, Gerd

    2013-01-01

    Milk has been recognized to represent a functionally active nutrient system promoting neonatal growth of mammals. Cell growth is regulated by the nutrient-sensitive kinase mechanistic target of rapamycin complex 1 (mTORC1). There is still a lack of information on the mechanisms of mTORC1 up-regulation by milk consumption. This review presents milk as a materno-neonatal relay system functioning by transfer of preferential amino acids, which increase plasma levels of glucose-dependent insulinot...

  8. PGE2-induced colon cancer growth is mediated by mTORC1

    Highlights: • PGE2 activates mTORC1 in colon cancer cells. • Inhibition of mTORC1 blocks PGE2 induced colon cancer cell growth. • mTORC1 is a signaling intermediary in PGE2 induced colon cancer cell responses. - Abstract: The inflammatory prostaglandin E2 (PGE2) cytokine plays a key role in the development of colon cancer. Several studies have shown that PGE2 directly induces the growth of colon cancer cells and furthermore promotes tumor angiogenesis by increasing the production of the vascular endothelial growth factor (VEGF). The signaling intermediaries implicated in these processes have however not been fully characterized. In this report, we show that the mechanistic target of rapamycin complex 1 (mTORC1) plays an important role in PGE2-induced colon cancer cell responses. Indeed, stimulation of LS174T cells with PGE2 increased mTORC1 activity as observed by the augmentation of S6 ribosomal protein phosphorylation, a downstream effector of mTORC1. The PGE2 EP4 receptor was responsible for transducing the signal to mTORC1. Moreover, PGE2 increased colon cancer cell proliferation as well as the growth of colon cancer cell colonies grown in matrigel and blocking mTORC1 by rapamycin or ATP-competitive inhibitors of mTOR abrogated these effects. Similarly, the inhibition of mTORC1 by downregulation of its component raptor using RNA interference blocked PGE2-induced LS174T cell growth. Finally, stimulation of LS174T cells with PGE2 increased VEGF production which was also prevented by mTORC1 inhibition. Taken together, these results show that mTORC1 is an important signaling intermediary in PGE2 mediated colon cancer cell growth and VEGF production. They further support a role for mTORC1 in inflammation induced tumor growth

  9. The multifaceted role of mTORC1 in the control of lipid metabolism

    Ricoult, Stéphane J H; Manning, Brendan D.

    2012-01-01

    mTORC1 is emerging as a central regulator of lipid homeostasis. This review discusses the growing evidence for the functional importance of mTORC1 signalling in controlling mammalian lipid synthesis, oxidation, transport, storage and lipolysis, as well as adipocyte differentiation and function.

  10. Radix Astragali Improves Dysregulated Triglyceride Metabolism and Attenuates Macrophage Infiltration in Adipose Tissue in High-Fat Diet-Induced Obese Male Rats through Activating mTORC1-PPARγ Signaling Pathway

    Yang Long

    2014-01-01

    Full Text Available Increased levels of free fatty acids (FFAs and hypertriglyceridemia are important risk factors for cardiovascular disease. The effective fraction isolated from radix astragali (RA has been reported to alleviate hypertriglyceridemia. The mechanism of this triglyceride-lowering effect of RA is unclear. Here, we tested whether activation of the mTORC1-PPARγ signaling pathway is related to the triglyceride-lowering effect of RA. High-fat diet-induced obese (DIO rats were fed a high-fat diet (40% calories from fat for 9-10 weeks, and 4 g/kg/d RA was administered by gavage. RA treatment resulted in decreased fasting triglyceride levels, FFA concentrations, and adipocyte size. RA treated rats showed improved triglyceride clearance and fatty acid handling after olive oil overload. RA administration could also decrease macrophage infiltration and expression of MCP-1 and TNFα, but it may also increase the expression of PPARγ in epididymal adipose tissue from RA treated rats. Consistently, expressions of PPARγ and phospho-p70S6K were increased in differentiated 3T3-L1 adipocytes treated with RA. Moreover, RA couldnot upregulate the expression of PPARγ at the presence of rapamycin. In conclusion, the mTORC1-PPARγ signaling pathway is a potential mechanism through which RA exerts beneficial effects on the disturbance of triglyceride metabolism and dysfunction of adipose tissue in DIO rats.

  11. FLCN Maintains the Leucine Level in Lysosome to Stimulate mTORC1

    Wu, Xiaochun; Zhao, Lingling; Chen, Zhi; Ji, Xin; Qiao, Xianfeng; Jin, Yaping; Liu, Wei

    2016-01-01

    The intracellular amino acid pool within lysosome is a signal that stimulates the nutrient-sensing mTORC1 signalling pathway. The signal transduction cascade has garnered much attention, but little is known about the sequestration of the signalling molecules within the lysosome. Using human HEK293 cells as a model, we found that suppression of the BHD syndrome gene FLCN reduced the leucine level in lysosome, which correlated with decreased mTORC1 activity. Both consequences could be reversed ...

  12. Milk—A Nutrient System of Mammalian Evolution Promoting mTORC1-Dependent Translation

    Bodo C. Melnik

    2015-07-01

    Full Text Available Based on own translational research of the biochemical and hormonal effects of cow’s milk consumption in humans, this review presents milk as a signaling system of mammalian evolution that activates the nutrient-sensitive kinase mechanistic target of rapamycin complex 1 (mTORC1, the pivotal regulator of translation. Milk, a mammary gland-derived secretory product, is required for species-specific gene-nutrient interactions that promote appropriate growth and development of the newborn mammal. This signaling system is highly conserved and tightly controlled by the lactation genome. Milk is sufficient to activate mTORC1, the crucial regulator of protein, lipid, and nucleotide synthesis orchestrating anabolism, cell growth and proliferation. To fulfill its mTORC1-activating function, milk delivers four key metabolic messengers: (1 essential branched-chain amino acids (BCAAs; (2 glutamine; (3 palmitic acid; and (4 bioactive exosomal microRNAs, which in a synergistical fashion promote mTORC1-dependent translation. In all mammals except Neolithic humans, postnatal activation of mTORC1 by milk intake is restricted to the postnatal lactation period. It is of critical concern that persistent hyperactivation of mTORC1 is associated with aging and the development of age-related disorders such as obesity, type 2 diabetes mellitus, cancer, and neurodegenerative diseases. Persistent mTORC1 activation promotes endoplasmic reticulum (ER stress and drives an aimless quasi-program, which promotes aging and age-related diseases.

  13. mTORC1 Controls PNS Myelination along the mTORC1-RXRγ-SREBP-Lipid Biosynthesis Axis in Schwann Cells

    Camilla Norrmén

    2014-10-01

    Full Text Available Myelin formation during peripheral nervous system (PNS development, and reformation after injury and in disease, requires multiple intrinsic and extrinsic signals. Akt/mTOR signaling has emerged as a major player involved, but the molecular mechanisms and downstream effectors are virtually unknown. Here, we have used Schwann-cell-specific conditional gene ablation of raptor and rictor, which encode essential components of the mTOR complexes 1 (mTORC1 and 2 (mTORC2, respectively, to demonstrate that mTORC1 controls PNS myelination during development. In this process, mTORC1 regulates lipid biosynthesis via sterol regulatory element-binding proteins (SREBPs. This course of action is mediated by the nuclear receptor RXRγ, which transcriptionally regulates SREBP1c downstream of mTORC1. Absence of mTORC1 causes delayed myelination initiation as well as hypomyelination, together with abnormal lipid composition and decreased nerve conduction velocity. Thus, we have identified the mTORC1-RXRγ-SREBP axis controlling lipid biosynthesis as a major contributor to proper peripheral nerve function.

  14. PGE{sub 2}-induced colon cancer growth is mediated by mTORC1

    Dufour, Marc, E-mail: Marc.dufour@chuv.ch; Faes, Seraina, E-mail: Seraina.faes@chuv.ch; Dormond-Meuwly, Anne, E-mail: Anne.meuwly-Dormond@chuv.ch; Demartines, Nicolas, E-mail: Demartines@chuv.ch; Dormond, Olivier, E-mail: Olivier.dormond@chuv.ch

    2014-09-05

    Highlights: • PGE{sub 2} activates mTORC1 in colon cancer cells. • Inhibition of mTORC1 blocks PGE{sub 2} induced colon cancer cell growth. • mTORC1 is a signaling intermediary in PGE{sub 2} induced colon cancer cell responses. - Abstract: The inflammatory prostaglandin E{sub 2} (PGE{sub 2}) cytokine plays a key role in the development of colon cancer. Several studies have shown that PGE{sub 2} directly induces the growth of colon cancer cells and furthermore promotes tumor angiogenesis by increasing the production of the vascular endothelial growth factor (VEGF). The signaling intermediaries implicated in these processes have however not been fully characterized. In this report, we show that the mechanistic target of rapamycin complex 1 (mTORC1) plays an important role in PGE{sub 2}-induced colon cancer cell responses. Indeed, stimulation of LS174T cells with PGE{sub 2} increased mTORC1 activity as observed by the augmentation of S6 ribosomal protein phosphorylation, a downstream effector of mTORC1. The PGE{sub 2} EP{sub 4} receptor was responsible for transducing the signal to mTORC1. Moreover, PGE{sub 2} increased colon cancer cell proliferation as well as the growth of colon cancer cell colonies grown in matrigel and blocking mTORC1 by rapamycin or ATP-competitive inhibitors of mTOR abrogated these effects. Similarly, the inhibition of mTORC1 by downregulation of its component raptor using RNA interference blocked PGE{sub 2}-induced LS174T cell growth. Finally, stimulation of LS174T cells with PGE{sub 2} increased VEGF production which was also prevented by mTORC1 inhibition. Taken together, these results show that mTORC1 is an important signaling intermediary in PGE{sub 2} mediated colon cancer cell growth and VEGF production. They further support a role for mTORC1 in inflammation induced tumor growth.

  15. Deficiency in mTORC1-controlled C/EBP beta-mRNA translation improves metabolic health in mice

    Zidek, Laura M.; Ackermann, Tobias; Hartleben, Goetz; Eichwald, Sabrina; Kortman, Gertrud; Kiehntopf, Michael; Leutz, Achim; Sonenberg, Nahum; Wang, Zhao-Qi; von Maltzahn, Julia; Mueller, Christine; Calkhoven, Cornelis F.

    2015-01-01

    The mammalian target of rapamycin complex 1 (mTORC1) is a central regulator of physiological adaptations in response to changes in nutrient supply. Major downstream targets of mTORC1 signalling are the mRNA translation regulators p70 ribosomal protein S6 kinase 1 (S6K1p70) and the 4E-binding protein

  16. mTORC1 phosphorylation sites encode their sensitivity to starvation and rapamycin

    Kang, Seong A.; Pacold, Michael E.; Cervantes, Christopher L.; Lim, Daniel; Lou, Hua Jane; Ottina, Kathleen; Gray, Nathanael S.; Turk, Benjamin E.; Yaffe, Michael B.; Sabatini, David M.

    2013-01-01

    The mTOR Complex 1 (mTORC1) protein kinase promotes growth and is the target of rapamycin, a clinically useful drug that also prolongs lifespan in model organisms. A persistent mystery is why the phosphorylation of many bona fide mTORC1 substrates is resistant to rapamycin. We find that the in vitro kinase activity of mTORC1 toward peptides encompassing established phosphorylation sites varies widely and correlates strongly with the resistance of the sites to rapamycin as well as to nutrient and growth factor starvation within cells. Slight modifications of the sites were sufficient to alter mTORC1 activity toward them in vitro and to cause concomitant changes within cells in their sensitivity to rapamycin and starvation. Thus, the intrinsic capacity of a phosphorylation site to serve as an mTORC1 substrate, a property we call substrate quality, is a major determinant of its sensitivity to modulators of the pathway. Our results reveal a mechanism through which mTORC1 effectors can respond differentially to the same signals. PMID:23888043

  17. Sestrin2 inhibits mTORC1 through modulation of GATOR complexes.

    Kim, Jeong Sig; Ro, Seung-Hyun; Kim, Myungjin; Park, Hwan-Woo; Semple, Ian A; Park, Haeli; Cho, Uhn-Soo; Wang, Wei; Guan, Kun-Liang; Karin, Michael; Lee, Jun Hee

    2015-01-01

    Sestrins are stress-inducible metabolic regulators that suppress a wide range of age- and obesity-associated pathologies, many of which are due to mTORC1 overactivation. Upon various stresses, the Sestrins inhibit mTORC1 activity through an indirect mechanism that is still unclear. GATORs are recently identified protein complexes that regulate the activity of RagB, a small GTPase essential for mTORC1 activation. GATOR1 is a GTPase activating protein (GAP) for RagB whereas GATOR2 functions as an inhibitor of GATOR1. However, how the GATORs are physiologically regulated is unknown. Here we show that Sestrin2 binds to GATOR2, and liberates GATOR1 from GATOR2-mediated inhibition. Released GATOR1 subsequently binds to and inactivates RagB, ultimately resulting in mTORC1 suppression. Consistent with this biochemical mechanism, genetic ablation of GATOR1 nullifies the mTORC1-inhibiting effect of Sestrin2 in both cell culture and Drosophila models. Collectively, we elucidate a new signaling cascade composed of Sestrin2-GATOR2-GATOR1-RagB that mediates stress-dependent suppression of mTORC1 activity. PMID:25819761

  18. Aberrant Signaling Pathways in Glioma

    Nakada, Mitsutoshi, E-mail: nakada@ns.m.kanazawa-u.ac.jp; Kita, Daisuke; Watanabe, Takuya; Hayashi, Yutaka [Department of Neurosurgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa 920-8641 (Japan); Teng, Lei [Department of Neurosurgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa 920-8641 (Japan); Department of Neurosurgery, The First Clinical College of Harbin Medical University, Nangang, Harbin 150001 (China); Pyko, Ilya V.; Hamada, Jun-Ichiro [Department of Neurosurgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa 920-8641 (Japan)

    2011-08-10

    Glioblastoma multiforme (GBM), a WHO grade IV malignant glioma, is the most common and lethal primary brain tumor in adults; few treatments are available. Median survival rates range from 12–15 months. The biological characteristics of this tumor are exemplified by prominent proliferation, active invasiveness, and rich angiogenesis. This is mainly due to highly deregulated signaling pathways in the tumor. Studies of these signaling pathways have greatly increased our understanding of the biology and clinical behavior of GBM. An integrated view of signal transduction will provide a more useful approach in designing novel therapies for this devastating disease. In this review, we summarize the current understanding of GBM signaling pathways with a focus on potential molecular targets for anti-signaling molecular therapies.

  19. Aberrant Signaling Pathways in Glioma

    Glioblastoma multiforme (GBM), a WHO grade IV malignant glioma, is the most common and lethal primary brain tumor in adults; few treatments are available. Median survival rates range from 12–15 months. The biological characteristics of this tumor are exemplified by prominent proliferation, active invasiveness, and rich angiogenesis. This is mainly due to highly deregulated signaling pathways in the tumor. Studies of these signaling pathways have greatly increased our understanding of the biology and clinical behavior of GBM. An integrated view of signal transduction will provide a more useful approach in designing novel therapies for this devastating disease. In this review, we summarize the current understanding of GBM signaling pathways with a focus on potential molecular targets for anti-signaling molecular therapies

  20. Aberrant Wnt Signaling in Leukemia.

    Staal, Frank J T; Famili, Farbod; Garcia Perez, Laura; Pike-Overzet, Karin

    2016-01-01

    The Wnt signaling pathway is essential in the development and homeostasis of blood and immune cells, but its exact role is still controversial and is the subject of intense research. The malignant counterpart of normal hematopoietic cells, leukemic (stem) cells, have hijacked the Wnt pathway for their self-renewal and proliferation. Here we review the multiple ways dysregulated Wnt signaling can contribute to leukemogenesis, both cell autonomously as well as by changes in the microenvironment. PMID:27571104

  1. Co-activation of AMPK and mTORC1 Induces Cytotoxicity in Acute Myeloid Leukemia

    Pierre Sujobert

    2015-06-01

    Full Text Available AMPK is a master regulator of cellular metabolism that exerts either oncogenic or tumor suppressor activity depending on context. Here, we report that the specific AMPK agonist GSK621 selectively kills acute myeloid leukemia (AML cells but spares normal hematopoietic progenitors. This differential sensitivity results from a unique synthetic lethal interaction involving concurrent activation of AMPK and mTORC1. Strikingly, the lethality of GSK621 in primary AML cells and AML cell lines is abrogated by chemical or genetic ablation of mTORC1 signaling. The same synthetic lethality between AMPK and mTORC1 activation is established in CD34-positive hematopoietic progenitors by constitutive activation of AKT or enhanced in AML cells by deletion of TSC2. Finally, cytotoxicity in AML cells from GSK621 involves the eIF2α/ATF4 signaling pathway that specifically results from mTORC1 activation. AMPK activation may represent a therapeutic opportunity in mTORC1-overactivated cancers.

  2. Co-activation of AMPK and mTORC1 Induces Cytotoxicity in Acute Myeloid Leukemia.

    Sujobert, Pierre; Poulain, Laury; Paubelle, Etienne; Zylbersztejn, Florence; Grenier, Adrien; Lambert, Mireille; Townsend, Elizabeth C; Brusq, Jean-Marie; Nicodeme, Edwige; Decrooqc, Justine; Nepstad, Ina; Green, Alexa S; Mondesir, Johanna; Hospital, Marie-Anne; Jacque, Nathalie; Christodoulou, Alexandra; Desouza, Tiffany A; Hermine, Olivier; Foretz, Marc; Viollet, Benoit; Lacombe, Catherine; Mayeux, Patrick; Weinstock, David M; Moura, Ivan C; Bouscary, Didier; Tamburini, Jerome

    2015-06-01

    AMPK is a master regulator of cellular metabolism that exerts either oncogenic or tumor suppressor activity depending on context. Here, we report that the specific AMPK agonist GSK621 selectively kills acute myeloid leukemia (AML) cells but spares normal hematopoietic progenitors. This differential sensitivity results from a unique synthetic lethal interaction involving concurrent activation of AMPK and mTORC1. Strikingly, the lethality of GSK621 in primary AML cells and AML cell lines is abrogated by chemical or genetic ablation of mTORC1 signaling. The same synthetic lethality between AMPK and mTORC1 activation is established in CD34-positive hematopoietic progenitors by constitutive activation of AKT or enhanced in AML cells by deletion of TSC2. Finally, cytotoxicity in AML cells from GSK621 involves the eIF2α/ATF4 signaling pathway that specifically results from mTORC1 activation. AMPK activation may represent a therapeutic opportunity in mTORC1-overactivated cancers. PMID:26004183

  3. The late endosome/lysosome-anchored p18-mTORC1 pathway controls terminal maturation of lysosomes

    Highlights: ► p18 is a membrane adaptor that anchors mTORC1 to late endosomes/lysosomes. ► We examine the role of the p18-mTORC1 pathway in lysosome biogenesis. ► The loss of p18 causes accumulation of intact late endosomes by arresting lysosome maturation. ► Inhibition of mTORC1 activity with rapamycin phenocopies the defects of p18 loss. ► The p18-mTORC1 pathway plays crucial roles in the terminal maturation of lysosomes. -- Abstract: The late endosome/lysosome membrane adaptor p18 (or LAMTOR1) serves as an anchor for the mammalian target of rapamycin complex 1 (mTORC1) and is required for its activation on lysosomes. The loss of p18 causes severe defects in cell growth as well as endosome dynamics, including membrane protein transport and lysosome biogenesis. However, the mechanisms underlying these effects on lysosome biogenesis remain unknown. Here, we show that the p18-mTORC1 pathway is crucial for terminal maturation of lysosomes. The loss of p18 causes aberrant intracellular distribution and abnormal sizes of late endosomes/lysosomes and an accumulation of late endosome specific components, including Rab7, RagC, and LAMP1; this suggests that intact late endosomes accumulate in the absence of p18. These defects are phenocopied by inhibiting mTORC1 activity with rapamycin. Loss of p18 also suppresses the integration of late endosomes and lysosomes, resulting in the defective degradation of tracer proteins. These results suggest that the p18-mTORC1 pathway plays crucial roles in the late stages of lysosomal maturation, potentially in late endosome–lysosome fusion, which is required for processing of various macromolecules.

  4. The late endosome/lysosome-anchored p18-mTORC1 pathway controls terminal maturation of lysosomes

    Takahashi, Yusuke; Nada, Shigeyuki; Mori, Shunsuke; Soma-Nagae, Taeko; Oneyama, Chitose [Department of Oncogene Research, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871 (Japan); Okada, Masato, E-mail: okadam@biken.osaka-u.ac.jp [Department of Oncogene Research, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871 (Japan)

    2012-01-27

    Highlights: Black-Right-Pointing-Pointer p18 is a membrane adaptor that anchors mTORC1 to late endosomes/lysosomes. Black-Right-Pointing-Pointer We examine the role of the p18-mTORC1 pathway in lysosome biogenesis. Black-Right-Pointing-Pointer The loss of p18 causes accumulation of intact late endosomes by arresting lysosome maturation. Black-Right-Pointing-Pointer Inhibition of mTORC1 activity with rapamycin phenocopies the defects of p18 loss. Black-Right-Pointing-Pointer The p18-mTORC1 pathway plays crucial roles in the terminal maturation of lysosomes. -- Abstract: The late endosome/lysosome membrane adaptor p18 (or LAMTOR1) serves as an anchor for the mammalian target of rapamycin complex 1 (mTORC1) and is required for its activation on lysosomes. The loss of p18 causes severe defects in cell growth as well as endosome dynamics, including membrane protein transport and lysosome biogenesis. However, the mechanisms underlying these effects on lysosome biogenesis remain unknown. Here, we show that the p18-mTORC1 pathway is crucial for terminal maturation of lysosomes. The loss of p18 causes aberrant intracellular distribution and abnormal sizes of late endosomes/lysosomes and an accumulation of late endosome specific components, including Rab7, RagC, and LAMP1; this suggests that intact late endosomes accumulate in the absence of p18. These defects are phenocopied by inhibiting mTORC1 activity with rapamycin. Loss of p18 also suppresses the integration of late endosomes and lysosomes, resulting in the defective degradation of tracer proteins. These results suggest that the p18-mTORC1 pathway plays crucial roles in the late stages of lysosomal maturation, potentially in late endosome-lysosome fusion, which is required for processing of various macromolecules.

  5. Activation of mTORC1 is essential for β-adrenergic stimulation of adipose browning.

    Liu, Dianxin; Bordicchia, Marica; Zhang, Chaoying; Fang, Huafeng; Wei, Wan; Li, Jian-Liang; Guilherme, Adilson; Guntur, Kalyani; Czech, Michael P; Collins, Sheila

    2016-05-01

    A classic metabolic concept posits that insulin promotes energy storage and adipose expansion, while catecholamines stimulate release of adipose energy stores by hydrolysis of triglycerides through β-adrenergic receptor (βARs) and protein kinase A (PKA) signaling. Here, we have shown that a key hub in the insulin signaling pathway, activation of p70 ribosomal S6 kinase (S6K1) through mTORC1, is also triggered by PKA activation in both mouse and human adipocytes. Mice with mTORC1 impairment, either through adipocyte-specific deletion of Raptor or pharmacologic rapamycin treatment, were refractory to the well-known βAR-dependent increase of uncoupling protein UCP1 expression and expansion of beige/brite adipocytes (so-called browning) in white adipose tissue (WAT). Mechanistically, PKA directly phosphorylated mTOR and RAPTOR on unique serine residues, an effect that was independent of insulin/AKT signaling. Abrogation of the PKA site within RAPTOR disrupted βAR/mTORC1 activation of S6K1 without affecting mTORC1 activation by insulin. Conversely, a phosphomimetic RAPTOR augmented S6K1 activity. Together, these studies reveal a signaling pathway from βARs and PKA through mTORC1 that is required for adipose browning by catecholamines and provides potential therapeutic strategies to enhance energy expenditure and combat metabolic disease. PMID:27018708

  6. Adaptive and aberrant reward prediction signals in the human brain.

    Roiser, J.P.; Stephan, K.E.; Ouden, H.E.M. den; Friston, K.J.; Joyce, E.M.

    2010-01-01

    Theories of the positive symptoms of schizophrenia hypothesize a role for aberrant reinforcement signaling driven by dysregulated dopamine transmission. Recently, we provided evidence of aberrant reward learning in symptomatic, but not asymptomatic patients with schizophrenia, using a novel paradigm

  7. Antagonistic control of muscle cell size by AMPK and mTORC1.

    Mounier, Rémi; Lantier, Louise; Leclerc, Jocelyne; Sotiropoulos, Athanassia; Foretz, Marc; Viollet, Benoit

    2011-08-15

    Nutrition and physical activity have profound effects on skeletal muscle metabolism and growth. Regulation of muscle mass depends on a thin balance between growth-promoting and growth-suppressing factors. Over the past decade, the mammalian target of rapamycin (mTOR) kinase has emerged as an essential factor for muscle growth by mediating the anabolic response to nutrients, insulin, insulin-like growth factors and resistance exercise. As opposed to the mTOR signaling pathway, the AMP-activated protein kinase (AMPK) is switched on during starvation and endurance exercise to upregulate energy-conserving processes. Recent evidence indicates that mTORC1 (mTOR Complex 1) and AMPK represent two antagonistic forces governing muscle adaption to nutrition, starvation and growth stimulation. Animal knockout models with impaired mTORC1 signaling showed decreased muscle mass correlated with increased AMPK activation. Interestingly, AMPK inhibition in p70S6K-deficient muscle cells restores cell growth and sensitivity to nutrients. Conversely, muscle cells lacking AMPK have increased mTORC1 activation with increased cell size and protein synthesis rate. We also demonstrated that the hypertrophic action of MyrAkt is enhanced in AMPK-deficient muscle, indicating that AMPK acts as a negative feedback control to restrain muscle hypertrophy. Our recent results extend this notion by showing that AMPKα1, but not AMPKα2, regulates muscle cell size through the control of mTORC1 signaling. These results reveal the diverse functions of the two catalytic isoforms of AMPK, with AMPKα1 playing a predominant role in the control of muscle cell size and AMPKα2 mediating muscle metabolic adaptation. Thus, the crosstalk between AMPK and mTORC1 signaling is a highly regulated way to control changes in muscle growth and metabolic rate imposed by external cues. PMID:21799304

  8. Impact of mTORC1 Inhibition on Keratinocyte Proliferation During Skin Tumor Promotion in Wild-Type and BK5.AktWT Mice

    Rho, Okkyung; Kiguchi, Kaoru; Jiang, Guiyu; DiGiovanni, John

    2013-01-01

    In this study, we examined the impact of rapamycin on mTORC1 signaling during 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced keratinocyte proliferation and skin tumor promotion in both wild-type (FVB/N) and BK5.AktWT mice. TPA activated mTORC1 signaling in a time-dependent manner in cultured primary mouse keratinocytes and a mouse keratinocyte cell line. Early activation (15–30 min) of mTORC1 signaling induced by TPA was mediated in part by PKC activation, whereas later activation (2–4 h)...

  9. S6K1 Alternative Splicing Modulates Its Oncogenic Activity and Regulates mTORC1

    Vered Ben-Hur

    2013-01-01

    Full Text Available Ribosomal S6 kinase 1 (S6K1 is a major mTOR downstream signaling molecule that regulates cell size and translation efficiency. Here, we report that short isoforms of S6K1 are overproduced in breast cancer cell lines and tumors. Overexpression of S6K1 short isoforms induces transformation of human breast epithelial cells. The long S6K1 variant (Iso-1 induced opposite effects. It inhibits Ras-induced transformation and tumor formation, while its knockdown or knockout induces transformation, suggesting that Iso-1 has a tumor-suppressor activity. Furthermore, we found that S6K1 short isoforms bind and activate mTORC1, elevating 4E-BP1 phosphorylation, cap-dependent translation, and Mcl-1 protein levels. Both a phosphorylation-defective 4E-BP1 mutant and the mTORC1 inhibitor rapamycin partially blocked the oncogenic effects of S6K1 short isoforms, suggesting that these are mediated by mTORC1 and 4E-BP1. Thus, alternative splicing of S6K1 acts as a molecular switch in breast cancer cells, elevating oncogenic isoforms that activate mTORC1.

  10. Constitutive adipocyte mTORC1 activation enhances mitochondrial activity and reduces visceral adiposity in mice.

    Magdalon, Juliana; Chimin, Patricia; Belchior, Thiago; Neves, Rodrigo X; Vieira-Lara, Marcel A; Andrade, Maynara L; Farias, Talita S; Bolsoni-Lopes, Andressa; Paschoal, Vivian A; Yamashita, Alex S; Kowaltowski, Alicia J; Festuccia, William T

    2016-05-01

    Mechanistic target of rapamycin complex 1 (mTORC1) loss of function reduces adiposity whereas partial mTORC1 inhibition enhances fat deposition. Herein we evaluated how constitutive mTORC1 activation in adipocytes modulates adiposity in vivo. Mice with constitutive mTORC1 activation in adipocytes induced by tuberous sclerosis complex (Tsc)1 deletion and littermate controls were evaluated for body mass, energy expenditure, glucose and fatty acid metabolism, mitochondrial function, mRNA and protein contents. Adipocyte-specific Tsc1 deletion reduced visceral, but not subcutaneous, fat mass, as well as adipocyte number and diameter, phenotypes that were associated with increased lipolysis, UCP-1 content (browning) and mRNA levels of pro-browning transcriptional factors C/EBPβ and ERRα. Adipocyte Tsc1 deletion enhanced mitochondrial oxidative activity, fatty acid oxidation and the expression of PGC-1α and PPARα in both visceral and subcutaneous fat. In brown adipocytes, however, Tsc1 deletion did not affect UCP-1 content and basal respiration. Adipocyte Tsc1 deletion also reduced visceral adiposity and enhanced glucose tolerance, liver and muscle insulin signaling and adiponectin secretion in mice fed with purified low- or high-fat diet. In conclusion, adipocyte-specific Tsc1 deletion enhances mitochondrial activity, induces browning and reduces visceral adiposity in mice. PMID:26923434

  11. Mouse hippocampal phosphorylation footprint induced by generalized seizures: Focus on ERK, mTORC1 and Akt/GSK-3 pathways.

    Gangarossa, Giuseppe; Sakkaki, Sophie; Lory, Philippe; Valjent, Emmanuel

    2015-12-17

    Exacerbated hippocampal activity has been associated to critical modifications of the intracellular signaling pathways. We have investigated rapid hippocampal adaptive responses induced by maximal electroshock seizure (MES). Here, we demonstrate that abnormal and exacerbated hippocampal activity induced by MES triggers specific and temporally distinct patterns of phosphorylation of extracellular signal-related kinase (ERK), mammalian target of rapamycin complex (mTORC) and Akt/glycogen synthase kinase-3 (Akt/GSK-3) pathways in the mouse hippocampus. While the ERK pathway is transiently activated, the mTORC1 cascade follows a rapid inhibition followed by a transient activation. This rebound of mTORC1 activity leads to the selective phosphorylation of p70S6K, which is accompanied by an enhanced phosphorylation of the ribosomal subunit S6. In contrast, the Akt/GSK-3 pathway is weakly altered. Finally, MES triggers a rapid upregulation of several plasticity-associated genes as a consequence exacerbated hippocampal activity. The results reported in the present study are reminiscent of the one observed in other models of generalized seizures, thus defining a common molecular footprint induced by intense and aberrant hippocampal activities. PMID:26545981

  12. Inhibition of mTORC1 by Astrin and Stress Granules Prevents Apoptosis in Cancer Cells

    Thedieck, Kathrin; Holzwarth, Birgit; Prentzell, Mirja Tamara; Boehlke, Christopher; Klaesener, Kathrin; Ruf, Stefanie; Sonntag, Annika Gwendolin; Maerz, Lars; Grellscheid, Sushma-Nagaraja; Kremmer, Elisabeth; Nitschke, Roland; Kuehn, E. Wolfgang; Jonker, Johan W.; Groen, Albert K.; Reth, Michael; Hall, Michael N.; Baumeister, Ralf

    2013-01-01

    Mammalian target of rapamycin complex 1 (mTORC1) controls growth and survival in response to metabolic cues. Oxidative stress affects mTORC1 via inhibitory and stimulatory inputs. Whereas downregulation of TSC1-TSC2 activates mTORC1 upon oxidative stress, the molecular mechanism of mTORC1 inhibition

  13. Milk—A Nutrient System of Mammalian Evolution Promoting mTORC1-Dependent Translation

    Melnik, Bodo C

    2015-01-01

    Based on own translational research of the biochemical and hormonal effects of cow’s milk consumption in humans, this review presents milk as a signaling system of mammalian evolution that activates the nutrient-sensitive kinase mechanistic target of rapamycin complex 1 (mTORC1), the pivotal regulator of translation. Milk, a mammary gland-derived secretory product, is required for species-specific gene-nutrient interactions that promote appropriate growth and development of the newborn mammal...

  14. mTORC1 and SIRT1 Cooperate to Foster Expansion of Gut Adult Stem Cells during Calorie Restriction.

    Igarashi, Masaki; Guarente, Leonard

    2016-07-14

    Longevity-promoting caloric restriction is thought to trigger downregulation of mammalian target of rapamycin complex 1 (mTORC1) signaling and upregulation of SIRT1 activity with associated health benefits. Here, we show that mTORC1 signaling in intestinal stem cells (ISCs) is instead upregulated during calorie restriction (CR). SIRT1 deacetylates S6K1, thereby enhancing its phosphorylation by mTORC1, which leads to an increase in protein synthesis and an increase in ISC number. Paneth cells in the ISC niche secrete cyclic ADP ribose that triggers SIRT1 activity and mTORC1 signaling in neighboring ISCs. Notably, the mTOR inhibitor rapamycin, previously reported to mimic effects of CR, abolishes this expansion of ISCs. We suggest that Paneth cell signaling overrides any direct nutrient sensing in ISCs to sculpt the observed response to CR. Moreover, drugs that modulate pathways important in CR may exert opposing effects on different cell types. PMID:27345368

  15. Amino Acid Activation of mTORC1 by a PB1-Domain-Driven Kinase Complex Cascade

    Juan F. Linares

    2015-08-01

    Full Text Available The mTORC1 complex is central to the cellular response to changes in nutrient availability. The signaling adaptor p62 contributes to mTORC1 activation in response to amino acids and interacts with TRAF6, which is required for the translocation of mTORC1 to the lysosome and the subsequent K63 polyubiquitination and activation of mTOR. However, the signal initiating these p62-driven processes was previously unknown. Here, we show that p62 is phosphorylated via a cascade that includes MEK3/6 and p38δ and is driven by the PB1-containing kinase MEKK3. This phosphorylation results in the recruitment of TRAF6 to p62, the ubiquitination and activation of mTOR, and the regulation of autophagy and cell proliferation. Genetic inactivation of MEKK3 or p38δ mimics that of p62 in that it leads to inhibited growth of PTEN-deficient prostate organoids. Analysis of human prostate cancer samples showed upregulation of these three components of the pathway, which correlated with enhanced mTORC1 activation.

  16. In situ characterization of the mTORC1 during adipogenesis of human adult stem cells on chip.

    Wu, Xuanye; Schneider, Nils; Platen, Alina; Mitra, Indranil; Blazek, Matthias; Zengerle, Roland; Schüle, Roland; Meier, Matthias

    2016-07-19

    Mammalian target of rapamycin (mTOR) is a central kinase integrating nutrient, energy, and metabolite signals. The kinase forms two distinct complexes: mTORC1 and mTORC2. mTORC1 plays an essential but undefined regulatory function for regeneration of adipose tissue. Analysis of mTOR in general is hampered by the complexity of regulatory mechanisms, including protein interactions and/or phosphorylation, in an ever-changing cellular microenvironment. Here, we developed a microfluidic large-scale integration chip platform for culturing and differentiating human adipose-derived stem cells (hASCs) in 128 separated microchambers under standardized nutrient conditions over 3 wk. The progression of the stem cell differentiation was measured by determining the lipid accumulation rates in hASC cultures. For in situ protein analytics, we developed a multiplex in situ proximity ligation assay (mPLA) that can detect mTOR in its two complexes selectively in single cells and implemented it on the same chip. With this combined technology, it was possible to reveal that the mTORC1 is regulated in its abundance, phosphorylation state, and localization in coordination with lysosomes during adipogenesis. High-content image analysis and parameterization of the in situ PLA signals in over 1 million cells cultured on four individual chips showed that mTORC1 and lysosomes are temporally and spatially coordinated but not in its composition during adipogenesis. PMID:27382182

  17. mTORC1 Inhibition Corrects Neurodevelopmental and Synaptic Alterations in a Human Stem Cell Model of Tuberous Sclerosis.

    Costa, Veronica; Aigner, Stefan; Vukcevic, Mirko; Sauter, Evelyn; Behr, Katharina; Ebeling, Martin; Dunkley, Tom; Friedlein, Arno; Zoffmann, Sannah; Meyer, Claas A; Knoflach, Frédéric; Lugert, Sebastian; Patsch, Christoph; Fjeldskaar, Fatiha; Chicha-Gaudimier, Laurie; Kiialainen, Anna; Piraino, Paolo; Bedoucha, Marc; Graf, Martin; Jessberger, Sebastian; Ghosh, Anirvan; Bischofberger, Josef; Jagasia, Ravi

    2016-04-01

    Hyperfunction of the mTORC1 pathway has been associated with idiopathic and syndromic forms of autism spectrum disorder (ASD), including tuberous sclerosis, caused by loss of either TSC1 or TSC2. It remains largely unknown how developmental processes and biochemical signaling affected by mTORC1 dysregulation contribute to human neuronal dysfunction. Here, we have characterized multiple stages of neurogenesis and synapse formation in human neurons derived from TSC2-deleted pluripotent stem cells. Homozygous TSC2 deletion causes severe developmental abnormalities that recapitulate pathological hallmarks of cortical malformations in patients. Both TSC2(+/-) and TSC2(-/-) neurons display altered synaptic transmission paralleled by molecular changes in pathways associated with autism, suggesting the convergence of pathological mechanisms in ASD. Pharmacological inhibition of mTORC1 corrects developmental abnormalities and synaptic dysfunction during independent developmental stages. Our results uncouple stage-specific roles of mTORC1 in human neuronal development and contribute to a better understanding of the onset of neuronal pathophysiology in tuberous sclerosis. PMID:27052171

  18. mTORC1 Inhibition Corrects Neurodevelopmental and Synaptic Alterations in a Human Stem Cell Model of Tuberous Sclerosis

    Veronica Costa

    2016-04-01

    Full Text Available Hyperfunction of the mTORC1 pathway has been associated with idiopathic and syndromic forms of autism spectrum disorder (ASD, including tuberous sclerosis, caused by loss of either TSC1 or TSC2. It remains largely unknown how developmental processes and biochemical signaling affected by mTORC1 dysregulation contribute to human neuronal dysfunction. Here, we have characterized multiple stages of neurogenesis and synapse formation in human neurons derived from TSC2-deleted pluripotent stem cells. Homozygous TSC2 deletion causes severe developmental abnormalities that recapitulate pathological hallmarks of cortical malformations in patients. Both TSC2+/− and TSC2−/− neurons display altered synaptic transmission paralleled by molecular changes in pathways associated with autism, suggesting the convergence of pathological mechanisms in ASD. Pharmacological inhibition of mTORC1 corrects developmental abnormalities and synaptic dysfunction during independent developmental stages. Our results uncouple stage-specific roles of mTORC1 in human neuronal development and contribute to a better understanding of the onset of neuronal pathophysiology in tuberous sclerosis.

  19. Akt inhibition promotes ABCA1-mediated cholesterol efflux to ApoA-I through suppressing mTORC1.

    Fumin Dong

    Full Text Available ATP-binding cassette transporter A1 (ABCA1 plays an essential role in mediating cholesterol efflux to apolipoprotein A-I (apoA-I, a major housekeeping mechanism for cellular cholesterol homeostasis. After initial engagement with ABCA1, apoA-I directly interacts with the plasma membrane to acquire cholesterol. This apoA-I lipidation process is also known to require cellular signaling processes, presumably to support cholesterol trafficking to the plasma membrane. We report here that one of major signaling pathways in mammalian cells, Akt, is also involved. In several cell models that express ABCA1 including macrophages, pancreatic beta cells and hepatocytes, inhibition of Akt increases cholesterol efflux to apoA-I. Importantly, Akt inhibition has little effect on cells expressing non-functional mutant of ABCA1, implicating a specific role of Akt in ABCA1 function. Furthermore, we provide evidence that mTORC1, a major downstream target of Akt, is also a negative regulator of cholesterol efflux. In cells where mTORC1 is constitutively activated due to tuberous sclerosis complex 2 deletion, cholesterol efflux to apoA-I is no longer sensitive to Akt activity. This suggests that Akt suppresses cholesterol efflux through mTORC1 activation. Indeed, inhibition of mTORC1 by rapamycin or Torin-1 promotes cholesterol efflux. On the other hand, autophagy, one of the major pathways of cholesterol trafficking, is increased upon Akt inhibition. Furthermore, Akt inhibition disrupts lipid rafts, which is known to promote cholesterol efflux to apoA-I. We therefore conclude that Akt, through its downstream targets, mTORC1 and hence autophagy, negatively regulates cholesterol efflux to apoA-I.

  20. Glucose amplifies fatty acid-induced endoplasmic reticulum stress in pancreatic beta-cells via activation of mTORC1.

    Etti Bachar

    Full Text Available BACKGROUND: Palmitate is a potent inducer of endoplasmic reticulum (ER stress in beta-cells. In type 2 diabetes, glucose amplifies fatty-acid toxicity for pancreatic beta-cells, leading to beta-cell dysfunction and death. Why glucose exacerbates beta-cell lipotoxicity is largely unknown. Glucose stimulates mTORC1, an important nutrient sensor involved in the regulation of cellular stress. Our study tested the hypothesis that glucose augments lipotoxicity by stimulating mTORC1 leading to increased beta-cell ER stress. PRINCIPAL FINDINGS: We found that glucose amplifies palmitate-induced ER stress by increasing IRE1alpha protein levels and activating the JNK pathway, leading to increased beta-cell apoptosis. Moreover, glucose increased mTORC1 activity and its inhibition by rapamycin decreased beta-cell apoptosis under conditions of glucolipotoxicity. Inhibition of mTORC1 by rapamycin did not affect proinsulin and total protein synthesis in beta-cells incubated at high glucose with palmitate. However, it decreased IRE1alpha expression and signaling and inhibited JNK pathway activation. In TSC2-deficient mouse embryonic fibroblasts, in which mTORC1 is constitutively active, mTORC1 regulated the stimulation of JNK by ER stressors, but not in response to anisomycin, which activates JNK independent of ER stress. Finally, we found that JNK inhibition decreased beta-cell apoptosis under conditions of glucolipotoxicity. CONCLUSIONS/SIGNIFICANCE: Collectively, our findings suggest that mTORC1 mediates glucose amplification of lipotoxicity, acting through activation of ER stress and JNK. Thus, mTORC1 is an important transducer of ER stress in beta-cell glucolipotoxicity. Moreover, in stressed beta-cells mTORC1 inhibition decreases IRE1alpha protein expression and JNK activity without affecting ER protein load, suggesting that mTORC1 regulates the beta-cell stress response to glucose and fatty acids by modulating the synthesis and activity of specific

  1. Glucose addiction of TSC-null cells is caused by failed mTORC1-dependent balancing of metabolic demand with supply

    Choo, Andrew Y.; Kim, Sang Gyun; Heiden, Matthew G. Vander; Mahoney, Sarah J.; Vu, Hieu; Yoon, Sang-Oh; Cantley, Lewis C.; Blenis, John

    2010-01-01

    Summary The mTORC1 signaling pathway integrates environmental conditions into distinct signals for cell growth by balancing anabolic and catabolic processes. Accordingly, energetic stress inhibits mTORC1 signaling predominantly through AMPK-dependent activation of TSC1/2. Thus, TSC1/2-/- cells are hypersensitive to glucose deprivation and this has been linked to increased p53 translation and activation of apoptosis. Herein, we show that mTORC1 inhibition during glucose deprivation prevented not only the execution of death, but also induction of energetic stress. mTORC1 inhibition during glucose deprivation decreased AMPK activation and allowed ATP to remain high, which was both necessary and sufficient for protection. This effect was not due to increased catabolic activities such as autophagy, but rather exclusively due to decreased anabolic processes, reducing energy consumption. Specifically, TSC1/2-/- cells become highly dependent on glutamate dehydrogenase-dependent glutamine metabolism via the TCA cycle for survival. Therefore, mTORC1 inhibition during energetic stress is primarily to balance metabolic demand with supply. PMID:20513425

  2. Potential role of FoxO1 and mTORC1 in the pathogenesis of Western diet-induced acne.

    Melnik, Bodo C; Zouboulis, Christos C

    2013-05-01

    Acne in adolescents of developed countries is an epidemic skin disease and has currently been linked to the Western diet (WD). It is the intention of this viewpoint to discuss the possible impact of WD-mediated nutrient signalling in the pathogenesis of acne. High glycaemic load and dairy protein consumption both increase insulin/insulin-like growth factor-1 (IGF-1) signalling (IIS) that is superimposed on elevated IGF-1 signalling of puberty. The cell's nutritional status is primarily sensed by the forkhead box transcription factor O1 (FoxO1) and the serine/threonine kinase mammalian target of rapamycin complex 1 (mTORC1). Increased IIS extrudes FoxO1 into the cytoplasm, whereas nuclear FoxO1 suppresses hepatic IGF-1 synthesis and thus impairs somatic growth. FoxO1 attenuates androgen signalling, interacts with regulatory proteins important for sebaceous lipogenesis, regulates the activity of innate and adaptive immunity, antagonizes oxidative stress and most importantly functions as a rheostat of mTORC1, the master regulator of cell growth, proliferation and metabolic homoeostasis. Thus, FoxO1 links nutrient availability to mTORC1-driven processes: increased protein and lipid synthesis, cell proliferation, cell differentiation including hyperproliferation of acroinfundibular keratinocytes, sebaceous gland hyperplasia, increased sebaceous lipogenesis, insulin resistance and increased body mass index. Enhanced androgen, TNF-α and IGF-1 signalling due to genetic polymorphisms promoting the risk of acne all converge in mTORC1 activation, which is further enhanced by nutrient signalling of WD. Deeper insights into the molecular interplay of FoxO1/mTORC1-mediated nutrient signalling are thus of critical importance to understand the impact of WD on the promotion of epidemic acne and more serious mTORC1-driven diseases of civilization. PMID:23614736

  3. Consequences of Aberrant Hedgehog Signaling During Zebrafish Development

    Koudijs, M.J.

    2007-01-01

    The Hedgehog signaling pathway is controlling proliferation, patterning and differentiation during development of vertebrates and invertebrates. Aberrant Hedgehog activity has been shown to be one of the underlying causes of a number of congenital disorders and multiple types of cancer. We investiga

  4. Recurrent mTORC1-activating RRAGC mutations in follicular lymphoma.

    Okosun, Jessica; Wolfson, Rachel L; Wang, Jun; Araf, Shamzah; Wilkins, Lucy; Castellano, Brian M; Escudero-Ibarz, Leire; Al Seraihi, Ahad Fahad; Richter, Julia; Bernhart, Stephan H; Efeyan, Alejo; Iqbal, Sameena; Matthews, Janet; Clear, Andrew; Guerra-Assunção, José Afonso; Bödör, Csaba; Quentmeier, Hilmar; Mansbridge, Christopher; Johnson, Peter; Davies, Andrew; Strefford, Jonathan C; Packham, Graham; Barrans, Sharon; Jack, Andrew; Du, Ming-Qing; Calaminici, Maria; Lister, T Andrew; Auer, Rebecca; Montoto, Silvia; Gribben, John G; Siebert, Reiner; Chelala, Claude; Zoncu, Roberto; Sabatini, David M; Fitzgibbon, Jude

    2016-02-01

    Follicular lymphoma is an incurable B cell malignancy characterized by the t(14;18) translocation and mutations affecting the epigenome. Although frequent gene mutations in key signaling pathways, including JAK-STAT, NOTCH and NF-κB, have also been defined, the spectrum of these mutations typically overlaps with that in the closely related diffuse large B cell lymphoma (DLBCL). Using a combination of discovery exome and extended targeted sequencing, we identified recurrent somatic mutations in RRAGC uniquely enriched in patients with follicular lymphoma (17%). More than half of the mutations preferentially co-occurred with mutations in ATP6V1B2 and ATP6AP1, which encode components of the vacuolar H(+)-ATP ATPase (V-ATPase) known to be necessary for amino acid-induced activation of mTORC1. The RagC variants increased raptor binding while rendering mTORC1 signaling resistant to amino acid deprivation. The activating nature of the RRAGC mutations, their existence in the dominant clone and their stability during disease progression support their potential as an excellent candidate for therapeutic targeting. PMID:26691987

  5. Turning acne on/off via mTORC1.

    Danby, F William

    2013-07-01

    Over the past 10 years, the increase in comprehension of the mechanisms behind acne has been truly exponential. Starting with the ethnological work of Cordain, accelerated by the epidemiological work of Adebamowo, supported by the clinical trials of Smith and Mann, Kwon, DiLandro and others, the interface of diet and acne is coming into focus. Melnik now presents an exceptional pair of papers that illustrate for dermatologists what translational research is all about. The Western diet, the role of dairy, FoxO1 and mTORC1, the interplay of agonists and antagonists, therapeutics present and future - the jigsaw puzzle is coming together. PMID:23800069

  6. ATP-site binding inhibitor effectively targets mTORC1 and mTORC2 complexes in glioblastoma.

    Neil, Jayson; Shannon, Craig; Mohan, Avinash; Laurent, Dimitri; Murali, Raj; Jhanwar-Uniyal, Meena

    2016-03-01

    The PI3K-AKT-mTOR signaling axis is central to the transformed phenotype of glioblastoma (GBM) cells, due to frequent loss of tumor suppressor PTEN (phosphatase and tensin homolog deleted on chromosome 10). The mechanistic target of rapamycin (mTOR) kinase is present in two cellular multi-protein complexes, mTORC1 and mTORC2, which have distinct subunit composition, substrates and mechanisms of action. Targeting the mTOR protein is a promising strategy for GBM therapy. However, neither of these complexes is fully inhibited by the allosteric inhibitor of mTOR, rapamycin or its analogs. Herein, we provide evidence that the combined inhibition of mTORC1/2, using the ATP-competitive binding inhibitor PP242, would effectively suppress GBM growth and dissemination as compared to an allosteric binding inhibitor of mTOR. GBM cells treated with PP242 demonstrated significantly decreased activation of mTORC1 and mTORC2, as shown by reduced phosphorylation of their substrate levels, p70 S6KThr389 and AKTSer473, respectively, in a dose-dependent manner. Furthermore, insulin induced activation of these kinases was abrogated by pretreatment with PP242 as compared with rapamycin. Unlike rapamycin, PP242 modestly activates extracellular regulated kinase (ERK1/2), as shown by expression of pERKThr202/Tyr204. Cell proliferation and S-phase entry of GBM cells was significantly suppressed by PP242, which was more pronounced compared to rapamycin treatment. Lastly, PP242 significantly suppressed the migration of GBM cells, which was associated with a change in cellular behavior rather than cytoskeleton loss. In conclusion, these results underscore the potential therapeutic use of the PP242, a novel ATP-competitive binding inhibitor of mTORC1/2 kinase, in suppression of GBM growth and dissemination. PMID:26719046

  7. Improvement of mTORC1-driven overproduction of apoB-containing triacylglyceride-rich lipoproteins by short-chain fatty acids, 4-phenylbutyric acid and (R)-α-lipoic acid, in human hepatocellular carcinoma cells.

    Roberts, Joseph L; He, Bo; Erickson, Anjeza; Moreau, Régis

    2016-03-01

    The activation of hepatic kinase mechanistic target of rapamycin complex 1 (mTORC1) is implicated in the development of obesity-related metabolic disorders. This study investigated the metabolic sequelae of mTORC1 hyperactivation in human hepatoma cells and the lipid-regulating mechanisms of two short-chain fatty acids: 4-phenylbutyric acid (PBA) and (R)-α-lipoic acid (LA). We created three stable cell lines that exhibit low, normal, or high mTORC1 activity. mTORC1 hyperactivation induced the expression of lipogenic (DGAT1 and DGAT2) and lipoprotein assembly (MTP and APOB) genes, thereby raising cellular triacylglyceride (TG) and exacerbating secretion of apoB-containing TG-rich lipoproteins. LYS6K2, a specific inhibitor of the p70 S6 kinase branch of mTORC1 signaling, reversed these effects. PBA and LA decreased secreted TG through distinct mechanisms. PBA repressed apoB expression (both mRNA and protein) and lowered secreted TG without mitigation of mTORC1 hyperactivity or activation of AMPK. LA decreased cellular and secreted TG by attenuating mTORC1 signaling in an AMPK-independent manner. LA did not regulate apoB expression but led to the secretion of apoB-containing TG-poor lipoproteins by repressing the expression of lipogenic genes, FASN, DGAT1, and DGAT2. Our studies provide new mechanistic insight into the hypolipidemic activity of PBA and LA in the context of mTORC1 hyperactivation and suggest that the short-chain fatty acids may aid in the prevention and treatment of hypertriglyceridemia. PMID:26680362

  8. Sestrins Inhibit mTORC1 Kinase Activation through the GATOR Complex

    Anita Parmigiani

    2014-11-01

    Full Text Available The mechanistic target of rapamycin complex 1 (mTORC1 kinase is a sensor of different environmental conditions and regulator of cell growth, metabolism, and autophagy. mTORC1 is activated by Rag GTPases, working as RagA:RagB and RagC:RagD heterodimers. Rags control mTORC1 activity by tethering mTORC1 to the lysosomes where it is activated by Rheb GTPase. RagA:RagB, active in its GTP-bound form, is inhibited by GATOR1 complex, a GTPase-activating protein, and GATOR1 is in turn negatively regulated by GATOR2 complex. Sestrins are stress-responsive proteins that inhibit mTORC1 via activation of AMP-activated protein kinase (AMPK and tuberous sclerosis complex. Here we report an AMPK-independent mechanism of mTORC1 inhibition by Sestrins mediated by their interaction with GATOR2. As a result of this interaction, the Sestrins suppress mTOR lysosomal localization in a Rag-dependent manner. This mechanism is potentially involved in mTORC1 regulation by amino acids, rotenone, and tunicamycin, connecting stress response with mTORC1 inhibition.

  9. Aberrant WNT/β-catenin signaling in parathyroid carcinoma

    Åkerström Göran

    2010-11-01

    Full Text Available Abstract Background Parathyroid carcinoma (PC is a very rare malignancy with a high tendency to recur locally, and recurrent disease is difficult to eradicate. In most western European countries and United States, these malignant neoplasms cause less than 1% of the cases with primary hyperparathyroidism, whereas incidence as high as 5% have been reported from Italy, Japan, and India. The molecular etiology of PC is poorly understood. Results The APC (adenomatous polyposis coli tumor suppressor gene was inactivated by DNA methylation in five analyzed PCs, as determined by RT-PCR, Western blotting, and quantitative bisulfite pyrosequencing analyses. This was accompanied by accumulation of stabilized active nonphosphorylated β-catenin, strongly suggesting aberrant activation of the WNT/β-catenin signaling pathway in these tumors. Treatment of a primary PC cell culture with the DNA hypomethylating agent 5-aza-2'-deoxycytidine (decitabine, Dacogen(r induced APC expression, reduced active nonphosphorylated β-catenin, inhibited cell growth, and caused apoptosis. Conclusion Aberrant WNT/β-catenin signaling by lost expression and DNA methylation of APC, and accumulation of active nonphosphorylated β-catenin was observed in the analyzed PCs. We suggest that adjuvant epigenetic therapy should be considered as an additional option in the treatment of patients with recurrent or metastatic parathyroid carcinoma.

  10. Equivalent benefit of mTORC1 blockade and combined PI3K-mTOR blockade in a mouse model of tuberous sclerosis

    Pollizzi Kristen

    2009-06-01

    Full Text Available Abstract Background Tuberous sclerosis (TSC is a hamartoma syndrome in which renal and lung tumors cause the greatest morbidity. Loss of either TSC1 or TSC2 in TSC hamartomas leads to activation of mTORC1 and suppression of AKT. Recent studies indicate that inhibition of mTORC1 with RAD001 (everolimus leads to rebound activation of AKT, which could protect tumors from drug-induced cell death. Here we examine the potential benefit of inhibition of both mTOR and AKT signaling in a mouse model of TSC, using a dual pan class I PI3K/mTOR catalytic small molecule inhibitor NVP-BEZ235. Results Using ENU to enhance Tsc2+- kidney tumor development, both RAD001 (10 mg/kg PO 5 d/week and NVP-BEZ235 (45 mg/kg PO QD had equivalent effects in suppressing tumor development during a 4 week treatment period, with a 99% reduction in tumor cell mass. Marked reduction in activation of mTORC1, induction of cell cycle arrest, and absence of apoptotic cell death was seen in mice treated with either drug. However, when either was discontinued, there was prompt recovery of tumor growth, with extensive proliferation. Conclusion Both mTORC1 blockade alone and combined PI3K-mTOR blockade lead to suppression of tumor development but not tumor elimination in this TSC model.

  11. mTORC1 inhibition in the nucleus accumbens 'protects' against the expression of drug seeking and 'relapse' and is associated with reductions in GluA1 AMPAR and CAMKIIα levels.

    James, Morgan H; Quinn, Rikki K; Ong, Lin Kooi; Levi, Emily M; Charnley, Janine L; Smith, Doug W; Dickson, Phillip W; Dayas, Christopher V

    2014-06-01

    The mechanistic target of rapamycin complex 1 (mTORC1) is necessary for synaptic plasticity, as it is critically involved in the translation of synaptic transmission-related proteins, such as Ca(2+)/Calmodulin-dependent kinase II alpha (CAMKIIα) and AMPA receptor subunits (GluAs). Although recent studies have implicated mTORC1 signaling in drug-motivated behavior, the ineffectiveness of rapamycin, an mTORC1 inhibitor, in suppressing cocaine self-administration has raised questions regarding the specific role of mTORC1 in drug-related behaviors. Here, we examined mTORC1's role in three drug-related behaviors: cocaine taking, withdrawal, and reinstatement of cocaine seeking, by measuring indices of mTORC1 activity and assessing the effect of intra-cerebroventricular rapamycin on these behaviors in rats. We found that withdrawal from cocaine self-administration increased indices of mTORC1 activity in the nucleus accumbens (NAC). Intra-cerebroventricular rapamycin attenuated progressive ratio (PR) break points and reduced phospho-p70 ribosomal S6 kinase, GluA1 AMPAR, and CAMKIIα levels in the NAC shell (NACsh) and core (NACc). In a subsequent study, we treated rats with intra-NACsh infusions of rapamycin (2.5 μg/side/day for 5 days) during cocaine self-administration and then tracked the expression of addiction-relevant behaviors through to withdrawal and extinction. Rapamycin reduced drug seeking in signaled non-drug-available periods, PR responding, and cue-induced reinstatement, with these effects linked to reduced mTORC1 activity, total CAMKIIα, and GluA1 AMPAR levels in the NACsh. Together, these data highlight a role for mTORC1 in the neural processes that control the expression and maintenance of drug reward, including protracted relapse vulnerability. These effects appear to involve a role for mTORC1 in the regulation of GluA1 AMPARs and CAMKIIα in the NACsh. PMID:24469593

  12. Synaptic signaling and aberrant RNA splicing in autism spectrum disorders

    Ryan M Smith

    2011-01-01

    Full Text Available Interactions between presynaptic and postsynaptic cellular adhesion molecules drive synapse maturation during development. These trans-synaptic interactions are regulated by alternative splicing of cellular adhesion molecule RNAs, which ultimately determines neurotransmitter phenotype. The diverse assortment of RNAs produced by alternative splicing generates countless protein isoforms necessary for guiding specialized cell-to-cell connectivity. Failure to generate the appropriate synaptic adhesion proteins is associated with disrupted glutamatergic and gamma-aminobutyric acid signaling, resulting in loss of activity-dependent neuronal plasticity, and risk for developmental disorders, including autism. While the majority of genetic mutations currently linked to autism are rare variants that change the protein coding sequence of synaptic candidate genes, regulatory polymorphisms affecting constitutive and alternative splicing have emerged as risk factors in numerous other diseases, accounting for an estimated 40-60% of general disease risk. Here, we review the relationship between aberrant RNA splicing of synapse-related genes and autism spectrum disorders.

  13. Impact of mTORC1 inhibition on keratinocyte proliferation during skin tumor promotion in wild-type and BK5.AktWT mice.

    Rho, Okkyung; Kiguchi, Kaoru; Jiang, Guiyu; DiGiovanni, John

    2014-11-01

    In this study, we examined the impact of rapamycin on mTORC1 signaling during 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced keratinocyte proliferation and skin tumor promotion in both wild-type (FVB/N) and BK5.Akt(WT) mice. TPA activated mTORC1 signaling in a time-dependent manner in cultured primary mouse keratinocytes and a mouse keratinocyte cell line. Early activation (15-30 min) of mTORC1 signaling induced by TPA was mediated in part by PKC activation, whereas later activation (2-4 h) was mediated by activation of EGFR and Akt. BK5.Akt(WT) transgenic mice, where Akt1 is overexpressed in basal epidermis, are highly sensitive to TPA-induced epidermal proliferation and two-stage skin carcinogenesis. Targeting mTORC1 with rapamycin effectively inhibited TPA-induced epidermal hyperplasia and hyperproliferation as well as tumor promotion in a dose-dependent manner in both wild-type and BK5.Akt(WT) mice. A significant expansion (∼threefold) of the label retaining cell (LRC) population per hair follicle was observed in BK5.Akt(WT) mice compared to FVB/N mice. There was also a significant increase in K15 expressing cells in the hair follicle of transgenic mice that coincided with expression of phospho-Akt, phospho-S6K, and phospho-PRAS40, suggesting an important role of mTORC1 signaling in bulge-region keratinocyte stem cell (KSC) homeostasis. After 2 weeks of TPA treatment, LRCs had moved upward into the interfollicular epidermis from the bulge region of both wild-type and BK5.Akt(WT) mice. TPA-mediated LRC proliferation and migration was significantly inhibited by rapamycin. Collectively, the current data indicate that signaling through mTORC1 contributes significantly to the process of skin tumor promotion through effects on proliferation of the target cells for tumor development. PMID:24114993

  14. Regulation of bone formation by baicalein via the mTORC1 pathway

    Li SF

    2015-09-01

    Full Text Available Sheng-fa Li,1,2,* Jia-jun Tang,1,2,* Jian Chen,1–3,* Pei Zhang,4,* Ting Wang,5 Tian-yu Chen,1,2 Bo Yan,1,2 Bin Huang,1,2 Liang Wang,1,2 Min-jun Huang,1,2 Zhong-min Zhang,1,2 Da-di Jin1,21Academy of Orthopedics of Guangdong Province, Guangzhou, People’s Republic of China; 2Department of Orthopedics, The Third Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong, People’s Republic of China; 3Three Gorges Central Hospital of Chongqing, Chongqing, People’s Republic of China; 4School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, People’s Republic of China; 5Department of Cell Biology, School of Basic Medical Science, Southern Medical University, Guangzhou, Guangdong, People’s Republic of China*These authors contributed equally to this workAbstract: Osteoporosis is a systemic skeletal disease that is characterized by low bone density and microarchitectural deterioration of bone tissue. The increasing prevalence of osteoporosis has attracted much attention. In this study, MC3T3-E1 pre-osteoblasts were treated with the natural compound, baicalein (0.1 µmol/L, 1 µmol/L, 10 µmol/L, to stimulate differentiation over a 14-day period. In addition, a canonical ovariectomized (OVX mouse model was used to investigate the effect of 3-month baicalein treatment (10 mg/kg per day in preventing postmenopausal osteoporosis. In vitro, we found that baicalein induced activation of alkaline phosphatase, stimulated the mammalian target of rapamycin complex 1 (mTORC1 signaling pathway, and induced expression of osteoblast differentiation markers, ie, osteocalcin, osterix, collagen Iα1, and runt-related transcription factor 2 (RUNX2, in osteoblasts. In vivo, several bone parameters, including trabecular thickness, trabecular bone mineral density, and trabecular number, in the distal femoral metaphysis were significantly increased in OVX mice treated intragastrically with baicalein for 3 months

  15. mTORC1-mediated inhibition of polycystin-1 expression drives renal cyst formation in tuberous sclerosis complex.

    Pema, Monika; Drusian, Luca; Chiaravalli, Marco; Castelli, Maddalena; Yao, Qin; Ricciardi, Sara; Somlo, Stefan; Qian, Feng; Biffo, Stefano; Boletta, Alessandra

    2016-01-01

    Previous studies report a cross-talk between the polycystic kidney disease (PKD) and tuberous sclerosis complex (TSC) genes. mTOR signalling is upregulated in PKD and rapamycin slows cyst expansion, whereas renal inactivation of the Tsc genes causes cysts. Here we identify a new interplay between the PKD and TSC genes, with important implications for the pathophysiology of both diseases. Kidney-specific inactivation of either Pkd1 or Tsc1 using an identical Cre (KspCre) results in aggressive or very mild PKD, respectively. Unexpectedly, we find that mTORC1 negatively regulates the biogenesis of polycystin-1 (PC-1) and trafficking of the PC-1/2 complex to cilia. Genetic interaction studies reveal an important role for PC-1 downregulation by mTORC1 in the cystogenesis of Tsc1 mutants. Our data potentially explain the severe renal manifestations of the TSC/PKD contiguous gene syndrome and open new perspectives for the use of mTOR inhibitors in autosomal dominant PKD caused by hypomorphic or missense PKD1 mutations. PMID:26931735

  16. Rapamycin has a biphasic effect on insulin sensitivity in C2C12 myotubes due to sequential disruption of mTORC1 and mTORC2

    Lan eYe

    2012-09-01

    Full Text Available Rapamycin, an inhibitor of mTOR complex 1 (mTORC1, improves insulin sensitivity in acute studies in vitro and in vivo by disrupting a negative feedback loop mediated by S6 kinase. We find that rapamycin has a clear biphasic effect on insulin sensitivity in C2C12 myotubes, with enhanced responsiveness during the first hour that declines to almost complete insulin resistance by 24-48 hours. We and others have recently observed that chronic rapamycin treatment induces insulin resistance in rodents, at least in part due to disruption of mTORC2, an mTOR-containing complex that is not acutely sensitive to the drug. Chronic rapamycin treatment may also impair insulin action via the inhibition of mTORC1-dependent mitochondrial biogenesis and activity, which could result in a buildup of lipid intermediates that are known to trigger insulin resistance. We confirmed that rapamycin inhibits expression of PGC-1α, a key mitochondrial transcription factor, and acutely reduces respiration rate in myotubes. However, rapamycin did not stimulate phosphorylation of PKCθ, a central mediator of lipid-induced insulin resistance. Instead, we found dramatic disruption of mTORC2, which coincided with the onset of insulin resistance. Selective inhibition of mTORC1 or mTORC2 by shRNA-mediated knockdown of specific components (Raptor and Rictor, respectively confirmed that mitochondrial effects of rapamycin are mTORC1-dependent, whereas insulin resistance was recapitulated only by knockdown of mTORC2. Thus, mTORC2 disruption, rather than inhibition of mitochondria, causes insulin resistance in rapamycin-treated myotubes, and this system may serve as a useful model to understand the effects of rapamycin on mTOR signaling in vivo.

  17. Translation control during prolonged mTORC1 inhibition mediated by 4E-BP3

    Tsukumo, Yoshinori; Alain, Tommy; Fonseca, Bruno D.; Nadon, Robert; Sonenberg, Nahum

    2016-01-01

    Targeting mTORC1 is a highly promising strategy in cancer therapy. Suppression of mTORC1 activity leads to rapid dephosphorylation of eIF4E-binding proteins (4E-BP1–3) and subsequent inhibition of mRNA translation. However, how the different 4E-BPs affect translation during prolonged use of mTOR inhibitors is not known. Here we show that the expression of 4E-BP3, but not that of 4E-BP1 or 4E-BP2, is transcriptionally induced during prolonged mTORC1 inhibition in vitro and in vivo. Mechanistically, our data reveal that 4E-BP3 expression is controlled by the transcription factor TFE3 through a cis-regulatory element in the EIF4EBP3 gene promoter. CRISPR/Cas9-mediated EIF4EBP3 gene disruption in human cancer cells mitigated the inhibition of translation and proliferation caused by prolonged treatment with mTOR inhibitors. Our findings show that 4E-BP3 is an important effector of mTORC1 and a robust predictive biomarker of therapeutic response to prolonged treatment with mTOR-targeting drugs in cancer. PMID:27319316

  18. Translation control during prolonged mTORC1 inhibition mediated by 4E-BP3.

    Tsukumo, Yoshinori; Alain, Tommy; Fonseca, Bruno D; Nadon, Robert; Sonenberg, Nahum

    2016-01-01

    Targeting mTORC1 is a highly promising strategy in cancer therapy. Suppression of mTORC1 activity leads to rapid dephosphorylation of eIF4E-binding proteins (4E-BP1-3) and subsequent inhibition of mRNA translation. However, how the different 4E-BPs affect translation during prolonged use of mTOR inhibitors is not known. Here we show that the expression of 4E-BP3, but not that of 4E-BP1 or 4E-BP2, is transcriptionally induced during prolonged mTORC1 inhibition in vitro and in vivo. Mechanistically, our data reveal that 4E-BP3 expression is controlled by the transcription factor TFE3 through a cis-regulatory element in the EIF4EBP3 gene promoter. CRISPR/Cas9-mediated EIF4EBP3 gene disruption in human cancer cells mitigated the inhibition of translation and proliferation caused by prolonged treatment with mTOR inhibitors. Our findings show that 4E-BP3 is an important effector of mTORC1 and a robust predictive biomarker of therapeutic response to prolonged treatment with mTOR-targeting drugs in cancer. PMID:27319316

  19. Caveat mTOR: aberrant signaling disrupts corticogenesis

    Osborne, Lucy R.

    2010-01-01

    The mammalian target of rapamycin (mTOR) signaling pathway is activated in several disorders associated with benign tumors and malformations of the cerebral cortex. In this issue of the JCI, Orlova et al. have now definitively added another disorder to this group by demonstrating that activation of mTOR signaling is associated with polyhydramnios, megalencephaly, and symptomatic epilepsy syndrome (PMSE), which is characterized by severe intractable epilepsy and megalencephaly. PMSE is caused ...

  20. Dose-Dependent AMPK-Dependent and Independent Mechanisms of Berberine and Metformin Inhibition of mTORC1, ERK, DNA Synthesis and Proliferation in Pancreatic Cancer Cells.

    Ming Ming

    Full Text Available Natural products represent a rich reservoir of potential small chemical molecules exhibiting anti-proliferative and chemopreventive properties. Here, we show that treatment of pancreatic ductal adenocarcinoma (PDAC cells (PANC-1, MiaPaCa-2 with the isoquinoline alkaloid berberine (0.3-6 µM inhibited DNA synthesis and proliferation of these cells and delay the progression of their cell cycle in G1. Berberine treatment also reduced (by 70% the growth of MiaPaCa-2 cell growth when implanted into the flanks of nu/nu mice. Mechanistic studies revealed that berberine decreased mitochondrial membrane potential and intracellular ATP levels and induced potent AMPK activation, as shown by phosphorylation of AMPK α subunit at Thr-172 and acetyl-CoA carboxylase (ACC at Ser79. Furthermore, berberine dose-dependently inhibited mTORC1 (phosphorylation of S6K at Thr389 and S6 at Ser240/244 and ERK activation in PDAC cells stimulated by insulin and neurotensin or fetal bovine serum. Knockdown of α1 and α2 catalytic subunit expression of AMPK reversed the inhibitory effect produced by treatment with low concentrations of berberine on mTORC1, ERK and DNA synthesis in PDAC cells. However, at higher concentrations, berberine inhibited mitogenic signaling (mTORC1 and ERK and DNA synthesis through an AMPK-independent mechanism. Similar results were obtained with metformin used at doses that induced either modest or pronounced reductions in intracellular ATP levels, which were virtually identical to the decreases in ATP levels obtained in response to berberine. We propose that berberine and metformin inhibit mitogenic signaling in PDAC cells through dose-dependent AMPK-dependent and independent pathways.

  1. Potentiation of Growth Inhibitory Responses of the mTOR Inhibitor Everolimus by Dual mTORC1/2 Inhibitors in Cultured Breast Cancer Cell Lines

    Leung, Euphemia Y.; Askarian-Amiri, Marjan; Finlay, Graeme J.; Rewcastle, Gordon W.; Baguley, Bruce C.

    2015-01-01

    The mammalian target of rapamycin (mTOR), a vital component of signaling pathways involving PI3K/AKT, is an attractive therapeutic target in breast cancer. Everolimus, an allosteric mTOR inhibitor that inhibits the mTOR functional complex mTORC1, is approved for treatment of estrogen receptor positive (ER+) breast cancer. Other mTOR inhibitors show interesting differences in target specificities: BEZ235 and GSK2126458 are ATP competitive mTOR inhibitors targeting both PI3K and mTORC1/2; AZD8055, AZD2014 and KU-0063794 are ATP competitive mTOR inhibitors targeting both mTORC1 and mTORC2; and GDC-0941 is a pan-PI3K inhibitor. We have addressed the question of whether mTOR inhibitors may be more effective in combination than singly in inhibiting the proliferation of breast cancer cells. We selected a panel of 30 human breast cancer cell lines that included ER and PR positive, HER2 over-expressing, and “triple negative” variants, and determined whether signaling pathway utilization was related to drug-induced inhibition of proliferation. A significant correlation (p = 0.005) was found between everolimus IC50 values and p70S6K phosphorylation, but not with AKT or ERK phosphorylation, consistent with the mTOR pathway being a principal target. We then carried out combination studies with four everolimus resistant triple-negative breast cancer cell lines, and found an unexpectedly high degree of synergy between everolimus and the other inhibitors tested. The level of potentiation of everolimus inhibitory activity (measured by IC50 values) was found to be cell line-specific for all the kinase inhibitors tested. The results suggest that judicious combination of mTOR inhibitors with different modes of action could have beneficial effects in the treatment of breast cancer. PMID:26148118

  2. Aberrant signaling pathways in medulloblastomas: a stem cell connection

    Carolina Oliveira Rodini

    2010-12-01

    Full Text Available Medulloblastoma is a highly malignant primary tumor of the central nervous system. It represents the most frequent type of solid tumor and the leading cause of death related to cancer in early childhood. Current treatment includes surgery, chemotherapy and radiotherapy which may lead to severe cognitive impairment and secondary brain tumors. New perspectives for therapeutic development have emerged with the identification of stem-like cells displaying high tumorigenic potential and increased radio- and chemo-resistance in gliomas. Under the cancer stem cell hypothesis, transformation of neural stem cells and/or granular neuron progenitors of the cerebellum are though to be involved in medulloblastoma development. Dissecting the genetic and molecular alterations associated with this process should significantly impact both basic and applied cancer research. Based on cumulative evidences in the fields of genetics and molecular biology of medulloblastomas, we discuss the possible involvement of developmental signaling pathways as critical biochemical switches determining normal neurogenesis or tumorigenesis. From the clinical viewpoint, modulation of signaling pathways such as TGFβ, regulating neural stem cell proliferation and tumor development, might be attempted as an alternative strategy for future drug development aiming at more efficient therapies and improved clinical outcome of patients with pediatric brain cancers.

  3. Selective targeting of the mTORC1/2 protein kinase complexes leads to antileukemic effects in vitro and in vivo

    The BCR/ABL tyrosine kinase promotes leukemogenesis through activation of several targets that include the phosphoinositide 3-kinase (PI3K). Tyrosine kinase inhibitors (TKIs), which target BCR/ABL, induce striking clinical responses. However, therapy with TKIs is associated with limitations such as drug intolerance, inability to universally eradicate the disease and emergence of BCR/ABL drug-resistant mutants. To overcome these limitations, we tested whether inhibition of the PI3K/target of rapamycin (mTOR) signaling pathway has antileukemic effect in primary hematopoietic stem cells and BA/F3 cells expressing the BCR/ABL oncoprotein. We determined that dual inhibition of PI3K/mTOR causes growth arrest and apoptosis leading to profound antileukemic effects both in vitro and in vivo. We also established that pharmacologic inhibition of the mTORC1/mTORC2 complexes is sufficient to cause these antileukemic effects. Our results support the development of inhibitors of the mTORC1/2 complexes for the therapy of leukemias that either express BCR/ABL or display deregulation of the PI3K/mTOR signaling pathway

  4. Multi-organ abnormalities and mTORC1 activation in zebrafish model of multiple acyl-CoA dehydrogenase deficiency.

    Seok-Hyung Kim

    2013-06-01

    Full Text Available Multiple Acyl-CoA Dehydrogenase Deficiency (MADD is a severe mitochondrial disorder featuring multi-organ dysfunction. Mutations in either the ETFA, ETFB, and ETFDH genes can cause MADD but very little is known about disease specific mechanisms due to a paucity of animal models. We report a novel zebrafish mutant dark xavier (dxa(vu463 that has an inactivating mutation in the etfa gene. dxa(vu463 recapitulates numerous pathological and biochemical features seen in patients with MADD including brain, liver, and kidney disease. Similar to children with MADD, homozygote mutant dxa(vu463 zebrafish have a spectrum of phenotypes ranging from moderate to severe. Interestingly, excessive maternal feeding significantly exacerbated the phenotype. Homozygous mutant dxa(vu463 zebrafish have swollen and hyperplastic neural progenitor cells, hepatocytes and kidney tubule cells as well as elevations in triacylglycerol, cerebroside sulfate and cholesterol levels. Their mitochondria were also greatly enlarged, lacked normal cristae, and were dysfunctional. We also found increased signaling of the mechanistic target of rapamycin complex 1 (mTORC1 with enlarged cell size and proliferation. Treatment with rapamycin partially reversed these abnormalities. Our results indicate that etfa gene function is remarkably conserved in zebrafish as compared to humans with highly similar pathological, biochemical abnormalities to those reported in children with MADD. Altered mTORC1 signaling and maternal nutritional status may play critical roles in MADD disease progression and suggest novel treatment approaches that may ameliorate disease severity.

  5. Involvement of aberrant calcium signalling in herpetic neuralgia.

    Warwick, Rebekah A; Hanani, Menachem

    2016-03-01

    Alpha-herpesviruses, herpes simplex viruses (HSV) and varicella zoster virus (VZV), are pathogens of the peripheral nervous system. After primary infection, these viruses establish latency within sensory ganglia, while retaining the ability to reactivate. Reactivation of VZV results in herpes zoster, a condition characterized by skin lesions that leads to post-herpetic neuralgia. Recurrent reactivations of HSV, which cause mucocutaneous lesions, may also result in neuralgia. During reactivation of alpha-herpesviruses, satellite glial cells (SGCs), which surround neurons in sensory ganglia, become infected with the replicating virus. SGCs are known to contribute to neuropathic pain in a variety of animal pain models. Here we investigated how infection of short-term cultures of mouse trigeminal ganglia with HSV-1 affects communication between SGCs and neurons, and how this altered communication may increase neuronal excitability, thus contributing to herpetic neuralgia. Mechanical stimulation of single neurons or SGCs resulted in intercellular calcium waves, which were larger in cultures infected with HSV-1. Two differences were observed between control and HSV-1 infected cultures that could account for this augmentation. Firstly, HSV-1 infection induced cell fusion among SGCs and neurons, which would facilitate the spread of calcium signals over farther distances. Secondly, using calcium imaging and intracellular electrical recordings, we found that neurons in the HSV-1 infected cultures exhibited augmented influx of calcium upon depolarization. These virally induced changes may not only cause more neurons in the sensory ganglia to fire action potentials, but may also increase neurotransmitter release at the presynaptic terminals in the spinal cord. They are therefore likely to be contributing factors to herpetic neuralgia. PMID:26684187

  6. Aberrant Wnt/β-catenin signaling can induce chromosomal instability in colon cancer

    Hadjihannas, Michel V; Brückner, Martina; Jerchow, Boris; Birchmeier, Walter; Dietmaier, Wolfgang; Behrens, Jürgen

    2006-01-01

    Chromosomal instability (CIN), a hallmark of most colon tumors, may promote tumor progression by increasing the rate of genetic aberrations. CIN is thought to arise as a consequence of improper mitosis and spindle checkpoint activity, but its molecular basis remains largely elusive. The majority of colon tumors develop because of mutations in the tumor suppressor APC that lead to Wnt/β-catenin signaling activation and subsequent transcription of target genes, including conductin/AXIN2. Here w...

  7. La-related protein 1 (LARP1) represses terminal oligopyrimidine (TOP) mRNA translation downstream of mTOR complex 1 (mTORC1)

    Fonseca, Bruno; Zakaria, Chadi; Jia, J J;

    2015-01-01

    -related protein 1 (LARP1) as a key novel target of mTORC1 with a fundamental role in terminal oligopyrimidine (TOP) mRNA translation. Recent genome-wide studies indicate that TOP and TOP-like mRNAs compose a large portion of the mTORC1 translatome, but the mechanism by which mTORC1 controls TOP mRNA translation...

  8. ULK1 regulates melanin levels in MNT-1 cells independently of mTORC1.

    Eyal Kalie

    Full Text Available Melanosomes are lysosome-related organelles that serve as specialized sites of melanin synthesis and storage in melanocytes. The progression of melanosomes through the different stages of their formation requires trafficking of specific proteins and membrane constituents in a sequential manner, which is likely to deploy ubiquitous cellular machinery along with melanocyte-specific proteins. Recent evidence revealed a connection between melanogenesis and the autophagy machinery, suggesting a novel role for members of the latter in melanocytes. Here we focused on ULK1, a key autophagy protein which is negatively regulated by mTORC1, to assess its potential role in melanogenesis in MNT-1 cells. We found that ULK1 depletion causes an increase in melanin levels, suggesting an inhibitory function for this protein in melanogenesis. Furthermore, this increase was accompanied by increased transcription of MITF (microphthalmia-associated transcription factor and tyrosinase and by elevated protein levels of tyrosinase, the rate-limiting factor in melanin biogenesis. We also provide evidence to show that ULK1 function in this context is independent of the canonical ULK1 autophagy partners, ATG13 and FIP200. Furthermore we show that regulation of melanogenesis by ULK1 is independent of mTORC1 inhibition. Our data thus provide intriguing insights regarding the involvement of the key regulatory autophagy machinery in melanogenesis.

  9. Regulation of mTORC1 by growth factors, energy status, amino acids and mechanical stimuli at a glance.

    Bond, Peter

    2016-01-01

    The mechanistic/mammalian target of rapamycin complex 1 (mTORC1) plays a pivotal role in the regulation of skeletal muscle protein synthesis. Activation of the complex leads to phosphorylation of two important sets of substrates, namely eIF4E binding proteins and ribosomal S6 kinases. Phosphorylation of these substrates then leads to an increase in protein synthesis, mainly by enhancing translation initiation. mTORC1 activity is regulated by several inputs, such as growth factors, energy status, amino acids and mechanical stimuli. Research in this field is rapidly evolving and unraveling how these inputs regulate the complex. Therefore this review attempts to provide a brief and up-to-date narrative on the regulation of this marvelous protein complex. Additionally, some sports supplements which have been shown to regulate mTORC1 activity are discussed. PMID:26937223

  10. Computational analysis of an autophagy/translation switch based on mutual inhibition of MTORC1 and ULK1.

    Paulina Szymańska

    Full Text Available We constructed a mechanistic, computational model for regulation of (macroautophagy and protein synthesis (at the level of translation. The model was formulated to study the system-level consequences of interactions among the following proteins: two key components of MTOR complex 1 (MTORC1, namely the protein kinase MTOR (mechanistic target of rapamycin and the scaffold protein RPTOR; the autophagy-initiating protein kinase ULK1; and the multimeric energy-sensing AMP-activated protein kinase (AMPK. Inputs of the model include intrinsic AMPK kinase activity, which is taken as an adjustable surrogate parameter for cellular energy level or AMP:ATP ratio, and rapamycin dose, which controls MTORC1 activity. Outputs of the model include the phosphorylation level of the translational repressor EIF4EBP1, a substrate of MTORC1, and the phosphorylation level of AMBRA1 (activating molecule in BECN1-regulated autophagy, a substrate of ULK1 critical for autophagosome formation. The model incorporates reciprocal regulation of mTORC1 and ULK1 by AMPK, mutual inhibition of MTORC1 and ULK1, and ULK1-mediated negative feedback regulation of AMPK. Through analysis of the model, we find that these processes may be responsible, depending on conditions, for graded responses to stress inputs, for bistable switching between autophagy and protein synthesis, or relaxation oscillations, comprising alternating periods of autophagy and protein synthesis. A sensitivity analysis indicates that the prediction of oscillatory behavior is robust to changes of the parameter values of the model. The model provides testable predictions about the behavior of the AMPK-MTORC1-ULK1 network, which plays a central role in maintaining cellular energy and nutrient homeostasis.

  11. Mammalian target of rapamycin complex I (mTORC1 activity in ras homologue enriched in brain (Rheb-deficient mouse embryonic fibroblasts.

    Marlous J Groenewoud

    Full Text Available The Ras-like GTPase Rheb has been identified as a crucial activator of mTORC1. Activation most likely requires a direct interaction between Rheb and mTOR, but the exact mechanism remains unclear. Using a panel of Rheb-deficient mouse embryonic fibroblasts (MEFs, we show that Rheb is indeed essential for the rapid increase of mTORC1 activity following stimulation with insulin or amino acids. However, mTORC1 activity is less severely reduced in Rheb-deficient MEFs in the continuous presence of serum or upon stimulation with serum. This remaining mTORC1 activity is blocked by depleting the cells for amino acids or imposing energy stress. In addition, MEK inhibitors and the RSK-inhibitor BI-D1870 interfere in mTORC1 activity, suggesting that RSK acts as a bypass for Rheb in activating mTORC1. Finally, we show that this rapamycin-sensitive, Rheb-independent mTORC1 activity is important for cell cycle progression. In conclusion, whereas rapid adaptation in mTORC1 activity requires Rheb, a second Rheb-independent activation mechanism exists that contributes to cell cycle progression.

  12. A Novel mTORC1-Dependent, Akt-Independent Pathway Differentiates the Gut Tropism of Regulatory and Conventional CD4 T Cells.

    Chen, Leo C; Nicholson, Yawah T; Rosborough, Brian R; Thomson, Angus W; Raimondi, Giorgio

    2016-08-15

    The vitamin A metabolite all-trans retinoic acid (ATRA) induces a gut-homing phenotype in activated CD4(+) conventional T cells (Tconv) by upregulating the integrin α4β7 and the chemokine receptor CCR9. We report that, in contrast to mouse Tconv, only ∼50% of regulatory T cells (Treg) upregulate CCR9 when stimulated by physiological levels of ATRA, even though Tconv and Treg express similar levels of the retinoic acid receptor (RAR). The resulting bimodal CCR9 expression is not associated with differences in the extent of their proliferation, level of Foxp3 expression, or affiliation with naturally occurring Treg or induced Treg in the circulating Treg pool. Furthermore, we find that exposure of Treg to the mechanistic target of rapamycin (mTOR) inhibitor rapamycin suppresses upregulation of both CCR9 and α4β7, an effect that is not evident with Tconv. This suggests that in Treg, ATRA-induced upregulation of CCR9 and α4β7 is dependent on activation of a mTOR signaling pathway. The involvement of mTOR is independent of Akt activity, because specific inhibition of Akt, pyruvate dehydrogenase kinase-1, or its downstream target glycogen synthase kinase-3 did not prevent CCR9 expression. Additionally, Rictor (mTOR complex [mTORC]2)-deficient Treg showed unaltered ability to express CCR9, whereas Raptor (mTORC1)-deficient Treg were unable to upregulate CCR9, suggesting the selective participation of mTORC1. These findings reveal a novel difference between ATRA signaling and chemokine receptor induction in Treg versus Tconv and provide a framework via which the migratory behavior of Treg versus Tconv might be regulated differentially for therapeutic purposes. PMID:27402696

  13. Activation of lysosomal function in the course of autophagy via mTORC1 suppression and autophagosome-lysosome fusion

    Jing Zhou; Shi-Hao Tan; Valérie Nicolas; Chantal Bauvy; Nai-Di Yang; Jianbin Zhang; Yuan Xue

    2013-01-01

    Lysosome is a key subcellular organelle in the execution of the autophagic process and at present little is known whether lysosomal function is controlled in the process of autophagy.In this study,we first found that suppression of mammalian target of rapamycin (mTOR) activity by starvation or two mTOR catalytic inhibitors (PP242 and Torinl),but not by an allosteric inhibitor (rapamycin),leads to activation of lysosomal function.Second,we provided evidence that activation of lysosomal function is associated with the suppression of mTOR complex 1 (mTORC1),but not mTORC2,and the mTORC1 localization to lysosomes is not directly correlated to its regulatory role in lysosomal function.Third,we examined the involvement of transcription factor EB (TFEB) and demonstrated that TFEB activation following mTORC1 suppression is necessary but not sufficient for lysosomal activation.Finally,Atg5 or Atg7deletion or blockage of the autophagosome-lysosome fusion process effectively diminished lysosomal activation,suggesting that lysosomal activation occurring in the course of autophagy is dependent on antophagosome-lysosome fusion.Taken together,this study demonstrates that in the course of autophagy,lysosomal function is upregulated via a dual mechanism involving mTORC1 suppression and autophagosome-lysosome fusion.

  14. Phosphoproteomics-based modeling defines the regulatory mechanism underlying aberrant EGFR signaling.

    Shinya Tasaki

    Full Text Available BACKGROUND: Mutation of the epidermal growth factor receptor (EGFR results in a discordant cell signaling, leading to the development of various diseases. However, the mechanism underlying the alteration of downstream signaling due to such mutation has not yet been completely understood at the system level. Here, we report a phosphoproteomics-based methodology for characterizing the regulatory mechanism underlying aberrant EGFR signaling using computational network modeling. METHODOLOGY/PRINCIPAL FINDINGS: Our phosphoproteomic analysis of the mutation at tyrosine 992 (Y992, one of the multifunctional docking sites of EGFR, revealed network-wide effects of the mutation on EGF signaling in a time-resolved manner. Computational modeling based on the temporal activation profiles enabled us to not only rediscover already-known protein interactions with Y992 and internalization property of mutated EGFR but also further gain model-driven insights into the effect of cellular content and the regulation of EGFR degradation. Our kinetic model also suggested critical reactions facilitating the reconstruction of the diverse effects of the mutation on phosphoproteome dynamics. CONCLUSIONS/SIGNIFICANCE: Our integrative approach provided a mechanistic description of the disorders of mutated EGFR signaling networks, which could facilitate the development of a systematic strategy toward controlling disease-related cell signaling.

  15. Hypotaurine evokes a malignant phenotype in glioma through aberrant hypoxic signaling

    Nesvick, Cody L.; Feldman, Michael J.; Sizdahkhani, Saman; Liu, Huailei; Chu, Huiying; Yang, Fengxu; Tang, Ling; Tian, Jing; Zhao, Shiguang; Li, Guohui; Heiss, John D.; Liu, Yang; Zhuang, Zhengping; Xu, Guowang

    2016-01-01

    Metabolomics has shown significant potential in identifying small molecules specific to tumor phenotypes. In this study we analyzed resected tissue metabolites using capillary electrophoresis-mass spectrometry and found that tissue hypotaurine levels strongly and positively correlated with glioma grade. In vitro studies were conducted to show that hypotaurine activates hypoxia signaling through the competitive inhibition of prolyl hydroxylase domain-2. This leads to the activation of hypoxia signaling as well as to the enhancement of glioma cell proliferation and invasion. In contrast, taurine, the oxidation metabolite of hypotaurine, decreased intracellular hypotaurine and resulted in glioma cell growth arrest. Lastly, a glioblastoma xenograft mice model was supplemented with taurine feed and exhibited impaired tumor growth. Taken together, these findings suggest that hypotaurine is an aberrantly produced oncometabolite, mediating tumor molecular pathophysiology and progression. The hypotaurine metabolic pathway may provide a potentially new target for glioblastoma diagnosis and therapy. PMID:26934654

  16. Suppressors of hedgehog signaling: Linking aberrant development of neural progenitors and tumorigenesis.

    Di Marcotullio, Lucia; Ferretti, Elisabetta; De Smaele, Enrico; Screpanti, Isabella; Gulino, Alberto

    2006-12-01

    Subversion of signals that physiologically suppress Hedgehog pathway results in aberrant neural progenitor development and medulloblastoma, a malignancy of the cerebellum. The Hedgehog antagonist RENKCTD11 maps to chromosome 17p13.2 and is involved in the withdrawal of the Hedgehog signaling at the granule cell progenitor transition from the outer to the inner external germinal layers, thus promoting growth arrest and differentiation. Deletion of chromosome 17p, the most frequent genetic lesion observed in this tumor, is responsible for the loss of function of RENKCTD11, resulting in upregulated Hedgehog signaling and medulloblastoma. Persistence of signals that limit Hedgehog activity is also associated with malignancy. Hedgehog signaling- induced downregulation of ErbB4 receptor expression is attenuated in medulloblastoma subsets in which the extent of Hedgehog pathway activity is limited, thus favoring the accumulation of ErbB4 with imbalanced alternative splice CYT-1 isoform over the CYT-2. This is responsible for both Neuregulin ligand-induced CYT-1-dependent prosurvival activity and loss of CYT-2-mediated growth arrest. PMID:17308352

  17. Metformin inhibition of mTORC1 activation, DNA synthesis and proliferation in pancreatic cancer cells: Dependence on glucose concentration and role of AMPK

    Sinnett-Smith, James; Kisfalvi, Krisztina; Kui, Robert [Division of Digestive Diseases, Department of Medicine, CURE: Digestive Diseases Research Center, David Geffen School of Medicine and Molecular Biology Institute, University of California at Los Angeles, CA (United States); Rozengurt, Enrique, E-mail: erozengurt@mednet.ucla.edu [Division of Digestive Diseases, Department of Medicine, CURE: Digestive Diseases Research Center, David Geffen School of Medicine and Molecular Biology Institute, University of California at Los Angeles, CA (United States)

    2013-01-04

    Highlights: Black-Right-Pointing-Pointer Metformin inhibits cancer cell growth but the mechanism(s) are not understood. Black-Right-Pointing-Pointer We show that the potency of metformin is sharply dependent on glucose in the medium. Black-Right-Pointing-Pointer AMPK activation was enhanced in cancer cells incubated in physiological glucose. Black-Right-Pointing-Pointer Reciprocally, metformin potently inhibited mTORC1, DNA synthesis and proliferation. Black-Right-Pointing-Pointer Metformin, at low concentrations, inhibited DNA synthesis through AMPK. -- Abstract: Metformin, a widely used anti-diabetic drug, is emerging as a potential anticancer agent but the mechanisms involved remain incompletely understood. Here, we demonstrate that the potency of metformin induced AMPK activation, as shown by the phosphorylation of its substrates acetyl-CoA carboxylase (ACC) at Ser{sup 79} and Raptor at Ser{sup 792}, was dramatically enhanced in human pancreatic ductal adenocarcinoma (PDAC) cells PANC-1 and MiaPaCa-2 cultured in medium containing physiological concentrations of glucose (5 mM), as compared with parallel cultures in medium with glucose at 25 mM. In physiological glucose, metformin inhibited mTORC1 activation, DNA synthesis and proliferation of PDAC cells stimulated by crosstalk between G protein-coupled receptors and insulin/IGF signaling systems, at concentrations (0.05-0.1 mM) that were 10-100-fold lower than those used in most previous reports. Using siRNA-mediated knockdown of the {alpha}{sub 1} and {alpha}{sub 2} catalytic subunits of AMPK, we demonstrated that metformin, at low concentrations, inhibited DNA synthesis through an AMPK-dependent mechanism. Our results emphasize the importance of using medium containing physiological concentrations of glucose to elucidate the anticancer mechanism of action of metformin in pancreatic cancer cells and other cancer cell types.

  18. Metformin inhibition of mTORC1 activation, DNA synthesis and proliferation in pancreatic cancer cells: Dependence on glucose concentration and role of AMPK

    Highlights: ► Metformin inhibits cancer cell growth but the mechanism(s) are not understood. ► We show that the potency of metformin is sharply dependent on glucose in the medium. ► AMPK activation was enhanced in cancer cells incubated in physiological glucose. ► Reciprocally, metformin potently inhibited mTORC1, DNA synthesis and proliferation. ► Metformin, at low concentrations, inhibited DNA synthesis through AMPK. -- Abstract: Metformin, a widely used anti-diabetic drug, is emerging as a potential anticancer agent but the mechanisms involved remain incompletely understood. Here, we demonstrate that the potency of metformin induced AMPK activation, as shown by the phosphorylation of its substrates acetyl-CoA carboxylase (ACC) at Ser79 and Raptor at Ser792, was dramatically enhanced in human pancreatic ductal adenocarcinoma (PDAC) cells PANC-1 and MiaPaCa-2 cultured in medium containing physiological concentrations of glucose (5 mM), as compared with parallel cultures in medium with glucose at 25 mM. In physiological glucose, metformin inhibited mTORC1 activation, DNA synthesis and proliferation of PDAC cells stimulated by crosstalk between G protein-coupled receptors and insulin/IGF signaling systems, at concentrations (0.05–0.1 mM) that were 10–100-fold lower than those used in most previous reports. Using siRNA-mediated knockdown of the α1 and α2 catalytic subunits of AMPK, we demonstrated that metformin, at low concentrations, inhibited DNA synthesis through an AMPK-dependent mechanism. Our results emphasize the importance of using medium containing physiological concentrations of glucose to elucidate the anticancer mechanism of action of metformin in pancreatic cancer cells and other cancer cell types.

  19. Phospho-specific flow cytometry identifies aberrant signaling in indolent B-cell lymphoma

    Blix Egil S

    2012-10-01

    -induced phosphorylation of signaling proteins in distinct cell populations can be used to identify aberrant signaling pathways.

  20. The mTORC1/4E-BP pathway coordinates hemoglobin production with L-leucine availability

    Chung, Jacky; Bauer, Daniel E.; Ghamari, Alireza; Nizzi, Christopher P.; Deck, Kathryn M.; Kingsley, Paul D.; Yien, Yvette Y.; Huston, Nicholas C.; Chen, Caiyong; Schultz, Iman J.; Dalton, Arthur J.; Wittig, Johannes G.; Palis, James; Orkin, Stuart H.; Lodish, Harvey F.; Eisenstein, Richard S.; Cantor, Alan B.; Paw, Barry H.

    2015-01-01

    In multicellular organisms, the mechanisms by which diverse cell types acquire distinct amino acids and how cellular function adapts to their availability are fundamental questions in biology. Here, we found that increased neutral essential amino acid (NEAA) uptake was a critical component of erythropoiesis. As red blood cells matured, expression of the amino acid transporter gene Lat3 increased, which increased NEAA import. Inadequate NEAA uptake by pharmacologic inhibition or RNAi-mediated knockdown of LAT3 triggered a specific reduction in hemoglobin production in zebrafish embryos and murine erythroid cells through the mTORC1 (mechanistic target of rapamycin complex 1)/4E-BP (eukaryotic translation initiation factor 4E-binding protein) pathway. CRISPR-mediated deletion of members of the 4E-BP family in murine erythroid cells rendered them resistant to mTORC1 and LAT3 inhibition and restored hemoglobin production. These results identify a developmental role for LAT3 in red blood cells and demonstrate that mTORC1 serves as a homeostatic sensor that couples hemoglobin production at the translational level to sufficient uptake of NEAAs, particularly L-leucine. PMID:25872869

  1. Regulation of MYC gene expression by aberrant Wnt/β-catenin signaling in colorectal cancer

    Sherri; Rennoll; Gregory; Yochum

    2015-01-01

    The Wnt/β-catenin signaling pathway controls intestinal homeostasis and mutations in components of this pathway are prevalent in human colorectal cancers(CRCs).These mutations lead to inappropriate expression of genes controlled by Wnt responsive DNA elements(WREs). T-cell factor/Lymphoid enhancer factor transcription factors bind WREs and recruit the β-catenin transcriptional co-activator to activate target gene expression. Deregulated expression of the c-MYC proto-oncogene(MYC) by aberrant Wnt/β-catenin signaling drives colorectal carcinogenesis. In this review,we discuss the current literature pertaining to the identification and characterization of WREs that control oncogenic MYC expression in CRCs. A common theme has emerged whereby these WREs often map distally to the MYC genomic locus and control MYC gene expression through long-range chromatin loops with the MYC proximal promoter. We propose that by determining which of these WREs is critical for CRC pathogenesis,novel strategies can be developed to treat individuals suffering from this disease.

  2. Simultaneous inhibition of mTOR-containing complex 1 (mTORC1) and MNK induces apoptosis of cutaneous T-cell lymphoma (CTCL) cells

    Marzec, Michal; Liu, Xiaobin; Wysocka, Maria; Rook, Alain H; Ødum, Niels; Wasik, Mariusz A

    2011-01-01

    mTOR kinase forms the mTORC1 complex by associating with raptor and other proteins and affects a number of key cell functions. mTORC1 activates p70S6kinase 1 (p70S6K1) and inhibits 4E-binding protein 1 (4E-BP1). In turn, p70S6K1 phosphorylates a S6 protein of the 40S ribosomal subunit (S6rp) and 4E...

  3. Replication stress and oxidative damage contribute to aberrant constitutive activation of DNA damage signalling in human gliomas

    Bartkova, J; Hamerlik, P; Stockhausen, Marie;

    2010-01-01

    brain and grade II astrocytomas, despite the degree of DDR activation was higher in grade II tumors. Markers indicative of ongoing DNA replication stress (Chk1 activation, Rad17 phosphorylation, replication protein A foci and single-stranded DNA) were present in GBM cells under high- or low...... and indicate that replication stress, rather than oxidative stress, fuels the DNA damage signalling in early stages of astrocytoma development.......Malignant gliomas, the deadliest of brain neoplasms, show rampant genetic instability and resistance to genotoxic therapies, implicating potentially aberrant DNA damage response (DDR) in glioma pathogenesis and treatment failure. Here, we report on gross, aberrant constitutive activation of DNA...

  4. RES-529: a PI3K/AKT/mTOR pathway inhibitor that dissociates the mTORC1 and mTORC2 complexes.

    Weinberg, Mark A

    2016-07-01

    RES-529 (previously named Palomid 529, P529) is a phosphoinositide 3-kinase (PI3K)/AKT/mechanistic target of rapamycin (mTOR) pathway inhibitor that interferes with the pathway through both mTOR complex 1 (mTORC1) and mTOR complex 2 (mTORC2) dissociation. This compound is currently being developed in oncology and ophthalmology. The oncology focus is for the treatment of glioblastoma, where it has received orphan designation by the US Food and Drug Administration, and prostate cancer. We present a review of the PI3K/AKT/mTOR pathway, its role in tumorigenesis, and the potential of RES-529 in cancer treatment. RES-529 inhibits mTORC1/mTORC2 activity in various cancer cell lines, as noted by decreased phosphorylation of substrates including ribosomal protein S6, 4E-BP1, and AKT, leading to cell growth inhibition and death, with activity generally in the range of 5-15 μmol/l. In animal tumor models where the PI3K/AKT/mTOR pathway is abnormally activated (i.e. glioblastoma, prostate cancer, and breast cancer), RES-529 reduces tumor growth by as much as 78%. RES-529 treatment is synergistic with radiation therapy, chemotherapy, and hormonal therapy in reducing tumor growth, potentially by preventing PI3K/AKT/mTOR pathway activation associated with these treatments. Furthermore, this compound has shown antiangiogenic activity in several animal models. mTORC1 and mTORC2 have redundant and distinct activities that contribute toward oncogenesis. Current inhibitors of this pathway have primarily targeted mTORC1, but have shown limited clinical efficacy. Inhibitors of mTORC1 and mTORC2 such as RES-529 may therefore have the potential to overcome the deficiencies found in targeting only mTORC1. PMID:26918392

  5. Loss of Tuberous Sclerosis Complex 2 (TSC2) Is Frequent in Hepatocellular Carcinoma and Predicts Response to mTORC1 Inhibitor Everolimus.

    Huynh, Hung; Hao, Huai-Xiang; Chan, Stephen L; Chen, David; Ong, Richard; Soo, Khee Chee; Pochanard, Panisa; Yang, David; Ruddy, David; Liu, Manway; Derti, Adnan; Balak, Marissa N; Palmer, Michael R; Wang, Yan; Lee, Benjamin H; Sellami, Dalila; Zhu, Andrew X; Schlegel, Robert; Huang, Alan

    2015-05-01

    Hepatocellular carcinoma (HCC) is the third leading cause of cancer deaths worldwide and hyperactivation of mTOR signaling plays a pivotal role in HCC tumorigenesis. Tuberous sclerosis complex (TSC), a heterodimer of TSC1 and TSC2, functions as a negative regulator of mTOR signaling. In the current study, we discovered that TSC2 loss-of-function is common in HCC. TSC2 loss was found in 4 of 8 HCC cell lines and 8 of 28 (28.6%) patient-derived HCC xenografts. TSC2 mutations and deletions are likely to be the underlying cause of TSC2 loss in HCC cell lines, xenografts, and primary tumors for most cases. We further demonstrated that TSC2-null HCC cell lines and xenografts had elevated mTOR signaling and, more importantly, were significantly more sensitive to RAD001/everolimus, an mTORC1 inhibitor. These preclinical findings led to the analysis of TSC2 status in HCC samples collected in the EVOLVE-1 clinical trial of everolimus using an optimized immunohistochemistry assay and identified 15 of 139 (10.8%) samples with low to undetectable levels of TSC2. Although the sample size is too small for formal statistical analysis, TSC2-null/low tumor patients who received everolimus tended to have longer overall survival than those who received placebo. Finally, we performed an epidemiology survey of more than 239 Asian HCC tumors and found the frequency of TSC2 loss to be approximately 20% in Asian HBV(+) HCC. Taken together, our data strongly argue that TSC2 loss is a predictive biomarker for the response to everolimus in HCC patients. PMID:25724664

  6. Aberrant activation of Wnt/β-catenin signaling pathway contributes to the sequential progression of DMBA-induced HBP carcinomas.

    Vidya Priyadarsini, Ramamurthi; Senthil Murugan, Ramalingam; Nagini, Siddavaram

    2012-01-01

    Wnt signaling pathway mediated via interactions between β-catenin and members of the TCF/LEF-1 family of transcription factors plays a central role in the regulation of epithelial cell proliferation, apoptosis, differentiation, adhesion, epithelial-mesenchymal transition, and invasion. Aberrant activation of the Wnt/β-catenin signaling pathway with overexpression of Wnt and Fz, mutations of APC, β-catenin, and axin 1, and cytoplasmic accumulation of β-catenin have been frequently reported in a broad spectrum of human malignancies including oral squamous cell carcinomas (OSCCs). However, changes in the components of the Wnt signaling pathway have not been documented during 7,12-dimethylbenz[a]anthracene (DMBA)-induced hamster buccal pouch (HBP) carcinogenesis, a paradigm for oral oncogenesis and chemointervention. In this study, we evaluated the role of β-catenin accumulation and Wnt ligands, Wnt signaling members (Fz, Dvl, APC, GSK-3β, axin, and WIF) and the downstream targets of Wnt (cyclin D1, MMP-2, and MMP-9) during the sequential progression of DMBA-induced HBP carcinomas by semi-quantitative RT-PCR and western blot analyses. Our data reveal a correlation between β-catenin accumulation and activation of Wnt signaling, and its downstream effector molecules during the sequential development of HBP carcinomas from hyperplasia to invasive carcinoma through dysplasia. Our data also support a pivotal role for β-catenin in the malignant transition of the HBP. Aberrant Wnt signaling may be a hallmark of progression to malignancy during DMBA-induced HBP carcinogenesis and could be a potential preventive and therapeutic target for suppression of OSCC. PMID:21924667

  7. Dual mTORC1/2 inhibition by INK-128 results in antitumor activity in preclinical models of osteosarcoma.

    Jiang, Haibin; Zeng, Zhiyuan

    Existing evidence has shown that mammalian target of rapamycin (mTOR) overactivation is an important contributor of osteosarcoma (OS) progression. Here, we studied the potential anti-OS activity of a potent mTOR kinase inhibitor: INK-128 (MLN0128). We demonstrated that INK-128 induced potent cytotoxic effects against several human OS cell lines (U2OS, MG-63 and SaOs-2), yet same INK-128 treatment was safe (non-cytotoxic) to OB-6 human osteoblastic cells and MLO-Y4 human osteocytic cells. INK-128 induced caspase-dependent apoptosis in OS cells, but not in MLO-Y4/OB-6 cells. The caspase-3 specific inhibitor (z-DVED-fmk) or the pan caspase inhibitor (z-VAD-fmk) dramatically attenuated INK-128-exerted cytotoxicity against OS cells. Molecularly, INK-128 inhibited activation of mTORC1 (S6K1 and S6 phosphorylations) and mTORC2 (AKT Ser-473 phosphorylation), without affecting AKT Thr-308 phosphorylation in U2OS cells. Significantly, AKT inhibition by MK-2206 (an AKT inhibitor), or AKT1/2 stable knockdown by targeted-shRNA, remarkably sensitized INK-128-induced activity in OS cells. In vivo, oral administration of INK-128 potently inhibited U2OS xenograft growth in severe combined immuno-deficient (SCID) mice. mTORC1/2 activation in xenograft tumors was also suppressed with INK-128 administration. In summary, we show that INK-128 exerts potent anti-OS activity in vitro and in vivo. INK-128 might be further investigated as a novel anti-OS agent. PMID:26514724

  8. Arctigenin exerts anti-colitis efficacy through inhibiting the differentiation of Th1 and Th17 cells via an mTORC1-dependent pathway.

    Wu, Xin; Dou, Yannong; Yang, Yan; Bian, Difei; Luo, Jinque; Tong, Bei; Xia, Yufeng; Dai, Yue

    2015-08-15

    Arctigenin, the main effective constituent of Arctium lappa L. fruit, has previously been proven to dramatically attenuate dextran sulfate sodium (DSS)-induced colitis in mice, a frequently used animal model of inflammatory bowel disease (IBD). As Th1 and Th17 cells play a crucial role in the pathogenesis of IBD, the present study addressed whether and how arctigenin exerted anti-colitis efficacy by interfering with the differentiation and activation of Th1/Th17 cells. In vitro, arctigenin was shown to markedly inhibit the differentiation of Th17 cells from naïve T cells, and moderately inhibit the differentiation of Th1 cells, which was accompanied by lowered phosphorylation of STAT3 and STAT4, respectively. In contrast, arctigenin was lack of marked effect on the differentiation of either Th2 or regulatory T cells. Furthermore, arctigenin was shown to suppress the mammalian target of rapamycin complex 1 (mTORC1) pathway in T cells as demonstrated by down-regulated phosphorylation of the downstream target genes p70S6K and RPS6, and it functioned independent of two well-known upstream kinases PI3K/AKT and ERK. Arctigenin was also able to inhibit the activity of mTORC1 by dissociating raptor from mTOR. Interestingly, the inhibitory effect of arctigenin on T cell differentiation disappeared under a status of mTORC1 overactivation via knockdown of tuberous sclerosis complex 2 (TSC2, a negative regulator of mTORC1) or pretreatment of leucine (an agonist of mTOR). In DSS-induced mice, the inhibition of Th1/Th17 responses and anti-colitis effect of arctigenin were abrogated by leucine treatment. In conclusion, arctigenin ameliorates colitis through down-regulating the differentiation of Th1 and Th17 cells via mTORC1 pathway. PMID:26074264

  9. Changes in Dopamine Signalling Do Not Underlie Aberrant Hippocampal Plasticity in a Mouse Model of Huntington's Disease.

    Dallérac, Glenn M; Cummings, Damian M; Hirst, Mark C; Milnerwood, Austen J; Murphy, Kerry P S J

    2016-03-01

    Altered dopamine receptor labelling has been demonstrated in presymptomatic and symptomatic Huntington's disease (HD) gene carriers, indicating that alterations in dopaminergic signalling are an early event in HD. We have previously described early alterations in synaptic transmission and plasticity in both the cortex and hippocampus of the R6/1 mouse model of Huntington's disease. Deficits in cortical synaptic plasticity were associated with altered dopaminergic signalling and could be reversed by D1- or D2-like dopamine receptor activation. In light of these findings we here investigated whether defects in dopamine signalling could also contribute to the marked alteration in hippocampal synaptic function. To this end we performed dopamine receptor labelling and pharmacology in the R6/1 hippocampus and report a marked, age-dependent elevation of hippocampal D1 and D2 receptor labelling in R6/1 hippocampal subfields. Yet, pharmacological inhibition or activation of D1- or D2-like receptors did not modify the aberrant synaptic plasticity observed in R6/1 mice. These findings demonstrate that global perturbations to dopamine receptor expression do occur in HD transgenic mice, similarly in HD gene carriers and patients. However, the direction of change and the lack of effect of dopaminergic pharmacological agents on synaptic function demonstrate that the perturbations are heterogeneous and region-specific, a finding that may explain the mixed results of dopamine therapy in HD. PMID:26782175

  10. Leucine signaling in the pathogenesis of type 2 diabetes and obesity

    Bodo C Melnik

    2012-01-01

    Full Text Available Epidemiological evidence points to increased dairy and meat consumption, staples of the Western diet, as major risk factors for the development of type 2 diabetes (T2D. This paper presents a new concept and comprehensive review of leucine-mediated cell signaling explaining the pathogenesis of T2D and obesity by leucine-induced over-stimulation of mammalian target of rapamycin complex 1 (mTORC1. mTORC1, a pivotal nutrient-sensitive kinase, promotes growth and cell proliferation in response to glucose, energy, growth factors and amino acids. Dairy proteins and meat stimulate insulin/insulin-like growth factor 1 signaling and provide high amounts of leucine, a primary and independent stimulator for mTORC1 activation. The downstream target of mTORC1, the kinase S6K1, induces insulin resistance by phosphorylation of insulin receptor substrate-1, thereby increasing the metabolic burden of β-cells. Moreover, leucine-mediated mTORC1-S6K1-signaling plays an important role in adipogenesis, thus increasing the risk of obesity-mediated insulin resistance. High consumption of leucine-rich proteins explains exaggerated mTORC1-dependent insulin secretion, increased β-cell growth and β-cell proliferation promoting an early onset of replicative β-cell senescence with subsequent β-cell apoptosis. Disturbances of β-cell mass regulation with increased β-cell proliferation and apoptosis as well as insulin resistance are hallmarks of T2D, which are all associated with hyperactivation of mTORC1. In contrast, the anti-diabetic drug metformin antagonizes leucine-mediated mTORC1 signaling. Plant-derived polyphenols and flavonoids are identified as natural inhibitors of mTORC1 and exert anti-diabetic and anti-obesity effects. Furthermore, bariatric surgery in obesity reduces increased plasma levels of leucine and other branched-chain amino acids. Attenuation of leucine-mediated mTORC1 signaling by defining appropriate upper limits of the daily intake of leucine

  11. Aberrant Activation of the RANK Signaling Receptor Induces Murine Salivary Gland Tumors.

    Maria M Szwarc

    Full Text Available Unlike cancers of related exocrine tissues such as the mammary and prostate gland, diagnosis and treatment of aggressive salivary gland malignancies have not markedly advanced in decades. Effective clinical management of malignant salivary gland cancers is undercut by our limited knowledge concerning the key molecular signals that underpin the etiopathogenesis of this rare and heterogeneous head and neck cancer. Without knowledge of the critical signals that drive salivary gland tumorigenesis, tumor vulnerabilities cannot be exploited that allow for targeted molecular therapies. This knowledge insufficiency is further exacerbated by a paucity of preclinical mouse models (as compared to other cancer fields with which to both study salivary gland pathobiology and test novel intervention strategies. Using a mouse transgenic approach, we demonstrate that deregulation of the Receptor Activator of NFkB Ligand (RANKL/RANK signaling axis results in rapid tumor development in all three major salivary glands. In line with its established role in other exocrine gland cancers (i.e., breast cancer, the RANKL/RANK signaling axis elicits an aggressive salivary gland tumor phenotype both at the histologic and molecular level. Despite the ability of this cytokine signaling axis to drive advanced stage disease within a short latency period, early blockade of RANKL/RANK signaling markedly attenuates the development of malignant salivary gland neoplasms. Together, our findings have uncovered a tumorigenic role for RANKL/RANK in the salivary gland and suggest that targeting this pathway may represent a novel therapeutic intervention approach in the prevention and/or treatment of this understudied head and neck cancer.

  12. A matter of energy stress:p38β meets mTORC1

    Adem Kalender; Anand Selvaraj; George Thomas

    2011-01-01

    @@ Throughout evolution, cells have developed sophisticated signaling mechanisms to balance the production and expenditure of energy to maintain energy homeostasis.During an energy crisis, cells suppress energy consuming anabolic processes and up-regulate basic catabolic routes to maintain the energy currency of the cell, Adenosine Triphosphate (ATP).The main paths of ATP generation are through glycolysis in the cytoplasm and oxidative phosphorylation in mitochondria.

  13. Antagonistic control of muscle cell size by AMPK and mTORC1.

    Mounier, Rémi; Lantier, Louise; Leclerc, Jocelyne; Sotiropoulos, Athanassia; Foretz, Marc; Viollet, Benoit

    2011-01-01

    Nutrition and physical activity have profound effects on skeletal muscle metabolism and growth. Regulation of muscle mass depends on a thin balance between growth-promoting and growth-suppressing factors. Over the past decade, the mammalian target of rapamycin (mTOR) kinase has emerged as an essential factor for muscle growth by mediating the anabolic response to nutrients, insulin, insulin-like growth factors and resistance exercise. As opposed to the mTOR signaling pathway, the AMP-activate...

  14. Differential regulation of protein synthesis in skeletal muscle and liver of neonatal pigs by leucine through an mTORC1-dependent pathway.

    Suryawan, Agus; Nguyen, Hanh V; Almonaci, Rosemarie D; Davis, Teresa A

    2012-02-28

    Neonatal growth is characterized by a high protein synthesis rate that is largely due to an enhanced sensitivity to the postprandial rise in insulin and amino acids, especially leucine. The mechanism of leucine's action in vivo is not well understood. In this study, we investigated the effect of leucine infusion on protein synthesis in skeletal muscle and liver of neonatal pigs. To evaluate the mode of action of leucine, we used rapamycin, an inhibitor of mammalian target of rapamycin (mTOR) complex-1 (mTORC1). Overnight-fasted 7-day-old piglets were treated with rapamycin for 1 hour and then infused with leucine (400 μmol·kg(-1)·h(-1)) for 1 hour. Leucine infusion increased the rate of protein synthesis, and ribosomal protein S6 kinase 1 (S6K1) and eukaryotic initiation factor (eIF) 4E-binding protein-1 (4E-BP1) phosphorylation in gastrocnemius and masseter muscles (P liver. The leucine-induced stimulation of protein synthesis and S6K1 and 4E-BP1 phosphorylation were completely blocked by rapamycin, suggesting that leucine action is by an mTORC1-dependent mechanism. Neither leucine nor rapamycin had any effect on the activation of the upstream mTORC1 regulators, AMP-activated protein kinase and protein kinase B, in skeletal muscle or liver. The activation of eIF2α and elongation factor 2 was not affected by leucine or rapamycin, indicating that these two pathways are not limiting steps of leucine-induced protein synthesis. These results suggest that leucine stimulates muscle protein synthesis in neonatal pigs by inducing the activation of mTORC1 and its downstream pathway leading to mRNA translation. PMID:22675606

  15. Restriction of dietary protein decreases mTORC1 in tumors and somatic tissues of a tumor-bearing mouse xenograft model.

    Lamming, Dudley W; Cummings, Nicole E; Rastelli, Antonella L; Gao, Feng; Cava, Edda; Bertozzi, Beatrice; Spelta, Francesco; Pili, Roberto; Fontana, Luigi

    2015-10-13

    Reduced dietary protein intake and intermittent fasting (IF) are both linked to healthy longevity in rodents, and are effective in inhibiting cancer growth. The molecular mechanisms underlying the beneficial effects of chronic protein restriction (PR) and IF are unclear, but may be mediated in part by a down-regulation of the IGF/mTOR pathway. In this study we compared the effects of PR and IF on tumor growth in a xenograft mouse model of breast cancer. We also investigated the effects of PR and IF on the mechanistic Target Of Rapamycin (mTOR) pathway, inhibition of which extends lifespan in model organisms including mice. The mTOR protein kinase is found in two distinct complexes, of which mTOR complex 1 (mTORC1) is responsive to acute treatment with amino acids in cell culture and in vivo. We found that both PR and IF inhibit tumor growth and mTORC1 phosphorylation in tumor xenografts. In somatic tissues, we found that PR, but not IF, selectively inhibits the activity of the amino acid sensitive mTORC1, while the activity of the second mTOR complex, mTORC2, was relatively unaffected by PR. In contrast, IF resulted in increased S6 phosphorylation in multiple metabolic tissues. Our work represents the first finding that PR may reduce mTORC1 activity in tumors and multiple somatic tissues, and suggest that PR may represent a highly translatable option for the treatment not only of cancer, but also other age-related diseases. PMID:26378060

  16. NKD1 marks intestinal and liver tumors linked to aberrant Wnt signaling

    Stančíková, Jitka; Krausová, Michaela; Kolář, Michal; Fafílek, Bohumil; Švec, Jiří; Sedláček, Radislav; Neroldová, M.; Dobeš, Jan; Horázná, Monika; Janečková, Lucie; Vojtěchová, Martina; Oliverius, M.; Jirsa, M.; Kořínek, Vladimír

    2015-01-01

    Roč. 27, č. 2 (2015), s. 245-256. ISSN 1873-3913 R&D Projects: GA ČR GAP305/11/1780; GA MŠk(CZ) ED1.1.00/02.0109; GA MŠk(CZ) LM2011032 Institutional support: RVO:68378050 Keywords : Wnt signaling * NKD 1 * Intestine * Liver * Colorectal cancer * Hepatocellular carcinoma Subject RIV: EB - Genetics ; Molecular Biology

  17. Aberrant Activation of Notch Signaling Inhibits PROX1 Activity to Enhance the Malignant Behavior of Thyroid Cancer Cells.

    Choi, Dongwon; Ramu, Swapnika; Park, Eunkyung; Jung, Eunson; Yang, Sara; Jung, Wonhyeuk; Choi, Inho; Lee, Sunju; Kim, Kyu Eui; Seong, Young Jin; Hong, Mingu; Daghlian, George; Kim, Daniel; Shin, Eugene; Seo, Jung In; Khatchadourian, Vicken; Zou, Mengchen; Li, Wei; De Filippo, Roger; Kokorowski, Paul; Chang, Andy; Kim, Steve; Bertoni, Ana; Furlanetto, Tania Weber; Shin, Sung; Li, Meng; Chen, Yibu; Wong, Alex; Koh, Chester; Geliebter, Jan; Hong, Young-Kwon

    2016-02-01

    Papillary thyroid cancer (PTC) is one of the most common endocrine malignancies associated with significant morbidity and mortality. Although multiple studies have contributed to a better understanding of the genetic alterations underlying this frequently arising disease, the downstream molecular effectors that impact PTC pathogenesis remain to be further defined. Here, we report that the regulator of cell fate specification, PROX1, becomes inactivated in PTC through mRNA downregulation and cytoplasmic mislocalization. Expression studies in clinical specimens revealed that aberrantly activated NOTCH signaling promoted PROX1 downregulation and that cytoplasmic mislocalization significantly altered PROX1 protein stability. Importantly, restoration of PROX1 activity in thyroid carcinoma cells revealed that PROX1 not only enhanced Wnt/β-catenin signaling but also regulated several genes known to be associated with PTC, including thyroid cancer protein (TC)-1, SERPINA1, and FABP4. Furthermore, PROX1 reexpression suppressed the malignant phenotypes of thyroid carcinoma cells, such as proliferation, motility, adhesion, invasion, anchorage-independent growth, and polyploidy. Moreover, animal xenograft studies demonstrated that restoration of PROX1 severely impeded tumor formation and suppressed the invasiveness and the nuclear/cytoplasmic ratio of PTC cells. Taken together, our findings demonstrate that NOTCH-induced PROX1 inactivation significantly promotes the malignant behavior of thyroid carcinoma and suggest that PROX1 reactivation may represent a potential therapeutic strategy to attenuate disease progression. PMID:26609053

  18. Aberrant Wnt signaling pathway in medial temporal lobe structures of Alzheimer's disease

    Riise, Jesper; Plath, Niels; Pakkenberg, Bente;

    2015-01-01

    hippocampus exhibiting most pronounced changes. Furthermore, the Wnt pathway constituents Wnt7b and Tcf7l1/Tcf3 showed overlapping gene expression alterations across both medial temporal lobe structures, while β-catenin was inversely expressed between brain regions. We also identified total protein......-targeted hyperphosphorylation at specific tau epitope in soluble pretangles and prominent tau aggregation exclusively in insoluble neurofibrillary tangles of AD subjects. The Wnt pathway-focused approach confirms altered Wnt signaling in the neurodegenerative AD brain and highlights the potential role of the pathway as a...

  19. Renal Hypodysplasia Associates with a Wnt4 Variant that Causes Aberrant Canonical Wnt Signaling

    Vivante, Asaf; Mark-Danieli, Michal; Davidovits, Miriam; Harari-Steinberg, Orit; Omer, Dorit; Gnatek, Yehudit; Cleper, Roxana; Landau, Daniel; Kovalski, Yael; Weissman, Irit; Eisenstein, Israel; Soudack, Michalle; Wolf, Haike Reznik; Issler, Naomi; Lotan, Danny; Anikster, Yair

    2013-01-01

    Abnormal differentiation of the renal stem/progenitor pool into kidney tissue can lead to renal hypodysplasia (RHD), but the underlying causes of RHD are not well understood. In this multicenter study, we identified 20 Israeli pedigrees with isolated familial, nonsyndromic RHD and screened for mutations in candidate genes involved in kidney development, including PAX2, HNF1B, EYA1, SIX1, SIX2, SALL1, GDNF, WNT4, and WT1. In addition to previously reported RHD-causing genes, we found that two affected brothers were heterozygous for a missense variant in the WNT4 gene. Functional analysis of this variant revealed both antagonistic and agonistic canonical WNT stimuli, dependent on cell type. In HEK293 cells, WNT4 inhibited WNT3A induced canonical activation, and the WNT4 variant significantly enhanced this inhibition of the canonical WNT pathway. In contrast, in primary cultures of human fetal kidney cells, which maintain WNT activation and more closely represent WNT signaling in renal progenitors during nephrogenesis, this mutation caused significant loss of function, resulting in diminished canonical WNT/β-catenin signaling. In conclusion, heterozygous WNT4 variants are likely to play a causative role in renal hypodysplasia. PMID:23520208

  20. Blood flow restriction exercise stimulates mTORC1 signaling and muscle protein synthesis in older men

    Fry, Christopher S.; Glynn, Erin L.; Drummond, Micah J.; Timmerman, Kyle L.; Fujita, Satoshi; Abe, Takashi; Dhanani, Shaheen; Volpi, Elena; Rasmussen, Blake B.

    2010-01-01

    The loss of skeletal muscle mass during aging, sarcopenia, increases the risk for falls and dependence. Resistance exercise (RE) is an effective rehabilitation technique that can improve muscle mass and strength; however, older individuals are resistant to the stimulation of muscle protein synthesis (MPS) with traditional high-intensity RE. Recently, a novel rehabilitation exercise method, low-intensity RE, combined with blood flow restriction (BFR), has been shown to stimulate mammalian targ...

  1. TGF-{beta}-stimulated aberrant expression of class III {beta}-tubulin via the ERK signaling pathway in cultured retinal pigment epithelial cells

    Chung, Eun Jee [Department of Ophthalmology, National Health Insurance Corporation Ilsan Hospital, Gyeonggi-do (Korea, Republic of); Chun, Ji Na; Jung, Sun-Ah [Konyang University Myunggok Medical Research Institute, Kim' s Eye Hospital, Konyang University College of Medicine, Seoul (Korea, Republic of); Cho, Jin Won [Department of Biology, Yonsei University, 134 Shinchon-dong, Seodaemun-gu, Seoul 120-749 (Korea, Republic of); Lee, Joon H., E-mail: joonhlee@konyang.ac.kr [Konyang University Myunggok Medical Research Institute, Kim' s Eye Hospital, Konyang University College of Medicine, Seoul (Korea, Republic of)

    2011-11-18

    Highlights: Black-Right-Pointing-Pointer TGF-{beta} induces aberrant expression of {beta}III in RPE cells via the ERK pathway. Black-Right-Pointing-Pointer TGF-{beta} increases O-GlcNAc modification of {beta}III in RPE cells. Black-Right-Pointing-Pointer Mature RPE cells have the capacity to express a neuron-associated gene by TGF-{beta}. -- Abstract: The class III {beta}-tubulin isotype ({beta}{sub III}) is expressed exclusively by neurons within the normal human retina and is not present in normal retinal pigment epithelial (RPE) cells in situ or in the early phase of primary cultures. However, aberrant expression of class III {beta}-tubulin has been observed in passaged RPE cells and RPE cells with dedifferentiated morphology in pathologic epiretinal membranes from idiopathic macular pucker, proliferative vitreoretinopathy (PVR) and proliferative diabetic retinopathy (PDR). Transforming growth factor-{beta} (TGF-{beta}) has been implicated in dedifferentiation of RPE cells and has a critical role in the development of proliferative vitreoretinal diseases. Here, we investigated the potential effects of TGF-{beta} on the aberrant expression of class III {beta}-tubulin and the intracellular signaling pathway mediating these changes. TGF-{beta}-induced aberrant expression and O-linked-{beta}-N-acetylglucosamine (O-GlcNac) modification of class III {beta}-tubulin in cultured RPE cells as determined using Western blotting, RT-PCR and immunocytochemistry. TGF-{beta} also stimulated phosphorylation of ERK. TGF-{beta}-induced aberrant expression of class III {beta}-tubulin was significantly reduced by pretreatment with U0126, an inhibitor of ERK phosphorylation. Our findings indicate that TGF-{beta} stimulated aberrant expression of class III {beta}-tubulin via activation of the ERK signaling pathway. These data demonstrate that mature RPE cells have the capacity to express a neuron-associated gene in response to TGF-{beta} stimulation and provide useful information

  2. TGF-β-stimulated aberrant expression of class III β-tubulin via the ERK signaling pathway in cultured retinal pigment epithelial cells

    Highlights: ► TGF-β induces aberrant expression of βIII in RPE cells via the ERK pathway. ► TGF-β increases O-GlcNAc modification of βIII in RPE cells. ► Mature RPE cells have the capacity to express a neuron-associated gene by TGF-β. -- Abstract: The class III β-tubulin isotype (βIII) is expressed exclusively by neurons within the normal human retina and is not present in normal retinal pigment epithelial (RPE) cells in situ or in the early phase of primary cultures. However, aberrant expression of class III β-tubulin has been observed in passaged RPE cells and RPE cells with dedifferentiated morphology in pathologic epiretinal membranes from idiopathic macular pucker, proliferative vitreoretinopathy (PVR) and proliferative diabetic retinopathy (PDR). Transforming growth factor-β (TGF-β) has been implicated in dedifferentiation of RPE cells and has a critical role in the development of proliferative vitreoretinal diseases. Here, we investigated the potential effects of TGF-β on the aberrant expression of class III β-tubulin and the intracellular signaling pathway mediating these changes. TGF-β-induced aberrant expression and O-linked-β-N-acetylglucosamine (O-GlcNac) modification of class III β-tubulin in cultured RPE cells as determined using Western blotting, RT-PCR and immunocytochemistry. TGF-β also stimulated phosphorylation of ERK. TGF-β-induced aberrant expression of class III β-tubulin was significantly reduced by pretreatment with U0126, an inhibitor of ERK phosphorylation. Our findings indicate that TGF-β stimulated aberrant expression of class III β-tubulin via activation of the ERK signaling pathway. These data demonstrate that mature RPE cells have the capacity to express a neuron-associated gene in response to TGF-β stimulation and provide useful information towards understanding the pathogenesis of proliferative vitreoretinal diseases.

  3. The dual mTORC1 and mTORC2 inhibitor AZD8055 inhibits head and neck squamous cell carcinoma cell growth in vivo and in vitro

    Li, Qiang; Song, Xin-mao; Ji, Yang-yang; Jiang, Hui; Xu, Lin-gen, E-mail: drlingenxu@126.com

    2013-11-01

    Highlights: •AZD8055 induces significant cytotoxic effects in cultured HNSCC cells. •AZD8055 blocks mTORC1 and mTORC2 activation in cultured HNSCC cells. •JNK activation is required for AZD8055-induced HNSCC cell death. •AZD8055 inhibits Hep-2 cell growth in vivo, and was more efficient than rapamycin. -- Abstract: The serine/threonine kinase mammalian target of rapamycin (mTOR) promotes cell survival and proliferation, and is constitutively activated in head and neck squamous cell carcinoma (HNSCC). Thus mTOR is an important target for drug development in this disease. Here we tested the anti-tumor ability of AZD8055, the novel mTOR inhibitor, in HNSCC cells. AZD8055 induced dramatic cell death of HNSCC lines (Hep-2 and SCC-9) through autophagy. AZD8055 blocked both mTOR complex (mTORC) 1 and mTORC2 activation without affecting Erk in cultured HNSCC cells. Meanwhile, AZD8055 induced significant c-Jun N-terminal kinase (JNK) activation, which was also required for cancer cell death. JNK inhibition by its inhibitors (SP 600125 and JNK-IN-8), or by RNA interference (RNAi) alleviated AZD8055-induced cell death. Finally, AZD8055 markedly increased the survival of Hep-2 transplanted mice through a significant reduction of tumor growth, without apparent toxicity, and its anti-tumor ability was more potent than rapamycin. Meanwhile, AZD8055 administration activated JNK while blocking mTORC1/2 in Hep-2 tumor engrafts. Our current results strongly suggest that AZD8055 may be further investigated for HNSCC treatment in clinical trials.

  4. Chromosomal aberration

    Chromosomal aberrations are classified into two types, chromosome-type and chromatid-type. Chromosom-type aberrations include terminal deletion, dicentric, ring and interstitial deletion, and chromatid-type aberrations include achromatic lesion, chromatid deletion, isochromatid deletion and chromatid exchange. Clastogens which induce chromosomal aberration are divided into ''S-dependent'' agents and ''S-independent''. It might mean whether they can induce double strand breaks independent of the S phase or not. Double strand breaks may be the ultimate lesions to induce chromosomal aberrations. Caffeine added even in the G2 phase appeared to modify the frequency of chromatid aberrations induced by X-rays and mitomycin C. Those might suggest that the G2 phase involves in the chromatid aberration formation. The double strand breaks might be repaired by ''G2 repair system'', the error of which might yield breakage types of chromatid aberrations and the by-pass of which might yield chromatid exchanges. Chromosome-type aberrations might be formed in the G1 phase. (author)

  5. Inhibitions of mTORC1 and 4EBP-1 are key events orchestrated by Rottlerin in SK-Mel-28 cell killing.

    Daveri, E; Maellaro, E; Valacchi, G; Ietta, F; Muscettola, M; Maioli, E

    2016-09-28

    Earlier studies demonstrated that Rottlerin exerts a time- and dose-dependent antiproliferative effect on SK-Mel-28 melanoma cells during 24 h of treatment, but cytotoxicity due to cell death began only after a 48 h exposure. In the current study, in order to identify the type of cell death in this cell line, which is notoriously refractory to most anticancer therapies, and to clarify the underlying mechanisms of this delayed outcome, we searched for apoptotic, necrotic/necroptotic and autophagic traits in Rottlerin-exposed cells. Although SK-Mel-28 cells are both apoptosis and autophagy competent, Western blotting analysis, caspase activity assay, nuclear imaging and the effects of autophagy, apoptosis and necroptosis inhibitors, indicated that Rottlerin cytotoxicity was due to none of the aforementioned death mechanisms. Nevertheless, in growth arrested cells, the death did occur after a prolonged treatment and most likely ensued from the observed blockage of protein synthesis that reached levels expected to be incompatible with cell survival. From a mechanistic point of view, we ascribed this effect to the documented inhibition of mTORC1 activity; mTORC1 inhibition on the one hand led to a not deadly, rather protective autophagic response but, on the other hand caused a near complete arrest of protein synthesis. Interestingly, no cytotoxicity was found towards normal skin fibroblasts, which only resulted mildly growth arrested by the drug. PMID:27343979

  6. The novel mTORC1/2 dual inhibitor INK-128 suppresses survival and proliferation of primary and transformed human pancreatic cancer cells

    Highlights: • INK-128 inhibits the survival and growth of human pancreatic cancer cells. • INK-128 induced pancreatic cancer cell apoptosis and necrosis simultaneously. • INK-128 blocks mTORC1/2 activation simultaneously in pancreatic cancer cells. • INK-128 down-regulates cyclin D1 and causes pancreatic cancer cell cycle arrest. • INK-128 significantly increases sensitivity of pancreatic cancer cells to gemcitabine. - Abstract: Pancreatic cancer has one of worst prognosis among all human malignancies around the world, the development of novel and more efficient anti-cancer agents against this disease is urgent. In the current study, we tested the potential effect of INK-128, a novel mammalian target of rapamycin (mTOR) complex 1 and 2 (mTORC1/2) dual inhibitor, against pancreatic cancer cells in vitro. Our results demonstrated that INK-128 concentration- and time-dependently inhibited the survival and growth of pancreatic cancer cells (both primary cells and transformed cells). INK-128 induced pancreatic cancer cell apoptosis and necrosis simultaneously. Further, INK-128 dramatically inhibited phosphorylation of 4E-binding protein 1 (4E-BP1), ribosomal S6 kinase 1 (S6K1) and Akt at Ser 473 in pancreatic cancer cells. Meanwhile, it downregulated cyclin D1 expression and caused cell cycle arrest. Finally, we found that a low concentration of INK-128 significantly increased the sensitivity of pancreatic cancer cells to gemcitabine. Together, our in vitro results suggest that INK-128 might be further investigated as a novel anti-cancer agent or chemo-adjuvant for pancreatic cancer treatment

  7. The novel mTORC1/2 dual inhibitor INK-128 suppresses survival and proliferation of primary and transformed human pancreatic cancer cells

    Lou, Hai-zhou [Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou 310016 (China); Weng, Xiao-chuan [Department of Anesthesiology, Hangzhou Xia-sha Hospital, Hangzhou 310018 (China); Pan, Hong-ming; Pan, Qin [Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou 310016 (China); Sun, Peng [Department of Medical Oncology, Sun Yat-Sen University Cancer Center, Guangzhou 510060 (China); Liu, Li-li [Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou 310016 (China); Chen, Bin, E-mail: chenbinhangzhou126@126.com [Department of Hepatopancreatobiliary Surgery, First People’s Hospital of Hangzhou, Hangzhou 310006 (China)

    2014-07-25

    Highlights: • INK-128 inhibits the survival and growth of human pancreatic cancer cells. • INK-128 induced pancreatic cancer cell apoptosis and necrosis simultaneously. • INK-128 blocks mTORC1/2 activation simultaneously in pancreatic cancer cells. • INK-128 down-regulates cyclin D1 and causes pancreatic cancer cell cycle arrest. • INK-128 significantly increases sensitivity of pancreatic cancer cells to gemcitabine. - Abstract: Pancreatic cancer has one of worst prognosis among all human malignancies around the world, the development of novel and more efficient anti-cancer agents against this disease is urgent. In the current study, we tested the potential effect of INK-128, a novel mammalian target of rapamycin (mTOR) complex 1 and 2 (mTORC1/2) dual inhibitor, against pancreatic cancer cells in vitro. Our results demonstrated that INK-128 concentration- and time-dependently inhibited the survival and growth of pancreatic cancer cells (both primary cells and transformed cells). INK-128 induced pancreatic cancer cell apoptosis and necrosis simultaneously. Further, INK-128 dramatically inhibited phosphorylation of 4E-binding protein 1 (4E-BP1), ribosomal S6 kinase 1 (S6K1) and Akt at Ser 473 in pancreatic cancer cells. Meanwhile, it downregulated cyclin D1 expression and caused cell cycle arrest. Finally, we found that a low concentration of INK-128 significantly increased the sensitivity of pancreatic cancer cells to gemcitabine. Together, our in vitro results suggest that INK-128 might be further investigated as a novel anti-cancer agent or chemo-adjuvant for pancreatic cancer treatment.

  8. Crosstalk between cystine and glutathione is critical for the regulation of amino acid signaling pathways and ferroptosis.

    Yu, Xinlei; Long, Yun Chau

    2016-01-01

    Although essential amino acids regulate mechanistic target of rapamycin complex 1 (mTORC1) and the integrated stress response (ISR), the role of cysteine is unknown. We found that in hepatoma HepG2 cells, cystine (oxidized form of cysteine) activated mTORC1 and suppressed the ISR. Cystine deprivation induced GSH efflux and extracellular degradation, which aimed to restore cellular cysteine. Inhibition of γ-glutamyl transpeptidase (GGT) impaired the ability of GSH or cell-permeable GSH to restore mTORC1 signaling and the ISR, suggesting that the capacity of GSH to release cysteine, but not GSH per se, regulated the signaling networks. Inhibition of protein translation restored both mTORC1 signaling and the ISR during cystine starvation, suggesting the bulk of cellular cysteine was committed to the biosynthetic process. Cellular cysteine and GSH displayed overlapping protective roles in the suppression of ferroptosis, further supporting their cooperation in the regulation of cell signaling. Thus, cellular cysteine and its derivative GSH cooperate to regulate mTORC1 pathway, the ISR and ferroptosis. PMID:27425006

  9. Up-regulation of miRNA-221 inhibits hypoxia/reoxygenation-induced autophagy through the DDIT4/mTORC1 and Tp53inp1/p62 pathways.

    Chen, Qiying; Zhou, Yue; Richards, A Mark; Wang, Peipei

    2016-05-20

    Timely reperfusion in acute myocardial infarction has improved clinical outcomes but the benefits are partially offset by ischemia-reperfusion injury (I/R). MiRNA regulates mRNA of multiple effectors within injury and survival cell signaling pathways. We have previously reported the protective effects of miRNA-221 in I/R injury. The purpose of this study was to explore the mechanisms underlying cardioprotection of miR-221. Myoblast H9c2 and neonatal rat ventricular myocytes (NRVM) were subjected to 0.2% O2 hypoxia followed by 2 h of re-oxygenation (H/R). In gain-and-loss function studies through transfections of miR-221 mimic (miR-221) and inhibitor (miR-221-i), the protective effects of miR-221 were confirmed as assessed by increased cell metabolic activity (WST-1) and decreased LDH release. Autophagy was assessed by GFP-LC3 labeling of autophagosome formation, LC3 and p62 measurements. Co-immuno-precipitation and specific gene cloning and function were used to identify the pathways underpinning miR-221 effects. MiR-221 significantly reduced H/R injury in association with inhibition of autophagy. Underlying mechanisms include (1) down-regulation of Ddit4 (disinhibiting the mTORC1/p-4EBP1 pathway) which inhibits autophagosome formation (2) down-regulation of Tp53inp1 (with reduced Tp53inp1/p62 complex formation) which inhibits autophagosome degradation. In conclusion, miRNA-221 exerts cytoprotective effects in hypoxia-reoxygenation injury in association with alterations in autophagic cell injury. Mir-221 may constitute is a novel therapeutic target in the treatment of cardiac I/R injury. PMID:27105917

  10. Excessive Leucine-mTORC1-Signalling of Cow Milk-Based Infant Formula: The Missing Link to Understand Early Childhood Obesity

    Bodo C. Melnik

    2012-01-01

    Full Text Available Increased protein supply by feeding cow-milk-based infant formula in comparison to lower protein content of human milk is a well-recognized major risk factor of childhood obesity. However, there is yet no conclusive biochemical concept explaining the mechanisms of formula-induced childhood obesity. It is the intention of this article to provide the biochemical link between leucine-mediated signalling of mammalian milk proteins and adipogenesis as well as early adipogenic programming. Leucine has been identified as the predominant signal transducer of mammalian milk, which stimulates the nutrient-sensitive kinase mammalian target of rapamycin complex 1 (mTORC1. Leucine thus functions as a maternal-neonatal relay for mTORC1-dependent neonatal β-cell proliferation and insulin secretion. The mTORC1 target S6K1 plays a pivotal role in stimulation of mesenchymal stem cells to differentiate into adipocytes and to induce insulin resistance. It is of most critical concern that infant formulas provide higher amounts of leucine in comparison to human milk. Exaggerated leucine-mediated mTORC1-S6K1 signalling induced by infant formulas may thus explain increased adipogenesis and generation of lifelong elevated adipocyte numbers. Attenuation of mTORC1 signalling of infant formula by leucine restriction to physiologic lower levels of human milk offers a great chance for the prevention of childhood obesity and obesity-related metabolic diseases.

  11. Aberrant expression of Notch1/numb/snail signaling, an epithelial mesenchymal transition related pathway, in adenomyosis

    Qi, Shasha; Zhao, Xingbo; Li, Mingjiang; Zhang, Xiaohui; Lu, Zhenzhen; Yang, Chunrun; Zhang, Chunhua; Zhang, Hui; Zhang, Na

    2015-01-01

    Background Epithelial mesenchymal transition (EMT) is involved in the pathogenesis of adenomyosis, and Notch signaling is crucial to EMT. The objective of this study was to explore Notch1/Numb/Snail signaling in adenomyosis. Methods The expression levels of the members of the Notch1/Numb/Snail signaling cascade in normal endometria (proliferative phase: n = 15; secretory phase: n = 15; postmenopausal phase: n = 15) and adenomyotic endometria (proliferative phase: n = 15; secretory phase: n = ...

  12. Reduction of aberrant NF-κB signalling ameliorates Rett syndrome phenotypes in Mecp2-null mice.

    Kishi, Noriyuki; MacDonald, Jessica L; Ye, Julia; Molyneaux, Bradley J; Azim, Eiman; Macklis, Jeffrey D

    2016-01-01

    Mutations in the transcriptional regulator Mecp2 cause the severe X-linked neurodevelopmental disorder Rett syndrome (RTT). In this study, we investigate genes that function downstream of MeCP2 in cerebral cortex circuitry, and identify upregulation of Irak1, a central component of the NF-κB pathway. We show that overexpression of Irak1 mimics the reduced dendritic complexity of Mecp2-null cortical callosal projection neurons (CPN), and that NF-κB signalling is upregulated in the cortex with Mecp2 loss-of-function. Strikingly, we find that genetically reducing NF-κB signalling in Mecp2-null mice not only ameliorates CPN dendritic complexity but also substantially extends their normally shortened lifespan, indicating broader roles for NF-κB signalling in RTT pathogenesis. These results provide new insight into both the fundamental neurobiology of RTT, and potential therapeutic strategies via NF-κB pathway modulation. PMID:26821816

  13. mTOR signaling promotes stem cell activation via counterbalancing BMP-mediated suppression during hair regeneration.

    Deng, Zhili; Lei, Xiaohua; Zhang, Xudong; Zhang, Huishan; Liu, Shuang; Chen, Qi; Hu, Huimin; Wang, Xinyue; Ning, Lina; Cao, Yujing; Zhao, Tongbiao; Zhou, Jiaxi; Chen, Ting; Duan, Enkui

    2015-02-01

    Hair follicles (HFs) undergo cycles of degeneration (catagen), rest (telogen), and regeneration (anagen) phases. Anagen begins when the hair follicle stem cells (HFSCs) obtain sufficient activation cues to overcome suppressive signals, mainly the BMP pathway, from their niche cells. Here, we unveil that mTOR complex 1 (mTORC1) signaling is activated in HFSCs, which coincides with the HFSC activation at the telogen-to-anagen transition. By using both an inducible conditional gene targeting strategy and a pharmacological inhibition method to ablate or inhibit mTOR signaling in adult skin epithelium before anagen initiation, we demonstrate that HFs that cannot respond to mTOR signaling display significantly delayed HFSC activation and extended telogen. Unexpectedly, BMP signaling activity is dramatically prolonged in mTOR signaling-deficient HFs. Through both gain- and loss-of-function studies in vitro, we show that mTORC1 signaling negatively affects BMP signaling, which serves as a main mechanism whereby mTORC1 signaling facilitates HFSC activation. Indeed, in vivo suppression of BMP by its antagonist Noggin rescues the HFSC activation defect in mTORC1-null skin. Our findings reveal a critical role for mTOR signaling in regulating stem cell activation through counterbalancing BMP-mediated repression during hair regeneration. PMID:25609845

  14. Differential regulation of protein synthesis in skeletal muscle and liver of neonatal pigs by leucine through an mTORC1-dependent pathway

    Suryawan Agus

    2012-02-01

    Full Text Available Abstract Neonatal growth is characterized by a high protein synthesis rate that is largely due to an enhanced sensitivity to the postprandial rise in insulin and amino acids, especially leucine. The mechanism of leucine's action in vivo is not well understood. In this study, we investigated the effect of leucine infusion on protein synthesis in skeletal muscle and liver of neonatal pigs. To evaluate the mode of action of leucine, we used rapamycin, an inhibitor of mammalian target of rapamycin (mTOR complex-1 (mTORC1. Overnight-fasted 7-day-old piglets were treated with rapamycin for 1 hour and then infused with leucine (400 μmol·kg-1·h-1 for 1 hour. Leucine infusion increased the rate of protein synthesis, and ribosomal protein S6 kinase 1 (S6K1 and eukaryotic initiation factor (eIF 4E-binding protein-1 (4E-BP1 phosphorylation in gastrocnemius and masseter muscles (P

  15. Optical Aberrations and Wavefront

    Nihat Polat

    2014-08-01

    Full Text Available The deviation of light to create normal retinal image in the optical system is called aberration. Aberrations are divided two subgroup: low-order aberrations (defocus: spherical and cylindrical refractive errors and high-order aberrations (coma, spherical, trefoil, tetrafoil, quadrifoil, pentafoil, secondary astigmatism. Aberrations increase with aging. Spherical aberrations are compensated by positive corneal and negative lenticular spherical aberrations in youth. Total aberrations are elevated by positive corneal and positive lenticular spherical aberrations in elderly. In this study, we aimed to analyze the basic terms regarding optic aberrations which have gained significance recently. (Turk J Ophthalmol 2014; 44: 306-11

  16. Leucine signaling in the pathogenesis of type 2 diabetes and obesity

    Melnik, Bodo C.

    2012-01-01

    Epidemiological evidence points to increased dairy and meat consumption, staples of the Western diet, as major risk factors for the development of type 2 diabetes (T2D). This paper presents a new concept and comprehensive review of leucine-mediated cell signaling explaining the pathogenesis of T2D and obesity by leucine-induced over-stimulation of mammalian target of rapamycin complex 1 (mTORC1). mTORC1, a pivotal nutrient-sensitive kinase, promotes growth and cell proliferation in response t...

  17. Replication stress and oxidative damage contribute to aberrant constitutive activation of DNA damage signalling in human gliomas

    Bartkova, J; Hamerlik, P; Stockhausen, Marie;

    2010-01-01

    damage signalling in low- and high-grade human gliomas, and analyze the sources of such endogenous genotoxic stress. Based on analyses of human glioblastoma multiforme (GBM) cell lines, normal astrocytes and clinical specimens from grade II astrocytomas (n=41) and grade IV GBM (n=60), we conclude that...... brain and grade II astrocytomas, despite the degree of DDR activation was higher in grade II tumors. Markers indicative of ongoing DNA replication stress (Chk1 activation, Rad17 phosphorylation, replication protein A foci and single-stranded DNA) were present in GBM cells under high- or low......-oxygen culture conditions and in clinical specimens of both low- and high-grade tumors. The observed global checkpoint signaling, in contrast to only focal areas of overabundant p53 (indicative of p53 mutation) in grade II astrocytomas, are consistent with DDR activation being an early event in gliomagenesis...

  18. Adipocytes from New Zealand Obese Mice Exhibit Aberrant Proinflammatory Reactivity to the Stress Signal Heat Shock Protein 60

    Tina Märker

    2014-01-01

    Full Text Available Adipocytes release immune mediators that contribute to diabetes-associated inflammatory processes. As the stress protein heat shock protein 60 (Hsp60 induces proinflammatory adipocyte activities, we hypothesized that adipocytes of diabetes-predisposed mice exhibit an increased proinflammatory reactivity to Hsp60. Preadipocytes and mature adipocytes from nonobese diabetic (NOD, New Zealand obese (NZO, and C57BL/6J mice were analyzed for Hsp60 binding, Hsp60-activated signaling pathways, and Hsp60-induced release of the chemokine CXCL-1 (KC, interleukin 6 (IL-6, and macrophage chemoattractant protein-1 (MCP-1. Hsp60 showed specific binding to (pre-adipocytes of NOD, NZO, and C57BL/6J mice. Hsp60 binding involved conserved binding structure(s and Hsp60 epitopes and was strongest to NZO mouse-derived mature adipocytes. Hsp60 exposure induced KC, IL-6, and MCP-1 release from (pre-adipocytes of all mouse strains with a pronounced increase of IL-6 release from NZO mouse-derived adipocytes. Compared to NOD and C57BL/6J mouse derived cells, Hsp60-induced formation of IL-6, KC, and MCP-1 from NZO mouse-derived (pre-adipocytes strongly depended on NFκB-activation. Increased Hsp60 binding and Hsp60-induced IL-6 release by mature adipocytes of NZO mice suggest that enhanced adipocyte reactivity to the stress signal Hsp60 contributes to inflammatory processes underlying diabetes associated with obesity and insulin resistance.

  19. Hyaluronan suppresses prostate tumor cell proliferation through diminished expression of N-cadherin and aberrant growth factor receptor signaling

    Bharadwaj, Alamelu G.; Goodrich, Nathaniel P.; McAtee, Caitlin O.; Haferbier, Katie [Department of Biochemistry, University of Nebraska, Lincoln, NE 68588 (United States); Oakley, Gregory G.; Wahl, James K. [Department of Oral Biology, University of Nebraska College of Dentistry, Lincoln, NE 68588 (United States); Simpson, Melanie A., E-mail: msimpson2@unl.edu [Department of Biochemistry, University of Nebraska, Lincoln, NE 68588 (United States); Eppley Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198 (United States)

    2011-05-01

    Hyaluronan (HA) production has been functionally implicated in prostate tumorigenesis and metastasis. We previously used prostate tumor cells overexpressing the HA synthesizing enzyme HAS3 or the clinically relevant hyaluronidase Hyal1 to show that excess HA production suppresses tumor growth, while HA turnover accelerates spontaneous metastasis from the prostate. Here, we examined pathways responsible for effects of HAS3 and Hyal1 on tumor cell phenotype. Detailed characterization of cell cycle progression revealed that expression of Hyal1 accelerated cell cycle re-entry following synchronization, whereas HAS3 alone delayed entry. Hyal1 expressing cells exhibited a significant reduction in their ability to sustain ERK phosphorylation upon stimulation by growth factors, and in their expression of the cyclin-dependent kinase inhibitor p21. In contrast, HAS3 expressing cells showed prolonged ERK phosphorylation and increased expression of both p21 and p27, in asynchronous and synchronized cultures. Changes in cell cycle regulatory proteins were accompanied by HA-induced suppression of N-cadherin, while E-cadherin expression and {beta}-catenin expression and distribution remained unchanged. Our results are consistent with a model in which excess HA synthesis suppresses cell proliferation by promoting homotypic E-cadherin mediated cell-cell adhesion, consequently signaling to elevate cell cycle inhibitor expression and suppress G1- to S-phase transition.

  20. Hyaluronan suppresses prostate tumor cell proliferation through diminished expression of N-cadherin and aberrant growth factor receptor signaling

    Hyaluronan (HA) production has been functionally implicated in prostate tumorigenesis and metastasis. We previously used prostate tumor cells overexpressing the HA synthesizing enzyme HAS3 or the clinically relevant hyaluronidase Hyal1 to show that excess HA production suppresses tumor growth, while HA turnover accelerates spontaneous metastasis from the prostate. Here, we examined pathways responsible for effects of HAS3 and Hyal1 on tumor cell phenotype. Detailed characterization of cell cycle progression revealed that expression of Hyal1 accelerated cell cycle re-entry following synchronization, whereas HAS3 alone delayed entry. Hyal1 expressing cells exhibited a significant reduction in their ability to sustain ERK phosphorylation upon stimulation by growth factors, and in their expression of the cyclin-dependent kinase inhibitor p21. In contrast, HAS3 expressing cells showed prolonged ERK phosphorylation and increased expression of both p21 and p27, in asynchronous and synchronized cultures. Changes in cell cycle regulatory proteins were accompanied by HA-induced suppression of N-cadherin, while E-cadherin expression and β-catenin expression and distribution remained unchanged. Our results are consistent with a model in which excess HA synthesis suppresses cell proliferation by promoting homotypic E-cadherin mediated cell-cell adhesion, consequently signaling to elevate cell cycle inhibitor expression and suppress G1- to S-phase transition.

  1. Aberrant Notch Signaling in the Bone Marrow Microenvironment of Acute Lymphoid Leukemia Suppresses Osteoblast-Mediated Support of Hematopoietic Niche Function.

    Wang, Weihuan; Zimmerman, Grant; Huang, Xiaoran; Yu, Shuiliang; Myers, Jay; Wang, Yiwei; Moreton, Stephen; Nthale, Joseph; Awadallah, Amad; Beck, Rose; Xin, Wei; Wald, David; Huang, Alex Y; Zhou, Lan

    2016-03-15

    More than half of T-cell acute lymphoblastic leukemia (T-ALL) patients harbor gain-of-function mutations in the intracellular domain of Notch1. Diffuse infiltration of the bone marrow commonly occurs in T-ALL and relapsed B-cell acute lymphoblastic leukemia patients, and is associated with worse prognosis. However, the mechanism of leukemia outgrowth in the marrow and the resulting biologic impact on hematopoiesis are poorly understood. Here, we investigated targetable cellular and molecular abnormalities in leukemia marrow stroma responsible for the suppression of normal hematopoiesis using a T-ALL mouse model and human T-ALL xenografts. We found that actively proliferating leukemia cells inhibited normal hematopoietic stem and progenitor cell (HSPC) proliferation and homing to the perivascular region. In addition, leukemia development was accompanied by the suppression of the endosteum-lining osteoblast population. We further demonstrated that aberrant Notch activation in the stroma plays an important role in negatively regulating the expression of CXLC12 on osteoblasts and their differentiation. Notch blockade reversed attenuated HSPC cycling, leukemia-associated abnormal blood lineage distribution, and thrombocytopenia as well as recovered osteoblast and HSPC abundance and improved the hematopoietic-supportive functions of osteoblasts. Finally, we confirmed that reduced osteoblast frequency and enhanced Notch signaling were also features of the marrow stroma of human ALL tissues. Collectively, our findings suggest that therapeutically targeting the leukemia-infiltrated hematopoietic niche may restore HSPC homeostasis and improve the outcome of ALL patients. PMID:26801976

  2. Multiple Drug Treatments That Increase cAMP Signaling Restore Long-Term Memory and Aberrant Signaling in Fragile X Syndrome Models

    Choi, Catherine H.; Schoenfeld, Brian P.; Bell, Aaron J.; Hinchey, Joseph; Rosenfelt, Cory; Gertner, Michael J.; Campbell, Sean R.; Emerson, Danielle; Hinchey, Paul; Kollaros, Maria; Ferrick, Neal J.; Chambers, Daniel B.; Langer, Steven; Sust, Steven; Malik, Aatika; Terlizzi, Allison M.; Liebelt, David A.; Ferreiro, David; Sharma, Ali; Koenigsberg, Eric; Choi, Richard J.; Louneva, Natalia; Arnold, Steven E.; Featherstone, Robert E.; Siegel, Steven J.; Zukin, R. Suzanne; McDonald, Thomas V.; Bolduc, Francois V.; Jongens, Thomas A.; McBride, Sean M. J.

    2016-01-01

    Fragile X is the most common monogenic disorder associated with intellectual disability (ID) and autism spectrum disorders (ASD). Additionally, many patients are afflicted with executive dysfunction, ADHD, seizure disorder and sleep disturbances. Fragile X is caused by loss of FMRP expression, which is encoded by the FMR1 gene. Both the fly and mouse models of fragile X are also based on having no functional protein expression of their respective FMR1 homologs. The fly model displays well defined cognitive impairments and structural brain defects and the mouse model, although having subtle behavioral defects, has robust electrophysiological phenotypes and provides a tool to do extensive biochemical analysis of select brain regions. Decreased cAMP signaling has been observed in samples from the fly and mouse models of fragile X as well as in samples derived from human patients. Indeed, we have previously demonstrated that strategies that increase cAMP signaling can rescue short term memory in the fly model and restore DHPG induced mGluR mediated long term depression (LTD) in the hippocampus to proper levels in the mouse model (McBride et al., 2005; Choi et al., 2011, 2015). Here, we demonstrate that the same three strategies used previously with the potential to be used clinically, lithium treatment, PDE-4 inhibitor treatment or mGluR antagonist treatment can rescue long term memory in the fly model and alter the cAMP signaling pathway in the hippocampus of the mouse model. PMID:27445731

  3. mTOR信号通路与支气管肺发育不良%mTOR signaling pathway and bronchopulmonary dysplasia

    邹冬梅(综述); 王少华(审校)

    2016-01-01

    mTOR信号通路是在进化上高度保守的细胞内信号通路,参与多条信号通路的传导,主要包括 PI3K/AKT/mTOR 通路、AKT/TSC1-TSC2/Rheb/mTOR 通路、LKB1-AMPK-TSC-mTOR 通路和 FGF-10-Spry2-mTORC1-STAT3/HIF-1α-VEGF-A通路。该信号通路从多个水平多个方面参与肺发育及肺部多种疾病的调控过程,可能与支气管肺发育不良( bronchopulmonary dysplasia,BPD)有关。 BPD是早产儿十分常见的一种慢性肺疾病( chronic lung disease,CLD),是各种理化因素对发育不成熟肺造成急性肺损伤及损伤后异常修复、肺纤维化的过程。该文总结了mTOR信号通路与肺发育、急性肺损伤及肺纤维化可能存在的关系,探索mTOR信号通路在BPD形成过程中的作用,以期为BPD的防治提供新的切入点。%mTOR signaling pathway is a highly conserved intracellular signaling pathway,which partici-pates in several signaling pathways, such as PI3K/AKT/mTOR, AKT/TSC1-TSC2/Rheb/mTOR, LKB1-AMPK-TSC-mTOR and FGF-10-Spry2-mTORC1-STAT3/HIF-1α-VEGF-A. mTOR signaling implicate in the regulation of the development of lung and many pulmonary diseases in many aspects,may be connected to bron-chopulmonary dysplasia. Bronchopulmonary dysplasia is one of the very common chronic lung diseases in pre-term,physical and chemical factors have been shown to induce acute lung injury, aberrant wound healing and lung fibrosis in the immature lung. This review summarizes relationship of mTOR signaling among lung develop-ment,acute lung injury and lung fibrosis,to explore the role of mTOR signaling in the development of bronchop-ulmonary dysplasia,in hope of providing novel method in the prevention and treatment of bronchopulmonary dysplasia.

  4. Potential role of FoxO1 and mTORC1 in the pathogenesis of Western diet-induced acne

    Melnik, Bodo C; Zouboulis, Christos C.

    2013-01-01

    Acne in adolescents of developed countries is an epidemic skin disease and has currently been linked to the Western diet (WD). It is the intention of this viewpoint to discuss the possible impact of WD-mediated nutrient signalling in the pathogenesis of acne. High glycaemic load and dairy protein consumption both increase insulin/insulin-like growth factor-1 (IGF-1) signalling (IIS) that is superimposed on elevated IGF-1 signalling of puberty. The cell's nutritional status is primarily sensed...

  5. Aberration Corrected Emittance Exchange

    Nanni, Emilio A

    2015-01-01

    Full exploitation of emittance exchange (EEX) requires aberration-free performance of a complex imaging system including active radio-frequency (RF) elements which can add temporal distortions. We investigate the performance of an EEX line where the exchange occurs between two dimensions with normalized emittances which differ by orders of magnitude. The transverse emittance is exchanged into the longitudinal dimension using a double dog-leg emittance exchange setup with a 5 cell RF deflector cavity. Aberration correction is performed on the four most dominant aberrations. These include temporal aberrations that are corrected with higher order magnetic optical elements located where longitudinal and transverse emittance are coupled. We demonstrate aberration-free performance of emittances differing by 4 orders of magnitude, i.e. an initial transverse emittance of $\\epsilon_x=1$ pm-rad is exchanged with a longitudinal emittance of $\\epsilon_z=10$ nm-rad.

  6. Photothermal Lens Aberration Effects in Two Laser Thermal Lens Spectrometry

    Bialkowski, Stephen E.

    1985-01-01

    A comparison of theories describing two laser photothermal lens signals is given. The aberrant nature of this lens is accounted for in a theory which treats the propagation of a monitor laser in terms of a phase shift in this laser beam wave front. The difference between theories are discussed in terms of the predicted signal strengths and temporal behavior. The aberrant theory results in smaller theoretical signal strengths and different functional relationships between signal and analyte le...

  7. Protein supplementation does not alter intramuscular anabolic signaling or endocrine response after resistance exercise in trained men.

    Gonzalez, Adam M; Hoffman, Jay R; Jajtner, Adam R; Townsend, Jeremy R; Boone, Carleigh H; Beyer, Kyle S; Baker, Kayla M; Wells, Adam J; Church, David D; Mangine, Gerald T; Oliveira, Leonardo P; Moon, Jordan R; Fukuda, David H; Stout, Jeffrey R

    2015-11-01

    The mammalian/mechanistic target of rapamycin complex 1 (mTORC1) signaling pathway appears to be the primary regulator of muscle protein synthesis. A variety of stimuli including resistance exercise, amino acids, and hormonal signals activate mTORC1 signaling. The purpose of this study was to investigate the effect of a protein supplement on mTORC1 signaling following a resistance exercise protocol designed to promote elevations in circulating hormone concentrations. We hypothesized that the protein supplement would augment the intramuscular anabolic signaling response. Ten resistance-trained men (age, 24.7 ± 3.4 years; weight, 90.1 ± 11.3 kg; height, 176.0 ± 4.9 cm) received either a placebo or a supplement containing 20 g protein, 6 g carbohydrates, and 1 g fat after high-volume, short-rest lower-body resistance exercise. Blood samples were obtained at baseline, immediately, 30 minutes, 1 hour, 2 hours, and 5 hours after exercise. Fine-needle muscle biopsies were completed at baseline, 1 hour, and 5 hours after exercise. Myoglobin, lactate dehydrogenase, and lactate concentrations were significantly elevated after resistance exercise (P exercise also elicited a significant insulin, growth hormone, and cortisol response (P testosterone, growth hormone, or cortisol. Intramuscular anabolic signaling analysis revealed significant elevations in RPS6 phosphorylation after resistance exercise (P = .001); however, no differences were observed between trials for signaling proteins including Akt, mTOR, p70S6k, and RPS6. The endocrine response and phosphorylation status of signaling proteins within the mTORC1 pathway did not appear to be altered by ingestion of supplement after resistance exercise in resistance-trained men. PMID:26428621

  8. Bridges between mitochondrial oxidative stress, ER stress and mTOR signaling in pancreatic β cells.

    Wang, Jing; Yang, Xin; Zhang, Jingjing

    2016-08-01

    Pancreatic β cell dysfunction, i.e., failure to provide insulin in concentrations sufficient to control blood sugar, is central to the etiology of all types of diabetes. Current evidence implicates mitochondrial oxidative stress and endoplasmic reticulum (ER) stress in pancreatic β cell loss and impaired insulin secretion. Oxidative and ER stress are interconnected so that misfolded proteins induce reactive oxygen species (ROS) production; likewise, oxidative stress disturbs the ER redox state thereby disrupting correct disulfide bond formation and proper protein folding. mTOR signaling regulates many metabolic processes including protein synthesis, cell growth, survival and proliferation. Oxidative stress inhibits mTORC1, which is considered an important suppressor of mitochondrial oxidative stress in β cells, and ultimately, controls cell survival. The interplay between ER stress and mTORC1 is complicated, since the unfolded protein response (UPR) activation can occur upstream or downstream of mTORC1. Persistent activation of mTORC1 initiates protein synthesis and UPR activation, while in the later phase induces ER stress. Chronic activation of ER stress inhibits Akt/mTORC1 pathway, while under particular settings, acute activation of UPR activates Akt-mTOR signaling. Thus, modulating mitochondrial oxidative stress and ER stress via mTOR signaling may be an approach that will effectively suppress obesity- or glucolipotoxicity-induced metabolic disorders such as insulin resistance and type 2 diabetes mellitus (T2DM). In this review, we focus on the regulations between mTOR signaling and mitochondrial oxidative or ER stress in pancreatic β cells. PMID:27185188

  9. PARP-1 modulation of mTOR signaling in response to a DNA alkylating agent.

    Chantal Ethier

    Full Text Available Poly(ADP-ribose polymerase-1 (PARP-1 is widely involved in cell death responses. Depending on the degree of injury and on cell type, PARP activation may lead to autophagy, apoptosis or necrosis. In HEK293 cells exposed to the alkylating agent N-methyl-N'-nitro-N'-nitrosoguanine (MNNG, we show that PARP-1 activation triggers a necrotic cell death response. The massive poly(ADP-ribose (PAR synthesis following PARP-1 activation leads to the modulation of mTORC1 pathway. Shortly after MNNG exposure, NAD⁺ and ATP levels decrease, while AMP levels drastically increase. We characterized at the molecular level the consequences of these altered nucleotide levels. First, AMP-activated protein kinase (AMPK is activated and the mTORC1 pathway is inhibited by the phosphorylation of Raptor, in an attempt to preserve cellular energy. Phosphorylation of the mTORC1 target S6 is decreased as well as the phosphorylation of the mTORC2 component Rictor on Thr1135. Finally, Akt phosphorylation on Ser473 is lost and then, cell death by necrosis occurs. Inhibition of PARP-1 with the potent PARP inhibitor AG14361 prevents all of these events. Moreover, the antioxidant N-acetyl-L-cysteine (NAC can also abrogate all the signaling events caused by MNNG exposure suggesting that reactive oxygen species (ROS production is involved in PARP-1 activation and modulation of mTOR signaling. In this study, we show that PARP-1 activation and PAR synthesis affect the energetic status of cells, inhibit the mTORC1 signaling pathway and possibly modulate the mTORC2 complex affecting cell fate. These results provide new evidence that cell death by necrosis is orchestrated by the balance between several signaling pathways, and that PARP-1 and PAR take part in these events.

  10. Aberrantly expressed miR-582-3p maintains lung cancer stem cell-like traits by activating Wnt/β-catenin signalling

    Fang, Lishan; Cai, Junchao; Chen, Baixue; Wu, Shanshan; Li, Rong; Xu, Xiaonan; Yang, Yi; Guan, Hongyu; Zhu, Xun; Zhang, Le; Yuan, Jie; Wu, Jueheng; Li, Mengfeng

    2015-01-01

    Cancer stem cells (CSCs) are involved in tumorigenesis, tumour recurrence and therapy resistance and Wnt signalling is essential for the development of the biological traits of CSCs. In non-small cell lung carcinoma (NSCLC), unlike in colon cancer, mutations in β-catenin and APC genes are uncommon; thus, the mechanism underlying the constitutive activation of Wnt signalling in NSCLC remains unclear. Here we report that miR-582-3p expression correlates with the overall- and recurrence-free-sur...

  11. Aberrantly expressed miR-582-3p maintains lung cancer stem cell-like traits by activating Wnt/β-catenin signalling.

    Fang, Lishan; Cai, Junchao; Chen, Baixue; Wu, Shanshan; Li, Rong; Xu, Xiaonan; Yang, Yi; Guan, Hongyu; Zhu, Xun; Zhang, Le; Yuan, Jie; Wu, Jueheng; Li, Mengfeng

    2015-01-01

    Cancer stem cells (CSCs) are involved in tumorigenesis, tumour recurrence and therapy resistance and Wnt signalling is essential for the development of the biological traits of CSCs. In non-small cell lung carcinoma (NSCLC), unlike in colon cancer, mutations in β-catenin and APC genes are uncommon; thus, the mechanism underlying the constitutive activation of Wnt signalling in NSCLC remains unclear. Here we report that miR-582-3p expression correlates with the overall- and recurrence-free-survival of NSCLC patients, and miR-582-3p has an activating effect on Wnt/β-catenin signalling. miR-582-3p overexpression simultaneously targets multiple negative regulators of the Wnt/β-catenin pathway, namely, AXIN2, DKK3 and SFRP1. Consequently, miR-582-3p promotes CSC traits of NSCLC cells in vitro and tumorigenesis and tumour recurrence in vivo. Antagonizing miR-582-3p potently inhibits tumour initiation and progression in xenografted animal models. These findings suggest that miR-582-3p mediates the constitutive activation of Wnt/β-catenin signalling, likely serving as a potential therapeutic target for NSCLC. PMID:26468775

  12. The endocrine dyscrasia that accompanies menopause and andropause induces aberrant cell cycle signaling that triggers re-entry of post-mitotic neurons into the cell cycle, neurodysfunction, neurodegeneration and cognitive disease.

    Atwood, Craig S; Bowen, Richard L

    2015-11-01

    This article is part of a Special Issue "SBN 2014". Sex hormones are physiological factors that promote neurogenesis during embryonic and fetal development. During childhood and adulthood these hormones support the maintenance of brain structure and function via neurogenesis and the formation of dendritic spines, axons and synapses required for the capture, processing and retrieval of information (memories). Not surprisingly, changes in these reproductive hormones that occur with menopause and during andropause are strongly correlated with neurodegeneration and cognitive decline. In this connection, much evidence now indicates that Alzheimer's disease (AD) involves aberrant re-entry of post-mitotic neurons into the cell cycle. Cell cycle abnormalities appear very early in the disease, prior to the appearance of plaques and tangles, and explain the biochemical, neuropathological and cognitive changes observed with disease progression. Intriguingly, a recent animal study has demonstrated that induction of adult neurogenesis results in the loss of previously encoded memories while decreasing neurogenesis after memory formation during infancy mitigated forgetting. Here we review the biochemical, epidemiological and clinical evidence that alterations in sex hormone signaling associated with menopause and andropause drive the aberrant re-entry of post-mitotic neurons into an abortive cell cycle that leads to neurite retraction, neuron dysfunction and neuron death. When the reproductive axis is in balance, gonadotropins such as luteinizing hormone (LH), and its fetal homolog, human chorionic gonadotropin (hCG), promote pluripotent human and totipotent murine embryonic stem cell and neuron proliferation. However, strong evidence supports menopausal/andropausal elevations in the LH:sex steroid ratio as driving aberrant mitotic events. These include the upregulation of tumor necrosis factor; amyloid-β precursor protein processing towards the production of mitogenic Aβ; and

  13. Diet in acne: further evidence for the role of nutrient signalling in acne pathogenesis.

    Melnik, Bodo C

    2012-05-01

    Recent evidence underlines the role of Western diet in the pathogenesis of acne. Acne is absent in populations consuming Palaeolithic diets with low glycaemic load and no consumption of milk or dairy products. Two randomized controlled studies, one of which is presented in this issue of Acta Dermato-Venereologica, have provided evidence for the beneficial therapeutic effects of low glycaemic load diets in acne. Epidemiological evidence confirms that milk consumption has an acne-promoting or acne-aggravating effect. Recent progress in understanding the nutrient-sensitive kinase mammalian target of rapamycin complex 1 (mTORC1) allows a new view of nutrient signalling in acne by both high glycaemic load and increased insulin-, IGF-1-, and leucine signalling due to milk protein consumption. Acne should be regarded as an mTORC1-driven disease of civilization, like obesity, type 2 diabetes and cancer induced by Western diet. Early dietary counselling of teenage acne patients is thus a great opportunity for dermatology, which will not only help to improve acne but may reduce the long-term adverse effects of Western diet on more serious mTORC1-driven diseases of civilization. PMID:22419445

  14. Niclosamide, an old antihelminthic agent, demonstrates antitumor activity by blocking multiple signaling pathways of cancer stem cells

    Pan, Jing-Xuan; Ding, Ke; Wang, Cheng-Yan

    2012-01-01

    Niclosamide, an oral antihelminthic drug, has been used to treat tapeworm infection for about 50 years. Niclosamide is also used as a molluscicide for water treatment in schistosomiasis control programs. Recently, several groups have independently discovered that niclosamide is also active against cancer cells, but its precise mechanism of antitumor action is not fully understood. Evidence supports that niclosamide targets multiple signaling pathways (NF-κB, Wnt/β-catenin, Notch, ROS, mTORC1,...

  15. A Multi-Lineage Screen Reveals mTORC1 Inhibition Enhances Human Pluripotent Stem Cell Mesendoderm and Blood Progenitor Production

    Emanuel Joseph Paul Nazareth

    2016-05-01

    Full Text Available Human pluripotent stem cells (hPSCs exist in heterogeneous micro-environments with multiple subpopulations, convoluting fate-regulation analysis. We patterned hPSCs into engineered micro-environments and screened responses to 400 small-molecule kinase inhibitors, measuring yield and purity outputs of undifferentiated, neuroectoderm, mesendoderm, and extra-embryonic populations. Enrichment analysis revealed mammalian target of rapamycin (mTOR inhibition as a strong inducer of mesendoderm. Dose responses of mTOR inhibitors such as rapamycin synergized with Bone Morphogenetic protein 4 (BMP4 and activin A to enhance the yield and purity of BRACHYURY-expressing cells. Mechanistically, small interfering RNA knockdown of RAPTOR, a component of mTOR complex 1, phenocopied the mesendoderm-enhancing effects of rapamycin. Functional analysis during mesoderm and endoderm differentiation revealed that mTOR inhibition increased the output of hemogenic endothelial cells 3-fold, with a concomitant enhancement of blood colony-forming cells. These data demonstrate the power of our multi-lineage screening approach and identify mTOR signaling as a node in hPSC differentiation to mesendoderm and its derivatives.

  16. A Multi-Lineage Screen Reveals mTORC1 Inhibition Enhances Human Pluripotent Stem Cell Mesendoderm and Blood Progenitor Production.

    Nazareth, Emanuel Joseph Paul; Rahman, Nafees; Yin, Ting; Zandstra, Peter William

    2016-05-10

    Human pluripotent stem cells (hPSCs) exist in heterogeneous micro-environments with multiple subpopulations, convoluting fate-regulation analysis. We patterned hPSCs into engineered micro-environments and screened responses to 400 small-molecule kinase inhibitors, measuring yield and purity outputs of undifferentiated, neuroectoderm, mesendoderm, and extra-embryonic populations. Enrichment analysis revealed mammalian target of rapamycin (mTOR) inhibition as a strong inducer of mesendoderm. Dose responses of mTOR inhibitors such as rapamycin synergized with Bone Morphogenetic protein 4 (BMP4) and activin A to enhance the yield and purity of BRACHYURY-expressing cells. Mechanistically, small interfering RNA knockdown of RAPTOR, a component of mTOR complex 1, phenocopied the mesendoderm-enhancing effects of rapamycin. Functional analysis during mesoderm and endoderm differentiation revealed that mTOR inhibition increased the output of hemogenic endothelial cells 3-fold, with a concomitant enhancement of blood colony-forming cells. These data demonstrate the power of our multi-lineage screening approach and identify mTOR signaling as a node in hPSC differentiation to mesendoderm and its derivatives. PMID:27132889

  17. Aging Reduces the Activation of the mTORC1 Pathway after Resistance Exercise and Protein Intake in Human Skeletal Muscle: Potential Role of REDD1 and Impaired Anabolic Sensitivity

    Marc Francaux

    2016-01-01

    Full Text Available This study was designed to better understand the molecular mechanisms involved in the anabolic resistance observed in elderly people. Nine young (22 ± 0.1 years and 10 older (69 ± 1.7 years volunteers performed a one-leg extension exercise consisting of 10 × 10 repetitions at 70% of their 3-RM, immediately after which they ingested 30 g of whey protein. Muscle biopsies were taken from the vastus lateralis at rest in the fasted state and 30 min after protein ingestion in the non-exercised (Pro and exercised (Pro+ex legs. Plasma insulin levels were determined at the same time points. No age difference was measured in fasting insulin levels but the older subjects had a 50% higher concentration than the young subjects in the fed state (p < 0.05. While no difference was observed in the fasted state, in response to exercise and protein ingestion, the phosphorylation state of PKB (p < 0.05 in Pro and Pro+ex and S6K1 (p = 0.059 in Pro; p = 0.066 in Pro+ex was lower in the older subjects compared with the young subjects. After Pro+ex, REDD1 expression tended to be higher (p = 0.087 in the older group while AMPK phosphorylation was not modified by any condition. In conclusion, we show that the activation of the mTORC1 pathway is reduced in skeletal muscle of older subjects after resistance exercise and protein ingestion compared with young subjects, which could be partially due to an increased expression of REDD1 and an impaired anabolic sensitivity.

  18. Fine-Tuning of PI3K/AKT Signalling by the Tumour Suppressor PTEN Is Required for Maintenance of Flight Muscle Function and Mitochondrial Integrity in Ageing Adult Drosophila melanogaster.

    Lawrence B Mensah

    Full Text Available Insulin/insulin-like growth factor signalling (IIS, acting primarily through the PI3-kinase (PI3K/AKT kinase signalling cassette, plays key evolutionarily conserved regulatory roles in nutrient homeostasis, growth, ageing and longevity. The dysfunction of this pathway has been linked to several age-related human diseases including cancer, Type 2 diabetes and neurodegenerative disorders. However, it remains unclear whether minor defects in IIS can independently induce the age-dependent functional decline in cells that accompany some of these diseases or whether IIS alters the sensitivity to other aberrant signalling. We identified a novel hypomorphic allele of PI3K's direct antagonist, Phosphatase and tensin homologue on chromosome 10 (Pten, in the fruit fly, Drosophila melanogaster. Adults carrying combinations of this allele, Pten5, combined with strong loss-of-function Pten mutations exhibit subtle or no increase in mass, but are highly susceptible to a wide range of stresses. They also exhibit dramatic upregulation of the oxidative stress response gene, GstD1, and a progressive loss of motor function that ultimately leads to defects in climbing and flight ability. The latter phenotype is associated with mitochondrial disruption in indirect flight muscles, although overall muscle structure appears to be maintained. We show that the phenotype is partially rescued by muscle-specific expression of the Bcl-2 homologue Buffy, which in flies, maintains mitochondrial integrity, modulates energy homeostasis and suppresses cell death. The flightless phenotype is also suppressed by mutations in downstream IIS signalling components, including those in the mechanistic Target of Rapamycin Complex 1 (mTORC1 pathway, suggesting that elevated IIS is responsible for functional decline in flight muscle. Our data demonstrate that IIS levels must be precisely regulated by Pten in adults to maintain the function of the highly metabolically active indirect flight

  19. [Regulative mechanisms of mammalian target of rapamycin signaling pathway in glomerular hypertrophy in diabetic nephropathy and interventional effects of Chinese herbal medicine].

    Yang, Jing-Jing; Huang, Yan-ru; Wan, Yi-gang; Shen, Shan-mei; Mao, Zhi-min; Wu, Wei; Yao, Jian

    2015-08-01

    Glomerular hypertrophy is the main pathological characteristic in the early stage of diabetic nephropathy (DN), and its regulatory mechanism is closely related to mammalian target of rapamycin (mTOR) signaling pathway activity. mTOR includes mTOR complex 1 (mTORC1) and mTOR complex 2(mTORC2), in which, the upstream pathway of mTORC1 is phosphatidylinositol-3-kinase (PI3K)/serine-threonine kinase(Akt)/adenosine monophosphate activated protein kinase(AMPK), and the representative signaling molecules in the downstream pathway of mTORC1 are 4E-binding proteins(4EBP) and phosphoprotein 70 S6Kinase(p70S6K). Some Chinese herbal extracts could improve cell proliferation via intervening the expressions of the key molecules in the upstream or downstream of PIK/Akt/mTOR signaling pathway in vivo. As for glomerular mesangial cells(MC) and podocyte, mTOR plays an important role in regulating glomerular inherent cells, including adjusting cell cycle, energy metabolism and matrix protein synthesis. Rapamycin, the inhibitor of mTOR, could suppress glomerular inherent cell hypertrophy, cell proliferation, glomerular basement membrane (GBM) thickening and mesangial matrix deposition in model rats with DN. Some Chinese herbal extracts could alleviate glomerular lesions by intervening mTOR signaling pathway activity in renal tissue of DN animal models or in renal inherent cells in vivo and in vitro. PMID:26790279

  20. TNF-{alpha} promotes human retinal pigment epithelial (RPE) cell migration by inducing matrix metallopeptidase 9 (MMP-9) expression through activation of Akt/mTORC1 signaling

    Wang, Cheng-hu; Cao, Guo-Fan [The Affiliated Eye Hospital of Nanjing Medical University, Nanjing 210029 (China); Jiang, Qin, E-mail: Jqin710@vip.sina.com [The Affiliated Eye Hospital of Nanjing Medical University, Nanjing 210029 (China); Yao, Jin, E-mail: dryaojin@yahoo.com [The Affiliated Eye Hospital of Nanjing Medical University, Nanjing 210029 (China)

    2012-08-17

    Highlights: Black-Right-Pointing-Pointer TNF-{alpha} induces MMP-9 expression and secretion to promote RPE cell migration. Black-Right-Pointing-Pointer MAPK activation is not critical for TNF-{alpha}-induced MMP-9 expression. Black-Right-Pointing-Pointer Akt and mTORC1 signaling mediate TNF-{alpha}-induced MMP-9 expression. Black-Right-Pointing-Pointer SIN1 knockdown showed no significant effect on MMP-9 expression by TNF-{alpha}. -- Abstract: Tumor necrosis factor-alpha (TNF-{alpha}) promotes in vitro retinal pigment epithelial (RPE) cell migration to initiate proliferative vitreoretinopathy (PVR). Here we report that TNF-{alpha} promotes human RPE cell migration by inducing matrix metallopeptidase 9 (MMP-9) expression. Inhibition of MMP-9 by its inhibitor or its neutralizing antibody inhibited TNF-{alpha}-induced in vitro RPE cell migration. Reversely, exogenously-added active MMP-9 promoted RPE cell migration. Suppression Akt/mTOR complex 1(mTORC1) activation by LY 294002 and rapamycin inhibited TNF-{alpha}-mediated MMP-9 expression. To introduce a constitutively active Akt (CA-Akt) in cultured RPE cells increased MMP-9 expression, and to block mTORC1 activation by rapamycin inhibited its effect. RNA interference (RNAi)-mediated silencing of SIN1, a key component of mTOR complex 2 (mTORC2), had no effect on MMP-9 expression or secretion. In conclusion, this study suggest that TNF-{alpha} promotes RPE cell migration by inducing MMP-9 expression through activation of Akt/ mTORC1, but not mTORC2 signaling.

  1. TNF-α promotes human retinal pigment epithelial (RPE) cell migration by inducing matrix metallopeptidase 9 (MMP-9) expression through activation of Akt/mTORC1 signaling

    Highlights: ► TNF-α induces MMP-9 expression and secretion to promote RPE cell migration. ► MAPK activation is not critical for TNF-α-induced MMP-9 expression. ► Akt and mTORC1 signaling mediate TNF-α-induced MMP-9 expression. ► SIN1 knockdown showed no significant effect on MMP-9 expression by TNF-α. -- Abstract: Tumor necrosis factor-alpha (TNF-α) promotes in vitro retinal pigment epithelial (RPE) cell migration to initiate proliferative vitreoretinopathy (PVR). Here we report that TNF-α promotes human RPE cell migration by inducing matrix metallopeptidase 9 (MMP-9) expression. Inhibition of MMP-9 by its inhibitor or its neutralizing antibody inhibited TNF-α-induced in vitro RPE cell migration. Reversely, exogenously-added active MMP-9 promoted RPE cell migration. Suppression Akt/mTOR complex 1(mTORC1) activation by LY 294002 and rapamycin inhibited TNF-α-mediated MMP-9 expression. To introduce a constitutively active Akt (CA-Akt) in cultured RPE cells increased MMP-9 expression, and to block mTORC1 activation by rapamycin inhibited its effect. RNA interference (RNAi)-mediated silencing of SIN1, a key component of mTOR complex 2 (mTORC2), had no effect on MMP-9 expression or secretion. In conclusion, this study suggest that TNF-α promotes RPE cell migration by inducing MMP-9 expression through activation of Akt/ mTORC1, but not mTORC2 signaling.

  2. Aberrations in asymmetrical electron lenses

    Starting from well established knowledge in light-optics we explore the question if electron-optical aberration can be improved in asymmetrical electron lenses. We show that spherical as well as chromatic aberration coefficients are reduced in asymmetric electrostatic einzel lenses when the center electrode is moved away from the center position towards the entrance electrode. Relative improvements up to 40% for both the chromatic and the spherical aberration coefficients can be obtained. We use analytical and numerical calculations to confirm this result for exemplary cases of a lens with fixed length and working distance. The agreement of the two calculation methods is very good. We then derive an estimate for the electron-optical aberration coefficients from light-optics. The derived expressions for chromatic and spherical aberrations are somewhat simpler than the ones derived from electron-optics as they involve integrals only over the electrostatic potential, not over the electron paths. The estimated formulas still agree well with the electron optical calculations. Overall, we are tempted to suggest that the enormous knowledge base of light optics can provide considerable guidance for electron-optical applications. -- Highlights: ► Develops the analogy between light and electron optics in aberration calculations. ► Optimized spherical and chromatic aberrations for an electrostatic einzel lens. ► Comparison between analytic and numerical aberration calculations.

  3. Aberrant splicing and drug resistance in AML.

    de Necochea-Campion, Rosalia; Shouse, Geoffrey P; Zhou, Qi; Mirshahidi, Saied; Chen, Chien-Shing

    2016-01-01

    The advent of next-generation sequencing technologies has unveiled a new window into the heterogeneity of acute myeloid leukemia (AML). In particular, recurrent mutations in spliceosome machinery and genome-wide aberrant splicing events have been recognized as a prominent component of this disease. This review will focus on how these factors influence drug resistance through altered splicing of tumor suppressor and oncogenes and dysregulation of the apoptotic signaling network. A better understanding of these factors in disease progression is necessary to design appropriate therapeutic strategies recognizing specific alternatively spliced or mutated oncogenic targets. PMID:27613060

  4. Reactive oxygen species and PI3K/Akt signaling in cancer.

    Jin, Seo Yeon; Lee, Hye Sun; Kim, Eun Kyoung; Ha, Jung Min; Kim, Young Whan; Bae, SunSik

    2014-10-01

    Reactive oxygen species (ROS) are chemically reactive molecules containing oxygen and associates with multiple cellular functions such as cell proliferation, differentiation, and apoptosis. In the present study, we showed that Insulin-like growth factor-1(IGF-1) modulates SKOV-3 ovarian cancer cell by regulation of generation of ROS. Akt mediates cellular signaling pathways in association with mammalian target of rapamycin complex (mTOR) and Rac small G protein. Insulin-like growth factor-1 (IGF-1)-induced generation of ROS was completely abolished by phosphatidylinositol 3-kinase (PI3K) (LY294002, 10?µM) or Akt inhibitors (SH-5, 50?µM), whereas inhibition of extracellular-regulated kinase by an ERK inhibitor (PD98059, 10?µM) or inhibition of mammalian target of rapamycin complex 1 (mTORC1) by an mTORC1 inhibitor (Rapamycin, 100?nM) did not affect IGF-1-induced generation of ROS. Inactivation of mTORC2 by silencing Rapamycin-insensitive companion of mTOR (Rictor), abolished IGF-1-induced SKOV-3 cell migration as well as activation of Akt. However, inactivation of mTORC1 by silencing of Raptor had no effect. Silencing of Akt1 but not Akt2 attenuated IGF-1-induced generation of ROS. Expression of PIP3-dependent Rac exchanger1 (P-Rex1), a Rac guanosine exchange factor and a component of the mTOR complex. Silencing of P-Rex1 abolished IGF-1-induced generation of ROS. Finally, inhibition of NADPH oxidase system completely blunted IGF-1-induced generation of ROS, whereas inhibition of xanthine oxiase,cyclooxygenase, and mitochondrial respiratory chain complex was not effective. Given these results, we suggest that IGF-1 induces ROS generation through the PI3K/Akt/ mTOR2/NADPH oxidase signaling axis. PMID:26461347

  5. Aberrations in asymmetrical electron lenses.

    Fitzgerald, J P S; Word, R C; Könenkamp, R

    2012-08-01

    Starting from well established knowledge in light-optics we explore the question if electron-optical aberration can be improved in asymmetrical electron lenses. We show that spherical as well as chromatic aberration coefficients are reduced in asymmetric electrostatic einzel lenses when the center electrode is moved away from the center position towards the entrance electrode. Relative improvements up to 40% for both the chromatic and the spherical aberration coefficients can be obtained. We use analytical and numerical calculations to confirm this result for exemplary cases of a lens with fixed length and working distance. The agreement of the two calculation methods is very good. We then derive an estimate for the electron-optical aberration coefficients from light-optics. The derived expressions for chromatic and spherical aberrations are somewhat simpler than the ones derived from electron-optics as they involve integrals only over the electrostatic potential, not over the electron paths. The estimated formulas still agree well with the electron optical calculations. Overall, we are tempted to suggest that the enormous knowledge base of light optics can provide considerable guidance for electron-optical applications. PMID:22206603

  6. Aberrations of diffracted wave fields.

    Harvey, J E; Shack, R V

    1978-09-15

    This paper is an attempt to provide new insight into the behavior of near-field scalar diffraction phenomena by showing that the Rayleigh-Sommerfeld diffraction integral is equivalent to the Fourier transform integral of a generalized pupil function which includes a term that represents phase errors in the aperture. This term can be interpreted as describing a conventional wavefront aberration function. The resulting aberration coefficients are calculated and expressed in terms of the aperture diameter, observation distance, and appropriate field parameter for several different geometrical configurations of incident beam and observation space. These aberrations, which are inherently associated with the diffraction process, are precisely the effects ignored when making the usual Fresnel and Fraunhofer approximations. PMID:20203910

  7. Chromosome Aberrations by Heavy Ions

    Ballarini, Francesca; Ottolenghi, Andrea

    It is well known that mammalian cells exposed to ionizing radiation can show different types of chromosome aberrations (CAs) including dicentrics, translocations, rings, deletions and complex exchanges. Chromosome aberrations are a particularly relevant endpoint in radiobiology, because they play a fundamental role in the pathways leading either to cell death, or to cell conversion to malignancy. In particular, reciprocal translocations involving pairs of specific genes are strongly correlated (and probably also causally-related) with specific tumour types; a typical example is the BCR-ABL translocation for Chronic Myeloid Leukaemia. Furthermore, aberrations can be used for applications in biodosimetry and more generally as biomarkers of exposure and risk, that is the case for cancer patients monitored during Carbon-ion therapy and astronauts exposed to space radiation. Indeed hadron therapy and astronauts' exposure to space radiation represent two of the few scenarios where human beings can be exposed to heavy ions. After a brief introduction on the main general features of chromosome aberrations, in this work we will address key aspects of the current knowledge on chromosome aberration induction, both from an experimental and from a theoretical point of view. More specifically, in vitro data will be summarized and discussed, outlining important issues such as the role of interphase death/mitotic delay and that of complex-exchange scoring. Some available in vivo data on cancer patients and astronauts will be also reported, together with possible interpretation problems. Finally, two of the few available models of chromosome aberration induction by ionizing radiation (including heavy ions) will be described and compared, focusing on the different assumptions adopted by the authors and on how these models can deal with heavy ions.

  8. Immunohistochemical analysis of the mechanistic target of rapamycin and hypoxia signalling pathways in basal cell carcinoma and trichoepithelioma.

    Tjinta Brinkhuizen

    Full Text Available BACKGROUND: Basal cell carcinoma (BCC is the most common cancer in Caucasians. Trichoepithelioma (TE is a benign neoplasm that strongly resembles BCC. Both are hair follicle (HF tumours. HFs are hypoxic microenvironments, therefore we hypothesized that hypoxia-induced signalling pathways could be involved in BCC and TE as they are in other human malignancies. Hypoxia-inducible factor 1 (HIF1 and mechanistic/mammalian target of rapamycin (mTOR are key players in these pathways. OBJECTIVES: To determine whether HIF1/mTOR signalling is involved in BCC and TE. METHODS: We used immunohistochemical staining of formalin-fixed paraffin-embedded BCC (n = 45 and TE (n = 35 samples to assess activity of HIF1, mTORC1 and their most important target genes. The percentage positive tumour cells was assessed manually in a semi-quantitative manner and categorized (0%, 80%. RESULTS: Among 45 BCC and 35 TE examined, expression levels were respectively 81% and 57% (BNIP3, 73% and 75% (CAIX, 79% and 86% (GLUT1, 50% and 19% (HIF1α, 89% and 88% (pAKT, 55% and 61% (pS6, 15% and 25% (pMTOR, 44% and 63% (PHD2 and 44% and 49% (VEGF-A. CAIX, Glut1 and PHD2 expression levels were significantly higher in TE when only samples with at least 80% expression were included. CONCLUSIONS: HIF and mTORC1 signalling seems active in both BCC and TE. There are no appreciable differences between the two with respect to pathway activity. At this moment immunohistochemical analyses of HIF, mTORC1 and their target genes does not provide a reliable diagnostic tool for the discrimination of BCC and TE.

  9. Intramuscular Anabolic Signaling and Endocrine Response Following Resistance Exercise: Implications for Muscle Hypertrophy.

    Gonzalez, Adam M; Hoffman, Jay R; Stout, Jeffrey R; Fukuda, David H; Willoughby, Darryn S

    2016-05-01

    Maintaining skeletal muscle mass and function is critical for disease prevention, mobility and quality of life, and whole-body metabolism. Resistance exercise is known to be a major regulator for promoting muscle protein synthesis and muscle mass accretion. Manipulation of exercise intensity, volume, and rest elicit specific muscular adaptations that can maximize the magnitude of muscle growth. The stimulus of muscle contraction that occurs during differing intensities of resistance exercise results in varying biochemical responses regulating the rate of protein synthesis, known as mechanotransduction. At the cellular level, skeletal muscle adaptation appears to be the result of the cumulative effects of transient changes in gene expression following acute bouts of exercise. Thus, maximizing the resistance exercise-induced anabolic response produces the greatest potential for hypertrophic adaptation with training. The mechanisms involved in converting mechanical signals into the molecular events that control muscle growth are not completely understood; however, skeletal muscle protein synthesis appears to be regulated by the multi-protein phosphorylation cascade, mTORC1 (mammalian/mechanistic target of rapamycin complex 1). The purpose of this review is to examine the physiological response to resistance exercise, with particular emphasis on the endocrine response and intramuscular anabolic signaling through mTORC1. It appears that resistance exercise protocols that maximize muscle fiber recruitment, time-under-tension, and metabolic stress will contribute to maximizing intramuscular anabolic signaling; however, the resistance exercise parameters for maximizing the anabolic response remain unclear. PMID:26666743

  10. Distortion of ultrashort pulses caused by aberrations

    Horváth, Z. L.; Kovács, A. P.; Bor, Zs.

    The effect of the primary wave aberrations (spherical aberration, astigmatism and coma) on ultrashort pulses is studied by the Nijboer-Zernike theory. The results of the geometrical and the wave optical treatments are compared.

  11. The mTOR Signalling Pathway in Human Cancer

    Paula Soares

    2012-02-01

    Full Text Available The conserved serine/threonine kinase mTOR (the mammalian target of rapamycin, a downstream effector of the PI3K/AKT pathway, forms two distinct multiprotein complexes: mTORC1 and mTORC2. mTORC1 is sensitive to rapamycin, activates S6K1 and 4EBP1, which are involved in mRNA translation. It is activated by diverse stimuli, such as growth factors, nutrients, energy and stress signals, and essential signalling pathways, such as PI3K, MAPK and AMPK, in order to control cell growth, proliferation and survival. mTORC2 is considered resistant to rapamycin and is generally insensitive to nutrients and energy signals. It activates PKC-α and AKT and regulates the actin cytoskeleton. Deregulation of multiple elements of the mTOR pathway (PI3K amplification/mutation, PTEN loss of function, AKT overexpression, and S6K1, 4EBP1 and eIF4E overexpression has been reported in many types of cancers, particularly in melanoma, where alterations in major components of the mTOR pathway were reported to have significant effects on tumour progression. Therefore, mTOR is an appealing therapeutic target and mTOR inhibitors, including the rapamycin analogues deforolimus, everolimus and temsirolimus, are submitted to clinical trials for treating multiple cancers, alone or in combination with inhibitors of other pathways. Importantly, temsirolimus and everolimus were recently approved by the FDA for the treatment of renal cell carcinoma, PNET and giant cell astrocytoma. Small molecules that inhibit mTOR kinase activity and dual PI3K-mTOR inhibitors are also being developed. In this review, we aim to survey relevant research, the molecular mechanisms of signalling, including upstream activation and downstream effectors, and the role of mTOR in cancer, mainly in melanoma.

  12. Aberrant methylation patterns in cancer

    Hudler, Petra; Videtič, Alja

    2016-01-01

    Epigenetic mechanisms, such as DNA methylation, DNA hydroxymethylation, post-translational modifications (PTMs) of histone proteins affecting nucleosome remodelling, and regulation by small and large non-coding RNAs (ncRNAs) work in concert with cis and trans acting elements to drive appropriate gene expression. Advances in detection methods and development of dedicated platforms and methylation arrays resulted in an explo - sion of information on aberrantly methylated sequences linking devia...

  13. Baseline chromosome aberrations in children

    Merlo, D.F.; Ceppi, M.; Stagi, E.; Bocchini, V.; Šrám, Radim; Rössner st., Pavel

    2007-01-01

    Roč. 172, - (2007), s. 60-67. ISSN 0378-4274 Grant ostatní: EU(EU) 2002-02198; EU(EU) 2005-016320 Institutional research plan: CEZ:AV0Z50390512 Source of funding: R - rámcový projekt EK ; R - rámcový projekt EK Keywords : chromosome aberrations * children * molecular epidemiology Subject RIV: DN - Health Impact of the Environment Quality Impact factor: 2.826, year: 2007

  14. Metabotropic Glutamate Receptor-dependent Long-term Depression is Impaired Due to Elevated ERK Signaling in the ΔRG Mouse Model of Tuberous Sclerosis Complex

    Chévere-Torres, Itzamarie; Kaphzan, Hanoch; Bhattacharya, Aditi; Kang, Areum; Maki, Jordan M.; Michael J Gambello; Arbiser, Jack L.; Santini, Emanuela; Klann, Eric

    2011-01-01

    Tuberous sclerosis complex (TSC) and fragile X syndrome (FXS) are caused by mutations in negative regulators of translation. FXS model mice exhibit enhanced metabotropic glutamate receptor-dependent long-term depression (mGluR-LTD). Therefore, we hypothesized that a mouse model of TSC, ΔRG transgenic mice, also would exhibit enhanced mGluR-LTD. We measured the impact of TSC2-GAP mutations on the mTORC1 and ERK signaling pathways and protein synthesis-dependent hippocampal synaptic plasticity ...

  15. Ligand-Occupied Integrin Internalization Links Nutrient Signaling to Invasive Migration

    Elena Rainero

    2015-01-01

    Full Text Available Integrin trafficking is key to cell migration, but little is known about the spatiotemporal organization of integrin endocytosis. Here, we show that α5β1 integrin undergoes tensin-dependent centripetal movement from the cell periphery to populate adhesions located under the nucleus. From here, ligand-engaged α5β1 integrins are internalized under control of the Arf subfamily GTPase, Arf4, and are trafficked to nearby late endosomes/lysosomes. Suppression of centripetal movement or Arf4-dependent endocytosis disrupts flow of ligand-bound integrins to late endosomes/lysosomes and their degradation within this compartment. Arf4-dependent integrin internalization is required for proper lysosome positioning and for recruitment and activation of mTOR at this cellular subcompartment. Furthermore, nutrient depletion promotes subnuclear accumulation and endocytosis of ligand-engaged α5β1 integrins via inhibition of mTORC1. This two-way regulatory interaction between mTORC1 and integrin trafficking in combination with data describing a role for tensin in invasive cell migration indicate interesting links between nutrient signaling and metastasis.

  16. Next-generation mTOR inhibitors in clinical oncology: how pathway complexity informs therapeutic strategy.

    Wander, Seth A

    2011-04-01

    Mammalian target of rapamycin (mTOR) is a PI3K-related kinase that regulates cell growth, proliferation, and survival via mTOR complex 1 (mTORC1) and mTORC2. The mTOR pathway is often aberrantly activated in cancers. While hypoxia, nutrient deprivation, and DNA damage restrain mTORC1 activity, multiple genetic events constitutively activate mTOR in cancers. Here we provide a brief overview of the signaling pathways up- and downstream of mTORC1 and -2, and discuss the insights into therapeutic anticancer targets - both those that have been tried in the clinic with limited success and those currently under clinical development - that knowledge of these pathways gives us.

  17. Chromosomal aberrations and bone marrow toxicity.

    Heddle, J A; Salamone, M F

    1981-01-01

    The importance of chromosomal aberrations as a proximate cause of bone marrow toxicity is discussed. Since chemicals that can cause nondisjunction are rare, numerical aberrations (aneuploidy, polyploidy) are not ordinarily important. Many structural aberrations, however, can lead directly to cell death and so are proximate causes of toxicity when they occur. The micronucleus test which utilizes the polychromatic erythrocyte is capable of detecting agents (clastogens) that can cause such struc...

  18. Chromosomal aberrations in ore miners of Slovakia

    A pilot study was performed in which the incidence of chromosomal aberrations in lymphocytes of miners in ore mines located in Central Slovakia was monitored and related to lifetime underground radon exposure and to lifetime smoking. The conclusions drawn from the results of the study were as follows: the counts of chromosomal aberrations in lymphocytes of miners were significantly higher than in an age matched control group of white-collar staff; the higher counts of chromosomal aberrations could be ascribed to underground exposure of miners and to smoking; a dependence of chromosomal aberration counts on the exposure to radon could not be assessed. (A.K.)

  19. Non-Gaussianity and CMB aberration and Doppler

    The peculiar motion of an observer with respect to the CMB rest frame induces a deflection in the arrival direction of the observed photons (also known as CMB aberration) and a Doppler shift in the measured photon frequencies. As a consequence, aberration and Doppler effects induce non trivial correlations between the harmonic coefficients of the observed CMB temperature maps. In this paper we investigate whether these correlations generate a bias on non-Gaussianity estimators fNL. We perform this analysis simulating a large number of temperature maps with Planck-like resolution (lmax = 2000) as different realizations of the same cosmological fiducial model (WMAP7yr). We then add to these maps aberration and Doppler effects employing a modified version of the HEALPix code. We finally evaluate a generalization of the Komatsu, Spergel and Wandelt non-Gaussianity estimator for all the simulated maps, both when peculiar velocity effects have been considered and when these phenomena have been neglected. Using the value v/c = 1.23 × 10−3 for our peculiar velocity, we found that the aberration/Doppler induced non-Gaussian signal is at most of about half of the cosmic variance σ for fNL both in a full-sky and in a cut-sky experimental configuration, for local, equilateral and orthogonal estimators. We conclude therefore that when estimating fNL it is safe to ignore aberration and Doppler effects if the primordial map is already Gaussian. More work is necessary however to assess whether a map which contains non-Gaussianity can be significantly distorted by a peculiar velocity

  20. Hypoxia induces a phase transition within a kinase signaling network in cancer cells.

    Wei, Wei; Shi, Qihui; Remacle, Francoise; Qin, Lidong; Shackelford, David B; Shin, Young Shik; Mischel, Paul S; Levine, R D; Heath, James R

    2013-04-01

    Hypoxia is a near-universal feature of cancer, promoting glycolysis, cellular proliferation, and angiogenesis. The molecular mechanisms of hypoxic signaling have been intensively studied, but the impact of changes in oxygen partial pressure (pO2) on the state of signaling networks is less clear. In a glioblastoma multiforme (GBM) cancer cell model, we examined the response of signaling networks to targeted pathway inhibition between 21% and 1% pO2. We used a microchip technology that facilitates quantification of a panel of functional proteins from statistical numbers of single cells. We find that near 1.5% pO2, the signaling network associated with mammalian target of rapamycin (mTOR) complex 1 (mTORC1)--a critical component of hypoxic signaling and a compelling cancer drug target--is deregulated in a manner such that it will be unresponsive to mTOR kinase inhibitors near 1.5% pO2, but will respond at higher or lower pO2 values. These predictions were validated through experiments on bulk GBM cell line cultures and on neurosphere cultures of a human-origin GBM xenograft tumor. We attempt to understand this behavior through the use of a quantitative version of Le Chatelier's principle, as well as through a steady-state kinetic model of protein interactions, both of which indicate that hypoxia can influence mTORC1 signaling as a switch. The Le Chatelier approach also indicates that this switch may be thought of as a type of phase transition. Our analysis indicates that certain biologically complex cell behaviors may be understood using fundamental, thermodynamics-motivated principles. PMID:23530221

  1. Direct Hepatocyte Insulin Signaling Is Required for Lipogenesis but Is Dispensable for the Suppression of Glucose Production.

    Titchenell, Paul M; Quinn, William J; Lu, Mingjian; Chu, Qingwei; Lu, Wenyun; Li, Changhong; Chen, Helen; Monks, Bobby R; Chen, Julia; Rabinowitz, Joshua D; Birnbaum, Morris J

    2016-06-14

    During insulin-resistant states such as type II diabetes mellitus (T2DM), insulin fails to suppress hepatic glucose production (HGP) yet promotes lipid synthesis. This metabolic state has been termed "selective insulin resistance" to indicate a defect in one arm of the insulin-signaling cascade, potentially downstream of Akt. Here we demonstrate that Akt-dependent activation of mTORC1 and inhibition of Foxo1 are required and sufficient for de novo lipogenesis, suggesting that hepatic insulin signaling is likely to be intact in insulin-resistant states. Moreover, cell-nonautonomous suppression of HGP by insulin depends on a reduction of adipocyte lipolysis and serum FFAs but is independent of vagal efferents or glucagon signaling. These data are consistent with a model in which, during T2DM, intact liver insulin signaling drives enhanced lipogenesis while excess circulating FFAs become a dominant inducer of nonsuppressible HGP. PMID:27238637

  2. Calculation of aberration coefficients by ray tracing

    Oral, Martin; Lencová, Bohumila

    2009-01-01

    Roč. 109, č. 11 (2009), s. 1365-1373. ISSN 0304-3991 R&D Projects: GA AV ČR IAA100650805 Institutional research plan: CEZ:AV0Z20650511 Keywords : Aberrations * Aberration coefficients * Ray tracing * Regression * Fitting Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 2.067, year: 2009

  3. Optimum aberration coefficients for recording high-resolution off-axis holograms in a Cs-corrected TEM

    Linck, Martin, E-mail: linck@ceos-gmbh.de [CEOS GmbH, Englerstr. 28, D-69126 Heidelberg (Germany)

    2013-01-15

    Amongst the impressive improvements in high-resolution electron microscopy, the Cs-corrector also has significantly enhanced the capabilities of off-axis electron holography. Recently, it has been shown that the signal above noise in the reconstructable phase can be significantly improved by combining holography and hardware aberration correction. Additionally, with a spherical aberration close to zero, the traditional optimum focus for recording high-resolution holograms ('Lichte's defocus') has become less stringent and both, defocus and spherical aberration, can be selected freely within a certain range. This new degree of freedom can be used to improve the signal resolution in the holographically reconstructed object wave locally, e.g. at the atomic positions. A brute force simulation study for an aberration corrected 200 kV TEM is performed to determine optimum values for defocus and spherical aberration for best possible signal to noise in the reconstructed atomic phase signals. Compared to the optimum aberrations for conventional phase contrast imaging (NCSI), which produce 'bright atoms' in the image intensity, the resulting optimum values of defocus and spherical aberration for off-axis holography enable 'black atom contrast' in the hologram. However, they can significantly enhance the local signal resolution at the atomic positions. At the same time, the benefits of hardware aberration correction for high-resolution off-axis holography are preserved. It turns out that the optimum is depending on the object and its thickness and therefore not universal. -- Highlights: Black-Right-Pointing-Pointer Optimized aberration parameters for high-resolution off-axis holography. Black-Right-Pointing-Pointer Simulation and analysis of noise in high-resolution off-axis holograms. Black-Right-Pointing-Pointer Improving signal resolution in the holographically reconstructed phase shift. Black-Right-Pointing-Pointer Comparison of &apos

  4. Nodal aberration theory applied to freeform surfaces

    Fuerschbach, Kyle; Rolland, Jannick P.; Thompson, Kevin P.

    2014-12-01

    When new three-dimensional packages are developed for imaging optical systems, the rotational symmetry of the optical system is often broken, changing its imaging behavior and making the optical performance worse. A method to restore the performance is to use freeform optical surfaces that compensate directly the aberrations introduced from tilting and decentering the optical surfaces. In order to effectively optimize the shape of a freeform surface to restore optical functionality, it is helpful to understand the aberration effect the surface may induce. Using nodal aberration theory the aberration fields induced by a freeform surface in an optical system are explored. These theoretical predications are experimentally validated with the design and implementation of an aberration generating telescope.

  5. Aberration compensation in charged particle projection lithography

    Projection systems offer the opportunity to increase the throughput for charged particle lithography, because such systems image a large area of a mask directly on to a wafer as a single shot. Shots have to be imaged over a certain range of off-axis distances at the wafer to increase the writing speed, because shot sizes are limited to about 0.25x0.25 mm2 due to aberrations. In a projection system with only lenses, however, the aberrations for off-axis shots are still very large, and some aberration compensation elements need to be introduced. In this paper, three aberration compensation elements (deflectors, stigmators and dynamic focus lenses) are first discussed, a suite of newly developed software, called PROJECTION, based on this principle and our unified aberration theory is then described, and an illustrative example computed with the software is finally given

  6. Higher-Order Aberrations in Myopic Eyes

    Farid Karimian

    2010-01-01

    Full Text Available Purpose: To evaluate the correlation between refractive error and higher-order aberrations (HOAs in patients with myopic astigmatism. Methods: HOAs were measured using the Zywave II aberrometer over a 6 mm pupil. Correlations between HOAs and myopia, astigmatism, and age were analyzed. Results: One hundred and twenty-six eyes of 63 subjects with mean age of 26.4±5.9 years were studied. Mean spherical equivalent refractive error and refractive astigmatism were -4.94±1.63 D and 0.96±1.06 D, respectively. The most common higher-order aberration was primary horizontal trefoil with mean value of 0.069±0.152 μm followed by spherical aberration (-0.064±0.130 μm and primary vertical coma (-0.038±0.148 μm. As the order of aberration increased from third to fifth, its contribution to total HOA decreased: 53.9% for third order, 31.9% for fourth order, and 14.2% for fifth order aberrations. Significant correlations were observed between spherical equivalent refractive error and primary horizontal coma (R=0.231, P=0.022, and root mean square (RMS of spherical aberration (R=0.213, P=0.031; between astigmatism and RMS of total HOA (R=0.251, P=0.032, RMS of fourth order aberration (R=0.35, P<0.001, and primary horizontal coma (R=0.314, P=0.004. Spherical aberration (R=0.214, P=0.034 and secondary vertical coma (R=0.203, P=0.031 significantly increased with age. Conclusion: Primary horizontal trefoil, spherical aberration and primary vertical coma are the predominant higher-order aberrations in eyes with myopic astigmatism.

  7. ROLE OF PI3K-AKT-mTOR AND Wnt SIGNALING PATHWAYS IN G1-S TRANSITION OF CELL CYCLE IN CANCER CELLS

    LAKSHMIPATHI eVADLAKONDA

    2013-04-01

    Full Text Available The PI3K–Akt pathway together with one of its downstream targets, the mechanistic target of rapamycin (mTOR is a highly deregulated pathway in cancers. There is a reciprocal relation between the Akt phosphorylation and mTOR complexes. Akt phosphorylated at T308 activates mTORC1 by inhibition of the tuberous sclerosis complex (TSC1/2, where as mTORC2 is recognized as the kinase that phosphorylates Akt at S473. Recent developments in the research on regulatory mechanisms of autophagy places mTORC1 mediated inhibition of autophagy at the central position in activation of proliferation and survival pathways in cells. Autophagy is a negative regulator of Wnt signaling pathway and the downstream effectors of Wnt signaling pathway, cyclin D1 and the c-Myc, are the key players in initiation of cell cycle and regulation of the G1-S transition in cancer cells. Production of reaction oxygen species (ROS, a common feature of a cancer cell metabolism, activates several downstream targets like the transcription factors FoxO, which play key roles in promoting the progression of cell cycle. A model is presented on the role of PI3K -Akt - mTOR and Wnt pathways in regulation of the progression of cell cycle through Go-G1-and S phases.

  8. Chromosome aberration assays in Allium

    Grant, W.F.

    1982-01-01

    The common onion (Allium cepa) is an excellent plant for the assay of chromosome aberrations after chemical treatment. Other species of Allium (A. cepa var. proliferum, A. carinatum, A. fistulosum and A. sativum) have also been used but to a much lesser extent. Protocols have been given for using root tips from either bulbs or seeds of Allium cepa to study the cytological end-points, such as chromosome breaks and exchanges, which follow the testing of chemicals in somatic cells. It is considered that both mitotic and meiotic end-points should be used to a greater extent in assaying the cytogenetic effects of a chemical. From a literature survey, 148 chemicals are tabulated that have been assayed in 164 Allium tests for their clastogenic effect. Of the 164 assays which have been carried out, 75 are reported as giving a positive reaction, 49 positive and with a dose response, 1 positive and temperature-related, 9 borderline positive, and 30 negative; 76% of the chemicals gave a definite positive response. It is proposed that the Allium test be included among those tests routinely used for assessing chromosomal damage induced by chemicals.

  9. Adaptive optics full-field OCT: a resolution almost insensitive to aberrations (Conference Presentation)

    Xiao, Peng; Fink, Mathias; Boccara, A. Claude

    2016-03-01

    A Full-Field OCT (FFOCT) setup coupled to a compact transmissive liquid crystal spatial light modulator (LCSLM) is used to induce or correct aberrations and simulate eye examinations. To reduce the system complexity, strict pupil conjugation was abandoned. During our work on quantifying the effect of geometrical aberrations on FFOCT images, we found that the image resolution is almost insensitive to aberrations. Indeed if the object channel PSF is distorted, its interference with the reference channel conserves the main feature of an unperturbed PSF with only a reduction of the signal level. This unique behavior is specific to the use of a spatially incoherent illumination. Based on this, the FFOCT image intensity was used as the metric for our wavefront sensorless correction. Aberration correction was first conducted on an USAF resolution target with the LSCLM as both aberration generator and corrector. A random aberration mask was induced, and the low-order Zernike Modes were corrected sequentially according to the intensity metric function optimization. A Ficus leaf and a fixed mouse brain tissue slice were also imaged to demonstrate the correction of sample self-induced wavefront distortions. After optimization, more structured information appears for the leaf imaging. And the high-signal fiber-like myelin fiber structures were resolved much more clearly after the whole correction process for mouse brain imaging. Our experiment shows the potential of this compact AO-FFOCT system for aberration correction imaging. This preliminary approach that simulates eyes aberrations correction also opens the path to a simple implementation of FFOCT adaptive optics for retinal examinations.

  10. Effect of aberrations in vortex spatial filtering

    Sharma, Manoj Kumar; Joseph, Joby; Senthilkumaran, P.

    2012-11-01

    Edge enhancement is a very important operation in image processing and a spiral phase plate can be used as a radial Hilbert mask for isotropic edge enhancement. In this paper we analyze the effect of various Seidel aberrations on the performance of radial Hilbert mask or the vortex phase mask. The aberrated vortex phase mask is implemented optically with the help of a high resolution, spatial light modulator (SLM). It has also been shown that out of various aberrations astigmatism can introduce anisotropy in the Hilbert mask which causes selective edge enhancement.

  11. Aberrant 3H in Ehrlich mouse ascites tumor cell nucleotides after in vivo labeling with myo-[2-3H]- and L -myo-[1-3H]inositol: implications for measuring inositol phosphate signaling

    Christensen, Søren C.; Jensen, Annelie Kolbjørn; Simonsen, L.O.

    2003-01-01

    After in vivo radiolabeling of Ehrlich cells for 24 h with conventional myo-[2-3H]inositol we previously demonstrated an aberrant 3H-labeling of ATP that interfered in the HPLC analysis of inositol trisphosphates. This aberrant 3H-labeling was accounted for by the extensive kidney catabolism of m......]Inositol appears nevertheless to be a preferable alternative to myo-[2-3H]inositol for tracing the intact myo-inositol molecule after in vivo labeling, with minimized interference from aberrant 3H-labeling of nucleotides....

  12. Spatially incoherent illumination interferometry: a PSF almost insensitive to aberrations

    Xiao, Peng; Boccara, A Claude

    2016-01-01

    We show that with spatially incoherent illumination, the point spread function width of an imaging interferometer like that used in full-field optical coherence tomography (FFOCT) is almost insensitive to aberrations that mostly induce a reduction of the signal level without broadening. This is demonstrated by comparison with traditional scanning OCT and wide-field OCT with spatially coherent illuminations. Theoretical analysis, numerical calculation as well as experimental results are provided to show this specific merit of incoherent illumination in full-field OCT. To the best of our knowledge, this is the first time that such result has been demonstrated.

  13. Aberration features in directional dark matter detection

    Bozorgnia, Nassim; Gondolo, Paolo

    2012-01-01

    The motion of the Earth around the Sun causes an annual change in the magnitude and direction of the arrival velocity of dark matter particles on Earth, in a way analogous to aberration of stellar light. In directional detectors, aberration of weakly interacting massive particles (WIMPs) modulates the pattern of nuclear recoil directions in a way that depends on the orbital velocity of the Earth and the local galactic distribution of WIMP velocities. Knowing the former, WIMP aberration can give information on the latter, besides being a curious way of confirming the revolution of the Earth and the extraterrestrial provenance of WIMPs. While observing the full aberration pattern requires extremely large exposures, we claim that the annual variation of the mean recoil direction or of the event counts over specific solid angles may be detectable with moderately large exposures. For example, integrated counts over galactic hemispheres separated by planes perpendicular to Earth's orbit would modulate annually, res...

  14. Catadioptric aberration correction in cathode lens microscopy

    Tromp, R.M. [IBM T.J. Watson Research Center, PO Box 218, Yorktown Heights, NY 10598 (United States); Kamerlingh Onnes Laboratory, Leiden Institute of Physics, Niels Bohrweg 2, 2333 CA Leiden (Netherlands)

    2015-04-15

    In this paper I briefly review the use of electrostatic electron mirrors to correct the aberrations of the cathode lens objective lens in low energy electron microscope (LEEM) and photo electron emission microscope (PEEM) instruments. These catadioptric systems, combining electrostatic lens elements with a reflecting mirror, offer a compact solution, allowing simultaneous and independent correction of both spherical and chromatic aberrations. A comparison with catadioptric systems in light optics informs our understanding of the working principles behind aberration correction with electron mirrors, and may point the way to further improvements in the latter. With additional developments in detector technology, 1 nm spatial resolution in LEEM appears to be within reach. - Highlights: • The use of electron mirrors for aberration correction in LEEM/PEEM is reviewed. • A comparison is made with similar systems in light optics. • Conditions for 1 nm spatial resolution are discussed.

  15. Catadioptric aberration correction in cathode lens microscopy

    In this paper I briefly review the use of electrostatic electron mirrors to correct the aberrations of the cathode lens objective lens in low energy electron microscope (LEEM) and photo electron emission microscope (PEEM) instruments. These catadioptric systems, combining electrostatic lens elements with a reflecting mirror, offer a compact solution, allowing simultaneous and independent correction of both spherical and chromatic aberrations. A comparison with catadioptric systems in light optics informs our understanding of the working principles behind aberration correction with electron mirrors, and may point the way to further improvements in the latter. With additional developments in detector technology, 1 nm spatial resolution in LEEM appears to be within reach. - Highlights: • The use of electron mirrors for aberration correction in LEEM/PEEM is reviewed. • A comparison is made with similar systems in light optics. • Conditions for 1 nm spatial resolution are discussed

  16. Aberration corrected Lorentz scanning transmission electron microscopy

    We present results from an aberration corrected scanning transmission electron microscope which has been customised for high resolution quantitative Lorentz microscopy with the sample located in a magnetic field free or low field environment. We discuss the innovations in microscope instrumentation and additional hardware that underpin the imaging improvements in resolution and detection with a focus on developments in differential phase contrast microscopy. Examples from materials possessing nanometre scale variations in magnetisation illustrate the potential for aberration corrected Lorentz imaging as a tool to further our understanding of magnetism on this lengthscale. - Highlights: • Demonstration of nanometre scale resolution in magnetic field free environment using aberration correction in the scanning transmission electron microscope (STEM). • Implementation of differential phase contrast mode of Lorentz microscopy in aberration corrected STEM with improved sensitivity. • Quantitative imaging of magnetic induction of nanostructures in amorphous and cross-section samples

  17. Sensing Phase Aberrations behind Lyot Coronagraphs

    Sivaramakrishnan, Anand; Soummer, Rémi; Pueyo, Laurent; Wallace, J. Kent; Shao, Michael

    2008-11-01

    Direct detection of young extrasolar planets orbiting nearby stars can be accomplished from the ground with extreme adaptive optics and coronagraphy in the near-infrared, as long as this combination can provide an image with a dynamic range of 107 after the data are processed. Slowly varying speckles due to residual phase aberrations that are not measured by the primary wave-front sensor are the primary obstacle to achieving such a dynamic range. In particular, non-common optical path aberrations occurring between the wave-front sensor and the coronagraphic occulting spot degrade performance the most. We analyze the passage of both low and high spatial frequency phase ripples, as well as low-order Zernike aberrations, through an apodized pupil Lyot coronagraph in order to demonstrate the way coronagraphic filtering affects various aberrations. We derive the coronagraphically induced cutoff frequency of the filtering and estimate coronagraphic contrast losses due to low-order Zernike aberrations: tilt, astigmatism, defocus, coma, and spherical aberration. Such slowly varying path errors can be measured behind a coronagraph and corrected by a slowly updated optical path delay precompensation or offset asserted on the wave front by the adaptive optics (AO) system. We suggest ways of measuring and correcting all but the lowest spatial frequency aberrations using Lyot plane wave-front data, in spite of the complex interaction between the coronagraph and those mid-spatial frequency aberrations that cause image plane speckles near the coronagraphic focal plane mask occulter's edge. This investigation provides guidance for next-generation coronagraphic instruments currently under construction.

  18. Aberrant right hepatic artery; A case report

    We present a rare case of aberrant hepatic artery in a 40-year-old male with a history of chronic cholecystitis. During laparoscopic surgery, the artery found to pass anterior to the body the gallbladder and bifurcating anterior to the gallbladder body. The surgery was un eventful. We present this anomaly of the rare condition of aberrant right hepatic artery which should be in mind during laparoscopic cholecystectomy, because inadverant injury could lead to massive bleeding and increase co morbidities. (author)

  19. Turning acne on/off via mTORC1

    Danby, F. William

    2013-01-01

    Over the past 10 years, the increase in comprehension of the mechanisms behind acne has been truly exponential. Starting with the ethnological work of Cordain, accelerated by the epidemiological work of Adebamowo, supported by the clinical trials of Smith and Mann, Kwon, DiLandro and others, the interface of diet and acne is coming into focus. Melnik now presents an exceptional pair of papers that illustrate for dermatologists what translational research is all about. The Western diet, the ro...

  20. Synaptic signaling and aberrant RNA splicing in autism spectrum disorders

    Ryan M Smith; Wolfgang eSadee

    2011-01-01

    Interactions between presynaptic and postsynaptic cellular adhesion molecules drive synapse maturation during development. These trans-synaptic interactions are regulated by alternative splicing of cellular adhesion molecule RNAs, which ultimately determines neurotransmitter phenotype. The diverse assortment of RNAs produced by alternative splicing generates countless protein isoforms necessary for guiding specialized cell-to-cell connectivity. Failure to generate the appropriate synaptic ...

  1. Synaptic Signaling and Aberrant RNA Splicing in Autism Spectrum Disorders

    Smith, Ryan M; Sadee, Wolfgang

    2011-01-01

    Interactions between presynaptic and postsynaptic cellular adhesion molecules (CAMs) drive synapse maturation during development. These trans-synaptic interactions are regulated by alternative splicing of CAM RNAs, which ultimately determines neurotransmitter phenotype. The diverse assortment of RNAs produced by alternative splicing generates countless protein isoforms necessary for guiding specialized cell-to-cell connectivity. Failure to generate the appropriate synaptic adhesion proteins i...

  2. The ATM kinase signaling induced by the low-energy {beta}-particles emitted by {sup 33}P is essential for the suppression of chromosome aberrations and is greater than that induced by the energetic {beta}-particles emitted by {sup 32}P

    White, Jason S.; Yue Ning [Department of Radiation Oncology, University of Pittsburgh Medical School, Hillman Cancer Center, Research Pavilion, Suite 2.6, 5117 Centre Avenue, Pittsburgh, PA 15213-1863 (United States); Hu Jing [Department of Pharmacology and Chemical Biology, University of Pittsburgh Medical School, Hillman Cancer Center, Research Pavilion, Suite 2.6, 5117 Centre Avenue, Pittsburgh, PA 15213-1863 (United States); Bakkenist, Christopher J., E-mail: bakkenistcj@upmc.edu [Department of Radiation Oncology, University of Pittsburgh Medical School, Hillman Cancer Center, Research Pavilion, Suite 2.6, 5117 Centre Avenue, Pittsburgh, PA 15213-1863 (United States); Department of Pharmacology and Chemical Biology, University of Pittsburgh Medical School, Hillman Cancer Center, Research Pavilion, Suite 2.6, 5117 Centre Avenue, Pittsburgh, PA 15213-1863 (United States)

    2011-03-15

    Ataxia-telangiectasia mutated (ATM) encodes a nuclear serine/threonine protein kinase whose activity is increased in cells exposed to low doses of ionizing radiation (IR). Here we examine ATM kinase activation in cells exposed to either {sup 32}P- or {sup 33}P-orthophosphate under conditions typically employed in metabolic labelling experiments. We calculate that the absorbed dose of IR delivered to a 5 cm x 5 cm monolayer of cells incubated in 2 ml media containing 1 mCi of the high-energy (1.70 MeV) {beta}-particle emitter {sup 32}P-orthophosphate for 30 min is {approx}1 Gy IR. The absorbed dose of IR following an otherwise identical exposure to the low-energy (0.24 MeV) {beta}-particle emitter {sup 33}P-orthophosphate is {approx}0.18 Gy IR. We show that low-energy {beta}-particles emitted by {sup 33}P induce a greater number of ionizing radiation-induced foci (IRIF) and greater ATM kinase signaling than energetic {beta}-particles emitted by {sup 32}P. Hence, we demonstrate that it is inappropriate to use {sup 33}P-orthophosphate as a negative control for {sup 32}P-orthophosphate in experiments investigating DNA damage responses to DNA double-strand breaks (DSBs). Significantly, we show that ATM accumulates in the chromatin fraction when ATM kinase activity is inhibited during exposure to either radionuclide. Finally, we also show that chromosome aberrations accumulate in cells when ATM kinase activity is inhibited during exposure to {approx}0.36 Gy {beta}-particles emitted by {sup 33}P. We therefore propose that direct cellular exposure to {sup 33}P-orthophosphate is an excellent means to induce and label the IR-induced, ATM kinase-dependent phosphoproteome.

  3. Mouse Skeletal Muscle Fiber-Type-Specific Macroautophagy and Muscle Wasting Are Regulated by a Fyn/STAT3/Vps34 Signaling Pathway

    Eijiro Yamada

    2012-05-01

    Full Text Available Skeletal muscle atrophy induced by aging (sarcopenia, inactivity, and prolonged fasting states (starvation is predominantly restricted to glycolytic type II muscle fibers and typical spares oxidative type I fibers. However, the mechanisms accounting for muscle fiber-type specificity of atrophy have remained enigmatic. In the current study, although the Fyn tyrosine kinase activated the mTORC1 signaling complex, it also induced marked atrophy of glycolytic fibers with relatively less effect on oxidative muscle fibers. This was due to inhibition of macroautophagy via an mTORC1-independent but STAT3-dependent reduction in Vps34 protein levels and decreased Vps34/p150/Beclin1/Atg14 complex 1. Physiologically, in the fed state endogenous Fyn kinase activity was increased in glycolytic but not oxidative skeletal muscle. In parallel, Y705-STAT3 phosphorylation increased with decreased Vps34 protein levels. Moreover, fed/starved regulation of Y705-STAT3 phosphorylation and Vps34 protein levels was prevented in skeletal muscle of Fyn null mice. These data demonstrate a Fyn/STAT3/Vps34 pathway that is responsible for fiber-type-specific regulation of macroautophagy and skeletal muscle atrophy.

  4. Genomic and molecular aberrations in malignant peripheral nerve sheath tumor and their roles in personalized target therapy.

    Yang, Jilong; Du, Xiaoling

    2013-09-01

    Malignant peripheral nerve sheath tumors (MPNSTs) are malignant tumors with a high rate of local recurrence and a significant tendency to metastasize. Its dismal outcome points to the urgent need to establish better therapeutic strategies for patients harboring MPNSTs. The investigations of genomic and molecular aberrations in MPNSTs which detect many chromosomal aberrations, pathway abnormalities, and specific molecular aberrant events would supply multiple potential therapy targets and contribute to achievement of personalized medicine. The involved genes in the significant gains aberrations include BIRC5, CCNE2, DAB2, DDX15, EGFR, DAB2, MSH2, CDK6, HGF, ITGB4, KCNK12, LAMA3, LOXL2, MET, and PDGFRA. The involved genes in the significant deletion aberrations include CDH1, GLTSCR2, EGR1, CTSB, GATA3, SULT2A1, GLTSCR2, HMMR/RHAMM, LICAM2, MMP13, p16/INK4a, RASSF2, NM-23H1, and TP53. These genetic aberrations involve in several important signaling pathways such as TFF, EGFR, ARF, IGF1R signaling pathways. The genomic and molecular aberrations of EGFR, IGF1R, SOX9, EYA4, TOP2A, ETV4, and BIRC5 exhibit great promise as personalized therapeutic targets for MPNST patients. PMID:23830351

  5. Chromosomal aberrations induced by alpha particles

    The chromosomal aberrations produced by the ionizing radiation are commonly used when it is necessary to establish the exposure dose of an individual, it is a study that is used like complement of the traditional physical systems and its application is only in cases in that there is doubt about what indicates the conventional dosimetry. The biological dosimetry is based on the frequency of aberrations in the chromosomes of the lymphocytes of the individual in study and the dose is calculated taking like reference to the dose-response curves previously generated In vitro. A case of apparent over-exposure to alpha particles to which is practiced analysis of chromosomal aberrations to settle down if in fact there was exposure and as much as possible, to determine the presumed dose is presented. (Author)

  6. Modelling the formation of polycentric chromosome aberrations

    Sachs, R.K.; Tarver, J. (California Univ., Berkeley, CA (United States). Dept. of Mathematics); Yates, B.L.; Morgan, W.F. (California Univ., San Francisco, CA (United States))

    1992-10-01

    Exchange-type chromosome aberrations produced by ionizing radiation or restriction enzymes are believed to result from pairwise interaction of DNA double-strand breaks (dsb). In addition to dicentrics, such aberrations may include higher-order polycentries (tricentries, tetracentrics, etc.). The authors have developed computer programs that calculate the probability of the various polycentrics for a given average number of pairwise interactions. Two models are used. Model I incorporates kinetic competition between restitution, complete exchanges (illegitimate recombination events), and incomplete exchanges. Model II allows unrestituted breaks even if there is no recombination. The models were applied to experimental observations of aberrations produced in G[sub 1] Chinese hamster ovary cells after electroporation with the restriction enzyme PvuII, which produces blunt-end dsb. (author).

  7. Modelling the formation of polycentric chromosome aberrations

    Exchange-type chromosome aberrations produced by ionizing radiation or restriction enzymes are believed to result from pairwise interaction of DNA double-strand breaks (dsb). In addition to dicentrics, such aberrations may include higher-order polycentries (tricentries, tetracentrics, etc.). The authors have developed computer programs that calculate the probability of the various polycentrics for a given average number of pairwise interactions. Two models are used. Model I incorporates kinetic competition between restitution, complete exchanges (illegitimate recombination events), and incomplete exchanges. Model II allows unrestituted breaks even if there is no recombination. The models were applied to experimental observations of aberrations produced in G1 Chinese hamster ovary cells after electroporation with the restriction enzyme PvuII, which produces blunt-end dsb. (author)

  8. Estimation of dose from chromosome aberration rate

    The methods and skills of evaluating dose from correctly scored shromsome aberration rate are presented, and supplemented with corresponding BASIC computer code. The possibility and preventive measures of excessive probability of missing score of the aberrations in some of the current routine score methods are discussed. The use of dose-effect relationship with exposure time correction factor G in evaluating doses and their confidence intervals, dose estimation in mixed n-γ exposure, and identification of high by nonuniform acute exposure to low LET radiation and its dose estimation are discussed in more detail. The difference of estimated dose due to whether the interaction between subleisoms produced by n and γ have been taken into account is examined. In fitting the standard dose-aberration rate curve, proper weighing of experiment points and comparison with commonly accepted values are emphasised, and the coefficient of variation σy√y of the aberration rate y as a function of dose and exposure time is given. In appendix I and II, the dose-aberration rate formula is derived from dual action theory, and the time variation of subleisom is illustrated and in appendix III, the estimation of dose from scores of two different types of aberrations (of other related score) is illustrated. Two computer codes are given in appendix IV, one is a simple code, the other a complete code, including the fitting of standard curve. the skills of using compressed data storage, and the production of simulated 'data ' for testing the curve fitting procedure are also given

  9. Transmissive liquid-crystal device correcting primary coma aberration and astigmatism in laser scanning microscopy

    Tanabe, Ayano; Hibi, Terumasa; Ipponjima, Sari; Matsumoto, Kenji; Yokoyama, Masafumi; Kurihara, Makoto; Hashimoto, Nobuyuki; Nemoto, Tomomi

    2016-03-01

    Laser scanning microscopy allows 3D cross-sectional imaging inside biospecimens. However, certain aberrations produced can degrade the quality of the resulting images. We previously reported a transmissive liquid-crystal device that could compensate for the predominant spherical aberrations during the observations, particularly in deep regions of the samples. The device, inserted between the objective lens and the microscope revolver, improved the image quality of fixed-mouse-brain slices that were observed using two-photon excitation laser scanning microscopy, which was originally degraded by spherical aberration. In this study, we developed a transmissive device that corrects primary coma aberration and astigmatism, motivated by the fact that these asymmetric aberrations can also often considerably deteriorate image quality, even near the sample surface. The device's performance was evaluated by observing fluorescent beads using single-photon excitation laser scanning microscopy. The fluorescence intensity in the image of the bead under a cover slip tilted in the y-direction was increased by 1.5 times after correction by the device. Furthermore, the y- and z-widths of the imaged bead were reduced to 66% and 65%, respectively. On the other hand, for the imaged bead sucked into a glass capillary in the longitudinal x-direction, correction with the device increased the fluorescence intensity by 2.2 times compared to that of the aberrated image. In addition, the x-, y-, and z-widths of the bead image were reduced to 75%, 53%, and 40%, respectively. Our device successfully corrected several asymmetric aberrations to improve the fluorescent signal and spatial resolution, and might be useful for observing various biospecimens.

  10. SURF imaging beams in an aberrative medium: generation and post-processing enhancement

    Nasholm, Sven Peter; 10.1109/TUFFC.2012.2494

    2013-01-01

    This paper presents numerical simulations of dual-frequency second-order ultrasound field (SURF) reverberation suppression transmit-pulse complexes. Such propagation was previously studied in a homogeneous medium. Here instead the propagation path includes a strongly aberrating body-wall modeled by a sequence of delay-screens. The applied SURF transmit pulse complexes each consist of a high-frequency imaging 3.5 MHz pulse combined with a low-frequency 0.5 MHz sound speed manipulation pulse. Furthermore, the feasibility of two signal post-processing methods are investigated using the aberrated transmit SURF beams. These methods are previously shown to adjust the depth of maximum SURF reverberation suppression within a homogeneous medium. The request of the study arises because imaging situations where reverberation suppression is useful are also likely to produce pulse wave-front distortion (aberration). Such distortions could potentially produce time-delays that cancel the accumulated propagation time-delay n...

  11. The correction of electron lens aberrations

    The progress of electron lens aberration correction from about 1990 onwards is chronicled. Reasonably complete lists of publications on this and related topics are appended. A present for Max Haider and Ondrej Krivanek in the year of their 65th birthdays. By a happy coincidence, this review was completed in the year that both Max Haider and Ondrej Krivanek reached the age of 65. It is a pleasure to dedicate it to the two leading actors in the saga of aberration corrector design and construction. They would both wish to associate their colleagues with such a tribute but it is the names of Haider and Krivanek (not forgetting Joachim Zach) that will remain in the annals of electron optics, next to that of Harald Rose. I am proud to know that both regard me as a friend as well as a colleague. - Highlights: • Geometrical aberration correction. • Chromatic aberration correction. • 50 pm resolution. • High-resolution electron energy-loss spectroscopy. • Extensive bibliographies

  12. Optical advantages of astigmatic aberration corrected heliostats

    van Rooyen, De Wet; Schöttl, Peter; Bern, Gregor; Heimsath, Anna; Nitz, Peter

    2016-05-01

    Astigmatic aberration corrected heliostats adapt their shape in dependence of the incidence angle of the sun on the heliostat. Simulations show that this optical correction leads to a higher concentration ratio at the target and thus in a decrease in required receiver aperture in particular for smaller heliostat fields.

  13. The correction of electron lens aberrations

    Hawkes, P.W., E-mail: peter.hawkes@cemes.fr

    2015-09-15

    The progress of electron lens aberration correction from about 1990 onwards is chronicled. Reasonably complete lists of publications on this and related topics are appended. A present for Max Haider and Ondrej Krivanek in the year of their 65th birthdays. By a happy coincidence, this review was completed in the year that both Max Haider and Ondrej Krivanek reached the age of 65. It is a pleasure to dedicate it to the two leading actors in the saga of aberration corrector design and construction. They would both wish to associate their colleagues with such a tribute but it is the names of Haider and Krivanek (not forgetting Joachim Zach) that will remain in the annals of electron optics, next to that of Harald Rose. I am proud to know that both regard me as a friend as well as a colleague. - Highlights: • Geometrical aberration correction. • Chromatic aberration correction. • 50 pm resolution. • High-resolution electron energy-loss spectroscopy. • Extensive bibliographies.

  14. Aberration features in directional dark matter detection

    The motion of the Earth around the Sun causes an annual change in the magnitude and direction of the arrival velocity of dark matter particles on Earth, in a way analogous to aberration of stellar light. In directional detectors, aberration of weakly interacting massive particles (WIMPs) modulates the pattern of nuclear recoil directions in a way that depends on the orbital velocity of the Earth and the local galactic distribution of WIMP velocities. Knowing the former, WIMP aberration can give information on the latter, besides being a curious way of confirming the revolution of the Earth and the extraterrestrial provenance of WIMPs. While observing the full aberration pattern requires extremely large exposures, we claim that the annual variation of the mean recoil direction or of the event counts over specific solid angles may be detectable with moderately large exposures. For example, integrated counts over Galactic hemispheres separated by planes perpendicular to Earth's orbit would modulate annually, resulting in Galactic Hemisphere Annual Modulations (GHAM) with amplitudes larger than the usual non-directional annual modulation

  15. Prenatal hydronephrosis caused by aberrant renal vessels

    Lenz, K; Thorup, Jørgen Mogens; Rabol, A;

    1996-01-01

    With routine use of obstetric ultrasonography, fetal low-grade hydronephrosis is commonly detected, but may resolve spontaneously after birth. Two cases are presented to illustrate that in some cases such findings can express intermittent hydronephrosis caused by aberrant renal vessels. Renal det...

  16. Anti-forensics of chromatic aberration

    Mayer, Owen; Stamm, Matthew C.

    2015-03-01

    Over the past decade, a number of information forensic techniques have been developed to identify digital image manipulation and falsification. Recent research has shown, however, that an intelligent forger can use anti-forensic countermeasures to disguise their forgeries. In this paper, an anti-forensic technique is proposed to falsify the lateral chromatic aberration present in a digital image. Lateral chromatic aberration corresponds to the relative contraction or expansion between an image's color channels that occurs due to a lens's inability to focus all wavelengths of light on the same point. Previous work has used localized inconsistencies in an image's chromatic aberration to expose cut-and-paste image forgeries. The anti-forensic technique presented in this paper operates by estimating the expected lateral chromatic aberration at an image location, then removing deviations from this estimate caused by tampering or falsification. Experimental results are presented that demonstrate that our anti-forensic technique can be used to effectively disguise evidence of an image forgery.

  17. Cosmological parameter estimation: impact of CMB aberration

    The peculiar motion of an observer with respect to the CMB rest frame induces an apparent deflection of the observed CMB photons, i.e. aberration, and a shift in their frequency, i.e. Doppler effect. Both effects distort the temperature multipoles alm's via a mixing matrix at any l. The common lore when performing a CMB based cosmological parameter estimation is to consider that Doppler affects only the l = 1 multipole, and neglect any other corrections. In this paper we reconsider the validity of this assumption, showing that it is actually not robust when sky cuts are included to model CMB foreground contaminations. Assuming a simple fiducial cosmological model with five parameters, we simulated CMB temperature maps of the sky in a WMAP-like and in a Planck-like experiment and added aberration and Doppler effects to the maps. We then analyzed with a MCMC in a Bayesian framework the maps with and without aberration and Doppler effects in order to assess the ability of reconstructing the parameters of the fiducial model. We find that, depending on the specific realization of the simulated data, the parameters can be biased up to one standard deviation for WMAP and almost two standard deviations for Planck. Therefore we conclude that in general it is not a solid assumption to neglect aberration in a CMB based cosmological parameter estimation

  18. An Emerging Role for the Mammalian Target of Rapamycin in “Pathological” Protein Translation: Relevance to Cocaine Addiction

    Dayas, Christopher V.; Smith, Doug W.; Dunkley, Peter R.

    2011-01-01

    Complex neuroadaptations within key nodes of the brain’s “reward circuitry” are thought to underpin long-term vulnerability to relapse. A more comprehensive understanding of the molecular and cellular signaling events that subserve relapse vulnerability may lead to pharmacological treatments that could improve treatment outcomes for psychostimulant-addicted individuals. Recent advances in this regard include findings that drug-induced perturbations to neurotrophin, metabotropic glutamate receptor, and dopamine receptor signaling pathways perpetuate plasticity impairments at excitatory glutamatergic synapses on ventral tegmental area and nucleus accumbens neurons. In the context of addiction, much previous work, in terms of downstream effectors to these receptor systems, has centered on the extracellular-regulated MAP kinase signaling pathway. The purpose of the present review is to highlight the evidence of an emerging role for another downstream effector of these addiction-relevant receptor systems – the mammalian target of rapamycin complex 1 (mTORC1). mTORC1 functions to regulate synaptic protein translation and is a potential critical link in our understanding of the neurobiological processes that drive addiction and relapse behavior. The precise cellular and molecular changes that are regulated by mTORC1 and contribute to relapse vulnerability are only just coming to light. Therefore, we aim to highlight evidence that mTORC1 signaling may be dysregulated by drug exposure and that these changes may contribute to aberrant translation of synaptic proteins that appear critical to increased relapse vulnerability, including AMPARs. The importance of understanding the role of this signaling pathway in the development of addiction vulnerability is underscored by the fact that the mTORC1 inhibitor rapamycin reduces drug-seeking in pre-clinical models and preliminary evidence indicating that rapamycin suppresses drug craving in humans. PMID:22347189

  19. An emerging role for the mammalian Target of Rapamycin (mTOR in 'pathological' protein translation: relevance to cocaine addiction

    Christopher V Dayas

    2012-02-01

    Full Text Available Complex neuroadaptations within key nodes of the brain’s ‘reward circuitry’ are thought to underpin long-term vulnerability to relapse. A more comprehensive understanding of the molecular and cellular signalling events that subserve relapse vulnerability may lead to pharmacological treatments that could improve treatment outcomes for psychostimulant-addicted individuals. Recent advances in this regard include findings that drug-induced perturbations to neurotrophin, metabotropic glutamate receptor and dopamine receptor signalling pathways perpetuate plasticity impairments at excitatory glutamatergic synapses on ventral tegmental area (VTA and nucleus accumbens (NAC neurons. In the context of addiction, much previous work, in terms of downstream effectors to these receptor systems, has centered on the extracellular-regulated MAP kinase (ERK signalling pathway. The purpose of the present review is to highlight the evidence of an emerging role for another downstream effector of these addiction-relevant receptor systems - the mammalian target of rapamycin complex 1 (mTORC1. mTORC1 functions to regulate synaptic protein translation and is a potential critical link in our understanding of the neurobiological processes that drive addiction and relapse behavior. The precise cellular and molecular changes that are regulated by mTORC1 and contribute to relapse vulnerability are only just coming to light. Therefore, we aim to highlight evidence that mTORC1 signalling may be dysregulated by drug-exposure and that these changes may contribute to aberrant translation of synaptic proteins that appear critical to increased relapse vulnerability, including AMPARs. The importance of understanding the role of this signalling pathway in the development of addiction vulnerability is underscored by the fact that the mTORC1 inhibitor rapamycin reduces drug-seeking in preclinical models and preliminary evidence indicating that rapamycin suppresses drug craving in

  20. Aberrantly methylated DNA as a biomarker in breast cancer

    Kristiansen, Søren; Jørgensen, Lars Mønster; Guldberg, Per;

    2013-01-01

    hypermethylation events, their use as tumor biomarkers is usually not hampered by analytical signals from normal cells, which is a general problem for existing protein tumor markers used for clinical assessment of breast cancer. There is accumulating evidence that DNA-methylation changes in breast cancer patients......Aberrant DNA hypermethylation at gene promoters is a frequent event in human breast cancer. Recent genome-wide studies have identified hundreds of genes that exhibit differential methylation between breast cancer cells and normal breast tissue. Due to the tumor-specific nature of DNA...... occur early during tumorigenesis. This may open up for effective screening, and analysis of blood or nipple aspirate may later help in diagnosing breast cancer. As a more detailed molecular characterization of different types of breast cancer becomes available, the ability to divide patients into...

  1. Primary aberrations in focused radially polarized vortex beams

    Biss, David P.; Brown, T. G.

    2004-02-01

    We study the effect of primary aberrations on the 3-D polarization of the electric field in a focused lowest order radially polarized beam. A full vector diffraction treatment of the focused beams is used. Attention is given to the effects of primary spherical, astigmatic, and comatic aberrations on the local polarization, Strehl ratio, and aberration induced degradation of the longitudinal field at focus

  2. The correction of electron lens aberrations.

    Hawkes, P W

    2015-09-01

    The progress of electron lens aberration correction from about 1990 onwards is chronicled. Reasonably complete lists of publications on this and related topics are appended. A present for Max Haider and Ondrej Krivanek in the year of their 65th birthdays. By a happy coincidence, this review was completed in the year that both Max Haider and Ondrej Krivanek reached the age of 65. It is a pleasure to dedicate it to the two leading actors in the saga of aberration corrector design and construction. They would both wish to associate their colleagues with such a tribute but it is the names of Haider and Krivanek (not forgetting Joachim Zach) that will remain in the annals of electron optics, next to that of Harald Rose. I am proud to know that both regard me as a friend as well as a colleague. PMID:26025209

  3. Do patients with schizophrenia exhibit aberrant salience?

    Roiser, J. P.; Stephan, K E; den Ouden, H. E. M.; Barnes, T. R. E.; Friston, K.J.; Joyce, E. M.

    2009-01-01

    BACKGROUND: It has been suggested that some psychotic symptoms reflect ‘aberrant salience’, related to dysfunctional reward learning. To test this hypothesis we investigated whether patients with schizophrenia showed impaired learning of task-relevant stimulusreinforcement associations in the presence of distracting task-irrelevant cues. METHODS: We tested 20 medicated patients with schizophrenia and 17 controls on a reaction time game, the Salience Attribution Test. In this game, ...

  4. Tailored displays to compensate for visual aberrations

    Pamplona, Vitor F.; Oliveira, Manuel M.; Aliaga, Daniel G.; Raskar, Ramesh

    2012-01-01

    We introduce tailored displays that enhance visual acuity by decomposing virtual objects and placing the resulting anisotropic pieces into the subject's focal range. The goal is to free the viewer from needing wearable optical corrections when looking at displays. Our tailoring process uses aberration and scattering maps to account for refractive errors and cataracts. It splits an object's light field into multiple instances that are each in-focus for a given eye sub-aperture. Their integrati...

  5. Assessing the construct validity of aberrant salience

    Kristin Schmidt

    2009-12-01

    Full Text Available We sought to validate the psychometric properties of a recently developed paradigm that aims to measure salience attribution processes proposed to contribute to positive psychotic symptoms, the Salience Attribution Test (SAT. The “aberrant salience” measure from the SAT showed good face validity in previous results, with elevated scores both in high-schizotypy individuals, and in patients with schizophrenia suffering from delusions. Exploring the construct validity of salience attribution variables derived from the SAT is important, since other factors, including latent inhibition/learned irrelevance, attention, probabilistic reward learning, sensitivity to probability, general cognitive ability and working memory could influence these measures. Fifty healthy participants completed schizotypy scales, the SAT, a learned irrelevance task, and a number of other cognitive tasks tapping into potentially confounding processes. Behavioural measures of interest from each task were entered into a principal components analysis, which yielded a five-factor structure accounting for ~75% percent of the variance in behaviour. Implicit aberrant salience was found to load onto its own factor, which was associated with elevated “Introvertive Anhedonia” schizotypy, replicating our previous finding. Learned irrelevance loaded onto a separate factor, which also included implicit adaptive salience, but was not associated with schizotypy. Explicit adaptive and aberrant salience, along with a measure of probabilistic learning, loaded onto a further factor, though this also did not correlate with schizotypy. These results suggest that the measures of learned irrelevance and implicit adaptive salience might be based on similar underlying processes, which are dissociable both from implicit aberrant salience and explicit measures of salience.

  6. DNA Repair Defects and Chromosomal Aberrations

    Hada, Megumi; George, K. A.; Huff, J. L.; Pluth, J. M.; Cucinotta, F. A.

    2009-01-01

    Yields of chromosome aberrations were assessed in cells deficient in DNA doublestrand break (DSB) repair, after exposure to acute or to low-dose-rate (0.018 Gy/hr) gamma rays or acute high LET iron nuclei. We studied several cell lines including fibroblasts deficient in ATM (ataxia telangiectasia mutated; product of the gene that is mutated in ataxia telangiectasia patients) or NBS (nibrin; product of the gene mutated in the Nijmegen breakage syndrome), and gliomablastoma cells that are proficient or lacking in DNA-dependent protein kinase (DNA-PK) activity. Chromosomes were analyzed using the fluorescence in situ hybridization (FISH) chromosome painting method in cells at the first division post irradiation, and chromosome aberrations were identified as either simple exchanges (translocations and dicentrics) or complex exchanges (involving >2 breaks in 2 or more chromosomes). Gamma irradiation induced greater yields of both simple and complex exchanges in the DSB repair-defective cells than in the normal cells. The quadratic dose-response terms for both simple and complex chromosome exchanges were significantly higher for the ATM- and NBS-deficient lines than for normal fibroblasts. However, in the NBS cells the linear dose-response term was significantly higher only for simple exchanges. The large increases in the quadratic dose-response terms in these repair-defective cell lines points the importance of the functions of ATM and NBS in chromatin modifications to facilitate correct DSB repair and minimize the formation of aberrations. The differences found between ATM- and NBS-deficient cells at low doses suggest that important questions should with regard to applying observations of radiation sensitivity at high dose to low-dose exposures. For aberrations induced by iron nuclei, regression models preferred purely linear dose responses for simple exchanges and quadratic dose responses for complex exchanges. Relative biological effectiveness (RBE) factors of all of

  7. Radiotherapeutical chromosomal aberrations in laryngeal cancer patients

    Stošić-Divjak Svetlana L.

    2009-01-01

    Full Text Available Introduction. The authors present the results of cytogenetic analysis of 21 patients with laryngeal carcinomas diagnosed and treated in the period 1995-2000 at the Institute of Otorhinolaryngology and Maxillofacial Surgery, Clinical Center of Serbia and Clinical Center of Novi Sad. Material and methods. The patients were specially monitored and the material was analyzed at the Institute of Human Genetics of the School of Medicine in Belgrade as well as in the Laboratory for Radiological Protection of the Institute of Occupational and Radiological Health 'Dr Dragomir Karajovic' in Belgrade. Results. The incidence of chromosomal aberrations and incidence of exchange of material between sister chromatids were observed in the preparation of the metaphasic lymphocyte chromosomes of the peripheral blood obtained in the culture. Structural aberrations were found on the chromosomes in the form of breakups, rings, translocations and dicentrics as early as after a single exposure of patients to tumor radiation dose of 2 Gy in the field sized 5x7. Out of the total number of 35 cultivated blood samples obtained from 13 patients, 21 were successfully cultivated and they were proved to contain chromosomal aberrations. Some of the peripheral blood samples failed to show cell growth in vitro due to the lethal cell damages in vivo. Discussion.. We have consluded that the number of structural aberrations cannot be used as a biological measure of the absorbed ionizing radiation dose. The presence of aberrations per se is indicative of the mutagenic effect of the ionizing radiation, which was also confirmed in our series on the original model by cultivation of the peripheral blood lymphocytes in the culture of the cells of the volunteer donors upon in vitro radiation. Using the method of bromdeoxyuridylreductase, the increased incidence of SCE as a mutagenic effect was registered. Conclusion. It has been concluded that the increase of absorbed radiation dose in

  8. Chromatic variation of aberration: the role of induced aberrations and raytrace direction

    Berner, A.; Nobis, T.; Shafer, D.; Gross, H.

    2015-09-01

    The design and optimization process of an optical system contains several first order steps. The definition of the appropriate lens type and the fixation of the raytrace direction are some of them. The latter can be understood as a hidden assumption rather than an aware design step. This is usually followed by the determination of the paraxial lens layout calculated for the primary wavelength. It is obvious, that for this primary wavelength the paraxial calculations are independent of raytrace direction. Today, most of the lens designs are specified not to work only for one wavelength, but in a certain wavelength range. Considering such rays of other wavelengths, one can observe that depending on the direction there will already occur differences in the first order chromatic aberrations and additionally in the chromatic variation of the third-order aberrations. The reason for this effect are induced aberrations emerging from one surface to the following surfaces by perturbed ray heights and ray angles. It can be shown, that the total amount of surface-resolved first order chromatic aberrations and the chromatic variation of the five primary aberrations can be split into an intrinsic part and an induced part. The intrinsic part is independent of the raytrace direction whereas the induced part is not.

  9. Block of gap junctions eliminates aberrant activity and restores light responses during retinal degeneration.

    Toychiev, Abduqodir H; Ivanova, Elena; Yee, Christopher W; Sagdullaev, Botir T

    2013-08-28

    Retinal degeneration leads to progressive photoreceptor cell death, resulting in vision loss. Subsequently, inner retinal neurons develop aberrant synaptic activity, compounding visual impairment. In retinal ganglion cells, light responses driven by surviving photoreceptors are obscured by elevated levels of aberrant spiking activity. Here, we demonstrate in rd10 mice that targeting disruptive neuronal circuitry with a gap junction antagonist can significantly reduce excessive spiking. This treatment increases the sensitivity of the degenerated retina to light stimuli driven by residual photoreceptors. Additionally, this enhances signal transmission from inner retinal neurons to ganglion cells, potentially allowing the retinal network to preserve the fidelity of signals either from prosthetic electronic devices, or from cells optogenetically modified to transduce light. Thus, targeting maladaptive changes to the retina allows for treatments to use existing neuronal tissue to restore light sensitivity, and to augment existing strategies to replace lost photoreceptors. PMID:23986234

  10. Expression and aberrant promoter methylation of Wnt inhibitory factor-1 in human astrocytomas

    Wu Jun; Liu Jinfang; Chen Fenghua; Fang Jiasheng; Wang Ying; Yang Zhuanyi; Wang Yanjin

    2010-01-01

    Abstract Background Wnt inhibitory factor-1(WIF-1) acts as a Wnt-antagonists and tumor suppressor, but hypermethylation of WIF-1 gene promoter and low expression activate Wnt signaling aberrantly and induce the development of various human tumors. With this work we intended to investigate the expression and promoter methylation status of WIF-1 gene in human astrocytomas. Methods The tissue samples consisted of 53 astrocytomas and 6 normal brain tissues. The expression levels of WIF-1 were det...

  11. Activation of a metabolic gene regulatory network downstream of mTOR complex 1

    Düvel, Katrin; Yecies, Jessica L.; Menon, Suchithra; Raman, Pichai; Lipovsky, Alex I.; Souza, Amanda L.; Triantafellow, Ellen; Ma, Qicheng; Gorski, Regina; Cleaver, Stephen; Heiden, Matthew G. Vander; MacKeigan, Jeffrey P.; Finan, Peter M.; Clish, Clary B; Murphy, Leon O.

    2010-01-01

    Aberrant activation of the mammalian target of rapamycin complex 1 (mTORC1) is a common molecular event in a variety of pathological settings, including genetic tumor syndromes, cancer, and obesity. However, the cell intrinsic consequences of mTORC1 activation remain poorly defined. Through a combination of unbiased genomic, metabolomic, and bioinformatic approaches, we demonstrate that mTORC1 activation is sufficient to stimulate specific metabolic pathways, including glycolysis, the oxidati...

  12. Clinicopathological significance of aberrant Notch receptors in intrahepatic cholangiocarcinoma

    Wu, Wen-Rui; Shi, Xiang-De; Zhang, Rui; Zhu, Man-Sheng; Xu, Lei-Bo; Yu, Xian-Huan; Zeng, Hong; Wang, Jie; Liu, Chao

    2014-01-01

    Notch signaling has been reported to be activated to promote biliary epithelial cell differentiation and tubulogenesis during bile duct development. In this study, clinicopathological significance of aberrant expression of Notch receptors in intrahepatic cholangiocarcinoma (ICC) was investigated. Thus, forty-one ICC specimens were examined by immunohistochemistry using anti-Notch1-4 antibodies, respectively. Expression of Notch receptors was scored by percentage of positive tumor cells and intensity of immunostaining. Clinicopathological parameters and survival data were compared with the expression of Notch receptors, respectively. Expression of Notch receptors was identified in cancer cells, as well as in non-neoplastic cells. Compared with adjacent non-tumor liver tissues, Notch1 and 4 were up regulated, and Notch2 and 3 were relatively weaker. Positive immunostaining of Notch1 in ICC cells was detected in 34 cases (82.9%), Notch2 in 23 (56.1%), Notch3 in 16 (39.0%) and Notch4 in 14 (34.1%). Notch1 was overexpressed in cases with tumor size > 5 cm (P = 0.036). Expression of Notch2 was correlated inversely with histological grade (P = 0.016). Overexpression of Notch4 was more common in cases with serum CA125 > 35 U/ml than cases with CA125 ≤ 35 U/ml (P = 0.048). Expression of Notch3 was not correlated with any other clinicopathological parameters. Moreover, Notch4 was related to poor survival (P < 0.001). To conclude, this study reveals that aberrant expression of Notch receptors 1 and 4 might play important roles during ICC progression. PMID:25031748

  13. Chromosomal aberrations in ISS crew members

    Johannes, Christian; Goedecke, Wolfgang; Antonopoulos, Alexandra

    2012-07-01

    High energy radiation is a major risk factor in manned space missions. Astronauts and cosmonauts are exposed to ionising radiations of cosmic and solar origin, while on the Earth's surface people are well protected by the atmosphere and a deflecting magnetic field. There are now data available describing the dose and the quality of ionising radiation on-board of the International Space Station (ISS). Nonetheless, the effect of increased radiation dose on mutation rates of ISS crew members are hard to predict. Therefore, direct measurements of mutation rates are required in order to better estimate the radiation risk for longer duration missions. The analysis of chromosomal aberrations in peripheral blood lymphocytes is a well established method to measure radiation-induced mutations. We present data of chromosome aberration analyses from lymphocyte metaphase spreads of ISS crew members participating in short term (10-14 days) or long term (around 6 months) missions. From each subject we received two blood samples. The first sample was drawn about 10 days before launch and a second one within 3 days after return from flight. From lymphocyte cultures metaphase plates were prepared on glass slides. Giemsa stained and in situ hybridised metaphases were scored for chromosome changes in pre-flight and post-flight blood samples and the mutation rates were compared. Results obtained in chromosomal studies on long-term flight crew members showed pronounced inter-individual differences in the response to elevated radiation levels. Overall slight but significant elevations of typical radiation induced aberrations, i.e., dicentric chromosomes and reciprocal translocations have been observed. Our data indicate no elevation of mutation rates due to short term stays on-board the ISS.

  14. Phospholipase D regulates the size of skeletal muscle cells through the activation of mTOR signaling.

    Jaafar, Rami; De Larichaudy, Joffrey; Chanon, Stéphanie; Euthine, Vanessa; Durand, Christine; Naro, Fabio; Bertolino, Philippe; Vidal, Hubert; Lefai, Etienne; Némoz, Georges

    2013-01-01

    mTOR is a major actor of skeletal muscle mass regulation in situations of atrophy or hypertrophy. It is established that Phospholipase D (PLD) activates mTOR signaling, through the binding of its product phosphatidic acid (PA) to mTOR protein. An influence of PLD on muscle cell size could thus be suspected. We explored the consequences of altered expression and activity of PLD isoforms in differentiated L6 myotubes. Inhibition or down-regulation of the PLD1 isoform markedly decreased myotube size and muscle specific protein content. Conversely, PLD1 overexpression induced muscle cell hypertrophy, both in vitro in myotubes and in vivo in mouse gastrocnemius. In the presence of atrophy-promoting dexamethasone, PLD1 overexpression or addition of exogenous PA protected myotubes against atrophy. Similarly, exogenous PA protected myotubes against TNFα-induced atrophy. Moreover, the modulation of PLD expression or activity in myotubes showed that PLD1 negatively regulates the expression of factors involved in muscle protein degradation, such as the E3-ubiquitin ligases Murf1 and Atrogin-1, and the Foxo3 transcription factor. Inhibition of mTOR by PP242 abolished the positive effects of PLD1 on myotubes, whereas modulating PLD influenced the phosphorylation of both S6K1 and Akt, which are respectively substrates of mTORC1 and mTORC2 complexes. These observations suggest that PLD1 acts through the activation of both mTORC1 and mTORC2 to induce positive trophic effects on muscle cells. This pathway may offer interesting therapeutic potentialities in the treatment of muscle wasting. PMID:23915343

  15. A proposal for the holographic correction of incoherent aberrations by tilted reference waves.

    Röder, Falk; Lubk, Axel

    2015-05-01

    The recently derived general transfer theory for off-axis electron holography provides a new approach for reconstructing the electron wave beyond the conventional sideband information limit. Limited ensemble coherence of the electron beam between object and reference area leads to an attenuation of spatial frequencies of the object exit wave in the presence of aberrations of the objective lens. Concerted tilts of the reference wave under the condition of an invariant object exit wave are proposed to diminish the aberration impact on spatial frequencies even beyond the sideband information limit allowing its transfer with maximum possible contrast. In addition to the theoretical considerations outlined in detail, an experimental proof-of-principle is presented. A fully controlled tilt of the reference wave, however, remains as a promising task for the future. The use of a hologram series with varying reference wave tilt is considered for linearly synthesizing an effective aperture for the transfer into the sideband with broader bandwidth compared to conventional off-axis electron holography allowing us to correct the incoherent aberrations in transmission electron microscopy. Furthermore, tilting a reference wave with respect to a plane wave is expected to be an alternative way for measuring the coherent and incoherent aberrations of a transmission electron microscope. The capability of tilting the reference wave is expected to be beneficial for improving the signal-to-noise ratio in dark-field off-axis electron holography as well. PMID:25680104

  16. Assessment of radial image distortion and spherical aberration on 3D synthetic aperture PIV measurements

    This paper presents a study of the effects of radial image distortion and spherical aberration on reconstruction quality of synthetic aperture particle image velocimetry (SAPIV). A simulated SAPIV system is used to image a synthetic particle volume. An idealized pinhole camera model is used for image formation with distortion and spherical aberration being added on with a polynomial model and a Fourier waveform model, respectively. Images from a simulated 5 × 5 camera array are taken, distorted or aberrated, realigned and averaged to form synthetic aperture images at a set of depths within the seeded volume. These images are thresholded to recover three-dimensional (3D) particle locations and a reconstructed 3D intensity field is formed. This reconstructed field is then evaluated according to intensity data and a signal-to-noise ratio (SNR) as well as standard and rank correlation metrics. Results show that even small amounts of image distortion and spherical aberration can lead to lower correlation values, degradation of the SNR and information loss. Use of rank correlation increases the ability to match elements between the synthetic and reconstructed volumes relative to standard correlation. (paper)

  17. Aberrations in Fresnel Lenses and Mirrors

    Gregory, Don

    1999-01-01

    The NASA/MSFC Shooting Star program revealed a number of technical problems that must be solved before solar thermal propulsion can become a reality. The fundamental problem of interest here is the collection of solar energy. This is the first step in the propulsion process and indeed the most important. Everything else depends on the efficiency and focusing ability of the collection lens or mirror. An initial model of Fresnel lens behavior using a wave optics approach has been completed and the results were encouraging enough to warrant an experimental investigation. This experimental investigation confirmed some of the effects predicted and produced invaluable photographic evidence of coherence based diffraction and aberration.

  18. Role of Nutrient-Sensing Signals in the Pathogenesis of Diabetic Nephropathy

    Shinji Kume

    2014-01-01

    Full Text Available Diabetic nephropathy is the leading cause of end-stage renal disease worldwide. The multipronged drug approach still fails to fully prevent the onset and progression of diabetic nephropathy. Therefore, a new therapeutic target to improve the prognosis of diabetic nephropathy is urgently required. Nutrient-sensing signals and their related intracellular machinery have evolved to combat prolonged periods of starvation in mammals; and these systems are conserved in the kidney. Recent studies have suggested that the activity of three nutrient-sensing signals, mTORC1, AMPK, and Sirt1, is altered in the diabetic kidney. Furthermore, autophagy activity, which is regulated by the above-mentioned nutrient-sensing signals, is also altered in both podocytes and proximal tubular cells under diabetic conditions. Under diabetic conditions, an altered nutritional state owing to nutrient excess may disturb cellular homeostasis regulated by nutrient-responsible systems, leading to exacerbation of organelle dysfunction and diabetic nephropathy. In this review, we discuss new findings showing relationships between nutrient-sensing signals, autophagy, and diabetic nephropathy and suggest the therapeutic potential of nutrient-sensing signals in diabetic nephropathy.

  19. Sensitivity of singular beams in the presence of Zernike aberrations

    Dixit, Awakash; Mishra, Sanjay Kumar; Gupta, Arun Kumar

    2015-08-01

    Singular beams in the presence of Zernike aberrations create an opportunity for various applications such as trapping and manipulation of micro-particles, atomic optics and atmospheric optics. In the milieu of importance of the role of aberrations, sensitivity of singular beams with Zernike aberrations is studied. In this paper, the effect of various Zernike aberrations on a singular beam is reported in terms of its Point Spread Function (PSF) deformations. The intensity distributions around the focal plane, i.e. PSF, of the singular beam of various topological charges and in the presence of different strengths of Zernike aberrations are theoretically estimated by the Huygens-Fresnel diffraction integral. Experimentally, the singular beams have been generated and known strengths of Zernike aberration introduced in the beam by a phase-only Spatial Light Modulator. Metric Ensquared Energy is used to analyze the PSF of the corresponding intensity distributions of the singular beams. The experimental results have been validated with numerical simulation.

  20. Aberrations caused by mechanical misalignments in electrostatic quadrupole lens systems

    Baranova, L. A.; Read, F. H.

    Image aberrations resulting from small misalignments in quadrupole lenses multiplets have been analysed. Analytical formulas for the coefficients of the beam displacement, astigmatism and coma associated with misalignments in a general quadrupole lens system have been derived. Numerical computations of systems of three and four quadrupole lenses have also been carried out. The aberration figures obtained for systems with and without a mechanical defect are compared. The aberration coefficients that have been obtained can be used for estimating tolerance limits for lens misalignments.

  1. Calculation of aberration of electron gun in color picture tubes

    In a color picture tube, aberration is an important factor influencing the electron beam spot on the screen. This paper discusses a new method which is used to calculate the aberration of an electron gun in a CPT. In this method, electron trajectories are simulated directly in the cathode and the pre-focus lens. In the main lens, the asymptotic aberration is calculated to decide the size of the image. Some results of the calculation are shown in this paper. (orig.)

  2. Monitoring of chromosomal aberrations in natural populations of Pinus pallasiana

    V. P. Koba

    2012-01-01

    This paper presents the results of monitoring research of the chromosome aberrations at the stage of anaphase-telophase. The statistical characteristics of dynamics of chromosomal aberrations in populations of Pinus pallasiana D. Don across the high-altitude zones of the Mountain Crimea is given. It is established that on the southern macroslope of the Crimean Main Ridge the frequency of chromosomal aberrations in the P. pallasiana stands is higher in the lower zone in comparison with the mid...

  3. Pattern of Chromosomal Aberrations in Patients from North East Iran

    Saeedeh Ghazaey; Farzaneh Mirzaei; Mitra Ahadian; Fatemeh Keifi; Semiramis Tootian; Mohammad Reza Abbaszadegan

    2013-01-01

    Objective: Chromosomal aberrations are common causes of multiple anomaly syndromes. Recurrent chromosomal aberrations have been identified by conventional cytogenetic methods used widely as one of the most important clinical diagnostic techniques. Materials and Methods: In this retrospective study, the incidences of chromosomal aberrations were evaluated in a six year period from 2005 to 2011 in Pardis Clinical and Genetics Laboratory on patients referred to from Mashhad and other cities in K...

  4. Hydronephrosis by an Aberrant Renal Artery: A Case Report

    Park, Byoung Seok; Jeong, Taek Kyun; Ma, Seong Kwon; Kim, Soo Wan; Kim, Nam Ho; Choi, Ki Chul; Jeong, Yong Yeon

    2003-01-01

    Ureteropelvic junction obstruction is usually intrinsic and is most common in children. Aberrant renal arteries are present in about 30% of individuals. Aberrant renal arteries to the inferior pole cross anteriorly to the ureter and may cause hydronephrosis. To the best of our knowledge, although there are some papers about aberrant renal arteries producing ureteropelvic junction obstruction, there is no report of a case which is diagnosed by the new modalities, such as computed tomography an...

  5. Chromosomal aberrations in children exposed to diagnostic x-rays

    Among children who have received high x-ray doses congenital dislocation of the hip joint is the predominating diagnosis. In a series of 9 children who had received high x-ray doses (8 with luxation of the hip joint and one with achondroplasia) a significant increase of chromosomal aberrations was found. The increase concerned mainly chromosome type aberrations. The shorter the time since the last x-ray investigation the higher was the frequency of chromosome type aberrations. (author)

  6. Chromosome aberration analysis for biological dosimetry: a review

    Among various biological dosimetry techniques, dicentric chromosome aberration method appears to be the method of choice in analysing accidental radiation exposure in most of the laboratories. The major advantage of this method is its sensitivity as the number of dicentric chromosomes present in control population is too small and more importantly radiation induces mainly dicentric chromosome aberration among unstable aberration. This report brings out the historical development of various cytogenetic methods, the basic structure of DNA, chromosomes and different forms of chromosome aberrations. It also highlights the construction of dose-response curve for dicentric chromosome and its use in the estimation of radiation dose. (author)

  7. Cellular origin of prognostic chromosomal aberrations in AML patients

    Mora-Jensen, H.; Jendholm, J.; Rapin, N.;

    2015-01-01

    these aberrations occur in normal hematopoietic stem and progenitor cells (HSCs/HPCs) before definitive leukemic transformation through additional acquisition of a few (that is, mostly 1 or 2) leukemia-promoting driver aberrations. NGS studies on sorted bone marrow (BM) populations of AML patients with...... molecular aberrations that were present in the fully transformed committed HPCs together with the prognostic driver aberration. Adding to this vast heterogeneity and complexity of AML genomes and their clonal evolution, a recent study of a murine AML model demonstrated that t(9;11) AML originating from HSCs...

  8. Aberrant Expression of Functional BAFF-System Receptors by Malignant B-Cell Precursors Impacts Leukemia Cell Survival

    Maia, Sara; Pelletier, Marc; Ding, Jixin; Hsu, Yen-Ming; Rao, Sambasiva P.; Cardoso, Angelo A.; Sallan, Stephen Earl; Nadler, Lee Marshall

    2011-01-01

    Despite exhibiting oncogenic events, patient's leukemia cells are responsive and dependent on signals from their malignant bone marrow (BM) microenvironment, which modulate their survival, cell cycle progression, trafficking and resistance to chemotherapy. Identification of the signaling pathways mediating this leukemia/microenvironment interplay is critical for the development of novel molecular targeted therapies. We observed that primary leukemia B-cell precursors aberrantly express recept...

  9. A proposal for the holographic correction of incoherent aberrations by tilted reference waves

    Röder, Falk, E-mail: Falk.Roeder@Triebenberg.de; Lubk, Axel

    2015-05-15

    The recently derived general transfer theory for off-axis electron holography provides a new approach for reconstructing the electron wave beyond the conventional sideband information limit. Limited ensemble coherence of the electron beam between object and reference area leads to an attenuation of spatial frequencies of the object exit wave in the presence of aberrations of the objective lens. Concerted tilts of the reference wave under the condition of an invariant object exit wave are proposed to diminish the aberration impact on spatial frequencies even beyond the sideband information limit allowing its transfer with maximum possible contrast. In addition to the theoretical considerations outlined in detail, an experimental proof-of-principle is presented. A fully controlled tilt of the reference wave, however, remains as a promising task for the future. The use of a hologram series with varying reference wave tilt is considered for linearly synthesizing an effective aperture for the transfer into the sideband with broader bandwidth compared to conventional off-axis electron holography allowing us to correct the incoherent aberrations in transmission electron microscopy. Furthermore, tilting a reference wave with respect to a plane wave is expected to be an alternative way for measuring the coherent and incoherent aberrations of a transmission electron microscope. The capability of tilting the reference wave is expected to be beneficial for improving the signal-to-noise ratio in dark-field off-axis electron holography as well. - Highlights: • We examine the use of tilted reference waves in off-axis electron holography. • Generalized holographic transfer theory reveals a selective filtering effect. • We propose the correction of incoherent aberrations by series acquisitions. • For a proof-of-principle, we employ a crystal for tilting the reference wave.

  10. A proposal for the holographic correction of incoherent aberrations by tilted reference waves

    The recently derived general transfer theory for off-axis electron holography provides a new approach for reconstructing the electron wave beyond the conventional sideband information limit. Limited ensemble coherence of the electron beam between object and reference area leads to an attenuation of spatial frequencies of the object exit wave in the presence of aberrations of the objective lens. Concerted tilts of the reference wave under the condition of an invariant object exit wave are proposed to diminish the aberration impact on spatial frequencies even beyond the sideband information limit allowing its transfer with maximum possible contrast. In addition to the theoretical considerations outlined in detail, an experimental proof-of-principle is presented. A fully controlled tilt of the reference wave, however, remains as a promising task for the future. The use of a hologram series with varying reference wave tilt is considered for linearly synthesizing an effective aperture for the transfer into the sideband with broader bandwidth compared to conventional off-axis electron holography allowing us to correct the incoherent aberrations in transmission electron microscopy. Furthermore, tilting a reference wave with respect to a plane wave is expected to be an alternative way for measuring the coherent and incoherent aberrations of a transmission electron microscope. The capability of tilting the reference wave is expected to be beneficial for improving the signal-to-noise ratio in dark-field off-axis electron holography as well. - Highlights: • We examine the use of tilted reference waves in off-axis electron holography. • Generalized holographic transfer theory reveals a selective filtering effect. • We propose the correction of incoherent aberrations by series acquisitions. • For a proof-of-principle, we employ a crystal for tilting the reference wave