WorldWideScience

Sample records for aberrant mitochondrial homeostasis

  1. Aberrant Mitochondrial Homeostasis in the Skeletal Muscle of Sedentary Older Adults

    Safdar, Adeel; Hamadeh, Mazen J.; Kaczor, Jan J.; Raha, Sandeep; deBeer, Justin; Mark A. Tarnopolsky

    2010-01-01

    The role of mitochondrial dysfunction and oxidative stress has been extensively characterized in the aetiology of sarcopenia (aging-associated loss of muscle mass) and muscle wasting as a result of muscle disuse. What remains less clear is whether the decline in skeletal muscle mitochondrial oxidative capacity is purely a function of the aging process or if the sedentary lifestyle of older adult subjects has confounded previous reports. The objective of the present study was to investigate if...

  2. MAVS maintains mitochondrial homeostasis via autophagy.

    Sun, Xiaofeng; Sun, Liwei; Zhao, Yuanyuan; Li, Ying; Lin, Wei; Chen, Dahua; Sun, Qinmiao

    2016-01-01

    Mitochondrial antiviral signalling protein (MAVS) acts as a critical adaptor protein to transduce antiviral signalling by physically interacting with activated RIG-I and MDA5 receptors. MAVS executes its functions at the outer membrane of mitochondria to regulate downstream antiviral signalling, indicating that the mitochondria provides a functional platform for innate antiviral signalling transduction. However, little is known about whether and how MAVS-mediated antiviral signalling contributes to mitochondrial homeostasis. Here we show that the activation of MAVS is sufficient to induce autophagic signalling, which may mediate the turnover of the damaged mitochondria. Importantly, we find MAVS directly interacts with LC3 through its LC3-binding motif 'YxxI', suggesting that MAVS might act as an autophagy receptor to mediate mitochondrial turnover upon excessive activation of RLR signalling. Furthermore, we provide evidence that both MAVS self-aggregation and its interaction with TRAF2/6 proteins are important for MAVS-mediated mitochondrial turnover. Collectively, our findings suggest that MAVS acts as a potential receptor for mitochondria-associated autophagic signalling to maintain mitochondrial homeostasis. PMID:27551434

  3. Aberrant water homeostasis detected by stable isotope analysis.

    Shannon P O'Grady

    Full Text Available While isotopes are frequently used as tracers in investigations of disease physiology (i.e., 14C labeled glucose, few studies have examined the impact that disease, and disease-related alterations in metabolism, may have on stable isotope ratios at natural abundance levels. The isotopic composition of body water is heavily influenced by water metabolism and dietary patterns and may provide a platform for disease detection. By utilizing a model of streptozotocin (STZ-induced diabetes as an index case of aberrant water homeostasis, we demonstrate that untreated diabetes mellitus results in distinct combinations, or signatures, of the hydrogen (delta2H and oxygen (delta18O isotope ratios in body water. Additionally, we show that the delta2H and delta18O values of body water are correlated with increased water flux, suggesting altered blood osmolality, due to hyperglycemia, as the mechanism behind this correlation. Further, we present a mathematical model describing the impact of water flux on the isotopic composition of body water and compare model predicted values with actual values. These data highlight the importance of factors such as water flux and energy expenditure on predictive models of body water and additionally provide a framework for using naturally occurring stable isotope ratios to monitor diseases that impact water homeostasis.

  4. Disrupted Renal Mitochondrial Homeostasis after Liver Transplantation in Rats.

    Qinlong Liu

    Full Text Available Suppressed mitochondrial biogenesis (MB contributes to acute kidney injury (AKI after many insults. AKI occurs frequently after liver transplantation (LT and increases mortality. This study investigated whether disrupted mitochondrial homeostasis plays a role in AKI after LT.Livers were explanted from Lewis rats and implanted after 18 h cold storage. Kidney and blood were collected 18 h after LT.In the kidney, oxidative phosphorylation (OXPHOS proteins ATP synthase-β and NADH dehydrogenase-3 decreased 44% and 81%, respectively, with marked reduction in associated mRNAs. Renal PGC-1α, the major regulator of MB, decreased 57% with lower mRNA and increased acetylation, indicating inhibited synthesis and suppressed activation. Mitochondrial transcription factor-A, which controls mtDNA replication and transcription, protein and mRNA decreased 66% and 68%, respectively, which was associated with 64% decreases in mtDNA. Mitochondrial fission proteins Drp-1 and Fis-1 and mitochondrial fusion protein mitofusin-1 all decreased markedly. In contrast, PTEN-induced putative kinase 1 and microtubule-associated protein 1A/1B-light chain 3 increased markedly after LT, indicating enhanced mitophagy. Concurrently, 18- and 13-fold increases in neutrophil gelatinase-associated lipocalin and cleaved caspase-3 occurred in renal tissue. Both serum creatinine and blood urea nitrogen increased >2 fold. Mild to moderate histological changes were observed in the kidney, including loss of brush border, vacuolization of tubular cells in the cortex, cast formation and necrosis in some proximal tubular cells. Finally, myeloperoxidase and ED-1 also increased, indicating inflammation.Suppression of MB, inhibition of mitochondrial fission/fusion and enhancement of mitophagy occur in the kidneys of recipients of liver grafts after long cold storage, which may contribute to the occurrence of AKI and increased mortality after LT.

  5. Mitochondrial DNA homeostasis is essential for nigrostriatal integrity.

    Tzoulis, Charalampos; Schwarzlmüller, Thomas; Biermann, Martin; Haugarvoll, Kristoffer; Bindoff, Laurence A

    2016-05-01

    Mitochondrial involvement in the pathogenesis of Parkinson's disease has been suggested by multiple studies, but the mechanisms involved remain unresolved. Here, we sought to identify which mitochondrial defects are associated with degeneration of the nigrostriatal system. Nigrostriatal integrity was assessed in vivo by dopamine transporter (DAT) imaging in twenty-one patients with mitochondrial disorders of different molecular aetiology including: maternally inherited mitochondrial DNA (mtDNA) point mutations, primary single mtDNA deletions, nuclear-encoded disorders of mtDNA replication and maintenance due to mutations in POLG or C10orf2 (Twinkle), and mutations in other nuclear mitochondrial genes including the mitochondrial aspartyl-tRNA synthetase (DARS2) and ADCK3 genes. Patients with mitochondrial disease were compared with twenty patients with Parkinson's disease and eighteen controls. Nigrostriatal degeneration occurred exclusively in patients with defective mtDNA replication and maintenance. In these patients, nigrostriatal degeneration was progressive and at least as severe as in patients with advanced Parkinson's disease. None of the patients with other mitochondrial defects showed evidence of nigral involvement. Our findings demonstrate that dopaminergic neurons of the substantia nigra are specifically vulnerable to defective mtDNA replication/repair or quality control and not to primary point mutations of mtDNA. These results support the hypothesis that accumulating somatic mtDNA damage plays an important role in neurodegeneration. PMID:26979109

  6. Oxygen Glucose Deprivation in Rat Hippocampal Slice Cultures Results in Alterations in Carnitine Homeostasis and Mitochondrial Dysfunction

    Thomas F. Rau; Qing Lu; Shruti Sharma; Xutong Sun; Gregory Leary; Beckman, Matthew L.; Yali Hou; Wainwright, Mark S; Michael Kavanaugh; Poulsen, David J.; Black, Stephen M.

    2012-01-01

    Mitochondrial dysfunction characterized by depolarization of mitochondrial membranes and the initiation of mitochondrial-mediated apoptosis are pathological responses to hypoxia-ischemia (HI) in the neonatal brain. Carnitine metabolism directly supports mitochondrial metabolism by shuttling long chain fatty acids across the inner mitochondrial membrane for beta-oxidation. Our previous studies have shown that HI disrupts carnitine homeostasis in neonatal rats and that L-carnitine can be neurop...

  7. Temperature homeostasis in mice lacking the p43 mitochondrial T3 receptor.

    Bertrand-Gaday, Christelle; Pessemesse, Laurence; Cabello, Gérard; Wrutniak-Cabello, Chantal; Casas, François

    2016-04-01

    Thyroid hormones and Thra gene play a key role in energy expenditure regulation, temperature homeostasis, and mitochondrial function. To decipher the function of the mitochondrial TRα receptor in these phenomena, we used mice lacking specifically the p43 mitochondrial T3 receptor. We found that these animals were hypermetabolic, hyperphagic, and displayed a down setting of the core body temperature. However, p43-/- animals do not present cold intolerance or defect of facultative thermogenesis. In addition, the mitochondrial function of BAT is slightly affected in the absence of p43. Our study, therefore, suggests a complementarity of action between the mitochondrial receptor and other proteins encoded by the Thra gene in the control of basal metabolism, facultative thermogenesis, and determination of the set point of temperature regulation. PMID:26970082

  8. Mitochondrial Morphology and Fundamental Parameters of the Mitochondrial Respiratory Chain Are Altered in Caenorhabditis elegans Strains Deficient in Mitochondrial Dynamics and Homeostasis Processes

    Luz, Anthony L.; Rooney, John P.; Kubik, Laura L.; Gonzalez, Claudia P.; Song, Dong Hoon; Meyer, Joel N.

    2015-01-01

    Mitochondrial dysfunction has been linked to myriad human diseases and toxicant exposures, highlighting the need for assays capable of rapidly assessing mitochondrial health in vivo. Here, using the Seahorse XFe24 Analyzer and the pharmacological inhibitors dicyclohexylcarbodiimide and oligomycin (ATP-synthase inhibitors), carbonyl cyanide 4-(trifluoromethoxy) phenylhydrazone (mitochondrial uncoupler) and sodium azide (cytochrome c oxidase inhibitor), we measured the fundamental parameters of mitochondrial respiratory chain function: basal oxygen consumption, ATP-linked respiration, maximal respiratory capacity, spare respiratory capacity and proton leak in the model organism Caenhorhabditis elegans. Since mutations in mitochondrial homeostasis genes cause mitochondrial dysfunction and have been linked to human disease, we measured mitochondrial respiratory function in mitochondrial fission (drp-1)-, fusion (fzo-1)-, mitophagy (pdr-1, pink-1)-, and electron transport chain complex III (isp-1)-deficient C. elegans. All showed altered function, but the nature of the alterations varied between the tested strains. We report increased basal oxygen consumption in drp-1; reduced maximal respiration in drp-1, fzo-1, and isp-1; reduced spare respiratory capacity in drp-1 and fzo-1; reduced proton leak in fzo-1 and isp-1; and increased proton leak in pink-1 nematodes. As mitochondrial morphology can play a role in mitochondrial energetics, we also quantified the mitochondrial aspect ratio for each mutant strain using a novel method, and for the first time report increased aspect ratios in pdr-1- and pink-1-deficient nematodes. PMID:26106885

  9. Mitochondrial genome regulates mitotic fidelity by maintaining centrosomal homeostasis

    Donthamsetty, Shashikiran; Brahmbhatt, Meera; Pannu, Vaishali; Rida, Padmashree CG; Ramarathinam, Sujatha; Ogden, Angela; Cheng, Alice; Singh, Keshav K.; Aneja, Ritu

    2014-01-01

    Centrosomes direct spindle morphogenesis to assemble a bipolar mitotic apparatus to enable error-free chromosome segregation and preclude chromosomal instability (CIN). Amplified centrosomes, a hallmark of cancer cells, set the stage for CIN, which underlies malignant transformation and evolution of aggressive phenotypes. Several studies report CIN and a tumorigenic and/or aggressive transformation in mitochondrial DNA (mtDNA)-depleted cells. Although several nuclear-encoded proteins are impl...

  10. Disturbed Flow Induces Autophagy, but Impairs Autophagic Flux to Perturb Mitochondrial Homeostasis

    Li, Rongsong; Jen, Nelson; Wu, Lan; Lee, Juhyun; Fang, Karen; Quigley, Katherine; Lee, Katherine; Wang, Sky; Zhou, Bill; Vergnes, Laurent; Chen, Yun-Ru; Li, Zhaoping; Reue, Karen; Ann, David K.; Hsiai, Tzung K.

    2015-01-01

    Aim: Temporal and spatial variations in shear stress are intimately linked with vascular metabolic effects. Autophagy is tightly regulated in intracellular bulk degradation/recycling system for maintaining cellular homeostasis. We postulated that disturbed flow modulates autophagy with an implication in mitochondrial superoxide (mtO2•−) production. Results: In the disturbed flow or oscillatory shear stress (OSS)-exposed aortic arch, we observed prominent staining of p62, a reverse marker of a...

  11. A putative mitochondrial calcium uniporter in A. fumigatus contributes to mitochondrial Ca(2+) homeostasis and stress responses.

    Song, Jinxing; Liu, Xiao; Zhai, Pengfei; Huang, Jingjing; Lu, Ling

    2016-09-01

    Ca(2+) uptake into mitochondria plays a central role in cell physiology by stimulating ATP production, shaping cytosolic Ca(2+) transients and regulating cell survival or death. Although this system has been studied extensively in mammalian cells, the physiological implications of Ca(2+) uptake into mitochondria in fungal cells are still unknown. In this study, a bi-directional best-hit BLASTP search revealed that the genome of Aspergillus fumigatus encodes a homolog of a putative mitochondrial Ca(2+) uniporter (MCU) and a mitochondrial carrier protein AGC1/MICU1 homolog. Both putative homologs are mitochondrially localized and required for the response to azole and oxidative stress such that the loss of either McuA or AgcA results in reduced susceptibility to azole and oxidative stress, suggesting a role in environmental stress adaptation. Overexpressing mcuA restores the azole-resistance phenotype of the ΔagcA strain to wild-type levels, but not vice versa, indicating McuA plays a dominant role during these stress responses. Using a mitochondrially targeted version of the calcium-sensitive photoprotein aequorin, we found that only mcuA deletion leads to dysfunctional [Ca(2+)]mt and [Ca(2+)]c homeostasis, suggesting that McuA, but not AgcA, contributes to Ca(2+) uptake into mitochondria. Further point-mutation experiments combined with extracellular Ca(2+) chelator treatment verified that two predicted Ca(2+)-binding sites in McuA are required for Ca(2+) uptake into mitochondria and stress responses through the regulation of [Ca(2+)]c homeostasis. PMID:27378202

  12. Mitochondrial ferritin in the regulation of brain iron homeostasis and neurodegenerative diseases

    Guofen eGao

    2014-02-01

    Full Text Available Mitochondrial ferritin (FtMt is a novel iron-storage protein in mitochondria. Evidences have shown that FtMt is structurally and functionally similar to the cytosolic H-chain ferritin. It protects mitochondria from iron-induced oxidative damage presumably through sequestration of potentially harmful excess free iron. It also participates in the regulation of iron distribution between cytosol and mitochondrial contents. Unlike the ubiquitously expressed H-ferritin, FtMt is mainly expressed in testis and brain, which suggests its tissue-related roles. FtMt is involved in pathogenesis of neurodegenerative diseases, as its increased expression has been observed in Alzheimer’s disease, restless legs syndrome and Friedreich’s ataxia. Studies from our laboratory showed that in Alzheimer’s disease, FtMt overexpression attenuated the β-amyloid induced neurotoxicity, which on the other hand increased significantly when FtMt expression was knocked down. It is also found that, by maintaining mitochondrial iron homeostasis, FtMt could prevent 6-hydroxydopamine induced dopaminergic cell damage in Parkinson’s disease. These recent findings on FtMt regarding its functions in regulation of brain iron homeostasis and its protective role in pathogenesis of neurodegenerative diseases are summarized and reviewed.

  13. Disturbed Flow Induces Autophagy, but Impairs Autophagic Flux to Perturb Mitochondrial Homeostasis

    Li, Rongsong; Jen, Nelson; Wu, Lan; Lee, Juhyun; Fang, Karen; Quigley, Katherine; Lee, Katherine; Wang, Sky; Zhou, Bill; Vergnes, Laurent; Chen, Yun-Ru; Li, Zhaoping; Reue, Karen; Ann, David K.

    2015-01-01

    Abstract Aim: Temporal and spatial variations in shear stress are intimately linked with vascular metabolic effects. Autophagy is tightly regulated in intracellular bulk degradation/recycling system for maintaining cellular homeostasis. We postulated that disturbed flow modulates autophagy with an implication in mitochondrial superoxide (mtO2•−) production. Results: In the disturbed flow or oscillatory shear stress (OSS)-exposed aortic arch, we observed prominent staining of p62, a reverse marker of autophagic flux, whereas in the pulsatile shear stress (PSS)-exposed descending aorta, p62 was attenuated. OSS significantly increased (i) microtubule-associated protein light chain 3 (LC3) II to I ratios in human aortic endothelial cells, (ii) autophagosome formation as quantified by green fluorescent protein (GFP)-LC3 dots per cell, and (iii) p62 protein levels, whereas manganese superoxide dismutase (MnSOD) overexpression by recombinant adenovirus, N-acetyl cysteine treatment, or c-Jun N-terminal kinase (JNK) inhibition reduced OSS-mediated LC3-II/LC3-I ratios and mitochondrial DNA damage. Introducing bafilomycin to Earle's balanced salt solution or to OSS condition incrementally increased both LC3-II/LC3-I ratios and p62 levels, implicating impaired autophagic flux. In the OSS-exposed aortic arch, both anti-phospho-JNK and anti-8-hydroxy-2′-deoxyguanosine (8-OHdG) staining for DNA damage were prominent, whereas in the PSS-exposed descending aorta, the staining was nearly absent. Knockdown of ATG5 with siRNA increased OSS-mediated mtO2•−, whereas starvation or rapamycin-induced autophagy reduced OSS-mediated mtO2•−, mitochondrial respiration, and complex II activity. Innovation: Disturbed flow-mediated oxidative stress and JNK activation induce autophagy. Conclusion: OSS impairs autophagic flux to interfere with mitochondrial homeostasis. Antioxid. Redox Signal. 23, 1207–1219. PMID:26120766

  14. Oxygen glucose deprivation in rat hippocampal slice cultures results in alterations in carnitine homeostasis and mitochondrial dysfunction.

    Thomas F Rau

    Full Text Available Mitochondrial dysfunction characterized by depolarization of mitochondrial membranes and the initiation of mitochondrial-mediated apoptosis are pathological responses to hypoxia-ischemia (HI in the neonatal brain. Carnitine metabolism directly supports mitochondrial metabolism by shuttling long chain fatty acids across the inner mitochondrial membrane for beta-oxidation. Our previous studies have shown that HI disrupts carnitine homeostasis in neonatal rats and that L-carnitine can be neuroprotective. Thus, this study was undertaken to elucidate the molecular mechanisms by which HI alters carnitine metabolism and to begin to elucidate the mechanism underlying the neuroprotective effect of L-carnitine (LCAR supplementation. Utilizing neonatal rat hippocampal slice cultures we found that oxygen glucose deprivation (OGD decreased the levels of free carnitines (FC and increased the acylcarnitine (AC: FC ratio. These changes in carnitine homeostasis correlated with decreases in the protein levels of carnitine palmitoyl transferase (CPT 1 and 2. LCAR supplementation prevented the decrease in CPT1 and CPT2, enhanced both FC and the AC∶FC ratio and increased slice culture metabolic viability, the mitochondrial membrane potential prior to OGD and prevented the subsequent loss of neurons during later stages of reperfusion through a reduction in apoptotic cell death. Finally, we found that LCAR supplementation preserved the structural integrity and synaptic transmission within the hippocampus after OGD. Thus, we conclude that LCAR supplementation preserves the key enzymes responsible for maintaining carnitine homeostasis and preserves both cell viability and synaptic transmission after OGD.

  15. Effects of aberrant Pax6 gene dosage on mouse corneal pathophysiology and corneal epithelial homeostasis.

    Richard L Mort

    Full Text Available Altered dosage of the transcription factor PAX6 causes multiple human eye pathophysiologies. PAX6⁺/⁻ heterozygotes suffer from aniridia and aniridia-related keratopathy (ARK, a corneal deterioration that probably involves a limbal epithelial stem cell (LESC deficiency. Heterozygous Pax6(+/Sey-Neu (Pax6⁺/⁻ mice recapitulate the human disease and are a good model of ARK. Corneal pathologies also occur in other mouse Pax6 mutants and in PAX77(Tg/- transgenics, which over-express Pax6 and model human PAX6 duplication.We used electron microscopy to investigate ocular defects in Pax6⁺/⁻ heterozygotes (low Pax6 levels and PAX77(Tg/- transgenics (high Pax6 levels. As well as the well-documented epithelial defects, aberrant Pax6 dosage had profound effects on the corneal stroma and endothelium in both genotypes, including cellular vacuolation, similar to that reported for human macular corneal dystrophy. We used mosaic expression of an X-linked LacZ transgene in X-inactivation mosaic female (XLacZ(Tg/- mice to investigate corneal epithelial maintenance by LESC clones in Pax6⁺/⁻ and PAX77(Tg/- mosaic mice. PAX77(Tg/- mosaics, over-expressing Pax6, produced normal corneal epithelial radial striped patterns (despite other corneal defects, suggesting that centripetal cell movement was unaffected. Moderately disrupted patterns in Pax6⁺/⁻ mosaics were corrected by introducing the PAX77 transgene (in Pax6⁺/⁻, PAX77(Tg/- mosaics. Pax6(Leca4/+, XLacZ(Tg/- mosaic mice (heterozygous for the Pax6(Leca4 missense mutation showed more severely disrupted mosaic patterns. Corrected corneal epithelial stripe numbers (an indirect estimate of active LESC clone numbers declined with age (between 15 and 30 weeks in wild-type XLacZ(Tg/- mosaics. In contrast, corrected stripe numbers were already low at 15 weeks in Pax6⁺/⁻ and PAX77(Tg/- mosaic corneas, suggesting Pax6 under- and over-expression both affect LESC clones.Pax6⁺/⁻ and PAX77(Tg

  16. PHGDH Expression Is Required for Mitochondrial Redox Homeostasis, Breast Cancer Stem Cell Maintenance, and Lung Metastasis.

    Samanta, Debangshu; Park, Youngrok; Andrabi, Shaida A; Shelton, Laura M; Gilkes, Daniele M; Semenza, Gregg L

    2016-08-01

    Intratumoral hypoxia stimulates enrichment of breast cancer stem cells (BCSC), which are critical for metastasis and patient mortality. Here we report a metabolic adaptation that is required for hypoxia-induced BCSC enrichment and metastasis. Hypoxia-inducible factors coordinately regulate expression of genes encoding phosphoglycerate dehydrogenase (PHGDH) and five downstream enzymes in the serine synthesis pathway and mitochondrial one-carbon (folate) cycle. RNAi-mediated silencing of PHGDH expression in both estrogen receptor-positive and negative breast cancer cells led to decreased NADPH levels, disturbed mitochondrial redox homeostasis, and increased apoptosis, which abrogated BCSC enrichment under hypoxic conditions. PHGDH-deficient cells exhibited increased oxidant levels and apoptosis, as well as loss of BCSC enrichment, in response to treatment with carboplatin or doxorubicin. PHGDH-deficient cells were relatively weakly tumorigenic and tumors that did form were deficient in BCSCs, abolishing metastatic capacity. Our findings highlight a role for PHGDH in the formation of secondary (recurrent or metastatic) tumors, with potential implications for therapeutic targeting of advanced cancers. Cancer Res; 76(15); 4430-42. ©2016 AACR. PMID:27280394

  17. Enhanced oxidative stress and aberrant mitochondrial biogenesis in human neuroblastoma SH-SY5Y cells during methamphetamine induced apoptosis

    Methamphetamine (METH) is an abused drug that may cause psychiatric and neurotoxic damage, including degeneration of monoaminergic terminals and apoptosis of non-monoaminergic cells in Brain. The cellular and molecular mechanisms underlying these METH-induced neurotoxic effects remain to be clarified. In this study, we performed a time course assessment to investigate the effects of METH on intracellular oxidative stress and mitochondrial alterations in a human dopaminergic neuroblastoma SH-SY5Y cell line. We characterized that METH induces a temporal sequence of several cellular events including, firstly, a decrease in mitochondrial membrane potential within 1 h of the METH treatment, secondly, an extensive decline in mitochondrial membrane potential and increase in the level of reactive oxygen species (ROS) after 8 h of the treatment, thirdly, an increase in mitochondrial mass after the drug treatment for 24 h, and finally, a decrease in mtDNA copy number and mitochondrial proteins per mitochondrion as well as the occurrence of apoptosis after 48 h of the treatment. Importantly, vitamin E attenuated the METH-induced increases in intracellular ROS level and mitochondrial mass, and prevented METH-induced cell death. Our observations suggest that enhanced oxidative stress and aberrant mitochondrial biogenesis may play critical roles in METH-induced neurotoxic effects

  18. Alteration of ROS Homeostasis and Decreased Lifespan in S. cerevisiae Elicited by Deletion of the Mitochondrial Translocator FLX1

    Teresa Anna Giancaspero

    2014-01-01

    Full Text Available This paper deals with the control exerted by the mitochondrial translocator FLX1, which catalyzes the movement of the redox cofactor FAD across the mitochondrial membrane, on the efficiency of ATP production, ROS homeostasis, and lifespan of S. cerevisiae. The deletion of the FLX1 gene resulted in respiration-deficient and small-colony phenotype accompanied by a significant ATP shortage and ROS unbalance in glycerol-grown cells. Moreover, the flx1Δ strain showed H2O2 hypersensitivity and decreased lifespan. The impaired biochemical phenotype found in the flx1Δ strain might be justified by an altered expression of the flavoprotein subunit of succinate dehydrogenase, a key enzyme in bioenergetics and cell regulation. A search for possible cis-acting consensus motifs in the regulatory region upstream SDH1-ORF revealed a dozen of upstream motifs that might respond to induced metabolic changes by altering the expression of Flx1p. Among these motifs, two are present in the regulatory region of genes encoding proteins involved in flavin homeostasis. This is the first evidence that the mitochondrial flavin cofactor status is involved in controlling the lifespan of yeasts, maybe by changing the cellular succinate level. This is not the only case in which the homeostasis of redox cofactors underlies complex phenotypical behaviours, as lifespan in yeasts.

  19. Alternative Oxidase: A Mitochondrial Respiratory Pathway to Maintain Metabolic and Signaling Homeostasis during Abiotic and Biotic Stress in Plants

    Greg C. Vanlerberghe

    2013-03-01

    Full Text Available Alternative oxidase (AOX is a non-energy conserving terminal oxidase in the plant mitochondrial electron transport chain. While respiratory carbon oxidation pathways, electron transport, and ATP turnover are tightly coupled processes, AOX provides a means to relax this coupling, thus providing a degree of metabolic homeostasis to carbon and energy metabolism. Beside their role in primary metabolism, plant mitochondria also act as “signaling organelles”, able to influence processes such as nuclear gene expression. AOX activity can control the level of potential mitochondrial signaling molecules such as superoxide, nitric oxide and important redox couples. In this way, AOX also provides a degree of signaling homeostasis to the organelle. Evidence suggests that AOX function in metabolic and signaling homeostasis is particularly important during stress. These include abiotic stresses such as low temperature, drought, and nutrient deficiency, as well as biotic stresses such as bacterial infection. This review provides an introduction to the genetic and biochemical control of AOX respiration, as well as providing generalized examples of how AOX activity can provide metabolic and signaling homeostasis. This review also examines abiotic and biotic stresses in which AOX respiration has been critically evaluated, and considers the overall role of AOX in growth and stress tolerance.

  20. Global Protein Oxidation Profiling Suggests Efficient Mitochondrial Proteome Homeostasis During Aging.

    Ramallo Guevara, Carina; Philipp, Oliver; Hamann, Andrea; Werner, Alexandra; Osiewacz, Heinz D; Rexroth, Sascha; Rögner, Matthias; Poetsch, Ansgar

    2016-05-01

    The free radical theory of aging is based on the idea that reactive oxygen species (ROS) may lead to the accumulation of age-related protein oxidation. Because themajority of cellular ROS is generated at the respiratory electron transport chain, this study focuses on the mitochondrial proteome of the aging model Podospora anserina as target for ROS-induced damage. To ensure the detection of even low abundant modified peptides, separation by long gradient nLC-ESI-MS/MS and an appropriate statistical workflow for iTRAQ quantification was developed. Artificial protein oxidation was minimized by establishing gel-free sample preparation in the presence of reducing and iron-chelating agents. This first large scale, oxidative modification-centric study for P. anserina allowed the comprehensive quantification of 22 different oxidative amino acid modifications, and notably the quantitative comparison of oxidized and nonoxidized protein species. In total 2341 proteins were quantified. For 746 both protein species (unmodified and oxidatively modified) were detected and the modification sites determined. The data revealed that methionine residues are preferably oxidized. Further prominent identified modifications in decreasing order of occurrence were carbonylation as well as formation of N-formylkynurenine and pyrrolidinone. Interestingly, for the majority of proteins a positive correlation of changes in protein amount and oxidative damage were noticed, and a general decrease in protein amounts at late age. However, it was discovered that few proteins changed in oxidative damage in accordance with former reports. Our data suggest that P. anserina is efficiently capable to counteract ROS-induced protein damage during aging as long as protein de novo synthesis is functioning, ultimately leading to an overall constant relationship between damaged and undamaged protein species. These findings contradict a massive increase in protein oxidation during aging and rather suggest a

  1. Loss of the SIN3 transcriptional corepressor results in aberrant mitochondrial function

    Hüttemann Maik

    2010-07-01

    Full Text Available Abstract Background SIN3 is a transcriptional repressor protein known to regulate many genes, including a number of those that encode mitochondrial components. Results By monitoring RNA levels, we find that loss of SIN3 in Drosophila cultured cells results in up-regulation of not only nuclear encoded mitochondrial genes, but also those encoded by the mitochondrial genome. The up-regulation of gene expression is accompanied by a perturbation in ATP levels in SIN3-deficient cells, suggesting that the changes in mitochondrial gene expression result in altered mitochondrial activity. In support of the hypothesis that SIN3 is necessary for normal mitochondrial function, yeast sin3 null mutants exhibit very poor growth on non-fermentable carbon sources and show lower levels of ATP and reduced respiration rates. Conclusions The findings that both yeast and Drosophila SIN3 affect mitochondrial activity suggest an evolutionarily conserved role for SIN3 in the control of cellular energy production.

  2. A γ-Secretase Independent Role for Presenilin in Calcium Homeostasis Impacts Mitochondrial Function and Morphology in Caenorhabditis elegans.

    Sarasija, Shaarika; Norman, Kenneth R

    2015-12-01

    Mutations in the presenilin (PSEN) encoding genes (PSEN1 and PSEN2) occur in most early onset familial Alzheimer's Disease. Despite the identification of the involvement of PSEN in Alzheimer's Disease (AD) ∼20 years ago, the underlying role of PSEN in AD is not fully understood. To gain insight into the biological function of PSEN, we investigated the role of the PSEN homolog SEL-12 in Caenorhabditis elegans. Using genetic, cell biological, and pharmacological approaches, we demonstrate that mutations in sel-12 result in defects in calcium homeostasis, leading to mitochondrial dysfunction. Moreover, consistent with mammalian PSEN, we provide evidence that SEL-12 has a critical role in mediating endoplasmic reticulum (ER) calcium release. Furthermore, we found that in SEL-12-deficient animals, calcium transfer from the ER to the mitochondria leads to fragmentation of the mitochondria and mitochondrial dysfunction. Additionally, we show that the impact that SEL-12 has on mitochondrial function is independent of its role in Notch signaling, γ-secretase proteolytic activity, and amyloid plaques. Our results reveal a critical role for PSEN in mediating mitochondrial function by regulating calcium transfer from the ER to the mitochondria. PMID:26500256

  3. Accelerated recovery of renal mitochondrial and tubule homeostasis with SIRT1/PGC-1α activation following ischemia–reperfusion injury

    Kidney ischemia–reperfusion (I/R) injury elicits cellular injury in the proximal tubule, and mitochondrial dysfunction is a pathological consequence of I/R. Promoting mitochondrial biogenesis (MB) as a repair mechanism after injury may offer a unique strategy to restore both mitochondrial and organ function. Rats subjected to bilateral renal pedicle ligation for 22 min were treated once daily with the SIRT1 activator SRT1720 (5 mg/kg) starting 24 h after reperfusion until 72 h–144 h. SIRT1 expression was elevated in the renal cortex of rats after I/R + vehicle treatment (IRV), but was associated with less nuclear localization. SIRT1 expression was even further augmented and nuclear localization was restored in the kidneys of rats after I/R + SRT1720 treatment (IRS). PGC-1α was elevated at 72 h–144 h in IRV and IRS kidneys; however, SRT1720 treatment induced deacetylation of PGC-1α, a marker of activation. Mitochondrial proteins ATP synthase β, COX I, and NDUFB8, as well as mitochondrial respiration, were diminished 24 h–144 h in IRV rats, but were partially or fully restored in IRS rats. Urinary kidney injury molecule-1 (KIM-1) was persistently elevated in both IRV and IRS rats; however, KIM-1 tissue expression was attenuated in IRS rats. Additionally, sustained loss of Na+,K+–ATPase expression and basolateral localization and elevated vimentin in IRV rats was normalized in IRS rats, suggesting restoration of a differentiated, polarized tubule epithelium. The results suggest that SRT1720 treatment expedited recovery of mitochondrial protein expression and function by enhancing MB, which was associated with faster proximal tubule repair. Targeting MB may offer unique therapeutic strategy following ischemic injury. - Highlights: • We examined recovery of mitochondrial and renal function after ischemia–reperfusion. • SRT1720 treatment after I/R induced mitochondrial biogenesis via SIRT1/PGC-1α. • Recovery of mitochondrial function was expedited

  4. Accelerated recovery of renal mitochondrial and tubule homeostasis with SIRT1/PGC-1α activation following ischemia–reperfusion injury

    Funk, Jason A., E-mail: funkj@musc.edu [Center for Cell Death, Injury, and Regeneration, Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, SC 29425 (United States); Schnellmann, Rick G., E-mail: schnell@musc.edu [Center for Cell Death, Injury, and Regeneration, Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, SC 29425 (United States); Ralph H. Johnson VA Medical Center, Charleston, SC 29401 (United States)

    2013-12-01

    Kidney ischemia–reperfusion (I/R) injury elicits cellular injury in the proximal tubule, and mitochondrial dysfunction is a pathological consequence of I/R. Promoting mitochondrial biogenesis (MB) as a repair mechanism after injury may offer a unique strategy to restore both mitochondrial and organ function. Rats subjected to bilateral renal pedicle ligation for 22 min were treated once daily with the SIRT1 activator SRT1720 (5 mg/kg) starting 24 h after reperfusion until 72 h–144 h. SIRT1 expression was elevated in the renal cortex of rats after I/R + vehicle treatment (IRV), but was associated with less nuclear localization. SIRT1 expression was even further augmented and nuclear localization was restored in the kidneys of rats after I/R + SRT1720 treatment (IRS). PGC-1α was elevated at 72 h–144 h in IRV and IRS kidneys; however, SRT1720 treatment induced deacetylation of PGC-1α, a marker of activation. Mitochondrial proteins ATP synthase β, COX I, and NDUFB8, as well as mitochondrial respiration, were diminished 24 h–144 h in IRV rats, but were partially or fully restored in IRS rats. Urinary kidney injury molecule-1 (KIM-1) was persistently elevated in both IRV and IRS rats; however, KIM-1 tissue expression was attenuated in IRS rats. Additionally, sustained loss of Na{sup +},K{sup +}–ATPase expression and basolateral localization and elevated vimentin in IRV rats was normalized in IRS rats, suggesting restoration of a differentiated, polarized tubule epithelium. The results suggest that SRT1720 treatment expedited recovery of mitochondrial protein expression and function by enhancing MB, which was associated with faster proximal tubule repair. Targeting MB may offer unique therapeutic strategy following ischemic injury. - Highlights: • We examined recovery of mitochondrial and renal function after ischemia–reperfusion. • SRT1720 treatment after I/R induced mitochondrial biogenesis via SIRT1/PGC-1α. • Recovery of mitochondrial function was

  5. Mitochondrial cytopathies.

    El-Hattab, Ayman W; Scaglia, Fernando

    2016-09-01

    Mitochondria are found in all nucleated human cells and perform a variety of essential functions, including the generation of cellular energy. Most of mitochondrial proteins are encoded by the nuclear DNA (nDNA) whereas a very small fraction is encoded by the mitochondrial DNA (mtDNA). Mutations in mtDNA or mitochondria-related nDNA genes can result in mitochondrial dysfunction which leads to a wide range of cellular perturbations including aberrant calcium homeostasis, excessive reactive oxygen species production, dysregulated apoptosis, and insufficient energy generation to meet the needs of various organs, particularly those with high energy demand. Impaired mitochondrial function in various tissues and organs results in the multi-organ manifestations of mitochondrial diseases including epilepsy, intellectual disability, skeletal and cardiac myopathies, hepatopathies, endocrinopathies, and nephropathies. Defects in nDNA genes can be inherited in an autosomal or X-linked manners, whereas, mtDNA is maternally inherited. Mitochondrial diseases can result from mutations of nDNA genes encoding subunits of the electron transport chain complexes or their assembly factors, proteins associated with the mitochondrial import or networking, mitochondrial translation factors, or proteins involved in mtDNA maintenance. MtDNA defects can be either point mutations or rearrangements. The diagnosis of mitochondrial disorders can be challenging in many cases and is based on clinical recognition, biochemical screening, histopathological studies, functional studies, and molecular genetic testing. Currently, there are no satisfactory therapies available for mitochondrial disorders that significantly alter the course of the disease. Therapeutic options include symptomatic treatment, cofactor supplementation, and exercise. PMID:26996063

  6. Chaperone-Mediated Autophagy and Mitochondrial Homeostasis in Parkinson’s Disease

    Ruixin Yang

    2016-01-01

    Full Text Available Parkinson’s disease (PD, a complex neurodegenerative disorder, is pathologically characterized by the formation of Lewy bodies and loss of dopaminergic neurons in the substantia nigra pars compacta (SNc. Mitochondrial dysfunction is considered to be one of the most important causative mechanisms. In addition, dysfunction of chaperone-mediated autophagy (CMA, one of the lysosomal proteolytic pathways, has been shown to play an important role in the pathogenesis of PD. An exciting and important development is recent finding that CMA and mitochondrial quality control may be linked. This review summarizes the studies revealing the link between autophagy and mitochondrial function. Discussions are focused on the connections between CMA and mitochondrial failure and on the role of MEF2D, a neuronal survival factor, in mediating the regulation of mitochondria in the context of CMA. These new findings highlight the need to further explore the possibility of targeting the MEF2D-mitochondria-CMA network in both understanding the PD pathogenesis and developing novel therapeutic strategies.

  7. The evolution of ERMIONE in mitochondrial biogenesis and lipid homeostasis: An evolutionary view from comparative cell biology.

    Wideman, Jeremy G; Muñoz-Gómez, Sergio A

    2016-08-01

    The ER-mitochondria organizing network (ERMIONE) in Saccharomyces cerevisiae is involved in maintaining mitochondrial morphology and lipid homeostasis. ERMES and MICOS are two scaffolding complexes of ERMIONE that contribute to these processes. ERMES is ancient but has been lost in several lineages including animals, plants, and SAR (stramenopiles, alveolates and rhizaria). On the other hand, MICOS is ancient and has remained present in all organisms bearing mitochondrial cristae. The ERMIONE precursor evolved in the α-proteobacterial ancestor of mitochondria which had the central subunit of MICOS, Mic60. The subsequent evolution of ERMIONE and its interactors in eukaryotes reflects the integrative co-evolution of mitochondria and their hosts and the adaptive paths that some lineages have followed in their specialization to certain environments. By approaching the ERMIONE from a perspective of comparative evolutionary cell biology, we hope to shed light on not only its evolutionary history, but also how ERMIONE components may function in organisms other than S. cerevisiae. This article is part of a Special Issue entitled: The cellular lipid landscape edited by Tim P. Levine and Anant K. Menon. PMID:26825688

  8. Mitochondrial dysfunction and defects in lipid homeostasis as therapeutic targets in neurodegeneration with brain iron accumulation

    Kinghorn, Kerri J.; Castillo-Quan, Jorge Iván

    2016-01-01

    ABSTRACT The PLA2G6 gene encodes a group VIA calcium independent phospholipase A2 (iPLA2β), which hydrolyses glycerophospholipids to release fatty acids and lysophospholipids. Mutations in PLA2G6 are associated with a number of neurodegenerative disorders including neurodegeneration with brain iron accumulation (NBIA), infantile neuroaxonal dystrophy (INAD), and dystonia parkinsonism, collectively known as PLA2G6-associated neurodegeneration (PLAN). Recently Kinghorn et al. demonstrated in Drosophila and PLA2G6 mutant fibroblasts that loss of normal PLA2G6 activity is associated with mitochondrial dysfunction and mitochondrial lipid peroxidation. Furthermore, they were able to show the beneficial effects of deuterated polyunsaturated fatty acids (D-PUFAs), which reduce lipid peroxidation. D-PUFAs were able to rescue the locomotor deficits of flies lacking the fly ortholog of PLA2G6 (iPLA2-VIA), as well as the mitochondrial abnormalities in PLA2G6 mutant fibroblasts. This work demonstrated that the iPLA2-VIA knockout fly is a useful organism to dissect the mechanisms of pathogenesis of PLAN, and that further investigation is required to determine the therapeutic potential of D-PUFAs in patients with PLA2G6 mutations. The fruit fly has also been used to study some of the other genetic causes of NBIA, and here we also describe what is known about the mechanisms of pathogenesis of these NBIA variants. Mitochondrial dysfunction, defects in lipid metabolism, as well as defective Coenzyme A (CoA) biosynthesis, have all been implicated in some genetic forms of NBIA, including PANK2, CoASY, C12orf19 and FA2H.

  9. BRG1 and BRM SWI/SNF ATPases redundantly maintain cardiomyocyte homeostasis by regulating cardiomyocyte mitophagy and mitochondrial dynamics in vivo.

    Bultman, Scott J; Holley, Darcy Wood; G de Ridder, Gustaaf; Pizzo, Salvatore V; Sidorova, Tatiana N; Murray, Katherine T; Jensen, Brian C; Wang, Zhongjing; Bevilacqua, Ariana; Chen, Xin; Quintana, Megan T; Tannu, Manasi; Rosson, Gary B; Pandya, Kumar; Willis, Monte S

    2016-01-01

    There has been an increasing recognition that mitochondrial perturbations play a central role in human heart failure. Mitochondrial networks, whose function is to maintain the regulation of mitochondrial biogenesis, autophagy ('mitophagy') and mitochondrial fusion/fission, are new potential therapeutic targets. Yet our understanding of the molecular underpinning of these processes is just emerging. We recently identified a role of the SWI/SNF ATP-dependent chromatin remodeling complexes in the metabolic homeostasis of the adult cardiomyocyte using cardiomyocyte-specific and inducible deletion of the SWI/SNF ATPases BRG1 and BRM in adult mice (Brg1/Brm double mutant mice). To build upon these observations in early altered metabolism, the present study looks at the subsequent alterations in mitochondrial quality control mechanisms in the impaired adult cardiomyocyte. We identified that Brg1/Brm double-mutant mice exhibited increased mitochondrial biogenesis, increases in 'mitophagy', and alterations in mitochondrial fission and fusion that led to small, fragmented mitochondria. Mechanistically, increases in the autophagy and mitophagy-regulated proteins Beclin1 and Bnip3 were identified, paralleling changes seen in human heart failure. Evidence for perturbed cardiac mitochondrial dynamics included decreased mitochondria size, reduced numbers of mitochondria, and an altered expression of genes regulating fusion (Mfn1, Opa1) and fission (Drp1). We also identified cardiac protein amyloid accumulation (aggregated fibrils) during disease progression along with an increase in pre-amyloid oligomers and an upregulated unfolded protein response including increased GRP78, CHOP, and IRE-1 signaling. Together, these findings described a role for BRG1 and BRM in mitochondrial quality control, by regulating mitochondrial number, mitophagy, and mitochondrial dynamics not previously recognized in the adult cardiomyocyte. As critical to the pathogenesis of heart failure, epigenetic

  10. Cytokine Dysregulation in MECP2- and CDKL5-Related Rett Syndrome: Relationships with Aberrant Redox Homeostasis, Inflammation, and ω-3 PUFAs

    Silvia Leoncini

    2015-01-01

    Full Text Available An involvement of the immune system has been suggested in Rett syndrome (RTT, a devastating neurodevelopmental disorder related to oxidative stress, and caused by a mutation in the methyl-CpG binding protein 2 gene (MECP2 or, more rarely, cyclin-dependent kinase-like 5 (CDKL5. To date, it is unclear whether both mutations may have an impact on the circulating cytokine patterns. In the present study, cytokines involved in the Th1-, Th2-, and T regulatory (T-reg response, as well as chemokines, were investigated in MECP2- (MECP2-RTT (n=16 and CDKL5-Rett syndrome (CDKL5-RTT (n=8, before and after ω-3 polyunsaturated fatty acids (PUFAs supplementation. A major cytokine dysregulation was evidenced in untreated RTT patients. In MECP2-RTT, a Th2-shifted balance was evidenced, whereas in CDKL5-RTT both Th1- and Th2-related cytokines (except for IL-4 were upregulated. In MECP2-RTT, decreased levels of IL-22 were observed, whereas increased IL-22 and T-reg cytokine levels were evidenced in CDKL5-RTT. Chemokines were unchanged. The cytokine dysregulation was proportional to clinical severity, inflammatory status, and redox imbalance. Omega-3 PUFAs partially counterbalanced cytokine changes, as well as aberrant redox homeostasis and the inflammatory status. RTT is associated with a subclinical immune dysregulation as the likely consequence of a defective inflammation regulatory signaling system.

  11. Markers of skeletal muscle mitochondrial function and lipid accumulation are moderately associated with the homeostasis model assessment index of insulin resistance in obese men.

    Imtiaz A Samjoo

    Full Text Available Lower skeletal muscle mitochondrial oxidative phosphorylation capacity (OXPHOS and intramyocellular lipid (IMCL accumulation have been implicated in the etiology of insulin resistance (IR in obesity. The purpose of this study was to examine the impact of endurance exercise on biochemical and morphological measures of IMCL and mitochondrial content, and their relationship to IR in obese individuals. We examined mitochondrial content (subunit protein abundance and maximal activity of electron transport chain enzymes, IMCL/mitochondrial morphology in both subsarcolemmal (SS and intermyofibrillar (IMF regions by transmission electron microscopy, and intracellular lipid metabolites (diacylglycerol and ceramide in vastus lateralis biopsies, as well as, the homeostasis model assessment index of IR (HOMA-IR prior to and following twelve weeks of an endurance exercise regimen in healthy age- and physical activity-matched lean and obese men. Obese men did not show evidence of mitochondrial OXPHOS dysfunction, disproportionate IMCL content in sub-cellular regions, or diacylglycerol/ceramide accretion despite marked IR vs. lean controls. Endurance exercise increased OXPHOS and mitochondrial size and density, but not number of individual mitochondrial fragments, with moderate improvements in HOMA-IR. Exercise reduced SS IMCL content (size, number and density, increased IMF IMCL content, while increasing IMCL/mitochondrial juxtaposition in both regions. HOMA-IR was inversely associated with SS (r = -0.34; P = 0.051 and IMF mitochondrial density (r = -0.29; P = 0.096, IMF IMCL/mitochondrial juxtaposition (r = -0.30; P = 0.086, and COXII (r = -0.32; P = 0.095 and COXIV protein abundance (r = -0.35; P = 0.052; while positively associated with SS IMCL size (r = 0.28; P = 0.119 and SS IMCL density (r = 0.25; P = 0.152. Our findings suggest that once physical activity and cardiorespiratory fitness have been

  12. Impaired mitochondrial Ca2+ homeostasis in respiratory chain-deficient cells but efficient compensation of energetic disadvantage by enhanced anaerobic glycolysis due to low ATP steady state levels

    Energy-producing pathways, adenine nucleotide levels, oxidative stress response and Ca2+ homeostasis were investigated in cybrid cells incorporating two pathogenic mitochondrial DNA point mutations, 3243A > G and 3302A > G in tRNALeu(UUR), as well as Rho0 cells and compared to their parental 143B osteosarcoma cell line. All cells suffering from a severe respiratory chain deficiency were able to proliferate as fast as controls. The major defect in oxidative phosphorylation was efficiently compensated by a rise in anaerobic glycolysis, so that the total ATP production rate was preserved. This enhancement of glycolysis was enabled by a considerable decrease of cellular total adenine nucleotide pools and a concomitant shift in the AMP + ADP/ATP ratios, while the energy charge potential was still in the normal range. Further important consequences were an increased production of superoxide which, however, was neither escorted by major changes in the antioxidative defence systems nor was it leading to substantial oxidative damage. Most interestingly, the lowered mitochondrial membrane potential led to a disturbed intramitochondrial calcium homeostasis, which most likely is a major pathomechanism in mitochondrial diseases

  13. Homeotic-like modification of stamens to petals is associated with aberrant mitochondrial gene expression in cytoplasmic male sterile Ogura Brassica juncea

    Gargi Meur; K. Gaikwad; S. R. Bhat; S. Prakash; P. B. Kirti

    2006-08-01

    We have previously reported correction of severe leaf chlorosis in the cytoplasmic male sterile Ogura (also called Ogu) Brassica juncea line carrying Ogura cytoplasm by plastid substitution via protoplast fusion. Two cybrids obtained from the fusion experiment, Og1 and Og2, were green and carried the plastid genome of B. juncea cv. RLM198. While Og1 displayed normal flower morphology comparable to that of its euplasmic B. juncea counterpart except for sterile anthers, Og2 retained homeotic-like floral modification of stamens to petal-like structures and several other floral deformities observed in the chlorotic (Ogu) B. juncea cv. RLM198 (or OgRLM). With respect to the mitochondrial genome, Og1 showed 81% genetic similarity to the fertile cultivar RLM while Og2 showed 93% similarity to OgRLM. In spite of recombination and rearrangements in the mitochondrial genomes in the cybrids, expression patterns of 10 out of 11 mitochondrial genes were similar in all the three CMS lines; the only exception was atp6, whose expression was altered. While Og1 showed normal atp6 transcript similar to that in RLM, in Og2 and OgRLM weak expression of a longer transcript was detected. These results suggest that the homeotic-like changes in floral patterning leading to petaloid stamens in Og2 and OgRLM may be associated with aberrant mitochondrial gene expression.

  14. PPAR-γ Regulates Carnitine Homeostasis and Mitochondrial Function in a Lamb Model of Increased Pulmonary Blood Flow

    Sharma, Shruti; Sun, Xutong; Rafikov, Ruslan; Kumar, Sanjiv; Hou, Yali; Oishi, Peter E.; Datar, Sanjeev A.; Raff, Gary; Fineman, Jeffrey R.; Black, Stephen M.

    2012-01-01

    Objective Carnitine homeostasis is disrupted in lambs with endothelial dysfunction secondary to increased pulmonary blood flow (Shunt). Our recent studies have also indicated that the disruption in carnitine homeostasis correlates with a decrease in PPAR-γ expression in Shunt lambs. Thus, this study was carried out to determine if there is a causal link between loss of PPAR-γ signaling and carnitine dysfunction, and whether the PPAR-γ agonist, rosiglitazone preserves carnitine homeostasis in ...

  15. Distinct types of protease systems are involved in homeostasis regulation of mitochondrial morphology via balanced fusion and fission.

    Saita, Shotaro; Ishihara, Takaya; Maeda, Maki; Iemura, Shun-Ichiro; Natsume, Tohru; Mihara, Katsuyoshi; Ishihara, Naotada

    2016-05-01

    Mitochondrial morphology is dynamically regulated by fusion and fission. Several GTPase proteins control fusion and fission, and posttranslational modifications of these proteins are important for the regulation. However, it has not been clarified how the fusion and fission is balanced. Here, we report the molecular mechanism to regulate mitochondrial morphology in mammalian cells. Ablation of the mitochondrial fission, by repression of Drp1 or Mff, or by over-expression of MiD49 or MiD51, results in a reduction in the fusion GTPase mitofusins (Mfn1 and Mfn2) in outer membrane and long form of OPA1 (L-OPA1) in inner membrane. RNAi- or CRISPR-induced ablation of Drp1 in HeLa cells enhanced the degradation of Mfns via the ubiquitin-proteasome system (UPS). We further found that UPS-related protein BAT3/BAG6, here we identified as Mfn2-interacting protein, was implicated in the turnover of Mfns in the absence of mitochondrial fission. Ablation of the mitochondrial fission also enhanced the proteolytic cleavage of L-OPA1 to soluble S-OPA1, and the OPA1 processing was reversed by inhibition of the inner membrane protease OMA1 independent on the mitochondrial membrane potential. Our findings showed that the distinct degradation systems of the mitochondrial fusion proteins in different locations are enhanced in response to the mitochondrial morphology. PMID:26935475

  16. SLC25A46 is required for mitochondrial lipid homeostasis and cristae maintenance and is responsible for Leigh syndrome.

    Janer, Alexandre; Prudent, Julien; Paupe, Vincent; Fahiminiya, Somayyeh; Majewski, Jacek; Sgarioto, Nicolas; Des Rosiers, Christine; Forest, Anik; Lin, Zhen-Yuan; Gingras, Anne-Claude; Mitchell, Grant; McBride, Heidi M; Shoubridge, Eric A

    2016-01-01

    Mitochondria form a dynamic network that responds to physiological signals and metabolic stresses by altering the balance between fusion and fission. Mitochondrial fusion is orchestrated by conserved GTPases MFN1/2 and OPA1, a process coordinated in yeast by Ugo1, a mitochondrial metabolite carrier family protein. We uncovered a homozygous missense mutation in SLC25A46, the mammalian orthologue of Ugo1, in a subject with Leigh syndrome. SLC25A46 is an integral outer membrane protein that interacts with MFN2, OPA1, and the mitochondrial contact site and cristae organizing system (MICOS) complex. The subject mutation destabilizes the protein, leading to mitochondrial hyperfusion, alterations in endoplasmic reticulum (ER) morphology, impaired cellular respiration, and premature cellular senescence. The MICOS complex is disrupted in subject fibroblasts, resulting in strikingly abnormal mitochondrial architecture, with markedly shortened cristae. SLC25A46 also interacts with the ER membrane protein complex EMC, and phospholipid composition is altered in subject mitochondria. These results show that SLC25A46 plays a role in a mitochondrial/ER pathway that facilitates lipid transfer, and link altered mitochondrial dynamics to early-onset neurodegenerative disease and cell fate decisions. PMID:27390132

  17. Barth Syndrome: From Mitochondrial Dysfunctions Associated with Aberrant Production of Reactive Oxygen Species to Pluripotent Stem Cell Studies.

    Saric, Ana; Andreau, Karine; Armand, Anne-Sophie; Møller, Ian M; Petit, Patrice X

    2015-01-01

    Mutations in the gene encoding the enzyme tafazzin, TAZ, cause Barth syndrome (BTHS). Individuals with this X-linked multisystem disorder present cardiomyopathy (CM) (often dilated), skeletal muscle weakness, neutropenia, growth retardation, and 3-methylglutaconic aciduria. Biopsies of the heart, liver and skeletal muscle of patients have revealed mitochondrial malformations and dysfunctions. It is the purpose of this review to summarize recent results of studies on various animal or cell models of Barth syndrome, which have characterized biochemically the strong cellular defects associated with TAZ mutations. Tafazzin is a mitochondrial phospholipidlysophospholipid transacylase that shuttles acyl groups between phospholipids and regulates the remodeling of cardiolipin (CL), a unique inner mitochondrial membrane phospholipid dimer consisting of two phosphatidyl residues linked by a glycerol bridge. After their biosynthesis, the acyl chains of CLs may be modified in remodeling processes involving up to three different enzymes. Their characteristic acyl chain composition depends on the function of tafazzin, although the enzyme itself surprisingly lacks acyl specificity. CLs are crucial for correct mitochondrial structure and function. In addition to their function in the basic mitochondrial function of ATP production, CLs play essential roles in cardiac function, apoptosis, autophagy, cell cycle regulation and Fe-S cluster biosynthesis. Recent developments in tafazzin research have provided strong insights into the link between mitochondrial dysfunction and the production of reactive oxygen species (ROS). An important tool has been the generation of BTHS-specific induced pluripotent stem cells (iPSCs) from BTHS patients. In a complementary approach, disease-specific mutations have been introduced into wild-type iPSC lines enabling direct comparison with isogenic controls. iPSC-derived cardiomyocytes were then characterized using biochemical and classical bioenergetic

  18. The Mitochondrial Metallochaperone SCO1 Is Required to Sustain Expression of the High-Affinity Copper Transporter CTR1 and Preserve Copper Homeostasis

    Christopher J. Hlynialuk

    2015-02-01

    Full Text Available Human SCO1 fulfills essential roles in cytochrome c oxidase (COX assembly and the regulation of copper (Cu homeostasis, yet it remains unclear why pathogenic mutations in this gene cause such clinically heterogeneous forms of disease. Here, we establish a Sco1 mouse model of human disease and show that ablation of Sco1 expression in the liver is lethal owing to severe COX and Cu deficiencies. We further demonstrate that the Cu deficiency is explained by a functional connection between SCO1 and CTR1, the high-affinity transporter that imports Cu into the cell. CTR1 is rapidly degraded in the absence of SCO1 protein, and we show that its levels are restored in Sco1−/− mouse embryonic fibroblasts upon inhibition of the proteasome. These data suggest that mitochondrial signaling through SCO1 provides a post-translational mechanism to regulate CTR1-dependent Cu import into the cell, and they further underpin the importance of mitochondria in cellular Cu homeostasis.

  19. AarF Domain Containing Kinase 3 (ADCK3 Mutant Cells Display Signs of Oxidative Stress, Defects in Mitochondrial Homeostasis and Lysosomal Accumulation.

    Jason K Cullen

    Full Text Available Autosomal recessive ataxias are a clinically diverse group of syndromes that in some cases are caused by mutations in genes with roles in the DNA damage response, transcriptional regulation or mitochondrial function. One of these ataxias, known as Autosomal Recessive Cerebellar Ataxia Type-2 (ARCA-2, also known as SCAR9/COQ10D4; OMIM: #612016, arises due to mutations in the ADCK3 gene. The product of this gene (ADCK3 is an atypical kinase that is thought to play a regulatory role in coenzyme Q10 (CoQ10 biosynthesis. Although much work has been performed on the S. cerevisiae orthologue of ADCK3, the cellular and biochemical role of its mammalian counterpart, and why mutations in this gene lead to human disease is poorly understood. Here, we demonstrate that ADCK3 localises to mitochondrial cristae and is targeted to this organelle via the presence of an N-terminal localisation signal. Consistent with a role in CoQ10 biosynthesis, ADCK3 deficiency decreased cellular CoQ10 content. In addition, endogenous ADCK3 was found to associate in vitro with recombinant Coq3, Coq5, Coq7 and Coq9, components of the CoQ10 biosynthetic machinery. Furthermore, cell lines derived from ARCA-2 patients display signs of oxidative stress, defects in mitochondrial homeostasis and increases in lysosomal content. Together, these data shed light on the possible molecular role of ADCK3 and provide insight into the cellular pathways affected in ARCA-2 patients.

  20. VAMP7 Regulates Autophagy to Maintain Mitochondrial Homeostasis and to Control Insulin Secretion in Pancreatic β-Cells.

    Aoyagi, Kyota; Ohara-Imaizumi, Mica; Itakura, Makoto; Torii, Seiji; Akimoto, Yoshihiro; Nishiwaki, Chiyono; Nakamichi, Yoko; Kishimoto, Takuma; Kawakami, Hayato; Harada, Akihiro; Takahashi, Masami; Nagamatsu, Shinya

    2016-06-01

    VAMP7 is a SNARE protein that mediates specific membrane fusions in intracellular trafficking and was recently reported to regulate autophagosome formation. However, its function in pancreatic β-cells is largely unknown. To elucidate the physiological role of VAMP7 in β-cells, we generated pancreatic β-cell-specific VAMP7 knockout (Vamp7(flox/Y);Cre) mice. VAMP7 deletion impaired glucose-stimulated ATP production and insulin secretion, though VAMP7 was not localized to insulin granules. VAMP7-deficient β-cells showed defective autophagosome formation and reduced mitochondrial function. p62/SQSTM1, a marker protein for defective autophagy, was selectively accumulated on mitochondria in VAMP7-deficient β-cells. These findings suggest that accumulation of dysfunctional mitochondria that are degraded by autophagy caused impairment of glucose-stimulated ATP production and insulin secretion in Vamp7(flox/Y);Cre β-cells. Feeding a high-fat diet to Vamp7(flox/Y);Cre mice exacerbated mitochondrial dysfunction, further decreased ATP production and insulin secretion, and consequently induced glucose intolerance. Moreover, we found upregulated VAMP7 expression in wild-type mice fed a high-fat diet and in db/db mice, a model for diabetes. Thus our data indicate that VAMP7 regulates autophagy to maintain mitochondrial quality and insulin secretion in response to pathological stress in β-cells. PMID:26953164

  1. Hepatic Mitochondrial Pyruvate Carrier 1 Is Required for Efficient Regulation of Gluconeogenesis and Whole-Body Glucose Homeostasis.

    Gray, Lawrence R; Sultana, Mst Rasheda; Rauckhorst, Adam J; Oonthonpan, Lalita; Tompkins, Sean C; Sharma, Arpit; Fu, Xiaorong; Miao, Ren; Pewa, Alvin D; Brown, Kathryn S; Lane, Erin E; Dohlman, Ashley; Zepeda-Orozco, Diana; Xie, Jianxin; Rutter, Jared; Norris, Andrew W; Cox, James E; Burgess, Shawn C; Potthoff, Matthew J; Taylor, Eric B

    2015-10-01

    Gluconeogenesis is critical for maintenance of euglycemia during fasting. Elevated gluconeogenesis during type 2 diabetes (T2D) contributes to chronic hyperglycemia. Pyruvate is a major gluconeogenic substrate and requires import into the mitochondrial matrix for channeling into gluconeogenesis. Here, we demonstrate that the mitochondrial pyruvate carrier (MPC) comprising the Mpc1 and Mpc2 proteins is required for efficient regulation of hepatic gluconeogenesis. Liver-specific deletion of Mpc1 abolished hepatic MPC activity and markedly decreased pyruvate-driven gluconeogenesis and TCA cycle flux. Loss of MPC activity induced adaptive utilization of glutamine and increased urea cycle activity. Diet-induced obesity increased hepatic MPC expression and activity. Constitutive Mpc1 deletion attenuated the development of hyperglycemia induced by a high-fat diet. Acute, virally mediated Mpc1 deletion after diet-induced obesity decreased hyperglycemia and improved glucose tolerance. We conclude that the MPC is required for efficient regulation of gluconeogenesis and that the MPC contributes to the elevated gluconeogenesis and hyperglycemia in T2D. PMID:26344103

  2. Chromosomal aberration

    Chromosomal aberrations are classified into two types, chromosome-type and chromatid-type. Chromosom-type aberrations include terminal deletion, dicentric, ring and interstitial deletion, and chromatid-type aberrations include achromatic lesion, chromatid deletion, isochromatid deletion and chromatid exchange. Clastogens which induce chromosomal aberration are divided into ''S-dependent'' agents and ''S-independent''. It might mean whether they can induce double strand breaks independent of the S phase or not. Double strand breaks may be the ultimate lesions to induce chromosomal aberrations. Caffeine added even in the G2 phase appeared to modify the frequency of chromatid aberrations induced by X-rays and mitomycin C. Those might suggest that the G2 phase involves in the chromatid aberration formation. The double strand breaks might be repaired by ''G2 repair system'', the error of which might yield breakage types of chromatid aberrations and the by-pass of which might yield chromatid exchanges. Chromosome-type aberrations might be formed in the G1 phase. (author)

  3. Altered Mitochondrial Dynamics and TBI Pathophysiology.

    Fischer, Tara D; Hylin, Michael J; Zhao, Jing; Moore, Anthony N; Waxham, M Neal; Dash, Pramod K

    2016-01-01

    Mitochondrial function is intimately linked to cellular survival, growth, and death. Mitochondria not only generate ATP from oxidative phosphorylation, but also mediate intracellular calcium buffering, generation of reactive oxygen species (ROS), and apoptosis. Electron leakage from the electron transport chain, especially from damaged or depolarized mitochondria, can generate excess free radicals that damage cellular proteins, DNA, and lipids. Furthermore, mitochondrial damage releases pro-apoptotic factors to initiate cell death. Previous studies have reported that traumatic brain injury (TBI) reduces mitochondrial respiration, enhances production of ROS, and triggers apoptotic cell death, suggesting a prominent role of mitochondria in TBI pathophysiology. Mitochondria maintain cellular energy homeostasis and health via balanced processes of fusion and fission, continuously dividing and fusing to form an interconnected network throughout the cell. An imbalance of these processes, particularly an excess of fission, can be detrimental to mitochondrial function, causing decreased respiration, ROS production, and apoptosis. Mitochondrial fission is regulated by the cytosolic GTPase, dynamin-related protein 1 (Drp1), which translocates to the mitochondrial outer membrane (MOM) to initiate fission. Aberrant Drp1 activity has been linked to excessive mitochondrial fission and neurodegeneration. Measurement of Drp1 levels in purified hippocampal mitochondria showed an increase in TBI animals as compared to sham controls. Analysis of cryo-electron micrographs of these mitochondria also showed that TBI caused an initial increase in the length of hippocampal mitochondria at 24 h post-injury, followed by a significant decrease in length at 72 h. Post-TBI administration of Mitochondrial division inhibitor-1 (Mdivi-1), a pharmacological inhibitor of Drp1, prevented this decrease in mitochondria length. Mdivi-1 treatment also reduced the loss of newborn neurons in the

  4. Altered Mitochondrial Dynamics and TBI Pathophysiology

    Tara Diane Fischer

    2016-03-01

    Full Text Available Mitochondrial function is intimately linked to cellular survival, growth, and death. Mitochondria not only generate ATP from oxidative phosphorylation, but also mediate intracellular calcium buffering, generation of reactive oxygen species (ROS, and apoptosis. Electron leakage from the electron transport chain, especially from damaged or depolarized mitochondria, can generate excess free radicals that damage cellular proteins, DNA, and lipids. Furthermore, mitochondrial damage releases pro-apoptotic factors to initiate cell death. Previous studies have reported that traumatic brain injury (TBI reduces mitochondrial respiration, enhances production of ROS, and triggers apoptotic cell death, suggesting a prominent role of mitochondria in TBI pathophysiology. Mitochondria maintain cellular energy homeostasis and health via balanced processes of fusion and fission, continuously dividing and fusing to form an interconnected network throughout the cell. An imbalance of these processes, particularly an excess of fission, can be detrimental to mitochondrial function, causing decreased respiration, ROS production, and apoptosis. Mitochondrial fission is regulated by the cytosolic GTPase, dynamin-related protein 1 (Drp1, which translocates to the mitochondrial outer membrane to initiate fission. Aberrant Drp1 activity has been linked to excessive mitochondrial fission and neurodegeneration. Measurement of Drp1 levels in purified hippocampal mitochondria showed an increase in TBI animals as compared to sham controls. Analysis of cryo-electron micrographs of these mitochondria also showed that TBI caused an initial increase in the length of hippocampal mitochondria at 24 hours post-injury, followed by a significant decrease in length at 72 hours. Post-TBI administration of Mdivi-1, a pharmacological inhibitor of Drp1, prevented this decrease in mitochondria length. Mdivi-1 treatment also reduced the loss of newborn neurons in the hippocampus and improved

  5. Hypomyelinating leukodystrophy-associated missense mutation in HSPD1 blunts mitochondrial dynamics

    Miyamoto, Yuki [Department of Pharmacology, National Research Institute for Child Health and Development, Setagaya, Tokyo 157-8535 (Japan); Eguchi, Takahiro [The Institute of Medical Science, The University of Tokyo, Minato, Tokyo 108-8639 (Japan); Kawahara, Kazuko [Department of Pharmacology, National Research Institute for Child Health and Development, Setagaya, Tokyo 157-8535 (Japan); Hasegawa, Nanami [Department of Pharmacology, National Research Institute for Child Health and Development, Setagaya, Tokyo 157-8535 (Japan); Faculty of Pharmacy, Keio University, Minato, Tokyo 105-8512 (Japan); Nakamura, Kazuaki [Department of Pharmacology, National Research Institute for Child Health and Development, Setagaya, Tokyo 157-8535 (Japan); Funakoshi-Tago, Megumi [Faculty of Pharmacy, Keio University, Minato, Tokyo 105-8512 (Japan); Tanoue, Akito [Department of Pharmacology, National Research Institute for Child Health and Development, Setagaya, Tokyo 157-8535 (Japan); Tamura, Hiroomi [Faculty of Pharmacy, Keio University, Minato, Tokyo 105-8512 (Japan); Yamauchi, Junji, E-mail: yamauchi-j@ncchd.go.jp [Department of Pharmacology, National Research Institute for Child Health and Development, Setagaya, Tokyo 157-8535 (Japan); Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo, Tokyo 113-8510 (Japan)

    2015-07-03

    Myelin-forming glial cells undergo dynamic morphological changes in order to produce mature myelin sheaths with multiple layers. In the central nervous system (CNS), oligodendrocytes differentiate to insulate neuronal axons with myelin sheaths. Myelin sheaths play a key role in homeostasis of the nervous system, but their related disorders lead not only to dismyelination and repeated demyelination but also to severe neuropathies. Hereditary hypomyelinating leukodystrophies (HLDs) are a group of such diseases affecting oligodendrocytes and are often caused by missense mutations of the respective responsible genes. Despite increasing identification of gene mutations through advanced nucleotide sequencing technology, studies on the relationships between gene mutations and their effects on cellular and subcellular aberrance have not followed at the same rapid pace. In this study, we report that an HLD4-associated (Asp-29-to-Gly) mutant of mitochondrial heat shock 60-kDa protein 1 (HSPD1) causes short-length morphologies and increases the numbers of mitochondria due to their aberrant fission and fusion cycles. In experiments using a fluorescent dye probe, this mutation decreases the mitochondrial membrane potential. Also, mitochondria accumulate in perinuclear regions. HLD4-associated HSPD1 mutant blunts mitochondrial dynamics, probably resulting in oligodendrocyte malfunction. This study constitutes a first finding concerning the relationship between disease-associated HSPD1 mutation and mitochondrial dynamics, which may be similar to the relationship between another disease-associated HSPD1 mutation (MitCHAP-60 disease) and aberrant mitochondrial dynamics. - Highlights: • The HLD4 mutant of HSPD1 decreases mitochondrial fission frequency. • The HLD4 mutant decreases mitochondrial fusion frequency. • Mitochondria harboring the HLD4 mutant exhibit slow motility. • The HLD4 mutant of HSPD1 decreases mitochondrial membrane potential. • HLD4-related diseases may

  6. Hypomyelinating leukodystrophy-associated missense mutation in HSPD1 blunts mitochondrial dynamics

    Myelin-forming glial cells undergo dynamic morphological changes in order to produce mature myelin sheaths with multiple layers. In the central nervous system (CNS), oligodendrocytes differentiate to insulate neuronal axons with myelin sheaths. Myelin sheaths play a key role in homeostasis of the nervous system, but their related disorders lead not only to dismyelination and repeated demyelination but also to severe neuropathies. Hereditary hypomyelinating leukodystrophies (HLDs) are a group of such diseases affecting oligodendrocytes and are often caused by missense mutations of the respective responsible genes. Despite increasing identification of gene mutations through advanced nucleotide sequencing technology, studies on the relationships between gene mutations and their effects on cellular and subcellular aberrance have not followed at the same rapid pace. In this study, we report that an HLD4-associated (Asp-29-to-Gly) mutant of mitochondrial heat shock 60-kDa protein 1 (HSPD1) causes short-length morphologies and increases the numbers of mitochondria due to their aberrant fission and fusion cycles. In experiments using a fluorescent dye probe, this mutation decreases the mitochondrial membrane potential. Also, mitochondria accumulate in perinuclear regions. HLD4-associated HSPD1 mutant blunts mitochondrial dynamics, probably resulting in oligodendrocyte malfunction. This study constitutes a first finding concerning the relationship between disease-associated HSPD1 mutation and mitochondrial dynamics, which may be similar to the relationship between another disease-associated HSPD1 mutation (MitCHAP-60 disease) and aberrant mitochondrial dynamics. - Highlights: • The HLD4 mutant of HSPD1 decreases mitochondrial fission frequency. • The HLD4 mutant decreases mitochondrial fusion frequency. • Mitochondria harboring the HLD4 mutant exhibit slow motility. • The HLD4 mutant of HSPD1 decreases mitochondrial membrane potential. • HLD4-related diseases may

  7. High prevalence of impaired glucose homeostasis and myopathy in asymptomatic and oligosymptomatic 3243A>G mitochondrial DNA mutation-positive subjects

    Frederiksen, Anja Lisbeth; Jeppesen, Tina Dysgaard; Vissing, John;

    2009-01-01

    INTRODUCTION: The point mutation of 3243A>G mtDNA is the most frequent cause of mitochondrial diabetes, often presenting as the syndrome maternally inherited diabetes and deafness (MIDD). The mutation may also cause myopathy, ataxia, strokes, ophthalmoplegia, epilepsy, and cardiomyopathy in various...

  8. Optical Aberrations and Wavefront

    Nihat Polat

    2014-08-01

    Full Text Available The deviation of light to create normal retinal image in the optical system is called aberration. Aberrations are divided two subgroup: low-order aberrations (defocus: spherical and cylindrical refractive errors and high-order aberrations (coma, spherical, trefoil, tetrafoil, quadrifoil, pentafoil, secondary astigmatism. Aberrations increase with aging. Spherical aberrations are compensated by positive corneal and negative lenticular spherical aberrations in youth. Total aberrations are elevated by positive corneal and positive lenticular spherical aberrations in elderly. In this study, we aimed to analyze the basic terms regarding optic aberrations which have gained significance recently. (Turk J Ophthalmol 2014; 44: 306-11

  9. High prevalence of impaired glucose homeostasis and myopathy in asymptomatic and oligosymptomatic 3243A>G mitochondrial DNA mutation-positive subjects

    Frederiksen, A.L.; Jeppesen, T.D.; Vissing, J.;

    2009-01-01

    INTRODUCTION: The point mutation of 3243A>G mtDNA is the most frequent cause of mitochondrial diabetes, often presenting as the syndrome maternally inherited diabetes and deafness (MIDD). The mutation may also cause myopathy, ataxia, strokes, ophthalmoplegia, epilepsy, and cardiomyopathy in various...... healthy controls were subjected to an oral glucose tolerance test. Twenty-six adult 3243A>G carriers with unknown myopathy status and 17 healthy controls had a maximal cycle test and a muscle biopsy performed. The mutation loads were quantified in blood and muscle biopsies and correlated to the clinical...

  10. Osmotic Homeostasis

    Danziger, John; Zeidel, Mark L.

    2014-01-01

    Alterations in water homeostasis can disturb cell size and function. Although most cells can internally regulate cell volume in response to osmolar stress, neurons are particularly at risk given a combination of complex cell function and space restriction within the calvarium. Thus, regulating water balance is fundamental to survival. Through specialized neuronal “osmoreceptors” that sense changes in plasma osmolality, vasopressin release and thirst are titrated in order to achieve water bala...

  11. Hepatitis B virus disrupts mitochondrial dynamics: induces fission and mitophagy to attenuate apoptosis.

    Seong-Jun Kim

    Full Text Available Human hepatitis B virus (HBV causes chronic hepatitis and is associated with the development of hepatocellular carcinoma. HBV infection alters mitochondrial metabolism. The selective removal of damaged mitochondria is essential for the maintenance of mitochondrial and cellular homeostasis. Here, we report that HBV shifts the balance of mitochondrial dynamics toward fission and mitophagy to attenuate the virus-induced apoptosis. HBV induced perinuclear clustering of mitochondria and triggered mitochondrial translocation of the dynamin-related protein (Drp1 by stimulating its phosphorylation at Ser616, leading to mitochondrial fission. HBV also stimulated the gene expression of Parkin, PINK1, and LC3B and induced Parkin recruitment to the mitochondria. Upon translocation to mitochondria, Parkin, an E3 ubiquitin ligase, underwent self-ubiquitination and facilitated the ubiquitination and degradation of its substrate Mitofusin 2 (Mfn2, a mediator of mitochondrial fusion. In addition to conventional immunofluorescence, a sensitive dual fluorescence reporter expressing mito-mRFP-EGFP fused in-frame to a mitochondrial targeting sequence was employed to observe the completion of the mitophagic process by delivery of the engulfed mitochondria to lysosomes for degradation. Furthermore, we demonstrate that viral HBx protein plays a central role in promoting aberrant mitochondrial dynamics either when expressed alone or in the context of viral genome. Perturbing mitophagy by silencing Parkin led to enhanced apoptotic signaling, suggesting that HBV-induced mitochondrial fission and mitophagy promote cell survival and possibly viral persistence. Altered mitochondrial dynamics associated with HBV infection may contribute to mitochondrial injury and liver disease pathogenesis.

  12. Preventing mitochondrial fission impairs mitochondrial function and leads to loss of mitochondrial DNA.

    Philippe A Parone

    Full Text Available Mitochondria form a highly dynamic tubular network, the morphology of which is regulated by frequent fission and fusion events. However, the role of mitochondrial fission in homeostasis of the organelle is still unknown. Here we report that preventing mitochondrial fission, by down-regulating expression of Drp1 in mammalian cells leads to a loss of mitochondrial DNA and a decrease of mitochondrial respiration coupled to an increase in the levels of cellular reactive oxygen species (ROS. At the cellular level, mitochondrial dysfunction resulting from the lack of fission leads to a drop in the levels of cellular ATP, an inhibition of cell proliferation and an increase in autophagy. In conclusion, we propose that mitochondrial fission is required for preservation of mitochondrial function and thereby for maintenance of cellular homeostasis.

  13. Formation and Regulation of Mitochondrial Membranes

    Laila Cigana Schenkel

    2014-01-01

    Full Text Available Mitochondrial membrane phospholipids are essential for the mitochondrial architecture, the activity of respiratory proteins, and the transport of proteins into the mitochondria. The accumulation of phospholipids within mitochondria depends on a coordinate synthesis, degradation, and trafficking of phospholipids between the endoplasmic reticulum (ER and mitochondria as well as intramitochondrial lipid trafficking. Several studies highlight the contribution of dietary fatty acids to the remodeling of phospholipids and mitochondrial membrane homeostasis. Understanding the role of phospholipids in the mitochondrial membrane and their metabolism will shed light on the molecular mechanisms involved in the regulation of mitochondrial function and in the mitochondrial-related diseases.

  14. Aberration Corrected Emittance Exchange

    Nanni, Emilio A

    2015-01-01

    Full exploitation of emittance exchange (EEX) requires aberration-free performance of a complex imaging system including active radio-frequency (RF) elements which can add temporal distortions. We investigate the performance of an EEX line where the exchange occurs between two dimensions with normalized emittances which differ by orders of magnitude. The transverse emittance is exchanged into the longitudinal dimension using a double dog-leg emittance exchange setup with a 5 cell RF deflector cavity. Aberration correction is performed on the four most dominant aberrations. These include temporal aberrations that are corrected with higher order magnetic optical elements located where longitudinal and transverse emittance are coupled. We demonstrate aberration-free performance of emittances differing by 4 orders of magnitude, i.e. an initial transverse emittance of $\\epsilon_x=1$ pm-rad is exchanged with a longitudinal emittance of $\\epsilon_z=10$ nm-rad.

  15. A mitochondrially targeted compound delays aging in yeast through a mechanism linking mitochondrial membrane lipid metabolism to mitochondrial redox biology

    Michelle T. Burstein

    2014-01-01

    Full Text Available A recent study revealed a mechanism of delaying aging in yeast by a natural compound which specifically impacts mitochondrial redox processes. In this mechanism, exogenously added lithocholic bile acid enters yeast cells, accumulates mainly in the inner mitochondrial membrane, and elicits an age-related remodeling of phospholipid synthesis and movement within both mitochondrial membranes. Such remodeling of mitochondrial phospholipid dynamics progresses with the chronological age of a yeast cell and ultimately causes significant changes in mitochondrial membrane lipidome. These changes in the composition of membrane phospholipids alter mitochondrial abundance and morphology, thereby triggering changes in the age-related chronology of such longevity-defining redox processes as mitochondrial respiration, the maintenance of mitochondrial membrane potential, the preservation of cellular homeostasis of mitochondrially produced reactive oxygen species, and the coupling of electron transport to ATP synthesis.

  16. Mitochondrial Stress: A Bridge between Mitochondrial Dysfunction and Metabolic Diseases?

    Hu, Fang; Liu, Feng

    2011-01-01

    Under pathophysiological conditions such as obesity, excessive oxidation of nutrients may induce mitochondrial stress, leading to mitochondrial unfolded protein response (UPRmt) and initiation of a retrograde stress signaling pathway. Defects in the UPRmt and the retrograde signaling pathways may disrupt the integrity and homeostasis of the mitochondria, resulting endoplasmic reticulum stress and insulin resistance. Improving the capacity of mitochondria to reduce stress may be an effective a...

  17. Mitochondrial transplantation for therapeutic use

    McCully, James Donald; Levitsky, Sidney; del Nido, Pedro J.; Cowan, Douglas Burr

    2016-01-01

    Mitochondria play a key role in the homeostasis of the vast majority of the body’s cells. In the myocardium where mitochondria constitute 30 % of the total myocardial cell volume, temporary attenuation or obstruction of blood flow and as a result oxygen delivery to myocardial cells (ischemia) severely alters mitochondrial structure and function. These alterations in mitochondrial structure and function occur during ischemia and continue after blood flow and oxygen delivery to the myocardium i...

  18. Mitochondrial Dysfunction: The Road to Alpha-Synuclein Oligomerization in PD

    A. R. Esteves

    2011-01-01

    Full Text Available While the etiology of Parkinson's disease remains largely elusive, there is accumulating evidence suggesting that mitochondrial dysfunction occurs prior to the onset of symptoms in Parkinson's disease. Mitochondria are remarkably primed to play a vital role in neuronal cell survival since they are key regulators of energy metabolism (as ATP producers, of intracellular calcium homeostasis, of NAD+/NADH ratio, and of endogenous reactive oxygen species production and programmed cell death. In this paper, we focus on mitochondrial dysfunction-mediated alpha-synuclein aggregation. We highlight some of the findings that provide proof of evidence for a mitochondrial metabolism control in Parkinson's disease, namely, mitochondrial regulation of microtubule-dependent cellular traffic and autophagic lysosomal pathway. The knowledge that microtubule alterations may lead to autophagic deficiency and may compromise the cellular degradation mechanisms that culminate in the progressive accumulation of aberrant protein aggregates shields new insights to the way we address Parkinson's disease. In line with this knowledge, an innovative window for new therapeutic strategies aimed to restore microtubule network may be unlocked.

  19. Polyethylenimine architecture-dependent metabolic imprints and perturbation of cellular redox homeostasis

    Hall, Arnaldur; Parhamifar, Ladan; Lange, Marina Krarup;

    2015-01-01

    demonstrate that the central mechanisms of PEI architecture- and size-dependent perturbations of integrated cellular metabolomics involve destabilization of plasma membrane and mitochondrial membranes with consequences on mitochondrial oxidative phosphorylation (OXPHOS), glycolytic flux and redox homeostasis...... branched architectures caused a greater lactate dehydrogenase (LDH) and ATP depletion, activated AMP kinase (AMPK) and disturbed redox homeostasis through diminished availability of nicotinamide adenine dinucleotide phosphate (NADPH), reduced antioxidant capacity of glutathione (GSH) and increased burden...

  20. The tRNA(Gly) T10003C mutation in mitochondrial haplogroup M11b in a Chinese family with diabetes decreases the steady-state level of tRNA(Gly), increases aberrant reactive oxygen species production, and reduces mitochondrial membrane potential.

    Li, Wei; Wen, Chaowei; Li, Weixing; Wang, Hailing; Guan, Xiaomin; Zhang, Wanlin; Ye, Wei; Lu, Jianxin

    2015-10-01

    Mitochondrial diabetes originates mainly from mutations located in maternally transmitted, mitochondrial tRNA-coding genes. In a genetic screening program of type 2 diabetes conducted with a Chinese Han population, we found one family with suggestive maternally transmitted diabetes. The proband's mitochondrial genome was analyzed using DNA sequencing. Total 42 known nucleoside changes and 1 novel variant were identified, and the entire mitochondrial DNA sequence was assigned to haplogroup M11b. Phylogenetic analysis showed that a homoplasmic mutation, 10003T>C transition, occurred at the highly conserved site in the gene encoding tRNA(Gly). Using a transmitochondrial cybrid cell line harboring this mutation, we observed that the steady-state level of tRNA(Gly) significantly affected and the amount of tRNA(Gly) decreased by 97%, production of reactive oxygen species was enhanced, and mitochondrial membrane potential, mtDNA copy number and cellular oxygen consumption rate were remarkably decreased compared with wild-type cybrid cells. The homoplasmic 10003T>C mutation in the mitochondrial tRNA(Gly) gene suggested to be as a pathogenesis-related mutation which might contribute to the maternal inherited diabetes in the Han Chinese family. PMID:26134044

  1. Homeostasis in anorexia nervosa

    Södersten, Per; Bergh, Cecilia; Zandian, Modjtaba; Ioakimidis, Ioannis

    2014-01-01

    Brainstem and hypothalamic “orexigenic/anorexigenic” networks are thought to maintain body weight homeostasis in response to hormonal and metabolic feedback from peripheral sites. This approach has not been successful in managing over- and underweight patients. It is suggested that concept of homeostasis has been misinterpreted; rather than exerting control, the brain permits eating in proportion to the amount of physical activity necessary to obtain food. In support, animal experiments have ...

  2. Homeostasis in anorexia nervosa

    Per eSodersten; Cecilia eBergh; Modjtaba eZandian; Ioannis eIoakimidis

    2014-01-01

    Brainstem and hypothalamic orexigenic/anorexigenic networks are thought to maintain body weight homeostasis in response to hormonal and metabolic feedback from peripheral sites. This approach has not been successful in managing over- and underweight patients. It is suggested that concept of homeostasis has been misinterpreted; rather than exerting control, the brain permits eating in proportion to the amount of physical activity necessary to obtain food. In support, animal experiments have sh...

  3. NH2-truncated human tau induces deregulated mitophagy in neurons by aberrant recruitment of Parkin and UCHL-1: implications in Alzheimer's disease.

    Corsetti, V; Florenzano, F; Atlante, A; Bobba, A; Ciotti, M T; Natale, F; Della Valle, F; Borreca, A; Manca, A; Meli, G; Ferraina, C; Feligioni, M; D'Aguanno, S; Bussani, R; Ammassari-Teule, M; Nicolin, V; Calissano, P; Amadoro, G

    2015-06-01

    Disarrangement in functions and quality control of mitochondria at synapses are early events in Alzheimer's disease (AD) pathobiology. We reported that a 20-22 kDa NH2-tau fragment mapping between 26 and 230 amino acids of the longest human tau isoform (aka NH2htau): (i) is detectable in cellular and animal AD models, as well in synaptic mitochondria and cerebrospinal fluids (CSF) from human AD subjects; (ii) is neurotoxic in primary hippocampal neurons; (iii) compromises the mitochondrial biology both directly, by inhibiting the ANT-1-dependent ADP/ATP exchange, and indirectly, by impairing their selective autophagic clearance (mitophagy). Here, we show that the extensive Parkin-dependent turnover of mitochondria occurring in NH2htau-expressing post-mitotic neurons plays a pro-death role and that UCHL-1, the cytosolic Ubiquitin-C-terminal hydrolase L1 which directs the physiological remodeling of synapses by controlling ubiquitin homeostasis, critically contributes to mitochondrial and synaptic failure in this in vitro AD model. Pharmacological or genetic suppression of improper mitophagy, either by inhibition of mitochondrial targeting to autophagosomes or by shRNA-mediated silencing of Parkin or UCHL-1 gene expression, restores synaptic and mitochondrial content providing partial but significant protection against the NH2htau-induced neuronal death. Moreover, in mitochondria from human AD synapses, the endogenous NH2htau is stably associated with Parkin and with UCHL-1. Taken together, our studies show a causative link between the excessive mitochondrial turnover and the NH2htau-induced in vitro neuronal death, suggesting that pathogenetic tau truncation may contribute to synaptic deterioration in AD by aberrant recruitment of Parkin and UCHL-1 to mitochondria making them more prone to detrimental autophagic clearance. PMID:25687137

  4. Misfolded SOD1 associated with motor neuron mitochondria alters mitochondrial shape and distribution prior to clinical onset.

    Christine Vande Velde

    Full Text Available Mutations in superoxide dismutase (SOD1 are causative for inherited amyotrophic lateral sclerosis. A proportion of SOD1 mutant protein is misfolded onto the cytoplasmic face of mitochondria in one or more spinal cord cell types. By construction of mice in which mitochondrially targeted enhanced green fluorescent protein is selectively expressed in motor neurons, we demonstrate that axonal mitochondria of motor neurons are primary in vivo targets for misfolded SOD1. Mutant SOD1 alters axonal mitochondrial morphology and distribution, with dismutase active SOD1 causing mitochondrial clustering at the proximal side of Schmidt-Lanterman incisures within motor axons and dismutase inactive SOD1 producing aberrantly elongated axonal mitochondria beginning pre-symptomatically and increasing in severity as disease progresses. Somal mitochondria are altered by mutant SOD1, with loss of the characteristic cylindrical, networked morphology and its replacement by a less elongated, more spherical shape. These data indicate that mutant SOD1 binding to mitochondria disrupts normal mitochondrial distribution and size homeostasis as early pathogenic features of SOD1 mutant-mediated ALS.

  5. Mitochondrial cholesterol: mechanisms of import and effects on mitochondrial function.

    Martin, Laura A; Kennedy, Barry E; Karten, Barbara

    2016-04-01

    Mitochondria require cholesterol for biogenesis and membrane maintenance, and for the synthesis of steroids, oxysterols and hepatic bile acids. Multiple pathways mediate the transport of cholesterol from different subcellular pools to mitochondria. In steroidogenic cells, the steroidogenic acute regulatory protein (StAR) interacts with a mitochondrial protein complex to mediate cholesterol delivery to the inner mitochondrial membrane for conversion to pregnenolone. In non-steroidogenic cells, several members of a protein family defined by the presence of a StAR-related lipid transfer (START) domain play key roles in the delivery of cholesterol to mitochondrial membranes. Subdomains of the endoplasmic reticulum (ER), termed mitochondria-associated ER membranes (MAM), form membrane contact sites with mitochondria and may contribute to the transport of ER cholesterol to mitochondria, either independently or in conjunction with lipid-transfer proteins. Model systems of mitochondria enriched with cholesterol in vitro and mitochondria isolated from cells with (patho)physiological mitochondrial cholesterol accumulation clearly demonstrate that mitochondrial cholesterol levels affect mitochondrial function. Increased mitochondrial cholesterol levels have been observed in several diseases, including cancer, ischemia, steatohepatitis and neurodegenerative diseases, and influence disease pathology. Hence, a deeper understanding of the mechanisms maintaining mitochondrial cholesterol homeostasis may reveal additional targets for therapeutic intervention. Here we give a brief overview of mitochondrial cholesterol import in steroidogenic cells, and then focus on cholesterol trafficking pathways that deliver cholesterol to mitochondrial membranes in non-steroidogenic cells. We also briefly discuss the consequences of increased mitochondrial cholesterol levels on mitochondrial function and their potential role in disease pathology. PMID:25425472

  6. The effect of mitochondrial dysfunction on cytosolic nucleotide metabolism

    Madsen, Claus Desler; Lykke, Anne; Rasmussen, Lene Juel

    2010-01-01

    Several enzymes of the metabolic pathways responsible for metabolism of cytosolic ribonucleotides and deoxyribonucleotides are located in mitochondria. Studies described in this paper suggest dysfunction of the mitochondria to affect these metabolic pathways and limit the available levels of...... cytosolic ribonucleotides and deoxyribonucleotides, which in turn can result in aberrant RNA and DNA synthesis. Mitochondrial dysfunction has been linked to genomic instability, and it is possible that the limiting effect of mitochondrial dysfunction on the levels of nucleotides and resulting aberrant RNA...

  7. Defects in calcium homeostasis and mitochondria can be reversed in Pompe disease

    Lim, Jeong-A; Li, Lishu; Kakhlon, Or; Myerowitz, Rachel; Raben, Nina

    2015-01-01

    Mitochondria-induced oxidative stress and flawed autophagy are common features of neurodegenerative and lysosomal storage diseases (LSDs). Although defective autophagy is particularly prominent in Pompe disease, mitochondrial function has escaped examination in this typical LSD. We have found multiple mitochondrial defects in mouse and human models of Pompe disease, a life-threatening cardiac and skeletal muscle myopathy: a profound dysregulation of Ca2+ homeostasis, mitochondrial Ca2+ overlo...

  8. Mitochondrial biogenesis: pharmacological approaches.

    Valero, Teresa

    2014-01-01

    of human diseases arising from defects in mitochondrial ion and ROS homeostasis, energy production and morphology [1]. Parkinson´s Disease (PD) is a very good example of this important mitochondrial component on neurodegenerative diseases. Anuradha Yadav, Swati Agrawal, Shashi Kant Tiwari, and Rajnish K. Chaturvedi (CSIR-Indian Institute of Toxicology Research / Academy of Scientific and Innovative Research, India) [6] remark in their review the role of mitochondrial dysfunction in PD with special focus on the role of oxidative stress and bioenergetic deficits. These alterations may have their origin on pathogenic gene mutations in important genes such as DJ-1, -syn, parkin, PINK1 or LRRK2. These mutations, in turn, may cause defects in mitochondrial dynamics (key events like fission/fusion, biogenesis, trafficking in retrograde and anterograde directions, and mitophagy). This work reviews different strategies to enhance mitochondrial bioenergetics in order to ameliorate the neurodegenerative process, with an emphasis on clinical trials reports that indicate their potential. Among them creatine, Coenzyme Q10 and mitochondrial targeted antioxidants/peptides are reported to have the most remarkable effects in clinical trials. They highlight a dual effect of PGC-1α expression on PD prognosis. Whereas a modest expression of this transcriptional co-activator results in positive effects, a moderate to substantial overexpession may have deleterious consequences. As strategies to induce PGC-1α activation, these authors remark the possibility to activate Sirt1 with resveratrol, to use PPAR agonists such as pioglitazone, rosiglitazone, fenofibrate and bezafibrate. Other strategies include the triggering of Nrf2/antioxidant response element (ARE) pathway by triterpenoids (derivatives of oleanolic acid) or by Bacopa monniera, the enhancement of ATP production by carnitine and -lipoic acid. Mitochondrial dysfunctions are the prime source of neurodegenerative diseases and

  9. Oxidative stress, mitochondrial damage and neurodegenerative diseases****

    Chunyan Guo; Li Sun; Xueping Chen; Danshen Zhang

    2013-01-01

    Oxidative stress and mitochondrial damage have been implicated in the pathogenesis of several neurodegenerative diseases, including Alzheimer’s disease, Parkinson’s disease and amyotrophic lateral sclerosis. Oxidative stress is characterized by the overproduction of reactive oxygen species, which can induce mitochondrial DNA mutations, damage the mitochondrial respiratory chain, alter membrane permeability, and influence Ca2+ homeostasis and mitochondrial defense systems. Al these changes are implicated in the development of these neurodegenerative diseases, mediating or amplifying neuronal dysfunction and triggering neurodegeneration. This paper summarizes the contribution of oxidative stress and mitochondrial damage to the onset of neurodegenerative eases and discusses strategies to modify mitochondrial dysfunction that may be attractive thera-peutic interventions for the treatment of various neurodegenerative diseases.

  10. Mitochondrial haplogroups

    Benn, Marianne; Schwartz, Marianne; Nordestgaard, Børge G;

    2008-01-01

    Rare mutations in the mitochondrial genome may cause disease. Mitochondrial haplogroups defined by common polymorphisms have been associated with risk of disease and longevity. We tested the hypothesis that common haplogroups predict risk of ischemic cardiovascular disease, morbidity from other...

  11. Leveraging genomic approaches to characterize mitochondrial RNA biology

    Wolf, Ashley Robin

    2014-01-01

    Transcription and translation of mammalian mitochondrial DNA (mtDNA) occurs within the mitochondrial matrix to produce oxidative phosphorylation subunits required for efficient energy production. These mtDNA-encoded subunits complex with mitochondrial-localized, nuclear-encoded subunits to form the respiratory chain, and aberrant production or function of these subunits can cause devastating human disease. In addition to 13 oxidative phosphorylation subunits, mtDNA encodes 2 rRNAs and 22 tRNA...

  12. Regulation and quantification of cellular mitochondrial morphology and content

    Tronstad, K.J.; Nooteboom, M.; Nilsson, L.I.; Nikolaisen, J.; Sokolewicz, M.; Grefte, S.; Pettersen, I.K.; Dyrstad, S.; Hoel, F.; Willems, P.H.G.M.; Koopman, W.J.H.

    2014-01-01

    Mitochondria play a key role in signal transduction, redox homeostasis and cell survival, which extends far beyond their classical functioning in ATP production and energy metabolism. In living cells, mitochondrial content ("mitochondrial mass") depends on the cell-controlled balance between mitocho

  13. Cellular Homeostasis and Aging.

    Hartl, F Ulrich

    2016-06-01

    Aging and longevity are controlled by a multiplicity of molecular and cellular signaling events that interface with environmental factors to maintain cellular homeostasis. Modulation of these pathways to extend life span, including insulin-like signaling and the response to dietary restriction, identified the cellular machineries and networks of protein homeostasis (proteostasis) and stress resistance pathways as critical players in the aging process. A decline of proteostasis capacity during aging leads to dysfunction of specific cell types and tissues, rendering the organism susceptible to a range of chronic diseases. This volume of the Annual Review of Biochemistry contains a set of two reviews addressing our current understanding of the molecular mechanisms underlying aging in model organisms and humans. PMID:27050288

  14. Water Homeostasis: Evolutionary Medicine

    Zeidel, Mark L.

    2012-01-01

    As a major component of homeostasis, all organisms regulate the water composition of various compartments. Through the selective use of barrier membranes and surface glycoproteins, as well as aquaporin water channels, organisms ranging from Archaebacteria to humans can vary water permeabilities across their cell membranes by 4 to 5 orders of magnitude. In barrier epithelia the outer, or exofacial, leaflet acts as the main resistor to water flow; this leaflet restricts water flow by minimizing...

  15. Mitochondrial plasticity in pathophysiological conditions

    Padrão, Ana Isabel Martins Novais

    2013-01-01

    Both skeletal and cardiac muscles daily burn tremendous amounts of ATP to meet the energy requirements for contraction. So, it is not surprising that the maintenance of mitochondrial morphology, number, distribution and functionality in striated muscle are important for muscle homeostasis. In these tissues mitochondria present the added dimension of two populations, the intermyofibrillar (IMF) and the subsarcolemmal (SS) mitochondria, being IMF the most abundant one. In the present thesis, th...

  16. Mitochondrial dynamics and viral infections: A close nexus.

    Khan, Mohsin; Syed, Gulam Hussain; Kim, Seong-Jun; Siddiqui, Aleem

    2015-10-01

    Viruses manipulate cellular machinery and functions to subvert intracellular environment conducive for viral proliferation. They strategically alter functions of the multitasking mitochondria to influence energy production, metabolism, survival, and immune signaling. Mitochondria either occur as heterogeneous population of individual organelles or large interconnected tubular network. The mitochondrial network is highly susceptible to physiological and environmental insults, including viral infections, and is dynamically maintained by mitochondrial fission and fusion. Mitochondrial dynamics in tandem with mitochondria-selective autophagy 'mitophagy' coordinates mitochondrial quality control and homeostasis. Mitochondrial dynamics impacts cellular homeostasis, metabolism, and innate-immune signaling, and thus can be major determinant of the outcome of viral infections. Herein, we review how mitochondrial dynamics is affected during viral infections and how this complex interplay benefits the viral infectious process and associated diseases. PMID:25595529

  17. The effect of mitochondrial calcium uniporter on mitochondrial fission in hippocampus cells ischemia/reperfusion injury

    Zhao, Lantao; Li, Shuhong; Wang, Shilei, E-mail: wshlei@aliyun.com; Yu, Ning; Liu, Jia

    2015-06-05

    The mitochondrial calcium uniporter (MCU) transports free Ca{sup 2+} into the mitochondrial matrix, maintaining Ca{sup 2+} homeostasis, thus regulates the mitochondrial morphology. Previous studies have indicated that there was closely crosstalk between MCU and mitochondrial fission during the process of ischemia/reperfusion injury. This study constructed a hypoxia reoxygenation model using primary hippocampus neurons to mimic the cerebral ischemia/reperfusion injury and aims to explore the exactly effect of MCU on the mitochondrial fission during the process of ischemia/reperfusion injury and so as the mechanisms. Our results found that the inhibitor of the MCU, Ru360, decreased mitochondrial Ca{sup 2+} concentration, suppressed the expression of mitochondrial fission protein Drp1, MIEF1 and Fis1, and thus improved mitochondrial morphology significantly. Whereas spermine, the agonist of the MCU, had no significant impact compared to the I/R group. This study demonstrated that the MCU regulates the process of mitochondrial fission by controlling the Ca{sup 2+} transport, directly upregulating mitochondrial fission proteins Drp1, Fis1 and indirectly reversing the MIEF1-induced mitochondrial fusion. It also provides new targets for brain protection during ischemia/reperfusion injury. - Highlights: • We study MCU with primary neuron culture. • MCU induces mitochondrial fission. • MCU reverses MIEF1 effect.

  18. The effect of mitochondrial calcium uniporter on mitochondrial fission in hippocampus cells ischemia/reperfusion injury

    The mitochondrial calcium uniporter (MCU) transports free Ca2+ into the mitochondrial matrix, maintaining Ca2+ homeostasis, thus regulates the mitochondrial morphology. Previous studies have indicated that there was closely crosstalk between MCU and mitochondrial fission during the process of ischemia/reperfusion injury. This study constructed a hypoxia reoxygenation model using primary hippocampus neurons to mimic the cerebral ischemia/reperfusion injury and aims to explore the exactly effect of MCU on the mitochondrial fission during the process of ischemia/reperfusion injury and so as the mechanisms. Our results found that the inhibitor of the MCU, Ru360, decreased mitochondrial Ca2+ concentration, suppressed the expression of mitochondrial fission protein Drp1, MIEF1 and Fis1, and thus improved mitochondrial morphology significantly. Whereas spermine, the agonist of the MCU, had no significant impact compared to the I/R group. This study demonstrated that the MCU regulates the process of mitochondrial fission by controlling the Ca2+ transport, directly upregulating mitochondrial fission proteins Drp1, Fis1 and indirectly reversing the MIEF1-induced mitochondrial fusion. It also provides new targets for brain protection during ischemia/reperfusion injury. - Highlights: • We study MCU with primary neuron culture. • MCU induces mitochondrial fission. • MCU reverses MIEF1 effect

  19. Mitochondrial vasculopathy

    Finsterer, Josef; Zarrouk-Mahjoub, Sinda

    2016-01-01

    Mitochondrial disorders (MIDs) are usually multisystem disorders (mitochondrial multiorgan disorder syndrome) either on from onset or starting at a point during the disease course. Most frequently affected tissues are those with a high oxygen demand such as the central nervous system, the muscle, endocrine glands, or the myocardium. Recently, it has been shown that rarely also the arteries may be affected (mitochondrial arteriopathy). This review focuses on the type, diagnosis, and treatment of mitochondrial vasculopathy in MID patients. A literature search using appropriate search terms was carried out. Mitochondrial vasculopathy manifests as either microangiopathy or macroangiopathy. Clinical manifestations of mitochondrial microangiopathy include leukoencephalopathy, migraine-like headache, stroke-like episodes, or peripheral retinopathy. Mitochondrial macroangiopathy manifests as atherosclerosis, ectasia of arteries, aneurysm formation, dissection, or spontaneous rupture of arteries. The diagnosis relies on the documentation and confirmation of the mitochondrial metabolic defect or the genetic cause after exclusion of non-MID causes. Treatment is not at variance compared to treatment of vasculopathy due to non-MID causes. Mitochondrial vasculopathy exists and manifests as micro- or macroangiopathy. Diagnosing mitochondrial vasculopathy is crucial since appropriate treatment may prevent from severe complications. PMID:27231520

  20. Aberrations in asymmetrical electron lenses

    Starting from well established knowledge in light-optics we explore the question if electron-optical aberration can be improved in asymmetrical electron lenses. We show that spherical as well as chromatic aberration coefficients are reduced in asymmetric electrostatic einzel lenses when the center electrode is moved away from the center position towards the entrance electrode. Relative improvements up to 40% for both the chromatic and the spherical aberration coefficients can be obtained. We use analytical and numerical calculations to confirm this result for exemplary cases of a lens with fixed length and working distance. The agreement of the two calculation methods is very good. We then derive an estimate for the electron-optical aberration coefficients from light-optics. The derived expressions for chromatic and spherical aberrations are somewhat simpler than the ones derived from electron-optics as they involve integrals only over the electrostatic potential, not over the electron paths. The estimated formulas still agree well with the electron optical calculations. Overall, we are tempted to suggest that the enormous knowledge base of light optics can provide considerable guidance for electron-optical applications. -- Highlights: ► Develops the analogy between light and electron optics in aberration calculations. ► Optimized spherical and chromatic aberrations for an electrostatic einzel lens. ► Comparison between analytic and numerical aberration calculations.

  1. Structural Studies of the Yeast Mitochondrial Degradosome

    Feddersen, Ane; Jonstrup, Anette Thyssen; Brodersen, Ditlev Egeskov

    The yeast mitochondrial degradosome/exosome (mtExo) is responsible for most RNA turnover in mitochondria and has been proposed to form a central part of a mitochondrial RNA surveillance system responsible for degradation of aberrant and unprocessed RNA ([1], [2]). In contrast to the cytoplasmic...... and nuclear exosome complexes, which consist of 10-12 different nuclease subunits, the mitochondrial degradosome is composed of only two large subunits - an RNase (Dss1p) and a helicase (Suv3p), belonging the Ski2 class of DExH box RNA helicases. Both subunits are encoded on the yeast nuclear genome...... and imported to the mitochondrial matrix posttranslationally. In an effort to understand the complex mechanisms underlying control of RNA turnover and surveillance in eukaryotic organisms, we are studying the structure of the mitochondrial degradosome as a model system for the more complex exosomes. Dss1p...

  2. Lipid Biosynthesis Coordinates a Mitochondrial-to-Cytosolic Stress Response.

    Kim, Hyun-Eui; Grant, Ana Rodrigues; Simic, Milos S; Kohnz, Rebecca A; Nomura, Daniel K; Durieux, Jenni; Riera, Celine E; Sanchez, Melissa; Kapernick, Erik; Wolff, Suzanne; Dillin, Andrew

    2016-09-01

    Defects in mitochondrial metabolism have been increasingly linked with age-onset protein-misfolding diseases such as Alzheimer's, Parkinson's, and Huntington's. In response to protein-folding stress, compartment-specific unfolded protein responses (UPRs) within the ER, mitochondria, and cytosol work in parallel to ensure cellular protein homeostasis. While perturbation of individual compartments can make other compartments more susceptible to protein stress, the cellular conditions that trigger cross-communication between the individual UPRs remain poorly understood. We have uncovered a conserved, robust mechanism linking mitochondrial protein homeostasis and the cytosolic folding environment through changes in lipid homeostasis. Metabolic restructuring caused by mitochondrial stress or small-molecule activators trigger changes in gene expression coordinated uniquely by both the mitochondrial and cytosolic UPRs, protecting the cell from disease-associated proteins. Our data suggest an intricate and unique system of communication between UPRs in response to metabolic changes that could unveil new targets for diseases of protein misfolding. PMID:27610574

  3. CFTR activity and mitochondrial function

    Angel Gabriel Valdivieso

    2013-01-01

    Full Text Available Cystic Fibrosis (CF is a frequent and lethal autosomal recessive disease, caused by mutations in the gene encoding the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR. Before the discovery of the CFTR gene, several hypotheses attempted to explain the etiology of this disease, including the possible role of a chloride channel, diverse alterations in mitochondrial functions, the overexpression of the lysosomal enzyme α-glucosidase and a deficiency in the cytosolic enzyme glucose 6-phosphate dehydrogenase. Because of the diverse mitochondrial changes found, some authors proposed that the affected gene should codify for a mitochondrial protein. Later, the CFTR cloning and the demonstration of its chloride channel activity turned the mitochondrial, lysosomal and cytosolic hypotheses obsolete. However, in recent years, using new approaches, several investigators reported similar or new alterations of mitochondrial functions in Cystic Fibrosis, thus rediscovering a possible role of mitochondria in this disease. Here, we review these CFTR-driven mitochondrial defects, including differential gene expression, alterations in oxidative phosphorylation, calcium homeostasis, oxidative stress, apoptosis and innate immune response, which might explain some characteristics of the complex CF phenotype and reveals potential new targets for therapy.

  4. Mitochondrial efficiency and insulin resistance.

    Crescenzo, Raffaella; Bianco, Francesca; Mazzoli, Arianna; Giacco, Antonia; Liverini, Giovanna; Iossa, Susanna

    2014-01-01

    Insulin resistance, "a relative impairment in the ability of insulin to exert its effects on glucose, protein and lipid metabolism in target tissues," has many detrimental effects on metabolism and is strongly correlated to deposition of lipids in non-adipose tissues. Mitochondria are the main cellular sites devoted to ATP production and fatty acid oxidation. Therefore, a role for mitochondrial dysfunction in the onset of skeletal muscle insulin resistance has been proposed and many studies have dealt with possible alteration in mitochondrial function in obesity and diabetes, both in humans and animal models. Data reporting evidence of mitochondrial dysfunction in type two diabetes mellitus are numerous, even though the issue that this reduced mitochondrial function is causal in the development of the disease is not yet solved, also because a variety of parameters have been used in the studies carried out on this subject. By assessing the alterations in mitochondrial efficiency as well as the impact of this parameter on metabolic homeostasis of skeletal muscle cells, we have obtained results that allow us to suggest that an increase in mitochondrial efficiency precedes and therefore can contribute to the development of high-fat-induced insulin resistance in skeletal muscle. PMID:25601841

  5. Homeostasis Hombre-Naturaleza

    Stephano Betancourt

    2016-06-01

    Full Text Available La tendencia al equilibrio en la naturaleza y el flujo energético entre los organismos y suambiente; resulta de vital importancia para la supervivencia de estos últimos. Cuando seda una mirada antropocéntrica a esta interacción, se genera un enfoque reduccionista de losfactores que influyen para mantener la tendencia al equilibrio. Por consiguiente, el sostenerlo inteligible de las interacciones de los elementos que conforman nuestra existencia es unpunto clave de la compleja relación, entre el ser humano y su entorno, para poder permitiruna homeostasis entre ellos.

  6. Homeostasis in anorexia nervosa

    Per eSodersten

    2014-08-01

    Full Text Available Brainstem and hypothalamic orexigenic/anorexigenic networks are thought to maintain body weight homeostasis in response to hormonal and metabolic feedback from peripheral sites. This approach has not been successful in managing over- and underweight patients. It is suggested that concept of homeostasis has been misinterpreted; rather than exerting control, the brain permits eating in proportion to the amount of physical activity necessary to obtain food. In support, animal experiments have shown that while a hypothalamic orexigen excites eating when food is abundant, it inhibits eating and stimulates foraging when food is in short supply. As the physical price of food approaches zero, eating and body weight increase without constraints. Conversely, in anorexia nervosa body weight is homeostatically regulated, the high level of physical activity in anorexia is displaced hoarding for food that keeps body weight constantly low. A treatment based on this point of view, providing patients with computerized mealtime support to re-establish normal eating behavior, has brought 75% of patients with eating disorders into remission, reduced the rate of relapse to 10%, and eliminated mortality.

  7. Ageing and water homeostasis

    Robertson, David; Jordan, Jens; Jacob, Giris; Ketch, Terry; Shannon, John R.; Biaggioni, Italo

    2002-01-01

    This review outlines current knowledge concerning fluid intake and volume homeostasis in ageing. The physiology of vasopressin is summarized. Studies have been carried out to determine orthostatic changes in plasma volume and to assess the effect of water ingestion in normal subjects, elderly subjects, and patients with dysautonomias. About 14% of plasma volume shifts out of the vasculature within 30 minutes of upright posture. Oral ingestion of water raises blood pressure in individuals with impaired autonomic reflexes and is an important source of noise in blood pressure trials in the elderly. On the average, oral ingestion of 16 ounces (473ml) of water raises blood pressure 11 mmHg in elderly normal subjects. In patients with autonomic impairment, such as multiple system atrophy, strikingly exaggerated pressor effects of water have been seen with blood pressure elevations greater than 75 mmHg not at all uncommon. Ingestion of water is a major determinant of blood pressure in the elderly population. Volume homeostasis is importantly affected by posture and large changes in plasma volume may occur within 30 minutes when upright posture is assumed.

  8. The role of DNA base excision repair in brain homeostasis and disease

    Akbari, Mansour; Morevati, Marya; Croteau, Deborah;

    2015-01-01

    Chemical modification and spontaneous loss of nucleotide bases from DNA are estimated to occur at the rate of thousands per human cell per day. DNA base excision repair (BER) is a critical mechanism for repairing such lesions in nuclear and mitochondrial DNA. Defective expression or function of p...... energy homeostasis, mitochondrial function and cellular bioenergetics, with especially strong influence on neurological function. Further studies in this area could lead to novel approaches to prevent and treat human neurodegenerative disease....

  9. Mitochondrial Myopathy

    ... NINDS supports research focused on effective treatments and cures for mitochondrial myopathies and other mitochondrial diseases. Scientists are investigating the possible benefits of exercise programs and nutritional supplements, primarily natural and synthetic versions of CoQ10. While CoQ10 has ...

  10. Autophagy and intestinal homeostasis.

    Patel, Khushbu K; Stappenbeck, Thaddeus S

    2013-01-01

    Nutrient absorption is the basic function that drives mammalian intestinal biology. To facilitate nutrient uptake, the host's epithelial barrier is composed of a single layer of cells. This constraint is problematic, as a design of this type can be easily disrupted. The solution during the course of evolution was to add numerous host defense mechanisms that can help prevent local and systemic infection. These mechanisms include specialized epithelial cells that produce a physiochemical barrier overlying the cellular barrier, robust and organized adaptive and innate immune cells, and the ability to mount an inflammatory response that is commensurate with a specific threat level. The autophagy pathway is a critical cellular process that strongly influences all these functions. Therefore, a fundamental understanding of the components of this pathway and their influence on inflammation, immunity, and barrier function will facilitate our understanding of homeostasis in the gastrointestinal tract. PMID:23216414

  11. The mitochondrial genome encodes abundant small noncoding RNAs

    Seungil Ro; Hsiu-Yen Ma; Chanjae Park; Nicole Ortogero; Rui Song; Grant W Hennig; Huili Zheng

    2013-01-01

    Small noncoding RNAs identified thus far are all encoded by the nuclear genome.Here,we report that the murine and human mitochondriai genomes encode thousands of small noncoding RNAs,which are predominantly derived from the sense transcripts of the mitochondrial genes (host genes),and we termed these small RNAs mitochondrial genome-encoded small RNAs (mitosRNAs).DICER inactivation affected,but did not completely abolish mitosRNA production.MitosRNAs appear to be products of currently unidentified mitochondrial ribonucleases.Overexpression of mitosRNAs enhanced expression levels of their host genes in vitro,and dysregulated mitosRNA expression was generally associated with aberrant mitochondrial gene expression in vivo.Our data demonstrate that in addition to 37 known mitochondrial genes,the mammalian mitochondrial genome also encodes abundant mitosRNAs,which may play an important regulatory role in the control of mitochondrial gene expression in the cell.

  12. Astrocytic Dysfunction and Addiction: Consequences of Impaired Glutamate Homeostasis

    Scofield, Michael D.; Kalivas, Peter W.

    2016-01-01

    Addiction is characterized as a chronic relapsing disorder whereby addicted individuals persistently engage in drug seeking and use despite profound negative consequences. The results of studies using animal models of addiction and relapse indicate that drug seeking is mediated by alterations in cortico-accumbal plasticity induced by chronic drug exposure. Among the maladaptive responses to drug exposure are long-lasting alterations in the expression of proteins localized to accumbal astrocytes, which are responsible for maintaining glutamate homeostasis. These alterations engender an aberrant potentiation of glutamate transmission in the cortico-accumbens circuit that is linked to the reinstatement of drug seeking. Accordingly, pharmacological restoration of glutamate homeostasis functions as an efficient method of reversing drug-induced plasticity and inhibiting drug seeking in both rodents and humans. PMID:24496610

  13. Trypanosome Letm1 protein is essential for mitochondrial potassium homeostasis

    Hashimi, Hassan; McDonald, Lindsay M.; Stříbrná, Eva; Lukeš, Julius

    2013-01-01

    Roč. 288, č. 37 (2013), s. 26914-26925. ISSN 0021-9258 R&D Projects: GA ČR GAP305/12/2261 Institutional support: RVO:60077344 Keywords : Bioenergetics * Letm1 * Mitochondria * Potassium Transport * Translation * Trypanosome Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.600, year: 2013

  14. Mitochondrial bioenergetics in young, adult, middle-age and senescent brown Norway rats

    Mitochondria are central regulators of energy homeostasis and may play a pivotal role in mechanisms of cellular senescence and age-related neurodegenerative and metabolic disorders. However, mitochondrial bioenergetic parameters have not been systematically evaluated under identi...

  15. Mitochondrial Diseases

    ... in your body tissues. If you have a metabolic disorder, something goes wrong with this process. Mitochondrial diseases are a group of metabolic disorders. Mitochondria are small structures that produce energy in ...

  16. Aberrations in asymmetrical electron lenses.

    Fitzgerald, J P S; Word, R C; Könenkamp, R

    2012-08-01

    Starting from well established knowledge in light-optics we explore the question if electron-optical aberration can be improved in asymmetrical electron lenses. We show that spherical as well as chromatic aberration coefficients are reduced in asymmetric electrostatic einzel lenses when the center electrode is moved away from the center position towards the entrance electrode. Relative improvements up to 40% for both the chromatic and the spherical aberration coefficients can be obtained. We use analytical and numerical calculations to confirm this result for exemplary cases of a lens with fixed length and working distance. The agreement of the two calculation methods is very good. We then derive an estimate for the electron-optical aberration coefficients from light-optics. The derived expressions for chromatic and spherical aberrations are somewhat simpler than the ones derived from electron-optics as they involve integrals only over the electrostatic potential, not over the electron paths. The estimated formulas still agree well with the electron optical calculations. Overall, we are tempted to suggest that the enormous knowledge base of light optics can provide considerable guidance for electron-optical applications. PMID:22206603

  17. Aberrations of diffracted wave fields.

    Harvey, J E; Shack, R V

    1978-09-15

    This paper is an attempt to provide new insight into the behavior of near-field scalar diffraction phenomena by showing that the Rayleigh-Sommerfeld diffraction integral is equivalent to the Fourier transform integral of a generalized pupil function which includes a term that represents phase errors in the aperture. This term can be interpreted as describing a conventional wavefront aberration function. The resulting aberration coefficients are calculated and expressed in terms of the aperture diameter, observation distance, and appropriate field parameter for several different geometrical configurations of incident beam and observation space. These aberrations, which are inherently associated with the diffraction process, are precisely the effects ignored when making the usual Fresnel and Fraunhofer approximations. PMID:20203910

  18. Chromosome Aberrations by Heavy Ions

    Ballarini, Francesca; Ottolenghi, Andrea

    It is well known that mammalian cells exposed to ionizing radiation can show different types of chromosome aberrations (CAs) including dicentrics, translocations, rings, deletions and complex exchanges. Chromosome aberrations are a particularly relevant endpoint in radiobiology, because they play a fundamental role in the pathways leading either to cell death, or to cell conversion to malignancy. In particular, reciprocal translocations involving pairs of specific genes are strongly correlated (and probably also causally-related) with specific tumour types; a typical example is the BCR-ABL translocation for Chronic Myeloid Leukaemia. Furthermore, aberrations can be used for applications in biodosimetry and more generally as biomarkers of exposure and risk, that is the case for cancer patients monitored during Carbon-ion therapy and astronauts exposed to space radiation. Indeed hadron therapy and astronauts' exposure to space radiation represent two of the few scenarios where human beings can be exposed to heavy ions. After a brief introduction on the main general features of chromosome aberrations, in this work we will address key aspects of the current knowledge on chromosome aberration induction, both from an experimental and from a theoretical point of view. More specifically, in vitro data will be summarized and discussed, outlining important issues such as the role of interphase death/mitotic delay and that of complex-exchange scoring. Some available in vivo data on cancer patients and astronauts will be also reported, together with possible interpretation problems. Finally, two of the few available models of chromosome aberration induction by ionizing radiation (including heavy ions) will be described and compared, focusing on the different assumptions adopted by the authors and on how these models can deal with heavy ions.

  19. Mitochondrial stress signaling in longevity: A new role for mitochondrial function in aging

    Shauna Hill

    2014-01-01

    Full Text Available Mitochondria are principal regulators of cellular function and metabolism through production of ATP for energy homeostasis, maintenance of calcium homeostasis, regulation of apoptosis and fatty acid oxidation to provide acetyl CoA for fueling the electron transport chain. In addition, mitochondria play a key role in cell signaling through production of reactive oxygen species that modulate redox signaling. Recent findings support an additional mechanism for control of cellular and tissue function by mitochondria through complex mitochondrial–nuclear communication mechanisms and potentially through extracellular release of mitochondrial components that can act as signaling molecules. The activation of stress responses including mitophagy, mitochondrial number, fission and fusion events, and the mitochondrial unfolded protein response (UPRMT requires mitochondrial–nuclear communication for the transcriptional activation of nuclear genes involved in mitochondrial quality control and metabolism. The induction of these signaling pathways is a shared feature in long-lived organisms spanning from yeast to mice. As a result, the role of mitochondrial stress signaling in longevity has been expansively studied. Current and exciting studies provide evidence that mitochondria can also signal among tissues to up-regulate cytoprotective activities to promote healthy aging. Alternatively, mitochondria release signals to modulate innate immunity and systemic inflammatory responses and could consequently promote inflammation during aging. In this review, established and emerging models of mitochondrial stress response pathways and their potential role in modulating longevity are discussed.

  20. Pivotal role of AKAP121 in mitochondrial physiology.

    Czachor, Alexander; Failla, Athena; Lockey, Richard; Kolliputi, Narasaiah

    2016-04-15

    In this Perspective, we discuss some recent developments in the study of the mitochondrial scaffolding protein AKAP121 (also known as AKAP1, or AKAP149 as the human homolog), with an emphasis on its role in mitochondrial physiology. AKAP121 has been identified to function as a key regulatory molecule in several mitochondrial events including oxidative phosphorylation, the control of membrane potential, fission-induced apoptosis, maintenance of mitochondrial Ca(2+)homeostasis, and the phosphorylation of various mitochondrial respiratory chain substrate molecules. Furthermore, we discuss the role of hypoxia in prompting cellular stress and damage, which has been demonstrated to mediate the proteosomal degradation of AKAP121, leading to an increase in reactive oxgyen species production, mitochondrial dysfunction, and ultimately cell death. PMID:26825124

  1. Implications of mitochondrial dynamics on neurodegeneration and on hypothalamic dysfunction

    Antonio eZorzano

    2015-06-01

    Full Text Available Mitochondrial dynamics is a term that encompasses the movement of mitochondria along the cytoskeleton, regulation of their architecture, and connectivity mediated by tethering and fusion/fission. The importance of these events in cell physiology and pathology has been partially unraveled with the identification of the genes responsible for the catalysis of mitochondrial fusion and fission. Mutations in two mitochondrial fusion genes (MFN2 and OPA1 cause neurodegenerative diseases, namely Charcot-Marie Tooth type 2A and autosomal dominant optic atrophy. Alterations in mitochondrial dynamics may be involved in the pathophysiology of prevalent neurodegenerative conditions. Moreover, impairment of the activity of mitochondrial fusion proteins dysregulates the function of hypothalamic neurons, leading to alterations in food intake and in energy homeostasis. Here we review selected findings in the field of mitochondrial dynamics and their relevance for neurodegeneration and hypothalamic dysfunction.

  2. Quantifying small molecule phenotypic effects using mitochondrial morpho-functional fingerprinting and machine learning

    Blanchet, Lionel; Smeitink, Jan A. M.; van Emst-de Vries, Sjenet E.; Vogels, Caroline; Pellegrini, Mina; Jonckheere, An I.; Rodenburg, Richard J. T.; Buydens, Lutgarde M. C.; Beyrath, Julien; Willems, Peter H. G. M.; Koopman, Werner J. H.

    2015-01-01

    In primary fibroblasts from Leigh Syndrome (LS) patients, isolated mitochondrial complex I deficiency is associated with increased reactive oxygen species levels and mitochondrial morpho-functional changes. Empirical evidence suggests these aberrations constitute linked therapeutic targets for small chemical molecules. However, the latter generally induce multiple subtle effects, meaning that in vitro potency analysis or single-parameter high-throughput cell screening are of limited use to identify these molecules. We combine automated image quantification and artificial intelligence to discriminate between primary fibroblasts of a healthy individual and a LS patient based upon their mitochondrial morpho-functional phenotype. We then evaluate the effects of newly developed Trolox variants in LS patient cells. This revealed that Trolox ornithylamide hydrochloride best counterbalanced mitochondrial morpho-functional aberrations, effectively scavenged ROS and increased the maximal activity of mitochondrial complexes I, IV and citrate synthase. Our results suggest that Trolox-derived antioxidants are promising candidates in therapy development for human mitochondrial disorders.

  3. A mechanistic view of mitochondrial death decision pores

    Belizário, J E; Alves, J.; J.M. Occhiucci; M. Garay-Malpartida; Sesso, A.

    2007-01-01

    Mitochondria increase their outer and inner membrane permeability to solutes, protons and metabolites in response to a variety of extrinsic and intrinsic signaling events. The maintenance of cellular and intraorganelle ionic homeostasis, particularly for Ca2+, can determine cell survival or death. Mitochondrial death decision is centered on two processes: inner membrane permeabilization, such as that promoted by the mitochondrial permeability transition pore, formed across inner membranes whe...

  4. Role of mitochondrial lipids in guiding fission and fusion

    Frohman, Michael A.

    2014-01-01

    Clinically-important links have been established between mitochondrial function and cardiac physiology and disease in the context of signaling mechanisms, energy production, and muscle cell development. The proteins and processes that drive mitochondrial fusion and fission are now known to have emergent functions in intracellular calcium homeostasis, apoptosis, vascular smooth muscle cell proliferation, myofibril organization, and Notch-driven cell differentiation, all key issues in cardiac d...

  5. Lysosomal function in macromolecular homeostasis and bioenergetics in Parkinson's disease

    Zhang Jianhua

    2010-04-01

    Full Text Available Abstract The pathological changes occurring in Parkinson's and several other neurodegenerative diseases are complex and poorly understood, but all clearly involve protein aggregation. Also frequently appearing in neurodegeneration is mitochondrial dysfunction which may precede, coincide or follow protein aggregation. These observations led to the concept that protein aggregation and mitochondrial dysfunction either arise from the same etiological factors or are interactive. Understanding the mechanisms and regulation of processes that lead to protein aggregation or mitochondrial dysfunction may therefore contribute to the design of better therapeutics. Clearance of protein aggregates and dysfunctional organelles is dependent on macroautophagy which is the process through which aged or damaged proteins and organelles are first degraded by the lysosome and then recycled. The macroautophagy-lysosomal pathway is essential for maintaining protein and energy homeostasis. Not surprisingly, failure of the lysosomal system has been implicated in diseases that have features of protein aggregation and mitochondrial dysfunction. This review summarizes 3 major topics: 1 the current understanding of Parkinson's disease pathogenesis in terms of accumulation of damaged proteins and reduction of cellular bioenergetics; 2 evolving insights into lysosomal function and biogenesis and the accumulating evidence that lysosomal dysfunction may cause or exacerbate Parkinsonian pathology and finally 3 the possibility that enhancing lysosomal function may provide a disease modifying therapy.

  6. Functional recovery of human cells harbouring the mitochondrial DNA mutation MERRF A8344G via peptide-mediated mitochondrial delivery.

    Chang, Jui-Chih; Liu, Ko-Hung; Li, Yu-Chi; Kou, Shou-Jen; Wei, Yau-Huei; Chuang, Chieh-Sen; Hsieh, Mingli; Liu, Chin-San

    2013-01-01

    We explored the feasibility of mitochondrial therapy using the cell-penetrating peptide Pep-1 to transfer mitochondrial DNA (mtDNA) between cells and rescue a cybrid cell model of the mitochondrial disease myoclonic epilepsy with ragged-red fibres (MERRF) syndrome. Pep-1-conjugated wild-type mitochondria isolated from parent cybrid cells incorporating a mitochondria-specific tag were used as donors for mitochondrial delivery into MERRF cybrid cells (MitoB2) and mtDNA-depleted Rho-zero cells (Mitoρ°). Forty-eight hours later, translocation of Pep-1-labelled mitochondria into the mitochondrial regions of MitoB2 and Mitoρ° host cells was observed (delivery efficiencies of 77.48 and 82.96%, respectively). These internalized mitochondria were maintained for at least 15 days in both cell types and were accompanied by mitochondrial function recovery and cell survival by preventing mitochondria-dependent cell death. Mitochondrial homeostasis analyses showed that peptide-mediated mitochondrial delivery (PMD) also increased mitochondrial biogenesis in both cell types, but through distinct regulatory pathways involving mitochondrial dynamics. Dramatic decreases in mitofusin-2 (MFN2) and dynamin-related protein 1/fission 1 were observed in MitoB2 cells, while Mitoρ° cells showed a significant increase in optic atrophy 1 and MFN2. These findings suggest that PMD can be used as a potential therapeutic intervention for mitochondrial disorders. PMID:23006856

  7. Distortion of ultrashort pulses caused by aberrations

    Horváth, Z. L.; Kovács, A. P.; Bor, Zs.

    The effect of the primary wave aberrations (spherical aberration, astigmatism and coma) on ultrashort pulses is studied by the Nijboer-Zernike theory. The results of the geometrical and the wave optical treatments are compared.

  8. Upstream Pathways Controlling Mitochondrial Function in Major Psychosis: A Focus on Bipolar Disorder.

    Machado, Alencar Kolinski; Pan, Alexander Yongshuai; da Silva, Tatiane Morgana; Duong, Angela; Andreazza, Ana Cristina

    2016-08-01

    Mitochondrial dysfunction is commonly observed in bipolar disorder (BD) and schizophrenia (SCZ) and may be a central feature of psychosis. These illnesses are complex and heterogeneous, which is reflected by the complexity of the processes regulating mitochondrial function. Mitochondria are typically associated with energy production; however, dysfunction of mitochondria affects not only energy production but also vital cellular processes, including the formation of reactive oxygen species, cell cycle and survival, intracellular Ca(2+) homeostasis, and neurotransmission. In this review, we characterize the upstream components controlling mitochondrial function, including 1) mutations in nuclear and mitochondrial DNA, 2) mitochondrial dynamics, and 3) intracellular Ca(2+) homeostasis. Characterizing and understanding the upstream factors that regulate mitochondrial function is essential to understand progression of these illnesses and develop biomarkers and therapeutics. PMID:27310240

  9. Roles of mitochondrial fragmentation and reactive oxygen species in mitochondrial dysfunction and myocardial insulin resistance

    Watanabe, Tomoyuki [Internal Medicine III, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192 (Japan); Saotome, Masao, E-mail: msaotome@hama-med.ac.jp [Internal Medicine III, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192 (Japan); Nobuhara, Mamoru; Sakamoto, Atsushi; Urushida, Tsuyoshi; Katoh, Hideki; Satoh, Hiroshi [Internal Medicine III, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192 (Japan); Funaki, Makoto [Clinical Research Center for Diabetes, Tokushima University Hospital, 2-50-1 Kuramoto-cho, Tokushima 770-8503 (Japan); Hayashi, Hideharu [Internal Medicine III, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192 (Japan)

    2014-05-01

    Purpose: Evidence suggests an association between aberrant mitochondrial dynamics and cardiac diseases. Because myocardial metabolic deficiency caused by insulin resistance plays a crucial role in heart disease, we investigated the role of dynamin-related protein-1 (DRP1; a mitochondrial fission protein) in the pathogenesis of myocardial insulin resistance. Methods and Results: DRP1-expressing H9c2 myocytes, which had fragmented mitochondria with mitochondrial membrane potential (ΔΨ{sub m}) depolarization, exhibited attenuated insulin signaling and 2-deoxy-D-glucose (2-DG) uptake, indicating insulin resistance. Treatment of the DRP1-expressing myocytes with Mn(III)tetrakis(1-methyl-4-pyridyl)porphyrin pentachloride (TMPyP) significantly improved insulin resistance and mitochondrial dysfunction. When myocytes were exposed to hydrogen peroxide (H{sub 2}O{sub 2}), they increased DRP1 expression and mitochondrial fragmentation, resulting in ΔΨ{sub m} depolarization and insulin resistance. When DRP1 was suppressed by siRNA, H{sub 2}O{sub 2}-induced mitochondrial dysfunction and insulin resistance were restored. Our results suggest that a mutual enhancement between DRP1 and reactive oxygen species could induce mitochondrial dysfunction and myocardial insulin resistance. In palmitate-induced insulin-resistant myocytes, neither DRP1-suppression nor TMPyP restored the ΔΨ{sub m} depolarization and impaired 2-DG uptake, however they improved insulin signaling. Conclusions: A mutual enhancement between DRP1 and ROS could promote mitochondrial dysfunction and inhibition of insulin signal transduction. However, other mechanisms, including lipid metabolite-induced mitochondrial dysfunction, may be involved in palmitate-induced insulin resistance. - Highlights: • DRP1 promotes mitochondrial fragmentation and insulin-resistance. • A mutual enhancement between DRP1 and ROS ipromotes insulin-resistance. • Palmitate increases DRP1 expression and induces insulin

  10. Homeostasis of T Cell Diversity

    Vinay S. Mahajan; Ilya B. Leskov; Jianzhu Chen

    2005-01-01

    T cell homeostasis commonly refers to the maintenance of relatively stable T cell numbers in the peripheral lymphoid organs. Among the large numbers of T cells in the periphery, T cells exhibit structural diversity, I.e., the expression of a diverse repertoire of T cell receptors (TCRs), and functional diversity, I.e., the presence of T cells at na(I)ve, effector, and memory developmental stages. Although the homeostasis of T cell numbers has been extensively studied, investigation of the mechanisms underlying the maintenance of structural and functional diversity of T cells is still at an early stage. The fundamental feature throughout T cell development is the interaction between the TCR and either self or foreign peptides in association with MHC molecules. In this review, we present evidence showing that homeostasis of T cell number and diversity is mediated through competition for limiting resources.The number of T cells is maintained through competition for limiting cytokines, whereas the diversity of T cells is maintained by competition for self-peptide-MHC complexes. In other words, diversity of the self-peptide repertoire limits the structural (TCR) diversity of a T cell population. We speculate that cognate low affinity self-peptides,acting as weak agonists and antagonists, regulate the homeostasis of T cell diversity whereas non-cognate or null peptides which are extremely abundant for any given TCR, may contribute to the homeostasis of T cell number by providing survival signals. Moreover, self-peptides and cytokines may form specialized niches for the regulation of T cell homeostasis.

  11. Homeostasis of T Cell Diversity

    VinayS.Mahajan; IlyaB.Leskov; JianzhuChen

    2005-01-01

    T cell homeostasis commonly refers to the maintenance of relatively stable T cell numbers in the peripheral lymphoid organs. Among the large numbers of T cells in the periphery, T cells exhibit structural diversity, i.e., the expression of a diverse repertoire of T cell receptors (TCRs), and functional diversity, i.e., the presence of T cells at naive, effector, and memory developmental stages. Although the homeostasis of T cell numbers has been extensively studied, investigation of the mechanisms underlying the maintenance of structural and functional diversity of T cells is still at an early stage. The fundamental feature throughout T cell development is the interaction between the TCR and either self or foreign peptides in association with MHC molecules. In this review, we present evidence showing that homeostasis of T cell number and diversity is mediated through competition for limiting resources. The number of T cells is maintained through competition for limiting cytokines, whereas the diversity of T cells is maintained by competition for self-peptide-MHC complexes. In other words, diversity of the self-peptide repertoire limits the structural (TCR) diversity of a T cell population. We speculate that cognate low affinity self-peptides, acting as weak agonists and antagonists, regulate the homeostasis of T cell diversity whereas non-cognate or null peptides which are extremely abundant for any given TCR, may contribute to the homeostasis of T cell number by providing survival signals. Moreover, self-peptides and cytokines may form specialized niches for the regulation of T cell homeostasis. Cellular & Molecular Immunology. 2005;2(1): 1-10.

  12. Leptin and Hormones: Energy Homeostasis.

    Triantafyllou, Georgios A; Paschou, Stavroula A; Mantzoros, Christos S

    2016-09-01

    Leptin, a 167 amino acid adipokine, plays a major role in human energy homeostasis. Its actions are mediated through binding to leptin receptor and activating JAK-STAT3 signal transduction pathway. It is expressed mainly in adipocytes, and its circulating levels reflect the body's energy stores in adipose tissue. Recombinant methionyl human leptin has been FDA approved for patients with generalized non-HIV lipodystrophy and for compassionate use in subjects with congenital leptin deficiency. The purpose of this review is to outline the role of leptin in energy homeostasis, as well as its interaction with other hormones. PMID:27519135

  13. Constriction and Dnm1p Recruitment Are Distinct Processes in Mitochondrial FissionV⃞

    Legesse-Miller, Aster; Massol, Ramiro H.; Kirchhausen, Tom

    2003-01-01

    Mitochondria undergo cycles of fusion and fission crucial for organelle homeostasis. Fission is regulated partially by recruitment of the large GTPase Dnm1p to the outer mitochondrial membrane. Using three-dimensional time-lapse fluorescence imaging of Saccharomyces cerevisiae cells, we found that Dnm1p-EGFP appears and disappears at “hot spots” along mitochondrial tubes. It forms patches that convert rapidly into different shapes regardless of whether mitochondrial fission ensues or no...

  14. Aberrant methylation patterns in cancer

    Hudler, Petra; Videtič, Alja

    2016-01-01

    Epigenetic mechanisms, such as DNA methylation, DNA hydroxymethylation, post-translational modifications (PTMs) of histone proteins affecting nucleosome remodelling, and regulation by small and large non-coding RNAs (ncRNAs) work in concert with cis and trans acting elements to drive appropriate gene expression. Advances in detection methods and development of dedicated platforms and methylation arrays resulted in an explo - sion of information on aberrantly methylated sequences linking devia...

  15. Baseline chromosome aberrations in children

    Merlo, D.F.; Ceppi, M.; Stagi, E.; Bocchini, V.; Šrám, Radim; Rössner st., Pavel

    2007-01-01

    Roč. 172, - (2007), s. 60-67. ISSN 0378-4274 Grant ostatní: EU(EU) 2002-02198; EU(EU) 2005-016320 Institutional research plan: CEZ:AV0Z50390512 Source of funding: R - rámcový projekt EK ; R - rámcový projekt EK Keywords : chromosome aberrations * children * molecular epidemiology Subject RIV: DN - Health Impact of the Environment Quality Impact factor: 2.826, year: 2007

  16. Aberrant Wnt Signaling in Leukemia.

    Staal, Frank J T; Famili, Farbod; Garcia Perez, Laura; Pike-Overzet, Karin

    2016-01-01

    The Wnt signaling pathway is essential in the development and homeostasis of blood and immune cells, but its exact role is still controversial and is the subject of intense research. The malignant counterpart of normal hematopoietic cells, leukemic (stem) cells, have hijacked the Wnt pathway for their self-renewal and proliferation. Here we review the multiple ways dysregulated Wnt signaling can contribute to leukemogenesis, both cell autonomously as well as by changes in the microenvironment. PMID:27571104

  17. Mitochondrial network genes in the skeletal muscle of amyotrophic lateral sclerosis patients.

    Camilla Bernardini

    Full Text Available Recent evidence suggested that muscle degeneration might lead and/or contribute to neurodegeneration, thus it possibly play a key role in the etiopathogenesis and progression of amyotrophic lateral sclerosis (ALS. To test this hypothesis, this study attempted to categorize functionally relevant genes within the genome-wide expression profile of human ALS skeletal muscle, using microarray technology and gene regulatory network analysis. The correlation network structures significantly change between patients and controls, indicating an increased inter-gene connection in patients compared to controls. The gene network observed in the ALS group seems to reflect the perturbation of muscle homeostasis and metabolic balance occurring in affected individuals. In particular, the network observed in the ALS muscles includes genes (PRKR1A, FOXO1, TRIM32, ACTN3, among others, whose functions connect the sarcomere integrity to mitochondrial oxidative metabolism. Overall, the analytical approach used in this study offer the possibility to observe higher levels of correlation (i.e. common expression trends among genes, whose function seems to be aberrantly activated during the progression of muscle atrophy.

  18. Mitochondrial Evolution

    Gray, Michael W

    2012-01-01

    Viewed through the lens of the genome it contains, the mitochondrion is of unquestioned bacterial ancestry, originating from within the bacterial phylum α-Proteobacteria (Alphaproteobacteria). Accordingly, the endosymbiont hypothesis—the idea that the mitochondrion evolved from a bacterial progenitor via symbiosis within an essentially eukaryotic host cell—has assumed the status of a theory. Yet mitochondrial genome evolution has taken radically different pathways in diverse eukaryotic lineag...

  19. Mitochondrial Biology and Neurological Diseases.

    Arun, Siddharth; Liu, Lei; Donmez, Gizem

    2016-01-01

    Mitochondria are extremely active organelles that perform a variety of roles in the cell including energy production, regulation of calcium homeostasis, apoptosis, and population maintenance through fission and fusion. Mitochondrial dysfunction in the form of oxidative stress and mutations can contribute to the pathogenesis of various neurodegenerative diseases such as Parkinson's (PD), Alzheimer's (AD), and Huntington's diseases (HD). Abnormalities of Complex I function in the electron transport chain have been implicated in some neurodegenerative diseases, inhibiting ATP production and generating reactive oxygen species that can cause major damage to mitochondria. Mutations in both nuclear and mitochondrial DNA can contribute to neurodegenerative disease, although the pathogenesis of these conditions tends to focus on nuclear mutations. In PD, nuclear genome mutations in the PINK1 and parkin genes have been implicated in neurodegeneration [1], while mutations in APP, PSEN1 and PSEN2 have been implicated in a variety of clinical symptoms of AD [5]. Mutant htt protein is known to cause HD [2]. Much progress has been made to determine some causes of these neurodegenerative diseases, though permanent treatments have yet to be developed. In this review, we discuss the roles of mitochondrial dysfunction in the pathogenesis of these diseases. PMID:26903445

  20. Fine-Tuning of PI3K/AKT Signalling by the Tumour Suppressor PTEN Is Required for Maintenance of Flight Muscle Function and Mitochondrial Integrity in Ageing Adult Drosophila melanogaster.

    Lawrence B Mensah

    Full Text Available Insulin/insulin-like growth factor signalling (IIS, acting primarily through the PI3-kinase (PI3K/AKT kinase signalling cassette, plays key evolutionarily conserved regulatory roles in nutrient homeostasis, growth, ageing and longevity. The dysfunction of this pathway has been linked to several age-related human diseases including cancer, Type 2 diabetes and neurodegenerative disorders. However, it remains unclear whether minor defects in IIS can independently induce the age-dependent functional decline in cells that accompany some of these diseases or whether IIS alters the sensitivity to other aberrant signalling. We identified a novel hypomorphic allele of PI3K's direct antagonist, Phosphatase and tensin homologue on chromosome 10 (Pten, in the fruit fly, Drosophila melanogaster. Adults carrying combinations of this allele, Pten5, combined with strong loss-of-function Pten mutations exhibit subtle or no increase in mass, but are highly susceptible to a wide range of stresses. They also exhibit dramatic upregulation of the oxidative stress response gene, GstD1, and a progressive loss of motor function that ultimately leads to defects in climbing and flight ability. The latter phenotype is associated with mitochondrial disruption in indirect flight muscles, although overall muscle structure appears to be maintained. We show that the phenotype is partially rescued by muscle-specific expression of the Bcl-2 homologue Buffy, which in flies, maintains mitochondrial integrity, modulates energy homeostasis and suppresses cell death. The flightless phenotype is also suppressed by mutations in downstream IIS signalling components, including those in the mechanistic Target of Rapamycin Complex 1 (mTORC1 pathway, suggesting that elevated IIS is responsible for functional decline in flight muscle. Our data demonstrate that IIS levels must be precisely regulated by Pten in adults to maintain the function of the highly metabolically active indirect flight

  1. What Is Mitochondrial DNA?

    ... DNA What is mitochondrial DNA? What is mitochondrial DNA? Although most DNA is packaged in chromosomes within ... proteins. For more information about mitochondria and mitochondrial DNA: Molecular Expressions, a web site from the Florida ...

  2. Mitochondrial dysfunction leads to impairment of insulin sensitivity and adiponectin secretion in adipocytes.

    Wang, Chih-Hao; Wang, Ching-Chu; Huang, Hsin-Chang; Wei, Yau-Huei

    2013-02-01

    Adipocytes play an integrative role in the regulation of energy metabolism and glucose homeostasis in the human body. Functional defects in adipocytes may cause systemic disturbance of glucose homeostasis. Recent studies revealed mitochondrial abnormalities in the adipose tissue of patients with type 2 diabetes. In addition, patients with mitochondrial diseases usually manifest systemic metabolic disorder. However, it is unclear how mitochondrial dysfunction in adipocytes affects the regulation of glucose homeostasis. In this study, we induced mitochondrial dysfunction and overproduction of reactive oxygen species (ROS) by addition of respiratory inhibitors oligomycin A and antimycin A and by knockdown of mitochondrial transcription factor A (mtTFA), respectively. We found an attenuation of the insulin response as indicated by lower glucose uptake and decreased phosphorylation of Akt upon insulin stimulation of adipocytes with mitochondrial dysfunction. Furthermore, the expression of glucose transporter 4 (Glut4) and secretion of adiponectin were decreased in adipocytes with increased ROS generated by defective mitochondria. Moreover, the severity of insulin insensitivity was correlated with the extent of mitochondrial dysfunction. These results suggest that higher intracellular ROS levels elicited by mitochondrial dysfunction resulted in impairment of the function of adipocytes in the maintenance of glucose homeostasis through attenuation of insulin signaling, downregulation of Glut4 expression, and decrease in adiponectin secretion. Our findings substantiate the important role of mitochondria in the regulation of glucose homeostasis in adipocytes and also provide a molecular basis for the explanation of the manifestation of diabetes mellitus or insulin insensitivity in a portion of patients with mitochondrial diseases such as MELAS or MERRF syndrome. PMID:23253816

  3. Protein degradation and iron homeostasis.

    Thompson, Joel W; Bruick, Richard K

    2012-09-01

    Regulation of both systemic and cellular iron homeostasis requires the capacity to sense iron levels and appropriately modify the expression of iron metabolism genes. These responses are coordinated through the efforts of several key regulatory factors including F-box and Leucine-rich Repeat Protein 5 (FBXL5), Iron Regulatory Proteins (IRPs), Hypoxia Inducible Factor (HIF), and ferroportin. Notably, the stability of each of these proteins is regulated in response to iron. Recent discoveries have greatly advanced our understanding of the molecular mechanisms governing iron-sensing and protein degradation within these pathways. It has become clear that iron's privileged roles in both enzyme catalysis and protein structure contribute to its regulation of protein stability. Moreover, these multiple pathways intersect with one another in larger regulatory networks to maintain iron homeostasis. This article is part of a Special Issue entitled: Cell Biology of Metals. PMID:22349011

  4. Sleeping, Waking, ... and Glucose Homeostasis

    Rudic R. Daniel; McNamara Peter; Curtis Anne-Maria; Boston Raymond C; Panda Satchidananda; Hogenesch John B; FitzGerald Garret A

    2004-01-01

    Circadian timing is generated through a unique series of autoregulatory interactions termed the molecular clock. Behavioral rhythms subject to the molecular clock are well characterized. We demonstrate a role for Bmal1 and Clock in the regulation of glucose homeostasis. Inactivation of the known clock components Bmal1 (Mop3) and Clock suppress the diurnal variation in glucose and triglycerides. Gluconeogenesis is abolished by deletion of Bmal1 and is depressed in Clock mutants, but the counte...

  5. Zinc bioavailability and homeostasis1234

    Hambidge, K Michael; Miller, Leland V; Westcott, Jamie E; Sheng, Xiaoyang; Krebs, Nancy F.

    2010-01-01

    Zinc has earned recognition recently as a micronutrient of outstanding and diverse biological, clinical, and global public health importance. Regulation of absorption by zinc transporters in the enterocyte, together with saturation kinetics of the absorption process into and across the enterocyte, are the principal means by which whole-body zinc homeostasis is maintained. Several physiologic factors, most notably the quantity of zinc ingested, determine the quantity of zinc absorbed and the e...

  6. Mitochondrial Dysfunction in Stem Cell Aging

    Anna Meiliana

    2015-04-01

    Full Text Available BACKGROUND: Regardless of the precise underlying molecular mechanisms, the fundamental defining manifestation of aging is an overall decline in the functional capacity of various organs to maintain baseline tissue homeostasis and to respond adequately to physiological needs under stress. There is an increasingly urgent need for a more complete understanding of the molecular pathways and biological processes underlying aging and age-related disorders. CONTENT: Mitochondria constitute the most prominent source of adenosine triphosphate (ATP and are implicated in multiple anabolic and catabolic circuitries. In addition, mitochondria coordinate cell-wide stress responses and control non-apoptotic cell death routines. The involvement of mitochondria in both vital and lethal processes is crucial for both embryonic and postembryonic development, as well as for the maintenance of adult tissue homeostasis. Age-associated telomere damage, diminution of telomere ‘capping’ function and associated p53 activation have emerged as prime instigators of a functional decline of tissue stem cells and of mitochondrial dysfunction that adversely affect renewal and bioenergetic support in diverse tissues. Constructing a model of how telomeres, stem cells and mitochondria interact with key molecules governing genome integrity, ‘stemness’ and metabolism provides a framework for how diverse factors contribute to aging and age-related disorders. SUMMARY: Cellular senescence defined as an irreversible proliferation arrest promotes age-related decline in mammalian tissue homeostasis. The aging of tissue-specific stem cell and progenitor cell compartments is believed to be central to the decline of tissue and organ integrity and function in the elderly. Taken into consideration that the overwhelming majority of intracellular reactive oxygen species (ROS are of mitochondrial origin, it is reasonable to posit that the elevated ROS production might be caused by

  7. 线粒体功能障碍与心血管疾病%Roles of mitochondrial dysfunction in cardiovascular diseases

    熊燕; 张梅; 陈菲; 方伟进

    2013-01-01

    Mitochondria are important organelles of energy generation in eukaryocytes and play a pivotal role in cell calcium homeostasis, signal transduction and apoptotic regulation. The possible causes leading to mitochondrial dysfunction include oxidative stress, Ca + disorder, reduction of mitochondrial biosynthesis and mitochondrial DNA mutations, all of which are also closely related to the development of cardiovascular diseases. Understanding the mitochondrial dysfunction and its important role in cardiovascular diseases are very significant for elucidating the mechanisms of cardiovascular diseases.

  8. Chromosomal aberrations and bone marrow toxicity.

    Heddle, J A; Salamone, M F

    1981-01-01

    The importance of chromosomal aberrations as a proximate cause of bone marrow toxicity is discussed. Since chemicals that can cause nondisjunction are rare, numerical aberrations (aneuploidy, polyploidy) are not ordinarily important. Many structural aberrations, however, can lead directly to cell death and so are proximate causes of toxicity when they occur. The micronucleus test which utilizes the polychromatic erythrocyte is capable of detecting agents (clastogens) that can cause such struc...

  9. Chromosomal aberrations in ore miners of Slovakia

    A pilot study was performed in which the incidence of chromosomal aberrations in lymphocytes of miners in ore mines located in Central Slovakia was monitored and related to lifetime underground radon exposure and to lifetime smoking. The conclusions drawn from the results of the study were as follows: the counts of chromosomal aberrations in lymphocytes of miners were significantly higher than in an age matched control group of white-collar staff; the higher counts of chromosomal aberrations could be ascribed to underground exposure of miners and to smoking; a dependence of chromosomal aberration counts on the exposure to radon could not be assessed. (A.K.)

  10. THE METABOLIC PHENOTYPE OF PANCREATIC CANCER AND ITS LINK TO CYTOSOLIC CALCIUM HOMEOSTASIS AND SURVIVAL

    Chan, Anthony

    2013-01-01

    THE METABOLIC PHENOTYPE OF PANCREATIC CANCER AND ITS LINK TO CYTOSOLIC CALCIUM HOMEOSTASIS AND SURVIVAL IntroductionPancreatic ductal adenocarcinoma (PDAC) is an insidious and aggressive cancer characterised by poor survival rates. In cancer, there is a pathological switch in metabolism from mitochondrial oxidative phosphorylation to glycolysis, known as the Warburg effect. Cells depend on an ATP-driven plasma membrane Ca¬2+ pump (PMCA) to maintain a low resting cytosolic Ca2+ concentration (...

  11. SIRT3 deacetylates mitochondrial 3-hydroxy-3-methylglutaryl CoA synthase 2 and regulates ketone body production

    Shimazu, Tadahiro; Hirschey, Matthew D; Hua, Lan; Dittenhafer-Reed, Kristin E; Schwer, Bjoern; Lombard, David B; Li, Yu; Bunkenborg, Jakob; Alt, Frederick W; Denu, John M; Jacobson, Matthew P; Verdin, Eric

    2010-01-01

    The mitochondrial sirtuin SIRT3 regulates metabolic homeostasis during fasting and calorie restriction. We identified mitochondrial 3-hydroxy-3-methylglutaryl CoA synthase 2 (HMGCS2) as an acetylated protein and a possible target of SIRT3 in a proteomics survey in hepatic mitochondria from Sirt3(...

  12. Mechanistic modeling of aberrant energy metabolism in human disease

    Vineet eSangar

    2012-10-01

    Full Text Available Dysfunction in energy metabolism—including in pathways localized to the mitochondria—has been implicated in the pathogenesis of a wide array of disorders, ranging from cancer to neurodegenerative diseases to type II diabetes. The inherent complexities of energy and mitochondrial metabolism present a significant obstacle in the effort to understand the role that these molecular processes play in the development of disease. To help unravel these complexities, systems biology methods have been applied to develop an array of computational metabolic models, ranging from mitochondria-specific processes to genome-scale cellular networks. These constraint-based models can efficiently simulate aspects of normal and aberrant metabolism in various genetic and environmental conditions. Development of these models leverages—and also provides a powerful means to integrate and interpret—information from a wide range of sources including genomics, proteomics, metabolomics, and enzyme kinetics. Here, we review a variety of mechanistic modeling studies that explore metabolic functions, deficiency disorders, and aberrant biochemical pathways in mitochondria and related regions in the cell.

  13. Increased intrinsic mitochondrial function in humans with mitochondrial haplogroup H

    Larsen, Steen; Díez-Sánchez, Carmen; Rabøl, Rasmus;

    2014-01-01

    determined their mitochondrial haplogroup, mitochondrial oxidative phosphorylation capacity (OXPHOS), mitochondrial content (citrate synthase (CS)) and VO2max. Intrinsic mitochondrial function is calculated as mitochondrial OXPHOS capacity divided by mitochondrial content (CS). Haplogroup H showed a 30......% higher intrinsic mitochondrial function compared with the other haplo group U. There was no relationship between haplogroups and VO2max. In skeletal muscle from men with mitochondrial haplogroup H, an increased intrinsic mitochondrial function is present....

  14. Mitochondrial Dynamics and Mitochondrial Dysfunction in Diabetes.

    Wada, Jun; Nakatsuka, Atsuko

    2016-06-01

    The mitochondria are involved in active and dynamic processes, such as mitochondrial biogenesis, fission, fusion and mitophagy to maintain mitochondrial and cellular functions. In obesity and type 2 diabetes, impaired oxidation, reduced mitochondrial contents, lowered rates of oxidative phosphorylation and excessive reactive oxygen species (ROS) production have been reported. Mitochondrial biogenesis is regulated by various transcription factors such as peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α), peroxisome proliferator-activated receptors (PPARs), estrogen-related receptors (ERRs), and nuclear respiratory factors (NRFs). Mitochondrial fusion is promoted by mitofusin 1 (MFN1), mitofusin 2 (MFN2) and optic atrophy 1 (OPA1), while fission is governed by the recruitment of dynamin-related protein 1 (DRP1) by adaptor proteins such as mitochondrial fission factor (MFF), mitochondrial dynamics proteins of 49 and 51 kDa (MiD49 and MiD51), and fission 1 (FIS1). Phosphatase and tensin homolog (PTEN)-induced putative kinase 1 (PINK1) and PARKIN promote DRP1-dependent mitochondrial fission, and the outer mitochondrial adaptor MiD51 is required in DRP1 recruitment and PARKIN-dependent mitophagy. This review describes the molecular mechanism of mitochondrial dynamics, its abnormality in diabetes and obesity, and pharmaceuticals targeting mitochondrial biogenesis, fission, fusion and mitophagy. PMID:27339203

  15. Targeting mitochondrial biogenesis to overcome drug resistance to MAPK inhibitors.

    Zhang, Gao; Frederick, Dennie T; Wu, Lawrence; Wei, Zhi; Krepler, Clemens; Srinivasan, Satish; Chae, Young Chan; Xu, Xiaowei; Choi, Harry; Dimwamwa, Elaida; Ope, Omotayo; Shannan, Batool; Basu, Devraj; Zhang, Dongmei; Guha, Manti; Xiao, Min; Randell, Sergio; Sproesser, Katrin; Xu, Wei; Liu, Jephrey; Karakousis, Giorgos C; Schuchter, Lynn M; Gangadhar, Tara C; Amaravadi, Ravi K; Gu, Mengnan; Xu, Caiyue; Ghosh, Abheek; Xu, Weiting; Tian, Tian; Zhang, Jie; Zha, Shijie; Liu, Qin; Brafford, Patricia; Weeraratna, Ashani; Davies, Michael A; Wargo, Jennifer A; Avadhani, Narayan G; Lu, Yiling; Mills, Gordon B; Altieri, Dario C; Flaherty, Keith T; Herlyn, Meenhard

    2016-05-01

    Targeting multiple components of the MAPK pathway can prolong the survival of patients with BRAFV600E melanoma. This approach is not curative, as some BRAF-mutated melanoma cells are intrinsically resistant to MAPK inhibitors (MAPKi). At the systemic level, our knowledge of how signaling pathways underlie drug resistance needs to be further expanded. Here, we have shown that intrinsically resistant BRAF-mutated melanoma cells with a low basal level of mitochondrial biogenesis depend on this process to survive MAPKi. Intrinsically resistant cells exploited an integrated stress response, exhibited an increase in mitochondrial DNA content, and required oxidative phosphorylation to meet their bioenergetic needs. We determined that intrinsically resistant cells rely on the genes encoding TFAM, which controls mitochondrial genome replication and transcription, and TRAP1, which regulates mitochondrial protein folding. Therefore, we targeted mitochondrial biogenesis with a mitochondrium-targeted, small-molecule HSP90 inhibitor (Gamitrinib), which eradicated intrinsically resistant cells and augmented the efficacy of MAPKi by inducing mitochondrial dysfunction and inhibiting tumor bioenergetics. A subset of tumor biopsies from patients with disease progression despite MAPKi treatment showed increased mitochondrial biogenesis and tumor bioenergetics. A subset of acquired drug-resistant melanoma cell lines was sensitive to Gamitrinib. Our study establishes mitochondrial biogenesis, coupled with aberrant tumor bioenergetics, as a potential therapy escape mechanism and paves the way for a rationale-based combinatorial strategy to improve the efficacy of MAPKi. PMID:27043285

  16. Calculation of aberration coefficients by ray tracing

    Oral, Martin; Lencová, Bohumila

    2009-01-01

    Roč. 109, č. 11 (2009), s. 1365-1373. ISSN 0304-3991 R&D Projects: GA AV ČR IAA100650805 Institutional research plan: CEZ:AV0Z20650511 Keywords : Aberrations * Aberration coefficients * Ray tracing * Regression * Fitting Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 2.067, year: 2009

  17. Alpha Klotho and phosphate homeostasis

    Bian, Ao; Xing, Changying; Hu, Ming Chang

    2014-01-01

    The Klotho family consists of three single-pass transmembrane proteins—αKlotho, βKlotho and γKlotho. Each of them combines with fibroblast growth factor (FGF) receptors (FGFRs) to form receptor complexes for various FGF’s. αKlotho is a co-receptor for physiological FGF23 signaling and appears essential for FGF23-mediated regulation of mineral metabolism. αKlotho protein also plays a FGF23-independent role in phosphate homeostasis. Animal experimental studies and clinical observations have dem...

  18. Nodal aberration theory applied to freeform surfaces

    Fuerschbach, Kyle; Rolland, Jannick P.; Thompson, Kevin P.

    2014-12-01

    When new three-dimensional packages are developed for imaging optical systems, the rotational symmetry of the optical system is often broken, changing its imaging behavior and making the optical performance worse. A method to restore the performance is to use freeform optical surfaces that compensate directly the aberrations introduced from tilting and decentering the optical surfaces. In order to effectively optimize the shape of a freeform surface to restore optical functionality, it is helpful to understand the aberration effect the surface may induce. Using nodal aberration theory the aberration fields induced by a freeform surface in an optical system are explored. These theoretical predications are experimentally validated with the design and implementation of an aberration generating telescope.

  19. Aberration compensation in charged particle projection lithography

    Projection systems offer the opportunity to increase the throughput for charged particle lithography, because such systems image a large area of a mask directly on to a wafer as a single shot. Shots have to be imaged over a certain range of off-axis distances at the wafer to increase the writing speed, because shot sizes are limited to about 0.25x0.25 mm2 due to aberrations. In a projection system with only lenses, however, the aberrations for off-axis shots are still very large, and some aberration compensation elements need to be introduced. In this paper, three aberration compensation elements (deflectors, stigmators and dynamic focus lenses) are first discussed, a suite of newly developed software, called PROJECTION, based on this principle and our unified aberration theory is then described, and an illustrative example computed with the software is finally given

  20. Higher-Order Aberrations in Myopic Eyes

    Farid Karimian

    2010-01-01

    Full Text Available Purpose: To evaluate the correlation between refractive error and higher-order aberrations (HOAs in patients with myopic astigmatism. Methods: HOAs were measured using the Zywave II aberrometer over a 6 mm pupil. Correlations between HOAs and myopia, astigmatism, and age were analyzed. Results: One hundred and twenty-six eyes of 63 subjects with mean age of 26.4±5.9 years were studied. Mean spherical equivalent refractive error and refractive astigmatism were -4.94±1.63 D and 0.96±1.06 D, respectively. The most common higher-order aberration was primary horizontal trefoil with mean value of 0.069±0.152 μm followed by spherical aberration (-0.064±0.130 μm and primary vertical coma (-0.038±0.148 μm. As the order of aberration increased from third to fifth, its contribution to total HOA decreased: 53.9% for third order, 31.9% for fourth order, and 14.2% for fifth order aberrations. Significant correlations were observed between spherical equivalent refractive error and primary horizontal coma (R=0.231, P=0.022, and root mean square (RMS of spherical aberration (R=0.213, P=0.031; between astigmatism and RMS of total HOA (R=0.251, P=0.032, RMS of fourth order aberration (R=0.35, P<0.001, and primary horizontal coma (R=0.314, P=0.004. Spherical aberration (R=0.214, P=0.034 and secondary vertical coma (R=0.203, P=0.031 significantly increased with age. Conclusion: Primary horizontal trefoil, spherical aberration and primary vertical coma are the predominant higher-order aberrations in eyes with myopic astigmatism.

  1. UCP2 Regulates Mitochondrial Fission and Ventromedial Nucleus Control of Glucose Responsiveness.

    Toda, Chitoku; Kim, Jung Dae; Impellizzeri, Daniela; Cuzzocrea, Salvatore; Liu, Zhong-Wu; Diano, Sabrina

    2016-02-25

    The ventromedial nucleus of the hypothalamus (VMH) plays a critical role in regulating systemic glucose homeostasis. How neurons in this brain area adapt to the changing metabolic environment to regulate circulating glucose levels is ill defined. Here, we show that glucose load results in mitochondrial fission and reduced reactive oxygen species in VMH neurons mediated by dynamin-related peptide 1 (DRP1) under the control of uncoupling protein 2 (UCP2). Probed by genetic manipulations and chemical-genetic control of VMH neuronal circuitry, we unmasked that this mitochondrial adaptation determines the size of the pool of glucose-excited neurons in the VMH and that this process regulates systemic glucose homeostasis. Thus, our data unmasked a critical cellular biological process controlled by mitochondrial dynamics in VMH regulation of systemic glucose homeostasis. PMID:26919426

  2. Mitochondrial Ca2+ uptake in skeletal muscle health and disease

    Zhou, Jingsong; Yi, Jianxun

    2016-01-01

    Muscle uses Ca2+ as a messenger to control contraction and relies on ATP to maintain the intracellular Ca2+ homeostasis. Mitochondria are the major sub-cellular organelle of ATP production. With a negative inner membrane potential, mitochondria take up Ca2+ from their surroundings, a process called mitochondrial Ca2+ uptake. Under physiological conditions, Ca2+ uptake into mitochondria promotes ATP production. Excessive uptake causes mitochondrial Ca2+ overload, which activates downstream adverse responses leading to cell dysfunction. Moreover, mitochondrial Ca2+ uptake could shape spatio-temporal patterns of intracellular Ca2+ signaling. Malfunction of mitochondrial Ca2+ uptake is implicated in muscle degeneration. Unlike non-excitable cells, mitochondria in muscle cells experience dramatic changes of intracellular Ca2+ levels. Besides the sudden elevation of Ca2+ level induced by action potentials, Ca2+ transients in muscle cells can be as short as a few milliseconds during a single twitch or as long as min...

  3. Chromosome aberration assays in Allium

    Grant, W.F.

    1982-01-01

    The common onion (Allium cepa) is an excellent plant for the assay of chromosome aberrations after chemical treatment. Other species of Allium (A. cepa var. proliferum, A. carinatum, A. fistulosum and A. sativum) have also been used but to a much lesser extent. Protocols have been given for using root tips from either bulbs or seeds of Allium cepa to study the cytological end-points, such as chromosome breaks and exchanges, which follow the testing of chemicals in somatic cells. It is considered that both mitotic and meiotic end-points should be used to a greater extent in assaying the cytogenetic effects of a chemical. From a literature survey, 148 chemicals are tabulated that have been assayed in 164 Allium tests for their clastogenic effect. Of the 164 assays which have been carried out, 75 are reported as giving a positive reaction, 49 positive and with a dose response, 1 positive and temperature-related, 9 borderline positive, and 30 negative; 76% of the chemicals gave a definite positive response. It is proposed that the Allium test be included among those tests routinely used for assessing chromosomal damage induced by chemicals.

  4. Effect of aberrations in vortex spatial filtering

    Sharma, Manoj Kumar; Joseph, Joby; Senthilkumaran, P.

    2012-11-01

    Edge enhancement is a very important operation in image processing and a spiral phase plate can be used as a radial Hilbert mask for isotropic edge enhancement. In this paper we analyze the effect of various Seidel aberrations on the performance of radial Hilbert mask or the vortex phase mask. The aberrated vortex phase mask is implemented optically with the help of a high resolution, spatial light modulator (SLM). It has also been shown that out of various aberrations astigmatism can introduce anisotropy in the Hilbert mask which causes selective edge enhancement.

  5. Epigenetic Regulation of Cholesterol Homeostasis

    Steve eMeaney

    2014-09-01

    Full Text Available Although best known as a risk factor for cardiovascular disease, cholesterol is a vital component of all mammalian cells. In addition to key structural roles, cholesterol is a vital biochemical precursor for numerous biologically important compounds including oxysterols and bile acids, as well as acting as an activator of critical morphogenic systems (e.g. the Hedgehog system. A variety of sophisticated regulatory mechanisms interact to coordinate the overall level of cholesterol in cells, tissues and the entire organism. Accumulating evidence indicates that in additional to the more ‘traditional’ regulatory schemes, cholesterol homeostasis is also under the control of epigenetic mechanisms such as histone acetylation and DNA methylation. The available evidence supporting a role for these mechanisms in the control of cholesterol synthesis, elimination, transport and storage are the focus of this review.

  6. Quantifying small molecule phenotypic effects using mitochondrial morpho-functional fingerprinting and machine learning

    Blanchet, L.M.; Smeitink, J; van Emst-de Vries, S E; Vogels, C.; Pellegrini, M; Jonckheere, A.I.; Rodenburg, R J; Buydens, L.M.; Beyrath, J.D.; Willems, P.H.G.M.; Koopman, W.J.H.

    2015-01-01

    In primary fibroblasts from Leigh Syndrome (LS) patients, isolated mitochondrial complex I deficiency is associated with increased reactive oxygen species levels and mitochondrial morpho-functional changes. Empirical evidence suggests these aberrations constitute linked therapeutic targets for small chemical molecules. However, the latter generally induce multiple subtle effects, meaning that in vitro potency analysis or single-parameter high-throughput cell screening are of limited use to id...

  7. Mitochondrial disease and epilepsy.

    Rahman, Shamima

    2012-05-01

    Mitochondrial respiratory chain disorders are relatively common inborn errors of energy metabolism, with a combined prevalence of one in 5000. These disorders typically affect tissues with high energy requirements, and cerebral involvement occurs frequently in childhood, often manifesting in seizures. Mitochondrial diseases are genetically heterogeneous; to date, mutations have been reported in all 37 mitochondrially encoded genes and more than 80 nuclear genes. The major genetic causes of mitochondrial epilepsy are mitochondrial DNA mutations (including those typically associated with the mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes [MELAS] and myoclonic epilepsy with ragged red fibres [MERRF] syndromes); mutations in POLG (classically associated with Alpers syndrome but also presenting as the mitochondrial recessive ataxia syndrome [MIRAS], spinocerebellar ataxia with epilepsy [SCAE], and myoclonus, epilepsy, myopathy, sensory ataxia [MEMSA] syndromes in older individuals) and other disorders of mitochondrial DNA maintenance; complex I deficiency; disorders of coenzyme Q(10) biosynthesis; and disorders of mitochondrial translation such as RARS2 mutations. It is not clear why some genetic defects, but not others, are particularly associated with seizures. Epilepsy may be the presenting feature of mitochondrial disease but is often part of a multisystem clinical presentation. Mitochondrial epilepsy may be very difficult to manage, and is often a poor prognostic feature. At present there are no curative treatments for mitochondrial disease. Individuals with mitochondrial epilepsy are frequently prescribed multiple anticonvulsants, and the role of vitamins and other nutritional supplements and the ketogenic diet remain unproven. PMID:22283595

  8. α-Synuclein binds to TOM20 and inhibits mitochondrial protein import in Parkinson's disease.

    Di Maio, Roberto; Barrett, Paul J; Hoffman, Eric K; Barrett, Caitlyn W; Zharikov, Alevtina; Borah, Anupom; Hu, Xiaoping; McCoy, Jennifer; Chu, Charleen T; Burton, Edward A; Hastings, Teresa G; Greenamyre, J Timothy

    2016-06-01

    α-Synuclein accumulation and mitochondrial dysfunction have both been strongly implicated in the pathogenesis of Parkinson's disease (PD), and the two appear to be related. Mitochondrial dysfunction leads to accumulation and oligomerization of α-synuclein, and increased levels of α-synuclein cause mitochondrial impairment, but the basis for this bidirectional interaction remains obscure. We now report that certain posttranslationally modified species of α-synuclein bind with high affinity to the TOM20 (translocase of the outer membrane 20) presequence receptor of the mitochondrial protein import machinery. This binding prevented the interaction of TOM20 with its co-receptor, TOM22, and impaired mitochondrial protein import. Consequently, there were deficient mitochondrial respiration, enhanced production of reactive oxygen species, and loss of mitochondrial membrane potential. Examination of postmortem brain tissue from PD patients revealed an aberrant α-synuclein-TOM20 interaction in nigrostriatal dopaminergic neurons that was associated with loss of imported mitochondrial proteins, thereby confirming this pathogenic process in the human disease. Modest knockdown of endogenous α-synuclein was sufficient to maintain mitochondrial protein import in an in vivo model of PD. Furthermore, in in vitro systems, overexpression of TOM20 or a mitochondrial targeting signal peptide had beneficial effects and preserved mitochondrial protein import. This study characterizes a pathogenic mechanism in PD, identifies toxic species of wild-type α-synuclein, and reveals potential new therapeutic strategies for neuroprotection. PMID:27280685

  9. Aberration features in directional dark matter detection

    Bozorgnia, Nassim; Gondolo, Paolo

    2012-01-01

    The motion of the Earth around the Sun causes an annual change in the magnitude and direction of the arrival velocity of dark matter particles on Earth, in a way analogous to aberration of stellar light. In directional detectors, aberration of weakly interacting massive particles (WIMPs) modulates the pattern of nuclear recoil directions in a way that depends on the orbital velocity of the Earth and the local galactic distribution of WIMP velocities. Knowing the former, WIMP aberration can give information on the latter, besides being a curious way of confirming the revolution of the Earth and the extraterrestrial provenance of WIMPs. While observing the full aberration pattern requires extremely large exposures, we claim that the annual variation of the mean recoil direction or of the event counts over specific solid angles may be detectable with moderately large exposures. For example, integrated counts over galactic hemispheres separated by planes perpendicular to Earth's orbit would modulate annually, res...

  10. Catadioptric aberration correction in cathode lens microscopy

    Tromp, R.M. [IBM T.J. Watson Research Center, PO Box 218, Yorktown Heights, NY 10598 (United States); Kamerlingh Onnes Laboratory, Leiden Institute of Physics, Niels Bohrweg 2, 2333 CA Leiden (Netherlands)

    2015-04-15

    In this paper I briefly review the use of electrostatic electron mirrors to correct the aberrations of the cathode lens objective lens in low energy electron microscope (LEEM) and photo electron emission microscope (PEEM) instruments. These catadioptric systems, combining electrostatic lens elements with a reflecting mirror, offer a compact solution, allowing simultaneous and independent correction of both spherical and chromatic aberrations. A comparison with catadioptric systems in light optics informs our understanding of the working principles behind aberration correction with electron mirrors, and may point the way to further improvements in the latter. With additional developments in detector technology, 1 nm spatial resolution in LEEM appears to be within reach. - Highlights: • The use of electron mirrors for aberration correction in LEEM/PEEM is reviewed. • A comparison is made with similar systems in light optics. • Conditions for 1 nm spatial resolution are discussed.

  11. Catadioptric aberration correction in cathode lens microscopy

    In this paper I briefly review the use of electrostatic electron mirrors to correct the aberrations of the cathode lens objective lens in low energy electron microscope (LEEM) and photo electron emission microscope (PEEM) instruments. These catadioptric systems, combining electrostatic lens elements with a reflecting mirror, offer a compact solution, allowing simultaneous and independent correction of both spherical and chromatic aberrations. A comparison with catadioptric systems in light optics informs our understanding of the working principles behind aberration correction with electron mirrors, and may point the way to further improvements in the latter. With additional developments in detector technology, 1 nm spatial resolution in LEEM appears to be within reach. - Highlights: • The use of electron mirrors for aberration correction in LEEM/PEEM is reviewed. • A comparison is made with similar systems in light optics. • Conditions for 1 nm spatial resolution are discussed

  12. Aberration corrected Lorentz scanning transmission electron microscopy

    We present results from an aberration corrected scanning transmission electron microscope which has been customised for high resolution quantitative Lorentz microscopy with the sample located in a magnetic field free or low field environment. We discuss the innovations in microscope instrumentation and additional hardware that underpin the imaging improvements in resolution and detection with a focus on developments in differential phase contrast microscopy. Examples from materials possessing nanometre scale variations in magnetisation illustrate the potential for aberration corrected Lorentz imaging as a tool to further our understanding of magnetism on this lengthscale. - Highlights: • Demonstration of nanometre scale resolution in magnetic field free environment using aberration correction in the scanning transmission electron microscope (STEM). • Implementation of differential phase contrast mode of Lorentz microscopy in aberration corrected STEM with improved sensitivity. • Quantitative imaging of magnetic induction of nanostructures in amorphous and cross-section samples

  13. Sensing Phase Aberrations behind Lyot Coronagraphs

    Sivaramakrishnan, Anand; Soummer, Rémi; Pueyo, Laurent; Wallace, J. Kent; Shao, Michael

    2008-11-01

    Direct detection of young extrasolar planets orbiting nearby stars can be accomplished from the ground with extreme adaptive optics and coronagraphy in the near-infrared, as long as this combination can provide an image with a dynamic range of 107 after the data are processed. Slowly varying speckles due to residual phase aberrations that are not measured by the primary wave-front sensor are the primary obstacle to achieving such a dynamic range. In particular, non-common optical path aberrations occurring between the wave-front sensor and the coronagraphic occulting spot degrade performance the most. We analyze the passage of both low and high spatial frequency phase ripples, as well as low-order Zernike aberrations, through an apodized pupil Lyot coronagraph in order to demonstrate the way coronagraphic filtering affects various aberrations. We derive the coronagraphically induced cutoff frequency of the filtering and estimate coronagraphic contrast losses due to low-order Zernike aberrations: tilt, astigmatism, defocus, coma, and spherical aberration. Such slowly varying path errors can be measured behind a coronagraph and corrected by a slowly updated optical path delay precompensation or offset asserted on the wave front by the adaptive optics (AO) system. We suggest ways of measuring and correcting all but the lowest spatial frequency aberrations using Lyot plane wave-front data, in spite of the complex interaction between the coronagraph and those mid-spatial frequency aberrations that cause image plane speckles near the coronagraphic focal plane mask occulter's edge. This investigation provides guidance for next-generation coronagraphic instruments currently under construction.

  14. Aberrant right hepatic artery; A case report

    We present a rare case of aberrant hepatic artery in a 40-year-old male with a history of chronic cholecystitis. During laparoscopic surgery, the artery found to pass anterior to the body the gallbladder and bifurcating anterior to the gallbladder body. The surgery was un eventful. We present this anomaly of the rare condition of aberrant right hepatic artery which should be in mind during laparoscopic cholecystectomy, because inadverant injury could lead to massive bleeding and increase co morbidities. (author)

  15. Multiple Targets for Drug-Induced Mitochondrial Toxicity.

    Wallace, Kendall B

    2015-01-01

    Mitochondrial toxicity is rapidly gaining the interest of researchers and practitioners as a prominent liability in drug discovery and development, accounting for a growing proportion of preclinical drug attrition and post-market withdrawals or black box warnings by the U.S. FDA. To date, the focus of registries of drugs that elicit mitochondrial toxicity has been largely restricted to those that either inhibit the mitochondrial electron transport chain (ETC) or uncouple mitochondrial oxidative phosphorylation. Less appreciated are the toxicities that are secondary to the drug affecting either the molecular regulation, assembly or incorporation of the ETC into the inner mitochondrial membrane or those that limit substrate availability. The current article describes the complexities of molecular events and biochemical pathways required to sustain mitochondrial fidelity and substrate homeostasis with examples of drugs that interfere which the various pathways. The principal objective of this review is to shed light on the broader scope of drug-induced mitochondrial toxicities and how these secondary targets may account for a large portion of drug failures. PMID:25973981

  16. Selective sorting and destruction of mitochondrial membrane proteins in aged yeast

    Hughes, Adam L; Hughes, Casey E; Henderson, Kiersten A; Yazvenko, Nina; Gottschling, Daniel E

    2016-01-01

    Mitochondrial dysfunction is a hallmark of aging, and underlies the development of many diseases. Cells maintain mitochondrial homeostasis through a number of pathways that remodel the mitochondrial proteome or alter mitochondrial content during times of stress or metabolic adaptation. Here, using yeast as a model system, we identify a new mitochondrial degradation system that remodels the mitochondrial proteome of aged cells. Unlike many common mitochondrial degradation pathways, this system selectively removes a subset of membrane proteins from the mitochondrial inner and outer membranes, while leaving the remainder of the organelle intact. Selective removal of preexisting proteins is achieved by sorting into a mitochondrial-derived compartment, or MDC, followed by release through mitochondrial fission and elimination by autophagy. Formation of MDCs requires the import receptors Tom70/71, and failure to form these structures exacerbates preexisting mitochondrial dysfunction, suggesting that the MDC pathway provides protection to mitochondria in times of stress. DOI: http://dx.doi.org/10.7554/eLife.13943.001 PMID:27097106

  17. Metalloprotease OMA1 Fine-tunes Mitochondrial Bioenergetic Function and Respiratory Supercomplex Stability

    Iryna Bohovych; Fernandez, Mario R.; Rahn, Jennifer J.; Stackley, Krista D.; Bestman, Jennifer E.; Annadurai Anandhan; Rodrigo Franco; Claypool, Steven M.; Robert E. Lewis; Chan, Sherine S. L.; Oleh Khalimonchuk

    2015-01-01

    Mitochondria are involved in key cellular functions including energy production, metabolic homeostasis, and apoptosis. Normal mitochondrial function is preserved by several interrelated mechanisms. One mechanism – intramitochondrial quality control (IMQC) – is represented by conserved proteases distributed across mitochondrial compartments. Many aspects and physiological roles of IMQC components remain unclear. Here, we show that the IMQC protease Oma1 is required for the stability of the res...

  18. Mitochondrial DNA mutations. Brain developmental and ageing consequences, and possible treatments

    Ross, Jaime M.

    2012-01-01

    Ageing is a complex process that involves cellular senescence, a gradual loss of tissue homeostasis, and decline in organ function. Abundant evidence implicates mitochondria in ageing suggesting: (i) accumulation of mitochondrial DNA (mtDNA) damage, (ii) progressive respiratory chain dysfunction, and (iii) increased reactive oxygen species production. The “Mitochondrial Theory of Aging”, first proposed by Denham Harman in 1972, suggests that damage to mtDNA slowly accumulates with time and ca...

  19. Drosophila Parkin requires PINK1 for mitochondrial translocation and ubiquitinates Mitofusin

    Ziviani, E.; Tao, R.N.; Whitworth, A. J.

    2010-01-01

    Loss of the E3 ubiquitin ligase Parkin causes early onset Parkinson's disease, a neurodegenerative disorder of unknown etiology. Parkin has been linked to multiple cellular processes including protein degradation, mitochondrial homeostasis, and autophagy; however, its precise role in pathogenesis is unclear. Recent evidence suggests that Parkin is recruited to damaged mitochondria, possibly affecting mitochondrial fission and/or fusion, to mediate their autophagic turnover. The precise mechan...

  20. Resveratrol ameliorates mitochondrial dysfunction but increases the risk of hypoglycemia following hemorrhagic shock

    Widlund, Anne Lykkegaard; Wang, H.; Guan, Y.;

    2014-01-01

    Background: Hemorrhagic shock (HS) may contribute to organ failure, by profoundly altering mitochondrial function. Resveratrol (RSV), a naturally occurring polyphenol, has been shown to promote mitochondrial function and regulate glucose homeostasis in diabetes. We hypothesized that RSV during...... hemorrhage (sham), at severe shock, following resuscitation, and 18 hours after resuscitation. At each time point, the liver and kidney mitochondria were isolated to assess individual respiratory complexes (CI, CII, and CIV) and the production of reactive oxygen species (ROS). Blood samples were assayed for...

  1. Mitochondrial RNA granules: Compartmentalizing mitochondrial gene expression.

    Jourdain, Alexis A; Boehm, Erik; Maundrell, Kinsey; Martinou, Jean-Claude

    2016-03-14

    In mitochondria, DNA replication, gene expression, and RNA degradation machineries coexist within a common nondelimited space, raising the question of how functional compartmentalization of gene expression is achieved. Here, we discuss the recently characterized "mitochondrial RNA granules," mitochondrial subdomains with an emerging role in the regulation of gene expression. PMID:26953349

  2. Control of Homeostasis and Dendritic Cell Survival by the GTPase RhoA.

    Li, Shuai; Dislich, Bastian; Brakebusch, Cord H; Lichtenthaler, Stefan F; Brocker, Thomas

    2015-11-01

    Tissues accommodate defined numbers of dendritic cells (DCs) in highly specific niches where different intrinsic and environmental stimuli control DC life span and numbers. DC homeostasis in tissues is important, because experimental changes in DC numbers influence immunity and tolerance toward various immune catastrophes and inflammation. However, the precise molecular mechanisms regulating DC life span and homeostasis are unclear. We report that the GTPase RhoA controls homeostatic proliferation, cytokinesis, survival, and turnover of cDCs. Deletion of RhoA strongly decreased the numbers of CD11b(-)CD8(+) and CD11b(+)Esam(hi) DC subsets, whereas CD11b(+)Esam(lo) DCs were not affected in conditional RhoA-deficient mice. Proteome analyses revealed a defective prosurvival pathway via PI3K/protein kinase B (Akt1)/Bcl-2-associated death promoter in the absence of RhoA. Taken together, our findings identify RhoA as a central regulator of DC homeostasis, and its deletion decreases DC numbers below critical thresholds for immune protection and homeostasis, causing aberrant compensatory DC proliferation. PMID:26408665

  3. Role of Mitochondrial Dynamics in Neuronal Development: Mechanism for Wolfram Syndrome.

    Cagalinec, Michal; Liiv, Mailis; Hodurova, Zuzana; Hickey, Miriam Ann; Vaarmann, Annika; Mandel, Merle; Zeb, Akbar; Choubey, Vinay; Kuum, Malle; Safiulina, Dzhamilja; Vasar, Eero; Veksler, Vladimir; Kaasik, Allen

    2016-07-01

    Deficiency of the protein Wolfram syndrome 1 (WFS1) is associated with multiple neurological and psychiatric abnormalities similar to those observed in pathologies showing alterations in mitochondrial dynamics. The aim of this study was to examine the hypothesis that WFS1 deficiency affects neuronal function via mitochondrial abnormalities. We show that down-regulation of WFS1 in neurons leads to dramatic changes in mitochondrial dynamics (inhibited mitochondrial fusion, altered mitochondrial trafficking, and augmented mitophagy), delaying neuronal development. WFS1 deficiency induces endoplasmic reticulum (ER) stress, leading to inositol 1,4,5-trisphosphate receptor (IP3R) dysfunction and disturbed cytosolic Ca2+ homeostasis, which, in turn, alters mitochondrial dynamics. Importantly, ER stress, impaired Ca2+ homeostasis, altered mitochondrial dynamics, and delayed neuronal development are causatively related events because interventions at all these levels improved the downstream processes. Our data shed light on the mechanisms of neuronal abnormalities in Wolfram syndrome and point out potential therapeutic targets. This work may have broader implications for understanding the role of mitochondrial dynamics in neuropsychiatric diseases. PMID:27434582

  4. Effects of dietary fatty acids on mitochondrial phospholipid compositions, oxidative status and mitochondrial gene expression of zebrafish at different ages.

    Betancor, M B; Almaida-Pagán, P F; Hernández, A; Tocher, D R

    2015-10-01

    Mitochondrial decay is generally associated with impairment in the organelle bioenergetics function and increased oxidative stress, and it appears that deterioration of mitochondrial inner membrane phospholipids (PL) and accumulation of mitochondrial DNA (mtDNA) mutations are among the main mechanisms involved in this process. In the present study, mitochondrial membrane PL compositions, oxidative status (TBARS content and SOD activity) and mtDNA gene expression of muscle and liver were analyzed in zebrafish fed two diets with lipid supplied either by rapeseed oil (RO) or a blend 60:40 of RO and DHA500 TG oil (DHA). Two feeding trials were performed using zebrafish from the same population of two ages (8 and 21 months). Dietary FA composition affected fish growth in 8-month-old animals, which could be related to an increase in stress promoted by diet composition. Lipid peroxidation was considerably higher in mitochondria of 8-month-old zebrafish fed the DHA diet than in animals fed the RO diet. This could indicate higher oxidative damage to mitochondrial lipids, very likely due to increased incorporation of DHA in PL of mitochondrial membranes. Lipids would be among the first molecules affected by mitochondrial reactive oxygen species, and lipid peroxidation could propagate oxidative reactions that would damage other molecules, including mtDNA. Mitochondrial lipid peroxidation and gene expression of 21-month-old fish showed lower responsiveness to diet composition than those of younger fish. Differences found in the effect of diet composition on mitochondrial lipids between the two age groups could be indicating age-related changes in the ability to maintain structural homeostasis of mitochondrial membranes. PMID:26156499

  5. A Regulatory Role of NAD Redox Status on Flavin Cofactor Homeostasis in S. cerevisiae Mitochondria

    Teresa Anna Giancaspero

    2013-01-01

    Full Text Available Flavin adenine dinucleotide (FAD and nicotinamide adenine dinucleotide (NAD are two redox cofactors of pivotal importance for mitochondrial functionality and cellular redox balance. Despite their relevance, the mechanism by which intramitochondrial NAD(H and FAD levels are maintained remains quite unclear in Saccharomyces cerevisiae. We investigated here the ability of isolated mitochondria to degrade externally added FAD and NAD (in both its reduced and oxidized forms. A set of kinetic experiments demonstrated that mitochondrial FAD and NAD(H destroying enzymes are different from each other and from the already characterized NUDIX hydrolases. We studied here, in some detail, FAD pyrophosphatase (EC 3.6.1.18, which is inhibited by NAD+ and NADH according to a noncompetitive inhibition, with Ki values that differ from each other by an order of magnitude. These findings, together with the ability of mitochondrial FAD pyrophosphatase to metabolize endogenous FAD, presumably deriving from mitochondrial holoflavoproteins destined to degradation, allow for proposing a novel possible role of mitochondrial NAD redox status in regulating FAD homeostasis and/or flavoprotein degradation in S. cerevisiae.

  6. Mitochondrial Peroxiredoxin III is a Potential Target for Cancer Therapy

    Byoung Doo Rhee; Kyung Soo Ko; Jin Han; Sung-Ryul Lee; In-Sung Song; Nari Kim; Seung-Hun Jeong; Hyoung-Kyu Kim

    2011-01-01

    Mitochondria are involved either directly or indirectly in oncogenesis and the alteration of metabolism in cancer cells. Cancer cells contain large numbers of abnormal mitochondria and produce large amounts of reactive oxygen species (ROS). Oxidative stress is caused by an imbalance between the production of ROS and the antioxidant capacity of the cell. Several cancer therapies, such as chemotherapeutic drugs and radiation, disrupt mitochondrial homeostasis and release cytochrome c, leading t...

  7. Mitochondrial metals as a potential therapeutic target in neurodegeneration

    Grubman, A; White, A R; Liddell, J.R.

    2014-01-01

    Transition metals are critical for enzyme function and protein folding, but in excess can mediate neurotoxic oxidative processes. As mitochondria are particularly vulnerable to oxidative damage due to radicals generated during ATP production, mitochondrial biometal homeostasis must therefore be tightly controlled to safely harness the redox potential of metal enzyme cofactors. Dysregulation of metal functions is evident in numerous neurological disorders including Alzheimer's disease, stroke,...

  8. Pancreatic regulation of glucose homeostasis.

    Röder, Pia V; Wu, Bingbing; Liu, Yixian; Han, Weiping

    2016-01-01

    In order to ensure normal body function, the human body is dependent on a tight control of its blood glucose levels. This is accomplished by a highly sophisticated network of various hormones and neuropeptides released mainly from the brain, pancreas, liver, intestine as well as adipose and muscle tissue. Within this network, the pancreas represents a key player by secreting the blood sugar-lowering hormone insulin and its opponent glucagon. However, disturbances in the interplay of the hormones and peptides involved may lead to metabolic disorders such as type 2 diabetes mellitus (T2DM) whose prevalence, comorbidities and medical costs take on a dramatic scale. Therefore, it is of utmost importance to uncover and understand the mechanisms underlying the various interactions to improve existing anti-diabetic therapies and drugs on the one hand and to develop new therapeutic approaches on the other. This review summarizes the interplay of the pancreas with various other organs and tissues that maintain glucose homeostasis. Furthermore, anti-diabetic drugs and their impact on signaling pathways underlying the network will be discussed. PMID:26964835

  9. Strokes in mitochondrial diseases

    N V Pizova

    2012-06-01

    Full Text Available It is suggested that mitochondrial diseases might be identified in 22—33% of cryptogenic stroke cases in young subjects. The incidence of mitochondrial disorders in patients with stroke is unknown; it is 0.8 to 7.2% according to the data of some authors. The paper gives data on the prevalence, pathogenesis, and clinical manifestations of mitochondrial diseases, such as mitochondrial encephalopathy, lactic acidosis, and stroke-like syndrome (MELAS and insulin-like episodes; myoclonic epilepsy and ragged-red fibers (MERRF syndrome, and Kearns-Sayre syndrome (sporadic multisystem mitochondrial pathology.

  10. Aberrant repair and fibrosis development in skeletal muscle

    Mann Christopher J

    2011-05-01

    Full Text Available Abstract The repair process of damaged tissue involves the coordinated activities of several cell types in response to local and systemic signals. Following acute tissue injury, infiltrating inflammatory cells and resident stem cells orchestrate their activities to restore tissue homeostasis. However, during chronic tissue damage, such as in muscular dystrophies, the inflammatory-cell infiltration and fibroblast activation persists, while the reparative capacity of stem cells (satellite cells is attenuated. Abnormal dystrophic muscle repair and its end stage, fibrosis, represent the final common pathway of virtually all chronic neurodegenerative muscular diseases. As our understanding of the pathogenesis of muscle fibrosis has progressed, it has become evident that the muscle provides a useful model for the regulation of tissue repair by the local microenvironment, showing interplay among muscle-specific stem cells, inflammatory cells, fibroblasts and extracellular matrix components of the mammalian wound-healing response. This article reviews the emerging findings of the mechanisms that underlie normal versus aberrant muscle-tissue repair.

  11. Redox modification of ryanodine receptors by mitochondria-derived reactive oxygen species contributes to aberrant Ca2+ handling in ageing rabbit hearts.

    Cooper, Leroy L; Li, Weiyan; Lu, Yichun; Centracchio, Jason; Terentyeva, Radmila; Koren, Gideon; Terentyev, Dmitry

    2013-12-01

    Ageing is associated with a blunted response to sympathetic stimulation and an increased risk of arrhythmia and sudden cardiac death. Aberrant calcium (Ca(2+)) handling is an important contributor to the electrical and contractile dysfunction associated with ageing. Yet, the specific molecular mechanisms underlying abnormal Ca(2+) handling in ageing heart remain poorly understood. In this study, we used ventricular myocytes isolated from young (5-9 months) and old (4-6 years) rabbit hearts to test the hypothesis that changes in Ca(2+) homeostasis are caused by post-translational modification of ryanodine receptors (RyRs) by mitochondria-derived reactive oxygen species (ROS) generated in the ageing heart. Changes in parameters of Ca(2+) handling were determined by measuring cytosolic and intra-sarcoplasmic reticulum (SR) Ca(2+) dynamics in intact and permeabilized ventricular myocytes using confocal microscopy. We also measured age-related changes in ROS production and mitochondria membrane potential using a ROS-sensitive dye and a mitochondrial voltage-sensitive fluorescent indicator, respectively. In permeablized myocytes, ageing did not change SERCA activity and spark frequency but decreased spark amplitude and SR Ca(2+) load suggesting increased RyR activity. Treatment with the antioxidant dithiothreitol reduced RyR-mediated SR Ca(2+) leak in permeabilized myocytes from old rabbit hearts to the level comparable to young. Moreover, myocytes from old rabbits had more depolarized mitochondria membrane potential and increased rate of ROS production. Under β-adrenergic stimulation, Ca(2+) transient amplitude, SR Ca(2+) load, and latency of pro-arrhythmic spontaneous Ca(2+) waves (SCWs) were decreased while RyR-mediated SR Ca(2+) leak was increased in cardiomyocytes from old rabbits. Additionally, with β-adrenergic stimulation, scavenging of mitochondrial ROS in myocytes from old rabbit hearts restored redox status of RyRs, which reduced SR Ca(2+) leak, ablated most

  12. Orm family proteins mediate sphingolipid homeostasis

    Breslow, David K; Collins, Sean R; Bodenmiller, Bernd;

    2010-01-01

    expression or mutations to their phosphorylation sites cause dysregulation of sphingolipid metabolism. Our work identifies the Orm proteins as critical mediators of sphingolipid homeostasis and raises the possibility that sphingolipid misregulation contributes to the development of childhood asthma....

  13. The role of malate in plant homeostasis

    Finkemeier, Iris; Sweetlove, Lee J.

    2009-01-01

    Malate is a central metabolite of the plant cell with important roles in plant physiology and metabolism. Here, we summarize the most recent advances in our understanding of malate homeostasis in central metabolism, guard cell functioning, and root exudation.

  14. The role of sirtuins in cellular homeostasis.

    Kupis, Wioleta; Pałyga, Jan; Tomal, Ewa; Niewiadomska, Ewa

    2016-09-01

    Sirtuins are evolutionarily conserved nicotinamide adenine dinucleotide (NAD(+))-dependent lysine deacylases or ADP-ribosyltransferases. These cellular enzymes are metabolic sensors sensitive to NAD(+) levels that maintain physiological homeostasis in the animal and plant cells. PMID:27154583

  15. Mitochondrial Energy-Deficient Endophenotype in Autism

    J. J. Gargus

    2008-01-01

    Full Text Available While evidence points to a multigenic etiology of most autism, the pathophysiology of the disorder has yet to be defined and the underlying genes and biochemical pathways they subserve remain unknown. Autism is considered to be influenced by a combination of various genetic, environmental and immunological factors; more recently, evidence has suggested that increased vulnerability to oxidative stress may be involved in the etiology of this multifactorial disorder. Furthermore, recent studies have pointed to a subset of autism associated with the biochemical endophenotype of mitochondrial energy deficiency, identified as a subtle impairment in fat and carbohydrate oxidation. This phenotype is similar, but more subtle than those seen in classic mitochondrial defects. In some cases the beginnings of the genetic underpinnings of these mitochondrial defects are emerging, such as mild mitochondrial dysfunction and secondary carnitine deficiency observed in the subset of autistic patients with an inverted duplication of chromosome 15q11-q13. In addition, rare cases of familial autism associated with sudden infant death syndrome (SIDS or associated with abnormalities in cellular calcium homeostasis, such as malignant hyperthermia or cardiac arrhythmia, are beginning to emerge. Such special cases suggest that the pathophysiology of autism may comprise pathways that are directly or indirectly involved in mitochondrial energy production and to further probe this connection three new avenues seem worthy of exploration: 1 metabolomic clinical studies provoking controlled aerobic exercise stress to expand the biochemical phenotype, 2 high-throughput expression arrays to directly survey activity of the genes underlying these biochemical pathways and 3 model systems, either based upon neuronal stem cells or model genetic organisms, to discover novel genetic and environmental inputs into these pathways.

  16. Chromosomal aberrations induced by alpha particles

    The chromosomal aberrations produced by the ionizing radiation are commonly used when it is necessary to establish the exposure dose of an individual, it is a study that is used like complement of the traditional physical systems and its application is only in cases in that there is doubt about what indicates the conventional dosimetry. The biological dosimetry is based on the frequency of aberrations in the chromosomes of the lymphocytes of the individual in study and the dose is calculated taking like reference to the dose-response curves previously generated In vitro. A case of apparent over-exposure to alpha particles to which is practiced analysis of chromosomal aberrations to settle down if in fact there was exposure and as much as possible, to determine the presumed dose is presented. (Author)

  17. Modelling the formation of polycentric chromosome aberrations

    Sachs, R.K.; Tarver, J. (California Univ., Berkeley, CA (United States). Dept. of Mathematics); Yates, B.L.; Morgan, W.F. (California Univ., San Francisco, CA (United States))

    1992-10-01

    Exchange-type chromosome aberrations produced by ionizing radiation or restriction enzymes are believed to result from pairwise interaction of DNA double-strand breaks (dsb). In addition to dicentrics, such aberrations may include higher-order polycentries (tricentries, tetracentrics, etc.). The authors have developed computer programs that calculate the probability of the various polycentrics for a given average number of pairwise interactions. Two models are used. Model I incorporates kinetic competition between restitution, complete exchanges (illegitimate recombination events), and incomplete exchanges. Model II allows unrestituted breaks even if there is no recombination. The models were applied to experimental observations of aberrations produced in G[sub 1] Chinese hamster ovary cells after electroporation with the restriction enzyme PvuII, which produces blunt-end dsb. (author).

  18. Modelling the formation of polycentric chromosome aberrations

    Exchange-type chromosome aberrations produced by ionizing radiation or restriction enzymes are believed to result from pairwise interaction of DNA double-strand breaks (dsb). In addition to dicentrics, such aberrations may include higher-order polycentries (tricentries, tetracentrics, etc.). The authors have developed computer programs that calculate the probability of the various polycentrics for a given average number of pairwise interactions. Two models are used. Model I incorporates kinetic competition between restitution, complete exchanges (illegitimate recombination events), and incomplete exchanges. Model II allows unrestituted breaks even if there is no recombination. The models were applied to experimental observations of aberrations produced in G1 Chinese hamster ovary cells after electroporation with the restriction enzyme PvuII, which produces blunt-end dsb. (author)

  19. Iron Homeostasis and the Inflammatory Response

    Wessling-Resnick, Marianne

    2010-01-01

    Iron and its homeostasis are intimately tied to the inflammatory response. The adaptation to iron deficiency, which confers resistance to infection and improves the inflammatory condition, underlies what is probably the most obvious link: the anemia of inflammation or chronic disease. A large number of stimulatory inputs must be integrated to tightly control iron homeostasis during the inflammatory response. In order to understand the pathways of iron trafficking and how they are regulated, t...

  20. Iron Homeostasis and Nutritional Iron Deficiency123

    Theil, Elizabeth C.

    2011-01-01

    Nonheme food ferritin (FTN) iron minerals, nonheme iron complexes, and heme iron contribute to the balance between food iron absorption and body iron homeostasis. Iron absorption depends on membrane transporter proteins DMT1, PCP/HCP1, ferroportin (FPN), TRF2, and matriptase 2. Mutations in DMT1 and matriptase-2 cause iron deficiency; mutations in FPN, HFE, and TRF2 cause iron excess. Intracellular iron homeostasis depends on coordinated regulation of iron trafficking and storage proteins enc...

  1. Leptin therapy, insulin sensitivity, and glucose homeostasis

    Gilberto Paz-Filho; Claudio Mastronardi; Ma-Li Wong; Julio Licinio

    2012-01-01

    Glucose homeostasis is closely regulated not only by insulin, but also by leptin. Both hormones act centrally, regulating food intake and adiposity in humans. Leptin has several effects on the glucose-insulin homeostasis, some of which are independent of body weight and adiposity. Those effects of leptin are determined centrally in the hypothalamus and peripherally in the pancreas, muscles and liver. Leptin has beneficial effects on the glucose-insulin metabolism, by decreasing glycemia, insu...

  2. Estimation of dose from chromosome aberration rate

    The methods and skills of evaluating dose from correctly scored shromsome aberration rate are presented, and supplemented with corresponding BASIC computer code. The possibility and preventive measures of excessive probability of missing score of the aberrations in some of the current routine score methods are discussed. The use of dose-effect relationship with exposure time correction factor G in evaluating doses and their confidence intervals, dose estimation in mixed n-γ exposure, and identification of high by nonuniform acute exposure to low LET radiation and its dose estimation are discussed in more detail. The difference of estimated dose due to whether the interaction between subleisoms produced by n and γ have been taken into account is examined. In fitting the standard dose-aberration rate curve, proper weighing of experiment points and comparison with commonly accepted values are emphasised, and the coefficient of variation σy√y of the aberration rate y as a function of dose and exposure time is given. In appendix I and II, the dose-aberration rate formula is derived from dual action theory, and the time variation of subleisom is illustrated and in appendix III, the estimation of dose from scores of two different types of aberrations (of other related score) is illustrated. Two computer codes are given in appendix IV, one is a simple code, the other a complete code, including the fitting of standard curve. the skills of using compressed data storage, and the production of simulated 'data ' for testing the curve fitting procedure are also given

  3. S14G-humanin restored cellular homeostasis disturbed by amyloid-beta protein***

    Xue Li; Wencong Zhao; Hongqi Yang; Junhong Zhang; Jianjun Ma

    2013-01-01

    Humanin is a potential therapeutic agent for Alzheimer’s disease, and its derivative, S14G-humanin, is 1 000-fold stronger in its neuroprotective effect against Alzheimer’s disease-relevant insults. Alt-hough effective, the detailed molecular mechanism through which S14G-humanin exerts its effects remains unclear. Data from this study showed that fibril ar amyloid-beta 40 disturbed cel ular ho-meostasis through the cel membrane, increasing intracel ular calcium, generating reactive oxygen species, and decreasing the mitochondrial membrane potential. S14G-humanin restored these re-sponses. The results suggested that S14G-humanin blocked the effects of amyloid-beta 40 on the neuronal cel membrane, and restored the disturbed cel ular homeostasis, thereby exerting a neuroprotective effect on hippocampal neurons.

  4. Polyglutamine toxicity in yeast induces metabolic alterations and mitochondrial defects

    Papsdorf, Katharina

    2015-09-03

    Background Protein aggregation and its pathological effects are the major cause of several neurodegenerative diseases. In Huntington’s disease an elongated stretch of polyglutamines within the protein Huntingtin leads to increased aggregation propensity. This induces cellular defects, culminating in neuronal loss, but the connection between aggregation and toxicity remains to be established. Results To uncover cellular pathways relevant for intoxication we used genome-wide analyses in a yeast model system and identify fourteen genes that, if deleted, result in higher polyglutamine toxicity. Several of these genes, like UGO1, ATP15 and NFU1 encode mitochondrial proteins, implying that a challenged mitochondrial system may become dysfunctional during polyglutamine intoxication. We further employed microarrays to decipher the transcriptional response upon polyglutamine intoxication, which exposes an upregulation of genes involved in sulfur and iron metabolism and mitochondrial Fe-S cluster formation. Indeed, we find that in vivo iron concentrations are misbalanced and observe a reduction in the activity of the prominent Fe-S cluster containing protein aconitase. Like in other yeast strains with impaired mitochondria, non-fermentative growth is impossible after intoxication with the polyglutamine protein. NMR-based metabolic analyses reveal that mitochondrial metabolism is reduced, leading to accumulation of metabolic intermediates in polyglutamine-intoxicated cells. Conclusion These data show that damages to the mitochondrial system occur in polyglutamine intoxicated yeast cells and suggest an intricate connection between polyglutamine-induced toxicity, mitochondrial functionality and iron homeostasis in this model system.

  5. Homeostasis of plasma membrane viscosity in fluctuating temperatures.

    Martinière, Alexandre; Shvedunova, Maria; Thomson, Adrian J W; Evans, Nicola H; Penfield, Steven; Runions, John; McWatters, Harriet G

    2011-10-01

    Temperature has a direct effect at the cellular level on an organism. For instance, in the case of biomembranes, cooling causes lipids to lose entropy and pack closely together. Reducing temperature should, in the absence of other factors, increase the viscosity of a lipid membrane. We have investigated the effect of temperature variation on plasma membrane (PM) viscosity. We used dispersion tracking of photoactivated green fluorescent protein (GFP) and fluorescence recovery after photobleaching in wild-type and desaturase mutant Arabidopsis thaliana plants along with membrane lipid saturation analysis to monitor the effect of temperature and membrane lipid composition on PM viscosity. Plasma membrane viscosity in A. thaliana is negatively correlated with ambient temperature only under constant-temperature conditions. In the more natural environment of temperature cycles, plants actively manage PM viscosity to counteract the direct effects of temperature. Plasma membrane viscosity is regulated by altering the proportion of desaturated fatty acids. In cold conditions, cell membranes accumulate desaturated fatty acids, which decreases membrane viscosity and vice versa. Moreover, we show that control of fatty acid desaturase 2 (FAD2)-dependent lipid desaturation is essential for this homeostasis of membrane viscosity. Finally, a lack of FAD2 function results in aberrant temperature responses. PMID:21762166

  6. Age-and Brain Region-Specific Differences in Mitochondrial Bioenergetics in Brown Norway Rats

    Mitochondria are central regulators of energy homeostasis and play a pivotal role in mechanisms of cellular senescence. The objective of the present study was to evaluate mitochondrial bio­-energetic parameters in five brain regions [brainstem (BS), frontal cortex (FC), cereb...

  7. Calcium-induced alteration of mitochondrial morphology and mitochondrial-endoplasmic reticulum contacts in rat brown adipocytes

    I. Golic

    2014-09-01

    Full Text Available Mitochondria are key organelles maintaining cellular bioenergetics and integrity, and their regulation of [Ca2+]i homeostasis has been investigated in many cell types. We investigated the short-term Ca-SANDOZ® treatment on brown adipocyte mitochondria, using imaging and molecular biology techniques. Two-month-old male Wistar rats were divided into two groups: Ca-SANDOZ® drinking or tap water (control drinking for three days. Alizarin Red S staining showed increased Ca2+ level in the brown adipocytes of treated rats, and potassium pyroantimonate staining localized electron-dense regions in the cytoplasm, mitochondria and around lipid droplets. Ca-SANDOZ® decreased mitochondrial number, but increased their size and mitochondrial cristae volume. Transmission electron microscopy revealed numerous enlarged and fusioned-like mitochondria in the Ca-SANDOZ® treated group compared to the control, and megamitochondria in some brown adipocytes. The Ca2+ diet affected mitochondrial fusion as mitofusin 1 (MFN1 and mitofusin 2 (MFN2 were increased, and mitochondrial fission as dynamin related protein 1 (DRP1 was decreased. Confocal microscopy showed a higher colocalization rate between functional mitochondria and endoplasmic reticulum (ER. The level of uncoupling protein-1 (UCP1 was elevated, which was confirmed by immunohistochemistry and Western blot analysis. These results suggest that Ca-SANDOZ® stimulates mitochondrial fusion, increases mitochondrial-ER contacts and the thermogenic capacity of brown adipocytes

  8. Calcium-induced alteration of mitochondrial morphology and mitochondrial-endoplasmic reticulum contacts in rat brown adipocytes.

    Golic, I; Velickovic, K; Markelic, M; Stancic, A; Jankovic, A; Vucetic, M; Otasevic, V; Buzadzic, B; Korac, B; Korac, A

    2014-01-01

    Mitochondria are key organelles maintaining cellular bioenergetics and integrity, and their regulation of [Ca2+]i homeostasis has been investigated in many cell types. We investigated the short-term Ca-SANDOZ® treatment on brown adipocyte mitochondria, using imaging and molecular biology techniques. Two-month-old male Wistar rats were divided into two groups: Ca-SANDOZ® drinking or tap water (control) drinking for three days. Alizarin Red S staining showed increased Ca2+ level in the brown adipocytes of treated rats, and potassium pyroantimonate staining localized electron-dense regions in the cytoplasm, mitochondria and around lipid droplets. Ca-SANDOZ® decreased mitochondrial number, but increased their size and mitochondrial cristae volume. Transmission electron microscopy revealed numerous enlarged and fusioned-like mitochondria in the Ca-SANDOZ® treated group compared to the control, and megamitochondria in some brown adipocytes. The Ca2+ diet affected mitochondrial fusion as mitofusin 1 (MFN1) and mitofusin 2 (MFN2) were increased, and mitochondrial fission as dynamin related protein 1 (DRP1) was decreased. Confocal microscopy showed a higher colocalization rate between functional mitochondria and endoplasmic reticulum (ER). The level of uncoupling protein-1 (UCP1) was elevated, which was confirmed by immunohistochemistry and Western blot analysis. These results suggest that Ca-SANDOZ® stimulates mitochondrial fusion, increases mitochondrial-ER contacts and the thermogenic capacity of brown adipocytes. PMID:25308841

  9. Mitochondrial ferritin in animals and plants.

    Galatro, Andrea; Puntarulo, Susana

    2007-01-01

    Ferritins play a role in preventing Fe toxicity because of their ability to sequester several thousand Fe atoms in their central cavity in a soluble, non-toxic bioavailable form. The identification of ferritin in mitochondria, an organelle with a constant generation of O2(-) as a by-product of the electron transfer, and the presence of a mitochondrial nitric oxide synthase activity opened up brand new metabolic interactions to be analyzed. In spite of cytosolic ferritins in mammals being ubiquitous, mitochondrial ferritin (mtF) expression is restricted to the testis, neuronal cells, islets of Langerhans, and as recently described to mice normal retinas. None was detected in major storage organs such as liver and spleen. MtF has about 80% identity to cytosolic H-chain and 55% to L-chain in its coding region. There has been reported some differences in the Fe binding and oxidation properties between mtF and cytosolic H-ferritin suggesting that mtF functions differently as an Fe storage protein within the mitochondria and perhaps has other function(s) in Fe homeostasis as well. Recently it was also presented evidence for the presence of ferritins in plant mitochondria. The understanding of the role of mitochondrial ferritin in Fe oxidative metabolism may be useful in approaching clinical situations such as the treatment of Friedreich's ataxia, X-linked sideroblastic anemia, and in other neurodegenerative disorders. PMID:17127361

  10. Yeast as a Tool to Study Signaling Pathways in Mitochondrial Stress Response and Cytoprotection

    Maša Ždralević

    2012-01-01

    Full Text Available Cell homeostasis results from the balance between cell capability to adapt or succumb to environmental stress. Mitochondria, in addition to supplying cellular energy, are involved in a range of processes deciding about cellular life or death. The crucial role of mitochondria in cell death is well recognized. Mitochondrial dysfunction has been associated with the death process and the onset of numerous diseases. Yet, mitochondrial involvement in cellular adaptation to stress is still largely unexplored. Strong interest exists in pharmacological manipulation of mitochondrial metabolism and signaling. The yeast Saccharomyces cerevisiae has proven a valuable model organism in which several intracellular processes have been characterized in great detail, including the retrograde response to mitochondrial dysfunction and, more recently, programmed cell death. In this paper we review experimental evidences of mitochondrial involvement in cytoprotection and propose yeast as a model system to investigate the role of mitochondria in the cross-talk between prosurvival and prodeath pathways.

  11. Complementary RNA and Protein Profiling Identifies Iron as a Key Regulator of Mitochondrial Biogenesis

    Jarred W. Rensvold

    2013-01-01

    Full Text Available Mitochondria are centers of metabolism and signaling whose content and function must adapt to changing cellular environments. The biological signals that initiate mitochondrial restructuring and the cellular processes that drive this adaptive response are largely obscure. To better define these systems, we performed matched quantitative genomic and proteomic analyses of mouse muscle cells as they performed mitochondrial biogenesis. We find that proteins involved in cellular iron homeostasis are highly coordinated with this process and that depletion of cellular iron results in a rapid, dose-dependent decrease of select mitochondrial protein levels and oxidative capacity. We further show that this process is universal across a broad range of cell types and fully reversed when iron is reintroduced. Collectively, our work reveals that cellular iron is a key regulator of mitochondrial biogenesis, and provides quantitative data sets that can be leveraged to explore posttranscriptional and posttranslational processes that are essential for mitochondrial adaptation.

  12. The correction of electron lens aberrations

    The progress of electron lens aberration correction from about 1990 onwards is chronicled. Reasonably complete lists of publications on this and related topics are appended. A present for Max Haider and Ondrej Krivanek in the year of their 65th birthdays. By a happy coincidence, this review was completed in the year that both Max Haider and Ondrej Krivanek reached the age of 65. It is a pleasure to dedicate it to the two leading actors in the saga of aberration corrector design and construction. They would both wish to associate their colleagues with such a tribute but it is the names of Haider and Krivanek (not forgetting Joachim Zach) that will remain in the annals of electron optics, next to that of Harald Rose. I am proud to know that both regard me as a friend as well as a colleague. - Highlights: • Geometrical aberration correction. • Chromatic aberration correction. • 50 pm resolution. • High-resolution electron energy-loss spectroscopy. • Extensive bibliographies

  13. Optical advantages of astigmatic aberration corrected heliostats

    van Rooyen, De Wet; Schöttl, Peter; Bern, Gregor; Heimsath, Anna; Nitz, Peter

    2016-05-01

    Astigmatic aberration corrected heliostats adapt their shape in dependence of the incidence angle of the sun on the heliostat. Simulations show that this optical correction leads to a higher concentration ratio at the target and thus in a decrease in required receiver aperture in particular for smaller heliostat fields.

  14. The correction of electron lens aberrations

    Hawkes, P.W., E-mail: peter.hawkes@cemes.fr

    2015-09-15

    The progress of electron lens aberration correction from about 1990 onwards is chronicled. Reasonably complete lists of publications on this and related topics are appended. A present for Max Haider and Ondrej Krivanek in the year of their 65th birthdays. By a happy coincidence, this review was completed in the year that both Max Haider and Ondrej Krivanek reached the age of 65. It is a pleasure to dedicate it to the two leading actors in the saga of aberration corrector design and construction. They would both wish to associate their colleagues with such a tribute but it is the names of Haider and Krivanek (not forgetting Joachim Zach) that will remain in the annals of electron optics, next to that of Harald Rose. I am proud to know that both regard me as a friend as well as a colleague. - Highlights: • Geometrical aberration correction. • Chromatic aberration correction. • 50 pm resolution. • High-resolution electron energy-loss spectroscopy. • Extensive bibliographies.

  15. Aberration features in directional dark matter detection

    The motion of the Earth around the Sun causes an annual change in the magnitude and direction of the arrival velocity of dark matter particles on Earth, in a way analogous to aberration of stellar light. In directional detectors, aberration of weakly interacting massive particles (WIMPs) modulates the pattern of nuclear recoil directions in a way that depends on the orbital velocity of the Earth and the local galactic distribution of WIMP velocities. Knowing the former, WIMP aberration can give information on the latter, besides being a curious way of confirming the revolution of the Earth and the extraterrestrial provenance of WIMPs. While observing the full aberration pattern requires extremely large exposures, we claim that the annual variation of the mean recoil direction or of the event counts over specific solid angles may be detectable with moderately large exposures. For example, integrated counts over Galactic hemispheres separated by planes perpendicular to Earth's orbit would modulate annually, resulting in Galactic Hemisphere Annual Modulations (GHAM) with amplitudes larger than the usual non-directional annual modulation

  16. Prenatal hydronephrosis caused by aberrant renal vessels

    Lenz, K; Thorup, Jørgen Mogens; Rabol, A;

    1996-01-01

    With routine use of obstetric ultrasonography, fetal low-grade hydronephrosis is commonly detected, but may resolve spontaneously after birth. Two cases are presented to illustrate that in some cases such findings can express intermittent hydronephrosis caused by aberrant renal vessels. Renal det...

  17. Anti-forensics of chromatic aberration

    Mayer, Owen; Stamm, Matthew C.

    2015-03-01

    Over the past decade, a number of information forensic techniques have been developed to identify digital image manipulation and falsification. Recent research has shown, however, that an intelligent forger can use anti-forensic countermeasures to disguise their forgeries. In this paper, an anti-forensic technique is proposed to falsify the lateral chromatic aberration present in a digital image. Lateral chromatic aberration corresponds to the relative contraction or expansion between an image's color channels that occurs due to a lens's inability to focus all wavelengths of light on the same point. Previous work has used localized inconsistencies in an image's chromatic aberration to expose cut-and-paste image forgeries. The anti-forensic technique presented in this paper operates by estimating the expected lateral chromatic aberration at an image location, then removing deviations from this estimate caused by tampering or falsification. Experimental results are presented that demonstrate that our anti-forensic technique can be used to effectively disguise evidence of an image forgery.

  18. Cosmological parameter estimation: impact of CMB aberration

    The peculiar motion of an observer with respect to the CMB rest frame induces an apparent deflection of the observed CMB photons, i.e. aberration, and a shift in their frequency, i.e. Doppler effect. Both effects distort the temperature multipoles alm's via a mixing matrix at any l. The common lore when performing a CMB based cosmological parameter estimation is to consider that Doppler affects only the l = 1 multipole, and neglect any other corrections. In this paper we reconsider the validity of this assumption, showing that it is actually not robust when sky cuts are included to model CMB foreground contaminations. Assuming a simple fiducial cosmological model with five parameters, we simulated CMB temperature maps of the sky in a WMAP-like and in a Planck-like experiment and added aberration and Doppler effects to the maps. We then analyzed with a MCMC in a Bayesian framework the maps with and without aberration and Doppler effects in order to assess the ability of reconstructing the parameters of the fiducial model. We find that, depending on the specific realization of the simulated data, the parameters can be biased up to one standard deviation for WMAP and almost two standard deviations for Planck. Therefore we conclude that in general it is not a solid assumption to neglect aberration in a CMB based cosmological parameter estimation

  19. Mitochondrial morphology and cardiovascular disease

    Ong, Sang-Bing; Hausenloy, Derek J

    2010-01-01

    Mitochondria are dynamic and are able to interchange their morphology between elongated interconnected mitochondrial networks and a fragmented disconnected arrangement by the processes of mitochondrial fusion and fission, respectively. Changes in mitochondrial morphology are regulated by the mitochondrial fusion proteins (mitofusins 1 and 2, and optic atrophy 1) and the mitochondrial fission proteins (dynamin-related peptide 1 and mitochondrial fission protein 1) and have been implicated in a...

  20. Mitochondrial and Ubiquitin Proteasome System Dysfunction in Ageing and Disease: Two Sides of the Same Coin?

    Jaime M. Ross

    2015-08-01

    Full Text Available Mitochondrial dysfunction and impairment of the ubiquitin proteasome system have been described as two hallmarks of the ageing process. Additionally, both systems have been implicated in the etiopathogenesis of many age-related diseases, particularly neurodegenerative disorders, such as Alzheimer’s and Parkinson’s disease. Interestingly, these two systems are closely interconnected, with the ubiquitin proteasome system maintaining mitochondrial homeostasis by regulating organelle dynamics, the proteome, and mitophagy, and mitochondrial dysfunction impairing cellular protein homeostasis by oxidative damage. Here, we review the current literature and argue that the interplay of the two systems should be considered in order to better understand the cellular dysfunction observed in ageing and age-related diseases. Such an approach may provide valuable insights into molecular mechanisms underlying the ageing process, and further discovery of treatments to counteract ageing and its associated diseases. Furthermore, we provide a hypothetical model for the heterogeneity described among individuals during ageing.

  1. Autophagy plays a role in skeletal muscle mitochondrial biogenesis in an endurance exercise-trained condition.

    Ju, Jeong-Sun; Jeon, Sei-Il; Park, Je-Young; Lee, Jong-Young; Lee, Seong-Cheol; Cho, Ki-Jung; Jeong, Jong-Moon

    2016-09-01

    Mitochondrial homeostasis is tightly regulated by two major processes: mitochondrial biogenesis and mitochondrial degradation by autophagy (mitophagy). Research in mitochondrial biogenesis in skeletal muscle in response to endurance exercise training has been well established, while the mechanisms regulating mitophagy and the interplay between mitochondrial biogenesis and degradation following endurance exercise training are not yet well defined. The purpose of this study was to examine the effects of a short-term inhibition of autophagy in response to acute endurance exercise on skeletal muscle mitochondrial biogenesis and dynamics in an exercise-trained condition. Male wild-type C57BL/6 mice performed five daily bouts of 1-h swimming per week for 8 weeks. In order to measure autophagy flux in mouse skeletal muscle, mice were treated with or without 2 days of 0.4 mg/kg/day intraperitoneal colchicine (blocking the degradation of autophagosomes) following swimming exercise training. The autophagic flux assay demonstrated that swimming training resulted in an increase in the autophagic flux (~100 % increase in LC3-II) in mouse skeletal muscle. Mitochondrial fusion proteins, Opa1 and MFN2, were significantly elevated, and mitochondrial fission protein, Drp1, was also increased in trained mouse skeletal muscle, suggesting that endurance exercise training promotes both mitochondrial fusion and fission processes. A mitochondrial receptor, Bnip3, was further increased in exercised muscle when treated with colchicine while Pink/Parkin protein levels were unchanged. The endurance exercise training induced increases in mitochondrial biogenesis marker proteins, SDH, COX IV, and a mitochondrial biogenesis promoting factor, PGC-1α but this effect was abolished in colchicine-treated mouse skeletal muscle. This suggests that autophagy plays an important role in mitochondrial biogenesis and this coordination between these opposing processes is involved in the cellular

  2. Mitochondrial dynamics and cell death in heart failure.

    Marín-García, José; Akhmedov, Alexander T

    2016-03-01

    The highly regulated processes of mitochondrial fusion (joining), fission (division) and trafficking, collectively called mitochondrial dynamics, determine cell-type specific morphology, intracellular distribution and activity of these critical organelles. Mitochondria are critical for cardiac function, while their structural and functional abnormalities contribute to several common cardiovascular diseases, including heart failure (HF). The tightly balanced mitochondrial fusion and fission determine number, morphology and activity of these multifunctional organelles. Although the intracellular architecture of mature cardiomyocytes greatly restricts mitochondrial dynamics, this process occurs in the adult human heart. Fusion and fission modulate multiple mitochondrial functions, ranging from energy and reactive oxygen species production to Ca(2+) homeostasis and cell death, allowing the heart to respond properly to body demands. Tightly controlled balance between fusion and fission is of utmost importance in the high energy-demanding cardiomyocytes. A shift toward fission leads to mitochondrial fragmentation, while a shift toward fusion results in the formation of enlarged mitochondria and in the fusion of damaged mitochondria with healthy organelles. Mfn1, Mfn2 and OPA1 constitute the core machinery promoting mitochondrial fusion, whereas Drp1, Fis1, Mff and MiD49/51 are the core components of fission machinery. Growing evidence suggests that fusion/fission factors in adult cardiomyocytes play essential noncanonical roles in cardiac development, Ca(2+) signaling, mitochondrial quality control and cell death. Impairment of this complex circuit causes cardiomyocyte dysfunction and death contributing to heart injury culminating in HF. Pharmacological targeting of components of this intricate network may be a novel therapeutic modality for HF treatment. PMID:26872674

  3. Effects of a Sublethal and Transient Stress of the Endoplasmic Reticulum on the Mitochondrial Population.

    Vannuvel, Kayleen; Van Steenbrugge, Martine; Demazy, Catherine; Ninane, Noëlle; Fattaccioli, Antoine; Fransolet, Maude; Renard, Patricia; Raes, Martine; Arnould, Thierry

    2016-09-01

    Endoplasmic reticulum (ER) and mitochondria are not discrete intracellular organelles but establish close physical and functional interactions involved in several biological processes including mitochondrial bioenergetics, calcium homeostasis, lipid synthesis, and the regulation of apoptotic cell death pathways. As many cell types might face a transient and sublethal ER stress during their lifetime, it is thus likely that the adaptive UPR response might affect the mitochondrial population. The aim of this work was to study the putative effects of a non-lethal and transient endoplasmic reticulum stress on the mitochondrial population in HepG2 cells. The results show that thapsigargin and brefeldin A, used to induce a transient and sublethal ER stress, rapidly lead to the fragmentation of the mitochondrial network associated with a decrease in mitochondrial membrane potential, O2 (•-) production and less efficient respiration. These changes in mitochondrial function are transient and preceded by the phosphorylation of JNK. Inhibition of JNK activation by SP600125 prevents the decrease in O2 (•-) production and the mitochondrial network fragmentation observed in cells exposed to the ER stress but has no impact on the reduction of the mitochondrial membrane potential. In conclusion, our data show that a non-lethal and transient ER stress triggers a rapid activation of JNK without inducing apoptosis, leading to the fragmentation of the mitochondrial network and a reduction of O2 (•-) production. J. Cell. Physiol. 231: 1913-1931, 2016. © 2015 Wiley Periodicals, Inc. PMID:26680008

  4. Adaptive and aberrant reward prediction signals in the human brain.

    Roiser, J.P.; Stephan, K.E.; Ouden, H.E.M. den; Friston, K.J.; Joyce, E.M.

    2010-01-01

    Theories of the positive symptoms of schizophrenia hypothesize a role for aberrant reinforcement signaling driven by dysregulated dopamine transmission. Recently, we provided evidence of aberrant reward learning in symptomatic, but not asymptomatic patients with schizophrenia, using a novel paradigm

  5. The mitochondrial genome in embryo technologies.

    Hiendleder, S; Wolf, E

    2003-08-01

    The mammalian mitochondrial genome encodes for 37 genes which are involved in a broad range of cellular functions. The mitochondrial DNA (mtDNA) molecule is commonly assumed to be inherited through oocyte cytoplasm in a clonal manner, and apparently species-specific mechanisms have evolved to eliminate the contribution of sperm mitochondria after natural fertilization. However, recent evidence for paternal mtDNA inheritance in embryos and offspring questions the general validity of this model, particularly in the context of assisted reproduction and embryo biotechnology. In addition to normal mt DNA haplotype variation, oocytes and spermatozoa show remarkable differences in mtDNA content and may be affected by inherited or acquired mtDNA aberrations. All these parameters have been correlated with gamete quality and reproductive success rates. Nuclear transfer (NT) technology provides experimental models for studying interactions between nuclear and mitochondrial genomes. Recent studies demonstrated (i) a significant effect of mtDNA haplotype or other maternal cytoplasmic factors on the efficiency of NT; (ii) phenotypic differences between transmitochondrial clones pointing to functionally relevant nuclear-cytoplasmic interactions; and (iii) neutral or non-neutral selection of mtDNA haplotypes in heteroplasmic conditions. Mitochondria form a dynamic reticulum, enabling complementation of mitochondrial components and possibly mixing of different mtDNA populations in heteroplasmic individuals. Future directions of research on mtDNA in the context of reproductive biotechnology range from the elimination of adverse effects of artificial heteroplasmy, e.g. created by ooplasm transfer, to engineering of optimized constellations of nuclear and cytoplasmic genes for the production of superior livestock. PMID:12887568

  6. Myoclonus in mitochondrial disorders.

    Mancuso, Michelangelo; Orsucci, Daniele; Angelini, Corrado; Bertini, Enrico; Catteruccia, Michela; Pegoraro, Elena; Carelli, Valerio; Valentino, Maria L; Comi, Giacomo P; Minetti, Carlo; Bruno, Claudio; Moggio, Maurizio; Ienco, Elena Caldarazzo; Mongini, Tiziana; Vercelli, Liliana; Primiano, Guido; Servidei, Serenella; Tonin, Paola; Scarpelli, Mauro; Toscano, Antonio; Musumeci, Olimpia; Moroni, Isabella; Uziel, Graziella; Santorelli, Filippo M; Nesti, Claudia; Filosto, Massimiliano; Lamperti, Costanza; Zeviani, Massimo; Siciliano, Gabriele

    2014-05-01

    Myoclonus is a possible manifestation of mitochondrial disorders, and its presence is considered, in association with epilepsy and the ragged red fibers, pivotal for the syndromic diagnosis of MERRF (myoclonic epilepsy with ragged red fibers). However, its prevalence in mitochondrial diseases is not known. The aims of this study are the evaluation of the prevalence of myoclonus in a big cohort of mitochondrial patients and the clinical characterization of these subjects. Based on the database of the "Nation-wide Italian Collaborative Network of Mitochondrial Diseases," we reviewed the clinical and molecular data of mitochondrial patients with myoclonus among their clinical features. Myoclonus is a rather uncommon clinical feature of mitochondrial diseases (3.6% of 1,086 patients registered in our database). It is not strictly linked to a specific genotype or phenotype, and only 1 of 3 patients with MERRF harbors the 8344A>G mutation (frequently labeled as "the MERRF mutation"). Finally, myoclonus is not inextricably linked to epilepsy in MERRF patients, but more to cerebellar ataxia. In a myoclonic patient, evidences of mitochondrial dysfunction must be investigated, even though myoclonus is not a common sign of mitochondriopathy. Clinical, histological, and biochemical data may predict the finding of a mitochondrial or nuclear DNA mutation. Finally, this study reinforces the notion that myoclonus is not inextricably linked to epilepsy in MERRF patients, and therefore the term "myoclonic epilepsy" seems inadequate and potentially misleading. PMID:24510442

  7. Mitochondrial Dynamics in Diabetes

    Yoon, Yisang; Galloway, Chad A.; Jhun, Bong Sook; Yu, Tianzheng

    2011-01-01

    Mitochondria are at the center of cellular energy metabolism and regulate cell life and death. The cell biological aspect of mitochondria, especially mitochondrial dynamics, has drawn much attention through implications in human pathology, including neurological disorders and metabolic diseases. Mitochondrial fission and fusion are the main processes governing the morphological plasticity and are controlled by multiple factors, including mechanochemical enzymes and accessory proteins. Emergin...

  8. Melatonin prevents the dynamin-related protein 1-dependent mitochondrial fission and oxidative insult in the cortical neurons after 1-methyl-4-phenylpyridinium treatment.

    Chuang, Jih-Ing; Pan, I-Ling; Hsieh, Chia-Yun; Huang, Chiu-Ying; Chen, Pei-Chun; Shin, Jyh Wei

    2016-09-01

    Mitochondrial dysfunction and oxidative stress are involved in the pathogenesis of Parkinson's disease (PD). Mitochondrial morphology is dynamic and precisely regulated by the mitochondrial fission and fusion machinery. Aberrant mitochondrial fragmentation controlled by the mitochondrial fission protein, dynamin-related protein 1 (Drp1), may result in cell death. Our previous results showed that melatonin protected neurons by inhibiting oxidative stress in a 1-methyl-4-phenylpyridinium (MPP(+) )-induced PD model. However, the effect of melatonin on mitochondrial dynamics remains uncharacterized. Herein, we investigated the effect of melatonin and the role of Drp1 on MPP(+) -induced mitochondrial fission in rat primary cortical neurons. We found that MPP(+) induced a rapid increase in the ratio of GSSG:total glutathione (a marker of oxidative stress) and mitochondrial fragmentation, Drp1 upregulation within 4 hours, and finally resulted in neuron loss 48 hours after the treatment. Neurons overexpressing wild-type Drp1 promoted mitochondrial and nuclear fragmentation; however, neurons overexpressing dominant-negative Drp1(K38A) or cotreated with melatonin exhibited significantly reduced MPP(+) -induced mitochondrial fragmentation and neuron death. Moreover, melatonin cotreatment prevented an MPP(+) -induced high ratio of GSSG and mitochondrial Drp1 upregulation. The prevention of mitochondrial fission by melatonin was not found in neurons transfected with wild-type Drp1. These results provide a new insight that the neuroprotective effect of melatonin against MPP(+) toxicity is mediated by inhibiting the oxidative stress and Drp1-mediated mitochondrial fragmentation. PMID:27159033

  9. Leptin therapy, insulin sensitivity, and glucose homeostasis

    Gilberto Paz-Filho

    2012-01-01

    Full Text Available Glucose homeostasis is closely regulated not only by insulin, but also by leptin. Both hormones act centrally, regulating food intake and adiposity in humans. Leptin has several effects on the glucose-insulin homeostasis, some of which are independent of body weight and adiposity. Those effects of leptin are determined centrally in the hypothalamus and peripherally in the pancreas, muscles and liver. Leptin has beneficial effects on the glucose-insulin metabolism, by decreasing glycemia, insulinemia and insulin resistance. The understanding of the effects of leptin on the glucose-insulin homeostasis will lead to the development of leptin-based therapies against diabetes and other insulin resistance syndromes. In these review, we summarize the interactions between leptin and insulin, and their effects on the glucose metabolism.

  10. Melanocortin-4 receptor-regulated energy homeostasis.

    Krashes, Michael J; Lowell, Bradford B; Garfield, Alastair S

    2016-02-01

    The melanocortin system provides a conceptual blueprint for the central control of energetic state. Defined by four principal molecular components--two antagonistically acting ligands and two cognate receptors--this phylogenetically conserved system serves as a prototype for hierarchical energy balance regulation. Over the last decade the application of conditional genetic techniques has facilitated the neuroanatomical dissection of the melanocortinergic network and identified the specific neural substrates and circuits that underscore the regulation of feeding behavior, energy expenditure, glucose homeostasis and autonomic outflow. In this regard, the melanocortin-4 receptor is a critical coordinator of mammalian energy homeostasis and body weight. Drawing on recent advances in neuroscience and genetic technologies, we consider the structure and function of the melanocortin-4 receptor circuitry and its role in energy homeostasis. PMID:26814590

  11. Differentiation State-Specific Mitochondrial Dynamic Regulatory Networks Are Revealed by Global Transcriptional Analysis of the Developing Chicken Lens

    Chauss, Daniel; Basu, Subhasree; Rajakaruna, Suren; Ma, Zhiwei; Gau, Victoria; Anastas, Sara; Brennan, Lisa A.; Hejtmancik, J. Fielding; Menko, A. Sue; Kantorow, Marc

    2014-01-01

    The mature eye lens contains a surface layer of epithelial cells called the lens epithelium that requires a functional mitochondrial population to maintain the homeostasis and transparency of the entire lens. The lens epithelium overlies a core of terminally differentiated fiber cells that must degrade their mitochondria to achieve lens transparency. These distinct mitochondrial populations make the lens a useful model system to identify those genes that regulate the balance between mitochond...

  12. Regulation of Mitochondrial Genome Inheritance by Autophagy and Ubiquitin-Proteasome System: Implications for Health, Fitness, and Fertility

    Won-Hee Song; John William Oman Ballard; Young-Joo Yi; Peter Sutovsky

    2014-01-01

    Mitochondria, the energy-generating organelles, play a role in numerous cellular functions including adenosine triphosphate (ATP) production, cellular homeostasis, and apoptosis. Maternal inheritance of mitochondria and mitochondrial DNA (mtDNA) is universally observed in humans and most animals. In general, high levels of mitochondrial heteroplasmy might contribute to a detrimental effect on fitness and disease resistance. Therefore, a disposal of the sperm-derived mitochondria inside fertil...

  13. Retinoids Suppress Cysteine-rich Protein 61 (CCN1), a Negative Regulator of Collagen Homeostasis, in Skin Equivalent Cultures and Aged Human Skin in vivo

    Quan, Taihao; Qin, Zhaoping; Shao, Yuan; Xu, Yiru; Voorhees, John J.; Fisher, Gary J.

    2011-01-01

    Alterations of connective tissue collagen are prominent features of both chronologically aged and photoaged (aging due to sun exposure) human skin. These age-related abnormalities are mediated in part by CCN family member, CCN1 (cysteine-rich protein 61). CCN1 is elevated in the dermis of both chronologically aged and photoaged human skin in vivo, and promotes aberrant collagen homeostasis by down-regulating type I collagen, the major structural protein in skin, and promoting collagen degrada...

  14. Primary aberrations in focused radially polarized vortex beams

    Biss, David P.; Brown, T. G.

    2004-02-01

    We study the effect of primary aberrations on the 3-D polarization of the electric field in a focused lowest order radially polarized beam. A full vector diffraction treatment of the focused beams is used. Attention is given to the effects of primary spherical, astigmatic, and comatic aberrations on the local polarization, Strehl ratio, and aberration induced degradation of the longitudinal field at focus

  15. The correction of electron lens aberrations.

    Hawkes, P W

    2015-09-01

    The progress of electron lens aberration correction from about 1990 onwards is chronicled. Reasonably complete lists of publications on this and related topics are appended. A present for Max Haider and Ondrej Krivanek in the year of their 65th birthdays. By a happy coincidence, this review was completed in the year that both Max Haider and Ondrej Krivanek reached the age of 65. It is a pleasure to dedicate it to the two leading actors in the saga of aberration corrector design and construction. They would both wish to associate their colleagues with such a tribute but it is the names of Haider and Krivanek (not forgetting Joachim Zach) that will remain in the annals of electron optics, next to that of Harald Rose. I am proud to know that both regard me as a friend as well as a colleague. PMID:26025209

  16. Do patients with schizophrenia exhibit aberrant salience?

    Roiser, J. P.; Stephan, K E; den Ouden, H. E. M.; Barnes, T. R. E.; Friston, K.J.; Joyce, E. M.

    2009-01-01

    BACKGROUND: It has been suggested that some psychotic symptoms reflect ‘aberrant salience’, related to dysfunctional reward learning. To test this hypothesis we investigated whether patients with schizophrenia showed impaired learning of task-relevant stimulusreinforcement associations in the presence of distracting task-irrelevant cues. METHODS: We tested 20 medicated patients with schizophrenia and 17 controls on a reaction time game, the Salience Attribution Test. In this game, ...

  17. Tailored displays to compensate for visual aberrations

    Pamplona, Vitor F.; Oliveira, Manuel M.; Aliaga, Daniel G.; Raskar, Ramesh

    2012-01-01

    We introduce tailored displays that enhance visual acuity by decomposing virtual objects and placing the resulting anisotropic pieces into the subject's focal range. The goal is to free the viewer from needing wearable optical corrections when looking at displays. Our tailoring process uses aberration and scattering maps to account for refractive errors and cataracts. It splits an object's light field into multiple instances that are each in-focus for a given eye sub-aperture. Their integrati...

  18. Assessing the construct validity of aberrant salience

    Kristin Schmidt

    2009-12-01

    Full Text Available We sought to validate the psychometric properties of a recently developed paradigm that aims to measure salience attribution processes proposed to contribute to positive psychotic symptoms, the Salience Attribution Test (SAT. The “aberrant salience” measure from the SAT showed good face validity in previous results, with elevated scores both in high-schizotypy individuals, and in patients with schizophrenia suffering from delusions. Exploring the construct validity of salience attribution variables derived from the SAT is important, since other factors, including latent inhibition/learned irrelevance, attention, probabilistic reward learning, sensitivity to probability, general cognitive ability and working memory could influence these measures. Fifty healthy participants completed schizotypy scales, the SAT, a learned irrelevance task, and a number of other cognitive tasks tapping into potentially confounding processes. Behavioural measures of interest from each task were entered into a principal components analysis, which yielded a five-factor structure accounting for ~75% percent of the variance in behaviour. Implicit aberrant salience was found to load onto its own factor, which was associated with elevated “Introvertive Anhedonia” schizotypy, replicating our previous finding. Learned irrelevance loaded onto a separate factor, which also included implicit adaptive salience, but was not associated with schizotypy. Explicit adaptive and aberrant salience, along with a measure of probabilistic learning, loaded onto a further factor, though this also did not correlate with schizotypy. These results suggest that the measures of learned irrelevance and implicit adaptive salience might be based on similar underlying processes, which are dissociable both from implicit aberrant salience and explicit measures of salience.

  19. Disturbance of Copper Homeostasis Is a Mechanism for Homocysteine-Induced Vascular Endothelial Cell Injury

    Dong, Daoyin; Wang, Biao; Yin, Wen; Ding, Xueqing; Yu, Jingjing; Kang, Y. James

    2013-01-01

    Elevation of serum homocysteine (Hcy) levels is a risk factor for cardiovascular diseases. Previous studies suggested that Hcy interferes with copper (Cu) metabolism in vascular endothelial cells. The present study was undertaken to test the hypothesis that Hcy-induced disturbance of Cu homeostasis leads to endothelial cell injury. Exposure of human umbilical vein endothelial cells (HUVECs) to concentrations of Hcy at 0.01, 0.1 or 1 mM resulted in a concentration-dependent decrease in cell viability and an increase in necrotic cell death. Pretreatment of the cells with a final concentration of 5 µM Cu in cultures prevented the effects of Hcy. Hcy decreased intracellular Cu concentrations. HPLC-ICP-MS analysis revealed that Hcy caused alterations in the distribution of intracellular Cu; more Cu was redistributed to low molecular weight fractions. ESI-Q-TOF detected the formation of Cu-Hcy complexes. Hcy also decreased the protein levels of Cu chaperone COX17, which was accompanied by a decrease in the activity of cytochrome c oxidase (CCO) and a collapse of mitochondrial membrane potential. These effects of Hcy were all preventable by Cu pretreatment. The study thus demonstrated that Hcy disturbs Cu homeostasis and limits the availability of Cu to critical molecules such as COX17 and CCO, leading to mitochondrial dysfunction and endothelial cell injury. PMID:24204604

  20. Disturbance of copper homeostasis is a mechanism for homocysteine-induced vascular endothelial cell injury.

    Daoyin Dong

    Full Text Available Elevation of serum homocysteine (Hcy levels is a risk factor for cardiovascular diseases. Previous studies suggested that Hcy interferes with copper (Cu metabolism in vascular endothelial cells. The present study was undertaken to test the hypothesis that Hcy-induced disturbance of Cu homeostasis leads to endothelial cell injury. Exposure of human umbilical vein endothelial cells (HUVECs to concentrations of Hcy at 0.01, 0.1 or 1 mM resulted in a concentration-dependent decrease in cell viability and an increase in necrotic cell death. Pretreatment of the cells with a final concentration of 5 µM Cu in cultures prevented the effects of Hcy. Hcy decreased intracellular Cu concentrations. HPLC-ICP-MS analysis revealed that Hcy caused alterations in the distribution of intracellular Cu; more Cu was redistributed to low molecular weight fractions. ESI-Q-TOF detected the formation of Cu-Hcy complexes. Hcy also decreased the protein levels of Cu chaperone COX17, which was accompanied by a decrease in the activity of cytochrome c oxidase (CCO and a collapse of mitochondrial membrane potential. These effects of Hcy were all preventable by Cu pretreatment. The study thus demonstrated that Hcy disturbs Cu homeostasis and limits the availability of Cu to critical molecules such as COX17 and CCO, leading to mitochondrial dysfunction and endothelial cell injury.

  1. Altered regulation of energy homeostasis in older rats in response to thyroid hormone administration.

    Walrand, Stephane; Short, Kevin R; Heemstra, Lydia A; Novak, Colleen M; Levine, James A; Coenen-Schimke, Jill M; Nair, K Sreekumaran

    2014-03-01

    Hyperthyroidism causes increased energy intake and expenditure, although anorexia and higher weight loss have been reported in elderly individuals with hyperthyroidism. To determine the effect of age on energy homeostasis in response to experimental hyperthyroidism, we administered 200 μg tri-iodothyronine (T3) in 7- and 27-mo-old rats for 14 d. T3 increased energy expenditure (EE) in both the young and the old rats, although the old rats lost more weight (147 g) than the young rats (58 g) because of the discordant effect of T3 on food intake, with a 40% increase in the young rats, but a 40% decrease in the old ones. The increased food intake in the young rats corresponded with a T3-mediated increase in the appetite-regulating proteins agouti-related peptide, neuropeptide Y, and uncoupling protein 2 in the hypothalamus, but no increase occurred in the old rats. Evidence of mitochondrial biogenesis in response to T3 was similar in the soleus muscle and heart of the young and old animals, but less consistent in old plantaris muscle and liver. Despite the comparable increase in EE, T3's effect on mitochondrial function was modulated by age in a tissue-specific manner. We conclude that older rats lack compensatory mechanisms to increase caloric intake in response to a T3-induced increase in EE, demonstrating a detrimental effect of age on energy homeostasis. PMID:24344330

  2. Redox Homeostasis in Pancreatic beta Cells

    Ježek, Petr; Dlasková, Andrea; Plecitá-Hlavatá, Lydie

    2012-01-01

    Roč. 2012, č. 2012 (2012), s. 932838. ISSN 1942-0900 R&D Projects: GA ČR(CZ) GAP302/10/0346; GA ČR(CZ) GPP304/10/P204 Institutional support: RVO:67985823 Keywords : beta cells * reactive oxygen species homeostasis * mitochondria Subject RIV: FB - Endocrinology, Diabetology, Metabolism, Nutrition Impact factor: 3.393, year: 2012

  3. Mitochondrial Dynamics Decrease Prior to Axon Degeneration Induced by Vincristine and are Partially Rescued by Overexpressed cytNmnat1.

    Berbusse, Gregory W; Woods, Laken C; Vohra, Bhupinder P S; Naylor, Kari

    2016-01-01

    Axon degeneration is a prominent feature of various neurodegenerative diseases, such as Parkinson's and Alzheimer's, and is often characterized by aberrant mitochondrial dynamics. Mitochondrial fission, fusion, and motility have been shown to be particularly important in progressive neurodegeneration. Thus we investigated these imperative dynamics, as well as mitochondrial fragmentation in vincristine induced axon degradation in cultured dorsal root ganglia (DRG) neurons. CytNmnat1 inhibits axon degeneration in various paradigms including vincristine toxicity. The mechanism of its protection is not yet fully understood; therefore, we also investigated the effect of cytNmnat1 on mitochondrial dynamics in vincristine treated neurons. We observed that vincristine treatment decreases the rate of mitochondrial fission, fusion and motility and induces mitochondrial fragmentation. These mitochondrial events precede visible axon degeneration. Overexpression of cytNmnat1 inhibits axon degeneration and preserves the normal mitochondrial dynamics and motility in vincristine treated neurons. We suggest the alterations in mitochondrial structure and dynamics are early events which lead to axon degeneration and cytNmnat1 blocks axon degeneration by halting the vincristine induced changes to mitochondrial structure and dynamics. PMID:27486387

  4. DNA Repair Defects and Chromosomal Aberrations

    Hada, Megumi; George, K. A.; Huff, J. L.; Pluth, J. M.; Cucinotta, F. A.

    2009-01-01

    Yields of chromosome aberrations were assessed in cells deficient in DNA doublestrand break (DSB) repair, after exposure to acute or to low-dose-rate (0.018 Gy/hr) gamma rays or acute high LET iron nuclei. We studied several cell lines including fibroblasts deficient in ATM (ataxia telangiectasia mutated; product of the gene that is mutated in ataxia telangiectasia patients) or NBS (nibrin; product of the gene mutated in the Nijmegen breakage syndrome), and gliomablastoma cells that are proficient or lacking in DNA-dependent protein kinase (DNA-PK) activity. Chromosomes were analyzed using the fluorescence in situ hybridization (FISH) chromosome painting method in cells at the first division post irradiation, and chromosome aberrations were identified as either simple exchanges (translocations and dicentrics) or complex exchanges (involving >2 breaks in 2 or more chromosomes). Gamma irradiation induced greater yields of both simple and complex exchanges in the DSB repair-defective cells than in the normal cells. The quadratic dose-response terms for both simple and complex chromosome exchanges were significantly higher for the ATM- and NBS-deficient lines than for normal fibroblasts. However, in the NBS cells the linear dose-response term was significantly higher only for simple exchanges. The large increases in the quadratic dose-response terms in these repair-defective cell lines points the importance of the functions of ATM and NBS in chromatin modifications to facilitate correct DSB repair and minimize the formation of aberrations. The differences found between ATM- and NBS-deficient cells at low doses suggest that important questions should with regard to applying observations of radiation sensitivity at high dose to low-dose exposures. For aberrations induced by iron nuclei, regression models preferred purely linear dose responses for simple exchanges and quadratic dose responses for complex exchanges. Relative biological effectiveness (RBE) factors of all of

  5. Radiotherapeutical chromosomal aberrations in laryngeal cancer patients

    Stošić-Divjak Svetlana L.

    2009-01-01

    Full Text Available Introduction. The authors present the results of cytogenetic analysis of 21 patients with laryngeal carcinomas diagnosed and treated in the period 1995-2000 at the Institute of Otorhinolaryngology and Maxillofacial Surgery, Clinical Center of Serbia and Clinical Center of Novi Sad. Material and methods. The patients were specially monitored and the material was analyzed at the Institute of Human Genetics of the School of Medicine in Belgrade as well as in the Laboratory for Radiological Protection of the Institute of Occupational and Radiological Health 'Dr Dragomir Karajovic' in Belgrade. Results. The incidence of chromosomal aberrations and incidence of exchange of material between sister chromatids were observed in the preparation of the metaphasic lymphocyte chromosomes of the peripheral blood obtained in the culture. Structural aberrations were found on the chromosomes in the form of breakups, rings, translocations and dicentrics as early as after a single exposure of patients to tumor radiation dose of 2 Gy in the field sized 5x7. Out of the total number of 35 cultivated blood samples obtained from 13 patients, 21 were successfully cultivated and they were proved to contain chromosomal aberrations. Some of the peripheral blood samples failed to show cell growth in vitro due to the lethal cell damages in vivo. Discussion.. We have consluded that the number of structural aberrations cannot be used as a biological measure of the absorbed ionizing radiation dose. The presence of aberrations per se is indicative of the mutagenic effect of the ionizing radiation, which was also confirmed in our series on the original model by cultivation of the peripheral blood lymphocytes in the culture of the cells of the volunteer donors upon in vitro radiation. Using the method of bromdeoxyuridylreductase, the increased incidence of SCE as a mutagenic effect was registered. Conclusion. It has been concluded that the increase of absorbed radiation dose in

  6. Chromatic variation of aberration: the role of induced aberrations and raytrace direction

    Berner, A.; Nobis, T.; Shafer, D.; Gross, H.

    2015-09-01

    The design and optimization process of an optical system contains several first order steps. The definition of the appropriate lens type and the fixation of the raytrace direction are some of them. The latter can be understood as a hidden assumption rather than an aware design step. This is usually followed by the determination of the paraxial lens layout calculated for the primary wavelength. It is obvious, that for this primary wavelength the paraxial calculations are independent of raytrace direction. Today, most of the lens designs are specified not to work only for one wavelength, but in a certain wavelength range. Considering such rays of other wavelengths, one can observe that depending on the direction there will already occur differences in the first order chromatic aberrations and additionally in the chromatic variation of the third-order aberrations. The reason for this effect are induced aberrations emerging from one surface to the following surfaces by perturbed ray heights and ray angles. It can be shown, that the total amount of surface-resolved first order chromatic aberrations and the chromatic variation of the five primary aberrations can be split into an intrinsic part and an induced part. The intrinsic part is independent of the raytrace direction whereas the induced part is not.

  7. Mitochondrial diseases and epilepsy.

    Bindoff, Laurence A; Engelsen, Bernt A

    2012-09-01

    The mitochondrial respiratory chain is the final common pathway for energy production. Defects affecting this pathway can give rise to disease that presents at any age and affects any tissue. However, irrespective of genetic defect, epilepsy is common and there is a significant risk of status epilepticus. This review summarizes our current understanding of the epilepsy that occurs in mitochondrial disease, focusing on three of the most common disorders: mitochondrial myopathy encephalopathy, lactic acidosis and stroke-like episodes (MELAS), myoclonus epilepsy and ragged-red fibers (MERRF), and polymerase gamma (POLG) related disease. In addition, we review the pathogenesis and possible treatment of these disorders. PMID:22946726

  8. Mitochondrial damage: An important mechanism of ambient PM2.5 exposure-induced acute heart injury in rats

    Highlights: • PM2.5 induces heart mitochondrial morphological damage of rats. • Mitochondrial fission/fusion gene expression is important regulation mechanism. • Proinflammatoy cytokine level changes are accompanied with mitochondrial damage. • Alterations in oxidative stress and calcium homeostasis are focused on. - Abstract: Epidemiological studies suggested that ambient fine particulate matter (PM2.5) exposure was associated with cardiovascular disease. However, the underlying mechanism, especially the mitochondrial damage mechanism, of PM2.5-induced heart acute injury is still unclear. In this study, the alterations of mitochondrial morphology and mitochondrial fission/fusion gene expression, oxidative stress, calcium homeostasis and inflammation in hearts of rats exposed to PM2.5 with different dosages (0.375, 1.5, 6.0 and 24.0 mg/kg body weight) were investigated. The results indicated that the PM2.5 exposure induced pathological changes and ultra-structural damage in hearts such as mitochondrial swell and cristae disorder. Furthermore, PM2.5 exposure significantly increased specific mitochondrial fission/fusion gene (Fis1, Mfn1, Mfn2, Drp1 and OPA1) expression in rat hearts. These changes were accompanied by decreases of activities of superoxide dismutase (SOD), Na+K+-ATPase and Ca2+-ATPase and increases of levels of malondialdehyde (MDA), inducible nitric oxide synthase (iNOS) and nitric oxide (NO) as well as levels of pro-inflammatory mediators including TNF-α, IL-6 and IL-1β in rat hearts. The results implicate that mitochondrial damage, oxidative stress, cellular homeostasis imbalance and inflammation are potentially important mechanisms for the PM2.5-induced heart injury, and may have relations with cardiovascular disease

  9. Interaction with Shc prevents aberrant Erk activation in the absence of extracellular stimuli

    Suen, KinMan

    2013-05-01

    Control mechanisms that prevent aberrant signaling are necessary to maintain cellular homeostasis. We describe a new mechanism by which the adaptor protein Shc directly binds the MAP kinase Erk, thus preventing its activation in the absence of extracellular stimuli. The Shc-Erk complex restricts Erk nuclear translocation, restraining Erk-dependent transcription of genes, including those responsible for oncogenic growth. The complex forms through unique binding sites on both the Shc PTB domain and the N-terminal lobe of Erk. Upon receptor tyrosine kinase stimulation, a conformational change within Shc - induced through interaction with the phosphorylated receptor - releases Erk, allowing it to fulfill its role in signaling. Thus, in addition to its established role in promoting MAP kinase signaling in stimulated cells, Shc negatively regulates Erk activation in the absence of growth factors and thus could be considered a tumor suppressor in human cells. © 2013 Nature America, Inc. All rights reserved.

  10. p21{sup WAF1/CIP1} deficiency induces mitochondrial dysfunction in HCT116 colon cancer cells

    Kim, Ae Jeong; Jee, Hye Jin; Song, Naree; Kim, Minjee [Department of Biochemistry, College of Medicine, Dong-A University, Busan (Korea, Republic of); Mitochondria Hub Regulation Center, College of Medicine, Dong-A University, Busan (Korea, Republic of); Jeong, Seon-Young [Mitochondria Hub Regulation Center, College of Medicine, Dong-A University, Busan (Korea, Republic of); Department of Medical Genetics, Ajou University School of Medicine (Korea, Republic of); Yun, Jeanho, E-mail: yunj@dau.ac.kr [Department of Biochemistry, College of Medicine, Dong-A University, Busan (Korea, Republic of); Mitochondria Hub Regulation Center, College of Medicine, Dong-A University, Busan (Korea, Republic of)

    2013-01-11

    Highlights: Black-Right-Pointing-Pointer p21{sup -/-} HCT116 cells exhibited an increase in mitochondrial mass. Black-Right-Pointing-Pointer The expression levels of PGC-1{alpha} and AMPK were upregulated in p21{sup -/-} HCT116 cells. Black-Right-Pointing-Pointer The proliferation of p21{sup -/-} HCT116 cells in galactose medium was significantly impaired. Black-Right-Pointing-Pointer p21 may play a role in maintaining proper mitochondrial mass and respiratory function. -- Abstract: p21{sup WAF1/CIP1} is a critical regulator of cell cycle progression. However, the role of p21 in mitochondrial function remains poorly understood. In this study, we examined the effect of p21 deficiency on mitochondrial function in HCT116 human colon cancer cells. We found that there was a significant increase in the mitochondrial mass of p21{sup -/-} HCT116 cells, as measured by 10-N-nonyl-acridine orange staining, as well as an increase in the mitochondrial DNA content. In contrast, p53{sup -/-} cells had a mitochondrial mass comparable to that of wild-type HCT116 cells. In addition, the expression levels of the mitochondrial biogenesis regulators PGC-1{alpha} and TFAM and AMPK activity were also elevated in p21{sup -/-} cells, indicating that p21 deficiency induces the rate of mitochondrial biogenesis through the AMPK-PGC-1{alpha} axis. However, the increase in mitochondrial biogenesis in p21{sup -/-} cells did not accompany an increase in the cellular steady-state level of ATP. Furthermore, p21{sup -/-} cells exhibited significant proliferation impairment in galactose medium, suggesting that p21 deficiency induces a defect in the mitochondrial respiratory chain in HCT116 cells. Taken together, our results suggest that the loss of p21 results in an aberrant increase in the mitochondrial mass and in mitochondrial dysfunction in HCT116 cells, indicating that p21 is required to maintain proper mitochondrial mass and respiratory function.

  11. Controlled and Impaired Mitochondrial Quality in Neurons: Molecular Physiology and Prospective Pharmacology.

    Matic, Ivana; Strobbe, Daniela; Frison, Michele; Campanella, Michelangelo

    2015-09-01

    Tuned mitochondrial physiology is fundamental for qualitative cellular function. This is particularly relevant for neurons, whose pathology is frequently associated with mitochondrial deficiencies. Defects in mitochondria are indeed key features in most neurodegenerative diseases such as Alzheimer's Disease (AD), Parkinson's Disease (PD), Huntington's Disease (HD) and Amyotrophic Lateral Sclerosis (ALS). When mitochondrial coupling impairs, so does cell metabolism, trafficking and the signaling depending on the homeostasis of the mitochondrial network. Moreover, the quality control of mitochondria - via the process of mitochondrial autophagy - results biased in neurodegeneration stemming major interest on the molecular determinants of this process among neuroscientists. In this review, we highlight the most notable and acknowledged deficiencies of mitochondrial function and their relationship with diseases occurring in neurons and their transmission. The physiological aspects of mitochondrial biology in relation to bio-energy, dynamics and quality control will be discussed with the finality to form a comprehensive picture of the mitochondrial contribution to the pathophysiology of neurodegenerative syndromes. In this way we aim to set the scene to conceive novel strategies to better diagnose and target these debilitative conditions. PMID:25917207

  12. High-intensity sprint training inhibits mitochondrial respiration through aconitase inactivation.

    Larsen, Filip J; Schiffer, Tomas A; Ørtenblad, Niels; Zinner, Christoph; Morales-Alamo, David; Willis, Sarah J; Calbet, Jose A; Holmberg, Hans-Christer; Boushel, Robert

    2016-01-01

    Intense exercise training is a powerful stimulus that activates mitochondrial biogenesis pathways and thus increases mitochondrial density and oxidative capacity. Moderate levels of reactive oxygen species (ROS) during exercise are considered vital in the adaptive response, but high ROS production is a serious threat to cellular homeostasis. Although biochemical markers of the transition from adaptive to maladaptive ROS stress are lacking, it is likely mediated by redox sensitive enzymes involved in oxidative metabolism. One potential enzyme mediating such redox sensitivity is the citric acid cycle enzyme aconitase. In this study, we examined biopsy specimens of vastus lateralis and triceps brachii in healthy volunteers, together with primary human myotubes. An intense exercise regimen inactivated aconitase by 55-72%, resulting in inhibition of mitochondrial respiration by 50-65%. In the vastus, the mitochondrial dysfunction was compensated for by a 15-72% increase in mitochondrial proteins, whereas H2O2 emission was unchanged. In parallel with the inactivation of aconitase, the intermediary metabolite citrate accumulated and played an integral part in cellular protection against oxidative stress. In contrast, the triceps failed to increase mitochondrial density, and citrate did not accumulate. Instead, mitochondrial H2O2 emission was decreased to 40% of the pretraining levels, together with a 6-fold increase in protein abundance of catalase. In this study, a novel mitochondrial stress response was highlighted where accumulation of citrate acted to preserve the redox status of the cell during periods of intense exercise. PMID:26452378

  13. Translating the basic knowledge of mitochondrial functions to metabolic therapy: role of L-carnitine.

    Marcovina, Santica M; Sirtori, Cesare; Peracino, Andrea; Gheorghiade, Mihai; Borum, Peggy; Remuzzi, Giuseppe; Ardehali, Hossein

    2013-02-01

    Mitochondria play important roles in human physiological processes, and therefore, their dysfunction can lead to a constellation of metabolic and nonmetabolic abnormalities such as a defect in mitochondrial gene expression, imbalance in fuel and energy homeostasis, impairment in oxidative phosphorylation, enhancement of insulin resistance, and abnormalities in fatty acid metabolism. As a consequence, mitochondrial dysfunction contributes to the pathophysiology of insulin resistance, obesity, diabetes, vascular disease, and chronic heart failure. The increased knowledge on mitochondria and their role in cellular metabolism is providing new evidence that these disorders may benefit from mitochondrial-targeted therapies. We review the current knowledge of the contribution of mitochondrial dysfunction to chronic diseases, the outcomes of experimental studies on mitochondrial-targeted therapies, and explore the potential of metabolic modulators in the treatment of selected chronic conditions. As an example of such modulators, we evaluate the efficacy of the administration of L-carnitine and its analogues acetyl and propionyl L-carnitine in several chronic diseases. L-carnitine is intrinsically involved in mitochondrial metabolism and function as it plays a key role in fatty acid oxidation and energy metabolism. In addition to the transportation of free fatty acids across the inner mitochondrial membrane, L-carnitine modulates their oxidation rate and is involved in the regulation of vital cellular functions such as apoptosis. Thus, L-carnitine and its derivatives show promise in the treatment of chronic conditions and diseases associated with mitochondrial dysfunction but further translational studies are needed to fully explore their potential. PMID:23138103

  14. A Ca2+-induced mitochondrial permeability transition causes complete release of rat liver endonuclease G activity from its exclusive location within the mitochondrial intermembrane space. Identification of a novel endo-exonuclease activity residing within the mitochondrial matrix

    Davies, Adrian M.; Hershman, Stuart; Stabley, Gabriel J.; Hoek, Jan B.; Peterson, Jason; Cahill, Alan

    2003-01-01

    Endonuclease G, a protein historically thought to be involved in mitochondrial DNA (mtDNA) replication, repair, recombination and degradation, has recently been reported to be involved in nuclear DNA degradation during the apoptotic process. As a result, its involvement in mtDNA homeostasis has been called into question and has necessitated detailed analyses of its precise location within the mitochondrion. Data is presented localizing rat liver endonuclease G activity exclusively to the mito...

  15. Mitochondrial dynamics and apoptosis

    Suen, Der-Fen; Norris, Kristi L.; Youle, Richard J.

    2008-01-01

    In healthy cells, mitochondria continually divide and fuse to form a dynamic interconnecting network. The molecular machinery that mediates this organelle fission and fusion is necessary to maintain mitochondrial integrity, perhaps by facilitating DNA or protein quality control. This network disintegrates during apoptosis at the time of cytochrome c release and prior to caspase activation, yielding more numerous and smaller mitochondria. Recent work shows that proteins involved in mitochondri...

  16. Mitochondrial metabolism and diabetes

    Kwak, Soo Heon; Park, Kyong Soo; Lee, Ki‐Up; Lee, Hong Kyu

    2010-01-01

    Abstract The oversupply of calories and sedentary lifestyle has resulted in a rapid increase of diabetes prevalence worldwide. During the past two decades, lines of evidence suggest that mitochondrial dysfunction plays a key role in the pathophysiology of diabetes. Mitochondria are vital to most of the eukaryotic cells as they provide energy in the form of adenosine triphosphate by oxidative phosphorylation. In addition, mitochondrial function is an integral part of glucose‐stimulated insulin...

  17. The plant mitochondrial proteome

    Millar, A.H.; Heazlewood, J.L.; Kristensen, B.K.;

    2005-01-01

    The plant mitochondrial proteome might contain as many as 2000-3000 different gene products, each of which might undergo post-translational modification. Recent studies using analytical methods, such as one-, two- and three-dimensional gel electrophoresis and one- and two-dimensional liquid...... context to be defined for them. There are indications that some of these proteins add novel activities to mitochondrial protein complexes in plants....

  18. Innate immune activation in intestinal homeostasis.

    Harrison, Oliver J; Maloy, Kevin J

    2011-01-01

    Loss of intestinal immune regulation leading to aberrant immune responses to the commensal microbiota are believed to precipitate the chronic inflammation observed in the gastrointestinal tract of patients with inflammatory bowel diseases (IBD), Crohn's disease and ulcerative colitis. Innate immune receptors that recognize conserved components derived from the microbiota are widely expressed by both epithelial cells and leucocytes of the gastrointestinal tract and play a key role in host protection from infectious pathogens; yet precisely how pathogenic and commensal microbes are distinguished is not understood. Furthermore, aberrant innate immune activation may also drive intestinal pathology, as patients with IBD exhibit extensive infiltration of innate immune cells to the inflamed intestine, and polymorphisms in many innate immunity genes influence susceptibility to IBD. Thus, a balanced interaction between the microbiota and innate immune activation is required to maintain a healthy mutualistic relationship between the microbiota and the host, which when disturbed can result in intestinal inflammation. PMID:21912101

  19. Inherited mitochondrial neuropathies.

    Finsterer, Josef

    2011-05-15

    Mitochondrial disorders (MIDs) occasionally manifest as polyneuropathy either as the dominant feature or as one of many other manifestations (inherited mitochondrial neuropathy). MIDs in which polyneuropathy is the dominant feature, include NARP syndrome due to the transition m.8993T>, CMT2A due to MFN2 mutations, CMT2K and CMT4A due to GDAP1 mutations, and axonal/demyelinating neuropathy with external ophthalmoplegia due to POLG1 mutations. MIDs in which polyneuropathy is an inconstant feature among others is the MELAS syndrome, MERRF syndrome, LHON, Mendelian PEO, KSS, Leigh syndrome, MNGIE, SANDO; MIRAS, MEMSA, AHS, MDS (hepato-cerebral form), IOSCA, and ADOA syndrome. In the majority of the cases polyneuropathy presents in a multiplex neuropathy distribution. Nerve conduction studies may reveal either axonal or demyelinated or mixed types of neuropathies. If a hereditary neuropathy is due to mitochondrial dysfunction, the management of these patients is at variance from non-mitochondrial hereditary neuropathies. Patients with mitochondrial hereditary neuropathy need to be carefully investigated for clinical or subclinical involvement of other organs or systems. Supportive treatment with co-factors, antioxidants, alternative energy sources, or lactate lowering agents can be tried. Involvement of other organs may require specific treatment. Mitochondrial neuropathies should be included in the differential diagnosis of hereditary neuropathies. PMID:21402391

  20. Innate Immune Activation in Intestinal Homeostasis

    Harrison, Oliver J.; Maloy, Kevin J.

    2011-01-01

    Loss of intestinal immune regulation leading to aberrant immune responses to the commensal microbiota are believed to precipitate the chronic inflammation observed in the gastrointestinal tract of patients with inflammatory bowel diseases (IBD), Crohn's disease and ulcerative colitis. Innate immune receptors that recognize conserved components derived from the microbiota are widely expressed by both epithelial cells and leucocytes of the gastrointestinal tract and play a key role in host prot...

  1. Involvement of aberrant cyclin-dependent kinase 5/p25 activity in experimental traumatic brain injury.

    Yousuf, Mohammad A; Tan, Chunfeng; Torres-Altoro, Melissa I; Lu, Fang-Min; Plautz, Erik; Zhang, Shanrong; Takahashi, Masaya; Hernandez, Adan; Kernie, Steven G; Plattner, Florian; Bibb, James A

    2016-07-01

    . Moreover, TBI deregulates Ca(2+) -homeostasis triggering p25 production. The protein kinase Cdk5 is aberrantly activated by p25 leading to phosphorylation of substrates including tau and Rb protein. Loss of Cdk5 attenuates TBI lesion size, indicating that Cdk5 is a critical player in TBI pathogenesis and thus may be a suitable therapeutic target for TBI. PMID:26998748

  2. Emerging role of Lon protease as a master regulator of mitochondrial functions.

    Pinti, Marcello; Gibellini, Lara; Nasi, Milena; De Biasi, Sara; Bortolotti, Carlo Augusto; Iannone, Anna; Cossarizza, Andrea

    2016-08-01

    Lon protease is a nuclear-encoded, mitochondrial ATP-dependent protease highly conserved throughout the evolution, crucial for the maintenance of mitochondrial homeostasis. Lon acts as a chaperone of misfolded proteins, and is necessary for maintaining mitochondrial DNA. The impairment of these functions has a deep impact on mitochondrial functionality and morphology. An altered expression of Lon leads to a profound reprogramming of cell metabolism, with a switch from respiration to glycolysis, which is often observed in cancer cells. Mutations of Lon, which likely impair its chaperone properties, are at the basis of a genetic inherited disease named of the cerebral, ocular, dental, auricular, skeletal (CODAS) syndrome. This article is part of a Special Issue entitled 'EBEC 2016: 19th European Bioenergetics Conference, Riva del Garda, Italy, July 2-6, 2016', edited by Prof. Paolo Bernardi. PMID:27033304

  3. Chromosomal aberrations in ISS crew members

    Johannes, Christian; Goedecke, Wolfgang; Antonopoulos, Alexandra

    2012-07-01

    High energy radiation is a major risk factor in manned space missions. Astronauts and cosmonauts are exposed to ionising radiations of cosmic and solar origin, while on the Earth's surface people are well protected by the atmosphere and a deflecting magnetic field. There are now data available describing the dose and the quality of ionising radiation on-board of the International Space Station (ISS). Nonetheless, the effect of increased radiation dose on mutation rates of ISS crew members are hard to predict. Therefore, direct measurements of mutation rates are required in order to better estimate the radiation risk for longer duration missions. The analysis of chromosomal aberrations in peripheral blood lymphocytes is a well established method to measure radiation-induced mutations. We present data of chromosome aberration analyses from lymphocyte metaphase spreads of ISS crew members participating in short term (10-14 days) or long term (around 6 months) missions. From each subject we received two blood samples. The first sample was drawn about 10 days before launch and a second one within 3 days after return from flight. From lymphocyte cultures metaphase plates were prepared on glass slides. Giemsa stained and in situ hybridised metaphases were scored for chromosome changes in pre-flight and post-flight blood samples and the mutation rates were compared. Results obtained in chromosomal studies on long-term flight crew members showed pronounced inter-individual differences in the response to elevated radiation levels. Overall slight but significant elevations of typical radiation induced aberrations, i.e., dicentric chromosomes and reciprocal translocations have been observed. Our data indicate no elevation of mutation rates due to short term stays on-board the ISS.

  4. Aberrant splicing and drug resistance in AML.

    de Necochea-Campion, Rosalia; Shouse, Geoffrey P; Zhou, Qi; Mirshahidi, Saied; Chen, Chien-Shing

    2016-01-01

    The advent of next-generation sequencing technologies has unveiled a new window into the heterogeneity of acute myeloid leukemia (AML). In particular, recurrent mutations in spliceosome machinery and genome-wide aberrant splicing events have been recognized as a prominent component of this disease. This review will focus on how these factors influence drug resistance through altered splicing of tumor suppressor and oncogenes and dysregulation of the apoptotic signaling network. A better understanding of these factors in disease progression is necessary to design appropriate therapeutic strategies recognizing specific alternatively spliced or mutated oncogenic targets. PMID:27613060

  5. Aberrations in Fresnel Lenses and Mirrors

    Gregory, Don

    1999-01-01

    The NASA/MSFC Shooting Star program revealed a number of technical problems that must be solved before solar thermal propulsion can become a reality. The fundamental problem of interest here is the collection of solar energy. This is the first step in the propulsion process and indeed the most important. Everything else depends on the efficiency and focusing ability of the collection lens or mirror. An initial model of Fresnel lens behavior using a wave optics approach has been completed and the results were encouraging enough to warrant an experimental investigation. This experimental investigation confirmed some of the effects predicted and produced invaluable photographic evidence of coherence based diffraction and aberration.

  6. Complex IV Deficient Surf1−/− Mice Initiate Mitochondrial Stress Responses

    Pulliam, Daniel A.; Deepa, Sathyaseelan S.; Liu, Yuhong; Hill, Shauna; Lin, Ai-Ling; Bhattacharya, Arunabh; Shi, Yun; Sloane, Lauren; Viscomi, Carlo; Zeviani, Massimo; Van Remmen, Holly

    2014-01-01

    Summary Mutations in SURF1 cytochrome c oxidase (COX) assembly protein are associated with Leigh’s syndrome, a human mitochondrial disorder that manifests as severe mitochondrial phenotypes and early lethality. In contrast, mice lacking the Surf1 protein (Surf1−/−) are viable and were previously shown to have enhanced longevity and a greater than 50% reduction in COX activity. We measured mitochondrial function in heart and skeletal muscle, and despite the significant reduction in COX activity, we found little or no difference in reactive oxygen species (ROS) generation, membrane potential, ATP production or respiration in isolated mitochondria from Surf1−/− mice compared to wild-type. However, blood lactate levels are elevated and Surf1−/− mice have reduced running endurance, suggesting compromised mitochondrial energy metabolism in vivo. Decreased COX activity in Surf1−/− mice is associated with increased markers of mitochondrial biogenesis (PGC-1α and VDAC) in both heart and skeletal muscle. While mitochondrial biogenesis is a common response in the two tissues, skeletal muscle have an up-regulation of the mitochondrial unfolded protein response (UPRMT) and heart exhibits induction of the Nrf2 antioxidant response pathway. These data are the first to report induction of the UPRMT in a mammalian model of diminished COX activity. In addition our results suggest that impaired mitochondrial function can lead to induction of mitochondrial stress pathways to confer protective effects on cellular homeostasis. Loss of complex IV assembly factor Surf1 in mice results in compensatory responses including mitochondrial biogenesis, the nrf2 pathway and the mitochondrial unfolded protein response. This compensatory response may contribute to the lack of deleterious phenotypes under basal conditions. PMID:24911525

  7. Calcineurin Links Mitochondrial Elongation with Energy Metabolism.

    Pfluger, Paul T; Kabra, Dhiraj G; Aichler, Michaela; Schriever, Sonja C; Pfuhlmann, Katrin; García, Verónica Casquero; Lehti, Maarit; Weber, Jon; Kutschke, Maria; Rozman, Jan; Elrod, John W; Hevener, Andrea L; Feuchtinger, Annette; Hrabě de Angelis, Martin; Walch, Axel; Rollmann, Stephanie M; Aronow, Bruce J; Müller, Timo D; Perez-Tilve, Diego; Jastroch, Martin; De Luca, Maria; Molkentin, Jeffery D; Tschöp, Matthias H

    2015-11-01

    Canonical protein phosphatase 3/calcineurin signaling is central to numerous physiological processes. Here we provide evidence that calcineurin plays a pivotal role in controlling systemic energy and body weight homeostasis. Knockdown of calcineurin in Drosophila melanogaster led to a decrease in body weight and energy stores, and increased energy expenditure. In mice, global deficiency of catalytic subunit Ppp3cb, and tissue-specific ablation of regulatory subunit Ppp3r1 from skeletal muscle, but not adipose tissue or liver, led to protection from high-fat-diet-induced obesity and comorbid sequelæ. Ser637 hyperphosphorylation of dynamin-related protein 1 (Drp1) in skeletal muscle of calcineurin-deficient mice was associated with mitochondrial elongation into power-cable-shaped filaments and increased mitochondrial respiration, but also with attenuated exercise performance. Our data suggest that calcineurin acts as highly conserved pivot for the adaptive metabolic responses to environmental changes such as high-fat, high-sugar diets or exercise. PMID:26411342

  8. Transcranial electrical stimulation accelerates human sleep homeostasis.

    Davide Reato

    Full Text Available The sleeping brain exhibits characteristic slow-wave activity which decays over the course of the night. This decay is thought to result from homeostatic synaptic downscaling. Transcranial electrical stimulation can entrain slow-wave oscillations (SWO in the human electro-encephalogram (EEG. A computational model of the underlying mechanism predicts that firing rates are predominantly increased during stimulation. Assuming that synaptic homeostasis is driven by average firing rates, we expected an acceleration of synaptic downscaling during stimulation, which is compensated by a reduced drive after stimulation. We show that 25 minutes of transcranial electrical stimulation, as predicted, reduced the decay of SWO in the remainder of the night. Anatomically accurate simulations of the field intensities on human cortex precisely matched the effect size in different EEG electrodes. Together these results suggest a mechanistic link between electrical stimulation and accelerated synaptic homeostasis in human sleep.

  9. Homeostasis as the Mechanism of Evolution

    John S. Torday

    2015-09-01

    Full Text Available Homeostasis is conventionally thought of merely as a synchronic (same time servo-mechanism that maintains the status quo for organismal physiology. However, when seen from the perspective of developmental physiology, homeostasis is a robust, dynamic, intergenerational, diachronic (across-time mechanism for the maintenance, perpetuation and modification of physiologic structure and function. The integral relationships generated by cell-cell signaling for the mechanisms of embryogenesis, physiology and repair provide the needed insight to the scale-free universality of the homeostatic principle, offering a novel opportunity for a Systems approach to Biology. Starting with the inception of life itself, with the advent of reproduction during meiosis and mitosis, moving forward both ontogenetically and phylogenetically through the evolutionary steps involved in adaptation to an ever-changing environment, Biology and Evolution Theory need no longer default to teleology.

  10. Homeostasis as the Mechanism of Evolution.

    Torday, John S

    2015-01-01

    Homeostasis is conventionally thought of merely as a synchronic (same time) servo-mechanism that maintains the status quo for organismal physiology. However, when seen from the perspective of developmental physiology, homeostasis is a robust, dynamic, intergenerational, diachronic (across-time) mechanism for the maintenance, perpetuation and modification of physiologic structure and function. The integral relationships generated by cell-cell signaling for the mechanisms of embryogenesis, physiology and repair provide the needed insight to the scale-free universality of the homeostatic principle, offering a novel opportunity for a Systems approach to Biology. Starting with the inception of life itself, with the advent of reproduction during meiosis and mitosis, moving forward both ontogenetically and phylogenetically through the evolutionary steps involved in adaptation to an ever-changing environment, Biology and Evolution Theory need no longer default to teleology. PMID:26389962